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preface
In the summer of 1997, I was terrified. Instead of working as an intern in my major
(microelectronic engineering), the best job I could find was at a research laboratory
devoted to high-speed signal processing. My job was to program the two-dimensional
fast Fourier transform (FFT) using C and the Message Passing Interface (MPI), and get
it running as quickly as possible. The good news was that the lab had sixteen brand new
SPARCstations. The bad news was that I knew absolutely nothing about MPI or the FFT.

 Thanks to books purchased from a strange new site called Amazon.com, I man-
aged to understand the basics of MPI: the application deploys one set of instructions
to multiple computers, and each processor accesses data according to its ID. As each
processor finishes its task, it sends its output to the processor whose ID equals 0.

 It took me time to grasp the finer details of MPI (blocking versus nonblocking data
transfer, synchronous versus asynchronous communication), but as I worked more
with the language, I fell in love with distributed computing. I loved the fact that I
could get sixteen monstrous computers to process data in lockstep, working together
like athletes on a playing field. I felt like a choreographer arranging a dance or a com-
poser writing a symphony for an orchestra. By the end of the internship, I coded mul-
tiple versions of the 2-D FFT in MPI, but the lab’s researchers decided that network
latency made the computation impractical.

 Since that summer, I’ve always gravitated toward high-performance computing, and
I’ve had the pleasure of working with digital signal processors, field-programmable gate
arrays, and the Cell processor, which serves as the brain of Sony’s PlayStation 3. But noth-
ing beats programming graphics processing units (GPUs) with OpenCL. As today’s
xv



PREFACExvi
supercomputers have shown, no CPU provides the same number-crunching power per
watt as a GPU. And no language can target as wide a range of devices as OpenCL.

 When AMD released its OpenCL development tools in 2009, I fell in love again.
Not only does OpenCL provide new vector types and a wealth of math functions, but it
also resembles MPI in many respects. Both toolsets are freely available and their rou-
tines can be called in C or C++. In both cases, applications deliver instructions to mul-
tiple devices whose processing units rely on IDs to determine which data they should
access. MPI and OpenCL also make it possible to send data using similar types of block-
ing/non-blocking transfers and synchronous/asynchronous communication.

 OpenCL is still new in the world of high-performance computing, and many pro-
grammers don’t know it exists. To help spread the word about this incredible lan-
guage, I decided to write OpenCL in Action. I’ve enjoyed working on this book a great
deal, and I hope it helps newcomers take advantage of the power of OpenCL and dis-
tributed computing in general.

 As I write this in the summer of 2011, I feel as though I’ve come full circle. Last
night, I put the finishing touches on the FFT application presented in chapter 14. It
brought back many pleasant memories of my work with MPI, but I’m amazed by how
much the technology has changed. In 1997, the sixteen SPARCstations in my lab took
nearly a minute to perform a 32k FFT. In 2011, my $300 graphics card can perform an
FFT on millions of data points in seconds.

 The technology changes, but the enjoyment remains the same. The learning curve
can be steep in the world of distributed computing, but the rewards more than make
up for the effort expended. 
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about this book
OpenCL is a complex subject. To code even the simplest of applications, a developer
needs to understand host programming, device programming, and the mechanisms
that transfer data between the host and device. The goal of this book is to show how
these tasks are accomplished and how to put them to use in practical applications.

 The format of this book is tutorial-based. That is, each new concept is followed by
example code that demonstrates how the theory is used in an application. Many of the
early applications are trivially basic, and some do nothing more than obtain informa-
tion about devices and data structures. But as the book progresses, the code becomes
more involved and makes fuller use of both the host and the target device. In the later
chapters, the focus shifts from learning how OpenCL works to putting OpenCL to use
in processing vast amounts of data at high speed.

Audience

In writing this book, I’ve assumed that readers have never heard of OpenCL and know
nothing about distributed computing or high-performance computing. I’ve done my
best to present concepts like task-parallelism and SIMD (single instruction, multiple
data) development as simply and as straightforwardly as possible.

 But because the OpenCL API is based on C, this book presumes that the reader has
a solid understanding of C fundamentals. Readers should be intimately familiar with
pointers, arrays, and memory access functions like malloc and free. It also helps to be
cognizant of the C functions declared in the common math library, as most of the ker-
nel functions have similar names and usages.
xix



ABOUT THIS BOOKxx
 OpenCL applications can run on many different types of devices, but one of its
chief advantages is that it can be used to program graphics processing units (GPUs).
Therefore, to get the most out of this book, it helps to have a graphics card attached
to your computer or a hybrid CPU-GPU device such as AMD’s Fusion. 

Roadmap

This book is divided into three parts. The first part, which consists of chapters 1–10,
focuses on exploring the OpenCL language and its capabilities. The second part,
which consists of chapters 11–14, shows how OpenCL can be used to perform large-
scale tasks commonly encountered in the field of high-performance computing. The
last part, which consists of chapters 15 and 16, shows how OpenCL can be used to
accelerate OpenGL applications.

 The chapters of part 1 have been structured to serve the needs of a programmer
who has never coded a line of OpenCL. Chapter 1 introduces the topic of OpenCL,
explaining what it is, where it came from, and the basics of its operation. Chapters 2
and 3 explain how to code applications that run on the host, and chapters 4 and 5
show how to code kernels that run on compliant devices. Chapters 6 and 7 explore
advanced topics that involve both host programming and kernel coding. Specifically,
chapter 6 presents image processing and chapter 7 discusses the important topics of
event processing and synchronization.

 Chapters 8 and 9 discuss the concepts first presented in chapters 2 through 5, but
using languages other than C. Chapter 8 discusses host/kernel coding in C++, and
chapter 9 explains how to build OpenCL applications in Java and Python. If you aren’t
obligated to program in C, I recommend that you use one of the toolsets discussed in
these chapters.

 Chapter 10 serves as a bridge between parts 1 and 2. It demonstrates how to take
full advantage of OpenCL’s parallelism by implementing a simple reduction algorithm
that adds together one million data points. It also presents helpful guidelines for cod-
ing practical OpenCL applications.

 Chapters 11–14 get into the heavy-duty usage of OpenCL, where applications com-
monly operate on millions of data points. Chapter 11 discusses the implementation of
MapReduce and two sorting algorithms: the bitonic sort and the radix sort. Chapter 12
covers operations on dense matrices, and chapter 13 explores operations on sparse
matrices. Chapter 14 explains how OpenCL can be used to implement the fast Fourier
transform (FFT).

 Chapters 15 and 16 are my personal favorites. One of OpenCL’s great strengths is
that it can be used to accelerate three-dimensional rendering, a topic of central inter-
est in game development and scientific visualization. Chapter 15 introduces the topic
of OpenCL-OpenGL interoperability and shows how the two toolsets can share data
corresponding to vertex attributes. Chapter 16 expands on this and shows how
OpenCL can accelerate OpenGL texture processing. These chapters require an
understanding of OpenGL 3.3 and shader development, and both of these topics are
explored in appendix B.
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 At the end of the book, the appendixes provide helpful information related to
OpenCL, but the material isn’t directly used in common OpenCL development.
Appendix A discusses the all-important topic of software development kits (SDKs), and
explains how to install the SDKs provided by AMD and Nvidia. Appendix B discusses
the basics of OpenGL and shader development. Appendix C explains how to install
and use the Minimalist GNU for Windows (MinGW), which provides a GNU-like envi-
ronment for building executables on the Windows operating system. Lastly, appendix
D discusses the specification for embedded OpenCL.

Obtaining and compiling the example code

In the end, it’s the code that matters. This book contains working code for over 60
OpenCL applications, and you can download the source code from the publisher’s
website at www.manning.com/OpenCLinAction or www.manning.com/scarpino2/.

 The download site provides a link pointing to an archive that contains code
intended to be compiled with GNU-based build tools. This archive contains one folder
for each chapter/appendix of the book, and each top-level folder has subfolders for
example projects. For example, if you look in the Ch5/shuffle_test directory, you’ll
find the source code for Chapter 5’s shuffle_test project. 

 As far as dependencies go, every project requires that the OpenCL library
(OpenCL.lib on Windows, libOpenCL.so on *nix systems) be available on the develop-
ment system. Appendix A discusses how to obtain this library by installing an appro-
priate software development kit (SDK). 

 In addition, chapters 6 and 16 discuss images, and the source code in these chap-
ters makes use of the open-source PNG library. Chapter 6 explains how to obtain this
library for different systems. Appendix B and chapters 15 and 16 all require access to
OpenGL, and appendix B explains how to obtain and install this toolset.

Code conventions

As lazy as this may sound, I prefer to copy and paste working code into my applica-
tions rather than write code from scratch. This not only saves time, but also reduces
the likelihood of producing bugs through typographical errors. All the code in this
book is public domain, so you’re free to download and copy and paste portions of it
into your applications. But before you do, it’s a good idea to understand the conven-
tions I’ve used:

■ Host data structures are named after their data type. That is, each
cl_platform_id structure is called platform, each cl_device_id structure is
called device, each cl_context structure is called context, and so on.

■ In the host applications, the main function calls on two functions: create_device
returns a cl_device, and build_program creates and compiles a cl_program.
Note that create_device searches for a GPU associated with the first available
platform. If it can’t find a GPU, it searches for the first compliant CPU.

www.manning.com/OpenCLinAction
www.manning.com/scarpino2/
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■ Host applications identify the program file and the kernel function using macros
declared at the start of the source file. Specifically, the PROGRAM_FILE macro iden-
tifies the program file and KERNEL_FUNC identifies the kernel function.

■ All my program files end with the .cl suffix. If the program file only contains one
kernel function, that function has the same name as the file.

■ For GNU code, every makefile assumes that libraries and header files can be found
at locations identified by environment variables. Specifically, the makefile
searches for AMDAPPSDKROOT on AMD platforms and CUDA on Nvidia platforms.

Author Online

Nobody’s perfect. If I failed to convey my subject material clearly or (gasp) made a
mistake, feel free to add a comment through Manning’s Author Online system. You
can find the Author Online forum for this book by going to www.manning.com/
OpenCLinAction and clicking the Author Online link.

 Simple questions and concerns get rapid responses. In contrast, if you’re unhappy
with line 402 of my bitonic sort implementation, it may take me some time to get back
to you. I’m always happy to discuss general issues related to OpenCL, but if you’re
looking for something complex and specific, such as help debugging a custom FFT, I
will have to recommend that you find a professional consultant.

About the cover illustration

The figure on the cover of OpenCL in Action is captioned a “Kranjac,” or an inhabitant
of the Carniola region in the Slovenian Alps. This illustration is taken from a recent
reprint of Balthasar Hacquet’s Images and Descriptions of Southwestern and Eastern Wenda,
Illyrians, and Slavs published by the Ethnographic Museum in Split, Croatia, in 2008.
Hacquet (1739–1815) was an Austrian physician and scientist who spent many years
studying the botany, geology, and ethnography of the Julian Alps, the mountain range
that stretches from northeastern Italy to Slovenia and that is named after Julius Cae-
sar. Hand drawn illustrations accompany the many scientific papers and books that
Hacquet published.

 The rich diversity of the drawings in Hacquet's publications speaks vividly of the
uniqueness and individuality of the eastern Alpine regions just 200 years ago. This was
a time when the dress codes of two villages separated by a few miles identified people
uniquely as belonging to one or the other, and when members of a social class or
trade could be easily distinguished by what they were wearing. Dress codes have
changed since then and the diversity by region, so rich at the time, has faded away. It is
now often hard to tell the inhabitant of one continent from another and today the
inhabitants of the picturesque towns and villages in the Slovenian Alps are not readily
distinguishable from the residents of other parts of Slovenia or the rest of Europe. 

 We at Manning celebrate the inventiveness, the initiative, and the fun of the com-
puter business with book covers based on costumes from two centuries ago brought
back to life by illustrations such as this one.

www.manning.com/OpenCLinAction
www.manning.com/OpenCLinAction


Part 

Foundations of
 OpenCL programming

Part 1 presents the OpenCL language. We’ll explore OpenCL’s data structures
and functions in detail and look at example applications that demonstrate their
usage in code.

 Chapter 1 introduces OpenCL, explaining what it’s used for and how it
works. Chapters 2 and 3 explain how host applications are coded, and chapters 4
and 5 discuss kernel coding. Chapters 6 and 7 explore the advanced topics of
image processing and event handling.

 Chapters 8 and 9 discuss how OpenCL is coded in languages other than C,
such as C++, Java, and Python. Chapter 10 explains how OpenCL’s capabilities
can be used to develop large-scale applications.





Introducing OpenCL
In October 2010, a revolution took place in the world of high-performance com-
puting. The Tianhe-1A, constructed by China’s National Supercomputing Center
in Tianjin, came from total obscurity to seize the leading position among the
world’s best performing supercomputers. With a maximum recorded computing
speed of 2,566 TFLOPS (trillion floating-point operations per second), it performs
nearly 50 percent faster than the second-place finisher, Cray’s Jaguar supercom-
puter. Table 1.1 lists the top three supercomputers.

 What’s so revolutionary is the presence of GPUs (graphics processing units) in
both the Tianhe-1A and Nebulae? In 2009, none of the top three supercomputers
had GPUs, and only one system in the top 20 had any GPUs at all. As the table makes
clear, the two systems with GPUs provide not only excellent performance, but also
impressive power efficiency.

 Using GPUs to perform nongraphical routines is called general-purpose GPU com-
puting, or GPGPU computing. Before 2010, GPGPU computing was considered a
novelty in the world of high-performance computing and not worthy of serious

This chapter covers
■ Understanding the purpose and benefits of OpenCL
■ Introducing OpenCL operation: hosts and kernels
■ Implementing an OpenCL application in code
3



4 CHAPTER 1 Introducing OpenCL
attention. But today, engineers and academics are reaching the conclusion that CPU/
GPU systems represent the future of supercomputing.

 Now an important question arises: how can you program these new hybrid devices?
Traditional C and C++ only target traditional CPUs. The same holds true for Cray’s
proprietary Chapel language and the Cray Assembly Language (CAL). Nvidia’s CUDA
(Compute Unified Device Architecture) can be used to program Nvidia’s GPUs, but
not CPUs.

 The answer is OpenCL (Open Computing Language). OpenCL routines can be
executed on GPUs and CPUs from major manufacturers like AMD, Nvidia, and Intel,
and will even run on Sony’s PlayStation 3. OpenCL is nonproprietary—it’s based on a
public standard, and you can freely download all the development tools you need.
When you code routines in OpenCL, you don’t have to worry about which company
designed the processor or how many cores it contains. Your code will compile and
execute on AMD’s latest Fusion processors, Intel’s Core processors, Nvidia’s Fermi pro-
cessors, and IBM’s Cell Broadband Engine.

 The goal of this book is to explain how to program these cross-platform applica-
tions and take maximum benefit from the underlying hardware. But the goal of this
chapter is to provide a basic overview of the OpenCL language. The discussion will
start by focusing on OpenCL’s advantages and operation, and then proceed to describ-
ing a complete application. But first, it’s important to understand OpenCL’s origin.
Corporations have spent a great deal of time developing this language, and once you
see why, you’ll have a better idea why learning about OpenCL is worth your own.

1.1 The dawn of OpenCL
The x86 architecture enjoys a dominant position in the world of personal computing,
but there is no prevailing architecture in the fields of graphical and high-performance
computing. Despite their common purpose, there is little similarity between Nvidia’s
line of Fermi processors, AMD’s line of Evergreen processors, and IBM’s Cell Broad-
band Engine. Each of these devices has its own instruction set, and before OpenCL, if
you wanted to program them, you had to learn three different languages.

 Enter Apple. For those of you who have been living as recluses, Apple Inc. pro-
duces an insanely popular line of consumer electronic products: the iPhone, the iPad,
the iPod, and the Mac line of personal computers. But Apple doesn’t make processors

Table 1.1 Top three supercomputers of 2010 (source: www.top500.org)

Supercomputer Max speed (TFLOPS) Processors Power (kW)

Tianhe-1A 2,566 14,336 Intel Xeon CPUs,
7,168 Nvidia Tesla GPUs

4040.00

Jaguar 1,759 224,256 AMD Opteron CPUs 6950.60

Nebulae 1,271 9,280 Intel Xeon CPUs,
4,640 Nvidia Tesla GPUs

2580.00

www.top500.org
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for the Mac computers. Instead, it selects devices from other companies. If Apple
chooses a graphics processor from Company A for its new gadget, then Company A
will see a tremendous rise in market share and developer interest. This is why every-
one is so nice to Apple.

In 2008, Apple turned to its vendors and asked, “Why don’t we make a common inter-
face so that developers can program your devices without having to learn multiple lan-
guages?” If anyone else had raised this question, cutthroat competitors like Nvidia, AMD,
Intel, and IBM might have laughed. But no one laughs at Apple. It took time, but every-
one put their heads together, and they produced the first draft of OpenCL later that year.

 To manage OpenCL’s progress and development, Apple and its friends formed the
OpenCL Working Group. This is one of many working groups in the Khronos Group,
a consortium of companies whose aim is to advance graphics and graphical media.
Since its formation, the OpenCL Working Group has released two formal specifica-
tions: OpenCL version 1.0 was released in 2008, and OpenCL version 1.1 was released
in 2010. OpenCL 2.0 is planned for 2012.

 This section has explained why businesses think highly of OpenCL, but I wouldn’t
be surprised if you’re still sitting on the fence. The next section, however, explains the
technical merits of OpenCL in greater depth. As you read, I hope you’ll better under-
stand the advantages of OpenCL as compared to traditional programming languages. 

1.2 Why OpenCL?
You may hear OpenCL referred to as its own separate language, but this isn’t accurate.
The OpenCL standard defines a set of data types, data structures, and functions that
augment C and C++. Developers have created OpenCL ports for Java and Python, but
the standard only requires that OpenCL frameworks provide libraries in C and C++.

Important events in OpenCL and multicore computing history
2001—IBM releases POWER4, the first multicore processor.

2005—First multicore processors for desktop computers released: AMD’s Athlon 64
X2 and Intel’s Pentium D.

June 2008—The OpenCL Working Group forms as part of the Khronos Group.

December 2008—The OpenCL Working Group releases version 1.0 of the OpenCL
specification.

April 2009—Nvidia releases OpenCL SDK for Nvidia graphics cards.

August 2009—ATI (now AMD) releases OpenCL SDK for ATI graphics cards. Apple in-
cludes OpenCL support in its Mac OS 10.6 (Snow Leopard) release.

June 2010—The OpenCL Working Group releases version 1.1 of the OpenCL
specification.
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 Here’s the million-dollar question: what can you do with OpenCL that you can’t do
with regular C and C++? It will take this entire book to answer this question in full, but
for now, let’s look at three of OpenCL’s chief advantages: portability, standardized vec-
tor processing, and parallel programming.

1.2.1 Portability

Java is one of the most popular programming languages in the world, and it owes a
large part of its success to its motto: “Write once, run everywhere.” With Java, you
don’t have to rewrite your code for different operating systems. As long as the operat-
ing system supports a compliant Java Virtual Machine (JVM), your code will run.

 OpenCL adopts a similar philosophy, but a more suitable motto might be, “Write
once, run on anything.” Every vendor that provides OpenCL-compliant hardware also
provides the tools that compile OpenCL code to run on the hardware. This means you
can write your OpenCL routines once and compile them for any compliant device,
whether it’s a multicore processor or a graphics card. This is a great advantage over
regular high-performance computing, in which you have to learn vendor-specific lan-
guages to program vendor-specific hardware.

 There’s more to this advantage than just running on any type of compliant hard-
ware. OpenCL applications can target multiple devices at once, and these devices
don’t have to have the same architecture or even the same vendor. As long as all the
devices are OpenCL-compliant, the functions will run. This is impossible with regular
C/C++ programming, in which an executable can only target one device at a time.

 Here’s a concrete example. Suppose you have a multicore processor from AMD, a
graphics card from Nvidia, and a PCI-connected accelerator from IBM. Normally, you’d
never be able to build an application that targets all three systems at once because each
requires a separate compiler and linker. But a single OpenCL program can deploy exe-
cutable code to all three devices. This means you can unify your hardware to perform
a common task with a single program. If you connect more compliant devices, you’ll
have to rebuild the program, but you won’t have to rewrite your code.

1.2.2 Standardized vector processing

Standardized vector processing is one of the greatest advantages of OpenCL, but
before I explain why, I need to define precisely what I’m talking about. The term vector
is going to get a lot of mileage in this book, and it may be used in one of three differ-
ent (though essentially similar) ways:

■ Physical or geometric vector—An entity with a magnitude and direction. This is
used frequently in physics to identify force, velocity, heat transfer, and so on. In
graphics, vectors are employed to identify directions.

■ Mathematical vector—An ordered, one-dimensional collection of elements. This
is distinguished from a two-dimensional collection of elements, called a matrix.

■ Computational vector—A data structure that contains multiple elements of the
same data type. During a vector operation, each element (called a component) is
operated upon in the same clock cycle.
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This last usage is important to OpenCL because high-performance processors operate
on multiple values at once. If you’ve heard the terms superscalar processor or vector proces-
sor, this is the type of device being referred to. Nearly all modern processors are capa-
ble of processing vectors, but ANSI C/C++ doesn’t define any basic vector data types.
This may seem odd, but there’s a clear problem: vector instructions are usually vendor-
specific. Intel processors use SSE extensions, Nvidia devices require PTX instructions,
and IBM devices rely on AltiVec instructions to process vectors. These instruction sets
have nothing in common.

 But with OpenCL, you can code your vector routines once and run them on any
compliant processor. When you compile your application, Nvidia’s OpenCL compiler
will produce PTX instructions. An IBM compiler for OpenCL will produce AltiVec
instructions. Clearly, if you intend to make your high-performance application avail-
able on multiple platforms, coding with OpenCL will save you a great deal of time.
Chapter 4 discusses OpenCL’s vector data types and chapter 5 presents the functions
available to operate on vectors.

1.2.3 Parallel programming

If you’ve ever coded large-scale applications, you’re probably familiar with the con-
cept of concurrency, in which a single processing element shares its resources among
processes and threads. OpenCL includes aspects of concurrency, but one of its great
advantages is that it enables parallel programming. Parallel programming assigns com-
putational tasks to multiple processing elements to be performed at the same time.

 In OpenCL parlance, these tasks are called kernels. A kernel is a specially coded
function that’s intended to be executed by one or more OpenCL-compliant devices.
Kernels are sent to their intended device or devices by host applications. A host applica-
tion is a regular C/C++ application running on the user’s development system, which
we’ll call the host. For many developers, the host dispatches kernels to a single device:
the GPU on the computer’s graphics card. But kernels can also be executed by the
same CPU on which the host application is running.

 Hosts applications manage their connected devices using a container called a con-
text. Figure 1.1 shows how hosts interact with kernels and devices.

 To create a kernel, the host selects a function from a kernel container called a pro-
gram. Then it associates the kernel with argument data and dispatches it to a structure
called a command queue. The command queue is the mechanism through which the
host tells devices what to do, and when a kernel is enqueued, the device will execute
the corresponding function.

 An OpenCL application can configure different devices to perform different tasks,
and each task can operate on different data. In other words, OpenCL provides full
task-parallelism. This is an important advantage over many other parallel-programming
toolsets, which only enable data-parallelism. In a data-parallel system, each device
receives the same instructions but operates on different sets of data.

 Figure 1.1 depicts how OpenCL accomplishes task-parallelism between devices,
but it doesn’t show what’s happening inside each device. Most OpenCL-compliant
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devices consist of more than one processing element, which means there’s an addi-
tional level of parallelism internal to each device. Chapter 3 explains more about
this parallelism and how to partition data to take the best advantage of a device’s
internal processing.

 Portability, vector processing, and parallel programming make OpenCL more pow-
erful than regular C and C++, but with this greater power comes greater complexity.
In any practical OpenCL application, you have to create a number of different data
structures and coordinate their operation. It can be hard to keep everything straight,
but the next section presents an analogy that I hope will give you a clearer perspective.

1.3 Analogy: OpenCL processing and a game of cards
When I first started learning OpenCL, I was overwhelmed by all the strange data struc-
tures: platforms, contexts, devices, programs, kernels, and command queues. I found
it hard to remember what they do and how they interact, so I came up with an anal-
ogy: the operation of an OpenCL application is like a game of poker. This may seem
odd at first, but please allow me to explain.

 In a poker game, the dealer sits at a table with one or more players and deals a set
of cards to each. The players analyze their cards and decide what further actions to
take. These players don’t interact with each other. Instead, they make requests to the
dealer for additional cards or an increase in the stakes. The dealer handles each
request in turn, and once the game is over, the dealer takes control.

Host

foo() bar() baz()

Device 0 Device 1 Device 2

Program

foo()
bar()
baz()

...

Command
queue

Kernels

qux()

Device 3

qux()

Context

Figure 1.1 Kernel distribution among OpenCL-compliant devices
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 In this analogy, the dealer represents an OpenCL host, each player represents a
device, the card table represents a context, and each card represents a kernel. Each
player’s hand represents a command queue. Table 1.2 clarifies how the steps of a card
game resemble the operation of an OpenCL application.  

In case the analogy seems hard to understand, figure 1.2 depicts a card game with
four players, each of whom receives a hand with four cards. If you compare figures 1.1
and 1.2, I hope the analogy will become clearer.

Table 1.2 Comparison of OpenCL operation to a card game

Card game OpenCL application

The dealer sits at a card table and determines who 
the players are.

The host selects devices and places them in a 
context.

The dealer selects cards from a deck and deals them 
to each player. Each player’s cards form a hand.

The host selects kernels from a program. It adds 
kernels to each device’s command queue.

Each player looks at their hand and decides what 
actions to take.

Each device processes the kernels that are sent 
through the command queue.

The dealer responds to players’ requests during the 
game.

The host receives events from the devices and 
invokes event-handling routines.

The game ends, and the dealer looks at each 
player’s hand to determine who won.

Once the devices are finished, the host receives 
and processes the output data.

Dealer

A

Player 0 Player 1 Player 2

Deck of cards

Ace
King

Queen

...

Player’s 
hand

Player 3

Jack

A K

K Q

Q

J

J

Cards

Card
table

Figure 1.2 Pictorial representation of a game of cards
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This analogy will be revisited and enhanced throughout the next few chapters. It pro-
vides an intuitive understanding of OpenCL, but it has a number of flaws. These are
six of the most significant flaws:

■ The analogy doesn’t mention platforms. A platform is a data structure that
identifies a vendor’s implementation of OpenCL. Platforms provide one way to
access devices. For example, you can access an Nvidia device through the
Nvidia platform.

■ A card dealer doesn’t choose which players sit at the table, but an OpenCL host
selects which devices should be placed in a context.

■ A card dealer can’t deal the same card to multiple players, but an OpenCL host
can dispatch the same kernel to multiple devices through their command
queues.

■ The analogy doesn’t mention data or how it’s partitioned for OpenCL devices.
OpenCL devices usually contain multiple processing elements, and each ele-
ment may process a subset of the input data. The host sets the dimensionality of
the data and identifies the number of work items into which the computation
will be partitioned.

■ In a card game, the dealer distributes cards to the players, and each player
arranges the cards to form a hand. In OpenCL, the host places kernel-execution
commands into a command queue, and, by default, each device executes the
kernels in the order in which the host enqueues them.

■ In card games, dealers commonly deal cards in a round-robin fashion. OpenCL
sets no constraints on how kernels are distributed to multiple devices.

If you’re still nervous about OpenCL’s terminology, don’t be concerned. Chapter 2
will explain these data structures further and show how they’re accessed in code. After
all, code is the primary goal. The next section will give you a first taste of what
OpenCL code looks like.

1.4 A first look at an OpenCL application
At this point, you should have a good idea of what OpenCL is intended to accom-
plish. I hope you also have a basic understanding of how an OpenCL application
works. But if you want to know anything substantive about OpenCL, you have to look
at source code.

 This section will present two OpenCL source files, one intended for a host proces-
sor and one intended for a device. Both work together to compute the product of a 4-
by-4 matrix and a 4-element vector. This operation is central to graphics processing,
where the matrix represents a transformation and the vector represents a color or a
point in space. Figure 1.3 shows what this matrix-vector multiplication looks like and
then presents the equations that produce the result.

 If you open the directory containing this book’s example code, you’ll find the source
files in the Ch1 folder. The first, matvec.c, executes on the host. It creates a kernel and
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sends it to the first device it finds. The following listing shows what this host code looks
like. Notice that the source code is written in the C programming language.

NOTE Error-checking routines have been omitted from this listing, but
you’ll find them in the matvec.c file in this book’s example code.

#define PROGRAM_FILE "matvec.cl"
#define KERNEL_FUNC "matvec_mult"

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>

#ifdef MAC
#include <OpenCL/cl.h>
#else  
#include <CL/cl.h>
#endif

int main() {
   cl_platform_id platform;
   cl_device_id device;
   cl_context context;
   cl_command_queue queue;
   cl_int i, err;

   cl_program program;
   FILE *program_handle;
   char *program_buffer, *program_log;
   size_t program_size, log_size;
   cl_kernel kernel;
   size_t work_units_per_kernel;

   float mat[16], vec[4], result[4];
   float correct[4] = {0.0f, 0.0f, 0.0f, 0.0f};
   cl_mem mat_buff, vec_buff, res_buff;

   for(i=0; i<16; i++) {                       
      mat[i] = i * 2.0f;           
   }                               

Listing 1.1 Creating and distributing a matrix-vector multiplication kernel: matvec.c

=
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8.0 × 0.0 + 10.0 × 3.0 + 12.0 × 6.0 + 14.0 × 9.0  =  228.0

16.0 × 0.0 + 18.0 × 3.0 + 20.0 × 6.0 + 22.0 × 9.0  =  372.0

24.0 × 0.0 + 26.0 × 3.0 + 28.0 × 6.0 + 30.0 × 9.0  =  516.0
Figure 1.3 Matrix-vector 
multiplication
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   for(i=0; i<4; i++) {                         
      vec[i] = i * 3.0f;                     
      correct[0] += mat[i]    * vec[i];      
      correct[1] += mat[i+4]  * vec[i];      
      correct[2] += mat[i+8]  * vec[i];      
      correct[3] += mat[i+12] * vec[i];      
   }                                         

   clGetPlatformIDs(1, &platform, NULL);            
   clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, 1,            
      &device, NULL);                               
   context = clCreateContext(NULL, 1, &device, NULL,
      NULL, &err);                                  

   program_handle = fopen(PROGRAM_FILE, "r");         
   fseek(program_handle, 0, SEEK_END);                         
   program_size = ftell(program_handle);              
   rewind(program_handle);                            
   program_buffer = (char*)malloc(program_size + 1);  
   program_buffer[program_size] = '\0';               
   fread(program_buffer, sizeof(char), program_size,  
      program_handle);                                
   fclose(program_handle);                            

   program = clCreateProgramWithSource(context, 1,          
      (const char**)&program_buffer, &program_size, &err);          
   free(program_buffer);                                    
   clBuildProgram(program, 0, NULL, NULL, NULL, NULL);      

   kernel = clCreateKernel(program, KERNEL_FUNC, &err);      
   queue = clCreateCommandQueue(context, device, 0, &err);  

   mat_buff = clCreateBuffer(context, CL_MEM_READ_ONLY |
      CL_MEM_COPY_HOST_PTR, sizeof(float)*16, mat, &err);
   vec_buff = clCreateBuffer(context, CL_MEM_READ_ONLY |
      CL_MEM_COPY_HOST_PTR, sizeof(float)*4, vec, &err);
   res_buff = clCreateBuffer(context, CL_MEM_WRITE_ONLY,
      sizeof(float)*4, NULL, &err);
   clSetKernelArg(kernel, 0, sizeof(cl_mem), &mat_buff);
   clSetKernelArg(kernel, 1, sizeof(cl_mem), &vec_buff);         
   clSetKernelArg(kernel, 2, sizeof(cl_mem), &res_buff);

   work_units_per_kernel = 4;
   clEnqueueNDRangeKernel(queue, kernel, 1, NULL,          
      &work_units_per_kernel, NULL, 0, NULL, NULL);             

   clEnqueueReadBuffer(queue, res_buff, CL_TRUE, 0,
      sizeof(float)*4, result, 0, NULL, NULL);
   if((result[0] == correct[0]) && (result[1] == correct[1])
      && (result[2] == correct[2]) && (result[3] == correct[3])) {
      printf("Matrix-vector multiplication successful.\n");
   }
   else {
      printf("Matrix-vector multiplication unsuccessful.\n");
   }

   clReleaseMemObject(mat_buff); 
   clReleaseMemObject(vec_buff); 

Initialize 
data

Set platform/
device/context

Read 
program file

Compile 
program

Create 
kernel/queue

Set kernel 
arguments

Execute 
kernel
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   clReleaseMemObject(res_buff); 
   clReleaseKernel(kernel); 
   clReleaseCommandQueue(queue); 
   clReleaseProgram(program); 
   clReleaseContext(context); 

   return 0;
}

This source file is long but straightforward. Most of the code is devoted to creating
OpenCL’s data structures, which obey a simple naming convention: the cl_context is
called context, the cl_platform_id is called platform, the cl_device_id is called
device, and so on. If you follow this convention, you can copy and paste most of your
code from one host application to the next. 

 In contrast, the creation of the cl_program and the cl_kernel structures changes
from application to application. In listing 1.1, the application creates a kernel from a
function in a file called matvec.cl. More precisely, it reads the characters from mat-
vec.cl into a character array, creates a program from the character array, and compiles
the program. Then it constructs a kernel from a function called matvec_mult. 

 The kernel code in matvec.cl is much shorter than the host code in matvec.c. The
single function, matvec_mult, performs the entire matrix-vector multiplication algo-
rithm depicted in figure 1.3.

 Chapters 2 and 3 discuss how to code host applications like the one presented in
listing 1.1. Chapters 4 and 5 explain how to code kernel functions like the one in the
following listing.

__kernel void matvec_mult(__global float4* matrix,
                           __global float4* vector,
                           __global float* result) {

   int i = get_global_id(0);              
   result[i] = dot(matrix[i], vector[0]); 
}

If you’re eager to compile the code in these two listings and test the dot-product, I rec-
ommend that you visit appendix A, which explains how to obtain and use OpenCL’s
development tools. But before you do this, you should have a top-level understanding
of the OpenCL standard, which we’ll discuss next.

1.5 The OpenCL standard and extensions
If you look through the OpenCL website at www.khronos.org/opencl, you’ll find an
important file called opencl-1.1.pdf. This contains the OpenCL 1.1 specification,
which provides a wealth of information about the language. It defines not only
OpenCL’s functions and data structures, but also the capabilities required by a ven-
dor’s development tools. In addition, it sets the criteria that all devices must meet to
be considered compliant.

Listing 1.2 Performing the dot-product on the device: matvec.cl

www.khronos.org/opencl
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 But compliant software and hardware can provide capabilities beyond those
defined in the standard. These additional features are made available to OpenCL
applications through extensions. There are two main types of extensions: those that
relate to a vendor’s software package (called a platform) and those that relate to spe-
cific devices. Chapter 2 explains how to check for platform extensions and device
extensions in code.

 Every OpenCL extension has a name that depends on the extension’s level of accep-
tance. If an extension has been approved by the OpenCL working group, its name will
take the form cl_khr_<name>. If it has been released by a vendor but has not been
approved by the working group, the extension’s name will be cl_<vendor>_<name>.

 For example, on my Linux system, the installed AMD platform supports the exten-
sion cl_khr_icd. This extension relates to software. In particular, it makes it possible
for build tools to find vendor-specific OpenCL libraries installed on a system. ICD
stands for Installable Client Driver, and appendix A explains more about this topic.

1.6 Frameworks and software development kits (SDKs)
The code in matvec.c and matvec.cl may look impressive, but the two source files
don’t serve any purpose until you compile them into an OpenCL application. To do
this, you need to access the tools in a compliant framework. As defined in the OpenCL
standard, a framework consists of three parts:

■ Platform layer—Makes it possible to access devices and form contexts
■ Runtime—Enables host applications to send kernels and command queues to

devices in the context
■ Compiler—Builds programs that contain executable kernels

The OpenCL Working Group doesn’t provide any frameworks of its own. Instead,
vendors who produce OpenCL-compliant devices release frameworks as part of their
software development kits (SDKs). The two most popular OpenCL SDKs are released
by Nvidia and AMD. In both cases, the development kits are free and contain the
libraries and tools that make it possible to build OpenCL applications. Whether
you’re targeting Nvidia or AMD devices, installing an SDK is a straightforward process.
Appendix A provides step-by-step details and explains how the SDK tools work
together to build executables.

1.7 Summary
OpenCL is a new, powerful toolset for building parallel programs to run on high-
performance processors. With OpenCL, you don’t have to learn device-specific lan-
guages; you can write your code once and run it on any OpenCL-compliant hardware.

 Besides portability, OpenCL provides the advantages of vector processing and par-
allel programming. In high-performance computing, a vector is a data structure com-
prising multiple values of the same data type. But unlike other data structures, when a
vector is operated upon, each of its values is operated upon at the same time. Parallel
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programming means that one application controls processing on multiple devices at
once. OpenCL can send different tasks to different devices, and this is called task-parallel
programming. If used effectively, vector processing and task-parallel programming pro-
vide dramatic improvements in computational performance over that of scalar, single-
processor systems.

 OpenCL code consists of two parts: code that runs on the host and code that runs
on one or more devices. Host code is written in regular C or C++ and is responsible
for creating the data structures that manage the host-device communication. The host
selects functions, called kernels, to be placed in command queues and sent to the
devices. Kernel code, unlike host code, uses the high-performance capabilities
defined in the OpenCL standard.

 With so many new data structures and operations, OpenCL may seem daunting at
first. But as you start writing your own code, you’ll see that it’s not much different
from regular C and C++. And once you harness the power of vector-based parallel pro-
gramming in your own applications, you’ll never want to go back to traditional single-
core computing.

 In the next chapter, we’ll start our exploration of OpenCL coding. Specifically,
we’ll examine the primary data structures that make up the host application.



Host programming:
 fundamental

 data structures
The first step in programming any OpenCL application is coding the host applica-
tion. The good news is that you only need regular C and C++. The bad news is that
you have to become familiar with six strange data structures: platforms, devices,
contexts, programs, kernels, and command queues.

 The preceding chapter presented these structures as part of an analogy, but
the goal of this chapter is to explain how they’re used in code. For each one, we’ll
look at two types of functions: those that create the structure and those that pro-
vide information about the structure after it has been created. We’ll also look at

This chapter covers
■ Understanding the six basic OpenCL data structures
■ Creating and examining the data structures in code
■ Combining the data structures to send kernels to a 

device
16
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examples that demonstrate how these functions are used in applications. These
won’t be full applications like the matvec example in chapter 1. Instead, these will
be short, simple examples that shed light on how these data structures work and
work together.

 Most of this chapter deals with complex data structures and their functions, but
let’s start with something easy. OpenCL provides a unique set of primitive data types
for host applications, and we’ll examine these first.

2.1 Primitive data types
Processors and operating systems vary in how they store basic data. An int may be 32
bits wide on one system and 64 bits wide on another. This isn’t a concern if you’re writ-
ing code for a single platform, but OpenCL code needs to compile on multiple plat-
forms. Therefore, it requires a standard set of primitive data types.

 Table 2.1 lists OpenCL’s primitive data types. As you can see, these are all similar to
their traditional counterparts in C and C++. 

These types are declared in CL/cl_platform.h, and in most cases, they’re simply redef-
initions of the corresponding C/C++ types. For example, cl_float is defined as follows:

#if (defined (_WIN32) && defined(_MSC_VER))
...
typedef float cl_float;
...
#else
...

Table 2.1 OpenCL primitive data types for host applications

Scalar data type Bit width Purpose

cl_char 8 Signed two’s complement integer

cl_uchar 8 Unsigned two’s complement integer

cl_short 16 Signed two’s complement integer

cl_ushort 16 Unsigned two’s complement integer

cl_int 32 Signed two’s complement integer

cl_uint 32 Unsigned two’s complement integer

cl_long 64 Signed two’s complement integer

cl_ulong 64 Unsigned two’s complement integer

cl_half 16 Half-precision floating-point value

cl_float 32 Single-precision floating-point value

cl_double 64 Double-precision floating-point value
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typedef float cl_float _attribute__((aligned(4)));
...
#endif

These types can be operated upon just like their C/C++ counterparts, so you can add
and subtract cl_ints just as you would ints. You can invoke printf with a cl_char
using the same formatting symbol (%c) as you would with an ordinary char. We’ll rely
on the data types in table 2.1 throughout this book and the example code.

2.2 Accessing platforms
When you build an OpenCL application, you don’t have to know anything about the
underlying hardware. But let’s say your computer has two graphics cards—one from
AMD and one from Nvidia—and you’ve installed AMD’s SDK and Nvidia’s SDK. In this
situation, you may want to select which GPU should process your data. To make this
possible, you need to identify a specific vendor’s OpenCL implementation in code.

 Alternatively, you may want to sell your OpenCL application. In this case, you have
no idea what hardware your customers are using. Instead of checking for a particular
vendor, you may want to count how many OpenCL devices are available for each
implementation and distribute tasks evenly between them.

 OpenCL handles both scenarios by providing the cl_platform_id data structure.
This section explains why these structures are important and how to access them in
code.

NOTE The following discussion will make more sense if you’ve installed an
SDK on your development system. Appendix A explains just about every-
thing you may want to know about SDKs.

2.2.1 Creating platform structures

Each cl_platform_id structure represents a different OpenCL implementation
(called a platform) installed on the host. If you’ve installed two SDKs, you’ll have two
platforms installed, and your code will detect two cl_platform_id structures.

 In code, working with platforms is a two-step process. First you need to allo-
cate memory for one or more cl_platform_id structures. Then you need to call
clGetPlatformIDs to initialize these structures. This is usually one of the first func-
tions you’ll call in your OpenCL code. Its signature, consisting of its function name
and parameter list, is given as follows:

cl_int clGetPlatformIDs(cl_uint num_entries, 
    cl_platform_id *platforms, cl_uint *num_platforms)

There are three points to note about this function. First, despite the name, this func-
tion doesn’t return cl_platform_id structures. Instead, it places cl_platform_id
structures in the memory referenced by platforms. It places the number of available
platforms in the memory referenced by num_platforms. The return value is an integer
that identifies whether the function successfully detected one or more platforms. A
value of 0 indicates success. A negative value indicates failure.
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 Second, it’s important to distinguish between num_entries and num_platforms.
num_entries identifies the maximum number of platforms you’re interested in
detecting. This will be the maximum number of cl_platform_id structures that will
be placed in the platforms array. If you set this to 0, the function will return an error.
num_platforms, on the other hand, is the number of platforms detected on the host.
This value is set by the function during its operation.

 The num_entries and num_platforms parameters are used frequently in OpenCL
functions, and when I first started programming with OpenCL, I found it hard to dis-
tinguish between the two. But I learned how to keep them straight by thinking egotis-
tically: What I want (num_entries) comes first. What’s available (num_platforms)
comes later. 

 Third, either platforms or num_platforms can be set to NULL. There’s a good reason
for this. If you want to create a cl_platform_id structure for every platform on your sys-
tem, you have to know in advance how many platforms are installed. For this purpose,
call clGetPlatformIDs with platforms set to NULL and use num_platforms to store the
number of installed platforms. Then allocate your array and call clGetPlatformIDs a
second time to initialize the cl_platform_id structures. The following code shows how
this is accomplished:

cl_platform_id *platforms;
cl_uint num_platforms;

clGetPlatformIDs(5, NULL, &num_platforms);

platforms = (cl_platform_id*)
    malloc(sizeof(cl_platform_id) * num_platforms);

clGetPlatformIDs(num_platforms, platforms, NULL);

This code calls clGetPlatformIDs twice. The first time, it places the number of plat-
forms in the num_platforms variable. The second time, it places the cl_platform_id
structures in the platforms array. We’ll employ this function-allocation-function pro-
cedure for many other data structures as well.

2.2.2 Obtaining platform information

The clGetPlatformIDs function provides an array of cl_platform_id structures, but
it doesn’t tell you anything about the platforms themselves. If you want to know what
OpenCL version a platform supports or which vendor created it, you need to call a sec-
ond function called clGetPlatformInfo. The signature for this function is as follows:

cl_int clGetPlatformInfo(cl_platform_id platform,
    cl_platform_info param_name, size_t param_value_size,
    void *param_value, size_t *param_value_size_ret)

The second argument, param_name, identifies the nature of the information that
you’re looking for. Its data type is cl_platform_info, an enumerated type whose val-
ues are listed in table 2.2. 

 In each case, the function returns the desired data in a char array whose full
length in bytes is given by the last argument, param_value_size_ret. The third

http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/abstractDataTypes.html
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/abstractDataTypes.html
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/abstractDataTypes.html
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/abstractDataTypes.html
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/scalarDataTypes.html
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/abstractDataTypes.html
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/abstractDataTypes.html
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/abstractDataTypes.html
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argument, param_value_size, tells the function how many bytes you want to store.
This is shown in the following code, which reads the data about the platform’s vendor
into a char array with 40 elements:

char pform_vendor[40];

clGetPlatformInfo(platforms[0], CL_PLATFORM_VENDOR, sizeof(pform_vendor),
    &pform_vendor, NULL);

This code allocates the char array first and calls clGetPlatformInfo second. This
poses no problem, because a vendor’s name is unlikely to exceed 40 characters. But if
you’re trying to find out what extensions a platform supports, you may have no idea
how many characters you’ll need. In this case, you should call clGetPlatformInfo
twice—once to determine the size of the data and once to read the data. The next
subsection shows how this is accomplished in code.

2.2.3 Code example: testing platform extensions

As explained in chapter 1, an OpenCL extension defines features that go beyond
those defined in the standard. Each extension is identified by a string, and if an exten-
sion has been approved by the OpenCL working group, its name will start with
cl_khr_. Vendors can add their own extensions to a platform, and these names start
with cl_<vendor>_.

 Let’s say you’re providing an application to customers, but it will only work if one of
the installed platforms supports a given extension. The following code listing iterates
through each installed platform and checks for a specific extension (cl_khr_icd). The
first platform that supports the extension is made the active platform.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#ifdef MAC
#include <OpenCL/cl.h>
#else

Table 2.2 Platform information parameters

Parameter name Purpose

CL_PLATFORM_NAME Returns the name associated with the platform

CL_PLATFORM_VENDOR Identifies the vendor associated with the platform

CL_PLATFORM_VERSION Returns the maximum version of OpenCL supported by the platform

CL_PLATFORM_PROFILE Identifies whether the platform supports the full OpenCL standard 
(FULL_PROFILE) or the embedded standard (EMBEDDED_PROFILE)

CL_PLATFORM_EXTENSIONS Returns a list of extensions supported by the platform

Listing 2.1 Testing platform extensions: platform_ext_test.c
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#include <CL/cl.h>
#endif

int main() {

   cl_platform_id *platforms;
   cl_uint num_platforms;
   cl_int i, err, platform_index = -1;

   char* ext_data;
   size_t ext_size;
   const char icd_ext[] = "cl_khr_icd";

   err = clGetPlatformIDs(1, NULL, &num_platforms);      
   if(err < 0) {
      perror("Couldn't find any platforms.");
      exit(1);
   }

   platforms = (cl_platform_id*)                     
      malloc(sizeof(cl_platform_id) * num_platforms);         
   clGetPlatformIDs(num_platforms, platforms, NULL);

   for(i=0; i<num_platforms; i++) {

      err = clGetPlatformInfo(platforms[i],          
         CL_PLATFORM_EXTENSIONS, 0, NULL, &ext_size);        
      if(err < 0) {
         perror("Couldn't read extension data.");
         exit(1);
      }

      ext_data = (char*)malloc(ext_size);             
      clGetPlatformInfo(platforms[i],                        
            CL_PLATFORM_EXTENSIONS,                   
            ext_size, ext_data, NULL);                
      printf("Platform %d supports extensions: %s\n",
            i, ext_data);

      if(strstr(ext_data, icd_ext) != NULL) {
         free(ext_data);
         platform_index = i;
         break;
      }
      free(ext_data);
   }

   if(platform_index > -1)
      printf("Platform %d supports the %s extension.\n",
            platform_index, icd_ext);
   else
      printf("No platforms support the %s extension.\n", icd_ext);

   free(platforms);
   return 0;
}

Here, the for loop iterates through the installed platforms and prints the supported
extensions of each one. If a platform supports the cl_khr_icd extension, the loop
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terminates and the application identifies the platform by its index. On my system, the
application produces the following output:

Platform 0 supports extensions: cl_khr_icd amd_event_callback
Platform 0 supports the cl_khr_icd extension.

Throughout this book’s example code, the first step in every host application is to
access a cl_platform_id. But these structures are mainly useful because they allow us
to access the platform’s devices. The next section explains how OpenCL devices are
represented in code.

2.3 Accessing installed devices
Once you’ve accessed a vendor’s platform, you can access every connected device pro-
vided by the vendor. Returning to the card game analogy, devices are the players that
receive cards from the dealer. In an OpenCL application, devices receive tasks and
data from the host.

 In code, devices are represented by cl_device_id structures. These are easy to
work with, and the functions that relate to devices are very similar to those we looked
at in the preceding section. This section presents the two OpenCL device functions,
clGetDeviceIDs and clGetDeviceInfo, and shows how they’re used in code.

2.3.1 Creating device structures

Before you can send a kernel to a device, you need to construct a cl_device_id to
represent the device. The clGetDeviceIDs function makes this possible. It populates
a cl_device_id array with structures corresponding to OpenCL devices. Its signature
is as follows:

cl_int clGetDeviceIDs(cl_platform_id platform, 
    cl_device_type device_type, cl_uint num_entries, 
    cl_device_id *devices, cl_uint *num_devices)

This works like the clGetPlatformIDs function discussed in the preceding section. By
setting either of the last two arguments to NULL, this can be used to determine the
number of connected devices or to populate an cl_device_id array.

 The first two arguments constrain which devices should be placed in the devices
array. The first identifies the cl_platform_id structure representing the platform of
interest. The second identifies a device type, which can be set to any of the values
listed in table 2.3.

 As an example, the following code populates an array (devs) with a maximum of
three GPU-based devices. Each device must be associated with the plat platform:

clGetDeviceIDs(plat, CL_DEVICE_TYPE_GPU, 3, devs, NULL);

As a second example, suppose you want to know how many accelerator-type devices
(such as blade servers containing Cell processors) are associated with the plat plat-
form. In this situation, you could use code similar to the following:

cl_uint num_devices;
clGetDeviceIDs(plat, CL_DEVICE_TYPE_ACCELERATOR, 1, NULL, &num_devices);
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2.3.2 Obtaining device information

The second OpenCL function that accesses devices is clGetDeviceInfo. As its name
implies, this function accepts a cl_device_id and provides information about the cor-
responding device. Its signature is given as follows:

cl_int clGetDeviceInfo(cl_device_id device,
    cl_device_info param_name, size_t param_value_size,
    void *param_value, size_t *param_value_size_ret)

This operates in exactly the same way that clGetPlatformInfo does. Identify the type
of information you’re looking for, and the function will place the data in the memory
region referenced by param_value. The only difference is that the cl_device_info
enumerated type is markedly different from cl_platform_info. It takes over 50 dif-
ferent values, many of which relate to the device’s internal architecture, such as its
byte order, memory size, and cache structure. Chapter 4 explains many of these con-
cepts in detail and relies on clGetDeviceInfo to a large extent.

 Table 2.4 lists eight of the many cl_device_info parameters. Unlike the
cl_platform_info parameters, not all of them return char arrays. 

Table 2.3 OpenCL device types

Device type Meaning

CL_DEVICE_TYPE_ALL Identifies all devices associated with the platform

CL_DEVICE_TYPE_DEFAULT Identifies devices associated with the platform’s default type

CL_DEVICE_TYPE_CPU Identifies the host processor

CL_DEVICE_TYPE_GPU Identifies a device containing a graphics processor unit (GPU)

CL_DEVICE_TYPE_ACCELERATOR Identifies an external device used to accelerate computation

Table 2.4 Device information parameters (an abbreviated list)

Parameter name Output type Purpose

CL_DEVICE_NAME char[] Returns the name of the device

CL_DEVICE_VENDOR char[] Returns the device’s vendor

CL_DEVICE_EXTENSIONS char[] Returns the device’s supported OpenCL 
extensions 

CL_DEVICE_GLOBAL_MEM_SIZE cl_ulong Returns the size of the device’s global memory

CL_DEVICE_ADDRESS_BITS cl_uint Returns the size of the device’s address space

CL_DEVICE_AVAILABLE cl_bool Returns whether the device is available

CL_DEVICE_COMPILER_AVAILABLE cl_bool Returns whether the implementation provides a 
compiler for the device



24 CHAPTER 2 Host programming: fundamental data structures
Note that device extensions (identified in the table by CL_DEVICE_EXTENSIONS) aren’t
the same thing as platform extensions. Device extensions tell you about the types of
operations a device can perform and the data it can process. 

 Next, we’ll look at an example application that reads and displays these extensions.

2.3.3 Code example: testing device extensions

Different devices provide different capabilities, and before you send a complex kernel
to an OpenCL device, you should be certain that the device has the resources needed
to execute it. The code in this listing shows how this works. It accesses the first plat-
form it can find and iterates through each device, printing the device’s name, address
width, and supported extensions.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#ifdef MAC
#include <OpenCL/cl.h>
#else
#include <CL/cl.h>
#endif

int main() {

   cl_platform_id platform;
   cl_device_id *devices;
   cl_uint num_devices, addr_data;
   cl_int i, err;
   char name_data[48], ext_data[4096];

   err = clGetPlatformIDs(1, &platform, NULL);        
   if(err < 0) {
      perror("Couldn't find any platforms");
      exit(1);
   }

   err = clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL,
         1, NULL, &num_devices);                           
   if(err < 0) {
      perror("Couldn't find any devices");
      exit(1);
   }

   devices = (cl_device_id*)                        
         malloc(sizeof(cl_device_id) * num_devices);          
   clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL,
         num_devices, devices, NULL);                 

   for(i=0; i<num_devices; i++) {

      err = clGetDeviceInfo(devices[i], CL_DEVICE_NAME,
            sizeof(name_data), name_data, NULL);             

Listing 2.2 Testing device extensions: device_ext_test.c
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      if(err < 0) {
         perror("Couldn't read extension data");
         exit(1);
      }
      clGetDeviceInfo(devices[i], CL_DEVICE_ADDRESS_BITS,
            sizeof(ext_data), &addr_data, NULL);              

      clGetDeviceInfo(devices[i], CL_DEVICE_EXTENSIONS,
            sizeof(ext_data), ext_data, NULL);             

      printf("NAME: %s\nADDRESS_WIDTH: %u\nEXTENSIONS: %s",
            name_data, addr_data, ext_data);
   }

   free(devices);
   return 0;
}

My MacBook has one platform, and when I run the application, the result is as follows:

NAME: GeForce 9400M
ADDRESS_WIDTH: 32
EXTENSIONS: cl_khr_byte_addressable_store cl_khr_global_int32_base_atomics 

cl_khr_global_int32_extended_atomics cl_APPLE_gl_sharing 
cl_APPLE_SetMemObjectDestructor cl_APPLE_ContextLoggingFunctions

These extensions may look strange, but later chapters will have a great deal more to
say about them—particularly those that deal with device memory and atomic opera-
tions. For now, let’s examine the context data structure, which provides a way to man-
age devices as a group.

2.4 Managing devices with contexts
The card game analogy likens an OpenCL context to a card table. A card table doesn’t
seat all the players in the casino—only those involved in a particular game. It provides
the foundation through which dealers can distribute cards to players.

 In OpenCL, a context identifies a set of devices—not every possible device, but
only those selected to work together. Contexts make it possible to create command
queues, the structures that allow hosts to send kernels to devices. Section 2.7 discusses
command queues in detail.

 At the time of this writing, the devices in a context must be provided by the same plat-
form. That is, you can’t create a context containing both AMD and Nvidia devices—you
have to create a different context for each platform. But a host application can manage
devices using more than one context, and it can even create multiple contexts from
devices in a single platform. This is shown in figure 2.1.

 This figure creates three contexts from the devices in two platforms. Two contexts
are created from the devices in platform A, and device 1 can be placed in both con-
text 1 and context 2.

 Devices from different platforms can’t be placed in the same context, but a host
application can still utilize multiple contexts during its processing. For example, a
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host application can send kernels and other commands to Nvidia and AMD devices,
but the devices can’t share the resources associated with contexts.

 Contexts also become particularly important when you use OpenCL to process
graphics. This section will touch upon this topic briefly, and chapter 15 will explain
OpenGL-OpenCL interoperability in greater detail.

2.4.1 Creating contexts

OpenCL contexts are represented by cl_context data structures, and you can create
them using one of two functions: clCreateContext or clCreateContextFromType.
Their signatures have a lot in common:

cl_context clCreateContext(const cl_context_properties *properties,
    cl_uint num_devices, const cl_device_id *devices,
    (void CL_CALLBACK *notify_func)(...), 
    void *user_data, cl_int *error)

cl_context clCreateContextFromType(
    const cl_context_properties *properties,
    cl_device_type device_type, 
    (void CL_CALLBACK *notify_func)(...),
    void *user_data, cl_int *error)

The primary difference between these functions is that the first creates a context by
explicitly identifying devices. The second, clCreateContextFromType, forms a context
containing all devices of a given type. The possible device types are listed in table 2.3.
This function is helpful when you want to create a context without accessing platforms
or devices.

 Both functions accept a cl_context_properties pointer and a void pointer that
identifies user data. It’s important to distinguish between these two parameters. The
user_data argument can point to any data you like, and its purpose is to provide
information when an error occurs. In contrast, the properties pointer must identify
an array of names and values whose last element must be 0. Both arguments can be set
to NULL.

1 2 3 4 5 6 7

Context 1

8 9

1 2

Context 2

6 8 9

Context 3

1 3 5

Platform A Platform B

Figure 2.1 Platforms, devices, and contexts
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 Table 2.5 lists the different names available when setting a context’s properties.
The nature of the value depends on which property name is used.

The first property in the table identifies the current platform. The other properties
relate to graphics and are only functional if specific extensions are installed. If the
cl_khr_d3d10_sharing extension is enabled, you can interface OpenCL with Direct3D
by providing a pointer to an ID3D10Device defined by Microsoft’s Direct3D API.

 If the cl_khr_gl_sharing extension is supported, you need to provide two objects:
the OpenGL context and the display/device used to display the context. Because
OpenGL can run on multiple operating systems, the precise nature of these objects is
OS-specific, but all of them must be cast to cl_context_properties.

 The following code declares and initializes a cl_context_properties structure
that will enable OpenCL-OpenGL interoperability. Remember that the last element
must be 0:

cl_context_properties context_props[] = {
  CL_CONTEXT_PLATFORM, (cl_context_properties)platforms[0],
  CL_GL_CONTEXT_KHR, (cl_context_properties)glXGetCurrentContext(),
  CL_GLX_DISPLAY_KHR, (cl_context_properties)glXGetCurrentDisplay(),
  0};

Don’t be concerned if this looks foreign. The cl_context_properties parameter is
set to NULL in most of this book’s example code. I’ll discuss the topic of OpenCL-based
graphics in later chapters. Specifically, appendix B discusses OpenGL, and chapter 15
explains how OpenGL relates to OpenCL.

 Both clCreateContext and clCreateContextFromType accept a callback function
as an argument. This function is invoked whenever an error occurs during the con-
text’s operation.

Table 2.5 Context property parameters

Property name Property value Meaning

CL_CONTEXT_PLATFORM cl_context_id Associates the context with the given platform

CL_CONTEXT_D3D10_
DEVICE_KHR

ID3D10Device* Associates the context with the Direct3D 
device

CL_GL_CONTEXT_KHR OS-Dependent Identifies an OpenGL context

CL_EGL_DISPLAY_KHR EGLDisplay Displays the OpenGL-ES context on embedded 
devices

CL_GLX_DISPLAY_KHR GLXContext Displays the OpenGL context on Linux  

CL_WGL_HDC_KHR HDC Serves as the device context for the OpenGL 
context on Windows

CL_CGL_SHAREGROUP_KHR CGLShareGroupObj Serves as the share group for the OpenGL 
context on Mac OS
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 The last two parameters are easy to understand. The user_data parameter can
point to any data type, from a char to an int to a table of environment variables. This
data is accessed by the callback function when an error occurs. The error parameter
identifies an integer that will hold the function’s error code. If the cl_context is cre-
ated successfully, this will be set to 0.

 The following code creates a context containing only GPU-based devices. This uses
the context_props array discussed earlier:

cl_context context = clCreateContextFromType(context_props,
    CL_DEVICE_TYPE_GPU, NULL, NULL, &err);

2.4.2 Obtaining context information

The clGetContextInfo function provides information about a context, and it’s simi-
lar to the clGetPlatformInfo and clGetDeviceInfo functions we looked at earlier. Its
signature is as follows:

clGetContextInfo(cl_context context, cl_context_info param_name,
    size_t param_value_size, void* param_value,
    size_t *param_value_size_ret)

In this case, param_name must take one of the values defined by the cl_context_info
enumerated type. Table 2.6 lists the options available.

All of these are straightforward except for CL_CONTEXT_REFERENCE_COUNT. Traditional
C/C++ applications don’t let you keep track of how many times a data structure is
accessed, but Mac OS programmers use this capability on a regular basis. The next
subsection explains how OpenCL processes these reference counts.

2.4.3 Contexts and the reference count

Unlike functions that create platforms and devices, clCreateContextFromType and
clCreateContext return cl_contexts instead of error codes. This means you don’t
have to allocate and deallocate memory for the structure. If the cl_context is

Table 2.6 Context information parameters

Parameter name Output type Purpose

CL_CONTEXT_NUM_DEVICES cl_uint Returns the number of devices in the context

CL_CONTEXT_DEVICES cl_device_id[] Returns the devices in the context

CL_CONTEXT_PROPERTIES cl_context_
properties[]

Returns the property array associated with the 
context

CL_CONTEXT_REFERENCE_
COUNT

cl_uint Returns the reference count of the context

CL_CONTEXT_D3D10_PREFER_
SHARED_RESOURCES_KHR

cl_bool Returns whether Direct3D shared resources will 
be accelerated more than unshared resources
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declared as a local variable, its memory will be automatically freed when the enclosing
function terminates.

 But you may not want the structure to be deallocated. External routines, such as
those in a third-party library, might need to continue accessing the cl_context after its
enclosing function terminates. For this reason, OpenCL keeps track of how many times
cl_context structures are accessed. This number is called the retain count or the refer-
ence count. It’s set to 1 when the structure is created, and when the count equals 0, the
structure is deallocated.

 You can change this reference count in one of two ways. clRetainContext incre-
ments the count and clReleaseContext decrements the count. If you’re coding an
external function that accesses a pre-existing context, be sure to call clRetainContext
before the processing starts and clReleaseContext afterward. If you’re coding a func-
tion that creates a cl_context, decrement the reference count by calling clRelease-
Context before the function completes.

2.4.4 Code example: checking a context’s reference count

Many OpenCL data structures have associated reference counts, and there are many
functions similar to clRetainContext and clReleaseContext. For this reason, it’s a
good idea to see how they work in code.

 The following listing presents an abbreviated portion of the code in Ch2/
context_count.c. This creates a context with a single device and updates its reference
count with the clRetainContext and clReleaseContext functions. After each
update, the code reads the new count with clGetContextInfo.

...
cl_context context;
cl_uint ref_count;
...
context = clCreateContext(NULL, 1, &device, 
                          NULL, NULL, &err);          
if(err < 0) {
   perror("Couldn't create a context");
   exit(1);
}

err = clGetContextInfo(context,             
      CL_CONTEXT_REFERENCE_COUNT,                     
      sizeof(ref_count), &ref_count, NULL); 
if(err < 0) {
   perror("Couldn't read the reference count.");
   exit(1);
}
printf("Initial reference count: %u\n", ref_count);

clRetainContext(context);                             
clGetContextInfo(context, CL_CONTEXT_REFERENCE_COUNT,       
      sizeof(ref_count), &ref_count, NULL);           

Listing 2.3 Checking a context’s reference count: context_count.c
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printf("Reference count: %u\n", ref_count);           

clReleaseContext(context);                            
clGetContextInfo(context, CL_CONTEXT_REFERENCE_COUNT, 
      sizeof(ref_count), &ref_count, NULL);           
printf("Reference count: %u\n", ref_count);           

clReleaseContext(context);                        
...

On my system, the results are as follows:

Initial reference count: 1
Reference count: 2
Reference count: 1

Many OpenCL data structures can only be created if a context is available. For exam-
ple, you need a valid context in order to construct a program, and you need a pro-
gram if you’re going to send kernels to your devices (which, honestly, is the whole
point of OpenCL programming). The next section explains how programs work.

2.5 Storing device code in programs
When I started learning OpenCL, I found it hard to distinguish programs from ker-
nels. They both store executable code, but a kernel represents a single function to be
executed on a device. In contrast, a program is a container of kernels. Returning to
the card-game analogy, a program is a deck of cards and a kernel is a single card.

 In OpenCL, a program is represented by a cl_program data structure. This section
explains how to create and build a cl_program so that its kernels can be deployed to
devices. This section also discusses how to obtain information about a program and its
build process.

2.5.1 Creating programs

OpenCL provides two functions that create new programs: clCreateProgramWith-
Source and clCreateProgramWithBinary. Both convert code into a cl_program, but
neither accepts filenames or file handles. Therefore, if your kernel code is contained
in a file, you’ll have to read the file’s content into a buffer before you can call either
function. If you want to create a program from code in multiple files, you’ll need to
create an array of buffers.

 The clCreateProgramWithSource function expects the buffers to contain code in
text form. Its signature is as follows:

clCreateProgramWithSource(cl_context context, cl_uint src_num,
    const char **src_strings, const size_t *src_sizes,
    cl_int *err_code)

To create a program from multiple text files, the content of each file must be placed
in an array of strings (char**). The src_num parameter tells the function how many
strings to expect, and src_sizes identifies the size of each string.

Update and 
print count

Set count 
to 0
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NOTE Every host application I’ve encountered either reads source code
from a separate text file (*.cl) or initializes a string inside the host applica-
tion. The example code in this book will rely exclusively on the first method.
It’s somewhat more involved, but it allows you to keep your host and device
code separate.

The following listing shows how to create a cl_program from a text file. This is a three-
step process. First the code determines the size of kernel.cl. Then it reads the file’s
content into a buffer. Lastly, it uses the buffer to create a cl_program.

program_handle = fopen("kernel.cl", "r");
fseek(program_handle, 0, SEEK_END);             
program_size = ftell(program_handle);               
rewind(program_handle);

program_buffer = (char*)malloc(program_size+1);
program_buffer[program_size] = '\0';
fread(program_buffer, sizeof(char),               
      program_size, program_handle);                    
fclose(program_handle);

program = clCreateProgramWithSource(context, 1,        
      (const char**)program_buffer, program_size, &err);     

The clCreateProgramWithBinary function is like clCreateProgramWithSource, but
instead of reading strings from text files, it reads bytes from binary files. Its signature is
as follows:

clCreateProgramWithBinary(cl_context context, 
    cl_uint num_devices, const cl_device_id *devices, 
    const size_t *bin_sizes, const unsigned char **bins, 
    cl_int *bin_status, cl_int *err_code)

This function requires information about the devices intended to perform the pro-
gram’s functions. In particular, it needs to know how many devices will be targeted
and the array of cl_device_id structures. These devices must be contained within the
cl_context provided by the first parameter.

2.5.2 Building programs

The functions inside a program rely on OpenCL-specific functions and data struc-
tures, so every program must be compiled using an OpenCL-specific compiler. At the
time of this writing, AMD’s framework contains a standalone compiler called clc, and it
can be run from a script or a command line. Nvidia, however, doesn’t provide a stand-
alone compiler. Nvidia’s compiler is strictly a runtime compiler, which means it can only
be invoked as part of a running application.

 The OpenCL standard doesn’t impose many requirements on OpenCL compilers,
but one provision is crucial: every compiler must be accessible through clBuild-
Program. This function compiles and links a cl_program for devices associated with

Listing 2.4 Creating a program from a text file
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the platform. It doesn’t return a new cl_program, but instead modifies the input data
structure. Its signature is as follows:

clBuildProgram(cl_program program, cl_uint num_devices,
    const cl_device_id *devices, const char *options,
    (void CL_CALLBACK *notify_func)(...), void *user_data)

The fourth parameter sets options for the compiler. Many are similar to those used in
popular compilers like gcc, but a large number of them are specific to OpenCL.
Table 2.7 lists a number of the available options. 

The math-related options may seem strange, but the IEEE-754 standard defines many
floating-point values that don’t correspond to valid numbers (denormals, NaNs, and
infinite values). You may improve the performance of your application with options
like -cl-finite-math-only, but if errors arise, you won’t receive any notification.
Chapter 4 discusses the important topic of floating-point processing in detail.

Table 2.7 Program compilation options

Parameter name Purpose

-cl-std=VERSION Tells the compiler which version of OpenCL to use

-DNAME Sets the macro NAME equal to 1

-DNAME=VALUE Sets the macro NAME equal to VALUE

-Idir Identifies a directory containing header files

-w Suppresses warnings

-Werror Responds to all warnings as if they were errors

-cl-single-precision-constant Processes all double-precision floating-point constants as 
single-precision constants

-cl-denorms-are-zero Treats all numbers less than the smallest representable 
number as 0

-cl-opt-disable Disables all optimizations

-cl-mad-enable Processes operations involving multiplication and addition 
(a*b + x) as atomic multiply-and-add (MAD) operations; 
this may cause a reduction in accuracy

-cl-no-signed-zero Prevents usage of the positive/negative 0 values defined 
by IEEE-754

-cl-unsafe-math-optimizations Optimizes processing by removing error checking, thereby 
allowing noncompliant operations to occur

-cl-finite-math-only Assumes that all results and arguments are finite—no 
operation will accept or produce infinite values or NaN (not 
a number) values

-cl-fast-relaxed-math Combines the -cl-unsafe-math-optimizations and -cl-finite-
math-only options
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 The following two lines of code show how these options are used. Here, program is
compiled and linked for a single device (device) using the -cl-std, -cl-mad-enable,
and -Werror options:

const char options[] = "-cl-std=CL1.1 -cl-mad-enable -Werror";
clBuildProgram(program, 1, &device, options, NULL, NULL);

If clBuildProgram fails because of a compile error, the only indication you’ll receive is
the integer error code. This is helpful, but it doesn’t tell you why the compilation
failed. If you want details about what happened during the build, you’ll need to access
the compiler’s build log. The following discussion explains how to access this log and
other program-related information.

2.5.3 Obtaining program information

Once you’ve created and compiled a program, you can access information related to
it by calling clGetProgramInfo and clGetProgramBuildInfo. The first function pro-
vides information about data structures associated with the program, such as its con-
text and target devices. The second function provides information about how the
program was built.

 The signature of clGetProgramInfo is like that of clGetContextInfo and
clGetDeviceInfo:

clGetProgramInfo(cl_program program, cl_program_info param_name,
    size_t param_value_size, void *param_value,
    size_t *param_value_size_ret)

Here, cl_program_info is an enumerated type that identifies the data to be provided.
Table 2.8 lists the different values this can take.

Table 2.8 OpenCL program information

Parameter name Output type Purpose

CL_PROGRAM_CONTEXT cl_context Returns the context used to create the
program

CL_PROGRAM_DEVICES cl_device_id[] Returns the devices targeted by the program

CL_PROGRAM_NUM_DEVICES cl_uint Returns the number of devices targeted by 
the program

CL_PROGRAM_SOURCE char[] Returns the program’s source code concat-
enated into a single string

CL_PROGRAM_BINARIES unsigned_
char**

Returns the array of binary buffers associ-
ated with the program

CL_PROGRAM_BINARY_SIZES size_t[] Returns the size of each of the program’s 
binary buffers

CL_PROGRAM_REFERENCE_COUNT cl_uint Returns the program’s reference count
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The CL_PROGRAM_SOURCE property is particularly interesting. It concatenates all of the
program’s source buffers into one string that contains all of the kernel functions. If
you receive inexplicable build errors, it’s a good idea to examine this string and verify
that the program contains your intended functions.

clGetProgramBuildInfo is a vital function to know. It’s the only way to find out
what happened during the program’s build process. Its signature is as follows:

clGetProgramBuildInfo(cl_program program, 
    cl_device_id device, 
    cl_program_build_info param_name,
    size_t param_value_size, void *param_value,
    size_t *param_value_size_ret)

As with clGetProgramInfo, the function requires a parameter defined by an enumer-
ated type. In this case, the type is called cl_program_build_info. Table 2.9 lists the
different types of information available.

The first property identifies the status of the build, and the returned value is either
CL_BUILD_NONE, CL_BUILD_ERROR, CL_BUILD_SUCCESS, or CL_BUILD_IN_PROGRESS. But
rather than check this property, it’s easier to examine the return value of clBuild-
Program. If the value is less than 0, it’s likely that the build failed.

 To find out why a build failed, you need to invoke clGetProgramBuildInfo with
the CL_PROGRAM_BUILD_LOG parameter. This is demonstrated in the following code,
which builds program and prints the compiler’s output if the build fails:

err = clBuildProgram(program, 1, &device, options, NULL, NULL);
if(err < 0) {
   clGetProgramBuildInfo(program, device, CL_PROGRAM_BUILD_LOG,
         0, NULL, &log_size);
   program_log = (char*) calloc(log_size+1, sizeof(char));
   clGetProgramBuildInfo(program, device, CL_PROGRAM_BUILD_LOG,
         log_size+1, program_log, NULL);
   printf("%s\n", program_log);
   free(program_log);
}

Note that clGetProgramBuildInfo is called twice. The first time, it sets log_size
equal to the size of the build log. The second time, it places the build log characters in

Table 2.9 Program build information parameters

Parameter name Output type Purpose

CL_PROGRAM_BUILD_STATUS cl_build_
status

Identifies whether the build succeeded, failed, 
or is continuing

CL_PROGRAM_BUILD_OPTIONS char[] Returns the options used to configure the build

CL_PROGRAM_BUILD_LOG char[] Returns the build log—the compiler’s output 
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the program_log buffer. This log can grow quite long depending on the nature of the
build error, so it’s a good idea to dynamically allocate memory to hold the text.

2.5.4 Code example: building a program from multiple source files

Throughout this book, program code is usually placed in a single *.cl file. But as your
OpenCL projects grow in size, you may need to create a program from code located in
multiple files. This is demonstrated in the next listing, which constructs and builds a
cl_project from source code in two files: good.cl and bad.cl.

...
#define NUM_FILES 2
#define PROGRAM_FILE_1 "good.cl"
#define PROGRAM_FILE_2 "bad.cl"
...
cl_program program;
FILE *program_handle;
char *program_buffer[NUM_FILES];
char *program_log;
const char *file_name[] = {PROGRAM_FILE_1, PROGRAM_FILE_2};
const char options[] = "-cl-finite-math-only -cl-no-signed-zeros";
size_t program_size[NUM_FILES];
size_t log_size;
...
for(i=0; i<NUM_FILES; i++) {
   program_handle = fopen(file_name[i], "r");
   if(program_handle == NULL) {
      perror("Couldn't find the program file");
      exit(1);
   }
   fseek(program_handle, 0, SEEK_END);
   program_size[i] = ftell(program_handle);             
   rewind(program_handle);
   program_buffer[i] = (char*)malloc(program_size[i]+1);
   program_buffer[i][program_size[i]] = '\0';
   fread(program_buffer[i], sizeof(char),           
         program_size[i], program_handle);                  
   fclose(program_handle);
}

program = clCreateProgramWithSource(context, NUM_FILES,
   (const char**)program_buffer, program_size, &err);      
if(err < 0) {
   perror("Couldn't create the program");
   exit(1);
}

err = clBuildProgram(program, 1, &device,          
                     options, NULL, NULL);          
if(err < 0) {

Listing 2.5 Building a program from multiple source files: program_build.c
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   clGetProgramBuildInfo(program, device,          
         CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size);         
   program_log = (char*)malloc(log_size+1);
   program_log[log_size] = '\0';

   clGetProgramBuildInfo(program, device, 
         CL_PROGRAM_BUILD_LOG,                           
         log_size+1, program_log, NULL);       
   printf("%s\n", program_log);
   free(program_log);
   exit(1);
}

   for(i=0; i<NUM_FILES; i++) {
      free(program_buffer[i]);
   }                                                              
...

When clBuildProgram performs the build, the compilation will fail and the function
will return a negative value. This is because good.cl and bad.cl both define a kernel
function with the same name. After clBuildProgram returns a negative value, the
clGetProgramBuildInfo function will place the compiler’s error message in the
program_log buffer.

 To avoid the error, change the function name in bad.cl to anything other than
good. Then, when you run the application, the build log won’t contain any text at all.
This means the build succeeded and the functions in good.cl and bad.cl can be
deployed to devices for processing. But before you can deploy these functions, they
must be converted into kernels. This is the topic of the next section.

2.6 Packaging functions in kernels
After you’ve compiled and linked a program, you can package its functions into data
structures called kernels. The advantage of using kernels is that they’re deployable—
kernels can be dispatched to a command queue and sent to a device. In the card game
analogy, kernels are the cards, devices are the players, and a command queue is a
player’s hand.

 Each kernel is represented by a cl_kernel data structure, and this section presents
three functions related to them. These functions make it possible to create kernels
and obtain information about them.

 This section will not discuss how to configure kernel arguments. This important
topic will be fleshed out in chapter 3.

2.6.1 Creating kernels

The OpenCL standard defines two functions that construct cl_kernel structures
from a cl_program. They’re both simple to use, but clCreateKernelsInProgram is
the simpler of the two—it creates a kernel for every function in the program. Its sig-
nature is as follows:

clCreateKernelsInProgram(cl_program program, cl_uint num_kernels,
    cl_kernel *kernels, cl_uint *num_kernels_ret);

Find size of 
build log

Read 
build log
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When the function completes, the new cl_kernels are placed in the kernels array,
and num_kernels_ret identifies how many kernels are available. By calling this func-
tion twice, you can determine how much memory to allocate and then store the ker-
nels in the allocated memory.

 If you’d rather create a single kernel, you can use the clCreateKernel function.
Unlike clCreateKernelsInProgram, this function requires that you know the name of
the function from which the kernel is to be created. Its signature is as follows:

clCreateKernel(cl_program program, const char *kernel_name, cl_int *error)

This function returns a single cl_kernel, so if you want to create multiple kernels by
name, you’ll have to invoke clCreateKernel repeatedly. The following code shows
how this function is used:

char kernel_name[] = "convolve";
kernel = clCreateKernel(program, kernel_name, &error);

When this code executes, clCreateKernel examines the program to make sure it
defines a function called convolve. If this doesn’t exist, clCreateKernel returns NULL,
and error is set to CL_INVALID_KERNEL_NAME.

2.6.2 Obtaining kernel information

Once you’ve created a cl_kernel, you may want to know which function it represents
and which program it belongs to. clGetKernelInfo is the function to use, and its sig-
nature is as follows:

clGetKernelInfo(cl_kernel kernel, cl_kernel_info param_name,
    size_t param_value_size, void *param_value,
    size_t *param_value_size_ret)

The enumerated type cl_kernel_info defines the different types of kernel informa-
tion that can be accessed. Table 2.10 lists these parameter names and their associated
data. 

Table 2.10 Kernel information parameters

Parameter name Output type Purpose

CL_KERNEL_FUNCTION_NAME char[] Returns the name of the function from which 
the kernel was formed

CL_KERNEL_NUM_ARGS cl_uint Returns the number of input arguments 
accepted by the kernel’s associated function

CL_KERNEL_REFERENCE_COUNT cl_uint Returns the number of times the kernel has 
been referenced in code

CL_KERNEL_CONTEXT cl_context Returns the context associated with the kernel

CL_KERNEL_PROGRAM cl_program Returns the program from which the kernel 
was created
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These properties are easy to understand. They’re also easy to access in code, and the
next discussion will show how this is accomplished.

2.6.3 Code example: obtaining kernel information

The first parameter in table 2.10, CL_KERNEL_FUNCTION_NAME, becomes important
when you need to search through an array of kernels to find one that corresponds to a
specific function. This is shown in the following code, which creates an array of four
kernels and searches for the one whose function is named mult.

...
cl_kernel *kernels, found_kernel;
char kernel_name[20];
cl_uint num_kernels; 
...
err = clCreateKernelsInProgram(program, 0,    
         NULL, &num_kernels);                        
if(err < 0) {
   perror("Couldn't find any kernels");
   exit(1);
}

kernels = (cl_kernel*)malloc(num_kernels*sizeof(cl_kernel));
clCreateKernelsInProgram(program,              
         num_kernels, kernels, NULL);                         

for(i=0; i<num_kernels; i++) {                         
   clGetKernelInfo(kernels[i], CL_KERNEL_FUNCTION_NAME,         
         sizeof(kernel_name), kernel_name, NULL);      
   if(strcmp(kernel_name, "mult") == 0) {              
      found_kernel = kernels[i];                       
      printf("Found the kernel at index %u.\n", i);    
      break;                                           
   }                                                   
}                                                      

for(int i=0; i<num_kernels; i++)  
    clReleaseKernel(kernels[i]);              
...

This code calls the clCreateKernelsInProgram function twice. The first time, it pro-
vides the number of kernels available. The second time, it places the kernels in the
array. Once the kernels have been processed, the clReleaseKernel function is used to
deallocate them. This operates just like the clReleaseContext and clRelease-
Program functions.

 Now that you know how to create kernels, you’d probably like to send them to
devices for execution. But there’s one last step. To enable communication between
the host and device, you need to create a command queue. This is the topic of the
next section.

Listing 2.6 Searching for a kernel by name: kernel_search.c
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2.7 Collecting kernels in a command queue
When you create a kernel, you don’t have to identify a target device—it can be sent to
any device in the context. Instead, you identify the target device when you create a
command queue. Then when you deploy kernels to the queue, they will be sent to the
device associated with the queue.

 This chapter has been focused on kernels, but kernel execution is only one type of
command that can be dispatched to a command queue. A command is a message sent
from the host that tells a device to perform an operation. Besides kernel execution,
many OpenCL command operations involve data transfer: reading data from the
device to the host, writing data from the host to the device, and copying data between
devices. Chapter 3 discusses these commands in detail.

 Figure 2.2 shows a host sending commands to three devices. As shown, each device
has its own command queue.

 Data transfer operations may convey data to or from a device, but commands in a
command queue move in one direction only: from the host to a device. The device
doesn’t send commands to the host.

 By default, command queues process commands in the order in which they’re
received, but you can change this default behavior when you create a command
queue. This is the topic of the next discussion.
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Figure 2.2 Sending commands to devices
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2.7.1 Creating command queues

In OpenCL, command queues are represented by cl_command_queue structures,
which are simple to work with. Unlike the other data structures we’ve looked at, com-
mand queues don’t have functions that provide information. Also, there’s only one
function that creates new queues. It’s called clCreateCommandQueue and its signature
is as follows:

clCreateCommandQueue(cl_context context, cl_device_id device,
    cl_command_queue_properties properties, cl_int *err)

This returns a cl_command_queue whose reference count can be incremented with
clRetainCommandQueue and decremented with clReleaseCommandQueue. The parame-
ters of the signature are easy to understand except for the third parameter. This must
identify one of the two values in the cl_command_queue_properties enumerated type:

■ CL_QUEUE_PROFILING_ENABLE—Enables profiling events
■ CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE—Enables out-of-order execution

of queue commands

By setting the first property, you can receive timing events as the queue processes its
commands. Chapter 7 discusses this topic in detail. The second property relates to
how the device processes items in the queue. By default, command queues follow the
first-in, first-out (FIFO) principle. For example, if you’re the first person in a restau-
rant queue, you’ll be the first to be served. Similarly, the first kernel dispatched to a
command queue will be the first executed.

 But if you create a queue with the CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE
property set, the target device will be able to process kernels out of order. That is, the
device will be able to start other kernels before completing preceding kernels. The
following code shows how to create a cl_command_queue with this property:

clCreateCommandQueue(context, device,
    CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &err)

2.7.2 Enqueuing kernel execution commands

OpenCL provides many functions that start with clEnqueue, and each of them dis-
patches a command to a device through a command queue. The simplest of these is
clEnqueueTask, which sends a kernel execution command to a device through a com-
mand queue. The signature for this function is as follows:

clEnqueueTask(cl_command_queue queue, cl_kernel kernel,
    cl_uint num_events, const cl_event *wait_list, cl_event *event)

The first two arguments couldn’t be simpler. The first identifies a cl_command_queue
that sends commands to a specific device. The second argument is the cl_kernel that
contains the OpenCL function to be executed.

 Once you call this function, a kernel execution command is sent to the command
queue. You don’t have to call a separate function to execute the kernel—the device
will execute the kernel function when it processes the command.
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 The following code shows how this works. It creates a command queue and
enqueues a command to execute a kernel.

...
cl_command_queue queue;
...
queue = clCreateCommandQueue(context, device, 0, &err);
if(err < 0) {
   perror("Couldn't create the command queue");
   exit(1);
}

err = clEnqueueTask(queue, kernel, 0, NULL, NULL);      
if(err < 0) {
   perror("Couldn't enqueue the kernel execution command");
   exit(1);
}

clReleaseCommandQueue(queue);                      
...

As shown in this listing, command queues are easy to work with in code. But there’s a
problem: the queue_kernel.c source code compiles, but it may not execute properly.
This is because the kernel function doesn’t have any arguments. You can see this by
looking at the kernel code:

kernel void blank() {}

Boring, isn’t it? Without arguments, the function has no data to process. The next
chapter explains how to code host applications to set arguments for kernel functions.
Then, in chapter 4, we’ll look closely at kernel coding.

2.8 Summary
Although I love the English language, I have to admit that its grammar is compli-
cated. You have to deal with clauses, phrases, tenses, moods, and many other syntax
elements. OpenCL is similar. I admire the idea of a cross-platform toolkit for high-
performance coding, but dealing with OpenCL’s data structures can be a harrowing
process. Yet there’s no getting around it—if you want to build a nontrivial OpenCL
application, you need a solid grasp of platforms, devices, contexts, programs, ker-
nels, and command queues.

 This chapter has focused on host applications, whose primary function involves
sending commands to devices. Host applications usually start by creating one or more
cl_platform_id data structures, each of which represents a vendor’s implementation
of OpenCL. Then, using the platform or platforms, the application finds connected
devices, which are represented by cl_device_id structures. The application can find
information about these devices by calling clGetDeviceInfo, and once it has deter-
mined which devices to target, it combines them within a cl_context.

Listing 2.7 Enqueue a kernel execution command: queue_kernel.c
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 Next, the application reads in source code or binary code that contains specifically
marked functions called kernel functions. It uses this code to form a cl_program and
then builds the program with clBuildProgram. This compiles the code for every
device in the context, and once the program is built successfully, the host application
creates cl_kernels for the functions contained inside.

 To enable communication with a device, the host application creates a
cl_command_queue. It dispatches commands into this queue, and each command tells
the target device to perform an operation. For example, clEnqueueTask sends a ker-
nel function to the device for execution. Other commands tell the device to transfer
data to and from the host.

 Host development is a complicated topic, and don’t be concerned if the discussion
doesn’t make sense just yet. As you examine more code and start writing your own,
dealing with these data structures will become second nature.

 This chapter has explained how to write host applications that dispatch kernel
functions to devices. But in practical applications, you need to deliver data to the con-
nected devices. It takes an entire chapter to explain OpenCL data transfer and parti-
tioning, and we’ll look at this next.



Host programming:
data transfer

 and partitioning
The preceding chapter explained a great deal about host applications, from access-
ing platforms to creating kernels. But to do their jobs, devices need more than just
kernels—they need data. If you want a device to perform a nontrivial computing
task, you have to provide at least three pieces of information: the instructions to be
executed, a buffer containing data to be processed, and a buffer where processed
data should be stored.

This chapter covers
■ Creating memory objects to serve as kernel arguments
■ Commands that transfer data between the host and 

a device
■ Partitioning kernel execution using work-items and 

work-groups
43
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 In regular C/C++ programming, this isn’t a big deal. Just set suitable input and
output parameters in a function call. But when you’re sending functions to another
processor, this becomes more complicated. The first part of this chapter is devoted to
explaining how to set arguments for OpenCL kernel functions.

 After you’ve assigned data to a kernel, you may want to tell the target devices how
to partition the data to improve performance. Different devices have different mem-
ory sizes and processing characteristics, so it’s a good idea to subdivide the data to take
best advantage of the target architecture. This topic is discussed in the second part of
this chapter.

 Once you’ve finished reading this chapter, you’ll have a solid understanding of
how to code host applications, and you’ll be able to send functions and data to your
devices. But to reach that point, you need to become familiar with kernel arguments.
We’ll examine this first.

3.1 Setting kernel arguments
Chapter 2 explained how to create kernels from functions, but it didn’t discuss how to
set arguments for the functions. This is accomplished by using clSetKernelArg,
whose signature is as follows:

clSetKernelArg (cl_kernel kernel, cl_uint index, size_t size,
    const void *value)

In this signature, the index parameter identifies the order of the kernel argument in
the kernel function’s parameter list. If index is set to 0, the argument will come first. If
index equals 1, the argument will be accessed second.

 The last argument of clSetKernelArg points to the data that will be transferred to
the kernel function. This can take one of the following forms:

■ Pointer to primitive data—Transfers simple primitives to the device
■ Pointer to a memory object—Transfers significant or complex data
■ Pointer to a sampler object—Transfers an object that defines how images are read
■ NULL—Transfers no data from the host; the device will just reserve memory in

its local address space for the kernel argument

I like to think of the first two options as being similar to an envelope and a cardboard
box. Envelopes are great for sending small, regularly shaped packages, but for any-
thing large or complex, you need a cardboard box. Similarly, if you want to send a sin-
gle float or an int to the device, make the last argument of clSetKernelArg a
pointer to the float or int. But if you need to send a large array or a composite data
type, make the last argument a pointer to a memory object.

 Let’s look at an example. Say you want to send two arguments to a kernel called
proc: an integer called num and memory object called mem_obj. You would make the
following function calls within your host application:

clSetKernelArg(proc, 0, sizeof(num), &num);
clSetKernelArg(proc, 1, sizeof(mem_obj), &mem_obj);



45Buffer objects
Chapter 4 discusses kernel arguments in greater detail and explains why you might set
an argument’s data to NULL. Chapter 6 discusses samplers and their usage in image
processing. This section is devoted to memory objects, which serve as standard pack-
ages for transferring data between a host and device.

 In OpenCL, memory objects are represented by cl_mem data structures, and they
come in two types: buffer objects and image objects. If the memory object is intended
to contain pixel data, you should create an image object. In all other circumstances,
you should place your data in a buffer object. We’ll look at buffer objects first.

3.2 Buffer objects
Buffer objects package any type of data that doesn’t involve images. These are created
by the clCreateBuffer function, whose signature is as follows:

clCreateBuffer(cl_context context, cl_mem_flags options, size_t size,
    void *host_ptr, cl_int *error)

This returns a cl_mem that wraps around the data identified by the host_ptr argument.
The options parameter configures many of the object’s characteristics, such as whether
the buffer data is read-only or write-only and the manner in which the data is allocated
on the host. Table 3.1 lists the six values of the cl_mem_flags enumerated type. 

The first three properties determine the buffer object’s accessibility, and they’re all easy
to understand. The only point to remember is that they constrain the device’s access to
the buffer object, not the host’s. If a device attempts to modify a buffer object created
with the CL_MEM_READ_ONLY flag, the operation will produce an undefined result.

 The last three properties specify how the buffer object is allocated in host memory.
This section will explore this topic and then explain how to create subbuffer objects.

3.2.1 Allocating buffer objects

When you set the second argument of clCreateBuffer, you’ll commonly provide a
combination of two flags. First, you’ll select one of the first three flags in table 3.1 to
set the buffer object’s accessibility. Then you’ll select one or more of the second three

Table 3.1 Memory object properties (cl_mem_flags)

Flag value Meaning

CL_MEM_READ_WRITE The memory object can be read from and written to.

CL_MEM_WRITE_ONLY The memory object can only be written to.

CL_MEM_READ_ONLY The memory object can only be read from.

CL_MEM_USE_HOST_PTR The memory object will access the memory region specified by the host 
pointer.

CL_MEM_COPY_HOST_PTR The memory object will set the memory region specified by the host pointer.

CL_MEM_ALLOC_HOST_PTR A region in host-accessible memory will be allocated for use in data transfer.
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to specify where the buffer object should be allocated. As an example, the following
function creates a buffer object to package vec, an array of 32 floats:

vec_buff = clCreateBuffer(context,
   CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
   sizeof(float)*32, vec, &error);

In this case, the buffer object vec_buff is created as read-only. Its allocation is controlled
by the CL_MEM_COPY_HOST_PTR flag. This buffer packages the data referenced by vec,
and because the data is initially allocated on the host, vec is called the host pointer.

NOTE The following discussion is based partly on the OpenCL 1.1 standard
and partly on my experiments. My conclusions aren’t fully supported by the
standard, which is unclear on this topic.

Let’s say you want to create a buffer object to hold a kernel’s output data. It’s a good
idea to make the buffer object write-only so that the device can only write to it. You
can do this by setting the CL_MEM_WRITE_ONLY flag in clCreateBuffer. For write-only
buffers, the device allocates memory but the host doesn’t. Therefore, you can set the
host pointer parameter in clCreateBuffer to NULL.

 On the other hand, if you’re transferring data from the host to the device, the
host pointer must not be NULL. In this case, you need to specify where the buffer
object’s data should be allocated. If you want the buffer object to access the same
memory referenced by the host pointer, set CL_MEM_USE_HOST_PTR. This is memory-
efficient, but there’s a drawback. Data transfer between hosts and devices can be
unpredictable, so you may not be able to safely access the host pointer memory after
communication starts.

 Alternatively, you can tell OpenCL to allocate memory elsewhere and copy the data
from the host pointer to this new region. The CL_MEM_COPY_HOST_PTR flag makes this
possible. This isn’t memory-efficient, but it allows you to modify the host pointer mem-
ory even though the host may be transferring the buffer object to and from devices.

 The last allocation flag, CL_MEM_ALLOC_HOST_PTR, can only be used in combination
with CL_MEM_COPY_HOST_PTR. According to the OpenCL 1.1 standard, it constrains the
new memory region to be host-accessible. I have read (outside the standard) that host-
accessible memory is supposed to mean pinned memory, which isn’t subject to paging.
This implies that performance will be improved because the operating system won’t
transfer the memory content to and from system memory. However, the standard says
nothing about pinned memory.

 Based on these observations, we can derive two rules. Set the CL_MEM_USE_HOST_PTR
flag if you’re running host applications on a memory-limited system or on the same
device that you’re using to process kernels. Set the CL_MEM_COPY_HOST_PTR flag if low
memory isn’t an issue but reliable data transfer is.

NOTE In this book, memory objects will always be created with the
CL_MEM_COPY_HOST_PTR flag.
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Let’s look at an example. The following code creates two buffer objects: one contain-
ing an input array (read-only) and one containing an output array (write-only). Then
it calls clSetKernelArg twice to make the buffer objects into kernel arguments:

input_buffer = clCreateBuffer(context,
    CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
    sizeof(input_vector), input_vector, &error);

output_buffer = clCreateBuffer(context,
    CL_MEM_WRITE_ONLY, sizeof(input_vector), NULL, &error);

clSetKernelArg(kernel, 0, sizeof(cl_mem), &input_buffer);
clSetKernelArg(kernel, 1, sizeof(cl_mem), &output_buffer);

Note that the second call to clCreateBuffer uses only one of the flags in table 3.1:
CL_MEM_WRITE_ONLY. This is because output data isn’t allocated on the host. Also,
remember that write-only buffer objects can use NULL as their host pointers, but you
still need to set the size of the memory encapsulated by the buffer object.

3.2.2 Creating subbuffer objects

Just as you can create a substring from a string, you can create a subbuffer object from
a buffer object. You may want to do this if one kernel needs a subset of the data
required by another kernel. Subbuffer objects are created by clCreateSubBuffer,
whose signature is as follows:

clCreateSubBuffer(cl_mem buffer, 
    cl_mem_flags flags, cl_buffer_create_type type,
    const void *info, cl_int *error)

The second argument, flags, takes the same values as those listed in table 3.1. The
third argument, type, must be set to CL_BUFFER_CREATE_TYPE_REGION.

 The fourth argument is more complicated. Its data type is const void*, but the
function expects a pointer to a _cl_buffer_region structure. This is defined as
follows:

typedef struct _cl_buffer_region {
    size_t origin;
    size_t size;
} cl_buffer_region;

The origin field specifies the start of the subbuffer’s data inside the buffer. The size
field defines the size of the subbuffer. For example, the following code creates a sub-
buffer containing 40 floats from a buffer object containing 100 floats. The start of
the subbuffer data is the 50th float in the main buffer:

cl_buffer_region region;
region.size = 40*sizeof(float);
region.origin = 50*sizeof(float);
sub_buffer = clCreateSubBuffer(main_buffer, CL_MEM_READ_ONLY |
   CL_MEM_COPY_HOST_PTR, CL_BUFFER_CREATE_TYPE_REGION, &region, &err);

Figure 3.1 shows how the subbuffer data is related to the data inside the main buffer.
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The code in section 3.4 provides another example of how subbuffers are created in
code. The next section, however, discusses the second type of memory object, image
objects.

3.3 Image objects
Image processing is a major priority in high-performance computing. This is particu-
larly true for OpenCL, which is one of the few languages capable of targeting graph-
ics cards. For this reason, OpenCL provides a specific type of memory object for
holding pixel data. The standard refers to them as image objects, but there is no sepa-
rate data structure for them. Like buffer objects, image objects are represented by
cl_mem structures.

 Much of our discussion of buffer objects applies to image objects as well. Image
objects are created with the same configuration flags as those listed in table 3.1,
and their allocation properties are exactly the same. Chapter 6 discusses image
objects in detail, but this section will explain how to create them in code and exam-
ine their properties.

3.3.1 Creating image objects

Image objects come in two types: two-dimensional and three-dimensional. Two-
dimensional image objects are created by clCreateImage2D. Three-dimensional
image objects, which are essentially successions of two-dimension images, are created
with clCreateImage3D. Both functions return a cl_mem structure and their
signatures are as follows:

clCreateImage2D (cl_context context, cl_mem_flags opts,
    const cl_image_format *format, size_t width, size_t height,
    size_t row_pitch, void *data, cl_int *error)

clCreateImage3D (cl_context context, cl_mem_flags opts,
    const cl_image_format *format, size_t width, size_t height,
    size_t depth, size_t row_pitch, size_t slice_pitch,
    void *data, cl_int *error)

The first two arguments are the same as those used to create buffer objects. The third
argument identifies the format in which the image data is provided. The rest of the
arguments, with the exception of error, identify the dimensions and pitches of the
pixels in the image.

Main buffer

90

Subbuffer

80706050403020100

80706050

Figure 3.1 Creating a subbuffer
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IMAGE OBJECT FORMATS

In both functions, the third argument identifies how the image’s pixels are stored in
memory. The argument’s data type is cl_image_format, which is defined as follows:

typedef struct _cl_image_format {
   cl_channel_order image_channel_order;
   cl_channel_type image_channel_data_type;
} cl_image_format;

The first field of the structure has the cl_channel_order data type. This defines what
channels are present in each pixel and the order in which they’re stored. This is an enu-
merated type, and most of its values involve red, green, blue, and alpha (opacity) chan-
nels: CL_RGB, CL_RGBA, CL_ARGB, CL_BGRA, CL_RG, CL_RA, CL_R, and CL_A. Others add bit
padding, represented by x: CL_RGBx, CL_RGx, and CL_Rx. CL_INTENSITY measures alpha
(opacity) independent of color, and CL_LUMINANCE is used for grayscale images.

 The second field specifies how an image’s channels are represented at the bit level.
This includes the numerical format of the channels (floating-point, signed integer, or
unsigned integer) and the number of bits per channel (8, 16, or 32). The data type of
this field is cl_channel_type. This is an enumerated type that can take any of the val-
ues listed in table 3.2. 

Table 3.2 Image channel types (cl_channel_type)

Flag value Meaning

CL_HALF_FLOAT Each component is floating-point (16 bits).

CL_FLOAT Each component is floating-point (32 bits).

CL_UNSIGNED_INT8 Each component is an unsigned integer (8 bits).

CL_UNSIGNED_INT16 Each component is an unsigned integer (16 bits).

CL_UNSIGNED_INT32 Each component is an unsigned integer (32 bits).

CL_SIGNED_INT8 Each component is a signed integer (8 bits).

CL_SIGNED_INT16 Each component is a signed integer (16 bits).

CL_SIGNED_INT32 Each component is a signed integer (32 bits).

CL_UNORM_INT8 Each component is a normalized unsigned integer (8 bits).

CL_UNORM_INT16 Each component is a normalized unsigned integer (16 bits).

CL_SNORM_INT8 Each component is a normalized signed integer (8 bits).

CL_SNORM_INT16 Each component is a normalized signed integer (16 bits).

CL_UNORM_SHORT_565 The RGB components are combined into a normalized 16-bit format (5-6-5).

CL_UNORM_SHORT_555 The xRGB components are combined into a normalized 16-bit format 
(x-5-5-5).

CL_UNORM_INT_101010 The xRGB components are combined into a normalized 32-bit format 
(x-10-10-10). 



50 CHAPTER 3 Host programming: data transfer and partitioning
These are easy to understand. The common 24-bit RGB color model is represented by
the CL_UNSIGNED_INT8 format, which uses 8 bits to store each channel. The High-
Color format uses CL_UNORM_SHORT_565, adding an extra bit for the green channel.
The 30-bit Deep Color format is provided for with the CL_UNORM_INT_101010 flag.

 As an example, the following code initializes a cl_image_format structure whose
pixels are formatted according to the 24-bit RGB format:

cl_image_format rgb_format;
rgb_format.image_channel_order = CL_RGB;
rgb_format.image_channel_data_type = CL_UNSIGNED_INT8;

IMAGE OBJECT DIMENSIONS AND PITCH

The final arguments in clCreateImage2D and clCreateImage3D relate to the dimen-
sions of the image object and the number of bytes per dimension, also called
pitch. Each dimension is given in pixels, and figure 3.2 presents the dimensions of a
three-dimensional image object. The individual two-dimensional components are
called slices.

 In most images, you can determine how many bytes are in a row by multiplying
bytes-per-pixel by pixels-per-row. But this won’t work if the rows contain trailing bits
or if the rows need to be aligned on memory boundaries. For this reason, both
clCreateImage2D and clCreateImage3D accept a row_pitch argument that identi-
fies how many bytes are in each row. Similarly, clCreateImage3D accepts a
slice_pitch argument that identifies the number of bytes in each two-dimensional
image, or slice.

 If row_pitch is set to 0, OpenCL will assume its value equals width * (pixel size). If
slice_pitch is set to 0, its value will be set to row_pitch * height. In this book’s
example code, row_pitch and slice_pitch will always be set to 0.

 Let’s look at an example. The following code creates a three-dimensional image
object containing four slices, each slice containing 64 * 80 pixels. The image’s color
format is set equal to the rgb_format structure defined earlier: 

Slices

Height (y)

Width (x)

Depth (z)

Figure 3.2 Image 
object dimensions
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#DEFINE NUM_ROWS 64
#DEFINE NUM_COLS 80
#DEFINE NUM_SLICES 4

unsigned char image_data[NUM_SLICES][NUM_ROWS][NUM_COLS];

cl_mem image_object = clCreateImage3D (context,
    CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, rgb_format, NUM_COLS,
    NUM_ROWS, NUM_SLICES, NULL, NULL, image_data, &error);

This is a read-only image object, but you can create write-only image objects by setting
the CL_MEM_WRITE_ONLY flag. In this case, the object data must be set to NULL.

3.3.2 Obtaining information about image objects

This book has presented many data structures whose properties can be examined with
functions named getXXInfo. Image objects are no exception. The getImageInfo
function provides information about an image object’s dimensions and pixel format,
and its signature is as follows:

clGetImageInfo (cl_mem image, 
    cl_image_info param_name, 
    size_t param_value_size, void *param_value,
    size_t *param_value_size_ret)

The data type of the fourth argument is cl_image_info. This enumerated type can
take any of the values listed in table 3.3.

 All of these parameters are straightforward. If you’re interested in data regarding
pointers, memory sizes, and memory allocation flags, you can examine image objects
with clGetMemObjectInfo, which will be discussed next.

Table 3.3 Image object information parameters (cl_image_info)

Parameter name Parameter value Purpose

CL_IMAGE_ELEMENT_
SIZE

size_t Returns the bit size of the elements (pixels) that 
make up the image

CL_IMAGE_WIDTH size_t Returns the pixel width

CL_IMAGE_HEIGHT size_t Returns the pixel height

CL_IMAGE_DEPTH size_t Returns the depth of a 3-D image (the number of 
2-D components)

CL_IMAGE_ROW_PITCH size_t Returns the row pitch (the number of bytes per row)

CL_IMAGE_SLICE_PITCH size_t Returns the slice pitch of a 3-D image (the num-
ber of bytes per 2-D component)

CL_IMAGE_FORMAT cl_image_format Returns the data structure that sets the image’s 
channel/pixel format

CL_IMAGE_D3D10_
SUBRESOURCE_KHR

ID3D10
Resource*

Returns a pointer to the Direct3D subresource 
used to create the image object
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3.4 Obtaining information about buffer objects
Whereas clGetImageInfo provides information about image objects only, you can
obtain information about image objects and buffer objects with clGetMemObjectInfo.
Its signature is as follows:

clGetMemObjectInfo (cl_mem object, cl_mem_info param_name,
    size_t param_value_size, void *param_value,
    size_t *param_value_size_ret)

These arguments are straightforward. The first three provide input: the memory
object, a name that identifies the type of data you’re requesting, and the amount of
data you’re requesting. The last two arguments are output arguments, in which the
function returns the data you’re requesting and the size of the returned data.

 Table 3.4 lists the different types of information that can be accessed with
clGetMemObjectInfo.

These parameters become particularly useful when you want to examine the size and
location of a memory object’s data. The following code shows how this works. It creates
a buffer containing 100 float values and a subbuffer containing a 20-element subset of
these floats. Then it invokes clGetMemObjectInfo to examine both buffer objects.

Table 3.4 Memory object information parameters (cl_mem_info)

Parameter name Parameter value Purpose

CL_MEM_TYPE cl_mem_object_
type

Returns the type of the memory object 
(CL_MEM_OBJECT_BUFFER, 
CL_MEM_OBJECT_IMAGE2D, or 
CL_MEM_OBJECT_IMAGE3D)

CL_MEM_FLAGS cl_mem_flags Returns the flags used to configure the memory 
object’s accessibility and allocation

CL_MEM_HOST_PTR void* Returns the host pointer that references the mem-
ory object’s data

CL_MEM_SIZE size_t Returns the size of the memory object’s data

CL_MEM_CONTEXT cl_context Returns the context associated with the memory 
object

CL_MEM_ASSOCIATED_
MEMOBJECT

cl_mem Returns the memory object from which this memory 
object was created (only valid for subbuffer objects)

CL_MEM_OFFSET size_t Returns the offset used to create the subbuffer 
object (only valid for subbuffer objects)

CL_MEM_REFERENCE
COUNT

cl uint Returns the memory object’s reference count (the 
number of times the object has been accessed)

CL_MEM_D3D10_
RESOURCE_KHR

ID3D10Resource* Returns a pointer to the OpenCL-Direct3D interface
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NOTE The following code makes use of subbuffers and therefore will only
compile on systems that support the OpenCL 1.1 standard.

...
float main_data[100];
cl_mem main_buffer, sub_buffer;
void *main_buffer_mem = NULL, *sub_buffer_mem = NULL;
size_t main_buffer_size, sub_buffer_size;
cl_buffer_region region;
...
main_buffer = clCreateBuffer(context,         
      CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,          
      sizeof(main_data), main_data, &err);    
if(err < 0) {
   perror("Couldn't create a buffer");
   exit(1);
}

region.origin = 30*sizeof(float);
region.size = 20*sizeof(float);
sub_buffer = clCreateSubBuffer(main_buffer,   
      CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,           
      CL_BUFFER_CREATE_TYPE_REGION,           
      &region, &err);                         
if(err < 0) {
   perror("Couldn't create a sub-buffer");
   exit(1);
}

clGetMemObjectInfo(main_buffer, CL_MEM_SIZE,             
      sizeof(main_buffer_size), &main_buffer_size, NULL);        
clGetMemObjectInfo(sub_buffer, CL_MEM_SIZE,              
      sizeof(sub_buffer_size), &sub_buffer_size, NULL);  
printf("Main buffer size: %lu\n", main_buffer_size);
printf("Sub-buffer size:  %lu\n", sub_buffer_size);

clGetMemObjectInfo(main_buffer, CL_MEM_HOST_PTR,        
      sizeof(main_buffer_mem), &main_buffer_mem, NULL);        
clGetMemObjectInfo(sub_buffer, CL_MEM_HOST_PTR,         
      sizeof(sub_buffer_mem), &sub_buffer_mem, NULL);   
printf("Main buffer memory address: %p\n", main_buffer_mem);
printf("Sub-buffer memory address:  %p\n", sub_buffer_mem);

printf("Main array address: %p\n", main_data);

clReleaseMemObject(main_buffer);       
clReleaseMemObject(sub_buffer);                   
...

On my system, the printed results are as follows:

Main buffer size: 400
Sub-buffer size:  80
Main buffer data address: 0x972000
Sub-buffer data address:  0x972078
Main array address: 0x7ff60805920

Listing 3.1 Buffers and subbuffers: buffer_check.c

Create buffer 
with 100 values

Create subbuffer 
with 20 values

Obtain size 
information

Obtain host 
pointers

Deallocate 
buffer objects
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The subbuffer doesn’t allocate its own memory region to hold data. Instead, it
accesses the same memory region used by the main buffer. Because createBuffer is
called with the CL_MEM_COPY_HOST_PTR flag, neither buffer accesses data in the origi-
nal float array.

 At this point, you should have a solid understanding of how to create and examine
memory objects, whether they’re image objects, buffer objects, or subbuffer objects.
You can send these objects to a device by making them arguments of a kernel func-
tion, but there are other ways to transfer this data. The next section presents com-
mands that convey memory object data from the host to a device, from a device to a
host, and between devices.

3.5 Memory object transfer commands
Let’s review the topic of command queues. A host creates a command queue when it
wants to access a device. The host communicates with the device by dispatching com-
mands to the queue. We refer to this process of placing commands in a command
queue as enqueuing.

 So far, we’ve focused solely on commands that tell the device to execute kernels.
However, kernel execution is only one type of command. Other commands tell the
device how and where to transfer data, and this section will examine these commands
in detail.

 OpenCL provides many functions that enqueue data transfer commands, and their
names all take the form clEnqueueXX. For the sake of convenience, we’ll group them
into three categories: functions that initiate read/write data transfer, functions that
map and unmap memory, and functions that copy data between memory objects.

NOTE These functions don’t create new memory objects. They access data
from memory objects that have already been transferred to the device as ker-
nel arguments.

3.5.1 Read/write data transfer

At this point, you know how to send memory objects to devices using clSetKernelArg.
But let’s say you’ve created a write-only buffer object to hold the device’s output. After
the kernel has completed its processing, how can you get the buffer data back to
the host?

 To read a buffer object from a device to the host, the simplest function to use is
clEnqueueReadBuffer. This is one of the six functions that read and write memory
objects. Table 3.5 lists them all, including their arguments and purposes. All of them
return an integer error code.

 In each of these functions, the two most important arguments are the cl_mem
argument, which identifies the memory object on the device, and the void pointer
that references host memory. A read operation transfers data from the memory
object to host memory. A write operation transfers data from host memory to the
memory object.
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Each of these functions also contains a Boolean argument called blocking. If this is
set to CL_TRUE, the function won’t return until the read/write operation is finished. If
blocking is set to CL_FALSE, the function will enqueue the read/write command but it
won’t wait for the data transfer to complete.

Table 3.5 Functions that read and write memory objects

Function Purpose

clEnqueueReadBuffer(cl_command_queue queue,
   cl_mem buffer, cl_bool blocking, size_t offset,
   size_t data_size, void *ptr, cl_uint num_events,
   const cl_event *wait_list, cl_event *event)

Reads data from a buffer 
object to host memory

clEnqueueWriteBuffer(cl_command_queue_queue,
   cl_mem buffer, cl_bool blocking, size_t offset,
   size_t data_size, const void *ptr,
   cl_uint num_events, const cl_event *wait_list,
   cl_event *event)

Writes data from host 
memory to a buffer 
object

clEnqueueReadImage(cl_command_queue queue,
   cl_mem image, cl_bool blocking,
   const size_t origin[3], const size_t region[3],
   size_t row_pitch, size_t slice_pitch,
   void *ptr, cl_uint num_events,
   const cl_event *wait_list, cl_event *event)

Reads data from an 
image object to host 
memory

clEnqueueWriteImage(cl_command_queue queue,
   cl_mem image, cl_bool blocking,
   const size_t origin[3], const size_t region[3],
   size_t row_pitch, size_t slice_pitch,
   const void * ptr, cl_uint num_events,
   const cl_event *event_wait_list, cl_event *event)

Writes data from host 
memory to an image 
object

clEnqueueReadBufferRect(cl_command_queue_queue,
   cl_mem buffer, cl_bool blocking,
   const size_t buffer_origin[3],
   const size_t host_origin[3],
   const size_t region[3], size_t buffer_row_pitch,
   size_t buffer_slice_pitch, size_t host_row_pitch,
   size_t host_slice_pitch, void *ptr,
   cl_uint num_events, const cl_event *wait_list,
   cl_event *event)

Reads a rectangular por-
tion of data from a buffer 
object to host memory

clEnqueueWriteBufferRect(cl_command_queue queue,
   cl_mem buffer, cl_bool blocking,
   const size_t buffer_origin[3],
   const size_t host_origin[3],
   const size_t region[3], size_t buffer_row_pitch,
   size_t buffer_slice_pitch, size_t host_row_pitch,
   size_t host_slice_pitch, void *ptr,
   cl_uint num_events, const cl_event *wait_list,
   cl_event *event)

Writes a rectangular por-
tion of data from host 
memory to a buffer 
object
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Many of the remaining arguments specify what portion of the memory object should
be accessed. The offset argument in the buffer read/write functions identifies the
start of the buffer data to be read or written. The data_size argument identifies how
much data, starting from offset, should be transferred. Figure 3.3 shows how the two
main read/write functions work.

 The clEnqueueReadImage and clEnqueueWriteImage functions both accept two
arguments that may not make sense at first glance: origin[3] and region[3]. These
arrays specify the rectangular region of image data to be transferred into or out of the
image object. origin identifies the location of the first pixel to be accessed, and its
three size_t elements identify the pixel’s column, row, and slice, respectively. The
region argument also contains three size_t elements, and they identify the dimen-
sions (width, height, and depth) of the image data to be read or written. If the image
object is two-dimensional, the last element of origin must be 0 and the last element
of region must be 1. Figure 3.4 shows how the image read/write functions operate.

 The last two functions in table 3.5 transfer data to and from buffer objects, but
they access data in rectangular regions similar to those used to transfer image data. As
with the image read/write functions, region identifies the dimensions of the rectan-
gle to be transferred. buffer_origin[3] sets the start of the buffer object data, and
host_origin[3] sets the start of the data in host memory. You have to specify the row
pitch and slice pitch for both the host and buffer objects, but these parameters can be
set to 0.

Host memory
void *ptr offset

Buffer object
clEnqueueReadBuffer

clEnqueueWriteBuffer

Figure 3.3 Transferring buffer object data

Host memory
void *ptr clEnqueueReadImage

clEnqueueWriteImage

Image object
origin

region[1]
region[0]

Figure 3.4 Transferring image object data
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The clEnqueueReadBufferRect and clEnqueueWriteBufferRect functions are useful
when you want to transfer multidimensional data that isn’t image-related. For exam-
ple, suppose you’ve stored a matrix in a buffer object, and you want to read a subma-
trix into host memory. In this case, clEnqueueReadBufferRect is the function to use,
and figure 3.5 shows how it works.

 Here, region sets the size of the submatrix: [4, 4, 1]. host_origin equals [1, 1, 0]
and buffer_origin equals [5, 3, 0]. The following listing shows how this rectangular
data transfer is accomplished in code.

NOTE clEnqueueReadBufferRect and clEnqueueWriteBufferRect are only
available on platforms that support the OpenCL 1.1 standard. At the time of
this writing, Mac OS supports only OpenCL 1.0, so this code won’t run prop-
erly on Mac OS systems.

...
float full_matrix[80], zero_matrix[80];
const size_t buffer_origin[3] = {5*sizeof(float), 3, 0};
const size_t host_origin[3] = {1*sizeof(float), 1, 0};
const size_t region[3] = {4*sizeof(float), 4, 1};
cl_mem matrix_buffer;
...
matrix_buffer = clCreateBuffer(context,           
      CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR,             
      sizeof(full_matrix), full_matrix, &err);    
if(err < 0) {
   perror("Couldn't create a buffer object");
   exit(1);
}

err = clSetKernelArg(kernel, 0,                
      sizeof(cl_mem), &matrix_buffer);             
if(err < 0) {
   perror("Couldn't set the buffer as the kernel argument");
   exit(1);
}

Listing 3.2 Reading rectangular buffer data: buffer_test.c

Host memory

clEnqueueRead
BufferRect

Buffer objectHost
origin

Buffer
origin

Figure 3.5 Transferring buffer object data in rectangles
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err = clEnqueueTask(queue, kernel, 0, NULL, NULL);       
if(err < 0) {
   perror("Couldn't enqueue the kernel");
   exit(1);
}

err = clEnqueueWriteBuffer(queue, matrix_buffer,  
      CL_TRUE, 0, sizeof(full_matrix), full_matrix,         
      0, NULL, NULL);                              
if(err < 0) {
   perror("Couldn't write to the buffer object");
   exit(1);
}

err = clEnqueueReadBufferRect(queue, matrix_buffer,   
      CL_TRUE, buffer_origin, host_origin, region,           
      10*sizeof(float), 0, 10*sizeof(float), 0,       
      zero_matrix, 0, NULL, NULL);                    
if(err < 0) {
   perror("Couldn't read the rectangle from the buffer object");
   exit(1);
}
...

This application creates a kernel argument out of a buffer of zeros, writes to the buf-
fer, and then reads a 4x4 rectangle from the buffer at the specified offset. This dis-
patches three commands to the command queue. The first tells the device to execute
the kernel, the second transfers host data to the buffer object, and the third reads a
rectangular memory region from the buffer object into host memory.

3.5.2 Mapping memory objects

When a regular C/C++ application needs to access a file, it’s common to place the
file’s content in process memory and read or modify it using memory operations. This
is referred to as memory-mapping or just mapping the file. This usually provides
improved performance over regular file I/O. For me, it’s also simpler because I use
memory-related functions more frequently than file-related functions.

 OpenCL provides a similar mechanism for accessing memory objects. Instead of
using the read/write operations presented earlier, you can map a memory object on a
device to a memory region on the host. Once this map is established, you can read or
modify the memory object on the host using pointers or other memory operations.

 Table 3.6 lists the functions that enqueue commands to map and unmap memory
objects. Notice that you don’t have to map the entire memory object. For buffer
objects, you can access any one-dimensional region. For image objects, you can access
a rectangular region. 

 Most of the arguments in these functions resemble those used for reading and
writing, but one significant difference is that the first two functions return a void
pointer. This pointer serves two purposes: it identifies the start of the mapped mem-
ory on the host, and it identifies the map so that clEnqueueUnmapMemObject knows
which region to unmap.

Enqueue kernel 
command

Write data 
to buffer

Read rectangle 
from buffer
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A second difference between the map/unmap functions and the read/write functions
is the map_flags argument used in clEnqueueMapBuffer and clEnqueueMapImage.
This configures the accessibility of the mapped memory on the host. If map_flags is
set to CL_MAP_READ, the mapped memory will be read-only. If the flag is set to
CL_MAP_WRITE, the mapped memory will be write-only. If CL_MAP_READ|CL_MAP_WRITE
is used, the memory will be readable and writeable.

 Working with memory-mapped data in OpenCL is usually a three-step process.
First, enqueue the memory map operation with clEnqueueMapBuffer or clEnqueue-
MapImage. Then transfer data to and from the mapped memory with a function like
memcpy. Last, unmap the region by calling clEnqueueUnmapMemObject.

 In my experience, memory mapping provides a significant improvement in perfor-
mance over regular read/write operations. Chapter 7, which explains timing and pro-
filing, will show you how to test this on your own.

3.5.3 Copying data between memory objects

Up to this point, every data transfer operation we’ve looked at has been focused on
moving data between host memory and a memory object. But OpenCL provides addi-
tional functions that transfer data between memory objects. With these functions, you
can copy data between two memory objects on a device, or between memory objects
on different devices. Table 3.7 lists each data-copying function and its arguments. 

 The first two functions enqueue commands that copy data between similar
memory object types: buffer object to buffer object, image object to image object.
The next functions enqueue commands that copy data between different types of

Table 3.6 Functions that map and unmap memory objects

Function Purpose

void* clEnqueueMapBuffer(cl_command_queue queue,
   cl_mem buffer, cl_bool blocking,
   cl_map_flags map_flags, size_t offset,
   size_t data_size, cl_uint num_events,
   const cl_event *wait_list, cl_event *event,
   cl_int *errcode_ret)

Maps a region of a buffer 
object to host memory

void* clEnqueueMapImage(cl_command_queue queue,
   cl_mem image, cl_bool blocking,
   cl_map_flags map_flags, const size_t origin[3],
   const size_t region[3], size_t *row_pitch,
   size_t *slice_pitch, cl_uint num_events,
   const cl_event *wait_list, cl_event *event,
   cl_int *errcode_ret)

Maps a rectangular region 
of an image object to host 
memory

int clEnqueueUnmapMemObject(cl_command_queue queue,
   cl_mem memobj, void *mapped_ptr,
   cl_uint num_events, const cl_event *wait_list,
   cl_event *event)

Unmaps an existing 
memory object from host 
memory
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memory objects: buffer object to image object and image object to buffer object. If
you’ve followed the discussion of the read/write functions, these functions won’t
present any difficulty.

 Let’s look at an example that demonstrates how to map and copy memory objects.
Figure 3.6 shows the plan. The goal is to create two buffer objects and copy the con-
tent of Buffer 1 to Buffer 2 with clEnqueueCopyBuffer. Then clEnqueueMapBuffer
maps the content of Buffer 2 to host memory and memcpy transfers the mapped mem-
ory to an array.

 The following listing shows how this is implemented in code. The map_copy appli-
cation enqueues four commands. The first transfers the kernel and its arguments to
the device. The second copies one buffer object to the next. The third command con-
figures the memory map, and the fourth unmaps the memory.

Table 3.7 Functions that copy data between memory objects

Function Purpose

clEnqueueCopyBuffer(cl_command_queue queue,
   cl_mem src_buffer, cl_mem dst_buffer,
   size_t src_offset, size_t dst_offset,
   size_t data_size, cl_uint num_events,
   const cl_event *wait_list, cl_event *event)

Copies data from a source 
buffer object to a destina-
tion buffer object

clEnqueueCopyImage(cl_command_queue queue,
   cl_mem src_image, cl_mem dst_image,
   const size_t src_origin[3],
   const size_t dst_origin[3],
   const size_t region[3], cl_uint num_events,
   const cl_event *wait_list, cl_event *event)

Copies data from a source 
image object to a destina-
tion image object

clEnqueueCopyBufferToImage(cl_command_queue queue,
   cl_mem src_buffer, cl_mem dst_image,
   size_t src_offset, const size_t dst_origin[3],
   const size_t region[3], cl_uint num_events,
   const cl_event *wait_list, cl_event *event)

Copies data from a source 
buffer object to a destina-
tion image object

clEnqueueCopyImageToBuffer(cl_command_queue queue,
   cl_mem src_image, cl_mem  dst_buffer,
   const size_t src_origin[3],
   const size_t region[3], size_t dst_offset,
   cl_uint num_events, const cl_event *wait_list,
   cl_event *event)

Copies data from a source 
image object to a destina-
tion buffer object

clEnqueueCopyBufferRect(cl_command_queue queue,
   cl_mem src_buffer, cl_mem dst_buffer,
   const size_t src_origin[3],
   const size_t dst_origin[3],
   const size_t region[3], size_t src_row_pitch,
   size_t src_slice_pitch, size_t dst_row_pitch,
   size_t dst_slice_pitch, cl_uint num_events,
   const cl_event *wait_list, cl_event *event) 

Copies data from a rectan-
gular region in a source 
buffer object to a rectangu-
lar region in a destination 
buffer object
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...
float data_one[100], data_two[100], result_array[100];
cl_mem buffer_one, buffer_two;
void* mapped_memory;
...
buffer_one = clCreateBuffer(context,           
      CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR,             
      sizeof(data_one), data_one, &err);       
if(err < 0) {
   perror("Couldn't create a buffer object");
   exit(1);
}
buffer_two = clCreateBuffer(context,                  
      CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR,       
      sizeof(data_two), data_two, &err);              

err = clSetKernelArg(kernel, 0, sizeof(cl_mem),  
                     &buffer_one);                     
err |= clSetKernelArg(kernel, 1, sizeof(cl_mem), 
                      &buffer_two);              
if(err < 0) {
   perror("Couldn't set the buffer as the kernel argument");
   exit(1);
}

queue = clCreateCommandQueue(context, device, 0, &err);
if(err < 0) {
   perror("Couldn't create a command queue");
   exit(1);
};

err = clEnqueueTask(queue, kernel, 0, NULL, NULL);     
if(err < 0) {
   perror("Couldn't enqueue the kernel");
   exit(1);
}

err = clEnqueueCopyBuffer(queue, buffer_one,  
      buffer_two, 0, 0, sizeof(data_one),           
      0, NULL, NULL);                         
if(err < 0) {

Listing 3.3 Copying and mapping buffer objects: map_copy.c
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Figure 3.6 Copying and mapping buffer objects
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   perror("Couldn't perform the buffer copy");
   exit(1);
}

mapped_memory = clEnqueueMapBuffer(queue, 
      buffer_two, CL_TRUE, CL_MAP_READ, 0,            
      sizeof(data_two), 0, NULL, NULL, &err);
if(err < 0) {
   perror("Couldn't map the buffer to host memory");
   exit(1);
}

memcpy(result_array, mapped_memory, sizeof(data_two));       
err = clEnqueueUnmapMemObject(queue, buffer_two, 
      mapped_memory, 0, NULL, NULL);                  
if(err < 0) {
   perror("Couldn't unmap the buffer");
   exit(1);
}
...

This code shouldn’t present any surprises. As long as the command queue is config-
ured to process commands in order (the default configuration), it will transfer the
content of buffer_one to buffer_two and map buffer_two to host memory.

 At this point, you should have a thorough understanding of memory objects and
the different methods available for transferring data. In the next section, we’ll con-
tinue our exploration of data, but this time, we’ll examine how to distribute data and
computational tasks within a single device.

3.6 Data partitioning
If you’re implementing an algorithm with OpenCL, you probably have a great deal of
data to process. This makes data partitioning an important priority—the better you
distribute the processing load, the sooner your computational tasks will be finished.

 You already know how to divide data among multiple devices, but you can partition
your data even further. Most OpenCL devices contain several processing elements, and
with the right code, you can control how much data each processing element receives.

 There’s only one function to know: clEnqueueNDRangeKernel. This is one of the
most important functions in the OpenCL API, and it’s also one of the most complex.
Like clEnqueueTask, this places a kernel in a command queue for execution. But
unlike clEnqueueTask, clEnqueueNDRangeKernel allows you to control how the ker-
nel execution is distributed among the device’s processing resources. This is shown by
its signature, which is as follows:

clEnqueueNDRangeKernel(cl_command_queue queue, cl_kernel kernel,
    cl_uint work_dims, const size_t *global_work_offset,
    const size_t *global_work_size, const size_t *local_work_size,
    cl_uint num_events, const cl_event *wait_list, cl_event *event)

This is considerably more involved than clEnqueueTask. The difference between the
two functions is that clEnqueueNDRangeKernel accepts four additional arguments:

Map buffer object 
to host memory

Copy host 
memory

Unmap 
buffer object
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■ work_dims—The number of dimensions in the data
■ global_work_offset—The global ID offsets in each dimension
■ global_work_size—The number of work-items in each dimension
■ local_work_size—The number of work-items in a work-group, in each dimension

Don’t be concerned if these terms don’t make sense just yet. The goal of this section is
to explain what they mean and how to configure them so that you can take the best
advantage of your hardware.

3.6.1 Loops and work-items

When you have a great deal of data, it’s common to iterate through the data using
loops. If you need to process multidimensional data in regular C/C++, you might use
a nested loop, such as the following:

for(i=0; i<Z; i++) {
   for(j=0; j<Y; j++) {
      for(k=0; k<X; k++) {
         process(point[i][j][k]);
      }
   }
}

Loops like this are common but inefficient. The inefficiency arises because each itera-
tion requires a separate comparison and addition. Comparisons are time-consuming
on the best of processors, but they’re especially slow on dedicated number-crunchers
like graphic processor units (GPUs). GPUs excel at performing the same operations
over and over again, but they’re not good at making decisions. If a GPU has to check a
condition and branch, it may take hundreds of cycles before it can get back to crunch-
ing numbers at full speed.

 One fascinating aspect of OpenCL is that you don’t have to configure these loops in
your kernel. Instead, your kernel only executes code that would lie inside the innermost
loop. We call this individual kernel execution a work-item. In the preceding example
loop, the work-item consists of the single function call: process(point[i][j][k]).

 It’s important to understand the difference between kernels and work-items. A
kernel identifies a set of tasks to be performed on data. A work-item is a single
implementation of the kernel on a specific set of data. For every kernel, there can be
multiple work-items. In the preceding example, a kernel might be represented by
process(point[i][j][k]). A specific implementation of this kernel, such as
process(point[1][2][3]), would be a work-item.

 The array {i, j, k} is called the work-item’s global ID. It uniquely identifies the
work-item and allows it to access the data that it’s supposed to process. As an example,
the following kernel code accesses the elements of the item’s ID and processes a point:

int i = get_global_id(0);
int j = get_global_id(1);
int k = get_global_id(2);
process(point[i][j][k]);
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Once this work-item has executed, a new work-item will execute with a different
global ID.

 The number of elements in a global ID is referred to as the data’s dimensionality.
You configure this by setting the work_dims argument of clEnqueueNDRangeKernel.
The minimum number of dimensions is 1 and the maximum number depends on the
device. To find the maximum number of dimensions, call clGetDeviceInfo with the
CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS parameter. In the previous i-j-k loop, you
would set work_dims equal to 3.

 We examined dimensionality earlier when we looked at buffer objects and image
objects. Image objects can be two- or three-dimensional, whereas buffer objects are
accessed in one dimension only. clEnqueueNDRangeKernel doesn’t care about this dis-
tinction. If you’re dealing with image objects, you should probably set work_dims
equal to 2 or 3. But for buffer objects, you can set whatever dimensionality you think
best. For a buffer object containing a two-dimensional matrix, such as that shown in
figure 3.5, you might set work_dims equal to 2.

3.6.2 Work sizes and offsets

The left side of figure 3.7 depicts a processing loop. The right side presents the index
space corresponding to the loop. The index space contains all the possible combina-
tions of indices. If there are N different indices in a loop, the corresponding index
space has N dimensions.

 The global_work_sizes argument of clEnqueueNDRangeKernel identifies how
many work-items need to be processed for each dimension. The inner loop starts at
k=3 and proceeds to k=11, so there are 9 work-items to be processed in the k-direction.
Similarly, there are 6 work-items to be processed in the j-direction and 4 work-items to
be processed in the i-direction. Therefore, you’d set global_work_sizes to {4, 6, 9}.

 When the first work-item starts its execution, you want it to access data correspond-
ing to the index triple (0, 2, 3) because these are the initial values of i, j, and k. In
other words, you want the first work-item’s global ID to equal {0, 2, 3}. You specify
this in code by setting global_work_offset in clEnqueueNDRangeKernel to {0, 2, 3}.

NOTE global_work_offset is always set to NULL in this book’s example code.

for(i=0; i<4; i++) {
for(j=2; j<8; j++) {

for(k=3; k<12; k++) {
process(point[i][j][k]);

}
}

}

i

j

k

offset

Figure 3.7 A processing loop and its index space
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3.6.3 A simple one-dimensional example

A good way to understand clEnqueueNDRangeKernel is to see how it’s used in code.
In chapter 1, I did my best to scare you by presenting the code for a complete
OpenCL application. This application multiplies a vector by a matrix and produces
a vector. Figure 3.8 shows the computation. It also depicts the buffer object contain-
ing the matrix data and the manner in which the matrix data is partitioned among
four work-items.

 The matrix-vector multiplication consists of four dot-products, and I chose to per-
form the multiplication using four work-items. This is accomplished with the follow-
ing code:

work_items_per_kernel = 4;

clEnqueueNDRangeKernel(queue, kernel, 1, NULL,
      &work_items_per_kernel, NULL, 0, NULL, NULL);

This tells OpenCL that the data to be partitioned has a single dimension and that four
work-items should be generated to execute the kernel. The global offset is set to 0.

 On the kernel side, each work-item checks its global ID and accesses one row of the
matrix. It multiplies this row (1-by-4) by the vector (4-by-1) using the dot function,
and places the result (1-by-1) in an array position determined by its ID. This is shown
in the following code:

int i = get_global_id(0);
result[i] = dot(matrix[i], vector[0]);

See? No loops. The four work-items operate in parallel with none of the delay associ-
ated with for statements or similar constructs.

3.6.4 Work-groups and compute units

A work-group is a combination of work-items that access the same processing resources.
When it comes to programming, work-groups provide two main advantages:

■ Work-items in a work-group can access the same block of high-speed memory
called local memory.

■ Work-items in a work-group can be synchronized using fences and barriers.
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Chapter 4 explains the different types of memory in an OpenCL device and chapter 7
discusses work-item synchronization. For now, my goal is to explain work-groups in
enough depth so that you fully understand the arguments of clEnqueueNDRangeKernel.

 In addition to the global ID, each work-item has a local ID that distinguishes it
from all the other work-items in a work-group. The number of work-items in a work-
group is set through the local_work_size argument of clEnqueueNDRangeKernel.
The elements in this array identify how many work-items can fit in the work-group in
each dimension.

 For example, let’s make work-groups out of the two-dimensional slices in the index
space depicted in figure 3.7. There are four slices, so we’ll have four work-groups. Each
group contains 6 work-items in the j-direction and 9 work-items in the k-direction.
Therefore, we’d set local_work_size in clEnqueueNDRangeKernel equal to {0, 6, 9}.

 In OpenCL, a processing resource capable of supporting a work-group is called a com-
pute unit. Each work-group executes on a single compute unit, and each compute unit
executes only one work-group at a time. Figure 3.9 shows this relationship graphically.

 You don’t have to create work-groups. If you set local_work_size equal to NULL,
OpenCL will decide how best to distribute work-items among a device’s processing
elements.

NOTE Don’t be concerned if you’re still not comfortable with the topics of
work-groups, work-group IDs, compute units, and local IDs. These abstract
but important concepts will be discussed throughout this book.
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3.7 Summary
It’s crucial to know how to code and enqueue kernels, but kernels are useless without
data to process. The goal of this chapter has been to show how OpenCL packages and
partitions data to be processed by devices.

 OpenCL provides a memory object (cl_mem) data structure as a standard mecha-
nism for transferring data between a host and a device. The process of transferring
memory objects is simple: create a memory object from existing data, and call
clSetKernelArg to make the object into a kernel argument. When the kernel exe-
cutes, the kernel will be able to access its data as a regular function parameter. Then,
as the host sends further commands, the device may transfer data to the host or copy
the data to another buffer object.

 There are two types of memory objects. Buffer objects store general data in a single
dimension, and image objects store formatted pixel data in two or three dimensions. For
both types, OpenCL provides functions that enqueue data transfer commands. Read/
write functions transfer data between a memory object and a host, but you can usually
improve performance by mapping the memory object’s memory to host memory.

 The last part of this chapter discussed data partitioning, which is crucial for any
OpenCL application that demands high performance. The basic unit of work is the
work-item, which corresponds to the code executed within a traditional C/C++ loop.
Each work-item receives a global ID that allows it to access data specifically intended
for it. If work-items require synchronization, they can be placed into work-groups.
Each work-group executes on a single compute unit on the device.

 This chapter, in conjunction with chapter 2, has explained almost everything you
need to know about host applications. The only topics that remain to be covered are
synchronization, event-processing, and threads, which will be discussed in chapter 7.
In the next chapter, we’ll depart from host programming and launch our discussion
of kernel development.



Kernel programming:
data types

 and device memory
In this chapter, we’re going to put aside the scaffolding that creates and deploys
kernels, and start coding the kernels themselves. We’ll examine the data types avail-
able in OpenCL kernels, and that means we’ll finally get to discuss vectors. When
you process data with vectors, you put aside boring, decades-old data types like
char, float, and int, and use new, exciting data types like char16, int3, and
float4. Now we’re cooking!

 I didn’t learn about vector programming until after I left college, but I’ve
always enjoyed it since. It doesn’t matter whether it’s Intel’s Streaming SIMD Exten-
sions (SSE), Motorola’s AltiVec, or the odd language IBM devised to program the

This chapter covers
■ Introducing a simple OpenCL kernel
■ Using OpenCL’s scalar and vector data types
■ Understanding the OpenCL device model
68
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Synergistic Processor Units (SPUs) on a Cell processor. I just find it gratifying to
crunch several numbers with a single command, and my enjoyment increases when I
crunch numbers on several cores at once. What more could anyone ask?

 After examining different types of data, we’ll look at how and where this data is
stored. OpenCL has a model for devices that includes four different address spaces.
The final sections of this chapter will discuss these spaces and how to configure data
storage in code.

 But before getting into the details of data and memory storage, it’s important to
understand the basic structure of a kernel function. We’ll discuss this first.

4.1 Introducing kernel coding
Chapter 2 explained how host applications send kernels to devices, and chapter 3
explained how to set arguments for kernels. Now, at long last, we’re ready to look at
an actual kernel. The following listing presents an OpenCL equivalent for the venera-
ble Hello World! function so common in C programming literature.

__kernel void hello_kernel(__global char16 *msg) {                    

   *msg = (char16)('H', 'e', 'l', 'l', 'o', ' ',                    
      'k', 'e', 'r', 'n', 'e', 'l', '!', '!', '!', '\0');           
}

If you look at the overall structure of this function, you’ll see that it resembles a regu-
lar C function: a function name, arguments in parentheses, and executable state-
ments inside curly brackets. But there are three main differences between an OpenCL
kernel and a regular C function:

■ Every kernel declaration must start with __kernel.
■ Every kernel function must return void.
■ Some platforms won’t compile kernels without arguments.

Every example project in this book stores kernel functions in *.cl files, but this suffix
isn’t necessary. In fact, kernels don’t have to be stored in separate files at all. But every
kernel function must be preceded by the __kernel keyword. If __kernel is present, the
compiler will know that the function is intended to be run on a device, not the host.

 The clSetKernelArg function sets arguments for kernels, but there are no func-
tions that access a kernel’s return value. This is because kernels don’t have return val-
ues—every kernel function returns void. For this reason, every kernel in this book has
the same basic structure:

__kernel void func_name(args) {
   ...
}

The ... section is the hard part, and it will take many chapters to discuss this. For
now, let’s look at the arguments. A kernel function can only access and return data

Listing 4.1 A basic kernel: hello_kernel.cl
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through its arguments, and if you attempt to compile a kernel without arguments,
some compilers will give you an error.

 As with regular C functions, kernel functions accept arguments by value or by ref-
erence. When you pass data by value, you provide actual data such as a char, an int, or
a float. Kernel functions do not support composite structures. If you pass data by ref-
erence, you provide a pointer that references data in device memory (commonly a
memory object). In listing 4.1, the msg argument references a 16-byte buffer object
that the host application will read after the kernel is executed.

 Now we come to an important point: all pointers passed to a kernel must be preceded by
an address space qualifier. This tells the device what address space the argument should
be stored in. Section 4.5 discusses this topic in depth, but for now, keep in mind that
there are four possible qualifiers: __global, __constant, __local, and __private. In
listing 4.1, the function declaration states that the msg argument should be stored in
the device’s global address space.

 Before continuing, let’s review how the host application creates kernel arguments
from memory objects. In hello_kernel.c, this is accomplished with the following lines
of code:

char msg[16];
cl_mem msg_buffer;

msg_buffer = clCreateBuffer(context, CL_MEM_WRITE_ONLY,
      sizeof(msg), NULL, &err);

clSetKernelArg(kernel, 0, sizeof(cl_mem), &msg_buffer);

After the kernel is enqueued and the device executes the function, the host applica-
tion accesses the buffer data using clEnqueueReadBuffer. This is shown here:

clEnqueueReadBuffer(queue, msg_buffer, CL_TRUE, 0,
      sizeof(msg), &msg, 0, NULL, NULL);

Note that the host declares msg as a char[16] and the kernel declares msg as char16.
These are different data types, but because the data is passed to the kernel by refer-
ence, it doesn’t make any difference to the compiler.

 The char16 data type is one of OpenCL’s vector data types, and section 4.3 will dis-
cuss these types in detail. The kernel code in this book will rely on vectors whenever
possible, but before we look at vectors, we need to examine OpenCL’s support for tra-
ditional data types such as ints and floats. In contrast to vector types, these are called
scalar data types, and they’ll be discussed in the next section.

4.2 Scalar data types
The terms scalar and vector have different meanings depending on whether you talk to
a mathematician, scientist, or programmer. In vector computing, a scalar is a data type
in which each data representation contains a single value. In OpenCL, a scalar is any
of the data types listed in table 4.1. 
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These data types are straightforward and function like their C/C++ counterparts. But
when I first read this list, one prominent question came to mind: where’s double? I
prefer to use 64-bit floating-point values for nongraphic applications. Are doubles
available in OpenCL? The answer is maybe.

4.2.1 Accessing the double data type

The double data type can be accessed if the target device supports the cl_khr_fp64
extension. From the host, you can determine whether this extension is available by call-
ing clGetDeviceInfo, a function explained in chapter 2. If the extension is supported,
you can enable its capability in the kernel with the following pragma statement:

#pragma OPENCL EXTENSION cl_khr_fp64 : enable

When this is present, you can declare double variables and operate on them normally.
If you want to enable every supported extension, replace cl_khr_fp64 with all. To
disable an extension, replace enable with disable.

 In the Ch4/double_test project, the kernel uses the double type if it’s supported
and uses the float type if it’s not. This is shown in the following listing.

Table 4.1 OpenCL scalar data types (required minimum)

Scalar data type Purpose

bool A Boolean condition: true (1) or false (0)

char Signed two’s complement 8-bit integer

unsigned char/uchar Unsigned two’s complement 8-bit integer

short Signed two’s complement 16-bit integer

unsigned short/ushort Unsigned two’s complement 16-bit integer

int Signed two’s complement 32-bit integer

unsigned int/uint Unsigned two’s complement 32-bit integer

long Signed two’s complement 64-bit integer

unsigned long/ulong Unsigned two’s complement 64-bit integer

half 16-bit floating-point value, IEEE-754-2008 conformant

float 32-bit floating-point value, IEEE-754 conformant

intptr_t Signed integer to which a void pointer can be converted

uintptr_t Unsigned integer to which a void pointer can be converted

ptrdiff_t Signed integer produced by pointer subtraction 

size_t Unsigned integer produced by the size of operator

void Untyped data
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#ifdef FP_64
#pragma OPENCL EXTENSION cl_khr_fp64: enable         
#endif

__kernel void double_test(__global float* a,
                          __global float* b,
                          __global float* out) {

#ifdef FP_64
   double c = (double)(*a / *b);                
   *out = (float)c;

#else
   *out = *a * *b;
#endif
}

The host application calls clGetDeviceInfo to obtain the extensions supported by the
device. If cl_khr_fp64 is one of them, the host adds the option -DFP_64 to clBuild-
Program. As shown in listing 4.2, this option tells the kernel to enable the cl_khr_fp64
extension. Once this extension is enabled, the kernel can declare double values and
operate on them.

 The host code also checks the address width of the target device. This becomes
important if you deal with the size_t and ptrdiff_t types at a bit level. The size_t and
ptrdiff_t types will be 64 bits wide on a 64-bit system and 32 bits wide on a 32-bit system. 

4.2.2 Byte order

Table 4.1 tells you how many bytes are in a data type, but it doesn’t say anything about
how the bytes are ordered. Neither does the OpenCL standard. The reason for this is
that different devices and operating systems order bytes differently.

 Therefore, if you’re going to perform an operation that involves byte order, such
as accessing data with pointers, you need to determine the endianness of the target
device. This tells you whether bytes become more or less significant as memory
addresses run from low to high. Figure 4.1 depicts this graphically.

Listing 4.2 Checking for the double data type: double_test.cl

Enable extension 
if available

Compute with 
doubles if available

04

unsigned int x = 0x01020304

Storage on a little-endian device:

03 02 01
0xFF00 0xFF01 0xFF02 0xFF03

01

Storage on a big-endian device:

02 03 04
0xFF00 0xFF01 0xFF02 0xFF03 Figure 4.1 Byte order in little-endian 

and big-endian devices
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I find it easy to distinguish between the two by remembering that big-endianness is
more intuitive to me (I’d rather have $43.21 in my pocket than $12.34). But little-
endianness is more prevalent because x86 devices are little-endian. The most com-
mon big-endian processors are IBM’s POWER and PowerPC architectures.

 There are two ways to determine whether a device is little-endian or big-endian.
From the host, you can call clGetDeviceInfo with CL_DEVICE_ENDIAN_LITTLE as the
parameter. If this returns CL_TRUE, the device is little-endian. If it returns CL_FALSE,
the device is big-endian.

 Within the kernel, you can use #ifdef to determine whether the
__ENDIAN_LITTLE__ macro is defined. If this macro is defined, the device is little-
endian. If not, the device is big-endian.

 We’ll discuss endianness further when we look at vectors. But before we leave the
subject of scalars, we need to examine how OpenCL processes floating-point values.

4.3 Floating-point computing
Computers don’t process numbers—they manipulate electrical signals whose values we
interpret numerically. No matter how large the processor, these digital signals can
never represent more than a tiny portion of the set of real numbers. There is an infi-
nite number of numbers that are too small to be processed by a computer and an
infinite number of numbers that are too large.

 But we do our best. The IEEE-754 standard, formed by the Institute of Electrical
and Electronics Engineers, defines three methods of representing real numbers in
computer memory. They’re embodied in the float, double, and half data types.
OpenCL only requires the float type, but the other two types may be available if the
target device supports them. OpenCL requires compliant devices to follow many of
the provisions in the IEEE-754 standard, but not all of them. If you intend to use OpenCL
for mission-critical floating-point computing, you should be aware of the differences
between OpenCL’s requirements and those of IEEE-754.

4.3.1 The float data type

At the time of this writing, most graphics cards process graphics using only 32 bits.
Therefore, it makes sense that the only floating-point data type required by OpenCL is
the 32-bit float. Figure 4.2 shows how the bits in a float are organized.

022

Exponent
(8 bits)

Sign bit

Fraction
(23 bits)

31

Smallest positive value (normal): 2

Largest positive value: 2127 x (2 - 2      ) 38

-126

-23 ≈ 3.4 x 10

≈ 1.18 x 10-38
Figure 4.2 IEEE-754 format for 
single-precision floating-point values



74 CHAPTER 4 Kernel programming: data types and device memory
According to the IEEE standard, the value contained within a float can fall into one
of four categories:

■ Normal numbers—Numbers that can be fully represented by the dynamic range
supported by the float format

■ Denormalized numbers—Numbers smaller in magnitude than the smallest possi-
ble normal number

■ Infinite numbers—Numbers whose magnitude is larger than the largest possible
normal number

■ Not a number—Values produced by impossible operations such as 0/0 or taking
the square root or logarithm of a negative number

OpenCL requires that devices support numbers in the third (INF) and fourth (NaN)
categories, but not denormalized numbers. Denormalized numbers commonly take
more cycles to process than normal numbers, and you can improve performance by
setting the -cl-denorms-are-zero flag in clBuildProgram. But denormalized num-
bers serve a useful purpose; if they’re supported, an operation that subtracts two close
numbers will produce a denormalized number instead of 0. Then, if the denormal-
ized difference is used in division, the result will be valid. If the difference is 0, the
result will be NaN.

 When it comes to rounding floats, the IEEE-754 standard defines four modes:

■ Round to nearest even—Rounds a float to the nearest representable value. If the
float lies exactly between two numbers, it rounds to the one whose lowest-
order digit is even (0).

■ Round toward +infinity—Always rounds toward the value that’s closer to +infinity
■ Round toward –infinity—Always rounds toward the value that’s closer to –infinity
■ Round toward zero—Always rounds toward the value that’s closer to zero

(truncation)

A device may support all of these modes, but OpenCL only requires the first. In addi-
tion, OpenCL doesn’t require devices to enable mode-switching at runtime. There-
fore, it’s safe to assume that the target device will always round floats according to
the first mode.

IEEE-754 defines a series of runtime exceptions that raise status flags. These arise
when an operation divides by zero, takes the square root of a negative number, or pro-
duces a result that’s too high (overflow) or too low (underflow) to be represented by a
float. OpenCL doesn’t require any exception-checking, so if you want to check for
these conditions, you’ll have to write code specifically for the purpose.

4.3.2 The double data type

The double data type uses 64 bits to represent floating-point values. Figure 4.3 depicts
the structure of a double at the bit level.

 As explained in section 4.2, OpenCL-compliant devices aren’t required to support
the double data type. But you can determine whether a device supports this type by
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calling clGetDeviceInfo with the CL_DEVICE_EXTENSIONS parameter and checking
whether cl_khr_fp64 is one of the supported extensions.

 It may seem odd, but if a device supports doubles, OpenCL places more require-
ments on double processing than it places on float processing. First, a device that
supports doubles must support denormalized numbers—they can’t simply be set
equal to 0. Second, the device must support all of the rounding modes described ear-
lier, not just rounding to the nearest even value.

 Finally, a device that supports doubles must support an operation called floating-
point multiply-and-add, or FMA. This computes the product and sum of three doubles
(a*b + c) as a single operation. This operation must execute as fast as or faster than
the multiplication and addition operations performed separately.

4.3.3 The half data type

The half type uses 16 bits to represent a floating-point value. This is smaller than the
more-common float type and it’s much newer. It was first defined by Nvidia as part of
its Cg language, but it has since been adopted by OpenGL and Direct3D. Figure 4.4
shows how these 16 bits are used to represent a floating-point number.

 OpenCL doesn’t require compliant devices to support the half data type, but you
can test whether a device does by calling clGetDeviceInfo with the CL_DEVICE_
EXTENSIONS parameter. If cl_khr_fp16 is one of the supported extensions, then the
device supports the half data type.

 For devices that support halfs, OpenCL makes few requirements. Devices have to
support INF and NaN values, but they don’t have to support denormalized numbers or
FMA operations. For rounding, devices have to support rounding toward +/– infinity
or rounding toward the nearest even value, but they don’t have to support both.

051

Exponent
(11 bits)

Sign bit

Fraction
(52 bits)

63

Smallest positive value (normal): 2

Largest positive value: 21023 x (2 - 2      ) 308.3

-1022

-52 ≈ 1 x 10

≈ 1 x 10-323.3
Figure 4.3 IEEE-754 format for 
double-precision floating-point values

15 9

Exponent
(5 bits)

Sign bit

Fraction
(10 bits)

0

Smallest positive value (normal): 2

Largest positive value: 2

-14

15

≈ 6.10 x 10-5

x (2 - 2      ) = 65504-10
Figure 4.4 IEEE-754 format for 
half-precision floating-point values
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4.3.4 Checking IEEE-754 compliance

This section has described many of the floating-point processing features required by
IEEE-754, such as rounding modes and denormalized numbers. OpenCL doesn’t
require all of these for each of the floating-point data types, but it does provide a way
to find out what capabilities are available for the target device.

clGetDeviceInfo is the function to call, but you have to understand what data param-
eters to set and how to interpret the result. Three parameters tell clGetDeviceInfo
to provide information about supported IEEE-754 features:

■ CL_DEVICE_SINGLE_FP_CONFIG—Identifies features for processing floats
■ CL_DEVICE_DOUBLE_FP_CONFIG—Identifies features for processing doubles
■ CL_DEVICE_HALF_FP_CONFIG—Identifies features for processing halfs

NOTE At the time of this writing, both Nvidia and AMD comment out the
CL_DEVICE_DOUBLE_FP_CONFIG and CL_DEVICE_HALF_FP_CONFIG constants in
their cl.h header files. Therefore, you can only test a device’s support for
processing floats.

Using these parameters, the information returned by clGetDeviceInfo takes the
form of an enumerated type called a cl_device_fp_config. Table 4.2 lists the possi-
ble values for this type. 

After the preceding discussion of floats, doubles, and halfs, most of these floating-
point parameters should make sense. But the last one is new. CL_FP_SOFT_FLOAT iden-
tifies whether basic processing of the given data type occurs in software. In this case,
basic processing refers to addition, subtraction, and multiplication.

NOTE At the time of this writing, CL_FP_SOFT_FLOAT isn’t supported on Mac OS
systems. It isn’t defined in the OpenCL.framework/Headers/cl.h header file.

The host application in the float_config project accesses the first device it finds and
determines which features it supports for processing floats. The following listing
shows the relevant code needed to accomplish this.

Table 4.2 Floating-point configuration parameters (cl_device_fp_config)

Parameter Float Double Half

CL_FP_INF_NAN Required Required Required

CL_FP_DENORM Not required Required Not required

CL_FP_ROUND_TO_NEAREST Required Required Not required

CL_FP_ROUND_TO_INF Not required Required Alternate

CL_FP_ROUND_TO_ZERO Not required Required Alternate

CL_FP_FMA Not required Required Not required

CL_FP_SOFT_FLOAT Not required Not required Not required
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...
cl_device_fp_config flag;
err = clGetDeviceInfo(device, CL_DEVICE_SINGLE_FP_CONFIG,
      sizeof(flag), &flag, NULL);                              
if(err < 0) {
   perror("Couldn't read device information");
   exit(1);
}
printf("Float Processing Features:\n");
if(flag & CL_FP_INF_NAN)                              
   printf("INF and NaN values supported.\n");               
if(flag & CL_FP_DENORM)                               
   printf("Denormalized numbers supported.\n");       
if(flag & CL_FP_ROUND_TO_NEAREST)                     
   printf("Round To Nearest Even mode supported.\n"); 
if(flag & CL_FP_ROUND_TO_INF)                         
   printf("Round To Infinity mode supported.\n");     
if(flag & CL_FP_ROUND_TO_ZERO)                        
   printf("Round To Zero mode supported.\n");         
if(flag & CL_FP_FMA)                                  
   printf("Floating-point multiply-and-add operation  
      supported.\n");                                 

#ifndef MAC
   if(flag | CL_FP_SOFT_FLOAT)
      printf("Basic floating-point processing performed in software.\n");
#endif
...

On my Mac OS system, the printed output is as follows:

Float Processing Features:
INF and NaN values supported.
Round To Nearest Even mode supported.

As shown in table 4.2, these are the minimum features required by OpenCL for pro-
cessing floats. If your application depends on denormalized numbers, you’ll have to
specifically check for small values in code and process them accordingly.

 This section has discussed floats, doubles, and halfs at length, but from this
point onward, we’ll use these data types sparingly in example code. For the most part,
we’ll rely on vectors that contain multiple floating-point values: floatn, doublen, and
halfn, where n identifies how many scalar elements are contained in the vector. The
next section explains these new data types in full. 

4.4 Vector data types
Vectors resemble arrays in that they contain multiple elements of the same type. But
there are two important differences. First, a vector of a given type can only contain a
specific number of elements. Second, when a vector is operated upon, every element
is operated upon at the same time.

 An example will make this distinction clear. Suppose you want to compute four
sums of floating-point values. That is, a and b are arrays of four floats each, and you

Listing 4.3 Testing a device’s floating-point features: float_config.c

Obtain device 
information

Check processing 
features
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want c to hold the sums of the corresponding elements in a and b. You could try using
code similar to the following:

float a[4], b[4], c[4];
for(int i=0; i<4; i++) {
   c[i] = a[i] + b[i];
}

Now suppose a, b, and c are vectors, and each vector contains four floats. In this
case, you could perform the same addition with code that looks like this:

float4 a, b, c;
c = a + b;

Processing vectors isn’t just simpler than processing data with arrays, it’s faster. And
pay attention to the new data type: float4. As you might guess, any variable declared
with this type can hold four floats. Elements within a vector are commonly called com-
ponents, and we’ll use this term throughout this book.

 OpenCL provides vector types that contain most, but not all, of the scalar types in
table 4.1. Table 4.3 lists each vector type and the nature of its components.

In addition to those listed, OpenCL optionally supports vector types that contain
double-precision and half-precision floating-point values: doublen and halfn. These
are only available if the corresponding scalars are available, and the previous two sec-
tions explain the double and half types in full.

 In table 4.3, n represents a number, and OpenCL accepts 2, 3, 4, 8, and 16 as valid
values of n. But not every compliant device can process large vectors without assis-
tance. For example, the graphics card in my MacBook can’t possibly operate directly
on a float16, which is a 16 * 32 = 512 bit vector containing 16 floats.

Table 4.3 OpenCL vector data types

Vector data type Purpose

charn Vector containing n 8-bit signed two’s complement integers

ucharn Vector containing n 8-bit unsigned two’s complement integers

shortn Vector containing n 16-bit signed two’s complement integers

ushortn Vector containing n 16-bit unsigned two’s complement integers

intn Vector containing n 32-bit signed two’s complement integers

uintn Vector containing n 32-bit unsigned two’s complement integers

longn Vector containing n 64-bit signed two’s complement integers

ulongn Vector containing n 64-bit unsigned two’s complement integers

floatn Vector containing n 32-bit single-precision floating-point values
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 For this reason, the OpenCL standard requires that device compilers know the
limitations of the target device and divide large vectors into sizes the device can
operate on. Still, it can be helpful to know in advance what vector sizes a device can
process without assistance. This is called a device’s preferred vector width, and it will be
discussed next.

4.4.1 Preferred vector widths

Chapter 2 introduced clGetDeviceInfo and explained how it provides device-related
information. Section 4.2 showed how to use this function to determine a device’s sup-
port for floating-point processing. Now we’re going to see how clGetDeviceInfo can
tell us a device’s preferred vector width for a given data type.

clGetDeviceInfo accepts a parameter that identifies what information is being
sought. OpenCL provides a series of parameters that reference vector widths, and they
all have the same format: CL_DEVICE_PREFERRED_VECTOR_WIDTH_TYPE. The result is a
cl_uint that identifies how many scalars of the given type can be placed in a vector.
Here, TYPE can be set to CHAR, SHORT, INT, LONG, or FLOAT. It can also be set to HALF or
DOUBLE, but if those data types aren’t supported, the result will be 0.

 Let’s look at an example. The following code determines the vector width of a
device in terms of chars:

cl_uint char_width;
clGetDeviceInfo(device, CL_DEVICE_PREFERRED_VECTOR_WIDTH_CHAR,
    sizeof(char_width), &char_width, NULL);

The vector_width project uses code like this to print the vector widths of a device for
each scalar type. On my system, the output is as follows:

Preferred vector width in chars:   16
Preferred vector width in shorts:   8
Preferred vector width in ints:     4
Preferred vector width in longs:    2
Preferred vector width in floats:   4
Preferred vector width in doubles:  0
Preferred vector width in halfs:    0

This target device prefers 128-bit (16-byte) vectors, and each vector can hold 16
chars, 8 shorts, 4 ints, 2 longs, or 4 floats. At the time of this writing, 128 bits is a
common vector size, and you’ll see a great deal of example code that uses 128-bit
types like char16 and float4.

 Suppose you want to tailor your kernel to support the preferred vector width of
your user’s device, but you don’t know what it is. How should you decide on the data
types in the kernel? You can’t change a float2 to a float4 at runtime, but there are
at least two options available. First, you can find the target device’s preferred
width using clGetDeviceInfo and use it to set options for clBuildProgram such as
-DVECTOR_SIZE_128 or -DVECTOR_SIZE_256. Then, inside the kernel code, you can
insert lines such as the following:
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#ifdef VECTOR_SIZE_128
#define FLOATS_PER_VECTOR 4
float4 data[N/FLOATS_PER_VECTOR];
...
#endif

#ifdef VECTOR_SIZE_256
#define FLOATS_PER_VECTOR 8
float8 data[N/FLOATS_PER_VECTOR];
...
#endif

This works well if your algorithm doesn’t depend on vector width. But if that’s not pos-
sible, the second option involves creating multiple versions of your kernel source
code, each relying on a different vector width. You might have one function called
convolution_128 and another called convolution_256. Then, once the host deter-
mines the preferred vector width, it will create kernels from functions that support
the given width.

4.4.2 Initializing vectors

Once you’ve decided how wide a vector should be, you can initialize its components.
This is similar to initializing the elements of an array, but vector components must be
placed in parentheses instead of curly brackets, and set of values must be cast to the
vector type. For example, the following code initializes data_vec with four floats:

float4 data_vec = (float4)(1.0, 1.0, 1.0, 1.0);

In this case, the components have the same value, so you can use the following code
instead:

float4 data_vec = (float4)(1.0);

You’re not limited to scalars. You can initialize a vector using smaller vectors, as shown
here:

float2 a_vector = (float2)(1.0, 1.0);
float2 b_vector = (float2)(2.0, 2.0);
float4 c_vector = (float4)(a_vector, b_vector);

Finally, you can create a vector with a combination of scalars and smaller vectors: 

float3 rgb = (float3)(0.25, 0.5, 0.75);
float4 rgba = (float4)(rgb, 1.0);

4.4.3 Reading and modifying vector components

OpenCL provides three simple ways to select the components of a vector: number-
indexing, letter-indexing, and hi/lo/even/odd. Number-indexing is useful for access-
ing components of vectors in general applications, whereas letter-indexing is more suit-
able for vectors in graphics applications. The hi, lo, even, and odd suffixes become
helpful when you want to access half of a vector’s components at a time. Each method
uses a dot-notation similar to that used to access the fields of a composite data structure.
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NUMBER-INDEXING

With numeric indices, you can access elements of a vector just as easily as you can
access elements of an array. But instead of using square brackets, the vector name is
followed by .sN or .SN, where N is the position of the element in the vector. The code
in table 4.4 shows how to access components of the following vector:

char16 msg = (char16)('H', 'e', 'l', 'l', 'o', 'P', 'r', 'o', 'g', 'r',
    'a', 'm', 'm', 'e', 'r', '!');

The last entry accesses the vector’s thirteenth component using the hexadecimal
value for twelve: 0xC. Because 16 is the maximum number of components in an
OpenCL vector, the use of hexadecimal guarantees that every possible index will only
require one digit.

 You can access multiple components of a vector by specifying multiple indices.
They don’t have to be in numeric order, and you can repeat an index multiple times.
In this manner, you can create a subvector or a vector of the same size with the compo-
nents rearranged. The code in table 4.5 shows how to create subvectors from the fol-
lowing vector:
char16 msg = (char16)('H', 'e', 'l', 'l', 'o', 'P', 'r', 'o', 'g', 'r',
    'a', 'm', 'm', 'e', 'r', '!');

In addition to accessing components of a vector, you can use these indices to modify
the components’ values. The code in table 4.6 shows how to modify components in
the following vector:

char16 msg = (char16)('H', 'e', 'l', 'l', 'o', 'P', 'r', 'o', 'g', 'r',
    'a', 'm', 'm', 'e', 'r', '!');

Code Result

char a = msg.s0; Sets a to 'H'

char b = msg.s4 Sets b to 'o'

char c = msg.s8; Sets c to 'g'

char d = msg.sC; Sets d to 'm'

Table 4.5 Accessing multiple elements of a vector using numbers

Code Result

char8 e = msg.s01234567; Sets e to 'HelloPro'

char4 f = msg.s5431; Sets f to 'Pole'

char16 h = msg.sFEDCBA9876543210; Sets h to '!remmargorPolleH'

char8 g = (char8)(msg.0ABB, msg.sE9, msg.sE9); Sets g to 'Hammerer'

Table 4.4 Accessing 
individual elements of a 
vector using numbers
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These assignments are easy to understand, and I recommend that you experiment
with them in code.

LETTER-INDEXING

Graphics processing frequently uses homogeneous coordinates, which contain x, y,
and z values and a scaling factor. To make this coding simpler, OpenCL allows you to
access vector components using the letters x, y, z, and w. These serve identical pur-
poses to the numeric indices .s0, .s1, .s2, and .s3.

 You can use all four letters if a vector contains four components. Otherwise, you can
only use the first N letters to access components of an N-component vector. The code
in table 4.7 shows how to use letters to access components of the following vector:

float4 coord = (float4)(3.0, 5.0, 7.0, 9.0);

To create subvectors of a vector, follow the dot with multiple letters. These letters can
be provided in any order and can be repeated. The code in table 4.8 shows how to cre-
ate subvectors of following vector:

float4 coord = (float4)(5.0, 7.0, 9.0, 11.0);

Table 4.6 Modifying elements of a vector using numbers

Code Result

msg.s5 = 'O'; Sets sixth character to 'O'

msg.sB986 = (char4)('c', 'C', 'n', 'P'); Sets characters to 'c', 'C', 'n', and 'P'

msg.s7E = (char2)(msg.s1); Sets eighth, sixteenth characters to 'e'

msg.sACDF = (char4)((char2)('L', 'o'),
 (char2)('d', 'r'));

Sets characters to 'L', 'o', 'd', and 'r'

Code Result

float a = coord.x; Sets a to 3.0

float b = coord.y; Sets b to 5.0

float c = coord.z; Sets c to 7.0

float d = coord.w; Sets d to 9.0

Table 4.8 Creating subvectors from a vector using letters

Code Result

float2 e = coord.xy; Sets e to (5.0, 7.0)

float2 f = coord.zx; Sets f to (9.0, 5.0)

float3 g = coord.yyx; Sets g to (7.0, 7.0, 5.0)

float4 h = coord.wwwx; Sets h to (11.0, 11.0, 11.0, 5.0)

Table 4.7 Accessing 
components of a vector 
using letters
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You can modify vector components using x, y, z, and w just as you can using numerical
indices. The code in table 4.9 shows how to modify components of the following vector:

float4 coord = (float4)(7.0, 9.0, 11.0, 13.0);

The last line uses letter-indexing and number-indexing in a single assignment.
OpenCL has no problem with this, but you can’t use letters and numbers in the same
index. Expressions like vec.xy12 will produce an error.
HI, LO, EVEN, ODD

The last method of accessing components uses the suffixes .hi, .lo, .even, and .odd.
Each identifies half of a vector’s components, and they’re defined as follows:

■ .hi—Components in the upper half (indices equal to N/2, N/2 + 1 ... N–1)
■ .lo—Components in the lower half (indices equal to 0, 1, ... N/2–1)
■ .even—Even elements
■ .odd—Odd elements

For vectors with an even number of elements, these are all straightforward. Vectors
with three elements are treated like four-component vectors with an undefined fourth
component. Therefore, in a three-component vector, the middle component is con-
sidered part of the lower half.

 The .hi, .lo, .even, and .odd suffixes can be used to both access and modify com-
ponents inside a vector. The code in table 4.10 shows how this works for the following
vector:

ushort8 shorts = (ushort8)(0, 10, 20, 30, 40, 50, 60, 70);

Table 4.9 Modifying elements of a vector using letters

Code Result

coord.x = 2.0; Sets first element to 2.0

coord.zy = (float2)(4.0, 3.0); Sets third, second elements to (4.0, 3.0)

coord.wzx = 
(float3)((float2)(4.0,3.0),2.0);

Sets fourth, first, second elements to 
(4.0, 3.0, 2.0)

coord.wzyx = coord.s3210 Leaves the vector unchanged

Table 4.10 Accessing and modifying elements of a vector using hi, lo, even, odd

Code Result

ushort4 a = shorts.hi; Sets a to (40, 50, 60, 70)

ushort4 b = shorts.lo; Sets b to (0, 10, 20, 30)

ushort4 c = shorts.even; Sets c to (0, 20, 40, 60)

ushort4 d = shorts.odd; Sets d to (10, 30, 50, 70)
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With these suffixes, you can easily code routines that rearrange values, such as matrix
transposes and sorting routines. Further, because each suffix always affects half of a
vector, you can apply the same routines to vectors of different types and widths.

4.4.4 Endianness and memory access

In section 4.2, we examined how bytes are ordered within a scalar. If a device is little-
endian, the most-significant byte will have a higher memory address than the least-
significant byte. If a device is big-endian, the reverse is true.

 Vector storage follows a similar methodology. Figure 4.5 shows how data inside a
uint4 is stored on little-endian and big-endian devices.

 If you access vector components using the indexing methods described earlier, endi-
anness won’t make a difference. But if you access vector data using memory operations,
the results will change depending on whether the device is big-endian or little-endian.

 This is shown in the following listing, which initializes a uint4 and uses memory
operations to place its bytes into a uchar16.
__kernel void vector_bytes(__global uchar16 *test) {

ushort8 e = (ushort8)(a, b); Sets e to (40, 50, 60, 70, 0, 10, 20, 30)

shorts.odd = (ushort4)(shorts.s2); Sets odd elements to 20

shorts.hi = (ushort4)(5, 15, 25, 35); Sets upper half to (5, 15, 25, 35)

shorts.even = shorts.odd; Sets even elements to odd elements

Table 4.10 Accessing and modifying elements of a vector using hi, lo, even, odd (continued)

Code Result

uint4 vec = (vec4)(0x00010203, 0x04050607, 
0x08090A0B, 0x0C0D0E0F);

Storage on a little-endian device:

00

Storage on a big-endian device:

0xFF00 0xFF04 0xFF08 0xFF0C
01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

03

0xFF00 0xFF04 0xFF08 0xFF0C
02 01 00 07 06 05 04 0B 0A 09 08 0F 0E 0D 0C

Figure 4.5 Vector storage on little-endian and big-endian systems
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   uint4 vec = (global uint4)(0x00010203, 0x04050607,             
      0x08090A0B, 0x0C0D0E0F);                                    

   uchar *p = &vec;
   *test = (uchar16)(*p, *(p+1), *(p+2), *(p+3), *(p+4), *(p+5),
      *(p+6), *(p+7), *(p+8), *(p+9), *(p+10), *(p+11), *(p+12),     
      *(p+13), *(p+14), *(p+15));                                    
}

On my little-endian system, the output of the vector_bytes application is as follows:

0x3, 0x2, 0x1, 0x0, 0x7, 0x6, 0x5, 0x4, 0xB, 0xA, 0x9, 0x8, 0xF, 0xE, 0xD, 0xC

Because of the different data storage on big-endian and little-endian devices, it’s
important to know how to test a device’s endianness. As discussed earlier, if a device is
little-endian, OpenCL defines a macro called __ENDIAN_LITTLE__. This macro is
undefined for kernels running on big-endian devices. 

 Now that you know how scalars and vectors are stored in device memory, it’s time to
look at where these data structures are stored. The next section will discuss OpenCL’s
device memory model and the different ways you can constrain the storage of kernel
data.

4.5 The OpenCL device model
In our example kernel from section 4.1, the __global modifier precedes the data types
of the function’s parameters. This modifier serves a purpose similar to the automatic
modifier in ANSI C—both specify where the data should be stored. In OpenCL,
__global is called an address space modifier because any pointer it modifies will be stored
in the global address space, also known as global memory. Every kernel argument that
references memory must have an address space modifier.

 This section discusses OpenCL address spaces in detail, placing emphasis on how
they’re accessed in code. But first, it’s important to see how this memory is used by the
work-items and work-groups introduced in the preceding chapter. The relationship
between work-items, work-groups, and memory is one of the hardest aspects of
OpenCL to comprehend, but it’s absolutely essential to understand. Therefore, before
we get into technical details, I’d like to present an analogy of how OpenCL devices
process kernels.

4.5.1 Device model analogy part 1: math students in school

To grasp my analogy, you need to understand what my math classes were like in mid-
dle school. My math teacher would assign thirty problems to her thirty students every
day, but she didn’t check all 900 answers. Instead, she assigned a number to each of us,
and we’d go to the front of the class and copy our work from our notebook to the
blackboard. The teacher would look over our solutions, and if she liked what she saw,
we’d get a good grade. Clever, huh?

Listing 4.4 Displaying bytes of a vector: vector_bytes.cl
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 Here’s the analogy: an OpenCL device is like a school composed of classrooms like
mine. Each classroom contains students performing math problems. Each student has
their own notebook, and every student in a class shares the blackboard. Students in
the same class can work together at their blackboard, but students in different classes
can’t work together.

 Here’s where it gets tricky: none of these classrooms has a teacher. Also, every stu-
dent in the school works on the same math problem, but with different values. For
example, if the problem involves adding two numbers, one student might add 1 + 2,
another might add 3 + 4, and another might add 5 + 6. When all the students in a
classroom complete their processing, they can leave. Then the blackboard will be
erased and a new class of students will come in and work on the same problem as the
preceding class, but with different values.

 Each student entering a class automatically knows what problem they’ll be solving,
but they have no idea what values they’ll be working with. The blackboard in each
classroom is initially blank, so the students need to go to a central blackboard that
contains values for the entire school. This central blackboard is much larger than the
blackboards in the classrooms, but because of the long hallway, it takes quite a bit of
time for students to read its values. Figure 4.6 depicts the relationship between classes,
classrooms, students, notebooks, and blackboards.

 For most math problems, each student will go to the central blackboard only
twice—once to read the values for their problem and once to jot down their final

Central blackboard

Classroom Class

Student

Class
blackboard

Notebook

Figure 4.6 School of math students in OpenCL device analogy
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answer. Because the central blackboard is so far away, students do their actual solving
using their notebooks and classroom blackboards. Once all of the final answers are on
the central blackboard, the school day is over.

 Students in different classes can’t talk to one another, so the students in Class 1
won’t know when the students in Class 2 have finished. The only way to be certain that
a class has finished is when the school day ends.

 It’s important to make the distinction between a classroom and a class. A classroom
is a physical area with a blackboard. A class is a group of students that occupy a class-
room. As one class leaves a classroom, another can enter.

 To keep things organized, each class has an identifier that distinguishes it from
every other class. Each student has two identifiers: one that distinguishes it from every
other student in the class, and one that distinguishes it from every other student in
the school. As an example, a student may have a Class ID of 12 and a School ID of 638.

4.5.2 Device model analogy part 2: work-items in a device

In my analogy, the school corresponds to an OpenCL device and the math problem
represents the kernel. Each classroom corresponds to a compute unit (processing
core), and just as each classroom can be occupied by a class, each compute unit can
be occupied by a work-group. That is, classes correspond to work-groups and students
correspond to work-items. Figure 4.7 depicts this graphically.

Global/constant memory

Compute
unit Work-group

Work-itemLocal
memory

Private
memory

Figure 4.7 OpenCL device model
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Now let’s talk about memory. The OpenCL device model identifies four address spaces:

■ Global memory—Stores data for the entire device and can be read from and writ-
ten to

■ Constant memory—Similar to global memory, but is read-only
■ Local memory—Stores data for the work-items in a work-group
■ Private memory—Stores data for an individual work-item

Some devices provide memory specifically for constant data, but in many cases, the
constant address space is the same memory region as the global address space. For
this reason, these two address spaces are frequently lumped together.

 In my analogy, the central blackboard corresponds to global/constant memory,
which can be read from and written to by both the host and the device. When the host
application transfers a buffer object to the device, the buffer’s data is stored in global/
constant memory. When the host reads a buffer object from a device, the data comes
from the device’s global memory. Global/constant memory is commonly the largest
memory region on an OpenCL-compliant device, but it’s also the slowest for work-
items to access.

 Work-items can access local memory much faster (~100x) than they can access
global/constant memory, and this corresponds to the blackboards in each classroom.
Local memory isn’t nearly as large as global/constant memory, but because of the
access speed, it’s a good place for a work-item to store intermediate results during its
execution of a kernel. Just as students in the same class can work together on the
blackboard, work-items in the same work-group can access the same block of local
memory. Work-items in different classes can never access the same local memory.

 The private memory in an OpenCL device corresponds to the notebook each stu-
dent uses to solve a math problem. Each work-item has exclusive access to its private
memory, and it can access this memory faster than it can access local memory or
global/constant memory. But this address space is much smaller than any other
address space, so it’s important not to use too much of it.

 When I first started using OpenCL, I wondered how many work-items could be
generated for a kernel. As I hope this analogy has made clear, you can generate how-
ever many work-items and work-groups you like. But if the device only contains M
compute units and N work-items per work-group, only MN work-items will execute the
kernel at any given time. 

NOTE You can determine the size of a device’s address spaces by calling
clGetDeviceInfo with CL_DEVICE_GLOBAL_MEM_SIZE, CL_DEVICE_GLOBAL_
MEM_CACHE_SIZE, CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE, or CL_DEVICE_
LOCAL_MEM_SIZE.

4.5.3 Address spaces in code

Every kernel argument must have a qualifier that identifies its address space. These
are the four qualifiers:
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■ __global—The argument’s data will be placed in global memory
■ __constant—The argument’s data will be stored in global, read-only memory

(if available)
■ __local—The argument’s data will be stored in local memory
■ __private—The argument’s data will be stored in private memory (default)

These qualifiers are important to understand, and not just because of memory access
speed. If you don’t use them properly, your code won’t compile. For example, if two
pointers reference memory stored in different address spaces, they can’t be cast to
one another. We’ll look at each of these address spaces in turn.
THE __GLOBAL QUALIFIER

Every kernel argument in this chapter’s example code has been stored in global mem-
ory with the __global qualifier. In our earlier code examples, the types of the vector
arguments are __global char16* and __global uchar16*. This __global qualifier
can be used for all kernel arguments, not just pointers.

 In addition to arguments, __global can qualify pointer variables declared within a
kernel. This is shown in the following code:

__kernel void kernel_func(__global float *f) {

   __global uint *x = 5;
   f = (global float*)x;
}

Here, the cast from x to f is only possible because both pointers reference global
memory. If *x was declared as __local, the cast would not be possible. Also, if x wasn’t
a pointer, this code couldn’t compile. Inside a kernel, the __global qualifier can only
be used with pointer variables. 
THE __CONSTANT QUALIFIER

It may seem odd to have a separate qualifier for read-only data, but a number of
devices, such as AMD’s Evergreen GPUs, have cache registers dedicated to holding
constants. Kernel arguments and variables declared within a kernel can be qualified
with __constant. String literals are stored as constants and any attempt to modify con-
stant data produces an error.

 The __constant qualifier makes data available to every work-item processing a ker-
nel. In addition, constant data is global to the entire program, not just a single kernel.
It must be initialized before use.
THE __LOCAL QUALIFIER

If data needs to be shared among work-items in a work-group, but not shared with
other work-groups, it should be declared with the __local qualifier. This data will be
allocated once for each work-group processing the kernel. It’s deallocated as each
work-group completes its processing.

 The __local qualifier can be used for kernel arguments and variables declared
within a kernel, but local variables in a kernel can’t be directly initialized, either by the
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host or the device. For example, the following code inside a kernel function will pro-
duce an error:

__local float x = 4.0;

The following code will work instead:

__local float x;
x = 4.0;

THE __PRIVATE QUALIFIER

If a kernel argument or variable doesn’t have an address space qualifier, it’s stored in
private memory. This includes all variables and arguments of non-kernel functions.
Private data is allocated for each work-item processing a kernel.

 If a pointer variable doesn’t have a qualifier, it will be set to reference private mem-
ory. But image2d_t and image3d_t pointers are always global. We’ll examine these
data structures in chapter 6, which presents the topic of OpenCL image processing. 

4.5.4 Memory alignment

If you’ve ever looked at the memory addresses of your data, you may notice that your 32-
bit structures, such as ints and floats, are always stored at memory addresses that are
multiples of 0x4, such as 0xFFF0, 0xFFF4, 0xFFF8, and 0xFFFC. For this reason, we say
that 32-bit structures are aligned on 4-byte boundaries. 64-bit structures, such as longs
and doubles, are stored at addresses that are multiples of 0x8. We say that 64-bit struc-
tures are aligned on 8-byte boundaries.

 There’s an algorithm for this: when a data structure is stored, its memory align-
ment is set to the smallest power of two that’s greater than or equal to the data’s size.
For example, a float3 contains 12 bytes. This vector will be stored on a 16-byte
boundary because 16 is the smallest power of 2 greater than or equal to 12.

 You can control data alignment with the aligned attribute, which can only be used
when the data is declared. The aligned keyword must be preceded by __attribute__,
and the following declaration shows how this works:

short x __attribute__ ((aligned(4)));

This states that x, which would normally be aligned on a 2-byte boundary, should
instead be aligned on a 4-byte boundary. The alignment factor must be a power of 2.

 Now that you understand OpenCL’s device model and its address spaces, you’re
ready to learn how to configure kernel arguments that lie outside the global/constant
address space. That’s the topic of the next section.

4.6 Local and private kernel arguments
Every kernel argument we’ve dealt with has been declared as __global and has been
transferred from the host as a memory object. But you don’t have to rely on memory
objects to form kernel arguments. You can configure arguments in a device’s local and
private spaces by configuring clSetKernelArg correctly. This function is central to the
discussion in this section, so let’s review its signature:

clSetKernelArg (cl_kernel kernel, cl_uint index, size_t size,
    const void *value)
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The last parameter, value, identifies the data that will be sent to the device as a kernel
argument. So far, the example code has always set this to point to a memory object,
and the corresponding kernel argument must be declared as __global or
__constant. Data in the global and constant spaces is easy to work with, but compared
to local or private data, the memory bandwidth is much slower.

 For this reason, it’s important to know how to configure kernel arguments in the
local and private address spaces. This section explains both procedures.

4.6.1 Local arguments

If you transfer data to a kernel using a memory object, you can’t set the kernel argu-
ment’s specifier to __local. If you attempt this, you’ll receive a runtime error whose
code is –50: CL_INVALID_ARG_VALUE. As it turns out, the host can’t directly access a
device’s local memory. That is, a host application can neither read nor write data in
local memory space.

 But a host application can tell the device to allocate local memory for a kernel
argument. To configure this in code, set the last argument of clSetKernelArg to
NULL. For example, the following code, executed by the host, configures a local argu-
ment to occupy space sufficient to hold 16 floats:

clSetKernelArg(kernel, 0, 16*sizeof(float), NULL);

Now you can have __local arguments in your kernel. For example, given the preced-
ing code, your kernel function could look like this:

__kernel void proc_data(__local float* nums, ...) {
   ...
}

Work-items can access local memory faster than global memory, so it’s a good idea to
have them read global memory into local memory and process the data there. Then,
when the work-items have finished processing the local data, they can write the
results to global memory, which can be transferred back to the host. The code exam-
ples in Chapters 10 through 14 demonstrate how local memory is used in practi-
cal computation.

 Besides speed, local memory also has the advantage of being available to every work-
item in a work-group. This means you can have multiple work-items processing the same
data, thereby improving performance. Synchronization is an important priority in many
applications, and chapter 7 discusses work-item synchronization in detail.

4.6.2 Private arguments

Private memory can only be accessed by a single work-item, and this memory access is
even faster than local memory access. But private memory is usually small compared
to local and global memory.

 Unlike local data, a kernel’s private data can be initialized by a host application. To
configure this in code, the host needs to make the last parameter of clSetKernelArg
a pointer to primitive data: an int*, float*, char*, and so on.
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 For example, suppose you want each work-item to be able to access its own copy of
an int called num_iterations, and you want the initial value to be 4. You can specify
this in the host application with the following code:

int num_iterations = 4;
clSetKernelArg(kernel, 0, sizeof(num_iterations), &num_iterations);

Then your kernel function should look similar to the following:

__kernel void proc_data(int num_iters, ...) {
   ...
}

There are two points to note about this function’s argument. First, it has no address
space specifier like __global or __local. This means that num_iters will be stored in
the device’s private address space and each work-item will have its own copy. Second,
unlike every other kernel argument we’ve seen, num_iters isn’t a pointer. Private
kernel arguments can’t be references—they must be simple primitives like int
and float.

 If you’re familiar with the distinction between pass-by-value data and pass-by-
reference data in regular C, it should be clear that global/constant data is passed to
kernels by reference and private data is passed to kernels by value. If the host sends
data to the kernel as part of a memory object, it can read back the modified data. If
the host sends data as a simple primitive, it can’t read that data back.

 Private kernel arguments must be primitives, but they don’t have to be scalars. You
can also send data that the kernel should interpret as a vector type. For example, let’s
say you want to send four floats to the kernel, and you want the floats to be placed
in the device’s private address space so they can be accessed quickly. Then, in the host
application, you could add code such as the following:

float nums[4] = {0.0f, 1.0f, 2.0f, 3.0f};
clSetKernelArg(kernel, 0, sizeof(nums), nums);

The kernel can’t access the private data as a four-element array because private argu-
ments can’t be pointers. But the data can be accessed as a float4 vector, as shown in
the following kernel function:

__kernel void proc_data(float4 values, ...) {
   ...
}

The relationship between clSetKernelArg and the arguments of a kernel function is
one of the most important but least understood aspects of OpenCL. Global/constant
data and memory objects are simple to work with, but when you need high perfor-
mance, you’re better off making sure work-items process data in local and private
memory. You’ll see this again in chapter 10 and later chapters, where we’ll use
OpenCL to perform practical, time-critical tasks.
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4.7 Summary
Programming an OpenCL kernel is a lot like programming a regular C function, but
there are a few important differences. First, each kernel must be identified with
__kernel and the function must return void. Second, OpenCL doesn’t support all of
the old data types, but it does provide new ones. Finally, OpenCL models devices in
such a way that you can constrain which address space is used to store kernel data.

 OpenCL’s scalar data types present only a couple of complications. You can still
code with chars, shorts, ints, floats, and longs, but you can only declare doubles
and halfs if they’re supported on the device. When it comes to floating-point process-
ing, OpenCL supports many aspects of the IEEE-754 standard, but not all of them. If
you intend to port code to OpenCL, you should know which capabilities are available
and which aren’t.

 Of all the vector data types I’ve dealt with, OpenCL’s vectors are the simplest to
work with. The data type that holds four floats is simply called float4. Initializing a
vector’s content is like initializing an array, and accessing the components of a vector
is easy—you can use numbers (.s0, .s1, .s2, ... .sF), letters (x, y, z, and w), and suf-
fixes that return half of the vector’s components (.hi, .lo, .even, and .odd).

 OpenCL’s memory model may seem frightening at first glance, but once you
understand the operation of work-groups and work-items, you’ll see why the different
address spaces are necessary. The global address space stores data for the entire
device, the constant address space stores read-only data, the local address space stores
data for a specific work-group, and the private address space stores data for a specific
work-item. OpenCL provides qualifiers that allow you to specify which address space a
variable or function argument should be stored in.

 The last part of this chapter discussed the different ways you can configure kernel
arguments in OpenCL. If you invoke clSetKernelArg with a pointer to a memory object,
then the corresponding kernel argument must be a pointer declared as __global or
__constant. If you invoke clSetKernelArg with NULL, the corresponding kernel argu-
ment must be a pointer declared as __local. If you invoke clSetKernelArg with a
pointer to primitive data, the kernel argument won’t be a pointer and it won’t have any
address space specifier.

 This chapter has covered OpenCL data in detail, but there’s been no discussion of
all the different ways you can operate on this data. The next chapter will discuss
OpenCL’s operators and functions in detail, and we’ll put these vector types to work.



Kernel programming:
 operators and functions
Chapter 4 discussed data types and emphasized the different types of vectors avail-
able. Vectors can dramatically improve an application’s performance by making it
possible to operate on multiple values at once. But before you can use them in a
practical application, you need to know what operators and functions are available
to process them. The goal of this chapter is to explain these operators and func-
tions, and to provide example code to demonstrate their usage.

 Most of these operators and functions relate to mathematics, and the OpenCL
working group has wisely kept to the naming conventions set by math.h. For exam-
ple, you can call sqrt to compute the square root of a floating-point vector and pow
to compute xy. But OpenCL also provides new functions like mad_sat and mad_hi,
which make it possible to perform math operations quickly and accurately.

This chapter covers
■ Operators for scalar and vector types
■ OpenCL’s built-in functions and their usage 

in code
94
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 The bulk of this chapter discusses OpenCL’s built-in functions. They’re called built-
in because you don’t need to link additional libraries or include any special header files.
There are many built-in functions available, so I’ve divided them into seven categories:

■ Work-item and work-group functions—For identifying the dimensionality of
data, determining work-group participation, obtaining IDs of work-items and
work-groups

■ Data transfer functions—For loading and storing data between memory regions
■ Floating-point functions—For arithmetic and rounding, comparing components,

exponential and logarithmic operations, trigonometric operations, and miscel-
laneous operations

■ Integer functions—For arithmetic and comparison of integer vectors
■ Shuffle and select functions—For creating vectors with bits or components of

other vectors
■ Vector test/comparison functions—For testing and comparing components inside

vectors
■ Geometric functions—For dot products, cross products, lengths, and normalization

Multiple implementations of a function are often available for different types of argu-
ments. For example, the second argument of the min and max functions can be a
float vector or a single float. In addition, many functions accept pointers to mem-
ory, but only pointers that reference specific address spaces. For example, the vloadn
function can store data to global memory, local memory, and private memory, but not
constant memory.

 Rather than list every implementation of a function, this chapter will adopt the fol-
lowing conventions to identify the different usages of a function:

■ type/n—The slash indicates that the argument can be either the scalar type
type or the vector type typen, where n can be 2, 3, 4, 8, and 16.

■ __(g|c|l|p)—This states that the pointer can reference memory in the global
(g), constant (c), local (l), and private (p) address spaces.

■ all—This argument can be any scalar or vector type
■ integer—This argument can be any integer type: uchar, char, ushort, short,

uint, int, ulong, and long
■ uinteger—This argument can be any unsigned integer type: uchar, ushort,

uint, int, and ulong

But before we delve into the different functions, let’s take a brief look at OpenCL’s
operators. These are exactly like the operators used in traditional C, but they apply to
vectors as well as scalars.

5.1 Operators
One of the most convenient aspects of OpenCL is that you can perform basic vector
operations using regular C operators. Let’s say you want to add two float4 vectors, a
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and b. If you were programming with SSE, you’d call _mm_addps(a, b). If you were pro-
gramming with AltiVec, you’d call vec_add(a, b). But with OpenCL, you don’t have to
remember any function names—just use a + b as though the arguments were scalars.

 Table 5.1 lists all of the OpenCL operators that operate on bits, numbers, and logi-
cal expressions. Of those that accept multiple arguments, each of them can operate
on all-scalar and all-vector arguments. Many of them can also operate on mixed-
type arguments.

The usual rules apply. For the arithmetic operators, if the operands have the same
type, the result will have the same type as the operands. If an operation involves a vec-
tor containing integers and a vector containing floating-point values, the resulting
vector will contain floating-point values. You can’t use bitwise operators on floating-
point values or vectors containing floating-point values.

 In many cases, you can perform an operation on a vector and a scalar. For exam-
ple, the following code adds 5 to every component in a short8 vector:

short8 s = (short8)(1, 2, 3, 4, 5, 6, 7, 8);
s = s + 5;

In the second line, s = s + 5 can be replaced with s += 5. This is called an addition
assignment operator because it adds a value to the operand’s value and assigns the new
value to the operand. The other supported assignment operators are -=, *=, /=, %=,
<<=, >>=, &=, |=, and ^=.

 The code in the following listing presents a number of different ways these opera-
tors can be used.

__kernel void op_test(__global int4 *output) {

   int4 vec = (int4)(1, 2, 3, 4);

   vec += 4;                                         

Table 5.1 OpenCL operators

Operator Purpose Operator Purpose Operator Purpose

+ Addition == Equal to ! Logical NOT

- Subtraction != Not equal to & Bitwise AND

* Multiplication > Greater than | Bitwise OR

/ Division (quotient) >= Greater than or equal to ^ Bitwise XOR

% Division (modulus) < Less than ~ Bitwise NOT

++ Increment <= Less than or equal to >> Right-shift

-- Decrement && Logical AND << Left-shift

|| Logical OR ?: Ternary selection

Listing 5.1 Operator usage: op_test.cl

Add 4 to every 
element
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   if(vec.s2 == 7)
      vec &= (int4)(-1, -1, 0, -1);             

   vec.s01 = vec.s23 < 7;                             

   while(vec.s3 > 7 && (vec.s0 < 16 || (vec.s1 < 16))
      vec.s3 >>= 1;                            

   *output = vec;
}

The arithmetic operators are easy to understand, but the relational operators, such as
<, >, and ==, need explanation. When used with scalars, these operators return a 1 if the
relation is true and 0 if false. They’re commonly used in if and while statements, and
if x equals 3, the operation x > 2 returns 1 and you can test the relation with if(x > 2).

 But if x is a vector, the usage changes. The operation tests all the components of a
vector, and the components of the resulting vector identify whether the correspond-
ing test returned true or false. For vector components, truth is represented by all 1s
(0xFF, 0xFFFF, 0xFFFFFFFF, and so on). OpenCL represents signed integers using their
two’s complement, so the signed value for true is -1, not 1. The value for false is 0.
This is shown in listing 5.1, which contains the following line of code:

vec.s01 = vec.s23 < 7;

The < operator tests the third and fourth components of vec. The first test returns
true because vec.s2 is less than 7, so the first element (vec.s0) is set to 0xFFFFFFFF,
or -1. The second test returns false, so the second element (vec.s1) is set to 0. 

 This isn’t the only difference between scalar and vector relations. Unlike scalar
relations, vector relations can’t be used directly in if and while statements. For exam-
ple, if x is a vector, statements like while(x > 2) and if(x > 2) will produce compiler
errors. Instead, you can test the elements individually with code such as the following:

while(x.s0 > 2 && x.s1 > 2 && x.s2 > 2 && x.s3 > 2)

Alternatively, you can use the all or any functions. The all function tests the most
significant bits (MSBs) of every component and returns 1 if they’re all set to 1. In con-
trast, any returns 1 if any of the MSBs are set to 1. Therefore, you can test all the com-
ponents of a vector with code like the following:

while(all(x > 2))

Section 5.7 discusses the all and any functions, along with other vector test functions.
But the most important OpenCL functions to know are those that relate to work-items
and work-groups. We’ll discuss these next.

5.2 Work-item and work-group functions
Let’s briefly review the topic of data partitioning, which chapter 3 discussed in detail.
A host application can call clEnqueueNDRangeKernel with arguments that define the
number of dimensions in the kernel data, the number of work-items per dimension,
and the number of work-items in a work-group per dimension.

Set 3rd 
element to 0

Set 1st, 2nd 
elements to -1, 0

Shift 4th 
element right
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 For a work-item to execute its job, it must be able to access data specifically
intended for it. This means it needs to know its ID among all other work-items execut-
ing the kernel. If the work-item is part of a work-group, it may also need to know its ID
among all other work-items in the work-group.

 In this section, we’ll look at the functions that provide this information. In many
kernel functions, these are the first functions to be invoked.

5.2.1 Dimensions and work-items

The number of dimensions needed for a work-item’s ID usually equals the number of
indices you’d use to access an element of an array containing the work-item’s data. For
example, suppose your input data is stored in an array called point. If you’d normally
access the data with point[x][y], the number of dimensions is two. If you’d access
the data with point[x][y][z], the number of dimensions is three.

 A work-item is a single implementation of a kernel, and each work-item has an
identifier that distinguishes it from every other work-item that processes the kernel.
This identifier, called the global ID, is an array of unsigned integers—one for each
dimension in the data.

 A work-item obtains its global ID using the get_global_id function. Table 5.2 lists
this function along with others that provide information related to dimensions and
work-items.

NOTE The get_global_offset function is new in OpenCL 1.1 and won’t
compile on systems that don’t support the new standard.

An example will help make these functions clear. Let’s say you want to process a por-
tion of the data in a 9 * 9 image. Without OpenCL, you might use a nested for loop
similar to the following:

for(i = 3; i < 9; i++) {
   for(j = 5; j < 9; j++) {
      process(data(i, j));
   }
}

Table 5.2 Functions related to work-items

Function Purpose

uint get_work_dim() Returns the number of dimensions in the kernel’s 
index space

size_t get_global_size(uint dim) Returns the number of work-items for a given 
dimension

size_t get_global_id(uint dim) Returns the element of the work-item’s global ID for 
a given dimension

size_t get_global_offset(uint dim) Returns the initial offset used to compute global IDs
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Figure 5.1 shows the index space corresponding
to this nested loop. Inside the inner loop, the first
iteration receives index pair (3, 5).

 In OpenCL, the loop iterations correspond to
work-items and the loop indices correspond to a
work-item’s global ID. A work-item can obtain its ID
by calling get_global_id(0) and get_global_
id(1). It can also find out how many work-items
will be executed per dimension using get_global_
size(0) and get_global_size(1).

 In the nested loop, the index pair of the first iter-
ation is (3, 5). This corresponds to OpenCL’s global
offset, which is the first global ID given to a work-
item. A work-item can access this by calling get_
global_offset(0) and get_global_offset(1).

5.2.2 Work-groups

Work-groups become important when work-items need to synchronize their execu-
tion. Chapter 7 will explain OpenCL’s implementation of synchronization, but for
now, you should know that OpenCL provides functions that tell you about work-
groups, and they work just like the functions that tell you about work-items.

 The functions in table 5.3 provide local information, whereas the functions in
table 5.2 provide global information. It’s important to understand the difference.
get_global_id identifies a work-item among all other work-items executing the ker-
nel. But get_local_id identifies the work-item only among work-items in the same
work-group. If two work-items execute the same kernel in different work-groups, they
might have the same local ID, but they’ll never have the same global ID.

Similarly, get_global_size tells you how many work-items are executing the same
kernel. get_local_size tells you how many work-items are in the same work-group as
the calling work-item.

Table 5.3 Functions related to work-groups

Function Purpose

size_t get_num_groups(uint dim) Returns the number of work-groups for a given dimension

size_t get_group_id(uint dim) Returns the ID of the work-item’s work-group for a given 
dimension

size_t get_local_id(uint dim) Returns the ID of the work-item within its work-group for 
a given dimension

size_t get_local_size(uint dim) Returns the number of work-items in the work-group for 
a given dimension

0

0

i

j

8

8

Figure 5.1 Index space for a two-
dimensional kernel
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5.2.3 An example application

The clEnqueueNDRangeKernel function is complicated, and it’s hard to verify that it
will create work-items and work-groups as you’ve intended. The code in the next list-
ing can help. Each work-item accesses global and local information, combines the
data into a float, and stores the float in an array.

__kernel void id_check(__global float *output) {

   size_t global_id_0 = get_global_id(0);       
   size_t global_id_1 = get_global_id(1);                   
   size_t global_size_0 = get_global_size(0);   
   size_t offset_0 = get_global_offset(0);      
   size_t offset_1 = get_global_offset(1);      
   size_t local_id_0 = get_local_id(0);         
   size_t local_id_1 = get_local_id(1);         

   int index_0 = global_id_0 - offset_0;             
   int index_1 = global_id_1 - offset_1;                  
   int index = index_1 * global_size_0 + index_0;    

   float f = global_id_0 * 10.0f + global_id_1 * 1.0f;
   f += local_id_0 * 0.1f + local_id_1 * 0.01f;               

   output[index] = f;
}

The host application, presented in id_check.c, configures processing for the task
depicted in figure 5.1. That is, the first global ID is {3, 5} and the global size is {6, 4}. It
also configures four work-groups by setting a local size equal to {3, 2}. The relevant
code is as follows:

size_t dim = 2;
size_t global_offset[] = {3, 5};
size_t global_size[] = {6, 4};
size_t local_size[] = {3, 2};

err = clEnqueueNDRangeKernel(queue, kernel, dim, global_offset,
      global_size, local_size, 0, NULL, NULL);

When the application is run for this example, it prints each work-item’s identification
data as a float. The two digits before the decimal point correspond to the global ID,
and the two digits after the decimal point correspond to the local ID. On my system,
the output results are as follows:

35.00     45.10     55.20     65.00     75.10     85.20
36.01     46.11     56.21     66.01     76.11     86.21
37.00     47.10     57.20     67.00     77.10     87.20
38.01     48.11     58.21     68.01     78.11     88.21

This example clarifies how clEnqueueNDRangeKernel configures the local and global
IDs for a work-item. This is a complex topic, and if you’re still not comfortable with it,
I recommend that you experiment with the code in the id_check project until the
results are clear.

Listing 5.2 Testing work-item/work-group IDs: id_check.cl

Access item/
group info

Determine 
array index

Set float 
data
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 Thankfully, accessing vector memory is much simpler to understand than config-
uring work-groups and work-items. We’ll discuss this next.

5.3 Data transfer operations
The preceding chapter explained the different address spaces available in an OpenCL
kernel and why it’s so important to be able to transfer data from one region to
another. The code required to transfer a block of data depends on whether the data
has the same type on the sending and receiving ends. For example, if you need to load
a float4 from one memory region into a float4 in another region, you’d use differ-
ent code than if you need to load a float4 from a float array. This section will discuss
how to transfer data of the same type, how to load vectors from a scalar array, and how
to store vectors to a scalar array.

5.3.1 Loading and storing data of the same type

If you want to transfer data of the same type, such as loading an int4 from an int4,
there’s only one symbol to know: =. In addition to assigning values to variables, the
equals sign transfers data from one memory region to another. For example, suppose
you want a kernel to load data from global memory into local memory, process the data,
and then store the data in global memory. Your code might look similar to the following:

__kernel void test(__global int4 *in_data, __global int4 *out_data) {
   __local int4 local_data;
   int id = get_local_id(0);
   local_data = in_data[id];
   ...process data in local memory...
   out_data[id] = local_data;
}

In this code, the = operator is used twice to transfer data between global memory and
local memory. The data doesn’t have to be vector-based; the code will work just as well
if int4 is changed to int. Similarly, to change from local memory to private memory,
remove the __local specifier in the data declaration. The default specifier is
__private, so the compiler will store variables without specifiers in private memory. 

5.3.2 Loading vectors from a scalar array

In many cases, you may want to process data using vector operations, but the input is
given as a scalar array. The = won’t work, and you can’t cast data in one address space
to data in another. Thankfully, OpenCL provides vloadn for loading scalar data into
vectors. Its signature is as follows:

vector vloadn(size_t offset, const __(g|c|l|p) scalar *mem)

In this signature, n identifies the number of components in the returned vector, and it
must be set to 2, 3, 4, 8, or 16. vector can be any vector type, and scalar must have
the same data type as that of the components inside vector. The memory containing
vector and scalar can be located in different address spaces.



102 CHAPTER 5 Kernel programming: operators and functions
For example, suppose float_vec is a float4 vector and float_array is an array of
floats. The following code loads the first four floats of float_array into float_vec:

float_vec = vload4(0, float_array);

The offset argument determines which elements of the array are placed in the vec-
tor. This is given in terms of the size of the vector, not the size of its scalar components.
In the preceding example, if the first argument of vload4 is 1, float_vec will contain
the fifth through eighth elements of float_array. This is depicted on the left side of
figure 5.2.

 The right side of figure 5.2 shows how pointer operations make it possible to load
unaligned data from a scalar array into a vector. Note that unaligned data transfer may
cause memory access delays.

5.3.3 Storing vectors to a scalar array

Just as vloadn transfers data from a scalar array to a vector, vstoren transfers data
from a vector to a scalar array. The signature of this function is as follows:

void vstoren(vector vec, size_t offset, __(g|l|p) scalar *mem)

This function stores the vector vec in the scalar array identified by mem at the location
determined by offset. As with vloadn, n must equal the number of components in
vec, and it can be set to 2, 3, 4, 8, or 16. But unlike vloadn, the scalar array can’t be
stored in the constant address space.

 As an example, the following code stores the int4 vector int_vec at the start of an
array of integers called int_array:

vstore4(int_vec, 0, int_array);

By changing the offset argument, you can store the vector at different vector-sized
offsets inside the array. With pointer arithmetic, you can store the vector at unaligned
offsets inside the array.

NOTE The OpenCL standard also provides functions that load floating-point
vectors from half-precision data (vload_halfn) and functions that store floating-
point vectors to half-precision data (vstore_halfn). See section 6.11.7 of the
OpenCL 1.1 specification for more information. 

10 32 54 76 98

54 76vec

vec = vload4(1, array)

array 10 32 54 76 98

76 98vec

vec = vload4(1, array+2)

array

Figure 5.2 Loading vectors from a scalar array
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Now that you know how to transfer data, it’s time to look into the primary use of
OpenCL kernels: number crunching. The next section discusses functions that oper-
ate on floating-point scalars and vectors. 

5.4 Floating-point functions
If you need to process real-world quantities like temperature or pressure values,
you’re probably going to model your data using floating-point values. Section 5.1 pre-
sented the basic operators available for floating-point processing, but now we’re going
to look at functions. This section divides OpenCL’s floating-point functions into five
categories: arithmetic and rounding, comparison, exponential and logarithmic, trigo-
nometric, and miscellaneous.

5.4.1 Arithmetic and rounding functions

Table 5.4 lists the OpenCL functions that perform arithmetic and rounding opera-
tions on floating-point values. These are all simple to use and understand. Most of the
math functions compute products, quotients, and remainders, and most of the round-
ing functions accept floats and return floats whose fractional part equals 0. 

Table 5.4 Arithmetic and rounding functions

Function Purpose

floatn fabs(floatn x) Returns the absolute value of the argument, |x|

floatn fma(floatn a,
  floatn b, floatn c)

Returns a * b + c, where the multiplication is performed 
with precision

floatn fmod(floatn x,
  floatn y)

Returns the modulus of x and y: x – (y * trunc(y/x))

floatn mad(floatn a,
  floatn b, floatn c)

Returns a * b + c

floatn remainder(floatn x,
  floatn y)

Returns the remainder of x and y: x – n * y, where n is 

the integer closest to x/y

floatn remquo(floatn x,
  floatn y, __(g|l|p) *quo)

Returns the remainder of x and y: x – n * y, where n is 

the integer closest to x/y; places the signed lowest seven 
bits of the quotient (x/y) in quo

floatn rint(floatn x) Returns the closest integer as a float—if two integers are 
equally close, it returns the even integer as a float

floatn round(floatn x) Returns the integer closest to x—if two integers are equally 
close, it returns the one farther from 0

floatn ceil(floatn x) Returns the closest integer larger than x

floatn floor(floatn x) Returns the closest integer smaller than x

floatn trunc(floatn x) Removes the fractional part of x and returns the integer
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This table contains two functions that perform the same operation. The mad and fma
(Fused Multiply and Add) functions both compute a * b + c. According to the
OpenCL 1.1 standard, “mad is intended to be used where speed is preferred over accu-
racy.” In contrast, fma provides greater precision by rounding only the final result and
not the intermediate multiplication.

 Some devices can process fma operations in hardware, providing improved speed
and accuracy. This is defined in the IEEE-754 standard but it’s not required by
OpenCL. To test whether a device supports this capability, call clGetDeviceInfo with
the parameter CL_DEVICE_SINGLE_FP_CONFIG. Then test the result to see whether the
CL_FP_FMA flag is set. Chapter 4 explains OpenCL’s floating-point support in detail.

 The / operator (division) is available for integers and floating-point values, but
the % operator (modulus) is only available for integers. Instead, you can compute a
floating-point modulus by calling fmod, which returns x – (y * trunc(y/x)). The
remainder function serves a similar purpose but computes x – n * y, where n is the
integer closest to x/y.

 When it comes to the rounding functions, there’s only one point to remember:
rint rounds to the nearest even but round doesn’t. round returns the closest integer,
and in the event that the two closest integers are equally close, it returns the one fur-
ther from 0. The following listing shows how fmod and remainder are used in code
and also demonstrates the usage of each of the five rounding functions.

__kernel void mod_round(__global float *mod_input,
                        __global float *mod_output,
                        __global float4 *round_input,
                        __global float4 *round_output) {

   mod_output[0] = fmod(mod_input[0], mod_input[1]);
   mod_output[1] = remainder(mod_input[0], mod_input[1]);

   round_output[0] = rint(*round_input);
   round_output[1] = round(*round_input);
   round_output[2] = ceil(*round_input);
   round_output[3] = floor(*round_input);
   round_output[4] = trunc(*round_input);
}

These functions are easy to understand. On my system, the printed results are as
follows:

fmod(317.0, 23.0)      = 18.0
remainder(317.0, 23.0) = -5.0

Rounding input: -6.5 -3.5 3.5 6.5
rint:  -6.0, -4.0, 4.0, 6.0
round: -7.0, -4.0, 4.0, 7.0
ceil:  -6.0, -3.0, 4.0, 7.0
floor: -7.0, -4.0, 3.0, 6.0
trunc: -6.0, -3.0, 3.0, 6.0

Listing 5.3 Division and rounding: mod_round.cl
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Notice that round(-6.5) returns -7.0 instead of -6.0. This is because it rounds away
from 0. You can think of round as the opposite of trunc.

5.4.2 Comparison functions

OpenCL provides a number of functions that compare the components of two floating-
point vectors. Table 5.5 lists them all. Some functions return the maximum of the two
inputs and others return the minimum. Other functions clamp or smooth the compo-
nents of an input according to thresholds.

These functions are easy to understand, but two functions—clamp and smoothstep—
deserve attention. Both functions compare an input vector to a minimum and maxi-
mum threshold, which can be given in scalar or vector form. If the input components
are larger than the maximum, clamp sets the output components to the maximum
value and smoothstep sets the output components to 1.0. If components of the input
vector are smaller than the minimum threshold, clamp sets the output components to
the minimum value and smoothstep sets the output components to 0.0. If the input
components lie between the thresholds, smoothstep interpolates the value using Her-
mitian interpolation. 

Table 5.5 Comparison functions

Function Purpose

floatn clamp(floatn x,
  float/n min, float/n max)

Returns min if x < min; returns max if x > max; 
otherwise returns x

floatn fdim(floatn x, floatn y) Returns x – y if x > y; returns 0 if x <= y

floatn fmax(floatn x, float/n y) Returns x if x >= y; returns y if y > x

floatn fmin(floatn x, float/n y) Returns x if x <= y; returns y if y < x

floatn max(floatn x, float/n y) Returns x if x >= y; returns y if y > x

floatn min(floatn x, float/n y) Returns x if x <= y; returns y if y < x

floatn mix(floatn x, floatn y,
  float/n a)

Interpolates between x and y using the equation 
x + (y – x) * a, where 0.0 < a < 1.0

floatn maxmag(floatn x, floatn y) Returns x if |x| >= |y|; returns y if |y| > |x|

floatn minmag(floatn x, floatn y) Returns x if |x| <= |y|; returns y if |y| < |x|

floatn step(float/n edge,
  floatn x)

Returns 0.0 if x < edge; returns 1.0 if x >= edge

floatn smoothstep(float/n edge1,
  float/n edge2, floatn x)

Returns 0.0 if x <= edge1; returns 1.0 if x >= 
edge1; uses smooth interpolation if edge0 < x < 
edge1
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5.4.3 Exponential and logarithmic functions

The functions in table 5.6 compute exponents and logarithms of the components in a
floating-point vector. These closely resemble their counterparts in math.h, so if you’re
familiar with pow, exp, log, and sqrt, these won’t present any difficulty.

The names of these functions can be confusing. Keep in mind that expm1 (exp
minus 1) computes ex – 1 and that exp10 computes 10x. Also, log1p computes ln(1.0
+ x), whereas log10 computes log10x. 

5.4.4 Trigonometric functions

OpenCL provides many more trigonometric functions than those in math.h. These
include hyperbolic trigonometric functions, inverse trigonometric functions, and
functions that multiply the input by . Table 5.7 lists all of them.

 The sincos function computes sines and cosines, returning the sine values and
storing the cosine values in the memory referenced by the second argument. This
function is ideal for converting polar coordinates (r, ) into rectilinear components

Table 5.6 Exponential and logarithmic functions

Function Purpose

floatn pow(floatn x, floatn y) Returns xy

floatn pown(floatn x, intn y) Returns xy, where y is an integer

floatn powr(floatn x, floatn y) Returns xy, where x is greater than or equal to 0

floatn exp/expm1(floatn x) Returns ex and ex – 1

floatn exp2/exp10(floatn x) Returns 2x and 10x

floatn ldexp(floatn x, intn n)) Returns x * 2n

floatn rootn(floatn x, floatn y) Returns x1/y

floatn sqrt/cbrt(floatn x) Returns the square root/cube root of x

floatn rsqrt(floatn x) Returns the inverse square root of x

floatn log/log1p(floatn x) Returns ln(x) and ln(1.0 + x)

floatn log2/log10(floatn x) Returns log2 x and log10 x

floatn logb(floatn x) Returns the integral part of log2 x

floatn erf/erfc(floatn x) Returns the error function and the complementary 
error function

floatn tgamma/lgamma(floatn x) Returns the gamma function and the log gamma function

floatn lgamma_r(floatn x,
  __(g|l|p) intn *mem)

Returns the log gamma function and places the sign in 
the memory referenced by mem
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(x, y). Figure 5.3 shows four points on a unit circle and presents their coordinates in
polar and rectilinear form.

 In polar_rect.c, the host sends four radius values and four angular values to the
device. The kernel computes the corresponding rectilinear coordinates. 

Table 5.7 Trigonometric functions

Function Purpose

floatn sin/cos/tan(floatn) Returns the sine, cosine, and tangent 

floatn sinpi/cospi/tanpi(floatn x) Returns the sine, cosine, and tangent of x

floatn asin/acos/atan(floatn) Returns the arcsine, arccosine, and arctangent

floatn asinpi/acospi/atanpi
  (floatn x)

Returns the arcsine, arccosine, and arctangent of x

floatn sinh/cosh/tanh(floatn) Returns the hyperbolic sine, cosine, and tangent

floatn asinh/acosh/atanh(floatn) Returns the hyperbolic arcsine, arccosine, and 
arctangent

floatn sincos(floatn x,
  __(g|l|p) floatn *mem)

Returns the sine of x and places the cosine in the 
memory referenced by mem

floatn atan2/atan2pi(floatn x) Returns the sine, cosine, and tangent of x

y

x

(4, 11 /6) =
(3.464, -2.0) 

(3, 4 /3) =
(-1.5, -2.598) 

(1, 3 /4) =
(-0.707, 0.707) 

(2, 3 /8) =
(0.765, 1.848) 

x

Figure 5.3 Polar and rectilinear coordinates
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__kernel void polar_rect(__global float4 *r_vals,
                         __global float4 *angles,
                         __global float4 *x_coords,
                         __global float4 *y_coords) {

   *y_coords = sincos(*angles, x_coords);                  
   *x_coords *= *r_vals;            
   *y_coords *= *r_vals;                  
}

The printed results are as follows:

( 0.765,  1.848)
(-0.707,  0.707)
(-1.500, -2.598)
( 3.464, -2.000)

The host application defines angular values using the M_PI constant defined in
math.h. This header isn’t supported in kernel coding, but the M_PI_F constant is.
Table 5.8 lists all the floating-point constants provided by OpenCL.  

5.4.5 Miscellaneous floating-point functions

Table 5.9 presents the last set of floating-point functions we’ll examine in this section.
These can’t be grouped into a simple category, so I’ll refer to them as miscellaneous
functions. 

 A number of these functions provide information about the float components in
the input vector. An example will make their usages clear. If x equals –93.64, then the
following functions can be called:

Listing 5.4 Rectilinear to polar coordinates: polar_rect.cl

Table 5.8 Floating-point constants

Constant Content Constant Content

M_E_F Value of e M_1_PI_F Value of 1/

M_LOG2E_F Value of log2e M_2_PI_F Value of 2/

M_LOG10E_F Value of log10e M_2_SQRTPI_F Value of 2/sqrt()

M_LN2_F Value of loge2 M_SQRT2_F Value of sqrt(2)

M_LN10_F Value of loge10 M_SQRT1_2_F Value of 1/sqrt(2)

M_PI_F Value of  MAXFLOAT Maximum float value

M_PI_2_F Value of /2 HUGE_VALF Positive floating-point 
infinity

M_PI_4_F Value of /4 INFINITY Unsigned infinity

NAN Not-a-Number value

Compute 
coordinates 
on unit circle

Compute coordinates 
for different radii
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■ sign(x) = –1.0
■ modf(x, mem) returns –0.639999, stores –93 in mem
■ frexp(x, mem) returns –0.731562, stores 7 in mem
■ ilogb(x) = 6

The last two functions, frexp and ilogb, provide information about the input’s
binary representation. Because –93.64 equals –0.731562 * 27, the frexp function
returns –0.731562 and stores 7 in memory. The binary logarithm of |–93.64| equals
log2

 93.64 = 6.549, so ilogb returns trunc(6.549) = 6.
 Now that you’ve seen OpenCL’s floating-point functions, let’s switch gears and look

at functions that operate on integers. The next section discusses them in detail.

5.5 Integer functions
Many fields, such as cryptography and bioinformatics, model data using integers.
OpenCL provides a wide range of integer operations, and this section divides them
into three categories: addition and subtraction, multiplication, and miscellaneous. In
each case, the integer data type refers to all signed and unsigned integers: uchar,
char, ushort, short, uint, int, ulong, and long. The uinteger type refers to only
unsigned integers: uchar, ushort, uint, and ulong.

Table 5.9 Miscellaneous floating-point functions

Function Purpose

floatn copysign(floatn x,
floatn y)

Returns x with the sign of y

intn ilogb(floatn x) Returns the integer part of log2|x|

floatn fract(floatn x,
  __(g|l|p) floatn *mem)

Returns fmin(x – floor (x), 0x1.fffffep-1f ), 
places floor(x) in mem

floatn frexp(floatn x,
  __(g|l|p) intn *mem)

Expresses x as the product of 2exp and a value between 0.5 
and 1; returns the value and places the exponent in mem

floatn modf(floatn x,
  __(g|l|p) floatn *mem)

Returns the fractional part, and places the integer part in mem; 
both keep the same sign as x

floatn nan(uintn nancode) Returns a NaN with a given nancode that doesn’t raise 
exceptions

floatn nextafter(floatn x,
  floatn y)

If y > x, returns the next floating-point value greater than x; if 
y < x, returns the next floating-point value less than x

floatn sign(floatn x) Returns –1.0 if x < 0; returns 1.0 if x > 0; returns 0.0 if x is 
NaN; otherwise returns x
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5.5.1 Adding and subtracting integers

OpenCL provides the + and - operators for addition and subtraction, but these may
not be sufficient for all cases. Table 5.10 lists the OpenCL functions that add and sub-
tract integers.

When performing integer arithmetic, the fundamental question is what to do when a
result requires more memory than either of the operands. This condition is called
arithmetic overflow. In the case of addition, overflow occurs when the sum of two inte-
gers exceeds the maximum value for the data type or falls below the minimum value.
In subtraction, this occurs when the operands have different signs, and the subtrac-
tion produces a value that exceeds the maximum or falls below the minimum.

 Some devices set a flag when an overflow condition occurs, but OpenCL doesn’t
require this. Regular addition and subtraction, performed by the + and - operators,
simply ignore the possibility of overflow. If you add two positive signed numbers and
the sum exceeds the maximum value for a positive number, overflow will cause the
result to be negative.

 But the add_sat and sub_sat functions saturate the result in the event of overflow.
This sets the result to its maximum value. In the case of a 32-bit int, the maximum
value is 0x7FFFFFFF.

 To make this clear, let’s look at some examples. Suppose x, y, and z are signed inte-
gers such that x = 1,968,526,677 (0x75555555), y = 1,914,839,586 (0x72222222), and z
= –1,932,735,283 (–0x73333333). The correct value of x + y is 3,883,366,263
(0xE7777777) and the correct value of x – z is 3,901,261,960 (0xE8888888). But the
results produced by OpenCL’s operators and functions are quite different:

■ x + y = –411,601,033 (0xE7777777 in two’s complement)
■ add_sat(x, y) = 2,147,483,647 (0x7FFFFFFF)
■ x – z = –393,705,336 (0xE8888888 in two’s complement)
■ sub_sat(x, z) = 2,147,483,647 (0x7FFFFFFF)

Table 5.10 Integer addition functions

Function Purpose

integern add_sat(integern x,
   integern y)

Returns x + y with saturation

integern hadd(integern x,
   integern y)

Returns x + y, shifted right by 1 to prevent overflow

integern rhadd(integern x,
   integern y)

Returns x + y + 1, shifted right by 1 to prevent overflow

integern sub_sat(integern x,
   integern y)

Returns x – y, saturating the result
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The functions hadd and rhadd take a different approach to dealing with overflow.
Instead of saturating the result, they shift the result right by one bit and place the
carry bit in the most significant position. This produces a result that’s close to the cor-
rect value, but divided by two. The difference between hadd and rhadd is that rhadd
adds 1 before right-shifting the sum.

 Let’s return to our previous example. If x equals 1,968,526,677 (0x75555555) and
y equals 1,914,839,586 (0x72222222), then calling hadd and rhadd produces the fol-
lowing results:

■ hadd(x, y) = 1,941,683,131 (0x73BBBBBB)
■ rhadd(x, y) = 1,941,683,132 (0x73BBBBBC)

Dividing the correct sum by 2 produces 1,941,683,131.5, which lies exactly between
the values returned by hadd and rhadd. These two functions will help if saturation is a
concern, but remember that the actual sum is twice the result. 

5.5.2 Multiplication

Like addition and subtraction, integer multiplication can produce a result that
requires more memory than either operand. In the worst case, the product may need
twice as much memory to store. The functions in table 5.11 take this into account.

To obtain a full product, you need to combine the results of the mul_hi function in
table 5.11 and the * operator in table 5.1. mul_hi returns the upper half of the prod-
uct and * returns the lower half. Let’s look at an example. If x equals 0x71111111 and
y equals 0x72222222, their correct product is given by 0x3268ACF11ECA8642. You
can compute this exact value in OpenCL by making the following function calls:

■ mul_hi(x,y) = 0x3268ACF1
■ x * y = 0x1ECA8642

Table 5.11 Integer multiplication functions

Function Purpose

integern mad_hi(integern a,
  integern b, integern c)

Returns mul_hi(a, b) + c

integern mad_sat(integern a,
  integern b, integern c)

Returns a * b + c, saturating the result

u/intn mad24(u/intn a, u/intn b,
  u/intn c)

Returns mul24(a, b) + c

integern mul_hi(integern x,
  integern y)

Multiplies x and y and returns the upper half of the 
product

u/intn mul24(u/intn x, u/intn y) Multiplies the low 24 bits of x and y
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The mul24 function is useful when speed is a priority and precision isn’t. This only
operates on ints and uints, and only on the low 24 bits of the operands. Therefore, if
x and y are ints, their values should lie between –223 and 223 – 1. If x and y are
unsigned, their values should lie between 0 and 224 – 1.

 Like the * operator, mul24 returns only the lower 32 bits of the product. The differ-
ence is that it computes the result faster because it only takes the lower 24 bits into
account. For example, suppose x and y are ints such that x equals 0x00711111 and y
equals 0x00722222. Their full product is 0x3268ACDA8642, which requires 46 bits to
store. The returned value of mul24(x,y) will be 0xACDA8642.

 The first three functions in table 5.11 perform multiplication and addition. Each
performs the multiplication in a different manner. mad_sat relies on the * operator
and saturates the result, setting it to the maximum value in the event of overflow.
mad_hi computes the upper half of the result using mul_hi to multiply the first two
inputs. Then it adds the third input without saturation. mad24 is similar to mad_hi, but
it computes the lower half of the result using mul24.

 The code in the following listing shows how to combine mad_hi and mad24 to mul-
tiply and add large numbers. mad_hi computes the upper half of the result and mad24
computes the lower half.

__kernel void mad_test(__global uint *result) {

   uint a = 0x123456;
   uint b = 0x112233;
   uint c = 0x111111;

   result[0] = mad24(a, b, c);                   
   result[1] = mad_hi(a, b, c);                   
}

The imprecision of mad24 keeps the result from matching perfectly
(0x111248E85AEA33 versus 0x111248E849D922), but you can’t replace mad24 with
mad_sat in this code. Why? Because mad_sat doesn’t understand upper halves and
lower halves. It assumes that it’s performing the entire operation, and if the result is
larger than the maximum storable value, it saturates the result. 

5.5.3 Miscellaneous integer functions

The functions in table 5.12 closely resemble those we’ve looked at in previous sec-
tions, but they only operate on integer values. They don’t fit suitably in any single
group, so we’ll refer to them as miscellaneous integer functions. 

 It’s important to see the difference between the rotate function and the left-shift
operator, <<. Both shift the input bits to the left, but as each bit is shifted, the << oper-
ator places a 0 in the rightmost position whereas rotate places the shifted bit in the
rightmost position. But if the input value is unsigned, rotate places a 0 in the right-
most position.

Listing 5.5 Multiply-and-add large numbers: mad_test.cl
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Two examples will make this clear. If x is a uchar with a value of 252 (11111100),
rotate(x,3) will return 224 (11100000). This is the same result as x << 3. But if x is a
signed char equal to –4 (11111100), rotate(x,3) returns –25 (11100111), whereas x
<< 3 equals –32 (11100000). 

 The upsample function concatenates its input arguments to produce a value
whose data type is twice that of either input. If the first input is signed, the result will
be signed. The second input must always be unsigned. This is shown in the follow-
ing examples:

■ If x is a char that equals 0x95 and y is a uchar equal to 0x31, upsample(x, y)
will return a short that equals 0x9531.

■ If x is a ushort that equals 0x7654 and y is a ushort that equals 0x3210,
upsample(x, y) will return an uint that equals 0x76543210.

■ If x is a uint that equals 0x79ABCDEF and y is a uint that equals 0x12345678,
upsample(x, y) will return a ulong that equals –0x79ABCDEF12345678 if 64-bit
values are supported.

The upsample function isn’t the only way to create vectors from the content of other
vectors. Using a mask vector, you can use the shuffle and select functions to choose
which input bits or input components should be placed in the output. The next sec-
tion discusses these functions in detail. 

Table 5.12 Miscellaneous integer functions

Function Purpose

uintegern abs(integern x) Returns the absolute value of x, |x|

uintegern abs_diff(integern x,
   integern y)

Returns the absolute value of x – y, |x – y|

integern clamp(integern x,
  integer/n min, integer/n max)

Returns min if x < min; returns max if x > max; 
otherwise returns x

integern max(integern x,
  integern y)

Returns x if x >= y; otherwise returns y

integern min(integern x,
  integern y)

Returns y if x > y; otherwise returns x

integern rotate(integern x,
  integern y)

Components of x are shifted left by the components of 
y; returns the shifted bits on the right

u/shortn upsample(u/charn high,
  ucharn low)

Forms a u/short by concatenating the components 
of high and low

u/intn upsample(u/shortn high,
  ushortn low)

Forms a u/int by concatenating the components of 
high and low

u/longn upsample(u/intn high,
  uintn low)

Forms a u/long by concatenating the components of 
high and low
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5.6 Shuffle and select functions
Chapter 4 presented different ways of accessing and modifying a vector’s components.
With suffixes like .sN, .x, .y, .hi, and .lo, you can easily assign the components of
one vector equal to the components of other vectors. But you can make similar assign-
ments using values inside a vector called a mask vector. For this purpose, OpenCL pro-
vides shuffle and select functions. The two shuffle functions rely on index values
inside the mask vector to create the output, and the two select functions rely on bits
inside the mask vector.

5.6.1 Shuffle functions

OpenCL’s shuffle functions accept one or two input vectors and create an output vec-
tor that contains the components of the inputs. Table 5.13 lists the signatures of both
shuffle functions.

NOTE These functions are new in OpenCL 1.1 and won’t compile on sys-
tems that don’t support this standard.

The shuffle function creates a vector whose components are taken from those in the
input x vector. shuffle2 creates a vector from components in x and y. The last argu-
ment of both functions is the mask vector. This vector determines which input compo-
nents are placed in the output and the order in which they’re placed.

 The size of the components of the mask vector must be the same size as those of
the returned vector. But the data type of the mask components must be an unsigned
integer type (uchar, ushort, uint, or ulong). The returned vector will contain the
same number of components as the mask vector, but the data type of the returned
components will be the same as that of the components of the input vector or vectors.

 To make matters more confusing, only a select number of bits in the mask vector’s
components are important. The k least significant bits (LSBs) in each mask compo-
nent select which input component is placed in the corresponding position in the
returned vector. The value of k depends on the number of components in the input
vector. If the input vector has n components, then k = log2n for the shuffle function,
and n = 2k. For shuffle2, k = log22n, and n = 2k–1.

 An example will help make this clear. Suppose you want to use shuffle to create a
float8 vector from components of a float4. There are eight components in the
returned vector, so the mask must contain eight components. Each component in the

Table 5.13 Shuffle functions

Function Purpose

allm shuffle(alln x, uintegerm mask); Creates a vector containing the components of 
x in the order prescribed by mask

allm shuffle2(alln x, alln y,
   uintegerm mask);

Creates a vector containing the components of 
x and y in the order prescribed by mask
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output is 32 bits wide, so each element of the mask vector must be 32 bits. Therefore,
the mask vector must be a uint8. 

 Because there are four components in the input vector, only the 2 LSBs (log24 = 2)
in each of the mask’s components are important. Each LSB pair selects one of the four
input components and places it in the corresponding position in the returned vector.
Figure 5.4 presents this operation graphically. 

shuffle2 is similar to shuffle, but instead of accepting only one input, it accepts
two. For example, suppose you want to select characters from two input char8 vectors
and place them in a char16. In this case, the mask must contain 16 components and
each mask component must be 1 byte. Therefore, the mask vector must be a uchar16.

 In each component, the 4 LSBs (log216 = 4) determine which input chars are placed
in the output and where they’re placed. Figure 5.5 shows this operation graphically.

1 2 0 1 3 1 2 3

0.25f 0.5f 0.75f 1.0f

uint8 mask = (1, 2, 0, 1, 3, 1, 2, 3);

float4 input = 
(0.25f, 0.5f, 
0.75f, 1.0f);

float8 output = shuffle(input, mask);

0.25f0.5f 0.5f0.75f 0.75f1.0f 1.0f0.5f Figure 5.4
Operation of the 
shuffle function

6 10 5 2 8 0 9 14

uchar16 mask = (6, 10, 5, 2, 8, 0, 9, 14, 7, 5, 12, 3, 11, 15, 1, 13);

char16 output = shuffle2(input1, input2, mask);

7 5 12 3 11 15 1 13

f e h t n n 2 il o f c a u s f

s h u f f l e 2 f u n c t i o n

char8 
input1

char8 
input2

Figure 5.5
Operation of the 
shuffle2 function
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The code in the next listing shows how shuffle and shuffle2 are used in a kernel.
The host application creates write-only buffers for the shuffled data, reads them from
the device, and prints out the results.

NOTE This code only compiles on platforms that support the OpenCL 1.1
standard.

__kernel void shuffle_test(__global float8 *s1,
                           __global char16 *s2) {

   uint8 mask1 = (uint8)(1, 2, 0, 1, 3, 1, 2, 3);
   float4 input = (float4)(0.25f, 0.5f, 0.75f, 1.0f);
   *s1 = shuffle(input, mask1);                            

   uchar16 mask2 = (uchar16)(6, 10, 5, 2, 8, 0, 9, 14,
                             7, 5, 12, 3, 11, 15, 1, 13);
   char8 input1 = (char8)('l', 'o', 'f', 'c', 'a', 'u', 's', 'f');
   char8 input2 = (char8)('f', 'e', 'h', 't', 'n', 'n', '2', 'i');
   *s2 = shuffle2(input1, input2, mask2);                       
}

When you need to create vectors from components of other vectors, shuffle and
shuffle2 are the best functions to use. It takes practice to construct the mask vectors,
but once you see how the mask bits are used to select components, using the functions
becomes simple. 

5.6.2 Select functions

The two functions in table 5.14, bitselect and select, are similar to shuffle2. They
both create an output vector from the contents of two input vectors. The difference is
that select and bitselect rely on individual bits inside the mask vector instead of
component indices. This means you don’t have to worry about how many LSBs should
be in each mask component.

Unlike the mask vectors in shuffle and shuffle2, the mask vectors in bitselect and
select can contain signed or unsigned integer values. In the case of select, only the
most significant bit in each vector matters. If the MSB of one mask component is 0, the
corresponding component of the output vector will be set equal to the component in

Listing 5.6 Shuffling vector components: shuffle_test.cl

Table 5.14 Select functions

Function Purpose

alln bitselect(alln a, alln b,
   u/integern mask)

Selects bits from a and b according to the bits in mask

alln select(alln a, alln b,
   u/integern mask)

Selects components from a and b according to the most-
significant bits in mask

shuffle 
usage

shuffle2 
usage
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the first input vector. If the MSB equals 1, the output component will be taken from
the second input vector.

 Figure 5.6 depicts an example of how select is used. In this case, the MSBs of the
mask vector select floats from input vectors. Notice that the mask must have the
same number of elements as the inputs. Also, because the first and third mask values
are set to –1, the corresponding representation contains all ones: 0xFFFFFFFF.

 With bitselect, every bit of the mask vector plays a part. If the mask bit equals 0,
the corresponding bit of the first input is placed in the output. If the bit equals 1, the
corresponding bit of the second input is placed in the output. Figure 5.7 shows an
example of how bitselect is used.

1 0 1 0

0.25f 0.5f 0.75f 1.0f

uint4 mask = (-1, 0, -1, 0);

float4 input1

float4 output = select(input1, input2, mask);

1.75f1.25f 0.5f 1.0f

1.25f 1.5f 1.75f 2.0f

float4 input2

Figure 5.6 Operation of the select function

uchar2 mask = (0xAA, 0x55);

uchar2 output = bitselect(input1, input2, mask);

1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 1 0 0 1 1 1 0 0 0 1 1 0 1 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

Figure 5.7 Operation of the bitselect function



118 CHAPTER 5 Kernel programming: operators and functions
In this case, the distinction between components in the mask isn’t important. All that
matters is the order of bits. This is similarly true for the bits in the output vector.

 The code in the following listing demonstrates the usage of select and bitselect.
This code performs the operations depicted in figures 5.6 and 5.7.

__kernel void select_test(__global float4 *s1,
                          __global uchar2 *s2) {

   int4 mask1 = (int4)(-1, 0, -1, 0);
   float4 input1 = (float4)(0.25f, 0.5f, 0.75f, 1.0f);
   float4 input2 = (float4)(1.25f, 1.5f, 1.75f, 2.0f);
   *s1 = select(input1, input2, mask1);                  

   uchar2 mask2 = (uchar2)(0xAA, 0x55);
   uchar2 input3 = (uchar2)(0x0F, 0x0F);
   uchar2 input4 = (uchar2)(0x33, 0x33);
   *s2 = bitselect(input3, input4, mask2);           
}

Mask vectors for select and bitselect can be created easily using the vector rela-
tional operators, such as <, >, and ==. You can also use OpenCL’s vector test functions,
described in the next section. 

5.7 Vector test functions
The functions in table 5.15 analyze the content of vectors and return information
about their components. Some functions are specific to floats and others analyze
integer data types. One function, vec_step, can be used with vectors of all data types.

Listing 5.7 Selecting component content: select_test.cl

Table 5.15 Vector test and comparison functions

Function Purpose

int any(integern x) Returns 1 if the MSB of any component is set

int all(integern x) Returns 1 if the MSB of all components are set

integern clz(integern x) Returns the number of leading 0’s in each compo-
nent of x

intn isequal(floatn x, floatn y) Returns whether each component of x equals 
each component of y

intn isnotequal(floatn x, floatn y) Returns whether each component of x doesn’t 
equal each component of y

intn isgreater(floatn x, floatn y) Returns whether each component of x is greater 
than each component of y

intn isgreaterequal(floatn x,
   floatn y)

Returns whether each component of x is greater 
than or equal to each component of y

select 
usage

bitselect 
usage
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Section 5.1 briefly mentioned the any and all functions, which can be used to deter-
mine if any or all of a vector’s components have nonzero MSBs. Similarly, clz tells you
how many leading zeroes are in each component of the input. This can be helpful when
you need to gauge the sign and approximate magnitude of a vector’s components.

 If you write your code to support vectors of different lengths, you’ll find vec_step
useful. This identifies the number of components in a vector. But if a vector contains 3
components, vec_step will return 4.

 Most of the functions in the table analyze floats and vectors containing floats.
These are easy to understand, and they’re similar to their counterparts in the math.h
header. The following examples show how they’re used:

■ isgreater(5.5f, 4.5f) returns 1
■ islessequal(2.3f, -2.3f) returns 0
■ isnan(nan(0)) returns 1
■ signbit(-10.0) returns 1
■ isnormal((float3)(rsqrt(2.0), rsqrt(2.0), 0.0)) returns (–1, –1, 0)

intn isless(floatn x, floatn y) Returns whether each component of x is less 
than each component of y

intn islessequal(floatn x,
   floatn y)

Returns whether each component of x is less 
than or equal to each component of y

intn islessgreater(floatn x,
   floatn y)

Returns whether each component of x is less 
than or greater than each component of y

intn isfinite(floatn x) Returns whether each component of x is finite

intn isinf(floatn x) Returns whether each component of x is infinite

intn isnan(floatn x) Returns whether each component of x is NaN

intn isnormal(floatn x) Returns whether each component of x is normal 
(not 0, denormalized, infinite, or NaN)

intn isordered(floatn x, floatn y) Returns whether the components of x and y are 
ordered

intn isunordered(floatn x,
   floatn y)

Returns whether the components of x and y are 
unordered

intn signbit(floatn x) If sign bit is set, returns 1 for scalars and –1 for 
vectors; otherwise 0

int vec_step(alln) Returns the number of elements in a vector; 
returns 4 if there are 3 elements

Table 5.15 Vector test and comparison functions (continued)

Function Purpose
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The last function, isnormal, identifies whether each component of the input vector is
normal (not 0, denormalized, infinite, or NaN). Note that, for vectors, the comparison
operations represent truth with –1 instead of 1. Because the two’s complement of –1 is
all ones, this makes the result ideal for vector bitmasks.

 When it comes to vectors and the isnormal function, I tend to get confused. I
always assume the function will return true if the vector is perpendicular to a surface.
But this is the geometric sense of the word normal, not the mathematical sense. The
next section will explain the geometrical sense of the word normal and other con-
cepts related to OpenCL’s geometric functions. 

5.8 Geometric functions
In physics, engineering, and graphics, the term vector takes on a different meaning
than a simple collection of scalars. It identifies an entity with a magnitude (length)
and a direction. The functions in table 5.16 perform operations related to vectors
used in this sense.

The components of a geometrical vector represent dimensions. In a Euclidean space,
coordinates are specified by (x, y, z), and a vector’s components identify its length in
the x, y, and z directions. The total length can be obtained using the Pythagorean The-
orem. That is, the square of the length equals the sum of the squares of its compo-
nents. If d is a two-dimensional vector, its length is denoted by |d|, which can be
computed through the following equation: |d|2 = (d.x)2 + (d.y)2. For vectors in three
dimensions, |d|2 = (d.x)2 + (d.y)2 + (d.z)2. This is shown in figure 5.8.

Table 5.16 Geometric functions

Function Purpose

float3 cross(float3 x, float3 y)
float4 cross(float4 x, float4 y)

Returns the cross product of x and y

float dot(floatn x, floatn y) Returns the dot-product of x and y

float distance(floatn x, floatn y) Returns the Euclidean distance between x and y

float hypot(floatn x, floatn y) Returns the square root of x2 + y2

float length(floatn x) Returns the length of x

floatn normalize(floatn x) Returns x with a length of 1

float fast_distance(floatn x,
  floatn y)

Computes fast_length(x – y) 

float fast_length(floatn x) Returns the length of C using half_sqrt

floatn fast_normalize(floatn x) Returns x with a length of 1 using half_rsqrt
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 The length function in table 5.16
computes the length of a vector con-
taining x, y, and z components. The
normalize function returns a vector
that points in the same direction as
the input vector, but changes its com-
ponents so that the length equals 1.
The following code shows how
length and normalize work:

float3 vec = (float3)(6, -5, 0);
float vec_length = length(vec);

float3 norm = normalize(vec);
float norm_length = length(norm);

As depicted in figure 5.8, the first length function will return the square root of 61.
The norm vector will have the same direction as vec, but the normalize function will
set its length equal to 1. Therefore, the second length function will return 1.

 The dot product of two vectors returns a scalar that tells you about how closely the
vectors’ directions resemble one another. If the dot product is positive, they point in
similar directions. If the product is 0, the two vectors are perpendicular, and if the
product is negative, they point in approximately opposite directions.

 The dot product is computed by multiplying the corresponding components of
both vectors and adding the products. For example, if vector p has components (p.x,
p.y, p.z) and vector q has components (q.x, q.y, q.z), then the dot product of the two vec-
tors is as follows:

p • q = (p.x * q.x) + (p.y * q.y) + (p.z * q.z)

The dot function computes the dot product, and not just in three dimensions. It com-
putes the product of every component pair in the two input vectors and returns the
sum of the products. 

 The cross product differs from the dot product in a number of ways. Instead of
returning a scalar, it returns a vector. The computation is more involved, and if r
equals the cross-product of p and q (denoted r = p × q), then the components of r are
computed as follows:

■ r.x = p.y * q.z – p.z * q.y
■ r.y = p.z * q.x – p.x * q.z
■ r.z = p.x * q.y – p.y * q.x

The vector computed by a cross product has a direction perpendicular to the plane
containing the two input vectors. We say that this vector is normal to the plane, and we
call the vector a normal vector. In graphics, normal vectors are important because
they’re needed to calculate how light reflects from a surface.
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Figure 5.8 Vectors and length
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 The cross function computes the cross product of two vectors, whose data types
must be both float3 or both float4. If the input vectors are both float4s, the fourth
component of the result will be 0.0. The following code shows how this works:

float3 p = (float3)(3.5, 8.2, 2.4);
float3 q = (float3)(2.9, 5.5, 6.8);
float3 r = cross(p, q);

The components of the result equal (–42.56, –16.84, –4.53). If you compute the dot
product of this vector with either of the input vectors, the result will be 0. This is
because the direction of the resulting vector is perpendicular to that of both input
vectors. 

5.9 Summary
A major strength of OpenCL is that its operators and functions closely resemble those
of traditional C and C++. OpenCL’s arithmetic and logical operators are the same, the
math functions generally have the same names, and pointers are referenced and
dereferenced in the same way.

 One significant difference, however, is that OpenCL’s operators and functions
accept both scalars and vectors. By calling functions that operate on vectors, you can
dramatically reduce the amount of time needed to process data. This chapter has
explained a large number of these functions and has provided examples of their use.

 Number-crunching is the ultimate goal, but the most important OpenCL functions
aren’t math-based. Instead, they access information related to work-items and work-
groups. These are usually the first functions called in a kernel function because they
obtain the work-item’s global and local IDs. The global ID distinguishes the work-item
from all other work-items executing the kernel. The local ID distinguishes the work-
item from all others in the same work-group.

 A large portion of this chapter has dealt with floating-point and integer functions.
These generally have the same names and roles as the functions defined in math.h.
But when adding and multiplying integers, traditional operators won’t be sufficient.
OpenCL doesn’t require carry flags or overflow flags, so it’s vital to understand details
like which functions saturate the result in the event of overflow. And if you want to
obtain a full product of two integers, be sure to combine the results of mul_hi and
the * operator.

 Three sections of this chapter have discussed vector-specific functions: those that
load and store vector data, those that shuffle and select vector contents, and those that
test vector components. These may seem difficult if you’re used to scalar processing.
However, the more you code, the more you’ll appreciate their advantages when it
comes to high-performance computing.

 This chapter has discussed the basics of OpenCL number-crunching. The next
chapter applies these functions to process images, which OpenCL represents with
image objects.



Image processing
Memory objects package data sent between a host and a device, and as discussed in
chapter 3, they come in two types: buffer objects and image objects. Buffer objects
transfer general-purpose data, and so far, all of the example code in this book has
relied exclusively on buffer objects.

 Now we’re going to switch gears and focus on image objects. In theory, you
could store an image’s data in a buffer object and access its pixels as regular buffer
data. But there are four important reasons to use image objects instead:

■ On GPUs, image data is stored in special global memory called texture memory.
Unlike regular global memory, texture memory is cached for rapid access.

■ The functions used to read and write image data can be invoked without
regard to how the pixel data is formatted, so long as the format is supported
by OpenCL.

This chapter covers
■ Understanding the data types used in OpenCL 

image processing
■ Invoking functions that read, write, and access 

image data
■ Interpolating between pixel colors using 

samplers
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■ Special data structures called samplers make it possible to configure how color
information is read from an image.

■ OpenCL provides functions that return image-specific information, such as an
image’s dimensions, pixel format, and bit depth.

This chapter will discuss these characteristics, and a large part of the discussion will be
centered on image-related functions. These functions will be presented in detail and
then combined in an example application that scales image data. But before you can
call these functions, you need a solid grasp of the data structures used in OpenCL
image processing.

NOTE Some OpenCL-compliant devices don’t support image processing. To
check for image support from the host, call clGetDeviceInfo with the
CL_DEVICE_IMAGE_SUPPORT option. If the result is CL_FALSE, the device
doesn’t support images. On the kernel, the __IMAGE_SUPPORT__ macro will
be set to 1 if images are supported. If not, the macro will be undefined.

6.1 Image objects and samplers
When it comes to processing images in OpenCL, the two primary data structures are
image objects and samplers. Image objects serve as the storage mechanism that host
applications use to transfer pixel data to and from a device. When the device receives
the image data, samplers tell it how to read color values.

 To keep things interesting, OpenCL gives different names to these structures
depending on whether they’re on the host or the device. On the host, image objects
are represented by cl_mem structures, and samplers are represented by cl_sampler
structures. On the device, image objects are image2d_t or image3d_t structures, and
samplers are sampler_t structures. This section discusses each of these data types and
how they’re processed on the host and device.

6.1.1 Image objects on the host: cl_mem

All memory objects are represented by the cl_mem data type, and there are no separate
types to distinguish buffer objects from image objects. Instead, to create a buffer object,
you can call clCreateBuffer or clCreateSubBuffer. To create an image object, you can
call clCreateImage2d or clCreateImage3d. Chapter 3 discussed the parameters of
these two functions, but to review, their signatures are as follows:

clCreateImage2D (cl_context context, cl_mem_flags opts,
   const cl_image_format *format, size_t width, size_t height,
   size_t row_pitch, void *data, cl_int *error)

clCreateImage3D (cl_context context, cl_mem_flags opts,
   const cl_image_format *format, size_t width, size_t height,
   size_t depth, size_t row_pitch, size_t slice_pitch,
   void *data, cl_int *error)



125Image objects and samplers
NOTE Chapter 3 explains the parameters of these functions in detail. Table 3.1
lists the different values available for the cl_mem_flags parameter and table 3.2
lists the values available for the cl_channel_type parameter. Figure 3.2
depicts how the geometric parameters (width, height, and depth) relate to the
image’s shape.

As an example, the following code creates a cl_image_format structure and uses it to
create a two-dimensional image object. Each pixel in the image contains 32 bits: eight
bits for the red, blue, green, and alpha channels each:

cl_image_format format;
format.image_channel_order = CL_RGBA;
format.image_channel_data_type = CL_UNSIGNED_INT8;

image = clCreateImage2D(context, CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR,
      &format, width, height, 0, (void*)data, &err);

Once an image object is created, it can be sent to a device as an argument of the ker-
nel function. This works just as it does for buffer objects. If you call clSetKernelArg
with the cl_mem object, the kernel function will be able to access the image as a regu-
lar argument. For example, the following code makes the preceding image object an
argument of the image_knl kernel:

clSetKernelArg(image_knl, 0, sizeof(cl_mem), &image);

When the image object is no longer needed, its memory can be deallocated with the
clReleaseMemObject function. In this example, the image memory can be freed by
calling clReleaseMemObject(image).

6.1.2 Samplers on the host: cl_sampler

Before a kernel can read image data, it needs certain pieces of information, such as
how the coordinates are formatted and how to interpret coordinates that go beyond
the image’s size. It also needs to know how to interpolate colors between pixel values.
All of this information is stored in a data structure called a sampler.

 Samplers can be created by the host application or within the kernel. Host appli-
cations create cl_sampler objects by calling clCreateSampler, whose signature is as
follows:

cl_sampler clCreateSampler(cl_context context, cl_bool normalized_coords,
   cl_addressing_mode addressing_mode, cl_filter_mode filter_mode,
   cl_int *errcode_ret)

The first and last parameters are straightforward, but the parameters in between are
completely new:

■ normalized_coords—Identifies whether coordinates are normalized (given
from 0.0–1.0)

■ addressing_mode—Identifies how the kernel should process coordinates
beyond the maximum value

■ filter_mode—Identifies how the kernel interpolates color values between pixels
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These parameters are important to understand. If you configure a sampler with the
wrong properties, the kernel will read the wrong colors from the image. 
NORMALIZED COORDINATES AND NORMALIZED COLORS

In general, kernels process images by reading color values from an image object, oper-
ating on the color values, and writing the color values to a second image object. A ker-
nel reads a color value at a given point by defining coordinates, and it can provide
these coordinates in one of three ways:

■ Integer—Coordinates are given in a vector of integers from 0 to MAX_DIM in
each dimension. If an image has dimensions 121 by 81, the color value at the
center can be accessed with coordinates (60, 40).

■ Floating-point—Coordinates are given in a vector of floats from 0.0 to
MAX_DIM in each dimension. If an image has dimensions 121 by 81, the color
value at the center can be accessed with coordinates (60.0, 40.0).

■ Normalized floating-point—Coordinates are given in a vector of floats from 0.0
to 1.0 in each dimension. If an image has dimensions 121 by 81, the color value
at the center can be accessed with coordinates (0.5, 0.5).

Normalized coordinates aren’t a concern when coordinates are given as integers, but
they become useful when you want to process an image with unknown dimensions.
This situation arises frequently when you work with OpenGL textures, which are dis-
cussed in chapter 16. To specify that coordinates should be read in normalized form,
set the second parameter of clCreateSampler to CL_TRUE. Otherwise, set this parame-
ter to CL_FALSE.

 It’s crucial to know the difference between normalized coordinates and normal-
ized colors. Color normalization removes the color’s intensity level by dividing each
component by the sum of the components. Intensity is the technical term for a color’s
brightness—color normalization makes colors equally vivid. If a pixel’s components are
given by (R, G, B), the normalized components are computed as follows:   

After these floating-point values are computed, the results are scaled to occupy the
pixel’s full integer range. For example, if a pixel contains 8-bit RGB components, each
normalized result is scaled to an integer value between 0 and 255.
ADDRESSING MODE

The third parameter of clCreateSampler has type cl_addressing_mode. This tells the
kernel how to read color values at coordinates beyond the image’s size. For example,
if an image’s size is 60 by 80, its pixel coordinates run from (0, 0) to (59, 79). If the

R R
R G B+ +
-------------------------=

G G
R G B+ +
-------------------------=

B B
R G B+ +
-------------------------=
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kernel asks for color values at (150, 200) or (–5, –10), the addressing mode will deter-
mine what color should be returned. If the addressing mode holds these color values
to those on the image’s border or a default border color, we say that it clamps the out-
put color. 

 The five possible values for cl_addressing_mode are as follows:

■ CL_ADDRESS_NONE—Color values beyond the image’s maximum dimensions are
undefined.

■ CL_ADDRESS_CLAMP—Colors beyond the maximum dimensions are set to a spe-
cific border color, which is black by default

■ CL_ADDRESS_CLAMP_TO_EDGE—Colors beyond the maximum dimensions are set
equal to the pixels at the edge of the image

■ CL_ADDRESS_REPEAT—In-range coordinates are repeated, so if one of the maxi-
mum dimensions is N, an out-of-range coordinate X is set equal to X mod N
(only available with normalized coordinates)

■ CL_ADDRESS_MIRRORED_REPEAT—Out-of-range coordinates are set equal to the
reflections of their corresponding in-range values (only available with normal-
ized coordinates)

The images in figure 6.1 demonstrate what happens when a kernel reads pixels at
coordinates beyond the image’s range. In each case, the coordinates run from below
the minimum and above the maximum. 

Original CL_ADDRESS_NONE CL_ADDRESS_CLAMP

CL_ADDRESS_CLAMP 
_TO_EDGE

CL_ADDRESS_REPEAT CL_ADDRESS
_MIRRORED_REPEAT

Border

Figure 6.1 Output images with different addressing modes
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INTERPOLATION AND FILTER MODE

If you specify coordinates with integers, you’ll always get the color value that corre-
sponds to the given pixel. But if coordinates are given as floating-point values, the
result will be an interpolated value. Interpolation is the process of computing an
unknown data point between known data points, and it’s crucial when images need to
be enlarged or shrunk. For example, if the user zooms in on an image, the renderer
will need to display pixels between those of the original image.

 OpenCL supports two methods of image interpolation: nearest-neighbor interpo-
lation and bilinear interpolation. The purpose of the filter_mode parameter of
clCreateSampler is to specify which interpolation method should be used. If
filter_mode is set to CL_FILTER_NEAREST, the sampler will compute in-between
color values using nearest-neighbor interpolation. If the parameter is set to
CL_FILTER_LINEAR, the sampler will use bilinear interpolation for 2D images and tri-
linear interpolation for 3D images. Section 6.3 discusses the nearest-neighbor inter-
polation and bilinear interpolation methods.

 The following code creates a cl_sampler whose coordinates are given in normal-
ized form. It clamps out-of-range coordinates to those at the image’s border and com-
putes in-between pixels using bilinear interpolation:

cl_sampler clCreateSampler(ctx, CL_TRUE, CL_ADDRESS_CLAMP_TO_EDGE,
   CL_FILTER_LINEAR);

After the host creates a sampler, the sampler can be made a kernel argument using
clSetKernelArg. This works just as it does for memory objects, except the last argu-
ment is a pointer to a cl_sampler instead of a cl_mem. The following code shows how
this works:

clSetKernelArg(kernel, 0, sizeof(cl_sampler), &ex_sampler);

The clReleaseSampler function, like all clReleaseXX functions, reduces the refer-
ence count of a sampler object. When the reference count goes to 0, the structure is
deallocated. The function clRetainSampler increases the count of a cl_sampler. 

6.1.3 Image objects on the device: image2d_t and image3d_t

When a host transfers an image object to a device, the device’s kernel function will
access the image object as one of its parameters. The parameter’s data type depends
on the image’s dimensionality. A two-dimensional image object will be received as an
image2d_t and a three-dimensional image object will be received as an image3d_t.

 Buffer object parameters can take __global or __kernel modifiers that designate
where the buffer’s object should be stored on the device. But because many devices
store images in dedicated memory, image2d_t and image3d_t parameters are pre-
ceded by __read_only or __write_only. That is, an image object can read from or
written to, but not both.

NOTE The default modifier for image objects is __read_only. The leading
underscores can be omitted.
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An example will help clarify how kernels access images. Suppose you want a kernel to
read from a three-dimensional image called my_mpeg and write to a two-dimensional
image called my_jpg. After creating the two cl_mem structures with clCreateImage3D
and clCreateImage2D, your host application might use the following code to make
them into kernel arguments:

clSetKernelArg(kernel, 0, sizeof(cl_mem), &my_mpeg);
clSetKernelArg(kernel, 1, sizeof(cl_mem), &my_jpg);

Let’s say the name of the function is image_proc and its only arguments are the image
objects and the sampler. The kernel declaration could be given as follows:

__kernel void image_proc(read_only image3d_t empg,
                         write_only image2d_t ejpg)

Note that these arguments aren’t pointers. Unlike data in a buffer object, image data
isn’t meant to be accessed directly using memory operations. Instead, OpenCL provides
a range of functions that read and write image data, and we’ll discuss these shortly.

6.1.4 Samplers on the device: sampler_t

As discussed earlier, host applications can transfer cl_sampler structures to the kernel
by calling setKernelArg. The kernel receives these arguments as sampler_t struc-
tures, and unlike image objects, you can place them in global or constant memory
using the __global or __constant modifier.

 For example, if the host transfers a sampler argument to a kernel called
image_proc as its only parameter, the kernel declaration can be coded as follows:

__kernel void image_proc(__global sampler_t smplr)

Thankfully, OpenCL provides an easier way to work with samplers. With a single state-
ment in the kernel, you can create a sampler_t structure and set its properties. This
makes it unnecessary to call clSetKernelArg. This statement takes the following form:

const sampler_t sampler_name = sampler_properties

The sampler_properties expression configures the properties of the sampler, which
tell the kernel how to read data from an image object. The names of these properties
are similar to the parameters of clCreateSampler. On the kernel, sampler properties
are specified with the following values:

■ CLK_NORMALIZED_COORDS_TRUE or CLK_NORMALIZED_COORDS_FALSE—Specifies
whether image coordinates are normalized (0.0–1.0). By default, coordinates
are assumed to be normalized.

■ CLK_ADDRESS_CLAMP, CLK_ADDRESS_CLAMP_TO_EDGE, CLK_ADDRESS_REPEAT,
CLK_ADDRESS_MIRRORED_REPEAT, or CLK_ADDRESS_NONE—Defines what color val-
ues are returned when coordinates exceed the image boundaries.

■ CLK_FILTER_NEAREST or CLK_FILTER_LINEAR—Identifies how color values are
interpolated between pixels.
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As an example, the sampler_t defined in the following statement tells the kernel
that coordinates are normalized, coordinates outside the boundaries should be
clamped to the boundary values, and the color at a point should be set to that of the
nearest pixel:

__constant sampler_t sampler = CLK_NORMALIZED_COORDS_TRUE |
                               CLK_ADDRESS_CLAMP_TO_EDGE |
                               CLK_FILTER_NEAREST;

Once you’ve created a sampler, you can use it in one of OpenCL’s many functions for
reading image data. The next section discusses these and other image-related
functions.

6.2 Image processing functions
Once you understand the basics of image objects and samplers, you’re ready to invoke
the functions that access them in code. OpenCL provides a number of image process-
ing functions that can be run inside kernels, and they fall into three categories:

■ Read functions—Return color values at a given coordinate
■ Write functions—Set color values at a given coordinate
■ Information functions—Provide data about the image object, such as its dimen-

sions and pixel properties

This section discusses the functions in each of these categories. Afterward, we’ll exam-
ine an example application that reads pixels from one image, modifies their values,
and writes the modified values to a second image.

6.2.1 Image read functions

The functions in table 6.1 read vectors from image objects, and they all have essen-
tially the same parameters. The differences between them involve whether the
returned vector contains floating-point values or integers, and whether the image
object is two-dimensional or three-dimensional.

Table 6.1 Kernel functions for reading image data

Function Purpose

float4 read_imagef(image2d_t img,
   sampler_t sampler, int2/float2 coord)

Reads a float4 vector from a 2D image 
at the location given by coord

int4 read_imagei(image2d_t img,
   sampler_t sampler, int2/float2 coord)

Reads an int4 vector from a 2D image at 
the location given by coord

uint4 read_imageui(image2d_t img,
   sampler_t sampler, int2/float2 coord)

Reads a uint4 vector from a 2D image 
at the location given by coord

float4 read_imagef(image3d_t img,
   sampler_t sampler, int4/float4 coord)

Reads a float4 vector from a 3D image 
at the location given by coord



131Image processing functions
Each of these functions accepts an image object, a sampler, and a vector containing
coordinates. Each returns a vector containing pixel data, and the vector’s data type
depends on the function name: read_imagef returns a float4, read_imagei returns
an int4, and read_imageui returns a uint4. If the image object is an image2d_t, the
coordinates must be given in an int2 or float2. If the image object is an image3d_t,
the coordinates must be given in an int4 or float4.

 For example, suppose you want to read the color from a two-dimensional image
object called image at coordinates (3, 4). If you want the color value as a float4 vec-
tor, you’d make the following function call:

float4 color = read_imagef(image, sampler, (int2)(3, 4));

The range of values returned by read_imagef is determined by the image format. If
the pixels are given in an unsigned normalized format (CL_UNORM_INT8,
CL_UNORM_INT16, CL_UNORM_INT101010, CL_UNORM_SHORT565, or CL_UNORM_SHORT555),
the function will return values between 0.0 and 1.0. If pixels are given in a signed nor-
malized format (CL_SNORM_INT8 or CL_SNORM_INT16), read_imagef will return values
between –0.5 and 0.5. If pixels are given in CL_HALF_FLOAT or CL_FLOAT, the function
will return regular floating-point values.

 After you’ve read a vector from an image object, it’s important to know how the
color components are contained within the vector. For example, suppose the image
has the CL_R channel order (single color: red) and you read a uint4 vector. Which of
the vector’s components is the red channel? What about the channels in a grayscale
image? Table 6.2 answers these questions for each channel order supported by
OpenCL. R, G, B, and A correspond to red, green, blue, and alpha channels, and x
refers to padding. 

int4 read_imagei(image3d_t img,
   sampler_t sampler, int4/float4 coord)

Reads an int4 vector from a 3D image at 
the location given by coord

uint4 read_imageui(image3d_t img,
   sampler_t sampler, int4/float4 coord)

Reads a uint4 vector from a 3D image 
at the location given by coord

Table 6.2 Color vector returned by read_image

Channel order Vector storage (integer)

CL_R, CL_Rx (R, 0, 0, 1)

CL_A (0, 0, 0, A)

CL_RG, CL_RGx (R, G, 0, 1)

CL_RA (R, 0, 0, A)

Table 6.1 Kernel functions for reading image data (continued)

Function Purpose
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The numbers in this table are all integers, but if the vector is returned by read_imagef,
its components will be floating-point. For example, if an image object’s pixels have the
CL_RG format, the vector returned by read_imagef will contain [R, G, 0.0, 1.0], where
R and G are the red and green components of the pixel. 

6.2.2 Image write functions

In addition to reading pixel data, OpenCL functions also make it possible to write
pixel data to an image object. Table 6.3 lists each of them, and unlike the functions in
the preceding table, these don’t require sampler objects.

As shown, the color value can be given as a vector containing floats, ints, or uints.
In contrast, the coordinates must always be given as signed integers.

 Writes to three-dimensional image objects are not supported by default. This capa-
bility is provided through the cl_khr_3d_image_writes extension. Therefore, if you
intend to modify data in an image3d_t, you need to check for this extension and add
the following line to your kernel:

#pragma OPENCL EXTENSION cl_khr_3d_image_writes: enable

CL_RGB, CL_RGBx (R, G, B, 1)

CL_RGBA, CL_BGRA, CL_ARGB (R, G, B, A)

CL_INTENSITY (I, I, I, I)

CL_LUMINANCE (L, L, L, 1)

Table 6.3 Kernel functions for writing data to images

Function Purpose

void write_imagef(image2d_t img,
   int2 coord, float4 color)

Writes a float4 color to a 2D image at the location 
given by coord

void write_imagei(image2d_t img,
   int2 coord, int4 color)

Writes an int4 color to a 2D image at the location 
given by coord

void write_imageui(image2d_t img,
   int2 coord, uint4 color)

Writes an uint4 color to a 2D image at the location 
given by coord

void write_imagef(image3d_t img,
   int4 coord, float4 color)

Writes a float4 color to a 3D image at the location 
given by coord

void write_imagei(image3d_t img,
   int4 coord, int4 color)

Writes an int4 color to a 3D image at the location 
given by coord

void write_imageui(image3d_t img,
   int4 coord, uint4 color)

Writes a uint4 color to a 3D image at the location 
given by coord

Table 6.2 Color vector returned by read_image (continued)

Channel order Vector storage (integer)
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To specify a color to be written, you need to use the vector formats listed in the second
column of table 6.2. For example, if the RGB components of a pixel are [132, 15, 44],
you can write the pixel data to a CL_RGB image called img with the following code:

write_imageui(img, coord, (uint4)(132, 15, 44, 0));

If you don’t know the channel order of an image’s pixels, you can’t write data to its
pixels. Instead, you need OpenCL’s functions for obtaining image information, which
form the topic of the next discussion. 

6.2.3 Image information functions

The functions in table 6.4 return information about the structure and content of an
image. More specifically, they make it possible to determine an image’s dimensions
and the properties of its pixels.

These functions are easy to use and understand. The only difficulty involves remember-
ing the difference between channel data type and channel order—channel data type
tells you how the bits in each channel are formatted, and channel order tells you what
channels are present and the order in which they’re stored. Both of these values are
provided as ints, and the cl.h header file shows the constants represented by these ints.

6.2.4 A simple example

Now that we’ve looked at the relevant data types and functions, it’s time to see how
they’re used in practice. The example application in this discussion creates one work-
item for each pixel of the 4-by-4 image shown on the left side of figure 6.2. Each

Table 6.4 Kernel functions for obtaining image information

Function Purpose

int get_image_width(
   image2d_t/image3d_t image)

Returns the width of the image

int get_image_height(
   image2d_t/image3d_t image)

Returns the height of the image

int get_image_depth(image3d_t image) Returns the depth of the 3D image

int2 get_image_dim(image2d_t image) Returns the width and height of a 2D image as 
an int2 vector

int4 get_image_dim(image3d_t image) Returns the width, height, and depth of a 3D 
image as an int2 vector

int get_image_channel_data_type(
   image2d_t/image3d_t image)

Returns the channel data type of the image 
(CLK_UNORM_INT8, CLK_SIGNED_INT32, 
and so on)

int get_image_channel_order(
   image2d_t/image3d_t image)

Returns the channel of the image (CLK_A, 
CLK_RGB, CLK_INTENSITY, and so on)
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work-item reads the color value of its corresponding pixel, subtracts a number, and
writes the new value to a second image. The right-hand side of figure 6.2 shows what
the second image looks like.

 The following code implements this darkening process. Notice that the kernel
doesn’t accept a sampler as one of its function arguments. Instead, it creates a
sampler_t structure called sampler by declaring it before the function.

__constant sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE |
      CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST;

__kernel void simple_image(read_only image2d_t src_image,
                           write_only image2d_t dst_image) {

   uint offset = get_global_id(1) * 0x4000 + get_global_id(0) * 0x1000;

   int2 coord = (int2)(get_global_id(0),   
                       get_global_id(1));               
   uint4 pixel = read_imageui(src_image,   
                      sampler, coord);     

   pixel.x -= offset;                   
   write_imageui(dst_image, coord, pixel);   
}

Each work-item reads a color value as a uint4 vector and subtracts a value from the
vector’s first component. Because the image is grayscale, this is the only component
that needs to be changed. The value subtracted from the pixel increases with
the work-item’s ID, and this is why the pixels get darker from the upper left to the
lower right.

 By default, the host application reads input image data from blank.png and writes
the output data to output.png. To read PNG (Portable Network Graphics) images, the
code relies on the open-source PNG library, called libpng. The routines in this library
make it possible to read, analyze, and modify PNG images. GNU users can obtain lib-
png from the home site at http://libpng.sourceforge.net/index.html. Windows users
can obtain the library from http://gnuwin32.sourceforge.net/packages/libpng.htm. 

Listing 6.1 Simple image processing: simple_image.cl

Figure 6.2 Selective 
image darkening (grid 
lines added for clarity)

Read input 
pixel

Modify/write 
output pixel

http://libpng.sourceforge.net/index.html
http://gnuwin32.sourceforge.net/packages/libpng.htm
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 This kernel changes the image’s brightness by subtracting a constant. Similarly, an
image’s contrast can be altered by multiplying its color values by a constant. The next
section explores another important operation: how to enlarge and reduce images
using interpolation. 

6.3 Image scaling and interpolation
In addition to adjusting brightness and contrast, one of the most common image pro-
cessing routines is scaling: reducing or enlarging the size of an image. Image enlarge-
ment is the greater problem because it involves adding pixels instead of removing
them. If an N * N image is enlarged k times, the result is a kN * kN image. The central
question is this: how can you obtain the color values of the extra (k 2–1)N 2 pixels in
the enlarged image?

 One method is to repeat the pixels from the original image. This is easy to under-
stand, and this method is called nearest-neighbor interpolation. But you can also draw
lines connecting the centers of pixels and use those lines to approximate points in
between. This method, called bilinear interpolation, requires more work but produces
better-looking results.

 This section explores both of these methods, and thankfully, we don’t need to
write much code. If it’s properly configured, a sampler can tell the kernel to perform
nearest-neighbor interpolation (CLK_FILTER_NEAREST) or bilinear interpolation
(CLK_FILTER_LINEAR) automatically.

NOTE Pixel interpolation is performed only if an image’s coordinates are
given as floating-point values. If coordinates are given as integers, the result
will always be a pixel’s exact color.

6.3.1 Nearest-neighbor interpolation

If a sampler’s filtering property is set to CLK_FILTER_NEAREST, it will interpolate
between points using nearest-neighbor interpolation. This means that if a point is
closer to pixel A than any other pixel, the sampled color at that point will be set equal
to the color of pixel A.

 If this method is used to enlarge an image, the resulting image will contain only
the colors in the original. If an image is enlarged k-fold, each of its colors will be
repeated k times. This is shown in figure 6.3, which depicts four adjacent pixels
repeated three times.

Original data Interpolated pixels

Figure 6.3 Nearest-neighbor data expansion



136 CHAPTER 6 Image processing
Nearest-neighbor interpolation executes quickly because it doesn’t require any math-
ematical computation. But when used for enlargement, the result tends to look grainy
and pixelated. This is shown in figure 6.4.

 The problem with the enlarged image is the abrupt changes between pixel values.
Even in grayscale, it’s clear that the car’s colors change discontinuously from one
point to the next. 

6.3.2 Bilinear interpolation

We can improve upon nearest-neighbor interpolation by employing bilinear interpo-
lation, which can be configured for samplers by setting CLK_FILTER_LINEAR. Using
this method, if a point lies between pixels in a rectangular image, its sampled color
will be set equal to a linear combination of the pixels’ colors.

 To understand how this sampled color is computed, it helps to start with the one-
dimensional case. Suppose point P lies on a line between two adjacent pixels, A and B.
To identify the location of P relative to A and B, we use a parameter called t. The distance
from P to the center of A is given by t, and the distance from P to the center of B is given
by 1 – t. The linear interpolation sets the color at P with the following equation:

It should be clear that if t = 1, the color at P equals the color at A. Similarly, if t = 0, the
color at P equals the color at B. If t = 0.5, the resulting color will be an average of the
color of A and the color of B. The resulting color value from A to B follows a straight
line, and figure 6.5 depicts the lines used to interpolate values between four pixels.
Note the difference between this data expansion and that shown in figure 6.3.

Figure 6.4 Image enlargement using nearest-neighbor interpolation

Color P  t Color A  1 t–  Color B +=

Original data Interpolated pixels

Figure 6.5 Data expansion using linear interpolation
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In two dimensions, this process is called bilinear
interpolation. Here, we assume that point P lies
between four adjacent pixels: A, B, C, and D. With
this arrangement, each point needs two interpola-
tion parameters, t1 and t2. Figure 6.6 shows the
relationship between the points, pixels, and inter-
polation parameters.

 You can compute the color at P by extending the
preceding equation to two dimensions. The new
equation is as follows:   

You can see that if t1 = 1 and t2 = 1, the color at P equals the color at A. If t1 = 0 and t2

equals 0, the color at P equals the color at D. If t1 and t2 both equal 0.5, the color at P
equals the average of the colors A, B, C, and D.

 Figure 6.7 shows what happens to the sports car when the image is enlarged using
bilinear transformation. Because of the lines drawn between pixels, the enlarged
image looks less pixelated than that shown in figure 6.4.

 This is a significant improvement over nearest-neighbor interpolation, and if
you’re using a sampler to interpolate between floating-point values, the
CLK_FILTER_LINEAR option will give you better results than CLK_FILTER_NEAREST. But
there are three points to keep in mind when setting this option:

■ The CLK_FILTER_LINEAR option is only available if coordinates are given as
floating-point values.

■ This option is only available for read_imagef. If read_imageui or read_imagei
are called with a sampler set to CLK_FILTER_LINEAR, the results will be undefined.

■ Some OpenCL-compliant devices don’t support bilinear interpolation. In this
case, interpolation may be emulated in hardware.

Color P  t1 t2 Color A =

1 t1–  t2 Color B +

t1 1 t2–  Color C +

1 t1–  1 t2–  Color D +

Figure 6.7 Image enlargement using bilinear interpolation
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Figure 6.6 Pixels and points in 
bilinear interpolation
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6.3.3 Image enlargement in OpenCL

If an image with dimensions w by h is enlarged k times, the resulting image will con-
tain k2wh pixels. The sampler’s interpolation setting defines whether the color values
of the additional pixels are obtained using nearest-neighbor interpolation or bilinear
interpolation.

 The code in the following listing creates a sampler with the CLK_FILTER_NEAREST
setting, so it will choose color values using nearest-neighbor interpolation.

constant sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE
       | CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST;

__kernel void interp(read_only image2d_t src_image,
                     write_only image2d_t dst_image) {
   float4 pixel;

   float2 input_coord = (float2)
          (get_global_id(0) + (1.0f/(SCALE*2)), 
           get_global_id(1) + (1.0f/(SCALE*2)));           
   int2 output_coord =                          
      (int2)(SCALE*get_global_id(0),            
      SCALE*get_global_id(1));                  

   for(int i=0; i<SCALE; i++) {                    
      for(int j=0; j<SCALE; j++) {                            
         pixel = read_imagef(src_image, sampler,   
           (float2)(input_coord +                  
           (float2)(1.0f*i/SCALE, 1.0f*j/SCALE))); 
         write_imagef(dst_image, output_coord +    
           (int2)(i, j), pixel);                   
      }                                            
   }                                               
}

If SCALE is set to k, each work-item will read k2

values from an input image and write k2 values
to the output image. These input coordinates
are given as floating-point values, and their
locations must be spread evenly across the
image. Figure 6.8 demonstrates how a work-
item reads 25 values within a pixel when the
scaling factor is set to 5.

 If nearest-neighbor interpolation is used,
all 25 read operations will return the same
result: the color value of the pixel. But if
bilinear interpolation is used, the read opera-
tions will return a value somewhere between
the pixel’s color value and that of the neigh-
boring pixel. 

Listing 6.2 Image interpolation: interp_image.cl
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coordinates
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Figure 6.8 Coordinate placement 
within a pixel
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6.4 Summary
High-speed image processing is one of OpenCL’s most important strengths, and the
OpenCL standard defines a number of image-related data types and functions. If a
kernel processes images, it receives the image data as an image object, which can be
an image2d_t or an image3d_t. To read data from the image object, the kernel needs
a sampler_t structure. This controls how the kernel evaluates coordinates and inter-
polates data.

 OpenCL’s image processing functions fall into three categories: those that read
data from an image object, those that write data to an image object, and those that
access information related to the image, such as its dimensions and pixel properties.
The read functions require a sampler, and the coordinates can be given as integer or
floating-point values. The write functions, however, require integer coordinates. In
addition, three-dimensional images can’t be written to unless the device supports the
cl_khr_3d_image_writes extension.

 Samplers play an important role in image processing by configuring how color
data is interpolated between pixels. OpenCL provides two interpolation methods:
nearest-neighbor interpolation is set with CLK_FILTER_NEAREST and bilinear interpola-
tion is set with CLK_FILTER_LINEAR. When used to scale images, nearest-neighbor
interpolation repeats pixels in the original image. This method executes quickly, but
bilinear interpolation generally produces better results. Bilinear interpolation com-
putes colors between pixels using a line that connects the pixels’ centers. This inter-
polation method is only available if coordinates and color values are given in floating-
point form.

 In the next chapter, we’ll examine some of OpenCL’s more advanced capabilities.
First, we’ll look at OpenCL events and how they can be used to profile kernel execution.
Then we’ll explore how OpenCL makes it possible to synchronize kernel execu-
tion among work-items.



Events, profiling,
 and synchronization
Preceding chapters have dealt with the what and how of OpenCL operations; this
chapter deals with when. We’re not going to look at new types of operations, but
instead you’ll learn how to monitor operations we’ve already encountered.

 The concept of an event is central to this discussion. In OpenCL, an event is a
data structure that corresponds to an occurrence. One event might monitor the
completion of a data transfer operation and another might monitor the execution
of a kernel. You can use events in three main ways:

■ Host notification—An event can notify the host that a command has com-
pleted its execution on a device

■ Command synchronization—An event can force commands to delay their exe-
cution until another event’s occurrence has taken place

■ Profiling—An event can monitor how much time a command takes to execute

This chapter covers
■ Configuring events and event-handling
■ Using profiling to measure processing time
■ Synchronizing work-item execution
140
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The third use is particularly interesting. Profiling is a vital tool in high-performance
application development because it allows you to evaluate the performance of comput-
ing hardware and coding methods. With profiling, you can compare devices, kernels,
and data partitioning strategies. This chapter will not only explain profiling; it will also
show how profiling can be used to test different aspects of OpenCL’s operation.

 The last part of this chapter examines work-item synchronization. Normally, when
work-items are generated for a kernel, they execute in a disordered, nondeterminis-
tic fashion. This is fine when work-items access different memory regions, but it
causes problems when work-items need to process the same data. OpenCL provides
capabilities for ordering the processing of work-items, and we’ll look at these capabil-
ities in detail.

 But to start, this chapter will discuss the topic of OpenCL host notification events.
These allow host applications to monitor commands executing on a device.

7.1 Host notification events
Every OpenCL event corresponds to an occurrence, and the majority of these occur-
rences involve commands and command queues. So before we continue, let’s review
these important topics. When a host wants to send a task to a device, it creates a com-
mand queue and dispatches a command to the queue. This command may involve
executing a kernel, transferring data between the host and device, or mapping device
memory to host memory. Chapters 2 and 3 discuss commands and command queues
in detail.

 After the host enqueues a command, it has no control over how the command will
be processed, but it can receive notification when the command completes its execu-
tion. This notification is made possible by events, which are represented in code by
cl_event data structures. The goal of this section is to explain how cl_events can be
configured to execute a host function when a command completes.

 An example will show how host notification works. Suppose you want to transfer a
great deal of data from a device to the host using clEnqueueReadBuffer. This may
take some time, so you make the function nonblocking by setting its third argument
to CL_FALSE. Because clEnqueueReadBuffer returns immediately, the host can per-
form other tasks while the data transfer continues.

 When the data transfer is complete, you may want the host application to respond
by processing the data. To make this possible in code, you need to declare a cl_event
and configure two associations. First, you need to associate the event with the data
transfer command. Then you need to associate the event with a function to be called
on the host when the transfer command finishes. This type of function is called a call-
back function.

7.1.1 Associating an event with a command

Chapters 2 and 3 discussed the many different functions that dispatch commands to a
command queue. Their names start with clEnqueue and they all accept a pointer to a
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cl_event as their final argument. For example, clEnqueueTask enqueues a command
that tells the device to execute a kernel. Its signature is as follows:

cl_int clEnqueueTask (cl_command_queue queue, cl_kernel kernel,
   cl_uint num_events, const cl_event *wait_list, cl_event *event)

In all of our example code so far, we’ve set the last argument to NULL. But if this argu-
ment points to a valid cl_event, functions like clEnqueueTask will associate the
cl_event with the enqueued command. For example, the following code associates ev
with the function’s kernel-execution command:

cl_event ev;
clEnqueueTask(queue, kernel, 0, NULL, &ev);

Note that you don’t have to call a separate function to create the cl_event. Once you
declare the structure, you can use it in clEnqueueTask or any command-enqueuing
function. 

 As clEnqueueTask enqueues the kernel-execution command, it initializes ev and
associates it with the new command. If ev has a callback function, the function will
be invoked when ev’s command completes its execution. We’ll look at callback func-
tions next.

7.1.2 Associating an event with a callback function

When you associate a callback function with an event, the function will exe-
cute when the command associated with the event completes its operation. The
clSetEventCallback function creates this association. Its signature is as follows:

cl_int clSetEventCallback(cl_event event, cl_int callback_type,
   void (CL_CALLBACK  *func_name) (cl_event event, cl_int status,
   void *data), void *data)

The second argument, callback_type, identifies the type of command status you’re
interested in monitoring. At the time of this writing, the only accepted value is
CL_COMPLETE. The third argument is a pointer to a callback function, and the fourth
points to data that will be sent to the callback function when it’s invoked. For exam-
ple, the following code associates the callback function process with the event ev:

clSetEventCallback(ev, CL_COMPLETE, &process, NULL);

Now let’s look at coding the callback function. All event-related callback functions
must return void, and they must all accept the same three argument types. The
required callback signature is as follows:

void CL_CALLBACK func_name(cl_event event, cl_int status, void *data)

The first argument provides the cl_event data structure that triggered the callback,
and the second presents the event’s status. The last argument points to the data that
was defined as the last argument of clSetEventCallback. CL_CALLBACK is a macro that
evaluates to _stdcall on Windows systems. On other operating systems, this macro
is blank.
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 The following listing presents code for a simple callback function called process,
which interprets the incoming data as text and prints the text. Inside the main func-
tion, the code declares a cl_event and associates it with process:

void CL_CALLBACK process(cl_event event, cl_int status, void *data) {
   printf("%s\n", (char*)data);
}

int main() {
   ...
   cl_event ev;
   char[] msg = "Hello world!";
   ...
   cl_int clSetEventCallback(ev, CL_COMPLETE, &process, (void*)msg);
   ...
}

This code configures ev so that process will be called when ev’s corresponding com-
mand completes. Next, we’ll look at a full example that demonstrates how host notifi-
cation works. 

7.1.3 A host notification example

The following code creates and configures two callback events, kernel_event and
read_event. The first is associated with a kernel-execution command and the second
is associated with a command that reads data from the device. These events are also
associated with callback functions: kernel_complete and read_complete.

NOTE The clSetEventCallback function is new in OpenCL 1.1 and won’t
compile on systems that don’t support this standard.

...

void CL_CALLBACK kernel_complete(cl_event e, cl_int status, void* data) {
   printf("%s", (char*)data);
}

void CL_CALLBACK read_complete(cl_event e, cl_int status, void* data) {

   int i;
   cl_bool check;
   float *buffer_data;

   buffer_data = (float*)data;
   check = CL_TRUE;
   for(i=0; i<4096; i++) {
      if(buffer_data[i] != 5.0) {
         check = CL_FALSE;
         break;
      }
   }

Listing 7.1 Basic callback configuration

Listing 7.2 Host notification: callback.c
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   if(check)
      printf("The data has been initialized successfully.\n");
   else
      printf("The data has not been initialized successfully.\n");
}

int main() {

   char *kernel_msg;
   float data[4096];
   cl_mem data_buffer;
   cl_event kernel_event, read_event;

   ...

   err = clEnqueueTask(queue, kernel, 0,       
            NULL, &kernel_event);                  
   if(err < 0) {
      perror("Couldn't enqueue the kernel");
      exit(1);
   }

   err = clEnqueueReadBuffer(queue, data_buffer,
            CL_FALSE, 0, sizeof(data), &data,             
            0, NULL, &read_event);              
   if(err < 0) {
      perror("Couldn't read the buffer");
      exit(1);
   }

   kernel_msg = "The kernel finished successfully.\n\0";
   err = clSetEventCallback(kernel_event, CL_COMPLETE,
         &kernel_complete, kernel_msg);                     
   if(err < 0) {
      perror("Couldn't set callback for event");
      exit(1);
   }
   clSetEventCallback(read_event, CL_COMPLETE,
         &read_complete, data);                        
   ...
   clReleaseEvent(read_event);
   clReleaseEvent(kernel_event);
   ...
}

It’s important to note that clSetEventCallback must be called after the command-
enqueuing functions. If you reverse the order, you’ll receive a segmentation fault.

 It’s also important to note that the clEnqueueTask and clEnqueueReadBuffer
functions are both nonblocking, which means they don’t wait for their commands to
finish executing. You can test this by adding a printf statement before the end of the
main function. This will be called before either callback function because the two
commands are still executing on the device. 

 We’ve examined how events can notify a host of a command’s execution, but this
isn’t their only purpose. Events can also be used to establish order among executing
commands. We’ll look at this in the next section.

Associate kernel_event 
with command

Associate read_event 
with command

Set kernel_event 
callback function

Set read_event 
callback function
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7.2 Command synchronization events
By default, command queues process commands in the order in which they’re
enqueued. But if commands are dispatched to different command queues in a con-
text, there is no way of telling what order they’ll be executed in. With events, however,
you can establish your own order for the commands’ execution. That is, you can force
one or more commands to wait until a set of events have completed. These sets of
delaying events are called wait lists.

 I’ve said that events correspond to occurrences, but now I need to be more spe-
cific. If an event is associated with a command’s execution, it’s a command event. If an
event is associated with an occurrence within a host application, it’s a user event. This
section discusses both types of events and then examines three other functions that
synchronize commands.

7.2.1 Wait lists and command events

As discussed earlier, if you set the last argument of an enqueuing function, such as
clEnqueueTask, to point to a cl_event, that event will be associated with the
enqueued command. We’ll call this type of event a command event. You’ve seen how
this cl_event can be associated with a callback function, but you can also add it to the
wait list of another command.

 Every OpenCL command has a wait list made up of cl_event structures. If a com-
mand’s wait list is NULL, it can start executing as soon as it reaches the end of the com-
mand queue. If the command’s wait list isn’t NULL, then for every cl_event in the list,
the command must halt until the event’s corresponding occurrence has completed.

 To configure a command’s wait list, you need to set the third-to-last and second-to-
last arguments in the function that enqueues the command. If you look back at the
signature of clEnqueueTask, you’ll see that these arguments are as follows:

■ cl_uint num_events—Number of cl_event structures in the command’s wait
list

■ const cl_event *wait_list—Pointer to the cl_events in the wait list

An example will clarify how wait lists are configured. Suppose you want the execution
of kernel_c in queue_c to start after kernel_a in queue_a and kernel_b in queue_b
have finished executing. The following code shows how this can be accomplished:

cl_event kernel_event[2];
clEnqueueTask(queue_a, kernel_a, 0, NULL, &kernel_event[0]);
clEnqueueTask(queue_b, kernel_b, 0, NULL, &kernel_event[1]);
clEnqueueTask(queue_c, kernel_c, 2, kernel_event, NULL);

In this case, the wait list of the last command consists of two cl_events. The first
cl_event corresponds to the execution of kernel_a and the second corresponds to
the execution of kernel_b. Because these events are in the wait list, kernel_c’s execu-
tion will wait until the other kernels’ executions have completed. Figure 7.1 depicts
this graphically. 
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In this figure, the dotted lines surround the commands’ wait lists. Because the wait
lists of the commands in queue A and queue B are NULL, the commands can execute
without delay. But the command in queue C must wait until the other two commands
have finished. 

7.2.2 Wait lists and user events

The preceding discussion explained how to stall commands with command events. If
the preceding discussion was clear, you’ll have no trouble understanding how to stall
commands with user events. Once again, the goal is to halt a command’s execution by
placing cl_event structures in its wait list.

 There’s a large difference between command events and user events. Command
events correspond to commands executing on the device, but a user event is generated
by the host application. With a user event, you can stall a command’s execution from the
host, not the device. (I think host event would be a better term, but no one listens to me.)

 As its name implies, the clCreateUserEvent function creates user events. This is a
simple function and its signature is as follows:

cl_event clCreateUserEvent(cl_context context, cl_int *err)

The cl_event returned by this function can be placed in a command’s wait list. You
don’t have to identify a command queue, so you can use the same user event with mul-
tiple devices.

 If you add a user event to a command’s wait list, the execution of the command
will halt until the host application updates the event’s status. This is accomplished by
calling clSetUserEventStatus, whose signature is as follows:

cl_int clSetUserEventStatus(cl_event event, cl_int status)

Kernel_C
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Queue BQueue A

Device A Device C Device B

cl_eventcl_event

Figure 7.1 Wait lists and command synchronization
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At the time of this writing, the status parameter can only be set to CL_COMPLETE
(which evaluates to 0) or a negative value. If status is set to CL_COMPLETE, any com-
mands waiting on the user event will be allowed to execute. If status is set to a negative
number, any commands waiting on the user event will be terminated.

 As an example, the following code creates a user event e and configures it to stall
the execution of a kernel. Then, at a later point in the code, the host application
allows the kernel to execute by calling clSetUserEventStatus with CL_SUCCESS:

cl_event e;
...
e = clCreateUserEvent(context, &err);
...
clEnqueueTask(queue, kernel, 1, &e, NULL);
...
clSetUserEventStatus(e, CL_SUCCESS);
...
clReleaseEvent(e);

Listing 7.3 demonstrates how user events, command events, and callback functions
can work together. The host application sends two commands to the device: one that
executes a kernel and one that reads the kernel’s output data. The read command
stalls until the kernel-execution command is finished, and the kernel-execution com-
mand stalls until a user event has completed. Once the user presses a key, the user
event completes and both commands execute. When the read command finishes, it
invokes the callback function read_complete.

NOTE Like the clSetEventCallback function discussed earlier, user events
are new in OpenCL 1.1. This code will compile only on devices that support
the 1.1 standard.

void CL_CALLBACK read_complete(cl_event e, 
      cl_int status, void* data) {      

   float *float_data = (float*)data;
   printf("New data: %4.2f, %4.2f, %4.2f, %4.2f\n",
      float_data[0], float_data[1], float_data[2], float_data[3]);
}

int main() {
   ...
   cl_event user_event, kernel_event, read_event;
   ...
   user_event = clCreateUserEvent(context, &err);       
   if(err < 0) {
      perror("Couldn't enqueue the kernel");
      exit(1);
   }

   err = clEnqueueTask(queue, kernel, 1, &user_event,
         &kernel_event);                                     
   if(err < 0) {

Listing 7.3 Stalling commands with user events: user_event.c
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Enqueue kernel 
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      perror("Couldn't enqueue the kernel");
      exit(1);
   }

   err = clEnqueueReadBuffer(queue, data_buffer,
         CL_FALSE, 0, sizeof(data), data, 1,          
      &kernel_event, &read_event);              
   if(err < 0) {
      perror("Couldn't read the buffer");
      exit(1);
   }

   err = clSetEventCallback(read_event, CL_COMPLETE,
         &read_complete, data);                         
   if(err < 0) {
      perror("Couldn't set callback for event");
      exit(1);
   }

   sleep(1);    
   printf("Old data: %4.2f, %4.2f, %4.2f, %4.2f\n",
      data[0], data[1], data[2], data[3]);
   printf("Press ENTER to continue.\n");
   getchar();

   clSetUserEventStatus(user_event, CL_SUCCESS);         

   clReleaseEvent(read_event);                     
   clReleaseEvent(kernel_event);                
   clReleaseEvent(user_event);                     
   ...
}

The clEnqueueReadBuffer function B is set to be nonblocking, and this is impor-
tant. If the blocking parameter were changed to CL_TRUE, the function wouldn’t
complete until the read operation is finished, but the read command stalls on the
kernel-execution command, which won’t execute until the user event completes. If
clEnqueueReadBuffer is waiting, the code following this function wouldn’t run and
the entire application would hang. 

7.2.3 Additional command synchronization functions

The preceding discussion explained how to force commands to stall until an individ-
ual command completes its execution. But you can also stall commands until a group
of commands have completed their execution. The functions discussed in this section
make this synchronization possible by dispatching three new types of commands:
marker commands, wait commands, and barrier commands.

MARKER COMMANDS

We’ve already discussed how to associate an event with a command’s execution. The
clEnqueueMarker function, however, enqueues a command called a marker command
and associates an event with the execution of every command preceding it. Its signa-
ture is as follows:

cl_int clEnqueueMarker(cl_command_queue command_queue, cl_event *event)

Enqueue read 
command

B

Set callback 
function

Complete 
user event

Deallocate 
resources
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This function associates event with the marker command, and event can be placed
in a wait list or be used to notify the host. For example, figure 7.2 shows a command
queue in which the third command enqueued by the host is a marker command.
The cl_event associated with the marker will complete when the first two com-
mands have completed.

 The following code configures the marker command to invoke a callback function
called process:

void CL_CALLBACK process(cl_event event, cl_int status, void *data) {
   ...
}

int main() {
   ...
   cl_event ev;
   ...
   cl_int clSetEventCallback(ev, CL_COMPLETE, &process, NULL);
   ...
   cl_int clEnqueueMarker(cl_command_queue queue, ev);
}

WAIT COMMANDS

The command generated by clEnqueueWaitForEvents, called a wait command, tells
the command queue not to execute any following commands until the events in its
wait list have reached a completed state. The signature of this function is as follows:

cl_int clEnqueueWaitForEvents(cl_command_queue queue, cl_uint num_events,
   const cl_event *wait_list)

The last two arguments create a wait list similar to those of other command-
enqueuing functions we’ve encountered. But instead of stalling a single command,
the events in this wait list stall every following command in the queue. This is shown in
figure 7.3.
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In this figure, the wait command tells the queue not to process the copy or write com-
mands until the events in its wait list have completed. The following code shows how
clEnqueueWaitForEvents can be configured to respond to a user-created event:

cl_event e;
...
e = clCreateUserEvent(context, &err);
...
clEnqueueWaitForEvents(queue, 1, &e);
...
clSetUserEventStatus(e, CL_SUCCESS);

Here, the command dispatched by clEnqueueWaitForEvents prevents all following
commands on the queue from executing. But when clSetUserEventStatus is called,
the user event will complete, and succeeding commands will be able to execute. 

BARRIER COMMANDS

The clEnqueueBarrier function doesn’t accept or configure events, but its purpose is
so similar to that of clEnqueueWaitForEvents that it’s worth discussing here. Both func-
tions prevent later commands on the queue from executing, but clEnqueueBarrier
doesn’t use a wait list. Instead, it enqueues a command called a barrier command. This
forces following commands to stall until preceding commands have completed their
execution. The signature couldn’t be simpler:

cl_int clEnqueueBarrier(cl_command_queue queue)

Barriers are necessary when you have one set of commands that need to be executed
before a second set of commands. With a barrier command, you don’t have to deal
with events and callback functions. The barrier will automatically prevent any follow-
ing commands from executing until every preceding command has executed. 

7.2.4 Obtaining data associated with events

The callback functions presented in this section have accessed the function’s data
parameter but not its event parameter. But by calling clGetEventInfo, you can access
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Figure 7.3 The wait command
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a great deal of information about an event, such as its context, command queue, and
the type of its associated command. The signature for this function is as follows:

cl_int clGetEventInfo(cl_event event, cl_event_info param_name,
  size_t param_value_size, void *param_value, size_t *param_size)

This works like the clGetXXInfo functions discussed in chapters 2 and 3. The only dif-
ference is the cl_event_info argument, which identifies the type of information
you’d like to access. Table 7.1 lists the possible values this argument can take.

Most of these entries are simple, but CL_EVENT_COMMAND_EXECUTION_STATUS and
CL_EVENT_COMMAND_TYPE merit explanation. So far, the only command status we’ve
dealt with is CL_COMPLETE, which is the status of a command after its execution has fin-
ished. But the full lifecycle of a command consists of four stages:

1 Queued—The command is placed in the command queue (identified by
CL_QUEUED).

2 Submitted—The command is submitted to the device (identified by
CL_SUBMITTED).

3 Running—The command is being executed on the device (identified by
CL_RUNNING).

4 Complete—The command’s execution has finished (identified by CL_COMPLETE).

Future versions of OpenCL may support full access to a command’s status, but at the
time of this writing, clSetEventCallback and clSetUserEventStatus only work
properly for the CL_COMPLETE stage.

 If the information parameter is set to CL_EVENT_COMMAND_TYPE, the returned value
will identify the nature of the command associated with the event. The data type of
the result is an enumerated type called cl_command_type. Table 7.2 lists the different
values this type may take. 

Table 7.1 Event information parameters (cl_event_info)

Parameter name Parameter value Purpose

CL_EVENT_CONTEXT cl_context Returns the context used to create the event

CL_EVENT_COMMAND
QUEUE

cl_command_queue Returns the command queue used to create 
the event

CL_EVENT_COMMAND
EXECUTION_STATUS

cl_int Returns the status of the corresponding 
command (CL_QUEUED, CL_SUBMITTED, 
CL_RUNNING, CL_COMPLETE, or a nega-
tive error value)

CL_EVENT_COMMAND
TYPE

cl_command_type Identifies the nature of the occurrence corre-
sponding to the cl_event (see table 7.2)

CL_EVENT_REFERENCE_
COUNT

cl_uint Returns the number of times the event has 
been referenced
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Most of these names should be easily recognizable, because they correspond to func-
tions that enqueue commands. For example, the CL_COMMAND_READ_BUFFER type cor-
responds to a command enqueued by clEnqueueReadBuffer. But the last entry,
CL_COMMAND_USER, doesn’t correspond to a function that enqueues a command. It
identifies a cl_event as a user event created by clCreateUserEvent. 

 Two examples will help clarify how clGetEventInfo is used in code. The following
callback function calls clGetEventInfo to obtain the command queue associated with
the event. If the event is a user event, cq will be set to NULL:

void CL_CALLBACK get_queue(cl_event e, cl_int status, void* data) {
   cl_command_queue cq;

   cl_int clGetEventInfo(e, CL_EVENT_COMMAND_QUEUE, sizeof(cq),
      &cq, NULL);
   ...
}

The callback function in the following listing determines whether the cl_event is
associated with a command that reads, writes, or copies a buffer.

void CL_CALLBACK get_type(cl_event e, cl_int status, void* data) {

   cl_command_type type;

   cl_int clGetEventInfo(e, CL_EVENT_COMMAND_TYPE,
      sizeof(type), &type, NULL);

   switch(type) {

Table 7.2 Command types (cl_command_type)

Type Type

CL_COMMAND_NDRANGE_KERNEL CL_COMMAND_MAP_IMAGE

CL_COMMAND_TASK CL_COMMAND_UNMAP_MEM_OBJECT

CL_COMMAND_NATIVE_KERNEL CL_COMMAND_READ_BUFFER_RECT

CL_COMMAND_READ_BUFFER CL_COMMAND_WRITE_BUFFER_RECT

CL_COMMAND_WRITE_BUFFER CL_COMMAND_COPY_BUFFER_RECT

CL_COMMAND_COPY_BUFFER CL_COMMAND_MARKER

CL_COMMAND_READ_IMAGE CL_COMMAND_ACQUIRE_GL_OBJECTS

CL_COMMAND_WRITE_IMAGE CL_COMMAND_RELEASE_GL_OBJECTS

CL_COMMAND_COPY_IMAGE CL_COMMAND_GL_FENCE_SYNC_OBJECT_KHR 

CL_COMMAND_COPY_BUFFER_TO_IMAGE CL_COMMAND_ACQUIRE_D3D10_OBJECTS_KHR

CL_COMMAND_COPY_IMAGE_TO_BUFFER CL_COMMAND_RELEASE_D3D10_OBJECTS_KHR  

CL_COMMAND_MAP_BUFFER CL_COMMAND_USER

Listing 7.4 Determining the command type associated with an event
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      case CL_COMMAND_READ_BUFFER:
         ...
      break;

      case CL_COMMAND_WRITE_BUFFER:
         ...
      break;

      case CL_COMMAND_COPY_BUFFER:
         ...
      break;
   }
}

At this point, you should have a solid understanding of events, including how to con-
figure them in code and obtain information about them. The next section presents
profiling, which uses events to determine how long a command takes to execute.

7.3 Profiling events
Chapter 1 explained a great deal about OpenCL’s vector processing and parallel pro-
gramming, and how they provide improved performance over traditional C/C++. But
without actual timing data, it’s all talk. You can spend hundreds of dollars on a top-of-
the-line graphics card, but until you test its performance, you can’t be certain you got
your money’s worth.

 This section puts aside the promises and gets to the numbers. We’re going to discuss
how profiling events work in OpenCL and how to use them to measure timing. Specif-
ically, we’ll start by examining profiling events and how they’re configured in code.
Then we’ll use these events to time data transfer operations and kernel execution.

7.3.1 Configuring command profiling

To obtain timing information about a command, you need to follow three steps:

1 Set the CL_QUEUE_PROFILING_ENABLE flag when you create a command queue
with clCreateCommandQueue.

2 Associate a cl_event with the command you want to profile. As discussed ear-
lier, this is done by making the event’s pointer the last argument of the function
that enqueues the command.

3 After the command completes its execution, call clGetEventProfilingInfo to
access the cl_event and obtain information about the command’s timing.

Easy, isn’t it? The first step enables profiling for the command queue, which means that
OpenCL will record when commands in the queue change state. The second step iden-
tifies the cl_event that will store the timing data for a specific command, and the last
step obtains the data from the cl_event. The signature of the clGetEventProfiling-
Info function is as follows:

cl_int clGetEventProfilingInfo(cl_event event, cl_profiling_info param,
  size_t param_value_size, void *param_value, size_t *param_value_size_ret)
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This works exactly like the clGetEventInfo function we examined earlier. The only
difference is that the second parameter must be a cl_profiling_info value instead
of a cl_event_info value. Table 7.3 lists the values of the cl_profiling_info enu-
merated type.

In each case, the data provided by clGetEventProfilingInfo is a 64-bit value that
identifies the time in nanoseconds (billionths of a second) when a command changed
state. To determine how long a command remained in a queue, call clGetEvent-
ProfilingInfo once with the CL_PROFILING_COMMAND_SUBMIT flag set and again with
the CL_PROFILING_COMMAND_QUEUED flag, and then subtract the queued time from the
submitted time. Similarly, to find out how long the command took to execute, call
clGetEventProfilingInfo once with CL_PROFILING_COMMAND_START and once with
CL_PROFILING_COMMAND_END, and subtract the start time from the end time.

 The profiling times are given in billionths of a second, called nanoseconds or ns. But
not every device can resolve time down to individual nanoseconds. To determine the
resolution of a device, call clGetDeviceInfo with CL_DEVICE_PROFILING_TIMER_
RESOLUTION set as the second argument. This is shown in the following code:

size_t time_res;

clGetDeviceInfo(device, CL_DEVICE_PROFILING_TIMER_RESOLUTION,
  sizeof(time_res), &time_res, NULL);

This produces a size_t value that tells you how many nanoseconds elapse between each
change in the timer’s value. The timing resolution on my MacBook (Nvidia 9400M)
is 1000 ns. On my AMD 5850, the resolution is 1 ns.

 A basic example will demonstrate how command profiling works. The following code
creates a command queue with profiling enabled, enqueues a command to read a buffer
object, and accesses the command’s timing data with clGetEventProfilingInfo.

cl_event timing_event;
cl_ulong time_start, time_end, read_time;

Table 7.3 Profiling information parameters (cl_profiling_info)

Parameter name Value Purpose

CL_PROFILING_COMMAND_QUEUED cl_ulong Returns the time in nanoseconds for when the 
command was enqueued

CL_PROFILING_COMMAND_SUBMIT cl_ulong Returns the time in nanoseconds for when the 
command was submitted to the device

CL_PROFILING_COMMAND_START cl_ulong Returns the time in nanoseconds for when the 
command’s execution started

CL_PROFILING_COMMAND_END cl_ulong Returns the time in nanoseconds for when the 
command’s execution ended

Listing 7.5 Basic profiling
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queue = clCreateCommandQueue(context, device,
   CL_QUEUE_PROFILING_ENABLE, NULL);

clEnqueueReadBuffer(queue, data_buffer, TRUE, 0,
   sizeof(data), data, 0, NULL, &timing_event);

clGetEventProfilingInfo(timing_event, CL_PROFILING_COMMAND_START,
   sizeof(time_start), &time_start, NULL);

clGetEventProfilingInfo(timing_event, CL_PROFILING_COMMAND_END,
   sizeof(time_end), &time_end, NULL);

read_time = time_end - time_start;

Now that you understand how profiling works, let’s put it to use. First, we’ll determine
whether it’s faster to transfer data using read/write operations or memory maps. Sec-
ond, we’ll investigate how the timing of kernel execution changes as you add more
work-items. 

7.3.2 Profiling data transfer

As explained in chapter 3, there are two ways to transfer data between a host and a
device. You can call functions that enqueue read/write commands such as
clEnqueueReadBuffer or clEnqueueWriteImage. Alternatively, you can map a mem-
ory object to host memory with a function like clEnqueueMapBuffer. Then, once
you’ve processed the mapped data, you can unmap the memory region with
clEnqueueUnmapMemObject. For file access, memory mapping usually provides
improved performance. But what about OpenCL data transfer? We can find out
using event profiling.

 The code in the following listing contains an iteration loop that tests the average
time taken by the commands enqueued by clEnqueueReadBuffer versus clEnqueue-
MapBuffer. The PROFILE_READ macro determines which method will be used to trans-
fer data. To save space, the error handling code has been removed.

...
total_time = 0.0f;
for(i=0; i<NUM_ITERATIONS; i++) {
   clEnqueueTask(queue, kernel, 0, NULL, NULL);

#ifdef PROFILE_READ

   clEnqueueReadBuffer(queue, data_buffer,
      CL_TRUE, 0, sizeof(data), data, 0,             
      NULL, &prof_event);                 

#else

   mapped_memory = clEnqueueMapBuffer(queue,    
      data_buffer, CL_TRUE, CL_MAP_READ, 0,              
      sizeof(data), 0, NULL, &prof_event, &err);

#endif

Listing 7.6 Profiling data transfer: profile_read.c
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   clGetEventProfilingInfo(prof_event,       
      CL_PROFILING_COMMAND_START,                          
      sizeof(time_start), &time_start, NULL);
   clGetEventProfilingInfo(prof_event,       
      CL_PROFILING_COMMAND_END,              
      sizeof(time_end), &time_end, NULL);    
   total_time += time_end - time_start;

#ifndef PROFILE_READ

      /* Unmap the buffer */
      err = clEnqueueUnmapMemObject(queue, data_buffer, mapped_memory,
            0, NULL, NULL);
      if(err < 0) {
         perror("Couldn't unmap the buffer");
         exit(1);   
      }

#endif
}
#ifdef PROFILE_READ
   printf("Average read time: %lu\n", total_time/NUM_ITERATIONS);
#else
   printf("Average map time: %lu\n", total_time/NUM_ITERATIONS);
#endif

Figure 7.4 presents the results of the data transfer experiments I conducted by run-
ning the code in listing 7.6 on my AMD 5850 graphics card. Two thousand iterations
were performed for each data point.

 For every data size tested, memory maps transfer data faster than read commands.
The performance improvement increases with the amount of data transferred.

 It’s important to note that, for the map times, only the clEnqueueMapBuffer func-
tion was profiled. The clEnqueueUnmapMemObject function was not timed. It’s also
worth noting that the time taken for the data transfer is generally much less than the
total time taken for the command to complete its execution. 
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7.3.3 Profiling data partitioning

In most of the example code so far, we’ve used clEnqueueTask to enqueue kernel-
execution commands. This is a simple function, but it doesn’t let us access one of
OpenCL’s most important capabilities: data partitioning.

 As explained in chapter 3, data partitioning allows you to divide the execution of
a kernel into multiple work-items. In theory, the time needed to execute a kernel
should drop as more work-items are generated. But how true is this in practice?
To find out, we need to profile the clEnqueueNDRangeKernel function. Like
clEnqueueTask, this enqueues a kernel-execution command, but it accepts addi-
tional arguments that specify how the kernel’s execution should be partitioned. This
is a complex function, so let’s look at its signature:

clEnqueueNDRangeKernel(cl_command_queue queue, cl_kernel kernel,
   cl_uint work_dims, const size_t *global_work_offset,
   const size_t *global_work_size, const size_t *local_work_size,
   cl_uint num_events, const cl_event *wait_list, cl_event *event)

The third argument, work_dims, identifies the dimensionality of the data. The fifth
argument, global_work_size, identifies how many work-items should be generated
for each dimension. The last argument, event, accepts a cl_event that will be used to
monitor the kernel-execution command.

 The following listing shows the iteration loop I used to profile the kernel-execution
commands enqueued by clEnqeueueNDRangeKernel.

...
total_time = 0.0f;
for(i=0; i<NUM_ITERATIONS; i++) {

   clEnqueueNDRangeKernel(queue, kernel, 1, NULL, 
         &num_items, NULL, 0, NULL, &prof_event);
   if(err < 0) {
      perror("Couldn't enqueue the kernel");
      exit(1);
   }

   clFinish(queue);                                

   clGetEventProfilingInfo(prof_event,          
         CL_PROFILING_COMMAND_START,                      
         sizeof(time_start), &time_start, NULL);
   clGetEventProfilingInfo(prof_event,        
         CL_PROFILING_COMMAND_END,                
         sizeof(time_end), &time_end, NULL);  
   total_time += time_end - time_start;
}
printf("Average time = %lu\n", total_time/NUM_ITERATIONS);
...

This is similar to the code in listing 7.6, but an important difference is the use of the
clFinish function. In listing 7.6, clEnqueueReadBuffer and clEnqueueMapBuffer

Listing 7.7 Profiling data partitioning: profile_items.c
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were set to block, but clEnqueueNDRangeKernel is nonblocking. Therefore, the func-
tion returns before the kernel completes its execution. This is a problem because the
following lines of code measure the start and end of the kernel’s execution. We could
measure the timing in a callback function, but with clFinish, we can be sure that the
application will wait until the kernel’s execution completes.

 Figure 7.5 presents the results of the data partitioning experiments I conducted by
running the code in listing 7.7 on my AMD 5850 graphics card. Each data set consisted
of 4,096 integers, and 2,000 iterations were performed for each data point.

 This graph clearly shows the importance of partitioning kernels into work-items.
Initially, as the experiment proceeds from one work-item to two and four work-items,
the execution time drops in half as the number of work-items doubles. The perfor-
mance improvement continues for larger work sizes, but not as dramatically.

 The host application sends two arguments to the kernel. The first is a buffer object
that contains integers to be processed. The second argument identifies the number of
integers contained in the buffer object. Each work-item uses this second value (called
num_ints) and the global work size to determine how many vectors it should process.
This is given in the following line of code, taken from profile_items.cl:

int num_vectors = num_ints/(4 * get_global_size(0));

This code ensures that each work-item will access different data than every other work-
item. But what if you want the work-items to work together and access common data?
In this case, you’ll need synchronization, which we’ll discuss in the next section. 

7.4 Work-item synchronization
For the purposes of this book, we’ll define synchronization as the process of ensuring
that computing tasks are performed in order. OpenCL provides two kinds of synchro-
nization: command synchronization and work-item synchronization. We’ve already
examined command synchronization earlier in this chapter. This establishes order
among commands using events or functions like clEnqueueBarrier.
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 So far, work-item synchronization hasn’t been necessary. Our work-items have all
accessed different regions of memory, so it hasn’t mattered when they start or finish
processing their data. But ordering work-items becomes vital when multiple work-items
need to access the same data. For example, if you’re performing a large dot product of
two vectors, each work-item must be able to access and modify the final sum.

 Commands can only be synchronized if their command queues belong to the
same context. Similarly, work-items can only be synchronized if they’re in the
same work-group. Chapter 3 explained how to configure work-groups using
clEnqueueNDRangeKernel. Chapter 4 discussed the kernel functions that access work-
group configuration data.

 To take the fullest advantage of work-group partitioning, you need to know more
than just the functions. You need to understand how work-groups relate to device
resources. Chapter 4 discussed the OpenCL device model, but let’s quickly review
three of the main address spaces:

■ Memory specific to a processing element is called private memory.
■ Memory specific to a compute unit is called local memory.
■ Memory accessible throughout a device is called global memory.

The memory access between a processing element and its private memory is the fast-
est memory access on the device. Local memory access is slower, and global memory
access is slower still. Therefore, for high-performance data processing, you need to
use private and local memory as much as possible.

 But a problem arises. When multiple work-items process the same data in local
memory, their disordered execution can cause errors. To prevent these errors, we
need to synchronize work-item execution, and OpenCL provides two methods of
doing this. The first method involves fences and barriers, and the second involves
atomic operations.

7.4.1 Barriers and fences

Earlier in this chapter, we looked at the clEnqueueBarrier function, which helps
make command synchronization possible. A barrier command prevents all following
commands from executing until every preceding command has completed its
execution.

 To synchronize work-items in a work-group, OpenCL provides a similar capability
with the barrier function. This forces a work-item to wait until every other work-item
in the group reaches the barrier. Its signature is given as follows:

void barrier(cl_mem_fence_flags flags)

By creating a barrier, you can make sure that every work-item has reached the same
point in its processing. This is a crucial concern when the work-items need to finish
computing an intermediate result that will be used in future computation.

 For example, suppose you want a work-group to compute the momentum of a
large, complex object. The first task involves determining the object’s volume. The
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second task computes the momentum by multiplying this volume by the object’s den-
sity and velocity. You might start with kernel code like the following:

compute_volume();
compute_momentum();

But there’s a problem. If a work-item starts processing compute_momentum before the
other work items have finished computing the volume, it will arrive at an inaccurate
result because it’s using an incomplete value for the volume. We can fix this problem
by inserting a barrier between the two tasks:

compute_volume();
barrier(CLK_LOCAL_MEM_FENCE);
compute_momentum();

The CLK_LOCAL_MEM_FENCE flag specifies that the barrier will affect memory opera-
tions related to the work-group’s local memory. In the example, each work-item must
finish accessing local memory before the function following the barrier can start. Sim-
ilarly, if the flag is set to CLK_GLOBAL_MEM_FENCE, the barrier will synchronize work-
items’ access to global memory.

NOTE The barrier function only synchronizes work-items within a single
work-group. At the time of this writing, there is no way to synchronize work-
items in different work-groups except by launching a new kernel.

Fences are similar to barriers, but they make it possible to synchronize specific mem-
ory operations. That is, some fences affect read operations and others synchronize
write operations. OpenCL provides three fence functions that synchronize kernel
memory access, and table 7.4 lists all of them. 

The flags argument of these functions can take the same two values as the flags
argument of barrier: CLK_LOCAL_MEM_FENCE to synchronize local memory access or
CLK_GLOBAL_MEM_FENCE to synchronize global memory access. 

7.4.2 Atomic operations

Consider the following line of code:

x -= 4;

Table 7.4 Kernel fence functions

Parameter name Purpose

void read_mem_fence
   (cl_mem_fence_flags flags)

Stalls further reads from memory until every preceding 
memory read has completed

void write_mem_fence
   (cl_mem_fence_flags flags)

Stalls further writes to memory until every preceding 
write operation has completed

void mem_fence
   (cl_mem_fence_flags flags)

Stalls further read/write operations until every preceding 
read/write operation has completed
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This operation performs three suboperations: it reads the value of x, subtracts 4, and
stores the updated value. If work-items access different regions of memory, these sub-
operations will always be performed in order. But problems can arise if multiple work-
items access x at the same time.

 This can be clarified with an example. Suppose work-item A and work-item B both
process x -= 4, where x is set to 20. The following suboperations may result:

1 Work-item A reads the value of x as 20.
2 Work-item B reads the value of x as 20.
3 Work-item A computes 20 – 4 = 16.
4 Work-item A stores 16 to memory.
5 Work-item B computes 20 – 4 = 16.
6 Work-item B stores 16 to memory.

The resulting value of x is 16, which is the wrong answer. But if one work-item is
forced to wait until the other finishes, the result will be 12, the correct answer.

 The problem is that the operation defined by the -= operator isn’t atomic. An
atomic operation can’t be interrupted. If we could find a way to perform -= atomi-
cally, work-item B won’t start until after work-item A finishes, and successive work-
items won’t start until after work-item B finishes.

 OpenCL makes this possible, not only for subtraction assignments, but also for a
number of other a basic mathematic and logical operations. Table 7.5 lists the func-
tions that perform 32-bit atomic operations.

Table 7.5 Atomic operations (32-bit)

Parameter name Purpose

u/int atomic inc
   (volatile __(g|l) u/int *x)

Increments the value stored at x 
(*x += 1)

u/int atomic dec
   (volatile __(g|l) u/int *x)

Decrements the value stored at x 
(*x -= 1)

u/int atomic add
   (volatile __(g|l) u/int *x, u/int val)

Adds a 32-bit val to the value stored at 
x (*x += val)

u/int atomic sub
   (volatile __(g|l) u/int *x, u/int val)

Subtracts a 32-bit val from the value 
stored at x (*x -= val)

u/int atomic and
   (volatile __(g|l) u/int *x, u/int val)

Sets x equal to the conjunction of a 32-
bit val and the value stored at x 
(*x &= val)

u/int atomic or
   (volatile __(g|l) u/int *x, u/int val)

Sets x equal to the disjunction of a 32-
bit val and the value stored at x 
(*x |= val)

u/int atomic xor
   (volatile __(g|l) u/int *x, u/int val)

Sets x equal to the exclusive disjunction 
of a 32-bit val and the value stored at 
x (*x ^= val)
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Each of these functions updates scalar values in global or local memory, and each
returns the original value of *x. With the exception of atomic_xchg, these operations
involve ints or unsigned ints. Integer types can’t be combined. That is, if you compute
the difference of *x and val atomically, they must both be ints or both unsigned ints.

NOTE The availability of these atomic functions depends on the extensions
supported by the target device. Section 6.11.10 of the OpenCL standard lists
the extensions related to atomic functions.

The next listing demonstrates how atomic operations are used. It declares two vari-
ables in the local memory space and increments both. The first variable is incre-
mented using the ++ operator whereas the second uses atomic_inc.

__kernel void atomic(__global int* x) {

   __local int a, b;

   a = 0;
   b = 0;

   a++;                               
   atomic_inc(&b);           

   x[0] = a;
   x[1] = b; 
}

On my system, the results are as follows:

Increment: 1
Atomic increment: 4

u/int atomic max
   (volatile __(g|l) u/int *x, u/int val)

Sets x equal to the maximum of a 32-bit 
val and the value stored at 
x (x = max(*x, val))

u/int atomic min
   (volatile __(g|l) u/int *x, u/int val)

Sets x equal to the maximum of a 32-bit 
val and the value stored at 
x (x = max(*x, val))

u/int atomic xchg
   (volatile __(g|l) u/int *x, u/int val)

Swaps x with the 32-bit val 
(*x = val)

float atomic xchg
   (volatile __(g|l) float *x, float val)

Swaps x with the 32-bit floating-point 
val (*x = val)

u/int atomic cmpxchg
   (volatile __(g|l) u/int *x, u/int cmp,
    u/int val)

Compares the value stored at x to cmp, 
and sets the value to val if they’re equal 
((*x == cmp) ? val : *x)

Listing 7.8 Testing atomic operations: atomic.cl

Table 7.5 Atomic operations (32-bit) (continued)

Parameter name Purpose

Regular 
increment

Atomic 
increment
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The variables a and b are stored in local memory, so each is allocated once for each
compute unit. The host application generates four work-items to execute the kernel,
so a and b are both incremented four times. When a is incremented, the four work-
items read and modify its value without synchronization. Therefore, the operations
are performed in parallel and the result is 1. But when b is incremented, the atomic
operation forces the work-items to read and modify its value in sequence. This is why
the incremented result for b is 4.

7.4.3 Atomic commands and mutexes

One of the most important uses of atomic commands is to enable the operation of
mutexes, also called semaphores. A mutex (mutual exclusion) ensures that only one
work-item can access data at a time. In software, mutexes are commonly implemented
as variables that can take one of two values: a locked value and an unlocked value.

 Before accessing protected data, each work-item must check the mutex’s value. If
the mutex is set to its locked value, it means the data is already being processed. But if
a work-item finds the mutex in its unlocked value, then it will set the mutex to its
locked value, process the data, and then set the mutex to its unlocked state.

 A mutex is like a lock on a dressing room. When the dressing room is unlocked,
anyone can come in. But when a person enters the room, they lock the door, thereby
preventing others from entering. When the person is finished, they unlock the door
and leave.

 The check-unlock procedure must be performed atomically, or two work-items
might find the mutex unlocked at the same time. To implement this procedure, the
atomic_cmpxchg function is ideal. It performs the C ternary operator ((*x == cmp) ? val
: *x) atomically. That is, it checks whether *x equals cmp, and if so, it changes *x to val.
If not, *x remains unchanged. atomic_cmpxchg returns the original value of *x.

 Let’s choose 0 as the unlocked value of our mutex and 1 as the locked value. Then
we can use atomic_cmpxchg to check-unlock a local variable called mutex with the fol-
lowing code:

if (atomic_cmpxchg(&mutex, 0, 1) == 0) {
   process_critical_data();

   atomic_xchg(&mutex, 0);
}

Here, the work-item atomically checks the value of mutex, and if it equals 0
(unlocked), the work-item sets its value to 1 (locked). Then the work-item processes
critical data and unlocks mutex by setting its value to 0. 

 Similarly, you can implement a spinlock by calling atomic_cmpxchg in a while
loop. A spinlock prevents a work-item from continuing execution until it has
unlocked the mutex. This is shown in the following line of code:

while(atomic_cmpxchg(&mutex, 0, 1) == 1);

The following listing shows how mutexes can be used to synchronize work-items. The
LOCK macro invokes atom_cmpxchg and the UNLOCK macro invokes atom_xchg.
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#pragma OPENCL EXTENSION cl_khr_global_int32_base_atomics : enable

#define LOCK(a) atom_cmpxchg(a, 0, 1)
#define UNLOCK(a) atom_xchg(a, 0)

__kernel void mutex(__global int *mutex, __global int *sum) {

   while(LOCK(mutex));                 
   *sum += 1;                              
   UNLOCK(mutex);                      

   int waiting = 1;                        
   while(waiting) {                                
      while(LOCK(mutex));                  
      if(*sum == get_global_size(0)) {     
         waiting = 0;                      
      }                                    
      UNLOCK(mutex);                       
   }                                       
}

When the kernel executes, each work-item reaches the spinlock and waits until mutex
equals 0. When it’s unlocked, the work-item locks mutex, increments sum, and unlocks
mutex. Afterward, the work-item waits until sum equals the total number of work-items.
At this point, all of the work-items executing the kernel are synchronized.

 The host application sets the local size to 1, which means each work-item execut-
ing the kernel belongs to a different work-group. This may seem surprising because I
mentioned earlier that work-items in different work-groups can only be synchronized
by restarting the kernel. As it turns out, there’s a catch.

 The catch is that the number of work-items executing this kernel can’t exceed the
number of compute units on the device. For example, if a device contains 16 compute
units, then the 16 work-items (each in a different work-group) can execute concur-
rently and they can be synchronized with the mutex. But if you attempt to execute this
kernel with 17 work-groups, the device will stall because the first 16 work-groups will
wait for the seventeenth to access the mutex. But the seventeenth can’t start until one
of the 16 compute units is available.

 If you execute this kernel with work-items in the same work-group, the kernel will
hang. This is because work-items in the same work-group combine their individual
reads and writes to global memory into a single memory operation for the entire
group. The work-items can’t access global memory separately, so they can’t lock and
unlock the mutex at different times. 

7.4.4 Asynchronous data transfer

The code in listing 7.8 declares two variables in local memory and transfers their values
to global memory. This is fine for individual scalars and vectors, but it can be time-
consuming to transfer a great deal of data between local and global memory in this man-
ner. For large data sizes, it’s more efficient for a kernel to start the data transfer and per-
form other activities while the transfer completes. This is called asynchronous data transfer.

Listing 7.9 Mutex-based synchronization: mutex.cl

Increment 
sum

Wait for 
completion
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 OpenCL enables asynchronous data transfer with a series of functions that copy
data between local and global memory. Table 7.6 lists each of them along with the
operation they perform.

The async_work_group_copy and async_work_group_strided_copy functions have
two variations. The first variation transfers data from local memory to global memory,
and the second transfers data from global memory to local memory. In both cases, the
num argument identifies how many elements of the given type will be transferred.

 Unlike async_work_group_copy, async_work_group_strided_copy accepts an
additional parameter that identifies how many elements lie between those to be trans-
ferred. This parameter is referred to as the stride, and it becomes helpful when you need
to copy sequential data from global memory to or from multiple compute units. The
first variation of async_work_group_strided_copy accepts a src_stride argument
that identifies the stride of the data to be copied from global memory. The second
variation accepts a dst_stride argument that identifies the stride of the data to be cop-
ied to global memory.

Table 7.6 Asynchronous data transfer

Function name Purpose

event_t async_work_group_copy
   (__local all *dst,
   const __global all *src,
   size_t num, event_t event)

event_t async_work_group_copy
   (__global all *dst,
   const __local all *src,
   size_t num, event_t event)

Copies data between local and global mem-
ory. Returns an event_t that represents 
the status of the data transfer.

event_t async_work_group_strided_copy
   (__local all *dst,
   const __global all *src,
   size_t num, size_t src_stride,
   event_t event)

event_t async_work_group_strided_copy
   (__global gentype *dst,
   const __local gentype *src,
   size_t num, size_t dst_stride,
   event_t event)

Transfers strided data between local memory 
and global memory. Returns an event_t that 
represents the status of the data transfer.

void wait_group_events(int num_events,
   event_t *wait_list)

Accepts one or more event_t structures, 
and waits for the corresponding data trans-
fers to complete.

void prefetch(const __global all *mem,
   size_t num)

Reads data into the global cache.
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 Both copy functions return an event_t structure that acts like the cl_event structure
used in host applications. This event_t represents the status of the transfer, and it can
be associated with other data transfers by making it the last argument of the correspond-
ing copy functions. There’s no way to associate the event_t with a callback function, but
you can wait for one or more event_t structures by calling wait_group_events. The fol-
lowing code shows how this works:

event_t e = async_work_group_copy(glob_data, loc_data, 10, (event_t) 0);
async_work_group_copy(loc_data, glob_data, 10, e);
...
wait_group_events(1, &e);

In this code, the first function call transfers data from local memory to global memory
and the second call transfers data from global memory to local memory. The
wait_group_events function waits for both transfers to complete.

 The last function in table 7.6, prefetch, reads data into the global cache. Like the
two copy functions, it can transfer data of any type except vectors containing three
components. But it doesn’t return an event_t, so there is no way to be certain when
the operation has completed. 

7.5 Summary
This chapter has discussed three advanced topics of OpenCL programming, and all of
them relate to timing and control. With events, you can keep track of when operations
are finished and respond to their completion. With profiling, you can determine the
amount of time taken by devices to perform various tasks. With work-item synchroni-
zation, you can establish an order in the execution of work-items, which normally exe-
cute in a nondeterministic fashion.

 An OpenCL event, represented by a cl_event data structure, corresponds to the
completion of a task. On the device, an event’s task may involve the execution of a ker-
nel or the transfer of data to or from the host. But as you’ve seen, events can also be
generated on the host. In this case, you simply need to invoke clSetUserEventStatus
to set an event’s status as completed.

 Events become particularly important when you need to measure how long a com-
mand took to execute. In this case, the function to know is clGetEventProfilingInfo.
This analyzes a cl_event corresponding to a command and returns how much time was
taken between status changes of the event.

 Work-item synchronization is only necessary when an algorithm demands access to
shared data. In this case, you need to ensure that work-items access data in an orga-
nized fashion and complete their memory access by specific checkpoints. You can set
these checkpoints using barriers and fences. To keep multiple work-items from access-
ing data at once, you need atomic operations. These operations are uninterruptible,
which means that work-items will always perform the operation without interruption.

 In the next chapter, we’ll break completely from OpenCL host programming in C.
We’ll look at programming in C++, and see the advantages that object-oriented pro-
gramming provide when used in high-performance computing.
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When I need to crunch numbers at high speed, I prefer to write code in C. This is
because my favorite compilers are optimized for high-speed processing, the execut-
ables tend to be small, and there’s usually plenty of code available on the internet
from which I can draw inspiration.

 But when my application needs to do more than just crunch numbers, such as
animate an assemblage of moving parts, I prefer an object-oriented (OO) language
like C++. This gives me the benefits associated with OO programming, such as poly-
morphism, inheritance, and encapsulation. It also provides a wealth of capabilities
through the C++ Standard Template Library (STL) and the Boost libraries.

 The OpenCL Working Group provides a C++ Wrapper API that makes it possible
to code full-featured OpenCL host applications in C++. This API provides many
advantages over the regular C API, and three of the most important advantages are
as follows:

This chapter covers
■ Creating kernels with the C++ Wrapper API
■ Enqueuing commands with the CommandQueue

class
■ Processing events with the Event and 

UserEvent classes
167
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■ No need to dynamically allocate arrays—The C++ wrapper relies on Vectors instead
of arrays, so there’s no need to dynamically allocate memory to store multiple
platforms, multiple devices, or data from a call to getXXInfo.

■ Simpler function calls—Partly because of the preceding point, C++ functions usu-
ally require fewer arguments than their C counterparts.

■ No reference counts or deallocation functions—The C API requires that data struc-
tures be deallocated with functions like free and clReleaseCommandQueue. But
with C++, object deallocation is handled by default. 

Given the size of the C++ API, this chapter can’t discuss every class and function in
detail. But it will present a large portion of them. After discussing how kernels are cre-
ated in C++, we’ll look at how to set kernel arguments. We’ll also look at how to code
command queues in C++ that send tasks to devices. The last part of this chapter
explores C++ event processing.

NOTE For more information on C++, I heartily recommend C++/CLI in Action
by Nishant Sivakumar and C++ Concurrency in Action by Anthony Williams. Both
books provide thorough discussions of their subject material and contain help-
ful examples that demonstrate how the theory is implemented in code.

But before discussing host application development, it’s important to examine three
important topics. The next section presents two classes defined in the cl.hpp header
that replace classes in the STL: cl::vector and cl::string. It also shows how the C++
API manages exception handling.

8.1 Preliminary concerns
Regular C code relies on arrays for data collection, but C++ uses strings to hold char-
acters and vectors to hold everything else. The STL provides string and vector classes,
but the C++ Wrapper API provides alternatives. This section will explain how to access
these alternative classes and use them in code.

 Whereas C uses integer codes to test for errors, C++ makes use of exception han-
dling. OpenCL disables exceptions by default, but this section will discuss how to
enable them in your code.

8.1.1 Vectors and strings

If you look through the function signatures in the C++ API, you’ll see many references
to VECTOR_CLASS and STRING_CLASS. These macros identify which classes will be
employed to represent vectors and strings. You can choose between std::vector/
std::string and cl::vector/cl::string or create your own custom classes.

 By default, the C++ Wrapper API relies on the std::vector and std::string
classes. But to support platforms for which the STL is unavailable, the creators of the
C++ Wrapper coded their own replacements. If you look through the cl.hpp header
file, you’ll find two new classes: cl::vector and cl::string.
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OPENCL VECTORS

The cl::vector class is similar to std::vector, but many functions are missing. With
a cl::vector, you can’t call resize, reserve, insert, erase, or swap. But in many
host applications, you won’t miss these functions because vectors are commonly ini-
tialized when they’re first used. To use cl::vectors instead of std::vectors, insert
the following definition in your host application:

#define __NO_STD_VECTOR

By default, the maximum capacity of a cl::vector is 10, but this can be increased by
redefining the __MAX_DEFAULT_VECTOR_SIZE macro. For example, if you have 20
OpenCL devices connected, you could use the following definition:

#define __MAX_DEFAULT_VECTOR_SIZE 20

If you’d rather not rely on std::vector or cl::vector, you can use your own custom
class. This class must implement the std::vector interface, and the VECTOR_CLASS
macro must be set to the class’s name. In addition, the __USE_DEV_VECTOR macro must
be defined.

 For example, if MyVector is a template-based container class that follows
the std::vector interface, you can make sure the API uses this with the following
definitions:

#define __USE_DEV_VECTOR
#define VECTOR_CLASS MyVector

OPENCL STRINGS

The cl::string class has much in common with the std::string class, but besides
the constructors and destructors, the only member functions are size, length, and
c_str. Therefore, if you need to manipulate strings in your host application, you may
be better off with the default, std::string. But if you prefer the cl::string class,
you’ll need to define the __NO_STD_STRING macro. That is, insert the following line
into your code:

#define __NO_STD_STRING

You can also identify a custom class to serve as the string replacement. This class must
implement the std::string interface, and the STRING_CLASS macro must be set
equal to the class’s name. In addition, the __USE_DEV_STRING macro must be defined.
If you’d like the host application to store characters with NewString, you’ll need to
add the following definitions: 

#define __USE_DEV_STRING
#define STRING_CLASS NewString

8.1.2 Exceptions

In C and C++, many OpenCL functions return or set a cl_int that identifies the func-
tion’s completion status. If the error code equals 0, the function completed success-
fully. A negative code indicates an error.
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 These codes are fine for C programs, but C++ provides exception handling, which
allows you to separate error handling routines from the main code. OpenCL
disables exceptions by default, but you can enable them with the following macro
definition:

#define __CL_ENABLE_EXCEPTIONS

Once you’ve set this definition, you can add try and catch blocks to your program.
Inside the catch block, you can obtain error information by calling two functions of
the cl::Error class:

■ what—Identifies the C function that caused the error
■ err—Returns the error code of the C function

The following example shows how exception handling can be enabled and coded in a
host application:

#define __CL_ENABLE_EXCEPTIONS
...
try {
   process_data...
}
catch(Error e) {
   std::cout << e.what() << ": Error code " << e.err() << std::endl;
}

If an error occurs within the try block, the catch block will print the C function that
produced the error and the function’s error code. Note that __CL_ENABLE_EXTENSIONS
must be defined for the exception handling to work properly.

 The cl::vector, cl::string, and cl::Error classes are all disabled by default.
But because they’re defined in the cl.hpp header, you can be sure they will behave the
same way on different operating systems and processors. This isn’t necessarily true
when it comes to classes in the STL. 

 In the next section, we’ll start looking at more interesting classes of the C++ Wrap-
per API. These are the classes that make it possible for the host application to create
kernel functions.

8.2 Creating kernels
In a C host application, the main OpenCL data structures are cl_platform,
cl_device, cl_context, cl_program, and cl_kernel. Conveniently, the C++ wrap-
per provides classes with similar names: Platform, Device, Context, Program, and
Kernel. This section presents each of these classes and many of their associated
member functions.

8.2.1 Platforms, devices, and contexts

In much of our example C code, the first step has been to access cl_platforms by call-
ing clGetPlatformIDs. With these data structures, you can obtain information about
the installed platforms with clGetPlatformInfo or discover connected devices with
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clGetDeviceIDs. Each device is represented by a cl_device_id structure, which can
be used to create a context, represented by a cl_context.

 With the C++ Wrapper API, you can accomplish the same results with the Platform,
Device, and Context classes. We’ll look at the Platform class first.
THE PLATFORM CLASS

A Platform object represents an installed platform on the development system, such
as Nvidia’s platform or AMD’s platform. To obtain Platform objects, you need to call
the static function Platform::get. This returns a vector containing a Platform object
for each installed platform on the system, and its signature is as follows:

static cl_int Platform::get(VECTOR_CLASS<Platform>* platforms)

This simple function only takes one argument, as compared to the three arguments
required by clGetPlatformIDs. The reason for this is that C++ vectors are dynamically
allocated, so you don’t have to allocate memory in advance.

 The getInfo member function is even simpler. Whereas clGetPlatformInfo takes
five arguments, the C++ function Platform::getInfo takes only two. Its signature is as
follows:

cl_int Platform::getInfo(cl_platform_info name, STRING_CLASS* param)

The first argument takes any of the cl_platform_info values listed in table 2.2. The
following code shows how getInfo is used. It accesses the extensions supported by a
Platform called platform and places the data in a string called ext_data:

err = platform.getInfo(CL_PLATFORM_EXTENSIONS, ext_data);

This is much simpler to use than clGetPlatformInfo, but there’s a way to access plat-
form data that’s even simpler. By making the cl_platform_info value a template
parameter of getInfo, you can access the same data in the following manner:

ext_data = platform.getInfo<CL_PLATFORM_EXTENSIONS>();

It doesn’t get much simpler than this. And the wonderful thing is that every
clGetXXInfo function discussed in previous chapters has a getInfo equivalent that
can be invoked in the same way. 

NOTE The getInfo functions of other OpenCL classes (Device::getInfo,
Program::getInfo, Kernel::getInfo, and so on) work in the same manner
as Platform::getInfo, so we won’t discuss these functions further.

The most important capability of a Platform object is that it allows you to access
Device objects associated with the installed platform. For example, if a Platform repre-
sents an AMD installation, you can use it to access every connected CPU or GPU associ-
ated with AMD. The function that makes this possible is getDevices, and its signature is
as follows:

cl_int Platform::getDevices(cl_device_type type,
   VECTOR_CLASS<Device>* devices)
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This function initializes a vector containing every Device object of the given type asso-
ciated with the platform. We’ll look at Devices and Contexts next. 
THE DEVICE AND CONTEXT CLASSES

We’ve seen how to access Device objects through Platform::getDevices, but you can
also create Device objects from cl_device_id structures. The Device constructor
accepts a pointer to a cl_device_id, and it can be used as follows:

Device d(&dev_id);

Once you’ve decided which Device objects you want to execute your kernels, you can
use them to create a Context. There are two ways to do this. The first method involves
creating a Context from a vector of Device objects. The signature for this constructor
is as follows:

Context(VECTOR_CLASS<Device>& devices, cl_context_properties* props = NULL,
   void (CL_CALLBACK* pfn_notify)(const char* errorinfo,
      const void* info_size, ::size_t cb, void * user_data) = NULL,
   void* user_data = NULL, cl_int* err = NULL)

The arguments of this function are almost exactly like those of the clCreateContext
function we looked at in chapter 2. The only differences are that the constructor
requires a vector of Device objects instead of an array of cl_device_id structures, and
you don’t have to identify how many elements are in the vector. Because of the con-
structor’s default values, the only required parameter is the Device vector.

 The second constructor defined by the Context class creates a Context containing
all connected devices of a given type. Here is the signature for this constructor:

Context(cl_device_type type, cl_context_properties* props = NULL,
   void (CL_CALLBACK* pfn_notify)(const char* errorinfo,
      const void* info_size, ::size_t cb, void* user_data) = NULL,
   void * user_data = NULL, cl_int * err = NULL)

This constructor corresponds to the C function clCreateContextFromType. The only
required parameter is the type of device you’re interested in, and table 2.3 lists the
five different device types available.

 The code in the following listing shows how Platform, Device, and Context
objects are used in practice. It accesses the first installed platform and places its
devices in a std::vector. Then it creates a Context containing the devices and prints
the name of each.

#define __CL_ENABLE_EXCEPTIONS
#define __NO_STD_STRING

#include <iostream>

#ifdef MAC
#include <OpenCL/cl.hpp>
#else
#include <CL/cl.hpp>

Listing 8.1 Testing a context in C++: full_context.cpp



173Creating kernels
#endif

using namespace std;

int main(void) {

   vector<cl::Platform> platforms;
   vector<cl::Device> platformDevices, allDevices, ctxDevices;
   cl::string device_name;
   cl_uint i;

   try {
      cl::Platform::get(&platforms);             
      platforms[0].getDevices(CL_DEVICE_TYPE_ALL,            
            &platformDevices);                   

       cl::Context context(platformDevices);      
      ctxDevices =                                         
         context.getInfo<CL_CONTEXT_DEVICES>(); 
      for(i=0; i<ctxDevices.size(); i++) {      
         device_name =                          
            ctxDevices[i].                      
            getInfo<CL_DEVICE_NAME>();          
         cout << "Device: "                     
              << device_name.c_str()            
              << endl;                          
      }                                         
   }
   catch(cl::Error e) {                   
      cout << e.what() << ": Error code "               
           << e.err() << endl;            
   }                                      
   return 0;
}

If this had been coded in C, the listing would probably be at least twice as long. But
thanks to C++’s vectors and exception handling, we can perform the same operations
in a cleaner, more organized manner.

 The __NO_STD_STRING definition at the start of the listing means we’ll be dealing
with cl::strings instead of std::strings. This makes no difference for the most
part. But when the code displays the device names, it has to call c_str to convert the
cl::string into a form that can be directed to the output stream. If device_name had
been a std::string, you could have displayed the result with cout << device_name,
but because it’s a cl::string, the code uses cout << device_name.c_str().

 The vectors used in this code are std::vector objects, not cl::vector objects.
This is because the insert function is needed. cl::vectors are fine for most applica-
tions, but if you need to resize or concatenate vectors, you may be better off with the
std::vector class. 

8.2.2 Programs and kernels

Once you’ve created a Context object, the next step is to create a Program object to
contain the code that will be executed on the context’s devices. After you’ve created a

Access platform 
devices

Create context and 
display devices

Handle 
errors
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Program, you’ll need to compile the code for the target devices and then create
Kernel objects from the compiled functions.
CREATING A PROGRAM OBJECT

The Program class provides two constructors: one that creates a Program from source
code (text) and one that creates a Program from binary code. Their signatures are as
follows:

Program(const Context& context, const Sources& sources, cl_int* err = NULL)

Program(const Context& context, const VECTOR_CLASS<Device>& devices,
   const Binaries& binaries, VECTOR_CLASS<cl_int>* binaryStatus = NULL,
   cl_int* err = NULL)

The first constructor depends on a Sources data type and the second depends on a
Binaries data type. These types are defined in cl.hpp as follows:

typedef VECTOR_CLASS<std::pair<const char*, ::size_t> > Sources;

typedef VECTOR_CLASS<std::pair<const void*, ::size_t> > Binaries;

Both of these types are vectors that contain pair objects. In a Sources object, each pair
contains a char* and the size of the corresponding text in bytes. To create a Program
from a text file, you’ll need to convert the file into a Sources object. To do this, you can
use a three-step process:

1 Create an input file stream (ifstream) using the filename.
2 Form an iterator (istreambuf_iterator) to create a string from the file

stream.
3 Create a pair containing the string characters and the size of the string (plus

one).

For example, to create a Program from a file called kernel.cl, you could use code simi-
lar to the following:

std::ifstream programFile("kernel.cl");

std::string programString(std::istreambuf_iterator<char>(programFile),
   (std::istreambuf_iterator<char>()));

cl::Program::Sources source(1,
   std::make_pair(programString.c_str(), programString.length()+1));

cl::Program program(context, source);

As shown, the length of the source text must be set to the length of the string plus
one. This additional character must be included because the c_str function automat-
ically appends a null-termination character to the end of the char array. 
BUILDING A PROGRAM OBJECT

As discussed in chapter 2, each OpenCL framework provides a runtime compiler that
builds device-specific binaries. In C, this compiler is invoked using clBuildProgram.
In C++, programs are compiled using the build function of the Program class. The sig-
nature for this function is as follows:
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cl_int Program::build(
   const VECTOR_CLASS<Device> devices, const char* options = NULL,
   (CL_CALLBACK* pfn_notify) (cl_program, void* user_data) = NULL,
   void* data = NULL)

The first argument is a vector containing the Device objects that will be targeted by the
compiler. The second argument identifies options to constrain the build process, such
as what types of errors should be reported and which mathematical operations should
be allowed. Chapter 2 discusses these options in detail and table 2.7 lists each of them.

 For example, the following code builds a Program that targets the devices in a vec-
tor called targets. It also tells the compiler to allow atomic multiply-and-add (MAD)
operations. The last two arguments are set to their default values, which equal NULL:

program.build(targets, "-cl-mad-enable");

If an error occurs during the build, it’s important to obtain as much information as
possible. Chapter 2 explained the clGetProgramBuildInfo function and the different
types of information available. In C++, the getBuildInfo function accomplishes the
same result. This works like the getInfo function we examined earlier. To access the
build log, you could use the following code:

cl::string log = program.getBuildInfo<CL_PROGRAM_BUILD_LOG>();

If the build completes without error, the log will be empty. You can also call
getBuildInfo with the CL_PROGRAM_BUILD_OPTIONS flag to obtain the build options.
CREATING KERNELS

OpenCL provides two ways to create kernels from a program. You can create a kernel
for every kernel function inside a program, or you can create a single kernel for a specific
function. In C, these two options are accomplished with clCreateKernelsInProgram
and clCreateKernel, respectively.

 In C++, you can create a kernel for every kernel function in a Program with
createKernels. The signature of this simple function is as follows:

cl_int Program::createKernels(const VECTOR_CLASS<Kernel>* kernels)

The following code demonstrates the use of this function. It declares a cl::vector of
Kernel objects to be initialized by the createKernels function:

cl::vector<cl::Kernel> kernels;
cl_int Program::createKernels(kernels);

To create a single kernel, you need to call the constructor of the Kernel class. This is
its signature:

Kernel::Kernel(const Program& program, const char* name,
   cl_int* err = NULL)

As an example, let’s say there’s a kernel function called kernel_func within a pro-
gram called prog. To create a kernel for kernel_func, you’d use the following code:

cl::Kernel kernel(prog, kernel_func);
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The following code demonstrates both methods of creating kernels. After forming a
Program from the kernels.cl file, it creates three individual Kernel objects using the Ker-
nel constructor. Then it initializes a vector of Kernel objects by calling createKernels.

...
cl::Platform::get(&platforms);                        
platforms[0].getDevices(CL_DEVICE_TYPE_GPU, &devices);      
cl::Context context(devices);                         

std::ifstream programFile("kernels.cl");           
std::string programString(                               
       std::istreambuf_iterator<char>(programFile),
      (std::istreambuf_iterator<char>()));         
cl::Program::Sources source(1,                     
      std::make_pair(programString.c_str(),        
      programString.length()+1));                  
cl::Program program(context, source);              
program.build(devices);                            

cl::Kernel addKernel(program, "add");       
cl::Kernel subKernel(program, "subtract");       
cl::Kernel multKernel(program, "multiply"); 

program.createKernels(&allKernels);                     
for(unsigned int i=0; i<allKernels.size(); i++) {
   kernelName = allKernels[i].getInfo<CL_KERNEL_FUNCTION_NAME>();
   std::cout << "Kernel: " << kernelName << std::endl;
}
...

This listing is straightforward to understand, and the code used to build a Program
closely resembles the example code presented earlier. You can rely on cl::vectors in
this code because there’s no need to add or remove elements. But this code can’t use
cl::strings because a cl::string can’t be formed from an input file stream buffer
iterator (istreambuf_iterator). 

 This section has discussed how to create Kernel objects using the C++ API, but there’s
still a lot of work to be done before you can deploy these kernels to a device. For one
thing, you need to create the kernels’ arguments. This is the topic of the next section. 

8.3 Kernel arguments and memory objects
Every kernel function returns void, so if it’s going to process input data and produce
output data, it has to rely on its arguments. One of the responsibilities of the host
application is to configure these arguments before the kernel is sent to the device. If
an argument provides input, the host needs to set the size and content of the input
data. If an argument stores output, the host only needs to set the size. 

 In both cases, the host application relies on the setArg function of the Kernel
class. The signature of this function is as follows:

template <typename T>
cl_int Kernel::setArg(cl_uint index, T value)

Listing 8.2 Creating kernels in C++: create_kernels.cpp

Place GPU 
devices in vector

Create and 
build program

Create individual 
kernels

Create all kernels 
in program
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In this signature, index identifies the order of the argument in the function’s parame-
ter list. T identifies the data that will be sent to the kernel. The exact data type of T is
determined at compile time, but it can be any of the following:

■ cl::Sampler—T is a sampler that will be used to process an image object.
■ cl::Memory—T is a memory object (buffer object or image object) that will be

passed to the kernel by reference.
■ General data—T contains data that will be passed to the kernel by value.
■ cl::LocalSpaceArg—The argument will be stored in the device’s local space.

The first option, cl::Sampler, corresponds to the samplers discussed in chapter 6.
The rest of this section will discuss the last three options. We’ll start by discussing
memory objects and then look at creating arguments from general data or
cl::LocalSpaceArg objects. 

8.3.1 Memory objects

A memory object is an instantiation of the cl::Memory class. This contains data that
will be passed to the kernel by reference. The two types of memory objects are buffer
objects, which store one-dimensional data, and image objects, which store multidi-
mensional data. 

 Figure 8.1 presents the cl::Memory class hierarchy. The functions in each class are
presented without their arguments.

cl::Memory

getInfo(...)

cl::Buffer

Buffer(…)
createSubBuffer(…)

cl::Image

getImageInfo(...)

cl::Image2D

Image2D(…)

cl::Image2DGL

Image2DGL(…)

cl::Image3DGL

Image3DGL(…)

cl::Buffer
RenderGL

BufferRenderGL(...)

cl::Image3D

Image3D(…)

cl::Buffer
D3D10

BufferD3D10(...)

cl::BufferGL

BufferGL(...)

Figure 8.1 Memory object class hierarchy
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The cl.hpp header contains definitions for the classes ending in GL and D3D10, but
they aren’t mentioned in the C++ Wrapper API documentation. For this reason, we’ll
limit our discussion to buffer objects (cl::Buffer) and image objects (cl::Image,
cl::Image2D, and cl::Image3D).
BUFFER OBJECTS

If you need to transfer a memory object to a kernel that doesn’t involve images or
graphics, you should make the memory object a buffer object. This is represented by
the cl::Buffer class, whose constructor is as follows:

Buffer::Buffer(const Context& context, cl_mem_flags flags,
   ::size_t size, void* host_ptr = NULL, cl_int* err = NULL)

The host_ptr parameter identifies data on the host that will be used to form a buffer.
The size parameter identifies the size of the data to be contained inside the buffer. The
flags parameter identifies the read/write capability of the buffer relative to the device
and the nature of the buffer memory’s allocation on the host. Chapter 3 explains these
parameters in detail, and table 3.1 lists the different flags and their purposes.

 If a kernel argument is intended to provide input, the host should set its readabil-
ity to CL_MEM_READ_ONLY or CL_MEM_READ_WRITE. In this case, host_ptr must not be
NULL. This is shown in the following code, which creates a cl::Buffer containing 128
bytes starting at the memory region referenced by host_mem:

cl::Buffer buff(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
   128, host_mem, &err);

If a kernel argument is intended to hold output exclusively, the memory object’s read-
ability should be set to CL_MEM_WRITE_ONLY. In this case, host_ptr should be set to NULL
but the size parameter still needs to specify how much space should be allocated on
the device. The following code creates a write-only buffer that will hold 256 bytes:

cl::Buffer buff(context, CL_MEM_WRITE_ONLY, 256, NULL, &err);

Once you’ve created a buffer object, you can create a second buffer object whose data
is a subset of that of the first. This is called a subbuffer object, and it’s created using
the createSubBuffer function of the cl::Buffer class. The signature for this func-
tion is as follows:

cl::Buffer Buffer::createSubBuffer(cl_mem_flags flags,
   cl_buffer_create_type buffer_type, const void* buffer_create_info,
   cl_int* err = NULL)

The flags parameter in this function accepts the same values as the flags parameter
of the Buffer constructor. The second parameter, cl_buffer_create_type, can only
be set to CL_BUFFER_CREATE_TYPE_REGION.

 The third parameter is more involved. The data type is const void*, but the
pointer must reference memory containing two size_t values. The first size_t speci-
fies the offset of the subbuffer’s memory within the main buffer’s memory. The sec-
ond size_t specifies the size of the subbuffer’s memory.
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 For example, if a main buffer contains 200 floats and you want to create a subbuf-
fer containing floats 70–89, you could use the following function:

size_t config[2] = {70*sizeof(float), 20*sizeof(float)};
subBuffer = mainBuffer.createSubBuffer(CL_MEM_READ_ONLY |
      CL_MEM_COPY_HOST_PTR, CL_BUFFER_CREATE_TYPE_REGION, (void*)config);

The code in the following listing creates two buffers, mainBuffer and subBuffer, and
makes them arguments of a Kernel. Then it displays the sizes and locations of their
memory regions on the host. 

NOTE This code relies on subbuffers, which were introduced in OpenCL
1.1. This code will execute only on devices that support 1.1 capabilities.

...
cl::Buffer mainBuffer(context,                
      CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,             
      sizeof(data), data);                    
kernel.setArg(0, mainBuffer);                 

size_t config[2] = {70*sizeof(float), 20*sizeof(float)};
subBuffer = mainBuffer.createSubBuffer(                     
      CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,          
      CL_BUFFER_CREATE_TYPE_REGION, (void*)config);     
kernel.setArg(1, subBuffer);                            

std::cout << "Main buffer size: "                      
      << mainBuffer.getInfo<CL_MEM_SIZE>()                   
      << std::endl;                                    
std::cout << "Main buffer memory location: "           
      << mainBuffer.getInfo<CL_MEM_HOST_PTR>()         
      << std::endl;                                    
std::cout << "Sub-buffer size: "                       
      << subBuffer.getInfo<CL_MEM_SIZE>() << std::endl;
std::cout << "Sub-buffer memory location: "            
      << subBuffer.getInfo<CL_MEM_HOST_PTR>()          
      << std::endl;                                    
...

On my system, this is the output of the sub_buffer executable:

Main buffer size: 800
Main buffer memory location: 0x2596000
Sub-buffer size: 80
Sub-buffer memory location: 0x2596118

This output shows that the size of the subbuffer’s data is 80 bytes, which equals 20 *
sizeof(float). The memory location of the subbuffer’s data has an offset of 0x118
from the start of the main buffer’s data. This equals 280, or 70 * sizeof(float). 
IMAGE OBJECTS

As discussed in chapter 6, OpenCL provides many capabilities for processing images
inside kernels. But before a kernel can process an image, the host needs to transfer it

Listing 8.3 Creating a subbuffer in C++: sub_buffer.cpp

Make mainBuffer 
kernel argument

Make subBuffer 
kernel argument

Create individual 
kernels
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to the device as an image object. In C++, if the host needs to send pixel data or texture
data to a device, it should package the data inside a cl::Image object.

 The cl::Image class doesn’t provide a public constructor, so host applications
must create instances of its subclasses. As shown in figure 8.1, its subclasses are distin-
guished by the dimensionality of the image data. If the image data is two-dimensional,
the host should create a cl::Image2D object. If the image data is three-dimensional
(such as in a succession of images), the host should create a cl::Image3D object. The
constructors of the cl::Image2D object and cl::Image3D object are as follows:

cl::Image2D::Image2D(Context& context, cl_mem_flags flags,
   ImageFormat format, ::size_t width, ::size_t height,
   ::size_t row_pitch = 0, void* host_ptr = NULL, cl_int* err = NULL)

cl::Image3D::Image3D(const Context& context, cl_mem_flags flags,
   ImageFormat format, ::size_t width, ::size_t height, ::size_t depth,
   ::size_t row_pitch = 0, ::size_t slice_pitch = 0,
   void* host_ptr = NULL, cl_int* err = NULL)

The flags parameter takes the same values as the flags parameter of the Buffer con-
structor, but the next four arguments are entirely different. The format argument spec-
ifies the nature of the image data by providing an ImageFormat object, which wraps
around the cl_image_format data structure discussed in chapter 3. An ImageFormat
object can be formed with the following function:

ImageFormat(cl_channel_order order, cl_channel_type type)

Here, the cl_channel_order defines what channels are present and the order in
which they’re stored. This is an enumerated type, and most of its values involve red,
green, blue, and alpha channels: CL_RGB, CL_RGBA, CL_ARGB, CL_BGRA, CL_RG, CL_RA,
CL_R, and CL_A. Other values add bit padding, represented by x: CL_RGBx, CL_RGx, and
CL_Rx. CL_INTENSITY measures alpha (opacity) independent of color, and
CL_LUMINANCE is used for grayscale images.

 The cl_channel_type identifies the numerical data types and data sizes used to
specify the image’s channel data. For example, if each channel is represented by a 16-
bit unsigned short, you’d set the type to CL_UNSIGNED_INT16. Table 3.2 lists all the pos-
sible values of cl_channel_type.

 For example, to create an ImageFormat that represents the RGBA format, you’d
make the following declaration:

cl::ImageFormat format(CL_RGBA, CL_UNSIGNED_INT8);

Returning to the two image constructors, the arguments following format identify the
geometry of the image data. For two-dimensional images, this consists of the width,
height, and row pitch. For three-dimensional images, this consists of the width,
height, depth, row pitch, and slice pitch. Figure 8.2 depicts the geometry of a three-
dimensional image.

 In both constructors, the row_pitch argument identifies how many bytes are in
each row. If row_pitch is set to 0, OpenCL will assume its value equals width * (pixel
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size). The cl::Image3D object constructor accepts a slice_pitch argument that iden-
tifies the number of bytes in each two-dimensional image, or slice. If slice_pitch is
set to 0, its value will be set to row_pitch * height.

 The following code creates a three-dimensional image object from four slices
of 800 * 600 pixels each. The pixels are provided in the RGBA format:

#define NUM_ROWS 600
#define NUM_COLS 800
#define NUM_SLICES 4

unsigned char rgb_data[NUM_SLICES][NUM_ROWS][NUM_COLS];
cl::ImageFormat format(CL_RGBA, CL_UNSIGNED_INT8);

cl::Image3D image(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
   format, NUM_COLS, NUM_ROWS, NUM_SLICES, 0, 0, (void*)rgb_data);

Once you’ve created an image object, you can obtain information about it in two ways.
First, the getInfo function of the cl::Memory class provides general information
about the memory object, such as the size and address of its data.

 Second, the getImageInfo function of the cl::Image class provides information
specific to images, such as its pixel format and geometry. Table 3.3 lists the different
kinds of information available.

 As an example, the following code accesses information about the cl::Image3D
object created earlier. It calls getInfo to determine the number of bytes in the data
and then calls getImageInfo to determine how many bytes are in a slice: 

size_t image_size = image.getInfo<CL_MEM_SIZE>();
size_t slice_size = image.getImageInfo<CL_IMAGE_SLICE_PITCH>();

8.3.2 General data arguments

If a kernel has memory objects as arguments, the memory object data will be stored in
the device’s global or constant memory after the kernel is transferred to the device.
Therefore, in the kernel function’s parameter list, each parameter corresponding to a
memory object must be preceded by __global or __constant. The parameter must
be a pointer because kernels access memory object data by reference.

Slices

Height

Width

Depth

Figure 8.2 Geometry of a 
three-dimensional image object
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 If you set the last parameter of setArg to a general data object, the data will be
passed by value. In this case, the corresponding argument in the kernel function must
not be a pointer and it must not have any address space designation. Without an
address space designation, the object will be stored in the private memory of each
work-item executing the kernel.

 An example will help make this clear. The following code creates a buffer object
and an integer, and then calls setArg twice to make them arguments of kernel:

cl::Buffer buff(...);
int x = 10;

kernel.setArg(0, buff);
kernel.setArg(1, x);

Because buff and x are the kernel’s arguments, the kernel function’s parameter list
must look something like this:

__kernel void foo(__global float* data, int num) {
...
}

The first argument must be a pointer, and its address space can be set to __global or
__constant. The second argument, however, must not be a pointer, and its data will
be stored in the private address space. 

8.3.3 Local space arguments

In some kernel functions, you may want arguments to be stored in the local address
space instead of the global, constant, or private spaces. This poses a problem, though,
because the host can’t directly read or write to local memory.

 But if setArg is called with a cl::LocalSpaceArg object, the device will allocate
memory for the argument in local space. This argument won’t have any initial value—
it must be initialized by work-items as they execute.

 In other words, the entire purpose of cl::LocalSpaceArg is to identify how many
bytes should be allocated for an uninitialized argument in local memory. This is
shown by the structure’s definition, which is as follows:

struct LocalSpaceArg {
    ::size_t size_;
};

You can create a LocalSpaceArg structure by calling the __local method, which
accepts a size_t parameter. For example, the following code creates a LocalSpaceArg
containing 64 bytes, and then makes it the first argument of kernel:

cl::LocalSpaceArg arg = cl::__local(64);
kernel.setArg(0, arg);

If arg is the only argument of the kernel, the kernel function argument must be a
pointer preceded by the __local designation. This is shown in the following code: 
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__kernel void foo(__local float* data) {
...
}

Now that you understand how to add arguments to kernels in C++, you’re ready to cre-
ate and dispatch kernel-execution commands. But first, you need to create and config-
ure a CommandQueue. The next section discusses the CommandQueue class and its
associated functions. In both cases, the host application relies on the setArg function 

8.4 Command queues
In C++, all the functions needed to enqueue commands—from kernel-execution com-
mands to data transfer commands—are contained within the CommandQueue class.
This section will explore these commands in detail, but first we need to look at how
new CommandQueue objects are created.

8.4.1 Creating CommandQueue objects

A command queue makes it possible for the host to direct processing tasks to a device.
Therefore, unlike Context and Program objects, a CommandQueue must be created with
one specific Device object. This is shown by its constructor:

CommandQueue::CommandQueue(const Context& context, const Device& device,
   cl_command_queue_properties properties = 0, cl_int* err = NULL)

By default, the CommandQueue sends commands to the device in the order in which the
host enqueued them. But if the properties parameter is set equal to CL_QUEUE_
OUT_OF_ORDER_EXEC_MODE_ENABLE, the device will process commands in an out-of-
order fashion. If properties is set to CL_QUEUE_PROFILING_ENABLE, the command
queue will monitor the timing of each command in the queue. This timing information
can be retrieved using profiling events, which will be discussed in the next section.

 The following line of code constructs a CommandQueue capable of sending com-
mands from the host to a Device object called device. This queue is configured to
monitor the timing of enqueued commands: 

cl::CommandQueue queue(context, device, CL_QUEUE_PROFILING_ENABLE);

8.4.2 Enqueuing kernel-execution commands

The CommandQueue class provides two functions that tell a device to execute kernel
code. The simpler of the two is enqueueTask. This enqueues a command that executes
a kernel using one work-item and no work-groups. Its signature is as follows:

cl_int CommandQueue::enqueueTask(const Kernel& kernel,
   const VECTOR_CLASS<Event> *wait_list = NULL, Event *event = NULL)

The only required parameter is the Kernel object, and the other parameters will be
discussed in the next section. For example, to enqueue a command to execute kernel
without event-processing, you’d make the following function call:

queue.enqueueTask(kernel);



184 CHAPTER 8 Development with C++
This function is simple to code, but because it only configures a single work-item to
execute the kernel, the kernel code won’t be processed efficiently. To enqueue a com-
mand that will execute a kernel using multiple work-items and work-groups, you need
to invoke enqueueNDRangeKernel. This function’s signature is as follows:

cl_int cl::CommandQueue::enqueueNDRangeKernel(const Kernel& kernel,
   const NDRange& offset, const NDRange& global_size,
   const NDRange& local_size, const VECTOR_CLASS<Event>* events = NULL,
   Event* event = NULL)

The three new arguments—offset, global_size, and local_size—must all be pro-
vided as NDRange objects. An NDRange is a container of size_t values, and if the kernel
data has N dimensions, each NDRange must hold N size_t values.

 Chapters 3 and 4 discuss work-items in detail, but we’ll briefly review the topic here.
A work-item is a parallel implementation of an executing kernel. In general, the more
work-items you have, the faster the kernel will be processed. The global_size argu-
ment identifies how many work-items should be generated for each dimension of data.

 Each work-item has a unique identifier called a global ID. The offset argument
identifies the first global ID that will be assigned to a work-item. Successive global IDs
will be incremented from this offset value.

 As discussed in chapters 4 and 7, OpenCL makes it possible to synchronize the pro-
cessing of work-items so long as they’re placed into groups with shared memory.
These groups are called work-groups, and the local_size parameter identifies how
many work-items should be placed in a work-group per dimension.

 A good way to depict work-items and work-groups is through an index space. Fig-
ure 8.3 presents an index space in which each grayed box represents a work-item. There
are 12 * 4 work-items split into eight work-groups composed of 3 * 2 work-items each.
The offset coordinates are (3, 3), so the first work-item will have a global ID of (3, 3).

 The following code invokes enqueueNDRangeKernel to execute a kernel using the
partitioning scheme depicted in the figure:

cl::NDRange offset(3, 3);
cl::NDRange global_size(12, 4);
cl::NDRange local_size(3, 2);

queue.enqueueNDRangeKernel(kernel, offset, global_size, local_size);

i

j

Offset = (3, 3)

Total number of work-items = 
(12, 4)

Work-items per work-group = 
(3, 2)

Figure 8.3 Index space for an example kernel partition
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Because the kernel data has two dimensions, each NDRange constructor must have two
elements. The NDRange class provides four constructors that accept 0, 1, 2, and 3
size_t elements respectively. 

8.4.3 Read/write commands

Chapter 3 discussed the C functions that enqueue commands that transfer data. The
simplest of these are the read/write commands. A read command transfers a memory
object from the device to the host, and a write command transfers a memory object
from the host to a device.

 Table 8.1 lists the functions of the CommandQueue class that enqueue read and write
commands. Depending on the function, some commands transfer buffer objects and
others transfer image objects.

Table 8.1 C++ functions that read/write memory objects

Function Purpose

cl_int CommandQueue::enqueueReadBuffer(
   const Buffer& buffer, cl_bool blocking,
   ::size_t offset, ::size_t size, const void* ptr,
   const VECTOR_CLASS<Event>* wait_list = NULL,
   Event* event = NULL)

Transfers data from a buf-
fer object to the host

cl_int CommandQueue::enqueueWriteBuffer(
   const Buffer& buffer, cl_bool blocking,
   ::size_t offset, ::size_t size, const void *ptr,
   const VECTOR_CLASS<Event>* wait_list = NULL,
   Event* event = NULL)

Writes data from the host 
to a buffer object

cl_int CommandQueue::enqueueReadImage(
   const Image& image, cl_bool blocking,
   const size_t<3>& origin,
   const size_t<3>& region,
   ::size_t row_pitch, ::size_t slice_pitch,
   void *ptr,
   const VECTOR_CLASS<Event>* wait_list = NULL,
   Event* event = NULL)

Transfers data from an 
image object to the host

cl_int CommandQueue::enqueueWriteImage(
   const Image& image, cl_bool blocking,
   const size_t<3>& origin,
   const size_t<3>& region,
   ::size_t row_pitch, ::size_t slice_pitch,
   const void *ptr,
   const VECTOR_CLASS<Event>* wait_list = NULL,
   Event* event = NULL)

Transfers data from the 
host to an image object
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In each case, the data is transferred between the cl::Buffer/cl::Image parameter
and the void* ptr parameter. In a read operation, data is transferred from the
cl::Buffer/cl::Image on the device to the ptr memory on the host. In a write oper-
ation, this is reversed.

 These functions closely resemble their C counterparts, which chapter 3 examined
at length. The only differences are that the functions in table 8.1 use C++ data types,
and they don’t require a parameter that specifies the number of events in the wait list.

 Because of the strong similarity between the C functions and C++ functions, this
chapter won’t delve into the individual data transfer functions. Instead, we’ll rewrite
chapter 3’s buffer_test.c example in C++. Figure 8.4 depicts the transfer operation
graphically and listing 8.4 presents its implementation in C++.   

cl_int CommandQueue::enqueueReadBufferRect(
   const Buffer& buffer, cl_bool blocking,
   const size_t<3>& buffer_offset,
   const size_t<3>& host_offset,
   const size_t<3>& region,
   ::size_t buffer_row_pitch,
   ::size_t buffer_slice_pitch,
   ::size_t host_row_pitch,
   ::size_t host_slice_pitch, void *ptr,
   const VECTOR_CLASS<Event>* wait_list = NULL,
   Event* event = NULL)

Transfers a rectangular 
portion of data from a buf-
fer object to the host

cl_int CommandQueue::enqueueWriteBufferRect(
   const Buffer& buffer, cl_bool blocking,
   const size_t<3>& buffer_offset,
   const size_t<3>& host_offset,
   const size_t<3>& region,
   ::size_t buffer_row_pitch,
   ::size_t buffer_slice_pitch,
   ::size_t host_row_pitch,
   ::size_t host_slice_pitch, void *ptr,
   const VECTOR_CLASS<Event>* wait_list = NULL,
   Event* event = NULL)

Transfers a rectangular 
portion of data from the 
host to a buffer object

Table 8.1 C++ functions that read/write memory objects (continued)

Function Purpose

Host memory

queue.enqueueReadBufferRect

Buffer object

Figure 8.4 Transferring a rectangular buffer section to the host in C++
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...
cl::Buffer matrixBuffer(context,
      CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR,
      sizeof(zeroMatrix), zeroMatrix);
kernel.setArg(0, matrixBuffer);

cl::CommandQueue queue(context, devices[0]);
queue.enqueueTask(kernel); 
queue.enqueueWriteBuffer(matrixBuffer, CL_TRUE, 0,
      sizeof(fullMatrix), fullMatrix);                      

bufferOrigin.push_back(5*sizeof(float));
bufferOrigin.push_back(3);
bufferOrigin.push_back(0);
hostOrigin.push_back(1*sizeof(float));
hostOrigin.push_back(1);
hostOrigin.push_back(0);
region.push_back(4*sizeof(float));
region.push_back(4);
region.push_back(1);
queue.enqueueReadBufferRect(matrixBuffer, CL_TRUE,
      bufferOrigin, hostOrigin, region,                    
      10*sizeof(float), 0,                        
      10*sizeof(float), 0, zeroMatrix);           
...

Most of the code in this listing is devoted to initializing the cl::size_t<3> arguments
of the enqueueReadBufferRect function: bufferOrigin, hostOrigin, and region.
There is no constructor for this type, so you must call the push_back function or set
the elements of the vector directly. 

8.4.4 Memory mapping and copy commands

Besides read/write operations, OpenCL provides two additional methods of transfer-
ring data. First, you can map a region of host memory to a memory object on the device
and transfer data using traditional memory I/O routines. The memory map is created
with the enqueueMapBuffer and enqueueMapImage functions of the CommandQueue class,
and it’s destroyed with enqueueUnmapMemObject. Second, you can copy data between
memory objects. This makes it convenient to transfer data between connected devices
or between an image object and a buffer object.

 Table 8.2 lists the CommandQueue functions that make memory-mapping and data
copying possible. Each function signature is followed by a description of the com-
mand it enqueues.

 These C++ functions look and behave like corresponding C functions in tables 3.6
and 3.7. To demonstrate how they work, the code in listing 8.5 performs six steps:

1 Send two buffer objects, buffer A and buffer B, to the device as kernel arguments.
2 Copy the content of buffer A to buffer B with enqueueCopyBuffer.
3 Map buffer B to host memory with enqueueMapBuffer.
4 Copy mapped memory on the host to an array with memcpy.
5 Unmap the memory map with enqueueUnmapMemObject.
6 Verify that the array contains the original content of buffer A.

Listing 8.4 Reading rectangular data from a buffer in C++: buffer_test.cpp
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Table 8.2 C++ Functions that map/unmap memory and copy memory objects

Function Purpose

void* CommandQueue::enqueueMapBuffer(
   const Buffer& buffer, cl_bool blocking,
   cl_map_flags map_flags,
   ::size_t offset, ::size_t size,
   const VECTOR_CLASS<Event>* wait_list = NULL,
   Event* event = NULL, cl_int* err = NULL)

Maps a region of a buffer 
object to host memory

void* CommandQueue::enqueueMapImage(
   const Image& image, cl_bool blocking,
   cl_map_flags map_flags,
   ::size_t<3>& origin, ::size_t<3>& region,
   ::size_t* row_pitch, ::size_t* slice_pitch,
   const VECTOR_CLASS<Event>* wait_list = NULL,
   Event* event = NULL, cl_int* err = NULL)

Maps a rectangular region of an 
image object to host memory

cl_int CommandQueue::enqueueUnmapMemObject(
   const Memory& mem_object, void* mapped_ptr,
   const VECTOR_CLASS<Event>* wait_list = NULL,
   Event* event = NULL)

Unmaps an existing memory 
object from host memory

cl_int CommandQueue::enqueueCopyBuffer(
   const Buffer& src, const Buffer& dst,
   ::size_t src_offset, ::size_t dst_offset,
   ::size_t size,
   const VECTOR_CLASS<Event>* wait_list = NULL,
   Event* event = NULL)

Copies data from a source buf-
fer object to a destination buf-
fer object

cl_int CommandQueue::enqueueCopyImage(
   const Image& src, const Image& dst,
   const size_t<3>& src_origin,
   const size_t<3>& dst_origin,
   const size_t<3>& region,
   const VECTOR_CLASS<Event>* wait_list = NULL,
   Event* event = NULL)

Copies data from a source 
image object to a destination 
image object

cl_int CommandQueue::enqueueCopyBufferToImage(
   const Buffer& src, const Image& dst,
   const ::size_t src_offset,
   const size_t<3>& dst_origin,
   const size_t<3>& region,
   const VECTOR_CLASS<Event>* wait_list = NULL,
   Event* event = NULL)

Copies data from a source buf-
fer object to a destination 
image object

cl_int CommandQueue::enqueueCopyImageToBuffer(
   const Image& src, const Buffer& dst,
   const size_t<3>& src_origin,
   const size_t<3>& region,
   const ::size_t dst_offset,
   const VECTOR_CLASS<Event>* wait_list = NULL,
   Event* event = NULL)

Copies data from a source 
image object to a destination 
buffer object
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...
cl::Buffer bufferA(context,                    
      CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR,           
      sizeof(dataA), dataA);                   
cl::Buffer bufferB(context,                    
      CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR,
      sizeof(dataB), dataB);                   

kernel.setArg(0, bufferA);
kernel.setArg(1, bufferB);

cl::CommandQueue queue(context, devices[0]);
queue.enqueueTask(kernel);

queue.enqueueCopyBuffer(bufferA, bufferB,      
                        0, 0, sizeof(dataA));           

mappedMemory = queue.enqueueMapBuffer(bufferB, CL_TRUE,
      CL_MAP_READ, 0, sizeof(dataB));                       

memcpy(results, mappedMemory, sizeof(dataB));
queue.enqueueUnmapMemObject(bufferB, mappedMemory);  
...

As you use the map/unmap functions from table 8.2, remember that the
enqueueMapBuffer and enqueueMapImage functions both return void pointers to
identify the mapped memory regions on the host. These are the only functions in
the table that don’t return an error code.

 There are three functions of the CommandQueue class that haven’t been mentioned
in this section. That’s because they’re commonly associated with event processing,
which is the topic of the next section. 

8.5 Event processing
Events make it possible to respond to occurrences on the host and the device. The
C++ Wrapper API provides the Event class to represent these occurrences, and Event
objects can be created easily because the class’s constructor takes no arguments.

 Events can be used in three main ways: host notification, command synchroniza-
tion, and profiling. Chapter 7 explained the theory behind these methods in detail. In
this section, we’ll focus instead on the C++ classes and functions that make event pro-
cessing possible.

8.5.1 Host notification

Events can be configured to call a host function (called a callback function) when a com-
mand on the device completes its execution. The configuration process requires that
the Event be associated with both an enqueued command and a callback function.

 Associating an Event with a command is simple. If you look back on tables 8.1
and 8.2, you’ll see that the last argument of almost every function is a pointer to an
Event object. When you make an Event the last argument of one of these functions,

Listing 8.5 Copying and mapping buffer objects in C++: map_copy.cpp
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Copy buffer 
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buffer to host
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the Event will be associated with the command enqueued by the function. For exam-
ple, the following code creates an Event called e and associates it with a command
that memory-maps a buffer object to host memory:

Event e();
q.enqueueMapBuffer(buff, CL_TRUE, CL_MAP_READ, 0, sizeof(data), NULL, &e);

Associating an Event with a callback function is slightly more complicated. The
function that creates this association is Event::setCallback, and its signature is as
follows:

cl_int Event::setCallback(cl_int type, void (CL_CALLBACK* pfn_notify)
   (cl_event event, cl_int command_exec_status, void* user_data),
   void* user_data = NULL)

This function signature is close to that of clSetEventCallback, which was discussed
in chapter 7. The first parameter must be set to CL_COMPLETE, because at the time of
this writing, a command Event can be associated only with a command’s completion.
The second parameter is a pointer to the callback function, and the third parameter
identifies data that will be sent to the callback function. As an example, the following
code associates the Event e with a callback function called computeData:

e.setCallback(CL_COMPLETE, &computeData, NULL);

In both C and C++, callback functions must accept the same data types in the same
order. The required signature for a callback function is as follows:

void CL_CALLBACK func_name(cl_event event, cl_int status, void *data)

Notice that the first parameter is a cl_event structure, not an Event object. Therefore,
if you want to examine an event’s properties in a callback function, you need to invoke
the clGetEventInfo function discussed in chapter 7, not cl::Event::getInfo.

 The following code demonstrates how callback functions are coded in C++. This
application executes a kernel, reads a buffer object, and then uses a callback to test
the accuracy of the output data.

void CL_CALLBACK checkData(cl_event event,
      cl_int status, void* data) {            

   int i;                                 
   cl_bool check;                         
   int *buffer_data;                      

   buffer_data = (int*)data;              
   check = CL_TRUE;                       
   for(i=0; i<100; i++) {                 
      if(buffer_data[i] != 2*i) {         
         check = CL_FALSE;                
         break;                           
      }                                   
   }                                      

Listing 8.6 Events and callback functions in C++: callback.cpp

Define callback 
function
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   if(check)                                   
      std::cout << "The data is accurate."          
                << std::endl;                  
   else                                        
      std::cout << "The data is not accurate." 
                << std::endl;                  
}                                              

int main(void) {
   ...
   cl::Event callbackEvent;
   int i, data[100];
   ...
   queue.enqueueReadBuffer(buffer,       
         CL_FALSE, 0, sizeof(data),                 
         data, NULL, &callbackEvent);    

   callbackEvent.setCallback(CL_COMPLETE,
         &checkData, (void*)data);                     
   ...
}

This code demonstrates how to direct data from a memory object to a callback func-
tion and verify the data inside the callback function. This process becomes particu-
larly useful when you enqueue time-consuming commands involving kernel execution
or data transfer. 

8.5.2 Command synchronization

In tables 8.1 and 8.2, most of the command-enqueuing functions accept a vector of
Event objects as their second-to-last parameter. These Events form the wait list of the
enqueued command. Before a command can execute, the occurrence corresponding
to each Event in its wait list must complete.

 If an Event corresponds to a command’s completion on the device, we’ll refer to it
as a command event. If it corresponds to an occurrence on the host, we’ll refer to it as
a user event. We’ll look at how both types of events are used to synchronize commands.
COMMAND EVENTS

Command events are helpful when you need to synchronize commands in different
command queues. For example, the following code associates the Event e1 with a
kernel-execution command in CommandQueue q1. Then it places e1 in the wait list of
a write command in CommandQueue q2:

q1.enqueueTask(kernel, NULL, &e1);
cl::vector<cl::Event> waitList;
waitList.push_back(e1);
q2.enqueueWriteBuffer(buff, CL_TRUE, 0, sizeof(data), data, &waitList);

Because e1 is in the wait list of the write command, the write operation won’t start
until the kernel-execution command in q1 has completed its execution. Note that a
wait list must be provided as a vector containing cl::Event objects, not just as a
pointer to a cl::Event array. 

Define callback 
function

Read kernel 
output

Set callback 
function
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USER EVENTS

In addition to command events, user events can also be placed in a command’s wait
list. This will force the command’s execution to wait until the host application sets the
user event’s status to CL_COMPLETE. The C++ Wrapper API provides a separate class for
user events called UserEvent, and its constructor is as follows:

UserEvent::UserEvent(Context& context, cl_int* err = NULL)

After a UserEvent is created, it can be placed in a command’s wait list. Then, to allow
the command to execute, the host application must call the event’s setStatus func-
tion. The signature of setStatus is as follows:

cl_int UserEvent::setStatus(cl_int status)

If this function is called with the status argument set to CL_COMPLETE, any commands
waiting on the event will stop waiting and start executing. If status is set to a negative
value, this will be interpreted as an error condition, and any commands waiting on the
event will terminate.

 The code in the following listing shows how user events are coded in C++. The host
application forces a kernel-execution command to wait until the user presses a key.
When the kernel finishes executing, its associated event invokes a callback function
that displays an output message.

void CL_CALLBACK printMessage(cl_event event,           
      cl_int status, void* data) {                             
   std::cout << "The kernel has executed." << std::endl;
}                                                       

int main(void) {
   ...
   cl::Event callbackEvent;
   ...
   cl::UserEvent userEvent(context);            
   cl::vector<cl::Event> waitList;                         
   waitList.push_back((cl::Event)userEvent);    
   cl::CommandQueue queue(context, devices[0]);
   queue.enqueueTask(kernel, &waitList, &callbackEvent);

   callbackEvent.setCallback(CL_COMPLETE, &printMessage);
   std::cout << "Press ENTER to execute kernel." << std::endl;
   getchar();
   userEvent.setStatus(CL_COMPLETE);                         
   ...
}

The userEvent in the wait list forces the kernel-execution command to stall until the
user presses the Enter key. But once the setStatus function is called, the kernel can
execute normally. 

8.5.3 Profiling events

Profiling makes it possible to precisely gauge the timing of high-performance applica-
tions. The goal is to obtain the times associated with a command’s changes in status,

Listing 8.7 User event processing in C++: user_event.cpp
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and subtract these times to determine how long the command spent in one of the
stages. To configure profiling in C++, you need to take three steps:

1 Set the CL_QUEUE_PROFILING_ENABLE flag when you create the command queue.
2 Associate an Event object with the command to be profiled.
3 After the command executes, call getProfilingInfo to obtain information

about its timing.

The getProfilingInfo function works like the getInfo functions in other classes.
This function accepts one of four template values that identify the stages of a com-
mand’s processing: CL_PROFILING_COMMAND_QUEUED, CL_PROFILING_COMMAND_SUBMIT,
CL_PROFILING_COMMAND_START, and CL_PROFILING_COMMAND_END. These stages are dis-
cussed further in chapter 7 and listed in table 7.3.

 As an example, the following code shows how getProfilingInfo can be used to
obtain the time when a command began its execution on the device:

cl_ulong start = event.getProfilingInfo<CL_PROFILING_COMMAND_START>();

The following code demonstrates how simple it is to profile command execution with
C++. It associates an Event profileEvent with a kernel-execution command, and calls
getProfilingInfo twice to obtain the starting and ending times for the execution.

...
cl::CommandQueue queue(context, devices[0], CL_QUEUE_PROFILING_ENABLE);  
queue.enqueueTask(kernel, NULL, &profileEvent);                          
queue.finish();

start = profileEvent.getProfilingInfo<CL_PROFILING_COMMAND_START>();    
end = profileEvent.getProfilingInfo<CL_PROFILING_COMMAND_END>();        
std::cout << "Elapsed time: " << (end-start) << " ns." << std::endl;
...

The time values returned by getProfilingInfo are given in billionths of a second,
called nanoseconds or ns. But not all compliant devices can resolve time down to indi-
vidual nanoseconds. To see how precisely a device can measure time, call the getInfo
function of a Device object with the CL_DEVICE_PROFILING_TIMER_RESOLUTION tem-
plate value. 

8.5.4 Additional event functions

The C++ Wrapper API provides event-related routines that aren’t directly related to
host notification, command synchronization, or profiling. Here, we’ll look at the
wait functions of the Event class and the additional synchronization functions of the
CommandQueue class.
WAIT FUNCTIONS

Each Event object corresponds to an occurrence, and we’ve discussed how to stall a
command’s execution until the occurrence finishes. But you can also stall the host
application using the two wait functions of the Event class.

Listing 8.8 Profiling kernels in C++: profile.cpp
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 The first function is called wait, and it doesn’t require any arguments. It forces the
host application to halt until the Event’s occurrence completes. For example, if event
is associated with an occurrence that hasn’t completed yet, the following code will
force the host application to stall:

event.wait();

Similarly, the static function waitForEvents forces the host application to halt until a
group of event occurrences have completed. Its signature is as follows:

static cl_int cl::Event::waitForEvents(const VECTOR_CLASS<Event>& events)

You can think of waitForEvents as a wait list for the host application. Once every
event occurrence has completed, the host application can continue executing.
ADDITIONAL QUEUE COMMANDS

We’ve looked at functions that enqueue kernel-execution commands, data transfer
commands, and memory-map commands. But the CommandQueue class provides three
additional functions that enqueue commands that relate to synchronization:

■ enqueueMarker(Event *e = NULL)—Enqueues a marker command and associ-
ates an Event with the execution of every command preceding it. This Event
can be used to synchronize other commands or notify the host.

■ enqueueWaitForEvents(const VECTOR_CLASS<Event>& waitList))—Enqueues
a wait command that forces following commands to halt until the occurrences
corresponding to each Event in the wait list have completed.

■ enqueueBarrier()—Enqueues a barrier command that forces all following com-
mands to halt until all preceding commands have completed their execution.

Unlike other command synchronization methods, these functions only affect com-
mands within a single command queue. They become particularly important when a
queue is configured to process commands out of order.

 The wait command enqueued by enqueueWaitForEvents and the barrier com-
mand enqueued by enqueueBarrier both stall succeeding commands in the queue.
The wait command stalls the queue until the occurrences corresponding to the
Events in its wait list have completed. The barrier command stalls the queue until
every preceding command has finished executing. 

8.6 Summary
With the C++ Wrapper API, you can build applications that combine the high perfor-
mance of OpenCL and the high-level object-oriented features of C++. C++ program-
ming is usually considered to be more complicated than C programming, but if you
compare the code listings in this chapter with those of previous chapters, I’m sure
you’ll agree that you can obtain the same results with much less code by using C++.

 This chapter has discussed the C++ API for OpenCL, and we started with the pro-
cess of creating kernels. Instead of data structures like cl_platform_id and
cl_context, we rely on objects instantiated from classes such as cl::Platform and
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cl::Context. Not only does this provide greater organization, but it also makes the
code simpler. For example, if you want information about an object, you can simply
call getInfo with a template instead of calling functions like clGetPlatformInfo and
clGetDeviceInfo with their many parameters.

 After explaining how to create kernels, this chapter discussed kernel arguments
and the command queue. The C++ functions are quite similar to the C functions, but
there are two points to keep in mind. First, every command-enqueuing function, from
enqueueTask to enqueueReadBufferRect, is a member function of the CommandQueue
class. Second, the C++ API provides its own size_t class that accepts a template with a
numerical value.

 The last topic explored in this chapter involves event processing. Again, the C++
code resembles C code, but whereas C code relies on the cl_event structure, the C++
API provides two classes representing events. The Event class corresponds to general
occurrences, and the UserEvent class corresponds to occurrences on the host. Both
types of objects can be placed in wait lists to synchronize the execution of commands.

 Although C++ provides many advantages over C, neither C executables nor C++
executables are cross-platform. When you build a C/C++ application for one operat-
ing system, it won’t run on other systems without some sort of conversion. In the next
chapter, we’ll look at Java APIs for OpenCL, which will enable you to build classes that
can be run immediately on multiple operating systems.



Development
 with Java and Python
In chapter 1, I explained that OpenCL makes it possible to “write once, run on any-
thing,” and I contrasted that with Java’s motto, “Write once, run anywhere.” In this
chapter, we’re going to combine the two and obtain the best of both worlds. That is,
we’re going to explore how to build high-performance applications using Java and
OpenCL. Then we’re going to investigate host application development with Python.

TIP If you’re unfamiliar with Java, I strongly recommend reading Head
First Java by Kathy Sierra and Bert Bates (O’Reilly, 2005). If you’d like to
know more about Python, you can’t do much better than The Quick Python
Book, Second Edition by Vern Ceder (Manning, 2010).

This chapter covers
■ Building Java-based OpenCL classes with Aparapi
■ Using the JavaCL toolset to build host applications 

in Java
■ Creating Python-based host applications with the 

PyOpenCL toolset
196
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This chapter presents three freely available toolsets that allow you to access OpenCL’s
capabilities using object-oriented development:

■ Aparapi—Released by AMD and translates Java and deploys kernel code
■ JavaCL—Released by Olivier Chafik and binds Java classes to the structures in

an OpenCL host application
■ PyOpenCL—Released by Andreas Klöckner and makes it possible to code host

applications in Python

This chapter will look at these toolsets and discuss their capabilities and coding prac-
tices. This presentation won’t be exhaustive, and we won’t examine every function of
every class in the three APIs. But it will provide plenty of example code to show how
their classes are used in practice.

NOTE In addition to Aparapi and JavaCL, Michael Bien of the JogAmp proj-
ect has released JOCL, which provides a Java-OpenCL binding similar to
JavaCL. The main page for JOCL is http://jogamp.org/jocl/www.

AMD’s Aparapi toolset is the newest of the three OpenCL-based offerings. We’ll exam-
ine it first.

9.1 Aparapi
In September 2010, AMD released the alpha version of its Aparapi (pronounced AP-ar-
AP-ee) tool on its website, http://developer.amd.com. This remarkable package
makes it easy to write and dispatch kernels from Java classes, but there are a few points
to be aware of in advance:

■ An Aparapi kernel can execute on the host’s Java Virtual Machine (JVM) or on a
single graphics card, but only if the graphics card was released by AMD/ATI.

■ The Aparapi tools only support 32-bit Windows (Windows 7, Vista, or XP) and 32-
bit/64-bit Linux (openSUSE, Ubuntu, and Red Hat Enterprise Linux) systems.

■ According to the End User License Agreement, Aparapi is available only for
testing, debugging, and evaluation. You can’t modify or distribute any part for
any reason.

To understand Aparapi, it helps to contrast it with the C++ Wrapper API we looked at
in chapter 8. The C++ API is a binding, which means it provides an interface from the
routines of one language (C++) to those of another (C). It’s a thorough binding
because it allows you to build C++ host applications with the same breadth of function-
ality as C host applications.

 In contrast, Aparapi isn’t a thorough binding. At the time of this writing, you can’t
access platforms, devices, contexts, or command queues. But Aparapi’s great strength
is that you can code kernels in a high-level language, which is more than you can
accomplish in C++.

 This section will explain Aparapi’s Kernel class and show you how to write Java
code that defines and executes kernels. But first, you need to understand how to
obtain Aparapi and install it on your development system. 

http://jogamp.org/jocl/www
http://developer.amd.com
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9.1.1 Aparapi installation

AMD’s Aparapi page is http://developer.amd.com/zones/java/aparapi/Pages/
default.aspx. If you scroll to the bottom of the page, you’ll see links for Aparapi files
directed toward 32-bit Windows and 32-bit/64-bit Linux. To obtain Aparapi, click the
link that corresponds to your system, accept the license agreement, and save the zip
file to your development computer.

NOTE Before you install Aparapi, you must have the AMD OpenCL framework
installed. Appendix A explains how to obtain this and install it on your system.

When you decompress the archive, you’ll find a number of files inside. The two most
important files are these:

■ aparapi.jar—This Java Archive (JAR) contains the class files that Aparapi
requires to function

■ aparapi.dll (Windows) or libaparapi.so (Linux)—This dynamic library serves as an
interface between the classes in the JAR file and the installed OpenCL library.

The dynamic library must be placed in a directory where the loader will automatically
find it. For example, a Linux user can place the libaparapi.so file in /usr/local. A Win-
dows user can place the aparapi.dll file in C:\Windows\System32.

 To build an Aparapi-based class, the compiler must know the name and location of
aparapi.jar. If you’re running javac from the command line, you can set this location
using the –cp flag, which defines the compiler’s classpath. 

9.1.2 The Kernel class

The Aparapi documentation is located in the docs folder in the decompressed
archive. If you look through the index.html file, you’ll find a top-level link for a single
class: Kernel. This is Aparapi’s central class, and in essence, the entire purpose of an
Aparapi application is to configure code for a Kernel object and execute it.

 Working with Kernel objects is so simple that the best way to understand it is to
look at an example. The following listing presents a basic Kernel object that executes
four rounding functions.

import com.amd.aparapi.Kernel;

public class AparapiRound {

   public static void main(String[] args) {

      final float[] input =                    
         new float[]{-6.5f, -3.5f, 3.5f, 6.5f};      
      final float[] rintOutput =               
         new float[input.length];              
      final float[] roundOutput =              
         new float[input.length];              
      final float[] ceilOutput =               

Listing 9.1 Kernel rounding with Aparapi: AparapiRound.java

Construct input/
output arrays

http://developer.amd.com/zones/java/aparapi/Pages/default.aspx
http://developer.amd.com/zones/java/aparapi/Pages/default.aspx
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         new float[input.length];           
      final float[] floorOutput =               
         new float[input.length];           

      Kernel kernel = new Kernel(){
         public void run() {
            for(int i=0; i<4; i++) {            
               rintOutput[i]  = rint(input[i]);           
               roundOutput[i] = round(input[i]);
               ceilOutput[i]  = ceil(input[i]); 
               floorOutput[i] = floor(input[i]);
            }
         }
      };

      kernel.execute(1);                        
      ...
   }
}

It may not look like it, but the code in this listing represents both a host application
and a kernel. This kernel accepts an array of floats and executes the rint, round,
ceil, and floor functions. You may recall these functions from chapter 5, which dis-
cussed them as part of the overall presentation of kernel functions.

 It’s no coincidence that the Java methods inside the Kernel object have the same
names as the C-based kernel functions. The Kernel class contains a long list of meth-
ods that exactly correspond to those used by OpenCL kernels. If you provide code for
the Kernel’s abstract run method, this code will be translated into an OpenCL kernel
when the execute method is invoked. The execute method will also compile the ker-
nel and dispatch it to the target for execution.

 Aparapi doesn’t allow you to access connected devices in code, so you can’t select
a specific target for the translated kernel. Instead, the Kernel class provides the
setExecutionMode method. This accepts one of four values:

■ Kernel.EXECUTION_MODE.GPU—Execute on the first accessible GPU
■ Kernel.EXECUTION_MODE.CPU—Execute on the first accessible CPU
■ Kernel.EXECUTION_MODE.JTP—Execute on the JVM using a Java thread pool
■ Kernel.EXECUTION_MODE.SEQ—Execute using a single loop

By default, the execute method searches for three things: the Aparapi dynamic library,
the AMD OpenCL framework, and a compliant GPU. If it finds all three, then it sends the
kernel to the GPU for execution. But if any of these is missing, Aparapi executes the kernel
on the host’s JVM using a Java thread pool. AMD recommends that you leave this default
behavior unchanged, but you can customize this with setExecutionMode. For example,
if you want to execute the Kernel object kernel on an OpenCL-compliant CPU, you can
insert the following code:

kernel.setExecutionMode(Kernel.EXECUTION_MODE.CPU);

Construct input/
output arrays

Perform rounding 
operations

Execute 
kernel
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At this point, all of the code in listing 9.1 should make sense—except for one minor
point. Why is the execute method called with an argument of 1? The answer has to do
with how Aparapi processes work-items. We’ll look at this next. 

9.1.3 Work-items and work-groups

As explained in chapters 3 and 4, a work-item is a parallel execution of a kernel. In
general, the more work-items you have, the faster the kernel will execute. Work-item
configuration is an important aspect of OpenCL, and Aparapi provides two ways to set
the number of work-items generated for a kernel.

 The first way is to invoke the execute method. The argument of execute is an inte-
ger that identifies how many work-items will be generated. For example, in listing 9.1,
the argument of execute is 1, which means the kernel will be executed by a single
work-item.

 The second way to configure the number of work-items is through the setSizes
method. The signature of this method is as follows:

protected void setSizes(int globalSize, int localSize)

The first argument identifies how many total work-items will be generated to execute
the kernel. The second argument identifies how many work-items are contained
within a work-group. As discussed in chapters 3 and 4, a work-group is a collection of
work-items that can access the same block of local memory.

 For example, suppose you want to execute a kernel with 32 work-items split into 8
work-groups of 4 work-items each. In that case, you’d invoke setSizes in the follow-
ing manner: 

Kernel kernel = new Kernel() {

   public void setSizes(int gSize, int lSize) {
      super.setSizes(32, 4);
   }

   public void run() {...}
};

Once you’ve set how many work-items and work-groups you want to use, you can
access this information from inside the kernel with the following six methods:

■ getGlobalId()—Returns the unique identifier of the work-item
■ getGlobalSize()—Returns the total number of work-items
■ getGroupId()—Returns the unique identifier of the work-group
■ getLocalId()—Returns the identifier of the work-item within the work-group
■ getLocalSize()—Returns the number of work-items in the item’s work-group
■ getNumGroups()—Returns the number of work-groups

It’s important to distinguish between getGlobalId(), getLocalId(), and
getGroupId(). The first method returns the work-item’s unique ID among all other
work-items generated for the kernel. getLocalId returns the work-item’s ID within
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the work-group; work-items in other work-groups may have the same local ID. Lastly,
getGroupId returns the identifier for the work-group containing the work-item.

 The following code demonstrates how these methods are used. It configures the
Kernel to be executed by 32 work-items split into 8 work-groups. Each work-item pro-
duces a float that identifies its global ID, global size, local ID, and local size.

import com.amd.aparapi.Kernel;

public class AparapiItems {

   public static void main(String[] args) {
      final int numItems = 8;
      final int numGroups = 4;
      final float[] itemInfo = new float[numItems];

      Kernel kernel = new Kernel(){
         public void setSizes(int gSize, int lSize) {
            super.setSizes(numItems, numGroups);            
         }                                           

         public void run() {
            itemInfo[getGlobalId()] =                
               getGlobalId() * 10.0f +                       
               getGlobalSize() + getLocalId()*0.1f + 
               getLocalSize() * 0.01f;               
         }
      };

      kernel.execute(numItems);                      

      for(int i=0; i<numItems; i++)
            System.out.println(itemInfo[i]);
   }
}

Aparapi functions like getGlobalId and getLocalSize are similar to the C functions
get_global_id and get_local_size, but there’s one important difference. In
Aparapi, there’s no way to set the dimensionality of the data: the index space must be
one-dimensional. If you’re processing images or successions of images, this is an
important drawback. 

 Another drawback is Aparapi’s lack of vector support. With Aparapi, there’s no way
to process float4s, int8s, or char16s. Kernels are limited to processing scalar values.

 Because of these drawbacks and the severely limiting license, I can’t recommend
using Aparapi for professional OpenCL development. But if you want to test kernel
functions with one-dimensional work-items and work-groups, Aparapi is the simplest
method available. In the next section, we’ll look at JavaCL, which provides all the flex-
ibility and complexity of regular host application development. 

9.2 JavaCL
At the start of chapter 8, I described all the advantages of coding host applications using
the C++ Wrapper API: object-oriented programming, no need to call malloc, and the

Listing 9.2 Work-item information: AparapiItems.java

Set work-items 
and work-groups

Combine global 
and local info

Execute 
kernel
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simplicity of the function calls. JavaCL provides these advantages as well, but in most
cases, the JavaCL methods are even simpler to work with than the C++ functions.

 JavaCL is a Java binding for OpenCL released by Olivier Chafik as part of the
NativeLibs4Java toolset. JavaCL enables developers to build full-featured OpenCL host
applications, and the only drawback I’ve encountered is that it currently doesn’t sup-
port OpenCL 1.1. This is probably because Mac OS doesn’t support OpenCL 1.1 yet.

NOTE The toolset provides two JavaCL implementations: one that relies on
the Java Native Access (JNA) and one that relies on BridJ. The discussion in
this section focuses on the former.

This section will discuss how to use JavaCL to build applications. But first, let’s look at
how to obtain and install the package.

9.2.1 JavaCL installation

Installing JavaCL is as simple as it gets. Unlike Aparapi, which consists of a dynamic
library and a JAR, JavaCL contains only a JAR. The JAR’s name is javacl-jna-x-y-z-
shaded.jar. The “jna” term means that the JAR communicates with the OpenCL library
through JNA. The “shaded” term means that there are no additional dependencies.
To obtain the JAR, open a browser to http://code.google.com/p/javacl/downloads/
list, click the link with the JAR’s name, and download the file to your computer.

 Chafik has released JavaCL under the GNU Lesser General Public License (LGPL).
This means you can incorporate the JAR in your own Java application and release the
application under any license, so long as your application isn’t a derivative work. The
legal definitions of what constitutes a derivative work aren’t helpful, but in a Linux
Journal article (www.linuxjournal.com/article/6366), Lawrence Rosen, general coun-
sel for the Open Source Initiative, states that “The meaning of derivative work will not
be broadened to include software created by linking to library programs that were
designed and intended to be used as library programs.” 

 Once you’ve downloaded the JavaCL JAR, you can access its classes by adding it to
your Java classpath. We’ll look at these classes next.

9.2.2 Overview of JavaCL development

Table 9.1 lists 11 of the most important classes of JavaCL, their corresponding C data
structures, and a handful of their methods. The table lists the classes in the order in
which they’re commonly encountered in code.

Table 9.1 Important classes of the JavaCL API

JavaCL class C data structure Important methods

JavaCL -- listPlatforms, getBestDevice, 
createContext, createBestContext

CLPlatform cl_platform getName, getProfile, listAllDevices, 
listCPUDevices, listGPUDevices, 
getBestDevice, createContext

http://code.google.com/p/javacl/downloads/list
http://code.google.com/p/javacl/downloads/list
www.linuxjournal.com/article/6366
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The classes in table 9.1 closely resemble the C++ classes we looked at in chapter 8, but
there are four significant differences:

■ JavaCL classes start with CL and are part of the com.nativelibs4java.opencl pack-
age instead of the CL namespace.

■ In C++, the enqueueTask and enqueueNDRangeKernel functions are contained
in the CommandQueue class. In JavaCL, enqueueTask and enqueueNDRange are
provided by the CLKernel class.

■ JavaCL contains simple data in arrays and Strings. You don’t have to be concerned
about whether to use cl::vector/cl::string or std::vector/std::string.

■ C++ supports default arguments, so you can frequently leave off parameters of a
function. Java doesn’t support this, but JavaCL provides many overloaded meth-
ods that accomplish the same result with different numbers of arguments.

Only one of the classes in table 9.1 has a constructor: JavaCL. JavaCL has no equiva-
lent in C or C++, but it’s usually the first class you need to access when creating kernels
in code. We’ll discuss this next. 

9.2.3 Creating kernels with JavaCL

Chapter 2 explained the six OpenCL data structures that work in conjunction to form
kernels, and each has a corresponding class in table 9.1. In discussing these classes,
we’ll look at the CLPlatform and CLDevice classes first and then proceed to the
CLContext and CLQueue classes. Then we’ll discuss how to compile and dispatch ker-
nel code with the CLProgram and CLKernel classes.

CLDevice cl_device getName, getExtensions, createQueue, 
createProfilingQueue, getMaxComputeUnits

CLContext cl_context createProgram, createBuffer, createImage2D, 
createImage3D, createDefaultQueue, 
createProfilingQueue

CLProgram cl_program addSource, build, createKernel, 
createKernels, defineMacro

CLKernel cl_kernel enqueueTask, enqueueNDRange, setArg, 
getFunctionName, getProgram 

CLQueue cl_command_queue finish, flush, enqueueMarker, 
enqueueBarrier, enqueueWaitForEvents

CLMem cl_mem getByteCount, getContext

CLBuffer cl_mem (buffer object) read, write, map, unmap, copyTo 

CLImage2D/
CLImage3D

cl_mem
(image object)

read, write, map, unmap, copyTo, getFormat 

Table 9.1 Important classes of the JavaCL API (continued)

JavaCL class C data structure Important methods
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PLATFORMS AND DEVICES

In coding a JavaCL application, the first class you need to know is JavaCL. The static
methods of this class construct and return other OpenCL-related objects. For exam-
ple, its listPlatforms method returns an array of CLPlatform objects and serves the
same purpose as the C function clGetPlatformIds.

 Once you’ve obtained one or more CLPlatforms, you can access their devices with
listAllDevices, listCPUDevices, or listGPUDevices. These methods accept a bool-
ean parameter that identifies whether the method should return only available
devices. This is shown in the following code:

CLPlatform[] platforms = JavaCL.listPlatforms();
for(CLPlatform p : platforms) {
   CLDevice[] newDevice = p.listAllDevices(true);
   ...
}

Alternatively, both JavaCL and CLPlatform provide a method called getBestDevice,
which is my favorite method in the entire JavaCL API. By default, this searches through
every connected OpenCL-compliant device to find the one with the most compute
units. Then it returns a CLDevice object corresponding to this device.

 If you’d rather determine a device’s number of compute units on your own, the
CLDevice class provides the getMaxComputeUnits method. There is no general
getInfo method as there is with C++. Instead, each information parameter has its own
method: getLocalMemSize, getGlobalMemSize, getDriverVersion, and so on. This
holds true for every JavaCL class.

 For example, the following code creates a CLDevice object for the “best” device
and prints out its extension data:

CLDevice dev = JavaCL.getBestDevice();
for(String s: dev.getExtensions())
   System.out.println(s);

As shown, the getBestDevice and getExtensions methods don’t require any argu-
ments. This is a welcome change from OpenCL functions, which frequently require 5
to 10 arguments. 
CONTEXTS AND COMMAND QUEUES

In addition to getBestDevice, JavaCL also provides createBestContext, which
returns a CLContext containing the device that, by default, has the most compute
units. With this method, you can create a context with a single line of code, such as
the following:

CLContext context = JavaCL.createBestContext();

If you’d rather create contexts with multiple devices, you can call the createContext
method provided by both the JavaCL class and the CLPlatform class. The full signa-
ture for this method is as follows:

CLContext createContext(Map<CLPlatform.ContextProperties, Object> props,
   CLDevice... devices)
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The first argument is a Map whose elements match a context property with a value. As
explained in chapter 2, most of these properties relate to graphics. For example, one
Map element might combine CLPlatform.ContextProperties.GLContext with an
OpenGL context. We’ll have much more to say about OpenCL-OpenGL interoperabil-
ity in chapters 15 and 16.

 The second argument of createContext accepts a comma-separated list of
CLDevices or an array of CLDevice objects. The following code shows how this works.
It accesses all the devices associated with the first installed platform and uses them to
form a CLContext:

CLPlatform[] platforms = JavaCL.listPlatforms();
CLDevice[] devices = platforms[0].listAllDevices(true);
CLContext context = JavaCL.createContext(null, devices);

Once you’ve created a context with createBestContext or createContext, you can
create a CLQueue that sends commands to a given device. The CLContext class con-
tains three methods that make this possible:

■ createDefaultQueue(CLDevice.QueueProperties... queueProperties)—Returns
a CLQueue with the given properties

■ createDefaultProfilingQueue()—Returns a CLQueue configured for profiling
■ createDefaultOutOfOrderQueue()—Returns a CLQueue configured for out-of-

order command execution

I particularly appreciate the last two methods because they make it possible to create
command queues without having to enter the constants CL_QUEUE_PROFILING_ENABLE
and CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE. If you want to create a command
queue without profiling or out-of-order execution, call createDefaultQueue with the
argument set to NULL. The following code shows how this works:

CLContext context = JavaCL.createBestContext();
CLQueue queue = context.createDefaultQueue
      ((CLDevice.QueueProperties[])null);

Once you’ve created a CLQueue, you can access its context with getContext and its
device with getDevice. This class also provides enqueueMarker, enqueueBarrier, and
enqueueWaitForEvents, but these methods lie beyond the scope of this discussion.

PROGRAMS AND KERNELS

Before you can put a CLQueue to use, your host application needs to create kernels. In
JavaCL, kernels are abstracted by the CLKernel class, and CLKernel objects are formed
from function code inside a CLProgram. To create a CLProgram, you need to invoke
one of three overloaded methods in CLContext:

■ createProgram(String... sourceText)—Creates a CLProgram that targets
every device in the context

■ createProgram(CLDevice[] devices, String... sourceText)—Creates a
CLProgram that targets only the selected devices

■ createProgram(Map<CLDevice, byte[]> binaries, String source)—Creates
a CLProgram from byte arrays
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Java provides many ways to form a String from a text file, but none of them are as sim-
ple as the readFile method of JavaCL’s IOUtils class. The main method in the follow-
ing listing uses readFile in the process of creating a CLProgram, and then builds the
program using the build method of the CLProgram class.

public static void main(String[] args) {

   CLContext context = JavaCL.createBestContext();

   String programText = "";
   try {
      programText = IOUtils.readText(       
                    new File("root.cl"));           
   } catch (IOException e) {
      e.printStackTrace();
   }

   CLProgram program =                    
      context.createProgram(programText);             
   try {
      program.build();                  
   } catch (CLBuildException e) {
      e.printStackTrace();                   
   }
}

The printStackTrace method B of the CLBuildException class is particularly inter-
esting. It reads the program’s build log and displays any compile errors that occurred.
This is much simpler than the corresponding functions in C.

 After a CLProgram has been compiled, the createKernels and createKernel
methods make it possible to create kernels from its functions. Both of these methods
build the corresponding CLProgram. The first method returns an array of CLKernels—
one for each kernel function in the program. The second method accepts a function
name (String) and kernel arguments, and returns a single CLKernel.

 Next, we’ll look at the methods in the CLKernel class that make it possible to set
arguments for the kernel and send commands to a device.

9.2.4 Setting arguments and enqueuing commands

Once you have a CLKernel and a CLQueue, you can invoke the methods of CLKernel to
set arguments and dispatch commands to the queue. This discussion will present the
argument-configuration methods first and then examine how CLKernel’s methods
enqueue kernel-execution commands and data-transfer commands.
SETTING KERNEL ARGUMENTS

If you look through the JavaCL documentation, you’ll see that the CLKernel class con-
tains nineteen overloaded methods called setArg. In each case, the first argument is an
int that identifies the argument’s position in the kernel’s parameter list. The second
argument may take a number of different data types, and we’ll look at the following:

Listing 9.3 Creating and building a program: JavaCLProgram.java

Create String 
from file

Create 
CLProgram

Build 
CLProgram

Print 
errorB
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■ Primitive data type/primitive array—Arguments can be created from primitive
values (short, int, long, float, and double) or an array of these primitives.
This data is passed to the kernel by value.

■ CLMem—This identifies a memory object, which can be either a CLBuffer, a
CLImage2D, or a CLImage3D. This data is passed to the kernel by reference.

■ CLKernel.LocalSize—This doesn’t pass data to the device but tells it how
much memory to allocate for the argument in its local address space.

As an example, the following code sets two arguments for a CLKernel called kernel.
The first argument is an array of four ints, and the second is a CLKernel.LocalSize
that tells the device to allocate 64 bytes of local memory for the kernel parameter:

int intArray[] = new int[]{0, 1, 2, 3};
CLKernel.CLLocalSize local = new CLKernel.CLLocalSize(64);
kernel.setArg(0, intArray);
kernel.setArg(1, local);

Creating memory objects is more involved. To create a CLBuffer, CLImage2D, or
CLImage3D, you need to call methods of the CLContext class. We’ll discuss buffer
objects first.

 To create a CLBuffer object, you can call createXXBuffer, where XX can be
replaced by Byte, Char, Short, Int, Long, Float, or Double. This can be called in one
of two ways. CLBuffers store data on the host using Java NIO buffers, and the usage of
createXXBuffer depends on whether you’ve already created an NIO buffer.

NOTE NIO stands for “New Input/Output,” and the java.nio package con-
tains classes that access files using memory mapping and low-level system
calls. The Buffers and Channels in this package provide substantially better
performance than traditional BufferedReaders and FileWriters.

If you haven’t created an NIO buffer, the first usage of createXXBuffer requires that
you identify the Buffer class you intend to use; the second usage requires that you
provide the NIO buffer as an argument. This is shown in the following code, which
creates two buffer objects that will be used to store floats:

CLBuffer<Float> buff1 =
   context.createFloatBuffer(Usage.Output, floatBuffer, true);
CLBuffer<Float> buff2 =
   context.createFloatBuffer(Usage.Output, 512);

There are three points to note about these two functions:

■ CLBuffer is a generic type that accepts primitive data types (Byte, Char, Short,
Int, Long, Float, or Double) as parameters.

■ The first argument of both functions identifies the kernel’s permissions with
regard to reading and writing the data. Usage.Input corresponds to CL_MEM_
READ_ONLY, Usage.Output corresponds to CL_MEM_WRITE_ONLY, and Usage.
InputOutput corresponds to CL_MEM_READ_WRITE.

■ The second argument of the second usage identifies the number of elements in
the buffer. In this example, buff2 will store 512 floats.
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Creating image objects is just as simple as creating buffer objects. The methods to know
are createImage2D and createImage3D, and both are provided by the CLContext
class. If you’re creating an image object without initial data, the methods’ signatures
are as follows:

CLImage2D createImage2D(CLMem.Usage usage, CLImageFormat format,
   long width, long height, long rowPitch)

CLImage3D createImage3D(CLMem.Usage usage, CLImageFormat format,
   long width, long height, long depth, long rowPitch, long slicePitch)

The first parameter, usage, takes the same values as discussed earlier (Usage.Input,
Usage.Output, Usage.InputOutput). The other parameters correspond to the struc-
tures and geometrical dimensions discussed in chapter 3.

 Once you’ve created your memory objects, you can use the setArg method to add
each to a kernel. After you’ve added all your kernel arguments, you’re ready to dis-
patch a kernel-execution command to the device. We’ll look at this next. 
ENQUEUING KERNEL-EXECUTION COMMANDS

JavaCL makes it easy to execute kernels. The CLKernel class provides two methods that
enqueue kernel-execution commands, and the simpler is enqueueTask. This requires
only two arguments: a CLQueue and one or more CLEvents to form the command’s
wait list. The signature for this function is as follows:

CLEvent enqueueTask(CLQueue queue, CLEvent... waitList)

These arguments should look familiar, but the return value is new. The clEnqueueTask
function in C and the enqueueTask function in C++ both return error codes, but
JavaCL’s enqueueTask returns a CLEvent that corresponds to the command’s execution.
This value is returned by most of JavaCL’s command-enqueuing functions.

 Like enqueueTask, the enqueueNDRange method enqueues a command that tells a
device to execute a kernel. But in addition, this method makes it possible to configure
multiple work-items and work-groups to process the kernel. The signature for this
method is as follows:

CLEvent enqueueNDRange(CLQueue queue, int[] offsets, 
   int[] globalSize, int[] localSize, CLEvent... waitList)

Again, this should look familiar. The globalSize argument sets how many work-items
will be generated to execute the kernel. The localSize argument identifies how
many work-items will be placed in each work-group.

 The previous chapter presented an example index space whose global dimensions
were 12 by 4 and whose local dimensions were 3 by 2. We can code this in JavaCL using
the following function:

kernel.enqueueNDRange(queue, new int[]{12, 4}, new int[]{3, 2});

This function call leaves out the offsets parameter because JavaCL provides an over-
loaded version of enqueueNDRange that doesn’t require it. As you program JavaCL,
keep in mind that there are usually plenty of overloaded methods for each routine. 
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ENQUEUING DATA TRANSFER COMMANDS

JavaCL’s data transfer routines are contained within the CLBuffer, CLImage,
CLImage2D, and CLImage3D classes. We’ll limit this discussion to the data transfer
methods of the CLBuffer class, most of which are listed in table 9.2.

NOTE These methods correspond to the CLBuffer class in the JNA-based ver-
sion of JavaCL, and do not apply to the JavaCL implementation based on BridJ.

Each of these data transfer methods access and store host data using NIO Buffer objects.
It’s important to distinguish these from regular buffer objects, which contain data on
the device. Also, the signatures in table 9.2 identify the Buffer class, but in practice, you
need to instantiate a specific Buffer subclass, such as IntBuffer or FloatBuffer.

 The following code demonstrates how JavaCL data transfer works in practice. It sends
a kernel to a device with a read-write buffer object containing 64 floats. The kernel
computes the square root of each float, and the host reads and verifies the result.

public static final int NUM_FLOATS = 64;
public static final int NUM_ITEMS = NUM_FLOATS/4;

public static void main(String[] args) throws Exception {

   CLContext context = JavaCL.createBestContext();
   CLQueue queue = context.createDefaultQueue();

Table 9.2 Data transfer methods of the CLBuffer class

Method Purpose

CLEvent read(CLQueue queue, long offset,
   long length, Buffer buffer,
   boolean blocking, CLEvent... eventsToWaitFor)

Reads data from device into 
existing NIO buffer

Buffer read(CLQueue queue, long offset,
   long length, CLEvent... eventsToWaitFor)

Reads data from device into 
new NIO buffer

CLEvent write(CLQueue queue, long offset,
   long length, Buffer buffer, boolean blocking,
   CLEvent... eventsToWaitFor)

Transfers data from an exist-
ing NIO buffer to the device

Buffer map(CLQueue queue, CLMem.MapFlags flags,
   long offset, long length,
   CLEvent... eventsToWaitFor)

Maps a buffer object on the 
device to an NIO buffer on the 
host

CLEvent unmap(CLQueue queue, Buffer buffer,
   CLEvent... eventsToWaitFor)

Destroys the map between 
the device buffer object and 
the NIO buffer

CLEvent copyTo(CLQueue queue, long srcOffset,
   long length, CLMem destination,
   long destOffset, CLEvent... eventsToWaitFor)

Copies a device buffer to 
another memory object

Listing 9.4 Kernels and buffers: JavaCLRoot.java
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   FloatBuffer dataBuffer =                   
      NIOUtils.directFloats(NUM_FLOATS,                 
         context.getByteOrder());             
   for(int i = 0; i < NUM_FLOATS; i++) {      
      dataBuffer.put(i, i * 5.0f);            
   }                                          
   CLFBuffer<Float> buff =                    
      context.createFloatBuffer(              
         Usage.InputOutput, dataBuffer, true);

   String programText =                        
      IOUtils.readText(new File("root.cl"));                
   CLProgram program =                         
      context.createProgram(programText);      

   CLKernel kernel =                            
      program.createKernel("root", buff);                

   CLEvent kernelEvent = kernel.enqueueNDRange(queue,
         new int[]{NUM_ITEMS}, new int[]{NUM_ITEMS});          
   buff.read(queue, dataBuffer, true, kernelEvent);  

   for(int i = 0; i < NUM_FLOATS; i++)
      System.out.println(i + ": " + dataBuffer.get(i));
}

The createKernel method B serves three roles. It builds the CLProgram, creates the
CLKernel, and makes the CLFloatBuffer the kernel’s first argument.

 This code creates the FloatBuffer by invoking the directFloats method of
the NIOUtils class. This is one of many convenience classes provided by JavaCL,
and others perform matrix processing, OpenGL interaction, and even reduction.
If you intend to use JavaCL, I strongly recommend that you explore these capabili-
ties further. 

9.3 PyOpenCL
The popularity of the Python programming language has soared in recent years, and
it’s not hard to see why. Python is easy to learn, easy to code, and interpreters are avail-
able on all major operating systems.

 Andreas Klöckner of the Courant Institute of Mathematical Sciences has extended
Python’s breadth of capabilities by releasing PyOpenCL. The classes and functions in
this package make it possible to construct host applications with the same features as
those coded in regular C. But before we delve into the internals of PyOpenCL, it’s
important to know how to obtain the toolset.

9.3.1 PyOpenCL installation and licensing

The main PyOpenCL site is http://mathema.tician.de/software/pyopencl, and you
can download the package by scrolling down and clicking the link entitled Download
PyOpenCL Here. Unlike Aparapi and JavaCL, PyOpenCL can’t be immediately used
once it’s downloaded. You need to compile it from its source code, which is a combi-
nation of Python and C++. The compilation and installation processes depend on

Create buffer 
object

Create 
program

B Create 
kernel

Enqueue 
commands

http://mathema.tician.de/software/pyopencl
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what operating system you’re using, and you can find the latest instructions at http://
wiki.tiker.net/PyOpenCL.

 Andreas Klöckner has released PyOpenCL under the MIT/X Consortium License,
which is the least restrictive of the licenses we’ve encountered in this chapter. This
license allows you to “use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software” without limitation. The only requirements are that you
must mention PyOpenCL’s copyright document in any software based on PyOpenCL. 

 Once you’ve compiled and installed PyOpenCL, you can access the pyopencl mod-
ule from inside your Python scripts. The rest of this section will explain the different
classes and functions provided by this module.

9.3.2 Overview of PyOpenCL development

PyOpenCL and JavaCL have a great deal in common, and both provide classes that
wrap around the C data structures discussed in chapters 2 and 3. Table 9.3 lists these
classes along with the pyopencl module and presents a number of their functions.

 In general, a PyOpenCL script starts by accessing the pyopencl module and creating
a Platform or Context object. Then it compiles a Program, creates one or more Kernels,
sets kernel arguments, and dispatches kernels and other commands to a CommandQueue. 

Table 9.3 Important classes of the PyOpenCL API

PyOpenCL class/module C data structure Important functions

pyopencl -- get_platforms, create_some_context, 
enqueue_read_buffer, 
enqueue_write_buffer

Platform cl_platform info, get_info, get_devices

Device cl_device info, get_info

Context cl_context Context, info, get_info

Program cl_program Program, info, get_info, build, 
get_build_info, kernel_name, 
all_kernels

Kernel cl_kernel Kernel, info, get_info, set_arg, 
set_args

CommandQueue cl_command_queue CommandQueue, info, get_info, 
set_property, flush, finish

MemoryObject cl_mem info, get_info, release, 
get_host_array

Buffer cl_mem (buffer object) Buffer, get_sub_region, __getitem__

Image cl_mem (image object) Image, info, get_image_info, shape, 
release

http://wiki.tiker.net/PyOpenCL
http://wiki.tiker.net/PyOpenCL
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9.3.3 Creating kernels with PyOpenCL

This section discusses how the PyOpenCL classes work together to form kernels, and it
takes the same path as in the JavaCL discussion. We’ll examine the Platform and
Device classes first and the Context and CommandQueue classes second. Then we’ll dis-
cuss how to compile and dispatch kernel code with the Program and Kernel classes.
PLATFORMS AND DEVICES

A Platform object represents an OpenCL framework installed on the host, such as
Nvidia’s SDK or AMD’s SDK. To access the installed platforms, you need to call the
get_platforms function of the pyopencl module. This returns a list of Platform
objects, and you can examine the properties of each by calling get_info. This works
like the getInfo function in the C++ Wrapper API and accepts a parameter that iden-
tifies the type of information being sought. For example, the following code prints the
names of each platform installed on the system and their supported extensions:

import pyopencl
for platform in pyopencl.get_platforms():
   print("%s: %s" % (platform.get_info(pyopencl.platform_info.NAME),
                     platform.get_info(pyopencl.platform_info.EXTENSIONS)))

Repeating the full name of the pyopencl module can be tiresome, so the following
code sets its name to cl and accomplishes the same result:

import pyopencl as cl
for platform in cl.get_platforms():
   print("%s: %s" % (platform.get_info(cl.platform_info.NAME),
                     platform.get_info(cl.platform_info.EXTENSIONS)))

As shown, the names of PyOpenCL’s constants and enumerated types can be found by
removing the cl_/CL_ from the corresponding names in the C API. In the preceding
example code, cl_platform_info becomes platform_info and CL_NAME becomes
NAME. This naming convention holds true throughout PyOpenCL, so we won’t discuss
the get_info function further.

 Once you’ve obtained a Platform object, you can access its connected devices with
the get_devices function. This accepts a device_type parameter that can be set to
ALL, CPU, GPU, DEFAULT, or ACCELERATOR. By default, get_devices sets the type parame-
ter to pyopencl.device_type.ALL.

 The only function provided by the Device class is get_info, but Device objects
serve important purposes in PyOpenCL scripts. They allow you to create Contexts and
CommandQueues, and we’ll look at these two classes next. 
CONTEXTS AND COMMANDQUEUES

A Context defines the collection of Devices that you intend to use to execute your
kernels. PyOpenCL provides two ways to create Contexts, and the first involves calling
the class’s constructor. Its signature is as follows:

Context(devices=None, properties=None, dev_type=None)
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If the first argument is provided, the Context will contain the specified Device
objects. If the third argument is provided, the Context will contain all Devices of the
given type. One of these arguments must be given to create the Context, but not both.

 If you don’t care how a Context is created, you can call the create_some_context
function of the pyopencl module. This accepts a True/False value that allows the
user to select devices for the Context. By default, create_some_context returns a
Context containing the first Device of the first accessible Platform. If you only have a
single OpenCL-compliant device connected to your host, this is the easiest way to
obtain a Context. 

 After you’ve created a Context, you can construct CommandQueues that will send
commands to Devices within the Context. The only way to construct these objects is
through the class constructor, as follows:

CommandQueue(context, device=None, properties=None)

The properties argument allows you to specify whether the queue should support
profiling, out-of-order execution, or both. The property names are PROFILING_ENABLE
and OUT_OF_ORDER_EXEC_MODE_ENABLE, and both are provided through the class
command_queue_properties. As an example, the following code creates a Context
containing every Device in the first Platform, and then creates a CommandQueue with
profiling enabled.

import pyopencl as cl

platform = cl.get_platforms()[0]                 
devices = platform.get_devices()                     
context = cl.Context(devices)                    

queue = cl.CommandQueue(context, devices[0],        
      cl.command_queue_properties.PROFILING_ENABLE)         

dev_name = queue.get_info(cl.command_queue_info.DEVICE).\
      get_info(cl.device_info.NAME)
print("Device: %s" % (dev_name))

Simple, isn’t it? With Python, you don’t have to worry about lengthy function syntax,
static typing, semicolons, or curly brackets. As you’ll see next, Python’s file access rou-
tines are equally easy to use. 
PROGRAMS AND KERNELS

The Program class has two constructors. The first creates a Program from source text,
and the second creates a Program from binary code. Their signatures are as follows:

Program(context, src)
Program(context, devices, binaries)

These serve the same roles as the clCreateProgramWithSource and clCreate-
ProgramWithBinary functions in the C API. Remember that if you intend to create a
Program from binary code, you must provide a binary for each target device.

Listing 9.5 Creating command queues with PyOpenCL: create_queue.py

Create 
context

Create command 
queue
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 The example code in this book has focused on reading source code from a file,
and this is easier to do in Python than in any other language I know. All you need are
the open, read, and close functions. The following code demonstrates how they’re
used, and then constructs a Program from the file’s text:

program_file = open('file_name.cl', 'r')
program_text = program_file.read()
program_file.close()
program = cl.Program(context, program_text)

Once you’ve created a Program, you can compile its code with the build function.
This is its signature:

build(options=[], devices=None)

For the compile options, you can use any of the options listed in table 2.7. For exam-
ple, the following line builds a Program called prog for every device in the context and
configures the build to respond to warnings as though they were errors:

prog.build("-Werror")

Once you’ve compiled a Program object, you can access the build log with the
get_build_info function. This accepts a Device object and a program_build_info
parameter that can be set to STATUS, OPTIONS, or LOG. For example, if you want to see
the full build log for a compilation targeting a Device called dev, you could use the
following code:

log = prog.get_build_info(dev, cl.program_build_info.LOG)

This statement places the text containing the build log into log. If the build com-
pleted without warning or error, log will be set to "".

 There are three ways to create Kernel objects from a compiled Program. First, you
can call Program.all_kernels, which returns a list containing a Kernel for every
kernel function in the Program. Second, you can call the Kernel constructor, whose
signature is as follows:

Kernel(program, name)

This creates a single Kernel object corresponding to the kernel function called name.
The third way accomplishes the same result, but treats the function’s name as an attri-
bute of the Program object. An example will make this clear. The following two lines
both create a Kernel from a function called foo:

k = cl.Kernel(program, 'foo')
k = program.foo

The following listing creates Kernels using the second and third methods. It calls the
Kernel constructor to create a Kernel corresponding to the add function. Then it uses
attribute lookup to create a Kernel corresponding to the multiply function.
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import pyopencl as cl

...
program_file = open('arith.cl', 'r')       
program_text = program_file.read()                     
program = cl.Program(context, program_text)
try:                                       
   program.build()                         
except:                                    
   print("Build log:")                     
   print(program.get_build_info(devices[0],
         cl.program_build_info.LOG))       
   raise                                   

add_kernel = cl.Kernel(program, 'add')     
mult_kernel = program.multiply                   

print("Kernel Name:"),
print(mult_kernel.get_info(cl.kernel_info.FUNCTION_NAME))
program_file.close()

It’s important to see how this code checks for errors. If the program compilation pro-
duces an error, the exception-handling routine accesses and prints the log associated
with the build.

9.3.4 Setting arguments and executing kernels

After you’ve created a Kernel object for a function, the next step is to add arguments
so that the function has data to process. PyOpenCL provides two ways to set arguments
for a kernel. First, you can call setArg, whose signature is as follows:

setArg(self, index, arg)

Second, you can set arguments for a Kernel as you create it using the attribute lookup
process we looked at earlier. Suppose you want to set a, b, and c as arguments of a ker-
nel function called foo. In that case, you can create the Kernel and specify its three
arguments with the following line of code:

program.foo(queue, global_size, local_size, a, b, c)

This single line creates a Kernel corresponding to foo, configures its three argu-
ments, and then dispatches the kernel for execution with global_size work-items
and local_size work-items per work-group. The fact that you can accomplish so
much with one line of code is my favorite aspect of PyOpenCL.

 But now two questions arise: What data types are a, b, and c? And how do you cre-
ate them? The answers are somewhat involved. In PyOpenCL, a kernel argument must
take one of the following forms:

■ A MemoryObject, which can be instantiated as a Buffer or Image object
■ A LocalMemory, which tells the device to reserve local memory for the argument

Listing 9.6 Creating kernels with PyOpenCL: create_kernel.py

Create/build 
program

Create 
kernels
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■ A scalar value, such as a scalar type from the Scientific Computing Tools for
Python, NumPy (numpy.float64 or numpy.int32)

■ An implementation of the Python buffer interface, such as str and
numpy.ndarray

■ A Sampler, which was discussed in chapter 6
■ None, which results in a NULL pointer to global memory

This discussion will present the first three options, which produce arguments stored
in global/constant memory, local memory, and private memory, respectively. We’ll
start by examining how PyOpenCL implements memory objects. 
MEMORY OBJECTS

PyOpenCL provides a MemoryObject class that serves the same role as the cl_mem data
structure in C. Objects of this class are used to transfer data from the host to global
memory in the device. The MemoryObject class provides functions such as get_info
and get_host_array, but there are no constructors. To transfer data between the host
and device, you need its subclasses: Image and Buffer. For pixel data, create an Image
object. Otherwise, create a Buffer object. The Image and Buffer constructors are
as follows:

Buffer(context, flags, size=0, hostbuf=None)

Image(context, flags, format, shape=None, pitches=None, hostbuf=None)

In both constructors, the flags argument defines whether the memory object is
read/write and how the host data should be allocated. The possible values for this
argument are similar to those presented in table 3.1 without the CL_MEM_ prefix. That
is, to make the memory object write-only, you’d set flags to WRITE_ONLY instead of
CL_MEM_WRITE_ONLY. 

 The hostbuf argument identifies the data that will be transferred to the device. In
JavaCL, this data must be placed in a Java NIO Buffer object. In PyOpenCL, host data
must be given as an implementation of the Python buffer interface. A common way to
set host data is through an ndarray object, which represents an array. The array func-
tion is frequently used to create ndarrays, and the following code shows how it’s used:

w = numpy.array([0, 1, 2, 3])
--> w = [0  1  2  3]
x = numpy.array([[0, 1], [2, 3]])
--> x = [[0  1]
         [2  3]]
y = numpy.zeros(4)
--> y = [0.  0.  0.  0.]
z = numpy.linspace(0, 6, 7)
[0.  1.  2.  3.  4.  5.  6.]

To set the data type of the array elements, you can follow the array specification with
astype and a NumPy data type. These data types include byte, short, int16/32/64,
uint16/32/64, and float32/64. This is shown in the following code:
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x = numpy.array([0, 1, 2, 3]).astype(numpy.float32)
--> x = [0.  1.  2.  3.]
y = numpy.zeros(4).astype(numpy.uint32)
--> y = [0  0  0  0]

In the Buffer constructor, it’s common to include the third argument, size, or the
fourth argument, hostbuf, but not both. This is because if hostbuf is given, size will
be set to the data size by default. This is shown in the following code, which forms a
Buffer from an ndarray containing 1,024 int32 values:

host_data = numpy.linspace(0, 1023, 1024).astype(numpy.int32)
data_buffer = cl.Buffer(context,
      numpy.memflags.READ_ONLY | numpy.memflags.COPY_HOST_PTR,
      hostBuf=host_data)

In the Image constructor, the format parameter requires an ImageFormat object to
identify how the host’s pixel data is structured. The ImageFormat constructor accepts
a list containing two elements: a channel_order value and a channel_type value. The
channel_type element has the same values as those listed in table 3.2 (without the
CL_). Most of the channel_order values identify the red, green, blue, and alpha chan-
nels contained in each pixel, and possible values include RGB, RGBA, BGRA, RG, RA, R,
and A. Others add bit padding, represented by x: RGBx, RGx, and Rx. The last two
channel_order values are INTENSITY, which measures alpha (opacity) independent of
color, and LUMINANCE, which is used for grayscale images. 
LOCAL MEMORY AND SCALAR DATA

If you transfer a memory object to a device, its data will be stored in the device’s global
or constant address spaces. But in many circumstances, you may want your work-items
to access data in local memory. The host can’t directly read or write to this memory,
but it can allocate local memory for kernel arguments. PyOpenCL provides the
LocalMemory class for this purpose, and its constructor accepts the number of bytes to
be allocated. As an example, the following code creates a LocalMemory object that
allocates memory for 8,192 bytes. Then it makes this object the first argument of the
Kernel k:

locmem = cl.LocalMemory(8192)
k.set_arg(0, locmem)

In addition to allocating local memory for kernel arguments, you can place argu-
ments in a device’s private memory by setting scalar data as the argument. The scalar
data can take any of the types defined by NumPy: int16, uint32, float64, and so on.
The following code creates an int32 scalar called x and makes it the second argument
of the kernel:

x = numpy.int32(30)
k.set_arg(1, x)

When the kernel receives the argument, x will be placed in private memory throughout
the device. Each work-item will be able to read and write to its value independently. 
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EXECUTING KERNELS

PyOpenCL provides three ways to execute kernels:

■ enqueue_task function—Executes a kernel with a single work-item
■ enqueue_nd_range_kernel function—Executes a kernel with multiple work-items
■ __call__ descriptor—Creates a Kernel, sets its arguments, and executes the

kernel with multiple work-items

The enqueue_task and enqueue_nd_range_kernel functions closely resemble the
clEnqueueTask and clEnqueueNDRangeKernel functions described in chapter 2. Their
signatures are as follows:

enqueue_task(queue, kernel, wait_for=None)

enqueue_nd_range_kernel(queue, kernel, global_size, local_size,
      offsets=None, wait_for=None, g_times_l=True)

Both have a wait_for parameter that identifies a list of Event objects that form the
wait list of the enqueued command. Both functions also return an Event object that
can be used to monitor the completion of the kernel’s execution. PyOpenCL event
processing is beyond the scope of this chapter, but these Event objects perform the
same roles as the cl_event structures discussed in chapter 7.

 It’s important to note that the global_size, local_size, and offsets parameters
are given in tuples. Therefore, if your data is one-dimensional and your global size is 20,
the global_size parameter must be set to (20,). This is shown in the following exam-
ple, which creates and executes a kernel with 20 work-items in 5 work-groups:

kernel = cl.Kernel(program, 'func_name')
kernel.set_arg(0, buffer_a)
kernel.set_arg(1, buffer_b)
kernel.enqueue_nd_range_kernel(queue, kernel, (20,), (4,))

This example code should look friendly and familiar, but with the __call__ descriptor,
you can combine these four lines into a single function call. This descriptor makes it pos-
sible to create a Kernel object and set its arguments by invoking the name of the cor-
responding kernel function. The full signature for the __call__ descriptor is as follows:

__call__(queue, global_size, local_size, *args,
                global_offset=None, wait_for=None)

The third parameter, args, identifies zero or more kernel arguments. They will be
passed to the kernel in the order in which they’re given, so there’s no need to call
set_arg to specify the arguments and their indices.

 The __call__ descriptor simplifies the coding process, but it can be hard to
understand. For example, the following line of code creates and executes the same
kernel as in the preceding example code:

program.func_name(queue, (20,), (4,), buffer_a, buffer_b)

Like enqueue_task and enqueue_nd_range_kernel, this function call returns an
Event corresponding to the command. This can be used to configure callback func-
tions or to force other commands to wait.
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 The following code provides a more concrete example of how kernels are created
and executed using the __call__ descriptor. 

import pyopencl as cl
import numpy

...
scalar = numpy.float32(5.0)               
lm = cl.LocalMemory(100 * 32)                    
float_data = numpy.linspace(1, 100, 100)  
      .astype(numpy.float32)              
float_buffer = cl.Buffer(context,         
      cl.mem_flags.READ_WRITE |           
      cl.mem_flags.COPY_HOST_PTR,         
      hostbuf=float_data)                 

program.mult(queue, (25,), (25,), scalar, float_buffer, lm)

cl.enqueue_read_buffer(queue, float_buffer, float_data).wait()       

print float_data

This script creates three arguments for the mult kernel: a scalar, a LocalMemory
object, and a Buffer. The call to program.mult executes the kernel with 25 work-items
in a single work-group. Afterward, the script reads the updated data in the read/write
buffer and prints the full array. 

 The PyOpenCL API contains many more functions than we’ve discussed here, and
it provides many useful capabilities for integrating graphic processing with OpenCL. If
you’d like to investigate PyOpenCL further, Andreas Klöckner has written a great deal
of documentation, and the PyOpenCL software package comes with a large number of
useful example scripts. 

9.4 Summary
This chapter has examined three markedly different ways of building OpenCL applica-
tions. Aparapi is simple to code, but it leaves out many of the capabilities you’d expect
from host applications or kernels. JavaCL isn’t as simple, but it lets you build host appli-
cations with all the features provided by the OpenCL 1.0 standard. PyOpenCL also
enables full-featured development of host applications, but it binds OpenCL to Python
instead of Java.

 All Aparapi applications center on the Kernel class. Specifically, the goal of an
Aparapi application is to provide code for a Kernel subclass, instantiate the subclass,
and then deploy the kernel by calling its execute method. The code inside the Kernel’s
run method will execute on the device, but remember that the application can’t access
vector types or multidimensional work-items.

 In contrast with Aparapi, JavaCL doesn’t allow you to code kernels in Java. Instead,
you can build host applications using classes that correspond to the data structures
discussed in chapters 2 and 3. The methods of these classes are easy to work with, such

Listing 9.7 Executing kernels with PyOpenCL: run_kernel.py

Create kernel 
arguments

Create/execute 
kernel

Read data buffer
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as createBestContext, which creates a new CLContext containing the device with the
most compute units. JavaCL also provides classes and methods for dealing with mem-
ory objects that access memory on the host using Java NIO Buffer objects. Java NIO
classes provide high-efficiency data transfer, but they may be foreign to Java develop-
ers used to traditional Java IO classes.

 PyOpenCL makes it possible to code host applications in Python. This toolset
keeps to Python’s philosophy of simplicity and concision, and a host application writ-
ten in Python will generally require one-third to one-fourth the code of a similar
application written in C. In particular, the __call__ descriptor dramatically simplifies
the process of creating and configuring kernels. If all other concerns were equal, I
would code all of my OpenCL host applications using PyOpenCL.

 When working with these tools, keep their distribution licenses in mind. Aparapi is
meant for evaluation purposes only and can’t be redistributed in any form for any rea-
son. JavaCL is released under the GNU Lesser General Public License (LGPL), which
means you can distribute it with any software package you like, so long as the software
isn’t a derivative work. PyOpenCL is released under the MIT/X Consortium License,
which allows you to do whatever you want so long as you include Andreas Klöckner’s
copyright and the permission notice.

 In the next chapter, we’ll put aside third-party software development and return to
C programming. We’ll look into a general coding methodology for developing large-
scale OpenCL applications.



General coding principles
In the preceding chapters, the example host applications have executed kernels
using a single work-item. This is fine when you’re learning OpenCL or testing a new
application, but for production code, this is unacceptable. OpenCL’s great strength
is that you can execute kernels using millions or even billions of work-items, and if
you’re not going to put them to use, you might as well program in regular C.

 Making use of all this processing power isn’t easy. You need a clear understand-
ing of how work-items and work-groups access memory, and how synchronization
can be used to coordinate their operation. To reach this understanding, it helps to
look at a fully optimized example application. Most of this chapter will be con-
cerned with the process of reduction, or adding together elements of an array. Spe-
cifically, we’re going to compute the sum of 220 floating-point values using 220 work-
items. We’ll spend some time examining the reduction algorithm, but remember
that it’s the method that’s important. This example will illuminate the issues that
arise when processing large amounts of data, such as memory bandwidth, memory

This chapter covers
■ Determining values for global size and local size
■ Implementing the reduction algorithm in OpenCL
■ Synchronizing work-items in different work-groups
221
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bank conflicts, and work-group synchronization. The better you understand these
issues, the better your own OpenCL applications will perform.

 But before we look at reduction, it’s important to discuss how the global size and
local size are configured in large-scale applications. Finding the right values for these
parameters will play a large role in determining your kernel’s processing performance.

10.1 Global size and local size
One of the primary advantages of using OpenCL is that you can execute applications
using thousands and thousands of threads, called work-items. The upper limit on the
number of work-items you can generate is the maximum value of size_t (see
SIZE_MAX in stdint.h), so it’s usually a good idea to generate one for each data point
you need to process. For example, if a kernel needs to sort 216 integers and you want
to process them using int4 vectors, set the total number of work-items to 216/4, or 214.
This total number of work-items is called the global size.

 Another rule of thumb to follow when generating work-items is that the global size
should be a multiple of the maximum work-group size. Chapters 3 and 4 discussed
work-groups in detail, but for this chapter, there are five main points to keep in mind:

■ A work-group is a collection of work-items, and each has its own numeric identi-
fier called the group ID.

■ Every work-item has two identifiers. Its global ID identifies the item among all
others generated to execute the kernel. Its local ID identifies the item only
among others in the same work-group.

■ Each work-group has its own block of memory called local memory. For many
devices, work-items can access local data much faster than they can access data
in global memory.

■ To conserve bandwidth, operations that access global memory are combined
into one operation for the entire work-group. Therefore, it’s a good idea to
have work-items in a group access global memory at the same time.

■ Work-items in the same work-group can be synchronized with calls to the barrier
function. OpenCL doesn’t provide any functions that synchronize work-items in
different work-groups.

Because global memory access is so time-consuming, many kernels only access global
memory twice: once to read input data into local memory, and once to write results
from local memory to global memory. In this approach, all intermediate processing is
performed with local memory data.

 To make the best use of local memory, it’s important to have as many work-items in
a work-group as possible. The number of work-items in a work-group is called the local
size, and OpenCL provides a straightforward method to find the maximum local size
for a given kernel running on a given device. This section will explain how this
method works and then show how to determine the maximum work-group size
in code.
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10.1.1 Finding the maximum work-group size

No matter how many work-items you generate for a kernel, the maximum number of
work-items in a work-group remains the same. If your global size exceeds the maxi-
mum work-group size, OpenCL will create additional work-groups. An application
may generate a nearly unlimited number of work-groups, but the number of work-
groups that can execute in parallel is determined by the number of compute units on
the device.

 The maximum work-group size depends on two things: the resources provided by
the device and the resources required by the kernel. In general, the resources that
constrain work-item availability are local memory and private memory. The more
memory a kernel requires, the fewer work-items will be available to execute it. Your
work-items could access global/constant memory instead of local/private memory,
but then memory bandwidth drops. This is an important trade-off.

 Determining a kernel’s resource usage can be a tedious, error-prone process. But
OpenCL makes it simple by providing the clGetKernelWorkGroupInfo function. Its
signature is as follows:

cl_int clGetKernelWorkGroupInfo(cl_kernel kernel, cl_device_id device,
   cl_kernel_work_group_info param_name, size_t param_value_size,
   void *param_value, size_t *param_value_size_ret)

This function resembles the other clGetXXInfo functions discussed throughout this
book. It accepts a parameter name that identifies the type of information being sought
and returns the data at the memory location pointed to by param_value. Table 10.1 lists
the different parameters available for this function.

Table 10.1 Kernel work-group information parameters

Parameter name Output type Returned value

CL_KERNEL_WORK_GROUP_SIZE size_t The maximum work-group size to 
execute the given kernel on the 
given device

CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_
MULTIPLE

size_t A multiple for determining work-
group sizes that ensure best 
performance

CL_KERNEL_LOCAL_MEM_SIZE cl_ulong The number of bytes of local 
memory used by the kernel

CL_KERNEL_PRIVATE_MEM_SIZE cl_ulong The number of bytes of private 
memory used by the kernel

CL_KERNEL_COMPILE_WORK_GROUP_SIZE size_t[3] The work-group size set by the 
reqd_work_group_size 
attribute

http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/scalarDataTypes.html
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/abstractDataTypes.html
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/abstractDataTypes.html
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/enums.html#cl_kernel_work_group_info
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/scalarDataTypes.html
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/scalarDataTypes.html
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/scalarDataTypes.html
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The first parameter is the most important. If you call clGetKernelWorkGroupInfo
with CL_KERNEL_WORK_GROUP_SIZE, it will give you the maximum work-group size for
the specified kernel and device. The following code shows how this works:

size_t wg_size;
err = clGetKernelWorkGroupInfo(kernel, device, CL_KERNEL_WORK_GROUP_SIZE,
      sizeof(wg_size), &wg_size, NULL);

The second parameter in the table becomes helpful when you don’t want to set the
local size to its maximum value. This gives you a number such that, if the local size is a
multiple of the number, a kernel will execute with higher performance than other-
wise. For example, if the maximum local size is 1,024 and the multiple is 256, it’s rec-
ommended that you set your local size to 256, 512, 768, or 1024.

 The third and fourth parameters tell you how many bytes the kernel requires in
local and private memory. The more you pare down the memory needed by the ker-
nel, the lower these values will be and the more work-items you’ll be able to generate
to execute the kernel. 

10.1.2 Testing kernels and devices

In the Ch10/wg_test folder, the wg_test application accepts the name of a program
file and a kernel, and obtains information related to work-groups and kernel
resources. Specifically, the application determines the maximum work-group size
available to execute the kernel, the kernel’s memory requirements, and the device’s
memory characteristics. The following listing presents the portion of the code that
calls on clGetKernelWorkGroupInfo and clGetDeviceInfo.

...
char device_name[48];
size_t wg_size, wg_multiple;
cl_ulong local_mem, private_usage, local_usage;
...
err = clGetDeviceInfo(device, CL_DEVICE_NAME,           
      sizeof(device_name), device_name, NULL);                 
err |= clGetDeviceInfo(device, CL_DEVICE_LOCAL_MEM_SIZE,
      sizeof(local_mem), &local_mem, NULL);             
if(err < 0) {
   perror("Couldn't obtain device information");
   exit(1);
}
...
err = clGetKernelWorkGroupInfo(kernel, device,     
      CL_KERNEL_WORK_GROUP_SIZE,                         
      sizeof(wg_size), &wg_size, NULL);            
err |= clGetKernelWorkGroupInfo(kernel, device,    
      CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE,
      sizeof(wg_multiple), &wg_multiple, NULL);    
err |= clGetKernelWorkGroupInfo(kernel, device,    
      CL_KERNEL_LOCAL_MEM_SIZE,                    

Listing 10.1 Obtaining kernel/device information: wg_test.c (abridged)

Obtain device 
information

Obtain kernel/work-
group information
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      sizeof(local_usage), &local_usage, NULL); 
err |= clGetKernelWorkGroupInfo(kernel, device,          
      CL_KERNEL_PRIVATE_MEM_SIZE,                  
      sizeof(private_usage), &private_usage, NULL);
if(err < 0) {
   perror("Couldn't obtain kernel work-group size information");
   exit(1);
};
...

The Ch10/wg_test folder contains a program file called test.cl, and this program
defines a simple kernel called test. To test this kernel with the wg_test application, you
can enter the following command:

wg_test blank.cl blank

When I execute the kernel on my AMD 5850 system, the following results are dis-
played:

For the blank kernel running on the Cypress device, the maximum work-group 
size is 256 and the work-group multiple is 64.

The kernel uses 0 bytes of local memory out of a maximum of 32768 bytes. It 
uses 0 bytes of private memory.

The kernel in this example performs no processing and uses no resources, so there’s
no way to improve its performance. But in the next section, we’ll look at a more
involved kernel and examine how to improve its execution speed.

10.2 Numerical reduction
Numerical reduction adds the elements of an array and computes a single sum. This
algorithm is ideal for learning how to code large-scale OpenCL applications for three
reasons:

■ It’s easy to understand.
■ It can scale to occupy every computing resource on a device.
■ It requires that work-items combine their results.

In this section, we’re going to look closely at this algorithm and see how to implement
it to add 220 values. With a single work-item, this can be accomplished as follows:

sum = 0.0f;
if(get_global_id(0) == 0) {
   for(int i=0; i<1048576; i++) {
      sum += data[i];
   }
}

Because we demand high performance, this is completely insufficient. Next, we’ll
examine code that performs reduction using one work-item for each value. Then,
using float4 vectors, we’ll make the kernel execute even faster.

Obtain kernel/work-
group information
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10.2.1 OpenCL reduction

If you look in the Ch10/reduction folder, you’ll find a program file called reduction.cl
that contains a kernel function called reduction_scalar. By default, the host applica-
tion generates 220 (1,048,576) work-items to execute this kernel. On my AMD 5850
GPU, these items are combined into 4,096 work-groups, each containing 256 work-
items. On my Nvidia GTX 470 GPU, these are combined into 1,024 work-groups, each
containing 1,024 work-items.
THE REDUCTION ALGORITHM

But before we look at the code, it’s important to understand the overall reduction
algorithm. Each work-group loads a subset of input data to local memory, adds it
together, and returns the sum to the host. The host collects the values from each
work-group and adds them together to obtain the final answer.

 The addition procedure employed by each work-group requires log2N stages,
where N is the number of input values and work-items. In the first stage, the N input
values are added in pairs to produce N/2 results. The next stage adds the N/2 input
values in pairs and produces N/4 results. This process continues until a single value
remains. Figure 10.1 shows the full process for a work-group where N = 8.

14.0 9.0 12.0 5.0 3.0 -7.0 14.0 1.0Global memory

14.0 9.0 12.0 5.0 3.0 -7.0 14.0 1.0Local memory

17.0 2.0 26.0 6.0 -- -- -- --1st stage

43.0 8.0 -- -- -- -- -- --2nd stage

51.0 -- -- -- -- -- -- --3rd stage
Figure 10.1
Multistage reduction 
in OpenCL
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At the top of the figure, each work-item in the work-group reads a value from global
memory and places it in local memory. But afterward, only half of the work-items are
actually used in the reduction process. This supports the rule of thumb that says it’s a
good idea to generate a work-item for every data element.

 Once the data is placed in local memory, work-items add elements xk and xk+N/2,
and then store the results in sequence (sum 0 is stored at address 0, sum 1 is stored at
address 1, and so on). This storage method reduces memory bank conflicts.

 Local memory is organized into memory banks whose sizes depend on the device’s
architecture (there are usually 16 or 32 banks) per local memory block. The data in
these banks is interleaved so that sequential 32-bit values are placed in adjacent banks.
Each bank can be accessed independently, so if work-items access different banks at
the same time, their read/write operations will be executed in parallel.

 But if work-items attempt to access the same bank at the same time, their read/
write operations will be processed serially and the kernel will wait until all the opera-
tions have finished. These memory bank conflicts can dramatically reduce the perfor-
mance of an application, so it’s best to avoid them at all costs.

 Another reason that this reduction algorithm works well is that there’s no need to
use the modulo operator, %. This operator is useful when determining whether a num-
ber is odd or even, or whether it’s divisible by another number. The % operator doesn’t
consume a great deal of time on CPUs, but it takes many cycles to process the opera-
tion on GPUs, so it’s best to avoid it whenever possible. 
THE REDUCTION KERNEL

Listing 10.2 presents the code that implements the reduction procedure depicted in
figure 10.1. This kernel accepts the following parameters:

■ data—A buffer object containing the input data: 220 floats in ascending order
■ partial_sums—A portion of local memory allocated to hold intermediate results
■ output—A buffer object containing the output sums produced by the work-

groups

__kernel void reduction_scalar(__global float* data,
      __local float* partial_sums, __global float* output) {

   int lid = get_local_id(0);
   int group_size = get_local_size(0);

   partial_sums[lid] = data[get_global_id(0)];           
   barrier(CLK_LOCAL_MEM_FENCE);

   for(int i = group_size/2; i>0; i >>= 1) {        
      if(lid < i) {                                         
         partial_sums[lid] += partial_sums[lid + i];
      }                                             
      barrier(CLK_LOCAL_MEM_FENCE);                 
   }                                                

Listing 10.2 Reduction using scalars: reduction.cl

Read data to 
local memory

B

Perform 
reduction stages
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   if(lid == 0) {                               
      output[get_group_id(0)] = partial_sums[0];         
   }                                            
}

Each work-item starts by transferring an element of input data to local memory B, and
it’s important to see how this works. There are 220 work-items in total, one for each ele-
ment in the input data array located in global memory. Because every global ID is
unique, a work-item can read a unique element by accessing data[get_ global_id(0)].
In local memory, the partial_sums array stores one float for each work-item in a work-
group. Within a work-group, a work-item uses its local ID instead of its global ID. This
is why the work-item writes the input float from data[get_global_id(0)] to the local
memory position partial_sums[lid].

 Because the work-items access local memory sequentially, memory bank conflicts
are kept to a minimum. It’s also worth noting that, because each work-group contains
the maximum possible number of work-items, the memory bandwidth for the data
transfer will reach its maximum value.

 After the work-group’s input data is transferred to local memory, the actual reduc-
tion starts. In the first stage, only half of the work-group’s work-items take part. Each
adds its corresponding element of partial_sums to an element half-way further in
the array. The second and proceeding stages continue adding partial sums together
in the manner shown in figure 10.1. After each stage, the barrier function forces
each work-item to wait until every other work-item in the work-group has finished
accessing local memory.

 When the addition is finished, the work-item whose local ID equals 0 will place the
final sum in global memory. More precisely, it transfers partial_sums[0] in local
memory to output[get_group_id(0)] in global memory. You should have a clear
understanding of the difference between get_local_id and get_group_id. The first
function distinguishes a work-item from all other work-items in the work-group. The
second function distinguishes a work-group from all other work-groups generated to
execute the kernel. 

10.2.2 Improving reduction speed with vectors

The code in listing 10.2 works well. It performs intermediate computation using local
memory, minimizes memory bank conflicts, and distributes the work evenly among
the work-items in the work-group. But there’s one way you can make a significant
improvement: process data in vectors instead of scalars. That is, instead of adding
floats, add float4s.

 The code in listing 10.3 shows how reduction can be implemented using vectors.
For the most part, the code is similar to that in listing 10.2. But now the elements in
the data and partial_sums arrays are float4s.

Write output to 
global memory
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__kernel void reduction_vector(
      __global float4* data,                
      __local float4* partial_sums,                  
      __global float4* output) {            

   int lid = get_local_id(0);
   int group_size = get_local_size(0);

   partial_sums[lid] = data[get_global_id(0)];
   barrier(CLK_LOCAL_MEM_FENCE);

   for(int i = group_size/2; i>0; i >>= 1) {
      if(lid < i) {
         partial_sums[lid] += partial_sums[lid + i];
      }
      barrier(CLK_LOCAL_MEM_FENCE);
   }

   if(lid == 0) {
      output[get_group_id(0)] = partial_sums[0];     
   }
}

The host application, whose source file is Ch10/reduction/reduction.c, makes two
significant changes to execute the reduction_vector kernel:

■ The global size equals the number of input values divided by 4. In this example,
the global size is set to 220/4 = 218.

■ The partial_sums array stores vectors instead of scalars, so it needs four times
as much memory. Therefore, the host application sets the size of the allocated
local memory to 4 * local_size * sizeof(float).

When you run the Ch10/reduction application, it will execute both the
reduction_scalar and reduction_vector kernels. In addition to checking the results,
it measures the time taken for each kernel to execute. On my system, the results are
as follows:

reduction_scalar: Check passed.
Total time = 489031

reduction_vector: Check passed.
Total time = 136157

As shown, reduction completes significantly faster using vectors instead of scalars.
This should make sense, because the reduction_vector kernel needs 1/4 as many
work-items as the reduction_scalar kernel. 

 One problem with these reduction kernels is that neither actually completes the
reduction operation. They provide partial sums—one for each work-group. The host
can add these to obtain the final result, but in general, we want devices to complete
their processing tasks without the host’s assistance. This requires synchronization
across work-groups, and this is the topic of the next section.

Listing 10.3 Reduction using vectors: reduction.cl

Use vector 
types

Write global 
output
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10.3 Synchronizing work-groups
This title is misleading. There is no barrier function that synchronizes work-items in
different work-groups, and so long as a kernel is executing, there’s no way to tell when
any work-group completes its processing. Therefore, as long as a kernel continues exe-
cuting, there’s no way to process the results of multiple work-groups.

 But once a kernel completes its execution, you can be certain that all of its work-
groups have finished processing and that their results can be accessed safely. For this
reason, many OpenCL applications execute multiple kernels—each successive kernel
processes the results generated by the kernel preceding it. Launching multiple ker-
nels can be time-consuming, but there’s no getting around it. Until OpenCL devices
support work-group synchronization, this is the best we can do.

 To see how this works, let’s look at the reduction_vector kernel in listing 10.3. This
accepts 218 float4 vectors and returns one float4 vector for each work-group.
Instead of having the host add the output values, we’re now going to continue execut-
ing the kernel until the number of output vectors falls below the local size.

 Once the input can be processed with work-items in a single work-group, the host
will launch another kernel to compute the final sum. This kernel is called
reduction_complete:

__kernel void reduction_complete(__global float4* data,
      __local float4* partial_sums, __global float* sum) {

   int lid = get_local_id(0);
   int group_size = get_local_size(0);

   partial_sums[lid] = data[get_local_id(0)];
   barrier(CLK_LOCAL_MEM_FENCE);

   for(int i = group_size/2; i>0; i >>= 1) {
      if(lid < i) {
         partial_sums[lid] += partial_sums[lid + i];
      }
      barrier(CLK_LOCAL_MEM_FENCE);
   }

   if(lid == 0) {                                      
      *sum = partial_sums[0].s0 + partial_sums[0].s1 +        
             partial_sums[0].s2 + partial_sums[0].s3;  
   }                                                   
}

The code in this kernel closely resembles that of reduction_vector. The only differ-
ences are that each work-item checks its local ID instead of global ID, and the final
result is a float obtained by summing the elements of the final vector.

 A practical example will demonstrate how reduction_vector and
reduction_complete work together. On my AMD 5850 system, the host application
generates 218 work-items divided into 1,024 work-groups of 256 work-items each.

Listing 10.4 Computing the final reduction: reduction_complete.cl

Compute 
final result
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When reduction_vector finishes, the output contains 1,024 float4 vectors—one for
each work-group.

 Because 1,024 is greater than the local size, reduction_vector must be executed
again. Once again, one work-item will be generated for every input vector, and on my
system the 1,024 work-items are divided into 4 work-groups of 256 work-items each.
The kernel’s result will be an array of 4 float4 vectors.

 The number of input elements (4) is now less than the local size (256), so the host
application will launch reduction_complete with four work-items. The work-items add
the input vectors together, and the work-item whose local ID is 0 computes the sum of
the elements of the final vector.

 At a high level, the computational steps used to perform reduction are similar to
those used for other algorithms. Here are the three main steps:

■ Work-items process data independently. No synchronization is needed.
■ Work-items in the work-group process data together using local memory. Syn-

chronization is made possible through the barrier function.
■ Work-items in multiple work-groups process data together using global mem-

ory. Synchronization is made possible by launching multiple kernels.

Each successive step adds greater complexity but also greater performance. For this rea-
son, when I code a large-scale OpenCL application, I start by executing the kernel with
a single work-item. Once this works, I recode the kernel to use the work-items in a single
work-group. If I can get that to work, then I recode the application to make use of mul-
tiple work-groups and multiple kernels. This isn’t an easy process, but obtaining incred-
ible performance from a fully occupied OpenCL device is worth the effort.

 The next section puts aside the reduction algorithm and the grand strategy of
OpenCL coding. Instead, we’ll look at ten simple tricks that will improve the process-
ing speed of your applications. 

10.4 Ten tips for high-performance kernels
Between examining expert code and conducting my own experiments, I’ve gleaned
ten simple methods that boost the performance of OpenCL kernels. In no particular
order, here are these methods:

■ Unroll loops. If you know in advance how many iterations will be performed by a
for or while loop, you should consider coding the iterations separately. This
removes the need for the comparison operations associated with the loop state-
ments. Of course, you need to make sure that the kernel doesn’t grow too large.

■ Disable processing of denormalized numbers. As discussed in chapter 3, denormal-
ized numbers are floating-point numbers whose values fall below the smallest
regular value. They reduce the likelihood of division-by-zero operations, but
their processing can take time. If division-by-zero operations aren’t a concern
for the kernel, the host application can set the -cl-denorms-are-zero option
in clBuildProgram. This is shown in the following function call:

clBuildProgram(program, 0, NULL, "-cl-denorms-are-zero", NULL, NULL);
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To disable processing of infinite values and NaNs, set the -cl-finite-math-only
option. Table 2.7 lists all of the options available for compiling kernels.

■ Transfer constant primitive values to the kernel with compiler defines instead of private
memory parameters. If the host application needs to transfer a constant value to
the kernel, it’s better to send the value using compiler options like
-DNAME=VALUE than to create a separate argument for the kernel function. For
example, if you need to tell the kernel that each work-item must process 128
values, you can define the SIZE macro as follows:

clBuildProgram(program, 0, NULL, "-DSIZE=128", NULL, NULL);

Now, when the compiler builds the kernel, it will replace every incidence of
SIZE with 128. No private or local memory is needed to store the constant.

■ If sharing isn’t an issue, store small variable values in private memory instead of local
memory. Work-items can access private memory faster than they can access local
memory. Therefore, if the kernel needs to store primitive variable data, work-
items can access the data faster in private memory. But if the data needs to
be shared with other work-items in the work-group, it should be stored in
local memory.

■ Avoid local memory bank conflicts by accessing local memory sequentially. Local mem-
ory is arranged into banks that are individually accessible. These banks inter-
leave their data so that successive 32-bit elements are stored in successive banks.
Therefore, if work-items access data sequentially, the read/write operations can
be processed in parallel. Otherwise, if multiple work-items access the same
memory bank, the memory operations will be processed serially.

■ Avoid using the modulo (%) operator. The % operator requires a significant amount
of processing time on GPUs and other OpenCL devices. If possible, try to find
another method to distinguish work-items from one another.

■ Reuse private variables throughout the kernel—create macros to avoid confusion. If a ker-
nel uses one private variable in one section of code and another private variable
in another section, the two variables can be replaced by a single variable. The
problem is that, when a variable serves multiple purposes, it’s confusing for the
programmer to understand what’s happening in code.

To fix this problem, set macros whose names correspond to the same private
variable. For example, suppose the variable tmp1 should hold an exponent in
one section of the kernel, a sine value in a second section, and a loop counter
in another. You could code three macros as follows:

#define EXP tmp1
#define SINE tmp1
#define COUNT tmp1

With these definitions in place, you can code with EXP, SINE, and COUNT as
though they were distinct variables, but private memory will only need to store a
single value.
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■ For multiply-and-add operations, use the fma function if it’s available. If the
FP_FAST_FMAF macro is defined, you can compute a*b+c with greater accuracy
by calling the function fma(a, b, c). The processing time for this function will
be less than or equal to that of computing a*b+c.

■ Inline non-kernel functions in a program file. The inline modifier preceding a
function tells the compiler that each call to the function should be replaced
with the complete function code. This is not memory efficient—if an inline
function is called N times, the function body will be expanded N times—but it
saves processing time by removing the context switches and stack operations
associated with regular function calls.

■ Avoid branch miss penalties by coding conditional statements to be true more often than
false. Many processors predict that branch statements will return true, and they
plan for this in advance by loading the address corresponding to a true result.
But if the condition produces a false result, the processor must clear the pro-
cessing pipeline and load instructions from a new address. This is called a
branch miss penalty, and it can be avoided by coding if statements and similar
conditional statements to produce a true result as often as possible.

These 10 guidelines can improve your kernel’s performance, but be sure to profile your
application to understand where the processing time is being spent. When it comes to
high-performance OpenCL coding, there is no substitute for experimentation. 

10.5 Summary
Coding with OpenCL is like driving a large, sixteen-wheeled truck. The principles of
driving remain the same, but because there’s so much cargo, you have to deal with
additional concerns. The goal of this chapter has been to describe the additional con-
cerns involved when you write OpenCL applications that process thousands, millions,
or even billions of data points.

 We can generate as many work-items as we like, but the size of each work-group is
beyond our control—it depends on the device’s resources and the kernel’s resource
usage. The more private and local memory the kernel requires, the fewer work-items
can be placed in a work-group. The clGetKernelWorkGroupInfo function identifies
the maximum work-group size for a given kernel and device, and in the interests of
memory bandwidth, it’s a good idea to make this size the local size parameter of
clEnqueueNDRangeKernel.

 Most of this chapter has been concerned with implementing reduction in
OpenCL. Even though this simply adds elements of an array, coding reduction effec-
tively for data sizes greater than one million isn’t simple at all. There are memory
bank issues to deal with, data transfer issues between global and local memory, and
synchronization issues between work-items in the same and different work-groups.

 The reduction algorithm must be performed in stages, and synchronization is
needed to make sure every work-item is processing data in the same stage. This can be
tricky. If the work-items are located in the same work-group, synchronization can be
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accomplished with the barrier function. If they’re in different work-groups, the only
way to be sure they’re at the same point is to launch a new kernel.

 The last part of this chapter presented ten rules of thumb to keep in mind when cod-
ing OpenCL kernels. But remember that many of these involve trade-offs. For example,
unrolling loops and inlining non-kernel functions will improve processing time, but
the kernel code will be larger. Similarly, treating denormalized numbers as zero will
improve performance but leave you in greater danger of dividing values by zero.

 In the next four chapters, we’ll put aside reduction and start looking at real-world
algorithms used by programmers and engineers. Chapter 11 discusses Google’s
MapReduce algorithm and two different ways of sorting data.



Part 2

Coding practical
 algorithms in OpenCL

Part 2 shows how OpenCL can be used to build applications that process vast
amounts of data. Chapter 11 discusses OpenCL implementations of MapReduce,
the bitonic sort, and the radix sort. Chapters 12 and 13 focus on matrix opera-
tions, including both dense matrices and sparse matrices. Chapter 14 explains
how the fast Fourier transform (FFT) can be coded in OpenCL.





Reduction and sorting
At long last, we’re going to stop talking about OpenCL’s structures and functions
and start putting them to use. In particular, this chapter focuses on three practical
applications of OpenCL: MapReduce, the bitonic sort, and the radix sort. These
applications all use a divide-and-conquer methodology to process data in parallel,
and they partition data so that each parallel process can operate independently.

 The goal of MapReduce isn’t to solve a particular problem, but to provide a frame-
work for solving a class of problems that involve distributed processing. A basic
MapReduce implementation consists of a mapping stage, which produces key-value
pairs from input data, and a reduction stage, which processes the key-value pairs to
produce output data. MapReduce is usually associated with cluster computing, but
this chapter will examine how it can be executed on OpenCL-compliant hardware.

 There are countless sorting algorithms available in computer science, but few are
as well suited to parallel implementation as the bitonic sort and the radix sort. Both
algorithms divide unsorted data into groups and then subdivide the groups further

This chapter covers
■ Implementing parallel processing tasks with 

MapReduce and OpenCL
■ Sorting data with the bitonic sort and radix sort 

algorithms
237
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for simpler processing. The bitonic sort groups elements according to how their values
relate to adjacent values. The radix sort groups elements that have similar digits.

 But before we discuss sorting, let’s take a close look at MapReduce. Google relies
on this framework for its high-speed internet data analysis, but, as you’ll see, it can be
applied to many other kinds of tasks.

11.1 MapReduce
Google has released many software packages for common use, from office tools like
Google Docs to three-dimensional modeling applications like Google SketchUp. In
contrast, MapReduce doesn’t have any software directly associated with it. It’s a purely
theoretical framework for building distributed applications that process large-scale
amounts of data. This section will explain the theory behind this framework and then
describe a method of implementing MapReduce in OpenCL. The last part of this sec-
tion demonstrates how this method can be applied to search for strings inside a text file.

11.1.1 Introduction to MapReduce

In 2004, Google engineers Jeffrey Dean and Sanjay Ghemawat released a research
paper entitled MapReduce: Simplified Data Processing on Large Clusters (http://
labs.google.com/papers/mapreduce.html). The paper caused a sensation in the
world of cluster computing, and not just because of the theory—the concepts of map-
ping and reduction had long been used in the field of functional programming. The
paper became famous because Google, whose meteoric $1.67 billion IPO had taken
place four months prior, was divulging the technical secrets behind its success. The
paper discusses both the theory of MapReduce and Google’s implementation of the
algorithm in its server clusters. MapReduce quickly became a topic of interest
throughout high-tech corporations and academia, and that interest has continued
unabated into the present.

 Put simply, MapReduce is a method for processing large data sets with large num-
bers of processors. It doesn’t focus on any particular processing task, but instead pres-
ents an approach that can be applied to multiple applications. If you’re familiar with
the concept of a design pattern, then you have a good idea of the role MapReduce
serves in the world of parallel programming.

 A MapReduce solution contains a minimum of two stages: mapping and reduction.
The processors involved in the mapping stage each receive input data and produce
key-value pairs. Once the mapping is finished, each processor in the reduction stage
receives values corresponding to a given key. The processors performing reduction
process these values and merge them together to form the output data. Figure 11.1
provides a general idea of how this works.

 The keys in this diagram are all numbers, but a MapReduce key can take any data
type. Remember that a key’s purpose is to identify pairs that need to be reduced
together. In this diagram, the pairs whose key equals 0 are sent to R0 for reduction,
the pairs whose key equals 1 are sent to R1 for reduction, and so on. Note that the

http://labs.google.com/papers/mapreduce.html
http://labs.google.com/papers/mapreduce.html
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pairs need to be grouped by key before reduction can take place. This intermediate
step is referred to by the Dean-Ghemawat paper as combination.

 Part of MapReduce’s efficiency stems from the fact that each mapping processor oper-
ates independently from every other mapping processor. The same holds true for the
reduction processors. This processing independence is an important strength of MapRe-
duce, because it means the processors don’t have to wait for other tasks to complete.

 An example will help clarify how MapReduce is used in practice. Suppose you have
a large text document and you want to know how many times each word in the docu-
ment appears. With MapReduce, you’d partition the document into equally sized
chunks of text and send each chunk to a mapping processor. The mapping processors
would produce key-value pairs in which the key is the word and the value is the num-
ber of times the word appears in the chunk of text. This is shown in figure 11.2.

 In this example, the input data consists of a large text file, which is partitioned into
multiple word groupings. The mapping processors analyze these groups indepen-
dently of one another and count how many times each word appears. The words the
and of have large word counts because of their high usage frequency, while brisk has a
comparatively low word count. The map stage produces key-value pairs in which the
word is the key and the word’s count is the value. The figure shows each group of key-
value pairs as having the same order, but this doesn’t have to be the case.

 The reduction processors receive the key-value pairs and sum the word counts for
each word analyzed by the mapping. Once they determine the total word counts, the
reduction processors merge their results into a final listing of each word and its usage
count within the original document. 
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240 CHAPTER 11 Reduction and sorting
In addition to counting word usage, the Dean-Ghemawat paper presents a number of
other tasks that can be efficiently implemented with MapReduce:

■ Web page access—The map stage searches through logs of HTML requests and
produces key-value pairs containing URLs and the number of times they’ve
been requested. The reduction stage adds the number of requests for each URL
and merges the final results.

■ Web link relationships—Each map processor is assigned a URL and determines
how many URLs link to that URL. The mapping stage produces key-value pairs
containing the target and source URLs, and the reduction stage combines these
together to form a graph of web usage.

■ Inverted index—The mapping processors analyze different documents and
assemble key-value pairs matching words to document identifiers. The reduc-
tion stage takes this information and produces an inverted index that lists each
word and the different documents it can be found in.

These tasks can be split easily into independent subtasks, and for this reason they’re
referred to as being embarrassingly parallel. MapReduce excels at processing embarrass-
ingly parallel tasks, and so do most OpenCL-compliant devices, such as GPUs. Next,
we’ll examine how MapReduce can be implemented on OpenCL hardware. 

11.1.2 MapReduce and OpenCL

Chapter 4 discussed the OpenCL device model, which defines address spaces within a
device: global memory, constant memory, local memory, and private memory. Work-
items can access local memory faster than they can access global or constant memory,
so we’d like to process local data whenever possible.
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Figure 11.2 Counting words with MapReduce
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Each block of local memory is specific to the work-items in a work-group. A Map-
Reduce data set is much too large to be processed by a single work-group, so any
MapReduce implementation will have to combine the results of multiple work-groups
in global memory. Figure 11.3 shows one method of implementing mapping
and reduction on an OpenCL-compliant device. It depicts two work-groups, each with
two work-items.

 The MapReduce implementation method presented in this figure splits the reduc-
tion stage into two substages: local reduction and global reduction. Local reduction,
like the mapping stage, operates on data in local memory. Global reduction receives
the results of the local reduction stages and produces a result to be sent back to
the host.

 There’s a significant problem with this implementation. In a real MapReduce algo-
rithm, there’s no way to know in advance how many key-value pairs will be produced
by the mapping stage. For this reason, MapReduce implementations commonly
require dynamic memory allocation, which is provided by the C malloc function or a
C++ container. But OpenCL doesn’t support either of these. An OpenCL kernel needs
to know in advance how much data will be processed and stored.

 One solution is to combine the mapping and local reduction steps so that each
work-group transfers one result to the global reduction stage. This method is consid-
erably simpler than the ordinary MapReduce, and it may not be workable for some
embarrassingly parallel algorithms. But it allows us to come up with a general five-step
procedure for implementing MapReduce in OpenCL:
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Map <k, v>
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Figure 11.3 MapReduce and the OpenCL device model
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1 Each work-item in a work-group performs the mapping, but instead of produc-
ing key-value pairs, it also performs a portion of the local reduction stage.

2 The kernel executes a local barrier that prevents further execution until all
work-items in a work-group have completed their processing.

3 In each work-group, the work-item whose local ID equals 0 reduces the work-
group’s output into a single result.

4 The kernel executes a global barrier that prevents further execution until all
work-groups have completed their processing.

5 The work-item whose global ID equals 0 receives the result of each work-group
and reduces this data to produce a final result.

The best way to understand this process is to examine and experiment with working
code. Next, we’ll see how this modified MapReduce implementation can be used to
search for words within text. 

11.1.3 MapReduce example: searching for text

The Dean-Ghemawat paper recommended distributed grep (global regular expres-
sion print) as one of the embarrassingly parallel tasks best suited for implementation
with MapReduce. grep is a common command in Linux/Unix, and it searches
through one or more files to locate every occurrence of an input string. By default, it
displays every line containing the string, regardless of word boundaries.

 There are many elegant algorithms available for string searching, but to demon-
strate OpenCL-MapReduce as clearly as possible, our example will rely on brute force.
It will search for four input strings (that, with, have, and from) using vector comparison.
Figure 11.4 shows how this works.

 In this figure, the four input strings are placed in a char16 vector, which is com-
pared to another char16 containing text from a text file. The == operator compares
the two vectors and places the result in a third vector. If two characters match, the cor-
responding byte in the third vector will be set to 0xFF. If not, the corresponding byte
will be set to 0x00.

 Once the comparison is complete, the work-item tests the resulting vector to deter-
mine whether one or more of the pattern words were recognized. If so, the work-item

t h a t w i t h h a v e f r o m

o r k w i t h o u t a r e sw

00 00 00 00 FF FF FF FF 00 00 00 00 00 00 00 00

Source text

Pattern

Match

Figure 11.4 String search with vector comparison
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doesn’t produce key-value pairs. Instead, it atomically increments a value in local
memory corresponding to the word count. That is, it performs both mapping and
local reduction. Once the local reduction is completed, one work-item in every work-
group atomically adds the local results to the global result.

 The following listing shows how this example is implemented in code. As
explained in chapter 5, the all function identifies whether every most significant bit
(MSB) in every component of a vector is set to 1.

__kernel void string_search(char16 pattern, __global char* text,
     int chars_per_item, __local int* local_result,
     __global int* global_result) {

   char16 text_vector, check_vector;

   local_result[0] = 0;               
   local_result[1] = 0;                     
   local_result[2] = 0;               
   local_result[3] = 0;               

   barrier(CLK_LOCAL_MEM_FENCE);                       

   int item_offset = get_global_id(0) * chars_per_item;

   for(int i=item_offset; i<item_offset + chars_per_item; i++) {

      text_vector = vload16(0, text + i);                    

      check_vector = text_vector == pattern;

      if(all(check_vector.s0123))          
         atomic_inc(local_result);                             
      if(all(check_vector.s4567))          
         atomic_inc(local_result + 1);     
      if(all(check_vector.s89AB))          
         atomic_inc(local_result + 2);     
      if(all(check_vector.sCDEF))          
         atomic_inc(local_result + 3);     
   }

   barrier(CLK_GLOBAL_MEM_FENCE);       

   if(get_local_id(0) == 0) {
      atomic_add(global_result, local_result[0]);    
      atomic_add(global_result + 1, local_result[1]);          
      atomic_add(global_result + 2, local_result[2]);
      atomic_add(global_result + 3, local_result[3]);
   }
}

On my system, the printed output is as follows:

Results:
Number of occurrences of 'that': 330
Number of occurrences of 'with': 237
Number of occurrences of 'have': 110
Number of occurrences of 'from': 116

Listing 11.1 Implementing MapReduce in OpenCL: string_search.cl
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This exactly matches the results produced by the grep command. If you have access to
GNU utilities, you can test this with the following commands:

grep 'that' -o Ch11/string_search/kafka.txt | wc -w
grep 'with' -o Ch11/string_search/kafka.txt | wc -w
grep 'have' -o Ch11/string_search/kafka.txt | wc -w
grep 'from' -o Ch11/string_search/kafka.txt | wc -w

The parameter list of string_search includes variables in global/constant memory
(text and global_result), local memory (local_result), and private memory
(pattern). It’s important to understand how the setKernelArg function calls in
string_search.c configure these parameters and their memory locations.

 It’s also important to understand the barrier calls in listing 11.1. These functions
ensure that all memory accesses preceding the barrier are executed before any work-
item can continue executing. If the barrier argument is CLK_LOCAL_MEM_FENCE, the
barrier affects access to local memory. If the argument is CLK_GLOBAL_MEM_FENCE, the
barrier affects the work-items’ access to global memory. Chapter 7 discusses these syn-
chronization methods in detail.

 Chapter 7 also discusses atomic functions. Listing 11.1 uses two of them:
atomic_inc and atomic_add. These are necessary because they ensure that the incre-
ment and addition operations will execute without interruption. Unfortunately, they
don’t operate on vectors, so the listing invokes them multiple times.

 This example doesn’t provide a formal global reduction step, but it gives a good
idea of how MapReduce can be implemented efficiently in OpenCL. The rest of this
chapter will examine how sorting algorithms can be implemented, and we’ll start by
discussing the bitonic sort.  

11.2 The bitonic sort
Algorithms that sort data form a vital part of any programmer’s repertoire, and no
introductory computer science course could be complete without a discussion of bub-
ble sorts, insertion sorts, and selection sorts. But as multicore processors gain in power
and popularity, it becomes crucial to sort data using a parallelized algorithm. Some
algorithms are better suited to parallel implementation than others, and the bitonic
sort (also called the bitonic merge sort) is one of the few sorting methods that was
designed to be implemented with multiple processing elements. The goal of this sec-
tion is to explain how the bitonic sort works and how to implement it with OpenCL.

11.2.1 Understanding the bitonic sort

Most presentations of the bitonic sort proceed from start to finish, but I’d like to
begin this discussion with the end goal. First, I’ll explain what bitonic sequence are
and how they can be sorted. Then I’ll explain how to turn an unordered sequence
into a bitonic sequence.
SORTING BITONIC SEQUENCES

Figure 11.5 presents three numerical sequences called A, B, and C.
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The values of the elements in these sets don’t concern us. What’s important is the rela-
tionships between adjacent values. In sequence A, every element is greater than or
equal to the element preceding it. For this reason, we say that sequence A is monotoni-
cally increasing. In sequence B, every element is less than or equal to the element pre-
ceding it, so sequence B is monotonically decreasing.

 Sequence C is the concatenation of the elements in sequences A and B. This is not
monotonic, but because it is formed of two monotonic sets, it is bitonic. In a bitonic set,
the slope between successive pairs of elements can only change sign (greater than 0 to
less than 0, or less than 0 to greater than 0) once at most.

 Bitonic sets like sequence C are important to us because of an operation called the
bitonic split. This operation consists of the following two tasks:

1 Compare each element in the lower half of the sequence (i equals 0 through
N/2 – 1) with the corresponding element in the upper half (i + N/2).

2 If the element in the lower half is greater than the element in the upper half,
swap the two elements.

If we perform the bitonic split on sequence C, we’ll obtain the elements of sequence
D, which is shown in the left side of figure 11.6. This sequence isn’t bitonic, but each
half of it (0 to N/2 – 1, N/2 – N) is bitonic. Further, because sequence C was bitonic,
every element in the lower half of sequence D is less than or equal to the elements in
its upper half. You may want to take a moment to assure yourself that this will always
be the case.

0 15 0 15

0 31

Sequence A Sequence B

Sequence C
Figure 11.5 Monotonic and bitonic sets



246 CHAPTER 11 Reduction and sorting
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1 6 5 4 2 7 8 3

Figure 11.7 Forming bitonic halves

The right side of figure 11.6 shows the result of a second set of bitonic splits. As each
new split is performed, the smaller elements make their way to the left while the larger
elements move to the right. These bitonic splits are repeated, each time operating on
sequences half the size as before. The final step takes splits with two elements each, and
once this is accomplished, the elements in sequence C will be completely sorted.

 The procedure used to sort a bitonic sequence is called the bitonic merge. In gen-
eral, if a sequence contains N elements where N = 2k, the bitonic merge requires k
steps. Each step consists of bitonic splits, and if i runs from 1 to k, step i consists of i
splits of N/i elements each. 
FORMING BITONIC SEQUENCES

Now that we’ve discussed how to sort bitonic sequences, an important question arises:
how can we convert a regular sequence into a bitonic sequence, particularly one as
hill-shaped as sequence C in figure 11.5? This is tricky. In my opinion, the best way to
understand the conversion process is to start with small sequences and progress to
larger sequences.

 Every two-element sequence is already bitonic, so let’s look at how to make a four-
element sequence bitonic. You want the first two elements to be monotonically
increasing and the second two elements to be monotonically decreasing. You can
accomplish this in two steps:

1 Compare the first two elements. If the first element is greater than the second,
swap the two elements. This ensures that the elements are in ascending order.

2 Compare the second two elements. If the second element is greater than the first,
swap the two elements. This ensures that the elements are in descending order.

As an example, suppose the sequence is {2, 1, 4, 3}. In this case, we’d swap the first two
elements to place them in ascending order. We wouldn’t swap the last two elements
because they’re already in descending order. The result would be {1, 2, 4, 3}.

 Now let’s make an eight-element sequence
bitonic. To start, we need to make the lower half
and upper half bitonic. These halves are both
four-element sequences, so we can accomplish
this using the steps mentioned earlier. The result
is shown in figure 11.7.

Sequence D

Bitonic Split Bitonic Split Split Split Split Split

Figure 11.6 Bitonic splits
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1 6 5 4 2 7 8 3
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Figure 11.8 Forming a bitonic sequence

 The lower array in figure 11.7 shows the result of comparing pairs of the original
array and sorting even pairs up and odd pairs down. Both four-element halves are now
bitonic, but we haven’t reached our goal of a single eight-element bitonic sequence.

 To make the eight-element array bitonic, we need to fully sort both four-element
halves. In particular, we want the lower half to be monotonically increasing and the upper
half to be monotonically decreasing. We can accomplish this using the following steps:

1 For the lower half, compare the first element and the third element, and swap
them if the first is larger. Do the same for the second and fourth elements.
Then compare the first and second elements, and swap them if the first is
larger. Do the same for the third and fourth elements.

2 For the upper half, perform the same compare-and-swap operations as for the
lower half, but reverse the sort. That is, swap elements to bring larger values
toward the left, smaller values toward the right.

Figure 11.8 starts with the bottom array from fig-
ure 11.7. It sorts the lower half in ascending
order and the upper half in descending order.

 As shown in the figure, the result is a bitonic
sequence whose lower half is monotonically
increasing and whose upper half is monotoni-
cally decreasing. Because this final sequence is
bitonic, we can sort its elements using the
bitonic merge procedure described earlier.

 If the length of a sequence is a power of 2, then we can present a general proce-
dure for sorting its elements with the bitonic sort:

1 Make the four-element subsequences bitonic by comparing each pair of ele-
ments. Even-numbered pairs are sorted in ascending order. Odd-numbered
pairs are assorted in descending order.

2 Continue making larger bitonic subsequences (8-element, 16-element, and so
on) by comparing and swapping elements in the lower half with elements in the
upper half. If you remember the hill shape we’re looking for, you’ll know when
to sort upward and when to sort downward.

3 After creating a bitonic subsequence, sort it using the bitonic merge. This isn’t
necessary for four-element subsequences.

This algorithm is commonly implemented using recursion, but OpenCL kernel func-
tions can’t be invoked recursively. Therefore, if we want to implement the bitonic sort
with OpenCL, we need to perform the compare-and-swap operations in parallel. We’ll
discuss this next. 

11.2.2 Implementing the bitonic sort in OpenCL

Coding a bitonic sort in OpenCL can be complicated, so it’s a good idea to learn how
to sort small datasets first and then proceed to large datasets. We’ll begin by discussing
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how to sort four elements inside a vector and then how to sort a dataset of eight ele-
ments. With this information, we’ll proceed to building a general OpenCL application
to perform the bitonic sort.
SORTING FOUR ELEMENTS IN A VECTOR

The fundamental operation of the bitonic sort is to compare two elements and swap
them if necessary. Many applications sort scalars with if statements such as the following:

if(x1 < x2) {
   temp = x1;
   x1 = x2;
   x2 = temp;
}

But OpenCL makes it possible to sort multiple values at once using vector operations.
The shuffle function can be used to form vectors with the input elements rear-
ranged. Then, by comparing the input vector to the shuffled vector, you can obtain a
mask vector capable of rearranging the input vector’s elements. 

 The bitonic sort application presented in this chapter relies on these shuffle-
compare-shuffle operations to sort the elements in a vector, and figure 11.9 shows how
they can be used to sort the elements in an int4 in ascending order.

 The bsort8.cl program file in the Ch11/bsort8 project contains a macro called
SORT_VECTOR. This uses shuffle-compare-shuffle operations to sort the elements in a
vector, and its code is as follows:

#define SORT_VECTOR(input, dir)  \
   comp = abs(input > shuffle(input, mask1)) ^ dir;   \
   input = shuffle(input, comp ^ swap + add1);        \
   comp = abs(input > shuffle(input, mask2)) ^ dir;   \
   input = shuffle(input, comp * 2 + add2);           \
   comp = abs(input > shuffle(input, mask1)) ^ dir;   \
   input = shuffle(input, comp + add1);               \
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As you look at this code, remember that taking the absolute value of a vector compari-
son produces a vector whose elements equal 1 when the comparison is true and 0
when the comparison is false. This can be inverted by taking the exclusive-OR (^) of
the result with 1.
SORTING AN EIGHT-ELEMENT SEQUENCE

Once you can arrange elements inside a vector using the bitonic sort, it’s straightfor-
ward to sort elements between multiple vectors. The main operation involves compar-
ing two vectors and swapping their elements based on the result. In bsort8.cl, this is
accomplished by the macro SWAP_VECTORS, whose code is as follows:

#define SWAP_VECTORS(input1, input2, dir)  \
   temp = input1;                                    \
   comp = (abs(input1 > input2) ^ dir) * 4 + add3;   \
   input1 = shuffle2(input1, input2, comp);          \
   input2 = shuffle2(input2, temp, comp);            \ 

This code calls shuffle2 to rearrange the elements of the input1 and input2 vectors
in the order specified by dir. Chapter 5 explains how the shuffle and shuffle2 func-
tions work.

 The following code performs an eight-element bitonic sort by calling on the mac-
ros SORT_VECTOR and SWAP_VECTORS.

#define UP 0
#define DOWN 1

define SORT_VECTOR(input, dir) \
   comp = abs(input > shuffle(input, mask1)) ^ dir;  \
   input = shuffle(input, comp ^ swap + add1);       \
   comp = abs(input > shuffle(input, mask2)) ^ dir;  \
   input = shuffle(input, comp * 2 + add2);          \
   comp = abs(input > shuffle(input, mask1)) ^ dir;  \
   input = shuffle(input, comp + add1);              \

#define SWAP_VECTORS(input1, input2, dir)            \
   temp = input1;                                    \
   comp = (abs(input1 > input2) ^ dir) * 4 + add3;   \
   input1 = shuffle2(input1, input2, comp);          \
   input2 = shuffle2(input2, temp, comp);            \

__kernel void bsort8(__global float4 *data, int dir) {

  __local float4 input1, input2, temp;
  __local uint4 comp, swap, mask1, mask2, add1, add2, add3;

   mask1 = (uint4)(1, 0, 3, 2);
   swap = (uint4)(0, 0, 1, 1);
   add1 = (uint4)(0, 0, 2, 2);
   mask2 = (uint4)(2, 3, 0, 1);
   add2 = (uint4)(0, 1, 0, 1);
   add3 = (uint4)(0, 1, 2, 3);

   input1 = data[0];

Listing 11.2 An eight-element bitonic sort: bsort8.cl
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   input2 = data[1];

   SORT_VECTOR(input1, UP)            
   SORT_VECTOR(input2, DOWN)             

   SWAP_VECTORS(input1, input2, dir)
   SORT_VECTOR(input1, dir)                  
   SORT_VECTOR(input2, dir)         

   data[0] = input1;
   data[1] = input2;
}

This is a lot of work to sort an eight-element sequence, and I wouldn’t recommend
using it in time-critical applications. But you can use this kernel as a basis for coding a
full bitonic sort.
A FULL BITONIC SORT

The main difficulty in coding the bitonic sort involves assigning data to work-groups.
As discussed in chapter 10, clGetKernelWorkGroupInfo tells us the maximum num-
ber of work-items in a work-group for a given device and kernel. We’ll call this number
M. Each work-item will sort eight data points (two four-element vectors) at a time, so
the number of values that can be processed by a work-group is 8M.

 Let’s call N the total number of data points to be sorted. If N is less than or equal
to 8M, only one work-group is needed. But if we assume N is larger than 8M, the
number of work-groups required is N/8M. For example, if the maximum work-group
size is 512, each work-group can process 8 * 512 = 4,096 data points. If the data set
contains 1,048,576 data points, the full sort requires 1,048,576/4,096 = 256 work-
groups. This chapter assumes that N/8M is a power of 2.

 The bitonic sort requires multiple stages to complete. In the first stage, each work-
group sorts its own data. In successive stages, work-groups combine the sorted results,
and the final stage sorts the entire data set with a bitonic merge. This is shown in fig-
ure 11.10, which demonstrates how eight work-items sort data.

 As the algorithm progresses from stage 0 to stage 3, the bitonic sort requires that
every preceding stage be processed. For the sort depicted in the figure, the proper
stage order is 0, 1, 0, 2, 1, 0, 3, 2, 1, 0. The final stages implement the bitonic merge. 

 As discussed in chapter 7, OpenCL provides no way to synchronize work-groups
except by executing new kernels. Therefore, each stage of the bitonic sort requires a
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Figure 11.10 Splitting the bitonic sort among work-groups
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separate kernel-execution command. The host application dispatches these commands
to the device within an iteration loop, and the bsort.cl program file in the Ch12/bsort
directory contains the kernel functions that work together to perform the sort:

■ bsort_init—At the start of the sort, each work-item reads two vectors and sorts
their components. Then the work-items in the work-group sort every data point
assigned to the group.

■ bsort_stage_n—This kernel performs higher stages of the bitonic sort, which
form the data points into a bitonic set.

■ bsort_stage_0—Each higher stage requires that every lower stage be executed.
This kernel corresponds to the bottom stage of the sort.

■ bsort_merge—Once the data points have been sorted into a bitonic set, this
kernel places the data points in ascending or descending order.

■ bsort_merge_last—This kernel performs the final sorting of the work-groups’
data elements.

For example, the host application executes the following loop to perform the bitonic
merge. Specifically, it iterates through a for loop and dispatches multiple commands
to execute the bsort_merge function. Each kernel receives a different value for the
stage parameter:

for(stage = num_stages; stage > 1; stage >>= 1) {
   clSetKernelArg(bsort_merge, 2, sizeof(int), &stage);
   clEnqueueNDRangeKernel(queue, bsort_merge, 1, NULL,
         &global_size, &local_size, 0, NULL, NULL);
}
clEnqueueNDRangeKernel(queue, bsort_merge_last, 1, NULL,
      &global_size, &local_size, 0, NULL, NULL);

After dispatching commands to execute bsort_merge, the host dispatches a command
to execute bsort_merge_last. This finishes the bitonic merge and completes the sort.

 Listing 11.3 presents the code for the bsort_init function. Here, each work-item
in a work-group reads two float4 vectors from global memory and sorts their compo-
nents, placing the sorted result in local memory. Then the work-items work together
to sort all of the vectors read by the group’s work-items. 

#define VECTOR_SORT(input, dir)                      \
   comp = abs(input > shuffle(input, mask2)) ^ dir;  \
   input = shuffle(input, comp * 2 + add2);          \
   comp = abs(input > shuffle(input, mask1)) ^ dir;  \
   input = shuffle(input, comp + add1);              \

#define VECTOR_SWAP(in1, in2, dir)                   \
   input1 = in1; input2 = in2;                       \
   comp = (abs(input1 > input2) ^ dir) * 4 + add3;   \
   in1 = shuffle2(input1, input2, comp);             \
   in2 = shuffle2(input2, input1, comp);             \

Listing 11.3 A general bitonic sort: bsort.cl (abridged)
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__kernel void bsort_init(__global float4 *g_data,
                         __local float4 *l_data) {

   float4 input1, input2, temp;
   uint4 comp, swap, mask1, mask2, add1, add2, add3;
   uint id, dir, global_start, size, stride;

   mask1 = (uint4)(1, 0, 3, 2);
   swap = (uint4)(0, 0, 1, 1);
   add1 = (uint4)(0, 0, 2, 2);
   mask2 = (uint4)(2, 3, 0, 1);
   add2 = (uint4)(0, 1, 0, 1);
   add3 = (uint4)(0, 1, 2, 3);

   id = get_local_id(0) * 2;                  
   global_start = get_group_id(0) *                     
                  get_local_size(0) * 2 + id; 

   input1 = g_data[global_start];
   input2 = g_data[global_start+1];

   comp = abs(input1 > shuffle(input1, mask1)); 
   input1 = shuffle(input1, comp ^ swap + add1);            
   comp = abs(input1 > shuffle(input1, mask2)); 
   input1 = shuffle(input1, comp * 2 + add2);   
   comp = abs(input1 > shuffle(input1, mask1)); 
   input1 = shuffle(input1, comp + add1);       

   comp = abs(input2 < shuffle(input2, mask1));   
   input2 = shuffle(input2, comp ^ swap + add1);               
   comp = abs(input2 < shuffle(input2, mask2));   
   input2 = shuffle(input2, comp * 2 + add2);     
   comp = abs(input2 < shuffle(input2, mask1));   
   input2 = shuffle(input2, comp + add1);         

   dir = get_local_id(0) % 2;                       
   temp = input1;                                         
   comp = (abs(input1 > input2) ^ dir) * 4 + add3;  
   input1 = shuffle2(input1, input2, comp);         
   input2 = shuffle2(input2, temp, comp);           

   VECTOR_SORT(input1, dir);
   VECTOR_SORT(input2, dir);
   l_data[id] = input1;
   l_data[id+1] = input2;

   for(size = 2; size < get_local_size(0);          
                 size <<= 1) {                         
      dir = get_local_id(0)/size & 1;               

      for(stride = size; stride > 1; stride >>= 1) {
         barrier(CLK_LOCAL_MEM_FENCE);                       
         id = get_local_id(0) +                     
             (get_local_id(0)/stride)*stride;       
         VECTOR_SWAP(l_data[id],                    
                     l_data[id + stride], dir)      
      }                                             

      barrier(CLK_LOCAL_MEM_FENCE);
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      id = get_local_id(0) * 2;
      input1 = l_data[id]; input2 = l_data[id+1];
      temp = input1;
      comp = (abs(input1 > input2) ^ dir) * 4 + add3;
      input1 = shuffle2(input1, input2, comp);
      input2 = shuffle2(input2, temp, comp);
      VECTOR_SORT(input1, dir);
      VECTOR_SORT(input2, dir);
      l_data[id] = input1;
      l_data[id+1] = input2;
   }

   dir = get_group_id(0) % 2;
   for(stride = get_local_size(0); stride > 1;         
                                   stride >>= 1) {         
      barrier(CLK_LOCAL_MEM_FENCE);                    
      id = get_local_id(0) +                           
          (get_local_id(0)/stride)*stride;             
      VECTOR_SWAP(l_data[id], l_data[id + stride], dir)
   }                                                   
   barrier(CLK_LOCAL_MEM_FENCE);

   id = get_local_id(0) * 2;
   input1 = l_data[id]; input2 = l_data[id+1];
   temp = input1;
   comp = (abs(input1 > input2) ^ dir) * 4 + add3;
   input1 = shuffle2(input1, input2, comp);
   input2 = shuffle2(input2, temp, comp);
   VECTOR_SORT(input1, dir);
   VECTOR_SORT(input2, dir);
   g_data[global_start] = input1;
   g_data[global_start+1] = input2;
}

The overall structure of this code is similar to that of the bsort8 code in listing 11.2.
But this code sorts every data element assigned to a work-group without regard to the
work-group’s size.

 The nested for loop handles the main work of the sorting procedure. The outer
loop B performs the high stages of the sort. As each new stage is reached, the inner
loop C performs each of the lower stages. The outer loop index starts at 2 and dou-
bles until it reaches half the work-group’s size. With each iteration, the inner loop per-
forms the lower stages of the sort. For example, when the outer loop index equals 8,
the inner loop index proceeds from 8 to 4 to 2 to 1.

 The barrier invocations are necessary to ensure that the local data will be valid for
the next stage of comparing and swapping. Keep in mind that the CLK_LOCAL_
MEM_FENCE constant pertains to local memory, whereas CLK_GLOBAL_MEM_FENCE per-
tains to global memory.

 Listing 11.3 shows that the bitonic sort lends itself well to parallelization, but it’s
not the only sorting algorithm for which this is true. The radix sort also provides high
performance and high scalability, and this is the topic of the next section. 
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11.3 The radix sort
The radix sort is one of the oldest algorithms available for sorting data, but despite its
age, new variations and implementations appear in research journals on a regular
basis. It’s particularly well suited for parallel execution, and this section will explain
how it can be implemented with OpenCL. But first, this section will present the theory
behind the radix sort.

11.3.1 Understanding the radix sort

Like the bitonic sort, the radix sort uses a divide-and-conquer strategy: it splits the
dataset into subsets and sorts the elements in the subsets. But instead of sorting
bitonic sequences, the radix sort is concerned with the digits of the elements’ numeric
representations. One version of the radix sort classifies numbers by examining their
least-significant digits (LSDs) first while another classifies numbers by examining their
most-significant digits (MSDs). In this section, we’ll focus on the LSD radix sort.

 The LSD radix sort places values into groups, traditionally called buckets, according
to their least-significant digits, and then repeats the process using further significant
digits. An example will make this clear. Suppose you have eight numbers presented in
hexadecimal notation:

0x52  0xA3  0x31  0x9B  0x11  0x2B  0xC7  0xF1

To begin the sort, examine the least-significant digit of each element and place it in a
group of values with similar digits. From small to large, the buckets are as follows:

0x31  0x11  0xF1  0x52  0xA3  0xC7  0x9B  0x2B

0x31 is placed before 0x11 because it appears earlier in the original sequence. Simi-
larly, 0x9B comes before 0x2B.

 To complete the sort, make another pass through the elements, but this time place
them into buckets depending on the next least-significant digit. This produces the fol-
lowing sequence:

0x11  0x2B  0x31  0x52  0x9B  0xA3  0xC7  0xF1

This fully orders the sequence, because the elements had already been sorted by their
least-significant digits. Note that you never have to compare elements—place each ele-
ment in its proper bucket, and it will eventually reach its position in the sort. Note also
that if each element contains k digits, this sort requires k passes in order to completely
sort the values. 

11.3.2 Implementing the radix sort with vectors

It should be clear that each step of a radix sort is essentially a shuffle: the output
equals the input rearranged by digit. As discussed in chapter 5, OpenCL provides the
shuffle and shuffle2 functions, which set elements in an output vector according to
the indices defined by a mask. Therefore, if you can efficiently create a mask, you can
rearrange a vector’s elements with a single command.
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To simplify our initial attempt at a radix sort, we’ll create buckets by examining the
least-significant bit of each element. If an element’s least-significant bit is 1, we’ll place
it in a vector called Ones. Figure 11.11 shows how this works.

 There’s no need to create a separate vector (bucket) to hold elements that end
in 0. We can leave them in the Data vector. Then we can call shuffle2 to create an
output vector containing the 0-elements from the Data vector and the 1-elements
from the Ones vector.

 In this example, the data is contained within a ushort8 vector. Each element con-
tains three bits, so we can completely sort this and similar vectors using three passes.
The following code accomplishes this.

__kernel void radix_sort8(__global ushort8 *global_data) {

   typedef union {
      ushort8 vec;
      ushort array[8];
   } vec_array;

   uint one_count, zero_count;
   uint cmp_value = 1;
   vec_array mask, ones, data;

   data.vec = global_data[0];

   for(int i=0; i<3; i++) {
      zero_count = 0;
      one_count = 0;
      for(int j = 0; j < 8; j++) {
         if(data.array[j] & cmp_value)
            ones.array[one_count++] = data.array[j];     
         else {
            mask.array[zero_count++] = j;          
         }

Listing 11.4 An eight-element radix sort: radix_sort8.cl

0 1 5 3 2 7 6 4

Data

1 5 3 7 x x x x

Ones

0 4 6 7 8 9 10 11

Mask

data = shuffle2(data, ones, mask) =
0 2 6 4 1 5 3 7

Figure 11.11 Performing 
one pass of the radix sort 
using vectors

Place element 
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Increment 
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      }
      for(int j = zero_count; j < 8; j++)
         mask.array[j] = 8 - zero_count + j;
      data.vec = shuffle2(data.vec, ones.vec, mask.vec);
      cmp_value <<= 1;
   }
   global_data[0] = data.vec;
}

This code performs three passes on the elements in the input ushort8 vector. To exam-
ine the radix, the code performs a bitwise AND with cmp_value, which equals 0b001 in
the first loop, 0b010 in the second, and 0b100 in the last. If the AND result is nonzero,
the code places the element in the ones vector and increments one_count. If the result
is 0, the code sets the appropriate value in the mask vector and increments zero_count.

 Once every element is analyzed, the mask vector is further updated to identify
each element in the ones vector. The shuffle2 function uses the mask vector to rear-
range the data, and then the process continues again.

 This procedure gets the job done, but the frequent data transfer between private
and global memory takes a great deal of time. You can improve performance by oper-
ating on data stored in local memory, and you can improve performance even fur-
ther by configuring multiple work-items to execute the kernel. There are many
examples of high-performance radix sorts available, and both the Nvidia SDK and the
AMD SDK provide examples of its implementation. Further, the Back40Computing
implementation of the radix sort (available for free download at http://
code.google.com/p/back40computing/) has gained renown as one of the fastest
GPU-based sorting routines available. 

11.4 Summary
This chapter has discussed MapReduce, the bitonic sort, and the radix sort. These
important applications can be executed in parallel and can be implemented effi-
ciently with OpenCL.

 OpenCL doesn’t support dynamic memory allocation, so it’s difficult to code
MapReduce routines that pass key-value pairs between the mapping stages and reduc-
tion stages. But you can get around this by having each mapping stage perform part of
the local reduction. The word-search application presented in this chapter shows how
this works. Remember to invoke the barrier command after each processing stage.
This ensures that all reads/writes to memory by work-items in a work-group will be
completed before further commands are executed.

 The bitonic sort is one of the more complicated sorting algorithms, but it lends
itself very well to parallel computation. The algorithm consists of two steps: transform-
ing the input data into a bitonic sequence, and sorting the bitonic sequence. Both
tasks require essentially the same compare-and-swap operations, and for this reason
the bitonic sort is usually performed recursively. But the example code in this chapter
presents a method of executing the sort in an iterative, parallel manner.

Create sorted 
vector

http://code.google.com/p/back40computing/
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 The radix sort is simpler than the bitonic sort, and it doesn’t require any compari-
sons between elements. It examines the digits of each element, starting from the least
significant to the most significant, and places the elements in buckets according to
their digits.

 Memory access plays an important role throughout these and similar algorithms.
Global memory stores data passed to and from the host, but you need to store your
data in local memory to ensure high-bandwidth access. Similarly, it’s important to use
barriers and similar commands to make sure work-items access memory in order.

 In the next chapter, we’ll put aside sorting and searching and turn to a subject
more traditionally associated with high-performance computing: matrix operations.



Matrices and
 QR decomposition
From physics and engineering to economics and sociology, there is no getting away
from matrices. These mathematical structures can represent systems of equations,
statistical data, DNA sequences, and the distribution of stresses within an object.
Matrices have been used to structure data for centuries, and new applications
appear on a regular basis.

 Just as there are many uses for matrices, there are also many different ways to
analyze them. But not all matrices are easy to work with. Mathematicians frequently
find it necessary to factor a disordered matrix into matrices that are easy to analyze,
and then perform their operations on the factors. This factorization is conceptually

This chapter covers

■ Implementing matrix transposition and 
multiplication in OpenCL

■ Understanding and coding the Householder 
transformation

■ Factoring matrices with the QR decomposition 
algorithm
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similar to factoring an integer into its prime divisors or factoring a polynomial into
its roots.

 One of the most popular methods of factoring a matrix is called the QR decompo-
sition. This factors a matrix into two matrices whose qualities make them simple to
analyze and manipulate. The goal of this chapter is to explain the theory behind QR
decomposition and show how it can be implemented with OpenCL.

 There are a number of ways to compute QR decomposition, but this presentation
will focus on using Householder transformations, which reflect vectors across a plane
or hyperplane. But before we examine these transformations, it’s important that you
have a solid understanding of two fundamental matrix operations: transposition and
multiplication. This chapter will present transposition first.

12.1 Matrix transposition
Taking the transpose of a matrix is one of the simplest operations in linear algebra. This
section presents a brief overview of matrices, including their rows and columns, and
then discusses how these rows and columns can be switched through matrix transposi-
tion. The last part of this section shows how this operation can be coded in OpenCL.

12.1.1 Introduction to matrices

A matrix is a rectangular arrangement of numbers. Matrices are represented graphi-
cally as a grid of numbers inside vertical bars. This is shown in figure 12.1.

 In code, matrices are commonly represented by two-dimensional arrays, where the
two dimensions identify the matrix’s rows and columns. If a matrix has m rows and n
columns, it’s called an m-by-n matrix. If the number of rows equals the number of col-
umns, it’s called a square matrix.

 Each row and column is a one-dimensional structure of numbers, and for this rea-
son, we can refer to each row and column as a vector. These are mathematical vectors,
not to be confused with the data types presented in chapter 4. We’ll have much more
to say about these vectors and their operations throughout this chapter.

 The numbers that make up a matrix are called elements. Matrix notation gives each
element a designation that identifies its row and column. In figure 12.1, the element
cij belongs to the ith row and the jth column. If i equals j, then the element lies on an
imaginary line called the matrix’s diagonal, which runs from the upper left to the
lower right. 

The matrix has 3 rows and 5 columns.

It is a 3-by-5 matrix.

c00

c10

c20

c01

c11

c21

c02

c12

c22

c03

c13

c23

c04

c14

c24

5 columns

3 rows

Figure 12.1 Matrix notation
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Mathematicians have devised many categories for matrices, and one set of categories
is based on the location of zeros within the matrix. If elements on the diagonal are
nonzero and elements off the diagonal are zero, the matrix is a diagonal matrix. If the
nonzero elements of a diagonal matrix all equal 1, the matrix is an identity matrix. If
the elements above the diagonal, cij, equal the elements below the diagonal, cji, the
matrix is a symmetric matrix.

 If the overwhelming majority of elements are zero, the matrix is a sparse matrix,
which the next chapter will discuss in detail. If the majority of elements, both on and
off the diagonal, don’t equal zero, the matrix is a dense matrix. This chapter focuses on
dense matrices, particularly dense square matrices.

12.1.2 Theory and implementation of matrix transposition

The goal of computing a matrix’s transpose is simple: to reflect each element across
the diagonal so that each cij becomes cji. After a transpose, rows become columns and
columns become rows. This is shown in figure 12.2, in which column 2 of the matrix
becomes row 2. In text, you use T to denote a transposed matrix. For example, CT is
the transpose of the matrix C.

The following listing presents an in-place implementation of the transpose in
OpenCL. Each work-item is assigned a block containing 16 values in 4 float4 vectors.
If a block lies on the diagonal, the work-item will swap its rows and columns. If not, the
work-item will swap elements with the block across the diagonal, replacing rows with
columns.

kernel void transpose(__global float4 *g_mat, 
   __local float4 *l_mat, uint size) {

 __global float4 *src, *dst;

   int col = get_global_id(0);              
   int row = 0;                                  
   while(col >= size) {                     
      col -= size--;                        
      row++;                                

Listing 12.1 Matrix transposition: transpose.cl
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Figure 12.2 Matrix transposition
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   }                                          
   col += row;                                      
   size += row;                               

   src = g_mat + row * size * 4 + col;
   l_mat += get_local_id(0)*8;
   l_mat[0] = src[0];
   l_mat[1] = src[size];
   l_mat[2] = src[2*size];
   l_mat[3] = src[3*size];

   if(row == col) {                                  
      src[0] = (float4)(l_mat[0].x, l_mat[1].x,                 
                        l_mat[2].x, l_mat[3].x);     
      src[size] = (float4)(l_mat[0].y, l_mat[1].y,   
                           l_mat[2].y, l_mat[3].y);  
      src[2*size] = (float4)(l_mat[0].z, l_mat[1].z, 
                             l_mat[2].z, l_mat[3].z);
      src[3*size] = (float4)(l_mat[0].w, l_mat[1].w, 
                             l_mat[2].w, l_mat[3].w);
   }                                                 
   else {
      dst = g_mat + col * size * 4 + row;
      l_mat[4] = dst[0];
      l_mat[5] = dst[size];
      l_mat[6] = dst[2*size];
      l_mat[7] = dst[3*size];

      dst[0] = (float4)(l_mat[0].x, l_mat[1].x,      
                        l_mat[2].x, l_mat[3].x);                
      dst[size] = (float4)(l_mat[0].y, l_mat[1].y,   
                           l_mat[2].y, l_mat[3].y);  
      dst[2*size] = (float4)(l_mat[0].z, l_mat[1].z, 
                             l_mat[2].z, l_mat[3].z);
      dst[3*size] = (float4)(l_mat[0].w, l_mat[1].w, 
                             l_mat[2].w, l_mat[3].w);
      src[0] = (float4)(l_mat[4].x, l_mat[5].x,      
                        l_mat[6].x, l_mat[7].x);     
      src[size] = (float4)(l_mat[4].y, l_mat[5].y,   
                           l_mat[6].y, l_mat[7].y);  
      src[2*size] = (float4)(l_mat[4].z, l_mat[5].z, 
                             l_mat[6].z, l_mat[7].z);
      src[3*size] = (float4)(l_mat[4].w, l_mat[5].w, 
                             l_mat[6].w, l_mat[7].w);
   }
} 

The host application sets the dimensionality of each work-item to 1 instead of 2, and
this may seem odd at first. But as shown in figure 12.3, you don’t need a work-item
for every block in the matrix. You only need work items to process blocks on or above
the diagonal.

 The number of blocks that need to be processed is n(n + 1)/2, where n is the num-
ber of blocks in a row. For example, a 256-by-256 matrix contains 64-by-64 blocks, so
the host will generate 64(64+1)/2 = 2,080 work-items to execute the kernel.
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Transposition is a crucial operation in linear algebra, and any professional library of
matrix routines will contain a transpose routine. One important operation that makes
use of the transpose is matrix multiplication, which is the topic of the next section. 

12.2 Matrix multiplication
When a company wants to show off its new high-performance computing system,
they’ll frequently have it perform matrix multiplication. It’s easy to see why. Matrix
multiplication requires high-speed number crunching and high-speed data transfer,
but few decisions. It’s also a vital building block of many large-scale linear algebra rou-
tines. If a supercomputer is performing any large-scale linear algebra operation, the
odds are that a great deal of its time is spent multiplying matrices.

 This section presents the theory of matrix multiplication, which relies on an
important vector operation called the dot product. Then we’ll examine how to imple-
ment multiplication with OpenCL.

12.2.1 The theory of matrix multiplication

The product of two matrices, A and B, is obtained by multiplying each row of A with
each column of B. This multiplication is implemented using the dot product, which
was briefly discussed in chapter 5. The dot product multiplies the corresponding ele-
ments of two vectors and returns the sum of the products. For example, if vector p
contains [p0, p1, p2, p3] and vector q contains [q0, q1, q2, q3], their dot product can be
computed as follows:

In OpenCL, the dot product of two vectors is computed using the dot function dis-
cussed in chapter 5. This and the next chapter will make extensive use of this function.
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Figure 12.3 Work-items and the transpose
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Figure 12.4 shows the matrix multiplication of two 4-by-4 matrices, A and B, and their
product matrix C. The c12 element of the C matrix is obtained by multiplying row 1 of
A and column 2 of B.

 Each element in C is computed in a similar manner. In this example, the full
matrix multiplication requires 16 dot products—each of the four rows of A must be
multiplied by each of the four columns of B.

A and B are square matrices in this example, but nonsquare matrices can also be
multiplied. But the dot product requires vectors of equal length, so the rows of the
first matrix must have the same size as the columns of the second. In other words, if
the first matrix has n columns, the second matrix must have n rows. Taking this a step
further, if the first matrix has dimensions m by n and the second matrix has dimen-
sions n by p, the product matrix will have dimensions m by p. 

 We can generalize the multiplication of rectangular matrices as follows: if matrix
C = AB, A has dimensions m by n, and B has dimensions n by p, element cij can be
computed as follows:

Matrix multiplication is not commutative—AB does not equal BA. But matrix multipli-
cation is associative: (AB)C = A(BC). This property will become important later on when
we look at the QR decomposition. 

12.2.2 Implementing matrix multiplication in OpenCL

Matrix multiplication isn’t hard to implement in code, but there are many details to
keep in mind. The kernel needs to know the dimensions and the data types of the ele-
ments, and also how the elements are stored in memory. If the matrix data is stored in
row-major order, the elements will be stored row by row. That is, the elements of row 0
will be followed by the elements of row 1, then row 2, and so on. If the data is stored in
column-major order, the elements will be stored column by column. The elements of
column 0 will be followed by the elements of column 1, then column 2, and so on.
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The development kits released by Nvidia and AMD both contain OpenCL code that
multiplies matrices. In both cases, the multiplication is based on scalars—input ele-
ments are multiplied one at a time. This chapter presents a different implementation.
The code in the Ch12/matrix_mult project combines elements into vectors and per-
forms the dot product with the dot function.

 This presents a problem. Matrix multiplication requires dot products of rows and
columns, and if the matrices are stored in row-major format (the usual format), you
can’t load multiple elements from a single column at a time. But you can fix this by
taking the transpose of the second matrix. Figure 12.5 presents the same multiplica-
tion as in figure 12.4, but because B is transposed, the elements in A and B can both
be accessed by row.

 If you look through the matrix_mult project in the Ch12 folder, you’ll see that the
host application (matrix_mult.c) enqueues two kernels: one to transpose the second
matrix and one to multiply the two matrices together. The following code presents the
kernel that performs the actual multiplication.

NOTE The dot products are computed with the dot function, which was
briefly discussed in chapter 5.

kernel void matrix_mult(__global float4 *a_mat,
   __global float4 *b_mat, __global float *c_mat) {

   float sum;

   int num_rows = get_global_size(0);
   int vectors_per_row = num_rows/4;

   int start = get_global_id(0) * vectors_per_row;    
   a_mat += start;                                          
   c_mat += start*4;                                  

   for(int i=0; i<num_rows; i++) {             
      sum = 0.0f;                                      
      for(int j=0; j<vectors_per_row; j++) {   
         sum += dot(a_mat[j],                  
                b_mat[i*vectors_per_row + j]); 

Listing 12.2 Matrix multiplication: matrix_mult.cl
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      }                                     
      c_mat[i] = sum;                           
   }                                        
}                                           

This kernel doesn’t access local memory because there are no intermediate results to
store. This code executes quickly, but it’s important to remember that it expects the
second matrix, b_mat, to be in column-major order.

 Matrix multiplication is an important part of many matrix operations, including
QR decomposition. Another crucial subroutine in this chapter’s implementation
of QR decomposition is the Householder transformation, which is the topic of the
next section. 

12.3 The Householder transformation
Most discussions of vector operations include addition, subtraction, and multiplica-
tion, but vector reflection is also a critical operation in many algorithms. The concept is
simple: given an input vector and a vector perpendicular to a surface, the goal is to
find the reflection of the input vector across the surface. The procedure for comput-
ing this reflection is called the Householder transformation, and this section will examine
this transformation in detail. But first, it’s important to be familiar with the theory of
vector projection.

12.3.1 Vector projection

The dot product of two vectors provides an idea of their relative directions. If the
product is positive and large compared to the vectors’ lengths, it implies that the two
vectors are pointing in similar directions. If the dot product is negative, it implies that
the two vectors are pointing in different directions. If the dot product is 0, it means
the two vectors point at right angles to one another.

 The concept of the vector projection allows you to be more precise about the simi-
larity between two vectors. A vector projection is the portion of one vector that points
in the same direction as a second vector. In figure 12.6, vector b is split into two com-
ponents: a component called p, which points in the same direction as a, and q, which
points in a direction orthogonal to a. It should be clear that b = p + q.
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Figure 12.6 Vector projection
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Figure 12.7 Vector reflection

In this diagram, p is the vector projection of b on a. The larger p is, the more similar b
is to a. Using trigonometry, you can compute the length of p as |b|cos . To make p
point in the direction of a, you need to multiply it by a’s unit vector. This is obtained by
dividing a by its length, denoted |a|. The following equation shows the result of the
multiplication:

The vector projection would be easy to compute it weren’t for the cosine. Thankfully,
a relationship exists between the cosine of the angle between two vectors and the vec-
tors’ dot product. The proof is lengthy, but the result is as follows:

By placing this into the previous equation, you can arrive at a more workable expres-
sion for p: 

In general, the vector projection of vector b on vector a is expressed with the term
projab. projab has the same direction as a, and b – projab is orthogonal to a. 

12.3.2 Vector reflection

Many algorithms in linear algebra require vector reflection, and the reason for this
will become clear later in this chapter. Figure 12.7 presents a simple two-dimensional
case of how this reflection works. You’ll start with two vectors: x and u. u is perpendic-
ular to M (which stands for mirror). The goal is to find x ', the vector obtained
by reflecting x in M. Note that, in two dimensions, M is simply a line. It’s a plane in
three dimensions and a hyperplane in four or
more dimensions.

 To find x ' in terms of x and u, you need to
take vector projections. Figure 12.8 shows how
this works. x is split into p and q, where p is the
vector projection of x on u and q is orthogonal
to p. Similarly, x ' is split into p ' and q ', where p '
is the vector projection of x ' on u and q ' is
orthogonal to p '.

 Figure 12.8 makes clear the relationships
between p and p ' and q and q '. Because x '
equals the sum of p ' and q ', you can compute it
as shown on the next page.
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This final equation gives a clear relationship between x ', x, and u. This equation will
help you compute the QR decomposition of a matrix. But before we discuss the decom-
position algorithm, we need to come to terms with the outer product and how it can be
used to form Householder matrices. 

12.3.3 Outer products and Householder matrices

A vector can be thought of as a matrix with a single row or a single column. By default,
mathematicians treat vectors as matrices with a single column, and such vectors are
called column vectors. In contrast, transposed column vectors are considered matrices
with a single row, or row vectors.

 With this new interpretation of vectors, we can arrive at a new interpretation of the
dot product. Instead of multiplying vectors, the dot product can be thought of as mul-
tiplying a 1-by-n matrix and an n-by-1 matrix. The result is a 1-by-1 matrix, better
known as a scalar. As a result, we can refer to the dot product using matrix terminol-
ogy: aTb instead of a • b. The following equation makes this clearer:

Using this notation, we can arrive at a new type of product called the outer product.
Instead of multiplying a row vector by a column vector, this product reverses the oper-
ation and computes abT instead of aTb. Despite the similar appearance, the result of the
outer product is significantly different than that produced by the dot product. The dot
product multiplies a 1-by-n matrix with an n-by-1 matrix and produces a 1-by-1 matrix.
The outer product multiplies an n-by-1 matrix with a 1-by-n matrix and produces an
n-by-n matrix. This is shown in the following equation: 
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Figure 12.8 Vector reflection in terms of vector projections
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You can use this vector-as-matrix interpretation to manipulate the equation for vector
reflection. If you replace u • x with uTx, the new relationship is as follows:

As mentioned earlier, matrix multiplication is associative, so A(BC) = (AB)C. You can use
this relationship to change u(uTx) in the reflection equation to (uuT)x. This provides
the following relationship:

Instead of finding x ' with a dot product, you now need to compute an outer product,
which is more difficult. But there is a good reason to do this. If you factor the vector x
out of the equation, you can arrive at the following relationship:

In this equation, I is the identity matrix and the term inside the parentheses is a
matrix. This matrix is commonly denoted by P, and when P premultiplies a vector x,
the result is the reflection of x through the hyperplane perpendicular to u. This pro-
cedure was conceived by Alston Householder; u is called the Householder vector, and
P is called the Householder matrix. The reflection operation represented by P is
called the Householder transformation. 

 When a vector is reflected twice, the result will be the vector itself. That is, P(Px) =
x for all x. P is its own inverse and any matrix with this property is called involutary.

 One more point about the Householder transformation needs to be addressed.
The preceding discussion explained how to find x ' given x and u, but what if you start
with x and x ' and want to find a vector with u’s direction?
The answer is surprisingly simple: u = x – x '. Figure 12.9 pres-
ents this graphically, using the same x and x ' vectors from ear-
lier figures.

 This result may not be immediately obvious, but remem-
ber that x and x ' are symmetrical about M, and that u is per-
pendicular to M. The u vector in figure 12.9 has a different
length than the u vector in previous figures, but this isn’t a
concern—the only requirement you have for u is that its
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direction be perpendicular to M. Also, the length of u is divided out as part of the
Householder transformation. 

12.3.4 Vector reflection in OpenCL

Implementing vector reflection in code is a straightforward process, consisting of
three main steps:

1 Multiply u by –sqrt(2)/|u|.
2 Compute the matrix uuT.
3 Add the identity matrix, I, to the resulting matrix.

The next listing demonstrates how this is accomplished. x_vec equals [1.0, 2.0, 3.0, 4.0]
and u equals [0.0, 5.0, 0.0, 0.0]. Because u is perpendicular to the x-z-w hyperplane, the
reflection of x_vec can be determined by inspection: [1.0, –2.0, 3.0, 4.0].

__kernel void vec_reflect(float4 x_vec, float4 u,
      __global float4* x_prime) {

   float4 p_mat[4];

   u *= M_SQRT2_F/length(u);

   p_mat[0] = (float4)(1.0f, 0.0f, 0.0f, 0.0f)
                       - (u * u.x);                      
   p_mat[1] = (float4)(0.0f, 1.0f, 0.0f, 0.0f)
                       - (u * u.y);           
   p_mat[2] = (float4)(0.0f, 0.0f, 1.0f, 0.0f)
                       - (u * u.z);           
   p_mat[3] = (float4)(0.0f, 0.0f, 0.0f, 1.0f)
                       - (u * u.w);           

   x_prime[0].x = dot(p_mat[0], x_vec);
   x_prime[0].y = dot(p_mat[1], x_vec);            
   x_prime[0].z = dot(p_mat[2], x_vec);
   x_prime[0].w = dot(p_mat[3], x_vec);
}

If you’re only interested in finding the reflection of a vector, you don’t have to worry
about the outer product and its matrix operations. It’s much simpler to compute x '
with the following equation:

But many applications of the Householder transformation require finding both a vec-
tor’s reflection and the Householder matrix corresponding to the reflection. One
such application is the QR decomposition, which is the topic of the next section. 

12.4 The QR decomposition
In linear algebra, a common task involves factoring a complex matrix into simpler
matrices that are easier to analyze. This factorization is helpful when solving linear

Listing 12.3 Vector reflection: vec_reflect.cl
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systems, computing determinants, or obtaining eigenvalues. One of the most popular
methods of factoring a matrix is called QR decomposition. This operates on a rectangu-
lar matrix A and produces two matrices with interesting properties. The first matrix,
denoted Q, is orthogonal, which means its transpose equals its inverse. The second
matrix, denoted R, is upper triangular, which means every element below the main
diagonal equals zero.

 Before we discuss how to compute Q, let’s focus our attention on R. Figure 12.10
presents the goal: to transform the columns of A (denoted c 0 through ck-1) into col-
umns of R (c 0' through ck-1'), where k identifies the number of columns in A. A is
square in this figure, but QR decomposition can be applied to any rectangular matrix.

 Computer scientists have found many ways to convert a square matrix like A into
an upper-triangular matrix like R. One of the most common and most efficient meth-
ods relies on Householder transformations. This method computes the uk vectors
needed to transform the columns of A into the columns of R. Then, once the House-
holder vectors are obtained, this method computes their corresponding Householder
matrices and multiplies them together. This combined matrix is Q. 

 The steps for finding Q and R are as follows:

1 Find u0 that reflects c 0 into c 0'.
2 Transform each column of A with the u0 reflection.
3 Find u1 that reflects c 1 into c 1'.
4 Transform each column of A with the u1 reflection.
5 Construct the Householder matrix Pk for each uk vector. 
6 Repeat steps 3–5 for columns up to k–1.
7 Multiply the Householder matrices to form Q.

The rest of this section will elaborate on these steps, and we’ll walk through a QR
decomposition of a 4-by-4 matrix. Then we’ll look at how to implement QR decompo-
sition in OpenCL.

12.4.1 Finding the Householder vectors and R

You’ve seen how to find a Householder vector u given a vector x and its reflection x '.
You can use this method to determine the uk vectors that transform the columns ck in
figure 12.10 to their reflections ck'. But first, you need to obtain the nonzero elements
in each ck'. This isn’t difficult as long as you remember that, because x ' is the reflection
of x, both vectors must have the same length.
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 An example will show how this works. The matrix A has three rows and three col-
umns. You want to find two Householder vectors, u0 and u1, that will transform the
first two columns of A so as to make A upper triangular:

You’ll start with the leftmost column vector, which you’ll call c0. You want the reflec-
tion, c 0', to have one nonzero element on top and two zero elements below. To make
sure that c 0 and c 0' have the same length, you’ll set the nonzero element of c 0' equal to
the length of c 0. Then you can find u0 by subtracting c 0' from c 0. This is done as follows:

Now that you have u 0, you need to transform each column of A according to the
reflection corresponding to u 0. You can perform these reflections using an equation
presented earlier:

This transformation gives you a new A matrix. As desired, the first column has two
zeros beneath the nonzero element:

Now you want to transform the second column, c 1, so that its bottom element equals
zero. You can do this by setting the first element of the reflection, c 1', equal to the first
element of c 1. Then, to make sure |c 1'| = |c 1|, you need to set the second element of c 1'
equal to the length of the subvector containing the lower two elements of c 1:

Again, you need to transform each column of A according to the new reflection iden-
tified by u 1. This gives you the matrix on the following page.

 It’s important to note that transforming c 0 with the reflection corresponding to u 1

leaves c 0 unchanged. This is because the dot product of c 0 and u 1 equals zero. When this
dot product equals zero, the reflection produces the original vector. This means you
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don’t have to transform columns that have already been transformed—once you com-
pute a Householder vector uk, you only have to find reflections for columns ck and higher.

 After this last set of reflections, A is upper triangular. This transformed version of A
is the R matrix generated by the QR decomposition. Next, you’ll see how to use the
Householder vectors uk to create the Q matrix. 

12.4.2 Finding the Householder matrices and Q

Now that you’ve computed the Householder vectors uk that transform A into R, you
need to find the matrix Q that serves as the inverse of this transformation. That is, you
want to find Q such that Q -1A = R, or A = QR.

 The previous section explained how to create a Householder matrix P from a
Householder vector u. The relationship is given by

As discussed earlier, uuT is an outer product that generates a square matrix. If u con-
tains k elements, P has k rows and k columns.

 In the example, you obtained R by transforming the column vectors of A with u 0’s
reflection first and u1’s reflection second. Therefore, R equals P1P0A. Because every
Householder transformation is its own inverse, you can set Q equal to P0P1. The fol-
lowing equation shows how Q is computed for the example:

If you multiply this Q matrix by the R matrix computed earlier, the product will be the
original A matrix. This is because QR = (P0P1)(P1P0A) = A. 
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12.4.3 Implementing QR decomposition in OpenCL

The qr project in the Ch12 folder computes the QR decomposition of a k-by-k matrix A,
where k is set equal to 64 by default. The host application generates one work-item for
every column of the matrix. These items all belong to the same work-group, so you can
use the barrier command to synchronize their access to global and local memory.

 Coding the QR decomposition isn’t a simple process, but the main difficulty isn’t
computing R. Instead, the main question involves how to store and multiply the
Householder matrices needed to form Q. If the matrices are large, you can’t store
each Pk separately. Instead, you need to initialize the Q matrix and update it as each
new Pk is obtained.

 For this reason, we’ll split the discussion of the QR decomposition code into two
parts. In the first part, we’ll look at how to transform the first column of A and use it to
initialize Q. In the second part, we’ll examine how to transform the second through
kth columns of A and update Q with each new Householder matrix.
TRANSFORMING THE FIRST COLUMN AND INITIALIZING Q

The following listing presents the first part of the QR decomposition kernel. This com-
putes the first Householder vector, u0, needed to transform the first column into a col-
umn of an upper-triangular matrix. Then it creates the Householder matrix, P0, from
u0 and sets Q equal to this matrix.

__kernel void qr(__local float *u_vec, __global float *a_mat,
      __global float *q_mat, __global float *p_mat,
      __global float *prod_mat) {

   local float u_length_squared, dot;
   float prod, vec_length = 0.0f;

   int id = get_local_id(0);
   int num_cols = get_global_size(0);

   u_vec[id] = a_mat[id*num_cols];                  
   barrier(CLK_LOCAL_MEM_FENCE);

   if(id == 0) {                              
      for(int i=1; i<num_cols; i++) {                      
         vec_length += u_vec[i] * u_vec[i];   
      }                                       
      u_length_squared = vec_length;          
      vec_length = sqrt(vec_length +          
                        u_vec[0] * u_vec[0]); 
      a_mat[0] = vec_length;                  
      u_vec[0] -= vec_length;                 
      u_length_squared += u_vec[0] * u_vec[0];
   }                                          
   else {                                     
      a_mat[id*num_cols] = 0.0f;              
   }                                          
   barrier(CLK_GLOBAL_MEM_FENCE);

Listing 12.4 QR decomposition: qr.cl (part one)

Load column into 
local memory

Find lengths 
of vectors
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   for(int i=1; i<num_cols; i++) {                  
      dot = 0.0f;                                            
      if(id == 0) {                                 
         for(int j=0; j<num_cols; j++) {            
            dot += a_mat[j*num_cols + i] * u_vec[j];
         }                                          
      }                                             
      barrier(CLK_LOCAL_MEM_FENCE);                 
      a_mat[id*num_cols + i] -= 2 * u_vec[id] *     
            dot / u_length_squared;                 
   }                                                

   for(int i=0; i<num_cols; i++) {             
      q_mat[id*num_cols + i] = -2 * u_vec[i] *           
            u_vec[id] / u_length_squared;      
   }                                           
   q_mat[id*num_cols + id] += 1;               
   barrier(CLK_GLOBAL_MEM_FENCE);

It’s important to understand how this code obtains and uses the first Householder vec-
tor, u0. First it loads the first column of A into local memory. Then it computes the
length of the vector and subtracts this length from the column’s first element. This
sets the local memory vector equal to u0, and once this is obtained, the kernel uses it
to transform each succeeding column of A using the following equation:

After updating A, the kernel forms the Householder matrix P0 from the Householder
vector u0 using the following equation: 

Once the kernel obtains P0, it places its elements in the Q matrix. As the rest of the
kernel executes, Q will multiply further Householder matrices to arrive at its final
value.
TRANSFORMING SUCCESSIVE COLUMNS AND UPDATING Q

The next listing presents the second part of the QR decomposition kernel. This loops
through the remaining columns of A and computes the Householder vectors needed to
transform A into an upper-triangular matrix. As each Householder vector is computed,
the kernel finds the corresponding Householder matrix, P0, and uses this to update Q.

...
for(int col = 1; col < num_cols-1; col++) {

   u_vec[id] = a_mat[id * num_cols + col];
   barrier(CLK_LOCAL_MEM_FENCE);

   if(id == col) {

Listing 12.5 QR decomposition: qr.cl (part two)
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      vec_length = 0.0f;
      for(int i = col + 1; i < num_cols; i++) {
         vec_length += u_vec[i] * u_vec[i];
      }
      u_length_squared = vec_length;
      vec_length = sqrt(vec_length + u_vec[col] * u_vec[col]);
      u_vec[col] -= vec_length;
      u_length_squared += u_vec[col] * u_vec[col];
      a_mat[col * num_cols + col] = vec_length;
   }
   else if(id > col) {
      a_mat[id * num_cols + col] = 0.0f;
   }
   barrier(CLK_GLOBAL_MEM_FENCE);

   /* Transform further columns of A */
   for(int i = col+1; i < num_cols; i++) {
      if(id == 0) {
         dot = 0.0f;
         for(int j=col; j<num_cols; j++) {
            dot += a_mat[j*num_cols + i] * u_vec[j];
         }
      }
      barrier(CLK_LOCAL_MEM_FENCE);
      if(id >= col)
         a_mat[id*num_cols + i] -= 2 * u_vec[id] *
               dot / u_length_squared;
      barrier(CLK_GLOBAL_MEM_FENCE);
   }

   if(id >= col) {                               
      for(int i=col; i<num_cols; i++) {                     
         p_mat[id*num_cols + i] = -2 * u_vec[i] *
               u_vec[id] / u_length_squared;     
      }                                          
      p_mat[id*num_cols + id] += 1;              
   }                                             
   barrier(CLK_GLOBAL_MEM_FENCE);

   /* Multiply q_mat * p_mat = prod_mat */
   for(int i=col; i<num_cols; i++) {        
      prod = 0.0f;                                     
      for(int j=col; j<num_cols; j++) {     
         prod += q_mat[id*num_cols + j] *   
                 p_mat[j*num_cols + i];     
      }                                     
      prod_mat[id*num_cols + i] = prod;     
   }                                        
   barrier(CLK_GLOBAL_MEM_FENCE);

   /* Place the content of prod_mat in q_mat */
   for(int i=col; i<num_cols; i++) {            
      q_mat[id*num_cols + i] =                           
            prod_mat[id*num_cols + i];          
   }                                            
   barrier(CLK_GLOBAL_MEM_FENCE);
}

Update the 
P matrix
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This code iterates through the columns of A and performs most of the same tasks as
the code in listing 12.4. The important difference is how Q is updated. In theory, Q is
obtained with the following equation:

In practice, however, you can’t store k – 1 Householder matrices in computer memory.
The code in listing 12.5 uses three matrices, q_mat, p_mat, and prod_mat, and updates
q_mat using three steps:

1 When the kernel computes a new uk, it sets p_mat equal to the corresponding Pk

matrix.
2 The kernel computes the product of q_mat and p_mat, and places the result in

prod_mat.
3 The kernel moves the elements of prod_mat to q_mat, and prepares for another

multiplication.

With so much data transferred to and from global memory, this procedure is not par-
ticularly fast. But because there are only three matrices involved, this process is more
memory efficient than algorithms that require k – 1 Householder matrices. 

 Once the kernel finishes the last transformation of the columns of A, the result will
be the upper-triangular matrix R. After the final multiplication of Householder matri-
ces, the resulting transformation matrix will be Q. To test the decomposition, the host
application multiplies Q and R and compares the result to the original values in A. 

12.5 Summary
Matrix manipulation is one of the most common tasks that programmers associate
with high-performance computing. This is because so many real-world matrices may
have thousands or tens of thousands of elements. Matrix operations commonly
involve a great deal of number crunching and data transfer, but very little decision
making. For this reason, these operations are ideal for implementation with OpenCL.

 This chapter has proceeded from the simplest of matrix operations to the com-
plex. The matrix transpose doesn’t perform any mathematical operations, but simply
moves elements within a matrix. The example code in this chapter demonstrates how
the transpose can be performed efficiently by dividing the matrix into blocks and
assigning each block to a work-item.

 Matrix multiplication relies on the dot product of rows and columns. More specifi-
cally, each row of the first matrix multiplies each column of the second, and the result
of each dot product is a scalar. If the first matrix has dimensions n by k and the second
has dimensions k by p, the product will have dimensions n by p. Vectors can be
thought of as matrices—a row vector has dimensions 1 by n and a column vector has
dimensions n by 1.

 The Householder transformation reflects a vector across a region perpendicular to
another vector. This transformation can be performed using a dot product or an

Q P0P1P2Pk 2– Pk 1–=
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outer product. Dot products are easier to compute, but when you need to combine
multiple reflections, you need to use the matrices associated with the outer products.

 The QR decomposition discussed in this chapter relies on Householder transfor-
mations to reflect the columns of a matrix so that they become upper-triangular. You
can combine these transformations by multiplying Householder matrices to obtain
the Q matrix. Once the input matrix has been transformed into upper-triangular
form, it becomes the R matrix. You can test the accuracy of the decomposition by
checking whether A = QR.



Sparse matrices
The popular MATLAB toolset contains functions coded specifically to process sparse
matrices, but as I used MATLAB during my college years, I never understood why. I
knew that most of the elements in a sparse matrix are zero, but I didn’t see why
these matrices deserve special treatment. What’s the big deal?

 When I entered the ranks of working engineers, however, I came to understand
why sparse matrices get so much attention. These matrices arise when scientists and
engineers need to solve complex systems modeled using differential equations. These
equations play a vital role in analyzing real-world dynamic systems. NASA engineers
solve differential equations to put rockets into space, and financial traders solve
them to gauge the volatility of stock prices. If a quantity changes over time or space,
the odds are that an applied mathematician has derived differential equations to
model the change.

This chapter covers

■ Accessing sparse matrix data from NIST’s 
Matrix Market files

■ Solving sparse matrix systems with the method 
of steepest descent

■ Solving sparse matrix systems with the 
conjugate gradient method
278
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 Sparse matrices are vital in analyzing complex systems, and this chapter will pres-
ent a number of methods for solving equations with sparse matrices. But before we get
into the heavy math, it’s important to understand the relationship between differen-
tial equations and sparse matrices. This is the topic of the first section.

13.1 Differential equations and sparse matrices
One of the most important differential equations in structural engineering is the
Euler-Bernoulli equation, which relates the deflection of a beam, w(x) to its supported
load, q. The equation is as follows:

This equation is straightforward to solve if you’re
only dealing with a single beam. But if you have a
complex system of interconnected elements, it
becomes nearly impossible to arrive at an exact solu-
tion. For example, given the transmission tower in
figure 13.1, how would you determine the deflec-
tions of its beams?

 To solve the equations corresponding to a real-
world system like that shown in the figure, scientists
and engineers rely on a tool called finite element anal-
ysis (FEA). I’m not going to discuss the theory
behind FEA in depth, but the basic procedure con-
sists of five steps:

1 Divide the complex system into simple ele-
ments that are easy to analyze.

2 Obtain the differential equation or equations
corresponding to each element.

3 Convert the differential equations into linear
equations using an approximation method,
such as the Petrov-Galerkin method or the Ritz-Galerkin method.

4 Combine the linear equations together into a matrix. This will frequently be a
sparse matrix.

5 Solve the matrix to arrive at an approximate solution for the overall system.

Step 3 is particularly important. FEA approximates differential equations, which are
hard to solve, using linear equations, which are easy to solve. A system like a transmis-
sion tower may contain hundreds or even thousands of these equations, but each ele-
ment only connects to two or three others. Therefore, each equation will only have
two or three nonzero terms. For example, if you use xi to represent deflection and bi to
represent load, your equations might look like this: 

d2

dx2
-------- EId2w

dx2
--------- 

  q=

Figure 13.1 A complex assembly 
of beam elements
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When all the beam equations are combined together, the result is a linear system
whose equations each contain a handful of terms. This system can be solved in a
straightforward manner using matrix operations. In this case, the coefficients ax are
placed in matrix A, the deflection terms are placed in the vector x, and the loading
terms are placed in the vector b. You can obtain each of the deflection terms within
the system by solving Ax = b for x.

 Figure 13.2 depicts a matrix that corresponds to a structural model of a real trans-
mission tower. The matrix size is 153 by 153, but only 10 percent (2,423) of the ele-
ments within the matrix are nonzero. These are represented by dots, and because the
structural model is symmetric, the matrix itself is symmetric.

 There is no clear distinction between sparse matrices and their regular, or dense,
counterparts. A matrix is considered sparse
if its proportion of zero-to-nonzero ele-
ments, called its sparsity, makes it worth our
while to use processing routines specifically
created for sparse matrices. This chapter
will discuss two routines designed specifi-
cally to solve sparse matrix systems: the
method of steepest descent and the conju-
gate gradient method. Both algorithms
make it possible to solve linear systems rep-
resented by symmetric sparse matrices.

 But before we explore how to solve these
matrices, it’s important to know how to
access them in code. The next section
explains how sparse matrices are stored and
how you can read matrix elements from
specially formatted text files.

13.2 Sparse matrix storage and the Harwell-Boeing 
collection
Unlike the matrices from chapter 12, sparse matrices aren’t stored in two-dimensional
arrays. This is because sparse matrices may contain hundreds of zeros for every
nonzero element. It’s better to store only the nonzero elements and their locations in
the matrix.

 This storage method is employed by sparse matrices in the Harwell-Boeing collec-
tion, a public domain set of matrices used to model practical systems. In this section,
we’ll look at how to obtain these matrices and access them in code. In later sections,
we’ll solve the linear systems associated with these matrices.

a1x1 a2x2 a3x3 b1
a4x2 a5x4 b2=+

=+ +

Figure 13.2 A sparse matrix corresponding 
to a structural model of a transmission tower
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13.2.1 Introducing the Harwell-Boeing collection

Most sparse matrices that physicists and engineers deal with are huge, with hundreds and
thousands of rows. To see what I mean, visit the National Institute for Standards and
Technology (NIST) site at http://math.nist.gov/MatrixMarket/data/Harwell-Boeing.
Each link on this page identifies a set of files whose sparse matrices were generated
through system analysis, from structural engineering to nuclear reactor analysis to eco-
nomics and demographics. If you click on a link for a matrix, you can see how large these
matrices are.

 This chapter focuses on solving the BCSSTK05 matrix located in the BCSSTRUC1
set. Conveniently, this is the same 153-by-153 matrix depicted in figure 13.2. Note that
the BCSSTK05 image, like the corresponding matrix file, is part of the Matrix Market
repository sponsored by NIST. These resources are freely available for public use, and
I’d like to thank Dr. Roland Boisvert and the other scientists in NIST’s Applied and
Computational Mathematics Division for making them available. 

13.2.2 Accessing data in Matrix Market files

To read from a sparse matrix file in code, it’s important to know how the matrix data
is structured. Each sparse matrix file in NIST’s Harwell-Boeing collection can be down-
loaded in one of two formats: the Matrix Market format and the Harwell-Boeing for-
mat. We’ll focus our attention on the Matrix Market format because NIST provides C
routines to read Matrix Market files.

NOTE Harwell-Boeing identifies both a collection of sparse matrix files and a
file format. The files we’ll be working with in this chapter belong to the Har-
well-Boeing collection but their data is structured according to NIST’s Matrix
Market format. These files will be referred to as Matrix Market files.

Matrix Market filenames end with the .mtx suffix, and the file we’ll be working with is
bcsstk05.mtx. The information contained in this file is simple to access and consists of
three parts:

■ Banner—Identifies the matrix format and the nature of the matrix (real or com-
plex, symmetric or general).

■ Size information—Identifies the dimensions of the matrix and the number of
nonzero elements.

■ Data—The row, column, and value of each nonzero element in the matrix. The
row-column-value format is called the coordinate format. 

For example, the first five lines of bcsstk05.mtx are as follows:

%%MatrixMarket matrix coordinate real symmetric
153 153 1288
1 1  3.1431392791300e+05
4 1 -8.6857870528200e+04
5 1  5.6340240342600e+04

http://math.nist.gov/MatrixMarket/data/Harwell-Boeing
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The banner states that the matrix is real and symmetric, and that its values are stored
in coordinate format. The next line states that the matrix dimensions are 153 by 153
and that the file provides 1,288 nonzero values. The first nonzero value is located at
row 1, column 1 and the second is located at row 4, column 1.

NOTE If a matrix is symmetric, the Matrix Market file contains only its nonzero
values on the diagonal and below it. As you read these values, remember that
each value below the diagonal has a corresponding value above the diagonal.

These files can be read using regular C/C++ functions, but NIST makes our lives easier
by providing its own I/O routines in mmio.c. This code is public domain, and copies
of this file are included in each project in the Ch13 folder. Table 13.1 lists a subset of
the functions that provide information about a matrix stored in a Matrix Market file.

These functions are easy to understand and use. The first two, mm_read_banner and
mm_read_mtx_crd_size, are particularly important. The first reads the file’s banner
information into a MM_typecode structure, which can be used to provide information
about the matrix’s properties through functions like mm_is_real and mm_is_
symmetric. The mm_read_mtx_crd_size returns size information for the matrix: the
number of rows, the number of columns, and the number of nonzero elements. 

 The process of reading a sparse matrix’s nonzero elements will usually take the fol-
lowing five steps:

1 Open the *.mtx file.
2 Read the matrix’s banner information with mm_read_banner.
3 Read the matrix’s size information with mm_read_mtx_crd_size.
4 Allocate memory to hold row, column, and value data.
5 Access each nonzero element of the *.mtx file with fscanf.

Table 13.1 I/O functions for analyzing Matrix Market files

Function name Description

int mm_read_banner(FILE* f,
   MM_typecode *t)

Reads the banner information into t

int mm_read_mtx_crd_size(FILE* f,
   int *num_rows, int *num_cols,
   int *non_zeros)

Provides size information of a matrix stored in 
coordinate format (sparse matrices)

int mm_read_mtx_array_size(FILE* f,
   int *num_rows, int *num_cols)

Provides size information of a matrix stored in 
array format (dense matrices)

int mm_is_sparse(MM_typecode code) Returns whether the matrix is sparse (1) or 
dense (0)

int mm_is_real(MM_typecode code) Returns whether the matrix is real-valued (1) or 
complex-valued (0)

int mm_is_symmetric(MM_typecode code) Returns whether the matrix is symmetric (1) or 
not symmetric (0)
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The following code reads data from the bcsstk05.mtx file and performs each of these
five steps. Once it finishes reading the matrix values, it sorts the elements so that
they’re ordered by row instead of by column.

...
void sort(int num, int *rows, int *cols, float *values) {

   int i, j, int_swap, index = 0;
   float float_swap;

   for(i=0; i<num; i++) {
      for(j=index; j<num; j++) {
         if(rows[j] == i) {
            if(j == index) {
               index++;
            }

            else if(j > index) {
               int_swap = rows[index];
               rows[index] = rows[j];
               rows[j] = int_swap;

               int_swap = cols[index];
               cols[index] = cols[j];
               cols[j] = int_swap;

               float_swap = values[index];
               values[index] = values[j];
               values[j] = float_swap;
               index++;
            }
         }
      }
   }
}

int main(int argc, char *argv[]) {

   FILE *mm_handle;
   MM_typecode code;
   int num_rows, num_cols, num_values, i;
   int *rows, *cols;
   float *values;
   double value_double;

   if ((mm_handle = fopen(MATRIX_FILE, "r")) == NULL) {      
      perror("Couldn't open the MatrixMarket file");
      exit(1);
   }

   mm_read_banner(mm_handle, &code);                  
   if(mm_is_matrix(code))
      printf("This is a matrix.\n");
   else
      printf("This is not a matrix.\n");
   if(mm_is_sparse(code))

Listing 13.1 Reading a sparse matrix (read_mm.c)

Read 
matrix file

Determine 
matrix type
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      printf("It is sparse, ");
   else
      printf("It is dense, ");
   if(mm_is_complex(code))
      printf("complex-valued, ");
   else
      printf("real-valued, ");
   if(mm_is_symmetric(code))
      printf("and symmetric.\n");
   else
      printf("and not symmetric.\n");

   mm_read_mtx_crd_size(mm_handle, &num_rows,   
                        &num_cols, &num_values);          

   if(mm_is_symmetric(code) || mm_is_skew(code)
         || mm_is_hermitian(code)) {
      num_values += num_values - num_rows;
   }
   printf("It has %d rows, %d columns, and %d nonzero elements.\n",
         num_rows, num_cols, num_values);

   rows = (int*) malloc(num_values * sizeof(int));
   cols = (int*) malloc(num_values * sizeof(int));             
   values = (float*) malloc(num_values *           
                            sizeof(float));        

   i = 0;
   while(i < num_values) {
      fscanf(mm_handle, "%d %d %lg\n",      
             &rows[i], &cols[i],                    
            &value_double);                
      values[i] = (float)value_double;                    
      cols[i]--;
      rows[i]--;
      if((rows[i] != cols[i]) && (mm_is_symmetric(code) ||
            mm_is_skew(code) || mm_is_hermitian(code))) {
         i++;
         rows[i] = cols[i-1];
         cols[i] = rows[i-1];
         values[i] = values[i-1];
      }
      i++;
   }
   sort(num_values, rows, cols, values);
   fclose(mm_handle);

   free(rows);
   free(cols);
   free(values);
}

The nonzero values in a Matrix Market file are stored as double values. But most
OpenCL devices don’t support double values, so it’s a good idea to cast them to
floats, as shown in the code B. Also, Matrix Market row/column indices start at 1
instead of 0, so this code subtracts 1 from every index.

Read matrix 
dimensions

Allocate 
memory

Read nonzero 
elements

Convert double 
to floatB
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 In addition to functions that provide information about matrices, the Matrix Mar-
ket API also provides functions that create *.mtx files. The names of these functions
closely resemble those in table 13.1, but read is replaced with write and _is_ is
replaced with _set_. For example, to write to a file, you’d use mm_write_banner
instead of mm_read_banner and mm_set_sparse instead of mm_is_sparse.

 At this point, you should have a solid understanding of what sparse matrices are
and how to access them in code. The rest of this chapter explores different ways of
solving linear systems associated with these matrices. We’ll start with the method of
steepest descent. 

13.3 The method of steepest descent
Chapter 12 explained that linear systems like Ax = B can be solved using QR decompo-
sition and back-substitution. This is fine when A is small and dense, but trying to fac-
tor large, sparse matrices is a different matter. The solution process would require
constructing a full matrix from the nonzero elements and operating on each of its
N-by-N elements. This takes a great deal of memory and processing time.

 It would be better if you could find a method that takes advantage of sparseness.
That is, you want the number of floating-point operations to be dependent on the
number of nonzero elements in the matrix, not on the matrix’s size.

 The goal of this section is to present such a method, called the method of steepest
descent, or the SD method. The good news is that it relies on matrix-vector multiplica-
tion, which takes advantage of sparseness. The bad news is that SD relies on intelligent
guesswork. Because this method requires a series of guesses, it’s called an iterative
method. In contrast, methods used to solve dense matrix systems are direct methods.

 The SD method is not generally used in practical system solving, but once you
understand how it works, I think you’ll find it easier to understand other iterative
methods, such as the conjugate gradient method presented in section 13.4. This sec-
tion will discuss the theory behind SD and then show how it can be implemented in
OpenCL. But first, it’s important that you understand the properties of positive-
definite matrices.

13.3.1 Positive-definite matrices

Vectors are commonly represented by arrows, and if Ax = b, then you can think of A as
a transformation that converts an arrow called x into an arrow called b. Mathemati-
cians frequently classify matrices by how they transform vectors, and if the two arrows
have exactly the same length and direction, A is called an identity matrix.

 Now suppose A transforms x so that b points in the opposite direction, or has a
nonzero component that points in the opposite direction. If this is the case, then the
dot product x • b will be negative. Similarly, if the dot product equals zero, then A has
turned x so that the resulting vector points in an orthogonal direction.

 Frequently, linear algebra routines require matrices that never flip a vector’s direc-
tion or produce a vector that points in an orthogonal direction. That is, x • (Ax) must
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be positive for all x. If a matrix meets this requirement, we call it positive definite. This
property will play an important role in the discussion that follows. 

13.3.2 Theory of the method of steepest descent

Your goal is to find x in the equation Ax = b. Let’s make x0 your first guess. You can test
this guess by computing Ax0 and subtracting it from Ax. If the difference is larger than
your tolerance, you’ll need to make more guesses. But you can’t just guess at random.
You need a method that will ensure that your next guess, x 1, will be closer to x than x 0

was. But how?
 Answering this question requires calculus. You start by obtaining a function f

whose slope at every point z equals Az – b. Deriving this function is beyond the scope
of this discussion, but the end result is as follows: 

Here, b = Ax and c is an arbitrary constant. Besides its slope, this function has a very
important property. To understand it, you need to set z equal to two vectors x + y. If
you assume that A is symmetric, you can substitute x + y for z and arrive at the follow-
ing result: 

If A is positive-definite, the second term must be greater than zero for all y. Therefore,
f(z) takes its minimum value when z = x. This is shown in figure 13.3, which depicts the
graph of f(z). The figure includes both f(x) and f(x0), where x0 is your first guess at x.

 The slope of f(z) equals Az – b, so f '(x0) equals Ax0 – b. f '(x0) identifies the direction
of the greatest rise of the function at z = x0, so the direction of the greatest descent at

f z  1
2
----z Az  z b c

f ' z  Az b–=

+–=

f z  f x  1
2
----y Ay+=

Figure 13.3 Surface plot of f(z)
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z = x0 is given by –f '(x0), or b – Ax0. This direction is very important, and you’ll call it r0,
or the residual. With this residual, you’ll make your next guess in the following manner:

The residual vector r0 tells you the direction you should take from x0 to x1. The scalar
 is a parameter that varies along the line from x0 to x1. Because your goal is to
descend, you want to choose x1 so that f(x0 + r0) will be less than f(z) at every other
point on the line. This minimum value can be found by setting f '(z) equal to zero.
This is given in the following equation: 

This equation uses 0 to denote the distance from x0 to x1. It also states that, for f(x1)
to be a minimum, f '(x1) must be orthogonal to r0. You know that r1 = –f '(x1), so you can
state that r0 must be orthogonal to r1. This is shown in figure 13.4.

 You know that r1 equals b – Ax1 and that it is orthogonal to r0. With this informa-
tion, you can determine 0 in the following manner: 

With this formula for 0, you can arrive at your second guess, x1. You can continue
using this process to make further guesses (x2, x3, x4, and so on), and test each by com-
paring the length of the corresponding residual, |ri|, to a tolerance.

 You don’t have to compute ri = b – Axi for every guess. Instead, you can base each ri

on the preceding ri. This is shown in the following equations: 

The advantage of computing ri in this manner is that the matrix-vector product Ari–1

was already computed in the process of finding  i–1. Therefore, you only have to per-
form one matrix-vector product per iteration. If |ri| falls below a tolerance, you can
stop guessing: xi is your answer. 

x1 x0 r0+=

d f x0 r0+  
d

------------------------------------ f ' x0 0r0+  r0 0==

r1 r0 0

b Ax1–  r0 0

b A x0 0r0+ –  r0 0

b Ax0– 0Ar0–  r0 0

0Ar0 r0 b Ax0–  r0

0
r0 r0

Ar0 r0
-----------------=

=
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=
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=
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Figure 13.4 Using residuals to make 
further guesses
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13.3.3 Implementing SD in OpenCL

While the theory behind the method of steepest descent is somewhat involved, the
actual algorithm is straightforward. In coding your sparse matrix solver, you’ll use the
following steps:

1 Make the initial guess, x0.
2 Compute the initial residual, r0 = b – Ax0. If you choose x0 = [0, 0, 0, ...], r0 = b.
3 Compute the length from xi to xi+1,  i = ri•ri/Ari•ri.
4 Determine the next guess, xi+1 = xi + iri.
5 Compute the next residual, ri+1 = ri –  iAri.
6 Find |ri+1|. If this is less than your tolerance (0.01), your goal is reached.
7 Repeat steps 3 through 6.

The following code shows how these steps can be implemented in OpenCL. Here, the
sparse matrix elements have been taken from the symmetric positive-definite matrix
BCSSTK05. The elements of the b vector are determined at random.

__kernel void steep_desc(int dim, int num_vals, __local float *r,
      __local float *x, __local float* A_times_r, __global int *rows,
      __global int *cols, __global float *A, __global float *b,
      __global float *result) {

   local float alpha, r_length;
   local int iteration;

   int id = get_local_id(0);
   int start_index = 0;
   int end_index = 0;
   float r_dot_r, Ar_dot_r;

   for(int i=id; i<num_vals; i++) {                    
      if((rows[i] == id) && (start_index == 0))                  
         start_index = i;                              
      else if((rows[i] == id+1) && (end_index == 0))  {
         end_index = i-1;                              
         break;                                        
      }                                                
      else if((i == num_vals-1) && (end_index == 0)) { 
         end_index = i;                                
      }                                                
   }                                                   

   r[id] = b[id];                      
   x[id] = 0.0f;                         
   barrier(CLK_LOCAL_MEM_FENCE);

   iteration = 0;
   while((iteration < 1000) && (r_length >= 0.01)) {

      A_times_r[id] = 0.0f;
      for(int i=start_index; i<=end_index; i++) {

Listing 13.2 Solving a sparse matrix system with the SD method (steep_desc.cl)

Find matrix 
indices

Set initial guess/
residual
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         A_times_r[id] += A[i] * r[cols[i]];
      }
      barrier(CLK_LOCAL_MEM_FENCE);

      if(id == 0) {
         r_dot_r = 0.0f;                     
         Ar_dot_r = 0.0f;                          
         for(int i=0; i<dim; i++) {          
            r_dot_r += r[i] * r[i];          
            Ar_dot_r += A_times_r[i] * r[i]; 
         }                                   
         alpha = r_dot_r/Ar_dot_r;           
      }                                      
      barrier(CLK_LOCAL_MEM_FENCE);

      x[id] += alpha * r[id];                
      r[id] -= alpha * A_times_r[id];          
      barrier(CLK_LOCAL_MEM_FENCE);

      if(id==0) {
        r_length = sqrt(r_dot_r);
        iteration++;
      }
      barrier(CLK_LOCAL_MEM_FENCE);
   }

   result[0] = (float)iteration;
   result[1] = r_length;
}

The BCSSTK05 matrix contains exceptionally large values, which means  will be very
small. Because this code relies on floats instead of doubles, the lack of precision may
prevent the kernel from reaching a result, xn, sufficiently close to the theoretical
answer, x. If it does produce xn sufficiently close to x, we say that the function converges.

 Thankfully, when it comes to solving systems represented by symmetric sparse
matrices, we can do better than the SD method. The next section discusses the conju-
gate gradient (CG) method, which provides much faster convergence. 

13.4 The conjugate gradient method
Like the steepest descent method, the conjugate gradient (CG) method makes a series
of guesses to approximate x in Ax = b. Much of the theory and implementation of the
CG method is similar to that for the SD method, but as you’ll see, the convergence
improves dramatically. This section presents how to implement this with OpenCL, but
first, it’s important to discuss the concepts of vector orthogonalization and conjugacy.

13.4.1 Orthogonalization and conjugacy

Chapter 12 discussed the dot product and vector projection, and showed how the two
procedures made it possible to implement vector reflection, which is necessary for QR
decomposition. Similarly, this section presents the concepts of vector orthogonaliza-
tion and conjugacy, which are necessary for the CG method.

Compute 
alpha

Update guess/
residual
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ORTHOGONALIZATION AND THE GRAM-SCHMIDT METHOD

I was once at a party where two women wore identical dresses. The second to arrive
looked aghast at the first, left immediately, and returned wearing a different dress.
When more women arrived, they compared their dresses to others and would proba-
bly have made similar switches if they’d worn similar dresses. In this way, all of the
dresses at the party were made distinct.

 The process of vector orthogonalization is similar. You start with a group of vectors,
compare them in pairs, and make alterations until they’re all completely different
from one another. Two vectors are completely different, or orthogonal, if their dot
product equals zero.

 The Gram-Schmidt method orthogonalizes a set of vectors using vector projec-
tions. Vector projection was discussed in chapter 12, but as a quick review, the projec-
tion of a vector b on a vector a is the component of b that points in the direction of a.
This is denoted projab, and the equation is as follows: 

Because projab has the same direction as a, b – projab must be orthogonal to a. There-
fore, you can orthogonalize two vectors a and b by computing the projection of b on a
and subtracting the projection from b.

 You can continue this process for three vectors. If a third vector, c, is included in
the space, the three orthogonal vectors (v1, v2, v3) corresponding to (a, b, c) can be
calculated as follows: 

Note that this process projects c onto the orthogonal vectors v1 and v2, and not the
input vectors a and b.

 If there are n input vectors, a1...an, the Gram-Schmidt process computes the nth

orthogonal vector as follows: 

The Gram-Schmidt process can produce orthogonal vectors for any number of non-
orthogonal input vectors so long as the vectors are linearly independent. That is, no vec-
tor can be expressible as a weighted sum of the other vectors. If any vector is linearly
dependent on the others, one of the orthogonal vectors will equal zero.
VECTOR CONJUGACY

Two vectors, p and q, are conjugate with respect to a matrix A if p • Aq equals zero. That
is, two vectors are conjugate with respect to a matrix if the first vector is orthogonal to
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the product of the matrix and the second vector. If A is symmetric and positive-definite,
then p • Aq = q • Ap = 0.

 You can make a set of vectors conjugate to one another using a process similar to
the Gram-Schmidt method. This is shown in the following equation: 

This relationship between vectors plays an important role in the CG method of solving
sparse matrix systems. 

13.4.2 The conjugate gradient method

The CG method has a great deal in common with the SD method, and in both cases,
the goal is to make guesses, xi, that lead from x0 to x. Both methods use a residual vec-
tor, ri , to judge how far the guesses are from the correct answer.

 The primary difference is that, while the SD method uses ri to set the direction
from xi to xi+1, the CG method computes a new vector, pi. The initial direction, p0, is set
equal to r0, but each subsequent direction will be conjugate to the preceding direction.
In equation form, this is as follows: 

Having chosen a direction, you can find subsequent guesses in a manner similar to
that used for the SD method. The equations are as follows: 

The overall algorithm for using the CG method to solve a sparse matrix system
requires the following eight steps:

1 Make the initial guess, x0.
2 Compute the initial residual and direction by setting r0 and p0 equal to b.
3 Compute the length from xi to xi+1,  i = ri•ri/pi•Api.
4 Determine the next guess, xi+1 = xi +  ipi.
5 Compute the next residual, ri+1 = ri –  iApi.
6 Compute the next direction, pi+1 = ri+1 + (ri+1•ri+1/ri•ri) pi.
7 Find |ri+1|. If this is less than your tolerance (0.01), your goal is reached.
8 Repeat steps 3 through 7.

The following code implements these steps in OpenCL. Much of the code is similar to
that of listing 13.2, but now the pi vector identifies the direction from xi to xi+1.

vn an
vi Aan
vi Avi
------------------vi

i 1=

n 1–

–=

p0 r0

pi ri
pj Arj
pj Apj
------------------pj

j 0=

i 1–

–=

=

xi 1+ xi ipi

i
ri ri

pi Api
------------------=

+=
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__kernel void conj_grad(int dim, int num_vals, __local float *r,
      __local float *x, __local float* A_times_p, __local float *p,
      __global int *rows, __global int *cols, __global float *A,
      __global float *b, __global float *result) {

   local float alpha, r_length, old_r_dot_r, new_r_dot_r;
   local int iteration;

   int id = get_local_id(0);
   int start_index = -1;
   int end_index = -1;
   float Ap_dot_p;

   for(int i=id; i<num_vals; i++) {
      if((rows[i] == id) && (start_index == -1))
         start_index = i;
      else if((rows[i] == id+1) && (end_index == -1))  {
         end_index = i-1;
         break;
      }
      else if((i == num_vals-1) && (end_index == -1)) {
         end_index = i;
      }
   }

   x[id] = 0.0f;                              
   r[id] = b[id];                                    
   p[id] = b[id];                             
   barrier(CLK_LOCAL_MEM_FENCE);

   if(id == 0) {
      old_r_dot_r = 0.0f;
      for(int i=0; i<dim; i++) {
         old_r_dot_r += r[i] * r[i];
      }
      r_length = sqrt(old_r_dot_r);
   }
   barrier(CLK_LOCAL_MEM_FENCE);

   iteration = 0;
   while((iteration < 1000) && (r_length >= 0.01)) {

      A_times_p[id] = 0.0f;
      for(int i=start_index; i<=end_index; i++) {
         A_times_p[id] += A[i] * p[cols[i]];
      }
      barrier(CLK_LOCAL_MEM_FENCE);

      if(id == 0) {
         Ap_dot_p = 0.0f;
         for(int i=0; i<dim; i++) {
            Ap_dot_p += A_times_p[i] * p[i];
         }
         alpha = old_r_dot_r/Ap_dot_p;               
      }
      barrier(CLK_LOCAL_MEM_FENCE);

      x[id] += alpha * p[id];

Listing 13.3 Solving a sparse matrix system with the CG method (conj_grad.cl)

Set initial 
guess/residual/direction

Compute 
alpha
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      r[id] -= alpha * A_times_p[id];
      barrier(CLK_LOCAL_MEM_FENCE);

      if(id == 0) {
         new_r_dot_r = 0.0f;
         for(int i=0; i<dim; i++) {
            new_r_dot_r += r[i] * r[i];
         }
         r_length = sqrt(new_r_dot_r);
      }
      barrier(CLK_LOCAL_MEM_FENCE);

      p[id] = r[id] + (new_r_dot_r/old_r_dot_r) * p[id];     
      barrier(CLK_LOCAL_MEM_FENCE);

      old_r_dot_r = new_r_dot_r;

      if(id==0) {
        iteration++;
      }
      barrier(CLK_LOCAL_MEM_FENCE);
   }
   result[0] = iteration * 1.0f;
   result[1] = r_length;
}

This code doesn’t ensure that each direction vector, pi, is conjugate to each preceding
direction. Instead, it makes each new pi conjugate to the preceding pi–1. This means
you don’t have to store every direction vector and residual. However, each iteration
requires storing two dot products of the residuals: ri+1 • ri+1 and ri • ri. 

 This method converges to x much faster than the SD method, and explaining the pre-
cise reason for this improved convergence requires a great deal of mathematics. If you’re
interested in learning more about CG, I strongly recommend a PDF titled An Introduction
to the Conjugate Gradient Method Without the Agonizing Pain, by Jonathan Richard Shew-
chuk. This can be downloaded at http://www.cs.cmu.edu/~jrs/jrspapers.html. 

13.5 Summary
The applications of finite element analysis are boundless, and analysts use FEA to
model such diverse systems as astrophysics, structural engineering, and the movement
of pollution in the atmosphere. In each case, analysts approximate the differential
equations with linear equations, and because of the many zeros, these equations are
solved as sparse matrices. The goal of this chapter has been to explain what these
matrices are and how they can be solved in OpenCL.

 Rather than generate sparse matrices using random values, this chapter has relied
on a real matrix from NIST’s Harwell-Boeing collection. This 153-by-153 matrix,
BCSSTK05, corresponds to the structural analysis of a transmission tower. The first sec-
tion of this chapter explained how to find the characteristics of this matrix through its
Matrix Market file and then read its nonzero values. With minimal modification, the
example code can be used to access any matrix in the Harwell-Boeing collection or any
of the other matrices in NIST’s Matrix Market site, http://math.nist.gov/MatrixMarket.

Update 
direction

http://www.cs.cmu.edu/~jrs/jrspapers.html
http://math.nist.gov/MatrixMarket
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 Next, this chapter presented two methods of solving symmetric sparse matrix sys-
tems like BCSSTK05. Both methods are iterative, which means they make multiple
guesses at the answer and then test the accuracy of each guess. The difference
between the two methods is how successive guesses are made. The steepest descent
(SD) method relies on a residual vector to point from one guess to the next, while the
conjugate gradient (CG) method computes separate direction vectors that are conju-
gate to one another. As demonstrated in code, the CG method converges to the
answer faster than the SD method.

 The SD and CG methods are only two of many algorithms available for solving
sparse matrix systems. If a system isn’t symmetric, a good choice is the biconjugate gra-
dient stabilized method, better known as BiCGSTAB. Alternatively, multigrid methods
are also becoming more popular in solving systems that involve linearized differential
equations. For more information on these methods, I recommend Iterative Methods for
Sparse Linear Systems by Yousef Saad.

 In the next chapter, we’ll put aside matrices and start concerning ourselves with
signals. The goal is to analyze time-domain signals in the frequency domain, and the
best tool for the job is the fast Fourier transform (FFT).



Signal processing and
 the fast Fourier transform
Throughout the world of engineering, there is no escaping the fast Fourier transform
(FFT). Cellular phones, audio players, X-ray scanners, radar receivers, and biometric
scanning systems all depend on the FFT to extract frequency information from signals
that vary over time and space. And in each case, speed is of the essence—the faster
the frequency data is obtained, the more analysis can be performed.

 The goal of this chapter is to present the theory behind the fast Fourier trans-
form and show how it can be implemented in OpenCL. In particular, we’ll focus on
the Cooley-Tukey algorithm, which is the most popular of the algorithms used to
compute the FFT. This requires that the size of the data set be a power of 2, but
many algorithms exist for analyzing data sets of different sizes.

This chapter covers

■ The theory of frequency analysis

■ Analyzing frequencies with the discrete Fourier 
transform

■ Accelerating frequency analysis with the fast 
Fourier transform
295
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 In my opinion, the simplest way to understand the FFT is to study the discrete Fou-
rier transform (DFT) first, and see how this simple algorithm can be accelerated by
taking advantage of the DFT’s mathematical properties. But before exploring the DFT,
this chapter will discuss the theory behind frequency analysis.

14.1 Introducing frequency analysis
Suppose you have a CD of a rock concert, and for some reason, your favorite song is
partially obscured by high-pitched noise. It could be feedback from the amplifiers or
screaming from the audience or static from the recording process, but one way or
another, it ruins the song. What can you do? One solution is called digital remastering,
which improves the sound quality of recorded media by altering the digital values.
This is commonly employed to remove noise from music recorded on vinyl or other
perishable media.

 To understand how digital remastering works, it’s important to approach the prob-
lem in a mathematical manner. Suppose the duration of the song, denoted T, is 3 min-
utes and 20 seconds, for a total of 200 seconds. If the song had been recorded
perfectly, you’d have an infinite number of sounds during those 200 seconds. We’ll
denote this collection of sounds by x(t), where t denotes time in seconds from t = 0 to
t = 199. For example, the exact sound at t = 60 sec is given by x(60). 

 Unfortunately, CDs are not perfect recordings. Most CDs are sampled at 44,100
samples per second, so the digital data representing your song contains (44,100 sam-
ples/second) * (200 seconds) = 8,820,000 samples. We’ll call this sequence of samples
x[n], where the square brackets imply a finite number of values. In this case, n identi-
fies the sample number instead of the time. That is, x[4630] denotes the sound corre-
sponding to the 4,630th sample. The time between samples, measured in seconds, is
denoted t.

 Figure 14.1 depicts the difference between perfectly sampled x(t) and CD-sampled
x[n]. The data contained in x(t) and x[n] both relate to time, so we’ll call x(t) a time-
domain signal and x[n] a time-domain sequence.

 Returning to the problem, it should be clear that you can’t remove the high-
pitched noise by manipulating x[n] directly. If you reduce or remove any values of
x[n], you’ll diminish the song and noise equally. Similarly, if you amplify any values of
x[n], you’ll increase both the song and the noise.

0 0
n

t

T N

x[n]x(t)

Figure 14.1 Time-domain signals: continuous and discrete
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To understand how to remove noise from digital audio, you need to think of the song
in terms of frequency. A signal’s frequency tells you how often it changes during the
course of a second. This is measured in Hertz, abbreviated Hz. For example, the high-
est string of a bass guitar vibrates nearly 98 times a second, so its frequency is 98 Hz. In
general, the term oscillation is used to describe a signal’s change over time.

 In the real world, frequencies of most phenomena are spread across a range. For
example, the vocal chords of the average human male vibrate between 85 and 180 Hz
whereas the vocal chords of the average human female vibrate between 165 and 255 Hz.

 We’ll use the word component to identify the strength of a signal at a given fre-
quency, and we’ll denote this as X(f). If a signal oscillates twelve-and-a-half times a sec-
ond, its frequency component at 12.5 Hz, X(12.5), will be greater than X(f) at any
other frequency. For a signal as complex as a song, the range of frequencies might
look similar to that on the left side of figure 14.2. As shown, the frequencies corre-
sponding to the noise (high-pitch) are on the right, while the components corre-
sponding to the song (lower-pitch) are located toward the left.

 The right side of figure 14.2 presents a finite selection of frequency components
that correspond to the frequency range in X(f). We’ll use X[k] to differentiate this set
of components from the infinite set X(f). Here, k is an integer that identifies the k th

frequency component, so X[26] returns the strength of the 26th frequency compo-
nent. The frequency interval between samples, measured in Hertz, is denoted f.

 Now we’re getting close to our solution. You can’t remove noise from your song by
changing x[n], but you can remove noise by changing X[k]. To do this, find the fre-
quency components corresponding to the noise (usually toward the high end) and
either diminish them or set them to zero. Similarly, if you want to amplify the bass,
increase the frequency components at the lower end.

 Two questions remain to be answered. First, how do you go from x[n] to X[k]? Sec-
ond, once you’ve modified X[k], how do you convert it back to a form like x[n]?  The
answer to both questions involves the discrete Fourier transform, or DFT. This opera-
tion converts time-domain data to frequency-domain data, and the inverse DFT (IDFT)
converts frequency-domain data to time-domain data. Therefore, to remove the noise
from your song, you’d take the following three steps:

1 Convert x[n] to X[k] using the DFT.
2 Modify the frequency components of X[k].
3 Convert the modified X[k] to a new x[n] using the IDFT.

0 0
kf

fmax

X[k]X(f)

fN

music noise

Figure 14.2 Frequency-domain signals: continuous and discrete
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This process doesn’t just apply to music. This type of analysis, called frequency analysis,
is also used to find patterns in images, detect radar signatures from aircraft, and extract
communication data from a wireless signal. In the next section, we’ll look at the math-
ematics behind the DFT and see how to implement the algorithm in OpenCL. 

14.2 The discrete Fourier transform
In 1822, the French physicist Joseph Fourier published The Analytic Theory of Heat,
which presented a method of decomposing a complex mathematical function into a
sum of simple functions. Over the centuries, this method has been applied to many
more applications than the analysis of heat, and though Fourier focused on continu-
ous functions, our goal is to decompose discrete signals, such as the digitized song
from the previous section. We’ll call these discrete signals sequences, and the procedure
that implements Fourier’s method on sequences is the discrete Fourier transform.

 It’s important to understand that the discrete Fourier transform (DFT) and the fast
Fourier transform (FFT) both accomplish the same operation. They both convert time-
domain sequences, such as the one depicted on the right-hand side of figure 14.1, into
frequency-domain sequences, such as that shown on the right-hand side of figure 14.2.
The FFT is faster but the DFT is easier to understand, so we’ll start with this first. This sec-
tion will present the mathematical theory behind the DFT, work through an example of
its computation, and then show how it can be implemented in OpenCL.

 But before we proceed, let’s review the notation presented in the previous section.

■ x(t)—The input signal; it contains infinite values, and t identifies time in sec-
onds

■ T—The period of the input signal, measured in seconds
■ x[n]—The input sequence; it contains N values, and n identifies the sample

index
■ t—The time interval between x[n] values, measured in seconds
■ X(f)—The frequency response; it contains infinite values, and f identifies fre-

quency in Hertz
■ X[k]—The frequency sequence; it contains N values, and k identifies the fre-

quency index
■ f—The frequency interval between X[k] values, measured in Hertz

14.2.1 Theory behind the DFT

One of the many operations discussed in chapter 12 is the dot product. This multi-
plies the corresponding components of two vectors and adds the products together.
The result tells us how similar the two vectors are. A large dot product implies that the
vectors point in similar directions, and a negative dot product implies that the vectors
point in opposite directions.

 As simple as it may seem, the dot product is the fundamental operation of the DFT.
The crucial point is that if you take the dot product of x[n] and a vector representing
a given frequency, you’ll see how similar x[n] is to that frequency. More precisely, the
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result will tell you how often x[n] oscillates with that frequency. We’ll denote this sec-
ond vector by wk[n], so the equation for X[k] is as follows: 

The DFT consists of N such dot products, and each produces a different value of X[k].
That is, the first dot product gives us X[0], the second gives us X[1], and so on.

 Two questions arise. First, the DFT only computes components for N frequencies,
so what frequencies should you be interested in? Second, how do you compute wk[n],
the vector that represents a single frequency? Once you have answers to these ques-
tions, you’ll be able to compute the dot product for X[k]. The following discussions
will provide these answers.
FREQUENCIES OF INTEREST

The goal of the DFT is to compute X[k] for a finite number of frequencies. It would be
nice if you could select an arbitrary set of frequencies, but the DFT algorithm makes
the selection for us. The values of the DFT’s frequencies depend on the signal’s
period, T, and the number of samples, N.

 The first frequency of interest, called the fundamental frequency or f1, has a value
of 1/T. This represents a single oscillation over the course of the signal, so if a sig-
nal oscillates once during its period, f1 will be significant. In the case of your song,
T = 200 s, so the fundamental frequency equals 1/200 = 0.005 Hz. This is below the
human hearing range, but the DFT computes the frequency component at f1 as
X[1] = x[n] • w1[n].

 Further frequencies of interest, fk, can be obtained by multiplying the fundamental
frequency by k. This is expressed mathematically as 

Just as fk identifies the frequency corresponding to k oscillations in a period, f0 identi-
fies the frequency corresponding to no oscillations at all. This represents a frequency
of 0 Hz. If a signal’s value is constant over the course of its period, then it doesn’t oscil-
late at all. In this case, X[0] will be significant and components at higher frequencies
will all equal 0.

 For general signals, your highest frequency of interest is fN–1, where N is the num-
ber of samples in x[n]. This gives us N frequencies of interest: f0 through fN–1. How-
ever, in some instances, you’ll only need to compute components of frequencies
up to fN/2. The rationale for this will have to wait until after we examine the full
DFT algorithm. 
SINGLE-FREQUENCY VECTORS

For each frequency component of x[n], the DFT computes the dot product of x[n]
and a vector that represents a single frequency. The values in these single-frequency
vectors are given as sinusoids—the complex sums of a cosine and sine. The values of
continuous sinusoids depend on frequency and time, so we’ll denote them by wf(t),

X k  x n  wk n =

fk kf1
k
T
---= =
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where f is the frequency corresponding to the sinusoid. Mathematically, wf(t) is repre-
sented with this equation: 

The i in this equation represents –1. Because wf(t) is the sum of a number multiplied
by i and a number that isn’t, wf(t) is a complex number. Complex numbers tend to make
people nervous, so let’s briefly review some of the basic theory:

■ Each complex number, z, has a real part, denoted Re(z), and an imaginary part,
denoted Im(z). If z = a + bi, Re(z) = a and Im(z) = b.

■ The conjugate of a complex number, denoted z*, can be obtained by negating
the imaginary part. If z = a + bi, z* = a – bi.

■ The modulus or magnitude of a complex number, denoted |z|, can be obtained
by adding the squares of the real and imaginary parts. If z = a + bi, |z| = sqrt(a2 + b2).

■ Complex numbers can be added by adding the real parts and imaginary parts
separately. If z1 = a + bi and z2 = c + di, z1 + z2 = (a + c) + (b + d)i.

■ Complex numbers can be multiplied in the following manner: if z1 = a + bi and
z2 = c + di, z1z2 = (ac – bd) + (ad + bc)i.

The real part of wf(t) is cos(2ft) and the imaginary part is –sin(2ft). Figure 14.3
depicts both of these terms graphically. Note that the graphs of the cosine and nega-
tive sine both oscillate once from t = 0 to t = T. Therefore, these graphs present wf(t)
where f = f1. If you set f equal to f2, the graphs oscillate twice, and if you set f equal to fk,
the graphs oscillate k times.  

 This function is helpful when you perform a continuous Fourier transform, but the
DFT requires that you select a finite number of values from wf(t). For this reason, you
need to rework the expression for wf(t) so that it depends only on n and k. As discussed

wf t  2ft cos i 2ft sin–=

2f1tcos 2t
T

-------- 
 cos= i 2f1t sin– i 2t

T
-------- 
 sin–=

0 0

1 i

tt
T T

Figure 14.3 The continuous sinusoid at the fundamental frequency
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earlier, your frequencies of interest are fk = k/T, and you know that n = t. This gives us
the following relationship: 

One last step. You can relate the period of the signal, T, to the total number of sam-
ples, N, by noting that T = Nt. Replacing this in the equation, you arrive at a final
expression: 

This gives us a vector with N values, and figure 14.4 depicts wk[n] from n = 0 to N–1. As
with figure 14.3, this discrete sinusoid corresponds to the signal’s fundamental fre-
quency, given by k = 1. 

Note that neither the cosine nor the sine returns to its starting value. Instead, they pro-
ceed from 0 to N–1. This is important to remember when computing these vectors in
code. Now that you’ve arrived at the wk[n] vector, we can discuss the full DFT algorithm.
THE DFT AND IDFT EQUATIONS

The DFT computes the X[k] vector by taking the dot product of x[n] and wk[n] as k
runs from 0 to N–1. This is commonly expressed using the DFT equation: 

The relationship between X[k] and x[n] can also be expressed using matrix-vector
multiplication. If you form the rows of a matrix W from wk[n] as k runs from 0 to N–1,
the resulting matrix-vector product, Wx = X, can be expressed as follows: 

wf t  2k nt 
T

------------------------- 
  i 2k nt 

T
------------------------- 
 sin–cos=

wk n  2nk
N

-------------- 
  i 2nk

N
-------------- 
 sin–cos=

2nk
N

-------------- 
 cos i 2nk

N
-------------- 
 sin–

0 0

i

nn
1

4 6 8
102

5 7
93

1 2 3 4 5 6
7 8 9 10 N-1N-1

Figure 14.4 The discrete sinusoid at the fundamental frequency

X k  x n  wk n  x n  2nk
N

-------------- 
 cos i 2nk

N
-------------- 
 sin– 

 

n 0=

N 1–

= =
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This matrix, denoted W, is called the DFT matrix. If scaled properly, W is both uni-
tary and symmetric, which means that its inverse, W –1, equals its conjugate, W *. You
obtain the conjugate of a matrix by reversing the sign of every imaginary term. For
the DFT, this means converting the negative imaginary sine in wk[n] into a positive
imaginary sine.

 This inverse matrix is important because it shows us how to compute the inverse
DFT, or IDFT. The IDFT transforms frequency-domain data to time-domain data,
and can be expressed in matrix-vector form as x = W –1X. The IDFT equation is as
follows: 

The wk
*[n] term identifies the conjugate of wk[n], in which –i sin(x) is replaced with

+i sin(x). The only other difference between this and the DFT equation is the scaling
factor 1/N. This is necessary to ensure that, once x[n] is transformed into X[k], the
inverse transformation will produce the original x[n]. Alternatively, both the DFT
equation and IDFT equation can be scaled by 1/�n.   
A SIMPLE EXAMPLE

An example will clarify how the DFT works in practice. Figure 14.5 presents a time-
domain signal, x(t), with 16 samples. The first 6 samples form half of a triangle wave,
and the other samples equal 0.

w0 0  w0 1  w0 2   w0 N 1– 

w1 0  w1 1  w1 2   w1 N 1– 

w2 0  w2 1  w2 2   w2 N 1– 

    
wN 1– 0  wN 1– 1  wN 1– 2   wN 1– N 1– 

x 0 
x 1 
x 2 


x N 1– 

X 0 
X 1 
X 2 


X N 1– 

=

x n  X k  wk n  1
N
----- X k  2nk

N
-------------- 
 cos i 2nk

N
-------------- 
 sin+ 

 

k 0=

N 1–

==

t

6.0
x(t)

0.0

Figure 14.5 Example time-domain signal
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For this example, you’ll only compute four frequency components: X[0], X[1], X[8],
and X[15]. As discussed earlier, these components are obtained by taking the dot
product of x[n] and wk[n], and they are computed as follows:    

Once the DFT is complete, X[k] can be transformed back to x[n] using the IDFT. This
is just as simple to compute as the DFT. All you have to do is add the imaginary sine
terms instead of subtracting them, and scale each element by 1/N, or 1/16 in this
example.

X 0  x n  2n 0 
16

------------------ 
 cos i– 2n 0 

16
------------------ 
 sin 

 

n 0=

N 1–

 x n 

6.0 5.0 4.0 3.0 2.0 1.0+ + + + + 21.0= =

n 0=

N 1–

= =

X 1  x n  2n 1 
16

------------------ 
 cos i– 2n 1 

16
------------------ 
 sin 

 

n 0=

N 1–

 x n  n
8

-------- 
 cos i n

8
-------- 
 sin– 

 

6.0 1.0 0.0i–  5.0 0.924 0.383i–  4.0 0.707 0.707i– 

3.0 0.383 0.924i–  2.0 0.0 1.0i–  1.0 0.383– 0.924i– 

14.213 10.439i–=

+ +

+ + +

=

n 0=

N 1–

= =

X 8  x n  2n 8 
16

------------------ 
 cos i– 2n 8 

16
------------------ 
 sin 

 

n 0=

N 1–

 x n  n cos i n sin– 
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REAL-VALUED DFT

If you look closely at the results from the DFT example, I hope you’ll notice three
points:

■ The imaginary part of X[0] equals 0
■ The imaginary part of X[8] equals 0
■ X[1] equals the conjugate of X[15]

If you’re unfamiliar with the DFT, you might not think these points are important. But
if the elements of x[n] are all real-valued, then these statements will always hold true.
In this case, you call x[n] a real-valued sequence, and if x[n] has N elements, you can
make three general statements:

■ The imaginary part of X[0] always equals 0.
■ The imaginary part of X[N/2] always equals 0.
■ For k between 1 and (N/2)–1, X[k] always equals the conjugate of X[N–k].

This last point is important because it means you don’t have to compute the compo-
nents X[N/2+1] through X[N–1]. Instead, you can set X[N–1] equal to the conjugate
of X[1], X[N–2] equal to the conjugate of X[2], and so on, until X[N/2+1] is set to the
conjugate of X[N/2–1].

 These properties of the real-valued DFT suggest an efficient manner for storing fre-
quency components in memory. For X[1] through X[N/2–1], you’ll store the real part
of the frequency component followed by its imaginary part. Because X[0] and X[N/2]
don’t have imaginary parts, you’ll store their real parts at the front of the sequence.
This is shown in figure 14.6.

 In this figure, the real part of X[8] is stored second because the X[N/2] compo-
nent has no imaginary part. The last elements stored are the real and imaginary parts
of X[N/2–1].

 This storage method is convenient, but it presents a problem. Because the IDFT
rarely transforms real-valued data, IDFT code requires that frequency data be stored
normally: X[0] through X[N–1] in real-imaginary pairs. Therefore, the IDFT code may
need to be modified to transform data stored in this manner. 

DFT

x[n]

X[k]

x[0] x[1] x[2] x[15]

Re(X[0])

Re(X[8])

Re(X[1])

Im(X[1])

Re(X[2])

Im(X[2])

Re(X[7])

Im(X[7])

Figure 14.6 Storing frequency components of a real-valued DFT
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The next section presents code for a real-valued DFT that computes only the fre-
quency components from X[0] through X[N/2]. It stores its results using the method
depicted in figure 14.6. 

14.2.2 OpenCL and the DFT

The DFT can be implemented in parallel by assigning each work-item to compute a
frequency component of x[n]. For a real-valued DFT, only N/2+1 work-items are nec-
essary, and each computes a value of X[k] from X[0] through X[N/2].

 The following listing shows how these frequency components can be computed.
Each work-item constructs two float4 vectors, w_real and w_imag, containing the
cosine and sine values. Then, using the dot function, each updates X_real with the
dot product of x[n] and the cosine values, and X_imag with the dot product of x[n]
and the sine values. Note that the filename and function name are called rdft because
this performs a DFT on real-valued data.

__kernel void rdft(__global float *x) {

   int N = (get_global_size(0)-1)*2;
   int num_vectors = N/4;

   float X_real = 0.0f;
   float X_imag = 0.0f;

   float4 input, arg, w_real, w_imag;
   float two_pi_k_over_N =
         2*M_PI_F*get_global_id(0)/N;

   for(int i=0; i<num_vectors; i++) {
      arg = (float4) (two_pi_k_over_N*(i*4),   
                      two_pi_k_over_N*(i*4+1),           
                      two_pi_k_over_N*(i*4+2), 
                      two_pi_k_over_N*(i*4+3));
      w_real = cos(arg);                       
      w_imag = sin(arg);                       

      input = vload4(i, x);
      X_real += dot(input, w_real);   
      X_imag -= dot(input, w_imag);              
   }
   barrier(CLK_GLOBAL_MEM_FENCE);

   if(get_global_id(0) == 0) {                        
      x[0] = X_real;                                         
   }                                                  
   else if(get_global_id(0) == get_global_size(0)-1) {
      x[1] = X_real;                                  
   }                                                  
   else {                                             
      x[get_global_id(0) * 2] = X_real;               
      x[get_global_id(0) * 2 + 1] = X_imag;           
   }                                                  
}

Listing 14.1 The discrete Fourier transform: rdft.cl

Compute 
sine/cosine 
terms

Take dot-
products

Store results 
in memory
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Each work-item stores its result in memory at a location that depends on its global ID.
If the item’s ID is 0, it stores its real part in the first position in memory. If the item’s ID
is N/2, it stores its real part in the second position in memory. Succeeding memory
locations store successive real and imaginary parts from X[1] to X[N/2–1].

 This code is simple to understand, but by taking advantage of the DFT’s properties,
researchers have constructed an algorithm that obtains the same output as the DFT
with fewer operations. This algorithm is called the fast Fourier transform, and it’s the
topic of the next section. 

14.3 The fast Fourier transform
Everyone wants to crunch their numbers at high speed, but if you’re a radar analyst on
an aircraft or a sonar analyst on a submarine, extracting frequency information
becomes a matter of life or death. If you detect the enemy before the enemy detects
you, you get to shoot first.

 For this and similar reasons, mathematicians have spent decades trying to improve
the speed of frequency analysis, and the most popular method is the Cooley-Tukey fast
Fourier transform (FFT). Researchers have devised various modifications and varia-
tions on this algorithm since its publication in 1965, but its high speed and computa-
tional simplicity have made it the reigning champion.

 The goal of this section is to present this algorithm and show how it can be coded
in OpenCL. This presentation will rely on intuition instead of mathematical rigor and
will start with an examination of three important properties of the DFT.

14.3.1 Three properties of the DFT

The FFT is not simple to understand, and in my opinion, mathematical derivations
tend to make the algorithm more confusing. For this reason, I prefer to approach the
subject by presenting three properties of the DFT that make it possible to accelerate its
processing. In order of increasing complexity, these three properties are as follows:

■ The superposition property—If two sequences are added together, the frequency
components of the sum will be the sum of the individual frequency components.

■ The shifting property—If a sequence is shifted to the right, the resulting fre-
quency components will equal the original frequency components multiplied
by a sinusoid.

■ The stretching property—If a signal is stretched from N to 2N by placing a zero after
every original sample, the new frequency components X[0] through X[N–1] will
equal the old frequency components X[0] through X[N–1]. Further, the compo-
nents X[N] through X[2N–1] will equal the components X[0] through X[N–1].

These properties may not seem interesting by themselves, but once you fully grasp
them, it’s straightforward to combine them in such a way as to convert the DFT to the
FFT.
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THE SUPERPOSITION PROPERTY

The superposition property of the Fourier transform is one of the most fundamental
concepts in signal processing. Thankfully, it’s also easy to understand. The frequency
components of the sum of two sequences equals the sum of the individual frequency
components of the sequences. That is, if z[n] = x[n] + y[n], then Z'[k] = X '[k] + Y '[k].
Using the DFT equation, this is easy to prove: 

It can be proved in a similar manner that a scaled sequence produces scaled fre-
quency components. That is, if the DFT transforms x[n] to X[k] and c is a scalar, then
cx[n] will be transformed to cX[k]. 
THE SHIFTING PROPERTY

If a sequence is shifted, or delayed, in time, the real and imaginary parts of the fre-
quency components will be multiplied by a sinusoid. More precisely, if x '[n] = x[n–n0],
then X '[k] = X[k](cos(2n0k/N) – i sin(2n0k/N)) as k runs from 0 to N–1. This rela-
tionship can be derived as follows: 

Figure 14.7 depicts the relationship between X[k] and X '[k] graphically. The graphs
on the right present only the real part of the frequency components corresponding to
x[n] and x[n–3]. In the lower right, the real part of X '[k] equals the real part of X[k]
multiplied by cos(3k/16).

 Shifting a sequence changes the real and imaginary parts of its frequency compo-
nents, but the overall frequency response remains unchanged. This overall response is
called the magnitude, which is obtained by taking the square root of the squares of the
real and imaginary parts. This should make sense. If you delay pressing a key on a
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piano, the real and imaginary parts of the frequency components may change, but the
overall frequency content of the signal stays the same. 

THE STRETCHING PROPERTY

The term stretching refers to the process of placing a zero after every sample of x[n],
thereby doubling the size of the signal from N to 2N. I can’t think of a practical reason
why anyone would want to do this, but stretching is very important theoretically: if you
stretch a signal, the frequency components of the result have fascinating properties.

 For example, if you stretch x[n] to x '[n], the new lower-frequency components,
X '[0] through X '[N–1], will equal the old components, X[0] through X[N–1]. Further,
the upper-frequency components, X '[N] through X '[2N–1], have the same values as
X '[0] through X '[N–1]. Figure 14.8 presents this graphically.

 In this figure, x[n] is an exponentially decaying sequence with 16 samples and x '[n]
is a stretched version with 32 samples. The frequency components of x '[n] equal those
of x[n] for k = 0 to k = 15. Also, the frequency components of x '[n] from k = 16 to k = 31
are exactly equal to those from k = 0 to k = 15. This means that if you stretch a sequence,
you don’t need to compute the frequency components of the stretched sequence.

 To get an intuitive feel for this property, look closely at the graph of x '[n] and pic-
ture sines and cosines oscillating at frequencies fk and fN+k. You may notice that the
sinusoids at both frequencies intercept the nonzero x[n] elements in the same places.
This means the dot product of x[n] and wk[n] equals the dot product of x[n] and
wN+k[n], and therefore the frequency component X[k] equals the component X[N+k]
for stretched sequences. 

150
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0 15n k

x[n] X[k]

x’[n]

150 n 0 15

k
X’[k]

3
Figure 14.7 Frequency analysis 
of a shifted sequence



309The fast Fourier transform
14.3.2 Constructing the fast Fourier transform

The merge sort algorithm compares elements two at a time, merges the two-element
sorts into four-element sorts, merges the four-element sorts into eight-element sorts,
and continues until the entire set is sorted. The FFT algorithm is similar in principle.
It computes the frequency components of two samples at a time, merges this for four
elements, then eight elements, and so on. In this manner, it computes X[k] using a
number of operations proportional to N log2N, where N is the number of samples in
x[n]. This is an improvement over the DFT, which requires a number of operations on
the order of N 2.

 To show how the FFT algorithm works, this discussion will walk through the fre-
quency transformation of the four-element sequence [12.5, 6.0, –9.5, 2.0]. We’ll first
look at how to compute the FFT of a two-element sequence. Then, we’ll derive the FFT
merge process, which converts a pair of two-element FFTs into a four-element FFT.
Finally, we’ll look at how this merge process can be extended to transform larger
sequences. After this derivation, we’ll examine how the FFT’s mathematical theory is
implemented with high-speed OpenCL code.

THE TWO-ELEMENT FFT

The Cooley-Tukey FFT can be used to process any sequence whose size is a power of 2,
and that includes sequences with only two elements. For these sequences, the FFT per-
forms the same operation as the DFT. There are only two frequency components, X[0]
and X[1], and they can be computed as follows: 
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Figure 14.8 Frequency analysis of a stretched sequence
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It doesn’t get much easier than this. The first frequency component equals the sum of
x[0] and x[1], and the second frequency component equals the difference between
them. For example, if x[n] = [12.5, –9.5], X[0] = 12.5 + (–9.5) = 3.0 and X[1] = 12.5 –
(–9.5) = 22.0.

 Mathematicians depict this operation using figures called butterfly diagrams. Fig-
ure 14.9 presents the butterfly diagram corresponding to the preceding simple
example.

 The circles are called nodes, and
each node returns the sum of its
inputs. Both inputs arrive at the first
node unchanged, so this node returns
their sum, 3.0. But the –1 at the bot-
tom of the diagram negates the lower
input entering the second node, so
this node returns the sum of 12.5 and
–(–9.5), or 22.0. 
THE FOUR-ELEMENT FFT

After the two-element operations are performed, the rest of the FFT consists of merg-
ing the results into larger and larger sequences. This can be complicated. I’ll work
through a simple four-element merge and then describe the general procedure.

 Let’s take the example sequence from the previous stage, [12.5, –9.5], and stretch
it so that the resulting sequence equals [12.5, 0, –9.5, 0]. You’ll call this x[n]. Because
of the stretching property, you know that X[k] equals [3.0, 22.0, 3.0, 22.0].

 Let’s take another sequence, [6.0, 2.0], and find its frequency components:
[8.0, 4.0]. You’ll stretch this sequence to produce [6.0, 0, 2.0, 0]. If you call this y[n],
the stretching property tells us that Y[k] equals [8.0, 4.0, 8.0, 4.0]. So far, so good.

 Next, let’s shift y[n] one place to the right, producing [0, 6.0, 0, 2.0]. You’ll call this
y '[n]. Because of the shifting property, you know that Y '[k] equals Y[k] multiplied by a
sinusoid. That is, Y '[k] = Y[k](cos(2k/4) + i sin(2k/4)). The elements of Y '[k] can be
computed shown on the next page. 

 By these equations, Y '[k] equals [8.0, –4.0i, –8.0, 4.0i]. This equals [8.0, 4.0, 8.0, 4.0]
multiplied by the corresponding elements of [1, –i, –1, i].

 Because of the superposition property, you know that the frequency components
of a sum of sequences equals the sum of the individual frequency components. That
is, if you add x[n] and y '[n] to form z[n], Z[k] = X[k] + Y '[k]. In this example, adding
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Figure 14.9 Butterfly diagram of a two-element FFT
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x[n] and y '[n] gives us z[n] = [12.5, 6.0, –9.5, 2.0]. Adding X[k] and Y '[k], you get Z[k]
= [3.0, 22.0, 3.0, 22.0] + [8.0, i4.0, –8.0, –i4.0] = [11.0, 22.0 + i4.0, –5.0, 22.0 – i4.0].

 This may seem complicated, but by stretching, shifting, and adding, you can com-
pute the Fourier transform of [12.5, 6.0, –9.5, 2.0] without performing a full DFT. The
general rules for computing a four-element FFT are as follows:

1 Compute the two-element FFT of the first and third elements and the two-
element FFT of the second and fourth elements.

2 Obtain the frequency components of the stretched sequences by repeating the
original frequency components.

3 Multiply the frequency components of the second sequence by a sinusoid. This
corresponds to shifting the sequence.

4 Add the frequency components of the first sequence to those of the second
sequence.

This merge process is the heart of the FFT, and when I first encountered the algo-
rithm, I had to work through several examples before this process made sense. I also
found it helpful to trace through butterfly diagrams. Figure 14.10 presents the dia-
gram corresponding to the full four-element example.
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Figure 14.10 Butterfly diagram of a four-element FFT
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There are two important points to note. First, the input elements are split into even/
odd pairs before the processing starts. That is, this FFT processes elements x[0], x[2],
x[1], and x[3] in that order. If there were eight input elements, they would be pro-
cessed as follows: x[0], x[4], x[2], x[6], x[1], x[5], x[3], x[7]. This rearranging is called
bit reversal because the bits that make up an element’s index must be reversed to obtain
the element’s position. For example, if you reverse the bits of the index 3, 0x011, you
get 0x110, or 6. This means x[3] takes the position that x[6] would normally take in an
eight-element FFT. Similarly, x[6] takes the position that x[3] would normally take.

 It’s also important to notice the wk terms on the right side of the diagram. These
identify the elements of the sinusoid used to multiply a shifted sequence. For a four-
element FFT, the wk terms equal cos(2k/4) – i sin(2k/4) as k runs from 0 to 3, or
[1, –i, –1, i]. These wk elements scale values on the nearby lines. For example, the
upward arrow from the node equaling 4.0 is multiplied by w1, or –i. Therefore, the
final node returns 22 – 4i. In an eight-element FFT, wk equals cos(2k/8) – i sin(2k/8)
as k runs from 0 to 7.

 The process used to merge two-element FFTs into a four-element FFT can be fur-
ther extended to compute FFTs of any size, as long as the size is a power of 2. In each
case, the input elements are stretched, shifted, and added to form two-element FFTs,
then four-element FFTs, and so on until the entire N-element FFT is computed. 

 Next, we’ll look at how to code this algorithm in OpenCL. 

14.3.3 Implementing the FFT with OpenCL

If a sequence contains N elements, the FFT requires log2N stages to compute its fre-
quency components. The first stage computes N/2 two-element FFTs, the second stage
merges the results to form N/4 four-element FFTs, and this merging continues all the
way up to the final stage, which computes the N-element FFT. In general, stage k per-
forms N/(2*k) FFTs, each of whose size is 2k.

 If the FFT computation is partitioned among D work-items, and D is a power of 2 less
than N, then each work-item computes the first log2(N/D) stages of the FFT. In the final
stages (log2N – log2(N/D) = log2D), the work-items must synchronize their processing.

 An example will make this clear. Suppose x[n] contains 64 elements (6 stages) and
you want to compute its FFT with 4 work-items. Each work-item will process the first
log2(64/4) = 4 stages on its own. Then, after the fourth stage is complete, the work-
items need to synchronize their processing to compute the fifth and sixth stages. Fig-
ure 14.11 depicts this relationship graphically.

 Now let’s organize these work-items into work-groups. If you take N as the total
number of elements to be processed, N can be given as follows:

N = NUM_GROUPS * LOCAL_SIZE * ELEMENTS_PER_ITEM

ELEMENTS_PER_ITEM identifies the size of the FFT that each work-item can perform on
its own. Similarly, the product LOCAL_SIZE * ELEMENTS_PER_ITEM tells us the size of
the FFT that each work-group can perform on its own. To keep local and global syn-
chronization to a minimum, you want to make these values as large as possible. To
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determine the maximum number of work-items in a work-group (LOCAL_SIZE), you
use the clGetKernelWorkGroupInfo function presented in chapter 10.

 To find the maximum number of elements that can be processed by each work-
item (ELEMENTS_PER_ITEM), you need to determine how much local memory is avail-
able to each work-group. If each group can access MEM_SIZE bytes, each work-item can
access MEM_SIZE/LOCAL_SIZE bytes.

 To determine the size of a local memory block, you need to call clGetDeviceInfo
with the CL_DEVICE_LOCAL_MEM_SIZE parameter. The following lines of code show
how clGetDeviceInfo and clGetKernelWorkGroupInfo work together to tell us how
much memory can be made available to each work-item:

size_t local_size;
cl_ulong local_mem_size, max_mem_per_item;

clGetKernelWorkGroupInfo(kernel, device, CL_KERNEL_WORK_GROUP_SIZE,
   sizeof(local_size), &local_size, NULL);

clGetDeviceInfo(device, CL_DEVICE_LOCAL_MEM_SIZE, sizeof(local_mem_size),
   &local_mem_size, NULL);

max_mem_per_item = local_mem_size/max_local_size;

The source code in the Ch14/fft/fft.c file uses similar function calls to find the maxi-
mum FFT that can be computed by each work-group and work-item. In this FFT, each
element consists of two floats: a real value and an imaginary value.

 On my target device, the maximum work-group size is 256, the local memory size
is 32,768 bytes, and each float occupies 4 bytes. Therefore, each work-item can
access 32,768/256 or 128 bytes. This memory can hold 128/(4*2) = 16 elements, so
each item can perform a 16-element FFT on its own, and each work-group can per-
form a 4,096-element FFT on its own (32,768/(2*4) = 4,096).

 Large-scale FFTs require multiple work-groups, and the only way to synchronize
these work-groups is to execute multiple kernels. The first kernel deployed by the
Ch14/fft host application, fft_init, directs each work-group to perform a separate
FFT. On my system, fft_init computes one 4,096-element FFT for each work-group
executing the kernel.

 Next, the host application merges N-element FFTs into 2N-element FFTs by execut-
ing the fft_stage kernel. This is called repeatedly until the entire FFT is completed.

32-element FFT 32-element FFT

64-element FFT

Work-item 0 Work-item 1 Work-item 2 Work-item 3

Stage 1

Stage 6

Figure 14.11 A 64-element FFT with 4 work-items
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On my system, the first fft_stage combines 4,096-element FFTs into 8,192-element
FFTs, the second iteration combines 8,192-element FFTs into 16,384-element FFTs, and
successive iterations are performed until the entire FFT is completed.

 No matter how well you know the FFT algorithm, reading and writing actual FFT
code is a difficult process. To explain how the fft_init kernel works, I’ll divide the
discussion into three parts:

■ Each work-item loads data from global memory, computes 4-point FFTs, and
stores the results in local memory.

■ Each work-item continues computing larger FFTs (8-point, 16-point, and so on)
until it uses all of the local memory available to it.

■ The work-items in the work-group work together to compute as large an FFT as
the entire local memory will support.

PART 1: LOADING DATA AND PERFORMING INITIAL FFT

The first part of kernel_init loads data from global memory and begins the initial
stages of the FFT processing. 

...
__kernel void fft_init(__global float2* g_data, __local float2* l_data,
                       uint points_per_group, uint size, int dir) {
   ...
   points_per_item = points_per_group/get_local_size(0);
   l_addr = get_local_id(0) * points_per_item;
   g_addr = get_group_id(0) * points_per_group + l_addr;

   for(i=0; i<points_per_item; i+=4) {
      index = (uint4)(g_addr, g_addr+1, g_addr+2, g_addr+3);
      mask_left = size/2;
      mask_right = 1;
      shift_pos = log2(size)-1;
      br = (index << shift_pos) & mask_left;
      br |= (index >> shift_pos) & mask_right;

      while(shift_pos > 1) {                      
         shift_pos -= 2;                                     
         mask_left >>= 1;                         
         mask_right <<= 1;                        
         br |= (index << shift_pos) & mask_left;  
         br |= (index >> shift_pos) & mask_right; 
      }                                           

      x1 = g_data[br.s0];                  
      x2 = g_data[br.s1];                         
      x3 = g_data[br.s2];                  
      x4 = g_data[br.s3];                  

      sum12 = x1 + x2;                  
      diff12 = x1 - x2;                             
      sum34 = x3 + x4;                  
      diff34 = (float2)(x3.s1 - x4.s1,  

Listing 14.2 The fast Fourier transform, part 1: fft_init.cl

Bit-reverse 
address vector

Load global 
data

Perform four-
element FFT
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                        x4.s0 - x3.s0)*dir;      
      l_data[l_addr] = sum12 + sum34;              
      l_data[l_addr+1] = diff12 + diff34;        
      l_data[l_addr+2] = sum12 - sum34;          
      l_data[l_addr+3] = diff12 - diff34;        
      l_addr += 4;                               
      g_addr += 4;                               
   }...

Throughout this code, data is loaded, processed, and stored using float2 vectors,
each of which contains a real float and an imaginary float. Before these vectors are
loaded, however, each work-item needs to bit-reverse the input addresses. The first
part of kernel_init reverses the bits of all four addresses at once. For example, if
work-item 0 starts with indices [0, 1, 2, 3], the bit-reversal will return [0, 8, 4, 12]. 

 Once the work-item obtains the bit-reversed addresses, it loads four float2 values
from global memory (g_data) and performs 4-point FFTs on each group of four val-
ues. As each FFT completes, the kernel stores the result in local memory (l_data) and
repeats the procedure for further groups of four elements.

 The dir variable controls whether the FFT is forward (time-domain to frequency-
domain) or backward (frequency-domain to time-domain). If dir is set to 1, the DFT
equation will be used and the imaginary sine terms will be negative. If dir is set to –1,
the IDFT equation will be used and imaginary sine terms will be positive.

PART 2: PERFORMING SUCCESSIVE STAGES OF THE FFT

After performing 4-point FFTs, each work-item will merge the results into larger FFTs.
The size of the final FFT in this stage depends on how much local memory is available
to each work-item. For example, if a local memory block contains LOCAL_MEM_SIZE bytes
and each work-group contains 256 work-items, each work-item can access LOCAL_MEM_
SIZE/256 bytes. If each complex value occupies 2 floats or 8 bytes, each work-item can
perform an FFT of size LOCAL_MEM_SIZE/(256*8). That’s shown in the following listing.

...
for(N2 = 4; N2 < points_per_item; N2 <<= 1) {
   l_addr = get_local_id(0) * points_per_item;
   for(fft_index = 0; fft_index < points_per_item; fft_index += 2*N2) {
      x1 = l_data[l_addr];
      l_data[l_addr] += l_data[l_addr + N2];
      l_data[l_addr + N2] = x1 - l_data[l_addr + N2];
      for(i=1; i<N2; i++) {
         cosine = cos(M_PI_F*i/N2);                 
         sine = dir * sin(M_PI_F*i/N2);                  
         wk = (float2)(l_data[l_addr+N2+i].s0*cosine +
               l_data[l_addr+N2+i].s1*sine,
               l_data[l_addr+N2+i].s1*cosine -
               l_data[l_addr+N2+i].s0*sine);
         l_data[l_addr+N2+i] =                      
               l_data[l_addr+i] - wk;                  
         l_data[l_addr+i] += wk;                    
      }

Listing 14.3 The fast Fourier transform, part 2: fft.cl

Perform four-
element FFT

Compute 
trigonometric terms

Compute frequency 
components
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      l_addr += 2*N2;
   }
}
barrier(CLK_LOCAL_MEM_FENCE);
...

This code sets N2 equal to half the length of the current FFT. The first iteration per-
forms 8-point FFTs, so N2 is set equal to 23/2 = 4. N2 doubles with each new stage until
it equals the number of elements assigned to the work-item.

 The code in this part consists of one outer loop and two inner loops. The outer
loop corresponds to the FFT stage being computed, and the inner loops perform the
FFTs needed for the stage. With each iteration of the inner loops, the work-item com-
putes a cosine and sine value and multiplies this by the element at a distance equal to
N2. This float2, called wk, is used to update two elements:

■ l_data[l_addr+N2+i] = l_data[l_addr+i] – wk
■ l_data[l_addr+i] = l_data[l_addr+i] + wk

When the outer loop completes, each work-item reaches a barrier and waits for the
other work-items to complete their processing. Once every work-item has completed,
the next part of the application starts.
PART 3: PERFORMING FINAL STAGES OF THE FFT

After the work-items complete their individual FFTs, they work together to compute
larger FFTs for the entire work-group. This continues until all of the available local
memory is used. For example, if a local memory block contains LOCAL_MEM_SIZE bytes
and each complex value occupies 2*sizeof(float) = 8 bytes, each work-group will
ultimately perform an FFT whose size is LOCAL_MEM_SIZE/8. That’s shown in the fol-
lowing listing.

...
stage = 2;
for(N2 = points_per_item; N2 < points_per_group; N2 <<= 1) {
   start = (get_local_id(0) +                         
           (get_local_id(0)/stage)*stage) *                   
           (points_per_item/2);                        
   angle = start % (N2*2);
   for(i=start; i<start + points_per_item/2; i++) {
      cosine = cos(M_PI_F*angle/N2);
      sine = dir * sin(M_PI_F*angle/N2);
      wk = (float2)(l_data[N2+i].s0*cosine + l_data[N2+i].s1*sine,
                    l_data[N2+i].s1*cosine - l_data[N2+i].s0*sine);
      l_data[N2+i] = l_data[i] - wk;
      l_data[i] += wk;
      angle++;
   }
   stage <<= 1;
   barrier(CLK_LOCAL_MEM_FENCE);                
}
...

Listing 14.4 The fast Fourier transform, part 3: fft.cl

Assign work-
item position

Synchronize 
work-items
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This code resembles the code in listing 14.3, but there are a number of important dif-
ferences. First, each work-item is given a position within a larger FFT, and each pro-
cesses a subset of the FFT’s elements. This position is assigned with the following line
of code:

start = (get_local_id(0) + (get_local_id(0)/stage)*stage) *
        (points_per_item/2);

As each work-item completes processing its subset of FFT elements, it reaches a barrier
that forces it to wait for the other work-items to finish. Note that this barrier halts the
work-items after every stage. This is because, with all the work-items working together, a
new stage can’t be started until the preceding stage is completely finished.

 Once the fft_init kernel completes, the host application executes further stages
of the FFT by deploying the fft_stage kernel. This kernel merges previous results
into larger FFTs, and continues executing until the entire FFT is computed.

 If the host application sets the DIRECTION macro to –1, the inverse FFT will be per-
formed. This executes the same kernels as the forward FFT, but after the last
fft_stage completes, the inverse FFT executes fft_scale to divide each result by the
number of points.

14.4 Summary
Of all the mathematical algorithms discussed in this book, the FFT is my favorite. No
other algorithm combines mathematical beauty with hard, practical utility. It is the
most crucial algorithm in the field of signal processing, and the better you understand
it, the faster your systems will execute.

 The first part of this chapter discussed the topic of frequency analysis, focusing on
how to remove noise from a song using digital remastering. The goal is to sample a
continuous time-domain signal, x(t), to produce a time-domain sequence, x[n]. The
discrete Fourier transform (DFT) transforms x[n] into a sequence containing fre-
quency components, X[k], and you can remove noise by setting unwanted frequencies
to zero. Then the inverse DFT transforms the frequency components back into a time-
domain signal.

 The rest of the chapter explored the mathematics behind these transformations,
and began with a discussion of the internals of the DFT. This simple algorithm consists
of a series of dot products involving x[n] and sinusoids of various frequencies. The
first frequency of interest corresponds to a single oscillation over the course of the sig-
nal’s period, and further frequencies are multiples of this. If a signal is real-valued, the
DFT only needs to compute components for frequencies f0 through fN/2. The rest can
be determined through symmetry.

 By combining three properties of the DFT (superposition, shifting, and stretching),
we can derive a better algorithm for extracting frequency data: the fast Fourier trans-
form (FFT). This computes the DFTs of element pairs, merges the results into four-
element FFTs, then eight-element FFTs, and so on. If a digital sequence contains N ele-
ments, the FFT requires log2N stages.
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 Despite its improved performance, the FFT isn’t as easy to execute in parallel as the
DFT. In a parallel DFT, each work-item can compute a frequency component indepen-
dently, and only one synchronization point is required. In a parallel FFT, multiple syn-
chronization points are required. Synchronization can take a great deal of time, so it
may be worth your while to experiment with frequency analysis using both the DFT
and the FFT.

 In the next chapter, we’ll put aside the purely mathematical applications of
OpenCL and look at a different use of the toolset. In addition to being executed on
GPUs, OpenCL kernels can interact with graphical applications. Chapter 15 intro-
duces OpenCL’s ability to accelerate OpenGL rendering.



Part 3

Accelerating
 OpenGL with OpenCL

Part 3 discusses OpenCL’s ability to accelerate 3-D rendering applications
coded in OpenGL. Chapter 15 introduces the topic of OpenGL-OpenCL interop-
erability and shows how to share data between OpenGL and OpenCL. Chapter 16
explains how OpenCL kernels can process image data within OpenGL textures.





Combining
 OpenCL and OpenGL
One of OpenCL’s greatest strengths is that it can accelerate applications based on
OpenGL, the cross-platform API for 3-D rendering. The end goal of an OpenGL
application is to compute two-dimensional arrays of numbers that correspond to
pixel colors. These pixels must be computed quickly—on a high-resolution display,
the application may need to compute hundreds of thousands of colors for each
new frame.

NOTE The content of this chapter assumes a basic familiarity with
OpenGL 3.3 or above and shader development. Appendix B introduces
both topics. In addition, the code in this chapter will only compile on sys-
tems that support OpenGL 3.3 or above.

This chapter covers

■ The functions needed to configure OpenGL-
OpenCL interoperability

■ A method for coding OpenGL-OpenCL 
applications

■ Rendering animated models with OpenGL and 
OpenCL
321
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Hardware-accelerated OpenGL applications rely partly on a CPU and partly on a GPU.
For example, the CPU may set vertex colors and texture coordinates, and the GPU will
process the CPU’s data to obtain pixel colors. In a physics application, the CPU may
solve the kinematic equations needed to determine a projectile’s trajectory, and the
GPU will transform the vertices needed to depict the object’s motion.

 By integrating OpenCL in an OpenGL application, you can place a greater portion
of the computational load on the GPU (and similar OpenCL-compliant devices)
instead of the CPU. For example, you can code kernels that initialize vertex data and
solve kinematic equations without the CPU’s involvement. The advantages of this are
tremendous—not only is the GPU better suited for many types of mathematical opera-
tions, but this GPU-centric computing makes it unnecessary to transfer large amounts
of data between the CPU and the GPU.

 As discussed in appendix B, OpenGL makes it possible to code GPU routines called
shaders that take part in the rendering process. Shaders are similar to OpenCL kernels
in many respects, but kernels provide three significant advantages:

■ Kernels can invoke a broader range of functions.
■ Kernels can access local and private memory for high-speed data transfer.
■ Kernels have synchronization routines that allow them to share data between

work-items.

This third point is important to appreciate. A vertex shader can access only one vertex
at a time, and a fragment shader can access only one fragment at a time. But a kernel
can access all the data on a device and synchronize its processing using barriers. This
makes kernels much more flexible with regard to the types of operations that can be
performed on the GPU.

 The disadvantage of combining OpenCL and OpenGL is that the coding process
becomes much more involved. In addition to dealing with the many OpenCL data
structures (contexts, programs, devices, and so on), you have to deal with OpenGL
structures such as attributes, vertex buffer objects, and vertex array objects. 

 To simplify the coding process, this chapter presents a method of structuring code
into five sequential stages. Both of the example applications in this chapter will dem-
onstrate how this method can be put into practice. But before we get to the example
code, it’s important to discuss the functions that establish interoperability between
OpenGL and OpenCL.

15.1 Sharing data between OpenGL and OpenCL
OpenGL applications package data using three data structures: vertex buffer objects
(VBOs), texture objects, and renderbuffer objects. Similarly, OpenCL applications
access data using two structures: buffer objects and image objects. The fundamental
concept underlying OpenGL-OpenCL interoperability is that OpenCL memory objects
can share data with OpenGL data structures. This allows kernels to process OpenGL
structures as though they were regular buffer objects and image objects. Figure 15.1
depicts this graphically.
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As depicted in the figure, the application doesn’t transfer data between OpenCL and
OpenGL data structures. They access the same data using different types of structures.
After the OpenCL kernel processes the data, the OpenGL rendering process can con-
tinue normally.

 To configure OpenGL-OpenCL interoperability in code, three steps must be per-
formed in sequence:

1 Create an OpenCL context (cl_context) that references the current OpenGL
context or share group.

2 Construct OpenCL memory objects (buffer objects and image objects) from
OpenGL data objects (VBOs, texture objects, and renderbuffer objects).

3 Acquire exclusive access to the shared data for the kernel. After the kernel exe-
cutes, release this access so the rendering can proceed. 

This section explains the functions needed to perform these steps. They’re not hard
to use or understand, but they must be invoked in order to ensure interoperability.

15.1.1 Creating the OpenCL context

To establish interoperability between OpenCL and OpenGL, an OpenCL context must
be created with a reference to an OpenGL context or share group. This context/share
group serves as the bridge between the operating system and the graphical window.
Once the context/share group is active, the operating system will direct all OpenGL
rendering operations to its associated window.

NOTE On Windows and Linux systems, the bridge between the OS and the
window is called a context. On Mac OS systems, it’s called a share group. In the
interest of simplicity, this chapter will use the term context to refer to both
data structures.

Vertex data OpenCL
buffer
object

OpenGL
VBO

Texture data

OpenCL
image
object

OpenGL
texture
object

Figure 15.1 OpenCL memory objects (buffer objects and image objects) share data 
with OpenGL objects (VBOs and texture objects).
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The clCreateContext function, discussed in chapter 2, takes center stage in this dis-
cussion. To create an OpenCL context capable of accessing OpenGL, the first step is to
configure the function’s first parameter, which is a pointer to a cl_context_properties
structure. This has been set to NULL in all of the example code so far, but if set properly,
this structure enables the OpenCL context to access and modify OpenGL data.

 The cl_context_properties parameter is given as an array of property names and
associated values, terminated by a 0. Table 2.5 lists each of the property names, but the
names of the properties required for OpenGL interoperability depend on the host’s
operating system. This discussion will explain how to set properties on Windows,
Linux, and Mac OS.
CONFIGURING CONTEXT PROPERTIES ON WINDOWS

On Windows, the cl_context_properties array must identify three data structures:

■ CL_GL_CONTEXT_KHR—The handle to an OpenGL rendering context (HGLRC) for
the X11 window

■ CL_WGL_HDC_KHR—The handle to a device context (HDC) for the rendering window
■ CL_CONTEXT_PLATFORM—The cl_platform structure associated with the context

You can’t access the first two objects through the GL Utility Toolkit (GLUT), Qt, or any
other OS-independent toolset. Instead, you need to invoke two functions from the
venerable Win32 API: 

■ wglGetCurrentContext returns the handle to the rendering context, whose
data type is given as HGLRC.

■ wglGetCurrentDC returns the handle to the window’s device context, whose
Win32 data type is given as HDC.

These functions can be accessed through the windows.h header. The following exam-
ple shows how they’re used to initialize a cl_context_properties structure:

cl_context_properties properties[] = {
   CL_GL_CONTEXT_KHR, (cl_context_properties) wglGetCurrentContext(),
   CL_WGL_HDC_KHR, (cl_context_properties) wglGetCurrentDC(),
   CL_CONTEXT_PLATFORM, (cl_context_properties) platform,
   0};

The third argument is the cl_platform structure acquired through clGetPlatform.
Note that the last argument of the array is always 0. 
CONFIGURING CONTEXT PROPERTIES ON LINUX

The X Window System version 11, frequently called X11, provides the graphical inter-
face for many operating systems including Linux. To configure a cl_context_
properties structure for a system running X11, three properties must be defined:

■ CL_GL_CONTEXT_KHR—The X11 rendering context (glXContext) for the window
■ CL_GLX_DISPLAY_KHR—The Display object that represents the connection to

an X server
■ CL_CONTEXT_PLATFORM—The cl_platform structure associated with the context
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The first object can be acquired by calling glXGetCurrentContext and the second can
be acquired through glXGetCurrentDisplay. Both functions can be accessed through
the glx.h header file, and the following code shows how they’re used to initialize a
cl_context_properties structure:

cl_context_properties properties[] = {
   CL_GL_CONTEXT_KHR, (cl_context_properties) glXGetCurrentContext(),
   CL_GLX_DISPLAY_KHR, (cl_context_properties) glXGetCurrentDisplay(),
   CL_CONTEXT_PLATFORM, (cl_context_properties) platform,
   0};

The third argument is the cl_platform structure acquired through clGetPlatform.
Note that the last argument of the array is always 0. 
CONFIGURING CONTEXT PROPERTIES ON MAC OS

When it comes to configuring OpenCL contexts, Mac OS is the simplest operating sys-
tem to work with. The cl_context_properties structure needs only one property:
CL_CONTEXT_PROPERTY_USE_CGL_SHAREGROUP_APPLE. The value associated with this
property must have the data type CGLShareGroupObj, and it can be acquired by calling
the function CGLGetShareGroup. This function requires a CGLContextObj structure,
and this can be acquired by calling CGLGetCurrentContext. The following code shows
how these functions work together:

CGLContextObj glContext = CGLGetCurrentContext();
CGLShareGroupObj shareGroup = CGLGetShareGroup(glContext);

cl_context_properties properties[] = {
   CL_CONTEXT_PROPERTY_USE_CGL_SHAREGROUP_APPLE,
   (cl_context_properties)shareGroup,
   0};

CREATING THE OPENGL-ACCESSIBLE CONTEXT

After the cl_context_properties structure is set, you can use it to create an OpenCL
context capable of accessing OpenGL data. As discussed in chapter 2, the function
needed to create an OpenCL context is clCreateContext. The following code shows
how it can be called with a cl_context_properties structure called properties:

ctx = clCreateContext(properties, 1, &device, NULL, NULL, &err);

Once you’ve created a cl_context that supports OpenGL interoperability, you can
create memory objects (buffer objects and image objects) that access OpenGL data.
We’ll examine this next. 

15.1.2 Sharing data between OpenGL and OpenCL

To enable OpenGL-OpenCL interoperability, memory objects must be created from
OpenGL data. This OpenGL data can be accessed in one of three forms:

■ Vertex buffer objects (VBOs)—Contain vertex data such as coordinates, colors, and
normal vectors

■ Texture objects—Contain texture data in image form
■ Renderbuffer objects—Contain pixels to be displayed
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Chapter 3 explained how to create OpenCL memory objects using the clCreate-
Buffer, clCreateImage2D, and clCreateImage3D functions. But to create memory
objects capable of sharing data with OpenGL, you need to call one of four functions:
clCreateFromGLBuffer, clCreateFromGLTexture2D, clCreateFromGLTexture3D, or
clCreateFromGLRenderbuffer.

NOTE An OpenCL memory object must be created after the corresponding
OpenGL object has been created.

CREATING BUFFER OBJECTS FROM OPENGL VBOS

OpenGL applications store vertex data in vertex buffer objects, or VBOs; additional
details are provided in appendix B. In a regular OpenGL application, the host creates
and initializes VBOs and then transfers them to a GPU. There, the vertex shader pro-
cesses the data using attributes.

 By combining OpenGL and OpenCL, you can code an application that initializes
VBO data on the GPU using an OpenCL kernel. This is important because vertex data
no longer needs to be transferred from the CPU to the GPU.

 But before a kernel can access VBO data, the host needs to create a buffer object
specifically configured for the purpose. The function clCreateFromGLBuffer makes
this possible, and its signature is as follows:

cl_mem clCreateFromGLBuffer(cl_context context, cl_mem_flags flags,
                            GLuint vbo_desc, cl_int *err)

The context parameter must be configured for OpenGL interoperation as described
earlier. The flags parameter identifies the kernel’s access mode, and because the ker-
nel will usually be writing to an OpenGL VBO, this will usually be set to CL_MEM_
WRITE_ONLY. The third parameter, vbo_desc, should be set to the VBO’s unique identi-
fier produced by glGenBuffers.

 Let’s look at an example. The following code creates a vertex buffer object called
vbo and binds it to GL_ARRAY_BUFFER. Then it configures the VBO to hold 400 bytes
and creates a buffer object, vbo_buff, to access its data:

glGenBuffers(1, &vbo);
glBindBuffer(GL_ARRAY_BUFFER, vbo);
glBufferData(GL_ARRAY_BUFFER, 400, NULL, GL_STATIC_DRAW);
vbo_buff = clCreateFromGLBuffer(ctx, CL_MEM_WRITE_ONLY, 2, &err);

It’s important to see why the third argument of glBufferData is set to NULL. This
states that the host won’t transfer data to the VBO. The VBO is configured to hold 400
bytes, but this memory won’t be allocated on the host. Instead, the 400 bytes will be
allocated on the GPU, and the kernel will initialize the VBO data by accessing the
write-only buffer object, vbo_buff. 

 Once the buffer is created, it can be accessed like a regular memory object. It can
be made a kernel argument using clSetKernelArg, and the host can read its data with
clEnqueueReadBuffer. 
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CREATING IMAGE OBJECTS FROM OPENGL TEXTURE OBJECTS AND RENDERBUFFER OBJECTS

Just as OpenGL stores vertex data in VBOs, it stores texture data in texture objects and
pixel data in renderbuffer objects. And just as buffer objects can be associated with
VBO data, image objects can be associated with texture/renderbuffer data. This
should make sense, as applications access data in textures, renderbuffers, and image
objects using two-dimensional arrays.

 The process of creating an image object from OpenGL data is similar to the pro-
cess of creating a buffer object. To create an image object capable of writing to texture
objects, you can use the clCreateFromGLTexture2D and clCreateFromGLTexture3D
functions. The signatures of these two functions are as follows:

cl_mem clCreateFromGLTexture2D(cl_context context, cl_mem_flags flags,
                               GLenum texture_target, GLint miplevel,
                               GLuint texture, cl_int *err)

cl_mem clCreateFromGLTexture3D(cl_context context, cl_mem_flags flags,
                               GLenum texture_target, GLint miplevel,
                               GLuint texture, cl_int *err)

The texture_target parameter accepts the name of the target to which the texture
object is bound. For a two-dimensional texture, this should be set to GL_TEXTURE_2D.
For three-dimensional textures, such as cube maps, this parameter should be set to a
target such as GL_TEXTURE_CUBE_MAP_POSITIVE_X.

 To understand the miplevel parameter, you need to understand how mipmaps work.
Mipmaps are copies of a texture at different sizes, and OpenGL uses them to display tex-
tures at different levels of detail. Compared to the interpolation methods described in
chapter 6, mipmaps provide better performance and fewer flaws in the image. Each mip-
map copy corresponds to a mipmap level, and this is the value to set as the miplevel
parameter in clCreateFromGLTexture2D and clCreateFromGLTexture3D. 

 Creating an image object capable of accessing a renderbuffer is simpler than creat-
ing an image object from texture data. This is because there are no mipmaps or tex-
ture targets involved. Instead, renderbuffers have GLuint descriptors similar to those
used for VBOs. The function that creates the image object is clCreateFromGLRender-
buffer, and its signature is as follows:

cl_mem clCreateFromGLRenderbuffer(cl_context ctx, cl_mem_flags flags,
                                  GLuint renderbuffer, cl_int *err)

An example will show how this works. The following code creates an image object
called rend_obj and configures it to share data with the renderbuffer whose descrip-
tor equals 3:

rend_obj = clCreateFromGLRenderbuffer(ctx, CL_MEM_WRITE_ONLY, 3, &err);

Once you’ve created memory objects to share data with OpenGL objects, the next step
involves synchronizing access to the data. We’ll look at this next. 
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15.1.3 Synchronizing access to shared data

OpenGL and OpenCL routines can share data, but they can’t access it at the same
time. For example, if an OpenCL kernel is processing the shared data as a buffer
object, the OpenGL vertex shader can’t access the shared data as a VBO.

 Synchronization between OpenGL and OpenCL is made possible through two
OpenCL functions. The first is clEnqueueAcquireGLObjects, which ensures that the
kernel will have exclusive access to the data. The second function is clEnqueue-
ReleaseGLObjects, which allows other processes, such as the OpenGL renderer, to
access the data. These functions have similar signatures:

int clEnqueueAcquireGLObjects(cl_command_queue queue, cl_uint num_objects,
      const cl_mem *mem_objects, cl_uint num_events_in_wait_list,
      const cl_event *event_wait_list, cl_event *event)

int clEnqueueReleaseGLObjects(cl_command_queue queue, cl_uint num_objects,
      const cl_mem *mem_objects, cl_uint num_events_in_wait_list,
      const cl_event *event_wait_list, cl_event *event)

Both functions operate similarly to the command-enqueuing functions discussed in
chapters 3 and 6, but the third parameter is new. It accepts an array of one or more
memory objects, and when clEnqueueAcquireGLObjects is called, the kernel will
have exclusive access to them. When clEnqueueReleaseGLObjects is called, the ker-
nel will give up this exclusive access.

 You can think of these functions as forming a mutex, which was discussed in chap-
ter 7. They serve to lock and unlock access to the memory objects defined by the
mem_objects parameter.

 These functions aren’t hard to understand, but there are two important points to
keep in mind when using them:

■ Before acquiring a lock on the data, you should call glFinish to ensure that all
OpenGL routines have completed their operation.

■ After releasing the lock on the data, you should call clFinish to ensure that all
OpenCL routines have completed their operation.

The following code shows how these functions work together to ensure that a kernel
can process OpenGL data without interfering with the rendering process. In this case,
the kernel proc accesses data in a buffer object called buff:

glFinish();
clEnqueueAcquireGLObjects(queue, 1, &buff, 0, NULL, NULL);

clEnqueueNDRangeKernel(queue, proc, 1, NULL, global_size, local_size,
   0, NULL, NULL);

clEnqueueReleaseGLObjects(queue, 1, &buff, 0, NULL, NULL);
clFinish();

The clFinish at the end of the code ensures that the kernel will finish its execution
and that the lock will be released before further operations can commence. After
clFinish completes, the vertex shader will be able to access the kernel’s output. 
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 Once the shared memory objects are created for interoperability, you may want to
query the data structures to ensure they’ve been configured properly. This is the topic
of the next section. 

15.2 Obtaining information
The OpenCL API provides three functions that allow you to obtain information about
a running OpenCL-OpenGL application. The first two functions, clGetGLObjectInfo
and clGetGLTextureInfo, query the characteristics of OpenGL objects whose data is
shared with OpenCL kernels. The third, clGetGLContextInfoKHR, provides informa-
tion about an OpenGL context and its associated devices.

15.2.1 Obtaining OpenGL object and texture information

The clGetGLObjectInfo function identifies what type of OpenGL object (VBO, tex-
ture, or renderbuffer) was used to create an OpenCL memory object. Its signature is
as follows:

cl_int clGetGLObjectInfo(cl_mem mem_obj, cl_gl_object_type *type,
   GLuint *name)

The first parameter, mem_obj, identifies the memory object created from OpenGL
data. The function identifies the OpenGL data type by setting type equal to
CL_GL_OBJECT_BUFFER, CL_GL_OBJECT_TEXTURE2D, CL_GL_OBJECT_TEXTURE3D, or
CL_GL_OBJECT_RENDERBUFFER. The name parameter is set equal to the object’s descrip-
tor unless set to NULL.

 As an example, suppose mobj is a memory object created from data inside an
OpenGL object. The following code calls clGetGLObjectInfo to determine the type
of the OpenGL object from which mobj was created:

cl_gl_object_type type;
clGetGLObjectInfo(mobj, &type, NULL);

switch(type) {
   case CL_GL_OBJECT_BUFFER:
      ...
      break;
   case CL_GL_OBJECT_TEXTURE2D:
      ...
      break;
}

If you’re certain an OpenGL object is a texture, you can call clGetGLTextureInfo to
obtain information about the texture. Like the clGetXXInfo functions presented in
chapter 2, this accepts a parameter name and returns information specific to the
parameter. The signature is as follows:

cl_int clGetGLTextureInfo(cl_mem mem_obj, cl_gl_texture_info param_name,
   size_t value_size, void *value, size_t *param_value_size_ret)

The param_name argument can be set to either CL_GL_TEXTURE_TARGET or CL_GL_
MIPMAP_LEVEL. If set to CL_GL_TEXTURE_TARGET, the function will identify the target to
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which the texture is bound, such as GL_TEXTURE_2D. If param_name is set to CL_GL_
MIPMAP_LEVEL, the function will return the texture’s mipmap level. 

15.2.2 Obtaining information about the OpenGL context

The cl_context_properties structure, discussed earlier in this section, must identify
an OpenGL context to ensure OpenCL-OpenGL interoperability. The clGetGL-
ContextInfoKHR function accepts a cl_context_properties structure and provides
information about devices capable of supporting its context. The function’s signature
is as follows:

cl_int clGetGLContextInfoKHR(const cl_context_properties *properties,
   cl_gl_context_info param_name, size_t param_value_size,
   void *param_value, size_t *param_value_size_ret)

Here, param_name can be set to one of two values:

■ CL_CURRENT_DEVICE_FOR_GL_CONTEXT_KHR—Returns a cl_device_id that iden-
tifies the device executing the context

■ CL_DEVICES_FOR_GL_CONTEXT_KHR—Returns an array of cl_device_id struc-
tures that identify which devices are capable of executing the context

In both cases, the devices must be compliant with OpenCL and OpenGL. If the device
running the OpenGL context is not OpenCL-compliant, clGetGLContextInfoKHR
won’t be able to create a cl_device_id to represent it.

 The KHR at the end of the function’s name shows that it’s not defined in the core
OpenCL API. For this reason, you can’t call clGetGLContextInfoKHR directly. You
need to access it through a pointer, and to obtain this pointer, you need to invoke a
function called clGetExtensionFunctionAddress. The signature for this function is
as follows:

void* clGetExtensionFunctionAddress(const char *funcname)

The return value of this function must be cast to a specific pointer type for the function
being called. In the case of clGetGLContextInfoKHR, the pointer type defined in cl_gl.h
is clGetGLContextInfoKHR_fn. For example, if you want to determine which device is
executing an OpenGL context defined by props, you could call the following code:

cl_device_id dev;
clGetGLContextInfoKHR_fn func =
      clGetExtensionFunctionAddress("clGetGLContextInfoKHR");
func(props, CL_CURRENT_DEVICE_FOR_GL_CONTEXT_KHR,
      sizeof(cl_device_id), &dev, NULL);

clGetGLContextInfoKHR is useful when you don’t know which device is executing the
OpenGL context. But because the function isn’t part of the core API, some vendors’
OpenCL libraries don’t support it.

 At this point, you should have a solid grasp of the functions that make interopera-
bility between OpenCL and OpenGL possible. In the next section, we’ll look at a basic
example that demonstrates how they’re used. 
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15.3 Basic interoperability example
Interfacing OpenCL and OpenGL isn’t particularly difficult, but because there are so
many data structures and functions involved, it can be hard to keep your code orga-
nized. The goal of this section is to present a method for structuring OpenGL-OpenCL
code that can be used in different applications. This method will be used throughout
this chapter and chapter 16.

 To introduce the method, this section will present an application that draws three
squares in a 3-D model. This is similar to the three_squares application from appen-
dix B, but the Ch15/basic_interop code uses an OpenCL kernel to set the coordi-
nates and colors of the vertices. This isn’t exciting as 3-D applications go, but once
you see how the code works, you’ll be able to extend the method to support more
interesting applications.

 In the basic_interop.c source file, the main function contains five important
functions:

■ init_gl—Initializes OpenGL operation
■ init_cl—Initializes OpenCL operation
■ configure_shared_data—Creates OpenGL and OpenCL data objects
■ execute_kernel—Launches the OpenCL kernel
■ display—Renders graphics in the window

These functions perform the bulk of the application’s processing, and we’ll look at
each function in turn.

15.3.1 Initializing OpenGL operation

The application begins its processing by creating a GLUT window and configuring it to
render OpenGL graphics. The init_gl function accomplishes these tasks with the fol-
lowing code:

glutInit(&argc, argv);
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGBA);
glutInitWindowSize(300, 300);
glutCreateWindow("Basic Interoperability");
glClearColor(1.0f, 1.0f, 1.0f, 1.0f);

These functions must be called before OpenCL functions because GLUT creates the
OpenGL context needed to create an OpenCL context. If you create an OpenCL con-
text without a running OpenGL context, it won’t support interoperability.

 After these GLUT functions execute, init_gl calls glewInit to check whether the
application’s extensions are supported. Then it calls init_shaders to compile the ver-
tex shader (basic_interop.vert) and the fragment shader (basic_interop.frag). If the
compilation succeeds, the shaders are attached to a program structure.

15.3.2 Initializing OpenCL operation

Chapter 2 presented the six fundamental data structures used in OpenCL applica-
tions: cl_platform_id, cl_device_id, cl_context, cl_command_queue, cl_program,
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and cl_kernel. In basic_interop.c, the init_cl function creates and configures all six
of these structures.

 Most of the code in init_cl is similar to that used in host applications throughout
this book. The main difference is the manner in which the cl_context structure is
created. The following listing presents the code.

...
#ifdef MAC

CGLContextObj mac_context = CGLGetCurrentContext();    
CGLShareGroupObj group = CGLGetShareGroup(mac_context);    
cl_context_properties properties[] = {                 
   CL_CONTEXT_PROPERTY_USE_CGL_SHAREGROUP_APPLE,       
   (cl_context_properties)group, 0};                   

#else
#ifdef UNIX

cl_context_properties properties[] = {           
   CL_GL_CONTEXT_KHR,                                      
   (cl_context_properties)glXGetCurrentContext(),
   CL_GLX_DISPLAY_KHR,                           
   (cl_context_properties)glXGetCurrentDisplay(),
   CL_CONTEXT_PLATFORM,                          
   (cl_context_properties)platform, 0};          

#else

cl_context_properties properties[] = {           
   CL_GL_CONTEXT_KHR,                                      
   (cl_context_properties)wglGetCurrentContext(),
   CL_WGL_HDC_KHR,                               
   (cl_context_properties)wglGetCurrentDC(),     
   CL_CONTEXT_PLATFORM,                          
   (cl_context_properties)platform, 0};          

#endif
#endif

context = clCreateContext(properties, 1, &device, NULL, NULL, &err);

After the context is created, the init_cl function reads the text in basic_interop.cl
and compiles it. Then it creates a cl_command_queue and a cl_kernel for the
basic_interop function. Once these structures are created, the OpenCL initialization
is complete and the application can start creating data objects. 

15.3.3 Creating data objects

After initialization, the main function calls configure_shared_data. This function
starts by creating the vertex array objects (VAOs) and vertex buffer objects (VBOs)
needed to store rendering data. For this application, the VBOs store vertex coordi-
nates and colors, and the following code configures the first VBO:

Listing 15.1 Creating the OpenGL-OpenCL context: basic_interop.c (abridged)

Set properties—
Mac OS

Set properties—
Linux

Set properties—
Windows
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glBindBuffer(GL_ARRAY_BUFFER, vbo[0]);
glBufferData(GL_ARRAY_BUFFER, 12*sizeof(GLfloat),
      NULL, GL_DYNAMIC_DRAW);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, 0);
glEnableVertexAttribArray(0);

The third argument of glBufferData is set to NULL because the VBO will be initially
empty. The VBO’s data store will be allocated when it’s instantiated on the GPU.

configure_shared_data creates six VBOs: three to hold coordinate data and three
to hold color data. After creating these objects, the function creates six OpenCL
buffer objects to access the data in the VBOs. The following code shows how this
is accomplished:

for(i=0; i<6; i++) {
   mem_objects[i] = clCreateFromGLBuffer(context, CL_MEM_WRITE_ONLY,
         vbo[i], &err);
   clSetKernelArg(kernel, i, sizeof(cl_mem), &mem_objects[i]);
}

The for loop creates six buffer objects, mem_objects[i], that share data with the
VBOs identified by vbo[i]. Next, the application calls clSetKernelArg to make kernel
arguments out of the buffer objects. Once the arguments are set, the kernel can
be executed. 

15.3.4 Executing the kernel

In the basic_interop application, an OpenCL kernel initializes the vertex coordinates
and colors inside each of the six VBOs. The kernel accesses VBO memory through buf-
fer objects, and the following code presents the first few lines of the kernel function:

__kernel void basic_interop(__global float4* first_coords,
      __global float4* first_colors, __global float4* second_coords,
      __global float4* second_colors, __global float4* third_coords,
      __global float4* third_colors) {

   first_coords[0] = (float4)(-0.15f, -0.15f,  1.00f, -0.15f);
   first_coords[1] = (float4)( 0.15f,  1.00f,  0.15f,  0.15f);
   ...
}

The main function launches the kernel by calling execute_kernel. This acquires
exclusive access to the VBO data, executes the kernel, and then releases access to the
VBO data. The following code shows how it works.

void execute_kernel() {

   int err;
   cl_event kernel_event;

   glFinish();
   clEnqueueAcquireGLObjects(queue,    
      6, mem_objects, 0, NULL, NULL);            

Listing 15.2 Executing the kernel: basic_interop.c (abridged)

Obtain 
data lock

B
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   clEnqueueTask(queue, kernel, 0, NULL, &kernel_event);

   clWaitForEvents(1, &kernel_event);

   clEnqueueReleaseGLObjects(queue,      
      6, mem_objects, 0, NULL, NULL);           
   clFinish(queue);
   clReleaseEvent(kernel_event);
}

The clEnqueueAcquireGLObjects function B ensures that the kernel can read and
write to the shared data in the buffer objects. Once the kernel completes its execu-
tion, clEnqueueReleaseGLObjects C allows other processes to access the shared
data. Specifically, OpenGL can use the newly initialized VBO data to render graphics
in the window. 

15.3.5 Rendering graphics

The display function handles the application’s graphical rendering. This function
isn’t called directly by main but is invoked as a callback function whenever the window
needs to redraw itself.

 The operation of display is straightforward. It cycles through each of the VAOs
and calls glDrawArrays on each. Once the vertices are drawn, display calls
glutSwapBuffers to update the pixels in the window. The following code shows how
this works.

void display(void) {
   glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

   glBindVertexArray(vao[2]);
   glDrawArrays(GL_TRIANGLE_FAN, 0, 4);

   glBindVertexArray(vao[1]);
   glDrawArrays(GL_TRIANGLE_FAN, 0, 4);

   glBindVertexArray(vao[0]);
   glDrawArrays(GL_TRIANGLE_FAN, 0, 4);

   glBindVertexArray(0);
   glutSwapBuffers();
}

It’s important to note that display does not execute the kernel. Because the render-
ing is static, the VBO content only needs to be set once. In contrast, the next section
explores how to code OpenGL-OpenCL applications with animated models. 

15.4 Interoperability and animation
If a 3-D model doesn’t change over time, it doesn’t make a significant difference
whether the rendering is performed by a GPU or a CPU. But when hundreds of thou-
sands of pixels need to be updated with each frame, it becomes vital to perform as

Listing 15.3 Rendering graphics: basic_interop.c (abridged)

Release 
data lock

C



335Interoperability and animation
much processing on the GPU as possible.
OpenCL can assist with this computation, and
this section will demonstrate how OpenGL-
OpenCL interoperability can be used to imple-
ment animation.

 Specifically, the discussion will focus on
drawing a sphere that spins around its vertical
axis. Figure 15.2 shows what the target render-
ing looks like.

 If you compare the code in the sphere.c
source file with the code in basic_interop.c,
you’ll notice that the overall application struc-
ture is still the same. That is, the code contains
the same five functions: init_gl, init_cl,
configure_shared_data, execute_kernel,
and display. But the sphere code has three
significant differences:

■ All of the vertex data is contained in a single VBO.
■ The display function is called repeatedly to animate the model.
■ With each call, display executes the kernel to compute new vertex coordinates.

This section will discuss each of these changes in turn. With each step, we’ll examine
how the code makes it possible to create and display a rotating model.

15.4.1 Specifying vertex data

The basic_interop project stores data in six VBOs, but the sphere project only needs
one. This is because the model consists of a single object (the sphere) and only one
color is used by the rendering. This makes the configure_shared_data function very
simple. Here’s the code.

void configure_shared_data() {

   int err;

   glGenVertexArrays(1, &vao);
   glBindVertexArray(vao);
   glGenBuffers(1, &vbo);

   glBindBuffer(GL_ARRAY_BUFFER, vbo);
   glBufferData(GL_ARRAY_BUFFER, 4 *                   
         NUM_VERTICES * sizeof(GLfloat),                    
         NULL, GL_DYNAMIC_DRAW);                       
   glVertexAttribPointer(0, 4, GL_FLOAT, GL_FALSE, 0, 0);
   glEnableVertexAttribArray(0);

   vertex_buffer = clCreateFromGLBuffer(context, CL_MEM_WRITE_ONLY,

Listing 15.4 Configuring the sphere’s vertices: sphere.c (abridged)

Configure 
VBO data

B

Figure 15.2 The OpenCL kernel updates 
the coordinates of the sphere, and OpenGL 
animates the model.
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         vbo, &err);
   if(err < 0) {
      perror("Couldn’t create a buffer object from the VBO");
      exit(1);
   }

   err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &vertex_buffer);
   err |= clSetKernelArg(kernel, 1, sizeof(float), &tick);
   if(err < 0) {
      printf("Couldn’t set a kernel argument");
      exit(1);
   };
}

It’s important to see how the glBufferData function B operates. The third argument
is NULL, so the VBO memory isn’t allocated on the host—it’s allocated on the GPU. Spe-
cifically, the memory occupies 4 * NUM_VERTICES * sizeof(GLfloat) bytes. By default,
NUM_VERTICES is set to 256, so the default VBO data occupies 4,096 bytes.

 The VBO contains vertex coordinates for the sphere. The vertex shader in
sphere.vert receives these coordinates as attributes, and as specified by glVertex-
AttribPointer, each attribute contains four float values. The responsibility for set-
ting these values falls to the kernel, which is executed by the display function. We’ll
look at this function next. 

15.4.2 Animation and display

To keep the sphere spinning, the display function must be called repeatedly. This is
made possible through the glutPostRedisplay function, which alerts the application
that the window needs to be redrawn. In response, display is called again. The follow-
ing listing shows how the display function makes use of glutPostRedisplay.

void display(void) {
   glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

   execute_kernel();

   glBindVertexArray(vao);
   glDrawArrays(GL_LINE_LOOP, 0, NUM_VERTICES);     

   tick += 0.0001f;

   glBindVertexArray(0);
   glutSwapBuffers();
   glutPostRedisplay();                    
}

After clearing the rendering state, the first step in the function’s operation is to exe-
cute the kernel. The kernel sets the vertices of the sphere and the glDrawArrays func-
tion depicts these vertices in the window. glDrawArrays connects the vertices in a line
loop, which means that it draws a line from each vertex to its successor, and the last
vertex is connected to the first.

Listing 15.5 Rendering the sphere’s graphics: sphere.c (abridged)

Draw sphere 
vertices

Redraw 
window
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 The tick variable is particularly important. It starts with a value of 0 and each iter-
ation of display increments it by 0.0001. This new value is sent to the kernel, which
uses it to change the coordinates of the sphere’s vertices. This change in coordinates
animates the sphere, and the increment controls how quickly the sphere rotates. The
next section explains how the kernel operates. 

15.4.3 Executing the kernel

To see how the kernel computes the sphere’s vertices, you need to understand spheri-
cal coordinates. Normally, we identify points in space using rectangular coordinates (x,
y, z). But for points on a sphere, it’s more convenient to use (r, , �):

■ r—The radius of the sphere, the distance from the sphere’s center to the point
■  (theta)—The angle from the top of the sphere (the zenith) to the point
■ � (phi)—The angle along the circle perpendicular to the line connecting the

sphere’s center and zenith

Figure 15.3 shows how these spherical coordinates
are related. The point P is located on the surface of
a sphere whose center is C and whose zenith is Z.
The coordinates of P are given as (r, , �).

 The angle  runs from the zenith to the nadir
(the lowest point on the sphere), so its angular
measure runs from 0 to  radians. The angle � runs
the length of an entire circle, so its angular mea-
sure runs from 0 to 2 radians. By default, the
sphere application contains 256 vertices divided
into 16 longitudinal lines drawn between the zenith
and the nadir. Each line contains 16 points, and
each point on a line has a different value of .

 OpenGL accepts only rectangular coordinates
for its vertices, so each (r, , �) triple needs to be
converted into an (x, y, z) triple. Using trigonometry, this conversion can be computed
as follows:

The following code shows how the kernel computes coordinates for each point on the
sphere. By default, there are 256 vertices in total and the RADIUS value is set to 0.75.

__kernel void sphere(__global float4* vertices, float tick) {

   int longitude = get_global_id(0)/16;
   int latitude = get_global_id(0) % 16;

Listing 15.6 Setting the sphere’s vertices: sphere.cl

x r  
y r  
z r cos=

sinsin=
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Z

Figure 15.3 Coordinates on a 
sphere are given using the 
parameters r, , and �.
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   float sign = -2.0f * (longitude % 2) + 1.0f;    
   float phi = 2.0f * M_PI_F * longitude/16 + tick;        
   float theta = M_PI_F * latitude/16;             

   vertices[get_global_id(0)].x =              
      RADIUS * sin(theta) * cos(phi);                   
   vertices[get_global_id(0)].y =              
      RADIUS * sign * cos(theta);              
   vertices[get_global_id(0)].z =              
      RADIUS * sin(theta) * sin(phi);          
   vertices[get_global_id(0)].w = 1.0f;        
}

This kernel processes vertices as float4 vectors instead of float3 vectors. OpenCL
supports float3 vectors, but on every system I’ve tested, float3 arrays are stored
internally as float4 arrays. This is why the kernel sets a value for the fourth vector
component.

 The vertices are divided into lines of 16 vertices each—the first sixteen vertices
form the first line, the second sixteen vertices form the second line, and so on. The
points in a line all have the same value of �, and the tick variable, incremented by the
display function, increases this value. As � increases, the lines rotate counterclock-
wise around the vertical axis. If you change the code so that tick is decremented by
the display function, the lines will rotate clockwise around the axis. 

15.5 Summary
When it comes to cross-platform 3-D rendering, OpenGL has little competition. You
can find it used frequently in games, scientific visualization, and computer-aided
design (CAD). The fact that this rendering can be accelerated with OpenCL is, in my
opinion, OpenCL’s most important benefit. The goal of this chapter is to show how
this acceleration works in code.

 The central concept is data sharing. OpenGL and OpenCL don’t transfer data
between themselves—they read and write to the same memory. To make this sharing
possible, applications create OpenCL memory objects from OpenGL objects. More
precisely, the host application creates buffer objects from VBOs and image objects
from textures and renderbuffer objects.

 An OpenCL kernel can process these shared objects as though they were regular
buffer objects and image objects, but only after it has obtained exclusive access to the
memory. The clEnqueueAcquireGLObjects function acquires this exclusive access,
and clEnqueueReleaseGLObjects releases it. Once clEnqueueReleaseGLObjects
completes, the data can be processed normally by the OpenGL rendering pipeline.

 This chapter presented two examples of OpenGL-OpenCL interoperability. The
first, basic_interop, executes an OpenCL kernel that initializes the vertex coordinates
and colors in a static OpenGL rendering. The structure of the basic_interop.c code
presents an approach that can be used to organize general OpenGL-OpenCL applica-
tions. This consists of five stages: initializing OpenGL operation, initializing OpenCL
operation, configuring shared data, executing the kernel, and displaying the drawing.

Compute spherical 
coordinates

Set vertex 
coordinates
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 The second application uses the same code structure to display an animated
sphere. The animation is accomplished by executing the kernel repeatedly, each time
with an updated value of the vertices’ angles. With each iteration, the kernel com-
putes different vertex coordinates and the model rotates around its axis.

 The examples in this chapter have used OpenCL to access data in OpenGL VBOs,
but kernels can also be used to process textures. High-speed texture processing is an
important topic in the world of games and graphics, and the next chapter will discuss
how OpenCL can be used to accelerate this operation.



Textures and renderbuffers
In 1992, the computer game Wolfenstein 3D started a revolution and launched the
genre known as the first-person shooter or FPS. Since its release, the basic elements of
FPS gameplay haven’t changed: keystrokes move the character, mouse motion sets
the character’s direction, and mouse clicks fire the character’s weapon.

 The graphics, on the other hand, have changed dramatically. Instead of pixel-
ated bad guys who look and move like LEGO men, monsters in modern games are
rendered with such incredible detail that you can see every scale, scowl, and razor-
sharp claw.

 These visual improvements are made possible by textures. An OpenGL texture is
an image that the renderer stretches or shrinks to cover a surface (see appendix B
for a full discussion of real-time rendering with OpenGL). Simple applications apply
textures to a model and don’t make any changes, but for high-quality special effects,
applications use advanced image processing techniques to update the texture in real
time. One prominent use for this is lighting. For example, a game developer may

This chapter covers

■ Image filtering: blurring, sharpening, and 
embossing

■ Implementing texture filtering with OpenCL
340
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want the alien’s skin to change its appearance depending on whether it is being viewed
by day, by night, or by night-vision goggles.

 These special effects demand high-speed image processing, and this is an impor-
tant advantage of OpenCL-OpenGL interoperability. Instead of having the CPU pro-
cess textures, an OpenCL kernel on the GPU can process the texture’s data before it’s
used by the renderer. This chapter will demonstrate how this works, and the primary
focus is image filtering. An OpenCL kernel can accentuate or minimize details within
an image, but before we get into the code, it’s important to become familiar with the
mathematical operations that make image filtering possible.

16.1 Image filtering
Professional image-editing applications, such as Adobe Photoshop and the GNU
Image Manipulation Program (GIMP), provide tools that add effects to images such as
blurring, sharpening, and embossing. These effects are accomplished using image fil-
ters. The theory behind these filters is involved, but the underlying mathematical
operations are easy to understand. The filtering process computes a series of two-
dimensional dot products and makes each product a pixel in the output image.

NOTE The filtering method discussed in this section is called spatial filtering.
In contrast, frequency filtering uses a two-dimensional version of the fast Fou-
rier transform (FFT) discussed in chapter 14.

As explained in chapter 12, a one-dimensional dot product accepts two input vectors
and returns the sum of the products of their corresponding elements. If p and q are
vectors, their dot product is calculated as follows:

Similar in principle, a two-dimensional dot product accepts two matrices and returns
the sum of the products of their corresponding elements. For example, suppose A
and B are two 3-by-3 matrices whose elements are as follows: 

The two-dimensional dot product of A and B can be computed with the following
equation:  

Image filtering treats an image as a matrix of values and computes a two-dimensional
dot product for each pixel in the image. In general, the goal is to draw attention to or
away from differences between adjacent pixels.

p q p0q0 p1q1 p2q2 p3q3+ + +=

A
a00 a01 a02

a10 a11 a12

a20 a21 a22

B
b00 b01 b02
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b20 b21 b22

==

A B a00b00 a01b01 a02b02 a10b10 a11b11 a12b12
a20b20 a21b21 a22b22

+ + + + +
+ + +
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The second matrix in the product is called (confusingly enough) a kernel. The values
of the kernel determine what effect the filter will have on the image. An example will
show how this works. Figure 16.1 presents an input image with noise.

 The noise in this image can modeled as unwanted variation between pixels. You
can reduce this variation by replacing each pixel with the average of the pixel’s color
and those of the pixels surrounding it. To perform this operation, you’ll represent the
image as a matrix called M, and you’ll use Mij to refer to the pixel at row i and column
j. The filtered pixel can be obtained as follows: 

This operation can also be performed by taking the dot product of these nine image
pixels with a kernel, KBox, whose elements are as follows: 

This dot product must be performed for each pixel in the input image. Once this is
done, the resulting image will have the same size as the original. Because the elements
of KBox add to 1, the result will also have the same average brightness. Figure 16.2
shows what the filtered image looks like.

Figure 16.1 The high-frequency 
noise in this image needs to be 
filtered.

Mij out 

Mi 1 j 1–– +Mi j, 1– +Mi 1 j 1–+

+Mi 1 j– +Mi j, +Mi 1 j+

+Mi 1 j 1+– +Mi i j, 1+  +Mi 1 j 1++

9
--------------------------------------------------------------------------------------=

KBox

1 1 1
1 1 1
1 1 1

9
------------------= Filter KBox M=

Figure 16.2 The box filter 
removes noise by blurring 
adjacent pixels.
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This filter, called a box filter or mean filter, has removed much of the noise in the origi-
nal image by averaging neighboring pixels. But it has also removed a significant
amount of detail that isn’t noise. You can do better. The rest of this section will pres-
ent three other types of filters commonly used to process textures: the Gaussian blur,
sharpening, and embossing.

16.1.1 The Gaussian blur

When it comes to removing noise, the
Gaussian blur generally gives better
results than the box filter. The term
Gaussian refers to a specific function
that, in one dimension, produces the
frequently encountered bell curve. Fig-
ure 16.3 shows what the Gaussian func-
tion looks like in two dimensions.

 To implement this function as a ker-
nel, you need to approximate its values
in a 3*3 matrix. The following matrix
presents one possible kernel: 

Filtering with this kernel produces a blurring effect similar to that of the box filter, but
it gives priority to the central pixel and the pixels adjacent to it. This means that the fil-
tered image keeps more of the differences between one pixel and the next. Figure 16.4
shows what the result looks like.

 As shown, the Gaussian blur serves as a compromise between the unfiltered image
and the deep blurring effect produced by the box filter. It’s important to note that the
kernel used for this filter is only one possible implementation of the Gaussian blur.
The values in the kernel can be modified to produce more or less blurring. 

KGaussian

1 2 1
2 4 2
1 2 1

16
------------------=

Figure 16.4 The Gaussian blur 
doesn’t remove as much noise as 
the box filter, but doesn’t take 
away as much detail either.

Figure 16.3 The Gaussian blur removes noise 
using this two-dimensional Gaussian function.
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16.1.2 Image sharpening

In contrast to the box filter and Gaussian blur, which reduce the difference between
pixels, a sharpening filter accentuates the difference. Instead of adding values of
neighboring pixels, the sharpening filter subtracts them from the central pixel. An
example sharpening kernel is shown here: 

If the central pixel has the same value as those around it, the resulting pixel’s value will
be equal to that of the original. But if the central pixel has a greater value than its neigh-
bors, the filtered value will be significantly magnified. This is shown in figure 16.5,
which depicts the sharpened image on the right.

A sharpening filter magnifies noise along with other details in the image. Therefore,
it’s a good idea to apply a blurring filter, such as the Gaussian filter, before sharpening
the features of an image. 

16.1.3 Image embossing

Embossing enhances the features of an image so that surfaces appear to be cast in relief.
This is similar to sharpening, but embossing increases brightness in one direction and
reduces brightness in another. One implementation of an embossing filter is as follows: 

Because of the directional sharpening, the resulting figure appears to reflect light as
though it had been engraved in metal. This effect is depicted on the right side of fig-
ure 16.6.

Ksharpening

1– 1– 1–

1– 9 1–

1– 1– 1–

=

Figure 16.5 The sharpening filter accentuates detail within an image.

KEmboss

2– 1– 0
1– 1 1

0 1 2
2

--------------------------=

Figure 16.6 An 
embossing filter 
makes an image 
look as though it’s 
been engraved in 
metal.
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The overall gray color is produced because the kernel values sum to 0.5. Similarly, the
overall color will be white if the kernel elements add to 1 and black if they add to 0.
Therefore, with the right values, the kernel can affect the brightness of an image in
addition to sharpening or blurring its features. 

 At this point, you should have a basic understanding of spatial filtering and the
manner in which kernels can be used to filter images. The next section shows how to
implement this process with OpenCL and display the results in an OpenGL rendering.

16.2 Filtering textures with OpenCL
Coding an OpenCL kernel to perform image sharpening doesn’t present significant
difficulty—all that’s needed are a series of two-dimensional dot products. But coding
the host application to integrate OpenCL’s data structures with OpenGL’s texture pro-
cessing takes careful effort. An example of this can be found in the Ch16/
texture_filter/texture_filter.c source file.

 The texture_filter application reads the image in the input.png file, filters the
image with a sharpening filter, and displays the result as a texture. The goal of this sec-
tion is to explain how this process works. Throughout this discussion, you’ll rely on
the same five functions discussed in the last chapter: init_gl, init_cl, configure_
shared_data, execute_kernel, and display.

16.2.1 The init_gl function

The init_gl function initializes the GLUT window and the overall operation of
OpenGL. Then it continues the initialization process by invoking three functions:

■ init_buffers—Creates one VBO containing vertex coordinates and one con-
taining texture coordinates

■ init_textures—Creates and configures a texture object to hold pixel data
■ init_shaders—Compiles the vertex shader (texture_filter.vert) and fragment

shader (texture_filter.frag)

It’s important to note that init_textures doesn’t set pixel data for the texture object.
That is, it doesn’t call glTexImage2D. The texture’s image data will be set later on by
the OpenCL kernel.

16.2.2 The init_cl function

The init_cl function creates the primary OpenCL data structures used by the appli-
cation: platform, device, context, program, command queue, and kernel. In
texture_filter.c, this function also reads in pixels from the input image (input.png)
and creates a two-dimensional image object to hold them. This is shown in the follow-
ing code:

read_image_data(TEXTURE_FILE, &tex_pixels, &width, &height);

png_format.image_channel_order = CL_R;
png_format.image_channel_data_type = CL_UNSIGNED_INT8;



346 CHAPTER 16 Textures and renderbuffers
in_texture = clCreateImage2D(context,
      CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
      &png_format, width, height, 0, (void*)tex_pixels, &err);

The pixels read from the image are formatted in grayscale. More precisely, each pixel
has a single component, and this component is given as an unsigned char. Once the ker-
nel reads these pixels, it will apply the sharpening filter to accentuate detail in the image.

16.2.3 The configure_shared_data function

No matter which SDK I use, I get a CL_INVALID_IMAGE_FORMAT_DESCRIPTOR error
when I attempt to create an image object from a texture object by invoking
clCreateFromGLTexture2D. To get around this error, I’ve found it helpful to employ
an intermediate storage mechanism called a pixel buffer object, or PBO. A PBO can hold
data for a texture so that, when glTexImage2D is called, the texture’s image data is
read from the PBO.

PBOs have a lot in common with vertex buffer objects (VBOs), discussed in appendix
B. Both object types store OpenGL data and both use the same functions for creation
(glGenBuffers), binding (glBindBuffer), and associating data (glBufferData). Most
importantly, VBOs and PBOs can both be used with clCreateFromGLBuffer to create
shared OpenGL buffer objects. This function is central to OpenGL-OpenCL interoper-
ability, and chapter 15 explains its usage in detail.

 The following listing presents the full code of the configure_shared_data func-
tion in texture_filter.c. It creates the PBO, uses it to create a buffer object, and then
makes the buffer object an argument of the kernel.

void configure_shared_data() {

   int err;

   glGenBuffers(1, &pbo);                     
   glBindBuffer(GL_ARRAY_BUFFER, pbo);               
   glBufferData(GL_ARRAY_BUFFER,              
                width*height*sizeof(char),    
         NULL, GL_STATIC_DRAW);               
   glBindBuffer(GL_ARRAY_BUFFER, 0);          

   out_buffer = clCreateFromGLBuffer(context,         
                CL_MEM_WRITE_ONLY, pbo, &err);          
   if(err < 0) {
      perror("Couldn't create a buffer object from the PBO");
      exit(1);
   }

   err = clSetKernelArg(kernel, 1, sizeof(cl_mem), &out_buffer);
   if(err < 0) {
      printf("Couldn't set a kernel argument");
      exit(1);
   };
}

Listing 16.1 Configuring shared data: texture_filter.c (abridged)

Configure 
PBO

Create shared 
buffer object
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The glBufferData function sets the size of the data to be stored by the PBO, but not the
data itself. More precisely, the PBO’s size is given (width*height*sizeof(char)) and
the actual data is set to NULL. This is because the PBO’s data store is shared with the buffer
object out_buffer. This holds the kernel’s output, and after the kernel finishes execut-
ing, the PBO will be able to access the output data as if it had been set with glBufferData.

16.2.4 The execute_kernel function

After the application creates the kernel and sets its arguments, it calls execute_
kernel to deploy the kernel function, texture_filter, to the device. The host appli-
cation generates one work-item for each pixel in the input image, and this is accom-
plished in the following code:

global_size[0] = width;
global_size[1] = height;
clEnqueueNDRangeKernel(queue, kernel, 2, NULL, global_size, NULL,
      0, NULL, &kernel_event);

The following listing presents the kernel code. The first argument is an image object
containing the input pixels. The second argument contains the filtered results.

__constant sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE |
      CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST;

__kernel void texture_filter(read_only image2d_t src_image,
                             __global uchar* dst_buffer) {

   int k[9] = {-1, -1, -1, -1, 9, -1, -1, -1, -1};         

   int x = get_global_id(0);
   int y = get_global_id(1);

   int pixel =
    k[0] * read_imageui(src_image, sampler,
              (int2)(x-1, y-1)).s0 +                      
    k[1] * read_imageui(src_image, sampler,
              (int2)(x,   y-1)).s0 +       
    k[2] * read_imageui(src_image, sampler,
              (int2)(x+1, y-1)).s0 +       
    k[3] * read_imageui(src_image, sampler,
              (int2)(x-1, y)).s0 +         
    k[4] * read_imageui(src_image, sampler,
              (int2)(x,   y)).s0 +         
    k[5] * read_imageui(src_image, sampler,
              (int2)(x+1, y)).s0 +         
    k[6] * read_imageui(src_image, sampler,
              (int2)(x-1, y+1)).s0 +       
    k[7] * read_imageui(src_image, sampler,
              (int2)(x,   y+1)).s0 +       
    k[8] * read_imageui(src_image, sampler,
              (int2)(x+1, y+1)).s0;        

   dst_buffer[y*get_global_size(0) + x] =     
      (uchar)clamp(pixel, 0, 255);              
}

Listing 16.2 Applying the sharpening filter: texture_filter.cl

Set filter 
kernelB

Compute dot 
product

Assign 
output pixel

C
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The filtering kernel used by the function B contains the same coefficients as used by
the sharpening kernel discussed earlier. The function uses these values to perform dot
products of nine elements each. The results are initially stored as signed integers, but
the last line of the function C casts the output value to an unsigned char and invokes
the clamp function to constrain the output value to fall between 0 and 255.

 Once the kernel completes its processing, the host application releases the shared
output data for use by the OpenGL renderer. The following code shows how the
shared data in the PBO is used to set the data inside the application’s texture:

glBindBuffer(GL_PIXEL_UNPACK_BUFFER, pbo);
glTexImage2D(GL_TEXTURE_2D, 0, GL_LUMINANCE, width, height,
      0, GL_LUMINANCE, GL_UNSIGNED_BYTE, 0);
glActiveTexture(GL_TEXTURE0);

The first line binds pbo to the GL_PIXEL_UNPACK_BUFFER target. This target makes pbo
a pixel buffer object, and once the binding is set, any function that would normally
read from CPU memory will now read from the PBO. Therefore, the glTexImage2D
function obtains its image data from the bound PBO, and the pixels are formatted
according to the function’s parameters: GL_LUMINANCE specifies that each pixel con-
tains one component, and GL_UNSIGNED_BYTE specifies that each component has a
single byte. Once this function is called, the texture can be applied to an OpenGL sur-
face normally. 

16.2.5 The display function

The display function is called every time the OpenGL window needs to redraw itself.
Because the model contains only one vertex array object and one texture, the code for
this function is easy to understand:

void display(void) {
   glClear(GL_COLOR_BUFFER_BIT);
   glBindVertexArray(vao);
   glBindTexture(GL_TEXTURE_2D, texture);
   glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
   glBindVertexArray(0);
   glutSwapBuffers();
}

Figure 16.7 presents the final result. As
shown, the sharpening filter accentuates
detail within the image.

 The filter’s purpose can be changed
easily by modifying the values of the ker-
nel matrix. For better results, the num-
ber of values can be changed from 3 by 3
to 5 by 5 or 7 by 7. This spatial filtering
can also be performed in the fragment
shader instead of an OpenCL kernel.

Figure 16.7 The OpenCL kernel sharpens the 
image by computing a series of two-dimensional 
dot products.
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But for complex texture processing algorithms, it’s generally better to employ
OpenCL kernels because of their local memory access and broader range of functions.  

16.3 Summary
High-speed texture processing is a vital component of modern graphical applications,
and this chapter has shown how to filter OpenGL textures with OpenCL. The primary
algorithm under discussion is spatial filtering, which computes a two-dimensional dot
product for each input pixel.

 This chapter has concentrated on three types of spatial filters. The Gaussian blur
removes noise by taking a weighted average of the input pixel and the pixels sur-
rounding it. The sharpening filter accentuates detail by subtracting the values of
neighboring pixels from the central pixel. An embossing filter sharpens in one direc-
tion and blurs in another, thereby producing an image that appears to have been
engraved in metal.

 Accessing texture objects with OpenCL can be problematic because the function
clCreateFromGLTexture2D isn’t fully supported. Therefore, there’s no way to create
an image object directly from OpenGL textures. Instead, you can use pixel buffer
objects (PBOs). OpenGL applications rely on PBOs for improved data transfer between
the CPU and GPU, but they’re important for OpenGL-OpenCL interoperability
because you can create buffer objects from PBOs with clCreateFromGLBuffer. Then,
once the PBO is bound to the GL_PIXEL_UNPACK_BUFFER target, it can be used to set
image data within a texture.

 OpenCL and OpenGL are both powerful toolsets, but no one has ever called them
simple. Getting the two to work together is one of the most complex programming
tasks I can think of, and because I can’t think of a harder topic related to OpenCL,
this will be the last chapter of the book. Next, appendix A discusses the process of
installing OpenCL on Windows, Linux, and Mac OS systems.



appendix A:
Installing and using a

 software development kit

There’s no getting around it. If you want to build an application based on OpenCL,
you need to install a software development kit (SDK). These are freely available as
web downloads, but depending on your operating system and hardware vendor,
they can be confusing to work with. The goal of this appendix is to help alleviate
this confusion. Specifically, this appendix will explain how to obtain, install, and
use an SDK capable of running on your system. But first, let’s look at OpenCL SDKs
in general.

A.1 Understanding OpenCL SDKs
At the time of this writing, the two most popular OpenCL SDKs are the ones
released by AMD and Nvidia. The AMD SDK is called the Accelerated Parallel Pro-
cessing (APP) SDK and the Nvidia SDK is called the GPU Computing SDK. Both com-
panies have released different versions for different operating systems.

 Before you install an SDK, there are two points you should be clear on. First, you
should know the precise make and model of the hardware you intend to program,
and whether it supports OpenCL. Second, you should have a basic understanding
of which files in the SDK are important.

A.1.1 Checking device compliance

Which SDK you need depends on your operating system and the nature of your
hardware. For example, if you want to build applications to run on your GPU, you
need to know whether your graphics card was produced by AMD or Nvidia. You
also need to know the model of the graphics card, such as a Radeon 5850 or a
GTX 470. 
350
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 To find this information, do one of the following:

■ On Windows, open the Control Panel, open the Device Manager, and open the
entry for Display Adapters.

■ On Linux, open a terminal and execute the command lspci. If you see any-
thing called ATI, AMD, or Radeon, your graphics card is AMD-based. If you see
Nvidia, your card is based on Nvidia hardware.

■ On a Mac, open the Apple menu and select the About This Mac entry. Click the
More Info button and click Graphics/Displays in the left pane. Remember the
value of the field entitled Chipset Model. This will identify your graphics card.

Once you’ve identified your target hardware, you need to make sure it’s OpenCL-
compliant. If you have Nvidia hardware installed, you can verify its compliance at
http://developer.nvidia.com/cuda-gpus. For AMD hardware, go to the website http:
//developer.amd.com/sdks/AMDAPPSDK/pages/DriverCompatibility.aspx. Find the
table called System Requirements and make sure your operating system and hardware
are supported.

A.1.2 OpenCL header files and libraries

Before you can build any C/C++ application, you need the right header files and the
right libraries. The header files declare constants, data structures, and functions, and
libraries contain the functions’ executable code. Most OpenCL applications only need
a single header file: cl.h. On Windows and Linux, cl.h is located in a directory called
CL. On Mac OS systems, it can be found in a directory called OpenCL.

 The subject of OpenCL libraries is more complicated on Windows and Linux, but
not for Mac OS users. On Mac OS systems, this library is a Mach-O file called OpenCL,
and it comes with every version of Mac OS X from 10.6 onward. As long as you use
-framework OpenCL in your makefile, the compiler will find the cl.h header file and
the OpenCL library.

 Both AMD and Nvidia provide libraries called OpenCL (OpenCL.dll on Windows,
libOpenCL.so on Linux). In addition, both vendors’ platforms on Windows and
Linux support the cl_khr_icd extension. This means they provide a second library
called an installable client driver, or ICD. The ICD serves as the interface to the
OpenCL-compliant devices. Figure A.1 shows this relationship.

 When you build an OpenCL application, you have to tell the linker how to access
the primary OpenCL library, which is called libOpenCL.so on Linux systems and
OpenCL.dll on Windows. But you don’t have to identify the name or location of the
ICD. This is important, because it means you can distribute your application without
knowing anything about the user’s vendor-specific hardware.

 At runtime, however, the application must be able to access the ICDs. On Linux sys-
tems, the names of the ICDs are provided in text files inside the /etc/OpenCL/ven-
dors folder. On Windows, the vendor-specific libraries are identified in the registry.
When an SDK installs, it accesses the registry key HKEY_LOCAL_MACHINE\SOFT-
WARE\Khronos\OpenCL\Vendors. This is shown in figure A.2.

http://developer.nvidia.com/cuda-gpus
http://developer.amd.com/sdks/AMDAPPSDK/pages/DriverCompatibility.aspx
http://developer.amd.com/sdks/AMDAPPSDK/pages/DriverCompatibility.aspx
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When an OpenCL application executes on Windows or Linux, it looks through the
ICD names and loads the corresponding library files as they’re needed. For this rea-
son, the ICD libraries must be placed in a location where the linker can find them. As
shown in table A.1, this location depends on the vendor and the operating system. 

OpenCL application

OpenCL library
(OpenCL.dll)

Installable client driver 
(amdocl.dll for AMD,
nvcuda.dll for Nvidia)

OpenCL application

OpenCL library
(libOpenCL.so)

Installable client driver 
(libamdocl.so for AMD,
libcuda.so for Nvidia)

Windows

OpenCL application

OpenCL library
(OpenCL)

Compliant hardware

Mac OS

Compliant hardware

Linux

Compliant hardware

Figure A.1 OpenCL library 
dependence hierarchy

Figure A.2 Identifying the installable client drivers on Windows
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At this point, you should know which development kit you need and the SDK files that
make OpenCL development possible. The following sections provide platform-specific
instructions for your operating system and hardware vendor.

NOTE These instructions are valid for SDKs based on OpenCL 1.1. They may
not apply to future versions.

A.2 OpenCL on Windows
AMD and Nvidia make it easy for Windows users to build OpenCL applications—all
you have to do is download and run a couple of executables. This section explains
how this is accomplished, and after the SDK is installed, how to build the SDK’s exam-
ple projects.

NOTE These instructions assume that you have Visual Studio installed.
Appendix C explains OpenCL development using the freely available Mini-
malist GNU for Windows (MinGW).

A.2.1 Windows installation with an AMD graphics card

On Windows, AMD provides its OpenCL implementation as part of its Accelerated Par-
allel Processing (APP) toolset. Installing this is a straightforward process, and the fol-
lowing instructions will make this clear:

1 Update your system with the latest AMD driver and Catalyst tool. You can down-
load new drivers at http://support.amd.com/us/gpudownload.

2 Open a browser and go to http://developer.amd.com/sdks/AMDAPPSDK/
downloads. This is the primary website for AMD OpenCL support.

3 Scroll down to the Downloads section. Download the SDK installer that corre-
sponds to your system. On my 64-bit Windows 7 system, the file is called amd-
app-sdk-v2.5-Windows-64.exe.

4 Execute the installer, which will extract the SDK files to your system. Click the
Unzip button on the right.

5 AMD’s Catalyst Install Manager should appear, but if it doesn’t, execute the
Setup.exe file in the directory containing the extracted SDK files. The Catalyst
Manager will ask which language it should use. Select a language, and click Next.

6 The following page asks whether you’d prefer the Express or Custom installa-
tion. I recommend the Custom installation. Click Next, and make sure that any
component containing the word Developer is selected. Click Next again.

Table A.1 Default locations of installable client drivers

Operating system Nvidia AMD

Windows C:\Windows\system or 
C:\Windows\system32

C:\Windows\system or 
C:\Windows\system32

Linux /usr/lib or /usr/lib64 Defined by the LD_LIBRARY_PATH
environment variable

http://support.amd.com/us/gpudownload
http://developer.amd.com/sdks/AMDAPPSDK/downloads
http://developer.amd.com/sdks/AMDAPPSDK/downloads
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7 Read the end-user license agreement. Click Accept and then Next.
8 Click through the next series of pages to complete the installation of the

AMD APP SDK. When the Catalyst dialog box says Installation complete, click
Finish.

Once the installation is complete, you should check your environment variables to see
where AMD placed its SDK files. On Windows, you can find these variables by right-
clicking Computer or My Computer and selecting Properties. In the system dialog
box, click Advanced system settings on the left. When the System Properties dialog
box appears, click the button entitled Environment Variables.

 The Environment Variables dialog box lists two types of variables: variables that
apply to the current user (user variables) and variables that apply to all users (system
variables). This is shown in figure A.3.

 If you look through the system variables, you’ll find two variables set by AMD dur-
ing the SDK installation process:

■ AMDAPPSDKROOT—Identifies the directory containing the primary SDK files. On
my 64-bit Windows 7 system, this is C:\Program Files (x86)\AMD APP.

■ AMDAPPSDKSAMPLESROOT—Identifies the directory containing the SDK’s sample
projects. On my Windows 7 system, this is C:\User\<name>\Documents\AMD APP. 

Figure A.3 Checking AMD 
environment variables on 
Windows 7
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A.2.2 Building Windows applications with an AMD graphics card

Once you’ve verified that the environment variables have been created, I recommend
that you explore their directories. The $(AMDAPPSDKSAMPLESROOT)\samples\opencl
directory is particularly interesting. It contains a number of example projects that per-
form operations ranging from sorting to financial modeling.

 If you have Visual Studio, you can build these example projects with little effort.
Double-click the *.sln file that corresponds to your version of Visual Studio. Then,
inside Visual Studio, use F7 to compile all the projects at once. The build of the
simpledx10 project may fail if you don’t have Direct3D installed, but the other proj-
ects should compile without error.

 You can create a working application easily by modifying the code in one of these
sample projects. But if you want to code an OpenCL application from scratch, there
are two points to keep in mind:

■ The OpenCL headers, such as cl.h, are located in $(AMDAPPSDKROOT)\
include\CL.

■ To access the OpenCL DLL, link against the import library OpenCL.lib in the
$(AMDAPPSDKROOT)\lib\[x86|x86_64] folder.

As you progress in building OpenCL applications for AMD hardware, you may want to
use AMD’s SDKUtil library, whose utility functions serve a number of purposes, includ-
ing file access and output of formatted text. The source code for the SDKUtil library
can be found in $(AMDAPPSDKSAMPLESROOT)\samples\opencl\SDKUtil, and the
header files can be found in the directory $(AMDAPPSDKSAMPLESROOT)\samples\
opencl\SDKUtil\include.

A.2.3 Windows installation with an Nvidia graphics card

On Windows, Nvidia provides its OpenCL implementation as part of its GPU Comput-
ing SDK. Installing this toolkit is a straightforward process that involves downloading
and running two executables. The following instructions show how this works:

1 To obtain the latest Nvidia driver, go to www.nvidia.com/page/drivers.html.
Download the executable file that corresponds to your version of Windows and
graphics card. Install the driver by launching the executable.

2 After the latest driver is installed, go to http://developer.nvidia.com/cuda-
downloads and click the link for the latest CUDA Toolkit. On the following
page, scroll down and find the table that lists downloads for Windows.

3 Click the link for the GPU Computing SDK and download this file to your sys-
tem. On my computer, this file is called gpucomputingsdk_4.0.19_win_64.exe.

4 Execute the GPU Computing SDK file. Register your installation and choose a
setup type and a location for the SDK files. Click Install and wait for the installer
to finish.

Once the installation is complete, you should check your environment variables to see
where Nvidia placed the SDK’s files. On Windows, you can find these variables by

http://developer.nvidia.com/cuda-downloads
http://developer.nvidia.com/cuda-downloads
www.nvidia.com/page/drivers.html
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right-clicking Computer or My Computer and selecting Properties. In the system dia-
log box, click Advanced System Settings on the left. When the System Properties dia-
log box appears, click Environment Variables.

 The Environment Variables dialog box lists two types of variables: variables that
apply to the current user (user variables) and variables that apply to all users (system
variables). This is shown in figure A.4.

 If you look through the system variables, you’ll find the NVSDKCOMPUTE_ROOT variable,
which identifies where the GPU Computing SDK has been installed. On my 64-bit Win-
dows 7 system, the SDK can be found at C:\ProgramData\NVIDIA Corporation\NVIDIA
GPU Computing SDK 4.0.

NOTE If the current Windows driver on Nvidia’s main page doesn’t support
the capabilities you’re interested in, you may want to install the development
driver from the CUDA Toolkit page. But I recommend the current driver (ver-
sion 280.26) because it supports OpenCL 1.1 whereas the development driver
(version 270.81) doesn’t.

A.2.4 Building Windows applications with an Nvidia graphics card

I recommend that you look through the NVSDKCOMPUTE_ROOT directory and pay par-
ticular attention to the OpenCL subdirectory, which contains the files needed to
build OpenCL applications. In addition, the $(NVSDKCOMPUTE_ROOT)\OpenCL\src

Figure A.4 Checking 
Nvidia’s environment 
variable on Windows 7
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directory contains a number of example projects that perform operations ranging
from adding vectors to generating pseudo-random numbers.

 If you have Visual Studio installed, you can build these example projects with lit-
tle effort. In the $(NVSDKCOMPUTE_ROOT)\OpenCL\src directory, double-click the
*.sln file that corresponds to your version of Visual Studio. Then, inside Visual Stu-
dio, use F7 to compile the solution. The builds of oclSimpleD3D10Texture and
oclSimpleD3D9Texture may fail if you don’t have Direct3D installed, but all of the
other projects should compile without error. After the build, you can run the sam-
ple executables in the OpenCL\bin\win[32|64]\Release directory.

 You can create your own applications easily by modifying the code in any of these
sample projects. But if you want to code an OpenCL application from scratch, there
are two points to remember:

■ The OpenCL headers, including cl.h and cl_ext.h, are located in the
$(NVSDKCOMPUTE_ROOT)\OpenCL\common\inc\CL folder.

■ To access the OpenCL DLL, link against the import library OpenCL.lib in the
$(NVSDKCOMPUTE_ROOT)\OpenCL\common\lib\[Win32|x64] folder.

As you progress in building OpenCL applications for Nvidia hardware, you may want
to use Nvidia’s oclUtils library, whose utility functions serve a number of purposes,
including image formatting and querying your device. The oclUtils header file can be
found in $(NVSDKCOMPUTE_ROOT)\OpenCL\common\inc and the library itself can
be found in $(NVSDKCOMPUTE_ROOT)\OpenCL\common\lib. 

A.3 OpenCL on Linux
AMD and Nvidia both support OpenCL development on Linux, but the installation
process is more involved than it is on Windows. A common source of confusion
involves the libraries. The main OpenCL library, libOpenCL.so, must be identified in
your makefiles. But the proprietary libraries, such as libamdocl64.so and libcuda.so,
don’t need to be identified. These libraries, called installable client drivers or ICDs, are
accessed automatically through text files in the /etc/OpenCL/vendors directory.

A.3.1 Linux installation with an AMD graphics card

AMD’s implementation of OpenCL is provided as part of the APP SDK. Before you
install the SDK, you should make sure your graphics driver is current and that you
have the latest version of AMD Catalyst. At the time of this writing, AMD’s Linux driver
is called fglrx, and you can detect proper installation using the command fglrxinfo.

NOTE Don’t be alarmed if the driver doesn’t install correctly the first time. A
web search will reveal tips and workarounds that others have used to get past
the problem. I strongly recommend the Phoronix website at
www.phoronix.com.

Once you’ve installed the latest AMD driver for Linux, perform the following steps to
install the OpenCL SDK:

www.phoronix.com
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1 Open a browser, and go to http://developer.amd.com/sdks/AMDAPPSDK/
downloads. This is the primary website for AMD OpenCL support.

2 Select the SDK archive that corresponds to your system. On my 64-bit system,
the file is called APP-AMD-SDK-v2.5-lnx64.tgz.

3 Decompress the SDK archive and launch the installation script, Install-AMD-
APP.sh. On my system, this is done with the following command:

sudo sh Install-AMD-APP.sh

4 This script will extract the SDK files to your system and the default installation
directory is /opt/AMDAPP. The script will also set an environment variable that
identifies the installation directory (AMDAPPSDKROOT) and update the
LD_LIBRARY_PATH variable so that the linker can find the required library.

5 Reboot your computer to complete the installation. To verify that the environ-
ment variable has been set correctly, enter the following command:

echo $AMDAPPSDKROOT

If you finished these steps with no errors, congratulations! You have successfully
installed the AMD APP SDK on Linux. To make sure everything works, change to the
top-level SDK directory, which should contain directories called bin, docs, include, lib,
make, and samples. Then change to the samples directory.

 Execute make to build the example applications. If the build procedure con-
cludes without error and the executables run without error, you can be confident
that everything is installed correctly. Otherwise, you may need to re-install the driver
or the SDK itself. 

A.3.2 Linux installation with an Nvidia graphics card

Installing OpenCL on a Linux system with Nvidia hardware is a straightforward pro-
cess. Work through the following instructions, and you should have no difficulty:

1 To obtain the latest Nvidia driver, go to www.nvidia.com/page/drivers.html.
Download the driver that corresponds to your operating system and graphics
card.

2 Nvidia drivers can only be installed when the X server isn’t running. To halt the
X server, use the following command (replace gdm with kdm if you use KDE):

sudo /etc/init.d/gdm stop

3 Get to a command line with Ctrl-Alt-F1. Then log in and uninstall any existing
Nvidia drivers with the following command:

sudo nvidia-uninstall

4 Change to the directory containing the SDK files you downloaded from Nvidia.
Install the Linux driver with the sh command. On my system, this is done with
this command:

sudo sh NVIDIA-Linux-x86_64-280.13.run

http://developer.amd.com/sdks/AMDAPPSDK/downloads
http://developer.amd.com/sdks/AMDAPPSDK/downloads
www.nvidia.com/page/drivers.html
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5 Accept the Nvidia license and accept all optional installations and modifica-
tions. Once the driver is installed, you may want to restart your system (sudo
reboot).

6 Once the installation completes, the next step is to obtain Nvidia’s GPU Com-
puting SDK. Go to http://developer.nvidia.com/cuda-downloads and click the
link for the latest CUDA Toolkit.

7 On the next page, scroll down and find the table that lists Linux downloads.
Click the link for the GPU Computing SDK and download the file
(gpucomputingsdk_x.y.z_linux.run) to your system. 

8 Install the GPU Computing SDK with the sh command. On my system, this is
done with this command:

sudo sh gpucomputingsdk_4.0.17_linux.run

9 Select a directory to install the SDK. Don’t be concerned if the installer asks for
the location of the CUDA Toolkit. It isn’t necessary for OpenCL development.

10 When the installation completes, open the .bashrc configuration file in your
home directory and export an environment variable called NVSDKCOMPUTE_ROOT.
This will be used by makefiles to identify where Nvidia’s libraries and include
files are located. On my system, I’ve installed the SDK to /opt/nvsdk, so this is
done as follows:

export NVSDKCOMPUTE_ROOT=/opt/nvsdk

11 Add a line in .bashrc to update the PATH variable so that it includes the SDK
directory. On my system, this looks like the following:

export PATH=$NVSDKCOMPUTE_ROOT/bin:$PATH

12 Make this environment variable active with the following command:

source ~/.bashrc

NOTE If the current Linux driver on Nvidia’s main page doesn’t support the
capabilities you’re interested in, you may want to install the development
driver from the CUDA Toolkit page. But I recommend the current driver (ver-
sion 280.13) because it supports OpenCL 1.1 whereas the development driver
(version 270.41) doesn’t. 

A.3.3 Building OpenCL applications for Linux

Once you’ve completed the full installation process on Linux, you’re ready to start
coding and executing applications. Functions intended for the host can be written in
regular C and C++, while functions intended for auxiliary devices are written using
OpenCL constructs. Files containing kernel functions commonly take the *.cl suffix.

 To understand the Linux build process, it’s a good idea to look at the makefiles in
this book’s example code. Makefiles in later chapters include graphic libraries such as
libGL.so, but the makefile in Ch1/matvec includes only the basic OpenCL library,
libOpenCL.so. The following listing shows the Linux-specific portion of the makefile.

http://developer.nvidia.com/cuda-downloads
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LIBS=-lOpenCL                          
ifeq ($(PROC_TYPE),)                           
   CFLAGS+=-m32                        
else                                   
   CFLAGS+=-m64                        
endif                                  

ifdef AMDAPPSDKROOT
   INC_DIRS=. $(AMDAPPSDKROOT)/include     
   ifeq ($(PROC_TYPE),)                             
      LIB_DIRS=$(AMDAPPSDKROOT)/lib/x86    
   else                                    
      LIB_DIRS=$(AMDAPPSDKROOT)/lib/x86_64 
   endif                                   
else

ifdef NVSDKCOMPUTE_ROOT
   INC_DIRS=. $(NVSDKCOMPUTE_ROOT)/OpenCL/common/inc      
endif

This makefile adds the -lOpenCL and -m32/-m64 flags to all Linux-based builds, but
the INC_DIRS and LIB_DIRS macros are determined by the SDK vendor. If the
AMDAPPSDKROOT variable is set, then the makefile assumes you intend to use AMD’s
tools. In this case, INC_DIRS is set to $AMDAPPSDKROOT/include and LIB_DIRS is set
to one of the two directories under $AMDAPPSDKROOT/lib.

 If the NVSDKCOMPUTE_ROOT variable is set and the AMDAPPSDKROOT variable isn’t, the
makefile assumes you want to use Nvidia’s files in the build. In this case, INC_DIRS is
set to $CUDA/OpenCL/common/inc. The LIB_DIRS variable doesn’t need to be set
because Nvidia places libOpenCL.so in the /usr/lib and /usr/lib64 directories, which
is where the linker looks automatically.

 If you intend to build applications on a Linux system that includes AMD and Nvidia
hardware, you can set AMDAPPSDKROOT, NVSDKCOMPUTE_ROOT, or both. It doesn’t matter
which vendor’s cl.h header or libOpenCL.so library is used. What’s important is that
your applications can access the correct ICD. If you receive a CL_PLATFORM_NOT_
FOUND_KHR error or code -1001, you need to check the files in the /etc/OpenCL/
vendors directory. If none of these files identify the ICD library you need, you may
have to create a new file or modify an existing one. 

A.4 OpenCL on Mac OS
If you’re running Mac OS X 10.6 or later, you’re in luck. You already have OpenCL
installed, and you can find the framework files at /System/Library/Frameworks/
OpenCL.framework. In particular, the OpenCL library can be found in the frame-
work’s Libraries/OpenCL folder. But there’s no need to access it directly. As long as
you include the -framework OpenCL option in your compilation step, the compiler
will know where to find it.

 The example code in this book is divided into projects, and each project con-
tains a makefile that checks the operating system and sets the build parameters

Listing A.1 Linux processing in an OpenCL makefile

Set Linux 
flags

Set AMD-
specific flags

Set Nvidia-
specific flags
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accordingly. The build process is simple: change to a directory containing a make-
file and run make.

 To understand the build process on Mac OS systems, it’s a good idea to examine
one of the makefiles. In each case, the makefile identifies the operating system by call-
ing uname -s and converting the result to uppercase. If the output string contains
DARWIN, the makefile sets the CFLAGS, INCLUDE_DIRS, and LIBS macros to Mac-specific
values. This is shown in the following listing, taken from the makefile in Ch1/matvec.

OS = $(shell uname -s 2>/dev/null             
         | tr [:lower:] [:upper:])                   
DARWIN = $(strip $(findstring DARWIN, $(OS))) 

ifneq ($(DARWIN),)
   CFLAGS += -DMAC                     
   LIBS=-framework OpenCL                       

   ifeq ($(PROC_TYPE),)                
      CFLAGS+=-arch i386               
   else                                
      CFLAGS+=-arch x86_64             
   endif                               
else

The -framework OpenCL flag includes the cl.h header file, but there’s a subtle point to
keep in mind. The OpenCL framework places cl.h in a folder called OpenCL, whereas
Windows and Linux systems place cl.h in a folder called CL. This can produce prob-
lems if you intend to compile code on multiple operating systems. For this reason,
you’ll see the following comparison throughout the host code in this book:

#ifdef MAC
#include <OpenCL/cl.h>
#else
#include <CL/cl.h>
#endif

This ensures that the cl.h header file will be accessible whether you compile your
application on Windows, Linux, or Mac OS systems. 

A.5 Summary
Whether you’re building software or hardware, the first order of business is to know
your tools. In the case of OpenCL development, the tools are conveniently provided
through freely available SDKs. The more time you spend understanding how these SDKs
work, the less time you’ll spend dealing with strange linking and compiling errors.

 To make use of AMD’s and Nvidia’s SDKs, you need to understand the OpenCL library
hierarchy. Every OpenCL application needs to link to a library containing OpenCL’s
standard functions. This library is called OpenCL.dll on Windows, libOpenCL.so on
Linux, and OpenCL on Mac OS systems. If your development process uses makefiles,
your makefile must identify the name and location of the OpenCL library.

Listing A.2 Building OpenCL applications for Mac OS
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 But you don’t have to identify the vendor-specific libraries that interface with the
vendor’s hardware. The SDK makes these libraries, installable client drivers (ICDs),
available so that the OpenCL runtime can find them. In Windows, the SDK adds regis-
try entries identifying the ICDs’ names. In Linux, the ICDs are identified by text files in
the /etc/OpenCL/vendors directory.

 The majority of this appendix has centered on obtaining and installing SDKs for
different operating systems and hardware. In each case, I’ve recommended that you
examine and compile the SDK’s example projects. This will make sure that your build
tools are working properly and that your environment variables are correctly set. In
addition, as you look through the vendor’s projects, you’ll have a better idea of how
OpenCL applications are coded and compiled. 



appendix B:
Real-time

 rendering with OpenGL

The names resemble each other, but OpenCL and OpenGL serve very different
purposes. While OpenCL is used for general computation, OpenGL (Open Graph-
ics Language) is concerned with rendering 3-D graphics. By rendering, I mean that
OpenGL accepts a model composed of three-dimensional figures and produces a
two-dimensional array of pixels that can be drawn in a window. This rendering exe-
cutes in a loop, and if the properties of the figures change, the renderer will update
the drawing. Figure B.1 provides an example of a static rendering.

 All the pixels in this figure have colors, but it would be tedious to set each color
separately. Instead, the application defines three-dimensional points, called vertices,
and routines to be invoked during the rendering, called shaders. As the application
runs, the shaders process the vertices and draw the pixels in the window.

 Despite their different purposes, OpenGL applications operate similarly to
OpenCL applications. As explained throughout this
book, an OpenCL application consists of two parts:
a host application and a kernel. The host application
initializes input data, packages it, and sends it to a
device. The kernel processes the data as it executes on
the device.

 OpenGL applications work in much the same way.
The host application initializes input data, packages it,
and sends it to a GPU, which processes the data using
shader routines. Shaders have a lot in common with
OpenCL kernels, but instead of general-purpose pro-
cessing, their sole concern is graphics. Further, shaders

Figure B.1 A simple 
OpenGL rendering
363
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only run on GPUs, and instead of sending output back to the host application, the
GPU uses the output to display pixels on a screen. OpenGL version 4.1 supports five
different types of shaders, but only two of them are required: a vertex shader and a
fragment shader. This is shown in figure B.2, which compares the operation of
OpenCL and OpenGL applications.

NOTE In addition to vertex shaders and pixel shaders, the OpenGL 4.1 spec
also defines geometry shaders, tessellation control shaders, and tessellation
evaluation shaders.

OpenGL is a vast topic, and for a full discussion of the API, I recommend The OpenGL
SuperBible by Richard S. Wright et al. In contrast, the humble goal of this appendix is
to provide you with enough background to enable you to code simple 3-D applica-
tions. The discussion will follow the right side of figure B.2. We’ll examine how the
host packages data first and then look at how to code vertex and fragment shaders.
Then we’ll see how the OpenGL Utility Toolkit (GLUT) creates windows that OpenGL
applications can draw on.

 But before getting into OpenGL and GLUT coding, it’s important to have the
required libraries and header files. Therefore, the first section will cover OpenGL
installation.
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compiled kernel to 
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package input data
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Figure B.2 OpenCL and basic OpenGL operation
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B.1 Installing OpenGL
To compile the example code in this appendix, you need three packages:

■ OpenGL 3.3 or higher—Needed to build OpenGL applications
■ GLUT—Creates the underlying window for OpenGL applications
■ OpenGL Extension Wrangler Library (GLEW)—Simplifies dealing with OpenGL

extensions

It’s likely that you already have one or more of these installed on your system. To
check, look through the files in your OpenCL installation directory. In particular, look
for the header files gl.h, glu.h, glut.h, and glew.h, and libraries with similar names. If
you find these files on your system, you’re all set.

 If not, these packages are free to download and are available for multiple operat-
ing systems. This section will explain how to obtain and install these tools for comput-
ers running Windows, Linux, and Mac OS.

NOTE Before proceeding, it’s important to make sure your graphics drivers
are up to date.

B.1.1 OpenGL installation on Windows

Since Windows 98, the OpenGL library is installed on Windows systems by default. If you
look through your primary system directory (C:\Windows\System32 or C:\Windows\
System), you should find a library called opengl.dll or opengl32.dll. This is the library
you need when you build OpenGL applications.

 Modern versions of Visual Studio provide header files for OpenGL development.
The precise location may change from version to version, but my Visual Studio 2010
system stores gl.h and glu.h at C:\Program Files\Microsoft SDKs\Windows\v7.0A\
include\GL.

 If you don’t have GLUT installed, you can download it freely from the internet. The
main site of the freeglut project is http://freeglut.sourceforge.net/index.php, and you
can find binaries for Windows at www.transmissionzero.co.uk/software/freeglut-devel.
Once you’ve downloaded and decompressed the archive, place the header files and
libraries where they will be discovered by the compiler. The DLLs should be placed in
your primary system directory.

 The last step involves installing the GLEW package. The primary website for this is
http://glew.sourceforge.net, and you can download Windows-specific binaries from
this site. Again, place the header files and libraries where the compiler will find them.

B.1.2 OpenGL installation on Linux

On Linux, OpenGL is easy to install using packaging tools such as apt-get or rpm. The
following command installs the required OpenGL headers, gl.h and glu.h:

sudo apt-get install mesa-common-dev libglu1-mesa-dev

http://freeglut.sourceforge.net/index.php
www.transmissionzero.co.uk/software/freeglut-devel
http://glew.sourceforge.net
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Installing GLUT is just as easy. The following command installs the freeglut package
(version 3), which contains the header file (glut.h) and library (libglut.so) needed to
compile GLUT-based applications:

sudo apt-get install freeglut3 freeglut3-dev

Finally, if you can’t find glew.h or libglew.so on your system, you can install the GLEW
package with the following command:

sudo apt-get install libglew-dev

To test the installation, run glxinfo on the command line. You should receive a great
deal of data concerning the supported OpenGL version and the capabilities available
on your system. 

B.1.3 OpenGL installation on Mac OS

Mac OS already provides frameworks for OpenGL and GLUT, so there’s no need to
download these separately. But you will need to install GLEW, and this means compil-
ing it from source. To obtain the GLEW source code, go to http://glew.sourceforge
.net and click the download link entitled TGZ.

 Once you’ve downloaded and decompressed the GLEW archive, go to a command
terminal. Change to the directory containing the GLEW source code and enter the fol-
lowing commands:

make
sudo make install

This will place the header file in /usr/include/GL and the library file in /usr/lib.
Note that the GLUT header files are in a directory called GLUT, not GL.

 Once you’ve installed the required files for OpenGL, GLUT, and GLEW, you’ll be
able to access C/C++ functions for OpenGL rendering. In the next section, we’ll begin
our examination of these functions by seeing how to code applications that execute
on the host. 

B.2 OpenGL development on the host
As discussed in chapter 3, an OpenCL application sends data from a host to a device
using structures called memory objects. It makes these memory objects arguments of the
kernel using setKernelArg, and once the kernel completes its execution, the host can
read its output using a function like clEnqueueReadBuffer or clEnqueueReadImage.

 In OpenGL, host applications have much more to do. At the very least, they need
to perform four steps:

1 Place vertex data in vertex buffer objects (VBOs).
2 Make vertex data accessible to the shaders by configuring vertex attributes.
3 Compile shader code and load the shader executables onto the GPU.
4 Launch the rendering process.

This section will present each of these four steps and the functions needed to perform
them.

http://glew.sourceforge.net
http://glew.sourceforge.net
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B.2.1 Placing data in vertex buffer objects (VBOs) 

When creating a 3-D model in OpenGL, the first step is to define the vertex data. Ver-
tex data includes coordinates in three-dimensional space, and colors, normal vectors,
texture coordinates, and any other data that may change from vertex to vertex.

 In the interests of efficiency, it’s best to define data for multiple vertices at once.
For example, the three_squares application that we’ll build in this appendix provides
coordinates and colors for four vertices at a time. The following code sets the coordi-
nates and colors of the vertices in the first square:

GLfloat first_coords[] = {-0.15f, -0.15f, 1.0f,
                          -0.15f,  0.15f, 1.0f,
                           0.15f,  0.15f, 1.0f,
                           0.15f, -0.15f, 1.0f};
GLfloat first_colors[] = {0.0f,  0.0f, 0.0f,
                          0.25f, 0.0f, 0.0f,
                          0.50f, 0.0f, 0.0f,
                          0.75f, 0.0f, 0.0f};

Note that this data is given using normalized values, which run from 0.0 to 1.0. For
example, the color of the third vertex in the square is given by (0.50, 0.0, 0.0). If each
channel is given as an 8-bit integer, this would correspond to (128, 0, 0), or a red color
with medium intensity.

 To store vertex data, you need to create a vertex buffer object or VBO. Like
OpenCL buffer objects, VBOs make it possible to transfer data from the host to a
device, specifically a GPU. But VBOs are slightly more complicated to work with. To see
what I mean, look at table B.1, which lists the OpenGL functions related to VBOs.

NOTE OpenGL buffer objects can store many different types of data besides
vertex data, such as pixel data and texture data. But the usage of buffer
objects in this appendix will be limited to VBOs.

Table B.1 Functions related to vertex buffer objects (VBOs)

Function Purpose

void glGenBuffers(GLsizei num,
   GLuint* descriptors)

Creates buffer objects and initializes an 
array of num descriptors

GLboolean glIsBuffer(GLuint desc) Identifies whether the descriptor corre-
sponds to a buffer object

void glBindBuffer(GLenum target,
   GLuint descriptor)

Makes the buffer object active

void glBufferData(GLenum  target,
   GLsizeiptr size, const GLvoid* data,
   GLenum usage)

Associates the buffer with data

void glDeleteBuffers(GLsizei num,
   const GLuint* descriptors)

Deletes buffer objects identified by the 
descriptors
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Don’t be concerned about the new data types. OpenGL has its own system-indepen-
dent types that serve the same roles as OpenCL’s types. The GLuint type identifies an
unsigned integer and GLsizei corresponds to size_t. When specific constants are
needed to identify an enumerated type, GLenum is used.

 The first function in the table creates one or more VBOs by initializing the memory
referenced by the descriptors parameter. These VBO descriptors, like file descriptors
on GNU systems, are unsigned integers.

 As an example, the following code declares an unsigned integer to serve as a VBO
descriptor and then calls glGenBuffers to create a buffer object:

GLuint vbo;
glGenBuffers(1, &vbo);

A VBO can’t be immediately used after it’s created. It needs to be made active. If a VBO
is active, future OpenGL functions that read or write VBO data will access it instead of
other VBOs. The process of making a VBO active is called binding, and the function to
use is glBindBuffer. The following code makes vbo the active vertex buffer object:

glBindBuffer(GL_ARRAY_BUFFER, vbo);

The first parameter identifies a target, which tells OpenGL how the buffer data will be
used. An OpenGL VBO can be bound to one of many possible targets including
GL_ARRAY_BUFFER, GL_ELEMENT_ARRAY_BUFFER, GL_PIXEL_PACK_BUFFER, and GL_

PIXEL_UNPACK_BUFFER. Only one buffer object can be bound to a target at any time. 
 Once a VBO is made active, it can be associated with vertex data using glBuffer-

Data. The signature for this function is as follows:

void glBufferData(GLenum  target, GLsizeiptr  size, const GLvoid* data,
                  GLenum  usage);

The last argument identifies how the data will be accessed. This can be set to one of
the values listed in table B.2.

Table B.2 Access parameter values in glBindBuffer

Parameter value Meaning

GL_STATIC_DRAW Data is meant for drawing—it will be modified once and used frequently.

GL_STATIC_READ Data is meant to be read from the renderer—it will be modified once and used 
frequently.

GL_STATIC_COPY Data is meant to be read and written—it will be modified once and used 
frequently.

GL_DYNAMIC_DRAW Data is meant for drawing—it will be modified repeatedly and used frequently.

GL_DYNAMIC_READ Data is meant to be read from the renderer—it will be modified repeatedly and 
used frequently.

GL_DYNAMIC_COPY Data is meant to be read and written—it will be modified repeatedly and used 
frequently.
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These parameters provide storage hints for the renderer—they tell the renderer how
and how often the data will be accessed. Our renderings in this appendix will be static,
so we’ll call glBufferData with GL_STATIC_DRAW. The following code associates the
active VBO with the first_coords array defined earlier:

glBufferData(GL_ARRAY_BUFFER, 12*sizeof(GLfloat), first_coords,
             GL_STATIC_DRAW);

This code buffers the twelve floats in the first_coords array and tells the renderer
that the data will be accessed frequently. After this function is called, all operations
that affect the active VBO will access the values in first_coords.

 After an application finishes using a VBO, it can unbind the VBO from the target by
calling glBindBuffer with the descriptor set to 0. When the VBO is no longer needed,
the application can deallocate its memory with glDeleteBuffers, which accepts the
same parameters as glGenBuffers. 

 The following code presents the lifecycle of a trivial VBO:

GLuint vbo;
float vertex_data[12] = {-0.5, -0.5, 0.0, -0.5, 0.5, 0.0,
                          0.5, 0.5, 0.0, 0.5, -0.5, 0.0};
glGenBuffers(1, &vbo);
glBindBuffer(GL_ARRAY_BUFFER, vbo);
glBufferData(GL_ARRAY_BUFFER, 12*sizeof(GLfloat), vertex_data,
             GL_STATIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glDeleteBuffers(1, &vbo);

To be useful, the VBO needs to be transferred to the GPU, where it will be processed by
a shader. But before a shader can access the VBO’s data, the application needs to create
attributes. Attributes specify the format of the VBO’s data, and we’ll look at this next. 

B.2.2 Configuring vertex attributes

Vertex attributes identify properties of data within VBOs, such as the data’s type, the
number of elements, and whether the values are given in normalized form. Once
these attributes are set, the data can be sent to shaders executing on the GPU.

 Vertex array objects (VAOs) store the associations between attributes and VBOs. In
general, OpenGL applications create one VAO for every independent object in the ren-
dering. Table B.3 lists the functions needed to create and configure these bindings.

GL_STREAM_DRAW Data is meant for drawing—it will be modified once and used a few times.

GL_STREAM_READ Data is meant to be read from the renderer—it will be modified once and used 
a few times.

GL_STREAM_COPY Data is meant to be read and written—it will be modified once and used a few 
times.

Table B.2 Access parameter values in glBindBuffer (continued)

Parameter value Meaning
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The first two functions, glGenVertexArrays and glBindVertexArray, work like
glGenBuffers and glBindBuffer. glGenVertexArrays creates one or more VAOs and
initializes an array of unique descriptors. Once a VAO descriptor has been created, the
VAO can be made active by calling glBindVertexArray with its descriptor. This is
shown in the following code:

unsigned int vao;
glGenVertexArrays(1, &vao);
glBindVertexArray(vao);

The most important function in table B.3 is glVertexAttribPointer. This accepts
properties related to the data in the active VBO: number of elements, type, normaliza-
tion, and byte width between successive data elements. These attributes make it possi-
ble for the shader to interpret the data in the VBO.

 The function’s first parameter, index, serves a similar purpose to the index param-
eter of OpenCL’s setKernelArg—it identifies the order of the attribute among all
attributes passed to the shader. For example, if an attribute’s index value is set to 0, it
will be the first attribute accessed by the shader.

 After attributes have been set for VBO data, glEnableVertexAttribArray places
the vertex attribute array in the enabled state. This ensures that the attribute will be
passed to the shader when it starts processing. This function accepts a value corre-
sponding to the index value of glVertexAttribPointer. The following code shows
how it’s used:

Table B.3 Functions related to vertex array objects (VAOs) and attributes

Function Purpose

void glGenVertexArrays(GLsizei num,
   GLuint *descriptors)

Creates VAOs and initializes an array of 
descriptors

void glBindVertexArray(GLuint
   descriptor)

Makes the VAO active

void glVertexAttribPointer(GLuint index,
   GLint size, GLenum type,
   GLboolean normalized,
   GLsizei stride,
   const GLvoid* pointer)

Sets the organization of the vertex array 
data

void glEnableVertexAttribArray
   (GLuint index)

Makes the vertex array active

void glDrawArrays(GLenum mode,
   GLint first, GLsizei count)

Draws data associated with the vertex 
array

void glDisableVertexAttribArray
   (GLuint index)

Makes the vertex array inactive

void glDeleteVertexArrays(GLsizei  n,
   const GLuint* arrays);

Deletes and deallocates vertex array 
objects
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glVertexAttribPointer(0, 12, GL_FLOAT, GL_FALSE, 0, 0);
glEnableVertexAttribArray(0);

Here, the vertex attribute array with index 0 provides information about the data in
the active VBO. Specifically, it states that the VBO data contains twelve non-normalized
floats with no stride between them. The last parameter is set to 0, so the data corre-
sponding to the attribute array begins at the start of the VBO’s data store.

 Once the VBOs and VAOs have been configured for host data, the data is ready to
be delivered to shaders. But before any shader executable can process data, it needs to
be loaded onto the GPU. This is the topic of the following discussion. 

B.2.3 Compiling and deploying shaders

In OpenCL, a host application reads kernel functions into char arrays, compiles them,
and deploys them to the device. In OpenGL, the process is similar—the host applica-
tion reads shader code, compiles it, and transfers the binary to the GPU. 

 More precisely, the process of deploying OpenGL shaders consists of five main
steps:

1 Create shader objects and associate them with code.
2 Compile each of the shader objects.
3 Create a program object and attach the shader objects.
4 Link the program to form a GPU executable.
5 Deploy the executable to the GPU.

Table B.4 lists the functions that make this possible. Note that shader objects and pro-
gram objects are identified by GLuint descriptors.

Table B.4 Functions that compile and deploy shaders

Function Purpose

GLuint glCreateShader(GLenum shaderType) Creates a shader object with the given type

void glShaderSource(GLuint shader,
   GLsizei count, const GLchar** string,
   const GLint* length)

Sets the source code for a shader object

void glCompileShader(GLuint shader) Compiles the source code for a shader 
object

void glGetShaderiv(GLuint shader,
   GLenum pname, GLint* params)

Obtains information regarding a shader 
object

void glGetShaderInfoLog(GLuint shader,
   GLsizei maxLength, GLsizei* length,
   GLchar* infoLog)

Returns the log containing information 
about a shader’s compilation

GLuint glCreateProgram() Creates an empty program object
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Every OpenGL application requires a vertex shader and a fragment shader, so each of
the first four functions must be called twice. To create the shader objects, you’d use
code similar to the following:

GLuint vs, fs;
vs = glCreateShader(GL_VERTEX_SHADER);
fs = glCreateShader(GL_FRAGMENT_SHADER);

Unlike glGenBuffers and glGenVertexArrays, glCreateShader returns only a single
descriptor. This is because an application can only have one shader for each shader
type. An application can only have one vertex shader and one fragment shader.

 Once the shader structures are created, the next step is to associate them with
source code. Suppose the vertex shader source text is in the vs_chars array and the
fragment shader source text is in the fs_chars array. The application can associate
the source code with the shader by calling glShaderSource. The following code shows
how this works:

glShaderSource(vs, 1, (const char**)&vs_chars, &vs_length);
glShaderSource(fs, 1, (const char**)&fs_chars, &fs_length);

In this code, vs_length is the number of chars in the vs_chars array and fs_length
is the number of chars in the fs_chars array. Once the source code is loaded, the
shaders can be compiled with the following function calls: 

glCompileShader(vs);
glCompileShader(fs);

The glCompileShader function returns void, so it doesn’t provide any notification if
the compilation fails. To obtain information about the compilation, you need to call
another function called glGetShaderiv. Like getProgramBuildInfo in OpenCL, this

void glBindAttribLocation(GLuint
   program, GLuint index,
   const GLchar* name)

Assigns a variable name to a given attribute

void glAttachShader(GLuint program,
   GLuint shader)

Attaches a shader object to a program 
object

void glLinkProgram(GLuint program) Create an executable from a program 
object

void glUseProgram(GLuint program) Makes the program object active

void glDeleteProgram(GLuint program) Deallocates a program object

void glDetachShader(GLuint shader,
   GLuint program)

Detaches a shader object from a program 
object

void glDeleteShader(GLuint shader) Deletes and deallocates a shader object

Table B.4 Functions that compile and deploy shaders (continued)

Function Purpose
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function returns data corresponding to a parameter. If the parameter is set to
GL_COMPILE_STATUS, the function will return GL_TRUE if the compilation succeeded
and GL_FALSE if it failed.

 If a shader fails to compile, you need to examine the build log, and obtaining this
involves two steps. First, find the size of the build log by invoking glGetShaderiv with
GL_INFO_LOG_LENGTH. Then call getShaderInfoLog to read the log. This is shown in
the following code.

...
void compile_shader(GLint shader) {

   GLint success;
   GLsizei log_size;
   GLchar *log;

   glCompileShader(shader);
   glGetShaderiv(shader, GL_COMPILE_STATUS, &success);    
   if (!success) {
      glGetShaderiv(shader, GL_INFO_LOG_LENGTH, 
                    &log_size);                      
      log = (char*) malloc(log_size+1);
      log[log_size] = '\0';
      glGetShaderInfoLog(shader, log_size+1, 
                         NULL, log);              
      printf("%s\n", log);
      free(log);
      exit(1);
    }
}
...

Once the shaders have been compiled successfully, the application needs to link them
together within a new type of structure called a program. Programs are created with the
glCreateProgram function, and the following code shows how it works:

Gluint prog = glCreateProgram();

Next, the vertex attributes must be associated with variable names that will be used
by the shader. As discussed earlier, each attribute is given a unique index by the
glVertexAttribPointer function, and the goal of glBindAttribLocation is to
match each index to a name. For example, the following code matches the attribute
whose index equals 0 with the name in_coords:

glBindAttribLocation(prog, 0, "in_coords");

This must be called for every attribute to be processed by the vertex shader. Then the
shaders must be attached to the program using glAttachShader. The following code
attaches the vertex shader vs and the fragment shader fs to the program prog:

glAttachShader(prog, vs);
glAttachShader(prog, fs);

Listing B.1 Compiling shaders and checking the build log: three_squares.c

Check build 
status

Find log 
size

Read 
log
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We’re almost done. Once the attributes are associated with names and the shaders are
attached to the program, the program can be linked and installed with the following
code:

glLinkProgram(prog);
glUseProgram(prog);

After these functions execute, the shaders attached to the program will be deployed to
the GPU. The GPU will execute them when it comes time to render graphics. 

 Next, we’ll look at how the host gets the rendering process started.

B.2.4 Launching the rendering process

So far, this section has discussed how to package vertex data and deploy shaders to the
GPU. Once these steps are accomplished, the only task remaining is to start the ren-
dering. The glDrawArrays function makes this possible, and its signature is as follows:

void glDrawArrays(GLenum mode, GLint start_index, GLsizei num_indices);

The first parameter, mode, tells the renderer what shapes to form from the model’s ver-
tices. These shapes are called primitives, and table B.5 lists the different parameters
that specify what primitives should be drawn.

Table B.5 Drawing modes that identify primitives

Mode Primitive

GL_POINTS A series of individual points.

GL_LINES Each pair of vertices forms a separate line.

GL_LINE_STRIP Each vertex is connected to its successive vertex.

GL_LINE_LOOP Each vertex is connected to its successive vertex, with the 
last vertex connected back to the first.

GL_LINES_ADJACENCY Similar to GL_LINES, but each endpoint has an adjacent 
vertex that can be accessed by a geometry shader.

GL_LINE_STRIP_ADJACENCY Similar to GL_LINE_STRIP, but each endpoint has an adja-
cent vertex that can be accessed by a geometry shader.

GL_TRIANGLES Each set of three vertices forms a separate triangle.

GL_TRIANGLE_STRIP Forms a triangle with the first three vertices—each succeed-
ing vertex forms a triangle with the two preceding it.

GL_TRIANGLE_FAN Forms a triangle with the first three vertices—each succeed-
ing two vertices form a triangle with the first vertex.

GL_TRIANGLES_ADJACENCY Similar to GL_TRIANGLES, but each endpoint has an adja-
cent vertex that can be accessed by a geometry shader.

GL_TRIANGLE_STRIP_ADJACENCY Similar to GL_TRIANGLE_STRIP, but each endpoint has an 
adjacent vertex that can be accessed by a geometry shader.

GL_PATCHES A disordered group of vertices—the arrangement is deter-
mined by a tessellation control shader.
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In effect, these drawing modes tell OpenGL how to connect the dots (vertices) whose
attributes are stored within the active array. Figure B.3 depicts six of the different
drawing modes.

 The simplest drawing modes are GL_POINTS, GL_LINES, and GL_TRIANGLES. When
these modes are set, each primitive is drawn separately, without connections to others.
That is, if GL_LINES is set, each pair of vertices is drawn as a separate line. If
GL_TRIANGLES is set, each triple of vertices forms a separate triangle.

 The GL_LINE_STRIP and GL_TRIANGLE_STRIP modes create interconnected primi-
tives from each successive vertex. If GL_LINE_STRIP is set, the renderer draws a line
from the first vertex to the second, third, fourth, and so on. If GL_TRIANGLE_STRIP is
set, then each successive vertex forms a triangle with the two vertices preceding it. For
example, if there are four vertices, v0 to v3, this mode will cause two triangles to be
drawn: v0-v1-v2 and v1-v2-v3.

 Five of the drawing modes become useful when optional shaders are inserted in
the rendering pipeline. The four modes involving adjacency, such as GL_

LINES_ADJACENCY, require that a geometry shader process adjacent vertices. Similarly,
the GL_PATCHES mode can only be specified when a tessellation control shader is avail-
able to establish order among the vertices. 
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Figure B.3 OpenGL drawing modes
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 Once the drawing mode is set, the second and third parameters of glDrawArrays
determine which vertices will be drawn. The second parameter identifies the starting
index, and the third parameter specifies the number of vertices. For example, the fol-
lowing code tells the renderer to draw six vertices as separate triangles:

glDrawArrays(GL_TRIANGLES, 0, 5);

As far as host programming goes, glDrawArrays is the last function you need to know.
But OpenGL applications also require that you code routines to execute on the GPU.
These functions, called shaders, form the subject of the next section. 

. Shader development
OpenGL supports a number of different types of shaders, but they’re all coded with
the same language: the OpenGL Shading Language, or GLSL. If you understand how
to code OpenCL kernels, coding with GLSL won’t present significant difficulty.

 This section will provide an overview of OpenGL shader development. First we’ll
look at the data types and functions that shaders can access. Then we’ll examine the
two types of shaders required by all modern OpenGL applications: vertex shaders and
fragment shaders.

.3.1 Introduction to shader coding

In my opinion, the best way for an OpenCL programmer to understand shaders is to
see how they compare with kernels. Table B.6 presents a list of similarities and differ-
ences between the two.

The fundamental difference between kernels and shaders is that, while a kernel can
serve any purpose, each shader in an OpenGL application has a specific role to play.
At the very least, an OpenGL application must have one shader to process vertices and
one to process fragments.

Table B.6 Shader code and kernel code—similarities and differences

Similarities Differences

Shaders and kernels must be implemented as C 
functions that return void.

Shader functions must be called main. Kernels 
can take any name, but must be preceded by the 
__kernel modifier.

Shaders and kernels process data in vectors and 
provide mathematical operators for vectors.

Shaders support matrix data types. Kernels don’t.

Shaders and kernels are math-oriented—there are 
no strings, no pointers, and no access to stdio.h 
or similar routines from the C Standard Library.

Shaders have built-in variables, some of which 
must receive values. Kernels don’t have built-in 
variables.

Shaders and kernels can execute functions that 
closely resemble those in traditional math.h.

OpenCL variables have modifiers that identify 
where they’re stored on the device.
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 Regardless of the type, each shader consists of a C function called main. The fol-
lowing code presents a simple generic shader that sets an output vector variable,
out_vec, equal to twice the value of an input vector variable, in_vec:

in vec4 in_vec;
out vec4 out_vec;

void main(void) {
   out_vec = in_vec * 2;
}

This gives an idea of how shaders are structured. The main function doesn’t accept or
return any parameters—it operates on variables declared outside the function.
DATA TYPES AND MODIFIERS

Dealing with data is one of the most interesting aspects of shader coding. While
OpenCL kernels support operations on scalars and vectors, shaders support opera-
tions on scalars, vectors, and matrices. Table B.7 presents an abridged set of the data
types available. 

Vectors in shader code closely resemble vectors in OpenCL kernels. They’re initialized
in the same way and it’s easy to repeat a single value throughout a vector. For example,
the following lines of code both initialize a float vector whose four components
equal 3.0:

vec4 v = (vec4)(3.0, 3.0, 3.0, 3.0);
vec4 v = (vec4)(3.0);

To access vector components, GLSL relies on the same dot-suffix method as that dis-
cussed in chapter 4. Some of the GLSL suffixes, however, are new:

Table B.7 Shader data types (not including samplers)

Data Type Content

bool, int, uint, float, double Scalars—Boolean, integer, unsigned integer, float, and double

bvec2, bvec3, bvec4 Vectors containing Boolean values

ivec2, ivec3, ivec4 Vectors containing signed integers

uvec2, uvec3, uvec4 Vectors containing unsigned integers

vec2, vec3, vec4 Vectors containing float values

dvec2, dvec3, dvec4 Vectors containing double-precision values

mat2, mat3, mat4 Square matrices containing float values

mat2x3, mat2x4, mat3x2, 
mat3x4, mat4x2, mat4x3

Rectangular matrices containing float values

dmat2, dmat3, dmat4 Square matrices containing float values

dmat2x3, dmat2x4, dmat3x2, 
dmat3x4, dmat4x2, dmat4x3

Rectangular matrices containing float values



378 APPENDIX B Real-time rendering with OpenGL
■ x, y, z, w—Identify coordinate elements or vector components
■ r, g, b, a—Identify channels of a pixel’s color
■ s, t, p, q—Identify elements of texture coordinates

For example, if vec1 and vec2 both contain four elements, you can set vec2 equal to
the reverse of vec1 with either of the following lines of code:

vec2 = vec1.wzyx
vec2 = vec1.abgr

Coding with matrices is similar to coding with vectors, but there’s one important point
to keep in mind: the elements need to be given in column-major order. This means that ele-
ments must be given one column at a time. For example, suppose you wanted to ini-
tialize an ivec4 called v with the following data:

To initialize this matrix in a shader function, you could use the following code:

ivec4 v = (ivec4)(1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15, 4, 8, 12, 16);

OPERATORS AND FUNCTIONS

The shader operators and functions defined in the GLSL standard serve the same
roles as the OpenCL operators and functions described in chapter 5. The basic arith-
metic operators are available (+, -, *, and /) and can be used with scalars, vectors, and
matrices.

 The vector functions available for shaders also closely resemble the functions pre-
sented in chapter 5. In particular, most of the shader functions for comparison, expo-
nentiation, trigonometry, and geometry have the same names and usages as those
used in OpenCL kernels. For example, if you want to set vector c equal to the dot
product of vectors a and b, you’d use the following code:

c = dot(a, b);

The main difference between shader functions and kernels is that GLSL’s functions
operate on matrices. GLSL also provides functions specifically for matrix operations,
and table B.8 lists each of them.

Table B.8 Matrix functions available in shaders

Shader function Purpose

mat matrixCompMult(mat x, mat y) Multiplies input matrices component-wise

mat outerProduct(vec x, vec y) Returns the outer product of two vectors

mat transpose(mat x) Returns the transpose of a matrix

v

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

=
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It’s important to understand the difference between the matrixCompMult function in
table B.8 and the matrix multiplication discussed in chapter 12. Regular matrix multi-
plication computes the dot products of the rows of the first matrix and the columns of
the second. Therefore, the multiplication of an m-by-n matrix and an n-by-p matrix will
produce an m-by-p matrix. In a shader, this operation is performed using the * operator.

 In contrast, the matrixCompMult function doesn’t compute dot products. It multi-
plies each element of the first matrix by the corresponding element of the second
matrix and places the product in the corresponding position of the result. That is, it
performs a two-dimensional set of scalar multiplications. Note that, to use matrix-
CompMult, both input matrices must have the same size. 

 Chapter 12 explained the theory behind the outer product and the transpose
operations, which GLSL implements with the outerProduct and transpose functions.
The last two functions, determinant and inverse, only operate on square matrices.
determinant returns a single float that serves as a matrix’s characteristic value. In
two dimensions, the determinant gives the area of the region bounded by the two vec-
tors that form the matrix. In three dimensions, the determinant gives the volume of
the region bounded by the three vectors that form the matrix.

 The last function, inverse, returns the inverse of a square matrix. For example, if
A, B, and C are matrices, and AB = C, then B = A -1C, where A -1 is the inverse of A. In
code, you can compute the inverse as follows:

a_inverse = inverse(a);

The GLSL specification provides a full description of the operators and functions avail-
able for shaders. This can be freely downloaded from www.opengl.org/documentation/
glsl/.

.3.2 Vertex shaders

The first of the two required shaders in an OpenGL application is the vertex shader.
This runs on the GPU and executes once for every vertex in the model. This shader
receives the attributes defined by the host application, such as coordinates, colors, tex-
ture coordinates, and normal vectors.

 A vertex shader can’t add or remove vertices from the model, but it can change the
vertices’ attributes, such as their coordinates or colors. It may seem odd to change these
attributes immediately after the host initialized them, but there are good reasons for
this. If you want the renderer to present the model from a given angle, the vertex shader
can update the vertices’ coordinates. Similarly, to change the way an object in the model
reflects light, the vertex shader can change the vertices’ normal vectors.

float determinant(mat x) Returns the determinant of a square matrix

mat inverse(mat x) Returns the inverse of a square matrix

Table B.8 Matrix functions available in shaders (continued)

Shader function Purpose

www.opengl.org/documentation/glsl/
www.opengl.org/documentation/glsl/
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 A vertex shader must set the position of each vertex it processes. More precisely,
every vertex shader needs to provide a value for a built-in variable called gl_Position.
This is a vec4, so the shader needs to provide four components for each position.

 An example will help explain how this works. Suppose the host application creates
an attribute called in_location that identifies vertex coordinates within a VBO. In
this case, a simple vertex shader would look like the following:

in vec4 in_location;

void main(void) {
   gl_Position = in_location;
}

This shader sets the position of each vertex equal to the in_location attribute set by
the host application. This may seem trivial, but without this, the renderer won’t know
which attribute corresponds to the vertex’s position.

 Most vertex shaders perform more work than setting output coordinates equal to
input coordinates. In many cases, vertex shaders use matrix-vector multiplication
to update vertices’ positions. As explained in chapter 12, the multiplication of an
n-element vector by an n-by-n matrix will produce a second n-element vector. If
coded correctly, a matrix can be used to rotate, move, or scale vertices in a model.
These operations are collectively called transformations, and their corresponding
matrices are called transformation matrices.

 For example, the AppB/three_squares application creates a model and rotates it
so that the squares can be viewed from a specific viewpoint. This rotation is accom-
plished by the vertex shader, whose code is contained in the AppB/three_squares/
three_squares.vert source file. Here’s what this code looks like.

in  vec3 in_coords;                           
in  vec3 in_color;                               
out vec3 new_color;

void main(void) {

   new_color = in_color;
   mat3x3 rot_matrix = mat3x3(0.707, 0.641, -0.299,   
                             -0.707, 0.641, -0.299,           
                             -0.000, 0.423,  0.906);  
   vec3 coords = rot_matrix * in_coords;
   gl_Position = vec4(coords, 1.0);
}

Here, the host application provides the vertex shader with two attributes for each
incoming vertex. The in_coords attribute identifies the position of the vertex, and
in_color identifies the color of the vertex. The shader creates a 3-by-3 matrix called
rot_matrix and multiplies it by the vertex’s coordinates, thereby transforming the
vertex’s position.

Listing B.2 Vertex shader: three_squares.vert

Vertex 
attributes

Rotation 
matrix
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 The host application associates the color attribute with the name in_color. The
vertex shader receives this attribute but doesn’t modify its value. Instead, it creates
another vec3 variable called new_color and passes this to the next stage. In this sim-
ple application, the next stage is the fragment shader, which we’ll look at next.

B.3.3 Fragment shaders

After the vertex shader completes its processing, the OpenGL renderer combines ver-
tices into primitives such as points, lines, or polygons. Afterward, OpenGL will convert
these three-dimensional figures into two-dimensional shapes composed of pixels. This
conversion process is called rasterization.

 But the pixels produced by rasterization aren’t necessarily the final pixels dis-
played by the renderer. Instead, OpenGL refers to these preliminary pixels as frag-
ments. The primary goal of a fragment shader is to accept the fragment colors
produced by rasterization and determine the pixel colors in the final display.

 Just as the vertex shader executes once for each vertex in the model, the fragment
shader executes once for each fragment. The shader can’t change a fragment’s posi-
tion or access other fragments, but it can serve the following five functions:

■ Apply texture data
■ Configure lighting—the ambient, diffuse, and specular components of

reflected light
■ Set the fragment’s depth
■ Perform bump-mapping—add roughness to an image
■ Add other effects such as fog and shadow

In the three_squares application, the only purpose of the fragment shader is to set the
fragment’s output color. This is very easy. If the fragment shader only contains one
output variable, the fragment’s color will be set to this value. This is shown in the fol-
lowing code.

in  vec3 new_color;
out vec4 out_color;

void main(void) {
    vec3 tmp_color = new_color + vec3(0.25f, 0.25f, 0.25f);
    out_color = vec4(tmp_color, 1.0);                              
}

out_color is the only variable declared with the out modifier, so the renderer will set
the fragment’s color to its value. The input variable, new_color, corresponds to the
output variable (new_color) of the vertex shader. As shown in listing B.3, this variable
contains the color attribute defined by the host application.

 The vertex shader passes new_color to the fragment shader, but the value of the
color may not be the same as the color attribute defined on the host. This is because

Listing B.3 Fragment shader: three_squares.frag
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pixel colors may be interpolated before reaching the fragment shader (chapter 6 dis-
cusses interpolation in detail). The fragment shader can’t perform interpolation itself
because it can’t access colors of other fragments. 

 At this point, we’ve examined OpenGL host applications, vertex shaders, and frag-
ment shaders. We’re almost ready to render a 3-D model, but there’s one last step: we
need to form a window to provide the rendering canvas. The next section will explain
how this works.

B.4 Creating the OpenGL window with GLUT
Figuratively speaking, you might say that OpenGL paints the picture and GLUT forms
the frame and canvas. Technically speaking, GLUT creates the window that OpenGL
uses to render graphics. GLUT isn’t the only toolset that provides this capability, and
both Qt and GTK allow you to create full-featured GUIs with OpenGL. But in my opin-
ion, GLUT is the easiest for newcomers to use. The goal of this section is to present its
functions and show how they work together to form canvases for OpenGL.

B.4.1 Configuring and creating a window

The first steps in any GLUT-based application are to load the GLUT runtime, configure
window properties, and then create a data structure to represent the window. Table
B.9 lists six functions that initialize GLUT windows. 

Of these functions, glutInit must be called first. glutCreateWindow is usually called
after all other GLUT configuration functions have been called.

 The most important of the configuration functions is glutInitDisplayMode,
which configures properties related to the window’s pixel content and display charac-
teristics. It accepts a single parameter that can be set to one of the constants in table
B.10 or an OR’ed combination thereof.

Table B.9 GLUT initialization functions

Function Purpose

void glutInit(int* argc, char** argv) Launches the GLUT runtime

void glutInitWindowSize(int w, int h) Sets the window’s width and height

void glutInitWindowPosition(int x,
   int y)

Sets the coordinates of the window’s initial 
position

void glutFullScreen() Configures the window to occupy the entire 
screen

void glutInitDisplayMode(uint mode) Sets the window’s display mode, which identi-
fies pixel format and color buffering 

int glutCreateWindow(char* title) Creates a window with the given title, returns a 
numeric descriptor for the window
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The GLUT_RGB and GLUT_SINGLE modes are enabled by default. But throughout this
book, the example OpenGL code will set the display mode to GLUT_RGB | GLUT_DOUBLE
under the assumption that modern hardware can handle double-buffered graphics.
As an example, the following code creates a 500-by-150-pixel window at the loca-
tion (0, 0):

glutInit(&argc, argv);
glutInitWindowSize(500, 150);
glutInitWindowPosition(0, 0);
glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE);
int window = glutCreateWindow("Title");

This code creates the data structure that GLUT uses internally to represent the win-
dow, but it doesn’t actually display a new window. Before we can get to that, we need to
set up event handling.

B.4.2 Event handling

Event handling is an important concern when coding graphical user interfaces
(GUIs). You need a way to tell the application how to respond to mouseovers, mouse
clicks, keystrokes, resizing events, and every other kind of external stimulus an appli-
cation can receive. GLUT makes this simple by providing event-handling functions
that accept pointers to functions called callback functions, which respond to the corre-
sponding events. Table B.11 lists a subset of these functions and the events they
respond to.

Table B.10 GLUT display modes

Display mode constant Configuration property

GLUT_RGB, GLUT_RGBA, GLUT_INDEX, or
   GLUT_LUMINANCE

Sets the channel format used for pixels within 
the window

GLUT_SINGLE or GLUT_DOUBLE Sets whether the window uses single-buffering 
or double-buffering

GLUT_ACCUM, GLUT_ALPHA, GLUT_DEPTH, or
   GLUT_STENCIL

Identifies buffers to store data related to 
OpenGL buffering

GLUT_MULTISAMPLE Enables full-screen anti-aliasing

Table B.11 GLUT event-handling functions

Function Event

void glutDisplayFunc(void(*func)(void)) Window display

void glutMouseFunc(void(*func)
   (int button, int state, int x, int y))

Mouse click or release at the given 
coordinates

void glutReshapeFunc(void(*func)
   (int width, int height))

Resizing of the GLUT window
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The callback function identified by glutDisplayFunc tells the window how to display
itself. For this reason, it’s the only callback registration function that must be imple-
mented in a GLUT application. To see how it works, let’s suppose you have a function
called display, as follows:

void display() {
   ...
}

The following code ensures that GLUT will call this function when it needs to redraw
the pixels in the window:

glutDisplayFunc(&display);

As a further example, the following code creates a function that receives reshaping
events and then registers it as a GLUT callback function:

void reshape(int width, int height) {
   ...
}

glutReshapeFunc(&reshape);

In both of these examples, the name of the callback function is taken from the name
of the corresponding GLUT registration function. This convention makes coding eas-
ier, and it is employed throughout this appendix as well as chapters 15 and 16.

B.4.3 Displaying a window

After you’ve initialized the window and registered its event-handling routines, you’re
ready to display the window on the user’s screen. The function that makes this possi-
ble is glutMainLoop, which doesn’t accept any parameters or return any values. It
starts the GLUT processing cycle that receives events and invokes their callback func-
tions as needed. The loop continues until the GLUT application terminates.

 The following code shows how GLUT applications call glutMainLoop and many of
the other functions discussed so far. This registers two callback functions—one that
executes when the window draws its pixels, and one that responds to resizing events.

void glutKeyboardFunc(void(*func)
   (unsigned char key, int x, int y))

Keystroke 

void glutVisibilityFunc(void(*func)
   (int state))

Change in the window’s visibility status

void glutTimerFunc(unsigned int ms_time,
   void(*func)(int value), value)

Passage of the specified amount of time

void glutIdleFunc(void (*func)(void)) Called when events aren’t being received

Table B.11 GLUT event-handling functions (continued)

Function Event
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#define FREEGLUT_STATIC
#include <GL/freeglut.h>
#include <stdio.h>

void reshape(int width, int height) {
   printf("New dimensions: %d %d\n", width, height);
}

void display() {
   glClear(GL_COLOR_BUFFER_BIT);
   printf("Displaying the window\n");
   glutSwapBuffers();
}

int main(int argc, char **argv) {

   glutInit(&argc, argv);                      
   glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE);          
   glutInitWindowSize(500, 150);               
   glutInitWindowPosition(200, 100);           
   glutCreateWindow("Introducing GLUT");       

   glutDisplayFunc(display);            
   glutReshapeFunc(reshape);                    

   glClearColor(1.0, 1.0, 1.0, 1.0);
   glutMainLoop();                   
   return 0;
}

When this code is compiled and exe-
cuted, the result will be a 500-by-150-
pixel window, such as the one shown
in figure B.4.

 When the window first appears,
GLUT will invoke the reshape call-
back function first and the display callback function second. These functions will be
called again whenever the window is resized. This is shown by the following output:

New dimensions: 500 150
Displaying the window
New dimensions: 468 133
Displaying the window
New dimensions: 413 130
Displaying the window
New dimensions: 334 130
Displaying the window
New dimensions: 280 127
Displaying the window

The callback functions that handle display and resizing events will play particularly
important roles in the discussion that follows. As we add OpenGL-specific code to
these functions, we’ll see the content of the window become much more interesting. 

Listing B.4 Simple GLUT application: glut_intro.c

Initialize 
window 
structure

Set event 
handling

Start 
GLUT loop

Figure B.4 Example GLUT window



386 APPENDIX B Real-time rendering with OpenGL
B.5 Combining OpenGL and GLUT
To make a GLUT window capable of displaying OpenGL graphics, three steps are
required:

1 Code the initialization process to specify vertex data and compile and deploy
shaders.

2 Set GLUT’s resize callback to invoke glViewport, which will tell the OpenGL
renderer how large the display canvas is.

3 Set GLUT’s display callback to invoke glDrawArrays, which will render the 3-D
model in the GLUT window.

These steps are straightforward, as long as you remember when each GLUT function is
called. For example, the resize callback is called whenever the window is resized. The
display callback is called whenever the window needs to draw itself. This section will
discuss each of these three steps.

B.5.1 GLUT/OpenGL initialization

If you compare the code in AppB/three_squares/three_squares.c and the code in list-
ing B.4, you’ll see that the main function in three_squares.c calls two additional func-
tions: init_buffers and init_shaders. These functions handle the OpenGL
initialization tasks for the application.
INITIALIZING OPENGL BUFFERS

The goal of init_buffers is to create the VAOs and VBOs needed to store the applica-
tion’s rendering data. This data consists of six VBOs—three containing vertex coordi-
nates and three containing vertex colors. Each VBO contains data for four vertices,
which makes sense because our goal is to render three squares.

 The following listing presents the code that defines and configures vertex data for
the first square. The first_coords array contains the coordinates for the square’s ver-
tices, and the first_colors array contains coordinates for the square’s colors.

...
GLfloat first_coords[] = {-0.15f, -0.15f, 1.0f,
                          -0.15f,  0.15f, 1.0f,
                           0.15f,  0.15f, 1.0f,
                           0.15f, -0.15f, 1.0f};
GLfloat first_colors[] = {0.0f,  0.0f, 0.0f,
                          0.25f, 0.0f, 0.0f,
                          0.50f, 0.0f, 0.0f,
                          0.75f, 0.0f, 0.0f};
...
void init_buffers(void) {

   glGenVertexArrays(3, vao);

   glGenBuffers(6, vbo);                      

   glBindVertexArray(vao[0]);

Listing B.5 Setting VBOs to hold rendering data: three_squares.c

Create six 
VBOs

B
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   glBindBuffer(GL_ARRAY_BUFFER, vbo[0]);           
   glBufferData(GL_ARRAY_BUFFER, 12*sizeof(GLfloat),      
         first_coords, GL_STATIC_DRAW);             
   glVertexAttribPointer(0, 3, GL_FLOAT,            
                         GL_FALSE, 0, 0);           
   glEnableVertexAttribArray(0);

   glBindBuffer(GL_ARRAY_BUFFER, vbo[1]);           
   glBufferData(GL_ARRAY_BUFFER, 12*sizeof(GLfloat),      
         first_colors, GL_STATIC_DRAW);             
   glVertexAttribPointer(1, 3, GL_FLOAT,            
                         GL_FALSE, 0, 0);           
   glEnableVertexAttribArray(1);
...

Six data arrays are needed in total, so the application creates six VBOs by calling
glGenBuffers B. Then it configures each VBO by making it active, buffering the data,
and creating an attribute for the data. The glEnableVertexAttribArray function
stores the attribute and the corresponding data within the active VAO. 
DEPLOYING SHADERS

The second initialization function, init_shaders, implements the shader deployment
process described earlier. The following listing presents this function in full.

void init_shaders(void) {

   GLuint vs, fs, prog;
   char *vs_source, *fs_source;
   GLint vs_length, fs_length;

   vs = glCreateShader(GL_VERTEX_SHADER);        
   fs = glCreateShader(GL_FRAGMENT_SHADER);           

   vs_source = read_file(VERTEX_SHADER, &vs_length);
   fs_source = read_file(FRAGMENT_SHADER, &fs_length);

   glShaderSource(vs, 1, (const char**)&vs_source, &vs_length);
   glShaderSource(fs, 1, (const char**)&fs_source, &fs_length);

   compile_shader(vs);                  
   compile_shader(fs);                                         

   prog = glCreateProgram();

   glBindAttribLocation(prog, 0, "in_coords");
   glBindAttribLocation(prog, 1, "in_color");

   glAttachShader(prog, vs);
   glAttachShader(prog, fs);

   glLinkProgram(prog);
   glUseProgram(prog);                      
}

The functions used in this code are the same as those presented in table B.4. Note
that, because the application requires two shaders, many functions are called twice.

Listing B.6 Initializing shaders to process rendering data: three_squares.c

Configure 
first VBO

Configure 
second VBO

Create 
shaders

Compile 
shaders

Deploy 
program
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The shaders are compiled with compile_shader, which isn’t an OpenGL function.
This compiles the argument and outputs the build log if the compilation fails. Its code
is given in listing B.1.

 The last function invoked in listing B.6 is glUseProgram, which installs the linked
program object on the GPU. There’s no need to call glDeleteProgram because the
program will be deallocated at the application’s conclusion.

B.5.2 Setting the viewport

To render a scene, OpenGL needs to know the size and location of the canvas region.
This is provided by glViewport, whose signature is as follows:

void glViewport(GLint x, GLint y, GLsizei width, GLsizei height)

The operation of this function is straightforward. The x and y parameters identify the
upper-left position of the region, and width and height identify the size. If a user
moves or resizes the GLUT window, the viewport needs to be updated. Therefore, the
resize callback function calls glViewport in the following manner:

void reshape(int w, int h) {
   glViewport(0, 0, (GLsizei)w, (GLsizei)h);
}

Here, the x and y parameters identify the region’s location in the GLUT window’s cli-
ent area, not the absolute location within the screen. 

B.5.3 Rendering the model

As described in the preceding section, the GLUT window calls the display callback
every time it needs to redraw its content. The OpenGL function glDrawArrays
launches the rendering process, so it makes sense that the display callback should
invoke glDrawArrays. This is precisely how OpenGL rendering is accomplished with
GLUT. The following listing presents the full code of the display callback.

void display(void) {
   glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

   glBindVertexArray(vao[2]);                  
   glDrawArrays(GL_TRIANGLE_FAN, 0, 4);               

   glBindVertexArray(vao[1]);                 
   glDrawArrays(GL_TRIANGLE_FAN, 0, 4);           

   glBindVertexArray(vao[0]);              
   glDrawArrays(GL_TRIANGLE_FAN, 0, 4);      

   glBindVertexArray(0);
   glutSwapBuffers();
}

Listing B.7 Rendering the model: three_squares.c

Draw 
first VAO

Draw 
second VAO

Draw 
third VAO
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Here, glDrawArrays is called three times—once for each
vertex array object configured in the init_buffers func-
tion. This draws each of the three squares of the model.
Figure B.5 shows what the result looks like.

 The first line of code deserves explanation. OpenGL
stores state information using a series of buffers. The color
buffer stores the colors of each pixel in the display, and the
depth buffer, also called the z-buffer, stores a depth value for
each pixel. The glClear function resets buffers to their
default configurations, so the glClear function in listing
B.7 resets both the color buffer and the depth buffer.

 This code sets the colors of the model’s vertices using
basic RGB values, but we can do better. Professional game developers prefer to add
detail to every surface in a design, and to make this possible, they rely on textures. 

B.6 Adding texture
Textures make it possible to associate image data with the surfaces of a model. If you
think of OpenGL vertices as forming a skeleton, then textures form the skin. Figure
B.6 shows how this works. The texture_squares application creates textures from the
three images on the left and uses them to cover the squares.

 Working with OpenGL textures is like putting up wallpaper. In both cases, blank
surfaces are made more appealing through the application of decorative images. The
corners of the pattern must be carefully matched to the corners of the surface. It’s
also important to make sure that the pattern is oriented correctly as it’s applied.

 But textures are easier to work with than wallpaper because there’s no need to do
any measuring. OpenGL will stretch or shrink the texture as needed to fit the space.
Also, if a texture needs to be minimized, you can tell OpenGL to use miniaturized ver-
sions of the texture called mipmaps.

Figure B.6 Covering model surfaces with textures

Figure B.5 The three 
squares rendering
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The goal of this section is to explain how to convert image data into two-dimensional
textures and apply the textures to surfaces in a model. There are three steps involved:

1 In the host application, create a texture object and configure it with data from
an image file.

2 In the vertex shader, match the texture’s coordinates to vertices of the model.
3 In the fragment shader, set the output color equal to the texture color.

After discussing the functions needed to implement these steps, we’ll look at the
texture_squares application, which converts the images on the left of figure B.6 into
textures and uses them to form the rendering on the right.

B.6.1 Creating textures in the host application

The process of initializing textures in OpenGL is similar to that of initializing VBOs.
There are four steps:

1 Create one or more descriptors to represent the textures.
2 Make a texture active.
3 Set characteristics of the active texture.
4 Associate the active texture with data.

Table B.12 lists the functions needed to implement these steps. As with VBOs, texture
descriptors are given as GLuints.

 The first two functions, glGenTextures and glBindTexture, operate like the
glGenBuffers and glBindBuffer functions discussed earlier. The first creates one or

Table B.12 Functions related to textures

Function Purpose

void glGenTextures(GLsizei num,
   GLuint* descriptors)

Creates texture objects and initializes an array 
of descriptors

void glBindTexture(GLenum target,
   GLuint descriptor)

Makes the texture object active for a given 
target

void glPixelStorei(GLenum param_name,
   GLint param)

Identifies characteristics about how the pixel 
data is stored

void glTexParameteri(GLenum target,
   GLenum param_name, GLint param)

Identifies characteristics about how the tex-
ture should be used

void glTexImage2D(GLenum target,
   GLint level, GLint internalformat,
   GLsizei width, GLsizei height,
   GLint border, GLenum format,
   GLenum type, const GLvoid* data);

Associates image data with the texture

void glDeleteTextures(GLsizei num,
   const GLuint* descriptors)

Deletes texture objects identified by the 
descriptors
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more texture objects, and the second makes a texture active by binding it to a target.
This discussion is focused on forming textures from two-dimensional images, so the
target of interest is GL_TEXTURE_2D.

 The glPixelStorei and glTexParameteri functions both provide OpenGL with
information about the texture. The first identifies how the texture’s pixels are stored in
memory. To create a texture from uncompressed data, the parameter name should be
GL_UNPACK_ALIGNMENT and the value should be the byte alignment of each pixel row. For
example, the following code specifies that the pixel rows are stored at 1-byte boundaries:

glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

The parameters accepted by glTexParameteri are more involved and tell OpenGL
how the texture should be displayed in the rendering. Table B.13 lists six of the
parameter names accepted by glTexParameteri and the nature of the information
they provide.

One of the main purposes of glTexParameteri is to specify how the active texture
should be displayed when the viewer zooms in or out. If the texture needs to be
enlarged, the first parameter in the table identifies which interpolation method should
be employed. The parameter value can be set to GL_NEAREST for nearest-neighbor
interpolation or GL_LINEAR for bilinear interpolation. Chapter 6 discusses both meth-
ods in detail.

 If a texture needs to be minimized, there are more options available. In addition
to nearest-neighbor and bilinear interpolation, the minimization can make use of
mipmaps. A mipmap is a smaller version of the original texture image, and its dimen-
sions are scaled by 1/2, 1/4, 1/8, and so on. Mipmaps make it possible for OpenGL to
display textures at reduced size without the processing burden and potential error
associated with interpolation.

 Each mipmap has a level, and the higher the level, the smaller the size. For example,
if the user zooms out of a scene, the mipmap level used may increase from 2 to 3 to 4.

Table B.13 Texture parameters (abridged)

Parameter Information

GL_TEXTURE_MIN_FILTER Defines the interpolation method used for minimization

GL_TEXTURE_MAG_FILTER Defines the interpolation method used for enlargement

GL_TEXTURE_MIN_LOD Identifies the texture’s lowest mipmap level

GL_TEXTURE_MAX_LOD Identifies the texture’s highest mipmap level

GL_TEXTURE_WRAP_S Configures how the texture should be displayed in the 
s-direction at coordinates beyond its dimensions

GL_TEXTURE_WRAP_T Configures how the texture should be displayed in the 
t-direction at coordinates beyond its dimensions
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The GL_TEXTURE_MIN_LOD and GL_TEXTURE_

MAX_LOD identify the lowest and largest mipmap
levels available. 

 The last two parameters in the table relate
to texture coordinates. Before OpenGL can
apply a texture to a model’s surface, the appli-
cation must match the texture’s coordinates to
vertex coordinates. For two-dimensional tex-
tures, the coordinates are given in (s, t) pairs.
This is shown in figure B.7.

 The responsibility for creating the corre-
spondence between these coordinates falls to
the vertex shader, and this will be discussed
shortly. For now, it’s important to know that the
GL_TEXTURE_WRAP_S and GL_TEXTURE_WRAP_T

parameters tell OpenGL what to display when the texture coordinates go beyond the
minimum and maximum. Both parameters accept the same five values: GL_CLAMP,
GL_CLAMP_TO_BORDER, GL_CLAMP_TO_EDGE, GL_MIRRORED_REPEAT, and GL_REPEAT. Chap-
ter 6 discusses these values and figure 6.1 shows how the resulting textures are displayed.

 As an example, the following code creates a texture and makes it active. Then it
calls glTexParameteri to tell OpenGL that bilinear interpolation should be used for
enlargement and minimization. Also, pixels at coordinates beyond the texture should
be repetitions of the texture’s pixels:

glGenTextures(1, &texture);
glBindTexture(GL_TEXTURE_2D, texture);
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);

After the texture is created and its characteristics are set, glTexImage2D can be used to
associate the texture with pixel data. This serves a purpose similar to glBufferData,
but in addition to the data dimensions, glTexImage2D also needs to know how the pix-
els in the texture, called texels, are organized. Table B.12 lists all the arguments of this
function; three important arguments are as follows:

■ internalformat identifies the number of components in each texel. Example
values include GL_RGBA8, GL_RGBA16, GL_RGB8, GL_RGB16, GL_ALPHA8,
GL_ALPHA16, GL_LUMINANCE8, and GL_LUMINANCE16.

■ format identifies the properties of individual texels. Example values include
GL_RGBA, GL_RGB, GL_ALPHA, and GL_LUMINANCE.

■ type sets the data type of each component. Example values include GL_FLOAT,
GL_INT, GL_UNSIGNED_BYTE, and GL_SHORT.

s

t (1, 0)

(0, 1) (1, 1)

Figure B.7 Texture coordinates for a two-
dimensional image
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As an example, the following code associates a two-dimensional texture with a 60*40
array of texels called tex_data. Each texel in tex_data is composed of RGB compo-
nents, and each component is given as an unsigned byte:

glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB8, 60, 40, 0, GL_RGB,
             GL_UNSIGNED_BYTE, tex_data[i]);

glTexImage2D is the last of the functions that need to be called to configure a texture.
Once this is accomplished, the next step involves matching the coordinates of the tex-
ture to vertices in the model. This matching process is called texture mapping, and it
will be discussed next.

B.6.2 Texture mapping in the vertex shader

As explained in section B.3, the vertex shader sets the coordinates of a vertex by ini-
tializing a built-in variable called gl_Position. The vertex shader can also access a
built-in variable called gl_TexCoord. This variable represents an array of textures, and
when an element of this array is set equal to an array of coordinates, those texture
coordinates will be matched to the vertex being processed by the shader.

 Each element of gl_TexCoord can be set to a vector containing four coordinates,
but for two-dimensional textures, only the first two coordinates need to be set. As an
example, the following code sets the (s, t) components of gl_TexCoord[0] equal to
(3, 4):

gl_TexCoord[0].st = vec2(3, 4);

In general, vertex shaders determine texture coordinates using one of two methods.
First, a shader may compute texture coordinates based on the coordinates of the ver-
tex being processed. In the following line of code, the shader sets the texture coordi-
nates (s, t) equal to the (x, y) coordinates of the vertex:

gl_TexCoord[0].st = gl_Position(x, y);

Second, the shader can access texture coordinates through input attributes. As
explained earlier, attributes identify specific portions of VBO data. For example, the
following code initializes the vertex coordinates of the first square (first_coords)
and the coordinates of the texture (tex_coords) used to cover the square:

GLfloat first_coords[] = {-0.15f, -0.15f, 1.0f,
                          -0.15f,  0.15f, 1.0f,
                           0.15f,  0.15f, 1.0f,
                           0.15f, -0.15f, 1.0f};
GLfloat tex_coords[] = {0.0f, 0.0f,
                        0.0f, 1.0f,
                        1.0f, 1.0f,
                        1.0f, 0.0f};

The attribute corresponding to the tex_coords data is called in_texcoords, and the
following listing shows how the vertex shader accesses these coordinates and sets them
equal to the gl_TexCoord[0] output.
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in  vec3 in_coords;
in  vec2 in_texcoords;

void main(void) {

   gl_TexCoord[0].st = in_texcoords;                
   mat3x3 rot_matrix = mat3x3(0.707, 0.641, -0.299,
                             -0.707, 0.641, -0.299,
                             -0.000, 0.423,  0.906);
   vec3 coords = rot_matrix * in_coords;
   gl_Position = vec4(coords, 1.0);
}

This code listing closely resembles listing B.2, but in addition to setting the location of
each vertex in the model, it also matches the vertex with a texture coordinate. Once
this is done, the fragment shader will be able to access the texture’s color values. 

B.6.3 Applying textures in the fragment shader

Just as the vertex shader can access a built-in output variable called gl_TexCoord, the
fragment shader can access a built-in input variable called gl_TexCoord. In both cases,
the variable represents an array of textures, and each element of the array contains
texture coordinates.

 The texture function makes it possible to access the color at a given location in
the texture. This can be called in a number of different situations, but for a simple
two-dimensional texture, its signature is as follows:

vec4/ivec4/uvec4 texture(sampler2D sampler, vec2 coords)

The first argument is a sampler, which serves a purpose similar to the sampler_t struc-
tures discussed in chapter 6. It identifies which interpolation method should be used
for the texture and how to display the texture when coordinates go beyond the tex-
ture’s borders.

 For basic sampling, you don’t have to configure a custom sampler. A fragment
shader can access a built-in sampler as a uniform. Uniforms are similar to attributes in
that shaders can access them as input. But uniforms are constant—they don’t change
from pixel to pixel or from fragment to fragment. Further, attributes can only be
accessed by vertex shaders, not fragment shaders.

 The following listing presents the code for the fragment shader in the
texture_squares application. It calls texture with the default sampler2D to obtain the
texel color at the coordinates identified by gl_TexCoord. Then it sets the fragment’s
output color, new_color, equal to the texel color.

uniform sampler2D tex;
out vec4 new_color;

void main() {

Listing B.8 Simple texture mapping: texture_squares.vert

Listing B.9 Texture application: texture_squares.frag

Assign texture 
coordinates
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   vec3 color = vec3(texture(tex, gl_TexCoord[0].st)); 
   new_color = vec4(color, 1.0);
}

The code for the host application (texture_squares.c) closely resembles the code pre-
sented in the previous section (three_squares.c). The primary difference is that the
main function in texture_squares.c calls a function called init_textures to create
textures from image data. This function creates VBOs to hold texture coordinates for
each of the three squares. There are no VBOs to hold vertex colors.

 When the host application executes, it creates the window and sends the VBO data
(vertex coordinates and texture coordinates) to the vertex shader and the fragment
shader. The vertex shader maps the texture coordinates to the vertex, and the fragment
shader sets the output color to that of the texture. Once the three textures have been
applied to the three squares, the result is what you saw on the right side of figure B.6. 

B.7 Summary
The principles underlying OpenGL development aren’t significantly different from
those underlying OpenCL development. In both cases, the host application initializes
the data and the device processes it. The primary difference, of course, is that
OpenGL data is graphics-oriented and the device uses the processed data to draw pix-
els on a screen.

 An OpenGL host application has four main tasks to accomplish. First, it has to create
vertex buffer objects (VBOs) from vertex data. Then, it has to form attributes that iden-
tify the format and content of the VBO data. Shaders process this data, but before they
can execute, the host needs to compile the shader code and deploy the linked program
to the device. The last responsibility of the host is to launch the rendering process.

 Once the rendering starts, the shaders running on the GPU handle the data pro-
cessing. The vertex shader receives the attributes from the host and determines the
final location of each incoming vertex. The fragment shader determines the final
color of each pixel drawn in the display. Both shaders are coded in the OpenGL Shad-
ing Language, or GLSL. GLSL bears a number of similarities to OpenCL’s kernel lan-
guage, and both languages provide vector data types and mathematical functions to
operate on the vectors.

 The GL Utility Toolkit, or GLUT, creates windows capable of displaying the render-
ing produced by OpenGL. GLUT doesn’t provide as many features as professional tool-
kits like Qt or GTK, but it’s easy to learn and use. After you call the functions to initialize
the window, you can tell GLUT which functions should respond to events. To configure
GLUT to work with OpenGL, the resize callback function should call OpenGL’s glView-
port function. The display callback function should call glDrawArrays.

 Textures make it possible to add detail to the rendering. A texture’s pixels, texels,
are used to cover a surface of the model. Coding with textures consists of three steps.
First, the host application creates texture objects and defines the texels of each. Then,
the vertex shader matches the texture coordinates with vertices. Last, the fragment
shader accesses the texture to determine which color to set as output.

Obtain 
texel color
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 OpenGL is a complicated toolset, and it takes time to understand how the different
data structures work together to render graphics. I strongly recommend that you ana-
lyze the code in this appendix and other example code to understand what the func-
tions do and why they’re needed. Then, once you have a basic understanding of the
API, you should experiment with your own graphical applications. The learning curve
is steep, but I find it particularly rewarding to create a three-dimensional world and
see it rendered on a computer screen.

 Appendix C doesn’t present any new APIs or functions to learn. Instead, we’ll look
at an open source set of tools capable of compiling and linking applications on Win-
dows. The toolset is called the Minimal GNU for Windows, or MinGW. If you’re already
familiar with GNU development, I’m sure you’ll find it easy to use.



appendix C:
The minimalist GNU for

Windows and OpenCL

Microsoft’s Visual Studio is a popular tool for coding and compiling Windows
applications, but throughout academia and commercial supercomputing, you’ll
see a greater focus on GNU (GNU’s Not Unix) build tools such as gcc (GNU Com-
piler Collection). These tools are installed automatically on Mac OS and Linux, but
Windows users can only access them by installing special packages.

 Two such packages are Cygwin or MinGW (the Minimalist GNU for Windows).
Cygwin gives you a wide range of GNU-based applications, whereas MinGW provides
only the essential GNU tools needed to compile C/C++ code. The goal of this
appendix is to show how to install MinGW, how to configure its build process using
makefiles, and how to use MinGW to build OpenCL-based applications.

 Mac OS and Linux developers may find MinGW helpful because it makes it pos-
sible to build native Windows applications without Windows. But this discussion is
directed toward Windows users who want to access GNU build tools without install-
ing Linux or buying a Mac. Therefore, the first topic discusses how to install
MinGW on the Windows operating system.

C.1 Installing MinGW on Windows
There are two ways to install MinGW on Windows. You can use a text-based installer
called mingw-get or run an automated graphical installer called mingw-get-inst.
Both are easy to work with, but the automated installer is particularly well suited
for Windows users. These instructions will focus on the graphical installer. Specifi-
cally, we’ll examine how to run the installer and add new capabilities to the
MinGW installation.
397
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C.1.1 Obtaining and running the graphical installer

To get MinGW running on your system, follow these steps:

1 Open a browser, and go to www.mingw.org. This is the primary site for the
MinGW project.

2 Find the Navigation menu on the left, and open the About entry. Click the link
entitled Downloads. This opens a site in SourceForge.net, which hosts files
related to open source projects.

3 Click the Files link. This should be located in a horizontal series of links under
the project title.

4 Download an executable called mingw-get-inst-num.exe, where num is the current
version. This will download the automated graphical installer to your system.

5 After the download is complete, double-click the executable. This will open a
graphical wizard whose first page welcomes you to MinGW.

6 Click Next in the welcome page and, assuming you have sufficient privileges,
click Next in the Administrator Install page.

7 The next page asks whether you’d like to download the most recent repository
catalogue. This is usually a good idea, so select the radio button entitled Down-
load Latest Repository Catalogues and click Next.

8 Accept the GNU public license. This states that MinGW is free and that if you
distribute MinGW as part of a larger package, the package must be free as well.

9 Select a directory on your system where you’d like to install MinGW. This chap-
ter assumes you’ve chosen the C:\MinGW folder. Do not install MinGW in a
directory whose name contains spaces.

10 Click Next. Select the location of the program’s shortcuts and click Next.
11 The next page asks which components you’d like to install. The C Compiler option

is chosen by default, but I strongly recommend that you also select the C++ Com-
piler option and the MSYS Basic System option as well. This is shown in figure C.1.

12 Click Next and Install. The installer will open a command window and down-
load the required files. Then it will install them into the directory you’ve cho-
sen. Click Finish to end the installation process. 

Figure C.1 Selecting 
components for the 
MinGW installation

www.mingw.org
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Congratulations! You’re now the proud owner of a world-class set of tools for compil-
ing and linking C/C++ applications for Windows. But before you continue, I recom-
mend that you do two things. First, update your PATH environment variable to point
to MinGW’s executables. Second, open the MinGW installation directory and look
through the new files and folders.
SETTING THE PATH VARIABLE

Before you start using the tools, you should make sure they can be accessed from the
command line. This means adding the C:\MinGW\bin directory to your PATH environ-
ment variable. There are two main ways to access environment variables in Windows:

■ Classic view (XP, Vista)—Open the Start menu and the Control Panel. Select the
System entry and Advanced System Settings. At the bottom of the dialog box,
click the Environment Variables button.

■ Modern view (Vista, 7)—Open the Start menu and the Control Panel. Click the
System and Security option. Click System and then click Advanced System Set-
tings on the left. At the bottom of the dialog box, click the Environment Vari-
ables button.

The resulting dialog box should look
similar to the one displayed in figure C.2. 

 Under the System Variables head-
ing, scroll down and double-click the
Path variable. Add C:\MinGW\bin to the
directories that Windows will search
when you execute a command from the
command line, and remember to sepa-
rate the directory from the others with
a semicolon.

 Once you’ve updated the PATH vari-
able, I recommend that you open a
command interpreter (cmd.exe) and
attempt to execute the command gcc.
If you get the message gcc: no input
files, you’ve succeeded. MinGW is
installed properly and you’ve set the
environment variable correctly.

 If you receive a message saying that gcc is not recognized as an internal or external
command, the environment variable wasn’t set correctly. This error may also occur if
the terminal was opened before the environment variable was set. In this case, restart
the terminal and try again.
EXPLORING MINGW

It’s a good idea to open the installation directory (C:\MinGW by default) and look
through your new files. There are many subdirectories, but the following four are par-
ticularly important:

Figure C.2 Setting environment variables
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■ bin—Contains executables (mingw32-make, mingw32-gcc, mingw32-g++)
■ include—Contains headers needed to build *nix applications
■ lib—Contains libraries needed to build *nix applications
■ msys—Contains files that create a Unix-like shell

The bin directory contains mingw32-make and mingw32-gcc executables, whose func-
tions closely resemble those of regular make and gcc. For mingw32-make, the name
change is important to distinguish the utility from a common Windows make utility,
which relies on MSCVRT.dll. For mingw32-gcc, the name implies that the build process
is a cross-compilation—from Unix to Windows.

 The last subdirectory mentioned, msys, stands for minimal system, which refers to a
Unix-like shell from which you can enter Unix-based commands. We’ll look at this next.

C.1.2 Installing new tools in MinGW

If you open the top-level msys directory and its version subdirectory (1.0 on my sys-
tem), you’ll find a batch script called msys.bat. If you’ve installed MinGW correctly,
double-clicking this file will bring up a command window with the title MINGW32.
This is shown in figure C.3.

 At this prompt, you can enter regular Unix commands like ls, rm, mkdir, and mv,
and you can even access make. But MSYS doesn’t provide a full Unix shell—it just
makes it easy to access MinGW’s capabilities in a Unix-like manner.

NOTE For the sake of convenience, you can create a shortcut for msys.bat and
then set msys.ico as the shortcut’s icon.

If you enter the pwd command at the prompt, MSYS will tell you the name of the direc-
tory you’re in. This should be /home/user, where user identifies your account on your
computer. This is your home directory. The root directory, identified as /, corre-
sponds to the msys directory in the MinGW installation.

 One of the most useful commands to know is mingw-get, which allows you to
download additional capabilities and install them into MinGW. For example, if you
want to execute Perl scripts in MSYS, enter the following command:

mingw-get install msys-perl

Figure C.3 The 
MSYS window
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You can also use this command to add Java or Fortran development, or to access the
GNU debugger (gdb). Alternatively, instead of invoking mingw-get, you can run exe-
cutables like mingw32-gcc, which compile code into executables. The next section dis-
cusses this important topic. 

C.2 Building MinGW executables
Now that you’ve installed MinGW, you’re ready to start creating applications. This sec-
tion will explain the process of building Windows executables with MinGW and will
focus on the gcc compiler and the different ways to control its operation. But first,
let’s verify the MinGW installation by coding and building a simple program.

C.2.1 Building Hello World! with MinGW

Before you start building large-scale MinGW applications, it’s a good idea to test the
build tools with a simple executable. To start, we’ll look at the procedure for compil-
ing the venerable hello.c source file. 

#include <stdio.h>

main() {
   printf("Hello, world!\n");
}

If you place the source code for this chapter in your MSYS home directory
(C:\MinGW\msys\1.0\home\name), you can compile this code easily. Change to the
hello directory and enter the following command:

mingw32-gcc -o hello hello.c

This should produce an executable called hello.exe. To test that this is a valid Win-
dows application, use the file command:

file hello.exe

The file command will verify that this executable follows the PE32 format, which is
used by all 32-bit Windows executables. To run the executable, just enter the full
name on the command line.

NOTE If you’re interested in using MinGW for 64-bit builds, the site to visit is
http://sourceforge.net/projects/mingw-w64. The 64-bit build tools must be
compiled from source code, so the installation procedure is complex. 

C.2.2 The GNU compiler

mingw32-gcc is a MinGW-specific variant of the famous gcc compiler. gcc is one of the
great success stories of open source computing, as it not only provides world-class per-
formance but has also been ported to hundreds of processor platforms. Whether
you’re developing code for a tiny embedded system or a cluster of supercomputers,
it’s likely that someone has created a gcc port to compile and build your applications.
And best of all, gcc is free.

Listing C.1 Testing the MinGW toolchain: hello.c

http://sourceforge.net/projects/mingw-w64
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 The gcc executable runs from the command line, and its operation is constrained
through options like -o, -L, and -d. Some ports of gcc provide special options for com-
piling and linking executables, but for most builds, every flavor of gcc relies on the
same basic set. Table C.1 lists these options and the purposes they serve. 

The -g option incorporates debugging data into the executable, which can be read by
gdb (GNU debugger) as it steps through the executable’s code. For a full discussion of
gdb’s usage and command syntax, visit the gdb website at www.gnu.org/software/gdb/.

 When you call a command like mingw32-gcc -o hello hello.c, the mingw32-gcc
executable does more than just compile hello.c. It calls on other GNU tools to per-
form the full build. In most builds like this one, the full process consists of four steps:

1 Preprocessing—The preprocessor modifies the source code according to prepro-
cessor directives, such as #include, #ifdef, and #pragma statements.

2 Compilation—The compiler parses the source code and compiles the source
into assembly language that targets the desired processor.

3 Assembly—The assembler converts assembly language to machine code, which is
placed into an object file.

4 Linking—The linker reads in object code, either in object files or libraries, and
produces the final result of the build.

Table C.1 Basic options of the gcc compiler

Option Purpose

-o filename Stores output (executable, library, object file) in file named 
filename

-Werror Reports warnings as errors

-Wall Reports additional warnings

-w Suppresses warnings

-I dir Searches for included files in the dir directory

-L dir Searches for libraries in the dir directory

-llib Links the library lib into the build

-g Produces debugging information during the build

-v Displays all commands executed during the build

-O0/-O1/-O2/-O3 Uses optimization capabilities during the build (0—least 
optimization, 3—most optimization)

-E Preprocesses the file, but doesn’t compile

-S Preprocesses and compiles the file, but doesn’t assemble

-c Compiles and assembles, but doesn’t link

www.gnu.org/software/gdb/
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gcc performs all of these steps by default, but you can change this by using the last three
options in the table: -E, -S, and -c. The first option tells gcc to preprocess the source
code, but to go no further. To see how this works, add this to the earlier command:

mingw32-gcc -E -o hello.y hello.c

The -o option tells gcc to place its output in hello.y, and because of the -E option, this
output will contain the preprocessed code from hello.c. If you open hello.y, you’ll see
that gcc has replaced the #include <stdio.h> statement with the content of the
stdio.h header. Similarly, you can see the assembly language generated by the com-
piler with the following command:

mingw32-gcc -S -o hello.s hello.c

The last option, -c, tells the compiler to produce an object file, frequently given the
suffix *.o. These files contain machine code, but they’re not executables. Instead,
these files can be included in other builds, and gcc will link them into the final execut-
able. I’ll have much more to say about object files and linking in a later section, but
for now, it’s important to discuss the topic of GNU makefiles. 

C.3 Makefiles
I don’t know about you, but I don’t like to type commands like mingw32-gcc every
time I want to build an application. Instead, I prefer to write scripts that store the
information needed to run the build. Then, rather than type lengthy build commands
on the command line, I can just execute the script. This makes life much easier.

GNU build scripts are called makefiles, and they’re executed by a utility called make.
When you run make on a GNU command line, it searches for a file called Makefile in the
current directory. If it finds the file, it runs the file’s commands and executes the build.
To change any aspect of the build, just alter the text in Makefile and run make again.

 If you want to see what a real-world makefile looks like, open the GNU folder in
this book’s example code and look through the project files. Except for chapter 9,
each chapter’s projects contain makefiles capable of building OpenCL executables.

 Writing makefiles is a vital task in GNU development, and this section will discuss
the structure of a makefile and the syntax of the build script. Then we’ll look at an
example MinGW project that includes a makefile.

C.3.1 Structure of a GNU makefile

GNU makefiles have a unique syntax that can take a significant amount of time to
learn fully. But the fundamentals are simple to understand, and once you’ve learned
the basics, you can write scripts for all but the most complex of projects.

 Most simple makefiles consist of four types of statements:

■ Dependency statements—Statements that identify a file to be created (target) and
the files needed for its creation (dependencies)

■ Shell statements—The commands that tell make how to build a target
■ Comments—Text on a line following # are ignored by the make utility
■ Macro declarations—Text substitution statements that serve the same purpose as

#define directives in C code
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The first two types of statements combine to form rules, which tell the make utility how
to construct a specific target. Rules form the heart of a makefile, and once you under-
stand how they work, you’ll be well on your way to writing scripts of your own.
MAKEFILE RULES

At the very least, a cooking recipe consists of three parts: the name of the dish to be
cooked, the ingredients, and the steps needed to convert the ingredients into the final
dish. Makefile rules have the same structure. A rule starts by identifying the name of
the target and the files required for its creation, called dependency files or just dependen-
cies. Then it lists the precise steps needed to create the file.

 For example, suppose you want the make utility to build a target called output.o
from files called input.c and input.h. If the build process consists of three steps, your
makefile rule might take the following shape:

output.o: input.c input.h
   step 1
   step 2
   step 3

More generally, the structure of a makefile rule is as follows:

target_file: dependency_files
   shell statements...

The first line of the rule is called the dependency statement. It consists of the name of
the target followed by a colon and the names of the dependency files. If the target file
already exists, the make utility checks the dependencies’ timestamps to find out if any
have changed more recently than the target. If any dependency files are more current
than the target, the make utility reruns the build. Otherwise, make will tell you that the
target is up to date.

 If make can’t find a dependency file, it searches for a rule that will build the file. In
this manner, a single build step may involve multiple rules. For example, suppose the
first three rules of a makefile are as follows:

ab: cd.o fg.o
   echo "1!"
   mingw32-gcc -o ab cd.o fg.o

fg.o: fg.c fg.h
   echo "2!"
   mingw32-gcc -c -o fg.o fg.c fg.h

cd.o: cd.c cd.h
   echo "3!"
   mingw32-gcc -c -o cd.o cd.c cd.h

If you execute make without arguments, the utility will process only the first rule of a
makefile. Here, the target of the first rule is ab, which requires the object files cd.o and
fg.o. If make can’t find these files, it looks for rules that will tell it how to construct them.

 cd.o is the first missing dependency, so make searches for a rule that defines how to
build this file. cd.o is the target of the third rule, so make processes this before it completes
the processing of the first rule. During the processing, make executes both commands
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under the dependency statement: it echoes 3! on the command line and then compiles
cd.c into cd.o.

 After compiling cd.o, make searches for the second missing dependency, fg.o. The
second rule specifies how to build this object file, so make processes the rule, echoing
2! and compiling cd.c into cd.o.

 Once the dependencies are created, make completes the processing of the first
rule. It echoes 1! to standard output and completes the build of the target. Note that,
if the make utility finds cd.o and fg.o at the start, the second and third rules won’t be
processed at all.

 These three rules contain shell statements that tell make what actions to perform
when processing the rule. Any GNU shell statements can be inserted here, from echo
to ls (list directory contents) to pwd (print working directory). But the most common
shell statements in a makefile are those that call on gcc to build the target. In a
MinGW makefile, a shell statement would call mingw32-gcc to form the target file
from its dependencies.

NOTE The whitespace preceding each shell statement must be a single tab
character, not one or more spaces. If you get an error related to a missing sep-
arator, it’s likely that the problem involves improper indentation.

In addition to shell statements that build files, makefiles also find commands that
delete files with the rm command. These commands are commonly part of a rule
whose target’s name is clean, and we’ll discuss targets like this shortly. 
COMMENTS

Makefile comments are easy to understand. Text following the # character on the
same line will be ignored by the make utility. This is demonstrated in the following rule
declaration:

# Build the cd.o object file from cd.c and cd.h
cd.o: cd.c cd.h
   echo "3!"       # Print 3! to standard output
   mingw32-gcc -c -o cd.o cd.c cd.h

Note that makefiles only support single-line comments. There are no multiline com-
ment delimiters similar to /* and */ in C/C++ development. 
MACROS

Macros in makefiles are similar to string variables in C/C++ code. Once a macro is set
equal to a text value, the make utility will replace the macro with its value throughout
the script. More specifically, when you set a macro’s value with a statement like
NAME=VALUE, make will replace $(NAME) with VALUE.

 Macros are frequently declared at the start of the makefile and identify tools and
options used in the build. For example, the following macros identify the C compiler
and the flags used during its compilation:

CC = mingw32-gcc
CFLAGS = -Wall -g
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With these macros set, it becomes easier to configure a build within a rule declaration.
For example, the following rule uses these macros to create a target called foo from
bar.c and baz.c:

foo: bar.c baz.c
   $(CC) $(CFLAGS) -o foo bar.c baz.c

Macros not only save time when it comes to writing rules, but they also make it easier
to manage changes. For example, suppose you want to optimize your compilation by
adding the -O3 option and removing the -g. Rather than rewrite every rule in the
script, you only need to change the CFLAGS macro once.

 For added convenience, GNU provides special macros that correspond to file-
names. These are called automatic variables, and table C.2 lists four common variables
and their values.

The $@ and $^ variables are particularly useful because they make it unnecessary to
enter the names of the target file and its dependencies. For example, suppose you
were trying to compile bar.c and baz.c with a rule such as this:

foo: bar.c baz.c
   $(CC) $(CFLAGS) -o foo bar.c baz.c

With automatic variables, you can replace that rule with this:

foo: bar.c baz.c
   $(CC) $(CFLAGS) -o $@ $^

This usage not only saves time but adds generality—you can copy and paste the same
build command into multiple rules without regard to the names of the target or its
dependencies. If you look through the makefiles in the GNU folder, you’ll see that
every build command specifies its target and dependencies using $@ and $^.

C.3.2 Targets and phony targets

As mentioned earlier, if you enter make on a command line with no arguments, the
make utility will process only the first rule in the makefile. But if you follow make with
the name of a target, the utility will process whichever rule constructs that target.
Returning to the earlier example, if you enter make cd.o, make will process the third
rule because its target is cd.o.

Table C.2 Automatic variables

Macro Value

$@ The name of the rule’s target

$^ Dependency names, separated by spaces

$< The first dependency

$? Dependencies more current than the target
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 In most rules, the target is a file, such as an executable, library, or object file. But
GNU also allows phony targets, which are targets that don’t correspond to files. Phony
targets make it possible to do two things:

■ Process multiple unrelated rules with one call to make.
■ Execute commands that don’t relate to a real target.

The first purpose becomes important when a makefile builds a set of target files, and
you want to build all of them with a single make command. For example, suppose a
makefile contains rules to build three library files: lib1, lib2, and lib3. Normally, you’d
have to build them with separate commands: make lib1, make lib2, and make lib3.
But if you make the library files dependencies of a phony target, then make will build
the libraries whenever make is executed with the phony target. Here’s an example:

all: lib1 lib2 lib3

The all target isn’t a file, but this doesn’t matter to the make utility. If you execute
make all, the utility will search for lib1, lib2, and lib3. If it can’t find them, it will pro-
cess whatever rules are needed to build the three missing dependencies.

NOTE Rules called all are frequently used in makefiles, and many installa-
tion instructions of GNU-based projects require that you enter make all at
the command line.

The second usage of phony targets becomes helpful when you want to execute shell
statements that have nothing to do with building a file. These targets are commonly
used to execute a command that accesses a makefile’s macros. For example, suppose
you want to delete a target identified by $(TARGET) and all of the object files (*.o) in
the directory. In this case, you could code the following rule:

clean:
   rm $(TARGET) *.o

If a makefile contains this rule, the command make clean will execute the rm state-
ment, deleting $(TARGET) and any object files in the directory. It’s interesting to note
the difference between this rule and the previous one. The rule that builds all has
three dependencies but no shell statements to be executed. The rule that builds
clean has a shell statement to be executed, but no dependencies.

NOTE Makefile rules are flexible with regard to dependencies and shell state-
ments, but one rule holds firm—every shell statement must be preceded by a
tab character, and only a tab character.

Before the make utility processes a rule, it checks to see if the target exists. A conflict
may arise if a file exists with the same name as a phony target. For example, if you run
make clean in a directory containing a file called clean, make may decide that the tar-
get is up to date, and not bother executing the rule’s shell statement.



408 APPENDIX C The minimalist GNU for Windows and OpenCL
 To remove potential conflicts, the make utility recognizes the .PHONY target. All
dependencies of this target will be understood to be phony targets. The following rule
uses .PHONY to tell the make utility that clean is a phony target:

.PHONY: clean

With this rule in place, the make utility won’t search for a file called clean when make
clean is called. Instead, the utility will always execute the shell statements defined by
the rule. 

C.3.3 Simple example makefile

In the AppC directory, the folder called simple contains four files: src1.c, src2.c, sim-
ple.c, and Makefile. The src1.c file defines a function called hello1 and the src2.c file
defines a function called hello2. The main function in the simple.c file calls hello1
and hello2, which print text to standard output.

 To build an executable from src1.c, src2.c, and simple.c, src1.c and src2.c must be
compiled into object files src1.o and src2.o. Then, after main.c is compiled, the object
code can be linked into the final executable. The following listing presents the make-
file that the project uses to perform the build.

PROJ=simple                     
CC=mingw32-gcc                      
CFLAGS=-std=c99 -Wall           

$(PROJ): $(PROJ).c src1.o src2.o
   $(CC) $(CFLAGS) -o $@ $^

src1.o: src1.c
   $(CC) $(CFLAGS) -c -o $@ $^

src2.o: src2.c
   $(CC) $(CFLAGS) -c -o $@ $^

.PHONY: clean                    
                                      
clean:                           
   rm $(PROJ).exe *.o            

This script sets the PROJ macro equal to the name of the project, simple. This is also
used as the name of the first target. When the make utility attempts to build this target
for the first time, it looks for the dependencies src1.o and src2.o. To build these object
files, make processes the next two rules.

 There’s still much more to learn about makefiles, and if you’re interested, you can
find full documentation at www.gnu.org/software/make/manual/html_node/
index.html. But if you understand rules, macros, and phony targets, you’ll have no
trouble writing scripts for the majority of builds you encounter. This includes OpenCL
builds, which is the topic of the next section. 

Listing C.2 A simple makefile

Macro 
declarations

Phony 
targets

www.gnu.org/software/make/manual/html_node/index.html
www.gnu.org/software/make/manual/html_node/index.html
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C.4 Building OpenCL applications
So far, this chapter’s MinGW examples have assumed that all the required dependency
files are in the working directory. But in many instances, such as in building OpenCL
applications, you’ll need to access files in many different folders. gcc accepts two
options that identify additional directories:

■ -I—Identifies a directory containing source files to be included in the build
■ -L—Identifies a directory containing libraries to be included in the build

These two options are important in OpenCL development because, on Windows,
every build needs to access a header file called CL/cl.h and a library called either
OpenCL.dll or OpenCL.lib. Conveniently, both Nvidia and AMD set an environment
variable that defines where their development files are located. At the time of this writ-
ing, Nvidia’s variable is NVSDKCOMPUTE_ROOT and AMD’s variable is AMDAPPSDKROOT. 

 An operating system’s environment variables can be accessed in a makefile as mac-
ros, and the following listing shows how this works.

PROJ=platform_ext_test
CC=mingw32-gcc
CFLAGS=-std=c99 -Wall
LIB=-lOpenCL

ifdef AMDAPPSDKROOT                     
   INC_DIRS="$(AMDAPPSDKROOT)include"             
   LIB_DIRS="$(AMDAPPSDKROOT)lib\x86"   
else                                    

ifdef NVSDKCOMPUTE_ROOT                             
   INC_DIRS=                                                 
      "$(NVSDKCOMPUTE_ROOT)\OpenCL\common\inc"      
   LIB_DIRS=                                        
     "$(NVSDKCOMPUTE_ROOT)\OpenCL\common\lib\Win32" 
endif                                               

endif

$(PROJ): $(PROJ).c
   $(CC) $(CFLAGS) -o $@ $^ -I$(INC_DIRS) -L$(LIB_DIRS) $(LIB)

.PHONY: clean

clean:
   rm $(PROJ).exe

This script checks AMD’s environment variable first, and if it has a non-null value, it
sets INC_DIRS equal to the directory containing CL/cl.h and LIB_DIRS equal to the
directory containing the OpenCL library. If AMD’s environment variable isn’t set, the
script checks for Nvidia’s environment variable and looks for the same directories. It’s
important to see that, regardless of whether the SDK comes from Nvidia or AMD, only
one rule performs the build.

Listing C.3 A makefile for Windows OpenCL compilation

Check AMD 
installation

Check Nvidia 
installation



410 APPENDIX C The minimalist GNU for Windows and OpenCL
NOTE If a developer has installed SDKs from both AMD and Nvidia, this
makefile will target only the AMD installation. Therefore, if you intend to dis-
tribute this makefile, you may want to create separate rules for separate instal-
lations, and have developers enter make amd or make nvidia as needed.

In contrast to -L, which identifies library directories, the -l option identifies the spe-
cific names of libraries to be included in the build. The file’s suffix doesn’t have to be
provided. This is helpful for OpenCL builds because, on Windows, the OpenCL
library name can be either OpenCL.lib or OpenCL.dll. Because the LIB macro is set
to -lOpenCL, make will recognize either library and link it into the build process if it
finds them.

 One last point must be mentioned. On many GNU systems, it doesn’t matter where
you place the library definition in the shell statement. But in MinGW development,
the library must be positioned somewhere after the target. Just to be safe, I place my
libraries at the end of the build command, and that’s why the LIB macro follows the
rest of the macros in the build.

C.5 Summary
I once worked with a programmer who looked down on GNU tools, believing them to
be inferior because they were open source. He couldn’t have been more wrong. Thou-
sands of developers have spent decades improving these tools, and thanks to their
labor, anyone with a PC and an internet connection can build world-class software.

 MinGW makes it possible for Windows users to access these tools, enabling them to
build C/C++ applications without Microsoft’s Visual Studio. This appendix discussed
how to obtain and install MinGW, and then call on its mingw32-gcc compiler to build
applications. Options make it possible to control the compiler’s operation and specify
precisely which tasks should be performed.

 One of the unique characteristics of GNU development is the syntax of its build
scripts, makefiles. Makefiles consist of rules that define files to be built (targets), files
required for the build (dependencies), and a series of shell statements to be exe-
cuted. By default, the make utility executes the first rule in a makefile, but if make is
called with the name of a target, the corresponding rule will be processed.

 With the right makefile, it’s straightforward to run MinGW builds for OpenCL
applications. The only hard part is identifying the location of the CL/cl.h header and
the OpenCL library. The key is to rely on the environment variables created by the
SDKs during their installation. By using these in a makefile, you can access the
OpenCL header and library even if you’re not certain which SDK has been installed.



appendix D:
OpenCL on mobile devices

Each new generation of mobile devices provides more capabilities than the last,
and it’s only a matter of time before high-performance embedded computing
becomes a serious priority. A great deal of this performance will be provided by the
devices’ GPUs, so it’s important to understand how OpenCL operates on handheld
and mobile devices.

 Chapter 10 of the OpenCL 1.1 standard defines the OpenCL Embedded Profile.
This is the criteria that embedded devices must meet to be considered OpenCL-
compliant. These requirements are a subset of the rules that apply to desktop sys-
tems, so there’s nothing significantly new or different to learn. But when you’re
porting OpenCL code to run on a tablet computer or smart phone, it’s crucial to
know which capabilities are available and which aren’t.

 First, OpenCL provides a macro that kernels can check to see if the target imple-
ments the embedded profile: __EMBEDDED_PROFILE__. If this macro is set to 1, the
kernel can only access an abridged set of OpenCL capabilities. Otherwise, the ker-
nel can access all the capabilities defined by the full profile.

 The differences between the embedded profile and the full profile fall into
two main categories: numerical processing and image processing. This appendix
discusses both, and we’ll start by examining how embedded OpenCL processes
numbers.

D.1 Numerical processing
For the most part, OpenCL numerical operations can be executed on an embedded
device without any change. In both the embedded profile and the full profile, 64-bit
values are optional but 32-bit values (int and float) are required. Other character-
istics of number processing on embedded devices are as follows:
411
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■ All of the built-in numerical functions defined for the full profile must be avail-
able for embedded devices. But the required accuracy for embedded opera-
tions may be reduced. Section 9.10.8 of the OpenCL 1.1 standard defines the
minimum accuracy for embedded operations.

■ Embedded devices must be able to convert between numeric data types, but
when normalized values (0.0 to 1.0) are converted to regular floating-point val-
ues, the accuracy may be reduced.

■ Embedded devices must support rounding to zero (CL_FP_ROUND_TO_ZERO) or
rounding to nearest even (CL_FP_ROUND_TO_NEAREST). If rounding to nearest
even is supported, it must be the default rounding method. Chapter 4 discusses
these and other rounding methods.

■ If the CL_FP_INF_NAN parameter isn’t set and an operation produces an infinite
value or not-a-number (NaN), the embedded profile doesn’t place any restriction
on the output value. That is, +inf, -inf, and NaN values are implementation-
defined.

■ With one exception, denormalized numbers on embedded devices must be
processed similarly to denormalized values on full-profile devices. The excep-
tion is that, when calling vstore_half and vload_half, denormalized values of
the half data type may be set to 0.

■ Atomic functions are optional for embedded devices. To check for their avail-
ability, the extension names used on embedded devices are the same as on full-
profile devices. For example, on 32-bit systems, the atomic extension names are
as follows:

cl_khr_global_int32_base_atomics
cl_khr_global_int32_extended_atomics
cl_khr_local_int32_base_atomics
cl_khr_global_int32_extended_atomics

As shown here, nearly all numeric operations available for the full profile will be avail-
able on embedded devices. But accuracy may be reduced and irregular values such as
infinite values and denormalized values may not be processed at all.

 In addition to supporting numerical operations, the embedded profile supports all
operations related to programs, kernels, and buffer objects. But when it comes to
image objects, operations on embedded devices are limited in comparison with full-
profile devices. The next section explores this in detail. 

D.2 Image processing
Chapter 6 discusses image objects and the manner in which they’re processed on full-
profile devices. The OpenCL embedded profile also supports image objects, but only
under certain constraints:

■ If the data channel type is set to CL_FLOAT or CL_HALF_FLOAT, samplers must be
configured to use nearest-neighbor interpolation with the CL_FILTER_NEAREST
setting. Otherwise, the values returned by read_imagef are undefined.
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■ Embedded devices do not have to support three-dimensional image objects. To
check whether support is available, examine the CL_DEVICE_IMAGE3D_

MAX_WIDTH, CL_DEVICE_IMAGE3D_MAX_HEIGHT, and CL_DEVICE_IMAGE3D_MAX_

DEPTH parameters. If these all equal 0, the device does not support three-dimen-
sional images.

■ Samplers can be set to any of the available addressing modes (CL_ADDRESS_NONE,
CL_ADDRESS_CLAMP, CL_ADDRESS_CLAMP_TO_EDGE, CL_ADDRESS_REPEAT, and CL_
ADDRESS_MIRRORED_REPEAT). For embedded devices, the minimum number of
available samplers is 8.

■ The required minimum number of channels available for image data is 4, and
the only required value for image_channel_order is CL_RGBA.

■ Embedded devices do not support every value for the image_channel_data_type.
The only values that must be supported are CL_UNORM_INT8, CL_UNORM_INT16,
CL_SIGNED_INT8, CL_SIGNED_INT16, CL_SIGNED_INT32, CL_UNSIGNED_INT8,
CL_UNSIGNED_INT16, CL_UNSIGNED_INT32, CL_HALF_FLOAT, and CL_FLOAT.

In most cases, any OpenCL code that processes images will run on embedded devices.
But as shown by this list, embedded devices don’t support all image types or all pixel
formats.

D.3 Summary
The world of embedded software development is growing by leaps and bounds, and as
mobile devices gain more graphical computing power, the need for OpenCL program-
mers will rise accordingly. Remember that nearly all of the major players in embedded
processor development—Intel, AMD, ARM, and Nvidia—belong to the OpenCL Work-
ing Group.

 The good news is that for embedded OpenCL you don’t have to learn any new data
structures or functions. But if numerical accuracy is a concern, you should look over
the limitations imposed by the embedded profile. In particular, if you need to process
irregular values—inf, NaN, or denormalized values—you may need to rewrite your
code specifically to recognize them.

 Embedded devices support image processing to a limited extent. The standard
doesn’t require devices to support three-dimensional image objects or samplers that
filter images using bilinear interpolation. Also, the only required channel order is
CL_RGBA, so traditional RGB and grayscale images may not be supported.
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types
data transfer

asynchronous 164–166
enqueueing commands 

for 185–187
JavaCL commands for

209–210
JavaCL, example code for 209
overview of 155
profiling 155–156
status, checking 166

data transfer operations
101–102

data types
binaries 174
double 71–72

for shaders 378
in mask vectors 114–115
integer 109
OpenGL 369
operating on 18
primitive 17–18
scalar 70–71
similarity to C/C++ data 

types 18
sources 174
vector 77–85
See also specific data types

data_size argument (clEn-
queueXX functions) 56

data-parallelism 7
deallocating image objects 125
deallocating kernels 38
Dean-Ghemawat MapReduce 

paper 238
example tasks mentioned 

in 240
grep recommendation 242
See also MapReduce

decrement operators 96
Deep Color image format 50
delaying events. See wait lists
denormals

disabling processing of 231
in float data type 74
support for 74
treating as zero 32, 74

dense matrices 260
dependency files 405
dependency statements, in a 

makefile 404
derivative work, in copyright 

law 202
determinant function 380
development systems. See hosts
Device class 211
device extensions 14

defined 24
testing 23–25
vs. platform extensions 24

device model
MapReduce and 240–242
math student analogy for

85–88
Device objects 172–173

accessing 171
checking time precision 

of 193
constructor 172
creating 172

creating Context objects 
from 172

example code 172
Device objects (PyOpenCL) 212
devices

address width, checking 72
command queues for 39
defined 22
endianness, determining

72–73
finding one with most com-

pute units 204
host processor, identifying 23
identifying all 23
image object naming conven-

tion for 124
information parameters 23
information, retrieving 23–24
kernel distribution among 7
resolution, timing 154
returning information on 224
returning list of 204
targeting, in command 

queue 39
types 23
types, creating contexts by 26
with GPUs, identifying 23
See also data structures

diagonals, matrix 259
differential equations 278–279

See also sparse matrices
digital remastering 296
dimensionality 64

cl::Image objects and 180
matrix transposition and 261
returning 157

dimensions
in work-items 98–99
of image objects 50–51, 128

Direct3D devices 27
directFloats method (NIOUtils 

class) 210
disabling extensions 71
discrete Fourier transform

algorithm for 297
complex numbers 300
dot products and 298
equation for 301–302
example of 302–305
frequencies of interest 299
inverse 302
magnitude 307
mathematical notation 298
matrix for 302
OpenCL code for 305–306
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discrete Fourier transform 
(continued)

properties of 306
real-valued 304
scaling 302
sequences 298
shifting property 306–308
single-frequency vectors 299
sinusoids 299–301
stretching property 306, 308
superposition property

306–307
theory of 298–305
See also fast Fourier transform

display function 334, 336–337, 
348–349, 386, 389–390

display modes (GLUT) 384
distance function 120
division operators 96
dot function 120–121
dot products

discrete Fourier transforms 
and 298

in matrix multiplication
262–263, 267

one-dimensional vs. two-
dimensional 341

vector direction and 265
vs. outer products 267

dot products of vectors, 
returning 120–121

double data type 71–72
checking support for 74
floating-point multiply-and-

add (FMA) operation 75
IEEE-754 format for 74
requirements for 75
rounding 75

double_test.cl file 71
doublen data type 78
drawing modes (OpenGL)

375–376
drawing shapes. See primitives

E

effects, image. See image filtering
elements, matrix 259
embarrassingly parallel 

tasks 240–242
See also MapReduce

embedded OpenCL 412–414
embossing images 344–345
enabling extensions 71

endianness
determining 72–73
vector storage and 84–85

engraving images. See emboss-
ing images

enlarging images 138
See also scaling images

enqueue_nd_range_kernel 
function 218

enqueue_task function 218
enqueueBarrier function (Com-

mandQueue function) 194
enqueueCopyBuffer function 

(CommandQueue 
class) 188

enqueueCopyBufferToImage 
function (CommandQueue 
class) 188

enqueueCopyImage function 
(CommandQueue 
class) 188

enqueueCopyImageToBuffer 
function (CommandQueue 
class) 188

enqueueing commands 54
C++ functions for 183
for read-write data 

transfer 185–187
functions for 54
in JavaCL 209–210
See also command queues

enqueueMapBuffer function 
(CommandQueue 
class) 187–188

enqueueMapImage function 
(CommandQueue 
class) 187–188

enqueueMarker function (Com-
mandQueue class) 194

enqueueNDRange function 
(CLKernel class) 203, 208

arguments for 208
enqueueNDRangeKernel func-

tion (CommandQueue 
class) 184–185

enqueueTask function (CLKer-
nel class) 203

enqueueTask function (Com-
mandQueue class) 183

enqueueUnmapMemObject 
function (CommandQueue 
class) 187–188

enqueueWaitForEvents func-
tion (CommandQueue 
class) 194

environment variables
355, 357–360

advanced system setting 355
AMDAPPSDKROOT

355–356, 359, 361
AMDAPPSDKSAMPLESROOT

355
dialog 355
LD_LIBRARY_PATH 359
NVSDKCOMPUTE_ROOT

357–358, 361
PATH variable 360
system property 355, 357
system variable 355, 357
user variable 355, 357

environment variables in 
Windows 400

equals sign (=), data transfer 
with 101

erf/erfc function 106
error checking

in PyOpenCL 215
removing 32

error codes
defined 169
returning 170

error parameter (clCreateCon-
text function) 28

error-checking routines 11
Euclidean space 120
Euler-Bernoulli equation 279
event handling 384
Event objects

associating with commands 189
callback functions and 190
creating 190
wait functions 193
wait lists and 191

event_t data structures 166
events

associating with callback 
functions 142–143

associating with 
commands 141–142

command 
synchronization 145–153

command types, 
returning 151–152

defined 140
profiling. See profiling events
reference count, returning 151
retrieving information 

on 150–153
See also cl_event data struc-

tures; command events
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exception handling 170
execute method (Kernel 

class) 199–200
execute_kernel function

333, 347–348
exp/expm1 function 106
exp2/exp10 function 106
exponential functions 106
extensions 14

approved vs. unapproved 14
enabling/disabling 71
naming convention for 14, 20
testing platforms for 20–22
See also device extensions

F

f(z), deriving 286
factoring matrices 258, 269
fast Fourier transform

bit reversal 312
butterfly diagrams 310
constructing 309–312
direction, setting 315
float vectors and 315
four-element 310–312
frequency components 309
history of 306
loading data from global 

memory 314
loops in 316
merge process for 311
nodes 310
OpenCL code for 312–317
superposition property 310
two-element 309–310
work-item 

synchronization 312
See also Cooley-Tukey algo-

rithm; discrete Fourier 
transform

fast_distance function 120
fast_length function 120
fast_normalize function 120
fdim function 105
FEA (finite element analysis). See 

finite element analysis 
(FEA)

fence functions 160
See also barrier function

fft.cl file 314
file command (MinGW) 402
filter_mode parameter (clCre-

ateSampler function)
125, 128

filtering images. See image 
filtering

finite element analysis 
(FEA) 279

finite math, requiring 32
first-in, first-out (FIFO) 

principle 40
first-person shooters 340
flags parameter (cl::Buffer 

class) 178
float data type 71

IEEE-754 format for 73
rounding 74
values in 74

float_config.c file 76
float4 vector processing 338
floating-point computing 73–77

configuration parameters 76
run-time exceptions 74

floating-point constants 108
floating-point multiply-and-add 

(FMA) 75
floating-point processing

comparison functions 105
functions for 103–109
operators for 95–97
single-precision constants, 

requiring 32
floating-point values, comput-

ing modulus 104
floatn data type 78
floor function 103
FMA (floating-point multiply-

and-add) 75
fma function 103

hardware processing, testing 
for 104

speed improvement with 233
vs. mad function 104

fmax function 105
fmin function 105
fmod function 103–104
for loops

coding iterations 
separately 231

in bitonic sort 253
Fortran

enabling in MinGW 402
Fourier transform. See discrete 

Fourier transform; fast Fou-
rier transform

Fourier, Joseph 298
FPS (first-person shooter) 340
fract function 109

fragment shaders 382–383
compiling 331, 345
creating 373
example code 382
functions of 382
textures in 395–396
uniforms and 395

frameworks 14
freeglut project 366
frequencies of interest 299
frequency 297
frequency analysis 296–298

components 297
frequency-domain signals 297
magnitude 307
of shifted sequences 307
oscillation 297
speed of 306
stretching frequency 308
time-domain signals 296

frequency components 297
frequency-domain sequences 

conversion. See  discrete 
Fourier transform

frequency-domain signals 297
frexp function 109
full_context.cpp file 172
functions

arithmetic 103
callback 141–144, 190, 384
clBuildProgram 31–33
clCreateBuffer 45
clCreateCommandQueue 40
clCreateContext 26–28
clCreateContextFromType

26–28
clCreateImage2D 48, 50–51
clCreateImage3D 48, 50–51
clCreateKernel 37
clCreateKernelsInProgram

36, 38
clCreateProgramWithBinary

30–31
clCreateProgramWithSource

30
clCreateSubBuffer 47
clEnqueueCopyXX 60
clEnqueueNDRangeKernel

62–63, 65
clEnqueueTask 40
clEnqueueXX 55–58
clGetContextInfo 28–30
clGetDeviceIDs 22
clGetDeviceInfo 23–24
clGetKernelInfo 37–38
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functions (continued)
clGetMemObjectInfo 52–54
clGetPlatformIDs 18–19
clGetPlatformInfo 19–20
clGetProgramBuildInfo

33–34
clGetProgramInfo 33
clReleaseContext 29–30
clReleaseKernel 38
clRetainContext 29–30
clSetKernelArg 44–45
comparison 105
conventions for 95
exponential 106
floating-point 103–109
floor 103
getImageInfo 51
inline 233
integer 109–113
logarithmic 106
memory pointers in 95
rounding 103–104
select 116–118
shuffle 114–116
trigonometric 106
See also C++ functions; kernels

fundamental frequency 299
Fused Multiply and Add (fma) 

function 75

G

Gaussian blur 343
Gaussian function 343
gcc command 400
gcc compiler

build process 403
command-line operation 403
debugging data, 

including 403
directories, specifying 410
options for 403
preprocessing 404
producing object file with 404

gcc executable 402–404
gdb (GNU debugger) 403
general-purpose GPU comput-

ing (GPGPU computing) 3
geometric vector functions

120–122
get_build_info function 214
get_global_id function 98
get_global_offset function

98–99
get_global_size function 98

get_group_id function 99
get_image_channel_data_type 

function 133
get_image_channel_order 

function 133
get_image_depth function 133
get_image_dim function 133
get_image_height function 133
get_image_width function 133
get_info function 

(PyOpenCL) 212
get_local_id function 99, 228
get_local_size function 99
get_num_groups function 99
get_platforms function 

(pyopencl module) 212
get_work_dim function 98
get_work_id function 228
getBestContext method 

(JavaCL) 204
getBestDevice method (JavaCL 

class) 204
getBuildInfo function 175
getDevices function 171
getGlobalId method 200
getGroupId method 200
getImageInfo function 51
getImageInfo function 

(cl::Memory class) 181
getInfo function 171
getInfo function (cl::Memory 

class) 181
getLocalId method 200
getMaxComputeUnits method 

(CLDevice class) 204
getProfilingInfo function 193
getShaderInfoLog function 374
GL Extension Wrangler Package 

(GLEW)
Linux installation 367
Mac OS installation 367
Windows installation 366

GL Utility Toolkit (GLUT)
canvas region, setting 389
display modes 384
event-handling functions 384
fullscreen window, 

configuring 383
initialization functions

345, 383
keystroke function 385
Linux installation 367
mouse click function 384
OpenGL graphics display 387

rendering the model 389–390
resizing window 384, 386
runtime, launching 383
window display 385–386
window, configuring 331, 383
Windows installation 366

glAttachShader function
373–374

glBindAttribLocation 
function 373–374

glBindBuffer function 368
access parameter values

369–370
signature of 369

glBindTexture function 391
glBindVertexArray function 371
glBufferData function

336, 347, 368
example code 370
signature of 369

glClear function 390
glCompileShader function

372–373
glCreateProgram function

372, 374
glCreateShader function

372–373
glDeleteBuffers function

368, 370
glDeleteProgram function 373
glDeleteTextures function 391
glDisableVertexAttribArray 

function 371
glDrawArrays function 336, 371, 

377, 389–390
signature of 375

glEnableVertexAttribArray 
function 371

GLenum data type 369
GLEW (GL Extension Wrangler 

Library). See GL Extension 
Wrangler Library (GLEW)

glFinish function 328
glGenBuffers function 368
glGenTextures function 391
glGenVertexArrays function 371
glGetShaderInfoLog 

function 372
glGetShaderiv function 372–374
glIsBuffer function 368
glLinkProgram function

373, 375
global cache, reading data 

into 165–166



INDEX 423
global memory
copying sequential data to/

from 165
data transfer to/from local 

memory 101, 165
defined 85, 88
qualifier for 89
sharing space with constant 

memory 88
speed of 88, 222
See also texture memory

global size of work-items 222
global_work_offset argument 

(clEnqueueNDRangeKer-
nel function) 64

global_work_sizes argument 
(clEnqueueNDRangeKer-
nel function) 64

globalSize argument (enqueu-
eNDRange function) 208

glPixelStorei function 391–392
glShaderSource function

372–373
GLsizei data type 369
GLSL (OpenGL Shading Lan-

guage). See OpenGL Shad-
ing Language (GLSL)

glTexImage2D function
348, 391, 393–394

glTexParameteri function
391–392

interpolation method, 
setting 392

parameters for 392
GLuint data type 369
glUseProgram function

373, 375, 389
GLUT (GL Utility Toolkit). See 

GL Utility Toolkit (GLUT)
glut_intro.c file 385
glutCreateWindow function 383
glutDisplayFunc function

384–385
glutFullScreen function 383
glutIdleFunc function 385
glutInit function 383
glutInitDisplayMode 

function 383
glutInitWindowPosition 

function 383
glutInitWindowSize 

function 383
glutMainLoop function

385–386

glutMouseFunc function 384
glutPostRedisplay function

336–337
glutReshapeFunc function

384–385
glutTimerFunc function 385
glutVisibilityFunc function 385
glVertexAttribPointer 

function 336, 371
glViewport function 389
glxinfo command 367
GNU automatic variables 407
GNU build scripts. See makefiles
GNU tool access for Windows. 

See MinGW
Google MapReduce framework. 

See MapReduce
GPGPU (general-purpose GPU) 

computing 3
GPUs (graphics processing 

units). See graphics process-
ing units (GPUs)

Gram-Schmidt method for vec-
tor orthogonalization
290–291

graphics processing units 
(GPUs)

devices with, identifying 23
in supercomputers 3

graphics rendering. See OpenGL
graphics textures. See textures
grayscale images 180
grep, implementing with 

MapReduce 242–244

H

hadd function 110–111
half data type 75
halfn data type 78
Harwell-Boeing collection 281

See also Matrix Market files
header file directories, 

identifying 32
Hello World! function 69–70
hello_kernel.cl file 69
hi/lo/even/odd method for vec-

tor component 
selection 83–84

HighColor image format 50
history of OpenCL 4–5
host applications

context management 25–26
defined 7

local memory and 91
OpenGL vs. OpenCL 365
primitive data types for 17–18
See also data structures

host code
for matrix-vector 

multiplication 10–13
in separate text file 31
vs. kernel code 15
See also source code

host memory
read/write accessibility 59
read/writing data to 55

host notification events
creating 141–143
example code 143–144
in C++ 189–191
process for 141
See also events

host pointers from buffer 
objects 46

host_ptr parameter (cl::Buffer 
class) 178

host-accessible memory 46
hostbuf argument 

(PyOpenCL) 216
hosts

image object naming conven-
tion for 124

kernel distribution from 7
Householder transformation

example code 269
example of 270–276
inverse nature of 272
kernel for 273–274
matrices, finding 272
matrices, storing 273
vectors, finding 270–272
See also QR decomposition

hyperbolic trigonometric 
functions 106–107

I

I/O functions for Matrix Market 
files 282

ICD. See installable client driver
id_check.cl file 100
identity matrices 260, 285
IEEE-754 standard 73, 76–77
if statements

operators for 97
sorting scalars with 248

ilogb function 109
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Image class
constructor 216–217
functions in 211

image coordinates
clamping 128
format for 132
interpolation 128
normalized 126, 129

image filtering 341–345
embossing images 344–345
Gaussian blur 343
matrices and 341–342
noise removal 342–343
OpenCL coding for 345–349
sharpening images 344
with box filters 342–343

image objects
3D, writing to 132
addressing mode 126–127
advantages of 123
as kernel arguments 125, 129
bilinear interpolation

135–137
bit padding 180
channel data type vs. channel 

order 133
channel data type, 

returning 133
channel order, returning 133
channel order, specifying 180
channel types 49
channel types, setting 180
checking support for 124
clamping output color

127–128
contrast, changing 135
coordinate types 126
copying data between 60
copying data to buffer 

object 60
creating 48–51, 124–125
creating, from textures/

renderbuffers 327, 346
creating, in JavaCL) 208
data types for 131
deallocating memory for 125
default modifier for 128
defined 124
depth, returning 133
dimensionality 128
dimensionality, 

configuring 64
dimensions 50–51
enlarging 138
formats 49–50

formats, specifying 180
grayscale 180
height, returning 133
in C++ 180–181
information parameters 51
information, retrieving

51, 181
interpolation 128
kernel processing of 126
naming conventions for 124
nearest-neighbor 

interpolation 135–136
normalized colors 126
pitch 50–51
PNG format, reading 134
processing, example code 

for 133–135
read functions 130–132
read/write access to 128
read/writing 54–58
read/writing, in C++ 185–187
rectangular data in

56–57, 186
row pitch 180
samplers and 124
scaling 135
size, returning as int2 

vector 133
slice pitch 180
slices 50
texture memory and 123
two-dimensional and three-

dimensional 48, 180
width, returning 133
write functions 132–133
zooming in on 128

Image objects (PyOpenCL) 217
image processing 

functions 130–134
image processing in embedded 

OpenCL 413–414
ImageFormat class 

constructor 217
ImageFormat function 180
import library 356
increment operators 96
index parameter (clSetKer-

nelArg function) 44
index spaces 64, 184
indexes, inverted 240
infinite numbers

disabling processing of 231
in float data type 74

init_buffers function 345, 387
init_cl function 345–346

init_gl function 331, 345
init_shaders function 345, 388
init_textures function 345
initializing

private memory 91
vectors 80

inline functions 233
input vectors

dot products and 341
sorting elements of 249

installable client driver
352–353, 358, 361, 363

default locations 354
installing OpenCL

Linux 358–361
AMD device 358–359
Nvidia device 359–360

Mac OS 361–362
Windows 354–358

AMD device 354–355
Nvidia device 356–357

installing OpenGL
on Linux 366–367
on Mac OS 367
on Windows 366

int data type 71
integer data type 109
integer functions 109–113

addition 110
arithmetic overflow 110–111
multiplication 111–112
returning absolute values 113

intensity, color 126
interpolation for image 

objects 128
intn data type 78
intptr_t data type 71
inverse discrete Fourier 

transform 302
inverse function 380
inverse square root 

function 106
inverted indexes, with 

MapReduce 240
involution, vector 268
isequal function 118
isfinite function 119
isgreater function 118–119
isgreaterequal function 118
isinf function 119
isless function 119
islessequal function 119
islessgreater function 119
isnan function 119
isnormal function 119–120
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isnotequal function 118
isordered function 119
isunordered function 119

J

Java NIO buffers. See NIO 
buffers

Java, enabling in MinGW 402
JavaCL

advantages of 201
classes 202–203
data transfer commands

209–210
data transfer example 

code 209
information parameters 204
installing 202
kernel creation 203–210
license for 202
overview of 202

JavaCL class 204
JavaCLProgram.java file 206
JavaCLRoot.java file 209
JOCL 197

K

kernel arguments
address space modifiers

85, 181
address space qualifiers

70, 88–90
by value or by reference 70
creation of 70
for private memory 91–92
image objects as 125, 129
in C++ 176–183
in local memory 91
in local space 182–183
in PyOpenCL 215–216
JavaCL, setting 206–208
local memory allocation

91, 182
memory objects and 44
memory objects as 181–182
read/write settings 178
requirement for 69
samplers as 128
setting 44–45

Kernel class
constructor 214
functions in 211

Kernel class (Aparapi) 198–200

kernel code
buffering 30–31
for matrix-vector 

multiplication 13
vs. host code 15
See also source code

kernel distribution 7
card game analogy for 8–10
command queues and 10
for matrix-vector 

multiplication 10–13
partitioning 62
to multiple devices 10

Kernel objects
constructor 175
example code 176

Kernel objects (PyOpenCL) 218
kernel_init function 251
kernel_merge function 251
kernel_stage functions 251
kernels

.cl suffix for 69
address space qualifiers 70
command queues and 7
creating 36–37, 170, 175–176
creating, with JavaCL

203–210
creating, with 

PyOpenCL 212–219
creation of 7
deallocating 38
declaration for 69
defined 7
deployability of 36
deploying to command 

queue 39
enqueueing execution 

commands 40–41
example of 69–70
execution mode, setting in 

Aparapi 199
execution time, 

profiling 157–158
for matrix multiplication 264
for reduction 227–228
high-performance tips

231–233
image processing by 126
index space for 99
information parameters 37
information, retrieving 37–38
local memory usage, 

returning 223
loop execution 63
memory allocation 37

multiple, processing 230–231
performance, 

improving 231–233
private memory 

initialization 91
private memory usage, 

returning 223
profiling, in C++ 193
resource usage, 

determining 223
returning information on 224
returning void 69
rounding functions, in 

Aparapi 198
searching by name 38
structure of 69
syntax for 69
testing 225
vector width, multiple versions 

for 80
vs. programs 30
vs. work-items 63
See also cl_kernel data struc-

ture; data structures
kernels (image filtering) 342

for embossing images 344
for Gaussian blur 343
for sharpening images 344

Khronos Group 5

L

large numbers, multiplying and 
adding 112

ldexp function 106
leading zeros, counting in vector 

components 119
least significant bits (LSB) in 

mask vectors 114–115
least-significant digits (LSD) 

radix sort 254
left-shift operator ( 112–113
length function 120–121
letter-indexing vector 

components 82–83
libpng library 134
libraries

import library 358
libamdocl64.so 358
libcuda.so 358
libOpenCL.so 352, 358, 

360–362
linker 352
Mach-O 352
oclUtils 358
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libraries (continued)
OpenCL.dll 352, 362
OpenCL.lib 356, 358
SDKUtil 356

library files in makefile 
builds 411

linear system solutions. See Con-
jugate Gradient method

Linux
AMD device 358
AMD driver 358
bashrc 360
ICD names 352
lspci 352
Nvidia device 358
Nvidia driver 359
X server 359

listPlatforms method (JavaCL 
class) 204

little-endianness. See endianness
local memory

avoiding conflicts 232
data transfer to/from global 

memory 101, 165
defined 88
in reduction algorithm 228
kernel argument configura-

tion in 91
kernel arguments in 182–183
kernel usage of, 

returning 223
PyOpenCL allocation to 217
qualifier for 89
speed of 88

local size of work-items 222
local_work_size argument (clEn-

queueNDRangeKernel 
function) 66

LocalMemory class 217
LocalMemory objects 

(PyOpenCL) 217
localSize argument (enqueue-

NDRange function) 208
LocalSpaceArg objects 182
log/log1p function 106
log2/log10 function 106
logarithmic functions 106
logb function 106
long data type 71
longn data type 78
loops

in bitonic sort 253
index spaces 64
kernel execution and 63
unrolling 231

M

Mac OS
chipset model 352
framework 352, 361–362

macro declarations
404, 406–407

macros, setting for private 
variables 232

MAD (multiply-and-add) opera-
tions. See multiply-and-add 
(MAD) operations

mad function 103–104
mad_hi function 111–112
mad_sat function 111–112
mad_test.cl file 112
mad24 function 111–112
magnitude 307
main function 378
makefiles 362, 404–409

all rules 408
automatic variables 407
comments in 406
defined 404
deleting targets 408
dependencies 405
documentation for 409
environment variables in 410
example of 404, 409
executing shell 

statements 408
library files 411
macros in 406–407
make command, for multiple 

target files 408
phony targets 408–409
removing conflicts 408
rule processing 407
rules 405–406
rules, configuring builds 

with 407
shell statements in 406
statements in 404
structure of 404–407
tab characters in 406

map method (CLBuffer 
class) 209

map_copy application 60
map_copy.cpp file 187
map_flags argument (clEn-

queueMapXX 
functions) 59

mapping memory objects 58–59
in C++ 187–189
in PyOpenCL 219

mapping textures 394–395
MapReduce

combination of key-pairs 239
distributed grep task 242–244
embarrassingly parallel 

tasks 240, 242
history of 238
memory allocation 241
OpenCL device model 

and 240–242
processing independence 

of 239
processing model 238–239
word-count example 239

marker commands 148–149
mask vectors

component data type
114–115

defined 114
least significant bits (LSB) 

in 114–115
radix sort and 254–256
relational operators, creating 

with 118
select functions 116–118
shuffle functions 114–116
with two inputs 115

math functions. See arithmetic 
functions

math.h file 94
matrices

as vectors 267–269
blocks, transposition of 260
column-major order 263, 379
defined 259
dense 260
diagonal 260
diagonals in 259
dot products and 341
elements in 259
factoring 258, 269

See also QR decomposition
for Gaussian blur 343
functions for 379
identity 260, 285
in image filtering 342
initializing 379
notation for 259
positive-definite 285–286
Q matrix, finding 272
R matrix, finding 270–272
read/writing 57
row-major order 263
sparse. See sparse matrices
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matrices (continued)
square 259, 380
symmetric 260, 282
transformation 381
transposition, allocating mem-

ory for 261
transposition, example 

code 260
upper triangular 270
vectors in 259
See also QR decomposition; 

shaders
Matrix Market files

banner 282
double values in 284
I/O functions for 282
indices, starting at 1 284
repository for 281
structure of 281
suffix for 281
symmetric matrices in 282
See also sparse matrices

matrix multiplication 262–265
associative nature of 263
dot products and

262–263, 267
in OpenCL 263–265
in shader functions 380
kernel for 264
outer products 267–268
theory of 262–263

matrix transposition 259–262
matrix_mult.cl file 264
matrix-vector multiplication

10–13
data partitioning in 65
discrete Fourier transform 

and 301
matrixCompMult function

379–380
matvec_mult function 13
matvec.c file 10–13
matvec.cl file 13
max function 105, 113
maxmag function 105
mean filters 342–343
memory address spaces. See 

address spaces
memory alignment 90
memory allocation

for buffer objects 45–47
for build log 35
for cl_context structure 28
for kernels 37, 91

for MapReduce 241
for matrix transposition 261
for sub-buffer objects 54
for vertex buffer objects 

(VBOs) 336
memory banks

avoiding conflicts 232
in reduction algorithm 227

memory objects
checking size/location of 52
data transfer between 59–62
deallocating 125
functions for mapping/

unmapping 59
hierarchy for 177
in PyOpenCL 216–217
information parameters 52
information, retrieving 181
kernel arguments and 44, 181
mapping 58–59
mapping, in C++ 187–189
properties, setting 45
read/write permissions 45–46
read/writing 54–58
read/writing, in C++ 185–187
See also buffer objects

memory. See global memory; 
host memory

MemoryObject class 211, 216
Method of Steepest Descent

algorithm for 288
example code 288–289
iterative nature of 285
residual vector, 

determining 287
theory of 286–287

methods, JavaCL 202–203
min function 105, 113
MinGW

64-bit builds with 402
compiling in 402
confirming installation 400
directory for installation 399
downloading 399
executables 401
executables, verifying 402
GNU compiler 402–404
GNU public license for 399
graphical installer 399
Hello World! application 402
installation options 399
installing in Windows

398–402
installing new tools 401

library definition 
placement 411

mingw-get command 401
msys.bat file 401
PATH variable, setting 400
Perl scripts, enabling 401
repository catalogue, 

downloading 399
root directory 401
subdirectories in 400
Unix commands in 401
See also gcc compiler

mingw32-gcc 402–404
minmag function 105
miplevel parameter (clCreate-

FromTextureXX 
function) 327

mipmaps 327, 390, 392–393
See also textures

mix function 105
mm_is_real function 282
mm_is_sparse function 282
mm_is_symmetric function 282
mm_read_mtx_crd_size 

function 282
mobile devices, OpenCL 

on 412–414
mod_round.cl file 104
modf function 109
modulo operator, avoiding

227, 232
modulus, returning 103–104
momentum, calculating 159
monotonic sets 245

See also bitonic sort
most significant bits (MSB)

in select functions 116
testing 97

MSB (most significant bits). See 
most significant bits (MSB)

msg argument (kernel 
functions) 70

msys.bat file 401
.mtx files 285

See also Matrix Market files
mul_hi function 111
mul24 function 111–112
multiplication functions

111–112
multiplication operator 96
multiply-and-add (MAD) 

operations 175, 233
multiplying matrices. See matrix 

multiplication
mutex.cl file 163
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mutexes
check-unlock procedure 163
defined 163
OpenGL synchronization 

with 328
mutual exclusions. See mutexes

N

naming convention
for data structures 13
for extensions 14

nan function 109
nanoseconds 154
National Institute for Standards 

and Technology (NIST) 
site 281

ndarray objects 216
nearest-neighbor 

interpolation 128, 135–136
nextafter function 109
NIO buffers 207

data transfer methods 209
identifying class of 207

noise removal from images
342–343

normal numbers in float data 
type 74

normal vectors 121
normalize function 120–121
normalized colors 126
normalized coordinates

126, 129
normalized_coords parameter 

(clCreateSampler 
function) 125

Not a Number (NaN) values 74
notification events. See host noti-

fication events
num_entries parameter (clGet-

PlatformIDs function) 19
num_platforms parameter 

(clGetPlatformIDs 
function) 19

number-indexing vector 
components 81–82

numerical processing, in 
OpenCL 412–413

numerical reduction. See 
reduction

Nvidia
development file variable 410
download site 356
GPU Computing SDK

351, 356–357

license agreement 360
run-time compiler 31
SDK (software development 

kit) 14, 351, 362

O

object-oriented programming 167
See also C++

offset argument (clEnqueueXX 
functions) 56

offset argument (vloadn 
function) 102

offset argument (vstoren 
function) 102

op_test.cl file 96
open function 214
Open Graphics Language 

(OpenGL). See OpenGL
OpenCL

advantages of 5–8
card game analogy for 8–10
embedded. See embedded 

OpenCL
history of 4–5
installing. See installing 

OpenCL
library name 411
nonproprietary nature of 4
on mobile devices 412–414
portability of 6
specifications 5

OpenCL 1.1 standard 13
full or embedded, 

checking 20
OpenCL Working Group 5
OpenGL

advantages and 
disadvantages 322

animation 335–338
buffers, initializing 387–388
buffers, resetting 390
combining with GLUT

387–390
creating OpenCL context 

for 323–325
data objects, creating

332–333
data structures 325
data structures, as OpenCL 

data structures 322
data types 369
data types, returning 329
development on host

367–377

drawing modes 375–376
ensuring routine 

completion 328
host application function 367
initializing 345
installing 366–367
Linux installation 366–367
Mac OS installation 367
object information, 

returning 329–330
OpenCL data structure 

initialization 345–346
OpenCL initialization

331–332
OpenCL 

interoperability 322–323
OpenCL interoperability, 

example of 331–334
OpenCL kernel 

execution 333–334, 
337–338, 347

OpenCL 
synchronization 328–329

operation of 365
overview of 364
primitives 375–376
rendering graphics 334
rendering the model 389–390
static rendering example 364
viewport, setting 389
Visual Studio header files 366
vs. OpenCL applications 365
window, creating with 

GLUT 383–386
window, redrawing 348–349
Windows installation 366
See also GL Utility Toolkit 

(GLUT); shaders
OpenGL contexts 27

creating 331–332
device ID, returning 330
displaying 27
parameters for 27
returning information on 330

OpenGL Shading Language 
(GLSL) 377

data types 378
operators 379
suffixes 378
See also shaders

OpenGL textures. See textures
opengl.dll file 366
operations

atomic 160–163
for data transfer 101–102
on data types 18
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operators
arithmetic 96
assignment 96
for shader functions 379
list of 96
on vectors and scalars 96
relational 97
relational, creating mask 

vectors with 118
See also specific operators

optimizations, disabling 32
origin argument (clEnqueueXX 

functions) 56
orthogonalization, vector

290–291
oscillation 297
outer products

computing 268
vs. dot products 267

outerProduct function 379–380
overflow, arithmetic. See arithme-

tic overflow

P

parallel processing 240, 242
parallel programming 7, 14

See also MapReduce
parameters

cl_command_queue properties 
(clCreateCommandQueue)
40

cl_context_properties (clCre-
ateContext function) 26

cl_context_reference_count 
(clGetContextInfo 
function) 28

cl_program_build_info 
(clGetProgramBuildInfo 
function) 34

cl_program_info (clGetPro-
gramInfo function) 33

error (clCreateContext 
function) 28

for cl_device_info type 23
for clGetPlatformInfo 

function 20
num_entries (clGetPlatfor-

mIDs function) 19
num_platforms (clGetPlatfor-

mIDs function) 19
src_num (clCreateProgram-

WithSource function) 30

user_data (clCreateContext 
function) 28

void (clCreateContext 
function) 26

partitioning data. See data parti-
tioning

Perl, enabling in MinGW 401
Petrov-Galerkin method 279
pinned memory 46
pitch of image objects 50–51
pixel buffer objects 

(PBOs) 346–347
pixel data memory objects. See 

image objects
Platform class 171–172, 211
platform extensions 14

testing 20
vs. device extensions 24

platform layer 14
Platform objects

accessing Device objects 
with 171

example code 172
Platform objects 

(PyOpenCL) 212
platform structures

creating 18
creating for every platform 19
setting maximum number 

of 19
Platform::get function 171
Platform::getInfo function 171
platforms

defined 10
devices associated with 23
extension testing 22
full or embedded standard, 

returning 20
information parameters 19
information, retrieving 19–20
initializing 18
JavaCL and 204
multiple contexts from 25–26
names, returning 20
vendors, returning 20
See also cl_platform_id struc-

ture; data structures
PNG images, processing 134
polar coordinates, converting to 

rectilinear 106
portability of OpenCL 6
Portable Network Graphics 

(PNG) images, 
processing 134

positive-definite matrices
285–286

pow function 106
pown function 106
powr function 106
preferred vector widths 79–80
prefetch function 165–166
primitive data types 17–18

kernel arguments and 92
transferring with compiler 

defines 232
primitives 375
printStackTrace method 

(CLBuildException 
class) 206

private memory
accessing data as vectors 92
defined 88
initializing 91
kernel arguments for 91–92
kernel usage of, 

returning 223
PyOpenCL allocation to 217
qualifier for 90
size of 91
speed improvements with 232
usage considerations 88

private variables, reusing 232
processing image objects

133–135
profile_items.c file 157
profile_read.c file 155
profile.cpp file 193
profiling

commands 153–155
data partitioning 157–158
data transfer 155–156
kernels, in C++ 193

profiling events 140
configuration 153–155
example code 154
in C++ 192–193

Program class
constructors 213
functions in 211

Program objects
atomic MAD (multiply-and-

add) operations, 
allowing 175

building 174–175
constructors 174
creating 174
creating, from text files 174
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program objects (OpenGL)
activating 373, 375
attaching shaders to 374
creating 374
creating executable from 373
deallocating 373

Program objects 
(PyOpenCL) 214

programs
binary buffer array, 

returning 33
build information 

parameters 34
compiler options 32
context, retrieving 33
creating 30–31
creating, from text files 30–31
creating, in JavaCL 205
creating, in PyOpenCL 214
devices targeted by, 

returning 33
information, retrieving 33–35
kernel creation from 175–176
multiple source files 35–36
reference count, returning 33
source code, returning as sin-

gle string 33–34
vs. kernels 30
See also cl_program structure; 

data structures
projections, vector 265–266
ptrdiff_t data type 71
PyOpenCL

classes in 211
compiling 210
Context objects 212–213
Device objects 212
installing 210–211
kernel arguments, 

setting 215–216
kernel creation with 212–219
kernel execution 218–219
local memory allocation 217
memory objects in 216–217
naming conventions 212
parameters given in 

tuples 218
Platform objects 212
script structure 211
web site for 210

pyopencl class 211
Pythagorean Theorem 120
Python 210

See also PyOpenCL

Q

QR decomposition
defined 270
finding reflection vectors 270
kernel for 273–276
OpenCL 

implementation 273–276
Q matrix, finding 272
R matrix, finding 270–272
See also Householder 

transformation
qr.cl file 273–274

R

radix sort 254–256
Back 40 implementation 256
LSD (least-significant 

digits) 254
number of passes by 254
overview of 237, 254
ushortn vector and 255
vector implementation 

of 254–256
See also bitonic sort

radix_sort8.cl file 255
rasterization 382
rdft.cl file 305
read function 214
read methods (CLBuffer 

class) 209
read_image functions 130–131
read_mm.c file 283
read-only memory. See constant 

memory
read/write data transfer 54–58

enqueueing commands 
for 185–187

in C++ 185–187
profiling 155–156
synchronizing 160
See also data transfer

readFile method (JavaCL) 206
real-valued sequences 304
rectangular data in memory 

objects 56–57, 186
rectilinear coordinates, convert-

ing into polar 106
reducing images. See scaling 

images
reduction

algorithm for 226–227
barrier function and 228
computational steps for 231

defined 221
kernel for 227–228
local memory usage 228
memory banks and 227
speed, improving 228–229
storage method for 227
with vectors 228–229
work-group 230–231

reduction of key-pairs. See 
MapReduce

reduction_complete.cl file 230
reduction_scalar function 226
reduction_scalar.cl file 227
reduction_vector.cl file 228
reduction.cl file 226
reference counts

changing 29
checking 29–30
for cl_context structures 29
for contexts 28
for samplers, increasing/

decreasing 128
functions for 29
returning 33, 151
tracking 28

reflection, vector 266–267
finding values for 268
in OpenCL 269
See also Householder 

transformation
region argument (clEnqueueXX 

functions) 56
relational operators 97
remainder function 103–104
remainder of quotient, 

returning 103
remquo function 103
renderbuffers

creating image objects 
from 327

defined 325
rendering 3-D graphics. See 

OpenGL
rendering, OpenGL

334, 389–390
reshape function 386
residual vector, 

determining 287
resizing images. See enlarging 

images
resolution, timing 154
retain counts. See reference 

counts
RGB image format 50
rhadd function 110–111
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rint function 103–104
Ritz-Galerkin method 279
rootn function 106
rotate function 112–113
round function 103

rounding away from zero 105
vs. rint function 104

rounding
doubles 75
floats 74
halfs 75

rounding functions 103–104
rounding functions 

(Aparapi) 198
row pitch in image objects 180
row vectors 267
row_pitch argument (clCreate-

Image functions) 50
rsgrt function 106
run method (Kernel class) 199
run_kernel.py file 219
run-time compilers 31
runtime 14

S

sampler_t structures 129
samplers

as kernel arguments 128
as uniforms 395
bilinear interpolation

136–137
creating 125
defined 125
image objects and 124
interpolation type, 

setting 128
nearest-neighbor 

interpolation 135–136
properties, configuring

129–130
reference count, 

reducing 128
textures and 395
transferring to kernel 129

scalar arrays, loading vectors 
from 101–102

scalar data types 70–71
operations on 96
PyOpenCL and 217
reduction with 227–228
sorting 248
vector width, determining 79

scaling images 135

SD method . See Method of 
Steepest Descent

SDKs (software development 
kits)

device checking 351
Linux 352
Mac OS 352
Windows 352

header file 352, 356, 358, 362
vendors 14

searching text with 
MapReduce 242–244

segmentation faults 144
select functions 116–118

example code 118
most significant bits 

(MSB) 116
relational operators and 118

select_test.cl file 118
semaphores. See mutexes
sequences 298

real-valued 304
shifting 307

setArg function
cl::LocalSpaceArg object, call-

ing with 182
example code 182
signature for 215

setArg function (Kernel class)
arguments for 177
signature of 176

setArg method (JavaCL) 208
setArt method (CLKernel 

class) 206
setCallback function (Event 

class) 190
setExecutionMode method 

(Kernel class) 199
setKernelArg function 129
setSizes method (Kernel 

class) 200
setStatus function (UserEvent 

class) 192
sgrt function 106
shaders

attaching to program 
objects 373–374

build log, returning 372, 374
compiling 372–373, 389
components of 378
creating 372–373
data types 378
defined 364
deploying 388
deployment process 372

development 377–383
functions governing 372
information, retrieving 372
matrix functions 379
matrix initialization 379
matrix multiplication 380
operators for 379
overview of 364
singular nature of 373
source code, setting 372–373
structure of 378
suffixes 378
vs. kernels 322, 377, 379
See also fragment shaders; 

vertex shaders
share groups. See contexts
sharpening images 344
shell statements, in a 

makefile 404
short data type 71
shortn data type 78
shuffle functions 114–116, 248

rearranging vector elements 
with 249

signatures for 114
sign function 109
signbit function 119
signed zero values, 

preventing 32
simple_image.cl file 134
sincos function 106
sine functions. See trigonometric 

functions
single-precision constants 32
sinusoids 299–301
size parameter (cl::Buffer 

class) 178
size_t data type 71
slice pitch in image objects 180
slice_pitch argument (clCreate-

Image functions) 50
smoothstep function 105
software development kits 

(SDKs). See SDKs (software 
development kits)

sorting algorithms. See bitonic 
sort

source code
for matrix-vector 

multiplication 10–13
in multiple files 35–36
single string, returning 33–34
See also kernel code

Sources data type 174
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sparse matrices 260
Conjugate Gradient 

method 289–293
defined 280
importance of 278
Method of Steepest 

Descent 285–289
nonzero elements, 

reading 282–283
representing transmission 

tower 280
size of 281
size, returning 282
storage of 280–285
vs. dense matrices 280
See also Matrix Market files

spatial filtering. See image 
filtering

specifications 5
sphere.c file 335–336
spherical coordinates 337–338
spinlocks 163
square matrices

converting to upper triangular 
matrices 270–276

defined 259
functions for 380
inverse, returning 380

src_num parameter (clCre-
ateProgramWithSource 
function) 30

stalling commands. See com-
mand synchronization

static rendering 364
See also OpenGL

std::string class 169, 173
std::vector class 169
steep_desc.c file 288
step function 105
stretching. definition of 308
string literals 89
string searching, with 

MapReduce 242–244
string_class macro 168
string_search function 244
string_search.cl file 243
strings, C++ classes for 169
sub_sat function 110
sub-buffer objects 47–48

creating, in C++ 178
memory allocation 54
size, defining 47

subtraction functions 110
subtraction operator 96

subvectors
creating, with letters 82
creating, with numbers 81

supercomputers, list of fastest 3
superscalar processors 7
swap_vectors macro 249
symmetric matrices 260, 282
synchronization 158

See also command synchroniza-
tion; work-item synchroniza-
tion

synchronization, defined 158
synchronizing OpenCL-OpenGL 

data 328–329

T

tangent functions. See trigono-
metric functions

task-parallel programming 15
task-parallelism 7
test functions (vectors) 118–122
testing

atomic operations 162
Context objects 172
device extensions 23–25
kernels 225
platform extensions 20–22

texels 393
See also textures

text files, creating programs 
from 30–31

text searching with 
MapReduce 242–244

texture function 395
texture memory 123
texture_filter.c file 346
texture_filter.cl file 347
texture_squares.frag file 395
texture_squares.vert file 394
textures

activating 391
associating with texels 394
coordinates for 393
creating 391
creating image objects 

from 327
defined 325, 340
deleting 391
display parameters, 

setting 392
example code 393
functions for 391
image creation from 346
in fragment shaders 395–396

in vertex shaders 394
initializing 391
interpolation method, 

setting 392
mapping 394–395
minimizing 390, 392–393
mipmaps 327, 390, 392–393
overview of 390
pixel memory storage, 

setting 392
resizing 390
returning information on 329
zooming in/out from 392

tgamma/lgamma function 106
three_squares.c file

374, 387–389
three_squares.frag file 382
three_squares.vert 381
Tianhe-1A supercomputer 3
tick variable (display 

function) 337
time-domain sequences, convert-

ing. See discrete Fourier 
transform

time-domain signals 296
timing. See profiling
transferring data. See data 

transfer
transformation matrices 381
transformations 381
transmission tower, represented 

by sparse matrix 280
transpose function 379–380
transpose.cl file 260
transposition, matrix 260–262

data dimensionality of 261
example code 260
memory allocation 261

trigonometric functions 106
troubleshooting build errors 34
trunc function 103
try blocks 170

U

ucharn data type 78
uintn data type 78
uintptr_t data type 71
ulongn data type 78
unaligned data transfer 102
uniforms 395
unit vectors 266
unmap method (CLBuffer 

class) 209
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unrolling loops 231
upper triangular matrices

270–276
upsample function 113
user events

creating 146
defined 145
example code 147
in C++ 192
on multiple devices 146
status, setting 192
status, updating 146
vs. command events 146
wait lists and 146–148, 192
See also command events

user_data parameter (clCreate-
Context function) 28

user_event.c file 147
user_event.cpp file 192
UserEvent class constructor 192
ushortn data type 78, 255

V

variable, reusing private 232
vec_reflect.cl file 269
vec_step function 119
vector data types

for Program objects 174
list of 78
preferred vector width, 

determining 79–80
valid values of n 78

vector processing 6–7, 15
vector processors 7
vector reflection 266–267

finding values for 268
in OpenCL 269
See also Householder 

transformation
vector_bytes.cl file 84
vector_class macro 168
vector-matrix multiplication. See 

matrix-vector multiplication
vectors

absolute values of 
comparisons 249

as matrices 267–269
C++ classes for 169
column 267
comparison functions

105, 118–120, 242
conjugate 290
cross products, 

returning 120–122

defined 6
directions, determining 265
dot products, returning

120–121
endianness and 84–85
Euclidean distance, 

returning 120
geometric coordinates 120
geometric functions 120–122
Gram-Schmidt Method of 

orthogonalization 290–291
hi/lo/even/odd component 

selection 83–84
in shader code 378
initializing 80
involution 268
length, returning 120
letter-indexing 

components 82–83
linear dependence, and 

orthogonalization 290
loading from scalar 

arrays 101–102
mathematical 259
maximum number of 

components 81
memory access 84–85
minimum/maximum values, 

setting 105
normal 121
normalizing 121
number-indexing 

components 81–82
numerical reduction 

with 228–229
operators for 95–97
orthogonalization of 290–291
preferred widths, 

determining 79–80
projections for 265–266
projections, calculating 266
reading from image 

objects 130–132
row 267
sorting elements between 249
sorting elements in 248
sorting elements of 254–256
standardized processing in 

OpenCL 6–7
storing to scalar arrays

102–103
subvectors, creating 81–82
test functions 118–120
true/false returns 97

vs. arrays 77–78
See also components, vector; 

mask vectors
vendor-specific library. See 

installable client driver
vendors, returning 20
vertex array objects (VAOs)

creating 332–333, 371, 387
defined 370
functions for 371

vertex buffer objects (VBOs)
associating with vertex 

data 369
binding 369
buffer creation from 326
creating 332–333, 369, 387
deallocating memory 370
defined 325, 368
functions for 368
initializing 333
memory allocation 336
unbinding 370
vertex data, specifying

335–336
vertex shaders

attributes for 381
compiling 331, 345
creating 373
example code 381
matrix-vector multiplication 

and 381
overview of 380
texture mapping 394–395
vertex positions, setting 381

vertices
as float4 vectors 338
attributes 370–372
defined 364
defining 368
setting number of 377
shapes formed from. See 

primitives
spherical coordinates

337–338
vertex buffer objects 

(VBOs) 368–370
viewport (OpenGL), setting 389
Visual Studio OpenGL header 

files 366
vloadn function 101–102
void parameter (clCreateCon-

text function) 26
volume, calculating 159
vstoren function 102–103
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W

wait commands 149–150
wait function (Event class) 193
wait lists

cl_event structures and 145
command events and

145, 191
configuring 145
defined 145
stalling multiple commands 

with 149–150
user events and 146–148, 192

wait_group_events 
function 165–166

waitForEvents function (Event 
class) 194

warnings, responding/
suppressing 32

web link relationships, with 
MapReduce 240

web page access statistics, with 
MapReduce 240

wg_test.c file 224
wglGetCurrentContext 

function 324
wglGetCurrentDC function 324
when statements 97
while loops 231
Windows

Direct3D 356, 358
ICD names 352
MinGW 354
registry 352
registry key 352
Visual Studio 354, 356, 358

Windows environment 
variables 400

Wolfenstein 3D 340
work_dims argument (clEn-

queueNDRangeKernel 
function) 64

work-groups
advantages of 65
assigning data to, in bitonic 

sort 250
compute units for 66
confirming successful 

processing 230
functions, list of 99
global functions vs. local 

functions 99
index space example 184
Java methods for returning 

information 200–201
MapReduce and 241–242
maximum size 223–224
memory storage 88
overview of 222
parallel execution limit 

on 223
reduction algorithm 226
relationship to work-items 87
returning information 

on 223–224
size, specifying 66
synchronization, working 

around 230–231
See also work-items

work-item synchronization
overview of 159
with barriers and fences

159–160
with mutexes 163–164
work-groups and 160, 264

work-items
barriers for 159
comparison to for loop 99
compute unit constraint 

on 164
configuring, in Aparapi

200–201
defined 63
dimensionality, 

configuring 64

dimensions for 98–99
functions, list of 98
global functions vs. local 

functions 99
global ID 63, 98
global ID, specifying 64
global size 222
ID configuration, example 

code for 100–101
IDs, printing as float 100
index space example 184
Java methods for returning 

information 200–201
local ID 66
local memory, speed of 91
local size 222
maximum dimensions, 

finding 64
memory access, speed of 88
memory storage 88
mutexes for 163
numerical reduction of. See 

reduction
offset, returning 98–99
relationship to work-

groups 87
size, returning 98, 157
size, setting 64, 208
spinlocks for 163
vectors, number to 

process 158
vs. kernels 63
See also work-groups

write method (CLBuffer 
class) 209

write_image functions 132
writing to images 132–133

Z

zeros, leading in vector 
components 119
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