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Foreword

In the last few years computing has entered the heterogeneous computing era, which
aims to bring together in a single device the best of both central processing units
(CPUs) and graphics processing units (GPUs). Designers are creating an increasingly
wide range of heterogeneous machines, and hardware vendors are making them
broadly available. This change in hardware offers great platforms for exciting new
applications. But, because the designs are different, classical programming models
do not work very well, and it is important to learn about new models such as those in
OpenCL.

When the design of OpenCL started, the designers noticed that for a class of
algorithms that were latency focused (spreadsheets), developers wrote code in C or
C++ and ran it on a CPU, but for a second class of algorithms that where throughput
focused (e.g. matrix multiply), developers often wrote in CUDA and used a GPU: two
related approaches, but each worked on only one kind of processor—C++ did not run
on a GPU, CUDA did not run on a CPU. Developers had to specialize in one and
ignore the other. But the real power of a heterogeneous device is that it can efficiently
run applications that mix both classes of algorithms. The question was how do you
program such machines?

One solution is to add new features to the existing platforms; both C++ and CUDA
are actively evolving to meet the challenge of new hardware. Another solution was to
create a new set of programming abstractions specifically targeted at heterogeneous
computing. Apple came up with an initial proposal for such a new paradigm. This
proposal was refined by technical teams from many companies, and became OpenCL.
When the design started, I was privileged to be part of one of those teams. We had
a lot of goals for the kernel language: (1) let developers write kernels in a single
source language; (2) allow those kernels to be functionally portable over CPUs,
GPUs, field-programmable gate arrays, and other sorts of devices; (3) be low level
so that developers could tease out all the performance of each device; (4) keep the
model abstract enough, so that the same code would work correctly on machines
being built by lots of companies. And, of course, as with any computer project, we
wanted to do this fast. To speed up implementations, we chose to base the language
on C99. In less than 6 months we produced the specification for OpenCL 1.0, and
within 1 year the first implementations appeared. And then, time passed and OpenCL
met real developers . ..

So what happened? First, C developers pointed out all the great C++ features
(a real memory model, atomics, etc.) that made them more productive, and CUDA
developers pointed out all the new features that NVIDIA added to CUDA (e.g.
nested parallelism) that make programs both simpler and faster. Second, as hardware
architects explored heterogeneous computing, they figured out how to remove the
early restrictions requiring CPUs and GPUs to have separate memories. One great
hardware change was the development of integrated devices, which provide both a

Xix
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Foreword

GPU and a CPU on one die (NVIDIA’s Tegra and AMD’s APUS are examples).
And third, even though the specification was written with great care and there
was a conformance suite, implementers of the compilers did not always read the
specification in the same way—sometimes the same program could get a different
answer on a different device.

All this led to a revised and more mature specification—OpenCL 2.0.

The new specification is a significant evolution which lets developers take
advantage of the new integrated GPU/CPU processors.

The big changes include the following:

* Shared virtual memory—so that host and device code can share complex
pointer-based structures such as trees and linked lists, getting rid of the costly
data transfers between the host and devices.

* Dynamic parallelism—so that device kernels can launch work to the same
device without host interaction, getting rid of significant bottlenecks.

* Generic address spaces—so that single functions can operate on either GPU or
CPU data, making programming easier.

*  C++-style atomics—so that work-items can share data over work-groups and
devices, enabling a wider class of algorithms be realized in Open CL.

This book provides a good introduction to OpenCL, either for a class on OpenCL
programming, or as part of a class on parallel programming. It will also be valuable
to developers who want to learn OpenCL on their own.

The authors have been working on high performance mixing GPUs and CPUs for
quite some time. I highly respect their work. Previous versions of the book covering
previous versions of OpenCL were well received, and this addition expands that work
to cover all the new OpenCL 2.0 features.

I encourage potential readers to go through the book, learn OpenCL, and build the
exciting applications of the future.

Norm Rubin

Research Scientist, NVIDIA

Visiting Scholar, Northeastern University
January 2015
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CHAPTER

Introduction

INTRODUCTION TO HETEROGENEOUS COMPUTING

Heterogeneous computing includes both serial and parallel processing. With het-
erogeneous computing, tasks that comprise an application are mapped to the best
processing device available on the system. The presence of multiple devices on a
system presents an opportunity for programs to utilize concurrency and parallelism,
and improve performance and power. Open Computing Language (OpenCL) is a
programming language developed specifically to support heterogeneous computing
environments. To help the reader understand many of the exciting features provided in
OpenCL 2.0, we begin with an introduction to heterogeneous and parallel computing.
We will then be better positioned to discuss heterogeneous programming in the
context of OpenCL.

Today’s heterogeneous computing environments are becoming more multi-
faceted, exploiting the capabilities of a range of multicore microprocessors, central
processing units (CPUs), digital signal processors, reconfigurable hardware (field-
programmable gate arrays), and graphics processing units (GPUs). Presented with so
much heterogeneity, the process of mapping the software task to such a wide array
of architectures poses a number of challenges to the programming community.

Heterogeneous applications commonly include a mix of workload behaviors,
ranging from control intensive (e.g. searching, sorting, and parsing) to data intensive
(e.g. image processing, simulation and modeling, and data mining). Some tasks
can also be characterized as compute intensive (e.g. iterative methods, numerical
methods, and financial modeling), where the overall throughput of the task is heavily
dependent on the computational efficiency of the underlying hardware device. Each
of these workload classes typically executes most efficiently on a specific style of
hardware architecture. No single device is best for running all classes of workloads.
For instance, control-intensive applications tend to run faster on superscalar CPUs,
where significant die real estate has been devoted to branch prediction mechanisms,
whereas data-intensive applications tend to run faster on vector architectures, where
the same operation is applied to multiple data items, and multiple operations are
executed in parallel.

Heterogeneous Computing with OpenCL 2.0. http://dx.doi.org/10.1016/B978-0-12-801414-1.00001-6
Copyright © 2015 Advanced Micro Devices, Inc. Published by Elsevier Inc. All rights reserved




2

CHAPTER 1 Introduction

THE GOALS OF THIS BOOK

The first edition of this book was the first of its kind to present OpenCL programming
in a fashion appropriate for the classroom. In the second edition, we updated the
contents for the OpenCL 1.2 standard. In this version, we consider the major changes
in the OpenCL 2.0 standard, and we also consider a broader class of applications. The
book is organized to address the need for teaching parallel programming on current
system architectures using OpenCL as the target language. It includes examples
for CPUs, GPUs, and their integration in the accelerated processing unit (APU).
Another major goal of this book is to provide a guide to programmers to develop
well-designed programs in OpenCL targeting parallel systems. The book leads the
programmer through the various abstractions and features provided by the OpenCL
programming environment. The examples offer the reader a simple introduction,
and then proceed to increasingly more challenging applications and their associated
optimization techniques. This book also discusses tools for aiding the development
process in terms of profiling and debugging such that the reader need not feel lost in
the development process. The book is accompanied by a set of instructor slides and
programming examples, which support its use by an OpenCL instructor. Please visit
http://store.elsevier.com/9780128014141 for additional information.

THINKING PARALLEL

Most applications are first programmed to run on a single processor. In the field
of high-performance computing, different approaches have been used to accelerate
computation when provided with multiple computing resources. Standard approaches
include “divide-and-conquer” and “scatter-gather” problem decomposition methods,
providing the programmer with a set of strategies to effectively exploit the parallel
resources available in high-performance systems. Divide-and-conquer methods itera-
tively break a problem into smaller subproblems until the subproblems fit well on the
computational resources provided. Scatter-gather methods send a subset of the input
data set to each parallel resource, and then collect the results of the computation
and combine them into a result data set. As before, the partitioning takes account
of the size of the subsets on the basis of the capabilities of the parallel resources.
Figure 1.1 shows how popular applications such as sorting and a vector-scalar
multiply can be effectively mapped to parallel resources to accelerate processing.

Programming has become increasingly challenging when faced with the growing
parallelism and heterogeneity present in contemporary computing systems. Given
the power and thermal limits of complementary metal-oxide semiconductor (CMOS)
technology, microprocessor vendors find it difficult to scale the frequency of these
devices to derive more performance, and have instead decided to place multiple
processors, sometimes specialized, on a single chip. In their doing so, the problem
of extracting parallelism from a application is left to the programmer, who must
decompose the underlying tasks and associated algorithms in the application and map
them efficiently to a diverse variety of target hardware platforms.
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FIGURE 1.1

(a) Simple sorting: a divide-and-conquer implementation, breaking the list into shorter
lists, sorting them, and then merging the shorter sorted lists. (b) Vector-scalar multiply:
scattering the multiplies and then gathering the results to be summed up in a series
of steps.

In the past 10 years, parallel computing devices have been increasing in number
and processing capabilities. During this period, GPUs appeared on the computing
scene, and are today providing new levels of processing capability at very low
cost. Driven by the demands of real-time three-dimensional graphics rendering (a
highly data-parallel problem), GPUs have evolved rapidly as very powerful, fully
programmable, task- and data-parallel architectures. Hardware manufacturers are
now combining CPU cores and GPU cores on a single die, ushering in a new genera-
tion of heterogeneous computing. Compute-intensive and data-intensive portions of a
given application, called kernels, may be offloaded to the GPU, providing significant
performance per watt and raw performance gains, while the host CPU continues to
execute non-kernel tasks.

Many systems and phenomena in both the natural world and the man-made world
present us with different classes of parallelism and concurrency:

* Molecular dynamics—every molecule interacting with every other molecule.

¢ Weather and ocean patterns—millions of waves and thousands of currents.

e Multimedia systems—graphics and sound, thousands of pixels and thousands
of wavelengths.

* Automobile assembly lines—hundreds of cars being assembled, each in a
different phase of assembly, with multiple identical assembly lines.

3
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CHAPTER 1 Introduction

Parallel computing, as defined by Almasi and Gottlieb [1], is a form of com-
putation in which many calculations are carried out simultaneously, operating on
the principle that large problems can often be divided into smaller ones, which are
then solved concurrently (i.e. in parallel). The degree of parallelism that can be
achieved is dependent on the inherent nature of the problem at hand (remember
that there exists significant parallelism in the world), and the skill of the algorithm
or software designer to identify the different forms of parallelism present in the
underlying problem. We begin with a discussion of two simple examples to demon-
strate inherent parallel computation: multiplication of two integer arrays and text
searching.

Our first example carries out multiplication of the elements of two arrays A and B,
each with N elements storing the result of each multiply in the corresponding element
of array C. Figure 1.2 shows the computation we would like to carry out. The serial
C++ program code would be follows:
for (i=0; i<N; i++)

Cli] = A[i] = B[il;
LISTING 1.1
Multiplying elements of an array.

This code possesses significant parallelism, though a very low compute intensity.
Low compute intensity in this context refers to the fact that the ratio of arithmetic
operations to memory operations is small. The multiplication of each element in A

Array A[ ]

Array C[ ]

Parallel Q
multiplies

., No communication
*, between

* % computations :

Array B[ ]
FIGURE 1.2

Multiplying elements in arrays A and B, and storing the result in an array C.
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FIGURE 1.3

Task parallelism present in fast Fourier transform (FFT) application. Different input images
are processed independently in the three independent tasks.

and B is independent of every other element. If we were to parallelize this code, we
could choose to generate a separate execution instance to perform the computation
of each element of C. This code possesses significant data-level parallelism because
the same operation is applied across all of A and B to produce C.

We could also view this breakdown as a simple form of task-level parallelism.
A task is a piece of work to be done or undertaken, sometimes used instead of the
operating system term process. In our discussion here, a task operates on a subset of
the input data. However, task parallelism generalizes further to execution on pipelines
of data or even more sophisticated parallel interactions. Figure 1.3 shows an example
of task parallelism in a pipeline to support filtering of images in frequency space using
a fast Fourier transform.

Let us consider a second example. The computation we are trying to carry out is
to find the number of occurrences of a string of characters in a body of text (see
Figure 1.4). Assume that the body of text has already been appropriately parsed
into a set of N words. We could choose to divide the task of comparing the string
against the N potential matches into N comparisons (i.e. tasks). In each task a string
of characters is matched against the text string. This approach, although rather naive
in terms of search efficiency, is highly parallel. The process of the input text string
being compared against each of the set of potential words presents N parallel tasks.
Each parallel task is carrying out the same set of operations. There is even further
parallelism within a single comparison task, where the matching on a character-by-
character basis presents a finer-grained degree of parallelism. This example exhibits
both data-level parallelism (we are going to be performing the same operation on
multiple data items) and task-level parallelism (we can compare the input string
against multiple different words concurrently).

Once the number of matches has been determined, we need to accumulate
them to compute the total number of occurrences. Again, this summing can exploit
parallelism. In this step, we introduce the concept of “reduction,” where we can utilize
parallel resources to combine partial sums in a very efficient manner. Figure 1.5 shows
the reduction tree, which illustrates this summation process performed in log N steps.
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CONCURRENCY AND PARALLEL PROGRAMMING MODELS

Next, we discuss concurrency and parallel processing models so that when attempting
to map an application developed in OpenCL to a parallel platform, we can select
the right model to pursue. Although all of the following models can be supported
in OpenCL, the underlying hardware may restrict which model will be practical
to use.

Concurrency is concerned with two or more activities happening at the same
time. We find concurrency in the real world all the time—for example, carrying a
child in one arm while crossing a road or, more generally, thinking about something
while doing something else with one’s hands. When talking about concurrency in
terms of computer programming, we mean a single system performing multiple tasks
independently. Although it is possible that concurrent tasks may be executed at the
same time (i.e. in parallel), this is not a requirement. For example, consider a simple
drawing application, which is either receiving input from the user via the mouse and
keyboard or updating the display with the current image. Conceptually, receiving
input and processing input are operations (i.e. tasks) different from updating the
display. These tasks can be expressed in terms of concurrency, but they do not need
to be performed in parallel. In fact, in the case in which they are executing on a single
core of a CPU, they cannot be performed in parallel. In this case, the application or
the operating system should switch between the tasks, allowing both some time to
run on the core.

Parallelism is concerned with running two or more activities in parallel with the
explicit goal of increasing overall performance. For example, consider the following

assignments:

Step 1: A=B + C
Step 2: D=E + G
Step 3: R=A+D
LISTING 1.2

Three steps in a computation.

The assignments of A and D in steps 1 and 2 (respectively) are said to be
independent of each other because there is no data flow between these two steps.
The variables E and G on the right side of step 2 do not appear on the left side of step
1. Vice versa, the variables B and C on the right sides of step 1 do not appear on the
left side of step 2.). Also the variable on the left side of step 1 (A) is not the same
as the variable on the left side of step 2 (D). This means that steps 1 and 2 can be
executed in parallel (i.e. at the same time). Step 3 is dependent on both steps 1 and 2,
so cannot be executed in parallel with either step 1 or step 2.

Parallel programs must be concurrent, but concurrent programs need not be
parallel. Although many concurrent programs can be executed in parallel, interde-
pendencies between concurrent tasks may preclude this. For example, an interleaved
execution would still satisfy the definition of concurrency while not executing in
parallel. As a result, only a subset of concurrent programs are parallel, and the set
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All programs

Concurrent
programs

FIGURE 1.6

The relationship between parallel and concurrent programs. Parallel and concurrent
programs are subsets of all programs.

of all concurrent programs is itself a subset of all programs. Figure 1.6 shows this
relationship.

In the remainder of this section some well-known approaches to programming
heterogeneous, concurrent and parallel systems are introduced with the aim of
providing a foundation before we introduce OpenCL in Chapters 2 and 3.

1.5 THREADS AND SHARED MEMORY

A running program (called a process) may consist of multiple subprograms that each
maintains its own independent control flow, and which as a group are allowed to
run concurrently. These subprograms are called threads. All of the threads executing
within a process share some resources (e.g., memory, open-files, global variables),
but also have independent local storage (e.g., stack, automatic variables). Threads
communicate with each other using variables allocated in the globally shared address
space. Communication requires synchronization constructs to ensure that multiple
threads are not updating the same memory location at the same time.
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In shared memory systems, all processors have the ability to view the same
address space (i.e., they view the same global memory). A key feature of the shared
memory model is the fact that the programmer is not responsible for managing data
movement. For these types of systems, it is especially important that the programmer
and hardware have a well-defined agreement concerning updates to global data shared
between threads. This agreement is called a memory consistency model. Memory
consistency models are often supported in programming languages using higher-level
constructs such as mutexes and semaphores, or acquire/release semantics as in the
case of Java, C/C++11, and OpenCL. By having the programmer explicitly inform
the hardware when certain types of synchronization must be performed, the hardware
is able to execute concurrent programs with much greater efficiency.

As the number of processor cores increase, there is a significant cost to supporting
shared memory in hardware. The length of wires (latency, power), number of
interfaces between hardware structures, and number of shared bus clients quickly
become limiting factors. The extra hardware required typically grows exponentially
in terms of its complexity as we attempt to add additional processors. This has slowed
the introduction of multicore and multiprocessor systems at the low end, and it has
limited the number of cores working together in a consistent shared memory system
to relatively low numbers because shared buses and coherence protocol overheads
become bottlenecks. More relaxed shared memory systems scale better, although
in all cases, scaling the number of cores in a shared memory system comes at the
cost of complicated and expensive interconnects. Most multicore CPU platforms
support shared memory in one form or another. OpenCL supports execution on shared
memory devices.

MESSAGE-PASSING COMMUNICATION

An alternative to shared memory is to use a message-passing model. This model
uses explicit intercommunication between a set of concurrent tasks that need to
share data during computation. Multiple tasks can reside on the same physical
device and/or across an arbitrary number of devices. Tasks exchange data through
communications by sending and receiving explicit messages. Data transfer usually
requires complementary operations to be performed by each process. For example, a
send operation must have a matching receive operation.

From a programming perspective, message-passing implementations commonly
comprise a library of hardware-independent routines for sending and receiving
messages. The programmer is responsible for explicitly managing communication
between tasks. Historically, a variety of message-passing libraries have been available
since the 1980s. The Message Passing Interface (MPI) library is currently the most
popular message-passing middleware [2]. Different implementations of the MPI
library differ substantially from each other, making it difficult for programmers to
develop performance-portable applications.
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DIFFERENT GRAINS OF PARALLELISM

Whether we are using shared memory with threads, or explicit message passing, we
can also vary the size (i.e. the grain) of the parallel unit of execution. The parallel unit
of execution simply refers to the amount of independent work done by each executing
thread. In discussion of parallel computing, granularity is a measure of the ratio of
computation to communication.

The grain of parallelism is constrained by the inherent characteristics of the
algorithms constituting the application. It is important that the parallel programmer
select the right granularity to reap the full benefits of the underlying platform, because
choosing the right grain size can help to expose additional degrees of parallelism.
Sometimes the selection of granularity is referred to as chunking, determining the
amount of data to assign to each task. Selecting the right chunk size can help provide
further acceleration on parallel hardware. The following is a list of the trade-offs that
factor into this key parallel programming attribute:

Chunking using fine-grained parallelism with a large number of independent tasks
needs to consider the following:

* Compute intensity needs to be moderate so that each independent unit of
parallelism has sufficient work to do.

* The cost of communication needs to be low so that each independent unit of
parallelism can execute independently.

*  Workload scheduling is important in fine-grained parallelism owing to the large
number of independent tasks that can execute in parallel. The flexibility
provided by an effective workload scheduler can and achieve load balance when
a large number of tasks are being executed.

Chunking using coarse-grained parallelism needs to consider the following:

* Compute intensity needs to be higher than in the fine-grained case since there
are fewer tasks that will execute independently.

* Coarse-grained parallelism would require the developer to identify complete
portions of an application that can serve as a task.

Given these trade-offs, which granularity will lead to the best implementation?
The most efficient granularity is dependent on the algorithm and the hardware
environment in which it is run. In most cases, if the overhead associated with
communication and synchronization is high relative to the amount of the computation
in the task at hand, it will generally be advantageous to work at a coarser granularity
as this will limit the overhead of communication and scheduling. Fine-grained
parallelism can help reduce overhead due to load imbalance and memory delays (this
is particularly true on a GPU, which depends on zero-overhead fine-grained thread
switching to hide memory latencies).

If we have a computation that involves performing the same set of operations
over a large amount of data, we can treat the data as a vector, and perform the same
operation over multiple data inputs, generating multiple data outputs in a single vector
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operation. This grain of processing allows us to utilize a single instruction, multiple
data (SIMD) style of operation, and typically leverages parallel hardware to perform
the operation on different input data, in parallel. This grain of parallelism uses the
size of the vector or the width of the SIMD unit to obtain execution speedup.

In the attempt to find the best computing grain, why not just issue copies
of the same program to the available processing elements or nodes, relaxing the
ordering between the execution of these copies so that they can run efficiently on
a shared system with many processors? While an SIMD model has similarities to
a single program, multiple data (SPMD) model, an SPMD model does not limit
synchronization to instruction boundaries as does an SIMD model, and instead allows
copies of the task or kernel to be run concurrently.

DATA SHARING AND SYNCHRONIZATION

A key factor to consider when developing heterogeneous software is the amount of
data sharing that is inherent in a single task or across multiple tasks. Consider the case
in which two tasks run that do not share any data. As long as the runtime system or
operating system has access to adequate execution resources, the two tasks can be run
concurrently or even in parallel. If halfway through the execution of the first task, the
first task generates a result that was subsequently required by the second task, then we
would have to introduce some form of synchronization into the system, and parallel
execution—at least across the synchronization point—becomes more challenging.
When one is writing concurrent software, data sharing and synchronization play a
critical role. Examples of data sharing in concurrent programs include the following:

* The input of a task is dependent on the result of another task—for example,
in a producer-consumer or pipeline execution model.

*  When intermediate results are combined together (e.g. as part of a reduction,
as in our word search example shown in Figure 1.5).

Ideally, we would attempt to parallelize only portions of an application that are
void of data dependencies, but that may not always be the case. Explicit synchroniza-
tion primitives such as barriers and locks may be used to support synchronization
when necessary. Although we only raise this issue here, later chapters revisit this
question in OpenCL, providing a mechanism to support communication between host
and device programs or when synchronization between tasks is required.

SHARED VIRTUAL MEMORY

In many heterogeneous systems, execution is split between different devices, and
explicit synchronization and communication is used to communicate data values
between the tasks running on each device. Shared virtual memory is a contract
between the hardware and the software that allows devices to share a common view
of memory, easing the task of programming and eliminating the need for explicit
communication. OpenCL 2.0 introduces support for shared virtual memory, reducing
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expensive communication messages during execution, and removing the need to
maintain multiple copies of a memory address on each device. We will discuss shared
virtual memory in the context of OpenCL in detail in later chapters.

OpenCL 2.0 provides three different types of sharing:

» coarse-grained buffer sharing,
» fine-grained buffer sharing,
* fine-grained system sharing.

Using any flavor of shared virtual memory requires OpenCL implementations to
make addresses meaningful between the host and devices in the system. This
enables pointer-based data structures (such as linked lists) that could not previously
be supported in OpenCL. Coarse-grained buffer sharing supports updates at the
granularity of entire buffers and is achieved through API calls. Fine-grained buffer
and system sharing support updates at the granularity of individual bytes within
a buffer or anywhere in host memory, respectively. Fine-grained sharing support
is achieved using synchronization points with ordering defined by the memory
consistency model. These topics are covered in greater depth in Chapters 6 and 7.

HETEROGENEOUS COMPUTING WITH OPENCL

Now that the reader has more background on heterogeneous and parallel program-
ming concepts, we will identify features that are supported in OpenCL. We begin
with a brief history and overview of the language.

OpenCL is a heterogeneous programming framework that is managed by the
nonprofit technology consortium the Khronos Group [3]. OpenCL is a framework
for developing applications that execute across a range of device types made by
different vendors. The first version of OpenCL, version 1.0, was released in 2008,
and appeared in Apple’s Mac OSX Snow Leopard. AMD announced support for
OpenCL in the same timeframe, and in 2009 IBM announced support for OpenCL in
its XL compilers for the Power architecture. In 2010, the Khronos Group released
version 1.1 of the OpenCL specification, and in 2011 released version 1.2. The
first edition of this book covered many of the features introduced in OpenCL 1.2.
In 2013, the Khronos Group released OpenCL 2.0, which includes the following
features:

* Nested parallelism

* Shared virtual memory
* Pipe memory objects

e Cl11 atomics

* Improved images

* Additional features

OpenCL supports multiple levels of parallelism and efficiently maps to homo-
geneous or heterogeneous, single- or multiple-device systems consisting of CPUs,
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GPUs, and other types of devices limited only by the imagination of vendors. OpenCL
defines both a device-side language and a host management layer for the devices in
a system. The device-side language is designed to efficiently map to a wide range of
memory systems and execution models. The host language aims to support efficient
plumbing for complicated concurrent programs with low overhead. Together, these
provide the developer with a path to efficiently move from algorithm design to
implementation.

OpenCL provides parallel computing using task-based and data-based paral-
lelism. OpenCL kernels employ a SPMD-like model, where units of parallelism
(called work-items) execute instances of the kernel in a way that maps effectively to
both scalar and vector hardware. Support for OpenCL is rapidly expanding as a wide
range of platform vendors have adopted OpenCL for their hardware. These vendors
represent broad market segments, from mobile and embedded (ARM, Imagination,
MediaTek, Texas Instruments) to desktop and high-performance computing (AMD,
Apple, Intel, NVIDIA, and IBM). The architectures supported include multicore
CPUs (including x86, ARM, and Power), throughput and vector processors such
as GPUs, and fine-grained parallel devices such as field-programmable gate arrays
(Altera, Xilinx). Most importantly, OpenCL’s cross-platform, industry-wide support
makes it an excellent programming model for developers to learn and use, with the
confidence that it will continue to be widely available for years to come with ever-
increasing scope and applicability.

OpenCL 2.0 provides support for shared virtual memory, a topic we will treat
in depth later in this book. Shared virtual memory is an important feature to ease
programmer burden, especially when one is working with APU devices that share
a common physical memory system. OpenCL 2.0 also introduces new memory
consistency support, providing acquire/release semantics to relieve the programmer
from fiddling with error-prone explicit locking. Support for shared memory commu-
nication, pipes, and other features of OpenCL 2.0 will be described in more detail in
later chapters.

BOOK STRUCTURE

This book is organized as follows:

e Chapter 1 (this chapter) introduces many concepts related to the development of
parallel algorithms and software. The chapter covers concurrency, threads, and
different grains of parallelism: many of the fundamentals of parallel software
development.

* Chapter 2 presents some of the architectures that support OpenCL, including
CPUs, GPUs, and APUs. Different styles of architectures, including SIMD and
very long instruction word, are discussed. This chapter also covers the concepts
of multicore and throughput-oriented systems, as well as advances in
heterogeneous architectures.
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Chapter 3 presents an introduction to OpenCL, including the host API and the
OpenCL C language. The chapter includes a look into programming your first
OpenCL application.

Chapter 4 dives into OpenCL programming examples, including histogram,
image rotation, and convolution, and demonstrates some of the OpenCL 2.0
features, such as pipe memory objects. An example in this chapter also utilizes
OpenCL’s C++ wrapper.

Chapter 5 discusses concurrency and execution in the OpenCL programming
model. In this chapter we discuss kernels, work-items, and the OpenCL
execution and memory hierarchies. We also show how queuing and
synchronization work in OpenCL such that the reader gains an understanding of
how to write OpenCL programs that interact with memory correctly.

Chapter 6 covers the OpenCL host-side memory model, including resource and
memory management.

Chapter 7 continues with OpenCL’s device-side memory model. The device-side
memory model deals with how units of execution access data in the various
memory spaces. This chapter also includes updates to OpenCL’s consistency
model, including memory ordering and scope.

Chapter 8 dissects OpenCL on three very different heterogeneous platforms: (1)
the AMD FX-8350 GPU, (2) the AMD Radeon R9 290X GPU, and (3) the
AMD A10-7850K APU. This chapter also considers memory optimizations.
Chapter 9 provides a case study, looking at imaging clustering and search.
Chapter 10 considers OpenCL profiling and debugging using AMD CodeXL.
Chapter 11 covers C++AMP, a version of C++ that allows the user to leverage
the availability of parallel hardware.

Chapter 12 discusses WebCL, enabling Web-based applications to harness the
power of an OpenCL device from within a browser.

Chapter 13 discusses how OpenCL can be accessed from within other languages
such as Java, Python and Haskell.
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CHAPTER

Device architectures

INTRODUCTION

OpenCL has been developed by a wide range of industry groups to satisfy the need to
standardize programming models that can achieve high performance across the range
of devices available on the market. Each of these companies has specific goals in
mind for OpenCL and targets for what features OpenCL should have to be able to run
correctly on a specific architecture. To this end, OpenCL has a range of features that
attempt to allow detection of unique hardware capabilities (e.g. the c1GetDevicelInfo
application programming interface (API) call).

Although OpenCL is designed to be a platform-independent API, at the algo-
rithm level and consequently at the level of kernel implementation, true platform
independence in terms of performance is still a goal (versus a reality). While version
2.0 of the OpenCL standard has made some large strides in this area, as developers
we still need to understand the potential advantages of different hardware features,
the key runtime characteristics of these devices, and where these devices fit into the
different classes of computer architectures. Once the reader is equipped with this
deeper understanding of the targeted hardware, he or she can make informed choices
when designing parallel algorithms and software. This understanding should also
provide the reader with insight into the philosophy behind OpenCL’s design in terms
of programming, memory, and runtime models.

OpenCL’s parallelism model is intended to run efficiently on serial, symmetric
multiprocessing, multithreaded, and single instruction, multiple data (SIMD) or
vector devices. In this chapter, we discuss some of these devices and the overall design
space in which they sit.

HARDWARE TRADE-OFFS

Given the history of OpenCL and its early use for graphics APIs and pixel shaders,
it is easy to understand how OpenCL has developed as a leading language targeted
for graphics processing unit (GPU) programming. As a result, OpenCL has become
a popular programming API for the high-performance computing market. However,

Heterogeneous Computing with OpenCL 2.0. http://dx.doi.org/10.1016/B978-0-12-801414-1.00002-8 1 5
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as the number of platforms supporting OpenCL grows (particularly in the embedded
systems space), the overall impact of OpenCL should increase substantially.

What is not necessarily clear from this discussion is what a GPU really is and
how it differs from these “other devices.” When we develop general-purpose code
for a GPU, is the device still a graphics processor, or is it a more generic entity? If it
is a graphics processor, is that due to the device carrying some amount of graphics-
specific logic, or is it the architectural style overall?

More questions arise when we try to think about this question in any detail. How
many cores does a GPU have? To answer that question, we have to decide on a
definition for “core.” What is a “many-core” device, and is it significantly differ-
ent from a “multicore” device? In general, different architectures choose different
approaches to increase performance for a given power/transistor budget. Rather than
there simply being a raw compute power/electrical power/area trade-off, hardware
developers have always also had to consider programming effort. The trade-off
between these factors has created a wide divergence in designs.

Multicore central processing units (CPUs) allow us to maintain clock frequencies
and hardware complexity that are comparable to those of single-core CPUs, while
adding more cores as transistor sizes reduce. With careful design, power consumption
can be kept within reasonable limits. SIMD and very long instruction word (VLIW)
architectures attempt to further increase the amount of useful work being performed
by improving the ratio of arithmetic operations to control logic. In such cases, it can
be difficult to generate workloads to keep the arithmetic logic units (ALUs) satisfied.
Multithreading approaches this from a different angle. Rather than increasing the
ratio of computation to control logic, it increases the amount of useful work available
to occupy computation logic during periods in which indirectly useful work is
occupying noncompute logic such as memory pipelines. Thereby multithreading
increases the utilization of the device we already have. Threading can be seen from
the software side, in which case it can apply to multicore chips as much as to single-
core designs, but it can also be viewed in terms of single cores managing multiple
software threads. Caches and memory system trade-offs allow different architectures
to target different data access patterns while trading off transistors for different uses.

In all these cases, we can apply the trade-offs to an individual core or a set of cores,
depending on our definition of a core. However, we do not need to apply the same
trade-off across an entire device. Heterogeneity can enable hardware optimizations
for multiple types of algorithms running simultaneously, offering better performance
on both and hence overall. The traditional, and at the present time common, example
of this at the system level is the GPU plus CPU combination we see in modern PCs
(along with other lower-performance processors scattered throughout the system).
The latest generations of high-performance processors combine these two aspects
into a single device, which AMD calls the accelerated processing unit (APU) [1].

In reality, we see combinations of these factors in different designs with different
target markets, applications, and price points. In this section, we examine some of
these architectural features and discuss to what degree various common architectures
apply them.
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PERFORMANCE INCREASE WITH FREQUENCY,
AND ITS LIMITATIONS

The easiest way, as a developer, to think about code we are writing is to create
software that executes linearly: perform one task, complete that task, perform another
task. It is considerably more difficult for a developer to write parallel code; this
is true even for limited SIMD or vector parallelism as is common in graphics.
Multicomponent pixels make this relatively simple as the logical entity maps well
to the programming concept. In other applications, where the logical concepts do
not map as effectively to programming vectors, extracting SIMD operations can be
substantially more difficult. For this reason, architectures have historically aimed to
increase the performance of a single, narrow, thread of execution before moving to
parallelism, with extreme, multithreaded parallelism relegated to high-performance
specialist machines in particular markets.

Shrinking of complementary metal-oxide semiconductor (CMOS) circuitry has
allowed distances between transistors to scale fairly consistently for an extended
period of time. The shrinking of distances and reduction in size of the capacitors
allowed hardware architects to clock circuits at a higher rate. In turn, this led to
Gordon Moore’s famous self-fulfilling prophecy about transistor density and its
misinterpretations in the realm of execution frequency and overall performance.
Certainly, increasing the frequency allowed the performance of nonparallel code to
increase consistently during that time, such that it became an expectation for software
developers until the early twenty-first century.

During the past decade, it has become obvious that continued scaling of clock
frequencies of CPUs is not practical, largely due to power and heat dissipation
constraints. The reason for this is that power consumption is dependent on frequency
in a nonlinear manner. CMOS dynamic power consumption is approximated by the
combination of dynamic and static power:

P = ACV?F + Vljeu,

where A is the activity factor, or fraction of the number of transistors in the circuit
that are switching, C is the capacitance of the circuit, V is the voltage applied across
the circuit, F is the switching frequency, and [jeax is an estimate of the current due to
leakage of transistors.

It appears from this equation that power is linear with frequency. In reality, to
increase the frequency, one has to increase the rate of flow of charge into and out of the
capacitors in the circuit. This requires a comparable increase in voltage, which both
scales the dynamic term and increases the latter, static, term in the equation. For a long
time, voltages could reduce with each process generation such that frequency scaling
would not increase the power consumption uncontrollably. However, as process
technology has reached the small sizes we see today, we can no longer scale the
voltage down without increasing the error rate of transistor switching, and hence
frequency scaling requires voltage increases. The increase in power consumption and
heat dissipation from any increase in frequency is then substantial.
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As a second problem, increasing the clock frequency on-chip requires either an
increase of off-chip memory bandwidth to provide data fast enough to not stall the
workload running through the processor or an increase of the amount of caching in
the system.

If we are unable to continue increasing the frequency with the goal of obtaining
higher performance, we require other solutions. The heart of any of these solutions
is to increase the number of operations performed in a given clock cycle.

SUPERSCALAR EXECUTION

Superscalar and, by extension, out-of-order execution is one solution that has been
included on CPUs for a long time; it has been included on x86 designs since the
beginning of the Pentium era. In these designs, the CPU maintains dependence
information between instructions in the instruction stream and schedules work onto
unused functional units when possible. An example of this is shown in Figure 2.1.

Instruction
stream A
a5 Instruction
muld, b, e fetch
mul f, a, e Instruction dependencies A
adda, d, g
I dda, b Id, b
fmul b, a, f l @ N& S
Instruction mulf, a, e add g, d, g
decode Va
fmul h, a,
fmul h, a, f
mul f, a, e adda,d, g
adda, b, ¢ muld, b, e Schedule
Integer Integer Floating point
ALU ALU ALU
Write
reordering

FIGURE 2.1

Out-of-order execution of an instruction stream of simple assembly-like instructions. Note
that in this syntax, the destination register is listed first. For example, add a,b,cisa = b+c.
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The major beneficiary of out-of-order logic is the software developer. By extract-
ing parallelism from the programmer’s code automatically within the hardware, serial
code performs faster without any extra developer effort. Indeed, superscalar designs
predate frequency scaling limitations by a decade or more, even in popular mass-
produced devices, as a way to increase overall performance superlinearly. However,
these designs are not without their disadvantages.

Out-of-order scheduling logic requires a substantial investment in transistors and
hence CPU die area to maintain queues of in-flight instructions and maintain infor-
mation on interinstruction dependencies to deal with dynamic schedules throughout
the device. In addition, speculative instruction execution quickly becomes necessary
to expand the window of out-of-order instructions to execute in parallel. Such
speculative execution results in throwaway work and hence wasted energy. As a result,
out-of-order execution in a CPU has shown diminishing returns; the industry has
taken other approaches to increase performance as transistor size has decreased, even
on the high-performance devices in which superscalar logic was formerly feasible. On
embedded and special-purpose devices, extraction of parallelism from serial code has
never been as much of a goal, and such designs have historically been less common
in these areas.

Good examples of superscalar processors are numerous, from Seymour Cray’s
CDC 6600 to numerous RISC designs in the 1990s. Currently, high-end CPUs are
mostly superscalar. Many GPUs also have superscalar capabilities.

VERY LONG INSTRUCTION WORD

VLIW execution is a heavily compiler-dependent method for increasing instruction-
level parallelism in a processor. Rather than depending entirely on complex out-
of-order control logic that maintains dependencies in hardware, as we saw when
discussing superscalar execution, VLIW execution moves this dependence analysis
work into the compiler. Instead of a scalar instruction stream being provided, each
issued instruction in a VLIW processor is a long instruction word comprising multiple
instructions intended to be issued in parallel. This instruction will be mapped directly
to the execution pipelines of the processor.

An example of VLIW execution is shown in Figure 2.2. This is the same set of
instructions as we saw in Figure 2.1, but rather than being fetched serially, they are
fetched in three horizontally arranged packets of up to three instructions. We now see
that the dependence structure of this instruction stream is linear, and the hardware will
treat it that way rather than extracting and tracking a more complicated dependence
graph. The VLIW instruction packets are decoded, and each individual part of the
instruction stream maps to a given computation unit in the processor for execution.
In some VLIW designs, as in this example, the computation units are heterogeneous,
and hence some instructions will only ever be scheduled into a given lane of the
VLIW packet stream. Other architectures present more homogeneous hardware such
that any instruction can be issued in any location, and only dependence information
limits the possibilities.
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FIGURE 2.2
VLIW execution based on the out-of-order diagram in Figure 2.1.

In the example in Figure 2.2, we see that the instruction schedule has gaps: the first
two VLIW packets are missing a third entry, and the third VLIW packet is missing its
first and second entries. Obviously, the example is very simple, with few instructions
to pack, but it is a common problem with VLIW architectures that efficiency can
be lost owing to the compiler’s inability to fully fill packets. This may be due to
limitations in the compiler or may be due simply to an inherent lack of parallelism in
the instruction stream. In the latter case, the situation will be no worse than for out-
of-order execution but will be more efficient as the scheduling hardware is reduced
in complexity. The former case would end up as a trade-off between efficiency losses
from unfilled execution slots and gains from reduced hardware control overhead.
In addition, there is an extra cost in compiler development to take into account
when performing a cost-benefit analysis for VLIW execution over hardware schedule
superscalar execution.

VLIW designs commonly appear in digital signal processor chips. High-end
consumer devices currently include the Intel Itanium line of CPUs (known as
explicitly parallel instruction computing, EPIC) and AMD’s HD6000 series GPUs.
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SIMD AND VECTOR PROCESSING

SIMD and its generalization in vector parallelism aim for improved efficiency from
a slightly different angle compared with the previously discussed concepts. Whereas
VLIW and hardware-managed superscalar execution both address extraction of
independent instruction parallelism from unrelated instructions in an instruction
stream, SIMD and vector parallelism directly allow the hardware instructions to target
data-parallel execution.

A single SIMD instruction encapsulates a request that the same operation be
performed on multiple data elements in parallel. Contrast this with the scalar
operation performed by each instruction in the other approaches to parallelism. Vector
computation generalizes this approach and usually works over long sequences of data
elements, often pipelining computations over the data rather than executing on all
elements simultaneously, and more generally supports gathered read and scattered
write operations to and from memory.

If we again look at a variation on the running example as seen in Figure 2.3, we
can see that the instruction stream is now issued linearly rather than out of order.
However, each of these instructions now executes over a vector of four ALUs at the
same time. The integer instructions issue one by one through the four-way integer
vector ALU on the left, and the floating-point instructions issue similarly through the
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FIGURE 2.3

SIMD execution where a single instruction is scheduled in order, but executes over
multiple ALUs at the same time.
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four-way floating-point ALU on the right. Note that although in this example we are
issuing the instructions linearly, there is no reason to assume that we cannot perform
these operations within a superscalar or VLIW pipeline, and we will see architectures
that do just that in our later discussion.

The advantage of SIMD execution is that relative to ALU work, the amount of
scheduling and the amount of instruction decode logic can both be decreased. We are
now performing four operations with a single instruction and a single point in the
dependence schedule.

Of course, as with the previous proposals, there are trade-offs. A significant
amount of code is not data parallel, and hence it is not possible to find vector
instructions to issue. In other cases, it is simply too difficult for the compiler to
extract data parallelism from code. For example, vectorization of loops is an ongoing
challenge, with little success in anything but the simplest cases. In these cases, we end
up with unutilized ALUs, and thus transistor wastage.

Vector processors originated in the supercomputer market, but SIMD designs
are common in many market segments. CPUs often include SIMD pipelines with
explicit SIMD instructions in a scalar instruction stream, including the various forms
of Streaming SIMD Extensions (SSE) and Advanced Vector Extensions (AVX) on
x86 chips, the AltiVec extensions for PowerPC, and ARM’s NEON extensions.
GPU architectures historically included explicit SIMD operations to support pixel
vectors, and many modern GPUs also execute over wide implicit SIMD vectors,
where the scalar instruction stream describes a single lane. Indeed, such machines
can be considered vector machines because in many cases the vector is logical. For
example, AMD’s Radeon R9 290X architecture executes 64-wide SIMD operations.
These wide vector instructions are pipelined over multiple cycles through a 16-lane
SIMD unit.

HARDWARE MULTITHREADING

The third common form of parallelism, after instruction parallelism and data paral-
lelism, is thread parallelism, or in other words, the execution of multiple independent
instruction streams. Clearly, this form is heavily used on large, parallel machines, but
it is also useful within a single CPU core. As previously discussed, extracting inde-
pendent instructions from an instruction stream is difficult, in terms of both hardware
and compiler work, and it is sometimes impossible. Extracting instruction parallelism
from two independent threads is trivial because those threads already guarantee inde-
pendence outside explicit synchronization blocks. The challenge of implementing
hardware multithreading lies in managing the additional instruction stream and the
state that a second instruction stream requires in terms of registers and cache.

There are two main ways to apply on-chip multithreading:
1. Simultaneous multithreading (SMT)
2. Temporal multithreading

SMT is visualized in Figure 2.4. In this approach, instructions from multiple

threads are interleaved on the execution resources by an extension to the super-
scalar scheduling logic that tracks both instruction dependencies and source threads.
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The out-of-order schedule seen in Figure 2.1 combined with a second thread and
executed simultaneously.

The goal is for the execution resources to be more effectively utilized, and in Figure
2.4 that is the case. A higher proportion of execution slots are occupied with useful
work. The cost of this approach is that state storage must be increased, and the
instruction dependence and scheduling logic become more complicated as they now
manage two distinct sets of dependencies, resources, and execution queues.

Figure 2.5 shows the simpler time-sliced version of chip multithreading. In this
case, each thread is executed in consecutive execution slots in round-robin fashion.
For the purposes of simplification, the diagram shows a single shared ALU.

The following are advantages of this approach:

e The logic to handle the scheduling is simple.

» Pipeline latency can be covered by scheduling more threads, reducing the
amount of forwarding logic.

» Stalls of a single thread due to a cache miss, waiting for a branch to be
computed, or similar events can be covered by changing the order of thread
execution and running more threads than necessary to cover pipeline latency.
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FIGURE 2.5
Two threads scheduled in a time-slice fashion.

This last case is the most useful in scaling to complicated problems. Many
architectures are able to run more threads than necessary. When a thread reaches some
sort of stall, it can be removed from the ready queue such that only threads in the ready
queue are scheduled for execution. Once the stall ends, the thread can be placed back
in the ready queue. In this manner, although a single thread might execute more slowly
than on an out-of-order machine, the total throughput of the machine is kept high,
and utilization of compute resources can be maintained without overcomplicating the
control logic. Taken to an extreme, this sort of heavy multithreading can be viewed
as throughput computing: maximizing throughput at the possible expense of latency.
The principle is shown in Figure 2.6.

Both forms of chip multithreading are common. The MTA design from Tera is
a classic time-sliced multithreading supercomputer. The MTA design suffered from
manufacturing difficulties; however, Cray’s subsequent implementation, the MTA-2



2.2 Hardware trade-offs 25

Thread 0 I I L L
Thread 1| | | B ] |
Thread 2 ‘ ‘ ‘ 1

Thread 3 J ‘7 7\ [
Thread 4 J ‘7‘ | ,l ! l ‘

Thread5 | | § 7\ - |
Thread 6 | —‘

Memory system

Active compute operation |

FIGURE 2.6

Taking temporal multithreading to an extreme as is done in throughput computing: a large
number of threads interleave execution to keep the device busy, whereas each individual
thread takes longer to execute than the theoretical minimum.

design, utilized 128 register sets per CPU using fast thread switching between threads
within this state and skipping stalled threads. The XMT design extends this further
to fit multithreaded processors in standard AMD Opteron-based Cray systems. Sun’s
Niagara series of chips implements a multicore multithreaded design (eight per core)
to achieve low power and high throughput on data-center workloads. Intel’s Pentium 4
and then later Nehalem and successor designs implement a form of SMT known as
hyperthreading. Modern GPU designs run numerous threads in a temporal fashion on
each core, where the number is generally resource limited: on the current generation
of AMD GPUs, this is usually 8—16 threads per core to cover latency and stalls.

MULTICORE ARCHITECTURES

Conceptually at least, the obvious approach to increasing the amount of work
performed per clock cycle is simply to clone a single CPU core multiple times on
the chip. In the simplest case, each of these cores executes largely independently,
sharing data through the memory system, usually through a cache coherency protocol.
This design is a scaled-down version of traditional multisocket server symmetric
multiprocessing systems that have been used to increase performance for decades,
in some cases to extreme degrees.

However, multicore systems come in different guises, and it can be very difficult
to define a core. For example, a mainstream CPU, at the high end, generally includes
a wide range of functional blocks such that it is independent of other cores on the
chip, barring interfacing logic, memory controllers, and so on, that would be unlikely
to count as cores. However the line can be blurred. For example, AMD’s Steamroller
(high-power core) design, shown alongside the simpler Puma (low-power core)
design in Figure 2.7, shares functional units between pairs of cores in a replicable unit
termed a module. A single thread will run on each core in a traditional fashion while
the hardware interleaves floating-point instructions onto the shared floating-point
pipelines. The aim of such a design is to raise efficiency by improving occupancy
of functional units.

In a similar manner, GPU designs have a different definition for “core.” Modern
GPUs have tens of cores—at the current high end there are between 32 and 64, with
levels of complexity that depend on the specific architecture. Many GPU designs,
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FIGURE 2.7

The AMD Puma (left) and Steamroller (right) high-level designs (not shown to any shared
scale). Puma is a low-power design that follows a traditional approach to mapping
functional units to cores. Steamroller combines two cores within a module, sharing its
floating-point (FP) units.

such as the Graphics Core Next-based [2] designs from AMD and the Fermi and
Kepler derivatives from NVIDIA [3], follow a relatively CPU-like design. However,
some designs diverge substantially. For example, if we look at the AMD Radeon
HD 6970 high-level diagram in Figure 2.8, we see a similar approach to Bulldozer
taken to an extreme. Although the device has 24 SIMD cores, by looking at the
execution units in the fairest way to compare them with traditional CPUs, we see
those SIMD cores execute only ALU operations—both floating point and integer.
Instruction scheduling, decode, and dispatch are executed by the wave scheduler
units. The wave schedulers are so named because the unit of scheduling is a wide
SIMD thread context known as a wavefront. Indeed, on the AMD Radeon HD 6970,
there are two wave schedulers to prevent overly high complexity, whereas lower-
capability parts in the series use only one wave scheduler and scale the number of
SIMD cores.

INTEGRATION: SYSTEMS-ON-CHIP AND THE APU

In the embedded space, a more heterogeneous approach to multicore design is
common. To achieve low power, embedded developers have constructed complicated
systems-on-chip (SoCs) combining various components into a compact and cost-
effective design. Combining specialized components in this way allows devices to
be optimized for a particular use case and power envelope, which is particularly
important in markets such as the design of cell phones.
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FIGURE 2.8

The AMD Radeon HD 6970 GPU architecture. The device is divided into two halves, where
instruction control (scheduling and dispatch) is performed by the wave scheduler for each
half. The 24 16-lane SIMD cores execute four-way VLIW instructions on each SIMD lane
and contain private level 1 (L1) caches and local data shares (scratchpad memory).

Benefits from SoCs include the following:

* Combining multiple elements into a single device allows there to be a single
manufacturing process and a single product to deal with, allowing lower
manufacturing costs.

* The smaller number of packages takes up less space in a final device, allowing
lower device cost and a smaller form factor, which are vital in markets such as
mobile telephony.

* Smaller distances mean less power is used during communication and easier
sharing of data through a single memory system.

* Lower communication latencies can lead to improved turnaround times for
workloads dispatched to coprocessors.

Good examples of this approach in the cell phone space are the Snapdragon SoC
from Qualcomm and the OMAP series from Texas Instruments. Designs such as
these combine an implementation of the ARM instruction set architecture (ISA),
a mobile GPU, memory controllers, and various wireless and media processing
components. At the higher-performance end of the market, Sony, Toshiba, and IBM
developed the Cell Broadband Engine processor, which combines a number of small,
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high-performance but simple cores with a main traditional full-capability core with
the aim of improving the performance-per-watt characteristics. AMD and Intel have
both developed combined CPU-GPU SoCs termed APUs by AMD, enabling high-
performance graphics and CPU power in a more efficient single-chip package.

CACHE HIERARCHIES AND MEMORY SYSTEMS

Whereas in the early years of supercomputers memory bandwidth and latency were
such that CPUs could always access the data they needed when it was needed, it
has been a long time since this has been the case. Currently, it is not unusual that
the latency between a memory request on the CPU and the data being returned from
memory is hundreds or even thousands of CPU cycles. On a single-threaded CPU,
out-of-order logic would be impossibly complicated to cover that much latency.

Fortunately, most applications do not make entirely independent memory
accesses. In general, memory access patterns express some degree of locality, which
will be either of the following:

» Spatial: two or more memory accesses read or write addresses that are near
each other, by some measure, in memory.

* Temporal: two or more memory accesses read or write the same address within
a relatively small time window.

These two forms of locality lead to the conclusion that if we can store a value
read from memory and its neighbors, later reads will be able to reuse that data. As a
result, CPU designers have added complicated layers of intermediate memory caches
to support this optimization.

Caches come in various designs, but they can be divided into two general cate-
gories that are applied depending on the workload. CPU caches tend to be designed
to minimize latency. To achieve this, caches are large with complicated hierarchies to
move as much of the data as close to the CPU core as possible. Out-of-order logic can
cover only a limited amount of latency, so the fewer cycles to access data, the better.
In addition, keeping data close to the execution units minimizes power consumption:
long-distance data movement is a significant component of CPU power usage.

Throughput processors are more latency tolerant, using threading to cover the
cycles between request and data return. In these designs, the goal of caching is less
to minimize latency, so the large multilevel hierarchy is less common, and more to
reduce traffic across the limited memory buses. Smaller caches that allow neighboring
accesses to be caught but are concerned less with very long periods of reuse are
often seen in these situations, acting more as spatial filters. Wide SIMD units and
programming models aim for efficient coalesced memory access to increase the size
of memory transaction issues. The result is that dedicating logic to arithmetic units
becomes a better use of transistors. In addition, higher-latency, higher-bandwidth
memory interconnects allow this design to work more efficiently. One extension of
this bias toward spatial locality that we often see in GPU design is to lay memory out
such that two-dimensional accesses are efficiently cached.
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Some designs including GPUs and the Cell processor include software-managed
scratchpad memory spaces as well as or in place of cache hierarchies. These buffers
enable higher performance at a given power and area budget, but they require more
complicated programming.

The reality of any given design is that it balances caching levels and features on
the basis of the expected workloads for the processor. Unfortunately, there is no right
answer for all processor design-workload combinations.

THE ARCHITECTURAL DESIGN SPACE

In the real world, we do not see many architectures that fit cleanly into just one of the
previously mentioned categories. The reality is that computer architecture is a huge
design space with enormous variation in all directions. Common current architectures
sit in that design space at various points.

This is most important in helping us realize that some of the publicly held
viewpoints of today’s architectures can be overly simplistic. For example, in the
domain of GPUs, we often encounter statements such as the following:

* CPUs are serial, GPUs are parallel.
¢ CPUs have a small number of cores, GPUs have hundreds.
¢ GPUs run thousands of threads, CPUs run one (or two).

The reality of any design is far more complicated than that, with wide variation in
internal buffers, the number of pipelines, the type of pipelines, and so on. The theme
of this chapter is to show that the difference between GPUs and CPUs, or indeed most
modern architectures, is not fundamental. Most of the visible architectural differences
we commonly see today are simply points on a sliding scale, a set of parameterization
knobs applied to basic designs. These are the differences the average programmer
needs to understand: only the expert need be concerned with ratios between buffer
sizes and arranging instructions for hardware co-issue.

In this section, we discuss several real architectures and where they fit in the design
space, trading off some of the features we discussed previously. It is hoped that this
will help to give a more nuanced feel for architectural trade-offs and help to develop
views on what algorithms may or may not work well on real architectures. The goal
is to show that the wide SIMD and state storage design of GPUs is a long way along a
spectrum from simple CPUs in terms of use of area, and that maximum performance
and ease of achieving good performance depend on these design choices.

CPU DESIGNS

The devices that most people are used to developing on can be loosely described as
“CPUs.” Even within this space, there is considerable variation in how different forms
of parallelism are utilized.
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Low-power CPUs

At the very lowest end of the power spectrum, CPU cores are very simple, in-order
cores. At this level, power consumption is the most important factor in design, with
performance a secondary consideration. Such designs often do not support floating-
point operations and have no need for parallelism.

Currently, the most widespread low-power CPU ISA is the ARM ISA developed in
intellectual property (IP) form by ARM Holdings. The ARM architecture originated
in the Acorn RISC machine concept from Acorn Computers as a desktop architecture,
but recently the simplicity of the architecture has made it dominant in the mobile and
embedded markets, with a foray into Acorn’s own desktop projects from 1996 to
1998 as the DEC-manufactured StrongARM. ARM designs come in a wide variety
of forms because the ISA IP is licensed to manufacturers who are at liberty to design
their own cores. Usually, ARM cores are combined within SoCs with other units such
as cellular modems, embedded graphics processors, video accelerators, and similar
devices.

Most variants on the ARM ISA have been in-order cores with three to seven
pipeline stages. The Cortex-A8, Cortex-A9, and Cortex-Al5 cores, based on the
ARMV7 ISA, are superscalar and multicore with up to four symmetric cores. The
ARMyv7-based cores optionally support the NEON SIMD instructions, giving 64-
and 128-bit SIMD operations in each core.

ARMVS-A cores add a 64-bit instruction set, and updated NEON extensions
with more 128-bit registers, double-precision support, and cryptography instructions.
The high-end Cortex-A57, based on the ARMv8-A architecture, targets mid-range
performance, has eight-wide instruction issue, and trading performance for power, an
out-of-order pipeline. The smaller Cortex-AS53 retains the in-order pipeline, although
it supports dual instruction issue.

The Puma microarchitecture (shown in Figure 2.7) is the low-power core in
AMD’s current CPU lineup, designed for a power range of 2-25 W. To achieve the
low-power figures, Puma cores are clocked more slowly than the high-end parts, and
are carefully designed to reduce overhead in the data-path—at the cost of lower peak
performance. Puma is a 64-bit design, supports two-way out-of-order issue, and also
has two 128-bit SIMD units that can combine to execute AVX operations.

Intel’s Atom designs have historically taken a slightly different approach to
performance compared with AMD’s Puma. Before the Silvermont microarchitecture,
Atom did not support out-of-order execution, and used SMT to make up for lack of
single-thread performance. Starting with Silvermont, the designs from Intel and AMD
use similar techniques for trading off power and performance.

In general, low-power CPUs can be characterized by in-order or narrow out-
of-order execution with relatively narrow SIMD units. Variation in the number of
cores can be used for scaling to various power-performance points in multithreaded
situations. In all cases, features are kept simple and frequencies are kept low
compared with those in desktop CPUs as a method for reducing power consumption.
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Mainstream desktop CPUs
Mainstream desktop CPUs from AMD and Intel do not look much different from the
Puma design. In each case, they slightly increase the complexity of each element.

The Haswell microarchitecture is the current mainstream desktop CPU core
from Intel. Previous generations, such as Sandy Bridge [4] and Ivy Bridge (Sandy
Bridge die shrink), supported 128-bit SSE operations and 256-bit AVX operations.
Haswell [5] added support for AVX2—an update to AVX providing support for
a greater number of integer instructions. The Haswell pipeline issues up to eight
operations of mixed types in parallel, with the possible mix of operations determined
by the functional units connected to its eight scheduling “ports.” The out-of-order
engine can handle up to 192 operations in flight at a time.

Intel added hardware multithreading support to Nehalem, Sandy Bridge’s pre-
decessor, and maintained this in Sandy Bridge and Haswell. In this case, it is true
SMT: each core can mix operations from a pair of threads in the execution units. This
increase in scheduling complexity is traded against the increased utilization of the
functional units.

AMD’s Steamroller core, seen in Figure 2.7, increases parallel thread execution by
taking a middle ground between increasing core count and increasing the number of
threads per core. The approach used in Steamroller is to create a second independent
integer core with its own set of private ALUs, state and scheduler. However, the fetch
unit, floating-point ALUs, and the level 2 (L2) cache are shared between pairs of
cores. AMD refers to this shared, two-core design as a “module.” The goal of the
module is to share only functional units that are not likely to be heavily contended
in real workloads. In the previous Bulldozer and Piledriver microarchitectures, the
decode unit was also shared between cores in a module. However, in Steamroller,
decode has been replicated in both cores.

Each core supports out-of-order execution through four ALU pipelines. The
shared floating-point ALU is a pair of 128-bit (SSE) SIMD units that can combine
to execute AVX instructions. To provide power savings within mobile devices, the
Steamroller microarchitecture also introduced a dynamically resizable L2 cache—
portions of which can be powered down depending on the workload characteristics.

With mainstream CPUs, then, we see wide multi-issue, out-of-order hardware,
high clock speeds, and large caches—all features intended to maintain high single-
threaded performance with reasonably high power draw. In-core multithreading is
kept minimal or is nonexistent, and SIMD units are set at a width that does not waste
too much area when they are not in use.

Server CPUs

Intel’s Itanium architecture and its more successful successors (the latest being
the Itanium 9500), represent an interesting attempt to make a mainstream server
processor based on VLIW techniques [6]. The Itanium architecture includes a large



32

CHAPTER 2 Device architectures

number of registers (128 integer and 128 floating point registers). It uses a VLIW
approach known as EPIC, in which instructions are stored in 128-bit, three-instruction
bundles. The CPU fetches four instruction bundles per cycle from its L1 cache and
can hence executes 12 instructions per clock cycle. The processor is designed to be
efficiently combined into multicore and multisocket servers.

The goal of EPIC is to move the problem of exploiting parallelism from runtime to
compile time. It does this by feeding back information from execution traces into the
compiler. It is the task of the compiler to package instructions into the VLIW/EPIC
packets, and as a result, performance on the architecture is highly dependent on
compiler capability. To assist with this, numerous execution masks, dependence flags
between bundles, prefetch instructions, speculative loads, and rotating register files
are built into the architecture. To improve the throughput of the processor, the latest
Itanium microarchitectures have included SMT, with the Itanium 9500 supporting
independent front-end and back-end pipeline execution.

The SPARC T-series family (Figure 2.9), originally from Sun and under contin-
uing development at Oracle, takes a throughput computing multithreaded approach
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FIGURE 2.9

The Niagara 2 CPU from Sun/Oracle. The design intends to make a high level of threading
efficient. Note its relative similarity to the GPU design seen in Figure 2.8. Given enough
threads, we can cover all memory access time with useful compute, without extracting
instruction-level parallelism (ILP) through complicated hardware techniques.
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to server workloads [7]. Workloads on many servers, particularly transactional and
Web workloads, are often heavily multithreaded, with a large number of lightweight
integer threads using the memory system. The UltraSPARC Tx and later SPARC
Tx CPUs are designed to efficiently execute a large number of threads to maximize
overall work throughput with minimal power consumption. Each of the cores is
designed to be simple and efficient, with no out-of-order execution logic, until the
SPARC T4. Within a core, the focus on thread-level parallelism is immediately
apparent, as it can interleave operations from eight threads with only a dual issue
pipeline. This design shows a clear preference for latency hiding and simplicity of
logic compared with the mainstream x86 designs. The simpler design of the SPARC
cores allows up to 16 cores per processor in the SPARC T5.

To support many active threads, the SPARC architecture requires multiple sets of
registers, but as a trade-off requires less speculative register storage than a superscalar
design. In addition, coprocessors allow acceleration of cryptographic operations, and
an on-chip Ethernet controller improves network throughput.

As mentioned previously, the latest generations, the SPARC T4 and TS5, back off
slightly from the earlier multithreading design. Each CPU core supports out-of-order
execution and can switch to a single-thread mode where a single thread can use all
of the resources that previously had to be dedicated to multiple threads. In this sense,
these SPARC architectures are becoming closer to other modern SMT designs such
as those from Intel.

Server chips, in general, try to maximize parallelism at the cost of some single-
threaded performance. As opposed to desktop chips, more area is devoted to support-
ing quick transitions between thread contexts. When wide-issue logic is present, as in
the Itanium processors, it relies on help from the compiler to recognize instruction-
level parallelism.

GPU ARCHITECTURES

Like CPUs, GPU architectures come in a wide variety of options. Here, we briefly
discuss several before going into more depth about OpenCL programming for a high-
end GPU in Chapter 8. GPUs tend to be heavily multithreaded with sophisticated
hardware task management because the graphics workloads they are designed to
process consist of complex vertex, geometry, and pixel processing task graphs.
These tasks and the pixels they process are highly parallel, which gives a substan-
tial amount of independent work to process for devices with multiple cores and
highly latency-tolerant multithreading. It is important to understand that barring
sophisticated mechanisms to manage task queues, or to hide SIMD execution behind
hardware management systems, GPUs are simply multithreaded processors with their
parameterization aimed at processing large numbers of pixels very efficiently.

Handheld GPUs
Handheld GPUs have gained general-purpose capabilities, with ARM, Imagination
Technologies, MediaTek, and Qualcomm now offering fully OpenCL-compliant
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IP. At this scale, GPUs consist of a small number of shader cores, where each
executes a large number of individual threads on a small-pixel-size SIMD unit not
entirely dissimilar to an SSE vector pipeline. ARM’s Mali-T760 architecture uses
three types of computation pipelines in each of up to 16 shader cores. Intercore
task management supports managing workloads across the cores: GPU threading,
in general, is hardware controlled rather than exposed to the operating system. An
embedded design such as the Mali-T760 can share the same global memory with
embedded CPUs, reducing the need to copy data across memory spaces; in the ARM
design, this data is fully cached.

At the high end: AMD Radeon R9 290X and NVIDIA GeForce GTX 780
High-end desktop GPUs and their derivatives for the high-performance computing
and workstation segments aim more for performance than maximal power efficiency.
To achieve high memory bandwidth, a large number of pins are dedicated to memory
traffic, and high-bandwidth-per-pin (possibly lower-latency) memory protocols may
be used, such as GDDRS. These devices use a mixture of features to improve compute
throughput, including wide SIMD arrays to maximize arithmetic throughput for a
given number of issued instructions.

The AMD Radeon R9 290X architecture seen in Figure 2.10 has 16 SIMD lanes
in hardware and uses vector pipelining to execute a 64-element vector over four
cycles. The NVIDIA GeForce GTX 780 architecture (Figure 2.11) also uses a 16-
wide SIMD unit, and executes a 32-element vector over two cycles. Both devices are
multithreaded, supporting numerous wide SIMD threads on each core. On the AMD
architecture, for example, each core possesses one scalar core and four SIMD units
associated with a banked register file: each of those four SIMD units can have up to
10 vector threads (AMD refers to these as “wavefronts”) in flight, one of which can
be chosen on each issue cycle for that SIMD unit. That gives a total of up to 40 vector
threads per core, and hence 1760 active vector threads across the entire device (or
112,640 individual work-items!). The NVIDIA design offers similarly high numbers:
however, in both cases the actual concurrency is limited by the amount of state each
thread uses, and the realistic number is likely to be lower.

In the AMD and NVIDIA architectures, the intermediate language that programs
the device is a lanewise SIMD model such that the instruction stream represents a
single lane of the SIMD unit, an approach that NVIDIA calls “single instruction,
multiple thread.”. It has also been called “single program, multiple data on SIMD”.
The ISA that this compiles down to may or may not be lanewise, and in the AMD case
it is an explicit scalar plus vector ISA where program counters are managed explicitly
on a per-wavefront basis and divergent branches are managed using explicit mask
registers. We will discuss this in more detail in Chapter 8.

Instruction-level parallelism is achieved in various ways. The AMD Radeon R9
290X design issues multiple instructions per cycle, each from a different active
program counter, where one vector instruction will be issued on each cycle to a
different vector unit. The NVIDIA GeForce GTX 780 can co-issue two threads at
once over four execution pipelines. Older AMD designs such as the Radeon HD 6970
used VLIW instruction issue. In fact, the Radeon HD 6970 and Radeon R9 290X are
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FIGURE 2.10

The AMD Radeon R9 290X architecture. The device has 44 cores in 11 clusters. Each core
consists of a scalar execution unit that handles branches and basic integer operations, and
four 16-lane SIMD ALUs. The clusters share instruction and scalar caches.

very similar in their execution unit design, the difference lies largely in the instruction
issue, such that one issues in a compiler-structured fashion from one thread and the
other issues at runtime from four threads. All of these designs are superscalar in that
execution resources can issue memory access, arithmetic, and other operations from
threads running on the same core, but not necessarily the same thread, and in this
sense they are throughput architectures optimizing the throughput of a set of threads
over the latency of a single thread.

Like the mobile GPUs on the market, the high-end AMD and NVIDIA models
comprise multiple cores. If we define a core as the closest reasonable mapping to
the equivalent in a CPU, the Radeon R9 290X has 44 cores (each with four vector
units) and the NVIDIA design has 12 (though each substantially larger, with 12 vector
units). Each core has a scratchpad memory buffer known as local memory in OpenCL
which is allocated on a per-work-group basis.

It should be clear that the high-end GPU design is heavily weighted toward
thread state, allowing fast switching between multiple program instances and high
throughput. As opposed to high-end CPUs, GPUs do not rely on complex out-of-
order or multi-issue pipelines for single-thread performance. Instead, GPU designs
are throughput oriented, and rely very heavily on thread-level parallelism to utilize
their large numbers of vector processing units.
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The NVIDIA GeForce GTX 780 architecture. The device has 12 large cores that NVIDIA
refers to as “streaming multiprocessors” (SMX). Each SMX has 12 SIMD units (with
specialized double-precision and special function units), a single L1 cache, and a

read-only data cache.
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APU AND APU-LIKE DESIGNS

SoCs have been common in embedded markets for a long time. Currently, there
is a move toward SoCs being used for much higher performance systems and
applications. Such fused processors, most obviously combining CPU and GPU
designs, in addition to the less strongly marketed video decoders, random number
generators, and encryption circuits, have become prevalent in the netbook, notebook,
and low-end desktop spaces. As transistors have continued to shrink and less
performance benefit can be gained from adding additional CPU cores, these SoCs
have also permeated high-end desktops. In this space we see the power saving
capabilities of integration combined with the substantial compute capability of a
discrete GPU that needs only be enabled when higher performance is needed, thus
offering power savings overall. Currently, the major architectures in this market are
AMD’s Puma-based and Steamroller-based products and Intel’s Haswell products.
The AMD designs targeted at low-power and low-end mainstream products with
a4.515-W power budget are known as Beema and Mullins, and are based on the low-
power Puma CPU core combined with a low-end Radeon R9 GPU. These components
are produced together on a single silicon die in a 28-nm process. AMD’s higher-
performance APU, Kaveri, is based on the Steamroller core and a significantly higher
performance GPU. A simplified Kaveri A10-7850K diagram is shown in Figure 2.12.
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The A10-7850K APU consists of two Steamroller-based CPU cores and eight Radeon R9
GPU cores (32 16-lane SIMD units in total). The APU includes a fast bus from the GPU to
DDR3 memory, and a shared path that is optionally coherent with CPU caches.
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FIGURE 2.13

An Intel i7 processor with HD Graphics 4000 graphics. Although not termed “APU” by
Intel, the concept is the same as for the devices in that category from AMD. Intel combines
four Haswell x86 cores with its graphics processors, connected to a shared last-level cache
(LLC) via a ring bus.

Intel’s high-end Core i7 APU design (Figure 2.13) is based on four cores of the
Haswell microarchitecture core discussed previously. The GPU is part of Intel’s HD
series GPU design with full OpenCL and DirectX 11 capabilities.

The APU architectures offer scope for sharing data structures between GPU and
CPU cores such that the major communication bottleneck of many GPU compute
workloads is alleviated. This means that latency can be improved for workloads
dispatched to the GPU, and more tightly integrated algorithms between GPU and
CPU cores can be created that are currently not practical owing to performance
constraints arising from the latency of the PCI Express bus. This improvement comes
at the cost of CPU-style memory bandwidth shared between both devices, losing the
very high bandwidth exotic memory interfaces of discrete GPUs. It is likely that this
trade-off is advantageous in the wide range of algorithms that are inefficient when
they are implemented purely on the GPU. This advantage may come either because
the GPU’s throughput-based design is suboptimal for serial code, and the APU design
may reduce the turnaround time of mixing CPU and GPU code, or because the
algorithms are communication bottlenecked.

SUMMARY

In this chapter, we discussed the types of architecture that OpenCL might run on and
the trade-offs in the architectural design space that these architectures embody. After
examining OpenCL more closely, in Chapter 8, we discuss how the OpenCL model
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maps to a specific architecture in the form of a combination of a Piledriver-based
AMD FX-8350 CPU and a Radeon R9 290X GPU.

The content of this chapter will benefit from further reading; however, for many of
the specific devices, concise references can be difficult to find. The fourth edition of
Computer Organization and Design [8] discusses many architectural issues in depth
and various other processor designs. It also contains a section on NVIDIA’s GPU
architecture. The fifth edition of Computer Architecture [9] extends these concepts.
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CHAPTER

Introduction to OpenCL

INTRODUCTION

This chapter introduces OpenCL, the programming fabric that will allow us to weave
our application to execute concurrently. Programmers familiar with C and C++ should
have little trouble understanding the OpenCL syntax. We begin by reviewing the
OpenCL standard.

THE OpenCL STANDARD

OpenCL was refined into an initial proposal by Apple in collaboration with technical
teams at AMD, IBM, Qualcomm, Intel, and NVIDIA, and was submitted to the
Khronos Group. The initial 1.0 specification was released by the Khronos Group
in 2008. OpenCL 1.0 defined the host application programming interface (API) and
the OpenCL C kernel language used for executing data-parallel programs on different
heterogeneous devices. Follow-up releases of OpenCL 1.1 and OpenCL 1.2 enhanced
the OpenCL standard with features such as OpenGL interoperability, additional
image formats, synchronization events, and device partitioning. In November 2013,
the Khronos Group announced the ratification and public release of the finalized
OpenCL 2.0 specification. A number of additional features were added to the OpenCL
standard, such as shared virtual memory, nested parallelism, and generic address
spaces. These advanced features have the potential to simplify parallel application
development, and improve the performance portability of OpenCL applications.
Open programming standards designers are tasked with a very challenging
objective: arrive at a common set of programming standards that are acceptable to
a range of competing needs and requirements. The Khronos Group, which manages
the OpenCL standard, has done a good job addressing these requirements. It has
developed an API that is general enough to run on significantly different architectures
while being adaptable enough that each hardware platform can still achieve high
performance. Using the core language and correctly following the specification,
any program designed for one vendor can execute on another vendor’s hardware.
The model set forth by OpenCL creates portable, vendor- and device-independent
programs that are capable of being accelerated on many different hardware platforms.

Heterogeneous Computing with OpenCL 2.0. http://dx.doi.org/10.1016/B978-0-12-801414-1.00003-X 4 1
Copyright © 2015 Advanced Micro Devices, Inc. Published by Elsevier Inc. All rights reserved



42

CHAPTER 3 Introduction to OpenCL

The code that executes on an OpenCL device, which in general is not the same
device as the host central processing unit (CPU), is written in the OpenCL C
language. OpenCL C is a restricted version of the C99 language with extensions
appropriate for executing data-parallel code on a variety of heterogeneous devices.
The OpenCL C programming language also implements a subset of the C11 atomics
and synchronization operations. While the OpenCL API itself is a C API, there are
third-party bindings for many languages, including Java, C++, Python, and .NET.
Additionally, a number of popular libraries in domains such as linear algebra and
computer vision have integrated OpenCL to leverage heterogeneous platforms and
gain substantial performance improvements.

THE OpenCL SPECIFICATION

The OpenCL specification is defined in four parts, which it refers to as models. The
models are summarized here, and are explained in detail in the following sections.

1. Platform model: Specifies that there is one host processor coordinating
execution, and one or more device processors whose job it is to execute OpenCL
C kernels. It also defines an abstract hardware model for devices.

2. Execution model: Defines how the OpenCL environment is configured by the

host, and how the host may direct the devices to perform work. This includes
defining an environment for execution on the host, mechanisms for host-device
interaction, and a concurrency model used when configuring kernels. The
concurrency model defines how an algorithm is decomposed into OpenCL
work-items and work-groups.

3. Kernel programming model: Defines how the concurrency model is mapped to

physical hardware.

4. Memory model: Defines memory object types, and the abstract memory

hierarchy that kernels use regardless of the actual underlying memory
architecture. It also contains requirements for memory ordering and optional
shared virtual memory between the host and devices.

In a typical scenario, we might observe an OpenCL implementation executing
on a platform consisting of a host x86 CPU using a graphics processing unit (GPU)
device as an accelerator. The host sets up a kernel for the GPU to run and sends a
command to the GPU to execute the kernel with some specified degree of parallelism.
This is the execution model. The memory for the data used by the kernel is allocated
by the programmer to specific parts of an abstract memory hierarchy specified by
the memory model. The runtime and driver will map these abstract memory regions
to the physical hierarchy. Finally, the GPU creates hardware threads to execute the
kernel, and maps them to its hardware units. This is done using the programming
model. Throughout this chapter, these ideas are discussed in further detail.

This chapter begins by introducing the OpenCL models, including the OpenCL
API related to each model. Once the OpenCL host API has been described, it is
demonstrated using a vector addition program. The full listing of the vector addition
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program is given at the end of the chapter in Section 3.6. The same vector addition
program is then used to illustrate the OpenCL C++ API, and a comparison of an
OpenCL program with a CUDA program.

THE OpenCL PLATFORM MODEL

An OpenCL platform consists of a host connected to one or more OpenCL devices.
The platform model defines the roles of the host and the devices, and provides an
abstract hardware model for devices. A device is divided into one or more compute
units, which are further divided into one or more processing elements. A diagram of
these concepts is provided in Figure 3.1.

The platform model is key to application development for portability between
OpenCL-capable systems. Even within a single capable system, there could
be a number of different OpenCL platforms which could be targeted by any
given application. The platform model’s API allows an OpenCL application to
adapt and choose the desired platform and compute device for executing its
computation.

In the API, a platform can be thought of as a common interface a vendor-specific
OpenCL runtime. The devices that a platform can target are thus limited to those
with which a vendor knows how to interact. For example, if company A’s platform is
chosen, it likely will not be able to communicate with company B’s GPU. However,
platforms are not necessarily vendor exclusive. For example, implementations from
AMD and Intel should be able to create platforms that target each other’s x86 CPUs
as devices.
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FIGURE 3.1

An OpenCL platform with multiple compute devices. Each compute device contains one or
more compute units. A compute unit is composed of one or more processing elements
(PEs). A system could have multiple platforms present at the same time. For example, a
system could have an AMD platform and an Intel platform present at the same time.
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The platform model also presents an abstract device architecture that program-
mers target when writing OpenCL C code. Vendors map this abstract architecture to
the physical hardware. The platform model defines a device as a group of multiple
compute units, where each compute unit is functionally independent. Compute units
are further divided into processing elements. Figure 3.1 illustrates this hierarchical
model. As an example, the AMD Radeon R9 290X graphics card (device) comprises
44 vector processors (compute units). Each compute unit has four 16-lane SIMD
engines, for a total of 64 lanes (processing elements). Each SIMD lane on the Radeon
R9 290X executes a scalar instruction. This allows the GPU device to execute a total
of 44 x 16 x 4 = 2816 instructions at a time.

PLATFORMS AND DEVICES

The API call c1GetPlatformIDs() is used to discover the set of available OpenCL
platforms for a given system. The most robust code will call c1GetPlatformIDs()
twice when querying the system for OpenCL platforms. The first call to c1GetPlat-
formIDs () passes an unsigned integer pointer as the num_platforms argument and
NULL for the platforms argument. The pointer is populated with the available number
of platforms. The programmer can then allocate space (pointed to by platforms)
to hold the platform objects (of type cl1_platform_id). For the second call to
clGetPlatformIDs(), the platforms pointer is passed to the implementation with
enough space allocated for the desired number (num_entries) of platforms. After
platforms have been discovered, the c1GetPlatformInfo() API call can be used to
determine which implementation (vendor) the platform was defined by. This API call,
and all further API functions discussed in this chapter, are illustrated in the vector
addition source code listing in Section 3.6.

cl_int

clGetPlatformIDs(
cl_uint num_entries,
cl_platform_id *platforms,
cl_uint *num_platforms)

Once a platform has been selected, the next step is to query the devices available to
that platform. The API call to do this is c1GetDevicelIDs (), and the procedure for dis-
covering devices is similar to c1GetPlatformIDs (). The call to c1GetDevicelIDs()
takes the additional arguments of a platform and a device type, but otherwise the
same three-step process occurs: discovery of the quantity of devices, allocation,
and retrieval of the desired number of devices. The device_type argument can
be used to limit the devices to GPUs only (CL_DEVICE_TYPE_GPU), CPUs only
(CL_DEVICE_TYPE_CPU), all devices (CL_DEVICE_TYPE_ALL), as well as other options.
The same option should be used for both calls to c1GetDeviceIDs(). As with
platforms, the c1GetDeviceInfo() API call is used to retrieve information such as
name, type, and vendor from each device.
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cl_int

clGetDevicelIDs(
cl_platform_id platform,
cl_device_type device_type,
cl_uint num_entries,
cl_device_id *devices,
cl_uint *num_devices)

The CLInfo program in the AMD accelerated parallel processing (APP) software
development kit (SDK) uses c1GetPlatformInfo() and c1GetDeviceInfo() to print
detailed information about the OpenCL-supported platforms and devices in a system.
Hardware details such as memory sizes and bus widths are available using these
commands, and the rest of the properties should become clear after completion of
this chapter. A snippet of the output from CLInfo is shown in Figure 3.2.

THE OpenCL EXECUTION MODEL

The OpenCL platform model allows us to build a topology of a system with a
coordinating host processor, and one or more devices that will be targeted to execute
our OpenCL kernels. In order for the host to request that a kernel be executed on a
device, a context must be configured that enables the host to pass commands and data
to the device.

CONTEXTS

In OpenCL, a context is an abstract environment within which coordination and
memory management for kernel execution is valid and well defined. A context
coordinates the mechanisms for host-device interaction, manages the memory objects
available to the devices, and keeps track of the programs and kernels that are created
for each device. The API function to create a context is c1CreateContext().

cl_context
clCreateContext (
const cl_context_properties *properties,
cl_uint num_devices,
const cl_device_id *devices,
void (CL_CALLBACK *pfn_notify)(
const char *errinfo,
const void *private_info,
size_t cb,
void *user_data),
void *user_data,
cl_int *errcode_ret)
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Number of platforms: 1

Platform Profile: FULL_PROFILE

Platform Version: OpenCL 2.0 AMD-APP (1642.5)

Platform Name: AMD Accelerated Parallel Processing

Platform Vendor: Advanced Micro Devices, Inc.

Platform Extensions: cl_khr_icd cl_amd_event_callback cl_amd_offline_devices

Platform Name: AMD Accelerated Parallel Processing
Number of devices: 2

Device Type: CL_DEVICE_TYPE_GPU

Vendor ID: 1002h

Board name: AMD Radeon R9 200 Series

Device Topology: PCI[ B#1, D#0, F#0 ]

Max compute units: 40

Max work group size: 256

Native vector width int: 1

Max clock frequency: 1000Mhz

Max memory allocation: 2505572352

Image support: Yes

Max image 3D width: 2048

Cache line size: 64

Global memory size: 3901751296

Platform ID: 0x7f54fb22cfd0

Name: Hawaii

Vendor: Advanced Micro Devices, Inc.

Device OpenCL C version: OpenCL C 2.0

Driver version: 1642.5 (VM)

Profile: FULL_PROFILE

Version: OpenCL 2.0 AMD-APP (1642.5)

Extensions: cl_khr_fp64 cl_amd_fp64 cl_khr_global_int32_base_atomics
cl_khr_global_int32_extended_atomics cl_khr_local_int32_base_atomics

Device Type: CL_DEVICE_TYPE_CPU

Vendor ID: 1002h

Board name:

Max compute units: 8

Max work items dimensions: 3

Max work items|[0]: 1024
Max work items[1]: 1024

Name: AMD FX(tm)-8120 Eight-Core Processor

Vendor: AuthenticAMD

Device OpenCL C version: OpenCL C 1.2

Driver version: 1642.5 (sse2,avx,fma4)

Profile: FULL_PROFILE
FIGURE 3.2

Some of the Output from the CLInfo program showing the characteristics of an OpenCL
platform and devices. We see that the AMD platform has two devices (a CPU and a GPU).
The output shown here can be queried using functions from the platform API.

The properties argument is used to restrict the scope of the context. It may
provide a specific platform, enable graphics interoperability, or enable other param-
eters in the future. Limiting the scope of a context to a given platform allows the
programmer to provide contexts for multiple platforms and fully utilize a system
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comprising resources from a mixture of vendors. Next, the devices that the pro-
grammer wants to use with the context must be supplied. A user callback can also
be provided when a programmer is creating a context, and can be used to report
additional error information that might be generated throughout its lifetime.

OpenCL also provides a different API call for creating a context that alleviates
the need to build a list of devices. The call c1CreateContextFromType() allows
a programmer to create a context that automatically includes all devices of the
specified type (e.g. CPUs, GPUs, and all devices). After creation of a context, the
function c1GetContextInfo() can be used to query information such as the number
of devices present and the device objects. In OpenCL, the process of discovering
platforms and devices and setting up a context can be tedious. However, after the
code to perform these steps has been written, it can be reused for almost any
project.

COMMAND-QUEUES

The execution model specifies that devices perform tasks based on commands which
are sent from the host to the device. Actions specified by commands include executing
kernels, performing data transfers, and performing synchronization. It is also possible
for a device to send certain commands to itself, which is discussed later in the
chapter.

A command-queue is the communication mechanism that the host uses to request
action by a device. Once the host has decided which devices to work with and a
context has been created, one command-queue needs to be created per device. Each
command-queue is associated with only one device—this is required because the host
needs to be able to submit commands to a specific device when multiple devices
are present in the context. Whenever the host needs an action to be performed by
a device, it will submit commands to the proper command-queue. The API call
clCreateCommandQueueWithProperties() is used to create a command-queue and
associate it with a device.

cl_command_queue
clCreateCommandQueuelWithProperties(
cl_context context,
cl_device_id device,
cl_command_queue_properties properties,
cl_int* errcode_ret)

The properties parameter of c1CreateCommandQueueWithProperties() isabit
field that is used to enable profiling of commands (CL_QUEUE_PROFILING_ENABLE)
and/or to allow out-of-order execution of commands (CL_QUEUE_OUT_OF_ORDER_
EXEC_MODE_ENABLE). Both are discussed in Chapter 5.
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For in-order command-queues (the default), commands are pulled from the queue
in the order they are received. Out-of-order command-queues allow the OpenCL
implementation to search for commands that can be rearranged to execute more
efficiently. If out-of-order command-queues are used, it is up to the user to specify
dependencies that enforce a correct execution order.

Any API call that submits a command to a command-queue will begin with
clEnqueue and require a command-queue as a parameter. For example, the
clEnqueueReadBuffer() call requests that the device send data to the host, and
cl1EnqueueNDRangeKernel () requests that a kernel is executed on the device. These
calls will be discussed in detail later in this chapter.

In addition to API calls that submit commands to command-queues, OpenCL
includes barrier operations that can be used to synchronize execution of command-
queues. The API calls c1Flush() and c1Finish() are barrier operations for a
command-queue. The c1Finish() call blocks execution of the host thread until all
of the commands in a command-queue have completed execution; it’s functionality
is synonymous with a synchronization barrier. The c1F1ush() call blocks execution
until all of the commands in a command-queue have been removed from the queue.
This means that the commands will definitely be submitted to the device, but will
not necessarily have completed execution. Each API call requires only the desired
command-queue as an argument.

cl_int clFlush(cl_command_queue command_queue);
cl_int clFinish(cl_command_queue command_queue);

EVENTS

In the OpenCL API, objects called events are used to specify dependencies between
commands. As we discuss the various clEnqueue API calls, you will notice that all
of them have three parameters in common: a pointer to a list of events that specify
dependencies for the current command, the number of events in the wait list, and a
pointer to an event that will represent the execution of the current command. The
returned event can in turn be used to specify a dependency for future events. The
array of events used to specify dependencies for a command is referred to as a wait
list. Specifying dependencies with events is detailed in Chapter 5.

In addition to providing dependencies, events enable the execution status of a
command to be queried at any time. As the event makes its way through the execution
process, its status is updated by the implementation. The command will have one of
six possible states:

*  Queued: The command has been placed into a command-queue.

* Submitted: The command has been removed from the command-queue and has
been submitted for execution on the device.

* Ready: The command is ready for execution on the device.

* Running: Execution of the command has started on the device.

* Ended: Execution of the command has finished on the device.

* Complete: The command and all of its child commands have finished.
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The concept of child commands is related to device-side enqueuing, and is
discussed in the next section. Successful completion is indicated when the event
status associated with a command is set to CL_COMPLETE. Unsuccessful completion
results in abnormal termination of the command, which is indicated by setting the
event status to a negative value. In this case, the command-queue associated with the
abnormally terminated command and all other command-queues in the same context
may no longer be available. Querying an event’s status is done using the API call
clGetEventInfo().

In addition to supplying dependencies between commands as they are enqueued,
the API also includes the function c1WaitForEvents (), which causes the host to wait
for all events specified in the wait list to complete execution.

cl_int
clWaitForEvents (
cl_uint num_events,
const cl_event *event_list)

DEVICE-SIDE ENQUEUING

Until now, we have described the execution model in terms of a master-worker
paradigm where the host (master) sends commands to the device (worker). This
execution model provides a simple paradigm for coordinating execution between
the host and the device. However, in many cases the amount of work that has
to be dispatched cannot be determined statically—especially in algorithms where
each stage is dependent on the previous one. For example, in a combinatorial
optimization application, the size of the search region may define the number of
work-groups required. However the size of the region may only be known from
the previous iteration. In previous versions of OpenCL, this situation would require
communication from the device to the host in order to appropriately set up the
dimensions of the next kernel. To remove this requirement and potentially improve
performance, OpenCL 2.0 provides a new feature in the execution model known as
device-side enqueuing.

A kernel executing on a device now has the ability to enqueue another kernel
into a device-side command-queue (shown in Figure 3.5). In this scenario, the kernel
currently executing on a device is referred to as the parent kernel, and the kernel
that is enqueued is known as the child kernel. Parent and child kernels execute
asynchronously, although a parent kernel is not registered as complete until all its
child kernels have completed. We can check that a parent kernel has completed
execution when its event object is set to CL_COMPLETE. The device-side command-
queue is an out-of-order command-queue, and follows the same behavior as the
out-of-order command-queues exposed to the host. Commands enqueued to a device-
side command-queue generate and use events to enforce dependencies just as the
command-queue on the host. These events, however, are visible only to the parent
kernel running on the device. Device-side enqueuing is discussed in more detail in
Chapter 5.
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KERNELS AND THE OpenCL PROGRAMMING MODEL

The execution model API enables an application to manage the execution of OpenCL
commands. The OpenCL commands describe the movement of data and the execution
of kernels that process this data to perform some meaningful task. OpenCL kernels
are the parts of an OpenCL application that actually execute on a device. Like
many CPU concurrency models, an OpenCL kernel is syntactically similar to a
standard C function; the key differences are a set of additional keywords and the
concurrency model that OpenCL kernels implement. When developing concurrent
programs for a CPU using operating system threading APIs or OpenMP, for example,
the programmer considers the physical resources available (e.g. CPU cores) and the
overhead of creating and switching between threads when their number substantially
exceeds the resource availability. With OpenCL, the goal is often to represent
parallelism programmatically at the finest granularity possible. The generalization
of the OpenCL interface and the low-level kernel language allows efficient mapping
to a wide range of hardware. The following discussion presents three versions of a
function that performs an element-wise vector addition: a serial C implementation, a
threaded C implementation, and an OpenCL C implementation. The code for a serial
C implementation of the vector addition is shown in Listing 3.1 and executes a loop
with as many iterations as there are elements to compute. Each loop iteration adds
the corresponding locations in the input arrays together and stores the result into the
output array. A diagram of the vector addition algorithm is shown in Figure 3.3.

// Perform an element—wise addition of A and B and store in C.
// There are N elements per array.

void vecadd(int *C, intx A, int %B, int N)
{

for(int i = 0; i < N; ++1i)

{

Cli] = A[i] + B[i];

}
1
LISTING 3.1
Serial vector addition.
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FIGURE 3.3

Vector addition algorithm showing how each element can be added independently.
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For a simple multicore device, we could either use a low-level coarse-grained
threading API, such as Win32 or POSIX threads, or a data-parallel model such
as OpenMP. Writing a coarse-grained multithreaded version of the same function
would require dividing the work (i.e. loop iterations) between the threads. Because
there may be a large number of loop iterations and the work per iteration is
small, we would need to chunk the loop iterations into a larger granularity, a
technique called strip mining [1]. The code for the multithreaded version may be as
in Listing 3.2.

// Perform an element-wise addition of A and B and store in C.
// There are N elements per array and NP CPU cores.
void vecadd(int *C, intx A, int xB, int N, int NP, int tid)
{ int ept = N/NP; // elements per thread
for(int i = tid=xept; i < (tid+1)xept; ++i)

{

Cli] = A[i] + B[il;
}

}
LISTING 3.2

Vector addition chunked for coarse-grained parallelism (e.g., POSIX threads on a CPU).
The input vector is partitioned among the available cores.

The unit of concurrent execution in OpenCL C is a work-item. Each work-item
executes the kernel function body. Instead of manually strip mining the loop, we will
map a single iteration of the loop to a work-item. We tell the OpenCL runtime to
generate as many work-items as elements in the input and output arrays and allow
the runtime to map those work-items to the underlying hardware, and hence CPU or
GPU cores, in whatever way it deems appropriate. Conceptually, this is very similar
to the parallelism inherent in a functional “map” operation (cf., mapReduce) or a
data-parallel for loop in OpenMP. When an OpenCL device begins executing a
kernel, it provides intrinsic functions that allow a work-item to identify itself. In the
following code, the call to get_global_id(0) allows the programmer to make use
of the position of the current work-item to access a unique element in the array. The
parameter “0” to the get_global_id() function assumes that we have specified a
one-dimensional configuration of work-items, and therefore only need its ID in the
first dimension.

// Perform an element—wise addition of A and B and store in C
// N work—items will be created to execute this kernel.
__kernel
void vecadd(__global int *C, __global intx A, __global int xB)
{
int tid = get_global_id(0); // OpenCL intrinsic function
C[tid] = A[tid] + B[tid];
}
LISTING 3.3

OpenCL vector addition kernel.
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Given that OpenCL describes execution in fine-grained work-items and can
dispatch vast numbers of work-items on architectures with hardware support for
fine-grained threading, it is easy to have concerns about scalability. The hierarchical
concurrency model implemented by OpenCL ensures that scalable execution can
be achieved even while supporting a large number of work-items. When a kernel
is executed, the programmer specifies the number of work-items that should be
created as an n-dimensional range (NDRange). An NDRange is a one-, two-, or three-
dimensional index space of work-items that will often map to the dimensions of either
the input or the output data. The dimensions of the NDRange are specified as an N-
element array of type size_t, where N represents the number of dimensions used to
describe the work-items being created.

In the vector addition example, our data will be one-dimensional and, assuming
that there are 1024 elements, the size can be specified by an array of one, two, or three
values. The host code to specify a one-dimensional NDRange for 1024 elements may
look like the following:

size_t indexSpace[3] = {1024, 1, 1};

Achieving scalability comes from dividing the work-items of an NDRange into
smaller, equally sized work-groups (Figure 3.4). An index space with N dimensions
requires work-groups to be specified using the same N dimensions; thus, a three-
dimensional index space requires three-dimensional work-groups. Work-items within
a work-group have a special relationship with one another: they can perform barrier
operations to synchronize and they have access to a shared memory address space.
A work-group’s size is fixed per dispatch, and so communication costs between work-
items do not increase for a larger dispatch. The fact that the communication cost
between work-items is not dependent on the size of the dispatch allows OpenCL
implementations to maintain scalability for larger dispatches.

Workgroup (i, j)

NDRange
WG WG WG (;NIO :ENIO . IV‘INIO
<0,0> | <1,0> <K, 0> <U U= =40 <M, 0>
WI
WG
<0,1> / <0,1>
WG
<i,j>
WI WI
WG we | T
work-item
FIGURE 3.4

The hierarchical model used for creating an NDRange of work-items, grouped into
work-groups.
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For the vector addition example, the work-group size might be specified as
size_t workgroupSize[3] = {64, 1, 1};

If the total number of work-items per array is 1024, this results in the creation
of 16 work-groups (1024 work-items/(64 work-items per work-group) = 16 work-
groups). For hardware efficiency, the work-group size is usually fixed to a favorable
size. In previous versions of the OpenCL specification, the index space dimensions
would have to be rounded up to be a multiple of the work-group dimensions. In the
kernel code, we would then have to specify that extra work-items in each dimension
simply return immediately without outputting any data. However, the OpenCL 2.0
specification allows each dimension of the index space that is not evenly divisible by
the work-group size to be divided into two regions: one region where the number of
work-items per work-group is as specified by the programmer, and another region of
remainder work-groups which have fewer work-items. Since work-group sizes can
be nonuniform in multiple dimensions, there are up to four different sizes possible for
a two-dimensional NDRange, and up to eight different sizes for a three-dimensional
NDRange.

For programs such as vector addition in which work-items behave independently
(even within a work-group), OpenCL allows the work-group size to be ignored by
the programmer altogether and to be generated automatically by the implementation;
in this case, the developer can pass NULL when defining the work-group size.

COMPILATION AND ARGUMENT HANDLING

An OpenCL program is a collection of OpenCL C kernels, functions called by the
kernel, and constant data. For example, an algebraic solver application could contain
a vector addition kernel, a matrix multiplication kernel, and a matrix transpose kernel
within the same OpenCL program. OpenCL source code is compiled at runtime
through a series of API calls. Runtime compilation gives the system an opportunity
to optimize OpenCL kernels for a specific compute device. Runtime compilation
also enables OpenCL kernel source code to run on a previously unknown OpenCL-
compatible compute device. There is no need for an OpenCL application to have been
prebuilt against the AMD, NVIDIA, or Intel runtimes, for example, if it is to run
on compute devices produced by all of these vendors. OpenCL software links only
to a common runtime layer called the installable client driver (ICD). All platform-
specific activity is delegated to the respective vendor runtime through a dynamic
library interface.
The process of creating a kernel from source code is as follows:

1. The OpenCL C source code is stored in a character array. If the source code is
stored in a file on a disk, it must be read into memory and stored as a character
array.

2. The source code is turned into a program object, c1_program, by calling
clCreateProgramWithSource().



54

CHAPTER 3 Introduction to OpenCL

3. The program object is then compiled, for one or more OpenCL devices, with
c1BuildProgram(). If there are compile errors, they will be reported here.

4. A kernel object, c1_kernel, is then created by calling c1CreateKernel and
specifying the program object and kernel name.

The final step of obtaining a c1_kernel object is similar to obtaining an exported
function from a dynamic library. The name of the kernel that the program exports is
used to request it from the compiled program object. The name of the kernel is passed
to c1CreateKernel (), along with the program object, and the kernel object will be
returned if the program object was valid and the particular kernel is found. The rela-
tionship between an OpenCL program and OpenCL kernels is shown in Figure 3.5,
where multiple kernels can be extracted from an OpenCL program. Each context can
have multiple OpenCL programs that have been generated from OpenCL source code.

cl_kernel

clCreateKernel (
cl_program program,
const char *kernel_name,
cl_int *errcode_ret)

The precise binary representation of an OpenCL kernel object is vendor specific.
In the AMD runtime, there are two main classes of devices: x86 CPUs and GPUs.
For x86 CPUs, c1BuildProgram() generates x86 instructions that can be directly
executed on the device. For the GPUs, it will create AMD’s GPU intermediate
language, a high-level intermediate language that will be just-in-time compiled for
a specific GPU’s architecture later, generating what is often known as instruction set

OpenCL context

OpenCL program objects Memory objects
L : - [ [ [ [
Program object i L — H
Kernel | [Kernel : | Buffers | Images | Pipes
#0 #1 st ________________________________________________________ H

Host-side command queues

4 4

Device CPU device GPU device Device
queue queue
FIGURE 3.5

The OpenCL runtime shown denotes an OpenCL context with two compute devices (a CPU
device and a GPU device). Each compute device has its own command-queues. Host-side
and device-side command-queues are shown. The device-side queues are visible only
from kernels executing on the compute device. The memory objects have been defined
within the memory model.
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architecture (ISA) code. NVIDIA uses a similar approach, calling its intermediate
representation parallel thread execution (PTX). The advantage of using such
an intermediate language is to allow the GPU ISA to change from one device
or generation to another in what is still a very rapidly developing architectural
space.

An additional feature of the build process is the ability to generate both the final
binary format and various intermediate representations and serialize them (e.g. write
them out to disk). As with most objects, OpenCL provides a function to return infor-
mation about program objects, c1GetProgramInfo(). One of the flags to this function
is CL_PROGRAM_BINARIES, which returns a vendor-specific set of binary objects gener-
ated by c1BuildProgram(). In additionto c1CreateProgramWithSource(), OpenCL
provides c1CreateProgramWithBinary (), which takes a list of binaries that matches
its device list. The binaries are previously created using c1GetProgramInfo(). Using
a binary representation of OpenCL kernels allows OpenCL programs to be distributed
without exposing kernel source code as plain text.

Unlike invoking functions in C programs, we cannot simply call a kernel with a list
of arguments. Executing a kernel requires dispatching it through an enqueue function.
Owing to the syntax of C and the fact that kernel arguments are persistent (and hence
we need not repeatedly set them to construct the argument list for such a dispatch),
we must specify each kernel argument individually using c1SetKernelArg(). This
function takes a kernel object, an index specifying the argument number, the size
of the argument, and a pointer to the argument. The type information in the kernel
parameter list is then used by the runtime to unbox (similar to casting) the data to its
appropriate type.

cl_int

cl1SetKernelArg (
cl_kernel kernel,
cl_uint arg_index,
size_t arg_size,
const void *arg_value)

STARTING KERNEL EXECUTION ON A DEVICE

Enqueuing a command to a device to begin kernel execution is done with a call
to c1EnqueueNDRangeKernel (). A command-queue must be specified so the target
device is known. The kernel object identifies the code to be executed. Four fields
are then related to work-item creation. The work_dim parameter specifies the num-
ber of dimensions (one, two, or three) in which work-items will be created. The
global_work_size parameter specifies the number of work-items in each dimension
of the NDRange, and Tocal_work_size specifies the number of work-items in each
dimension of the work-groups. The parameter global_work_offset can be used to
provide an offset so that the global IDs of the work-items do not start at zero.

.
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cl_int

clEnqueueNDRangeKernel (
cl_command_queue command_queue,
cl_kernel kernel,
cl_uint work_dim,
const size_t *global_work_offset,
const size_t *global_work_size,
const size_t *local_work_size,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list,
cl_event *event)

As with all c/[Enqueue API calls, an event_wait_list is provided, and for non-
NULL values the runtime will guarantee that all corresponding events will have com-
pleted before the kernel begins execution. Similarly, c1EnqueueNDRangeKernel()
is asynchronous: it will return immediately after the command is enqueued in the
command-queue and likely before the kernel has even started execution. An API call
such as c1WaitForEvents() or c1Finish() can be used to block host execution on
the host until the kernel completes execution.

OpenCL MEMORY MODEL

Memory subsystems differ greatly between computing platforms. To support code
portability, OpenCL’s approach is to define an abstract memory model that program-
mers can target when writing code and vendors can map to their actual memory
hardware. The OpenCL memory model describes the structure of the memory system
exposed by an OpenCL platform to the OpenCL program. The memory model must
define how the values in memory are seen from each of these units of execution.
The memory model allows a programmer to reason about the correctness of OpenCL
programs.

The OpenCL memory model tells programmers what they can expect from
an OpenCL implementation: which memory operations are guaranteed to happen
in which order and which memory values each read operation will return. The
memory consistency model in OpenCL is based on the memory model from the
ISO C11 programming language. Chapters 6 and 7 are dedicated to the OpenCL
memory model, including details on the memory consistency model and shared
virtual memory. Here we provide information on types of memory objects that are
defined by OpenCL, and the memory regions that make up the abstract memory
model. With this information, we will be able to execute our first OpenCL program.

MEMORY OBJECTS

OpenCL kernels usually require some sort of input data (e.g. arrays or multidimen-
sional matrices) and generate some sort of output data. Before execution can begin,



3.5 OpenCL memory model 57

the input data needs to be accessible by the device. In order for data to be transferred
to a device, it must first be encapsulated as a memory object. In order for output data
to be generated, space must also be allocated and encapsulated as a memory object.
OpenCL defines three types of memory objects: buffers, images, and pipes.

Buffers

Buffers are equivalent to arrays in C created using malloc(), where data elements
are stored contiguously in memory. Conceptually, it may help to visualize an
OpenCL buffer object as a pointer that is valid on a device. The API function
clCreateBuffer() allocates space for the buffer and returns a memory object.

cl_mem

clCreateBuffer(
cl_context context,
cl_mem_flags flags,
size_t size,
void *host_ptr,
cl_int *errcode_ret)

The c1CreateBuffer() API call is similar to ma1loc in C, or C++’s new operator.
Creating a buffer requires supplying the size of the buffer and a context in which
the buffer will be allocated; it is visible for all devices associated with the context.
Optionally, the caller can supply flags that specify that the data is read only, write
only, or read-write. Other flags also exist that specify additional options for creating
and initializing a buffer. One simple option is to supply a host pointer with data used
to initialize the buffer. We see from the signature that an OpenCL buffer is linked to
a context, not a device, so it is the runtime that determines the precise time the data
is moved. Buffer movement to and from specific devices is managed by the OpenCL
runtime to satisfy data dependencies.

Images

Images are OpenCL memory objects that abstract the storage of physical data to allow
device-specific optimizations. Unlike buffers, images cannot be directly referenced
as if they were arrays. Further, adjacent data elements are not guaranteed to be stored
contiguously in memory. The purpose of using images is to allow the hardware to
take advantage of spatial locality and to utilize the hardware acceleration available
on many devices.

cl_mem

clCreatelmage(
cl_context context,
cl_mem_flags flags,
const cl_image_format *image_format,
const cl_image_desc *image_desc,
void *host_ptr,
cl_int *errcode_ret)
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Unlike buffers, which do not have a data type or dimensions, an image is created
using descriptors that provide specific details to the hardware about the data. The
elements of an image are represented by a format descriptor (c1_image_format). The
format descriptor specifies how the image elements are stored in memory using the
concept of channels. The channel order specifies the number of elements that make
up an image element (up to four elements, based on the traditional use of RGBA
pixels), and the channel type specifies the size of each element. These elements can be
sized anywhere from one to four bytes and in various different formats (e.g. integer or
floating point). Other metadata are provided by an image descriptor (c1_image_desc),
which includes the type of the image and the dimensions. An example using images
is provided in Chapter 4, and the architectural design and trade-offs for images are
discussed in detail in Chapters 6 and 7.

To support the abstraction provided by images, OpenCL C provides dedicated
function calls for reading from and writing to images. The dedicated functions
for reading and writing images allow a vendor to optimize image access routines
independently from each other and possibly utilize hardware acceleration. Compared
with buffers, the image read and write functions take additional parameters and are
specific to the image’s data type. For example, the function read_imagef () is used
for reading floating-point values and read_imageui () is used for reading unsigned
integers. While there are many variations on these function signatures, read accesses
usually require at least the coordinates to access and a sampler object. A sampler
specifies how out-of-bounds image accesses are handled, whether interpolation
should be used, and if coordinates are normalized. Writing to an image requires
manual conversion to the proper storage data format (i.e. storing in the proper channel
and with the proper size), as well as the destination coordinates.

In previous versions of the OpenCL standard, a kernel was not allowed to both read
from and write to a single image. However, OpenCL 2.0 has relaxed this restriction
by providing synchronization operations that let programmers safely read and write
a single image within a kernel.

Pipes

A pipe memory object is an ordered sequence of data items (referred to as packets)
that are stored on the basis of a first in, first out (FIFO) method. A pipe has
a write endpoint into which data items are inserted, and a read endpoint from
which data items are removed. When creating a pipe using the OpenCL API call
clCreatePipe(), one must supply the packet size along with the number of entries
in the pipe (i.e. the maximum number of packets that can fit into the pipe at once).
The function c1GetPipelnfo() can return information about the size of the pipe and
the maximum number of packets that can reside in the pipe. The properties argument
is reserved for future use, and should be NULL in OpenCL 2.0.

cl_mem

clCreatePipe (
cl_context context,
cl_mem_flags flags,
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cl_uint pipe_packet_size,

cl_uint pipe_max_packets,

const cl_pipe_properties *properties,
cl_int *errcode_ret)

At any time, only one kernel may write into a pipe, and only one kernel may read
from a pipe. To support the producer-consumer design pattern, one kernel connects to
the write endpoint (the producer), while another kernel connects to the read endpoint
(the consumer). The same kernel may not be both the writer and the reader for a pipe.

As with images, pipes are opaque data structures that can be accessed only via
intrinsic function calls provided by OpenCL C (e.g. read_pipe() andwrite_pipe()).
OpenCL C also provides functions for reserving sections of a pipe to read from
and to write to. The intrinsic functions allow pipes to be accessed on a work-group
granularity, without otherwise having individual work-items access the pipe and then
perform synchronization. Pipes are described in more detail in Chapter 6.

DATA TRANSFER COMMANDS

Before a kernel is executed, it is usually necessary to copy data from a host array into
an allocated area of memory that is encapsulated as a memory object. Initializing
buffers and images is possible within their respective c/Create calls. The host pointer
arguments within the c/Create calls can be used to initialize memory objects with
data from host memory. This allows us to initialize a memory object without the
need to consider data movement any further. After the memory object is initialized,
the runtime is responsible for ensuring that data is moved between devices as required
by dependencies.

Despite the runtime’s management of data movement, we will often desire to
initiate data transfers manually for performance reasons (described in Chapter 6).
Explicit data transfers are also required to retrieve data back to host memory.
Therefore, in general, we will often use the explicit data transfer commands to write
the data to a device before the first time a memory object is used, and to read the
data from a device after the last time it is used. Assuming that our memory object
is a buffer, data in host memory is transferred to and from a buffer using calls
to c1EnqueuelriteBuffer() and c1EnqueueReadBuffer(), respectively. If a kernel
using a buffer is executed on a device with a discrete memory such as a GPU, the
buffer may be transferred to the device when this command executes (e.g. across the
PCI Express bus). The API calls for reading from and writing to buffers are very
similar. The signature for c1EnqueueWriteBuffer() is as follows:

cl_int

clEnqueuelriteBuffer (
cl_command_queue command_queue,
cl_mem buffer,
cl_bool blocking_write,

.
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size_t offset,

size_t cb,

const void *ptr,

cl_uint num_events_in_wait_list,
const cl_event *event_wait_list,
cl_event *event)

In addition to the command-queue, the c1EnqueueliriteBuffer function requires
the buffer memory object, the number of bytes to transfer, and an offset within
the buffer. The combination of offset and number of bytes allows a subset of the
buffer data to be written. The bl1ocking_write option should be set to CL_TRUE if the
programmer wants the transfer to complete before the function returns—effectively
turning the otherwise asynchronous API call into a blocking call. Alternatively,
setting blocking_write to CL_FALSE will cause c1EnqueuelWriteBuffer() to return
immediately (likely well before the write operation has completed). Writing to and
reading from buffers is shown in the vector addition at the end of the chapter.

MEMORY REGIONS

OpenCL classifies memory as either host memory or device memory. Host memory is
directly available to the host, and is defined outside OpenCL. Data moves between the
host and devices using functions within the OpenCL API or through a shared virtual
memory interface. Alternatively, device memory is memory which is available to
executing kernels.

OpenCL divides device memory into four named memory regions as shown in
Figure 3.6. These memory regions are relevant within OpenCL kernels. Within a
kernel, keywords are associated with each region, and are used to specify where
a variable should be created or where the data that it points to resides. Memory
regions are logically disjoint, and data movement between different memory regions
is controlled by the kernel developer. Each memory region has its own performance
characteristics. Owing to these characteristics, accessing data for computation from
the right memory region can greatly affect performance.

The following provides a short description of each memory region.

* Global memory is visible to all work-items executing a kernel (similarly to the
main memory on a CPU-based host system). Whenever data is transferred from
the host to the device, the data will reside in global memory. Any data that is to
be transferred back from the device to the host must also reside in global
memory. The keyword global or __global is added to a pointer declaration to
specify that data referenced by the pointer resides in global memory. For
example, in the OpenCL C code at the end of the chapter, global int* A
denotes that the data pointed to by A resides in global memory (although we will
see that A actually resides in private memory).
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FIGURE 3.6

Memory regions and their scope in the OpenCL memory model.

* Constant memory is not specifically designed for every type of read-only data,
but rather is specifically designed for data where each element is accessed
simultaneously by all work-items. Variables whose values never change (e.g. a
data variable holding the value of 7t) also fall into this category. Constant
memory is modeled as a part of global memory, so memory objects that are
transferred to global memory can be specified as constant. Data is mapped to
constant memory by using either the keyword constant or __constant.

¢ Local memory is a memory that is shared between work-items within a
work-group. It is common for local memory to be mapped to on-chip memory,
such as software-managed scratchpad memory. As such, accesses may have
much shorter latency and much higher bandwidth than global memory. Calling
cl1SetKernelArg() with a size, but no argument, allows local memory to be
allocated at runtime. Within an OpenCL C kernel, a kernel parameter that
corresponds to local memory is defined as a Tocal or __Tlocal pointer (e.g.
Tocal int* sharedData). Alternatively, arrays can be statically declared in
local memory by appending the keyword Tocal (e.g. Tocal int[64]
sharedData), although this requires specifying the array size at compile time.

e Private memory is memory that is unique to an individual work-item. Local
variables and nonpointer kernel arguments are private by default. In practice,
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Mapping the OpenCL memory model to an AMD Radeon HD 7970 GPU.

these variables are usually mapped to registers, although private arrays and any
spilled registers are usually mapped to an off-chip (i.e. long-latency) memory.

Figure 3.7 details the relationship between OpenCL memory regions and those
found on an AMD Radeon HD 7970 GPU.

GENERIC ADDRESS SPACE

In earlier versions of the OpenCL specification, named address spaces sometimes
required the creation of multiple versions of callable functions simply to manipulate
data from different address spaces. To save programmer effort, a single generic
address space was added to OpenCL 2.0, which is closely modeled after the concept
of a generic address space used in the embedded C standard (ISO/IEC 9899:1999).
The generic address space supports conversion of pointers to and from private, local,
and global address spaces, and hence lets a programmer write a single function that
at compile time can take arguments from any of the three named address spaces. The
generic address space is discussed further in Chapter 7.

THE OpenCL RUNTIME WITH AN EXAMPLE

OpenCL’s four models discussed in the previous sections are exposed to application
developers by their runtime APIs. The platform model is used to enable a host and one
or more devices to participate in executing an OpenCL application. The application
developer implements their core computation using OpenCL kernels whose execution
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is defined by the programming model. The computation that a kernel performs
manipulates data in a way defined by the memory model. The developer leverages
the execution model to submit commands to devices to perform data movement and
execute kernels. This section puts all of these ideas together with our first complete
OpenCL application.

The main steps to execute a simple OpenCL application are summarized below:

Discovering the platform and devices

Creating a context

Creating a command-queue per device

Creating memory objects (buffers) to hold data

Copying the input data onto the device

Creating and compiling a program from the OpenCL C source code
Extracting the kernel from the program

Executing the kernel

Copying output data back to the host

Releasing the OpenCL resources

CoOPNOGTA~WN=

—

The following code implements each of the summarized steps. Much of the setup
to execute an OpenCL application is generic code that is required to allow imple-
mentations to span hardware platforms containing multiple styles of architectures
from multiple vendors. Therefore, much of this code can be reused directly on many
applications, and potentially abstracted into user-defined functions. The C++ API,
shown later, is also less verbose than the C API.

We now discuss each step enumerated above. After this section, a full program
listing is provided.

1. Discovering the platform and devices: Before a host can request that a kernel
be executed on a device, a platform and a device or devices must be discovered.

cl_int status; // Used for error checking

// Retrieve the number of platforms
cl_uint numPlatforms = 0;
status = clGetPlatformIDs(0, NULL, &numPlatforms);

// Allocate enough space for each platform

cl_platform_id *platforms = NULL;

platforms = (cl_platform_id*)malloc(numPlatforms*sizeof
(cl_platform_id));

// Fill in the platforms
status = clGetPlatformIDs(numPTatforms, platforms, NULL);

// Retrieve the number of devices
cl_uint numDevices = 0;
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status = clGetDevicelDs(platforms[0], CL_DEVICE_TYPE_ALL,
0, NULL, &numDevices);

// Allocate enough space for each device
cl_device_id *devices;
devices = (cl_device_id*)malloc(numDevices*sizeof(cl_device_id));

// Fill in the devices
status = clGetDevicelDs(platforms[0], CL_DEVICE_TYPE_ALL,
numDevices, devices, NULL);

In the complete program listing that follows, we will assume that we are using
the first platform and device that are found, which will allow us to reduce the
number of function calls required. This will help provide clarity and brevity
when viewing the source code.

2. Creating a context: Once the device or devices have been discovered, the
context can be configured on the host.

// Create a context that includes all devices
cl_context context = <clICreateContext(NULL, numDevices,
devices, NULL, NULL, &status);

3. Creating a command-queue per device: Once the host has decided which
devices to work with and a context has been created, one command-queue needs
to be created per device (i.e. each command-queue is associated with only one
device). The host will ask the device to perform work by submitting commands
to the command-queue.

// 0Only create a command-queue for the first device
cl_command_queue cmdQueue = clCreateCommandQueueWithProperties
(context, devices[0], 0, &status);

4. Creating buffers to hold data: Creating a buffer requires supplying the size of
the buffer and a context in which the buffer will be allocated; it is visible to all
devices associated with the context. Optionally, the caller can supply flags that
specify that the data is read only, write only, or read-write. By passing NULL as
the fourth argument, we are not initializing the buffer at this step.

// Allocate 2 input and one output buffer for the three vectors in
the vector addition

cl_mem bufA = clCreateBuffer(context, CL_MEM_READ_ONLY, datasize,
NULL, &status);

cl_mem bufB = clCreateBuffer(context, CL_MEM_READ_ONLY, datasize,
NULL, &status);

cl_mem bufC = clCreateBuffer(context, CL_MEM_WRITE_ONLY, datasize,
NULL, &status);
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5. Copying the input data onto the device: The next step is to copy data from a
host pointer to a buffer. The API call takes a command-queue argument, so data
will likely be copied directly to the device. By setting the third argument to
CL_TRUE, we can ensure that data is copied before the API call returns.

// Write data from the input arrays to the buffers

status = clEnqueueWriteBuffer(cmdQueue, bufA, CL_TRUE, O,
datasize, A, 0, NULL, NULL);

status = clEnqueueWriteBuffer(cmdQueue, bufB, CL_TRUE, O,
datasize, B, 0, NULL, NULL);

6. Creating and compiling a program from the OpenCL C source code: The
vector addition kernel shown in Listing 3.3 is stored in a character array,
programSource, and is used to create a program object which is then compiled.
When we compile a program, we also supply the information for each device
that the program may target.

// Create a program with source code
cl_program program = clCreateProgramWithSource(context, 1,
(const char**)&programSource, NULL, &status);

// Build (compile) the program for the device
status = clBuildProgram(program, numDevices, devices, NULL,
NULL, NULL);

7. Extracting the kernel from the program: The kernel is created by selecting
the desired function from within the program.

// Create the vector addition kernel
cl_kernel kernel = clCreateKernel(program, "vecadd", &status);

8. Executing the kernel: Once the kernel has been created and data has been
initialized, the buffers are set as arguments to the kernel. A command to execute
the kernel can now be enqueued into the command-queue. Along with the
kernel, the command requires specification of the NDRange configuration.

// Set the kernel arguments

status = clSetKernelArg(kernel, 0, sizeof(cl_mem), &bufA);
status = clSetKernelArg(kernel, 1, sizeof(cl_mem), &bufB);
status = clSetKernelArg(kernel, 2, sizeof(cl_mem), &bufC);

// Define an index space of work-items for execution.
// A work-group size is not required, but can be used.
size_t indexSpaceSize[l], workGroupSizel[l];

indexSpaceSize[0] = datasize/sizeof(int);
workGroupSizel0] = 256;
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// Execute the kernel for execution
status = clEnqueueNDRangeKernel (cmdQueue, kernel, 1, NULL,
indexSpaceSize, workGroupSize, 0, NULL, NULL);

9. Copying output data back to the host: This step reads data back to a pointer
on the host.

// Read the device output buffer to the host output array
status = clEnqueueReadBuffer(cmdQueue, bufC, CL_TRUE, O,
datasize, C, 0, NULL, NULL);

10. Releasing resources: Once the kernel has completed execution and the resulting
output has been retrieved from the device, the OpenCL resources that were
allocated can be freed. This is similar to any C or C++ program where memory
allocations, file handles, and other resources are explicitly released by the
developer. As shown below, each OpenCL object has its own API calls to release
its resources. The OpenCL context should be released last since all OpenCL
objects such as buffers and command-queues are bound to a context. This is
similar to deleting objects in C++, where member arrays must be freed before
the object itself is freed.

clReleaseKernel (kernel);
clReleaseProgram(program);
clReleaseCommandQueue(cmdQueue) ;
clReleaseMemObject (bufA);
clReleaseMemObject (bufB);
clReleaseMemObject (bufC);
clReleaseContext(context);

COMPLETE VECTOR ADDITION LISTING

The following is the complete listing for the vector addition example. It follows
the same steps from the previous section, but uses the first platform and device for
simplicity.

// This program implements a vector addition using OpenCL

// System includes
#include <stdio.h>
#include <stdlib.h>
// OpenCL includes
#include <CL/cl.h>

// OpenCL kernel to perform an element—wise addition
const charx programSource =

”__kernel \n”

”void vecadd(__global int %A, \n”

” __global int %B, \n”

” __global int %C) \n”
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\n”
\n”
// Get the work-item’s unique ID \n”
int idx = get_global_id (0); \n”
\n”
// Add the corresponding locations of \n”
// A’ and 'B’, and store the result in *C’. \n”
Clidx] = A[idx] + B[idx]; \n”
\n”

int main() {

// This code executes on the OpenCL host

// Elements in each array
const int elements = 2048;

// Compute the size of the data
size_t datasize = sizeof(int)xelements;

// Allocate space for input/output host data

int xA = (intx)malloc(datasize); // Input array
int xB = (intx)malloc(datasize); // Input array
int xC = (intx)malloc(datasize); // Output array

// Initialize the input data

int i;

for(i = 0; i < elements; i++) {
Ali] = 1i;
B[i] = i;

}

// Use this to check the output of each API call
cl_int status;

// Get the first platform
cl_platform_id platform;
status = clGetPlatformIDs (1, &platform , NULL);

// Get the first device

cl_device_id device;

status = clGetDevicelDs (platform , CL_DEVICE_TYPE_ALL,
NULL) ;

// Create a context and associate it with the device

cl_context context = clCreateContext(NULL, 1, &device, NULL, NULL,

&status ) ;

1, &device ,

// Create a command—queue and associate it with the device
cl_command_queue cmdQueue = clCreateCommandQueueWithProperties

(context, device, 0, &status);

67



68 CHAPTER 3 Introduction to OpenCL

64 // Allocate two input buffers and one output buffer for the three
vectors in the vector addition

65 cl_mem bufA = clCreateBuffer(context, CL_ MEM _READ_ONLY, datasize ,
NULL, &status);

66 cl_mem bufB = clCreateBuffer(context, CL_MEM READ _ONLY, datasize ,
NULL, &status);

67 cl_mem bufC = clCreateBuffer(context, CL_MEM_WRITE ONLY,
datasize , NULL, &status);

68

69 // // Write data from the input arrays to the buffers

70 status = clEnqueueWriteBuffer (cmdQueue, bufA, CL_FALSE, O,
datasize , A, 0, NULL, NULL) ;

71 status = clEnqueueWriteBuffer (cmdQueue, bufB, CL_FALSE, O,
datasize , B, 0, NULL, NULL) ;

72

73 // Create a program with source code

74 cl_program program = clCreateProgramWithSource(context, 1,
(const charsxx)&programSource, NULL, &status);

75

76 // Build (compile) the program for the device

77 status = clBuildProgram (program, 1, &device, NULL, NULL, NULL);

78

79 // Create the vector addition kernel

80 cl_kernel kernel = clCreateKernel (program, “vecadd”, &status);

81

82 // Set the kernel arguments

83 status = clSetKernelArg(kernel, 0, sizeof(cl_mem), &bufA);

84 status = clSetKernelArg(kernel, 1, sizeof(cl_mem), &bufB);

85 status = clSetKernelArg(kernel, 2, sizeof(cl_mem), &bufC);

86

87 // Define an index space of work—items for execution.

88 // A work—group size is not required, but can be used.

89 size_t indexSpaceSize[1], workGroupSize[l];

90

91 // There are ‘elements’ work—items

92 indexSpaceSize [0] = elements;

93 workGroupSize [0] = 256;

94

95 // Execute the kernel

96 status = clEnqueueNDRangeKernel (cmdQueue, kernel, 1, NULL,
indexSpaceSize , workGroupSize, 0, NULL, NULL);

97

98 // Read the device output buffer to the host output array

99 status = clEnqueueReadBuffer (cmdQueue, bufC, CL_TRUE, O,
datasize , C, 0, NULL, NULL);

100

101 // Free OpenCL resources

102 clReleaseKernel (kernel);

103 clReleaseProgram (program) ;

104 clReleaseCommandQueue (cmdQueue) ;

105 clReleaseMemObject (bufA) ;

106 clReleaseMemObject (bufB) ;
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clReleaseMemObject (bufC) ;
clReleaseContext(context);

// Free host resources

free (A);
free (B);
free (C);
return 0;
}
LISTING 3.4

69

OpenCL vector addition using the C API.

VECTOR ADDITION USING AN OpenCL C++ WRAPPER
The Khronos Group has defined a C++ wrapper API to go with the OpenCL standard.

The C++ API corresponds closely to the C API (e.g. cl::Memory maps to cl_mem),
but offers the benefits of a high-level language such as classes and exception handling.
The following source listing provides a vector addition example that corresponds to

the C version in Listing 3.4.

#define __CL_ENABLE_EXCEPTIONS

#include <CL/cl.hpp>
#include <iostream >
#include <fstream>
#include <string >
#include <vector>

int main() {
const int elements = 2048;
size_t datasize = sizeof(int)xelements;

int *A = new int[elements];
int B new int[elements];
int *C = new int[elements];

for(int i = 0; i < elements; i++) {
Ali] = i;
B[i]

i

try {

// Query for platforms

std :: vector <cl::Platform> platforms;
cl::Platform :: get(&platforms);

// Get a list of devices on this platform

std :: vector <cl::Device> devices;
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29 platforms [0]. getDevices (CL_LDEVICE_TYPE_ALL, &devices);

30

31 // Create a context for the devices

32 cl:: Context context(devices);

33

34 // Create a command—queue for the first device

35 cl :: CommandQueue queue = cl::CommandQueue(context, devices[0]);

36

37 // Create the memory buffers

38 cl:: Buffer bufferA = cl::Buffer(context, CL_MEM_READ _ONLY,
datasize);

39 cl:: Buffer bufferB = cl::Buffer(context, CL_MEM_READ_ONLY,
datasize);

40 cl:: Buffer bufferC = cl::Buffer(context, CL_MEM_WRITE ONLY,
datasize);

41

42 // Copy the input data to the input buffers using the

43 // command—queue for the first device

44 queue . enqueueWriteBuffer (bufferA, CL_TRUE, 0, datasize, A);

45 queue . enqueueWriteBuffer (bufferB, CL_TRUE, 0, datasize, B);

46

47 // Read the program source

48 std ::ifstream sourceFile(”vector_add_kernel.cl”);

49 std::string sourceCode(std::istreambuf_iterator < char > (
sourceFile) ,

50 (std::istreambuf_iterator < char > ()));

51 cl::Program:: Sources source(l, std::make_pair(sourceCode.c_str(),
sourceCode.length () + 1));

52

53 // Create the program from the source code

54 cl::Program program = cl::Program(context, source);

55

56 // Build the program for the devices

57 program.build (devices);

58

59 // Create the kernel

60 cl::Kernel vecadd_kernel (program, “vecadd”);

61

62 // Set the kernel arguments

63 vecadd_kernel . setArg (0, bufferA);

64 vecadd_kernel .setArg (1, bufferB);

65 vecadd_kernel .setArg (2, bufferC);

66

67 // Execute the kernel

68 cl::NDRange global(elements);

69 cl::NDRange local (256);

70 queue .enqueueNDRangeKernel (vecadd_kernel , cl::NullRange, global,
local);

71

72 // Copy the output data back to the host

73 queue . enqueueReadBuffer (bufferC, CL_TRUE, 0, datasize, C);

74 }
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75 catch(cl:: Error error)
76 {
77 std ::cout << error.what() << 7(” << error.err() << ”7)” << std
::endl;
78 }
79 return 0;
30 }
LISTING 3.5

OpenCL vector addition with the C++ API.

OpenCL FOR CUDA PROGRAMMERS

NVIDIA’s CUDA C is an API similar to OpenCL. A comparison of OpenCL and
CUDA versions of the vector addition example is shown in Listing 3.6. Listing
3.6 shows that OpenCL and CUDA follow a one-to-one mapping for most of their
commands. The reason for the additional API calls and function parameters in
OpenCL is the fact that platform discovery and program compilation at runtime are
required in OpenCL. Since CUDA C targets only NVIDIA’s GPUs, there is only a
single platform that can be discovered automatically, and the program compilation
step to PTX can be done when the host binary is compiled.

With OpenCL, platforms are discovered at runtime, and the program can choose
a target device at runtime as well. Program compilation cannot be done prior to
runtime because the intermediate language (IL)/ISA of the device that will execute
a kernel is unknown. For example, with OpenCL it is perfectly reasonable that a
kernel may have been developed and tested on an AMD GPU. However, it would
also need to run on an OpenCL-compatible GPU from Intel that has a different
ISA. The platform discovery and the runtime compilation of the program makes this
possible.

The other major difference between OpenCL and the CUDA C API is that
CUDA C provides special operators for kernel launching, with the requirement that
code may only be compiled using a toolchain that includes an NVIDIA-supplied
preprocessor. The code that the preprocessor generates will end up looking very much
like OpenCL code.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

// CUDA kernel. Each thread computes one element of C
__global__ void vecAdd(int %A, int B, int xC, int elements)

{

// Compute the global thread ID using CUDA intrinsics
int id = blockIdx .xxblockDim.x+threadIdx .x;

—_ O 0 0NN R WN =

// Must check that the thread is not out of bounds
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12 if (id < elements)

13 Cl[id] = A[id] + B[id];

14 }

15

16 int main( int argc, charx argv([] )

17 {

18 // Elements in each array

19 const int elements = 2048;

20

21 // Compute the size of the data

22 size_t datasize = sizeof (int)xelements;

23

24 // Allocate space for input/output host data
25 int *xA = (intx)malloc(datasize); // Input array
26 int xB = (intx)malloc(datasize); // Input array
27 int xC = (intx)malloc(datasize); // Output array
28

29 // Device input vectors

30 int xbufA;

31 int xbufB;

32 // Device output vector

33 int xbufC;

34

35 // Allocate memory for each vector on GPU

36 cudaMalloc(&bufA, datasize);

37 cudaMalloc(&bufB, datasize);

38 cudaMalloc(&bufC, datasize);

39

40 int i;

41 // Initialize vectors on host

42 for( i = 0; i < elements; i++ ) {

43 Ali] = i;

44 Bli] = i;

45 }

46

47 // Copy host vectors to device

48 cudaMemcpy (bufA, A, datasize , cudaMemcpyHostToDevice) ;
49 cudaMemcpy (bufB, B, datasize , cudaMemcpyHostToDevice) ;
50

51 int blockSize, gridSize;

52

53 // Number of threads in each thread block

54 blockSize = 256;

55

56 // Number of thread blocks in grid

57 gridSize = elements/blockSize;

58

59 // Execute the kernel

60 vecAdd<<<gridSize , blockSize >>>(bufA, bufB, bufC, elements);
61

62 // Copy array back to host

63 cudaMemcpy (C, bufC, datasize , cudaMemcpyDeviceToHost);
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// Release device memory
cudaFree (bufA);
cudaFree (bufB) ;
cudaFree (bufC);

// Release host memory
free (A);
free (B);
free (C);

return O;

}
LISTING 3.6

73

Vector addition using the CUDA C API.

SUMMARY

In this chapter, we provided an introduction to the basics of using the OpenCL stan-
dard when developing parallel programs. We have described the different abstraction
models defined in the standard and also presented a basic example of an OpenCL
program to place some of the abstraction in context.
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CHAPTER

Examples

OpenCL EXAMPLES

This chapter discusses some basic OpenCL examples, which allow us to summarize
our understanding of the specification discussed in Chapter 3. These examples
demonstrate the programming steps needed to write complete OpenCL applications.
We also include an example using the C++ wrapper application programming inter-
face (API) for developers who have a preference for C++. The examples discussed
here will serve as a baseline to compare more optimized code, which can be written
after later chapters have been studied.

Table 4.1 summarizes the OpenCL features used by each example discussed
in further sections. The reader can use this information to focus on examples of
interest.

Full listings of each program are provided at the end of each respective section.
Additionally, listings of utility functions used within the examples are provided at the
end of the chapter. The utility functions include code to check and report OpenCL
errors, to read OpenCL programs in from a file to a string (required for program
creation), and to report program compilation errors.

HISTOGRAM

A histogram is used to count or visualize the frequency of data (i.e. the number
of occurrences) over units of discrete intervals, called bins. Histograms have many
applications within data and image processing. In this example, we will create a
histogram of the frequency of pixel values within a 256-bit image. Figure 4.1 shows
a pixel histogram generated for the adjacent input image. This example will illustrate
the use of local memory, and local and global atomic operations within an OpenCL
kernel.

Conceptually, the histogram algorithm itself is very simple. In the case where each
value corresponds to a bin, a histogram could be computed as follows:

Heterogeneous Computing with OpenCL 2.0. http://dx.doi.org/10.1016/B978-0-12-801414-1.00004- 1
Copyright © 2015 Advanced Micro Devices, Inc. Published by Elsevier Inc. All rights reserved
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Table 4.1 The OpenCL Features Covered by Each Example

Example Features

Histogram Local memory, local atomics, global atomics,
barriers, memory fences

Image rotation Images, samplers

Image convolution C++ API, constant memory, images, samplers

Producer-consumer Pipes, multiple devices

20000
18000
16000
14000
12000
10000
8000
6000
4000
2000

Frequency

127 255

Histogram bin (pixel value)

FIGURE 4.1

A histogram generated from a 256-bit image. Each bin corresponds to the frequency of the
corresponding pixel value.

int histogram[HIST_BINS]

main( ) {
for (each input value) {
histogramlvalue]++

Unlike the vector addition example in Chapter 3, computing a histogram is not
embarrassingly parallel, as the increment operation could lead to a race condition with
a multithreaded program. A simple, albeit inefficient, way to parallelize the algorithm
would be to use an atomic operation each time a histogram bin is incremented.
Consider the pseudocode function below, which could be used to run a multithreaded
version of a histogram computation.

int histogram[HIST_BINS]

createHistogram( ) {
for (each of my values) f{
atomic_add(histogram[valuel, 1)
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main( ) {
for (number of threads) {
spawn_thread(createHistogram)

This implementation is inefficient because each update requires an atomic oper-
ation. A higher-performance alternative would be to have each thread create a
separate local histogram, containing only its values. Once a thread has completed
its histogram, the data can be added atomically to the global histogram.

int histogram[HIST_BINS]
createHistogram( ) {
int TocalHistogram[HIST_BINS]

for (each of my values) f{
localHistogram[value]++

for (each bin) {
atomic_add(histogram[bin], TocalHistogram[binl)

main( ) {
for (number of threads) {
spawn_thread(createHistogram)

In many cases, parallelizing an algorithm for OpenCL is very similar to paralleliz-
ing an algorithm for a multithreaded CPU—although the granularity of decomposi-
tion may differ. As with the first multithreaded CPU algorithm, it would be inefficient
for the OpenCL algorithm to have work-items reading values and incrementing
bins from a shared histogram in global memory. As we will discuss in Chapter 8,
global memory accesses on GPUs are very inefficient compared with register or local
memory accesses. As with the multithreaded CPU implementation, the large number
of atomic operations on the same location would further degrade performance.

However, we also would not want to create a local copy of the histogram per work-
item. GPUs store their private work-item data in registers, and when registers run out,
spilling occurs to global memory and is very detrimental to performance.

The best approach is then to create a local version of the histogram per work-
group. Work-items within a work-group have shared access to local memory, which

.
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on GPU architectures is mapped to fast on-chip memory. As with the second version
of the multithreaded CPU algorithm, after the work-group has finished creating
its local copy of the histogram, it can perform a single pass of atomic writes to
the shared global memory histogram. However, implementing a per-work-group
histogram comes with one additional wrinkle: we now have race conditions within
local memory. This is where some architectural knowledge of the target device is
required. For many GPUs, atomic accesses to local memory are fairly efficient.
On AMD Radeon GPUs, atomic units are built into on-chip scratchpad storage.
Therefore, atomic operations on local memory are much less costly than atomic
accesses to global memory. Therefore, in the following example we will use local
atomic operations when generating local histograms.

An OpenCL kernel for this implementation of a histogram algorithm might be
follows:

#define HIST_BINS 256

__kernel
void histogram (__global int xdata,
int numData,
__global int xhistogram)

__local int localHistogram [HIST_BINS];
int lid = get_local_id(0);
int gid = get_global_id (0);

/x Initialize local histogram to zero x/
for (int i = lid;
i < HIST_BINS;
i += get_local_size (0))
{
localHistogram[i] = O;

}

/% Wait until all work—items within
* the work—group have completed their stores x/
barrier (CLK_LOCAL _MEM_FENCE) ;

/% Compute local histogram x/
for (int i = gid;
i < numData;
i += get_global_size (0))
{
atomic_add(&localHistogram [data[i]], 1);
1

/% Wait until all work—items within
* the work—group have completed their stores x/
barrier (CLK_LOCAL _MEM_FENCE) ;
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37 /x Write the local histogram out to
38 % the global histogram x/
39 for (int i = lid;
40 i < HIST_BINS;
41 i += get_local_size (0))
42 {
43 atomic_add(&histogram[i], localHistogram[i]);
44 }
45 1}
LISTING 4.1

Histogram kernel in OpenCL.

The implementation of the histogram algorithm as shown in Listing 4.1 comprises
five steps:

Initialize the local histogram bins to zero (Line 14).

Synchronize to ensure that all updates have completed (Line 23).
Compute the local histogram (Line 26).

Synchronize again to ensure that all updates have completed (Line 35).
Write the local histogram out to global memory (Line 39).

agRrON=

Steps 1, 3, and 5 illustrate a common OpenCL technique for reading data from,
or writing data to a shared location (global or local memory). When we need each
location to be accessed by only a single work-item, we can begin with a work-item’s
unique ID and stride by the size of the total number of work-items (i.e. the work-
group size when accessing local memory, or the NDRange size when accessing global
memory). In step 1, we stride by the work-group size to initialize each value in the
local histogram to zero. This allows our code to change work-group sizes, potentially
as a performance optimization, and still remain functionally correct. Step 3 uses the
same technique to read from global memory, and step 5 again uses the technique to
write out of local memory.

Steps 2 and 4 use a barrier to synchronize between steps, and specify a memory
fence to ensure that all work-items in the work-group have the same view of
memory before proceeding. Barriers and memory fences will be discussed in detail in
Chapter 7. For now it is sufficient to understand that all work-items in the work-group
must reach the barrier before any of them can proceed past it, and the local memory
fence ensures that all updates to local memory are visible to the entire work-group
when the barrier completes.

For the updates to the global histogram to generate correct results, we also need
to initialize the global histogram’s values to zero. The most straightforward way to
initialize the buffer is to use the host API call c1EnqueueFil1Buffer() after the buffer
has been created. The signature for c1EnqueueFil1Buffer() is as follows:

cl_int

clEnqueueFiTTBuffer(
cl_command_queue command_queue,
cl_mem buffer,
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const void *pattern,

size_t pattern_size,

size_t offset,

size_t size,

cl_uint num_events_in_wait_list,
const cl_event *event_wait_list,
cl_event *event)

A call to clEnqueueFil1Buffer() is similar to the C memset() function.
The parameter buffer is the memory object that will be initialized with the data
specified by pattern. Unlike memset (), the pattern for c1EnqueueFil1Buffer() can
be specified in any scalar or vector integer or floating point data type supported by
OpenCL. The parameter pattern_size specifies the size of the type holding the
pattern. The parameter size is used to specify the number of bytes to initialize, and
must be a multiple of pattern_size. Providing an offset begins initialization at an
offset within the buffer.

Aside from initializing the histogram buffer, the host-side program is very similar
to the host program in the vector addition example in Chapter 3. Listing 4.2 provides
the complete source code for the histogram host program. The kernel source in
Listing 4.1 would need to be stored in a file named histogram.c1 to be read in by
Listing 4.2. Note that the code utilizes a few helper functions provided in Section 4.6.
The functions to read and write BMP files are provided with the full code package
online (http://booksite.elsevier.com/9780128014141).

/% System includes x/
#include <stdio.h>
#include <stdlib .h>
#include <string.h>

/% OpenCL includes x/
#include <CL/cl.h>

/% Utility functions %/
#include “utils .h”
#include “bmp—utils .h”

static const int HIST_BINS = 256;

int main(int argc, char sxxargv)
{

/% Host data x/

int sxhInputlmage = NULL;

int xhOutputHistogram = NULL;

/% Allocate space for the input image and read the
x data from disk x/

int imageRows;

int imageCols;
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hInputlmage = readBmp(”../../Images/cat.bmp”, &imageRows, &
imageCols) ;

const int imageElements = imageRowsximageCols;

const size_t imageSize = imageElementsxsizeof(int);

/% Allocate space for the histogram on the host x/
const int histogramSize = HIST_BINSxsizeof(int);
hOutputHistogram = (int=x)malloc(histogramSize);

if (!hOutputHistogram) { exit(—1); }

/+% Use this to check the output of each API call x/
cl_int status;

/% Get the first platform x/

cl_platform_id platform;

status = clGetPlatformIDs (1, &platform , NULL);
check(status);

/% Get the first device =x/

cl_device_id device;

status = clGetDevicelDs (platform , CL_DEVICE_TYPE_GPU, 1, &device,
NULL) ;

check(status);

/% Create a context and associate it with the device */
cl_context context;

context = clCreateContext(NULL, 1, &device, NULL, NULL, &status);
check(status);

/x Create a command—queue and associate it with the device x*/
cl_command_queue cmdQueue;

cmdQueue = clCreateCommandQueue (context , device, 0, &status);
check(status);

/% Create a buffer object for the input image */
cl_mem buflnputlmage;
buflnputlmage = clCreateBuffer(context, CL_MEM_READ ONLY,
imageSize , NULL,
&status);
check(status);

/x Create a buffer object for the output histogram x/

cl_mem bufOutputHistogram;

bufOutputHistogram = clCreateBuffer(context, CL_MEM_WRITE_ONLY,
histogramSize , NULL, &status);

check(status);

/% Write the input image to the device x/
status = clEnqueueWriteBuffer (cmdQueue, buflnputlmage , CL_TRUE,
0, imageSize,
hInputlmage, 0, NULL, NULL);
check(status);

81
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74

75 /x Initialize the output histogram with zeros %/

76 int zero = O0;

77 status = clEnqueueFillBuffer (cmdQueue, bufOutputHistogram , &zero,

78 sizeof (int), O, histogramSize, 0, NULL, NULL);

79 check (status);

80

81 /% Create a program with source code x/

82 char xprogramSource = readFile ("histogram.cl”);

83 size_t programSourcelLen = strlen (programSource);

84 cl_program program = clCreateProgramWithSource(context, 1,

85 (const charsxx)&programSource , &programSourcelLen, &status);

86 check(status);

87

88 /% Build (compile) the program for the device %/

89 status = clBuildProgram (program, 1, &device, NULL, NULL, NULL);

90 if (status != CL_SUCCESS) ({

91 printCompilerError (program, device);

92 exit(—1);

93 }

94

95 /x Create the kernel x/

96 cl_kernel kernel;

97 kernel = clCreateKernel (program, “histogram”, &status);

98 check(status);

99

100 /x Set the kernel arguments x/

101 status = clSetKernelArg(kernel, 0, sizeof(cl_mem), &

102 buflnputlmage);

103 status |I= clSetKernelArg(kernel, 1, sizeof(int), &imageElements);

104 status |= clSetKernelArg(kernel, 2, sizeof(cl_mem), &
bufOutputHistogram) ;

105 check(status);

106

107 /x Define the index space and work—group size x/

108 size_t globalWorkSize[1];

109 globalWorkSize [0] = 1024;

110

111 size_t localWorkSize[1];

112 localWorkSize [0] = 64;

113

114 /% Enqueue the kernel for execution =/

115 status = clEnqueueNDRangeKernel (cmdQueue, kernel, 1, NULL,

116 globalWorkSize , localWorkSize, 0, NULL, NULL);

117 check(status);

118

119 /% Read the output histogram buffer to the host %/

120 status = clEnqueueReadBuffer (cmdQueue, bufOutputHistogram,

121 CL_TRUE, 0,

122 histogramSize , hOutputHistogram , 0, NULL, NULL);

123 check(status);

124



125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

}

/% Free OpenCL resources x/
clReleaseKernel (kernel);
clReleaseProgram (program) ;
clReleaseCommandQueue (cmdQueue) ;
clReleaseMemObject (buflnputlmage);
clReleaseMemObject(bufOutputHistogram) ;
clReleaseContext(context);

/% Free host resources x/
free (hInputlmage) ;

free (hOutputHistogram) ;
free (programSource) ;

return O;

LISTING 4.2

4.3 Image rotation

83

Full source code for the histogram host program. Note that check(c1_int status) isa

utility function that compares the command status to CL_SUCCESS.

4.3 IMAGE ROTATION

Rotation is a common image processing routine with applications in matching,
alignment, and other image-based algorithms. The input to an image rotation routine
is an image, the rotation angle 6, and a point about which rotation is done, with an
example result shown in Figure 4.2.
The coordinates of a point (x,y) when rotated by an angle 6 around (xg, yo)

become (x',’), as shown by the following equations:

Original image After rotation of 45°

FIGURE 4.2

An image rotated by 45°. Pixels that correspond to an out-of-bounds location in the input
image are returned as black.
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X = cos(x — xp) +sinf(y — yo),
y = —sinf(x — xp) + cos O(y — yp).

From the equations, it is clear that the pixel that will be stored in each output
location (x,y’) can be computed independently. Note that for each output location,
the input location will likely not be an integer value. Therefore, we will take advantage
of OpenCL’s built-in support for floating-point coordinates and linear interpolation
to provide a higher-quality result when producing the output image.

By having each work-item correspond to an output location, we can intuitively
map each work-item’s global ID to (x',y’) in the previous equations. We can also
determine (xg, yo), which corresponds to the center of the image, as soon as we load
the image from disk. We therefore have two equations and two unknowns, which
allows us to compute the location read by each work-item when computing the
rotation:

x=x"cosf —y sinf + xp,

y =x"sin@ +y cos 6 + yp.
This corresponds to the following OpenCL C pseudocode:

gidx = get_global_id(0)
gidy = get_global_id(1)

x0 = width/2
y0 = height/2

= gidx*cos(theta) - gidy*sin(theta) + x0
y = gidx*sin(theta) + gidy*cos(theta) + y0

Listing 4.3 shows the implementation of an OpenCL kernel that performs image
rotation. As discussed in Chapter 3, images are opaque objects and must be accessed
using functions based on the data type. In this kernel, we use read_imagef()
(Line 38), since we are working with floating-point data. As with all functions used
to access an image, read_imagef () returns a 4-wide vector data type. Since we
are working with a single-channel image (described next), we are interested only
in the first component, which we can access by appending .x to the end of the
function call (Line 38). The call to write to an image also takes a 4-wide vector
regardless of the actual data type, but will be handled appropriately by the hardware.
Therefore, on the call to write_imagef (), we must cast the result to a f1oat4 vector
(Line 41).

__constant sampler_t sampler =

CLK_NORMALIZED_COORDS_FALSE |

CLK_FILTER_LINEAR |
CLK_ADDRESS_CLAMP;

__kernel

void rotation (
__read_only image2d_t inputlmage,
__write_only image2d_t outputlmage,
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int imageWidth ,
int imageHeight,
float theta)

/*% Get global ID for output coordinates x/
int x = get_global_id (0);
int y = get_global_id(1);

/x Compute image center */
float x0 = imageWidth/2.0f;
float y0 = imageHeight/2.0f;

/% Compute the work—item’s location relative
% to the image center *x/

int xprime = x—x0;

int yprime = y—y0;

/% Compute sine and cosine x/
float sinTheta = sin(theta);
float cosTheta cos(theta);

/% Compute the input location =%/

float2 readCoord;

readCoord.x = xprimexcosTheta — yprimexsinTheta + x0;
readCoord.y = xprimexsinTheta + yprimexcosTheta + y0;

/% Read the input image =/
float value;
value = read_imagef(inputlmage, sampler, readCoord).x;

/% Write the output image x/
write_imagef (outputlmage , (int2)(x, y), (float4)(value, 0.f, O.f,
0.1));
}
LISTING 4.3

Image rotation kernel.

The image sampler (sampler_t sampler)in Listing 4.3 is used to describe how to
access an image. Samplers specify the type of coordinate system used when accessing
the image, what to do when out-of-bounds accesses occur, and whether or not to
interpolate if an access lies between multiple indices.

The coordinate system can either be normalized (i.e. range from 0 to 1) or use
pixel-based integer addresses. Providing CLK_NORMALIZED_COORDS_FALSE specifies
that we will be using pixel-based addressing. OpenCL also allows a number of
addressing modes to be used for handling out-of-bounds accesses. For this example,
we use CL_ADDRESS_CLAMP, specifying that the value produced by an out-of-bounds
access is 0 for channels RG and B, and it returns either O or 1 for channel A (on the
basis of the image format). The result is that out-of-bounds pixels are returned as

85
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black. Finally, the sampler allows us to specify a filtering mode. The filtering mode
determines how a value is obtained from the coordinates provided by the image
access. The option CLK_FILTER_NEAREST simply returns the image element that is
nearest to the coordinate provided. Alternatively, CLK_FILTER_LINEAR provides a
linear interpolation of the surrounding pixels. For this image rotation example, we
will use linear interpolation to provide a higher-quality rotated image.

In previous versions of OpenCL, the size of the global work-item configuration
for the NDRange had to be a multiple of the work-group size in each dimension.
This would often lead to cases where the NDRange size was larger than the data
to which it was being mapped. When this occurred, programmers would have to
pass metadata to the kernel to identify which work-items were valid—for example,
the image width and height would be needed for the kernel in this example. Out-
of-bounds work-items would have to be excluded from computation, sometimes
leading to strange or inefficient code. In OpenCL 2.0, devices are required to
support NDRanges whose work-groups can be a variable size at the boundaries.
These are referred to as remainder work-groups and are discussed in Chapter 5.
This new feature of OpenCL allows the kernel in Listing 4.3 to be concise and
efficient.

As with the previous example, the setup for this program is similar to that for
the vector addition program. The creation of the images used in the kernel is the
distinguishing feature of this example. After reading in the input image from a file
in the host code, we will convert the elements to single-precision floating-point data,
and use this to seed our OpenCL image object.

Allocating image objects to hold the input and output images is done using
the c1CreateImage() API call. When the image is being created, the number of
dimensions (e.g. one, two, or three) and the size of the image are specified by an
image descriptor (type c1_image_desc). The pixel type and channel layout within
the image are specified using an image format (type c1_image_format). Recall from
Chapter 3 that every element of an image stores data in up to four channels, with
the channels enumerated as R, G, B, and A. Thus, an image that will hold a four-
element vector type should use CL_RGBA for the channel order within the image
format. Alternatively, in an image where each pixel is represented as a single value
(e.g. a pixel from a grayscale image or an element of a matrix), the data can be
specified to use only a single channel by specifying CL_R for the channel order. This
example assumes grayscale data and so only uses a single channel. When specifying
the data type within the image format, one specifies integer types by a combination
of signedness and size. For example, CL_SIGNED_INT32 is a 32-bit signed integer, and
CL_UNSIGNED_INTS is the equivalent of an unsigned character in C. Single-precision
floating-point data is specified by CL_FLOAT, and is the type of data used in the
example.

Listing 4.4 shows the host code used to create the input and output images
for this example. After the image has been created, we use the API call
clEnqueueWriteImage() to transfer the input data from the host into the image
object.
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/% The image descriptor describes how the data will be stored

% in memory. This descriptor initializes a 2D image with no pitch =/
cl_image_desc desc;

desc.image_type = CL_MEM_OBJECT_IMAGE2D;

desc.image_width = width;

desc.image_height = height;

desc.image_depth = 0;

desc.image_array_size = 0;

desc.image_row_pitch = 0;
desc.image_slice_pitch =
desc.num_mip_levels = 0;
desc.num_samples = 0;
desc.buffer = NULL;

0;

/x The image format describes the properties of each pixel x*/
cl_image_format format;

format.image_channel_order = CL_R; // single channel
format.image_channel_data_type = CL_FLOAT;

/% Create the input image and initialize it using a

% pointer to the image data on the host. x*/

cl_mem inputlmage = clCreatelmage (context, CL MEM READ _ONLY,
&format , &desc, NULL, NULL);

/% Create the output image x/
cl_mem outputlmage = clCreatelmage (context, CL_MEM_WRITE ONLY,
&format, &desc, NULL, NULL);

/% Copy the host image data to the device %/
size_t origin[3] = {0, 0, 0}; // Offset within the image to copy from
size_t region[3] = {width, height, 1}; // Elements to per dimension
clEnqueueWriteImage (queue , inputlmage , CL_TRUE,
origin, region, 0 /% row—pitch %/, 0 /% slice—pitch %/,
hostInputIlmage , 0, NULL, NULL);

LISTING 4.4

Creation of image objects for the rotation example.

The complete source code for the image rotation host program is provided in
Listing 4.5.

/% System includes x/
#include <stdio.h>
#include <stdlib .h>
#include <string.h>

/% OpenCL includes x/
#include <CL/cl.h>

/x Utility functions x/
#include “utils.h”
#include “bmp—utils.h”
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int main(int argc, char sxxargv)

{

/% Host data x/
float xhInputlmage = NULL;
float +«hOutputlmage = NULL;

/% Angle for rotation (degrees) %/
const float theta = 45.0f;

/x Allocate space for the input image and read the

* data from disk x/

int imageRows;

int imageCols;

hInputlmage = readBmpFloat(”cat.bmp”, &imageRows, &imageCols);
const int imageElements = imageRowsximageCols;

const size_t imageSize = imageElementsxsizeof (float);

/x Allocate space for the output image x/
hOutputlmage = (float=x)malloc(imageSize);
if (!hOutputlmage) { exit(—1); }

/x Use this to check the output of each API call %/
cl_int status;

/% Get the first platform x/

cl_platform_id platform;

status = clGetPlatformIDs (1, &platform , NULL);
check(status);

/% Get the first device x/

cl_device_id device;

status = clGetDevicelDs (platform , CL_DEVICE_TYPE_GPU, 1, &device,
NULL) ;

check(status);

/% Create a context and associate it with the device %/
cl_context context;

context = clCreateContext(NULL, 1, &device, NULL, NULL, &status);
check(status);

/x Create a command—queue and associate it with the device x/
cl_command_queue cmdQueue;

cmdQueue = clCreateCommandQueue (context , device, 0, &status);
check(status);

/% The image descriptor describes how the data will be stored

% in memory. This descriptor initializes a 2D image with no
pitch =/

cl_image_desc desc;

desc.image_type = CL_MEM_OBJECT_IMAGE2D;

desc.image_width = imageCols;
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62 desc.image_height = imageRows;

63 desc.image_depth = 0;

64 desc.image_array_size = 0;

65 desc.image_row_pitch = 0;

66 desc.image_slice_pitch = 0;

67 desc.num_mip_levels = 0;

68 desc.num_samples = 0;

69 desc.buffer = NULL;

70

71 /x The image format describes the properties of each pixel x/

72 cl_image_format format;

73 format.image_channel_order = CL_R; // single channel

74 format.image_channel_data_type = CL_FLOAT;

75

76 /x Create the input image and initialize it using a

77 % pointer to the image data on the host. x/

78 cl_mem inputlmage = clCreatelmage (context, CL MEM_READ ONLY,

79 &format, &desc, NULL, NULL);

80

81 /+% Create the output image */

82 cl_mem outputlmage = clCreateIlmage (context, CL_MEM_WRITE ONLY,

83 &format , &desc, NULL, NULL);

84

85 /x Copy the host image data to the device x/

86 size_t origin[3] = {0, 0, O0}; // Offset within the image to copy
from

87 size_t region[3] = {imageCols, imageRows, 1}; // Elements to per
dimension

88 clEnqueueWriteImage (cmdQueue, inputlmage , CL_TRUE,

89 origin, region, 0 /% row—pitch %/, 0 /% slice—pitch %/,

90 hInputlmage , 0, NULL, NULL);

91

92 /x Create a program with source code */

93 char xprogramSource = readFile (”image—rotation.cl”);

94 size_t programSourceLen = strlen (programSource);

95 cl_program program = clCreateProgramWithSource(context, 1,

96 (const charxx)&programSource , &programSourcelLen, &status);

97 check(status);

98

99 /% Build (compile) the program for the device x/

100 status = clBuildProgram (program, 1, &device, NULL, NULL, NULL);

101 if (status != CL_SUCCESS) ({

102 printCompilerError (program, device);

103 exit(—1);

104 }

105

106 /% Create the kernel x/

107 cl_kernel kernel;

108 kernel = clCreateKernel (program, “rotation”, &status);

109 check(status);

110

111 /% Set the kernel arguments x/
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112 status = clSetKernelArg(kernel, 0, sizeof(cl_mem), &inputlmage);

113 status |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &outputlmage);

114 status |= clSetKernelArg(kernel, 2, sizeof(int), &imageCols);

115 status |= clSetKernelArg(kernel, 3, sizeof(int), &imageRows);

116 status |= clSetKernelArg(kernel, 4, sizeof(float), &theta);

117 check(status);

118

119 /% Define the index space and work—group size %/

120 size_t globalWorkSize[2];

121 globalWorkSize [0] = imageCols;

122 globalWorkSize[1] = imageRows;

123

124 size_t localWorkSize[2];

125 localWorkSize [0] = 8;

126 localWorkSize[1] = 8;

127

128 /% Enqueue the kernel for execution x/

129 status = clEnqueueNDRangeKernel (cmdQueue, kernel, 2, NULL,

130 globalWorkSize , localWorkSize, 0, NULL, NULL);

131 check(status);

132

133 /% Read the output image buffer to the host %/

134 status = clEnqueueReadlmage (cmdQueue, outputlmage, CL_TRUE,

135 origin, region, 0 /% row—pitch x/, 0 /% slice—pitch x/,

136 hOutputImage , 0, NULL, NULL);

137 check(status);

138

139 /% Write the output image to file x/

140 writeBmpFloat (hOutputlmage , “rotated —cat.bmp”, imageRows,
imageCols, “cat.bmp”);

141

142 /% Free OpenCL resources */

143 clReleaseKernel (kernel);

144 clReleaseProgram (program) ;

145 clReleaseCommandQueue (cmdQueue) ;

146 clReleaseMemObject(inputlmage);

147 clReleaseMemObject (outputlmage) ;

148 clReleaseContext(context);

149

150

151 /x Free host resources */

152 free (hInputlmage);

153 free (hOutputlmage);

154 free (programSource);

155

156 return O;

157 '}

LISTING 4.5

Full source code for the image rotation host program.
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IMAGE CONVOLUTION

In image processing, convolution is a commonly used algorithm that modifies the
value of each pixel in an image by using information from neighboring pixels. A
convolution kernel, or filter, describes how each pixel will be influenced by its
neighbors. For example, a blurring filter will take the weighted average of neighboring
pixels so that large differences between pixel values are reduced. By using the same
source image and changing only the filter, one can produce effects such as sharpening,
blurring, edge enhancing, and embossing.

Convolution algorithms works by iterating over each pixel in the source image.
For each source pixel, the filter is centered over the pixel, and the values of the
filter multiply the pixel values that they overlay. A sum of the products is then
taken to produce a new pixel value. Figure 4.3 provides a visual representation
for this algorithm. Figure 4.4b shows the effect of a blurring filter and Figure
4.4c shows the effect of an embossing filter on the same source image seen in
Figure 4.4a.

The code shown in Listing 4.6 performs a serial convolution in C/C++. The two
outer loops iterate over pixels in the source image, selecting the next source pixel. At
each source pixel, the filter is applied to the neighboring pixels. Notice that the filter
can try to access pixels that are out-of-bounds. To handle this situation, we provide
four explicit checks within the innermost loop to set the out-of-bounds coordinate to
the nearest border pixel.

(-1*1)
(0*4)
(1*6)
(-2*5)
(0*3)
(2*8)
(-1*6)
(0*7)
Source image + (1*2)

Filter

Filtered image

FIGURE 4.3
Applying a convolution filter to a source image.
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(a) (b) (c)
FIGURE 4.4

The effect of different convolution filters applied to the same source image: (a) the original
image; (b) blurring filter; and (c) embossing filter.

1 /% Iterate over the rows of the source image */

2 for (int i = 0; i < rows; i++)

3

4 /x Iterate over the columns of the source image x/

5 for (int j = 0; j < cols; j++)

6 {

7 /% Reset sum for new source pixel x/

8 int sum = 0;

9

10 /% Apply the filter to the neighborhood x*/

11 for (int k = —halfFilterWidth; k <= halfFilterWidth; k++)
12 {

13 for (int 1 = —halfFilterWidth; 1 <= halfFilterWidth; 1++)
14 {

15 /% Indices used to access the image */

16 int r = i+k;

17 int ¢ = j+1;

18

19 /% Handle out—of—bounds locations by clamping to
20 % the border pixel x/

21 r=(r<0)?0:r;

22 c=(c<0)?20: c;

23 r = (r > rows) ? rows—1 : r;

24 ¢ = (¢ > cols) ? cols—1 : ¢;

25

26 sum += Image[r][c] *

27 Filter [k+halfFilterWidth ][ 1+halfFilterWidth ];
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28 }
29 }
30
31 /x Write the new pixel value x/
32 outputlmage[i][j] = sum;
33 }
34}
LISTING 4.6

Serial implementation of image convolution.

In OpenCL, using image memory objects to implement a convolution has a
few advantages over an implementation using buffers. Image sampling comes with
options to automatically handle out-of-bounds accesses (as we saw in the image
rotation example), and also provides optimized caching of two-dimensional data
(covered in Chapter 7).

The OpenCL implementation of the convolution kernel is fairly straightforward,
and is written similarly to the C version. In the OpenCL version, we create one
work-item per output pixel, using parallelism to remove the two outer loops from
Listing 4.6. The task of each work-item is to execute the two innermost loops, which
perform the filtering operation. As in the previous example, reads from the source
image must be performed using an OpenCL construct that is specific to the data type.
For this example, read_imagef () is used again. The full OpenCL kernel is shown in
Listing 4.7.

Accesses to an image always return a four-element vector (one per channel). In
the previous example, we appended .x to the image access function to return the
first component. In this example, we will declare both pixel (the value returned by
the image access) and sum (resultant data that is copied to the output image) as type
float4. We then use the x-component when accumulating the filtered pixel value
(Line 45).

The convolution filter is a perfect candidate for constant memory in this example
because all work-items access the same element each iteration. Simply adding the
keyword __constant in the signature of the function (Line 7) places the filter in
constant memory.

1 __kernel

2 void convolution (

3 __read_only image2d_t inputlmage,
4 __write_only image2d_t outputlmage,
5 int rows,

6 int cols ,

7 __constant floatx filter ,

8 int filterWidth ,
9 sampler_t sampler)

10 {

11 /* Store each work—item’s unique row and column x/
12 int column = get_global_id (0);

13 int row = get_global_id(1);
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14
15 /% Half the width of the filter is needed for indexing
16 * memory later x/
17 int halfWidth = (int)(filterWidth/2);
18
19 /% All accesses to images return data as four—element vectors
20 * (i.e., float4), although only the X component will contain
21 * meaningful data in this code */
22 float4 sum = {0.0f, 0.0f, 0.0f, 0.0f};
23
24 /x Iterator for the filter x/
25 int filterIdx = 0;
26
27 /% Each work—item iterates around its local area on the basis of
the
28 * size of the filter =/
29 int2 coords; // Coordinates for accessing the image
30
31 /x Iterate the filter rows x/
32 for(int i = —halfWidth; i <= halfWidth; i++)
33 {
34 coords.y = row + i;
35 /x% Iterate over the filter columns x/
36 for (int j = —halfWidth; j <= halfWidth; j++)
37 {
38 coords.x = column + j;
39
40 /% Read a pixel from the image. A single—channel image
41 % stores the pixel in the X coordinate of the returned
42 * vector. x/
43 float4 pixel;
44 pixel = read_imagef(inputlmage , sampler, coords);
45 sum.x += pixel.x % filter[filterIdx ++];
46 }
47 }
48
49 /% Copy the data to the output image x/
50 coords.x = column;
51 coords.y = row;
52 write_imagef (outputlmage , coords, sum);
53}
LISTING 4.7

Image convolution kernel using OpenCL images.

In the previous example, we created the sampler directly from within the kernel. In
this example, we create a sampler using the host API and pass it as a kernel argument.
For this example, we will be using the C++ API (the C++ sampler constructor has
identical parameters).

The host API signature to create a sampler in C is as follows:
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cl_sampler clCreateSampler(
cl_context context,
cl_bool normalized_coords,
cl_addressing_mode addressing_mode,
cl_filter_mode filter_mode,
cl_int *errcode_ret)

With use of the C++ API, the signature is as follows:

cl::Sampler::Sampler(
const Context& context,
cl_bool normalized_coords,
cl_addressing_mode addressing_mode,
cl_filter_mode filter_mode,
cl_int * err = NULL)

The sampler utilized by our kernel could therefore be created as follows:

cl::Sampler sampler = new cl::Sampler(context, CL_FALSE,
CLK_ADDRESS_CLAMP_TO_EDGE, CLK_FILTER_NEAREST);

As in the rotation example, this sampler uses unnormalized coordinates. However,
here we show two different options for the remaining sampler parameters: the filtering
mode returns the nearest pixel without interpolation (CLK_FILTER_NEAREST), and
the addressing mode for out-of-bounds accesses returns the nearest border pixel
(CL_ADDRESS_CLAMP_TO_EDGE).

With the C++ API, a two-dimensional image is created using the Image2D class,
which requires an ImageFormat object as an argument. Unlike with the C API, an
image descriptor is not required.

The signatures for the Image2D and ImageFormat constructors are as follows:

cl::Image2D::Image2D(
Context& context,
cl_mem_flags flags,
ImageFormat format,
::size_t width,
::size_t height,
::size_t row_pitch = 0,
void * host_ptr = NULL,
cl_int * err = NULL)

cl::ImageFormat::ImageFormat(
cl_channel_order order,
cl_channel_type type)

We can therefore create the input and output images used for the convolution using
calls such as

95



96

0NN N R W=

el e e el
00NNk WN = OO

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

CHAPTER 4 Examples

cl::ImagefFormat imageFormat = cl::ImagefFormat(CL_R, CL_FLOAT);

cl::Image2D inputImage = cl::Image2D(context, CL_MEM_READ_ONLY,
imageFormat, imageCols, imageRows);

cl::Image2D outputImage = cl::Image2D(context, CL_MEM_WRITE_ONLY,
imagefFormat, imageCols, imageRows);

The full source code listing for the image convolution host program using the C++
API is provided in Listing 4.8. In the host program, a 5 x 5 Gaussian blurring filter
is used for the convolution.

#define _ CL_ENABLE_EXCEPTIONS

#include <CL/cl.hpp>
#include <fstream>
#include <iostream >
#include <vector>

#include “utils.h”
#include “bmp—utils .h”

”»

static const charx inputlmagePath = ”../../Images/cat.bmp”;

static float gaussianBlurFilter[25] = {
1.0f/273.0f, 4.0f/273.0f, 7.0f/273.0f, 4.0f/273.0f, 1.0f/273.0f,
4.0f/273.0f, 16.0f/273.0f, 26.0f/273.0f, 16.0f/273.0f, 4.0f/273.0f,
7.0f/273.0f, 26.0f/273.0f, 41.0f/273.0f, 26.0f/273.0f, 7.0f/273.0f,
4.0f/273.0f, 16.0f/273.0f, 26.0f/273.0f, 16.0f/273.0f, 4.0f/273.0f,
1.0f/273.0f, 4.0f/273.0f, 7.0f/273.0f, 4.0f/273.0f, 1.0f/273.0f
1

static const int gaussianBlurFilterWidth = 5;

int main ()

{
float xhInputlmage;
float «hOutputlmage;

int imageRows;
int imageCols;

/% Set the filter here x/
int filterWidth = gaussianBlurFilterWidth;
float =filter = gaussianBlurFilter;

/%« Read in the BMP image %/
hInputlmage = readBmpFloat(inputlmagePath , &imageRows, &imageCols);

/%x Allocate space for the output image x/
hOutputlmage = new float [imageRowsximageCols];

try

{
/% Query for platforms x/
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std :: vector<cl :: Platform> platforms;
cl::Platform :: get(&platforms);

/x Get a list of devices on this platform x/
std :: vector<cl :: Device> devices;
platforms [0]. getDevices (CL_DEVICE_TYPE_GPU, &devices);

/% Create a context for the devices x/
cl:: Context context(devices);

/% Create a command—queue for the first device x/
cl:: CommandQueue queue = cl::CommandQueue(context, devices[0]);

/*% Create the images */

cl::ImageFormat imageFormat = cl::ImageFormat(CL_R, CL_FLOAT);

cl::Image2D inputlmage = cl::Image2D(context, CL_MEM _READ_ONLY,
imageFormat, imageCols, imageRows);

cl::Image2D outputlmage = cl::Image2D(context,
CL_MEM_WRITE_ONLY,
imageFormat, imageCols, imageRows);

/% Create a buffer for the filter x/
cl::Buffer filterBuffer = cl::Buffer(context, CL_MEM_READ_ONLY,
filterWidth«filterWidthxsizeof (float));

/+% Copy the input data to the input image %/
cl::size_t<3> origin;
origin[0] = O0;

origin[1] = O0;

origin[2] = 0;

cl::size_t<3> region;

region[0] = imageCols;

region[1] = imageRows;

region[2] = 1;

queue . enqueueWriteImage (inputlmage , CL_TRUE, origin, region,

0, 0,

hInputlmage);

/x Copy the filter to the buffer =/
queue . enqueueWriteBuffer (filterBuffer , CL_TRUE, O,
filterWidthxfilterWidthxsizeof (float), filter);

/% Create the sampler */
cl::Sampler sampler = cl::Sampler(context, CL_FALSE,
CL_ADDRESS_CLAMP_TO_EDGE, CL_FILTER_NEAREST) ;

/% Read the program source x/
std ::ifstream sourceFile(”image—convolution.cl”);
std::string sourceCode (
std ::istreambuf_iterator <char>(sourceFile),
(std::istreambuf_iterator <char>()));

97
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94 cl::Program:: Sources source(l,
95 std :: make_pair (sourceCode.c_str (),
96 sourceCode.length () + 1));
97
98 /% Make program from the source code x/
99 cl::Program program = cl::Program(context, source);
100
101 /% Build the program for the devices x/
102 program. build (devices);
103
104 /% Create the kernel x/
105 cl::Kernel kernel(program, “convolution”);
106
107 /% Set the kernel arguments x/
108 kernel .setArg (0, inputlmage);
109 kernel .setArg (1, outputlmage);
110 kernel .setArg (2, filterBuffer);
111 kernel .setArg (3, filterWidth);
112 kernel .setArg (4, sampler);
113
114 /% Execute the kernel x/
115 cl::NDRange global(imageCols, imageRows);
116 cl ::NDRange local (8, 8);
117 queue . enqueueNDRangeKernel (kernel , cl::NullRange, global,
118 local);
119 /% Copy the output data back to the host */
120 queue . enqueueReadImage (outputlmage , CL_TRUE, origin, region,
121 0, 0,
122 hOutputlmage) ;
123
124 /% Save the output BMP image x/
125 writeBmpFloat (hOutputlmage , “cat—filtered .bmp”, imageRows,
126 imageCols ,
127 inputlmagePath);
128 }
129 catch(cl:: Error error)
130 {
131 std ::cout << error.what() << 7 (” << error.err() << 7)” << std::
endl ;
132 }
133
134 free (hInputlmage);
135 delete hOutputlmage;
136 return O;
137}
LISTING 4.8

Full source code for the image convolution host program.
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4.5 PRODUCER-CONSUMER

In many OpenCL applications, output from one kernel will be used as input to
a second kernel. In other words, the first kernel produces some data that will be
consumed by the second kernel. For some applications, the producer and consumer
can operate concurrently, with the consumer processing data as it is generated by the
producer. OpenCL 2.0 has introduced pipe memory objects to facilitate producer-
consumer applications. Pipes have the potential to offer utility regardless of whether
or not the producer-consumer kernels execute serially or concurrently.

In this example, we will use pipes to create a producer-consumer application using
kernels from two of the examples already discussed in this chapter: convolution and
histogram. The convolution kernel will first process an image, then as output pixels
are generated they will be passed to the histogram kernel using a pipe (shown in
Figure 4.5). To illustrate additional functionality, and to show a potential use case
for an accelerated processing unit, we will implement this example using multiple
devices. The convolution kernel will execute on the device’s GPU, and the histogram
kernel will execute on the device’s CPU. Executing the kernels on multiple devices
will also enable concurrent execution of the two kernels, with the pipe used to
pass data as it is generated. A detailed description of pipe objects is provided in
Chapter 6. For now, we will describe only the basics required to understand this
example.

Pipes are memory objects that contain data (called packets) organized a first in,
first out (FIFO) structure. Memory allocated for a pipe exists in global memory, and
is simultaneously accessible by multiple kernels. The data stored within a pipe is not
accessible from the host.

For a given kernel, pipes may be read only (__read_only) or write only
(__write_only), but cannot be read-write. If a pipe is not specified as read only
or write only, the compiler will default to read only. A pipe is declared as a kernel
parameter by specifying the keyword pipe, an access type, and a data type of the
packets. For example, pipe __read_only float *input would create a read-only
pipe that contains single-precision floating-point data.

Frequency

0 127 255

(a) (b) (c)
FIGURE 4.5

The producer kernel will generate filtered pixels and send them via a pipe to the consumer
kernel, which will then generate the histogram: (a) original image; (b) filtered image; and
(c) histogram of filtered image.
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To access a pipe, OpenCL C provides intrinsic functions read_pipe() and
write_pipe() with the following signatures:

int read_pipe (pipe gentype p, gentype *ptr)
int write_pipe (pipe gentype p, const gentype *ptr)

When a work-item calls read_pipe() (Listing 4.10, Line 16), a packet is read
from pipe p into ptr. The function returns O if a packet is read from the pipe, or a
negative value if the pipe is empty. Similarly, a call to write_pipe() (Listing 4.9,
Line 50) writes a packet from ptr to pipe p. The function returns 0 if the value was
written to the pipe, or a negative value if the pipe is full.

Listings 4.9 and 4.10 show the kernel implementations for our application. Since
we are specifically targeting the consumer kernel for a CPU, it is written to utilize
only a single work-item when creating the histogram. Also, since we are explicitly
targeting a CPU, we will place the histogram directly in global memory (Chapter 8
discusses these trade-offs in detail).

__constant sampler_t sampler =

CLK_NORMALIZED_COORDS_FALSE |

CLK_FILTER_NEAREST I
CLK_ADDRESS_CLAMP_TO_EDGE;

__kernel
void producerKernel (
image2d_t __read_only inputlmage,

pipe __write_only float xoutputPipe,
__constant floatx filter ,
int filterWidth)
{
/% Store each work—item’s unique row and column x/
int column = get_global_id (0);
int row = get_global_id(1);

/% Half the width of the filter is needed for indexing
* memory later x/
int halfWidth = (int)(filterWidth/2);

/% Used to hold the value of the output pixel x/
float sum = 0.0f;

/x Iterator for the filter x/
int filterIdx = 0;

/% Each work—item iterates around its local area on the basis of
the

* size of the filter x/

int2 coords; // Coordinates for accessing the image

/% Iterate the filter rows x/
for (int i = —halfWidth; i <= halfWidth; i++)
{
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coords.y = row + i;

/+% Iterate over the filter columns x/

for (int j = —halfWidth; j <= halfWidth; j++)
{

coords.x = column + j;

/% Read a pixel from the image. A single channel image

% stores the pixel in the X coordinate of the returned
* vector. %/

float4 pixel;

pixel = read_imagef(inputlmage , sampler, coords);

sum += pixel.x % filter[filterIdx ++];

}

/x Write the output pixel to the pipe x/
write_pipe (outputPipe , &sum);

}

LISTING 4.9

.
101

Convolution kernel (producer).

__kernel

void consumerKernel (
pipe __read_only float xinputPipe,
int totalPixels ,
__global int xhistogram)

int pixelCnt;
float pixel;

/x Loop to process all pixels from the producer kernel x/
for (pixelCnt = 0; pixelCnt < totalPixels; pixelCnt++)

{
/x Keep trying to read a pixel from the pipe
* until one becomes available x/
while (read_pipe (inputPipe , &pixel));

/% Add the pixel value to the histogram x/
histogram [(int) pixel J++;

}
LISTING 4.10

Convolution kernel (producer).

Although data stored within the pipe is not accessible from the host, the host API
is still required to create the pipe object (as described in Chapter 3). The API call to
create a pipe is as follows:

cl_pipe clCreatePipe(
cl_context context,



102

[N e Y R N R S

[ e S S = T T
O 01NN = OO

20
21
22
23
24
25
26
27

CHAPTER 4 Examples

cl_mem_flags flags,

cl_uint pipe_packet_size,

cl_uint pipe_max_packets,

const cl_pipe_properties *properties,
cl_int *errcode_ret)

In this scenario, we will not assume that the two kernels are guaranteed to run
concurrently; therefore, we will create a pipe object with a size large enough to
contain the entire image:

cl_mem pipe = clCreatePipe(context, 0, sizeof(float),
imageRows*imageCols, NULL, &status);

Utilizing multiple devices with this application requires a few additional steps in
the host setup compared with the examples we have seen so far. When creating a
context, one must supply two devices (one CPU device, and one GPU device), and
each device requires its own command-queue. Additionally, the program object will
now be used to generate two kernels. Launching the kernels is done by enqueuing
them onto their respective command-queues: the producer (convolution) kernel will
be enqueued onto the GPU command-queue, and the consumer (histogram) kernel
will be enqueued onto the CPU command-queue. All of these steps are illustrated in
the host program source code provided in Listing 4.11.

/% System includes x/
#include <stdio.h>
#include <stdlib .h>
#include <string.h>

/% OpenCL includes =/
#include <CL/cl.h>

/% Utility functions x/
#include ~utils.h”
#include “bmp—utils.h”

/% Filter for the convolution x/

static float gaussianBlurFilter[25] = {
1.0f/273.0f, 4.0f/273.0f, 7.0f/273.0f, 4.0f/273.0f, 1.0f/273.0f,
4.0f/273.0f, 16.0f/273.0f, 26.0f/273.0f, 16.0f/273.0f, 4.0f/273.0f,
7.0f/273.0f, 26.0f/273.0f, 41.0f/273.0f, 26.0f/273.0f, 7.0f/273.0f,
4.0f/273.0f, 16.0f/273.0f, 26.0f/273.0f, 16.0f/273.0f, 4.0f/273.0f,
1.0f/273.0f, 4.0f/273.0f, 7.0f/273.0f, 4.0f/273.0f, 1.0f/273.0f

1
static const int filterWidth = 5;
static const int filterSize = 25xsizeof(float);

/% Number of histogram bins %/
static const int HIST_BINS = 256;

int main(int argc, char sxargv)

{
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4.5 Producer-consumer

/% Host data x/
float xhInputlmage = NULL;
int xhOutputHistogram = NULL;

/+% Allocate space for the input image and read the

* data from disk x/

int imageRows;

int imageCols;

hInputIlmage = readBmpFloat(”../../Images/cat.bmp”, &imageRows, &
imageCols) ;

const int imageElements = imageRowsximageCols;

const size_t imageSize = imageElementsxsizeof (float);

/*% Allocate space for the histogram on the host %/
const int histogramSize = HIST_BINSxsizeof (int);
hOutputHistogram = (intx)malloc(histogramSize);

if (!hOutputHistogram) { exit(—1); }

/x Use this to check the output of each API call =/
cl_int status;

/x Get the first platform x/

cl_platform_id platform;

status = clGetPlatformIDs (1, &platform , NULL);
check(status);

/x Get the devices x/

cl_device_id devices|[2];

cl_device_id gpuDevice;

cl_device_id cpuDevice;

status = clGetDevicelDs (platform , CL_DEVICE_TYPE_GPU, 1, &gpuDevice
, NULL) ;

check(status);

status = clGetDevicelDs (platform , CL_DEVICE_TYPE_CPU, 1, &cpuDevice
, NULL) ;

check(status);

devices [0] = gpuDevice;

devices [1] = cpuDevice;

/% Create a context and associate it with the devices %/
cl_context context;

context = clCreateContext(NULL, 2, devices, NULL, NULL, &status);
check(status);

/% Create the command—queues x/

cl_command_queue gpuQueue;

cl_command_queue cpuQueue;

gpuQueue = clCreateCommandQueue(context, gpuDevice, 0, &status);
check(status);

cpuQueue = clCreateCommandQueue (context, cpuDevice, 0, &status);
check(status);

.
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/% The image descriptor describes how the data will be stored

% in memory. This descriptor initializes a 2D image with no
pitch =/

cl_image_desc desc;

desc.image_type = CL_MEM_OBJECT_IMAGE2D;

desc.image_width = imageCols;

desc.image_height = imageRows;

desc.image_depth = 0;

desc.image_array_size = 0;

desc.image_row_pitch = 0;

desc.image_slice_pitch = 0;

desc.num_mip_levels = 0;

desc.num_samples = 0;

desc.buffer = NULL;

/% The image format describes the properties of each pixel =%/
cl_image_format format;

format.image_channel_order = CL_R; // single channel
format.image_channel_data_type = CL_FLOAT;

/% Create the input image and initialize it using a

% pointer to the image data on the host. x/

cl_mem inputlmage;

inputlmage = clCreatelmage (context , CLL MEM _READ_ONLY,
&format , &desc, NULL, NULL);

/% Create a buffer object for the output histogram x/

cl_mem outputHistogram;

outputHistogram = clCreateBuffer(context, CL_MEM_WRITE ONLY,
histogramSize , NULL, &status);

check(status);

/x Create a buffer for the filter x/

cl_mem filter;

filter = clCreateBuffer(context, CL MEM_READ ONLY, filterSize ,
NULL, &status);

check(status);

cl_mem pipe;
pipe = clCreatePipe(context, 0, sizeof(float),
imageRowsximageCols, NULL, &status);

/% Copy the host image data to the GPU x/

size_t origin[3] = {0, 0, 0}; // Offset within the image to copy
from

size_t region[3] = {imageCols, imageRows, 1}; // Elements to per
dimension

status = clEnqueueWriteImage (gpuQueue, inputlmage, CL_TRUE,
origin, region, 0 /% row—pitch %/, 0 /% slice—pitch x/,
hInputlmage , 0, NULL, NULL);

check(status);
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/x Write the filter to the GPU x/
status = clEnqueueWriteBuffer (gpuQueue,

filterSize , gaussianBlurFilter ,
check (status);

/% Initialize
int zero = 0;
status = clEnqueueFillBuffer (cpuQueue,

sizeof (int), O, histogramSize ,
check(status);

/x Create a program with source code */

filter ,
0, NULL, NULL);

4.5 Producer-consumer

CL_TRUE, 0,

the output histogram with zeros x/

outputHistogram , &zero,
0, NULL, NULL);

char xprogramSource = readFile (”producer—consumer.cl”);

size_t programSourcelLen =
cl_program program =

strlen (programSource) ;
clCreateProgramWithSource (context, 1,

(const charsx*x)&programSource , &programSourcelLen, &status);

check(status);

/% Build (compile) the program for

status = clBuildProgram (program, 2,

if (status != CL_SUCCESS) ({
printCompilerError (program,
exit(—1);

}

/% Create the kernels x/

cl_kernel producerKernel;

cl_kernel consumerKernel;

producerKernel = clCreateKernel (program,
&status);

check(status);

consumerKernel =
&status);

check(status);

clCreateKernel (program,

/x Set the kernel arguments x/
status = clSetKernelArg (producerKernel ,
&inputlmage) ;

status |= clSetKernelArg (producerKernel ,

status |= clSetKernelArg (producerKernel ,
&filter);

status |= clSetKernelArg (producerKernel ,

&filterWidth);
check (status);

status = clSetKernelArg(consumerKernel ,

status I= clSetKernelArg(consumerKernel ,
&imageElements) ;

status |= clSetKernelArg(consumerKernel ,
&outputHistogram);

check(status);

gpuDevice) ;

the devices =/
devices , NULL, NULL, NULL) ;

”producerKernel”,

”consumerKernel” ,

sizeof (cl_mem) ,

sizeof (cl_mem), &pipe);
sizeof (cl_mem) ,

sizeof (int),

sizeof (cl_mem), &pipe);
sizeof (int) ,

sizeof (cl_mem) ,
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/% Define the index space and work—group size x/
size_t producerGlobalSize[2];
producerGlobalSize [0] = imageCols;
producerGlobalSize[1] = imageRows;

size_t producerLocalSize[2];
producerLocalSize [0] = 8§;
producerLocalSize[1] = 8§;

size_t consumerGlobalSize[1];
consumerGlobalSize [0] = 1;

size_t consumerLocalSize[1];
consumerLocalSize [0] = 1;

/% Enqueue the kernels for execution x/

status = clEnqueueNDRangeKernel (gpuQueue, producerKernel,
producerGlobalSize , producerLocalSize, 0, NULL, NULL);

check(status);

status = clEnqueueNDRangeKernel (cpuQueue, consumerKernel,
consumerGlobalSize , consumerLocalSize, 0, NULL, NULL);
check(status);

/% Read the output histogram buffer to the host x/

2, NULL,

1, NULL,

status = clEnqueueReadBuffer (cpuQueue, outputHistogram , CL_TRUE, O,

histogramSize , hOutputHistogram , 0, NULL, NULL);
check(status);

/% Free OpenCL resources x/
clReleaseKernel (producerKernel);
clReleaseKernel (consumerKernel) ;
clReleaseProgram (program) ;
clReleaseCommandQueue (gpuQueue) ;
clReleaseCommandQueue (cpuQueue) ;
clReleaseMemObject(inputlmage) ;
clReleaseMemObject (outputHistogram) ;
clReleaseMemObject( filter);
clReleaseMemObject(pipe);
clReleaseContext(context);

/% Free host resources x/
free (hInputlmage) ;

free (hOutputHistogram) ;
free (programSource) ;

return O;
}
LISTING 4.11

Full source code for a producer-consumer host program.
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4.6 Utility functions

UTILITY FUNCTIONS

Because OpenCL is meant to be system agnostic, a few common tasks cannot be done
as automatically as we are used to when writing regular C/C++ programs. The good
news is that once implemented, they can be reused for all future OpenCL applications.

REPORTING COMPILATION ERRORS

When we attempt to compile and link our OpenCL program object (with
c1BuildProgram(), or c1CompileProgram() and c1LinkProgram()), it may happen
that there are errors in the OpenCL C source that prevent a successful build. In this
case the host application does not automatically print the compiler error message and
quit. Instead, the OpenCL API call fails with the appropriate return value, and it is
up to the programmer to retrieve the compiler output.

When an OpenCL program object fails to build, a build log is generated
and kept with the program object. The log can be retrieved from the API call
c1GetProgramBuildInfo() by passing the argument CL_PROGRAM_BUILD_LOG to
the parameter param_name. Similarly to other API calls that we have seen,
c1ProgramBuildInfo() should be called twice: first to figure out the size of the data
being returned, and second to actually retrieve the data after allocation of sufficient
space.

In the source code listings provided in this chapter, we use a custom function
called printCompilertrror() whenever we detect a build error. The source code for
our implementation of printCompilerError() is provided in Listing 4.12.

void printCompilerError(cl_program program, cl_device_id device) {
cl_int status;

size_t logSize;
char xlog;

/% Get the log size x/
status = clGetProgramBuildInfo (program, device,
CL_PROGRAM_BUILD_LOG,
0, NULL, &logSize);
check(status);

/% Allocate space for the log */
log = (charx)malloc(logSize);
if (!log) {
exit(—1);
}

/* Read the log x*/
status = clGetProgramBuildInfo (program, device,
CL_PROGRAM_BUILD_LOG,
logSize , log, NULL);
check(status);
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/%x Print the log x/
printf ("%s\n”, log);
}
LISTING 4.12

Source code to query a program object for a build log.

CREATING A PROGRAM STRING

In Chapter 3, we saw that program objects are created from character arrays (const
char **strings) when using the API call c1CreateProgramWithSource(). How-
ever, writing OpenCL C source code directly as a character array is very inconvenient.
Therefore, a more common use case is to create a separate file containing the OpenCL
C source, and read that file into a string within the host program.

When one writes C++ code (as shown in Listing 4.8), reading a file into a string is
fairly straightforward. However, when one programs in C, the task is more involved.
Listing 4.13 provides a C function for reading a file into a C string (character array).

charx readFile (const char xfilename) {
FILE =xfp;
char xfileData;

long fileSize;

/% Open the file x/

fp = fopen(filename, "r”);

if (1fp) {
printf (”Could not open file: %s\n”, filename);
exit(—1);

/% Determine the file size x/

if (fseek(fp, 0, SEEK_END)) ({
printf (”Error reading the file\n”);
exit(—1);

}

fileSize = ftell (fp);

if (fileSize < 0) {
printf ("Error reading the file\n”);
exit(—1);

}

if (fseek(fp, 0, SEEK_SET)) {
printf (”Error reading the file\n”);
exit(—1);

}

/%x Read the contents x/
fileData = (charx)malloc(fileSize + 1);
if (!fileData) {

exit(—1);
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}

if (fread(fileData, fileSize, 1, fp) != 1) {
printf (”Error reading the file\n”);
exit(—1);

}

/x Terminate the string =/
fileData[ fileSize] = *\0’;

/% Close the file x/

if (fclose(fp)) {
printf (”Error closing the file\n”);
exit(—1);

}

return fileData ;

}
LISTING 4.13

.
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Source code to read an OpenCL C program from a file.

SUMMARY

This chapter discussed implementations of some well-known data-parallel algorithms
while highlighting specific OpenCL functionality. The histogram example showed
local memory usage, along with proper execution and memory synchronization.
The rotation and convolution examples utilized image objects and samplers. The
convolution example additionally utilized the C++ API, and its kernel took advantage
of constant memory. Finally the producer-consumer example built on these tech-
niques and implemented a multidevice application, with two kernels using pipes to
communicate data.

Although these examples are correct OpenCL programs, their performance can
be improved—in some cases significantly. Optimizing performance for specific
hardware platforms is the goal of subsequent chapters.



CHAPTER

OpenCL runtime and
concurrency model

OpenCL supports a wide range of devices, ranging from discrete graphics processing
unit (GPU) cards with thousands of “cores” to small embedded central processing
units (CPUs). To achieve such wide support, it is vital that the memory and execution
models for OpenCL be defined in such a way that we can achieve a high level
of performance across a range of architectures without extraordinary programming
effort. In this chapter, we discuss the different components of the execution model.

COMMANDS AND THE QUEUING MODEL

OpenCL is based on a task-parallel, host-controlled model, in which each task is data
parallel. This is maintained through the use of thread-safe command-queues attached
to each device. Kernels, data movement, and other operations are not simply executed
by the user calling a runtime function. These operations are enqueued onto a specific
queue using an asynchronous enqueue operation, to be executed at some point in
the future. The synchronization points occur between commands in host command-
queues and between commands in device-side command-queues.

The commands enqueued into OpenCL’s command-queues can be kernel execu-
tion commands, memory transfer commands, or synchronization commands. Com-
pletion of a command from the point of view of the host program is guaranteed only
at a command-queue synchronization point. The following are the primary command
synchronization points:

e Waiting for the completion of a specific OpenCL event.

e AclFinish() call that blocks the host’s execution until an entire queue
completes execution.

e Execution of a blocking memory operation.

BLOCKING MEMORY OPERATIONS

Blocking memory operations are perhaps the most commonly used and easiest
to implement method of synchronization. Instead of querying an event for
completion, and blocking the host’s execution until the memory operation has

Heterogeneous Computing with OpenCL 2.0. http://dx.doi.org/10.1016/B978-0-12-801414-1.00005-3 1 1 1
Copyright © 2015 Advanced Micro Devices, Inc. Published by Elsevier Inc. All rights reserved
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completed, most memory transfer functions simply provide a parameter that
enables synchronous functionality. This option is the blocking_read parameter
in c1EnqueueReadBuffer(), and has synonymous implementations in the other data
transfer application programming interface (API) calls.

cl_int

clEnqueueReadBuffer(
cl_command_queue command_queue,
cl_mem buffer,
cl_bool blocking_read,
size_t offset,
size_t size,
const void *ptr,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list,
cl_event *event)

Enabling the synchronous functionality of a memory operation is commonly
used when transferring data to or from a device. For example, when transferring
data from a device to the host, the host should not try to access the data until
the transfer is complete as the data will be in an undefined state. Therefore, the
blocking_read parameter can be set to CL_TRUE to ensure that the transfer is complete
before the call returns. Using this synchronous functionality allows host code that
utilizes the data to be placed directly after the call with no additional synchronization
steps. Blocking and nonblocking memory operations are discussed in detail in
Chapter 6.

EVENTS

Recall from Chapter 3 that events are used to specify dependencies between com-
mands. Each c1Enqueue API call can generate an event representing the execution
status of the command, and also takes an event list that specifies all of the dependen-
cies that must be completed before execution of the command. Generating events and
supplying them as dependencies are the mechanism that allows the OpenCL runtime
to implement its execution task graph.

As the command moves into and out of the command-queue and through its stages
of execution, its status is constantly updated within its event. The possible states that
a command can be in are as follows:

*  Queued: The command has been placed into a command-queue.

*  Submitted: The command has been removed from the command-queue and
submitted for execution on the device.

* Ready: The command is ready for execution on the device.

* Running: Execution of the command has started on the device.

* Ended: Execution of the command has finished on the device.

* Complete: The command and all of its child commands have finished execution.
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Owing to the asynchronous nature of the OpenCL API, API calls cannot
simply return error conditions or profiling data that relate to the execution of the
OpenCL command. The API calls return error conditions relating information
known at enqueue time (e.g., validity of parameters) However, OpenCL also
provides a mechanism for checking error conditions relating to the execution
of the command. The error conditions related to the execution of a command
can be queried through the event associated with the command. Indeed, com-
pletion can be considered a condition similar to any other. Querying an event’s
status is done using the API call c1GetEventInfo() and passing the argument
CL_EVENT_COMMAND_EXECUTION_STATUS to the parameter param_name

cl_int
clGetEventInfo(
cl_event event,
cl_event_info param_name,
size_t param_value_size,
void *param_value,
size_t *param_value_size_ret)

Successful completion is indicated when the event status associated with a
command is set to CL_COMPLETE. Notice that the description of “complete” specifies
that the execution of a command and all of its child commands has finished. Child
commands are relevant when a kernel enqueues child kernels for execution. This is
discussed with device-side enqueuing later in this chapter.

Unsuccessful completion results in abnormal termination of the command, which
is indicated by setting the event status to a negative value. In this case, the command-
queue associated with the abnormally terminated command and all other command-
queues in the same context may no longer be available.

The API call c1WaitForEvents() can be used to have the host block execution
until all events specified in the wave-list have finished executing.

cl_int
clWaitForEvents (
cl_uint num_events,
const cl_event *event_list)

COMMAND BARRIERS AND MARKERS

An alternative method of synchronizing without blocking the host is to enqueue
a command barrier. A command barrier is conceptually similar to calling
clWaitForEvents() from the host, but is managed internally to the runtime. Barriers
are enqueued using the c1EnqueueBarrierWithWaitlist() command, which takes
an optional list of events to wait on. If no events are provided, the barrier waits for
completion of all preceding commands in the command-queue.

Markers are similar to barriers and are enqueued with the matching
clEnqueueMarkerWithWaitlList() command. The difference between a barrier and a
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marker is that the marker does not block the execution of subsequent commands in the
queue. The marker therefore allows the programmer to query when the completion
of all specified events occurs without inhibiting execution.

By combining these synchronization commands and the use of events, OpenCL
provides the ability to produce sophisticated task graphs enabling highly complicated
behavior. This ability is important when utilizing out-of-order command-queues,
which allows the runtime to optimize command scheduling.

EVENT CALLBACKS

OpenCL allows a user to register callbacks that can be utilized by events. The
callback functions are invoked when the event reaches a specified state. The
cl1SetEventCallback() function is used to register a callback for an OpenCL event:

cl_int
clSetEventCallback(
cl_event event,
cl_int command_exec_callback_type,
void (CL_CALLBACK *pfn_event_notify)
(cl_event event,
cl_int event_command_exec_status,
void *user_data),
void *user_data )

The parameter command_exec_callback_type is the parameter used to spec-
ify when the callback should be invoked. The possible arguments are limited to
CL_SUBMITTED, CL_RUNNING, or CL_COMPLETE.

The guarantees related to the ordering of the callback functions are limited. For
example, if different callbacks are registered for CL_SUBMITTED and CL_RUNNING,
while the state changes are guaranteed to happen in successive order, the callback
functions are not guaranteed to be processed in order. As we will discuss in Chapters
6 and 7, memory state cannot be guaranteed for any state other than CL_COMPLETE.

PROFILING USING EVENTS

Determining the execution time of a command is naturally expressed via events, as
the transition through each state can be expressed by associating a timer value with
each state. To enable the profiling of commands, creation of the command-queue
must include providing the flag CL_QUEUE_PROFILING_ENABLE to the properties
parameter of c1CreateCommandQueueWithProperties().

Any command that generates an event can then be profiled using a call to
clGetEventProfilingInfo():

cl_int
clGetEventProfilingInfol(
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cl_event event,
cl_profiling_info param_name,
size_t param_value_size,
void *param_value,

size_t *param_value_size_ret)

By querying the timer value associated with the transition, the programmer
can determine how long the command sat in the queue, when it was submitted
to the device, etc. Most commonly, the programmer will want to know the actual
duration that the command performed “useful” work (e.g., how long data transfer
took, or how long the kernel took to execute). To determine the time that the
command actually spent executing, the arguments CL_PROFILING_COMMAND_START
and CL_PROFILING_COMMAND_END can be passed as the param_name parameter in
subsequent calls to c1GetEventProfilingInfo(). When a kernel enqueues child
kernels, the total time including all child kernels can be obtained by passing
CL_PROFILING_COMMAND_COMPLETE as the argument. OpenCL defines that the timer
values returned must be in the nanosecond granularity.

USER EVENTS

So far we have seen events that are generated by passing an event pointer argument
to various API calls. However, what if the programmer desires that an OpenCL
command’s execution wait for a host-based event? For example, the programmer may
want his OpenCL data transfer to wait until a file has some new data. To enable this
capability, user events were added to the specification in OpenCL 1.2.

cl_event

clCreateUserEvent(
cl_context context,
cl_int *errcode_ret)

Since the state transitions of user events are controlled by the application devel-
oper and not by the OpenCL runtime, the number of states possible for user events
are limited. User events can be in a submitted state (CL_SUBMITTED), in a completed
state (CL_COMPLETE), or in an error state. When a user event has been created, the
execution status of the user event object’s state is set to CL_SUBMITTED.

The state of a user event can be changed by c1SetUserEventStatus().

cl_int clSetUserEventStatus(
cl_event event,
cl_int execution_status)

The execution_status parameter specifies the new execution status to be set.
As this is a user event, the status can be CL_COMPLETE or a negative integer indicating
an error. A negative integer value causes all enqueued commands that wait on this
user event to be terminated. It should be noted that c1SetUserEventStatus() can be
called only once to change the execution status of an event.

.
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OUT-OF-ORDER COMMAND-QUEUES

The command-queues in the OpenCL examples in Chapters 3 and 4 were cre-
ated as default, in-order queues. In-order queues guarantee that commands will
be executed in the order in which they have been enqueued to the device by the
application. However, it is possible for a queue to execute out-of-order. An out-
of-order queue has no default ordering of the operations defined in the queue.
If the runtime decides that it has, for example, a direct memory access (DMA)
engine that can execute in parallel with compute units, or the device can exe-
cute multiple kernels at once, it is at liberty to schedule those operations in par-
allel, with no guarantee that one command completes execution before another
starts.

The command-queue creation API (c1CreateCommandQueueWithProperties())
has as properties bit field, which we have not used until now. One of the prop-
erties available for this bit field is to enable out-of-order execution of the queue
(CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE). Specifying this property will create
an out-of-order queue on devices that support out-of-order execution.

The code in Listing 5.1 shows the host portion of a program that uses an out-
of-order command queue to write an input buffer, execute two kernels, and read an
output buffer back to the host. This series of commands is ordered by specifying event
dependencies between successive commands. The task graph created by these event
dependencies is what allows an out-of-order queue to determine which commands
can be processed. In the example in Listing 5.1, the memory transfer functions
are nonblocking and the final synchronization by the host is performed by using
clWaitForEvents() on the read event. Performing nonblocking memory transfers
is important when using out-of-order queues to expose the potential for overlapping
transfers and execution.

//
// Relevant host program
//

// Create the command—queue

cl_command_queue_properties properties =
CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE;

cl_command_queue queue = clCreateCommandQueueWithProperties (
context , devices[0], &properties , NULL);

// Declare the events
cl_event writeEvent, kernelEventO, kernelEventl , readEvent;

// Create the buffers

cl_mem input = clCreateBuffer(context, CL MEM READ_ONLY,
32xsizeof (float), NULL, NULL);

cl_mem intermediate = clCreateBuffer(context, CL_MEM_READ_WRITE,
32«sizeof (float), NULL, NULL) ;
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18 cl_mem output = clCreateBuffer(context, CL_MEM_WRITE_ONLY,

19 32xsizeof (float), NULL, NULL);

20

21 // Write the input data

22 clEnqueueWriteBuffer (queue, input, CL_FALSE, 0, 32xsizeof(float),
23 (voidx) hostInput , 0, NULL, &writeEvent);

24

25 // Set up the execution unit dimensions used by both kernels

26 size_t localws[1] = {8} ;

27 size_t globalws[1] ={32};

28

29 // Enqueue the first kernel

30 clSetKernelArg(kernel, 0, sizeof(cl_mem), (void x*)&input);

31 clSetKernelArg(kernel, 1, sizeof(cl_mem), (void x)&intermediate);
32 clSetKernelArg(kernel, 2, 8xsizeof (float), NULL);

33 clEnqueueNDRangeKernel (queue, kernel, 1, NULL,

34 globalws , localws, 1, &writeEvent, &kernelEvent0);

35

36 // Enqueue the second kernel

37 clSetKernelArg(kernel, 0, sizeof(cl_mem), (void x)&intermediate);
38 clSetKernelArg(kernel, 1, sizeof(cl_mem), (void *)&output);

39 clSetKernelArg(kernel, 2, 8xsizeof (float), NULL);

40 clEnqueueNDRangeKernel (queue, kernel, 1, NULL,

41 globalws , localws, 1, &kernelEvent0 , &kernelEventl);

42

43 // Read output data

44 clEnqueueReadBuffer (queue, output, CL_FALSE, 0, 32xsizeof(float),
45 (void =x)&hostOutput, 1, &kernelEventl , &readEvent);

46

47 // Block until the read has completed

48 clWaitForEvents (1, &readEvent);

49

50 <clReleaseEvent(writeEvent);

51 <clReleaseEvent(kernelEvent);

52 clReleaseEvent (readEvent) ;

LISTING 5.1

Enqueuing two kernels on the same out-of-order command-queue, and using events to
maintain dependencies.

Out-of-order command-queues do not guarantee out-of-order execution. In order
to avoid deadlock in a robust application, it is important to enqueue commands while
being aware that they could execute serially. We see in the code in Listing 5.1 that
even if the commands enqueued were executed in order that they were enqueued, the
program will execute correctly. However, if the commands to “enqueue input data”
and “enqueue the first kernel” were reversed in the source code, the developer may
still expect the queue to execute out-of-order. However, the program would deadlock
if the queue behaves as an in-order queue since the kernel execution event would wait
for the write data.
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Device 0—GPU—Command queue

1 Kernel 0

Kernel 0—Running l, S

Memory buffer

I Access by Device 0 | Access by Device 1 I
Kernel 1
P 7J Kernel 1—Waiting | Kernel 1—Running l —

Device 1 —CPU—Commana queue

FIGURE 5.1

Multiple command-queues created for different devices declared within the same context.
Two devices are shown, where one command-queue has been created for each device.

MULTIPLE COMMAND-QUEUES

If we have multiple devices in a system (e.g., a CPU and a GPU, or multiple GPUs),
each device needs its own command-queue. However, OpenCL also allows multiple
command-queues from a context to be mapped to the same device. This is potentially
useful to overlap execution of independent commands or overlap commands and host-
device communication, and is an alternative to out-of-order queues. Understanding
the synchronization capabilities and the host and device memory models (Chapters 6
and 7) is necessary for the management of multiple command-queues.

Figure 5.1 shows an OpenCL context with two devices. Separate command-
queues are created to access each device. Listing 5.2 shows the corresponding code to
create two command-queues, with each command-queue targeting a different device.
It is important to note that synchronization using OpenCL events can be done only for
commands within the same context. If separate contexts were created for the different
devices, then synchronization using events would not be possible, and the only way to
share data between devices would be to use the host to explicitly copy data between
buffer objects.

// Obtain devices of both CPU and GPU types

cl_device_id devices[2];

err_code = clGetDevicelDs (NULL, CL_DEVICE_TYPE_CPU, 1, &devices[0],
NULL) ;

err_code = clGetDevicelDs (NULL, CL_DEVICE_TYPE_GPU, 1, &devices|[1],
NULL) ;

// Create a context including two devices
cl_context ctx;
ctx = clCreateContext(0, 2, devices, NULL, NULL, NULL) ;

// Create queues to each device
cl_command_queue queue_cpu, queue_gpu;
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5.2 Multiple command-queues

queue_cpu = clCreateCommandQueueWithProperties(context, devices[0],
0, NULL);

queue_gpu = clCreateCommandQueueWithProperties(context, devices[1],
0, NULL) ;

LISTING 5.2

.
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Creating two command-queues for two devices present in the same context.

Multiple device programming with OpenCL can be summarized with two execu-
tion scenarios usually seen in parallel programming for heterogeneous devices:

* Pipelined execution: Two or more devices work in a pipeline manner such that
one device waits on the results of another, shown in Figure 5.2.

* Independent execution: A scenario in which multiple devices work
independently of each other, shown in Figure 5.3.

In the code in Listing 5.3, the wait-list orders execution such that the kernel on
the GPU queue will complete it’s execution before the CPU queue begins executing
the kernel (showing the pipelined execution scenario).

cl_event event_cpu, event_gpu;

// Starts as soon as enqueued
err = clEnqueueNDRangeKernel (queue_gpu, kernel_gpu, 2, NULL, global,
local, 0, NULL, &event_gpu);

// Starts after event_gpu is on CL_COMPLETE
err = clEnqueueNDRangeKernel (queue_cpu, kernel_cpu, 2, NULL, global,
local , 1, &event_gpu, &event_cpu);

LISTING 5.3

A collaborative, pipelined model of multidevice execution. The enqueued kernel on the CPU
command-queue waits for the kernel on the GPU command-queue to finish executing.

Device 0—GPU—Command queue

v

Device 1—CPU—Command queue

FIGURE 5.2

Multiple devices working in a pipelined manner on the same data. The CPU queue will wait
until the GPU kernel has finished.
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Device 0—GPU—Command queue

Device 1—GPU—Command queue

Device 2—CPU—Command queue \

FIGURE 5.3
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Multiple devices working in a parallel manner. In this scenario, both GPUs do not use the
same buffers and will execute independently. The CPU queue will wait until both GPU
devices have finished.

The code in Listing 5.4 shows an execution model in which the kernels
are executed on different devices in parallel. The multidevice example in
Figure 5.4 shows a case where two GPUs process kernels independently. The
command enqueued on the CPU waits for both kernels on the GPU to complete
execution.

cl_event events_gpul[2];

// Both of the GPU devices can execute concurrently as soon as they
have
// their respective data since they have no events in their wait—lists
err = clEnqueueNDRangeKernel (queue_gpu_0, kernel_gpu, 2, NULL,
global , local, 0, NULL, &events_gpul[0]);
err = clEnqueueNDRangeKernel (queue_gpu_1, kernel_gpu, 2, NULL,
global , local, O, NULL, &events_gpul[l]);

// The CPU will wait until both GPUs have finished executing their
kernels .

// This requires two events in the CPU’s wait—list

err = clEnqueueNDRangeKernel (queue_cpu, kernel_cpu, 2, NULL, global,
local , 2, events_gpu, NULL);

LISTING 5.4

Parallel multidevice execution. The enqueued kernel on the CPU command-queue waits
for the kernels on the GPU command-queues to finish.
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cl::Event event;
err = queue.enqueueNDRangeKernel( kernel, cl::| cl::NDRange(10, 10), cl::NDRange(5, 5), NULL, &event);

—temetvord Simr\EK‘E‘T]neL(* __kernel void simpleKernel(
__global float *a,
lobal float *b ) __global float *a,
{ - __global float *b )
{

int address =

int address =

éiloi // 3110;
b[21] =a[21] * 2; 4 b{76] = a[76] * 2;
! }
FIGURE 5.4
Executing the simple kernel shown in Listing 5.5. The different work-items in the NDRange
are shown.

THE KERNEL EXECUTION DOMAIN: WORK-ITEMS,
WORK-GROUPS, AND NDRanges

OpenCL execution is centered on the concept of a kernel. A kernel is a unit of code
that represents a single instance of a kernel function executing on a compute device
as written in the OpenCL C language. A kernel-instance is at first sight similar to a C
function: In the OpenCL C language, a kernel looks like a C function. The OpenCL
kernel takes a parameter list, has local variables (similarly to how Pthreads have their
own local variables), and standard control flow constructs. What makes the OpenCL
kernel different from a C function is its parallel semantics. We described in Chapter 3
how an OpenCL work-item defines just one sliver of a large parallel execution space.
In this section, we expand on the previous discussion by providing the motivation for
the hierarchical execution model of work-items, work-groups, and NDRanges.

A kernel dispatch is initiated when the runtime processes an entry in a command-
queue created by a call to c1EnqueueNDRangeKernel (). A kernel dispatch consists of
a large number of work-items intended to execute together to carry out the operations
specified in the kernel body. The enqueue call creates an NDRange (an n-dimensional
range) worth of work-items. An NDRange defines a one-, two-, or three-dimensional
grid of work-items, providing a simple and straightforward structure for parallel
execution. When mapped to the hardware model of OpenCL, each work-item runs
on a unit of hardware abstractly known as a processing element, where a given
processing element may process multiple work-items in turn.

Within a kernel dispatch, each work-item is largely independent. In OpenCL,
synchronization between work-items is intentionally limited. This relaxed execution
model allows OpenCL programs to scale to devices possessing a large number
of cores. As scalable devices are usually organized in a hierarchical manner—
especially the memory system—OpenCL similarly provides a hierarchical structure
of its execution space.
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To flexibly support devices with a large number of processing cores, OpenCL
divides the global execution space into a large number of equally sized one-, two-, or
three-dimensional sets of work-items called work-groups. Within each work-group,
some degree of communication is allowed. The OpenCL specification defines that
an entire work-group can run concurrently on an element of the device known as a
compute unit. This form of concurrent execution is vital to allow synchronization.
Work-groups allow local synchronization by guaranteeing concurrent execution, but
they also limit communication to improve scalability. An application that involves
global communication across its execution space is usually inefficient to parallelize
with OpenCL. To enable efficient work-group communication, a compute unit will
likely be mapped to a core so that work-items of a work-group can communicate
under a shared cache or scratchpad memory.

By defining larger dispatches with more work-groups, OpenCL kernels scale onto
larger and more heavily threaded devices on which more work-groups and more
work-items can execute at once. OpenCL work-items attempt to express parallelism
that could be expressed using Win32 or POSIX threads. The hierarchical execution
mode of OpenCL takes that a step further, because the set of work-items within
a work-group can be efficiently mapped to a smaller number of hardware thread
contexts. This can be viewed as a generalization of single instruction multiple data
(SIMD) execution, where vectors execute multiple operations over multiple cycles.
However, in the OpenCL case, subvectors (work-items) can maintain their own
program counters until synchronization points. The best example of this is on the
GPU, where as many as 64 work-items execute in lock step as a single hardware
thread on an SIMD unit: on AMD architectures, this is known as a wavefront, and
on NVIDIA architectures, it is called a warp. Even though the work-items execute in
lockstep, different work-items can execute different instruction sequences of a kernel.
This can occur if different work-items evaluate a conditional statement such as an if-
else branch to different results. While work-items may proceed in lockstep through
both blocks of the if-else branch, the hardware is responsible for squashing the results
of the operations that should not have been executed. This phenomenon is commonly
known as divergence, and can greatly affect kernel performance since work-items
need to execute redundant operations and squash results.

This execution model where all work-items appear to have an independent
program counter is a simpler development model than explicit use of SIMD
instructions as developers are used to when using Streaming SIMD Extensions
(SSE) intrinsics on x86 processors. Because of this SIMD execution, it is often
noted that for a given device, an OpenCL work-group’s size should be an even
multiple of that device’s SIMD width. This value can be queried from the
runtime as the parameter CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE to
the c1GetKernelWorkGroupInfo() function.

OpenCL defines built-in functions callable from within a kernel to obtain the
position of a given work-item in the execution range. Some of these functions take
a dimension value, listed here as uint dimension. This refers to the zeroth, first,
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or second dimension in the iteration space as provided in the multidimensional
NDRange parameters when enqueueing the kernel:

e uint get_work_dim(): Returns the number of dimensions in use in the dispatch.

* size_t get_global_size(uint dimension): Returns the global number of
work-items in the requested dimension.

e size_t get_global_id(uint dimension): Returns the index of the current
work-item in the global space in the requested dimension.

* size_t get_local_size(uint dimension): Returns the size of work-groups in
this dispatch in the requested dimension. If the kernel is executed with a
nonuniform work-group size, remainder work-groups (discussed later in this
chapter) may return different values for uniform work-groups.

e size_t get_enqueued_local_size(uint dimension): Returns the number of
work-items in the uniform region of the NDRange in the requested dimension.

e size_t get_local_id(uint dimension): Returns the index of the current
work-item as an offset from the beginning of the current work-group.

e size_t get_num_groups(uint dimension): Returns the number of
work-groups in the specified dimension of the dispatch. This is
get_global_size() divided by get_enqueued_local_size().

e size_t get_group_id(uint dimension): Returns the index of the current
work-group. That is, the global index of the first work-item in the work-group,
divided by the work-group size.

As an example of execution of a simple kernel, take the trivial kernel in Listing
5.5 that executes over a two-dimensional execution space, multiplies an input array
by two, and then assigns it to the output array. Figure 5.4 shows how this executes
in practice. The call to get_global_id() returns different values for each work-
item referring to different points in the iteration space. In this trivial example, we
use the position in the space to directly map to a two-dimensional data structure. In
real examples, more complicated mappings are possible, depending on the input and
output structures and the way an algorithm will process the data.

__kernel void simpleKernel(
__global float =xa,
__global float xb)

int address = get_global_id (0) + get_global_id (1) x*
get_global_size (0);
b[address] = a[address] *x 2;
}
LISTING 5.5

A simple kernel where each work-item of the kernel multiplies an element and then stores
its result in an output buffer.

In previous versions of OpenCL, it was required that all dimensions of an
NDRange were multiples of the corresponding work-group dimensions. For example,
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an NDRange of size 800 x 600 could not have work-groups sized 16 x 16, because
% = 37.5. As work-groups should be sized to complement execution and memory
hardware, this often required programmers to create NDRanges that were larger than
the problem set. If we wanted work-groups to be sized 16 x 16, we would need to
increase the NDRange size to 800 x 608. The difficulty with this approach is that
work-items are created that do not map to the data set, and must be handled appropri-
ately (e.g., checking the index and immediately returning for any out-of-range work-
items). However, this technique creates headaches when one is performing operations
such as barrier synchronizations that require all work-items in the group to perform
the operation. To alleviate this problem, OpenCL 2.0 has removed the requirement
that NDRange dimensions should be multiples of work-group dimensions. Instead,
OpenCL 2.0 defines remainder work-groups as the boundaries of the NDRange,
and the last work-group need not have the same dimensions as defined by the
programmer. In the case of the 800 x 600 NDRange and 16 x 16 work-groups, the
last row of work-groups will be sized 16 x 8. The functions get_local_size() and
get_enqueued_local_size() can be used to get the size of the actual work-group
(possibly with remainder dimensions), and the size of the uniform work-groups,
respectively.

OpenCL 2.0 has also introduced built-in functions for linear indexing that simpli-
fies a common calculation that programmers had to code by hand in prior versions
of the specification. Linear indexing provides a well-defined, unique index for a
work-item, regardless of the number of dimensions in the NDRange or work-group.
These functions are get_global_linear_id() and get_Tlocal_linear_id(), which
provide a global linear index within the NDRange, and a local linear index within the
work-group, respectively:

* size_t get_global_linear_id(): Returns a one-dimensional global ID for
the work-item.

e size_t get_local_linear_id(): Returns a one-dimensional local ID for the
work-item.

SYNCHRONIZATION

“Synchronization” refers to mechanisms that constrain the order of execution
between two or more execution units. In general, OpenCL intentionally limits
synchronization between execution units. This is influenced by the desire for
scalability, but also by the wide variety of devices that are targeted by OpenCL.
For example, OpenCL runs on devices in which threading is managed by hardware,
such as GPUs, in addition to operating-system-managed threading devices such as
mainstream x86 CPUs. This can cause issues in enabling performance and correctness
of concurrent programs. With an x86 thread, it is possible to attempt to lower a
semaphore and block the thread If the semaphore is unavailable, the operating system
will remove the thread from execution and is free to schedule anything in its place
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with little in the way of resource constraints. On a GPU, applying the same trick in
the GPU equivalent of a thread (the wavefront on AMD hardware) is problematic
because the resources occupied are fixed. For example, removing one wavefront from
execution does not free its resources, so it is possible to reach a situation in which a
wavefront that is not yet able to fit on the device is required to free the semaphore
before one that is already on the device is able to continue. Because the wavefronts
on the device are waiting for that semaphore, they never get to execute, and so the
system deadlocks.

To circumvent this eventuality, OpenCL defines blocking synchronization (i.e.,
a barrier) only for work-items within the same work-group. In Chapter 7, we will
see that OpenCL 2.0 now also provides lock-free memory ordering constraints using
atomics and fences. However, their goal is to enable broader classes of algorithms
based on memory visibility guarantees, and not to provide synchronization of
execution order. The following sections deal with synchronization within a work-
group using barriers, and synchronization of commands, respectively.

WORK-GROUP BARRIERS

A call to provide a barrier by a work-item within a work-group dictates that the
work-item cannot continue past the barrier until all work-items in the group have
also reached the barrier. This is a program-counter-level restriction, which means
that each barrier in the code is treated as a different execution barrier. As a result,
when a work-group barrier is placed within control flow in the kernel, all work-items
within the group must encounter that barrier. The net effect of this is that behavior of
barriers within control flow that diverges between different work-items in the group
is undefined: on many devices, this leads to deadlock as work-items wait for others
that will never reach the barrier.

A simple example of OpenCL synchronization is shown in Figure 5.5. In this
diagram, we see an initial kernel enqueue with four work-groups of eight work-items
each. Under the loosest interpretation of the OpenCL specification (i.e., disregarding
hardware implementations), the work-items in each work-group proceed at differing
rates. When the work_group_barrier() function is called, the most advanced work-
item waits for all others to catch up, continuing only after all have reached that
point. Different work-groups and work-items in other work-groups proceed with a
schedule independent of the schedules of the other work-groups until the end of the
kernel.

The signatures of the built-in functions to provide a work-group barrier are as
follows:

void work_group_barrier(cl_mem_fence_flags flags)

void work_group_barrier(cl_mem_fence_flags flags, memory_scope scope)
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FIGURE 5.5

Within a single kernel dispatch, synchronization regarding execution order is supported
only within work-groups using barriers. Global synchronization is maintained by completion
of the kernel, and the guarantee that on a completion event all work is complete and
memory content is as expected.

In Chapter 7, we will discuss the details regarding the scope parameter (as
well as go into more detail regarding the fl1ags parameter). However, for now it
is sufficient to understand that the flags provided to the function determine which
memory operations need to be visible to the other work-items in the group when the
barrier operation completes.

The options for flags include the following:

* CLK_LOCAL_MEM_FENCE: Requires that all accesses to local memory become
visible.

* CLK_GLOBAL_MEM_FENCE: Requires that all accesses to global memory become
visible.

* CLK_IMAGE_MEM_FENCE: Requires that all accesses to images become visible.

In the following example, we will see work-items caching data into local memory,
where each work-item reads a value from a buffer and requires that it become visible
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to all other work-items in the group. To do this, we will call work_group_barrier()
and pass it the flag CLK_LOCAL_MEM_FENCE.

Between kernel dispatches, all work is guaranteed to be complete and all memory
is guaranteed to be consistent. Then the next kernel launches with the same semantics.
If we assume that the kernels enqueued as 0 and 1 in Figure 5.5 are produced from
the same kernel object, the kernel code and API calls in Listing 5.6 could be expected
to produce the behavior shown in Figure 5.5.

In this case, the behavior we see from the work-items is a simple wrapping
neighborwise addition of elements in local memory, where availability of the data
must be guaranteed before neighbors can read.

| 4

2 // Relevant host program

3/

4

5 cl_mem input = clCreateBuffer(context, CL_MEM_READ ONLY,

6 32xsizeof (float), 0, 0);

7

8 «c¢l_mem intermediate = clCreateBuffer(context, CL_MEM_READ_WRITE,
9 32xsizeof (float), 0, 0);

10

11 cl_mem output = clCreateBuffer(context, CL_MEM_WRITE_ONLY,

12 32xsizeof (float), 0, 0);

13

14 clEnqueueWriteBuffer (queue, input, CL_TRUE, 0, 32xsizeof (float),
15 (void x) hostInput, 0, NULL, NULL);

16

17  clSetKernelArg(kernel, 0, sizeof(cl_mem), (void x*)&input);

18 clSetKernelArg(kernel, 1, sizeof(cl_mem), (void x)&intermediate);
19 clSetKernelArg(kernel, 2, 8xsizeof (float), NULL);

20 size_t localws[1] = {8} ;

21 size_t globalws[1] ={32};

22

23 clEnqueueNDRangeKernel (queue, kernel, 1, NULL,
24 globalws, localws, 0, NULL, NULL);

25

26 clSetKernelArg(kernel, 0, sizeof(cl_mem), (void x)&intermediate);
27 clSetKernelArg(kernel, 1, sizeof(cl_mem), (void =x)&output);

28 clSetKernelArg(kernel, 2, 8xsizeof (float), NULL);

29 clEnqueueNDRangeKernel (queue, kernel, 1, NULL,

30 globalws, localws, 0, NULL, NULL);

32 clEnqueueReadBuffer (queue, output, CL_TRUE, 0, 32xsizeof(float),
33 (void =x)&hostOutput, 0, NULL, NULL);

35 //
36 // Kernel
37 //

39 __kernel void simpleKernel (
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__global float =xa,
__global float =xb,
__local float xlocalbuf ) {

// Cache data to local memory
localbuf[get_local_id(0)] = a[get_global_id (0)];

// Wait until all work—items have read the data and
// it becomes visible
work_group_barrier (CLK_LOCAL_MEM_FENCE) ;

// Perform the operation and output the data
unsigned int otherAddress = (get_local_id(0) + 1) %
get_local_size (0);
b[get_global_id (0)] = localbuf[get_local_id(0)] + localbuf][
otherAddress ];
}

LISTING 5.6
Engueuing two kernels on the same command-queue.

BUILT-IN WORK-GROUP FUNCTIONS

The OpenCL C programming language implements built-in functions that operate
on a work-group basis. As with the barrier operation, these built-in functions must
be encountered by all work-items in a work-group executing the kernel. Thus, if the
work-group function is within a conditional block, all the work-items in the work-
group should have the same result of the conditional evaluation.

The work-group evaluation functions have been defined for all OpenCL C built-
in data types, such as half, int, uint, Tong, ulong, float, and double. We have
followed the terminology in the OpenCL specification, where gentype refers to
the generic data types defined in the OpenCL C programming language. There
are three types of built-in evaluation functions, categorized on the basis of their
functionality:

1. predicate evaluation functions;
2. broadcast functions; and
3. parallel primitive functions (reduce and scan).

PREDICATE EVALUATION FUNCTIONS

The predicate evaluation functions evaluate a predicate for all work-items in the
work-group and return a nonzero value if the associated condition is satisfied. The
signatures of the predicate evaluation functions are as follows:

int work_group_any(int predicate)

int work_group_all(int predicate)
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The function work_group_any () returns a nonzero value if any of the evaluations
within the work-group result in a nonzero value. The function work_group_all()
returns a nonzero value if all of the evaluations within the work-group result in
nonzero values. An example of using the work_group_al1() function is shown in
Listing 5.7.

__kernel void compare_elements(int xinput, intx output)

{
int tid = get_global_id (0);
int result = work_group_all ((input[tid] > input[tid+1]));
output[tid] = result;

}

LISTING 5.7

.
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Examples of using the predicate work-group functions in OpenCL kernels.

BROADCAST FUNCTIONS

The broadcast functions transmit data from one work-item within the work-group to
all other work-items within the work-group. The function signature is overloaded on
the basis of the number of work-group dimensions:

// Broadcast function for a 1D NDRange
gentype work_group_broadcast(gentype x, size_t local_id)

// Broadcast function for a 2D NDRange
gentype work_group_broadcast(gentype x, size_t local_id_x, size_t
local_id_y)

// Broadcast function for a 3D NDRange
gentype work_group_broadcast(gentype x, size_t Tlocal_id_x, size_t
local_id_y, size_t Tlocal_id_z)

Looking at the signatures, we see the value x is the variable to be broadcast by the
work-item identified by the work-item indices specified as 1ocal_id_*. The function
return value will return the broadcast value to each work-item.

PARALLEL PRIMITIVE FUNCTIONS

OpenCL supports two built-in parallel primitive functions: reduce and scan. These
functions are common in many parallel applications, and requiring them to be
implemented per device by the vendor will likely result in much higher performing
code than if they were implemented by a programmer using a general algorithm. The
signatures for the reduce and scan functions are as follows:



130 CHAPTER 5 OpenCL runtime and concurrency model

gentype work_group_reduce_<op>(gentype x)
gentype work_group_scan_inclusive_<op>(gentype x)

gentype work_group_scan_exclusive_<op>(gentype x)

In these functions, the <op> suffix can be replaced with add, min, or max. Therefore,
to find the maximum value of a local array, the following OpenCL C code could be
used:

float max;
max = work_group_reduce_max(local_datalget_Tlocal_id(0)]);

Most parallel programmers will be familiar with the prefix-sum opera-
tion, which can be implemented using work_group_scan_inclusive_add() or
work_group_scan_exclusive_add(). The inclusive and exclusive versions of the
scan operations specify whether or not the current element should be included in the
computation. An inclusive scan of an array generates a new array where each element
i is the sum of the elements up to and including i. Alternatively, an exclusive scan
excludes the current element i. Each work-item provides and is returned the value
corresponding to its linear index within the work-group.

The order of floating-point operations is not guaranteed for the parallel
primitive functions, which can be a concern as floating-point operations are not
associative.

NATIVE AND BUILT-IN KERNELS

OpenCL defines two additional types of mechanisms to enqueue execution on a
compute device besides OpenCL c1_kernel objects. They are known as native
kernels and built-in kernels. Native and built-in kernels both have orthogonal usage
scenarios. Native kernels provide a mechanism to enqueue standard C functions
for execution on a compute device. Built-in kernels are kernels that are specific to
a particular device and provide a mechanism to allow an application developer to
leverage special hardware that may be present on the device.

NATIVE KERNELS

Native kernels are an alternative to callbacks that are more cleanly integrated into
the OpenCL execution model. Native kernels allow standard C functions compiled
with a traditional compiler (rather than OpenCL kernels) to be executed within the
OpenCL task graph, be triggered by events, and trigger further events. Native kernels
can be queued for execution on a device and share memory objects with OpenCL
kernels.

The difference between enqueuing a native kernel versus enqueuing an OpenCL
kernel is that rather than taking a c1_kernel object as an argument, the native kernel
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void* args[5]

cl_mem mem_list[3] void* args_mem_loc[3] 5
buffer1 >  &args[1] » unboxed buffer1
buffer2 >  &args[3] 8

image >  &args[4] » unboxed buffer2
\—> unboxed image
FIGURE 5.6

Example showing OpenCL memory objects mapping to arguments for
clEnqueueNativeKernel () in Listing 5.8.

enqueue function (c1EnqueueNativeKernel ()) takes a function pointer to a standard
C function. The argument list is provided separately along with its size.

cl_int

clEnqueueNativeKernel(
cl_command_queue command_queue,
void (CL_CALLBACK *user_func)(void *)
void *args,
size_t cb_args,
cl_uint num_mem_objects,
const cl_mem *mem_Tlist,
const void **args_mem_Tloc,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list,
cl_event *event)

Regular OpenCL kernels use buffer and image objects passed as kernel arguments,
and it would be useful to pass these to native kernels as well. Passing arguments to
native kernels in OpenCL is done by a process called unboxing. Arguments are passed
to native kernels by passing in a list of memory objects, in the argument mem_11st,
and a list of pointers, args_mem_1oc, storing memory objects at addresses where the
unboxed memory pointers will be placed.

To illustrate the point, consider Listing 5.8, in which a native function foo()
expects an argument list containing five values, where the indices 0 and 2 are set
to integers 5 and 8, respectively, and the indices 1, 3, and 4 are two buffer objects and
an image object. This is shown in Figure 5.6.

// Native function that will be enqueued to device
void foo(veid xargs)

{
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}

cl_command_queue queue = clCreateCommandQueue (...) ;
cl_mem bufferl = clCreateBuffer (...);
cl_mem buffer2 = clCreateBuffer (...);
cl_mem image = clCreateImage2D (...) ;

void xargs[5] = { (veid x)5, NULL, (void =x)8, NULL, NULL };

num_mem_objects = 3;
cl_mem mem_list[3] = { bufferl, buffer2, image };
void xargs_mem_loc[3] = { &args[1], &args[3], &args[4] };

clEnqueueNativeKernel (queue, foo, args, sizeof(args), num_mem_objects,
mem_list, args_mem_loc, 0, NULL, NULL);

LISTING 5.8

Enqueuing a native kernel function foo() to a device.

BUILT-IN KERNELS

Built-in kernels are tied to a particular device and are not built at runtime from
source code in a program object. The common use of built-in kernels is to
expose fixed-function hardware acceleration capabilities or embedded firmware
associated with a particular OpenCL device or custom device. The semantics of
a built-in kernel may be defined outside OpenCL, and hence are implementation
defined.

An example of built-in kernel infrastructure is the motion estimation extension
for OpenCL released by Intel. This extension depends on the OpenCL built-in
kernel infrastructure to provide an abstraction for harnessing the domain-specific
acceleration (for motion estimation in this case) in Intel devices that support
OpenCL.

DEVICE-SIDE QUEUING

In prior versions of OpenCL, commands could be enqueued to a command-queue
only from the host. OpenCL 2.0 has lifted this restriction by defining device-side
command-queues, which allow a child kernel to be enqueued directly from a kernel
executing on a device (referred to as the parent kernel).

The main benefit of a device-side command-queue is that it enables nested
parallelism—a parallel programming paradigm where a thread executing a parallel
task can spawn additional threads to execute additional tasks [1]. Nested parallelism
is commonly seen in applications where the number of threads needed to execute an
algorithm to completion may not be known when the threads are spawned. Nested
parallelism can be contrasted with a single level of fork-join parallelism, where
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FIGURE 5.7

A single-level fork-join execution paradigm compared with nested parallelism thread
execution.

threads are spawned, complete their task, and then exit. The main difference between
single-level fork-join parallelism and nested parallelism is shown in Figure 5.7.
In single-level fork-join parallelism (Figure 5.7), the parallel threads created for
execution simply finish their task and then terminate. In the nested parallelism case
shown in Figure 5.7, two threads create additional threads for execution.

Nested parallelism benefits applications with an irregular or data-driven loop
structure. A common data-driven algorithm is the breadth-first search (BFS) graph
algorithm. The BFS algorithm begins at a root node of a graph and inspects all the
neighboring nodes. Then for each of the neighboring nodes, it inspects their unvisited
neighboring nodes, and so on, until all nodes have been visited. While BFS is being
parallelized, the number of new vertices that are discovered by each vertex is not
known when the application is started. Device-side enqueuing allows application
developers to implement OpenCL kernels with nested parallelism in a more natural
manner without additional host-device communication.

To summarize, the main benefits of device-side queues are as follows:

* Kernels can be enqueued directly from the device. This removes the requirement
of synchronization or communication with the host, and potentially eliminates
expensive data transfers.

* Expressing algorithms naturally. Previously, algorithms containing recursion,
irregular loop structures, or other constructs that do not fit a uniform single level
of parallelism had to be redesigned for OpenCL.

e By their expressing algorithms naturally, finer granularities of parallelism may
be exposed to schedulers and load balancers dynamically. This allows devices to
efficiently adapt in response to data-driven decisions or workloads.
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In order to enqueue a child kernel for execution, a kernel may make a call to
the OpenCL C built-in function enqueue_kernel (). It is very important to note
that enqueue_kernel () will enqueue a kernel for each work-item that executes the
function. The following is one of four variations of the function signature:

int

enqueue_kernel(
queue_t queue,
kernel_enqueue_flags_t flags,
const ndrange_t ndrange,
void (“block)(void))

From the signature, we can see that as with host-side commands, a device-side
enqueue also requires a command-queue. The f1ags parameter is used to specify
when the child kernel should begin execution. There are three possible options with
the following semantics:

* CLK_ENQUEUE_FLAGS_NO_WAIT: The child kernel can begin executing
immediately.

* CLK_ENQUEUE_FLAGS_WAIT_KERNEL: The child kernel must wait for the parent
kernel to reach the ENDED before executing. In this case, the parent kernel has
finished executing. However, other child kernels could still be executing on the
device.

* CLK_ENQUEUE_FLAGS_WAIT_WORK_GROUP: The child kernel must wait for the
enqueuing work-group to complete its execution before starting.

It is also important to note that the parent kernel cannot wait for the child kernel to
complete execution. A parent kernel’s execution status is considered to be “complete”
when the parent kernel itself and all its child kernels have completed execution. The
execution status of a parent kernel will be CL_COMPLETE if this kernel and all its child
kernels complete execution successfully. The execution status of the kernel will be an
error code (given by a negative integer value) if it or any of its child kernels encounter
an error, or are abnormally terminated.

Similarly to clEnqueueNDRangeKernel(), enqueue_kernel() also requires a
parameter that defines the dimensions of the NDRange (specified by parameter
ndrange). As with the host-side call, providing a global offset and work-
group size is optional. Creating a variable of type ndrange_t to describe the
execution unit configuration is done using permutations of the following built-in
functions:

ndrange_t ndrange_<N>D(
const size_t global_work_size[<N>]),

ndrange_t ndrange_<N>D(
const size_t global_work_size[<N>T,
const size_t local_work_size[<N>1])
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ndrange_t ndrange_<N>D(

const size_t global_work_offset[<N>],
const size_t global_work_size[<N>],
const size_t Tlocal_work_size[<KN>])

where <N> is 1, 2, or 3. For example, creating a two-dimensional NDRange with
dimensions 800 x 600 could be performed using

size_t globalSize[2] = {800, 600};
ndrange_t myNdrange = ndrange_2D(globalSize);

Finally, the last parameter of enqueue_kernel(), block, is the kernel that
will be enqueued. The format for specifying the kernel is defined using Clang
blocks. The following two sections describe in detail how device-side command-
queues are utilized, and how a nested kernel is specified using the block
syntax.

As with host API calls, enqueue_kernel () returns an integer status that indicates
whether or not the enqueue succeeded. The function returns CLK_SUCCESS on success
and CLK_ENQUEUE_FAILURE on failure. If the programmer desires a more specific error
message regarding a failing enqueue, passing the option “-g” to c1BuildProgram() or
c1CompileProgram() will enable finer-granularity error reporting, with values such
as CLK_INVALID_NDRANGE or CLK_DEVICE_QUEUE_FULL.

CREATING A DEVICE-SIDE QUEUE

A device-side command-queue needs to be created on the host using the same
API call as for host-side queues: c1CreateCommandQueueWithProperties(). To
specify that a queue should be created as a device-side queue, the properties
parameter should be passed the parameter CL_QUEUE_ON_DEVICE. Additionally,
when a device queue is being created, the specification requires that the argument
CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE is also passed (using the OR-bitwise
operator), since a device queue is treated as an out-of-order queue in OpenCL 2.0.
The command-queue object can then be passed to the kernel as an argument, which
will be specified as type queue_t in the kernel signature. An example showing a
kernel with a command-queue parameter is provided in Listing 5.9.

//

// Relevant host program
//

// Specify the queue properties

cl_command_queue_properties properties =
CL_QUEUE_ON_DEVICE |
CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE;

// Create the device—side command—queue
cl_command_queue device_queue;
device_queue = clCreateCommandQueueWithProperties (
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13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

context ,
device ,
&properties ,
NULL) ;

clSetKernelArg (kernel , 0, sizeof(cl_command_queue), &device_queue);

//
// Kernel
//

__kernel
void foo(queue_t myQueue, ...)

{

}
LISTING 5.9

Passing a device-side command-queue as a kernel argument.

Optionally, an additional argument, CL_QUEUE_ON_DEVICE_DEFAULT, can be sup-
plied to c1CreateCommandQueueWithProperties(), which will make the command-
queue the “default” device-side command-queue for the device. This provides a
simplification for the programmer, as the default queue can be accessed within a
kernel using a built-in function, saving the developer the effort of passing the queue
as a kernel argument.

ENQUEUING DEVICE-SIDE KERNELS

When enqueuing kernel execution commands using the host API
(c1EnqueueNDRangeKernel()), we must first set the kernel arguments with
cl1SetKernelArg() before enqueuing the kernel onto a command-queue. When we
enqueue kernels into a device-side command-queue with enqueue_kernel (), there
is no equivalent mechanism to set arguments. A mechanism is required that can pass
kernels and their arguments through the same signature. To perform this operation,
OpenCL has chosen to represent kernels and kernel state using Clang block syntax.

Clang blocks have been introduced to the OpenCL specification as a method to
encapsulate OpenCL kernels and their arguments in order to enqueue them onto
device queues. Blocks are a way to pass code and scope as data. They are known
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in other languages as closures and anonymous functions. The block type is defined
using a result value type and a list of parameter types. With this syntax, the declaration
of a block ends up looking very similar to the declaration of a function type. The A
operator is used to declare a block variable (where the block references a defined
kernel) or to indicate the beginning of ablock 1iteral (where the body of the kernel
is coded directly in the declaration).

A simple example showing both declaration variations is provided in

Listing 5.10.
1 __kernel
2 void childO_kernel ()
34
4 printf (”ChildO: Hello, world!\n”);
5 1}
6
7 void childl_kernel ()
8
9 printf (”Childl: Hello, world!\n”);
10 }
11
12 __kernel
13  void parent_kernel( )
14 |
15 kernel_enqueue_flags_t child_flags = CLK_ENQUEUE_FLAGS_NO_WAIT;
16 ndrange_t child_ndrange = ndrange_I1D(1);
17
18 // Enqueue the child kernel by creating a block variable
19 enqueue_kernel (get_default_queue (), child_flags , child_ndrange,
20 A childO_kernel ();});
21
22 // Create block variable
23 void ("childl_kernel_block)(void) = ~{childl_kernel ();};
24 // Enqueue kernel from block variable
25 enqueue_kernel (get_default_queue (), child_flags , child_ndrange,
26 child1l_kernel_block);
27
28 // Enqueue kernel from a block literal
29 // The block literal is bound by ""{” and ”}”
30 enqueue_kernel (get_default_queue (), child_flags , child_ndrange,
31 A{printf (”Child2: Hello, world!\n”;});
32}

LISTING 5.10
A simple example showing child-kernel enqueues using block syntax.

Listing 5.10 shows three syntax options for enqueuing a kernel onto a device
queue. However, none of the kernels we have shown required arguments to be
passed from parent to child. With the block syntax, arguments are provided when
the block is defined. Recall the kernel for a simple vector addition program we saw in
Chapter 3:
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__kernel
void vecadd(__global int *A, __global int *B, __global int *C)
{

int idx = get_global_id(0);

CLidx] = A[idx] + BLidx]1;

As atoy example to illustrate argument passing, we can modify the vector addition
so that the parent enqueues a child kernel to execute the work. Listing 5.11 shows
argument passing when we are creating a block variable, and Listing 5.12 shows
argument passing when we are using a block literal. Notice that in Listing 5.11
arguments are provided similarly to standard function calls. However, when we
are using a literal in Listing 5.12, no arguments are passed explicitly. Instead, the
compiler establishes a new lexical scope within the parent for the literal. While global
variables are bound in the expected manner, private and local data must be copied.
Note that pointers to local or private address spaces are invalid, as they do not have
scope outside their work-group or work-item, respectively. However, creation of local
memory regions for child kernels is supported and is discussed next. Because the
return type of a kernel is always void, it never needs to be explicitly defined when
declaring a block.

__kernel
void child_vecadd(__global int *A, __global int xB, __global int xC)

{
int idx = get_global_id (0);

Clidx] = A[idx] + B[idx];

__kernel
void parent_vecadd(__global int *xA, __global int xB, __global int %C)

{
kernel_enqueue_flags_t child_flags = CLK_ENQUEUE FLAGS_NO_WAIT;
ndrange_t child_ndrange = ndrange_ID(get_global_size (0));

// Only enqueue one child kernel
if (get_global_id(0) == 0) {

enqueue_kernel (
get_default_queue (),
child_flags ,
child_ndrange ,
A child_vecadd (A, B, C);}); // Pass arguments to child

}
LISTING 5.11

Passing arguments using block syntax.
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1 __kernel

2 void parent_vecadd(__global int xA, __global int xB, __global int %C)

3

4 { kernel_enqueue_flags_t child_flags = CLK_ENQUEUE_FLAGS_NO_WAIT;

5 ndrange_t child_ndrange = ndrange_I1D(get_global_size (0));

6

7 // Only enqueue one child kernel

8 if (get_global_id(0) == 0) {

9

10 // Enqueue kernel from block literal

11 enqueue_kernel (

12 get_default_queue (),

13 child_flags ,

14 child_ndrange ,

15 AMint idx = get_global_id(0); C[idx] = A[idx] + B[idx];”;});

16 )

17}
LISTING 5.12
Accessing arguments from lexical scope.
Dynamic local memory
When setting arguments using the host API, we can dynamically allocate local mem-
ory for a kernel by providing a NULL pointer to c1SetKernelArg(). Since we do not
have a similar mechanism for setting child-kernel arguments, the enqueue_kernel ()
function has been overloaded:
int
enqueue_kernel (

queue_t queue,

kernel_enqueue_flags_t flags,

const ndrange_t ndrange,

void (“block)(local void *, ...),

uint size0, ...)

To create local memory pointers, the specification defines the block argument
to be a variadic function (a function that receives a variable number of arguments).
Each argument must be of type 1ocal void *. Notice that in the declaration that
this argument list replaces the existing void type. The enqueue_kernel () function is
also variadic, ending with a variable number of parameters that represent the size of
each local array. Listing 5.13 modifies the toy vector addition example to use local
memory in order to illustrate the use of dynamic local memory allocation with block
syntax.

1 // When a kernel has been defined like this, then it can be

2 // enqueued from the host as well as from the device

3 __kernel

4 void child_vecadd(__global int *A, __global int xB, __global int xC,
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5 __local int xlocal_A, __local int xlocal_B,
__local int =xlocal_C)

6 f

7 int idx = get_global_id (0);

8 int local_idx = get_local_id(0);

9

10 local_A[local_idx] = A[idx];

11 local_B[local_idx] = B[idx ];

12 local_CJ[local_idx] = local_AJ[local_idx] + local_BJ[local_idx];

13 Clidx] = local_CJ[local_idx ];

14 1}

15

16 __kernel

17 void parent_vecadd(__global int* A, __global int*B, __global int* C)

18 {

19 kernel_enqueue_flags_t child_flags = CLK _ENQUEUE_FLAGS_NO_WAIT;

20 ndrange_t child_ndrange = ndrange_1D(get_global_size (0));

21

22 int local_A_mem_size = sizeof (int)x1 ;

23 int local_B_mem_size = sizeof (int)xl ;

24 int local_C_mem_size = sizeof (int)xl ;

25

26 // Define a block with local memory for each local memory

argument of the kernel

27 void (Achild_vecadd_blk)(local int %, local int x,

28 local int %) =

29 A(local int xlocal_A, local int % local_B, local int x

30 local_C)

31 {

32 child_vecadd (A, B, C, local_A, local_B,

33 local_C);

34 }s

35

36 //Only enqueue one child kernel

37 if (get_global_id (0)==0)

38 {

39 // Variadic enqueue_kernel function takes in local

memory size of each argument in block

40 enqueue_kernel (

41 get_default_queue (),

42 child_flags,

43 child_ndrange,

44 child_vecadd_blk,

45 local_A_mem_size,

46 local_B_mem_size,

47 local_C_mem_size);

48 }

49 1}

LISTING 5.13

Allocating dynamic local memory within a child kernel.
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Enforcing dependencies using events
When introducing device-side command-queues, we mentioned that the queues
always operate as out-of-order queues. This implies that there must be some mech-
anism provided to enforce dependency requirements. As on the host, events are
used to satisfy this requirement when kernels are enqueued directly from a device.
Once again, the enqueue_kernel () function is overloaded to provide this additional
functionality:
int
enqueue_kernel (

queue_t queue,

kernel_enqueue_flags_t flags,

const ndrange_t ndrange,

uint num_events_in_wait_list,

const clk_event_t *event_wait_list,

clk_event_t *event_ret,

void ("block)(void))

The reader should notice that the three additional parameters, num_events_in_
wait_1ist,event_wait_l11ist, and event_ret, mirror event-related parameters from
the host API functions.

The final signature of enqueue_kernel () provides support for events and local
memory to be utilized together:

int enqueue_kernel(
queue_t queue,
kernel_enqueue_flags_t flags,
const ndrange_t ndrange,
uint num_events_in_wait_1list,
const clk_event_t *event_wait_list,
clk_event_t *event_ret,

void (“block)(local void *, ...),
uint size0, ...)
__kernel

void childO_kernel ()
{

printf (”Child0: I will run first.\n”);
}

void childl_kernel ()

{
printf (”Childl: I will run second.\n”);

}

__kernel

void parent_kernel( )

{
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kernel_enqueue_flags_t child_flags = CLK _ENQUEUE _FLAGS_NO_WAIT;
ndrange_t child_ndrange = ndrange_1D(1);

clk_event event;

// Enqueue a kernel and initialize an event
enqueue_kernel (get_default_queue (), child_flags , child_ndrange,
0, NULL, &event, ~{childO_kernel();});

// Pass the event as a dependency between the kernels
enqueue_kernel (get_default_queue (), child_flags , child_ndrange,
1, &event, NULL, ~{childl_kernel();});

// Release the event. In this case, the event will be released
// after the dependency is satisfied (second kernel is ready
// to execute).

release_event(event);

}
LISTING 5.14

An example showing device-side enqueuing with events used to specify dependencies.

SUMMARY

In this chapter, we discussed a number of topics related to the runtime and execution
model. The task-based execution that the runtime provides is based on a queuing
model and a dependency mechanism provided by events. Events are also used for
profiling OpenCL commands and executing user-defined callbacks associated with a
command. The kernel execution domain comprises a hierarchical grouping of work-
items into work-groups and NDRanges. A new feature of OpenCL 2.0 is the ability
for devices to enqueue work into device-side queues. We introduced the method of
generating kernel-instances from within a device using block syntax. While execution
ordering and basic synchronization were discussed in this chapter, the following
chapters describing the host-side and device-side memory models dive deeper into
execution unit communication and synchronization.
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CHAPTER

OpenCL host-side
memory model

In order to be portable across a variety of hardware, OpenCL provides a well-defined
abstract memory model. The abstract memory model is general enough to map to
a wide range of devices, yet provides strong enough memory ordering guarantees to
express classes of parallelism important to developers. Providing an abstract memory
model also serves as a clean interface between programmers and hardware. Using
the abstract memory model, programmers can write code that follows the rules of
the model without being concerned about the memory system of the device that will
eventually execute the kernel. Similarly, vendors implementing the runtime can map
the abstract memory model to their hardware, and be sure that programmers will
interact with it using only specific, predefined operations.

Previous chapters have already touched on some aspects of OpenCL’s memory
model. For instance, we have seen the use of memory object types such as buffers
and images in the examples in Chapters 3 and 4. We have also been introduced
to memory spaces such as global and local memory. This chapter and Chapter 7
will discuss the memory model in more detail. We will present the memory model
as two parts, which we refer to as the host-side memory model and the device-
side memory model. The host-side memory model is relevant within the host pro-
gram, and involves allocation and movement of memory objects. The device-side
memory model discussed in the next chapter is relevant within kernels (written
in OpenCL C), and involves running computations using memory objects and
other data.

OpenCL devices such as graphics processing units (GPUs) and other accelerators
frequently operate with memory systems separate from the main memory associated
with the computer’s primary central processing unit (CPU). By default, OpenCL’s
host-side memory model supports a relaxed consistency in which global synchroniza-
tion of memory is defined only on the completion of events. An important addition
to the OpenCL 2.0 specification is optional support of consistency guarantees that
closely mirror those of C/C++11 and Java.

To support systems with multiple discrete memories and various consistency
models, OpenCL’s memory objects are defined to be in a space separate from the
host CPU’s memory. Any movement of data in and out of OpenCL memory objects

Heterogeneous Computing with OpenCL 2.0. http://dx.doi.org/10.1016/B978-0-12-801414-1.00006-5
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from a CPU pointer must be performed through application programming interface
(API) functions. It is important to note that OpenCL’s memory objects are defined
within a context and not on a device. That is, in general, moving data in and out of a
buffer need not move data to any specific device. It is the job of the runtime to ensure
that data is in the correct place at the correct time.

This chapter begins by describing the types of memory objects defined by
OpenCL, followed by a description of their management using the host API.

MEMORY OBJECTS

OpenCL defines three types of memory objects—buffers, images, and pipes—that
are allocated using the host API. Buffers and images serve as data storage that is
accessible from the host and randomly accessible from within a kernel. Unlike buffers
and images, pipes serve only as a first in, first out (FIFO) mechanism between kernels.
Data from within a pipe cannot be accessed by the host.

Buffer objects are one-dimensional arrays in the traditional CPU sense, and are
similar to memory allocated through malloc() in a C program. Buffers can contain
any scalar data type, vector data type, or user-defined structure. The data stored in
a buffer is sequential, such that the OpenCL kernel can access it using pointers in a
random access manner familiar to a C programmer.

Image objects take a different approach. The data layout transformations involved
in optimizing image access make it difficult to define pointer access to this data
because the relationship of one memory location to another becomes opaque to
the developer. As a result, image structures are completely opaque not only to the
developer but also to the kernel code, accessible only through specialized access
functions. Because GPUs are designed for processing graphics workloads, they are
heavily optimized for accessing image data. This has three main advantages:

1. GPU cache hierarchies and data flow structures are designed to optimize access
to image-type data.

2. GPU drivers optimize data layouts to support the hardware in providing efficient
access to the data, particularly when two-dimensional access patterns are used.

3. Image-access hardware supports sophisticated data conversions that allow data
to be stored in a range of compressed formats.

The remainder of this section describes each type of memory object in more detail.

BUFFERS

Buffer objects are similar to arrays allocated using malloc(), so their creation is
relatively simple. At the simplest level, creation requires a context in which to create
the buffer, a size, and a set of creation flags. The API call c1CreateBuffer() is used
to create a buffer object.
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cl_mem

clCreateBuffer(
cl_context context,
cl_mem_flags flags,
size_t size,
void *host_ptr,
cl_int *err)

The function returns a buffer object, requiring the error code to be returned
through a variable passed by reference as the last parameter. The flags parameter
allows various combinations of read-only/write-only data access and allocation
options. For example, in the following code, we create a read-only buffer that will
use the same storage location as host array a, which is of the same size as the buffer.
We will discuss allocation options (e.g., CL_MEM_USE_HOST_PTR) in more detail later
in this chapter. Any error value will be returned in err, which can be any of a range of
error conditions defined in the specification. As we have seen, CL_SUCCESS is returned
by OpenCL functions upon successful completion.

cl_int err;
int all6];

cl_mem newBuffer = clCreateBuffer(
context,
CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR,
16*sizeof(int),
a,
&err);

if( err != CL_SUCCESS ) {
// Handle error as necessary

OpenCL also supports subbuffer objects that allow us to divide a single buffer into
multiple smaller buffers that may overlap and that can be read, written, copied, and
used in much the same way as their parent buffer object. Note that overlapping sub-
buffers and the combination of subbuffers and their parent buffer objects constitutes
aliasing, and behavior is undefined in these circumstances.

IMAGES

In OpenCL, images are storage objects that differ from buffers in three ways.
Images are
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opaque types that cannot be viewed directly through pointers in device code;
2. multidimensional structures; and

3. limited to a range of types relevant to graphics data rather than being free to
implement arbitrary structures.

Image objects primarily exist in OpenCL to offer access to special function
hardware on graphics processors that is designed to support highly efficient access
to image data. These special function units do not always support the full range of
access modes necessary to enable buffer access, but they may provide additional
features such as filtering in hardware in a highly efficient manner. Filtering operations
enable efficient transformations of image data based on collections of pixels. These
operations would require long instruction sequences with multiple read operations,
but can be performed very efficiently in dedicated hardware units.

Image data is accessed through specialized access functions in the kernel code,
which are discussed Chapter 7 with the device-side memory model. Access to images
from the host is not significantly different from access to buffers, except that all
functions are expanded to support addressing in multiple dimensions. Thus, for
example, clEnqueueReadImage() is more like c1EnqueueReadBufferRect() than
clEnqueueReadBuffer().

The major difference between buffers and images from the host is in the formats
that images can support. Whereas buffers support the basic OpenCL types and
structures made from them, image formats are more subtle. Image formats are a com-
bination of a channel order and a channel type. Channel order defines the number of
channels and the order in which they occur—for example, CL_RGB, CL_R, or CL_ARGB.
Channel type is selected from a wide range of storage formats from CL_FLOAT to
less-storage-hungry formats such as CL_UNORM_SHORT_565, which packs into a single
16-bit word in memory. When they are accessed from kernel code, reading from any
of these formats results in upconversion to a standard OpenCL C type. The list of
image formats can be queried by the API call c1GetSupportedImageFormats().

Image objects are created using the API call c1CreatelImage(), which has the
following signature:

cl_mem

clCreatelmage (
cl_context context,
cl_mem_flags flags,
const cl_image_format *image_format,
const cl_image_desc *image_desc,
void *host_ptr,
cl_int *errcode_ret)

In the creation of an image, the context, flags, and host_ptr parameters are
the same as in the creation of a buffer. The image format (image_format) and image
descriptor (image_desc) parameters define image dimensions, data format, and data
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layout. These structures are described in detail in Chapter 4 along with an example
initializing them for an image object.

PIPES

OpenCL 2.0 provides a new type of memory object called a pipe. A pipe organizes
data in an FIFO structure, which facilitates the passing of processed data from one
kernel to another. With the relaxed memory model defined in prior versions of the
standard, this operation would not be possible, because there were no guarantees
about the state of memory before a kernel was complete. The implication of a
pipe is that within a device two kernels must be able to share a region of memory
and guarantee protection of some shared state. This identifies an important trend
in processors, as any device that can support pipes must at least have the ability
to implement atomic operations on data shared between kernels, and must have a
memory consistency model that supports acquire and release semantics.

One can imagine that given these device capabilities programmers could imple-
ment their own version of a pipe using a buffer. While this is feasible given the
OpenCL 2.0 memory model, it would require a large amount of programming effort.
Pipes are thus a nice abstraction that enables producer-consumer parallelism, and
simplifies programmer effort in other scenarios that were difficult to program in prior
versions of OpenCL (such as packing data when each work-item generates a variable
number of outputs). The use of a pipe when running the producer and consumer on the
same device also allows vendors to potentially map the pipe to specialized memories
that may be lower latency than main memory. Pipe objects are not allowed to be read
from or written to the host, so accesses to pipe objects are covered when we describe
the device-side memory model.

The data in a pipe are organized as packets, where a packet can be any supported
OpenCL C or user-defined type. The API to create a pipe is c1CreatePipe(), with
the following signature:

cl_mem
clCreatePipe(
cl_context context,
cl_mem_flags flags,
cl_uint pipe_packet_size,
cl_uint pipe_max_packets,
const cl_pipe_properties *properties,
cl_int *errcode_ret)

When a pipe is created, the packet size (pipe_packet_size) and the maximum
number of packets (pipe_max_packets) must be supplied. As with other calls to
create memory objects, there is a parameter to pass flags related to object allo-
cation. In the case of a pipe, the only valid option related to access capability is
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CL_MEM_READ_WRITE, which is the default. Further, since a pipe cannot be accessed
by the host, CL_MEM_HOST_NO_ACCESS will also be used implicitly, even if this is not
specified by the programmer.

MEMORY MANAGEMENT

When OpenCL creates memory objects, they are allocated in the global memory
space that is visible to all devices in a context. Although OpenCL provides the
abstraction of a single global memory, in reality many heterogeneous systems have
multiple devices that may have restrictions about sharing address spaces and may
have physically separate memories—as is the case in systems with a CPU and a
discrete GPU. In these cases, the runtime may need to create multiple copies of the
data for each device over the course of execution. Even in shared-memory systems
where data does not need to be replicated between memories, almost all memory
accesses by a device replicate data in a cache hierarchy or in hardware buffers. When
data is replicated, it is possible that a copy on one device is inconsistent with memory
that is visible to another device. Given the potential for replicated, nonconsistent
views of a memory object, how do we ensure that we are working with the latest
copy of data to obtain the expected results?

Later, we will discuss fine-grained memory ordering and visibility when dealing
with shared virtual memory (SVM), but for now we will assume that we are working
with memory objects with a default (non-SVM) allocation. When a default memory
object is used, OpenCL’s relaxed consistency model does not allow multiple kernels
to modify the object at the same time. No modification is guaranteed to be visible
until after the kernel completes execution, and since the runtime can create multiple
copies of a memory object, two kernels updating different copies of the same object
would likely result in the updates from one being completely masked by the other. If
we take this a step further, the result of reading from a memory object while another
kernel is modifying it is undefined, since there are no guarantees about when the
data will become visible before the kernel completes execution. Aside from these
responsibilities of the programmer, it is up to the runtime to ensure that data is in the
correct place at the correct time. This combination of a relaxed memory model and
the runtime’s responsibility of memory management allows efficient execution with
high portability and minimal programmer effort.

In addition to portability, the designers of the OpenCL specification also under-
stood that in practice transfers are inefficient, and moving data only on demand
would likely lead to poor performance. Therefore, OpenCL provides commands
that allow the programmer to suggest how and where data is allocated, and where
and when the data should be moved. Depending on the system that is running
the OpenCL application, these choices may have a large impact on performance.
The following two sections describe allocation and movement of memory objects—
without and with memory allocation flags, respectively. The API calls that we discuss
are based on buffer types, although in general operations described for buffers
have synonymous implementations for images. Pipes are distinct from images and
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buffers, as the host does not have the ability to access the memory space allocated
for a pipe.

MANAGING DEFAULT MEMORY OBJECTS

Recall that when a memory object is created, the call to create the object (e.g.,
clCreateBuffer()) takes a parameter called f1ags, and another called host_ptr.
The signature of c1CreateBuffer() is listed again below for convenience:

cl_mem

clCreateBuffer(
cl_context context,
cl_mem_flags flags,
size_t size,
void *host_ptr,
cl_int *errcode_ret)

Some options passed to flags tell the runtime how and where the programmer
would like the buffer’s space to be allocated, and host_ptr can be used either to
initialize the buffer or directly for storage. This section will describe working with
memory objects when no allocation-related options are passed to f1ags, although we
will discuss the option for initializing memory objects. The next section will describe
the programmer’s options that can affect where memory is physically allocated.

By default, OpenCL does not specify where the physical storage allocated for a
memory object must reside—it specifies simply that the data is located in “global
memory.” For example, the runtime could decide to allocate space in CPU main
memory or in video memory on a discrete GPU. Most likely it will create multiple
allocations for the data and migrate the latest copy as needed.

When an object is created, it has the option of being initialized with host data by
providing a valid pointer to host_ptr, and specifying the flag CL_MEM_COPY_HOST_PTR
to flags. This combination of parameters will create a new allocation for the buffer
and copy the data provided by host_ptr. Since the API call to create the buffer does
not generate an event, we can assume that a copy of the data in host_ptr is complete
when c1CreateBuffer() returns. Figure 6.1 shows how the runtime may choose to
migrate data if a buffer is initialized during creation, passed as an argument to a kernel,
and then read back after the kernel execution.

In general, it is inefficient to move data allocated on one device to another
device—in Chapter 8, we will describe the relative memory bandwidths in a modern
CPU and GPU, and compare the interconnects used when transferring data. To allow
programmers to perform data transfers as efficiently as possible, OpenCL provides a
number of API calls dedicated to moving data in different ways. Keep in mind that the
optimal choice will depend both on the algorithm and on the system characteristics.

The first set of commands that we will discuss are intended to be used to
perform an explicit copying of data from the host to a device or vice versa,
as shown in Figure 6.2. These commands are clEnqueueWriteBuffer() and
clEnqueueReadBuffer (). The signature of c1EnqueuelriteBuffer() is as follows:
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FIGURE 6.1
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An example showing a scenario where a buffer is created and initialized on the host, used
for computation on the device, and transferred back to the host. Note that the runtime
could have also created and initialized the buffer directly on the device. (a) Creation and
initialization of a buffer in host memory. (b) Implicit data transfer from the host to the device
prior to kernel execution. (c) Explicit copying of data back from the device to the host

pointer.
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Data movement using explicit read-write commands. (a) Creation of an uninitialized buffer
in device memory. (b) Explicit data transfer from the host to the device prior to execution.
(c) Explicit data transfer from the device to the host following execution.
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cl_int

clEnqueuelriteBuffer(
cl_command_queue command_queue,
cl_mem buffer,
cl_bool blocking_write,
size_t offset,
size_t size,
const void *ptr,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list,
cl_event *event)

The signature of clEnqueueReadBuffer() is

clEnqueueWriteBuffer(), except that blocking_write
blocking_read. In the signature, a transfer will occur between the buffer and
the host pointer ptr. The write call specifies a copy from the host to the device
(technically just to global memory), and the read call specifies a copy from the device
to the host. Notice that the signature includes a command-queue parameter. This is
slightly awkward as there is no way to explicitly initialize a memory object after
creation without also having to specify a target device. However, for most applications
the programmer knows which device the data will target, and specifying a command-
queue allows the runtime to target a device directly and avoid an additional copy.
This design also allows the runtime to begin to transfer the data much sooner than if
it had to wait until it had processed a kernel-execution command that required use of

the buffer on a specific device.

replaced with

If the programmer only wants to copy certain bytes to or from the buffer, the
parameters offset and size can be used to specify the offset in the buffer to begin
the copying and the number of bytes to copy, respectively. Notice that ptr is the
starting location on the host for reading and writing data. The offset parameter only
refers to the offset within the buffer object. It is up to the programmer to have ptr

point to the desired starting location.

These data transfer functions are intended, like the rest of the OpenCL API,
to be used asynchronously. That is, if we call c1EnqueueReadBuffer(), we cannot
expect to be able to read the data from the host array until we know that the read
has completed—through the event mechanism, a c1Finish() call, or by passing
CL_TRUE to c1EnqueueReadBuffer() to make it a blocking call. Thus, for example,
the following host code sequence does not guarantee that the two printf() calls A
and B will generate different values even if outputBuffer’s content would suggest
that it should. The printf () of C is the only point in the code where the printed value

is guaranteed to be that copied from outputBuffer.

int returnedArray[16];
cl_mem outputBuffer;
cl_event readEvent;
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// Some code that fills the returned array with 0s and invokes kernels
// that generates a result in outputBuffer
printf( "A: %d\n", returnedArray[3] );
clEnqueueReadBuffer(

commandQueue,

outputBuffer, /* buffer */

CL_FALSE, /* nonblocking read */

0,

sizeof(int)*16,

returnedArray, /* host ptr */

0,

0,

&readEvent );

printf( "B: %d\n", returnedArray[3] );
clWaitForEvents(l, &readEvent);
printf( "C: %d\n", returnedArray[3] );
)))

This is a vital point about OpenCL’s memory model. Changes to memory are
not guaranteed to be visible, and hence memory is not guaranteed to be consistent,
until an event reports that the command’s execution has finished (we will discuss
the differences with SVM later). This works both ways: in a transfer between a
host pointer and a device buffer, you cannot reuse the data pointed to by the host
pointer until you know that the event associated with the asynchronous copying of
data into the device buffer has finished. Indeed, a careful reading of the OpenCL
specification suggests that this is because buffers are associated with the context and
not with a device. A clEnqueueliriteBuffer() enqueue, even on completion, does
not guarantee that data have been moved to the device, and guarantees only that it has
been moved out of the host pointer.

Unlike other API calls in OpenCL, data transfer calls generally allow us to specify
synchronous execution. Had we replaced the previous call with

clEnqueueReadBuffer(
commandQueue,
outputBuffer,
CL_TRUE, /* blocking read */
0,
sizeof(int)*16,
returnedArray,
0,
0,
&readEvent );
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execution of the host thread would stall at the call to c1EnqueueReadBuffer () until
the copying finishes and all data is visible to the host.

In addition to transferring data between the host and the device, OpenCL
provides a command, clEnqueueMigrateMemObjects(), to migrate data from
its current location (wherever that may be) to a specified device. For example,
if a buffer is created and initialized by passing CL_MEM_COPY_HOST_PTR to
clCreateBuffer(), clEnqueueMigrateMemObjects() can be used to explicitly
transfer the data to the device. It can also be used to transfer data between devices if
an application is utilizing more than one device for computation. Notice that neither
of these goals could be accomplished efficiently with c1EnqueueReadBuffer() and
clEnqueuekWriteBuffer(), since both require the transfer to begin or end at the host.
The signature of c1EnqueueMigrateMemObjects() is as follows:

cl_int

clEnqueueMigrateMemObjects(
cl_command_queue command_queue,
cl_uint num_mem_objects,
const cl_mem *mem_objects,
cl_mem_migration_flags flags,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list,
cl_event *event)

Unlike previous data transfer commands, c1EnqueueMigrateMemObjects() takes
an array of memory objects, allowing multiple objects to be migrated with a single
command. As with all c1Enqueue calls, the event produced should either be passed
as a dependency to any dependent commands, or be queried directly for completion.
When the event’s status has been set to CL_COMPLETE, the memory objects will be
located on the device associated with the command-queue that was passed as the
argument to the command_queue parameter.

Aside from explicitly telling the runtime where memory objects should be
migrated, this command has another subtle performance implication. If the program-
mer is able to enqueue this command such that it is processed during an unrelated
operation (such as a kernel execution that does not include any of the specified
memory objects), migration can potentially overlap the former operation and hide
the transfer latency. Note that hiding the transfer latency can also occur in a similar
manner with calls to cTEnqueuelriteBuffer() and c1EnqueueReadBuffer().

For migrating memory objects, the specification also provides a flag, CL_MIGRATE_
MEM_OBJECT_HOST, that tells the runtime that the data should be migrated to the host.
If CL_MIGRATE_MEM_OBJECT_HOST is supplied, the command-queue passed to the
function will be ignored.
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MANAGING MEMORY OBJECTS WITH ALLOCATION OPTIONS

The API calls described in the previous section were used to tell the OpenCL runtime
to copy data between the host and a device, or to migrate data to a certain device.
Alternatively, this section describes how the host and the device can directly access
data that is physically located in the other’s memory.

OpenCL provides two mechanisms for the programmer to specify that a memory
object should be physically allocated in a place that allows the data to be mapped into
the host’s address space. Providing the option CL_MEM_ALLOC_HOST_PTR to flags in
clCreateBuffer() tells the runtime to allocate new space for the object in “host-
accessible” memory, and CL_MEM_USE_HOST_PTR tells the runtime to use the space
pointed to by host_ptr directly. Since they represent two different allocation options,
these flags are mutually exclusive and cannot be used together for the same memory
object. Note that “host-accessible memory” is intentionally vague, and could include
main memory connected to the host processor or a region of device memory that can
be mapped into the host’s address space.

As with default memory objects, the flag CL_MEM_COPY_HOST_PTR can be used
with CL_MEM_ALLOC_HOST_PTR to allocate host-accessible memory and initialize it
immediately. However, CL_MEM_COPY_HOST_PTR and CL_MEM_USE_HOST_PTR cannot
be used together, as the argument passed to host_ptr will represent a pre-existing
allocation, and it does not make sense to initialize it with itself.

It would be reasonable to assume that by specifying an option to allocate data in
host-accessible memory that the data would be allocated in CPU main memory, and
the compute device would access the data directly from there. In fact, when either
of these flags is provided, this is what will occur on some systems. In a system with
a CPU and a discrete GPU, this scenario would send GPU accesses to the memory
object across the PCI Express bus. When a device accesses data directly from the
host’s memory in this way, the data is often referred to as zero-copy data.

Although using CL_MEM_USE_HOST_PTR or CL_MEM_ALLOC_HOST_PTR may result
in the creation of zero-copy data on the host, it is not explicitly required by the
specification. It is completely valid for the runtime to create storage in CPU memory
and then copy it to device memory for a kernel execution. In this scenario, a discrete
GPU would be able to access the buffer directly from its own video memory. In fact, if
CL_MEM_ALLOC_HOST_PTRis used, itis also completely valid for the runtime to allocate
storage solely in device memory as long as it can be mapped into the host’s address
space. Remember that the specification says that passing CL_MEM_ALLOC_HOST_PTR
creates space in host-accessible memory, and not necessarily in host memory itself.

In shared-memory systems, or when a CPU is being used as the device,
CL_MEM_USE_HOST_PTR may prevent unnecessary copies of data from being created
and lead to better performance. For example, imagine that the device selected to
execute a kernel is the same CPU as the host: if the option CL_MEM_USE_HOST_PTR
is not specified, then the application will incur the overhead of allocating additional
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space for the buffer and making a copy of the data. One could imagine a
similar situation for heterogeneous shared-memory processors, such as accelerated
processing units (APUs). If the CPU and GPU share the same memory, does it make
sense to use CL_MEM_USE_HOST_PTR for APUs as well? As with many optimization-
related considerations, the answer depends on a number of factors.

In the case of APUs, the OpenCL runtime or device driver may optimize
memory accesses for a certain device by allocating data with system-specific flags
(e.g., cached vs. uncached) or may have other performance considerations, such as
nonuniform memory accesses (NUMA). For example, when running on some APUs,
CL_MEM_USE_HOST_PTR may lead to the buffer being treated as cacheable and fully
coherent. This can cause inefficient accesses by the GPU, which must now probe the
CPU cache hierarchy prior to accesses. Especially when using APUs, the programmer
should understand the device-specific performance implications of creating memory
objects with the CL_MEM_USE_HOST_PTR and CL_MEM_ALLOC_HOST_PTR flags.

Since CL_MEM_USE_HOST_PTR and CL_MEM_ALLOC_HOST_PTR specify that data
should be created in host-accessible memory, the OpenCL specification provides
a mechanism for the host to access the data without going through the explicit read
and write API calls. In order for the host to access the data storage of a memory
object, it must first map the memory object into its address space. Note that mapping
does not necessarily imply creating a copy, unlike a call to c1EnqueueReadBuffer()
which would always result in a copy of the data. In systems where zero-copy memory
objects are supported, a call to map the data into host memory would simply require
that all in-flight updates to the data have finished and are visible to the host.

The call to map memory objects is type specific. For a buffer, the call is
clEnqueueMapBuffer(), with the following signature:

void*

clEnqueueMapBuffer(
cl_command_queue command_queue,
cl_mem buffer,
cl_bool blocking_map,
cl_map_flags map_flags,
size_t offset,
size_t size,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list,
cl_event *event,
cl_int *errcode_ret)

When c1EnqueueMapBuffer() is called, it returns a pointer that is valid on the
host. When the event returned by c1EnqueueMapBuffer() is setto CL_COMPLETE, it is
safe for the host to access the data, which is mapped to the pointer returned by the
call. As with c1EnqueueWriteBuffer() and clEnqueueReadBuffer(), this call has
a blocking parameter, b1ocking_map, which when passed CL_TRUE will turn the call
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into a blocking call. If blocking_map is set, then the host is able to access the returned
pointer as soon as the call completes.

When clEnqueueMapBuffer() is called, there are three different flags that
can be passed to the map_flags parameter: CL_MAP_READ, CL_MAP_WRITE, and
CL_MAP_WRITE_INVALIDATE_REGION. The flag CL_MAP_READ tells the runtime that
the host will be reading the data, and CL_MAP_WRITE and CL_MAP_WRITE_INVALIDATE_
REGION tell the runtime that the host will be modifying the data.
CL_MAP_WRITE_INVALIDATE_REGION is an optimization that specifies that the entire
region will be modified or disregarded, and so the runtime does not need to map the
latest values before it can be modified. By there not being a requirement that the data
is in a consistent state, the runtime can potentially allow access to the region much
sooner with CL_MAP_WRITE_INVALIDATE_REGION than with CL_MAP_WRITE.

When the host has finished modifying the mapped data, it needs to tell the runtime
that it has finished using the complementary unmap call. While the command to map
a memory object is type specific, the command to unmap is the same for all memory
objects: c1EnqueueUnmapMemObject ().

cl_int

clEnqueueUnmapMemObject(
cl_command_queue command_queue,
cl_mem memobj,
void *mapped_ptr,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list,
cl_event *event)

Unmapping a memory object requires passing the memory object itself, along
with the host pointer (mapped_ptr) that was returned by the call that mapped the
data. As with all previous data management commands, when the event returned
by clEnqueueUnmapMemObject() is set to CL_COMPLETE, updates to the data are
considered complete. Unlike most other calls, there is no parameter that turns
c1EnqueueUnmapMemObject () into a blocking call. Figure 6.3 shows the process of
mapping and unmapping a memory object. Undefined behavior occurs if an object
that is currently mapped for reading by the host is written to by a device. Similarly,
undefined behavior occurs if an object that is currently mapped for writing by the
host is read by a device.

As we have mentioned a number of times throughout this section, the actual
behavior associated with these flags is implementation defined, and in practice
is highly device specific. To give programmers an idea of how data would be
allocated in practice, we will briefly describe the AMD-specific treatment of flags.
For default memory objects (no flags supplied) data will likely be allocated in
device memory directly. When CL_MEM_USE_HOST_PTR or CL_MEM_ALLOC_HOST_PTR
is supplied, if devices in the context support virtual memory, data will be created as
pinned (nonpageable) host memory and will be accessed by the device as zero-copy
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Data movement using map/unmap. (a) Creation of an uninitialized buffer in device
memory. (b) The buffer is mapped into the host's address space. (c) The buffer is
unmapped from the host’s address space.
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data. If virtual memory is not supported, data will be allocated in device memory
as with default memory objects. If the programmer desires data allocation on the
device and direct access to data in device memory by the host, AMD provides a
vendor-specific extension called CL_MEM_USE_PERSISTENT_MEM_AMD. When this flag
is supplied, accesses to a memory object that is mapped into the host’s address space
will occur directly from device memory.

SHARED VIRTUAL MEMORY

One of the most significant updates to OpenCL in the 2.0 standard is the support of
SVM. SVM extends global memory into the host’s memory region, allowing virtual
addresses to be shared between the host and all devices in a context. An obvious
benefit of SVM is the ability to pass pointer-based data structures as arguments to
OpenCL kernels. For example, prior to support of SVM, there was no way to have a
kernel operate on a linked-list that was created on the host, since each node of the list
points to the next node, and the pointers were valid only in the host’s address space.
Further, how would one even go about copying a linked list onto the device? Small
objects spread across memory were not suited for OpenCL’s memory model, and
would have to be marshaled to be suitable for processing by a kernel. SVM removes
these limitations and more.
There are three types of SVM in OpenCL:

1. Coarse-grained buffer SVM.
2. Fine-grained buffer SVM.
3. Fine-grained system SVM.

The reader can refer to Table 6.1 for a summary of the characteristics as we discuss
each type of SVM.

Coarse-grained buffer SVM allows virtual address sharing to occur at the gran-
ularity of OpenCL buffer memory objects. The difference between a coarse-grained
SVM buffer and a non-SVM buffer is simply that the host and device share virtual
memory pointers. Buffer objects that are allocated to use coarse-grained SVM should

Table 6.1 Summary of Options for SVM

Coarse-Grained | Fine-Grained Fine-Grained

Buffer SVM Buffer SVM System SVM
OpenCL object Buffer Buffer None (host memory)
Sharing granularity Buffer Bytes Bytes
Allocation clSVMAlloc clSVMAlloc malloc (or similar)
Consistency Sync points Sync points and | Sync points and

optional atomics | optional atomics
Explicit updates Map/unmap
between host and device? | commands No No

159
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be mapped into and unmapped from the host’s address space to guarantee that the
latest updates made by a device are visible. To do this, the host thread can call
clEnqueueMapBuffer() specify a blocking command to map the buffer region. Recall
that by specifying a blocking command, the function will wait for an event to signal
the kernel’s completion before returning. When c1EnqueueMapBuffer () returns, any
memory operations performed by the kernel in that buffer region will be visible to
the host.

While non-SVM buffers are created using the API call c1CreateBuffer(), the
command to create an SVM buffer is c1SVMAT1oc (), with the following signature:

void*

c1SVMATToc(
cl_context context,
cl_svm_mem_flags flags,
size_t size,
unsigned int alignment)

As with non-SVM buffers, the f1ags parameter takes read-only, write-only, and
read-write options (we will describe the remaining options shortly). The alignment
parameter is the minimum byte alignment for this object required by the system.
Passing an alignment of zero uses the default alignment, which will be the size of the
largest data type supported by the OpenCL runtime. Notice that instead of a c1_mem
object, a call to c1SVMAT1oc() returns a void pointer. As with a call to malloc()
from aregular C program, c1SVMA11oc () will return anon-NULL value on a successful
allocation, or NULL on a failure.

Freeing an SVM buffer allocated with c1SVMA11oc() is done using a call to
c1SVMFree(), which simply takes the context and SVM pointer as parameters.

void

c1SVMFree(
cl_context context,
void* svm_pointer)

A call to c1SVMFree() is instantaneous, and does not wait for currently enqueued
or executing commands to finish. Calling c1SVMFree() and then accessing a buffer
can therefore result in a segmentation fault as can happen in a normal C program.
To allow SVM buffers to be freed after completion of enqueued commands, the
specification supplies a command to enqueue a free operation: c1EnqueueSYMFree().

Unlike coarse-grained buffer SVM, fine-grained buffer SVM supports sharing at
a byte-level granularity within an OpenCL buffer memory object. If (optional) SVM
atomic operations are supported, fine-grained buffer SVM can be used by the host
and the device to concurrently read and update the same region of the buffer. Fine-
grained buffer SVM also enables kernels running on the same or different devices to
concurrently access the same region of a buffer as well. Among their other benefits,
SVM atomics provide synchronization points to ensure that data is updated according
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to OpenCL’s memory consistency model. If SVM atomics are not supported, reads
from the host and the device can still occur from the same region of the buffer, and
updates can occur to nonoverlapping regions.

In order to create a buffer with a fine-grained SVM, the flag CL_MEM_SVM_FINE_
GRAIN_BUFFER needs to be passed to the flags parameter of cl1SVMATloc().
Using atomic operations on an SVM buffer requires additionally passing
CL_MEM_SVM_ATOMICS to the flags parameter. Note that CL_MEM_SVM_ATOMICS is
valid only if CL_MEM_SVM_FINE_GRAIN_BUFFER is also specified.

Fine-grained system SVM extends fine-grained buffer SVM to the host’s entire
address space—this includes regions of memory outside the OpenCL context that
were allocated using the regular system malloc(). If fine-grained system SVM is
supported, buffer objects are no longer necessary for OpenCL programs, and kernels
can simply be passed pointers that were allocated on the host.

Determining the type of SVM supported by a device is done by passing the
flag CL_DEVICE_SVM_CAPABILITIES to c1GetDevicelnfo(). At minimum, OpenCL
requires that coarse-grained buffer SVM must be supported by all devices.

SUMMARY

This chapter presented OpenCL’s memory model from the point of view of the
host. The host’s role in the memory model is largely related to the allocation and
management of memory objects (buffers, images, and pipes) in global memory. We
described in detail the allocation flags that allow the programmer to guide how and
where data is allocated, and the management flags that can be used to guide where
and when to move data. The chapter concluded with an introduction to the support
of SVM, which will be continued in the next chapter that discusses the device-side
memory model.



CHAPTER

OpenCL device-side
memory model

The device-side memory model defines the abstract memory spaces that work-items
within an OpenCL application may target when executing a kernel. The memory
model also defines the memory consistency that work-items can expect in each
memory space. This chapter discusses each memory space in detail, describes the
mapping of memory objects to memory spaces, and introduces synchronization and
memory ordering.

On OpenCL devices, the memory space is classified into four categories:

global memory
local memory
constant memory
private memory

PN~

These memory spaces are visualized in Figure 7.1. As discussed in Chapter 2,
OpenCL is designed to run on a range of architectures. The purpose of arranging a
memory hierarchy of this form is to allow OpenCL programs to perform efficiently on
such architectures. The actual meaning of each memory space in terms of a hardware
mapping is very much implementation dependent. Regardless of how they are
mapped to hardware, as a programming construct, these memory spaces are disjoint.
Furthermore, as shown in Figure 7.1, local memory and private memory are divided
into disjoint blocks across work-groups and work-items. When separate layers of
address space are defined in this way, the mapping to hardware can efficiently use
anything from relaxed memory consistency models with programmatically controlled
scratchpad buffers, as seen on most graphics processing unit (GPU) devices, to fully
coherent memory systems such as x86-based architectures.

The default address space for function arguments and local variables within a
function or block is private. Pointer arguments can be placed in one of the other
address spaces depending on where the data comes from or where it is to be used.
The pointer itself is always in the private address space wherever the data lies.
The address spaces are strictly disjoint when used through pointers. Casting from
one address space to another is not legal because this would imply either that
the data lives at a globally accessible address or that the compiler would have to
generate a copy to go with the cast, which is not feasible in practice. However,
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Private Private Private Private Private Private
Work Work Work Work Work Work
Item Item . Item Item Item Item
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Workgroup Workgroup

Constant |

Device

FIGURE 7.1
The memory spaces available to an OpenCL device.

as we will see later in this chapter, OpenCL 2.0 has introduced a generic address
space, which does allow address spaces to be inferred automatically in some cases.
Image arguments always live in the global address space, so we discuss images in
those terms.

Before the memory spaces are discussed in detail, the following section outlines
the capabilities of work-items to synchronize and communicate. This information
will be useful when discussing the qualities of each memory space.

7.1 SYNCHRONIZATION AND COMMUNICATION

When describing the host memory model, we said that by default OpenCL does not
guarantee that writes will be visible to the host until the kernel completes. Similarly,
regular accesses by work-items are not required to be visible to other work-items
during a kernel’s execution. However, the OpenCL C language (combined with the
memory model) does provide certain synchronization operations to allow visibility
within various memory spaces using barriers, memory fences, and atomics. The
hierarchy of consistency is as follows:

e Within a work-item, memory operations are ordered predictably: any two reads
from and writes to the same address will not be reordered by hardware or the
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compiler. Specifically for image accesses, synchronization is required for any
read-after-write operation, even when it is performed by the same work-item.

* Between work-items and within a work-group, memory is guaranteed to be
consistent only after synchronization using an atomic operation, memory fence,
or barrier.

¢ Between work-groups, memory is guaranteed to be consistent only after a
synchronization operation using an atomic operation or memory fence.
Work-items from different work-groups cannot synchronize using a barrier.

BARRIERS

Within a work-group, the programmer may require all work-items in the work-group
to synchronize at a barrier using a call to work_group_barrier(). The two versions
of the barrier function are as follows:

void
work_group_barrier (
cl_mem_fence_flags flags)

void

work_group_barrier (
cl_mem_fence_flags flags,
memory_scope scope)

The barrier requires that all work-items in the work-group reach it and that
visibility requirements are met before any is allowed to continue execution. As
barrier operations are often used to ensure data visibility within the work-group (e.g.,
after manually caching a subset of global memory into local memory), the f1ags
parameter to work_group_barrier() is used to specify which types of accesses must
be visible after the barrier completes. The three options are CLK_LOCAL_MEM_FENCE,
CLK_GLOBAL_MEM_FENCE, and CLK_IMAGE_MEM_FENCE, which ensure that all local
memory, global memory, or image accesses are visible to the entire work-group,
respectively.

The second version of work_group_barrier() also allows a memory scope to be
specified. The memory scope can be used in combination with the f1ags argument
for fine-grained control of data visibility. Two possible options for memory scope are
memory_scope_work_group and memory_scope_device. If CLK_GLOBAL_MEM_FENCE
and memory_scope_work_group are used together, the barrier will ensure that all
global memory accesses from every work-item in the work-group are visible
to all other work-items in the work-group before any proceed past the barrier.
If CLK_GLOBAL_MEM_FENCE and memory_scope_device are used, then the barrier will
ensure that its accesses are visible to the entire device. The flag CLK_LOCAL_MEM_FENCE
can be used only with memory_scope_work_group, as work-items outside the group
do not have access to the memory space.
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ATOMICS

The atomics defined in OpenCL 2.0 are based on C/C++11 atomics and are used to
provide atomicity and synchronization. Atomicity safely allows a series of operations
(such as read-modify-write) to execute without another work-item or host thread
being able to view or modify the memory location in between. When used for
synchronization, atomics are used to access special variables (called synchronization
variables) that enforce parts of the memory consistency model. There are different
flavors of atomic operations, including variations of atomic read-modify-writes,
atomic loads, and atomic stores.

As we have mentioned, atomics are used to ensure that threads do not see
partial results in a series of events—this is a problem in shared-memory, concurrent
programming. Consider the example where we have two threads and both are trying
to increment a shared value. Thread 0 must read the value from memory, increment
the value, and write the new value to memory. Thread 1 must do the same. Figure 7.2
shows that the ordering of operations will produce different results. This is referred
to as a data race. The same data race occurs even when the threads are running on a
single core, as thread O can be preempted in the middle of performing the operation.

For similar reasons, atomic load and store operations are required. The C/C++11
standards, and likewise OpenCL, do not guarantee any load or store operations to be
atomic. Imagine a scenario where a 64-bit store to memory is broken into two machine
instructions. It is feasible that at some point in time the first store operation has
finished but the second has not. At this time, another thread performs a load, reading
32 bits of the new stored value, and 32 bits of the old stored value. The value read by
the second thread would be nonsensical and lead to unexpected results. In practice,
most architectures do guarantee that loading or storing data at some granularity will

Source code Scenario 1 Scenario 2
t0 t1 t0 t1
i Id reg, &val Id reg, &val
static int val = 0; add reg, reg, 1 add reg, reg, :|_Idr 2l
void threadFunc( ) { st &val, reg €g.
val++; Id reg, &val st &val, reg |
} addreg, reg, 1 addreg, reg, 1
st &val, reg st &val, reg
val =2 val=1

FIGURE 7.2

Data race when incrementing a shared variable. The value stored depends on the ordering
of operations between the threads.
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be atomic (usually aligned types that fit within a cache line). However, portable code
should never assume that any operation on shared memory is implicitly guaranteed
to be atomic.

Atomic operations have changed considerably in the OpenCL 2.0 specification.
The OpenCL C language defines atomic types that correspond to basic types, and
requires support for integer and single-precision floating-point atomics:

atomic_int
atomic_uint
atomic_float"

Additional types are provided if optional 64-bit atomic extensions are supported:

atomic_Tong
atomic_ulong
atomic_double
atomic_size_t
atomic_intptr_t
atomic_uintptr_t
atomic_ptrdiff_t

The atomic pointer types require only 64-bit extension support if the compute
device uses a 64-bit address space.

There are many variations of atomic operations specified in the OpenCL
C language. Floating-point operands are supported only for the compare-and-
swap class of atomic operations (e.g., atomic_exchange()). The operations that
perform arithmetic and bitwise operations are referred to as atomic fetch-and-modify
functions. The basic signature for operations of this type is as follows:

C atomic_fetch_key(volatile A *object, M operand)

Here key can be add, sub, or, xor, and, min, or max. The parameter object is
a pointer to a variable of one of the atomic types, and operand is the value to be
applied. The return value, C, is the nonatomic version of type A, and holds the value
pointed to by object immediately prior to the atomic operation. As an example use
of an atomic function, suppose a work-item wants to find the minimum of a shared
variable, atomic_int curMin, and a value in one of its variables, int myMin. The
atomic function could be called as follows:

int oldMin = atomic_fetch_min(&curMin, myMin);

The new minimum will be stored in curMin. Specifying a variable to hold the
return value is optional, and not specifying a variable for the return value is a potential

Yatomic_f1oat is only supported for compare-and-swap type operations, not general fetch-and-modify
(Section 7.7.1)
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performance optimization. On some GPU architectures, for example, atomics are
performed by hardware units within the memory system. Thus, certain types of atomic
operations can be considered complete as soon as they are issued to the memory
hierarchy. However, utilizing the return value requires data to be sent back to the
compute unit, potentially adding dozens to hundreds of cycles of latency.

The reason why atomics are being discussed as part of the memory model chapter
is that they now play a fundamental role in synchronization. Whenever an atomic
operation is performed, the programmer has the ability to specify whether the atomic
should be treated as a synchronization operation that serves as an acquire operation,
a release operation, or both. Using this mechanism allows work-items to control the
visibility of their data accesses, enabling communication paradigms that were not
possible in prior versions of OpenCL.

GLOBAL MEMORY

Global memory is identified in OpenCL C code by a pointer with the type qualifier
__global (or global), by one of the image types, or by the pipe type. Data in the
global memory space are accessible by all work-items executing a kernel (i.e., by all
compute units in the device). The types of objects differ in their scope and use cases.
The following sections discuss each global memory object type in detail.

BUFFERS

The __global address space qualifier refers to a pointer referencing data in a buffer
object. A buffer can carry any scalar data type, vector data type, or user-defined
structure. Whatever the type of buffer, it is accessed at the end of a pointer and can
be read/write accessible as well as read only or write only.

Buffer objects map very easily to the standard array representation that program-
mers expect in the host C program. Consider the following host code, which is legal C:

float a[10], b[10];
for (int i = 0; i < 10; ++i) |
*(a+i) = b[il;

The example shows that we can access a and b either through pointers or using
array access syntax. This is important because it implies that data is allocated
sequentially, such that the ith element of array a, al1], is stored at location (a + i).
We can use sizeof () operations on array elements to calculate offsets into arrays to
cast to pointers of different types. In low-level code, it is useful to have these features,
and it is a natural expectation for OpenCL, a C-derived language.

Thus, the following trivial operation code is an example of valid use of a buffer:

typedef struct AStructure
{

float a;

float b;
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} AStructure;

__kernel void aFunction(
__global AStructure *inputOutputBuffer )

__global AStructure* inputlocation =
inputOutputBuffer + get_global_id(0);
__global AStructure* outputlocation =
inputOutputBuffer + get_global_size(0) + get_global_id(0);

outputlLocation->a = inputlLocation->a * -1;
outputlocation->b (*inputlLocation).b + 3.f;

IMAGES

Image objects, although conceptually in the __global memory space, are treated
differently from buffers, and are not mappable to __global pointers. Image objects
can be one-dimensional, two-dimensional, or three-dimensional, and are specified
using the imageld_t, image2d_t, or image3d_t type qualifiers. Prior to OpenCL 2.0,
images could be either read only or write only, but never both within the same kernel.
This was a result of the design of GPU hardware supporting very high performance
caching and filtering. Beginning in the 2.0 version of the specification, reading and
writing the same image is supported.

Images are opaque memory objects. Although we can read or write the data
on the basis of coordinates, we do not really know the relative memory locations
of two different values in the image. As a result, and to support parameterization
of the style of read, rather than accessing images through pointers, we use a set
of built-in functions. The built-in functions to read an image are read_imagef (),
read_imagei (), and read_imageui(), for floating-point, integer, and unsigned-
integer data, respectively. Each of the image read functions takes three parameters:
the image object, the image sampler, and the coordinates to sample.

The coordinates may be specified as integer or floating-point values. The output
always returns a four-element vector type based on the type of the built-in read
function. For example, the two signatures for reading floating-point data from a two-
dimensional image are as follows:

float4d

read_imagef (
image2d_t image,
sampler_t sampler,
int2 coord)

float4d
read_imagef (
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image2d_t image,
sampler_t sampler,
float2 coord)

Notice that the coordinates in the listed signatures are of type int2 and float2,
respectively. This is because these signatures are specific to the two-dimensional
image type, image2d_t. The functions for one-dimensional images (imageld_t) take
int and f1oat coordinates, and three-dimensional images (image3d_t) take int4 and
float4 coordinates with the last component of the vector ignored.

If the image contains data that has less than four channels, most image types will
return O for the values of the unused color channels and 1 in the alpha channel. For
example, if a single channel image (CL_R) is read, then the f10at4 vector will contain
(r, 0.0, 0.0, 1.0).

The second parameter to the read function is a sampler object. It is the sampler
object that defines how the image is interpreted by the hardware or runtime system.
The sampler can be defined either by declaring a constant variable of sampler_t type
within the OpenCL C source or by passing as a kernel parameter a sampler created
in host code using the c1CreateSampler() function. The following is an example of
using a constant-variable-declared sampler:

__constant sampler_t sampler =
CLK_NORMALIZED_COORDS_FALSE |
CLK_FILTER_NEAREST
CLK_ADDRESS_CLAMP;

__kernel void samplerUser(
__read_only image2d_t sourcelmage,
__global float *outputBuffer ) {

float4 a = read_imagef(
sourcelmage,
sampler,
(float2)(
(float)(get_global_id(0)),
(float)(get_global_id(1))) );

outputBuffer[get_global_id(1) * get_global_size(0) +
get_global_id(0)] = a.x + a.y + a.z + a.w;

The sampler object determines the addressing and filtering modes used when
accessing an image, and whether or not the coordinates being passed to the function
are normalized.

Specifying normalized coordinates (CLK_NORMALIZED_COORDS_TRUE) tells the
sampler that the dimensions of the image will be addressed in the range of [0, 1].
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Use of nonnormalized (CLK_NORMALIZED_COORDS_FALSE) coordinates specifies that
the coordinates will be used to index into a location within the image as if it were a
multidimensional array.

The addressing mode options specify what to do on out-of-bounds accesses. These
can sometimes be very useful for programmers who may otherwise have to write
specific bounds checks within a program (e.g., a convolution where apron pixels
reside out-of-bounds). The options include clamping to the value at the image’s border
(CLK_ADDRESS_CLAMP) and wrapping around the image (CLK_ADDRESS_REPEAT).

The filtering mode has two options: return the image element nearest to the
supplied coordinates (CLK_FILTER_NEAREST), or linearly interpolate the surrounding
elements on the basis of the coordinates’ relative location (CLK_FILTER_LINEAR). For
linear filtering of a two-dimensional image, a 2 x 2 square of image elements will be
interpolated. For a three-dimensional image, a 2 x 2 x 2 cube of elements will be
interpolated.

To facilitate more succinct use of image objects, the OpenCL C language also
supplies samplerless read functions:

float4d

read_imagef (
image2d_t image,
int2 coord)

These simplified functions use a predefined sampler with fixed attributes:
coordinates are unnormalized, there is no filtering with surrounding pixels, and
results of out-of-bounds accesses are undefined. Accessing an image using this
type of sampler is comparable to how we would access one- or multi-dimensional
arrays in C; however, the opaque access function still allows for hardware
optimizations.

Unlike reads, write functions do not take a sampler object. Instead the sampler is
replaced with the value to be written:

void

write_imagef(
image2d_t image,
int2 coord,
float4 color)

When an image is being written to, the coordinates provided must be unnormal-
ized and in the range between 0 and the size of the image dimension —1.

As we have mentioned, implementing images as opaque types enables optimiza-
tions in the runtime system and hardware that buffers cannot support. Take one
common optimization as an example. Any given multidimensional data structure,
of which an image is an example, must be mapped to a one-dimensional memory
address at some point. The obvious method, and indeed the method applied to
multidimensional arrays in most programming languages, is a dictionary order in
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either a row-major or a column-major pattern. If data is stored in row-major order,
(x,y) comes before (x+ 1,y), which comes long before (x,y+ 1), and so on.
The long distance in memory between (x,y) and (x,y 4+ 1) means that an access
of consecutive addresses in the y-dimension strides inefficiently through memory,
hitting a large number of cache lines. In contrast, the fact that (x,y) is adjacent to
(x + 1, y) means consecutive accesses in the x-dimension stride efficiently (and cause
memory accesses to coalesce).

Z-order, or Morton-order, memory layouts apply a mapping that preserves spatial
locality of data points. Figure 7.3 shows that the data is stored in order (0, 0), (1,0),
0,1),(1,1), (2,0), and so on. By storing data according to its position in a Z-ordered
mapping, we may hit the same cache line repeatedly when performing a vertical
read. If we go further by laying out our computational work in a two-dimensional
layout (as we see in the graphics pipeline), we further improve this data locality. This
sort of optimization is possible transparently (and hence different optimizations can
be performed on different architectures) only if we offer the kernel programmer no
guarantees about the relative locations of memory elements.

We can go a step further with this approach. If for execution we are using an
architecture that does not have vector registers and does not perform vector reads from
memory, we might wish f1oat4 a = read_imagef( sourcelmage, imageSampler,
Tocation) to compile down to four scalar reads instead of a single vector read. In
these circumstances, it might be a more efficient use of the memory system to read
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FIGURE 7.3
Applying Z-order mapping to a two-dimensional memory space.
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from the same offset into four separate arrays instead of four times from the single
array because the data in each separate array would exhibit better locality on each
individual read operation.

PIPES

Recall that a pipe is an ordered sequence of data items that are stored in a first in,
first out (FIFO) structure. Declaration of a pipe is slightly different than declaration
of both buffers and images. An address space qualifier is not required for a pipe: since
pipes are meant to communicate between kernel-instances, they implicitly store their
data in global memory. Similarly to images, the keyword pipe is used to specify that
a kernel argument is a pipe. Unlike images, a type must be provided that specifies the
data type of the packets that are stored in the pipe. The data type can be any OpenCL
C supported type (scalar or vector, floating point or integer), or a user-defined type
built from the supported types. Along with the type, the programmer should supply
an access qualifier that tells the kernel whether the pipe is readable (__read_only
or read_only) or writable (__write_only or write_only) during its execution. The
default is readable. A pipe cannot be both read by and written from the same kernel, so
specifying the read/write access qualifier (__read_write or read_write) is invalid
and will cause a compilation error.

An example of a kernel declaration containing one input pipe and one output pipe
is as follows:

kernel

void foo(
read_only pipe int pipeO,
write_only pipe float4 pipel)

Similarly to images, pipe objects are opaque. This makes sense because the
purpose of the pipe is to provide FIFO functionality, and therefore pipes should not
be randomly accessed. OpenCL C provides functions in order to read packets from
or write packets to a pipe. The most basic way to interact with a pipe is with the
following read and write commands:

int

read_pipe(
pipe gentype p,
gentype *ptr)

int

write_pipe(
pipe gentype p,
const gentype *ptr)

.
173
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The function calls both take a pipe object, and a pointer to the location where the
data should be written to (when reading from the pipe) or read from (when writing
to the pipe). For both reading from and writing to a pipe, the function calls return
0 upon success. In some cases, these function calls may not complete successfully:
read_pipe() returns a negative value if the pipe is empty, and write_pipe() returns
a negative value if the pipe is full.

The programmer can ensure that reads from and writes to a pipe will always
be successful by reserving space in the pipe ahead of time. The commands
reserve_read_pipe() and reserve_write_pipe() both have a pipe object and
number of packets as parameters, and return a reservation identifier of type
reserve_id_t.

reserve_id_t

reserve_read_pipe(
pipe gentype p,
uint num_packets)

reserve_id_t

reserve_write_pipe(
pipe gentype p,
uint num_packets)

The reservation identifier returned by reserve_read_pipe() and reserve_write_
pipe() can then be used to access overloaded versions of read_pipe() and
write_pipe(). The signature for the version of read_pipe() that takes a reservation
identifier is as follows:

int

read_pipe(
pipe gentype p,
reserve_id_t reserve_id,
uint index,
gentype *ptr)

When reservation identifiers are used, OpenCL C provides blocking func-
tions to ensure that reads or writes have finished: commit_read_pipe() and
commit_write_pipe(), respectively. These functions take a pipe object and
a reservation identifier as parameters, and have no return value. Once the
function call has returned, it is safe to assume that all reads and writes have
committed.

void

commit_read_pipe(
pipe gentype p,
reserve_id_t reserve_id)
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In addition to individual work-items reading from or writing to a pipe,
some kernels may produce or consume data from the pipe on a work-group
granularity. In order to remove some of the need to mask off individual work-
items, OpenCL C provides intrinsic functions to reserve and commit accesses to
the pipe per work-group. These functions are work_group_reserve_read_pipe()
and work_group_reserve_write_pipe(). Similarly, the functions to guaran-
tee that accesses have completed are work_group_commit_read_pipe() and
work_group_commit_write_pipe(). In both cases, the work-group functions have
signatures that mirror those for individual work-items. Note that all work-items
must encounter these work-group-based functions, otherwise the behavior produced
is undefined. Actual accesses to the pipe still occur using read_pipe() and
write_pipe(). In Chapter 4, we demonstrated using pipes and their associated
application programming interface (API).

CONSTANT MEMORY

The constant address space, described by the _ _constant qualifier, intends to cleanly
separate small sets of constant values from the global address space such that the
runtime can allocate caching resources or utilize efficient constant memory banks if
possible. Data can be created for the constant address space in two ways:

1. A buffer may be allocated and passed as a kernel argument. The kernel signature
should specify the pointer using the __constant qualifier.

2. Variables within the kernel may be specified using the __constant qualifier as
long as they are initialized and compile-time constant.

Architectures differ in how they treat this data. For example, in AMD GPUs,
constant data is stored in a cache separate from the cache where general-purpose data
is stored. This cache has lower latency than the level 1 (L1) cache, and can greatly
reduce memory traffic within the GPU. Depending on the pattern of the access, the
address may even be stored within the instruction, freeing up other functional units,
and leading to even lower latency.

OpenCL defines a limited number of constant arguments for each device that,
along with the constant buffer size, can be queried with CL_DEVICE_MAX_CONSTANT_
ARGS and CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE arguments to clDevicelnfo().
Chapter 8 describes the implementation of constant memory on a modern GPU.

LOCAL MEMORY

A subset of the architectures supported by OpenCL, including many of the GPUs
and the Cell Broadband Engine, possess small scratchpad memory buffers distinct
from the primary DRAM and caching infrastructure. Local memory in these cases
is disjoint from global memory, and is often accessed using separate memory
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operations. As a result, data must be copied into and out of it programmatically.
Depending on the architecture, this occurs either through direct memory access
transfers (most efficiently accessed using the async_work_group_copy () function) or
by memory-to-memory copies. Local memory is also supported in central processing
unit (CPU) implementations, but it sits in standard cacheable memory; in such
cases, use of local memory can still be beneficial because it encourages cache-aware
programming.

Local memory is most useful because it provides the most efficient method
of communication between work-items in a work-group. Any allocated local
memory buffer can be accessed at any location by an entire work-group, and
hence writes to the local array will be visible to other work-items. Remember
that OpenCL work-items are conceptually, if not literally, executed independently.
Local memory is defined by the __Tocal address space qualifier, and can either be
defined within the kernel or passed as a parameter. Both examples are shown in the
following code:

__kernel void localAccess(
__global float* A,
__global float* B,
__local float* C )
_local float alocalArray[l];
if( get_local_id(0) == 0 ) {
alocalArray[0] = A[O0];
}
Clget_local_id(0)] = Alget_global_id(0)];

work_group_barrier(CLK_LOCAL_MEM_FENCE);
float neighborSum = C[get_local_id(0)] + alocalArray[0];

if( get_local_id(0) > 0 )
neighborSum = neighborSum + C[get_local_id(0)-17;

B[get_global_id(0)] = neighborSum;

Figure 7.4 shows a diagrammatic representation of the data flow in the previous
code sample. Note that data will be read from global memory and written to the two
local arrays C and alocalArray at unpredictable times as the work-items execute
independently in an undefined order. The reality will be slightly more predictable on a
given device because implementations will map to hardware in predictable ways. For
example, on AMD GPUs, execution occurs in lockstep over a wide single instruction
multiple data (SIMD) vector, meaning that the read and write operations will have an
ordering guarantee over the entire vector in the same way that they would over a single
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FIGURE 7.4
The pattern of data flow for the example shown in the TocalAccess kernel.

work-item. However, this feature does not apply generally. In the general case, we
must insert the barrier operation: only at this barrier can we guarantee that all writes
to local arrays, and the global memory reads that fed them, will have been completed
across the work-group such that the data is visible to all work-items. Beyond this
barrier, the data can be used by the entire work-group as shown in the lower part of
the diagram.

In the kernel code, alLocalArray is at function scope lexically but is visible to
the entire work-group. That is, there is only one 32-bit variable in local memory per
work-group, and any work-item in the group using the name alocalArray has access
to the same 32-bit value. In this case, after the barrier we know that work-item O
has written to alLocalArray, and hence all work-items in the group can now read
from it.

The alternative method for creating local arrays is through a kernel parameter,
as we see for array C. This version is created by a runtime API call. To allocate the
memory, we call c1SetKernelArg() as we would for passing a global array to the
kernel, but we leave the final pointer field as NULL. We therefore allocate a per-work-
group amount of memory on the basis of the third parameter but with no global object
to back it up, so it sits in local memory:

ciErrNum = clSetKernelArg(
kernel object,
parameter index,
size in bytes,
NULL);
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PRIVATE MEMORY

Private memory refers to all variables with automatic storage duration and kernel
parameters. In principle, private data may be placed in registers, but owing to either a
lack of capacity spilling or an inability for the hardware to dynamically index register
arrays, data may be pushed back into global memory. The amount of private memory
allocated may impact the number of registers used by the kernel. Like local memory,
a given architecture will have a limited number of registers. The performance impact
of using too large a number will vary from one architecture to another.

CPUs of the x86 type have a relatively small number of registers. However,
because of large caches, the operations of pushing these registers to memory on the
stack and returning them to registers later often incur little overhead. Variables can
be efficiently moved in and out of scope, keeping only the most frequently used data
in registers.

GPUs do not generally have the luxury of using a cache in this way. Some devices
do not have read/write caches, and those that do may be limited in size, and hence
spilling registers from a large number of work-items would rapidly lead to filling this
cache, leading to stalling on a miss when the data is required again. Spilling to DRAM
on such a device causes a significant performance degradation, and is best avoided.

When registers are not spilled, the capacity of the register bank of a GPU trades
against the number of active threads in a manner similar to that of local data shares
(LDS) as described in Chapter 8. The AMD Radeon HD R9 290X architecture has
256 kB of registers on each compute unit. This is four banks (one per SIMD) of 256
registers, with each register a 64-wide vector with 4 bytes per lane. If we use 100
registers per work-item, only two waves will fit per SIMD, which is not enough to
cover anything more than instruction latency. If we use 49 registers per work-item,
we can fit five waves, which helps with latency hiding.

Moving data into registers may appear to improve performance, but if the cost is
that one fewer wavefront can execute on the core, less latency hiding occurs, and we
may see more stalls and more wasted GPU cycles.

GENERIC ADDRESS SPACE

In all prior versions of OpenCL, the use of named address spaces required program-
mers to write multiple versions of callable OpenCL C functions based on the address
space of where the arguments resided. Consider the following example that doubles
the data in a buffer, either directly within global memory, or after first caching the data
in local memory. While doubling a value is trivial, it is easy to imagine functions that
may prefer to use a global memory pointer directly (e.g., when executing on a CPU
with an automatic caching system), or sometimes prefer to work from local memory
(e.g., when executing on a GPU with fast scratchpad storage). Prior to OpenCL 2.0,
the function to perform the doubling operation would have to be written twice, once
per address space as shown in Listing 7.1.
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7.6 Generic address space

void doDoubleGlobal(__global float xdata, int index) {

data[index ] *x= 2;

}

void doDoubleLocal(__local float xdata, int index) {

data[index] %= 2;

__kernel

void doubleData (
global float xglobalData, // the data
local float xlocalData, // local storage
int useLocal) // whether or not to use local memory

int globalld = get_global_id(0);
int localld = get_local_id (0);

if (useLocal) {
// copy data to local memory
localData[localld] = globalData[globalld];
doDoubleLocal (localData, localld);
globalData[ globalld] = localData[localld];
}

else {

doDoubleGlobal (globalData , globalld);

}
LISTING 7.1

Multiple versions of functions for named address spaces as required by OpenCL 1.x.

Starting in OpenCL 2.0, pointers to a named address spaces can be implicitly
converted to the generic address space as shown in Listing 7.2.

void doDouble(float xdata, int index) {

data[index] *x= 2;

__kernel
void doubleData (
global float xglobalData, // the data
local float xlocalData, // local storage
int uselLocal) // whether or not to use local memory

int globalld = get_global_id(0);

179
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14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

int localld = get_local_id (0);

generic float xdata; // generic keyword not required
int mylndex;

if (useLocal) {
// copy data to local memory
localData[localld] = globalData[globalld];

// set data to local address space
data = localData;
mylIndex = localld;

}

else {
// set data to global address space
data = globalData;
mylIndex = globalld;

}

doDouble (data, mylndex);

if (useLocal) {
globalData[ globalld] = localData[localld];
}
}

LISTING 7.2

A single version of the function using the generic address space in OpenCL 2.0.

The generic address space subsumes the global, local, and private address spaces.
The specification states that the constant address cannot be either cast or implicitly
converted to the generic address space. Even though the constant address space
is logically considered a subset of the global address space, in many processors
(especially graphics processors), constant data is mapped to special hardware units
that cannot be targeted dynamically by the instruction set architecture.

MEMORY ORDERING

A very important part of the memory model provided by any programming language
is the ordering guarantees that threads can expect. When we are working with
multiple threads and shared data, the memory consistency model defines how threads
can interact to generate “correct” results. With OpenCL, a language that provides
portability of highly parallel applications to multiple classes of devices, the formal
specification of these requirements is very significant.

As we have discussed, work-items executing a kernel have shared access to
data in global memory. Additionally work-items within a work-group have shared
access to data in local memory. Until now, we have dealt largely with the case of
what is referred to as OpenCL’s “relaxed” consistency model. For global memory,
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we have simplified the more complicated memory model away, and said that by
default work-items from different work-groups cannot expect to see updates to global
memory. In regard to updates to a memory object, we have said that updates cannot
be assumed to be complete until the correspond command utilizing the object is set
to CL_COMPLETE. Indeed, this simplification is largely correct and will likely cover
the majority of OpenCL kernels. As we saw in Chapter 4, this view of the memory
consistency model was enough to support applications such as a histogram and a
convolution.

In recent years, languages such as C, C++, and Java have all converged to support
acquire-release operations to enable lock-free synchronization between threads.
These operations help support additional classes of parallel applications, such as those
that require critical sections of code. OpenCL 2.0 has also added support for acquire-
release operations based on the C11 specification. In addition to allowing OpenCL
developers to expand the classes of problems that they can solve, support for these
synchronization operations also makes it easier for higher-level languages to target
OpenCL.

The most intuitive way for programmers to reason about memory is using the
sequential consistency model. If a system were to implement sequential consistency,
memory operations from each processor would appear to execute in program order,
and operations from all processors would appear in a sequential order. However,
sequential consistency would greatly restrict optimizations that have no effect on
program correctness (e.g., reordering of instructions by the compiler or using a store
buffer in the processor). Therefore, memory models often “relax” the requirements
of sequential consistency while producing the equivalent output. Relaxing sequential
consistency requires hardware and software to adhere to certain rules. For the
programmer, this comes at the cost of sometimes telling the hardware when data
needs to be made visible to other threads.

Although sometimes required for program correctness, synchronization opera-
tions have more overhead than does working with the relaxed memory model.
OpenCL therefore provides options to be specified with each synchronization
operation that allow the programmer to specify only the required strength and scope
of synchronization. These options are referred to as memory order and memory scope,
respectively.

OpenCL provides options to specify three different degrees of consistency (from
weakest to strongest): relaxed, acquire-release, and sequential. These options are
specified as memory order options with the following semantics:

* Relaxed (memory_order_relaxed): This memory order does not impose any
ordering constraints—the compiler is free to reorder this operation with
preceding or subsequent load and store operations, and no visibility guarantees
are enforced regarding preceding or subsequent side effects. Atomic operations
in previous versions of the OpenCL standard were implied to have a relaxed
memory order. Because of their limited guarantees, programmers may find using
relaxed ordering provides the best performance for operations such as
incrementing counters.
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* Acquire (memory_order_acquire): Acquire operations are paired with loads.
When this memory order is specified for a synchronization operation, any shared
memory stores that have been “released” by other units of execution (e.g., other
work-items, or the host thread) are guaranteed to be visible. The compiler has
the liberty to move preceding load and store operations to be executed after the
synchronization; however, it may not move subsequent load and store operations
to execute prior to the synchronization.

* Release (memory_order_release): Complementary to acquire operations,
release operations are paired with stores. When a release memory order is
specified for a synchronization operation, the effects of any preceding stores
must be made visible, and all preceding loads must have completed before the
synchronization operation can complete. Complementary to acquire operations,
the compiler has the liberty to move subsequent load and store operations prior
to the synchronization; however, it may not move any prior load or store
operations after the synchronization.

* Acquire-release (memory_order_acq_rel): This memory order has the
properties of both the acquire and release memory orders: it will acquire any
released side effects from other units of execution, and will then immediately
release its own side effects. It is typically used to order read-modify-write
operations.

» Sequential (memory_order_seq_cst): This memory order implements sequential
consistency for data-race-free programs.' With sequential consistency, the loads
and stores of each unit of execution appear to execute in program order, and the
loads and stores from different units of execution appear to be simply
interleaved. This is stronger than memory_order_acq_rel because it imposes a
single total ordering of accesses.

When synchronization operations to global memory are performed, specifying
only a memory order may introduce more overhead than is strictly required by the
program. For instance, imagine a system that includes multiple devices, sharing a
context that contains a fine-grained shared virtual memory (SVM) buffer. If a work-
item performed a synchronization operation with a release, the device executing
the work-item would need to ensure that all stores performed by the work-item
were first visible to all devices in the system—incurring significant overhead if not
required for algorithmic correctness. Therefore, for many operations, memory order
arguments are optionally accompanied by a memory scope, which limits the visibility
of operations to the specified units of execution.

The options that can be specified as a memory scope are as follows:

*  Work-item (memory_scope_work_item): Specifies that memory ordering applies
only to the work-item. This is required for RAW operations on image objects.

'Multiple threads/work-items accessing a variable concurrently constitutes a data race.
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*  Work-group (memory_scope_work_group): Specifies that memory ordering
applies to work-items executing within a single work-group. This could
potentially be used as a lighter-weight synchronization than the barrier with
memory fence that we have needed in the past for work-group synchronization.

* Device (memory_scope_device): Specifies that memory ordering applies to
work-items executing on a single device.

e All devices (memory_scope_all_svm_devices): Specifies that memory ordering
applies to work-items executing across multiple devices and the host (when
using fine-grained SVM with atomics).

Unlike accesses to global memory, specifying a memory scope for accesses
to local memory is not required (and in fact will be ignored)—local atomics will
always have a scope of memory_scope_work_group. Since local memory is acces-
sible only by work-items from a work-group, trying to provide ordering guar-
antees to execution units outside the work-group with memory_scope_device or
memory_scope_all_svm_devices does not make sense.

ATOMICS REVISITED

Earlier in this chapter we briefly described support for atomics in OpenCL 2.0. Now
that we have been introduced to memory ordering and scope, we will briefly revisit
atomics.

Recall that we introduced groups of atomic operations, such as atomic loads,
atomic stores, and atomic fetch-and-modify operations. We showed the following
signature for fetch-and-modify operations:

C atomic_fetch_key(volatile A *object, M operand)

Here, key could be replaced by operations such as add, min, and max. Recall that
for these type of operations, the parameter object is a pointer to a variable of one of
the atomic types, and operand is the value to be applied. The return value, C, is the
nonatomic version of type A, and holds the value pointed to by object immediately
before the atomic operation.

In addition to the aforementioned properties regarding atomics, C/C++11 and
OpenCL 2.0 utilize them for enforcing memory ordering. Thus, all atomic functions
provide multiple signatures that support order and scope arguments. For example,
fetch-and-modify functions also include the following signatures:

C atomic_fetch_key_explicit(volatile A *object, M operand,
memory_order order)

C atomic_fetch_key_explicit(volatile A *object, M operand,
memory_order order, memory_scope scope)
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This, by design, makes atomic operations the primary mechanism for synchro-
nization between threads. The reason that synchronization was implemented as a
property of atomics is that atomic operations on a flag are a common way for one
thread to let another know that data is ready or to permit access to a region of code.
It therefore becomes natural that when one thread wants another to be able to see
some data, it should (atomically) set a flag and then release its shared data. The other
thread should be able to read the flag, and upon finding a success condition, should
have acquired the latest copy of any shared data.

Notice that atomic operations that include the parameter for memory order
have explicit appended to their name. Functions that do not end in explicit are
implemented to have the same semantics as if the memory order were specified as
memory_order_seq_cst, and the memory scope were specified as memory_scope_
device.

In addition to the load, store, and fetch-and-modify classes of atomic instructions,
OpenCL C also supports functions for atomic exchange, compare-and-exchange (i.e.,
compare-and-swap), and test-and-set functionality. One version of the compare-and-
swap function has the following signature:

bool
atomic_compare_exchange_strong_explicit(

volatile A *object,

C *expected,

C desired,

memory_order success,

memory_order failure,

memory_scope scope)

Unlike any previous signature we have seen, atomic_compare_exchange_strong_
explicit() has memory order arguments success and failure. These arguments
specify what ordering should be performed when the compare operation succeeds
(i.e., the exchange happens) and when it fails. This can enable the programmer
to limit potentially expensive synchronizations to occur only when necessary. For
example, the programmer may want to pass memory_order_relaxed as an argument
to the failure parameter in the case that a work-item is waiting for a successful
exchange operation before proceeding.

So far we have discussed the use of atomic operations, but have not described
how they are initialized. OpenCL C has two options for initializing atomics
depending on the scope of their declaration. Variables declared with a program
scope can be initialized with the macro ATOMIC_VAR_INIT(), with the following
signature:

ftdefine ATOMIC_VAR_INIT(C value)

This macro initializes atomic objects that are declared in program scope and
allocated in the global address space. For example,
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global atomic_int sync = ATOMIC_VAR_INIT(O);

Atomic variables declared with automatic storage should be initialized using
the (nonatomic) function atomic_init(). Notice that because atomic_init() is
nonatomic itself, it cannot be called concurrently by multiple work-items. Instead,
initialization requires serialization and synchronization, such as in the following code:

local atomic_int sync;

if (get_local_id(0) == 0)
atomic_init(&sync, 0);

work_group_barrier(CLK_LOCAL_MEM_FENCE);

FENCES

A synchronization operation without an associated memory location is a fence.
Although we have seen some practical use of fences for work-group synchronization,
we have not yet detailed their use for memory ordering. In OpenCL C, a fence
operation is performed by calling atomic_work_item_fence(), with the following
signature:

void

atomic_work_item_fence(
cl_mem_fence_flags flags,
memory_order order,
memory_scope scope)

The f1ags parameter can be set to CLK_GLOBAL_MEM_FENCE, CLK_LOCAL_MEM_FENCE,
or CLK_IMAGE_MEM_FENCE, or a combination of these using a bitwise OR. A
combination of these values has the same effect as if the fence were called with
each parameter individually. The memory order and memory scope parameters have
the effect of defining ordering constraints and setting the scope of the fence, as we
have seen previously.

Recall that on many systems image objects are still subject to the constraints of
non-general-purpose graphics hardware. The OpenCL specification recognizes this,
and requires atomic_work_item_fence() to be called with CLK_IMAGE_MEM_FENCE
to ensure that image writes are visible to later reads—even by the same work-item.
If multiple work-items will be synchronizing and reading data that were previ-
ously written by a different work-item from the group, then work_group_barrier()
called with CLK_IMAGE_MEM_FENCE should be used instead. Another subtle case
where work-item fences are required is for ordering accesses to local and global
memory together.

We previously introduced the combination of a work-group barrier and memory
fence to be used as a synchronization function. More formally, this can be thought
of as two fence operations—referred to as entry and exit fences. The entry fence is a
release fence with the specified flags and scope. Likewise, the exit fence is an acquire
fence with the specified flags and scope.
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SUMMARY

This chapter provided details on the abstract memory model used by work-items when
executing OpenCL kernels. The memory model includes memory spaces, memory
object types, and the consistency models for these spaces and types supported by the
specification. Combined with the host-side memory model presented in Chapter 6, the
reader should now have a solid understanding of the management and manipulation
of data within an OpenCL application.



CHAPTER

Dissecting OpenCL on a
heterogeneous system

In Chapter 2, we discussed trade-offs present in different architectures, many
of which support the execution of OpenCL programs. The design of OpenCL
is such that the models map capably to a wide range of architectures, allowing
for tuning and acceleration of kernel code. In this chapter, we discuss OpenCL’s
mapping to a real system in the form of a high-end central processing unit
(CPU) combined with a discrete graphics processing unit. Although AMD
systems have been chosen to illustrate this mapping and implementation, each
respective vendor has implemented a similar mapping for their own CPUs
and GPUs.

OpenCL ON AN AMD FX-8350 CPU

AMD’s OpenCL implementation is designed to run on both x86 CPUs and AMD
GPUs in an integrated manner. All host code executes as would be expected on
the general-purpose x86 CPUs in a machine, along with operating system and
general application code. However, AMD’s OpenCL implementation is also capable
of compiling and executing OpenCL C code on x86 devices using the queuing
mechanisms provided by the OpenCL runtime. Figure 8.1 shows a diagram of an
AMD FX-8350 CPU, which will be used to illustrate the mapping of OpenCL onto
an x86 CPU.

The entire chip in Figure 8.1 is consumed by the OpenCL runtime as a
single device that is obtained using clGetDevicelIDs(). The device is then
passed to API calls such as clCreateContext(), clCreateCommandQueue(),
and c1BuildProgram(). The CPU device requires the CL_DEVICE_TYPE_CPU flag
(or CL_DEVICE_TYPE_ALL flag) to be passed to the device types parameter of
c1GetDevicelIDs().

Within the CPU, OpenCL can run on each of the eight cores. If the entire CPU is
treated as a single device, parallel workloads can be spread across the CPU cores from
a single queue, efficiently using the parallelism present in the system. It is possible
to split the CPU into multiple devices using the device fission extension.

Heterogeneous Computing with OpenCL 2.0. http://dx.doi.org/10.1016/B978-0-12-801414-1.00008-9 1 87
Copyright © 2015 Advanced Micro Devices, Inc. Published by Elsevier Inc. All rights reserved
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FIGURE 8.1
High-level design of AMD’s Piledriver-based FX-8350 CPU.

RUNTIME IMPLEMENTATION

The OpenCL CPU runtime creates a thread to execute on each core of the CPU (i.e.,
a worker pool of threads) to process OpenCL kernels as they are generated. These
threads are passed work by a core management thread for each queue that has the
role of removing the first entry from the queue and setting up work for the worker
threads. Any given OpenCL kernel may comprise thousands of work-groups, for
which arguments must be appropriately prepared, and memory must be allocated and
possibly initialized.

OpenCL utilizes barriers and fences to support fine-grained synchronization. On a
typical CPU-based system, in which the operating system is responsible for managing
interthread communication, the cost of interacting with the operating system is a
barrier to achieving efficient scaling of parallel implementations. In addition, running
a single work-group across multiple cores could create cache-sharing issues. To
alleviate these issues, the OpenCL CPU runtime executes a work-group within a
single operating system thread. The OpenCL thread will run each work-item in
the work-group in turn before moving on to the next work-item. After all work-
items in the work-group have finished executing, the worker thread will move on
to the next work-group in its work queue. As such, there is no parallelism between
multiple work-items within a work-group, although between work-groups multiple
operating system threads allow parallel execution when possible. Given this approach
to scheduling work-groups, a diagram of the mapping of OpenCL to the FX-8350
CPU is shown in Figure 8.2.
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FIGURE 8.2

OpenCL mapped onto an FX-8350 CPU. The FX-8350 CPU is both the OpenCL host and
the device in this scenario.

In the presence of barrier synchronization, OpenCL work-items within a single
work-group execute concurrently. Each work-item in the group must complete
the section of the code that precedes the barrier operation, wait for other work-
items to reach the barrier, and then continue execution. At the barrier operation,
one work-item must terminate and another continue; however, it is impractical for
performance reasons to let the operating system handle this with thread preemption
(i.e., interrupting one thread to allow another to run). Indeed, as the entire work-
group is running within a single thread, preemption would have no effect. In AMD’s
OpenCL CPU runtime, barrier operations are supported using setjmp and Tongjmp.
The setjmp call stores the system state and 1ongjmp restores it by returning to the
system state at the point where setjmp was called [1]. The runtime provides custom
versions of these two functions because they need to work in cooperation with the
hardware branch predictor and maintain proper program stack alignment. Figure 8.3
shows the execution flow of work-groups by CPU threads.
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FIGURE 8.3
Note that although a CPU thread eventually executes multiple work-groups,

it will complete one work-group at a time before moving on to the next. When a
barrier is involved, it will execute every work-item of that group up to the barrier,

then every work-item after the barrier, hence providing correct barrier semantics
and reestablishing concurrency—if not parallelism—between work-items in a single

Implementation of work-group execution on an x86 architecture

Work-item data stored in registers are backed into a work-item stack in main

work-group.
memory during the setjmp call. This memory is carefully laid out to behave well
in the cache, reducing cache contention and hence conflict misses and improving the
utilization of the cache hierarchy. In particular, the work-item stack data is staggered
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in memory to reduce the chance of conflicts, and data is maintained in large pages to
ensure contiguous mapping to physical memory and to reduce pressure on the CPU’s
translation lookaside buffer.

VECTORIZING WITHIN A WORK-ITEM

The AMD Piledriver microarchitecture includes 128-bit vector registers and opera-
tions from various Streaming SIMD Extensions (SSE) and Advanced Vector Exten-
sions (AVX) versions. OpenCL C includes a set of vector types: float2, float4,
int4, and other data formats. Mathematical operations are overloaded on these vector
types, enabling the following operations:

floatd a = input_datallocation];
float4 b = a + (float4)(0.f, 1.f, 2.f, 3.1);
output_datallocation] = b;

These vector types are stored in vector registers, and operations on them compile
to SSE and AVX instructions on the AMD Piledriver architecture. This offers an
important performance optimization. Vector load and store operations, as we also
see in our low-level code discussions, improve the efficiency of memory operations.
Currently, access to single instruction, multiple data (SIMD) vectors are entirely
explicit within a single work-item: we will see how this model differs on AMD GPU
devices when we discuss a GPU in Section 8.2.

LOCAL MEMORY

The AMD Piledriver design does not provide dedicated hardware for scratchpad
memory buffers. CPUs typically provide multiple levels of memory caching in order
to hide main memory access latency. The data localization provided by local memory
supports efficient mapping onto the CPU cache hierarchy and allows the kernel
developer to improve cache performance even in the absence of a true hardware
scratchpad. To improve cache locality, local memory regions are allocated as an array
per CPU thread and are reused for each work-group executed by that thread. For a
sequence of work-groups, barring any data races or memory conflicts, there is then no
need for this local memory to generate further cache misses. As an additional benefit,
there is no overhead from repeated calls to memory allocation routines. Figure 8.4
shows how we would map local memory to the AMD CPU cache.

Despite the potential advantages of the use of local memory on the CPU, it can also
have a negative impact on performance for some applications. If a kernel is written
such that its data accesses have good locality (e.g., a blocked matrix multiplication),
then using local memory as storage will effectively perform an unnecessary copying
of data while increasing the amount of data that needs to fit in the level 1 (L1) cache.
In this scenario, performance can possibly be degraded from smaller effective cache
size, unnecessary cache evictions from the added contention, and the data copying
overhead.
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Mapping the memory spaces for a work-group (work-group 0) onto a Piledriver CPU cache.

8.2 OpenCL ON THE AMD RADEON R9 290X GPU

In this section, we will use the term “wavefront” when referring to hardware threads
running on AMD GPUs (also called “warp” by NVIDIA). This helps avoid confusion
with software threads—work-items in OpenCL and threads in CUDA. However,
sometimes use of the term “thread” is unavoidable (e.g., multithreading) or preferable
when describing GPU characteristics in general. In this context, we will always use
“threads” when referring to hardware threads. Although this section includes many
specifics regarding the Radeon R9 290X GPU, the approach of mapping work-items
to hardware threads, scheduling and occupancy considerations, and the layout of the
memory system are largely similar across device families and between vendors.

A GPU is a significantly different target for OpenCL code compared with the
CPU. The reader must remember that a graphics processor is primarily designed to
render three-dimensional graphics efficiently. This goal leads to significantly different
prioritization of resources, and thus a significantly different architecture from that of
the CPU. On current GPUs, this difference comes down to a few main features, of
which the following three were discussed in Chapter 2:

1. Wide SIMD execution: A far larger number of execution units execute the same
instruction on different data items.

2. Heavy multithreading: Support for a large number of concurrent thread contexts
on a given GPU compute core.
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3. Hardware scratchpad memory: Physical memory buffers purely under the
programmer’s control.

The following are additional differences that are more subtle, but that nevertheless
create opportunities to provide improvements in terms of latency of work dispatch and
communication:

e Hardware synchronization support: Supporting fine-grained communication
between concurrent threads.

* Hardware managed tasking and dispatch: Work queue management and load
balancing in hardware.

Hardware synchronization support reduces the overhead of synchronizing execution
of multiple wavefronts on a given compute unit, enabling fine-grained communication
at low cost.

GPUs provide extensive hardware support for task dispatch because of their deep
roots in the three-dimensional graphics world. Gaming workloads involve managing
complicated task graphs arising from interleaving of work in a graphics pipeline.
As shown in the high-level diagram of the AMD Radeon R9 290X in Figure 8.5,
the architecture consists of a command processor and work-group generator at the
front that passes constructed work-groups to hardware schedulers. These schedulers
arrange compute workloads onto the 44 cores spread throughout the device. The
details of each compute unit are described in Section 8.2.2.

To obtain the high degree of performance acceleration associated with GPU
computing, scheduling must be very efficient. For graphics, wavefront scheduling
overhead needs to remain low because the chunks of work may be very small

Compute device

| Command processor |

¥
| l Ultra-threanied dispatcher l | - 4 compute it )
Compute Compute |~ ’ % SIMD 0 SIMD3 | |7 ’ SIMD lane
|C]..[.0 " ([T]..[.C (Stream core)
| oot ] |, | [Vesrorrs ]
N = N
N N

‘ ! 4

Local memory Private memory

Global memory

FIGURE 8.5

High-level Radeon R9 290X diagram labeled with OpenCL execution and memory
model terms.
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(e.g., a single triangle consisting of a few pixels). Therefore, when writing kernels
that we want to achieve high performance on a GPU, we need to

* provide a lot of work for each kernel dispatch;
* batch multiple launches together if kernels are small.

By providing a sufficient amount of work in each kernel, we ensure that the work-
group generation pipeline is kept occupied so that it always has more work to give
to the schedulers and the schedulers always have more work to push onto the SIMD
units. In essence, we wish to create a large number of wavefronts to occupy the GPU
since it is a throughput machine.

The second point refers to OpenCL’s queuing mechanism. When the OpenCL
runtime chooses to process work in the work queue associated with the device, it
scans through the tasks in the queue with the aim of selecting an appropriately large
chunk to process. From this set of tasks, it constructs a command buffer of work for
the GPU in a language understood by the command processor at the front of the GPU’s
pipeline. This process consists in (1) constructing a queue, (2) placing it somewhere
in memory, (3) telling the device where it is, and (4) asking the device to process it.
Such a sequence of operations takes time, incurring a relatively high latency for a
single block of work. In particular, as the GPU runs behind a driver running in kernel
space, this process requires a number of context switches into and out of kernel space
to allow the GPU to start running. As in the case of the CPU, where context switches
between short-running threads becomes a significant overhead, switching into kernel
mode and preparing queues for overly small units of work is inefficient. There is
a fairly constant overhead for dispatching a work queue and further overhead for
processing depending on the amount of work in it. This overhead must be overcome
by providing very large kernel launches, or long sequences of kernels. In either case,
the goal is to increase the amount of work performed for each instance of queue
processing.

THREADING AND THE MEMORY SYSTEM

A CPU cache hierarchy is arranged to reduce latency of a single memory access
stream: any significant latency will cause that stream to stall and reduce execution
efficiency. Alternatively, because the GPU cores use threading and wide SIMD units
to maximize throughput at the cost of latency, the memory system is designed to
maximize bandwidth to satisfy that throughput, with some latency cost. Figure 8.6
shows an approximation of the memory hierarchy for a system containing an FX-8350
CPU and a Radeon R9 290X GPU.

With relevance to the memory system, GPUs can be characterized by the
following:

* A large number of registers.
* Software-managed scratchpad memory called local data shares (LDS) on AMD
hardware.
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FIGURE 8.6

Memory bandwidths in the discrete system.

* A high level of on-chip multithreading.
* Asingle level 2 (L2) cache.
* High-bandwidth memory.

As mentioned previously, graphics workloads fundamentally differ from compute
workloads, and have led to the current GPU execution and memory models. Funda-
mentally, the GPU relies much less heavily on data reuse than does the CPU, and
thus has much smaller caches. Even though the size of the L1 data caches are similar
between x86 cores and Radeon R9 290X compute units, up to 40 wavefronts execute
concurrently on a compute unit, providing a much smaller effective cache size per
wavefront. The lack of reliance on caching is based on a number of factors, including
less temporal reuse of data in graphics, and owing to the large data sets and amount
of multithreading, the inability to realistically cache a working set. When data reuse
does occur, multithreading and high-bandwidth memory helps overcome the lack
of cache.

Also of note in the memory system is that there is a single, multibanked L2 cache,
which must supply data to all compute units. This single-L2-cache design allows the
GPU to provide coherence between caches by writing through the L1 caches and
invalidating any data that may potentially be modified by another cache. The write-
through design makes register spilling undesirable, as every access would require a
long-latency operation and would create congestion at the L2 cache.

To avoid spilling, GPUs provide much larger register files than their CPU
counterparts. For example, unlike the x86 architecture, which has a limited number of
general-purpose registers (16 architectural registers per thread context), the Radeon
R9 290X allows a single wavefront to utilize up to 16,384 registers! Wavefronts try
to compute using only registers and LDS for as long as possible, and try to avoid
generating traffic for the memory system whenever possible.

LDS allows high-bandwidth and low-latency programmer-controlled read/write
access. This form of programmable data reuse is less wasteful and also more
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area/power efficient than hardware-controlled caching. The reduced waste data (data
that are loaded into the cache but not used) access means that the LDS can have a
smaller capacity than an equivalent cache. In addition, the reduced need for control
logic and tag structures results in a smaller area per unit capacity.

Hardware-controlled multithreading in the GPU cores allows the hardware to
cover latency to memory. To reach high levels of performance and utilization, a
sufficiently large number of wavefronts must be running. Four or more wavefronts
per SIMD unit or 16 per compute unit may be necessary in many applications. Each
SIMD unit can maintain up to 10 wavefronts, with 40 active across the compute
unit. To enable fast switching, wavefront state is maintained in registers, not cache.
Each wavefront in flight is consuming resources, and as a result increasing the
number of live wavefronts to cover latency must be balanced against register and
LDS use.

To reduce the number of requests generated by each wavefront, the caches that are
present in the system provide a filtering mechanism to combine complicated gathered
read and scattered write access patterns in vector memory operations into the largest
possible units—this technique is referred to as coalescing. The large vector reads
that result from well-structured memory accesses are far more efficient for a DRAM-
based system, requiring less temporal caching than the time-distributed smaller reads
arising from the most general CPU code.

Figure 8.6 shows the PCI Express bus as the connection between the CPU and
GPU devices. All traffic between the CPU, and hence main memory, and the GPU
must go through this pipe. Because PCI Express bandwidth is significantly lower than
access to DRAM and even lower than the capabilities of on-chip buffers, this can
become a significant bottleneck on a heavily communication-dependent application.
In an OpenCL application, we need to minimize the number and size of memory
copy operations relative to the kernels we enqueue. It is difficult to achieve good
performance in an application that is expected to run on a discrete GPU if that
application has a tight feedback loop involving copying data back and forth across
the PCI Express bus.

INSTRUCTION SET ARCHITECTURE AND EXECUTION
UNITS

A simplified version of a Radeon R9 290X compute unit based on AMD’s Graphics
Core Next (GCN) architecture is shown in Figure 8.7. Compute units in the Radeon
R9 290X have four SIMD units. When a wavefront is created, it is assigned to a
single SIMD unit within the compute unit (owing to register allocation) and is also
allotted the amount of memory it requires within the LDS. As wavefronts contain
64 work-items and the SIMD unit contains 16 lanes, vector instructions executed
by a wavefront are issued to the SIMD unit over four cycles. Each cycle, wavefronts
belonging to one SIMD unit are selected for scheduling. This way, every four cycles, a
new instruction can be issued to the SIMD unit, exactly when the previous instruction
is fully submitted to the pipeline.
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FIGURE 8.7
Radeon R9 290X compute unit microarchitecture.

Recall that within a compute unit, the Radeon R9 290X has a number of additional
execution units in addition to the SIMD unit. To generate additional instruction-level
parallelism (ILP), the Radeon R9 290X compute unit looks at the wavefronts that
did not schedule an instruction to the SIMD, and considers them for scheduling
instructions to the other hardware units. In total, the scheduler may select up to
five instructions on each cycle onto one of the SIMD units, the scalar unit, memory
unit, LDS, or other hardware special function devices [2]. These other units have
scheduling requirements different from those of the SIMD units. The scalar unit, for
example, executes a single instruction for the entire wavefront and is designed to take
a new instruction every cycle.

In previous devices, such as the Radeon HD 6970 architecture presented in
Chapter 2, control flow was managed automatically by a branch unit. This design
led to a very specialized execution engine that looked somewhat different from other
vector architectures on the market. The Radeon R9 290X design is more explicit in
integrating scalar and vector code instruction-by-instruction, much as an x86 CPU
will when integrating SSE or AVX operations. Recall that each wavefront (64 work-
items) executes a single instruction stream (i.e., a single program counter is used
for all 64 work-items), and that all branching is performed at wavefront granularity.
In order to support divergent control flow on the Radeon R9 290X, the architecture
provides an execution mask used to enable or disable individual results from being
written. Thus, any divergent branching between work-items in a wavefront requires
restriction of instruction set architecture (ISA) to a sequence of mask and unmask
operations. The result is a very explicit sequence of instruction blocks that execute
until all necessary paths have been covered. Such execution divergence creates
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inefficiency as only part of the vector unit is active at any given time. However,
being able to support such control flow improves the programmability by removing
the need for the programmer to manually vectorize code. Very similar issues arise
when developing code for competing architectures, such as NVIDIA’s GeForce GTX
780, and are inherent in software production for wide-vector architectures, whether
manually, compiler, or hardware vectorized, or somewhere in between.

The following is an example of code designed to run on the Radeon R9 290X
compute unit (see the Radeon R9 290X family Sea Islands series ISA specification;
[3]). Let us take a very simple kernel that will diverge on a wavefront of any width
greater than one:

kernel void foo(const global int *out)

{

int* in, global

if( get_global_id(0) == 0 ) {
outlget_global_id(0)] = in[get_global_id(0)];
}
else {
out[get_global_id(0)] = 0;

While this is a trivial kernel, it will allow us to see how the compiler maps this
to ISA, and indirectly how that ISA will behave on the hardware. When we compile
this for the Radeon R9 290X, we get the following:

s_buffer_load_dword sO, s[4:7], 0x04
s_buffer_load_dword sl, s[4:7], OxI18
s_waitcnt lgkmcent(0)

s_min_u32 sO0, sO, 0x0000ffff
v_mov_b32 vl, s0

v_mul_i32_i24 vl, s12, vl

v_add_i32 vO, vcc, vO, vl

v_add_i32 vO, vcc, sl, vO
s_buffer_load_dword sO, s[8:11], 0x00
s_buffer_load_dword sl, s[8:11], 0x04
v_cmp_eq_i32 s[4:5], vO, O
s_and_saveexec_b64 s[4:5], s[4:5]
v_Ishlrev_b32 vl, 2, vO
s_cbranch_execz label_0016

s_waitcnt lgkmcent(0)

v_add_i32 vl, vcc, sO, vl
s_load_dwordx4 s[8:11], s[2:3], 0x50

s_waitcnt lgkmcent(0)

tbuffer_load_format_x vl, vl, s[8:11], 0 offen
format : [ BUF_DATA_FORMAT_32,BUF_NUM_FORMAT_FLOAT]

label _0016:

s_andn2_b64 exec, s[4:5], exec
v_mov_b32 vl, O
s_mov_b64 exec, s[4:5]

v_Ishlrev_b32 v0O, 2, vO
s_waitcnt lgkmcent(0)



8.2 OpenCL on the AMD Radeon R9 290X GPU 199

27 v_add_i32 vO0, vcc, sl, vO
28 s_load_dwordx4 s[0:3], s[2:3], 0x58
29 s_waitcnt vment(0) & Igkment (0)
30 tbuffer_store_format_x vl, vO, s[0:3], O offen
31 format : [ BUF_DATA_FORMAT_32,BUF_NUM_FORMAT_FLOAT]
32 s_endpgm
LISTING 8.1

Radeon R9 290X ISA divergent execution example.

This code may be viewed, like OpenCL code, as representing a single lane of
execution: a single work-item. However, unlike the higher-level language, here we
see a combination of scalar operations (prefixed with s_), intended to execute on the
scalar unit of the GPU core in Figure 8.7, and vector operations (prefixed with v_)
that execute across one of the vector units.

If we look at Line 11 of Listing 8.1, we see a vector comparison operation that
tests the work-item ID (stored in v0) against the constant O for each work-item in the
wavefront. The result of the operation is stored as a 64-bit Boolean bitmask in two
consecutive scalar registers (s[4:51). The resulting bitmask will be used to determine
which work-items will execute each conditional path in the OpenCL C kernel.

Next, Line 12 implicitly manipulates the execution mask by ANDing the current
execution mask with the comparison bitmask. In this case, the resulting execution
mask will be used to compute the i f clause of the conditional. The previous execution
mask is stored in the destination scalar registers (in this example, s[4:5], which
previously held the comparison bitmask, now holds the previous execution mask).
The previous execution mask will be used when determining which work-items will
execute the else clause of the conditional and will also be used again to reset the
execution mask after the conditional completes. Additionally, this operation ensures
that the scalar condition code (SCC) register is set: this is what will trigger the
conditional branch.

Setting the SCC register is an optimization, which allows an entire branch of the
conditional to be skipped if it has been determined that no work-items will enter
it (in this case, if the bitmask is zero, the s_cbranch_execz instruction on Line 14
could potentially allow the if conditional clause to be skipped). If the conditional
branch does not happen, the code will enter the e1se clause of the conditional. In the
current example, work-item O will generate a 1 for its entry of the bitmask, so the if
conditional will be executed—just by a single SIMD lane (starting on Line 16).

When the i f clause is executed, a vector load (a load from the tbuffer or texture
buffer, showing the graphics heritage of the ISA) on Line 19 pulls the expected data
into a vector register, v1. Line 19 is the last operation for the if clause. Note that
while the original OpenCL C code also had a store following the load, the compiler
factored out the store to later in the program in the compiled code.

Next, Line 22 takes the original execution mask and ANDs it with the bitwise-
negated version of the current execution mask. The result is that the new execution
mask represents the set of work-items that should execute the else clause of the
conditional. Instead of loading a value from memory, these work-items move the
constant value O into v1 on Line 23. Notice that the values to be stored to memory
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from both control flow paths are now stored in the v1 register. This will allow us to
execute a single store instruction later in the program.

Attentive readers may have noticed that there is no branch to skip the else clause
of the conditional in the program listing. In this case, the compiler has decided that,
as there is no load to perform in the else branch, the overhead of simply masking out
the operations and treating the entire section as predicated execution is an efficient
solution, such that the e1se branch will always execute and may simply not update v1.

Obviously this is a very simple example. With deeply nested conditionals, the
mask code can be complicated with long sequences of storing masks and ANDing
with new condition codes, narrowing the set of executing lanes at each stage until
finally scalar branches are needed. At each stage of narrowing, efficiency of execution
decreases, and as a result, well-structured code that executes the same instruction
across the vector is vital for efficient use of the architecture. It is the sophisticated set
of mask management routines and other vector operations that differentiates this ISA
from a CPU ISA such as SSE, not an abstract notion of having many more cores.

Finally, on Line 24, the execution mask is reset to its state before diverging across
the conditional, and the data currently stored in v1 are written out to memory using
the tbuffer store instruction on Line 30.

RESOURCE ALLOCATION

Each SIMD unit on the GPU includes a fixed amount of register and LDS storage
space. There is 256 kB of registers on each compute unit. These registers are split
into four banks such that there are 256 registers per SIMD unit, each 64 lanes wide
and 32 bits per lane. These registers are divided on the basis of the number of
wavefronts executing on the compute unit. There is 64 kB of LDS on each compute
unit, accessible as a random-access 32-bank SRAM. The LDS is divided between
the number of work-groups executing on the compute unit, on the basis of the local
memory allocation requests made within the kernel and through the OpenCL runtime
parameter-passing mechanism.

When executing a single kernel on each compute unit, as is the standard mapping
when running an OpenCL program, we might see a resource bottleneck, as seen in
Figure 8.8. In this diagram, we see two work-groups each containing two wavefronts,
where each work-item (and hence wavefront scaled up) needs 42 vector registers
and a share in 50 scalar registers, and the work-group needs 24 kB of LDS. This
allocation of four wavefronts per compute unit is limited by the LDS requirements
of the work-group and is below the minimum number of wavefronts we need to run
on the device to keep the device busy, as with only one wavefront per SIMD unit we
have no capacity to switch in a replacement when the wavefront is executing scalar
code or memory operations. A general expression for determining the work-group
occupancy on a compute unit within the Radeon R9 290X is given in Equation 8.1:

WG 40 WE 64k VGPR 8k SGPR 64kB LDS
= min CU CU Cu CU . (8 1)

CU WF * VGPR . WI’ SGPR , WF’ local memory
WG WI WG WF WG WG
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FIGURE 8.8
Mapping OpenCL's memory model onto a Radeon R9 290X GPU.

In Equation 8.1, VGPR is vector general purpose register, SGPR is scalar general
purpose register, WI is work-item, WG is work-group, and WF is wavefront. The
parameters based on the compiled OpenCL kernel are those shown in bold.

In the example in Figure 8.8, if we can increase the number of wavefronts running
on the SIMD unit (empirically four or more wavefronts), we have a better chance of
keeping the scalar and vector units busy during control flow and, particularly, memory
latency, where the more wavefronts running, the better our latency hiding. Because we
are LDS limited in this case, increasing the number of wavefronts per work-group to
three would be a good start if this is practical for the algorithm. Alternatively, reducing
the LDS allocation would allow us to run a third work-group on each compute unit,
which is very useful if one wavefront is waiting for barriers or memory accesses and
hence not for the SIMD unit at the time.

Each wavefront runs on a single SIMD unit and stays there until completion.
Any set of wavefronts that are part of the same work-group stay together on a single
compute unit. The reason for this should be clear when we see the amount of state
storage required by each group: in this case, we see 24 kB of LDS and just over
21 kB of registers per work-group. This would be a significant amount of data to
have to flush to memory and move to another core. As a result, when the memory
controller is performing a high-latency read or write operation, if there is not another
wavefront with arithmetic logic unit (ALU) work to perform ready to be scheduled
onto the SIMD unit, hardware will lie idle.

MEMORY PERFORMANCE CONSIDERATIONS IN OpenCL
GLOBAL MEMORY

Issues related to memory in terms of temporal and spatial locality were discussed in
Chapter 2. Obtaining peak performance from an OpenCL program depends heavily
on utilizing memory efficiently. Unfortunately, efficient memory access is highly
dependent on the particular device on which the OpenCL program is running. Access
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patterns that may be efficient on the GPU may be inefficient when run on a CPU. Even
when we move an OpenCL program to GPUs from different manufacturers, we can
see substantial differences. However, there are common practices that will produce
code that performs well across multiple devices.

In all cases, a useful way to start analyzing memory performance is to judge what
level of throughput a kernel is achieving. A simple way to do this is to calculate the
memory bandwidth of the kernel:

B +B
EB — ”: w (8.2)

where EB is the effective bandwidth, B; is the number of bytes read from global
memory, By, is the number of bytes written to global memory, and 7 is the time
required to run the kernel.

The time, ¢, can be measured using profiling tools such as the AMD CodeXL
Profiler. B; and By, can often be calculated by multiplying the number of bytes each
work-item reads or writes by the global number of work-items. Of course, in some
cases, this number must be estimated because we may branch in a data-dependent
manner around reads and writes.

Once we know the bandwidth measurement, we can compare it with the peak
bandwidth of the execution device and determine how far away we are from peak
performance: The closer to the peak, the more efficiently we are using the memory
system. If our numbers are far from the peak, then we can consider restructuring the
memory access pattern to improve utilization.

Spatial locality is an important consideration for OpenCL memory access. Most
architectures on which OpenCL runs are vector based at some level (whether SSE-like
vector instructions or automatically vectorized from a lane-oriented input language
such as AMD IL or NVIDIA PTX), and their memory systems benefit from issuing
accesses together across this vector. In addition, localized accesses offer caching
benefits.

There is a vector instruction set on most modern CPUs; the various versions
of SSE and the AVX are good examples. For efficient memory access, we want to
design code such that full, aligned, vector reads are possible using these instruction
sets. Given the small vector size, the most efficient way to perform such vector reads
is to give the compiler as much information as possible by using vector data types
such as float4. Such accesses make good use of cache lines, moving data between
the cache and registers as efficiently as possible. However, on these CPUs, caching
helps cover some of the performance loss from performing smaller, unaligned, or
more randomly addressed reads. Figures 8.9 and 8.10 provide a simple example of
the difference between a single contiguous read and a set of four random reads. Not
only do the narrower reads hit multiple cache lines (creating more cache misses if
they do not hit in the cache), but they also cause less efficient transfers to be passed
through the memory system.

GPU memory architectures differ significantly from CPU memory architectures,
as discussed in Chapter 2 and earlier in this chapter. GPUs use multithreading to
cover some level of memory latency, and are biased in favor of ALU capability
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FIGURE 8.9

Using vector reads provides a better opportunity to return data efficiently through the
memory system. When work-items access consecutive elements, GPU hardware can
achieve the same result through coalescing.
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FIGURE 8.10

Accesses to nonconsecutive elements return smaller pieces of data less efficiently.



204 CHAPTER 8 Dissecting OpenCL on a heterogeneous system

rather than caching and sophisticated out-of-order logic. Given the large amount of
compute resources available on typical GPUs, it becomes increasingly important to
provide high bandwidth to the memory system if we do not want to starve the GPU.
Many modern GPU architectures, particularly high-performance desktop versions
such as the latest AMD Radeon and NVIDIA GeForce designs, utilize a wide SIMD
architecture. Imagine the loss of efficiency if Figure 8.10 scaled to a 64-wide hardware
vector, as we see in the AMD Radeon R9 architecture.

Efficient access patterns differ even among these architectures. For an x86 CPU
with SSE, we would want to use 128-bit float4 accesses, and we would want as
many accesses as possible to fall within cache lines to reduce the number of cache
misses. For the AMD Radeon R9 290X GPU architecture, consecutive work-items
in a wavefront will issue a memory request simultaneously. These requests will
be delayed in the memory system if they cannot be efficiently serviced. For peak
efficiency, the work-items in a wavefront should issue 32-bit reads such that the reads
form a contiguous 256-byte memory region so that the memory system can create
a single large memory request. To achieve reasonable portability across different
architectures, a good general solution is to compact the memory accesses as effec-
tively as possible, allowing the wide-vector machines (AMD and NVIDIA GPUs) and
the narrow vector machines (x86 CPUs) to both use the memory system efficiently.
To achieve this, we should access memory across a whole work-group starting with a
base address aligned to work-groupSize * loadSize, where 10adSize is the size of
the load issued by each work-item, and which should be reasonably sized—preferably
32 bits on AMD GCN-based architectures, 128 bits on x86 CPUs and older GPU
architectures, and expanding to 256 bits on AV X-supported architectures. The reason
that 32-bit accesses are preferable on AMD GCN-based architectures is explained in
the following discussion regarding the efficiency of memory requests.

Complications arise when we are dealing with the specifics of different memory
systems, such as reducing conflicts on the off-chip links to DRAM. For example, let
us consider the way in which the AMD Radeon architecture allocates its addresses.
Figure 8.11 shows that the low 8 bits of the address are used to select the byte within
the memory bank; this gives us the cache line and subcache line read locality. If we
try to read a column of data from a two-dimensional array, we already know that we
are inefficiently using the on-chip buses. It also means that we want multiple groups
running on the device simultaneously to access different memory channels and banks.
Each memory channel is an on-chip memory controller corresponding to a link to
an off-chip memory (Figure 8.12). We want accesses across the device to be spread

bank channel offset

[47:X] [x:12] [11:8] [7:0]

FIGURE 8.11
Mapping the Radeon R9 290X address space onto memory channels and DRAM banks.
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FIGURE 8.12
Radeon R9 290X memory subsystem.

across as many banks and channels in the memory system as possible, maximizing
concurrent data access. However, a vector memory access from a single wavefront
that hits multiple memory channels (or banks) occupies those channels, blocking
access from other wavefronts and reducing overall memory throughput. Optimally,
we want a given wavefront to be contained with a given channel and bank, allowing
multiple wavefronts to access multiple channels in parallel. This will allow data to
stream in and out of memory efficiently.

To avoid using multiple channels, a single wavefront should access addresses
from within a 64-word (256-byte) region, which is achievable if all work-items read
32 bits from consecutive addresses. The worst possible situation is if each work-item
in multiple wavefronts reads an address with the same value above bit 8: each one hits
the same channel and bank, and accesses are serialized, achieving a small fraction of
peak bandwidth. More details on this subject for AMD architectures can be found
in AMD’s OpenCL programming guide [4]. Similar information is provided to cover
the differences in competing architectures from the respective vendors—for example,
NVIDIA’s CUDA programming guide [5].

LOCAL MEMORY AS A SOFTWARE-MANAGED CACHE

Most OpenCL-supporting devices have some form of cache support. Owing to their
graphics-oriented designs, many GPUs have read-only data caches that enable some
amount of spatial reuse of data.

The easiest way to guarantee the use of caches on a wide range of devices is
to use OpenCL image types (discussed in Chapters 6 and 7). On GPUs, images
map data sets to the texture read hardware and, assuming that complicated filtering
and two-dimensional access modes are not needed, improve memory efficiency on
the GPU. However, GPU caches are small compared with the number of active
wavefront contexts reading data. Programmer-controlled scratchpad memory in the
local address space is an efficient approach for caching data with less overhead from
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wasted space than hardware-controlled caches, better power efficiency, and higher
performance for a given area. It is also useful as a way to exchange data with
other work-items in the same work-group with a very low and, barring collisions,
guaranteed access latency. Figure 5.5 showed a simple example of this approach.

Of course, there are trade-offs when considering how best to optimize data
locality. In some cases, the overhead of the extra copy instructions required to move
data into local memory and then back out into the ALU (possibly via registers) will
sometimes be less efficient than simply reusing the data out of cache. Moving data
into local memory is most useful when there are large numbers of reads and writes
reusing the same locations, when the lifetime of a write is very long with a large
number of reads using it, or when manual cache blocking offers a way to correct for
conflict misses that can often be problematic in two-dimensional data access patterns.

In the case of read/write operations, the benefit of local memory becomes even
more obvious, particularly given the wide range of architectures with read-only
caches. Consider, for example, the following relatively naive version of a prefix sum
code:

void localPrefixSum (
__global unsigned xinput,
__global unsigned xoutput,
__local unsigned xprefixSums,
unsigned numElements)

/% Copy data from global memory to local memory *x/
for (unsigned index = get_local_id(0);

index < numElements;

index += get_local_size (0))
{

prefixSums[index] = input[index];

}

/% Run through levels of tree, each time halving the size
x of the element set performing reduction phase %/

int offset = 1;

for (unsigned level = numElements/2; level > 0; level /= 2)

{
barrier (CLK_LOCAL_MEM_FENCE) ;

for (int sumElement = get_local_id (0);
sumElement < level;
sumElement += get_local_size (0))

int ai = offset*(2«sumElement+1)—1;

int bi = offset*(2xsumElement+2)—1;

prefixSums[bi] = prefixSums[ai] + prefixSums|[bi];
}

offset %= 2;
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34 barrier (CLK_LOCAL_MEM_FENCE) ;
35
36 /* Need to clear the last element %/
37 if ( get_local_id(0) == 0 )
38 {
39 prefixSums[ numElements—1 ] = 0;
40 }
41
42 /* Push values back down the tree %/
43 for( int level = 1; level < numElements; level %= 2 )
44 {
45 offset /= 2;
46 barrier (CLK_LOCAL_MEM_FENCE) ;
47
48 for( int sumElement = get_local_id (0);
49 sumElement < level;
50 sumElement += get_local_size (0) )
51 {
52 int ai = offset*(2«sumElement+1)—1;
53 int bi = offset*(2xsumElement+2)—1;
54 unsigned temporary = prefixSums/[ai];
55 prefixSums[ai] = prefixSums|[bi];
56 prefixSums[bi] = temporary + prefixSums|[bi];
57 }
58 }
59 barrier (CLK_LOCAL_MEM_FENCE) ;
60
61 /x Write the data out to global memory =/
62 for (unsigned index = get_local_id (0);
63 index < numElements;
64 index += get_local_size (0))
65 {
66 output[index] = prefixSums[index ];
67 }
68 }
LISTING 8.2

Single work-group prefix sum.

Although the previous code is not optimal for many architectures, it does effec-
tively share data between work-items using a local array. The data flow of the first
loop (Line 19) is shown in Figure 8.13. Note that each iteration of the loop updates a
range of values that a different work-item will need to use on the next iteration. Note
also that the number of work-items collaborating on the calculation decreases on each
iteration. The inner loop masks excess work-items off to avoid diverging execution
across the barrier. To accommodate such behavior, we insert barrier operations to
ensure synchronization between the work-items and so that we can guarantee that the
data will be ready for the execution of the next iteration.

The prefix sum code in Listing 8.2 uses local memory in a manner that is
inefficient on most wide SIMD architectures, such as high-end GPUs. As mentioned
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__local prefixSums at step O

barrier
__local prefixSums at step 1

barrier
__local prefixSums at step 2

barrier
__local prefixSums at step 3

FIGURE 8.13

The accumulation pass of the prefix sum shown in Listing 8.2 over a 16-element array in
local memory using 8 work-items.

in the discussion on global memory, memory systems tend to be banked to allow
a large number of access ports without requiring multiple ports at every memory
location. As a result, scratchpad memory hardware (and caches, similarly) tends to
be built such that each bank can perform multiple reads or concurrent reads and writes
(or some other multiaccess configuration), where multiple reads will be spread over
multiple banks. This is an important consideration when we are using wide SIMD
hardware to access memory. Each cycle, the Radeon R9 290X GPU can process local
memory operations from two of the four SIMD units. As each SIMD unit is 16 lanes
wide, up to 32 local reads or writes may be issued every cycle to fit with the 32 banks
on the LDS. If each bank supports a single access port, then we can achieve this
throughput only if all accesses target different memory banks, because each bank can
provide only one value. Similar rules arise on competing architectures; NVIDIA’s
Fermi architecture, for example, also has a 32-banked local memory.
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Memory address mapping to LDS
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FIGURE 8.14
Step 1 in Figure 8.13 showing the behavior of an LDS with eight banks.

The problem for local memory is not as acute as that for global memory. In global
memory, we saw that widely spread accesses would incur latency because they might
cause multiple cache line misses. In local memory, at least on architectures with true
scratchpads, the programmer knows when the data is present because he or she put
it there manually. The only requirement for optimal performance is that we issue 16
accesses that hit different banks.

Figure 8.14 shows accesses from step 1 of the prefix sum in Figure 8.13 to a
simplified eight-bank LDS, where each work-item can perform a single local memory
operation per cycle. In this case, our local memory buffer can return up to eight values
per cycle from memory. What performance result do we obtain when performing the
set of accesses necessary for step 1 of the prefix sum?

Note that our 16-element local memory (necessary for the prefix sum) is spread
over two rows. Each column is a bank, and each row is an address within a bank.
Assuming (as is common in many architectures) that each bank is 32 bits wide, and
assuming, for simplicity, that the current wavefront is not competing with one from
another SIMD unit, our memory address would break down as shown at the top of
Figure 8.14. Two consecutive memory words will reside in separate banks. As with
global memory, an SIMD vector that accesses consecutive addresses along its length
will efficiently access the local memory banks without contention. In Figure 8.13,
however, we see a different behavior. Given the second access to local memory, the
read from prefixSums[bi]in

prefixSums[bi] = prefixSums[ail + prefixSums[bi] on Line 29; tries to
read values from locations 3, 7, 11, and 15. As shown in Figure 8.14, 3 and 11 both
sit in bank 3, and 7 and 15 both sit in bank 7. There is no possible way to read
two rows from the same bank simultaneously, so these accesses will be serialized
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Memory address mapping to LDS

row bank byte
[n:5] [4:2] [1:0]

Elements read in Step 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Elementindices

12121212x1_'_2121212E|ementvalues

0 1 2134 567 LDS banks

0 1 2‘__...3"" 4 5 6 7 Elementindices mapping

8 9 10 11 /12 13 14 15 toLDSbanks

16
FIGURE 8.15
Step 1 in Figure 8.14 with padding added to the original data set to remove bank conflicts
in the LDS.

on GPUs by the hardware, incurring a read delay. For good performance, we might
wish to restructure our code to avoid this conflict. One useful technique is to add
padding to the addresses, and an example of this is shown in Figure 8.15. By shifting
addresses after the first set (aligning to banks), we can change evenly strided accesses
to avoid conflicts. Unfortunately, this adds address computation overhead, which can
be more severe than the bank conflict overhead; hence, this trade-off is an example
of architecture-specific tuning.

Local memory should be carefully rationed. Any device that uses a real scratchpad
region that is not hardware managed will have a limited amount of local memory.
In the case of the Radeon R9 290X GPU, this space is 64 kB. It is important to
note that this 64 kB is shared between all work-groups executing simultaneously
on the core. Also, because the GPU is a latency hiding throughput device that
utilizes multithreading on each core, the more work-groups that can fit, the better
the hardware utilization is likely to be. If each work-group uses 16 kB, then only four
can fit on the core. If these work-groups contain a small number of wavefronts (one or
two), then there will be barely enough wavefronts to cover latency. Therefore, local
memory allocation will need to balance efficiency gains from sharing and efficiency
losses from reducing the number of hardware threads to one or two on a multithreaded
device.

The OpenCL application programming interface includes calls to query the
amount of local memory the device possesses, and this can be used to parameterize
kernels before the programmer compiles or dispatches them. The first call in the
following code queries the type of the local memory so that it is possible to determine
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if it is dedicated or in global memory (which may or may not be cached; this can also
be queried), and the second call returns the size of each local memory buffer:

cl_int err;

cl_device_local_mem_type type;

err = clGetDevicelnfo(
deviceld,
CL_DEVICE_LOCAL_MEM_TYPE,
sizeof(cl_device_local_mem_type),
&type,
0);

cl_ulong size;

err = clGetDeviceInfo(
deviceld,
CL_DEVICE_LOCAL_MEM_SIZE,
sizeof(cl_ulong),
&size,
0);

SUMMARY

The aim of this chapter was to show a very specific mapping of OpenCL to an
architectural implementation. In this case, it was shown how OpenCL maps slightly
differently to a CPU architecture and a GPU architecture. The core principles of this
chapter apply to competing CPU and GPU architectures, but significant differences
in performance can easily arise from variation in vector width (32 on NVIDIA
GPUs, 64 on AMD GPUs, and much smaller on CPUs), variations in thread context
management, and instruction scheduling. It is clear that in one book we cannot aim
to cover all possible architectures, but by giving one example, we hope that further
investigation through vendor documentation will lead to efficient code on whatever
OpenCL device is being targeted.
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CHAPTER

Case study: Image clustering

The bag-of-words (BoW) model is one of the most popular approaches to image
classification and forms an important component of image search systems. The
BoW model treats an image’s features as words, and represents the image as a
vector of the occurrence counts of image features (words). This chapter discusses the
OpenCL implementation of an important component of the BoW model—namely, the
histogram builder. We discuss the OpenCL kernel and study the performance impact
of various source code optimizations.

INTRODUCTION

Image classification refers to a process in computer vision that can classify an image
according to its visual content. For example, an image classification algorithm may be
designed to tell if an image contains a human figure or not. While detecting an object
is trivial for humans, robust image classification is still a challenge in computer vision
applications.

The BoW model is a commonly used method in document classification and
natural language processing. In the BoW model, the frequency of the occurrence of
each word in the document is used as a parameter for training a machine learning
algorithm. In addition to document classification, the BoW model can also be applied
to image classification. To apply the BoW model to classify images, we need to extract
a set of words (just like in document classification) from the image and count their
occurrence. In computer vision, the words extracted from an image are commonly
known as features. A feature generation algorithm reduces an image to a set of
features that can serve as a signature for an image. A high-level algorithm for image
classification is shown in Figure 9.1, and consists of feature generation, clustering,
and histogram building steps, which are briefly described below:

1. Feature generation: The feature generation algorithm we have applied in the
BoW model is the speeded up robust features (SURF) algorithm. SURF was first
introduced in 2006 by Bay et al. [1], and is a popular algorithm that is invariant
to various image transformations. Given an input image, the SURF algorithm
returns a list of features illustrated in Figure 9.2. Each feature includes a location
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FIGURE 9.1

An image classification pipeline. An algorithm such as SURF is used to generate features.
A clustering algorithm such as k-means then generates a set of centroid features that can
serve as a set of visual words for the image. The generated features are assigned to each

centroid by the histogram builder.

SURF generates an array of
features for each image

FIGURE 9.2

Feature generation using the SURF algorithm. The SURF algorithm accepts an image as an
input and generates an array of features. Each feature includes position information and a
set of 64 values known as a descriptor.

in the image and a descriptor vector. The descriptor vector (also referred to as a
descriptor) is a 64-dimension vector for each feature. The descriptor contains
information about the local color gradients around the feature’s location. In the
context of this chapter, feature refers to the 64 element descriptor which is a part
of each feature. The remainder of this chapter does not focus on the location
information generated as part of the feature.

2. Image clustering: The descriptors generated from the SURF algorithm are
usually quantized, typically by k-means clustering, and mapped into clusters.
The centroid of each cluster is also known as a visual word.

3. Histogram builder: The goal of this stage is to convert a list of SURF
descriptors into a histogram of visual words (centroids). To do this, we need to
determine to which centroid each descriptor belongs. In this case, both the
descriptors of the SURF features and the centroid have 64 dimensions. We
compute the Euclidean distance between the descriptor and all the centroids, and
then assign each SURF descriptor to its closest centroid. The histogram is
formed by counting the number of SURF descriptors assigned to each centroid.

Using this approach, we can represent images by histograms of the frequency
of the centroids (visual words) in a manner similar to document classification.
Machine learning algorithms such as a support vector machine can then be used for
classification. A diagram of this execution pipeline is shown in Figure 9.1.
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9.2 The feature histogram on the CPU

In this chapter, we explore the parallelization of the histogram-building stage
in Figure 9.1. We first introduce the sequential central processing unit (CPU)
implementation and its parallelized version using OpenMP. Then we move to mul-
tiple parallel implementations using OpenCL that are targeted toward a graphics
processing unit (GPU) architecture. Several implementations are discussed, includ-
ing a naive implementation, a version that uses more optimal accesses to global
memory, and additional versions that utilize local memory. At the end of the
chapter, an evaluation of performance is provided using an AMD Radeon HD
7970 GPU.

NOTE

This chapter focuses on the histogram-building section of the image classification application.
Readers interested in feature generation can access an open-source version of the SURF algorithm
implemented in OpenCL at https://code.google.com/p/clsurf/.

THE FEATURE HISTOGRAM ON THE CPU

In this section, we first introduce the algorithm for converting SURF features into
a histogram and implement a sequential version for execution on a CPU. We then
parallelize the algorithm using OpenMP to target a multicore CPU.

SEQUENTIAL IMPLEMENTATION

Listing 9.1 shows the procedure for converting the array of SURF features into
a histogram of cluster centroids (visual words). Line 2 loops through the SURF
descriptors and line 7 loops through the cluster centroids. Line 12 loops through the
64 elements of the current descriptor to compute the Euclidean distance between the
SUREF feature and the cluster centroid. Line 18 finds the closest cluster centroid for
the SURF descriptor and assigns its membership to the cluster.

// Loop over all the descriptors generated for the image
for(int i = 0; i < n_desc; i++)
{
membership = 0;
min_dist = FLT MAX;
// Loop over all the cluster centroids available
for(j =0 ; j < n_cluster; j++)
{
dist = 0;
// n_features: No. of elements in each descriptor (64)
// Calculate the distance between the descriptor and the centroid
for(k = 0 ; k < n_features; k++)
{
dist_temp = surf[i][k]—cluster[j][k];
dist += dist_temp *x dist_temp;

}
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// Update the minimum distance
if (dist < min_dist)
{
min_dist = dist;
membership = j;
}
}

// Update the histogram location of the closest centroid
histogram [ membership] += 1;

}
LISTING 9.1

Convert a list of SURF features to a histogram of clusters sequentially.

OpenMP PARALLELIZATION

To take advantage of the cores present on a multicore CPU, we use OpenMP to
parallelize Listing 9.1. The OpenMP application programming interface supports
multiplatform shared-memory parallel programming in C/C++ and Fortran. It defines
a portable, scalable model with a simple and flexible interface for developing parallel
applications on platforms from desktops to supercomputers [2]. In C/C++, OpenMP
uses pragmas (ffpragma) to direct the compiler on how to generate the parallel
implementation.

Using OpenMP, we can distribute the histogram-building step across the multiple
CPU cores by dividing the task of processing SURF descriptors between multiple
threads. Each thread computes the distance from its descriptor to the cluster centroids
and assigns membership to a centroid. Although the computation for each descriptor
can be done independently, assigning membership to the histogram creates a race
condition: if multiple threads try to update the same location simultaneously, the
results will be undefined. This race condition can be solved by using an atomic
addition operation (line 26). The histogram algorithm using OpenMP parallelization
is showing in Listing 9.2.

// All the descriptors for the image can be handled in parallel
#pragma omp parallel for schedule(dynamic)
for(int i = 0; i < n_desc; i++)
{ membership = 0
min_dist = FLT MAX
for(j =0 ; j < n_cluster; j++)
{
dist = 0;
// n_features: No. of elements in each descriptor (64)
// Calculate the distance between the descriptor and the centroid
for(k = 0 ; k < n_features; k++)
{ dist_temp = surf[i][k]—cluster[j][k];
dist += dist_temp * dist_temp;
}

// Update the minimum distance
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if (dist < min_dist)
{
min_dist = dist;
membership = j;
}
}

// The histogram needs to be updated atomically since multiple
// descriptors could update the same element
#pragma omp atomic
histogram [ membership] += 1
}
LISTING 9.2

Convert a list of SURF features to a histogram of clusters using OpenMP.

In Listing 9.2, the pragma on line 2 is used to create threads and divide the loop
iterations among them. The pragma on line 18 tells the compiler to use an atomic
operation when updating the shared memory location.

OpenCL IMPLEMENTATION

In this section, we discuss the OpenCL implementation of the histogram builder. We
first implement a naive OpenCL kernel based on the sequential and OpenMP versions
of the algorithm. Then we explain how this naive implementation can be improved
for execution on GPUs by applying optimizations such as coalesced memory accesses
and using local memory.

NAIVE GPU IMPLEMENTATION: GPU1

Given the parallel algorithm shown in Listing 9.2, the simplest way to parallelize the
algorithm in OpenCL would be to decompose the computation across the outermost
loop iterations: where each OpenCL work-item is responsible for computing the
membership of a single descriptor.

However, as with the OpenMP example, this implementation creates a race
condition as multiple work-items update the histogram in global memory. To solve
this issue, we use an atomic addition to update the histogram as we did for the
OpenMP parallelization. The code for this naive OpenCL kernel is shown in Listing
9.3. We refer to this implementation as GPU1.

__kernel

void kernelGPUI (
__global float xdescriptors ,
__global float xcentroids ,
__global int xhistogram,
int n_descriptors ,
int n_centroids ,
int n_features)

// Global ID identifies SURF descriptor
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11 int desc_id = get_global_id (0);
12
13 int membership = 0;
14 float min_dist = FLT MAX;
15
16 // For each cluster, compute the membership
17 for(int j = 0; j < n_centroids; j++) {
18
19 float dist = 0;
20
21 // n_features: No. of elements in each descriptor (64)
22 // Calculate the distance between the descriptor and the
centroid
23 for(int k = 0; k < n_features; k++) {
24 float temp = descriptors[desc_id*n_features+k] —
25 centroids[jxn_features+k];
26 dist += tempxtemp;
27 }
28
29 // Update the minimum distance
30 if (dist < min_dist) {
31 min_dist = dist;
32 membership = j;
33 }
34 }
35
36 // Atomic increment of histogram bin
37 atomic_fetch_add_explicit(&histogram [ membership], 1,
38 memory_order_relaxed , memory_scope_device);
39}
LISTING 9.3

Kernel for GPU1, the baseline histogram kernel.

Notice that in Listing 9.3, the atomic increment on line 37 is performed using
a relaxed memory order. We chose this option because we are performing only a
simple counter update, so enforcing stronger ordering requirements is not needed.
See Chapter 7 for more details.

COALESCED MEMORY ACCESSES: GPU2

Recall that successive work-items are executed in lockstep when running on GPU
single instruction, multiple data (SIMD) hardware. Also recall that SURF descriptors
and cluster centroids comprise vectors of 64 consecutive elements. Keeping this
information in mind, take a look at line 24 of Listing 9.3, and notice the access to
descriptors. Given what we know about GPU hardware, would line 24 result in
high-performance access to memory?

Suppose there are four work-items running in parallel with global IDs ranging
from O to 3. When looping over the features in the innermost loop, these four work-
items would be accessing memory at a large stride—in this kernel, the stride will
be n_features elements. Assuming that we are processing centroid O (j = 0), when
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FIGURE 9.3

The data transformation kernel used to enable memory coalescing is the same as a matrix
transpose kernel.

w
()

computing the distance for feature 0 (k = 0), the work-items would produce accesses
todescriptors[0], descriptors[64], descriptors[128], and descriptors[192].
Computing the distance for the next feature would generate accesses to descrip-
tors[1], descriptors[65], descriptors[129], and descriptors[193], and so on.

Recall from Chapter 8 that accesses to consecutive elements can be coalesced into
fewer requests to the memory system for higher performance, but that strided accesses
generate multiple requests, resulting in lower performance. This strided pattern when
accessing the buffers is uncoalesced and suboptimal.

To improve the memory bandwidth utilization by increasing the memory coalesc-
ing, we need to adjust the order in which elements are stored in the descriptors
buffer. This can be done by using a data layout transformation known as a transpose,
which is demonstrated in Figure 9.3. In a transpose, the rows and column positions
of each element are exchanged. That is, for an element A;; in the original matrix,
the corresponding element in the transposed matrix is A;;. We create a simple
transformation kernel where each thread reads one element of the input matrix from
global memory and writes back the same element at its transposed index in the global
memory.

Since we are using a one-dimensional array for the input buffers, an illustration
of applying a transpose kernel is shown in Figure 9.4. After the transformation,
descriptors[0],descriptors[64],descriptors[128],anddescriptors[192] are
stored in four consecutive words in memory and can be accessed by four work-items
using only one memory transaction.

__kernel

void kernelGPU2 (
__global float xdescriptors ,
__global float xcentroids ,
__global int xhistogram ,
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6 int n_descriptors ,
7 int n_centroids ,
8 int n_features)

9 |{
10 // Global ID identifies SURF descriptor
11 int desc_id = get_global_id (0);
12
13 int membership = 0;
14 float min_dist = FLT MAX;
15
16 // For each cluster , compute the membership
17 for(int j = 0; j < n_centroids; j++) {
18
19 float dist = 0;
20
21 // n_features: No. of elements in each descriptor (64)
22 // Calculate the distance between the descriptor and the
centroid
23 for(int k = 0; k < n_features; k++) {
24 float temp = descriptors[k«n_descriptors+desc_id] —
25 centroids [jxn_features+k];
26 dist += tempxtemp;
27 }
28
29 // Update the minimum distance
30 if (dist < min_dist) {
31 min_dist = dist;
32 membership = j;
33 }
34 }
35
36 // Atomic increment of histogram bin
37 atomic_fetch_add_explicit(&histogram [ membership], 1,
38 memory_order_relaxed , memory_scope_device);
39}
LISTING 9.4

Kernel for GPU2 with coalesced memory accesses.

After the transformation, line 24 of Listing 9.4 shows that descriptors is
now indexed by k*n_descriptors+desc_id. As k and n_descriptors have the

FIGURE 9.4
A transpose illustrated on a one-dimensional array.
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same value for all work-items executing in lockstep, the work-item accesses will
be differentiated solely by their ID (desc_id). In our previous example of four
work-items, k = 0 would produce accesses to descriptors[0], descriptors[1],
descriptors[2], and descriptors[3]. When k = 1, accesses would be generated
for descriptors[64], descriptors[65], descriptors[66], and descriptors[67].
This access pattern is much more favorable, and allows GPU coalescing hardware to
generate highly efficient accesses to the memory system.

VECTORIZING COMPUTATION: GPU3

Since each SURF descriptor is a fixed-sized vector with 64 dimensions, vectorization
with f1oat4 has the ability to substantially increase the utilization of the processing
elements. This type of vectorization on a CPU would allow the compiler to take
advantage of Streaming SIMD Extensions instructions for higher-throughput execu-
tion. Some families of GPUs (e.g. AMD Radeon 6xxx series) could also take advan-
tage of vectorized operations. Newer GPUs from AMD and NVIDIA do not explicitly
execute vector instructions; however, in some scenarios this optimization could lead
to high performance from improved memory system utilization or improved code
generation.

float al4], bl4], c[4];

al0] = b[0] + c[0]
alll = b[1] + c[1]
al2] = bl2] + c[2]
al3] = b[3] + c[3]

Vectorization can allow us to generalize operations on scalars transparently to
vectors, matrices, and higher-dimensional arrays. This can be done explicitly by
the developer in OpenCL using the float4 type. The listing below is an explicit
vectorization of the addition operations in the listing above.

float al4], b[4], c[4];
floatd b4 = (floatd)(b[0], b[1], b[2], b[3])

floatd c4 (float4)(cl0], c[1], cl2], c[3])
floatd a4 b4 + c4

To introduce vectorization into our algorithm, the OpenCL kernel is updated as
shown in Listing 9.5, named as implementation GPU3.
__kernel
void kernelGPU3 (

__global float xdescriptors ,

__global float =xcentroids ,

__global int xhistogram ,

int n_descriptors ,

int n_centroids ,

int n_features)
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9 |
10 // Global ID identifies SURF descriptor
11 int desc_id = get_global_id (0);
12
13 int membership = 0;
14 float min_dist = FLT MAX;
15
16 // For each cluster , compute the membership
17 for(int j = 0; j < n_centroids; j++) {
18
19 float dist = 0;
20 // n_features: No. of elements in each descriptor (64)
21 // Calculate the distance between the descriptor and the
centroid
22 // The increment of 4 is due to the explicit vectorization where
23 // the distance between 4 elements is calculated in each
24 // loop iteration
25 for (int k = 0; k < n_feature; k += 4) {
26 float4 surf_temp=(floatd)(
27 descriptors [(k+0)*n_surf + surf_id],
28 descriptors [(k+1)*n_surf + surf_id],
29 descriptors [(k+2)*n_surf + surf_id],
30 descriptors [(k+3)*n_surf + surf_id]);
31
32 float4 cluster_temp=(floatd)(
33 centroids[jxn_feature+k],
34 centroids [jxn_feature+k+1],
35 centroids[jxn_feature+k+2],
36 centroids[jxn_feature+k+3]);
37
38 float4 temp = surf_temp — cluster_temp;
39 temp = temp x temp;
40
41 dist += temp.x + temp.y + temp.z + temp.w;
42 }
43
44 // Update the minimum distance
45 if (dist < min_dist) {
46 min_dist = dist;
47 membership = j;
48 }
49 }
50
51 // Atomic increment of histogram bin
52 atomic_fetch_add_explicit(&histogram [ membership], 1,
53 memory_order_relaxed , memory_scope_device);
54}
LISTING 9.5

Kernel for GPU3 using vectorization.
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MOVE SURF FEATURES TO LOCAL MEMORY: GPU4

The following snippet shows the memory accesses to descriptors and centroids
from Listing 9.4:

for(int k = 0; k < n_features; k++) {
float temp = descriptors[k*n_descriptors+desc_id] —
centroids[j*n_features+k];
dist += temp*temp;

Notice that the data in both of these buffers is accessed multiple times. Is it
possible to take advantage of one of the other OpenCL memory spaces to improve
performance? When centroids are accessed, the address used to index the buffer
is independent of the work-item’s ID. This type of access pattern is favorable for
constant memory, which we will discuss in the next iteration of the algorithm. For
this version, we will focus on optimizing accesses to descriptors. Since addressing
descriptors is dependent on the work-item ID, it is not well suited for constant
memory. However, can we take advantage of local memory instead?

Recall that when running applications on most GPUs, local memory is a high-
bandwidth, low-latency memory used for sharing data among work-items within
a work-group. On GPUs with dedicated local memory, access to local memory is
usually much faster than accesses to global memory. Also, unlike accesses to global
memory, accesses to local memory usually do not require coalescing, and are more
forgiving than global memory when having nonideal access patterns (such as patterns
that cause large numbers of memory bank conflicts). However, local memory has
limited size—on the AMD Radeon HD 7970 GPU there is 64 KB of local memory per
compute unit, with the maximum allocation for a single work-group limited to 32 KB.
Allocating large amounts of local memory per work-group has the consequence of
limiting the number of in-flight threads. On a GPU, this can reduce the scheduler’s
ability to hide latency, and potentially leave execution resources vacant.

Initially, this data does not seem to be a good candidate for local memory, as
local memory is primarily intended to allow communication of data between work-
items, and no data is shared when accessing descriptors. However, for some GPUs
such as the Radeon HD 7970, local memory has additional advantages. First, local
memory is mapped to the local data store (LDS), which provides four times more
storage than the general-purpose level 1 (1) cache. Therefore, placing this buffer in
the LDS may provide low-latency access to data that could otherwise result in cache
misses. The second benefit is that even assuming a cache hit, LDS memory has a lower
latency than the L1 cache. Therefore, with enough reuse, data resident in the LDS
could provide a speedup over the L1 cache even with a high hit rate. The trade-off, of
course, is that the use of local memory will limit the number of in-flight work-groups,
potentially underutilizing the GPU’s execution units and memory system. This is an
optimization that needs to be considered on a per-architecture basis. A version of the
kernel utilizing local memory to cache descriptors is shown in Listing 9.6.
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1 __kernel

2  void kernelGPU4 (

3 __global float xdescriptors ,

4 __global float xcentroids ,

5 __global int xhistogram ,

6 int n_descriptors ,

7 int n_centroids ,

8 int n_features)

9 |

10

11 // Global ID identifies SURF descriptor

12 int desc_id = get_global_id (0);

13 int local_id = get_local_id (0);

14 int local_size = get_local_size (0);

15

16 // Store the descriptors in local memory

17 __local float desc_local[4096]; // 64 descriptors *x 64 work—items

18 for(int i = 0; i < n_features; i++) {

19 desc_local[ixlocal_size + local_id] =

20 descriptors[ixn_descriptors + surf_id ];

21 }

22 barrier (CLK_LOCAL_MEM_FENCE) ;

23

24 int membership = 0;

25 float min_dist = FLT MAX;

26

27 // For each cluster, compute the membership

28 for(int j = 0; j < n_centroids; j++) {

29

30 float dist = 0;

31 // n_features: No. of elements in each descriptor (64)

32 // Calculate the distance between the descriptor and the
centroid

33 for(int k = 0; k < n_features; k++) {

34 float temp = desc_local[kxlocal_size+local_id] —

35 centroids[jxn_features+k];

36 dist += tempxtemp;

37 }

38

39 // Update the minimum distance

40 if (dist < min_dist) {

41 min_dist = dist;

42 membership = j;

43 }

44 }

45

46 // Atomic increment of histogram bin

47 atomic_fetch_add_explicit(&histogram [ membership], 1,

48 memory_order_relaxed , memory_scope_device);

49 1}

LISTING 9.6

Kernel for GPU4, with descriptor data stored in local memory.
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When descriptors are accessed, n_descriptors and desc_id are fixed per work-
item for the entire duration of the kernel. The index simply varies on the basis of k.
Therefore, each work-item will access the n_feature elements (64) of descriptors
atotal of n_centroids times (the j iterator). Given the small L1 cache sizes on GPUs,
it is very likely that many of these accesses will generate L1 cache misses and cause
redundant accesses to global memory.

Moving descriptors to LDS would require 64 x 4 = 256 bytes per descriptor.
With a wavefront size of 64 work-items, each wavefront requires 16 KB of LDS to
cache its portion of descriptors. This would allow at most four work-groups to be
executed at a time per compute unit (one wavefront per work-group). On the Radeon
HD 7970, each compute unit comprises four SIMD units, limiting our execution to
one work-group per SIMD unit and removing the ability to hide latency on a given
SIMD unit. Any benefit we see from performance will be a trade-off between lower-
latency memory accesses and decreased parallelism. We refer to this implementation
as GPU4.

MOVE CLUSTER CENTROIDS TO CONSTANT MEMORY: GPU5S

As shown in the convolution example in Chapter 4, and the memory model discussion
in Chapter 7, constant memory is a memory space that it intended to hold data that is
accessed simultaneously by all work-items. Data typically stored in constant memory
would include convolution filters and constant variables such as 7t. In the case of our
histogram kernel, the descriptors for each centroid also fit this characteristic. Notice
that when centroids are accessed, the address depends on two of the loop iterators,
but never on the work-item ID. Therefore, work-items executing in lockstep will
generate identical addresses.

The trade-off for mapping centroids to constant memory is that on GPUs
constant memory usually maps to specialized caching hardware that is a fixed size.
In the case of the Radeon HD 7970, the largest buffer size that can be mapped to
constant memory is 64 KB. For this example, the features for each centroid consume
256 bytes. Therefore, we can map at most 256 centroids at a time to constant memory.

Alert readers may also question the effectiveness of mapping centroids to
constant memory. If all work-items are accessing the same address, will not the
accesses be coalesced and generate only a single request to global memory? On most
modern GPUs, the answer is yes: only a single request will be generated. However,
similarly to mapping descriptors to LDS, there are additional benefits to mapping
centroids to constant memory. The first benefit of utilizing constant memory is
to remove pressure from the GPU’s L1 cache. With the small L1 cache capacity,
removing up to 64 KB of recurring accesses could lead to a significant performance
improvement. The second benefit is that the GPU’s constant cache also has a much
lower latency than does accessing the general-purpose L1 cache. As long as our data
set has few enough centroids to fit into constant memory, this will likely lead to a
significant performance improvement.

Mapping the centroids buffer to constant memory is as simple as changing the
parameter declaration from __global to __constant, as shown in Listing 9.7.
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1 __kernel

2  void kernelGPUS5 (

3 __global float xdescriptors ,

4 __constant float xcentroids ,

5 __global int xhistogram ,

6 int n_descriptors ,

7 int n_centroids ,

8 int n_features)

9 |

10 // Global ID identifies SURF descriptor

11 int desc_id = get_global_id (0);

12 int local_id = get_local_id (0);

13 int local_size = get_local_size (0);

14

15 // Store the descriptors in local memory

16 __local float desc_local[4096]; // 64 descriptors *x 64 work—items

17 for(int i = 0; i < n_features; i++) {

18 desc_local[ixlocal_size + local_id] =

19 descriptors[ix*n_descriptors + surf_id];

20 }

21 barrier (CLK_LOCAL_MEM_FENCE) ;

22

23 int membership = 0;

24 float min_dist = FLT MAX;

25

26 // For each cluster , compute the membership

27 for(int j = 0; j < n_centroids; j++) {

28

29 float dist = 0;

30

31 // Calculate the distance between the descriptor and the
centroid

32 for(int k = 0; k < n_features; k++) {

33 float temp = desc_local[kxlocal_size+local_id] —

34 centroids[jxn_features+k];

35 dist += tempxtemp;

36 }

37

38 // Update the minimum distance

39 if (dist < min_dist) {

40 min_dist = dist;

41 membership = j;

42 }

43 }

44

45 // Atomic increment of histogram bin

46 atomic_fetch_add_explicit(&histogram [ membership], 1,

47 memory_order_relaxed , memory_scope_device);

43 }

LISTING 9.7

Kernel for GPUD, with centroid data stored in constant memory.
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PERFORMANCE ANALYSIS

To illustrate the performance impact of the various kernel implementations, we
executed the kernels on a Radeon HD 7970 GPU. To additionally provide insight
into the impact of data sizes on the optimization, we generated inputs with various
combinations of SURF descriptors and cluster centroids. We varied the number of
SURF descriptors between 4096, 16,384, and 65,536. At the same time, we varied
the number of cluster centroids between 16, 64, and 256. We picked large numbers
of SURF features because a comprehensive high-resolution images can usually
contains thousands of features. However, for cluster centroids, the numbers are
relatively small since a large number of clusters could reduce the accuracy of image
classification.

The performance experiments described in this section can be carried out
using performance profiling tools such as AMD’s CodeXL, which is described
in detail in Chapter 10. The performance discussed in this chapter is used only
for illustrating the benefits of source code optimization of OpenCL kernels. The
performance impact of each optimization will vary depending on the targeted
architecture.

GPU PERFORMANCE

We evaluate performance, and keep in mind that GPU1 requires only a single
OpenCL kernel. However, the rest of the implementations require a transpose kernel
to be called before execution of the histogram kernel, and thus consist of two
kernels. The transpose kernel overhead is based solely on the number of SURF
descriptors, and will not be impacted by other changes. Therefore, we separate out
the transpose timing in Table 9.1, so that the impact from the other performance
results can be viewed in isolation. The execution time for the second kernel from
each implementation is shown in Table 9.2.

Table 9.1 The Time Taken for the
Transpose Kernel

No. of Features | Transform Kernel (ms)

4096 0.05
16,384 0.50
65,536 2.14

All implementations other than GPU1 execute this
kernel. To make an accurate comparison between
GPUT1 and all other kernels, these values should be
added to the execution time of the histogram kernel
(shown in Table 9.2).
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Table 9.2 Kernel Running Time (ms) for Different GPU Implementations

GPU Implementations
# of SURF
# of Clusters | Descriptors GPU1 GPU2 | GPU3 | GPU4 | GPU5
8 4096 0.41 0.27 0.10 0.17 0.09
16,384 3.60 0.28 0.17 0.69 0.19
65,536 15.36 1.05 0.59 1.31 0.74
16 4096 0.77 0.53 0.19 0.28 0.14
16,384 7.10 0.53 0.32 0.57 0.29
65,536 30.41 1.47 1.17 2.26 1.12
64 4096 6.00 3.53 1.34 1.00 0.43
16,384 28.28 2.1 1.20 2.96 0.86
65,536 122.09 5.80 4.65 9.04 3.87
128 4096 4.96 4.04 1.47 1.95 0.81
16,384 55.70 4.27 2.40 5.89 1.61
65,536 243.30 | 11.63 9.29 17.46 6.43
256 4096 10.49 8.06 2.84 4.35 1.57
16,384 109.67 8.62 4.77 11.44 3.13
65,536 488.54 | 23.28 18.71 34.73 13.97
CONCLUSION

In this chapter, we performed various source code optimizations on a real-world
OpenCL kernel. These optimizations included improving memory accesses using a
data transformation, implementing vectorized mathematical operations, and mapping
data to local and constant memory for improved performance. We evaluated the
implementations on a GPU to observe the performance impact of each optimization.
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CHAPTER

OpenCL profiling
and debugging

INTRODUCTION

Our motivation for writing programs in OpenCL is not limited to writing isolated
high-performance kernels but is to speed up parallel applications. Previous chapters
have discussed how we can optimize kernels running on OpenCL devices by targeting
features of the architecture. An OpenCL application can include many kernels and
a large amount of input/output data movement between the host and the device.
We need to measure the performance and study an application as a whole to
understand bottlenecks. Profiling an application can help us to improve performance
by answering some of the following questions regarding an application:

e Which kernel should be optimized when multiple kernels exist in an application?

* How much time is spent by the kernels waiting in command-queues versus
actually executing?

*  What is the ratio between execution time and the time spent initializing the
OpenCL runtime and compiling kernels for an application?

e What is the ratio of time spent in host-device input-output to computation time
for an application?

Answering the performance questions above can help a developer quickly deter-
mine why an application is not performing as expected and, in combination with
the debugging features described later in this chapter, can greatly improve the
development process.

We conclude this chapter by discussing debugging OpenCL code. Debugging
parallel programs is traditionally more complicated than debugging conventional
serial code owing to subtle bugs such as race conditions, which are difficult to detect
and reproduce.

PROFILING OpenCL CODE USING EVENTS

OpenCL supports 64-bit timing of commands submitted to command-queues
using c1EnqueueXX() commands, such as cl1EnqueueNDRangeKernel (). Generally,
commands are enqueued into a queue asynchronously, and as described in previous
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chapters, the developer uses events to track a command’s status and enforce
dependencies. Events provide a gateway to a command’s history. Events contain
information detailing when the corresponding command was placed in the queue,
when it was submitted to the device, and when it started and ended execution. Access
to an event’s profiling information is through the application programming interface
(API) c1GetEventProfilingInfo(), which provides an interface for queuing timing
information:

Profiling of OpenCL programs using events has to be enabled explicitly on a
per command-queue basis. Profiling is enabled when creating a command-queue
by setting the CL_QUEUE_PROFILING_ENABLE flag. Once a command-queue has been
created, it is not possible to turn event profiling on and off.

cl_int clGetEventProfilingInfo (
cl_event event,
cl_profiling_info param_name,
size_t param_value_size,
void *param_value,
size_t *param_value_size_ret)

Table 10.1 The Command States that can be Used to Obtain Timestamps
from OpenCL Events

Event State Information Returned in param_value

CL_PROFILING_COMMAND_QUEUED A 64-bit value that describes the current
device time counter in nanoseconds when
the command identified by the event is
engueued in a command-queue by the
host.
CL_PROFILING_COMMAND_SUBMIT A 64-bit value that describes the current
device time counter in nanoseconds when
the command identified by the event that
has been enqueued is submitted by the
host to the device associated with the
command-queue.
CL_PROFILING_COMMAND_START A 64-bit value that describes the current
device time counter in nanoseconds when
the command identified by event starts
execution on the device.
CL_PROFILING_COMMAND_END A 64-bit value that describes the current
device time counter in nanoseconds when
the command identified by event has
finished execution on the device.
CL_PROFILING_COMMAND_COMPLETE A 64-bit value that describes the current
device time counter in nanoseconds when
the command identified by event and any
child commands enqueued by this
command on the device have finished
execution.
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The first argument, event, is the event being queried, and the second argument
is an enumeration value describing the query. Valid values for the enumeration are
given in Table 10.1.

As discussed previously, OpenCL command-queues work asynchronously—that
is, the functions return as soon as the command is enqueued. For this reason, querying
an OpenCL event for timestamps after a kernel enqueue necessitates a c1Finish()
call or other event synchronization before the call to c1GetEventProfilingInfo() to
ensure that the task associated with the event has completed execution. The following
is a simple example of the use of events to profile a kernel execution:

// Sample code that can be used for timing kernel execution duration
// Using different parameters for cl_profiling_info allows us to

// measure the wait time

cl_event timing_event;

cl_int err_code;

//! We are timing the clEnqueueNDRangeKernel call and timing
//information will be stored in timing_event

err_code = clEnqueueNDRangeKernel ( command_queue, kernel,
work_dim, global_work_offset, global_work_size, local_work_size,
0, NULL, &timing_event);

clFinish (command_queue) ;

cl_ulong starttime;

cl_ulong endtime;

err_code = clGetEventProfilingInfo ( timing_event,
CL_PROFILING_COMMAND_START,
sizeof (cl_ulong), &starttime , NULL);

kerneltimer = clGetEventProfilingInfo( timing_event,
CL_PROFILING_COMMAND_END,
sizeof (cl_ulong), &endtime, NULL);

unsigned long eclapsed = (unsigned long)(endtime — starttime);
printf (”Kernel Execution\t%ld ns\n”,elapsed);
LISTING 10.1

Using OpenCL events to get timing information for a kernel.

AMD CodeXL

The previous section demonstrated how the OpenCL API provides some basic
features for application profiling by obtaining timing information of OpenCL com-
mands. The following sections discuss how AMD’s CodeXL tool can help with
profiling and debugging an OpenCL application. CodeXL is a popular tool developed
by AMD to enable application developers to study the performance of OpenCL
applications and debug OpenCL applications executing on AMD platforms.
CodeXL can operate in multiple modes, with each mode fulfilling a different role
to support the application developer. On the basis of the selected mode, CodeXL can
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be used as a profiler, a debugger, or a static kernel analysis tool. The main modes for
CodeXL are briefly described below:

* Profile mode: In profile mode, CodeXL provides performance profiling
functionality for OpenCL applications. In profile mode, CodeXL gathers
performance data from the OpenCL runtime and AMD Radeon graphics
processing units (GPUs) during the execution of an OpenCL application.

* Analysis mode: In analysis mode, CodeXL can be used as a static analysis tool
to compile, analyze, and disassemble OpenCL kernels for AMD GPUs. CodeXL
can be used as an kernel prototyping tool in analysis mode.

* Debug mode: In debug mode, CodeXL can be used as a debugger for OpenCL
applications. CodeXL allows the developer to debug an application by stepping
through OpenCL API calls and kernel source code. Debug mode can also be
used to view function parameters and reduce memory consumption.

CodeXL is distributed by AMD in two different forms:

1. Visual Studio plug-in: When used as a Microsoft Visual Studio plug-in,
CodeXL uses the same settings as the active project in the solution. CodeXL
will query Visual Studio for all the project settings required to run the
application.

2. Stand-alone: CodeXL is also available as a stand-alone application that is
available for Windows and Linux. One of the main benefits of the stand-alone
application is that it does not require the application source code. The developer
can create a CodeXL project by specifying only the application binary,
command line arguments, and the kernel source location.

All three modes of CodeXL are available with both the Visual Studio plug-in
and the stand-alone application. The reader can download CodeXL from the AMD
developer website at http://developer.amd.com. The remainder of this chapter is
focused on CodeXL 1.5. The reader should also refer to the user guide for the features
available in the latest version of CodeXL.

PROFILING USING CodeXL

In profile mode, CodeXL can be used as a performance analysis tool that gathers
performance data from the OpenCL runtime and from AMD GPUs during the execu-
tion of an OpenCL application. We can use this information to discover bottlenecks
in an application and find ways to optimize the application’s performance for AMD
platforms. Hereafter, we refer to the CodeXL’s profile mode as the profiler.

To start the profiler in the CodeXL Visual Studio plug-in, simply load a solution
into Visual Studio. By default, the CodeXL Session Explorer panel will be docked
in the same window panel as the Visual Studio Solution Explorer panel. No code or
project modifications are required to profile the application. Select a C/C++ project
as the startup project, and choose Profile Mode from the CodeXL menu bar. The
modes of operation supported by the profiler are listed below:
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e GPU application timeline traces
* GPU performance counters during kernel execution
* Collecting central processing unit (CPU) performance information

From the menu bar, we can collect an Application Timeline Trace or GPU per-
formance counters. When the application completes execution, the profiler will
process and display the profile information. The CodeXL profiler can also be
used from within the CodeXL stand-alone application or from within a command
line utility tool, sprofile, included within the CodeXL install directory. Use of
sprofile is a popular way of scripting multiple performance analysis runs, using
a command line interface and in cases where the application source code is not
available.

Each time the application has been run with the profiler, the resultant performance
data is saved as a separate session. Figure 10.1 shows three sessions of the CodeXL
profiler.

COLLECTING OpenCL APPLICATION TRACES

The OpenCL application trace lists all the OpenCL API calls made by the application.
For each API call, the profiler records the input parameters and output results. In
addition, the profiler also records the CPU timestamps for the host code and device
timestamps retrieved from the OpenCL runtime. The output data is recorded in a
text-based file format called an application trace profile file.

CodeXL Explorer & X
“ac

4 g NBody | Profile Mode (GPU: Performance Counters) -...
4 | Application Timeline Trace
4 O Sep-03-2014_09-46-07
d- CL API Summary
B CL Context Summary
B CL Kernel Summary
= CL Topl0 Data Transfer Summary
i.': CL Top10 Kernel Summary
i CL Warning(s)/Error(s)
4 8 Sep -03-2014_09-57-13
d- CL API Summary
B CL Context Summary
E CL Kernel Summary
= CL Top10 Data Transfer Summary
E CL Topl0 Kernel Summary
§ CL Warning(s)/Error(s)
4 =) GPU: Performance Counters
& Sep-03-2014_10-46-10

FIGURE 10.1

The session explorer for CodeXL in profile mode. Two application timeline sessions and one
GPU performance counter session are shown.
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The OpenCL application trace is especially useful in helping to understand the
high-level structure of a complex application. The OpenCL application trace data
allows us to study the following:

* Discover the high-level structure of the application with the Timeline View.
From this view, we can determine the number of OpenCL contexts and
command-queues created and their usage in the application. The kernel
execution and data transfer operations are shown in a timeline.

e The Summary Pages can help us to determine if the application is bound by
kernel execution or data transfer operations. We can find the top 10 most
expensive kernel and data transfer operations, and the API hot spots (most
frequent API call or most expensive API call) in the application.

* View and debug the input parameters and output results for all API calls made
by the application with the API Trace View.

* View warnings and best practices with reference to how the application uses the
OpenCL runtime.

The Application Timeline View (Figure 10.2) provides a visual representation
of the execution of the application. Along the top of the timeline is the time grid,
which shows the total elapsed time for the application. Timing begins when the first
OpenCL call is made by the application and ends when the final OpenCL call is made.
Directly below the timeline, each host (operating system) thread that made at least
one OpenCL call is listed. For each host thread, the OpenCL API calls are plotted
along the time grid, showing the start time and duration of each call.

Below the host threads, the OpenCL tree shows all contexts and queues created by
the application, along with data transfer operations and kernel execution operations
for each queue. We can navigate the Timeline View by zooming, panning, collapsing/
expanding, or selecting a region of interest. From the Timeline View, we can also
navigate to the corresponding API call in the API Trace View, and vice versa. An
important feature of the Timeline View is that right-clicking on an API call opens the
function’s location in the source code.

The Application Timeline View can be useful for debugging your OpenCL
application. The following are the main benefits of the application timeline trace:

Appiication Timeline Trace

Miliseconds 38301 I I I
32 39.4 023 w17 w02.120 403,061 404003 204945 a0s.887 06829 wr.7n

-
ey | T | T
=] Context 1 (0x000000000038FF60)
=) Que
=

irn (0x0000000004F3DF 50)

2 T ?
FIGURE 10.2

The Timeline View of CodeXL in profile mode for the Nbody application. We see the time
spent in data transfer and kernel execution.
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* You can confirm that the high-level structure of your application is correct. By
examining the timeline, you can verify that the queues and contexts created
match your expectations for the application.

* You can gain confidence that synchronization has been performed properly in
the application. For example, if kernel A execution is dependent on a buffer
operation and outputs from kernel B, then kernel A’s execution should appear
after the completion of kernel B’s execution in the timeline. It can be difficult to
find these synchronization errors using traditional debugging techniques.

» Finally, you can see that the application has been utilizing hardware efficiently.
The timeline should show that independent kernel executions and data transfer
operations occur simultaneously.

HOST API TRACE VIEW

The host API Trace View (Figure 10.3) lists all the OpenCL API calls made by each
host thread in the application. We have used the Nbody application in the AMD
accelerated parallel processing (APP) software development kit (SDK) throughout
this chapter. Each host thread that makes at least one OpenCL call is listed in a
separate tab.

The host API Trace contains a list of all the API calls made by a host thread.
For each call, the list displays the index of the call (representing execution order),
the name of the API function, a list of parameters passed to the function, and the
value returned by the function. When displaying parameters, the profiler will attempt
to dereference pointers and decode enumeration values to give as much information
as possible about the data being passed in or returned from the function. Double-
clicking an item in the Host API trace will display and zoom into that API call in the
Host Thread row in the Timeline View.

The host API Trace allows us to analyze the input parameters and output results
for each API call. For example, we can easily check that all the API calls return
CL_SUCCESS or that all the buffers are created with the correct flags. We can also
identify redundant API calls using this view.

Host Thread 12328 |_Summary.
CallIndexInterface Parameters Result Device Block Kemel Occupancy  CPU Time Device Time
A D00] CL_SUCCESS 00003
103 clEnqueueNDRangeKemel  0x0000000000514170,0000000000458F620;:1;NULL;[32768 1 2810:NULL:NULL CL_SUCCESS nbody sim 50% 01530 596324
104 clFlush 0+0000000000514170 CL_SUCCESS 00031
<l eMapBuff ;CL_TRUE,CL_MAP_READ;0;524288,0;NULLNULL.. A71... 5120 KBMAP BU.. 642062 12806
106 clSetkemelArg 0+0000000004587620:0:8;(0+463AB90) CL_SUCCESS 00017
CL_SUCCESS 00003
80) CL_SUCCESS
) CL_SUCCESS 00003
0,0000000000514170;0:000000000458F620;1;NULL;{32768];[1 28} 0;NULL;NULL CL_SUCCESS nbody sim 00626 548519
0:0000000000514170 CL_SUCCESS 00048
t NULLNULL CL_SUCCESS 00205
0,0000000000514170 CL_SUCCESS 00068
;CL_TRUE:CL_MAP_READ;0;524288,0;NULL;NULL. 512.0 KB MAP BU. 29424 16532
CL_SUCCESS 00017
) CL_SUCCESS 00003
20:58,[0¢ CL_SUCCESS
20:6:8,[0468AD00] CL_SUCCESS
19 clEnqueueNDRangeKernel  030000000000514170:0x000000000458F620;1;NULL{32768[128}0;NULL;NULL CL_SUCCESS nbody sim 00623 464723
120 cFlush 0:0000000000514170 CL_SUCCESS 00034

[

B

FIGURE 10.3
The API Trace View of CodeXL in profile mode for the Nbody application.
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SUMMARY PAGES VIEW

The Application Timeline Trace also provides a number of summary pages to show
various statistics for your OpenCL application. It can provide a general idea of
the location of the application’s bottlenecks. The summary pages for each profiling
session can be viewed from within the CodeXL profiler, as shown in Figure 10.1. The
main summary pages are described below:

* API Summary page: This page shows statistics for all OpenCL API calls made
in the application for API hot spot identification.

* Context Summary page: This page shows the statistics for all the kernel
dispatch and data transfer operations for each context. It also shows the number
of buffers and images created for each context.

* Kernel Summary page: This page shows statistics for all the kernels that are
created in the application.

* Top 10 Data Transfer Summary page: This page shows a sorted list of the 10
most expensive individual data transfer operations.

* Top 10 Kernel Summary page: This page shows a sorted list of the 10 most
expensive individual kernel execution operations.

*  Warning(s)/Error(s) Page: This page shows potential problems in your
OpenCL application. It can report unreleased OpenCL resources and OpenCL
API failures and provide suggestions to achieve better performance. Clicking on
a hyperlink takes you to the corresponding OpenCL API that generates the
message.

From the context summary page, it is possible to determine whether the applica-
tion is bound by kernel execution or data transfers. If the application is bound by data
transfers, it is possible to determine the most expensive data transfer type (read, write,
copy, or map). We can investigate whether we can minimize this type of data transfer
by modifying the algorithm if possible. With the Timeline and Summary views, we
can investigate whether data transfers have been executed in the most efficient way—
that is, concurrently with a kernel’s execution.

If the application is bound by kernel execution, we can determine which kernel is
the bottleneck. If the kernel execution on a GPU device is the bottleneck, the GPU
performance counters can then be used to investigate the bottleneck inside the kernel.

COLLECTING GPU KERNEL PERFORMANCE COUNTERS

The API Trace provides only timestamp information, which tells us the execution
duration of a kernel. It does not tell us the resource on the GPU that is the bottleneck
when the kernel is executing. Once we have used the trace data to discover which
kernel is most in need of optimization, we can collect the GPU performance counters
to drill down into the kernel execution on a GPU device.

The GPU kernel performance counters can be used to find possible bottlenecks in
the kernel execution. The performance counters on the GPU gather data as the kernel
executes. This data is presented to the developer to analyze which resource on the
GPU is the bottleneck. A list of performance counters supported by AMD Radeon
GPUs can be found in the CodeXL documentation.
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Method tion ThreadID Time VGPRs SGPRs FCStacks lemnelOccupanc Wavefronts VALUlnsts SALUlnsts VFetchlnsts SFetchinsts

1 nbodysim K. 1 12616 6177452 46 43 NA 30 512 626723 53279 2 32781

VWritelnsts  VALUUtilization (%) VALUBusy (%) SALUBusy (%) FetchSize WriteSize CacheHit (%) MemUnitBusy (%) Calllndex
2 100 59.79 6.55 2768563 110563 66.52 049 103
FIGURE 10.4
CodeXL Profiler showing the different GPU kernel performance counters for the Nbody
kernel.

The GPU performance counters results for the Nbody kernel are shown in
Figure 10.4. Using the performance counters, we can do the following:

e Determine the number of resources (general-purpose registers, local memory
size) allocated for the kernel. These resources affect the possible number of
in-flight wavefronts in the GPU. A higher number of wavefronts better hides
data latency.

¢ Determine the number of arithmetic logic unit (ALU), global, and local memory
instructions executed by the GPU.

e View the cache hit percentage and the number of bytes fetched from and written
to the global memory.

e Determine the utilization of the vector ALU units and the memory units.

* View any local memory (local data share) bank conflicts where multiple lanes
within a single instruction, multiple data (SIMD) unit attempt to read from or
write to the same local data share bank and have to be serialized, causing
increased access latency.

The output data is recorded in a comma-separated-variable (csv) format. You can
also click on the kernel name entry in the “Method” column to view the OpenCL ker-
nel source, AMD intermediate language (IL), GPU instruction set architecture (ISA),
or CPU assembly code for that kernel. From the data in Figure 10.4, we can try to
determine optimizations that would improve the kernel’s performance. For example,
despite having a large number of vector instructions (626723/work-item) and no
divergence (VALU utilization is 100%), the vector ALU is only busy for 59% of the
execution time. There are only 2 fetch instructions per work-item, so the kernel is not
memory bound given the large number of ALU instructions. For this kernel, which
executes such a large number of instructions, the cause is likely due to misses in the
instruction cache. This would explain the low utilization despite otherwise favorable
statistics. Refactoring the code to have a smaller footprint, or increasing the number
of waves in flight to cover the miss latency are two possible paths to optimization.

CPU PERFORMANCE PROFILING USING CodeXL

CodeXL provides several modes of CPU profiling. CodeXL’s CPU profiling capa-
bilities let you assess program performance using instruction-based sampling or
time-based sampling. The CPU profiling capabilities allow a developer to investigate
branching, data access, instruction access, or level 2 (L2) cache behavior.
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Since this chapter focuses on OpenCL developer tools, we direct the reader to the
latest CodeXL User Guide. The CodeXL User Guide can be found at http://developer.
amd.com/tools-and-sdks/opencl-zone/codexl/

ANALYZING KERNELS USING CodeXL

In analysis mode, CodeXL can be used as a static analysis tool. Analysis mode can
be used to compile, analyze, and disassemble an OpenCL kernel for AMD Radeon
GPUs. It can be used as a graphical user interface tool for interactive tuning of an
OpenCL kernel or in command line mode. Hereafter, we refer to CodeXL in analysis
mode as KernelAnalyzer. CodeXL’s Kernel Analyzer can also be accessed from within
a command line tool, CodeXLAnalyzer.exe, which is located in the CodeXL install
directory.

KernelAnalyzer is an offline compiler and an analysis tool, which means it can
compile a kernel for any GPU supported by the installed Catalyst driver regardless of
the GPU present in the system. To use KernelAnalyzer, the AMD OpenCL runtime
is required to be installed on the system. To carry out static analysis of an OpenCL
kernel it must be compiled by KernelAnalyzer. To compile an OpenCL kernel in
KernelAnalyzer, simply drop the source containing the OpenCL kernel anywhere
within CodeXL’s main window (Figure 10.6). The application is not required to
compile or analyze the OpenCL kernel. The main benefits of KernelAnalyzer can
be grouped into the following categories:

1. Prototyping OpenCL kernels: Since KernelAnalyzer does not require host
code to compile OpenCL kernels, it is a useful tool to prototype an OpenCL
kernel. KernelAnalyzer includes an offline compiler that allows us to compile
and disassemble OpenCL kernels and view the ISA code. The compilation errors
generated by the OpenCL driver will be shown in the output tab for different
GPU devices. Since different GPU devices support different OpenCL extensions
and built-in functions, KernelAnalyzer can efficiently check if the kernel can be
compiled on various GPU devices.

2. Generating OpenCL binaries: Very often, a developer would not desire to
distribute an OpenCL kernel’s source code as plain text. In this case, the
OpenCL kernel would be distributed as a binary accompanying the main
executable. While the OpenCL provides an API to generate kernel binaries and
save them, it can generate binaries only for devices present on the platform.
KernelAnalyzer’s command line can greatly simplify the process of generating
OpenCL kernel binaries since the user can simply supply a kernel file and then
compile a binary for AMD-supported platforms. Additionally, KernelAnalyzer
also provides options to generate the kernel binary such that it will contain only
some ELF sections. This allows developers to avoid distributing OpenCL
kernels as text even within a binary. The binary could contain just ISA or LLVM
intermediate representation (IR), or source, etc. The role of the different sections
of an OpenCL kernel binary are as follows:


http://developer.amd.com/tools-and-sdks/opencl-zone/codexl/
http://developer.amd.com/tools-and-sdks/opencl-zone/codexl/
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* ISA sections: If the developer includes only a particular GPU device’s ISA
in the kernel binary, then a different binary would be needed for each
OpenCL device.

* LLVM IR sections: An OpenCL kernel binary with LLVM IR (or AMD IL)
would support multiple AMD devices since the OpenCL runtime
compilation calls will translate the IR to the appropriate GPU’s ISA.

3. Early performance evaluation of kernels: An OpenCL kernel can be executed
only once the relevant host-device interaction has been implemented. This
delays performance evaluation and prototyping since a kernel’s performance
cannot be studied independently of the host code. Kernel Analyzer allows a
developer to perform preliminary studies of the performance of an OpenCL
kernel before the host-side OpenCL has been implemented by carrying out
detailed emulation of the kernel execution on a model of the target device.

Once kernel source code has been loaded into KernelAnalyzer, Kernel Analyzer
can build the OpenCL kernel and carry out its analysis of the kernel. When we run
the Build and Analyze step, KernelAnalyzer shows a list of Graphics IP versions
in the CodeXL session explorer (Figure 10.5). For each of the Graphics IP versions,
the AMD IL and the ISA is shown for the selected kernel. For the example Nbody
kernel, the AMD IL and the GPU ISA code are shown in Figure 10.6.

The following sections expand on the above benefits of KernelAnalyzer and
discuss the possible benefits of analyzing a kernel’s IL and ISA. KernelAnalyzer
consists of the ISA view, the Statistics view, and the Analysis view.

KERNELANALYZER STATISTICS AND ISA VIEWS

Just like the x86 ISA, GPU ISAs are also complex instruction sequences. Sometimes
the meaning of each instruction is hard to understand even by an expert devel-
oper. However, even basic high-level analysis of the generated GPU ISA code in
KernelAnalyzer can greatly help performance tuning of an application in the early
stages of OpenCL development. Device-specific kernel optimizations are commonly
performed by analyzing the ISA code. Some of the benefits of studying the ISA code
are described below:

e Viewing the number of general-purpose registers used and the registers spilled
to memory by the compiler. Spilled registers can greatly reduce application
performance since spilled registers are usually stored in high-latency global
memory. Register usage statistics can guide an application developer to refactor
his or her kernel to use fewer registers or more local memory.

e Viewing the number of loads and stores for different graphics architectures in
the ISA can guide the developer with regard to possible optimizations by tuning
the load or store size of each work-item.

e Viewing the effect of source code optimizations such as loop unrolling on the
ISA code generated. Viewing the ISA code also allows a developer to examine
the ISA code for built-in OpenCL functions such as atomic operations.
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It should be noted when observing the analysis and the ISA that the OpenCL com-
piler can carry out source optimizations when compiling OpenCL kernels. The result
of such optimizations can be that branch statements may appear or disappear in the
final ISA seen in KernelAnalyzer. This can make it difficult to build correspondence
between OpenCL source and ISA code. The developer can supply -00 as a build
option to KernelAnalyzer to minimize the number of optimization passes carried out
by the compiler.

KernelAnalyzer also presents a Statistics view (Figure 10.7). The Statistics view
can help the developer understand the resource usage of an OpenCL kernel. The AMD
OpenCL compiler gathers information regarding the GPU resources that would be
required to run an OpenCL kernel. The resource usage of a kernel is commonly known
as the occupancy of the kernel since it decides the number of wavefronts that can be
scheduled to a compute unit. Modern AMD GPUs run up to 10 concurrent wavefronts
per SIMD in order to hide latency. The number of wavefronts that can be scheduled to
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FIGURE 10.5

AMD CodeXL explorer in analysis mode. The NBody OpenCL kernel has been compiled
and analyzed for a number of different graphics architectures.
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__kernel

D void nbody_sim(__global float4* pos, _ global float4* vel
»int numBodies ,float deltaTime, float epssqr
,__global float4* newosition, _global float4* newveloci

1 unsigned int gid = get_global_id(0);
2 float4 myPos = pos[gid];
floats acc = (floats)e.ef;

int i = 0;

for (; (i+UNROLL_FACTOR) < numSodies; ) {

38 #pragma unroll UNROLL_FACTOR

39 for(int j = ©; j < UNROLL_FACTOR; j++,i++) {
floatd p = pos[i];
floats r;
r.xyz = p.xyz - myPos.xyz;

// accumulate effect of all particles
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L Code - nbody_sim

call 1024;8

endmain

func 1024 ; _ OpenCL_nbody_sim_ke
mov r1013, cbo[8].x

mov r1019, 11.6000
dcl_max_thread_per_group 256

dcl_typeless_uav_id(14)_stride(4)|

dcl_typeless_uav_id(13)_stride(4)
dcl_typeless_uav_id(15)_stride(4)
dcl_typeless_uav_id(12)_stride(4)
mov ro._z_, vThreadGrpIdFlato.x
mov r1022.xyz@, vTidInGrpd.xyz

mov r1023.xyz@, vThreadGrpIde.xyz
dcl_literal 19, 256, 1, 1, OxFFFF
umin r1023.xyz0, r123.xyzz, 19.n
umin r1021.xyz0, cbo[1].xyzz, 12.

ishl r1023.__w, r1023.w, 10.z

ISA Code - nbody_sm

SC_SHADERSTATE :
SC_SHADERSTATE :

u32NumBoolGSConst
u32NumFloatVsCons
SC_SHADERSTATE: u32NumFloatPSCons
SC_SHADERSTATE: u32NumFloatGSCons
fConstantsAvailable = @

iConstantsAvailable = @

bConstantsAvailable = @

u325C0ptions[@] = 0x00680000 SCOp
u325C0ptions[1] = 0x40000000 SCOp
u325C0ptions[2] = 0x08200000 SCOP
u325C0ptions[3] = 0x00000204 SCOP
; Disassembly

asic(CI)
type(Cs)

34 imad r1021.xyz0, r1023.xyzz, ri02 s_buffer_load_dword 50, s[4:7]

float distSqr = r.x * r.x + ruy *r.y + rz* 35  umin r1024.xyz@, cb@[6].xyzz, 19. s_buffer_load_dword s1, s[4:7]
6 iadd r1021.xyz0, r1@21.xyz@, r1@2 s_waitent 1gkment(@)

float invDist = 1.0f / sqrt(distSqr + epssqr); 37 umin r1024.xyz0, cbo[7).xyzz, 19. s_min_u32 s0, s, ox0e0efff

float invDistCube = invDist * invDist * invDist; iadd r1023.xyz0, r1023.xyze, r102 s_buffer_load_dword s4, s[8:11

float s = p.w * invDistCube; mov r1023._ w, re.z vmov b32 i, se

v_mul_i32_i24 v1, 512, v1

1 mov rie18.x__, 10.0000 32 v_add_i32  ve, vcc, vo, vi
acc.xyz += s * r.xyz; 2 udiv r1024.xyz_, r1021.xyzz, cbo[ 33 v_add_i32  ve, vcc, 51, v@
51 } 43 imad r1025.xyz0, r1023.xyzz, cbe[ v_lshlrev_b32 ve, 4, v@

52 } 44 dcl_literal 113, 0x00000000, 0x00 s_load_dwordx4 s[12:15], s[2:3
for (; i < numBodies; i++) { 45 dcl_literal 125, 0x00000001, 0x08 s_waitcnt 1gkment(@)

“a floatd n = nacls . 12 auannannas auao

FIGURE 10.6

The ISA view of KernelAnalyzer. The NBody OpenCL kernel has been compiled for multiple

graphics architectures. For each architecture, the AMD IL and the GPU ISA can be

evaluated.

statistis £ | Code OpencL/m/isa () | Analysis (3 |
Statistics generated during OpenCL build for [Graphics P v6: Capeverde -

Local Workgroup: X: 16 Y: 16 2 0

@ Performance advice: To increase the number of waves in fight, replace some of your use of VGPRs with SGPRs and LDS

Apples to local workgroup dimensions of (16, 16,0) and Dyramic LDS Usage (0 bytes) as set above

) he performance of kernels that do a lot of memory transactions is likely to benefit

Dynamic LDS Usage: 0 bytes
Resource Usage Constraint on Max Waves per SIMD (1-10) |
SGPRs (0-102) 48 Registers 9
VGPRs (0-256) 46 Registers 5
LDS size (0-32,768) 0 bytes (Static: 0 bytes, Dynamic: 0 bytes) 10
@ Amount of LDS available without reducing bytes
Effective concurrency constraint (Max waves per SIMD): 5

Resource Recommended Usage Usage Performance Impact

ISA Size <=32KB 1,168 bytes W/ Meets recommended usage
| Scratch Registers 0 0 W/ Meets recommended usage
Performance Reference Tables

The effect of resource usage on the number of concurrent waves

Max waves/SIMD: 7 6 5 4|

Num of SGPRs used: e s T s sec

Max waves/SIMD: i 3 7 6 5 4 3 2

Num of VGPRs used: M) mm s pw vw | aes sses | 6ses [esim

Max waves/SIMD: 9 8 7 6 5 4 3 2

Amount of LDS used (bytes):  JUGNAW | LNA  -LNA  -LNA  -LNA  -LNA  -LNA | -LNA | SLNA

Itis generaly recommended to increase the number of waves in-fight. However, this is not the only factor o consider. Increasing the number of waves in-fiight does not always translate
toincreased kernel performance.

This is because the device can switch to process instructions from a different wavefront instead of staling to wait for the memory result.
Kernels that have few memary operations may benefit from a smaller number ‘tobetter cache and the
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FIGURE 10.7

trashing)

The Statistics view for the Nbody kernel shown by KernelAnalyzer. We see that the number
of concurrent wavefronts that can be scheduled is limited by the number of vector

registers.

the compute unit is limited by the resources present (local memory, vector and scalar
registers) on a compute unit. The occupancy of the Nbody kernel is seen in Figure
10.7. We see that the Nbody kernel is limited by the number of vector registers present

in the compute unit.
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statistics (1) | Code OpencL/n/isA Analysis )
Analysis generated by emulated execution
Family Graphics IP v7
Device Bonaire Kalindi Capeverde
ISA branches executed True Fake Both True False  Both True false  Both
Clock cycles per wavefront 88 Se02  S692 88 5602 5692 a8 5602 5602
Total clock cycles 88 5692 5692 176 11384 11384 88 5692 5692
SALU instructions 12 1013 1914 12 1013 1914 12 1013 1914
SFetch instructions 13 o3 a3 13 93 o3 13 93 o3
VALU instructions 2 16125 16128 25 16125 16128 2 16125 16128
VFetch instructions 2 7 2 2 2 2 2 2 2
VWrite instructions 2 2 2 2 2 2 2 2 2
LDS instructions ) 0 ) 0 ) 0 0 ) )
GDS instructions 0 0 0 0 [} 0 0 0 0
Atomic instructions 0 0 0 0 0 0 0 0 0
SGPRs 43 43 48 43 43 48 43 43 48
VGPRs % % 46 46 % 46 46 % 46
Wavefronts 409 4096 409 4096 409 4096 409 40%  40%
Code Length 1163 1168 1168 1168 1168 1168 1163 1168 1168
FIGURE 10.8
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The Analysis view of the Nbody kernel is shown. The execution duration calculated by

emulation is shown for different graphics architectures.

KERNELANALYZER ANALYSIS VIEW

The Statistics and ISA views of Kernel Analyzer show us the output IL code, the ISA

code, and the occupancy of an OpenCL kernel.

KernelAnalyzer also includes an Analysis view for OpenCL kernels. The Analysis
view of KernelAnalyzer can be launched for each kernel from the session explorer.
The Analysis view calculates the approximate execution duration of the OpenCL
kernel. The approximate execution duration is based on a detailed emulation of the

kernel execution on the target device.

The results of the emulation of an OpenCL kernel are shown in Figure 10.8.
KernelAnalyzer estimates the performance of an OpenCL kernel on the basis of an
approximate model of the GPU device. Since KernelAnalyzer cannot accept input
data for execution, it uses heuristics to decide which loops and branches are executed
and how many times. The heuristics are described below:

* All true: All waves hitting the branch statement will resolve to true—hence,

jump to the designated label.

» All false: All waves hitting the branch statement will resolve to false—hence,

perform the next statements.

* Both: Some waves hitting the branch statement will resolve to false—perform

both statements. It is enough that some waves will fall into the “else” statement.

The estimated execution time for the OpenCL kernel is calculated by applying
the heuristics defined above. Figure 10.8 shows the estimated execution time for the
Nbody kernel for different graphics architectures. The True, False, and Both columns
show each heuristic and can be used to form an approximate upper and lower bound

on the kernel’s execution duration.

Additionally, the Analysis view also provides other statistics, such as the vector
and scalar instructions executed and the number of scalar fetch instructions. These
statistics can be used for performance evaluation by developers who may not have a

particular OpenCL device installed in their system.
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DEBUGGING OPENCL KERNELS USING CodeXL

From the previous sections, we have seen how we can optimize the performance
of our OpenCL code. However, the paramount requirement of any program is
correctness. Debugging parallel programs is traditionally more complicated than
debugging conventional serial code owing to subtle bugs such as race conditions,
which are difficult to detect and reproduce. The difficulties of debugging parallel
applications running on heterogeneous devices are exacerbated by the complexity
and “black box™ nature of the accelerated parallel platform.

In OpenCL, the developer works on top of an API that hides the parallel platform’s
implementation. Debuggers transform the developer’s view into a “white box” model,
letting the developer see how individual commands affect the parallel computing
system. This allows developers to find bugs caused by incorrect OpenCL usage
and optimize their applications for the system on which it runs. In this section, we
discuss debugging in a heterogeneous environment using CodeXL’s debug mode. In
debug mode, CodeXL behaves as an OpenCL and OpenGL debugger and memory
analyzer. It helps developers find bugs and optimize OpenCL performance and
memory consumption.

Figure 10.9 shows a simplified high-level overview of how CodeXL interacts with
OpenCL devices in debug mode. It shows some of the important modules/compo-
nents. CodeXL intercepts the API calls between the application and the OpenCL
installable client driver (ICD). This enables CodeXL to log API calls, identify all
OpenCL objects, and gather data on these objects. In the following sections, we
briefly describe the debugging capabilities of CodeXL to demonstrate its usage in

i CodeXL Application
A

y
OpenCL ICD

A
v

AMD OpenCL runtime

A

]
g

AMD GPU driver

CPU

GPU

Compute unit

Compute unit
B P P P
E E E E

FIGURE 10.9

A high-level overview of how CodeXL interacts with an OpenCL application.
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development environments. In this section, for the sake of brevity, we will refer to
CodeXL in debug mode as simply CodeXL.

As previously discussed, there are two distinct regions of code in heterogeneous
applications:

1. API-level code (e.g., clCreateBuffer(), clEnqueueNDRangeKernel()). <note to
copyeditor: please use true type for the function call names> These calls run on
the host.

2. The OpenCL commands, which involve devices for execution or data transfers.

CodeXL allows developers to debug OpenCL applications by setting breakpoints on
both API function calls and within OpenCL kernels. We give brief details about the
debugging capabilities of CodeXL for both API-level host-code and compute kernels.

API-LEVEL DEBUGGING

We will discuss API-level debugging in context using the NBody example. In order
to launch API-level debugging, CodeXL must be switched to debug mode. API-level
debugging is provided by CodeXL to view the parameters that a runtime function is
called with. The following are features provided by API-level debugging:

* API function breakpoints: CodeXL will break the debugged application before
the function is executed. This allows one to view the call stack that led to the
function call, as well as the function’s parameters.

* Record the OpenCL API call history: When the debugged process is
suspended, CodeXL shows us the last OpenCL function call and its parameters
in the context. Figure 10.10 shows how CodeXL Debugger provides a
back-trace of the OpenCL commands invoked by the program.

* Program and kernel information: OpenCL contexts contain multiple program
and kernel objects within them. CodeXL allows us to verify which programs are
associated with each context. If the program was created using
clCreateProgramiithSource(), we can also view the source code passed to
this function.

Properties & X Function Calls History - CL Context 2 8 x
OpenCL Function Call =) = (=

! |
Name  cEnqueusNDRangeKernel 6 OpenCL function call

Arguments (0x00000000049B0A10 - , 0x00000D000048F6FD - P1 i
Kernel 1, 1, 0x000000, {8192}, {128}, 0, 2

q p 10, Buffer 3, TRUE, CL_MAP_READ, 0, 131072, 0, 0x0...
) clSetKernelArg(P1Kernel 1, 0, 8, 20FC68)
) clSetKernelArg(P1Kernel 1, 1, 8, 29FCT8)
K
K

D) clSetd g(P1Kemnel 1,5, 8, 29FC60)
|Arg(P1Kemel 1, 6, 8, 29FCT0)

NDRangeKe 10, P1Kernel 1, 1, 0x000000, {8192}, {128}, 0, 0x...

) clSetd

FIGURE 10.10
CodeXL API trace showing the history of the OpenCL functions called.
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* Image and buffer data: An OpenCL context will contain buffers and images.
CodeXL allows us to view the object’s data. For image types, CodeXL allows us
to see the image data visualized in the “Image view.”

*  Memory checking: CodeXL allows us to view the memory consumption for a
specific context’s buffers. The memory checking functionality provided by
CodeXL Debugger can be used to trace memory leaks and unneeded objects that
were created or were not released in time, consuming device memory and
making debugging more difficult.

* API usage statistics: CodeXL shows statistical information about the currently
selected context’s API usage. By viewing a breakdown of the API calls made in
this context, we can see the number of times a function is called.

KERNEL DEBUGGING

The API-level view allows you to view the parameters and break on different OpenCL
API function calls. CodeXL also lets you debug your OpenCL kernels at runtime,
inspect variable values across different work-items and work-groups, inspect the
kernel call stack, and more. There are multiple ways to start debugging an OpenCL
kernel with CodeXL Debugger:

1. OpenCL kernel breakpoints: The developer can set a breakpoint in the kernel
source code file.

2. Stepping in from API-level debugging: The developer can step into debugging
a kernel’s execution from the corresponding c1EnqueuNDRangeKernel () call.

3. Kernel function breakpoints: Adding the kernel function’s name as a function
breakpoint in the breakpoints dialog. When a kernel matching the function name
starts executing, the debugged process stops at the kernel’s beginning.

Figure 10.11 shows the appearance of OpenCL kernel code while debugging
is being done with CodeXL. A common concern when debugging an OpenCL
application is keeping track of state in the presence of a large number of work-items.
A kernel on a GPU device will commonly be launched with many thousands of work-
items. CodeXL assists the developer by allowing us to focus on a particular active
work-item by displaying the work-item’s variable’s values and enforcing possible
breakpoints for the work-item.

CodeXL also provides a unified breakpoints dialog box that allows a developer
to view all the active API and kernel execution breakpoints by clicking on Add /
Remove Breakpoints in the Debug menu. In this dialog box, the developer can also
configure CodeXL to break automatically on any OpenCL API call.

Multi-watch—viewing data during kernel debugging

CodeXL allows us to set breakpoints and step through the execution of a GPU kernel.
This allows us to evaluate whether the program is following the expected execution
sequence. However, to study the correctness of a program, it is also important to
view the input, output, and intermediate data of the executing kernel. The debugger
provides support for viewing data using the Multi-Watch window.
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The Multi-Watch window is shown in Figure 10.12. We see that the Multi-Watch
window allows us to view the global memory buffers present on the device. It also
provides options to visualize the data as an image. The Multi-Watch window also
provides a convenient method to view the state of the variables across multiple work-
items.

DEBUGGING USING printf

The OpenCL C kernel programming language implements the well-known C and
C++ printf() function. The printf() function is an invaluable debugging tool for
C and C++ developers for tracking program data.

When a kernel invocation has completed execution, the output of all printf()
calls executed by this kernel invocation is flushed to the implementation-defined
output stream. Calling c1Finish() on a command-queue flushes all pending output
by printf in previously enqueued and completed commands to a output stream. It
should be noted that printf () does not guarantee that output will be ordered. This is
similar to the behavior seen when debugging a multithreaded program with printf()
where the order of the data to the output stream is not defined.

The OpenCL-C specification explains some of the subtle differences in the
interpretation of the printf () format string between OpenCL-C and C99.

CodexL Explorer x| (g NBody_Kernels.cl 8

an : R

3 #defi UNROLL_FACTOR 8
4 b Nody | Debug Mode e -

kernel
GL Context 1 A z
= f! 4% f! 4%
B i sk void nbody_sim(_ global float4* pos, _ global floatd* vel

P e s ,int numBodies ,float deltaTime, float epssqr
S ,__global floata* newPosition, _global floatd* newvelocity) {
o Buffer

B Command Queues
a5 rOJ;enCLngrams
4 [7) OpenCL Program 1
7 Kernel 1- nbody_sim

unsigned int gid = get_global_id(e);
floats myPos = pos[gid];
float4 acc = (floatd)d.of;

int 1 = @;
for (; (i+UNROLL_FACTOR) < numBodies; ) {
#pragma unroll UNROLL_FACTOR
for(int j = @; j < UNROLL_FACTOR; j++,i++) {
floats p = pos[i];
float4 r;
: r.XyZ = p.XyZ - MyPOS.XyZ;
3 Q@ float distSqr s r.x ™ r.x + r.y *r.y + r.z *r.z;

m

float invDist = 1.0f / sqrt(distSqr + epssqr);
float invDistCube = invDist * invDist * invDist;
float s = p.w * invDistCube;

/ accumulate effect of all particles
acc.xyz += 5 * r.xyz;
)
}
for (; i < numBodies; i++) {
floata p = pos[i];
float4 r;

r.Xyz = p.Xyz - myPos.xyz;
float distSqr = r.x * r.x + r.y *r.y + r.z *r.z;

FIGURE 10.11
A kernel breakpoint set on the Nbody kernel.
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The Multi-Watch window showing the values of a global memory buffer in the Nbody
example. The values can also be visualized as an image.

SUMMARY

In this chapter we have provided a brief overview of the developer tools available
in OpenCL. We have shown how OpenCL events can be used to obtain timing
information for an OpenCL command. We have shown how CodeXL’s profiling
mode can be used to study the performance of OpenCL kernels. We have seen how
the analysis mode of CodeXL can be used to prototype OpenCL kernels and do
preliminary performance evaluations of kernels without requiring host code. We have
also shown how the debug mode can be used to debug OpenCL API calls and kernels.
CodeXL is a rapidly improving tool and the user should visit http://developer.amd.
com/tools-and-sdks/opencl-zone/codexl/ for information about the newest features
in CodeXL.
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CHAPTER

Mapping high-level
programming languages
to OpenCL 2.0

A compiler writer’s perspective

I-Jui (Ray) Sung, Wen-Heng (Jack) Chung, Yun-Wei Lee, Wen-Mei Hwu

INTRODUCTION

High-level programming languages and domain-specific languages can often benefit
from the increased power efficiency of heterogeneous computing. However, it should
not require the compiler writers for these languages to deal with vendor-specific
intricacies across graphics processing unit (GPU) platforms and the complexity of
generating code for them. Instead, OpenCL itself can serve as a compiler target for
portable code generation and runtime management. By using OpenCL as the target
platform, compiler writers can focus on more important, higher-level problems in
language implementation. Such improved productivity can enable a proliferation of
high-level programming languages for heterogeneous computing systems.

In this chapter we use C++ Accelerated Massive Parallelism (AMP), a parallel
programming extension to C++-, as an example to show how efficient OpenCL code
can be generated from a higher-level programming model. The C++- language pro-
vides several high-level, developer-friendly features that are missing from OpenCL.
These high-level features support software engineering practices and improve devel-
oper productivity. It is the compiler writer’s job to translate these features into the
OpenCL constructs without incurring an excessive level of overhead. We present
some important implementation techniques in this translation process; for compiler
writers interested in mapping other programming models to OpenCL these imple-
mentation techniques can be useful too.

We will start with a brief introduction of C4++ AMP, and a simple vector addition
“application” will serve as the running example. With the example, subsequent
sections illustrates how C++ AMP features are mapped to OpenCL. The actual,
working implementation consists of a compiler, a set of header files, and a runtime
library, which together are publicly accessible as an open source project.'

Thttps://bitbucket.org/multicoreware/cppamp-driver-ng/.
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A BRIEF INTRODUCTION TO C++ AMP

C++ AMP is a programming model that supports expression of data-parallel algo-
rithms in C++4-. Compared with other GPU programming models such as OpenCL
and CUDA C, C++ AMP encapsulates many low-level details of data movement
so the program looks more concise. But it still contains features to let programmers
address system intricacies for performance optimization.

Developed initially by Microsoft and released in Visual Studio 2012, C++ AMP
is defined as an open specification. Based on open source Clang and LLVM compiler
infrastructure, MulticoreWare” has published Clamp, a C++ AMP implementation
which targets OpenCL for GPU programs. It runs on Linux and Mac OS X, and
supports all major GPU cards from vendors such as AMD, Intel, and NVIDIA.

C++ AMP is an extension to the C+4-11 standard. Besides some C++4- header
files which define classes for modeling data-parallel algorithms, it adds two additional
rules to the C44 programming language. The first one specifies additional language
restrictions for functions to be executed on GPUs, and the second one allows cross-
thread data sharing among GPU programs. This chapter does not aim to be a
comprehensive introduction to C4++ AMP. We will highlight the most important
core concepts and show how a C++ AMP compiler can implement such features
based on OpenCL. For those who are interested in a comprehensive tutorial on C++
AMP itself, Microsoft has published a book on C++ AMP [1] that serves as a good
starting point.

Let us start from a simple vector addition program in C+4 AMP (Figure 11.1).

#include <amp.h>
#include <vector>
using namespace concurrency;
int main(void) {
constint N = 10;
std::vector<float> a(N);
std::vector<float> b(N);
std::vector<float> c(N);
float sum = 0.f;
10. for (inti=0;i<N;i++){
11, afi] = 1.0f * rand() / RAND_MAX;
12.  b[i] = 1.0f * rand() / RAND_MAX;
13. }
14. array_view<const float, 1> av(N, a);
15. array_view<const float, 1> bv(N, b);
16. array_view<float, 1> cv(N, c);
17. parallel_for_each(cv.get_extent(),
18. [=] (index<1>idx) restrict(amp)
{

CoNoOOA~WN=

20. cv[idx] = av[idx] + bv[idx];
21. b

22. cv.synchronize();

23. return 0;

24.}

FIGURE 11.1
C++ AMP code example—vector addition.

2https://bitbucket.org/multicoreware/cppamp—driver— ng/.
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FIGURE 11.2

Vector addition, conceptual view.

Conceptually, the C++ AMP code here computes vector addition as shown in
Figure 11.2.

Line 1 in Figure 11.1 includes the C++ AMP header, amp.h, which provides the
declarations of the core features. The C++ AMP classes and functions are declared
within the concurrency namespace. The “using” directive on the next line makes the
C++ AMP names visible in the current scope. It is optional but helps avoid the need
to prefix C++ AMP names with a concurrency:: scope specifier.

This main function in line 4 is executed by a thread running on the host, and it
contains a data-parallel computation that may be accelerated. The term “host” has
the same meaning in the C4++ AMP documentation as in OpenCL. While OpenCL
uses the term “device” to refer to the execution environment used for accelerated
execution, C++ AMP uses the term “accelerator” for the same purpose. One high-
level feature in C++ AMP and commonly seen in other high-level languages is
Lambda. Lambda enables C4++ AMP host and accelerator code to be collocated
in the same file and even within same function. So there is no separation of
flow in the source of device code and host code in C+4 AMP. Later we will
talk about how a C++4-11-ish Lambda is compiled into OpenCL in the context of
C++ AMP.

C++ AMP array_view

In C++ AMP, the primary vehicle for reading and writing large data collections is
the class template array_view. An array_view provides a multidimensional reference
to a rectangular collection of data locations. This is not a new copy of the data but
rather a new way to access the existing memory locations. The template has two
parameters: the type of the elements of the source data, and an integer that indicates
the dimensionality of the array_view. Throughout C++ AMP, template parameters
that indicate dimensionality are referred as the rank of the type or object. In this
example, we have a 1-dimensional array_view (or “an array_view of rank 1) of
C++ float values.
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For example, in line 14 in Figure 11.1, array_view av(a) provides a one-
dimensional reference to the C4+ vector a. It tells the C++ AMP compiler that
accesses to a vector through av will use it only as an input (const), treat it as a one-
dimensional array (1), and assume that the size of the array is given by a variable (V).

The constructor for array_view of rank 1, such as cv on line 16, takes two
parameters. The first is an integer value which is the number of data elements. In
the case of av, bv, and cv, the number of data elements is given by N. In general the
set of per-dimension lengths is referred to as an extent. To represent and manipulate
extents, C++ AMP provides a class template, extent, with a single integer template
parameter which captures the rank. For objects with a small number of dimensions,
various constructors are overloaded to allow specification of an extent as one or more
integer values, as is done for cv. The second parameter for the cv constructor is a
standard container storing the host data. In vecAdd the host data is expressed as a
C-style pointer to contiguous data.

C++ AMP parallel_for_each, OR KERNEL INVOCATION

Line 16 in Figure 11.1 illustrates the parallel_for_each construct, which is the
C++ AMP code pattern for a data-parallel computation. This corresponds to the
kernel launch in OpenCL. In OpenCL terminology, the parallel_for_each creates an
“NDRange of work items.” In C4+-+ AMP, the set of elements for which a computation
is performed is called the compute domain, and is defined by an extent object. Like
in OpenCL, each thread will invoke the same function for every point, and threads
are distinguished only by their location in the domain (NDRange).

Similarly to the standard C++ STL algorithm for_each, the parallel_for_each
function template specifies a function to be applied to a collection of values. The first
argument to a parallel_for_each is a C++ AMP extent object which describes the
domain over which a data-parallel computation is performed. In this example, we
perform an operation over every element in an array_view, and so the extent passed
into the parallel_for_each is the extent of the cv array_view. In the example, this is
accessed through the extent property of the array_view type (cv.get_extent()). This
is a one-dimensional extent, and the domain of the computation consists of integer
values0...n — 1.

Functors as kernels

The second argument to a parallel_for_each is a C++ function object (or functor).
In Figure 11.1, we use the C4++11 Lambda syntax as a convenient way to build such
an object. The core semantics of a parallel_for_each is to invoke the function defined
by the second parameter exactly once for every element in the compute domain
defined by the extent argument.

Captured variables as kernel arguments

The leading [=] indicates that variables declared inside the containing function but
referenced inside the Lambda are “captured” and copied into data members of the
function object built for the Lambda. In this case this will be the three array_view
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objects. The function invoked has a single parameter that is initialized to the location
of a thread within the compute domain. This is again represented by a class template,
index, which represents a short vector of integer values. The rank of an index is the
length or number of elements of this vector, and is the same as the rank of the extent.
The index parameter idx values can be used to select elements in an array_view, as
illustrated on line 20.

The restrict(amp) modifier

A key extension to C++-is shown in this example: the restrict(amp) modifier. In C++
AMP, the existing C99 keyword “restrict” is borrowed and allowed in a new context:
it may trail the formal parameter list of a function (including Lambda functions). The
restrict keyword is then followed by a parenthesized list of one or more restriction
specifiers. While other uses are possible, in C++ AMP only two such specifiers are
defined: amp and cpu. They more or less work like markers to guide the compiler
to generate either central processing unit (CPU) code or accelerator code out of a
function definition and whether the compiler should enforce a subset of the C++
language. Details follow.

As shown in line 18, the function object passed to parallel_ for_each must have its
call operator annotated with a restrict(amp) specification. Any function called from
the body of that operator must similarly be restricted. The restrict(amp) specification
identifies functions that may be invoked on a hardware accelerator. Analogously,
restrict(cpu) indicates functions that may be invoked on the host. When no restriction
is specified, the default is restrict(cpu). A function may have both restrictions,
restrict(cpu,amp), in which case it may be called from either host or accelerator
contexts and must satisfy the restrictions of both contexts.

As mentioned earlier, the restrict modifier allows a subset of C++ to be defined
for use in a body of code. In the first release of C++ AMP, the restrictions reflect
current common limitations of GPUs when used as accelerators of data-parallel code.
For example, the C++ operator new, recursions. and calls to virtual methods are
prohibited. Over time we can expect these restrictions to be lifted. and the open
specification for C++ AMP includes a possible road map of future versions which are
less restrictive. The restrict(cpu) specifier, of course, permits all of the capabilities of
C++ but, because some functions that are part of C++4 AMP are accelerator specific
they do not have restrict(cpu) versions and so may be used only in restrict(amp) code.

Inside the body of the restrict(amp) Lambda, there are references to the
array_view objects declared in the containing scope. These are “captured” into
the function object that is created to implement the Lambda. Other variables from
the function scope may also be captured by value. Each of these other values is made
available to each invocation of the function executed on the accelerator. As for any
C++-11 nonmutable Lambda, variables captured by value may not be modified in the
body of the Lambda. However, the elements of an array_view may be modified,
and those modifications will be reflected back to the host. In this example, any
changes to cv made inside the parallel_for_each will be reflected in the host data
vector c.
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OpenCL 2.0 AS A COMPILER TARGET

Clamp is an open source implementation of C4++ AMP contributed by Multicore-
Ware. It consists of the following components:

*  C++4 AMP compiler: derived from open source Clang and LLVM projects, the
compiler supports C++ AMP language extensions to C++ and emits kernel
codes in OpenCL C or the Standard Portable Intermediate Representation
(SPIR) format.

e C++ AMP headers: a set of C44 header files which implement classes defined
in the C++4 AMP specification. Some functions are simply wrappers around
OpenCL built-in functions, but some require careful deliberation.

* C+4+ AMP runtime: a small library acts as a bridge between host programs and
kernels. Linked with built executables, it would load and build kernels, set
kernel arguments, and launch kernels.

SPIR is a subset of the LLVM intermediate representation (IR) that is specified to
support the OpenCL C programming language. It is a portable, nonsource repre-
sentation for device programs. It enables application developers to avoid shipping
kernels in source form, while managing the proliferation of devices and drivers from
multiple vendors. An application that uses a valid SPIR IR instance should be capable
of being run on any OpenCL platform supporting the cl_khr_spir extension and the
matching SPIR version (CL_DEVICE_SPIR_VERSIONS). To build program objects
from kernels in SPIR format, clCreateProgramWithBinary() should be used.

There are two versions of SPIR available. SPIR 1.2 defines an encoding of an
OpenCL C version 1.2 device program into LLVM (version 3.2), and SPIR 2.0
defines an encoding of OpenCL version 2.0 into LLVM. Since there is a direct
correspondence between SPIR and OpenCL C, we will use code examples expressed
in OpenCL C in this chapter for better readability.

Based on the vector addition example code, the rest of the chapter will show the
design of the main components of the Clamp compiler. We will omit some details
which are irrelevant to OpenCL and focus on how OpenCL is used to enable critical
C++ AMP features. The focus is to provide insight into the use of OpenCL as an
implementation platform for C4+-+ AMP.

MAPPING KEY C++ AMP CONSTRUCTS TO OpenCL

To map a new programming model to OpenCL, one can start with a mapping of
the key constructs. Table 11.1 shows a mapping of the key C++ AMP constructs
to their counterparts in OpenCL. As we showed in Figure 11.1, a Lambda in a
parallel_for_each construct represents a C++ functor whose instances should be
executed in parallel. This maps well to OpenCL kernel functions, whose instances
should be executed in parallel by the work-items. Although not shown in the vector
addition example, one can also pass a functor to a parallel_for_all construct for



11.4 Mapping key C++ AMP constructs to OpenCL 255

Table 11.1 Mapping Key C++ AMP Constructs to OpenCL

OpenCL C++AMP

Kernel Lambda defined in parallel_for_each, or a functor passed to
parallel _for_each

Kernel name Mangled name for the C++ operator() of the
Lambda/functor object

Kernel launch parallel_for_each

Kernel arguments Captured variables in Lambda

cl_mem buffers concurrency::array_view and array

execution in parallel. As a result, we show how C++ AMP Lambdas defined in
parallel_for_each or functors passed to parallel_for_each are mapped to OpenCL
kernels.

As for the names to be used for each generated OpenCL kernel, we can used the
mangled names of the C++ operator() of the Lambda/functor. C++ mangling rules
will eliminate undesirable name conflicts and enforce correct scoping rules for the
generated kernels.

The rest of the mapping has to do with the interactions between host code
and device code. The C++ AMP construct parallel_for_each corresponds to the
sequence of OpenCL application programming interface (API) calls for passing argu-
ments and launching kernels. For Lambda functors such as the one shown in Figure
11.1, the arguments to be passed to the OpenCL kernels should be automatically
captured according to the C++ Lambda rules. On the other hand, all array_views
used in the Lambda should become explicit cl_mem buffers.

To summarize, with this conceptual mapping, we can see that the output of the
C++ AMP compiler should provide the following:

1. A legitimate OpenCL kernel whose arguments present values of the captured
variables from the surrounding code.

2. Host code that is able to locate, compile, prepare arguments and buffers for, and
launch the kernel produced in the previous step at runtime.

Since a C++ Lambda can be viewed as an anonymous functor, we can close the gap
further by conceptually rewriting the Lambda into a functor version as in Figure 11.3.
The code makes the Lambda into an explicit functor; all the captured variables, va,
vb, and vc, are now spelled out in the class, and the body of the Lambda becomes
an operator() member function. Finally, a constructor is supplied to populate these
captured variables on the host side.

However, we still see the following gaps or missing parts:

1. The operator() still needs to be mapped to an OpenCL kernel. In particular, the
C++ AMP parallel_ for_each construct is not accounted for in this conceptual
code. Also, this functor is a class, but we need an instance to be created.

2. How does the runtime on the host side infer the name of the kernel?
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1. class vecAdd {
2. private:
3. array_view<const float, 1> va, vb;
4. array_view<float, 1> vc;
5.  public:
6. vecAdd(array_view<const float, 1> a,
7. array_view<const float, 1> b,
8. array_view<float, 1> c) restrict(cpu)
9. va(a), vb(b), vc(c) {};
10. void operator() (index<1> idx) restrict(amp) {
11. cv[idx] = av[idx] + bv[idx];
12. }
13. %
FIGURE 11.3

Functor version for C++AMP vector addition (conceptual code).

3. The array_view on the host side may contain cI_mem, but on the device side it
should be operating on raw pointers as OpenCL cl_mem is not allowed on the
device side. It is not clear yet how these diverging needs should be fulfilled.

To close the gap further, we need to conceptually bring the functor class further as
well. See the parts below the comments on lines 1, 21, 29, and 31 in Figure 11.4.

With the version shown in Figure 11.4, we can see how these three remaining
gaps are closed. Line 1 defines a simplified version of concurrency::array_view to
show the high-level idea, and is not meant to represent the exact semantics of a
standard concurrency::array_view. The trick here is to provide two slightly different
definitions of the same container type for the host and the device. Note we treat an
array_view as an OpenCL buffer here, and without going too much into the C++
AMP specification, let us for now consider that an array_view is backed by an
OpenCL memory object as its backing storage (hence the name backing_storage).
Also we have to add two member functions and a new constructor to the functor, and
these functions would have to be automatically injected by the C++ AMP compiler
(eventually):

* One is compiled only in host code that provides the mangled kernel name.

* The other is an OpenCL kernel, and is compiled only in device code. It acts as a
trampoline, whose mangled name can be queried and used by the host code at
runtime. The trampoline function populates a clone of the functor object on the
device side with the kernel arguments, and also an index object based on the
global indices. Finally, the cloned version of the functor object is invoked in the
trampoline.

* The new constructor defined in line 22 is also compiled only in device code, and
is part of the trampoline. The purpose of that new constructor is to construct an
almost identical copy of the Lambda on the GPU side on the basis of the
arguments received by the trampoline. That almost identical copy of the Lambda
lives in the function scope, and usually will not have its address visible outside
the scope. This gives the compiler freedom for more optimization later.
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/l This is used to close the gap #3
template <class T>
class array_view {
#ifdef HOST_CODE
cl_mem _backing_storage;
T *_host_ptr;
#else
T *_backing_storage;
#endif
10. size_t _sz;
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12.  class vecAdd {

13.  private:

14. array_view<const float, 1> va, vb;

15. array_view<float, 1> vc;

16.  public:

17. vecAdd(array_view<const float, 1> a,

18. array_view<const float, 1> b,

19. array_view<float, 1> c) restrict(cpu)

20. 2 va(a), vb(b), ve(c) {};

21. /I This new constructor is for closing gap #1

22.  #ifndef HOST_CODE

23. vecAdd(__global float *a, size_t as, __global float *b, size_t bs, __global float *c,
size_t cs) restrict(amp)

24. :va(a, as), vb(b, bs), vc(c, cs) {};

25. void operator() (index<1> idx) restrict(amp) {

26. cv[idx] = av[idx] + bv[idx];

27.

28.  #endif

29. /I The following parts are added to close the gap #1 and #2
30. #ifdef HOST_CODE
31. /I This is to close the gap #2

32. static const char * __get_kernel_name(void) {

33. return mangled name of “vecAdd::trampoline(const __global float *va, const
__global float *vb, __global float *vc)”

34. }

35.  #else// This is to close the gap #1

36. __kernel void trampoline(const __global float *va, size_t vas, const __global float
*vb, size_t vbs, __global float *vc, size_t vcs) {

37. vecAdd tmp(va, vas, vb, vbs, vc, vcs); // Calls the new constructor at line 20

38. index<1> i(get_global_id(0));

39. tmp(i);

40.

41.  #endif

42. }

FIGURE 11.4

Further expanded version for C++AMP vector addition (conceptual code).

However, the main point of the conceptual code in Figure 11.4 is to illustrate the way
Clamp creates a mangled name of each kernel (i.e. trampoline that calls operator()),
a trampoline as well as a new constructor that constructs a slightly different Lambda
object on the device side, and two definitions of the same array container depending
on the current mode (host or device). Ultimately in the output OpenCL code, we want
the trampoline to receive these c/_mem buffers through ciSetKernelArg() OpenCL

257
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API calls and take them in the same order, but appear as device memory pointers (i.e.
__global float * for this case) in the device code. To satisfy this requirement, we
need to implement the following capabilities in the compiler:

* Systematically pass c/_mem from the host side Lambda object to the trampoline
via OpenCL clSetKernelArg() calls.

* Also, systematically recover these as pointer arguments of the trampoline, which
will in turn call the new constructor and instantiate a slightly different Lambda
from the device side along with other arguments (see the next point).

* The rest of the captured variables should not be affected, and their values should
be passed opaquely. For example, in line 35, the values of the _sz member for
array_views should be passed directly from the host to the device.

In order to systematically implement these capabilities, it is desirable to clearly
specify the output code arrangements needed for each type of data member of a
Lambda. Table 11.2 shows such conceptual layout arrangements of the Lambda data
members in Figure 11.1 on both the device side and the host side.

With this mapping, we are ready to generate the OpenCL code sequence for
a C++4 AMP parallel_for_each. This can be done through the C++ template as
shown in Figure 11.4. On the basis of the mapping defined so far, a conceptual
implementation of parallel_for_each in Figure 11.1 is shown in Figure 11.5.

In general, in order to generate the type of OpenCL code sequence shown in
Figure 11.5, we need to perform object introspection and enumerate the data members
in the functor prior to kernel invocation (lines 6-11 in Figure 11.5). In particular,
they need to appear in the same order as they appear in the argument list of the
trampoline.

As stated earlier, functors are the way C++ AMP passes data to and from the
kernels, but kernel function arguments are the way OpenCL passes data to and from
kernels. Essentially an instance of the functor in CPU address space will have to be
copied and converted to an instance in the GPU address space: most data members of
the functor are copied (i.e. by value), and that is what our initial implementation does.

Table 11.2 Conceptual Mapping of Data Members on the Host Side and on
the Device Side

Data Members Host Side Device Side Note
array_view<const cl_mem __global float * Translated by
float, 1> va; va._backing_storage | va._backing_storage | clSetKernelArg
(more of va) size_tva._sz size_tva._sz Passed verbatim
array_view<const cl_mem __global float * Translated by
float, 1> vb; vb._backing_storage | vb._backing_storage | clSetKernelArg
(more of vb) size_t vb._sz size_t vb._sz Passed verbatim
array_view<float, cl_mem __global float * Translated

1> vec; vc._backing_storage | vc._backing_storage | by clSetKernelArg
(more of vc) size_tva._sz size_tva._sz Passed verbatim
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template <class T>

void parallel_for_each(T k) {
/I Locate the kernel source file or SPIR
/I Construct an OpenCL kernel named k::__get_kernel_name()
/I We need to look into the objects
clSetKernelArg(.., 0, k.va._backing_storage); // cf. line 5 of Figure 3
clSetKernelArg(.., 1, k.va._sz);
clSetKernelArg(.., 2, k.vb._backing_storage);
clSetKernelArg(.., 3, k.vb._sz);

10. clSetKernelArg(.., 4, k.vc._backing_storage);

11. clSetKernelArg(.., 5, k.vc._sz);
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12. /I Invoke the kernel
13. /I We need to copy the results back if necessary from vc
14. '}

FIGURE 11.5

Host code implementation of parallel_ for_each (conceptual code).

Remember that we are going to pass an OpenCL buffer by value. But the tricky part
is that we also need to pass opaque handles (i.e. c/_mem) and rely on the underlying
OpenCL runtime to convert them to pointers in the GPU address space and perform
the memory copy. This is the case for all pre-OpenCL 2.0 runtimes.

At this point, the reader may recognize that the code sequence in Figure 11.5
is quite similar to that for object serialization,” except that this time it is not for
external storage and retrieval, but is more for squeezing the object contents through a
channel implemented by clSetKernelArg(), which does some translation on cl_mems
into device-side pointers ready to be used in kernels. We need to make sure class
instances are stored in a format that is available to the GPU side so that these objects
can be properly reconstructed on the GPU side.

Note that in languages such as Java, serialization and deserialization code
sequences can be generated through reflection, but reflection is not yet possible at
the C++- source level without major modifications to the compiler (and the language
itself). In the actual C++ AMP compiler, these serialization and deserialization code
sequences are generated as more or less straightforward enumeration of member data
and calls to appropriate clSetKernelArgs().

C++ AMP COMPILATION FLOW

With the conceptual mapping of C++ AMP to OpenCL defined above, it is easier
to understand how to compile and link a C++ AMP program. The Clamp compiler
employs a multistep process:

3nttp://en.wikipedia.org/wiki/Serialization.


http://en.wikipedia.org/wiki/Serialization

260 CHAPTER 11 Mapping high-level programming languages

1. As a first step, the input C++ AMP source code is compiled in a special “device
mode” so that all C++ AMP-specific language rules will be checked and
applied. The Clamp compiler will emit OpenCL kernels (based on
AMP-restricted functions called from the parallel_for_each function) into an
LLVM bitcode file. All functions called from a kernel will be inlined into the
kernel. The host program will also be compiled and emitted into the same
bitcode file in order to fulfill C++ function name mangling rules.

2. The LLVM bitcode file will then go through some transformation passes to
ensure that it can be lowered into correct OpenCL programs. All host codes will
be pruned first, then all pointers in the kernels and instructions which use them
will be declared with the correct address space ( _ _ global, _ _ constant,

_ _local, _ _private ) per the OpenCL specification. It is worth noting that there
is a fundamental difference between OpenCL and C++ AMP on the address
spaces. In OpenCL, the address space is part of the pointer type, whereas in
C++4 AMP it is part of the pointer value. Hence, a static compiler analysis is
necessary to infer the address space of pointers from how they are assigned and
used. Additional metadata will also be provided by the transformation so the
resulting LLVM bitcode is compatible with the OpenCL SPIR format.

3. The transformed LLVM bitcode is now an OpenCL SPIR bitcode and can be
linked and executed on platforms which support the cl_khr_spir extension. It is
saved as an object file which would be linked against host programs. An
additional, optional step could be applied to lower it to OpenCL C format so the
resultant kernel can be used on any OpenCL platforms that may not support
SPIR.

4. The input C++ AMP source code will be compiled again in “host mode” to
emit host codes. C++ AMP headers are designed so that none of the kernel
codes will be directly used in host mode. Instead, calls to C++ AMP runtime
API functions will be used instead to launch kernels.

5. Host codes and device codes are linked to produce the final executable file.

COMPILED C++ AMP CODE

Let us revisit the C++ AMP Lambda in the vector addition example (line 17 in Figure
11.1), shown again in Figure 11.6 for easy reference.

The OpenCL kernel code after it has been compiled by the Clamp compiler is
shown in Figure 11.7.

1. [F] (index<1> idx) restrict(amp) { cv[idx] = av[idx] + bv[idx]; }

FIGURE 11.6
C++ AMP Lambda—vector addition.




11.7 How shared virtual memory in OpenCL 2.0 fits in

1. __kernel void
ZZ6vecAddPfS_S_IEN3_EC__019__cxxamp_trampolineEiiS_N11Concurrency11acce
ss_typeEiiS_S2_iiS_S2_(

__global float *llvm_cbe_tmp__ 1,

unsigned int llvm_cbe_tmp__ 2,

__global float *llvm_cbe_tmp__3,

unsigned int llvm_cbe_tmp__ 4,

__global float *llvm_cbe_tmp__5,

unsigned int llvm_cbe_tmp__6) {

unsigned int llvm_cbe_tmp__7;
9. float llvm_cbe_tmp__8;
10. float llvm_cbe_tmp__9;
11. llvm_cbe_tmp__ 7 = /*tail*/ get_global_id(0u);
12. llvm_cbe_tmp__10 = *((&llvm_cbe_tmp__1[((signed int )llvm_cbe_tmp__7)]));
13. llvm_cbe_tmp__ 11 = *((&llvm_cbe_tmp__3[((signed int )llvm_cbe_tmp__7)]));
14. *((&llvm_cbe_tmp__5[((signed int )llvm_cbe_tmp__7)])) = (((float
)(llvm_cbe_tmp__10 + llvm_cbe_tmp__11)));

15. return;
16.}
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FIGURE 11.7
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Compiled OpenCL SPIR code—vector addition kernel.

The compiled code may seem daunting at first, but it is actually not hard to
understand with the following mapping:

e Line 1: name of trampoline, mangled

e Lines 2-3: serialized array_view va

e Lines 4-5: serialized array_view vb

e Lines 6-7: serialized array_view vc

e Line 11: get global work-item index, idx in C++ AMP Lambda
e Line 12: load val[idx]

e Line 13: load vb[idx]

* Line 14: calculate va[idx] 4 vb[idx] and store to vc[idx]

HOW SHARED VIRTUAL MEMORY
IN OpenCL 2.0 FITS IN

One of the most important new features of OpenCL 2.0 is shared virtual memory
(SVM). Itis an address space exposed to both the host and the devices within the same
context. It supports the use of shared pointer-based data structures between OpenCL
host code and kernels. It logically extends a portion of the device global memory into
the host address space, therefore giving work-items access to the host address space.
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According to the OpenCL 2.0 specification, there are three types of SVM:

1. Coarse-grained buffer SVM: sharing occurs at the granularity of OpenCL buffer
memory objects. Consistency happens only at synchronization points—for
example, kernel launch, mapping/unmapping.

2. Fine-grained buffer SVM : sharing occurs at the granularity of OpenCL buffer

memory objects. Consistency happens not only at synchronization points but
also at atomic operations performed on either the host side or the device side.

3. Fine-grained system SVM : sharing occurs at the granularity of individual

loads/stores into bytes occurring anywhere within the host memory.

The difference between fine-grained and coarse-grained buffer SVM is best illustrated
with a small example. Suppose we have a chunk of data to be made visible to a kernel
running on an OpenCL 2.0 GPU, and let us say the kernel is computing some sort of
histogramming and will update the chunk of data atomically. Table 11.3 shows how
this data sharing can be done on pre-2.0, 2.0 coarse-grained, and 2.0 fine-grained
operations and the implications.

The unique aspect of OpenCL 2.0 fine-grained buffer SVM is that it enables
concurrent host and device atomic operations. In an histogramming example, fine-
grained buffer SVM means the histogramming can be done concurrently by the host
and the devices; all of them may share the same buffer, and changes made by all
entities will be visible to the others as long as they are done through atomics.

Only coarse-grained buffer SVM is mandatory in OpenCL 2.0, and the two other
types are optional. In this section, we demonstrate how to adopt coarse-grained
buffer SVM in C++4 AMP. Note that coarse-grained buffer SVM is similar to
the OpenCL 1.x type of buffers, except that there is no need for explicit copying
through clEnqueueWriteBuffer() API calls. Because of that similarity, in Clamp we
mainly treat coarse-grained buffer SVM as a performance improvement venue for the
implementation of concurrency::array_views.

Table 11.3 Data Sharing Behavior and Implications of OpenCL 2.0 SVM
Support

2.0/Coarse-

Grained Buffer | 2.0/Fine-Grained
Steps Pre-2.0 SVM Buffer SVM
Copy to device clEnqueueWriteBuffer | No need No need
Device atomic NA No Yes
updates visible to
host?
When would changes | Not until copy back After kernel After kernel has
from the device side has finished finished or after
be visible to the host device-side atomics
Copy from device clEnqueueReadBuffer | No need No need

NA, not applicable.
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To utilize coarse-grained buffer SVM, a host program needs to use cISVMAlloc()
to allocate SVM buffers that can be shared by hosts and devices. cI_mem buffers are
then created by calling clCreateBuffer() with CL_MEM_USE_HOST_PTR with the
pointers to the buffers that are allocated by cISVMAlloc() supplied as host_ptr.

The contents of these buffers are automatically shared between host codes
and device codes. There is no need for calls to c/EnqueueWriteBuffer() and clEn-
queueReadBuffer() for the device to access these shared buffers.

Once an SVM buffer is no longer needed, clReleaseMemObject() is used to release
it. After that, cISVMFree() is used to deallocate the SVM buffer.

COMPILER SUPPORT FOR TILING IN C++AMP

Tiling is one of the most important techniques in optimizing GPU programs. Depend-
ing on the level of abstraction, a programming model can provide either implicit or
explicit support for tiling. An implicit approach may involve automatically deducing
the part of memory accesses to be tiled from a given kernel, and generate appropriate
code to either transparently or semitransparently tile the memory access pattern
to achieve better memory locality and usually better performance. Conversely, an
explicit approach relies on the user to explicitly define memory objects in different
address spaces that correspond to on-chip and off-chip memory, and also the data
movement between them. C++ AMP, CUDA, and OpenCL are all examples of such
explicit programming models. The rest of this section considers supporting explicit
tiling in C+4 AMP from a compiler writer’s perspective.

For programming models that explicitly support tiling, one can usually find the
following traits:

* A way to divide the compute domain into fixed-sized chunks.

* A way to explicitly specify the address space where a data buffer resides,
usually on-chip, off-chip, or thread-private. These map to OpenCL _ _local,
__global, and _ _ private respectively.

* A way to provide barrier synchronization within these fixed-sized chunks of
computation (i.e. work-items in a work-group) to coordinate their execution
timing.

We first review some background knowledge for readers who are not familiar with
tiling in C4++ AMP. In C++ AMP, an extent describes the size and the dimension of
the compute domain. In addition, tile_extent describes how to divide the compute
domain. The division is analogous to how OpenCL work-group sizes divide the
OpenCL work-item dimensions.

DIVIDING THE COMPUTE DOMAIN

In C4++ AMP, a template method “tile” in the class extent is used to compute a
tile_extent. Its template parameters indicate the tiling size. From here it becomes
clear that unlike tiling in OpenCL, tiling in C++ AMP is parameterized statically.
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To notify the library and compiler about tiling, we use a Lambda kernel that has
a slightly different signature (line 13 in the following listing), which in turn uses
tiled_index. A tiled_index is analogous to a tuple that represents values of OpenCL
get_global_id(), get_local_id(), and get_group_id().

1 void mxm_amp_tiled(int M, int N, int W,

2 const std::vector<float>& va,

3 const std::vector<float>& vb,

4 std::vector<float>& result)

5 1

6 extent<2> e_a(M, N), e_b(N, W), e_c(M, W);

7

8 array_view <const float, 2> av_a(e_a, va);

9 array_view <const float, 2> av_b(e_b, vb);

10 array_view <float, 2> av_c(e_c, vresult);

11

12 extent<2> compute_domain(e_c);

13 parallel_ for_each(compute_domain.tile<TILE_SIZE, TILE_SIZE>(),
14 [=] (tiled_index<TILE_SIZE, TILE_SIZE> tidx) restrict(amp)
15 { mxm_amp_kernel(tidx, av_a, av_b, av_c); });

SPECIFYING THE ADDRESS SPACE AND BARRIERS

In a C+4 AMP kernel function, the file_static qualifier is used to declare a memory
object that resides in on-chip memory (local memory in OpenCL terms). To force
synchronization across threads in a C++ AMP tile, the barrierwait method of a
tile_static object is used. As in OpenCL, threads in the same tiling group will stop at
the same program point where wait is called.

An interesting difference between OpenCL and C4+ AMP lies in how the address
space information is carried in pointers. In OpenCL, it is part of the pointer’s type:
for a pointer that is declared with _ _local, it cannot point to a buffer declared using
the _ _private qualifier. In C++ AMP, however, the address space information is part
of the pointer’s value. One could have a general pointer such as

float *foo

and the pointer foo can point to a buffer declared using file_static (which is
equivalent to __local in OpenCL), and with certain limitations* the same pointer
can point to a value in global memory.

One could attempt to define C++4 AMP’s tile_static as a macro that expands
to Clang/LLVM’s _ _attribute_ _((address_space())) qualifier, which is an extension

“4For current C++ AMP 1.2, these limitations do allow a compiler to statically derive the address space
information through dataflow analysis.
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made for Embedded C that goes to part of the pointer and memory object type.
However, the approach would fail to generate the correct address space information
for the pointer foo in the following code snippet:

tile_static float bar;
float *foo = &bar;

That is, we cannot embed the address space qualifier as part of the pointer type,
but we need to be able to propagate that information as part of variable definitions.
The template approach does not allow proper differentiation between these values
within the compiler.

An alternative approach is to specify the address space as variable attributes,
which are special markers that go with a particular variable, but not part of its type.
An example of such an attribute would be compiler extensions that specify in which
section of the object file a variable is defined. Attributes of this kind go with the
variable definition but not its type: one can have two integers of the same type but
each staying in a different section, and a pointer can be pointing to either of these
two without type errors. In Clamp we follow this approach—a simple mapping that
allows a dataflow analysis to deduce address space information but the code would
still look like largely legitimate C++ code:

* Define C+4 AMP’s tile_static as a variable attribute.

* All pointers are initially without an address space.

* A static-single-assignment-based analysis is introduced to deduce the point-to
variable attributes.

The analysis aims only at essentially an easy subset of the much harder pointer
analysis problems, which are generally undecidable. The next section describes in
detail how the address space deduction is done.

ADDRESS SPACE DEDUCTION

As stated in the previous section, each OpenCL variable declaration has its own
address space qualifier, indicating which memory region an object should be
allocated. The address space is an important feature of OpenCL. By putting data
into different memory regions, OpenCL programs can achieve high performance
while maintaining data coherence. This feature, however, is typically missing from
high-level languages such as C++ AMP. High-level languages put data into a
single generic address space, and there is no need to indicate the address space
explicitly. A declaration without an address space will be qualified as private to
each work-item in OpenCL, which violates the intended behavior enforced by
C++ AMP. For example, if a tile_static declaration is qualified as private, the
data will no longer be shared among work-groups, and the execution result will
be incorrect. To resolve this discrepancy, a special transformation is required
to append a correct address space designation for each declaration and memory
access.
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In Clamp, after OpenCL bitcode has been generated, the generated code will
go through a llvm transformation pass to decide on and promote (i.e. adding type
qualifiers to) the declaration to the right address space. In theory, it is impossible
to always conclusively deduce the address space for each declaration, because the
analyzer lacks the global view identifying how the kernels will interact with each
other. However, there are clues we can use to deduce the correct address space in
practical programs.

The implementation of array and array_view provides a hint to deduce the correct
address space. In C++ AMP, the only way to pass bulk data to the kernel is to wrap
them by array and array_view. The C++4 AMP runtime will append the underlying
pointer to the argument list of the kernel. Those data will be used in the kernel by
accessing the corresponding pointer on the argument of the kernel function. Those
pointers, as a result, should be qualified as global, because the data pointed to by
them should be visible to all the threads. The deduction process will iterate through
all such arguments of the kernel function, promote pointers to global, and update all
the memory operations that use the pointers.

The tile_static data declarations cannot be identified through pattern analysis,
so they need to be preserved from the Clamp front end. In the current Clamp
implementation, declarations with tile_static qualifiers are placed into a special
section in the generated bitcode. The deduction process will propagate the tile_static
attribute to any pointers that receive the address of these variables, append it to the
corresponding OpenCL declarations.

Let us use a tiny C+4 AMP code example to illustrate this transformation:

void mm_kernel(int *p, int n)

{
tile_static int tmp[30];
int id = get_global_id(0);
tmplid] = 5566;
barrier(0);
plid] = tmpl[id];

After the initial Clamp pass, the code will be transformed to pure LLVM IR. An
address space is lacking at this stage, and this code will produce an incorrect result.
Notice that the variable tmp is put to a special ELF section (“clamp_opencl_local”):

@mm_kernel.tmp = internal unnamed_addr global [30 x i32] zeroinitializer, align
16, section ”clamp_opencl_local”

define void @mm_kernel(i32* nocapture %p, 132 %n) {
%1 = tail call 32 bitcast (i32 (...)* @get_global_id to i32 (i32)*)(i32 0)
%2 = sext 132 %1 to 164
%3 = getelementptr inbounds [30 x i32]* @mm_kernel.tmp, 164 0, 164 %2
store 132 5566, 132* %3, align 4, !tbaa !1
%4 = tail call 132 bitcast (i32 (...)* @barrier to 132 (i32)*)(i32 0) #2
%5 = load 132* %3, align 4, !tbaa !1
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%6 = getelementptr inbounds i32* %p, 164 %2
store i32 %5, 132* %6, align 4, !tbaa !1
ret void

}

After the deduction pass in Clamp, the correct address spaces are deduced and
appended to the associated declaration of mm_kernel.tmp memory operations. The
generated code can now be executed correctly, as illustrated in the following refined
LLVM IR:

@mm_kernel.tmp = internal addrspace(3) unnamed_addr global [30 x i32] zeroinitializer, align 4

define void @mm_kernel(i32 addrspace(1)* nocapture %p, 132 %n) {
%]1 = tail call i32 bitcast (i32 (...)* @get_global_id to i32 (i32)*)(i32 0)
%2 = getelementptr inbounds [30 x i32] addrspace(3)* @mm_ kernel.tmp, i32 0,
132 %1 store 132 5566, i32 addrspace(3)* %2, align 4, !tbaa 12
%3 = tail call i32 bitcast (i32 (...)* @barrier to i32 (i32)*)(i32 0)
%4 = load 132 addrspace(3)* %2, align 4, !tbaa 12
%S5 = getelementptr inbounds i32 addrspace(1)* %p, i32 %1
store i32 %4, 132 addrspace(1)* %S5, align 4, !tbaa 12
ret void

DATA MOVEMENT OPTIMIZATION

As the speed of processors becomes faster and faster, computation power is no
longer the major bottleneck for high-performance systems. Instead, for data-intensive
computation, the bottleneck mainly lies in memory bandwidth. In many cases, the
time spent moving data between the accelerator and the host system can be much
greater than the time spent performing computation. To minimize the overhead,
OpenCL provides various ways to create a buffer object in the accelerator. In OpenCL,
CL_MEM_READ_ONLY indicates that the data will not be modified during the
computation. If the object is created with CL_MEM_READ_ONLY, the data will
be put into the constant memory region and need not be copied back to the host
system after computation has been done. Conversely, CL_MEM_WRITE_ONLY
indicates that the buffer is only used to store result data. If the object is created with
CL_MEM_WRITE_ONLY, the data on the host does not need to be copied to the
accelerator before computation starts. In mapping C++ AMP to OpenCL, we can
utilize these features to further improve the performance.

discard_data()

In C++ AMP, discard_data is a member function of array_view. Calling this func-
tion tells the runtime that the current data in the array will be discarded (overwritten),
and therefore there is no need to copy the data to the device before computation starts.
In this case, we can create a buffer object with CL_MEM_WRITE_ONLY.
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array_view<const T, N>

If an array_view’s first template parameter is qualified as const, we can create the
buffer object with CL_MEM_READ_ONLY. This way, the OpenCL runtime knows
that underlying data will not be changed during the computation, and therefore
there is no need to copy the data back from the device after computation has
finished.

BINOMIAL OPTIONS: A FULL EXAMPLE

In this section we present a nontrivial application, from an application programmer’s
view, that requires all the techniques described above to compile it into a valid
and well-optimized OpenCL implementation. The application chosen is binomial
options. Note we will not dive into the mathematical aspects nor the financial side
of this application, but will present it as a “put-it-all-together” example for compiler
writers.

void binomial_options_gpu(std::vector<float>& v_s,
std::vector<float>& v_x,
std::vector<float>& v_vdt,
std::vector<float>& v_pu_by_df,
std::vector<float>& v_pd_by_df,
std::vector<float>& call_value)

The code snippet above is the prototype of the binomial options function. v_s,
v_Xx, v_vdt, v_pu_by_df, and v_pd_by_df hold the input data separately; call_value
is used to store the result.

extent<1> e(data_size);
array_view<float, 1> av_call_value(e, call_value);
av_call_value.discard_data();

In order to use input data in the kernel function, data should be wrapped by the
containers provided by C++ AMP. In this example, concurrency::array_view is used.
discard_data is called for av_call_value here to tell the runtime not to copy data from
the host to the device.

array_view<const float, 1> av_s(e, v_s);
array_view<const float, 1> av_x(e, v_x);

array_view <const float, 1> av_vdt(e, v_vdt);
array_view<const float, 1> av_pu_by_df(e, v_pu_by_df);
array_view<const float, 1> av_pd_by_df(e, v_pd_by_df);

extent< 1> ebuf(MAX_OPTIONS*(NUM_STEPS + 16));
array <float, 1> a_call_buffer(ebuf);
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Notice that av_s, av_x, av_vdt, av_pi_by_df, and av_pd_by_df are wrapped
by const array_views and will not be copied back after computation has
finished.

extent< 1> compute_extent(CACHE_SIZE * MAX_OPTIONS);
parallel_ for_each(compute_extent.tile<CACHE_SIZE> (),

[=, &a_call_buffer](tiled_index<CACHE_SIZE> ti) restrict(amp)

{

binomial_options_kernel(ti, av_s, av_x, av_vdt, av_pu_by_df, av_pd_
by_df, av_call_value, a_call_buffer);
Ds

av_call_value.synchronize();

After the calculation of the computation range, the C++ AMP code calls
parallel_for_each to do the calculation. After the computation has finished, the
synchronize member function is called to ensure the result is synchronized back to
the source container. All the data in use will be handled by the runtime implicitly.
Programmers do not need to explicitly pass or copy the data between the host and
the device. Note that the parallel_for_each construct uses explicit tiling for locality
control.

void binomial_options_kernel(tiled_index<CACHE_SIZE> &tidx,
array_view <const float, 1> s,
array_view<const float, 1> x,
array_view <const float, 1> vdt,
array_view <const float, 1> pu_by_df,
array_view <const float, 1> pd_by_df,
array_view <float, 1> call_value,
array <float, 1> &call_buffer) restrict(amp)

index<1> tile_idx = tidx.tile;
index < 1> local_idx = tidx.local;

tile_static float call_a[CACHE_SIZE + 1];
tile_static float call_b[CACHE_SIZE + 1];

int tid = local_idx[0];
int i;

for(i = tid; i <= NUM_STEPS; i += CACHE_SIZE)
{

index<1> idx(tile_idx[0] * (NUM_STEPS + 16) + (i));

call_buffer[idx] = expiry_call_value(s[tile_idx], x[tile_idx], vdt[tile_idx], 1);
1

for(i= NUM_STEPS; i > 0; i -= CACHE_DELTA)
for(int c_base = 0; c_base < i; c_base += CACHE_STEP)
{
int c_start = min(CACHE_SIZE - 1, i - ¢c_base);
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int c_end = c_start - CACHE_DELTA;

tidx.barrier.wait();

if(tid <= c_start)

{
index<1> idx(tile_idx[0] * (NUM_STEPS + 16) + (c_base + tid));
call_a[tid] = call_buffer[idx];

}

for(int k = c_start - 1; k >=c_end;)
{
tidx.barrier.wait();
call_b[tid] = pu_by_df[tile_idx] * call_a[tid + 1] + pd_by_df[tile_idx]
* call_a[tid];
k—;

tidx.barrier.wait();
call_a[tid] = pu_by_df[tile_idx] * call_b[tid + 1] + pd_by_dfftile_idx]
* call_b[tid];
k=
}

tidx.barrier.wait();
if(tid <= c_end)
{
index<1> idx(tile_idx[0] * (NUM_STEPS + 16) + (c_base + tid));
call_buffer[idx] = call_a[tid];
}
}

if (tid == 0)
call_value[tile_idx] = call_a[0];

The declarations stating with tile_static declare shared arrays that will be shared
among work-items in the same tiling group. To ensure memory data consistency of
the shared array, the tidx.barrier.wait function call is used. Work-items in same
tiling group will stop and wait at the same program point where wait is called until
all work-items in the same tiling group have arrived at that point.

PRELIMINARY RESULTS

In order to assess the efficiency of our C++ AMP implementation, we measure
the execution time of the binomial options benchmark® in two ways. The first way
is to implement the benchmark directly in OpenCL and execute it on a particular
OpenCL implementation. The second way is to implement the benchmark in C++
AMP, compile it through Clamp, and execute the translated OpenCL code on the same
platform In this experiment, we use the following configuration:

Shttps://bitbucket.org/UncleHandsome/benchmark.
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¢ GPU: AMD Radeon R7 260X

e Linux kernel: 3.16.4-1-ARCH

e AMD Catalyst driver: 14.301.1001

e AMD OpenCL accelerated parallel processing (APP) software development kit
(SDK): v2.9-1
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The chart shows that the C+4++4 AMP-generated kernel execution time is
almost the same as the OpenCL kernel execution time, but the time spent
compiling the automatically generated OpenCL kernel code is much longer.
This is because the current implementation appends mathematical built-in
functions to the kernel, making the kernel source code about 10 times larger
for this benchmark. “Other” includes the time to write OpenCL buffers and
pass arguments. Because CL_MEM_USE_HOST_PTR is used in the benchmark,
there is almost no performance overhead in these activities for the C++ AMP
version.

Because the kernel compilation time is incurred only when a kernel is launched
the first time in an application, the compile time is typically amortized across
many launches in real applications. For these applications, users will experience
comparable execution times between the two versions of the benchmark.

For the binomial options benchmark, the host off-loading code plus the kernel
code is 160 lines of OpenCL code versus 80 lines of C++ AMP code. This
clearly shows the higher-level programming nature of C++ AMP as compared with
OpenCL.

11.13 CONCLUSION

In this chapter, we presented a case study of implementing C++ AMP on top of
OpenCL. In C++ AMP, users can leave the data movement between the host and the
device to the compiler. We showed the key transformations for compiling high-level,
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object-oriented C++ AMP code into OpenCL host code and device kernels. Using
the binomial options benchmark, we showed that Clamp, the MulticoreWare C++
AMP implementation achieves comparable execution time between automatically
generated kernels and hand-written OpenCL ones. This shows that OpenCL is an
effective platform for implementing high-level programming languages such as C++
AMP for data-parallel algorithms.
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CHAPTER

WebCL: Enabling
OpenCL acceleration
of Web applications

Mikaél Bourges-Sévenier, Rémi Arnaud

INTRODUCTION

Web applications are gaining popularity as ubiquitous Web browsers and cloud
servers are becoming the main way we access our personal and professional data. The
ability to update and maintain Web applications without distributing and installing
software on millions of client computers is very attractive to developers, as is
the Inherent cross-platform support. Thanks to wide availability of fast Internet
access, and constant mobile connectivity, end users are able to access their data and
applications from anywhere, on any device.

With the rapid advance in graphics and computing power of devices, and in
particular mobile devices, new application programming interfaces (APIs) such as
WebGL and WebCL are making their way into Web browser. Those API are very
important as they provide access to hardware acceleration on the device itself,
providing the end user with faster rendering and computing, as well as longer battery
life. This also enables better experience in general as the interactivity of the Web
application does not rely solely on the quality of the network connection, and enables
off-line Web applications. Thanks to WebGL and WebCL, the Web browser is able to
reach a level of performance that was before accessible only to native applications,
opening up a whole new era of Web applications.

PROGRAMMING WITH WehbCL

WebCL 1.0 is a JavaScript representation of OpenCL 1.2. WebCL exposes the
underlying object-oriented nature of OpenCL in JavaScript. This allows a simplified
programming of OpenCL while maintaining the very same API design, semantic, and
runtime. We will often compare the relationship of WebCL with browsers with that
of since the integration is similar. However, WebCL does not require knowledge or
usage of WebGL.

As with OpenCL, programming with WebCL is composed of two parts:

1. The host side (e.g. in the Web browser) that sets up and controls the execution of
the JavaScript program

2. The device side (e.g. on a GPU) that runs computations—that is, kernels in
OpenCL

Heterogeneous Computing with OpenCL 2.0. http://dx.doi.org/10.1016/B978-0-12-801414-1.00012-0 273
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As with WebGL, WebCL is a property of a Window object. First, we need to check
if WebCL is available, and then if a context can be created:

// First check if the WebCL extension is installed at all
if (window.webcl == undefined) {
alert(”Unfortunately your system does not support WebCL. ” +
”Make sure that you have both the OpenCL driver ” +
”and the WebCL browser extension installed.”);
}
/I Get a list of available CL platforms, and another list of the
/I available devices on each platform. If there are no platforms,
// or no available devices on any platform, then we can conclude
// that WebCL is not available.
webcl = window.webcl
try {
var platforms = webcl.getPlatforms();
var devices = [];
for (var i in platforms) {
var p = platforms[i];
devices[i] = p.getDevices();
}
alert("Excellent! Your system does support WebCL.”);
} catch (e) {
alert(”Unfortunately platform or device inquiry failed.”);
}
/I Setup WebCL context using the default device
var ctx = webcl.createContext ();

Figure 12.1 illustrates the WebCL objects. Note that WebCL is the name of the
interface, while webc1 is the name of the JavaScript object. For more information

please consult the WebCL specification [1].
The application can not only query the platforms to list the available devices,
but can also query devices for additional information and make a specific choice of

platform and/or device.

// find appropriate device
for (var j = 0, jl = devices.length; j < jl; ++j) {
var d = devices[j];
var devExts = d.getInfo(c. DEVICE_EXTENSIONS);
var devGMem = d.getInfo(c. DEVICE_GLOBAL_MEM_SIZE);
var devLMem = d.getInfo(c. DEVICE_LOCAL_MEM_SIZE);
var devCompUnits = d.getInfo(cl. DEVICE_MAX_COMPUTE_UNITS);
var devHasImage = d.getInfo(cl. DEVICE_IMAGE_SUPPORT);

/I select device that matches your requirements
platform = ...
device = ...

}

// assuming we found the best device, we can create the context
var context = webcl.createContext( platform, device );
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WebCLExtension

Compiler layer Runtime layer

FIGURE 12.1

WebCL objects.

The application runtime manages OpenCL objects such as command-queues,
memory objects, program objects. and kernel objects in a program and calls that allow
you to enqueue commands to a command-queue. such as executing a kernel, reading
a memory object, or writing a memory object.

WebCL defines the following objects:

¢ Command-queues

e Memory objects (buffers and images)

e Sampler objects, which describe how to sample an image being read by a kernel

* Program objects, which contain a set of kernel functions identified with the
_ _kernel qualifier in the program source

* Kernel objects, which encapsulate the specific _ _kernel functions declared in a
program source and its argument values to be used when executing the
_ _ kernel function

* Event objects, which are used to track the execution status of a command as
well as to profile a command

¢ Command synchronization objects such as markers and barriers

The first thing to do is to create a program. WebCL, like WebGL 1.0, assumes a
program is provided in source code form (a string). Currently, a WebCL device is
required to have an internal compiler. The source code is first loaded to the device,
and then compiled. As with any compiler, the OpenCL compiler defines standard
compilation options.
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// Create the compute program from the source strings
program = context.createProgram(source);

// Build the program executable with relaxed math flag
try {
program.build(device, ”-cl-fast-relaxed-math”);
} catch (err) {
throw ‘Error building program: * + err
+ program.getBuildInfo(device, c. PROGRAM_BUILD_LOG));
}

At this point, our program is compiled, and contains one or more kernel functions.
These kernel functions are the entry points of our program, and are similar to the entry
points of a shared library. To refer to each kernel function, we create a WebCLKerne]l
object:

/I Create the compute kernels from within the program
var kernel = program.createKernel(‘kernel_function_name’);

A kernel function may have one or more arguments, like any function. Since
JavaScript offers only the type Number for numerical values, typed arrays [2] are
used to pass function arguments of various numerical types (see Table 12.1). For other
types of values, we must use WebCL objects:

* WebClLBuffer and WebCLImage, which in-turn wrap a typed array
* WebCLSampler for sampling an image

A WebCLBuffer object stores a one-dimensional collection of elements. Elements of a
buffer can be of scalar type (e.g. int, float), of vector data type, or have a user-defined
structure.

// create a 1D buffer
var buffer = webcl.createBuffer(flags, sizeInBytes, optional srcBuffer);

// flags:

/Iwebc. MEM_READ_WRITE Default. Memory object is read and written by kernel
/fwebc. MEM_WRITE_ONLY Memory object only written by kernel

/Iwebc. MEM_READ_ONLY Memory object only read by kernel

/Iwebc. MEM_USE_HOST_PTR Implementation uses storage memory in srcBuffer.
srcBuffer must be specified.

/Iwebc. MEM_ALLOC_HOST_PTR Implementation requests OpenCL to allocate
host memory.

/Iwebc. MEM_COPY_HOST_PTR Implementation request OpenCL to allocate host
memory and copy

data from srcBuffer memory. srcBuffer must be specified.

Note that only reading from a buffer object and its subbuffer objects or reading
from multiple overlapping subbuffer objects is defined. All other concurrent reading
or writing is undefined.

A WebCL image is used to store a one-, two-, or three-dimensional texture, render-
buffer, or image. The elements of an image object are selected from a predefined list of
image formats. However, currently, WebCL supports only two-dimensional images.
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Table 12.1 Relationships Between C Types Used in Kernels and setArg()’s

webcl.type

Kernel Argument

Type setArg() Value setArg() Typed Array Remarks

char, uchar scalar Uint8Array, Int8Array 1 byte

short, ushort scalar Uint16Array, Int16Array | 2 bytes

int, uint scalar Uint32Array, Int32Array | 4 bytes

long, ulong scalar Uint64Array, Int64Array | 8 bytes

float scalar Float32Array 4 bytes

half, double scalar Float32Array, Not on all

Float64Array implementations

2 bytes (half), 8 bytes
(double)

<char. . .double>N | vector Int8Array for (u)charN N=2,3,4,816

Int16Array for (u)shortN
INnt32Array for (u)int\v
Int64Array for (u)longN

Float32Array
for floatNand halfNV
Float64Array for
doubleN
char,..., double * WebCLBuffer
image2d_t WebCLImage
sampler_t WebCLSampler
__local INt32Array Size initialized in
([size_in_bytes]) kernel

// create a 32-bit RGBA WebCLImage object
// first, we define the format of the image
var imageFormat = {
// memory layout in which pixel data channels are stored in the image.
‘channelOrder’ : webcl.RGBA,
// type of the channel data
‘channelType’ : webcl. UNSIGNED_INTS,
// image size
‘width’: image_width,
‘height’: image_height,
// scan-line pitch in bytes.
// If imageBuffer is null, it must be 0. Otherwise, it must be at least image_ width *
sizeInBytesOfChannelElement, which is the default if rowPitch is not specified.
‘rowPitch’: image_pitch

I

// Image on device
// imageBuffer is a typed array that contain the image data already allocated by the
application.
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// imageBuffer.byteLength >= rowPitch * image_height. The size of each element
in bytes must be a
power of 2.

var image = context.createlmage(webc. MEM_READ_ONLY | webcl. MEM_
USE_ HOST_PTR,
imageFormat, imageBuffer);

A WebCLSampler describes how to sample an image when the image is read in a
kernel function. It is similar to WebGL samplers.

/I create a sampler object

var sampler = context.createSampler(normalizedCoords, addressingMode, filterMode);
// normalizedCoords indicates if image coordinates specified are normalized.

// addressingMode indicated how out-of-range image coordinates are handled when
reading an image.

// This can be set to webcl. ADDRESS_MIRRORED_REPEAT,

webcl. ADDRESS_REPEAT, webcl. ADDRESS_CLAMP_TO_EDGE,

webcl. ADDRESS_CLAMP and webcl. ADDRESS_NONE.

/I filterMode specifies the type of filter to apply when reading an image. This can be
webcl. FILTER_NEAREST or webcl. FILTER_LINEAR

Passing arguments is done using WebCLKernel.setArg(), with scalars, vectors,
or memory objects. When passing values referring to local memory, we use an
Int32Array of length 1 with the number of bytes to be allocated because local
variables cannot be initialized by the host or the device but the host can tell the device
how many bytes to allocate for a kernel argument.

As a rule of thumb, all values passed to a kernel by setArg() are objects. Scalars
must be wrapped into a typed array of size 1. Vectors are typed arrays with size of the
number of elements in the vector. Buffers, images, and samplers are WebCL objects.
Memory object (buffers and images) content must be transferred from host memory
to device memory by enqueue commands before execution of the kernel.

Here are some examples:

/I Sets value of kernel argument idx with value as memory object or sampler
kernel.setArg(idx, a_buffer);

kernel.setArg(idx, a_image);

kernel.setArg(idx, a_sampler);

/I Sets value of argument 0 to the integer value 5
kernel.setArg(0, new Int32Array([5]));

/I Sets value of argument 1 to the float value 1.34
kernel.setArg(1, new Float32Array([1.34]));

/I Sets value of argument 2 as a 3-float vector
// buffer should be a Float32Array with 3 floats
kernel.setArg(2, new Float32Array([1.0,2.0,3.0]));

/I Allocate 4096 bytes of local memory for argument 4
kernel.setArg(4, new Int32Array([4096)));
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When a scalar is passed, the type is used to tell what specific type is expected
by the program. JavaScript has only one type—Number—so we need to provide the
information in the setArg call using typed arrays.

Notes:

* Long integers are 64-bit integers that have no representation in JavaScript. They
must be represented as two 32-bit integers: the low-order 32 bits are stored in
the first element of each pair, and the high-order 32 bits are stored in the second
element.

e If the argument of a kernel function is declared with the _ _constant qualifier,
the size in bytes of the memory object cannot exceed
webcl.DEVICE_MAX_CONSTANT_BUFFER_SIZE.

*  OpenCL allows the passing of structures as byte arrays to kernels but, for
portability, WebCL currently does not allow this. The main reason is that
endianness between the host and devices may be different, and this would
require developers to format their data for each device’s endianness even on the
same machine.

e All WebCL API calls are thread-safe, except kernel.setArg(). However,
kernel.setArg() is safe as long as concurrent calls operate on different
WebCLKernel objects. Behavior is undefined if multiple threads call on the
same WebCLKernel object at the same time.

Operations on WebCL objects such as memory, program, and kernel objects are
performed using command-queues. A command-queue contains a set of operations
or commands. Applications may use multiple independent command-queues without
synchronization as long as commands do not apply on shared objects between
command-queues. Otherwise, synchronization is required.

Commands are queued in order, but execution may be in order (default) or out
of order on the devices that support it (it is optional in OpenCL). Out of order
means that if a command-queue contains command A and command B, an in-order
command-queue object guarantees that command B is executed when command A
finishes. If an application configures a command-queue to be out of order, there is
no guarantee that commands finish in the order they were queued. For out-of-order
queues, a wait for events or a barrier command can be enqueued in the command-
queue to guarantee previous commands finish before the next batch of commands
is executed. Out-of-order queues are an advanced topic we will not cover in this
chapter. Interested readers should refer to [3]. Beware that many underlying OpenCL
implementations do not support out-of-order queues. You should first test if you can
create a command-queue with QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE flag. If the
INVALID_QUEUE_PROPERTIES exception is thrown, the device does not support out-
of-order queues.

/Il Create an in-order command-queue (default)
var queue = context.createCommandQueue(device);
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/l Create an in-order command-queue with profiling of commands enabled
var queue = context.createCommandQueue(device, webcl. QUEUE_PROFILING_
ENABLE);

/Il Create an out-of-order command-queue
var queue = context.createCommandQueue(device,
webcl. QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE);

A command-queue is attached to a specific device. Multiple command-queues can
be used per device. One application is to overlap kernel execution with data transfers
between the host and the device. Figure 12.2 shows the timing benefit if a problem
can be separated in half:

* The first half of the data is transferred from the host to the device, taking half the
time needed for the full data set. Then, the kernel is executed, possibly in half
the time needed with the full data set. Finally, the result is transferred back to the
device in half the time needed for the full result set.

e Just after the first half has been transferred, the second half is transferred from
the host to the device, and the same process is repeated.

Once a set of commands have been queued, WebCL provides enqueue-
NDRange(kernel, offsets, globals, Tocals) toexecute them:

» kernel—the kernel to be executed.

* offsets—offsets to apply to globals. If null, then offsets=[0, 0, 0].

* globals—the problem size per dimension.

* locals—the number of work-items per work-group per dimension. If null, the
device will choose the appropriate number of work-items.

For example, if we want to execute a kernel over an image of size (width, height),
then globals may be [width, height] and locals may be [16, 16]. Note that enqueue
NDRange () will fail if the locals size is more than webc . KERNEL_WORK_GROUP_SIZE.

Single queue

_ Compute on Device | Copy Device to Host

Multiple queues

2 Y ice
o | Comput n oves [
Copy
e | Ees vk

FIGURE 12.2
Using multiple command-queues for overlapped data transfer.
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SYNCHRONIZATION

Just like C/C++ OpenCL programs, the device can process the commands in the
queue in an asynchronous manner. The host submits commands to the command-
queue and can then wait for the completion of all the enqueued commands by using
aclfinish.

Nearly all commands available in the WebCLCommandQueue class have two final
parameters:

1. event_list—an array of WebCLEvents
2. event—an event returned by the device to monitor the execution status of a
command

By default, the event_Tist and event parameters are null for any command.
However, if an event is passed to a command, then the host can wait for the execution
of the particular command using cIWaitForEvents. The programmer can also use
event callback functions to be notified when a certain command completes. The
host code would need to register a callback function in order to be notified once the
command completes. If an event_T17ist is passed to the command, then the command
will not start executing until all the commands corresponding to each event have
reached webcl.COMPLETE.

For the commands an application wishes to be notified of their webc.COMPLETE
status, we first create a WebCLEvent object, pass it to the command, then
register a JavaScript callback function. Note that the last argument of Web-
CLEvent.setCallback() can be anything, as this argument is passed untouched
as the last argument of the callback function. Also note that in the case of enqueue
read/write WebCLBuffers or WebCLImages, c1Buffer ownership is transferred from
the host to the device. Thus, when the read_complete() callback is called, ciBuffer
ownership is transferred back from the device to the host. This means that once the
ownership of c7Buffer has been transferred, the host cannot access or use this buffer
anymore. Once the callback has been called, the host can use the buffer again. See
the example code below:

// Enqueue kernel

try {

kernel_event=new cl. WebCLEvent();

queue.enqueueNDRange(kernel, 2, null, globals, locals, null, kernel_event);
} catch(ex) {

throw ”Couldn’t enqueue the kernel. ”+ex;

}

// Set kernel event handling routines: call kernel_complete()

try {

kernel_event.setCallback(webcl. COMPLETE, kernel_complete, " The kernel
finished successfully.”);

} catch(ex) {

throw ”Couldn’t set callback for event. ”+ex;

}
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// Read the buffer

var data=new Float32Array(4096);

try {

read_event=new webcl. WebCLEvent();

queue.enqueueReadBuffer(clBuffer, false, 0, 4096*4, data, null, read_event);
} catch(ex) {

throw ”Couldn’t read the buffer. ”+ex;

}

// register a callback on completion of read_event: calls read_complete()
read_event.setCallback(webcl. COMPLETE, read_complete, ”"Read complete™);

// wait for both events to complete
queue.waitForEvents([kernel_event, read_event]);

/I kernel callback

function kernel_complete(event, data) {

/I event.status = webc. COMPLETE or error if negative
// event.data is null

// data should contain “The kernel finished successfully.”
}
/I read buffer callback

function read_complete(event, data) {

/I event.status = c. COMPLETE or error if negative

// event.data contains a WebCLMemoryObject with values from device
// data contains "Read complete”

}

INTEROPERABILITY WITH WehGL

Recall that WebCL is for computing, not for rendering. However, if your data already
resides in the graphics processing unit (GPU) and you need to render it, would it not
be faster to tell OpenGL to use it rather than reading it from the GPU memory to
central processing unit (CPU) memory and send it again to OpenGL on your GPU?

This is where the WebGL interoperability extension comes in.

Since WebCL is using data from WebGL, the WebGL context must be created
first. Then, a shared WebCL context can be created. This WebGL shared group object
manages shared WebGL and WebCL resources such as the following (Figure 12.3):

» Textures objects—contain texture data in image form,

* Vertex buffers objects—contain vertex data such as coordinates, colors, and

normal vectors,

* Renderbuffer objects—contain images used with WebGL framebuffer

objects [4].

EXAMPLE APPLICATION

Applications such as image processing and ray tracing produce an output image
whose pixels are drawn onto the screen. For such applications, it suffices to map the
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FIGURE 12.3
Typical runtime involving WebCL and WebCL.

output image onto two unlit screen-aligned triangles rendered by WebGL. A compute
kernel provides more flexible ways to optimize generic computations than a fragment
shader. More importantly, texture memory is cached and thus provides a faster way to
access data than regular (global) CPU memory. However, in devices without image
memory support, one should use webCLBuffers and update WebGL textures with
pixel buffer objects.

In this section, we use Ifiigo Quilez’s excellent ShaderToy’s Mandelbulb fragment
shader [5] converted as a WebCL kernel, depicted in Figure 12.4. The whole WebGL
scene consists of two textured triangles filling a canvas. WebCL generates the texture
at each frame. Therefore, for a canvas of dimension (width, height), WebCL will
generate width x height pixels.

Since WebCL uses WebGL buffers for compute, WebGL context must first be
initialized, and then WebCL context is created by sharing that WebGL context. Once
both contexts have been initialized, it is possible to create shared objects by creating
first the WebGL object, and then the corresponding WebCL object from the WebGL
object. The following illustrates how a WebGL texture is created and can be used as
target by WebCL:

.
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Canvas 1 0

-1 Height-1

WebGLTexture/WebCLImage

FIGURE 12.4

Two triangles in WebGL to draw a WebCL-generated image.

// retrieve a <canvas> object with id glcanvas in HTML page
var canvas = document.getElementByld(”glcanvas”);

/I Try to grab the standard context. If it fails, fallback to experimental.
var gl = canvas.getContext(”webgl”) || canvas.getContext(”experimental-webgl”);

/I Create OpenGL texture object

Texture = gl.createTexture();

gl.bindTexture(gl. TEXTURE_2D, Texture);

gl.texParameteri(gl. TEXTURE_2D, gl. TEXTURE_MAG_FILTER, gl. NEAREST);
gl.texParameteri(gl. TEXTURE_2D, gl. TEXTURE_MIN_FILTER, gl NEAREST);

gl.texImage2D(gl. TEXTURE_2D, 0, gl. RGBA, TextureWidth, TextureHeight, 0,
gl.RGBA,

¢l.UNSIGNED_BYTE, null);

gl.bindTexture(gl. TEXTURE_2D, null);

/I Create OpenCL representation (a WebCLImage) of OpenGL texture
try {

clTexture = context.createFromGLTexture2D(c. MEM_
WRITE_ONLY, gl. TEXTURE_2D, 0, Texture);

}

catch(ex) {
throw “Error: Failed to create WebCLImage. "+ex;

}

// To use this texture, somewhere in your code, do as usual:
glBindTexture(gl. TEXTURE_2D, Texture)

Simply use this texture as an argument to the program

kernel.setArg(0, clTexture);
kernel.setArg(1, new Uint32Array([TextureWidt]));
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kernel.setArg(2, new Uint32Array([TextureHeight]));

Finally, here is how to use this WebCLImage inside the kernel code:

__kernel
void compute(_ _write_only image2d_t pix, uint width, uint height)

{
const int x = get_global_id(0);
const int y = get_global_id(1);

/I compute pixel color as a float4

write_imagef(pix, (int2)(x,y), color);

}

SECURITY ENHANCEMENT

Security is at the forefront of concerns for Web browser vendors. Remember when
nobody had JavaScript turned on in their Web browser by default? The justified fear
is that an unknown program, hiding inside a webpage may be able to access operating
system resources and, for example, steal data from your computer, or install viruses
and other trojans. A malicious script could also bring a computer down by utilizing
all the resources, or crashing the computer.

In the case of WebGL and WebCL, the code is destined to run on the GPU to
get maximum performance, and currently GPUs are lacking hardware mechanisms
to make sure a program cannot access anything other than what it is supposed to:
memory protection and reading uninitialized data are required.

A mechanism has been created to make sure the kernels sent to WebCL cannot
access data outside their boundaries. Recall that WebCL mandates kernels are sent
in text form, which enables the WebCL compiler to analyze and annotate a kernel
before it is sent to the compiler. Alternatively, it would also have been possible to
allow for precompiled programs provided there is a way to validate the safety of a
program and a digital signature process, but there are no binary standard formats for
compile kernels at this point in time.

The two principles of this protection are that the memory allocated in the program
has to be initialized (prevent access to old data from other programs) and that
untrusted code must not access invalid memory.

The mechanism to guarantee this level of security is as follows:

* Keep track of memory allocations (also in runtime if the platform supports
dynamic allocation)

* Trace valid ranges for reads and writes

e Validate them efficiently while compiling the program or at runtime

The kernels are passed through a validator, which annotates the code to make sure
that there is no possible out-of-bounds access, which does impact performance
(measurements suggest less than 30% performance degradation), but ensure safety.
For more information, please read [6].
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WehCL ON THE SERVER

Since WebCL is all about computing, it can be used on Web browsers as well as
by stand-alone applications and servers programmed with JavaScript. Node.js is a
platform built on Chrome’s JavaScript runtime for easily building fast and scalable
network applications. Node.js uses an event-driven, nonblocking input/output model
that makes it lightweight and efficient, perfect for data-intensive real-time appli-
cations that run across distributed devices [7]. Node.js is very modular, and more
than 80,000 modules exist, one of which is node-webcT [8], a cross-platform module
implementing the WebCL specification on top of OpenCL. node-webc] also extends
the specification with features specific to node.js (e.g. using node.js’s buffers as well
as typed arrays) and other features that may be considered in future releases of the
WebCL specification.

Installing node-webcl is more complex than installing a browser. This is a
development tool, and it requires third-party libraries and it needs to be recompiled.

* First, make sure the OpenCL software development kit (SDK) is installed for
your GPU and/or your CPU:
*  For Intel GPUs, install it from https://software.intel.com/en-us/vcsource/
tools/opencl-sdk.
*  For AMD GPUs, install it from http://developer.amd.com/tools-and-sdks/
opencl-zone/amd-accelerated-parallel-processing-app-sdk/.
*  For NVIDIA GPUss, install it from https://developer.nvidia.com/opencl.
¢ Install node.js from http://nodejs.org.
* Install node-gyp: npm install -g node-gyp.
* Install node-image:
*  Download the FreeImage library and headers from http://freeimage.
sourceforge.net/.
* npm install node-image.

If you want to develop applications with the WebGL interoperability extension,
you need to install node-webgl and node-glfw:

e Install GLEW from http://glew.sourceforge.net/.

e Install GLFW 3.x from http://www.glfw.org/.

* Install the AntTweakBar library and headers from http://anttweakbar.
sourceforge.net/.

* npm install node-glfw node-webgl.

Finally, compile and install node-webcl:
* npm install node-webcl

We recommend installation of GLEW, AntTweakBar, Freelmage, and GLFW in your
include and library paths so node-gyp can find them easily while building each node.js
module, otherwise you will need to edit each module’s binding.gyp file. These four


https://software.intel.com/en-us/vcsource/tools/opencl-sdk
https://software.intel.com/en-us/vcsource/tools/opencl-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/
https://developer.nvidia.com/opencl
http://nodejs.org
http://freeimage.sourceforge.net/
http://freeimage.sourceforge.net/
http://glew.sourceforge.net/
http://www.glfw.org/
http://anttweakbar.sourceforge.net/
http://anttweakbar.sourceforge.net/

12.7 WebCL on the Server 287

libraries are available on all desktop platforms (Mac, Windows, Linux) and can be
installed on Linux and Mac machines using package managers such as apt-get and
Homebrew [9].

To use node-webcl in your code, open your favorite JavaScript text editor.
You require node-webcl so that the WebCL API is added to the global names-
pace. The webcl object below is exactly the same as a browser’s window.webcl
object.

// add WebCL API
var webcl = require(‘node-webcl’);

// rest of the code is identical to that in a browser

Removing the “require” line and using webcl = window.webcl will make your
code work on any WebCL-enabled browser. With node-webcl, one can now take
advantage of operating system access and all node.js modules.

One possible use case is to use node.js with node-webcl to perform accelerated
computations on a server and communicate the results to browsers via Web sockets
[10], which in turn can render it in a meaningful way [11].

Likewise, many numerical applications require the use of various frameworks,
such as Python, R, and MATLAB. These scripting languages provide similar
features also available in JavaScript. And, given the speed of the JavaScript
runtime and that many of these numerical libraries have already been ported
to JavaScript (even tools to transcode these languages directly to JavaScript),
JavaScript with node.js becomes a much faster platform unifying frameworks and
languages.

Because node-webcl is less restrictive than browsers, applications can be devel-
oped more quickly and typically run faster. Enhanced with the node.js fast evented
runtime, very dynamic and multithreaded applications can be developed in JavaScript
that may not be possible in browsers. This is ideal for server-side applications
that need to schedule complex workloads on all OpenCL-enabled devices in a
platform.

With node.js and node-webcl, JavaScript-based applications can be developed and
deployed rapidly on the server side and on the client side. Complex, data-intensive
real-time applications are now possible from JavaScript.

Recently, a new node.js module appeared, called node-opencl [18]. While
developed by the same authors as node-webcl, node-opencl is a complete rewrite.
node-opencl is lower-level than node-webcl and is a direct representation of
OpenCL features in JavaScript. Contrary to WebCL that supports OpenCL 1.1,
node-opencl supports all versions of OpenCL. One could make a pure JavaScript
representation of WebCL on top of node-opencl. While all other WebCL imple-
mentations have sporadic maintenance, node-opencl and node-webcl are actively
supported.
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12.8 STATUS AND FUTURE OF WehCL

WebCL 1.0 was released on March 14, 2014, and the group has been developing the
conformance tests [ 12], white papers, and tutorials [13]. At the time of writing, there
are four implementations of WebCL 1.0:

1. Nokia’s WebCL implementation for the Firefox browser [14]

2. Samsung’s WebCL implementation for WebKit-based browsers [15]

3. AMD’s WebCL implementation for Chromium-based browsers [16]

4. Motorola Mobility’s WebCL implementation for node.js (not a browser)
(171, [19]

5. AMD’s node-opencl, a node.js wrapper to OpenCL for servers [18]

The conformance was finalized by the end of 2014, which should help Web browser
vendors release updated versions of their browsers with WebCL support.
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CHAPTER

Foreign lands
Plugging OpenCL in

INTRODUCTION

Up to this point, we have considered OpenCL in the context of the system program-
ming languages C and C++; however, there is a lot more to OpenCL. In this chapter,
we look at how OpenCL can be accessed from a selection of different programming
language frameworks, including Java, Python, and the functional programming
language Haskell.

BEYOND C AND C++

For many developers, C and C++ are the programming languages of choice. For
many others, this is not the case: for example, a large amount of the world’s
software is developed in Java or Python. These high-level languages are designed
with productivity in mind, often providing features such as automatic memory
management, and performance has not necessarily been at the forefront of the minds
of system designers. An advantage of these languages is that they are often highly
portable, think of Java’s motto “write once, run everywhere,” and reduce the burden
on the developer to be concerned with low-level system issues. However, it is often
the case that it is not easy, sometimes it is even impossible, to get anything close to
peak performance for applications written in these languages.

To address the performance gap and also to allow access to a wide set of
libraries not written in a given high-level language, a foreign function interface (FFI)
is provided to allow applications to call into native libraries written in C, C4+,
or other low-level programming languages. For example, Java provides the Java
Native Interface, while Python has its own mechanism. Both Java (e.g. JOCL (Java
bindings for OpenCL) [1]) and Python (e.g. PyOpenCL [2]) have OpenCL wrapper
application programming interfaces (APIs) that allow the developer to directly access
the compute capabilities offered by OpenCL. These models are fairly low level, and
provide the plumbing between the managed runtimes and the native, unmanaged,
aspects of OpenCL. To give a flavor of what is on offer, Listing 13.1 is a PyOpenCL
implementation of vector addition.

Heterogeneous Computing with OpenCL 2.0. http:/dx.doi.org/10.1016/B978-0-12-801414-1.00013-2 29 1
Copyright © 2015 Advanced Micro Devices, Inc. Published by Elsevier Inc. All rights reserved
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import pyopencl as cl
import numpy
import numpy.linalg as la

IS
|

= numpy.random.rand (50000).astype (numpy. float32)
b = numpy.random.rand (50000) . astype (numpy. float32)

ctx = cl.create_some_context ()
queue = cl.CommandQueue(ctx)

mf =cl.mem_flags
a_buf=cl.Buffer(ctx ,mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a)
b_buf=cl.Buffer (ctx ,mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b)
dest_buf =cl.Buffer(ctx ,mf.WRITE_ONLY,b.nbytes)
prg =cl.Program(ctx, 7 7 7
__kernel void vecadd(__global const float =xa,
__global const float xb, __global float xc)
{
int gid =get_global_id(0);
c[gid] =a[gid] + b[gid];
1
7”7 ) build ()

prg.vecadd (queue, a.shape, None, a_buf, b_buf, dest_buf)

a_plus_b = numpy.empty_like(a)
cl.enqueue_copy(queue, a_plus_b, dest_buf)

print la.norm(a_plus_b — (a+b))
LISTING 13.1
PyOpenCL implementation of a vector addition.

An example of moving beyond simple wrapper APIs is Aparapi [3]. Originally
developed by AMD but now a popular open source project, Aparapi allows Java
developers to take advantage of the computing power of graphics processing units
(GPUs) and other OpenCL devices by executing data-parallel code fragments on
the GPU rather than confining them to the local central processing unit (CPU). The
Aparapi runtime system achieves this by converting Java bytecode to OpenCL at
runtime and executing on the GPU. If for any reason Aparapi cannot execute on the
GPU, it will execute in a Java thread pool. An important goal of Aparapi is to stay
within the Java language both from a syntax point of view and from one of spirit. This
design requirement can be seen from the source code to perform a vector addition,
given in Listing 13.2, where there is no OpenCL C code or OpenCL API calls.

package com.amd. aparapi.sample.add;
import com.amd. aparapi.Kernel;
import com.amd.aparapi.Range;
public class Main{
public static void main(String [] _args) {
final int size = 512;
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final float[] a new float[size];
final float[] b new float[size];
for (int i = 0; i < size; i++) {
ali] = (float) (Math.random () *100);
b[i] (float) (Math.random () *100);

}
final float[] sum = new float[size];
Kernel kernel = new Kernel () {
@Override public void run() {
int gid = getGloballd ();
sum[gid] = a[gid] + b[gid];
}
I
kernel . execute (Range. create (512));
for (int i = 0; i < size; i++) {
System.out. printf ("%6.2f + %6.2f = %8.2f\n”, a[i], b[i],
sum[i]);
}
kernel . dispose () ;
}
}

LISTING 13.2
Java implementation of vector addition, using Aparapi to target OpenCL.

Instead, the Aparapi developer expresses OpenCL computations by generating
instances of Aparapi classes, overriding methods that describe the functionality of a
kernel that will be dynamically compiled to OpenCL at runtime from the generated
Java bytecode.

Aparapi is an example of a more general concept of embedding a domain-specific
language (DSL) within a hosting programming language: in this case, Java. DSLs
focus on providing an interface for a domain expert, and commonly a DSL will
take the form of a specific set of features for a given science domain—for example,
medical imaging. In this case, the domain is that of data-parallel computations and in
particular that of general-purpose computing on GPUs.

HASKELL OpenCL

Haskell is a pure functional language, and along with Standard ML (SML) and its
variants is one of the most popular modern functional languages. Unlike many of the
other managed languages, Haskell (and SML) programming consists in describing
functions, in terms of expressions, and evaluating them by application to argument
expressions. In general, the model differs from imperative programming by not
defining sequencing of statements and not allowing side effects. There is usually
no assignment outside declarations. This is often seen as both a major advantage
and a major disadvantage of Haskell. Combining side-effect free programming with
Haskell’s large and often complex type system can often be an off-putting experience
for the newcomer used to the imperative models of C, C++-, or Java. However, side-
effect free can be liberating in the presence of parallel programming, as in this case

293
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evaluating an expression will produce a single isolated result, which is thread-safe by
definition. For this reason, Haskell has recently gained a lot of interest in the parallel
programming research community. The interested reader new to Haskell would do
well to read Hutton’s excellent book on programming in Haskell [4] and Meijer’s
companion video series on Microsoft’s Channel 9 [5].

Owing to certain aspects of Haskell’s type system, it has proven to be an excellent
platform for the design of embedded DSLs, which in turn provide abstractions that
automatically compile the source code to GPUs. See, for example, Accelerate [0]
or Obsidian [7] for two excellent examples of this approach. However, this is a
book about low-level programming with OpenCL, and so here we stay focused,
instead considering how the Haskell programmer can get direct access to the GPU
via OpenCL. The benefits of accessing OpenCL via Haskell are many-fold but in
particular

* OpenCL brings a level of performance to Haskell not achievable by existing
CPU threading libraries;

* the high-level nature of Haskell significantly reduces the complexity of
OpenCL’s host API and leads to a powerful and highly productive development
environment.

There has been more than one effort to develop wrapper APIs for OpenCL in Haskell;
however, we want more than a simple FFI binding for OpenCL. In particular, we
want something that makes accessing OpenCL simpler, while still providing full
access to the power of OpenCL. For this, we recommend HOpenCL [8], which
is an open source library providing both a low-level wrapper to OpenCL and a
higher-level interface that enables Haskell programmers to access the OpenCL APIs
in an idiomatic fashion, eliminating much of the complexity of interacting with
the OpenCL platform and providing stronger static guarantees than other Haskell
OpenCL wrappers. For the remainder of this chapter, we focus on the latter higher-
level API; however, the interested reader can learn more about the low-level APl in the
HOpenCL documentation. It should be noted that HOpenCL presently only supports
the OpenCL 1.2 API. The advanced OpenCL 2.0 features such as device-queues and
pipe objects have not yet been ported to HOpenCL.

As a simple illustration we again consider the vector addition described in Chapter
3. The kernel code is unchanged and is again embedded as a string, but the rest is
entirely Haskell.

MODULE STRUCTURE

HOpenCL is implemented as a small set of modules all contained under the structure
Langauge.OpenCL.

— Language.OpenCL.Host.Constants—defines base types for the OpenCL
core API
— Langauge.OpenCL.Host.Core—defines the low-level OpenCL core API
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— Language.OpenCL.GLInterop—defines the OpenGL interoperability API
— Language.OpenCL.Host—defines the high-level OpenCL API

For the most part, the following sections introduce aspects of the high-level API,
and in the cases where reference to the core is necessary, it will be duly noted.
For details of the low-level API, the interested reader is referred to the HOpenCL
documentation [8].

ENVIRONMENTS

As described in early chapters, many OpenCL functions require either a context,
which defines a particular OpenCL execution environment, or a command queue,
which sequences operations for execution on a particular device. In much OpenCL
code, these parameters function as “line noise”—that is, technically necessary, they
do not change over large portions of the code. To capture this notion, HOpenCL
provides two type classes, Contextual and Queued, to qualify operations that require
contexts and command queues, respectively.

In general, an application using HOpenCL will want to embed computations that
are qualified into other qualified computations—for example, embedding Queued
computations within Contextual computations and thus tying the knot between them.
The with function is provided for this purpose:

with :: Wraps t mn=>t ->mu ->nu

REFERENCE COUNTING

For OpenCL objects whose life is not defined by a single C scope, the C API provides
operations for manual reference counting (e.g. c1RetainContext/c1ReleaseContext).
HOpenCL generalizes this notion with a type class LifeSpan which supports the
operations retain and release:

retain :: (LifeSpan t, MonadIO m) => t -> m ()
release :: (LifeSpan t, MonadIO m) => t ->m ()

The using function handles construction and release of new reference-counted
objects. It introduces the ability to automatically manage OpenCL object
lifetimes:

using :: (Lifespan t m, CatchIO m) =>m ¢t -> (£t ->mu) -> mu

To simplify the use of OpenCL contexts (Context) and command queues
(CommandQueue), which are automatically reference counted in HOpenCL, the
operation withNew combines the behavior of the with function and the using
function:

withNew :: (Wraps t m n, Lifespan t, CatchIO n) =>nt ->mu ->nu
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PLATFORM AND DEVICES

The API function platforms is used to discover the set of available platforms for a
given system.

platforms :: MonadIO m => m [Platform]

Unlike the C API, there is no need to call platforms twice, first to determine the
number of platforms and second to get the actual list of platforms; HOpenCL manages
all of the plumbing automatically. The only complicated aspect of the definition of
platforms is that the result is returned within a monad m, which is constrained to
be an instance of the type class Monad10. This constraint enforces that the particular
OpenCL operation happens within a monad that can perform input/output. This is
true for all OpenCL actions exposed by HOpenCL, and is required to capture the fact
that the underlying API may perform unsafe operations and thus needs sequencing.
After platforms have been discovered, they can be queried, using the overloaded
(?) operator, to determine which implementation (vendor) the platform was defined
by. For example, the following code selects the first platform and displays the vendor:

(p:_) <- platforms
putStrin . ("PTatform is by: " ++) =< p ? PlatformVendor

In general, any OpenCL value that can be queried by a function of the form
cl1GetXXXInfo, where XXX is the particular OpenCL type, can be queried by an
instance of the function:

(?) :: MonadlOm=>1t ->qt u->mu
For platform queries, the type of the operator (?) is
(?) :: MonadIO m => Platform -> PlatformInfo u -> mu

Similarly to the OpenCL C++ wrapper API’s implementation of c1GetXXXInfo, the
type of the value returned by the operator ( ?) is dependent on the value being queried,
providing an extra layer of static typing. For example, in the case of P1atformVendor,
the result is the Haskell type String.

The devices function returns the set of devices associated with a platform. It takes
the arguments of a platform and a device type. The device type argument can be used
to limit the devices to GPUs only (GPU), CPUs only (CPU), all devices (ALL), or other
options. As with platforms, the operator (?) is called to retrieve information such as
name and type:

devicesOfType :: MonadIO m => Platform -> [DeviceType]l -> m [Device]

THE EXECUTION ENVIRONMENT

As described earlier, a host can request that a kernel be executed on a device. To
achieve this, a context must be configured on the host that enables it to pass commands
and data to the device.
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Contexts
The function context creates a context from a platform and a list of devices:

context :: MonadIO m => Platform -> [Device] -> m Context

If it is necessary to restrict the scope of the context—for example, to enable graphics
interoperability—then properties may be passed using the contextFromProperties
function:

contextFromProperties :: MonadI0 m =>
ContextProperties -> [Device] -> m Context

Context properties are built with the operations noProperties, which defines an
empty set of properties, and pushContextProperty, which adds a context property to
an existing set. The operations noProperties and pushContextProperty are defined
as part of the core APl in Language.OpenCL.Host.Core:

noProperties :: ContextProperties
pushContextProperty :: ContextProperty t u =>
t u->u -> ContextProperties -> ContextProperties

Command queues

Communication with a device occurs by submitting commands to a command
queue. The function queue creates a command queue within the current Contextual
computation:

queue :: Contextual m => Device -> m CommandQueue

As CommandQueue is reference counted and defined within a particular Contextual
computation, a call to queue will often be combined with withNew, embedding the
command queue into the current context:

withNew (queue gpu) $
_computation dependent on newly created command queue

Buffers

The function buffer allocates an OpenCL buffer, assuming the default set of flags.
The function bufferWithFlags allocates a buffer with the associated set of user-
supplied memory flags (MemF1ag is defined in Language.OpenCL.Host.Constants):

buffer :: (Storable t, Contextual m) => Int -> m (Buffer t)
bufferWithFlags :: (Storable t, Contextual m) =>
Int -> [MemFlagl -> m (Buffer t)

As buffers are associated with a Contextual computation (a Context), the using
function can be used to make this association.

Data contained in host memory is transferred to and from an OpenCL buffer using
the commands writeTo and readFrom, respectively:
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readFrom :: (Readable cl hs, Storable t, Queued m) =>

cl t -> Int -> Int -> m (hs t)
writeTo :: (Writable ¢l hs, Storable t, Queued m) =>

cl t -> Int -> hs t -> m Event

Creating an OpenCL program object

OpenCL programs are compiled at runtime through two functions, programFromSource
and buildProgram, that create a program object from the source string and build a
program object, respectively:

programFromSource :: Contextual m => String -> m Program
buildProgram :: MonadIO0 m => Program -> [Device] -> String -> m ()
The OpenCL kernel

Kernels are created with the function kernel:
kernel :: MonadIO m => Program -> String -> m Kernel

Arguments can be individually set with the function fixArgument. However, often the
arguments can be set at the point when the kernel is invoked, and HOpenCL provides
the function invoke for this use case:

fixArgument :: (KernelArgument a, MonadIO m) => Kernel ->
Int ->a ->m ()
invoke :: Kernellnvocation r => Kernel -> r

Additionally, it is possible to create a kernel invocation, which one can think of as a
kernel closure, from a kernel and a set of arguments using the function setArgs (this
can be useful in a multithreaded context):

setArgs :: Kernel -> [Co.Kernel -> Int -> I0 ()] -> Invocation

A call to invoke by itself is not enough to actually enqueue a kernel; for this, an
application of invoke is combined with the function overRange, which describes the
execution domain and results in an event representing the enqueue, within the current
computation:

overRange :: Queued m => Invocation -> ([Int], [Int], [Int]) -> m Event

Full source code example for vector addition
The following example source code implements the vector addition OpenCL appli-
cation, originally given in Chapter 3, and is reimplemented here using HOpenCL.:

module VecAdd where

import Language.OpenCL.Host
import Language.OpenCL.Host.FFI

import Control.Monad.Trans (1i1ftIO0)
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source =
'__kernel void vecadd( \n" ++
__global int *C, __global int* A, __global int *B) { \n" ++
" int tid = get_global_id(0); \n" ++

" CL[tid] = A[tid] + B[tid]; \n" ++
" "

elements = 2048 :: Int;

main = do (p:_) <- platforms
[gpu] <- devicesOfType p [GPU]
withNew (context p [gpul) $
using (programFromSource source) $ \p ->
using (buffer elements) $ \inBuFA ->
using (buffer elements) $ \inBufB ->
using (buffer elements) $ \outBuf ->
do { buildProgram p [gpul ""
; using (kernel p "vecadd") $ \vecadd ->
withNew (queue gpu) $
do writeTo inBufA 0 [0.. elements — 1 ]
writeTo inBufB 0 [0.. elements - 1 ]
invoke vecadd outBuf inBufA inBufB
‘overRange® ([0], [elements], [1])
(x::[Int]) <- readFrom outBuf 0 elements
1ift10 (if and $ zipWith (\a b -> a == b+b)
x [0.. elements — 1 ]
then print "Output is correct"
else print "Output is incorrect") }

This is the complete program!

13.4 SUMMARY

In this chapter, we have shown that accessing OpenCL’s compute capabilities need not
be limited to the C or the C++ programmer. We highlighted that there are production-
level bindings for OpenCL for many languages, including Java and Python, and
focused on a high-level abstraction for programming OpenCL from the functional
language Haskell.
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229 fine-grained system, 1597, 161, 262
event synchronization, 231 SIMD. See Single instruction multiple data (SIMD)
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Single instruction multiple data (SIMD)
AMD Radeon HD 6970 GPU, 25, 27f
AMD Radeon R9 290X, 34, 35f, 196
NVIDIA GeForce GTX 780, 34, 36f
vs. SPMD model, 11
vector processing, 21, 21f
Single program, multiple data (SPMD) model, 11,
13
SMT. See Simultaneous multithreading (SMT)
SoC. See Systems-on-chip (SoC)
SPMD model. See Single program, multiple data
(SPMD) model
Standard Portable Intermediate Representation
(SPIR), 254, 260, 261f
SVM. See Shared virtual memory (SVM)
Systems-on-chip (SoC), 26, 37
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Temporal multithreading, 24, 25f
Thread parallelism

SMT, 22, 23, 23f, 24f

temporal multithreading, 24, 25f
Transpose, 219, 220f, 227, 227t
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Vector addition
C API, 66
CUDA C API, 71
C++ wrapper, 69
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POSIX threads, 51
serial C implementation, 50
Vectorizing computation, 221
Very long instruction word (VLIW), 19, 20f, 21,
217f, 31
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WebCL
applications
image processing and ray tracing produce,
282
kernel code, 285
texture usage, argument, 284
two textured triangles, 283, 284f
implementations, 288
interoperability, WebGL, 282
programming
command queues, 279, 280
object-oriented nature, JavaScript, 273
objects, 274, 275, 275f
various numerical types, 276, 277t
WebCL image, 276
WebGL texture, 283
server, 286
specification, 288
synchronization, 281
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