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Preface

C is an important language and has had extensive treatment over the years. Central to
the language are pointers that provide much of the flexibility and power found in the
language. It provides the mechanism to dynamically manipulate memory, enhances
support for data structures, and enables access to hardware. This power and flexibility
comes with a price: pointers can be difficult to master.

Why This Book Is Different
Numerous books have been written about C. They usually offer a broad coverage of the
language while addressing pointers only to the extent necessary for the topic at hand.
Rarely do they venture beyond a basic treatment of pointers and most give only cursory
coverage of the important memory management technology involving the stack and
the heap. Yet without this discussion, only an incomplete understanding of pointers can
be obtained. The stack and heap are areas of memory used to support functions and
dynamic memory allocation, respectively.

Pointers are complex enough to deserve more in-depth treatment. This book provides
that treatment by focusing on pointers to convey a deeper understanding of C. Part of
this understanding requires a working knowledge of the program stack and heap along
with the use of pointers in this context. Any area of knowledge can be understood at
varying degrees, ranging from a cursory overview to an in-depth, intuitive understand‐
ing. That higher level of understanding for C can only be achieved with a solid under‐
standing of pointers and the management of memory.

The Approach
Programming is concerned with manipulating data that is normally located in memory.
It follows that a better understanding of how C manages memory will provide insight

that translates to better programming. While it is one thing to know that the malloc
function allocates memory from the heap, it is another thing to understand the
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implications of this allocation. If we allocate a structure whose logical size is 45, we may
be surprised to learn that more than 45 bytes are typically allocated and the memory
allocated may be fragmented.

When a function is called, a stack frame is created and pushed onto the program stack.
Understanding stack frames and the program stack will clarify the concepts of passing
by value and passing by pointer. While not necessarily directly related to pointers, the
understanding of stack frames also explains how recursion works.

To facilitate the understanding of pointers and memory management techniques, var‐
ious memory models will be presented. These range from a simple linear representation
of memory to more complex diagrams that illustrate the state of the program stack and
heap for a specific example. Code displayed on a screen or in a book is a static repre‐
sentation of a dynamic program. The abstract nature of this representation is a major
stumbling block to understanding a program’s behavior. Memory models go a long way
to helping bridge this gap.

Audience
The C language is a block structured language whose procedural aspects are shared with
most modern languages such as C++ and Java. They all use a program stack and heap.
They all use pointers, which are often disguised as references. We assume that you have
a minimal understanding of C. If you are learning C, then this book will provide you
with a more comprehensive treatment of pointers and memory than is found in other
books. It will expand your knowledge base regarding C and highlight unfamiliar aspects
of C. If you are a more experienced C or C++ programmer, this book will help you fill
in possible gaps regarding C and will enhance your understanding of how they work
“under the hood,” thus making you a better programmer. If you are a C# or Java devel‐
oper, this book will help you better understand C and provide you with insight into how
object-oriented languages deal with the stack and the heap.

Organization
The book is organized along traditional topics such as arrays, structures, and functions.
However, each chapter focuses on the use of pointers and how memory is managed. For
example, passing and returning pointers to and from functions are covered, and we also
depict their use as part of stack frames and how they reference memory in the heap.

Chapter 1, Introduction
This chapter covers pointer basics for those who are not necessarily proficient or
are new to pointers. This includes pointer operators and the declaration of different

types of pointers such as constant pointers, function pointers, and the use of NULL
and its closely related variations. This can have a significant impact on how memory
is allocated and used.
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Chapter 2, Dynamic Memory Management in C
Dynamic memory allocation is the subject of Chapter 2. The standard memory
allocation functions are covered along with techniques for dealing with the deal‐
location of memory. Effective memory deallocation is critical to most applications,
and failure to adequately address this activity can result in memory leaks and dan‐
gling pointers. Alternative deallocation techniques, including garbage collection
and exception handlers, are presented.

Chapter 3, Pointers and Functions
Functions provide the building blocks for an application’s code. However, passing
or returning data to and from functions can be confusing to new developers. This
chapter covers techniques for passing data, along with common pitfalls that occur
when returning information by pointers. This is followed by extensive treatment
of function pointers. These types of pointers provide yet another level of control
and flexibility that can be used to enhance a program.

Chapter 4, Pointers and Arrays
While array notation and pointer notation are not completely interchangeable, they
are closely related. This chapter covers single and multidimensional arrays and how
pointers are used with them. In particular, passing arrays and the various nuisances
involved in dynamically allocating arrays in both a contiguous and a noncontiguous
manner are explained and illustrated with different memory models.

Chapter 5, Pointers and Strings
Strings are an important component of many applications. This chapter addresses
the fundamentals of strings and their manipulation with pointers. The literal pool
and its impact on pointers is another often neglected feature of C. Illustrations are
provided to explain and illuminate this topic.

Chapter 6, Pointers and Structures
Structures provide a very useful way of ordering and manipulating data. Pointers
enhance the utility of structures by providing more flexibility in how they can be
constructed. This chapter presents the basics of structures as they relate to memory
allocation and pointers, followed by examples of how they can be used with various
data structures.

Chapter 7, Security Issues and the Improper Use of Pointers
As powerful and useful as pointers can be, they are also the source of many security
problems. In this chapter, we examine the fundamental problems surrounding
buffer overflow and related pointer issues. Techniques for mitigating many of these
problems are presented.
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Chapter 8, Odds and Ends
The last chapter addresses other pointer techniques and issues. While C is not an
object-oriented language, many aspects of object-oriented programming can be
incorporated into a C program, including polymorphic behavior. The essential el‐
ements of using pointers with threads are illustrated. The meaning and use of the

restrict keyword are covered.

Summary
This book is intended to provide a more in-depth discussion of the use of pointers than
is found in other books. It presents examples ranging from the core use of pointers to
obscure uses of pointers and identifies common pointer problems.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.
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Using Code Examples
This book is here to help you get your job done. In general, if this book includes code
examples, you may use the code in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex‐
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Understanding and Using C Pointers by
Richard Reese (O’Reilly). Copyright 2013 Richard Reese, Ph.D. 978-1-449-34418-4.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-demand
digital library that delivers expert content in both book and video
form from the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.
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How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/Understand_Use_CPointers.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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CHAPTER 1

Introduction

A solid understanding of pointers and the ability to effectively use them separates a
novice C programmer from a more experienced one. Pointers pervade the language and
provide much of its flexibility. They provide important support for dynamic memory
allocation, are closely tied to array notation, and, when used to point to functions, add
another dimension to flow control in a program.

Pointers have long been a stumbling block in learning C. The basic concept of a pointer
is simple: it is a variable that stores the address of a memory location. The concept,
however, quickly becomes complicated when we start applying pointer operators and
try to discern their often cryptic notations. But this does not have to be the case. If we
start simple and establish a firm foundation, then the advanced uses of pointers are not
hard to follow and apply.

The key to comprehending pointers is understanding how memory is managed in a C
program. After all, pointers contain addresses in memory. If we don’t understand how
memory is organized and managed, it is difficult to understand how pointers work. To
address this concern, the organization of memory is illustrated whenever it is useful to
explain a pointer concept. Once you have a firm grasp of memory and the ways it can
be organized, understanding pointers becomes a lot easier.

This chapter presents an introduction to pointers, their operators, and how they interact
with memory. The first section examines how they are declared, the basic pointer oper‐
ators, and the concept of null. There are various types of “nulls” supported by C so a
careful examination of them can be enlightening.

The second section looks more closely at the various memory models you will un‐
doubtedly encounter when working with C. The model used with a given compiler and
operating system environment affects how pointers are used. In addition, we closely
examine various predefined types related to pointers and the memory models.
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Pointer operators are covered in more depth in the next section, including pointer
arithmetic and pointer comparisons. The last section examines constants and pointers.
The numerous declaration combinations offer many interesting and often very useful
possibilities.

Whether you are a novice C programmer or an experienced programmer, this book will
provide you with a solid understanding of pointers and fill the gaps in your education.
The experienced programmer will want to pick and choose the topics of interest. The
beginning programmer should probably take a more deliberate approach.

Pointers and Memory
When a C program is compiled, it works with three types of memory:

Static/Global
Statically declared variables are allocated to this type of memory. Global variables
also use this region of memory. They are allocated when the program starts and
remain in existence until the program terminates. While all functions have access
to global variables, the scope of static variables is restricted to their defining func‐
tion.

Automatic
These variables are declared within a function and are created when a function is
called. Their scope is restricted to the function, and their lifetime is limited to the
time the function is executing.

Dynamic
Memory is allocated from the heap and can be released as necessary. A pointer
references the allocated memory. The scope is limited to the pointer or pointers
that reference the memory. It exists until it is released. This is the focus of Chapter 2.

Table 1-1 summarizes the scope of and lifetime of variables used in these memory
regions.

Table 1-1. Scope and lifetime

 Scope Lifetime

Global The entire file The lifetime of the application

Static The function it is declared within The lifetime of the application

Automatic (local) The function it is declared within While the function is executing

Dynamic Determined by the pointers that reference this memory Until the memory is freed

Understanding these types of memory will enable you to better understand how pointers
work. Most pointers are used to manipulate data in memory. Understanding how mem‐
ory is partitioned and organized will clarify how pointers manipulate memory.
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A pointer variable contains the address in memory of another variable, object, or func‐
tion. An object is considered to be memory allocated using one of the memory allocation

functions, such as the malloc function. A pointer is normally declared to be of a specific

type depending on what it points to, such as a pointer to a char. The object may be any
C data type such as integer, character, string, or structure. However, nothing inherent
in a pointer indicates what type of data the pointer is referencing. A pointer only contains
an address.

Why You Should Become Proficient with Pointers
Pointers have several uses, including:

• Creating fast and efficient code

• Providing a convenient means for addressing many types of problems

• Supporting dynamic memory allocation

• Making expressions compact and succinct

• Providing the ability to pass data structures by pointer without incurring a large
overhead

• Protecting data passed as a parameter to a function

Faster and more efficient code can be written because pointers are closer to the hardware.
That is, the compiler can more easily translate the operation into machine code. There
is not as much overhead associated with pointers as might be present with other
operators.

Many data structures are more easily implemented using pointers. For example, a linked
list could be supported using either arrays or pointers. However, pointers are easier to
use and map directly to a next or previous link. An array implementation requires array
indexes that are not as intuitive or as flexible as pointers.

Figure 1-1 illustrates how this can be visualized using arrays and pointers for a linked
list of employees. The lefthand side of the figure uses an array. The head variable indi‐
cates that the linked list’s first element is at index 10 of the array. Each array’s element

contains a structure that represents an employee. The structure’s next field holds the
index in the array of the next employee. The shaded elements represent unused array
elements.

The righthand side shows the equivalent representation using pointers. The head vari‐
able holds a pointer to the first employee’s node. Each node holds employee data as well
as a pointer to the next node in the linked list.

The pointer representation is not only clearer but also more flexible. The size of an array
typically needs to be known when it is created. This will impose a restriction on the
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number of elements it can hold. The pointer representation does not suffer from this
limitation as a new node can be dynamically allocated as needed.

Figure 1-1. Array versus pointers representation of a linked list

Dynamic memory allocation is effected in C through the use of pointers. The malloc

and free functions are used to allocate and release dynamic memory, respectively. Dy‐
namic memory allocation enables variable-sized arrays and data structures, such as
linked lists and queues. However, in the new C standard, C11, variable size arrays are
supported.

Compact expressions can be very descriptive but can also be cryptic, as pointer notation
is not always fully understood by many programmers. Compact expressions should
address a specific need and not be cryptic just to be cryptic. For example, in the following

sequence, the third character of the names' second element is displayed with two dif‐

ferent printf functions. If this usage of pointers is confusing, don’t worry—we will
explain how dereferencing works in more detail in the section “Dereferencing a Pointer
Using the Indirection Operator” on page 11. While the two approaches are equivalent

and will display the character n, the simpler approach is to use array notation.

    char *names[] = {"Miller","Jones","Anderson"};

    printf("%c\n",*(*(names+1)+2));

    printf("%c\n",names[1][2]);
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Pointers represent a powerful tool to create and enhance applications. On the downside,
many problems can occur when using pointers, such as:

• Accessing arrays and other data structures beyond their bounds

• Referencing automatic variables after they have gone out of existence

• Referencing heap allocated memory after it has been released

• Dereferencing a pointer before memory has been allocated to it

These types of problems will be examined in more detail in Chapter 7.

The syntax and semantics of pointer usage are fairly well defined in the C specifica‐
tion. However, there are situations where the specification does not explicitly define
pointer behavior. In these cases the behavior is defined to be either:

Implementation-defined
Some specific, documented implementation is provided. An example of
implementation-defined behavior is how the high-order bit is propagated in an
integer shift right operation.

Unspecified
Some implementation is provided but is not documented. An example of an un‐

specified behavior is the amount of memory allocated by the malloc function with
an argument of zero. A list of unspecified behavior can be found at CERT Secure
Coding Appendix DD.

Undefined
There are no requirements imposed and anything can happen. An example of this

is the value of a pointer deallocated by the free functions. A list of unspecified
behavior can be found at CERT Secure Coding Appendix CC.

Sometimes there are locale-specific behaviors. These are usually documented by the
compiler vendor. Providing locale-specific behavior allows the compiler-writer latitude
in generating more efficient code.

Declaring Pointers
Pointer variables are declared using a data type followed by an asterisk and then the
pointer variable’s name. In the following example, an integer and a pointer to an integer
are declared:

   int num;

   int *pi;

The use of white spaces around the asterisk is irrelevant. The following declarations are
all equivalent:
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   int* pi;

   int * pi;

   int *pi;

   int*pi;

The use of white space is a matter of user preference.

The asterisk declares the variable as a pointer. It is an overloaded symbol as it is also
used for multiplication and dereferencing a pointer.

Figure 1-2 illustrates how memory would typically be allocated for the above declara‐
tion. Three memory locations are depicted by the three rectangles. The number to the
left of each rectangle is its address. The name next to the address is the variable assigned
to this location. The address 100 is used here for illustrative purposes. The actual address
of a pointer, or any variable for that matter, is not normally known, nor is its value of
interest in most applications. The three dots represent uninitialized memory.

Pointers to uninitialized memory can be a problem. If such a pointer is dereferenced,
the pointer’s content probably does not represent a valid address, and if it does, it may
not contain valid data. An invalid address is one that the program is not authorized to
access. This will result in the program terminating on most platforms, which is signif‐
icant and can lead to a number of problems, as discussed in Chapter 7.

Figure 1-2. Memory diagram

The variables num and pi are located at addresses 100 and 104, respectively. Both are
assumed to occupy four bytes. Both of these sizes will differ, depending on the system
configuration as addressed in the section “Pointer Size and Types” on page 15. Unless
otherwise noted, we will use four-byte integers for all of our examples.

In this book, we will use an address such as 100 to explain how pointers
work. This will simplify the examples. When you execute the examples
you will get different addresses, and these addresses can even change
between repeated executions of the program.
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There are several points to remember:

• The content of pi should eventually be assigned the address of an integer variable.

• These variables have not been initialized and thus contain garbage.

• There is nothing inherent to a pointer’s implementation that suggests what type of
data it is referencing or whether its contents are valid.

• However, the pointer type has been specified and the compiler will frequently com‐
plain when the pointer is not used correctly.

By garbage, we mean the memory allocation could contain any value.
When memory is allocated it is not cleared. The previous contents could
be anything. If the previous contents held a floating point number, in‐
terpreting it as an integer would likely not be useful. Even if it contained
an integer, it would not likely be the right integer. Thus, its contents are
said to hold garbage.

While a pointer may be used without being initialized, it may not always work properly
until it has been initialized.

How to Read a Declaration
Now is a good time to suggest a way to read pointer declarations, which can make them
easier to understand. The trick is to read them backward. While we haven’t discussed
pointers to constants yet, let’s examine the following declaration:

   const int *pci;

Reading the declaration backward allows us to progressively understand the declaration
(Figure 1-3).

Figure 1-3. The backward declaration

Many programmers find that reading the declaration backward is less complex.
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When working with complex pointer expressions, draw a picture of
them, as we will do in many of our examples.

Address of Operator
The address of operator, &, will return its operand’s address. We can initialize the pi

pointer with the address of num using this operator as follows:

   num = 0;

   pi = &num;

The variable num is set to zero, and pi is set to point to the address of num as illustrated
in Figure 1-4.

Figure 1-4. Memory assignments

We could have initialized pi to point to the address of num when the variables were
declared as illustrated below:

   int num;

   int *pi = &num;

Using these declarations, the following statement will result in a syntax error on most
compilers:

   num = 0;

   pi = num;

The error would appear as follows:

error: invalid conversion from 'int' to 'int*'

The variable pi is of type pointer to an integer and num is of type integer. The error
message is saying we cannot convert an integer to a pointer to the data type integer.

Assignment of integers to a pointer will generally cause a warning or
error.
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Pointers and integers are not the same. They may both be stored using the same number
of bytes on most machines, but they are not the same. However, it is possible to cast an
integer to a pointer to an integer:

   pi = (int *)num;

This will not generate a syntax error. When executed, though, the program may termi‐
nate abnormally when the program attempts to dereference the value at address zero.
An address of zero is not always valid for use in a program on most operating systems.
We will discuss this in more detail in the section “The Concept of Null” on page 11.

It is a good practice to initialize a pointer as soon as possible, as illus‐
trated below:

   int num;

   int *pi;

   pi = &num;

Displaying Pointer Values
Rarely will the variables we use actually have an address such as 100 and 104. However,
the variable’s address can be determined by printing it out as follows:

   int num = 0;

   int *pi = &num;

   printf("Address of num: %d  Value: %d\n",&num, num);

   printf("Address of pi: %d  Value: %d\n",&pi, pi);

When executed, you may get output as follows. We used real addresses in this example.
Your addresses will probably be different:

Address of num: 4520836  Value: 0

Address of pi: 4520824  Value: 4520836

The printf function has a couple of other field specifiers useful when displaying pointer
values, as summarized in Table 1-2.

Table 1-2. Field specifiers

Specifier Meaning

%x Displays the value as a hexadecimal number.

%o Displays the value as an octal number.

%p Displays the value in an implementation-specific manner; typically as a hexadecimal number.

Their use is demonstrated below:

   printf("Address of pi: %d  Value: %d\n",&pi, pi);

   printf("Address of pi: %x  Value: %x\n",&pi, pi);
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   printf("Address of pi: %o  Value: %o\n",&pi, pi);

   printf("Address of pi: %p  Value: %p\n",&pi, pi);

This will display the address and contents of pi, as shown below. In this case, pi holds

the address of num:

Address of pi: 4520824  Value: 4520836

Address of pi: 44fb78  Value: 44fb84

Address of pi: 21175570  Value: 21175604

Address of pi: 0044FB78  Value: 0044FB84

The %p specifier differs from %x as it typically displays the hexadecimal number in up‐

percase. We will use the %p specifier for addresses unless otherwise indicated.

Displaying pointer values consistently on different platforms can be challenging. One

approach is to cast the pointer as a pointer to void and then display it using the %p format
specifier as follows:

   printf("Value of pi: %p\n", (void*)pi);

Pointers to void is explained in “Pointer to void” on page 14. To keep our examples simple,

we will use the %p specifier and not cast the address to a pointer to void.

Virtual memory and pointers

To further complicate displaying addresses, the pointer addresses displayed on a virtual
operating system are not likely to be the real physical memory addresses. A virtual op‐
erating system allows a program to be split across the machine’s physical address space.
An application is split into pages/frames. These pages represent areas of main memory.
The pages of the application are allocated to different, potentially noncontiguous areas
of memory and may not all be in memory at the same time. If the operating system
needs memory currently held by a page, the memory may be swapped out to secondary
storage and then reloaded at a later time, frequently at a different memory location.
These capabilities provide a virtual operating system with considerable flexibility in how
it manages memory.

Each program assumes it has access to the machine’s entire physical memory space. In
reality, it does not. The address used by a program is a virtual address. The operating
system maps the virtual address to a real physical memory address when needed.

This means code and data in a page may be in different physical locations as the program
executes. The application’s virtual addresses do not change; they are the addresses we
see when we examine the contents of a pointer. The virtual addresses are transparently
mapped to real addresses by the operating system.

The operating system handles all of this, and it is not something that the programmer
has control over or needs to worry about. Understanding these issues explains the ad‐
dresses returned by a program running in a virtual operating system.
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Dereferencing a Pointer Using the Indirection Operator
The indirection operator, *, returns the value pointed to by a pointer variable. This is

frequently referred to as dereferencing a pointer. In the following example, num and pi
are declared and initialized:

   int num = 5;

   int *pi = &num;

The indirection operator is then used in the following statement to display 5, the value

of num:

  printf("%p\n",*pi);   // Displays 5

We can also use the result of the dereference operator as an lvalue. The term lvalue refers

to the operand found on the left side of the assignment operator. All lvalues must be
modifiable since they are being assigned a value.

The following will assign 200 to the integer pointed to by pi. Since it is pointing to the

variable num, 200 will be assigned to num. Figure 1-5 illustrates how memory is affected:

   *pi = 200;

   printf("%d\n",num);   // Displays 200

Figure 1-5. Memory assigned using dereference operator

Pointers to Functions
A pointer can be declared to point to a function. The declaration notation is a bit cryptic.
The following illustrates how to declare a pointer to a function. The function is passed

void and returns void. The pointer’s name is foo:

  void (*foo)();

A pointer to a function is a rich topic area and will be covered in more detail in Chapter 3.

The Concept of Null
The concept of null is interesting and sometimes misunderstood. Confusion can occur
because we often deal with several similar, yet distinct concepts, including:

• The null concept

• The null pointer constant

• The NULL macro
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• The ASCII NUL

• A null string

• The null statement

When NULL is assigned to a pointer, it means the pointer does not point to anything.
The null concept refers to the idea that a pointer can hold a special value that is not
equal to another pointer. It does not point to any area of memory. Two null pointers
will always be equal to each other. There can be a null pointer type for each pointer type,
such as a pointer to a character or a pointer to an integer, although this is uncommon.

The null concept is an abstraction supported by the null pointer constant. This constant
may or may not be a constant zero. A C programmer need not be concerned with their
actual internal representation.

The NULL macro is a constant integer zero cast to a pointer to void. In many libraries,
it is defined as follows:

#define NULL    ((void *)0)

This is what we typically think of as a null pointer. Its definition frequently can be found
within several different header files, including stddef.h, stdlib.h, and stdio.h.

If a nonzero bit pattern is used by the compiler to represent null, then it is the compiler’s

responsibility to ensure all uses of NULL or 0 in a pointer context are treated as null
pointers. The actual internal representation of null is implementation-defined. The use

of NULL and 0 are language-level symbols that represent a null pointer.

The ASCII NUL is defined as a byte containing all zeros. However, this is not the same
as a null pointer. A string in C is represented as a sequence of characters terminated by
a zero value. The null string is an empty string and does not contain any characters.
Finally, the null statement consists of a statement with a single semicolon.

As we will see, a null pointer is a very useful feature for many data structure implemen‐
tations, such as a linked list where it is often used to mark the end of the list.

If the intent was to assign the null value to pi, we use the NULL type as follows:

   pi = NULL;

A null pointer and an uninitialized pointer are different. An uninitial‐
ized pointer can contain any value, whereas a pointer containing NULL
does not reference any location in memory.

Interestingly, we can assign a zero to a pointer, but we cannot assign any other integer
value. Consider the following assignment operations:
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   pi = 0;

   pi = NULL;

   pi = 100;   // Syntax error

   pi = num;   // Syntax error

A pointer can be used as the sole operand of a logical expression. For example, we can

test to see whether the pointer is set to NULL using the following sequence:

   if(pi) {

      // Not NULL

   } else {

      // Is NULL

   }

Either of the two following expressions are valid but are redundant. It
may be clearer, but explicit comparison to NULL is not necessary.

If pi has been assigned a NULL value in this context, then it will be interpreted as the

binary zero. Since this represents false in C, the else clause will be executed if pi contains

NULL.

if(pi == NULL) ...

if(pi != NULL) ...

A null pointer should never be dereferenced because it does not contain
a valid address. When executed it will result in the program terminating.

To NULL or not to NULL

Which is better form: using NULL or using 0 when working with pointers? Either is

perfectly acceptable; the choice is one of preference. Some developers prefer to use NULL
because it is a reminder that we are working with pointers. Others feel this is unnecessary
because the zero is simply hidden.

However, NULL should not be used in contexts other than pointers. It might work some
of the time, but it is not intended to be used this way. It can definitely be a problem when

used in place of the ASCII NUL character. This character is not defined in any standard

C header file. It is equivalent to the character literal, '\0', which evaluates to the decimal
value zero.

The meaning of zero changes depending on its context. It might mean the integer zero
in some contexts, and it might mean a null pointer in a different context. Consider the
following example:
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   int num;

   int *pi = 0;   // Zero refers to the null pointer,NULL

   pi = &num;

   *pi = 0;        // Zero refers to the integer zero

We are accustomed to overloaded operators, such as the asterisk used to declare a
pointer, to dereference a pointer, or to multiply. The zero is also overloaded. We may
find this discomforting because we are not used to overloading operands.

Pointer to void

A pointer to void is a general-purpose pointer used to hold references to any data type.
An example of a pointer to void is shown below:

   void *pv;

It has two interesting properties:

• A pointer to void will have the same representation and memory alignment as a

pointer to char.

• A pointer to void will never be equal to another pointer. However, two void pointers

assigned a NULL value will be equal.

Any pointer can be assigned to a pointer to void. It can then be cast back to its original
pointer type. When this happens the value will be equal to the original pointer value.

This is illustrated in the following sequence, where a pointer to int is assigned to a

pointer to void and then back to a pointer to int:

   int num;

   int *pi = &num;

   printf("Value of pi: %p\n", pi);

   void* pv = pi;

   pi = (int*) pv;

   printf("Value of pi: %p\n", pi);

When this sequence is executed as shown below, the pointer address is the same:

Value of pi: 100

Value of pi: 100

Pointers to void are used for data pointers, not function pointers. In “Polymorphism in
C” on page 194, we will reexamine the use of pointers to void to address polymorphic
behavior.

Be careful when using pointers to void. If you cast an arbitrary pointer
to a pointer to void, there is nothing preventing you from casting it to
a different pointer type.
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The sizeof operator can be used with a pointer to void. However, we cannot use the
operator with void as shown below:

   size_t size = sizeof(void*);   // Legal

   size_t size = sizeof(void);    // Illegal

The size_t is a data type used for sizes and is discussed in the section “Predefined
Pointer-Related Types” on page 16.

Global and static pointers

If a pointer is declared as global or static, it is initialized to NULL when the program starts.
An example of a global and static pointer follows:

int *globalpi;

void foo() {

   static int *staticpi;

   ...

}

int main() {

   ...

}

Figure 1-6 illustrates this memory layout. Stack frames are pushed onto the stack, and
the heap is used for dynamic memory allocation. The region above the heap is used for
static/global variables. This is a conceptual diagram only. Static and global variables are
frequently placed in a data segment separate from the data segment used by the stack
and heap. The stack and heap are discussed in “Program Stack and Heap” on page 58.

Figure 1-6. Memory allocation for global and static pointers

Pointer Size and Types
Pointer size is an issue when we become concerned about application compatibility and
portability. On most modern platforms, the size of a pointer to data is normally the same
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1. Adapted from http://en.wikipedia.org/wiki/64-bit.

regardless of the pointer type. A pointer to a char has the same size as a pointer to a
structure. While the C standard does not dictate that size be the same for all data types,
this is usually the case. However, the size of a pointer to a function may be different
from the size of a pointer to data.

The size of a pointer depends on the machine in use and the compiler. For example, on
modern versions of Windows the pointer is 32 or 64 bits in length. For DOS and Win‐
dows 3.1 operating systems, pointers were 16 or 32 bits in length.

Memory Models
The introduction of 64-bit machines has made more apparent the differences in the size
of memory allocated for data types. With different machines and compilers come dif‐
ferent options for allocating space to C primitive data types. A common notation used
to describe different data models is summarized below:

I In L Ln LL LLn P Pn

Each capital letter corresponds to an integer, long, or pointer. The lowercase letters
represent the number of bits allocated for the data type. Table 1-31 summarizes these
models, where the number is the size in bits:

Table 1-3. Machine memory models

C Data Type LP64 ILP64 LLP64 ILP32 LP32

char 8 8 8 8 8

short 16 16 16 16 16

_int32  32    

int 32 64 32 32 16

long 64 64 32 32 32

long long   64   

pointer 64 64 64 32 32

The model depends on the operating system and compiler. More than one model may
be supported on the same operating system; this is often controlled through compiler
options.

Predefined Pointer-Related Types
Four predefined types are frequently used when working with pointers. They include:
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size_t

Created to provide a safe type for sizes

ptrdiff_t

Created to handle pointer arithmetic

intptr_t and uintprt_t
Used for storing pointer addresses

In the following sections, we will illustrate the use of each type with the exception of

ptrdiff_t, which will be discussed in the section “Subtracting two pointers” on page 24.

Understanding size_t

The type size_t represents the maximum size any object can be in C. It is an unsigned
integer since negative numbers do not make sense in this context. Its purpose is to
provide a portable means of declaring a size consistent with the addressable area of

memory available on a system. The size_t type is used as the return type for the sizeof

operator and as the argument to many functions, including malloc and strlen, among
others.

It is good practice to use size_t when declaring variables for sizes such
as the number of characters and array indexes. It should be used for
loop counters, indexing into arrays, and sometimes for pointer
arithmetic.

The declaration of size_t is implementation-specific. It is found in one or more stan‐
dard headers, such as stdio.h and stdlib.h, and it is typically defined as follows:

#ifndef __SIZE_T

#define __SIZE_T

typedef unsigned int size_t;

#endif

The define directives ensure it is only defined once. The actual size will depend on the
implementation. Typically, on a 32-bit system, it will be 32 bits in length, while on a 64-

bit system it will be 64 bits in length. Normally, the maximum possible value for size_t

is SIZE_MAX.

Usually size_t can be used to store a pointer, but it is not a good idea

to assume size_t is the same size as a pointer. As we will see in “Using

the sizeof operator with pointers” on page 18, intptr_t is a better choice.
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Be careful when printing values defined as size_t. These are unsigned values, and if
you choose the wrong format specifier, you’ll get unreliable results. The recommended

format specifier is %zu. However, this is not always available. As an alternative, consider

using %u or %lu.

Consider the following example, where we define a variable as a size_t and then display
it using two different format specifiers:

   size_t sizet = -5;

   printf("%d\n",sizet);

   printf("%zu\n",sizet);

Since a variable of type size_t is intended for use with positive integers, using a negative

value can present problems. When we assign it a negative number and use the %d and

then the %zu format specifiers, we get the following output:

-5

4294967291

The %d field interprets size_t as a signed integer. It displays a –5 because it holds a –5.

The %zu field formats size_t as an unsigned integer. When –5 is interpreted as a signed
integer, its high-order bit is set to one, indicating that the integer is negative. When
interpreted as an unsigned number, the high-order bit is interpreted as a large power

of 2. This is why we saw the large integer when we used the %zu field specifier.

A positive number will be displayed properly as shown below:

   sizet = 5;

   printf("%d\n",sizet);    // Displays 5

   printf("%zu\n",sizet);   // Displays 5

Since size_t is unsigned, always assign a positive number to a variable of that type.

Using the sizeof operator with pointers

The sizeof operator can be used to determine the size of a pointer. The following

displays the size of a pointer to char:

   printf("Size of *char: %d\n",sizeof(char*));

The output follows:

Size of *char: 4

Always use the sizeof operator when the size of a pointer is needed.
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The size of a function pointer can vary. Usually, it is consistent for a given operating
system and compiler combination. Many compilers support the creation of a 32-bit or
64-bit application. It is possible that the same program, compiled with different options,
will use different pointer sizes.

On a Harvard architecture, the code and data are stored in different physical memory.
For example, the Intel MCS-51 (8051) microcontroller is a Harvard machine. Though
Intel no longer manufactures the chip, there are many binary compatible derivatives
available and in use today. The Small Device C Complier (SDCC) supports this type of
processor. Pointers on this machine can range from 1 to 4 bytes in length. Thus, the size
of a pointer should be determined when needed, as its size is not consistent in this type
of environment.

Using intptr_t and uintptr_t

The types intptr_t and uintptr_t are used for storing pointer addresses. They provide
a portable and safe way of declaring pointers, and will be the same size as the underlying
pointer used on the system. They are useful for converting pointers to their integer
representation.

The type uintptr_t is the unsigned version of intptr_t. For most operations intptr_t

is preferred. The type uintptr_t is not as flexible as intptr_t. The following illustrates

how to use intptr_t:

   int num;

   intptr_t *pi = &num;

If we try to assign the address of an integer to a pointer of type uintptr_t as follows,
we will get a syntax error:

   uintptr_t *pu = &num;

The error follows:

error: invalid conversion from 'int*' to 

       'uintptr_t* {aka unsigned int*}' [-fpermissive]

However, performing the assignment using a cast will work:

   intptr_t *pi = &num;

   uintptr_t *pu = (uintptr_t*)&num;

We cannot use uintptr_t with other data types without casting:

   char c;

   uintptr_t *pc = (uintptr_t*)&c;

These types should be used when portability and safety are an issue. However, we will
not use them in our examples to simplify their explanations.
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Avoid casting a pointer to an integer. In the case of 64-bit pointers,
information will be lost if the integer was only four bytes.

Early Intel processors used a 16-bit segmented architecture where near
and far pointers were relevant. In today’s virtual memory architecture,
they are no longer a factor. The far and near pointers were extensions
to the C standard to support segmented architecture on early Intel pro‐
cessors. Near pointers were only able to address about 64KB of memory
at a time. Far pointers could address up to 1MB of memory but were
slower than near pointers. Huge pointers were far pointers normalized
so they used the highest possible segment for the address.

Pointer Operators
There are several operators available for use with pointers. So far we have examined the
dereference and address-of operators. In this section, we will look closely into pointer
arithmetic and comparisons. Table 1-4 summarizes the pointer operators.

Table 1-4. Pointer operators

Operator Name Meaning

*  Used to declare a pointer

* Dereference Used to dereference a pointer

-> Point-to Used to access fields of a structure referenced by a pointer

+ Addition Used to increment a pointer

- Subtraction Used to decrement a pointer

== != Equality, inequality Compares two pointers

> >= < <= Greater than, greater than or equal, less than, less

than or equal

Compares two pointers

(data type) Cast To change the type of pointer

Pointer Arithmetic
Several arithmetic operations are performed on pointers to data. These include:

• Adding an integer to a pointer

• Subtracting an integer from a pointer

• Subtracting two pointers from each other

• Comparing pointers

These operations are not always permitted on pointers to functions.
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Adding an integer to a pointer

This operation is very common and useful. When we add an integer to a pointer, the
amount added is the product of the integer times the number of bytes of the underlying
data type.

The size of primitive data types can vary from system to system, as discussed in “Memory
Models” on page 16. However, Table 1-5 shows the common sizes found in most systems.
Unless otherwise noted, these values will be used for the examples in this book.

Table 1-5. Data type sizes

Data Type Size in Bytes

byte 1

char 1

short 2

int 4

long 8

float 4

double 8

To illustrate the effects of adding an integer to a pointer, we will use an array of integers,

as shown below. Each time one is added to pi, four is added to the address. The memory
allocated for these variables is illustrated in Figure 1-7. Pointers are declared with data
types so that these sorts of arithmetic operations are possible. Knowledge of the data
type size allows the automatic adjustment of the pointer values in a portable fashion:

    int vector[] = {28, 41, 7};

    int *pi = vector;      // pi: 100

    

    printf("%d\n",*pi);    // Displays 28

    pi += 1;               // pi: 104

    printf("%d\n",*pi);    // Displays 41

    pi += 1;               // pi: 108

    printf("%d\n",*pi);    // Displays 7

When an array name is used by itself, it returns the address of an array,
which is also the address of the first element of the array:

Pointer Operators | 21



Figure 1-7. Memory allocation for vector

In the following sequence, we add three to the pointer. The variable pi will contain the

address 112, the address of pi:

    pi = vector;

    pi += 3;

The pointer is pointing to itself. This is not very useful but illustrates the need to be
careful when performing pointer arithmetic. Accessing memory past the end of an array
is a dangerous thing to do and should be avoided. There is no guarantee that the memory
access will be a valid variable. It is very easy to compute an invalid or useless address.

The following declarations will be used to illustrate the addition operation performed

with a short and then a char data type:

   short s;

   short *ps = &s;

   char c;

   char *pc = &c;

Let’s assume memory is allocated as shown in Figure 1-8. The addresses used here are
all on a four-byte word boundary. Real addresses may be aligned on different boundaries
and in a different order.

Figure 1-8. Pointers to short and char

The following sequence adds one to each pointer and then displays their contents:

   printf("Content of ps before: %d\n",ps);

   ps = ps + 1;

   printf("Content of ps after:  %d\n",ps);

   printf("Content of pc before: %d\n",pc);

   pc = pc + 1;

   printf("Content of pc after:  %d\n",pc);

When executed, you should get output similar to the following:
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Content of ps before: 120

Content of ps after:  122

Content of pc before: 128

Address of pc after:  129

The ps pointer is incremented by two because the size of a short is two bytes. The pc
pointer is incremented by one because its size is one byte. Again, these addresses may
not contain useful information.

Pointers to void and addition

Most compilers allow arithmetic to be performed on a pointer to void as an extension.
Here we will assume the size of a pointer to void is four. However, trying to add one to
a pointer to void may result in a syntax error. In the following code snippet, we declare
and attempt to add one to the pointer:

   int num = 5;

   void *pv = &num;

   printf("%p\n",pv);

   pv = pv+1;        //Syntax warning

The resulting warning follows:

warning: pointer of type 'void *' used in arithmetic [-Wpointerarith]

Since this is not standard C, the compiler issued a warning. However, the resulting

address contained in pv will be incremented by four bytes.

Subtracting an integer from a pointer

Integer values can be subtracted from a pointer in the same way they are added. The
size of the data type times the integer increment value is subtracted from the address.
To illustrate the effects of subtracting an integer from a pointer, we will use an array of
integers as shown below. The memory created for these variables is illustrated in
Figure 1-7.

    int vector[] = {28, 41, 7};

    int *pi = vector + 2;  // pi: 108

    

    printf("%d\n",*pi);    // Displays 7

    pi--;                  // pi: 104

    printf("%d\n",*pi);    // Displays 41

    pi--;                  // pi: 100

    printf("%d\n",*pi);    // Displays 28

Each time one is subtracted from pi, four is subtracted from the address.
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Subtracting two pointers

When one pointer is subtracted from another, we get the difference between their ad‐
dresses. This difference is not normally very useful except for determining the order of
elements in an array.

The difference between the pointers is the number of “units” by which they differ. The
difference’s sign depends on the order of the operands. This is consistent with pointer
addition where the number added is the pointer’s data type size. We use “unit” as the
operand. In the following example, we declare an array and pointers to the array’s ele‐
ments. We then take their difference:

    int vector[] = {28, 41, 7};

    int *p0 = vector;

    int *p1 = vector+1;

    int *p2 = vector+2;

    

    printf("p2-p0:  %d\n",p2-p0);    // p2-p0:  2

    printf("p2-p1:  %d\n",p2-p1);    // p2-p1:  1

    printf("p0-p1:  %d\n",p0-p1);    // p0-p1:  -1

In the first printf statement, we find the difference between the positions of the array’s

last element and its first element is 2. That is, their indexes differ by 2. In the last printf

statement, the difference is a –1, indicating that p0 immediately precedes the element

pointed to by p1. Figure 1-9 illustrates how memory is allocated for this example.

Figure 1-9. Subtracting two pointers

The type ptrdiff_t is a portable way to express the difference between two pointers.

In the previous example, the result of subtracting two pointers is returned as a ptrdiff_t
type. Since pointer sizes can differ, this type simplifies the task of working with their
differences.

Don’t confuse this technique with using the dereference operator to subtract two num‐
bers. In the following example, we use pointers to determine the difference between the
value stored in the array’s first and second elements:

    printf("*p0-*p1:  %d\n",*p0-*p1);  //  *p0-*p1:  -13
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Comparing Pointers
Pointers can be compared using the standard comparison operators. Normally, com‐
paring pointers is not very useful. However, when comparing pointers to elements of
an array, the comparison’s results can be used to determine the relative ordering of the
array’s elements.

We will use the vector example developed in the section “Subtracting two pointers” on
page 24 to illustrate the comparison of pointers. Several comparison operators are ap‐
plied to the pointers, and their results are displayed as 1 for true and 0 for false:

    int vector[] = {28, 41, 7};

    int *p0 = vector;

    int *p1 = vector+1;

    int *p2 = vector+2;

    

    printf("p2>p0:  %d\n",p2>p0);    // p2>p0:  1

    printf("p2<p0:  %d\n",p2<p0);    // p2<p0:  0

    printf("p0>p1:  %d\n",p0>p1);    // p0>p1:  0

Common Uses of Pointers
Pointers can be used in a variety of ways. In this section, we will examine different ways
of using pointers, including:

• Multiple levels of indirection

• Constant pointers

Multiple Levels of Indirection
Pointers can use different levels of indirection. It is not uncommon to see a variable
declared as a pointer to a pointer, sometimes called a double pointer. A good example

of this is when program arguments are passed to the main function using the tradition‐

ally named argc and argv parameters. This is discussed in more detail in Chapter 5.

The example below uses three arrays. The first array is an array of strings used to hold
a list of book titles:

    char *titles[] = {"A Tale of Two Cities",

           "Wuthering Heights","Don Quixote",

           "Odyssey","Moby-Dick","Hamlet",

           "Gulliver's Travels"};

Two additional arrays are provided whose purpose is to maintain a list of the “best
books” and English books. Instead of holding copies of the titles, they will hold the

address of a title in the titles array. Both arrays will need to be declared as a pointer

to a pointer to a char. The array’s elements will hold the addresses of the titles array’s
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elements. This will avoid having to duplicate memory for each title and results in a single
location for titles. If a title needs to be changed, then the change will only have to be
performed in one location.

The two arrays are declared below. Each array element contains a pointer that points to

a second pointer to char:

    char **bestBooks[3];

    char **englishBooks[4];

The two arrays are initialized and one of their elements is displayed, as shown below.
In the assignment statements, the value of the righthand side is calculated by applying
the subscripts first, followed by the address-of operator. For example, the second state‐

ment assigns the address of the fourth element of titles to the second element of

bestBooks:

    bestBooks[0] = &titles[0];

    bestBooks[1] = &titles[3];

    bestBooks[2] = &titles[5];

    

    englishBooks[0] = &titles[0];

    englishBooks[1] = &titles[1];

    englishBooks[2] = &titles[5];

    englishBooks[3] = &titles[6];

    

    printf("%s\n",*englishBooks[1]);   // Wuthering Heights

Memory is allocated for this example as shown in Figure 1-10.

Figure 1-10. Pointers to pointers

Using multiple levels of indirection provides additional flexibility in how code can be
written and used. Certain types of operations would otherwise be more difficult. In this

example, if the address of a title changes, it will only require modification to the title
array. We would not have to modify the other arrays.

There is not an inherent limit on the number of levels of indirection possible. Of course,
using too many levels of indirection can be confusing and hard to maintain.
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Constants and Pointers
Using the const keyword with pointers is a rich and powerful aspect of C. It provides
different types of protections for different problem sets. Of particular power and use‐
fulness is a pointer to a constant. In Chapters 3 and 5, we will see how this can protect
users of a function from modification of a parameter by the function.

Pointers to a constant

A pointer can be defined to point to a constant. This means the pointer cannot be used
to modify the value it is referencing. In the following example, an integer and an integer
constant are declared. Next, a pointer to an integer and a pointer to an integer constant
are declared and then initialized to the respective integers:

   int num = 5;

   const int limit = 500;

   int *pi;                // Pointer to an integer

   const int *pci;         // Pointer to a constant integer

   pi = &num;

   pci = &limit;

This is illustrated in Figure 1-11.

Figure 1-11. Pointer to a constant integer

The following sequence will display the address and value of these variables:

   printf("  num - Address: %p  value: %d\n",&num, num);

   printf("limit - Address: %p  value: %d\n",&limit, limit);

   printf("   pi - Address: %p  value: %p\n",&pi, pi);

   printf("  pci - Address: %p  value: %p\n",&pci, pci);

When executed, this sequence will produce values similar to the following:

  num - Address: 100  value: 5

limit - Address: 104  value: 500

   pi - Address: 108  value: 100

  pci - Address: 112  value: 104

Dereferencing a constant pointer is fine if we are simply reading the integer’s value.
Reading is a perfectly legitimate and necessary capability, as shown below:

   printf("%d\n", *pci);
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We cannot dereference a constant pointer to change what the pointer references, but
we can change the pointer. The pointer value is not constant. The pointer can be changed
to reference another constant integer or a simple integer. Doing so will not be a problem.
The declaration simply limits our ability to modify the referenced variable through the
pointer.

This means the following assignment is legal:

   pci = &num;

We can dereference pci to read it; however, we cannot dereference it to modify it.

Consider the following assignment:

   *pci = 200;

This will result in the following syntax error:

'pci' : you cannot assign to a variable that is const

The pointer thinks it is pointing to a constant integer; therefore, it does allow the mod‐

ification of the integer using the pointer. We can still modify num using its name. We

just can’t use pci to modify it.

Conceptually, a constant pointer can also be visualized as shown in Figure 1-12. The
clear boxes represent variables that can be changed. The shaded boxes represent vari‐

ables that cannot be changed. The shaded box pointed to by pci cannot be changed

using pci. The dashed line indicates that the pointer can reference that data type. In the

previous example, pci pointed to limit.

Figure 1-12. Pointer to a constant

The declaration of pci as a pointer to a constant integer means:

• pci can be assigned to point to different constant integers

• pci can be assigned to point to different nonconstant integers

• pci can be dereferenced for reading purposes

• pci cannot be dereferenced to change what it points to
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The order of the type and the const keyword is not important. The
following are equivalent:

   const int *pci;

   int const *pci;

Constant pointers to nonconstants

We can also declare a constant pointer to a nonconstant. When we do this, it means that
while the pointer cannot be changed, the data pointed to can be modified. An example
of such a pointer follows:

   int num;

   int *const cpi = &num;

With this declaration:

• cpi must be initialized to a nonconstant variable

• cpi cannot be modified

• The data pointed to by cpi can be modified

Conceptually, this type of pointer can be visualized as shown in Figure 1-13.

Figure 1-13. Constant pointers to nonconstants

It is possible to dereference cpi and assign a new value to whatever cpi is referencing.
The following are two valid assignments:

   *cpi = limit;

   *cpi = 25;

However, if we attempt to initialize cpi to the constant limit as shown below, we will
get a warning:

   const int limit = 500;

   int *const cpi = &limit;

The warning will appear as follows:

warning: initialization discards qualifiers from pointer target type

If cpi referenced the constant limit, the constant could be modified. This is not de‐
sirable. We generally prefer constants to remain constant.
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Once an address has been assigned to cpi, we cannot assign a new value to cpi as shown
below:

   int num;

   int age;

   int *const cpi = &num;

   cpi = &age;

The error message generated is shown below:

'cpi' : you cannot assign to a variable that is const

Constant pointers to constants

A constant pointer to a constant is an infrequently used pointer type. The pointer cannot
be changed, and the data it points to cannot be changed through the pointer. An example
of a constant pointer to a constant integer follows:

   const int * const cpci = &limit;

A constant pointer to a constant can be visualized as shown in Figure 1-14.

Figure 1-14. Constant pointers to constants

As with pointers to constants, it is not necessary to assign the address of a constant to

cpci. Instead, we could have used num as shown below:

   int num;

   const int * const cpci = &num;

When the pointer is declared, we must initialize it. If we do not initialize it as shown
below, we will get a syntax error:

   const int * const cpci;

The syntax error will be similar to the following:

'cpci' : const object must be initialized if not extern

Given a constant pointer to a constant we cannot:

• Modify the pointer

• Modify the data pointed to by the pointer

Trying to assign a new address to cpci will result in a syntax error:
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   cpci = &num;

The syntax error follows:

'cpci' : you cannot assign to a variable that is const

If we try to dereference the pointer and assign a value as shown below, we will also get
a syntax error:

   *cpci = 25;

The error generated will be similar to the following:

'cpci' : you cannot assign to a variable that is const

expression must be a modifiable lvalue

Constant pointers to constants are rare.

Pointer to (constant pointer to constant)

Pointers to constants can also have multiple levels of indirection. In the following ex‐

ample, we declare a pointer to the cpci pointer explained in the previous section. Read‐
ing complex declarations from right to left helps clarify these types of declarations:

   const int * const cpci = &limit;

   const int * const * pcpci;

A pointer to a constant pointer to a constant can be visualized as shown in Figure 1-15.

Figure 1-15. Pointer to (constant pointer to constant)

The following illustrates their use. The output of this sequence should display 500 twice:

   printf("%d\n",*cpci);

   pcpci = &cpci;

   printf("%d\n",**pcpci);

The following table summarizes the first four types of pointers discussed in the previous
sections:

Pointer Type Pointer Modifiable Data Pointed to Modifiable

Pointer to a nonconstant ✓ ✓
Pointer to a constant ✓ X

Constant pointer to a nonconstant X ✓
Constant pointer to a constant X X
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Summary
In this chapter, we covered the essential aspects of pointers, including how to declare
and use pointers in common situations. The interesting concept of null and its variations
was covered, along with a number of pointer operators.

We found that the size of a pointer can vary, depending on the memory model supported

by the target system and compiler. We also explored the use of the const keyword with
pointers.

With this foundation, we are prepared to explore the other areas where pointers have
proved to be quite useful. This includes their use as parameters to functions, in support
of data structures, and in dynamically allocating memory. In addition, we will see the
effect of their use in making applications more secure.
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CHAPTER 2

Dynamic Memory Management in C

Much of the power of pointers stems from their ability to track dynamically allocated
memory. The management of this memory through pointers forms the basis for many
operations, including those used to manipulate complex data structures. To be able to
fully exploit these capabilities, we need to understand how dynamic memory manage‐
ment occurs in C.

A C program executes within a runtime system. This is typically the environment pro‐
vided by an operating system. The runtime system supports the stack and heap along
with other program behavior.

Memory management is central to all programs. Sometimes memory is managed by the
runtime system implicitly, such as when memory is allocated for automatic variables.
In this case, variables are allocated to the enclosing function’s stack frame. In the case
of static and global variables, memory is placed in the application’s data segment, where
it is zeroed out. This is a separate area from executable code and other data managed
by the runtime system.

The ability to allocate and then deallocate memory allows an application to manage its
memory more efficiently and with greater flexibility. Instead of having to allocate mem‐
ory to accommodate the largest possible size for a data structure, only the actual amount
required needs to be allocated.

For example, arrays are fixed size in versions of C prior to C99. If we need to hold a
variable number of elements, such as employee records, we would be forced to declare
an array large enough to hold the maximum number of employees we believe would be
needed. If we underestimate the size, we are forced to either recompile the application
with a larger size or to take other approaches. If we overestimate the size, then we will
waste space. The ability to dynamically allocate memory also helps when dealing with
data structures using a variable number of elements, such as a linked list or a queue.
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C99 introduced Variable Length Arrays (VLAs). The array’s size is de‐
termined at runtime and not at compile time. However, once created,
arrays still do not change size.

Languages such as C also support dynamic memory management where objects are
allocated memory from the heap. This is done manually using functions to allocate and
deallocate memory. The process is referred to as dynamic memory management.

We start this chapter with a quick overview of how memory is allocated and freed. Next,

we present basic allocation functions such as malloc and realloc. The free function
is discussed, including the use of NULL along with such problems as double free.

Dangling pointers are a common problem. We will present examples to illustrate when
dangling pointers occur and techniques to handle the problem. The last section presents
alternate techniques for managing memory. Improper use of pointers can result in un‐
predictable behavior. By this we mean the program can produce invalid results, corrupt
data, or possibly terminate the program.

Dynamic Memory Allocation
The basic steps used for dynamic memory allocation in C are:

1. Use a malloc type function to allocate memory

2. Use this memory to support the application

3. Deallocate the memory using the free function

While there are some minor variations to this approach, this is the most common tech‐

nique. In the following example, we allocate memory for an integer using the malloc
function. The pointer assigns five to the allocated memory, and then the memory is

released using the free function:

    int *pi = (int*) malloc(sizeof(int));

    *pi = 5;

    printf("*pi: %d\n", *pi);

    free(pi);

When this sequence is executed, it will display the number 5. Figure 2-1 illustrates how

memory is allocated right before the free function is executed. For the purposes of this

chapter, we will assume that the example code is found in the main function unless
otherwise noted.
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Figure 2-1. Allocating memory for an integer

The malloc function single argument specifies the number of bytes to allocate. If suc‐
cessful, it returns a pointer to memory allocated from the heap. If it fails, it returns a
null pointer. Testing the validity of an allocated pointer is discussed in “Using the malloc

Function”. The sizeof operator makes the application more portable and determines
the correct number of bytes to allocate for the host system.

In this example, we are trying to allocate enough memory for an integer. If we assume
its size is 4, we can use:

    int *pi = (int*) malloc(4));

However, the size of an integer can vary, depending on the memory model used. A

portable approach is to use the sizeof operator. This will return the correct size re‐
gardless of where the program is executing.

A common error involving the dereference operator is demonstrated
below:

    int *pi;

    *pi = (int*) malloc(sizeof(int));

The problem is with the lefthand side of the assignment operation. We
are dereferencing the pointer. This will assign the address returned by

malloc to the address stored in pi. If this is the first time an assignment
is made to the pointer, then the address contained in the pointer is
probably invalid. The correct approach is shown below:

pi = (int*) malloc(sizeof(int));

The dereference operator should not be used in this situation.

The free function, also discussed in more detail later, works in conjunction with malloc
to deallocate the memory when it is no longer needed.

Each time the malloc function (or similar function) is called, a corre‐

sponding call to the free function must be made when the application
is done with the memory to avoid memory leaks.
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Once memory has been freed, it should not be accessed again. Normally, you would not
intentionally access it after it had been deallocated. However, this can occur accidentally,
as illustrated in the section “Dangling Pointers” on page 51. The system behaves in an
implementation-dependent manner when this happens. A common practice is to always

assign NULL to a freed pointer, as discussed in “Assigning NULL to a Freed Pointer” on
page 48.

When memory is allocated, additional information is stored as part of a data structure
maintained by the heap manager. This information includes, among other things, the
block’s size, and is typically placed immediately adjacent to the allocated block. If the
application writes outside of this block of memory, then the data structure can be cor‐
rupted. This can lead to strange program behavior or corruption of the heap, as we will
see in Chapter 7.

Consider the following code sequence. Memory is allocated for a string, allowing it to

hold up to five characters plus the byte for the NUL termination character. The for loop

writes zeros to each location but does not stop after writing six bytes. The for statement’s
terminal condition requires that it write eight bytes. The zeros being written are binary
zeros and not the ASCII value for the character zero:

    char *pc = (char*) malloc(6);

    for(int i=0; i<8; i++) {

        *pc[i] = 0;

    }

In Figure 2-2, extra memory has been allocated at the end of the six-byte string. This
represents the extra memory used by the heap manager to keep track of the memory
allocation. If we write past the end of the string, this extra memory will be corrupted.
The extra memory is shown following the string in this example. However, its actual
placement and its original content depend on the compiler.

Figure 2-2. Extra memory used by heap manager
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Memory Leaks
A memory leak occurs when allocated memory is never used again but is not freed. This
can happen when:

• The memory’s address is lost

• The free function is never invoked though it should be (sometimes called a hidden
leak)

A problem with memory leaks is that the memory cannot be reclaimed and used later.
The amount of memory available to the heap manager is decreased. If memory is re‐
peatedly allocated and then lost, then the program may terminate when more memory

is needed but malloc cannot allocate it because it ran out of memory. In extreme cases,
the operating system may crash.

This is illustrated in the following simple example:

    char *chunk;

    while (1) {

        chunk = (char*) malloc(1000000);

        printf("Allocating\n");

    }

The variable chunk is assigned memory from the heap. However, this memory is not
freed before another block of memory is assigned to it. Eventually, the application will
run out of memory and terminate abnormally. At minimum, memory is not being used
efficiently.

Losing the address

An example of losing the address of memory is illustrated in the following code sequence

where pi is reassigned a new address. The address of the first allocation of memory is

lost when pi is allocated memory a second time.

    int *pi = (int*) malloc(sizeof(int)); 

    *pi = 5;

    ...

    pi = (int*) malloc(sizeof(int));

This is illustrated in Figure 2-3 where the before and after images refer to the program’s

state before and after the second malloc’s execution. The memory at address 500 has
not been released, and the program no longer holds this address anywhere.

Dynamic Memory Allocation | 37



Figure 2-3. Losing an address

Another example allocates memory for a string, initializes it, and then displays the string
character by character:

    char *name = (char*)malloc(strlen("Susan")+1);

    strcpy(name,"Susan");

    while(*name != 0) {

        printf("%c",*name);

        name++;

    }

However, it increments name by one with each loop iteration. At the end, name is left

pointing to the string’s NUL termination character, as illustrated in Figure 2-4. The
allocated memory’s starting address has been lost.

Figure 2-4. Losing address of dynamically allocated memory

Hidden memory leaks

Memory leaks can also occur when the program should release memory but does not.
A hidden memory leak occurs when an object is kept in the heap even though the object
is no longer needed. This is frequently the result of programmer oversight. The primary
problem with this type of leak is that the object is using memory that is no longer needed
and should be returned to the heap. In the worst case, the heap manager may not be
able to allocate memory when requested, possibly forcing the program to terminate. At
best, we are holding unneeded memory.

Memory leaks can also occur when freeing structures created using the struct keyword.
If the structure contains pointers to dynamically allocated memory, then these pointers
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may need to be freed before the structure is freed. An example of this is found in
Chapter 6.

Dynamic Memory Allocation Functions
Several memory allocation functions are available to manage dynamic memory. While
what is available may be system dependent, the following functions are found on most
systems in the stdlib.h header file:

• malloc

• realloc

• calloc

• free

The functions are summarized in Table 2-1.

Table 2-1. Dynamic memory allocation functions

Function Description

malloc Allocates memory from the heap

realloc Reallocates memory to a larger or smaller amount based on a previously allocated block of memory

calloc Allocates and zeros out memory from the heap

free Returns a block of memory to the heap

Dynamic memory is allocated from the heap. With successive memory allocation calls,
there is no guarantee regarding the order of the memory or the continuity of memory
allocated. However, the memory allocated will be aligned according to the pointer’s data
type. For example, a four-byte integer would be allocated on an address boundary evenly
divisible by four. The address returned by the heap manager will contain the lowest
byte’s address.

In Figure 2-3, the malloc function allocates four bytes at address 500. The second use

of the malloc function allocates memory at address 600. They both are on four-byte
address boundaries, and they did not allocate memory from consecutive memory
locations.

Using the malloc Function
The function malloc allocates a block of memory from the heap. The number of bytes
allocated is specified by its single argument. Its return type is a pointer to void. If memory

is not available, NULL is returned. The function does not clear or otherwise modify the
memory, thus the contents of memory should be treated as if it contained garbage. The
function’s prototype follows:
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   void*  malloc(size_t);

The function possesses a single argument of type size_t. This type is discussed in
Chapter 1. You need to be careful when passing variables to this function, as problems
can arise if the argument is a negative number. On some systems, a NULL value is
returned if the argument is negative.

When malloc is used with an argument of zero, its behavior is implementation-specific.

It may return a pointer to NULL or it may return a pointer to a region with zero bytes

allocated. If the malloc function is used with a NULL argument, then it will normally
generate a warning and execute returning zero bytes.

The following shows a typical use of the malloc function:

    int *pi = (int*) malloc(sizeof(int));

The following steps are performed when the malloc function is executed:

1. Memory is allocated from the heap

2. The memory is not modified or otherwise cleared

3. The first byte’s address is returned

Since the malloc function may return a NULL value if it is unable to
allocate memory, it is a good practice to check for a NULL value before
using the pointer as follows:

   int *pi = (int*) malloc(sizeof(int));

   if(pi != NULL) {

      // Pointer should be good

   } else {

      // Bad pointer

   }

To cast or not to cast

Before the pointer to void was introduced to C, explicit casts were required with malloc
to stop the generation of warnings when assignments were made between incompatible
pointer types. Since a pointer to void can be assigned to any other pointer type, explicit
casting is no longer required. Some developers consider explicit casts to be a good
practice because:

• They document the intention of the malloc function

• They make the code compatible with C++ (or earlier C compiler), which require
explicit casts
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Using casts will be a problem if you fail to include the header file for malloc. The com‐
piler may generate warnings. By default, C assumes functions return an integer. If you

fail to include a prototype for malloc, it will complain when you try to assign an integer
to a pointer.

Failing to allocate memory

If you declare a pointer but fail to allocate memory to the address it points to before
using it, that memory will usually contain garbage, resulting typically in an invalid
memory reference. Consider the following code sequence:

    int *pi;

    ...

    printf("%d\n",*pi);

The allocation of memory is shown in Figure 2-5. This issue is covered in more detail
in Chapter 7.

Figure 2-5. Failure to allocate memory

When executed, this can result in a runtime exception. This type of problem is common
with strings, as shown below:

    char *name;

    printf("Enter a name: ");

    scanf("%s",name);

While it may seem like this would execute correctly, we are using memory referenced

by name. However, this memory has not been allocated. This problem can be illustrated

graphically by changing the variable, pi, in Figure 2-5 to name.

Not using the right size for the malloc function

The malloc function allocates the number of bytes specified by its argument. You need
to be careful when using the function to allocate the correct number of bytes. For ex‐
ample, if we want to allocate space for 10 doubles, then we need to allocate 80 bytes.
This is achieved as shown below:

   double *pd = (double*)malloc(NUMBER_OF_DOUBLES * sizeof(double));

Dynamic Memory Allocation Functions | 41



Use the sizeof operator when specifying the number of bytes to allocate
for data types whenever possible.

In the following example, an attempt is made to allocate memory for 10 doubles:

   const int NUMBER_OF_DOUBLES = 10;

   double *pd = (double*)malloc(NUMBER_OF_DOUBLES);

However, the code only allocated 10 bytes.

Determining the amount of memory allocated

There is no standard way to determine the total amount of memory allocated by the
heap. However, some compilers provide extensions for this purpose. In addition, there
is no standard way of determining the size of a memory block allocated by the heap
manager.

For example, if we allocate 64 bytes for a string, the heap manager will allocate additional
memory to manage this block. The total size allocated, and the amount used by the heap
manager, is the sum of these two quantities. This was illustrated in Figure 2-2.

The maximum size that can be allocated with malloc is system dependent. It would

seem like this size should be limited by size_t. However, limitations can be imposed
by the amount of physical memory present and other operating system constraints.

When malloc executes, it is supposed to allocate the amount of memory requested and
then return the memory’s address. What happens if the underlying operating system
uses “lazy initialization” where it does not actually allocate the memory until it is ac‐
cessed? A problem can arise at this point if there is not enough memory available to
allocate. The answer depends on the runtime and operating systems. A typical developer
normally would not need to deal with this question because such initialization schemes
are quite rare.

Using malloc with static and global pointers

You cannot use a function call when initializing a static or global variable. In the fol‐
lowing code sequence, we declare a static variable and then attempt to initialize it using

malloc:

    static int *pi = malloc(sizeof(int));

This will generate a compile-time error message. The same thing happens with global
variables but can be avoided for static variables by using a separate statement to allocate
memory to the variable as follows. We cannot use a separate assignment statement with
global variables because global variables are declared outside of a function and exe‐
cutable code, such as the assignment statement, must be inside of a function:
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    static int *pi;

    pi = malloc(sizeof(int));

From the compiler standpoint, there is a difference between using the
initialization operator, =, and using the assignment operator, =.

Using the calloc Function
The calloc function will allocate and clear memory at the same time. Its prototype
follows:

   void *calloc(size_t numElements, size_t elementSize);

To clear memory means its contents are set to all binary zeros.

The function will allocate memory determined by the product of the numElements and

elementSize parameters. A pointer is returned to the first byte of memory. If the func‐

tion is unable to allocate memory, NULL is returned. Originally, this function was used
to aid in the allocation of memory for arrays.

If either numElements or elementSize is zero, then a null pointer may be returned. If

calloc is unable to allocate memory, a null pointer is returned and the global variable,

errno, is set to ENOMEM (out of memory). This is a POSIX error code and may not be
available on all systems.

Consider the following example where pi is allocated a total of 20 bytes, all containing
zeros:

    int *pi = calloc(5,sizeof(int));

Instead of using calloc, the malloc function along with the memset function can be
used to achieve the same results, as shown below:

    int *pi = malloc(5 * sizeof(int));

    memset(pi, 0, 5* sizeof(int));

The memset function will fill a block with a value. The first argument is
a pointer to the buffer to fill. The second is the value used to fill the
buffer, and the last argument is the number of bytes to be set.
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Use calloc when memory needs to be zeroed out. However, the execution of calloc

may take longer than using malloc.

The function cfree is no longer needed. In the early days of C it was

used to free memory allocated by calloc.

Using the realloc Function
Periodically, it may be necessary to increase or decrease the amount of memory allocated
to a pointer. This is particularly useful when a variable size array is needed, as will be

demonstrated in Chapter 4. The realloc function will reallocate memory. Its prototype
follows:

void *realloc(void *ptr, size_t size);

The function realloc returns a pointer to a block of memory. The function takes two
arguments. The first is a pointer to the original block, and the second is the requested
size. The reallocated block’s size will be different from the size of the block referenced
by the first argument. The return value is a pointer to the reallocated memory.

The requested size may be smaller or larger than the currently allocated amount. If the
size is less than what is currently allocated, then the excess memory is returned to the
heap. There is no guarantee that the excess memory will be cleared. If the size is greater
than what is currently allocated, then if possible, the memory will be allocated from the
region immediately following the current allocation. Otherwise, memory is allocated
from a different region of the heap and the old memory is copied to the new region.

If the size is zero and the pointer is not null, then the pointer will be freed. If space
cannot be allocated, then the original block of memory is retained and is not changed.

However, the pointer returned is a null pointer and the errno is set to ENOMEM.

The function’s behavior is summarized in Table 2-2.

Table 2-2. Behavior of realloc function

First Parameter Second Parameter Behavior

null NA Same as malloc

Not null 0 Original block is freed

Not null Less than the original block’s size A smaller block is allocated using the current block

Not null Larger than the original block’s size A larger block is allocated either from the current location or another

region of the heap
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In the following example, we use two variables to allocate memory for a string. Initially,
we allocate 16 bytes but only use the first 13 bytes (12 hexadecimal digits and the null
termination character (0)):

    char *string1;

    char *string2;

    string1 = (char*) malloc(16);

    strcpy(string1, "0123456789AB");

Next, we use the realloc function to specify a smaller region of memory. The address
and contents of these two variables are then displayed:

    string2 = realloc(string1, 8);

    printf("string1  Value: %p [%s]\n", string1, string1);

    printf("string2  Value: %p [%s]\n", string2, string2);

The output follows:

string1  Value: 0x500 [0123456789AB]

string2  Value: 0x500 [0123456789AB]

The allocation of memory is illustrated in Figure 2-6.

Figure 2-6. realloc example

The heap manager was able to reuse the original block, and it did not modify its contents.
However, the program continued to use more than the eight bytes requested. That is,
we did not change the string to fit into the eight-byte block. In this example, we should
have adjusted the length of the string so that it fits into the eight reallocated bytes. The

simplest way of doing this is to assign a NUL character to address 507. Using more space
than allocated is not a good practice and should be avoided, as detailed in Chapter 7.

In this next example, we will reallocate additional memory:

    string1 = (char*) malloc(16);

    strcpy(string1, "0123456789AB");

    string2 = realloc(string1, 64);

    printf("string1  Value: %p [%s]\n", string1, string1);

    printf("string2  Value: %p [%s]\n", string2, string2);

When executed, you may get results similar to the following:
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string1  Value: 0x500 [0123456789AB]

string2  Value: 0x600 [0123456789AB]

In this example, realloc had to allocate a new block of memory. Figure 2-7 illustrates
the allocation of memory.

Figure 2-7. Allocating additional memory

The alloca Function and Variable Length Arrays
The alloca function (Microsoft’s malloca) allocates memory by placing it in the stack
frame for the function. When the function returns, the memory is automatically freed.
This function can be difficult to implement if the underlying runtime system is not
stack-based. As a result, this function is nonstandard and should be avoided if the
application needs to be portable.

In C99, Variable Length Arrays (VLAs) were introduced, allowing the declaration and
creation of an array within a function whose size is based on a variable. In the following

example, an array of char is allocated for use in a function:

void compute(int size) {

    char* buffer[size];

    ...

}

This means the allocation of memory is done at runtime and memory is allocated as

part of the stack frame. Also, when the sizeof operator is used with the array, it will be
executed at runtime rather than compile time.

A small runtime penalty will be imposed. Also, when the function exits, the memory is

effectively deallocated. Since we did not use a malloc type function to create it, we should

not use the free function to deallocate it. The function should not return a pointer to
this memory either. This issue is addressed in Chapter 5.
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VLAs do not change size. Their size is fixed once they are allocated. If
you need an array whose size actually changes, then an approach such

as using the realloc function, as discussed in the section “Using the
realloc Function” on page 44, is needed.

Deallocating Memory Using the free Function
With dynamic memory allocation, the programmer is able to return memory when it
is no longer being used, thus freeing it up for other uses. This is normally performed

using the free function, whose prototype is shown below:

   void free(void *ptr);

The pointer argument should contain the address of memory allocated by a malloc type
function. This memory is returned to the heap. While the pointer may still point to the
region, always assume it points to garbage. This region may be reallocated later and
populated with different data.

In the simple example below, pi is allocated memory and is eventually freed:

    int *pi = (int*) malloc(sizeof(int));

    ...

    free(pi);

Figure 2-8 illustrates the allocation of memory immediately before and right after the

free function executes. The dashed box at address 500 that indicates the memory has

been freed but still may contain its value. The variable pi still contains the address 500.
This is called a dangling pointer and is discussed in detail in the section “Dangling
Pointers” on page 51.

Figure 2-8. Release of memory using free

If the free function is passed a null pointer, then it normally does nothing. If the pointer

passed has been allocated by other than a malloc type function, then the function’s

behavior is undefined. In the following example, pi is allocated the address of num.
However, this is not a valid heap address:
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   int num;

   int *pi = &num;

   free(pi);  // Undefined behavior

Manage memory allocation/deallocation at the same level. For example,
if a pointer is allocated within a function, deallocate it in the same
function.

Assigning NULL to a Freed Pointer
Pointers can cause problems even after they have been freed. If we try to dereference a
freed pointer, its behavior is undefined. As a result, some programmers will explicitly

assign NULL to a pointer to designate the pointer as invalid. Subsequent use of such a
pointer will result in a runtime exception.

An example of this approach follows:

    int *pi = (int*) malloc(sizeof(int));

    ...

    free(pi);

    pi = NULL;

The allocation of memory is illustrated in Figure 2-9.

Figure 2-9. Assigning NULL after using free

This technique attempts to address problems like dangling pointers. However, it is better
to spend time addressing the conditions that caused the problems rather than crudely

catching them with a null pointer. In addition, you cannot assign NULL to a constant
pointer except when it is initialized.

Double Free
The term double free refers to an attempt to free a block of memory twice. A simple
example follows:
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    int *pi = (int*) malloc(sizeof(int));

    *pi = 5;

    free(pi);

     ...

    free(pi);

The execution of the second free function will result in a runtime exception. A less
obvious example involves the use of two pointers, both pointing to the same block of
memory. As shown below, the same runtime exception will result when we accidentally
try to free the same memory a second time:

    p1 = (int*) malloc(sizeof(int));

    int *p2 = p1;

    free(p1);

    ...

    free(p2);

This allocation of memory is illustrated in Figure 2-10.

When two pointers reference the same location, it is referred to as
aliasing. This concept is discussed in Chapter 8.

Figure 2-10. Double free

Unfortunately, heap managers have a difficult time determining whether a block has
already been deallocated. Thus, they don’t attempt to detect the same memory being
freed twice. This normally results in a corrupt heap and program termination. Even if
the program does not terminate, it represents questionable problem logic. There is no
reason to free the same memory twice.

It has been suggested that the free function should assign a NULL or some other special
value to its argument when it returns. However, since pointers are passed by value, the

free function is unable to explicitly assign NULL to the pointer. This is explained in more
detail in the section “Passing a Pointer to a Pointer” on page 68.
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The Heap and System Memory
The heap typically uses operating system functions to manage its memory. The heap’s
size may be fixed when the program is created, or it may be allowed to grow. However,
the heap manager does not necessarily return memory to the operating system when

the free function is called. The deallocated memory is simply made available for sub‐
sequent use by the application. Thus, when a program allocates and then frees up mem‐
ory, the deallocation of memory is not normally reflected in the application’s memory
usage as seen from the operating system perspective.

Freeing Memory upon Program Termination
The operating system is responsible for maintaining the resources of an application,
including its memory. When an application terminates, it is the operating system’s re‐
sponsibility to reallocate this memory for other applications. The state of the terminated
application’s memory, corrupted or uncorrupted, is not an issue. In fact, one of the
reasons an application may terminate is because its memory is corrupted. With an ab‐
normal program termination, cleanup may not be possible. Thus, there is no reason to
free allocated memory before the application terminates.

With this said, there may be other reasons why this memory should be freed. The con‐
scientious programmer may want to free memory as a quality issue. It is always a good
habit to free memory after it is no longer needed, even if the application is terminating.
If you use a tool to detect memory leaks or similar problems, then deallocating memory
will clean up the output of such tools. In some less complex operating systems, the
operating system may not reclaim memory automatically, and it may be the program’s
responsibility to reclaim memory before terminating. Also, a later version of the appli‐
cation could add code toward the end of the program. If the previous memory has not
been freed, problems could arise.

Thus, ensuring that all memory is free before program termination:

• May be more trouble than it’s worth

• Can be time consuming and complicated for the deallocation of complex structures

• Can add to the application’s size

• Results in longer running time

• Introduces the opportunity for more programming errors

Whether memory should be deallocated prior to program termination is application-
specific.
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Dangling Pointers
If a pointer still references the original memory after it has been freed, it is called a
dangling pointer. The pointer does not point to a valid object. This is sometimes referred
to as a premature free.

The use of dangling pointers can result in a number of different types of problems,
including:

• Unpredictable behavior if the memory is accessed

• Segmentation faults when the memory is no longer accessible

• Potential security risks

These types of problems can result when:

• Memory is accessed after it has been freed

• A pointer is returned to an automatic variable in a previous function call (discussed
in the section “Pointers to Local Data” on page 66)

Dangling Pointer Examples
Below is a simple example where we allocate memory for an integer using the malloc

function. Next, the memory is released using the free function:

    int *pi = (int*) malloc(sizeof(int));

    *pi = 5;

    printf("*pi: %d\n", *pi);

    free(pi);

The variable pi will still hold the integer’s address. However, this memory may be reused
by the heap manager and may hold data other than an integer. Figure 2-11 illustrates

the program’s state immediately before and after the free function is executed. The pi

variable is assumed to be part of the main function and is located at address 100. The

memory allocated using malloc is found at address 500.

When the free function is executed, the memory at address 500 has been deallocated
and should not be used. However, most runtime systems will not prevent subsequent
access or modification. We may still attempt to write to the location as shown below.
The result of this action is unpredictable.

    free(pi);

    *pi = 10;
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Figure 2-11. Dangling pointer

A more insidious example occurs when more than one pointer references the same area

of memory and one of them is freed. As shown below, p1 and p2 both refer to the same

area of memory, which is called pointer aliasing. However, p1 is freed:

    int *p1 = (int*) malloc(sizeof(int));

    *p1 = 5;

    ...

    int *p2;

    p2 = p1;

    ...

    free(p1);

    ...

    *p2 = 10;   // Dangling pointer

Figure 2-12 illustrates the allocation of memory where the dotted box represents freed
memory.

Figure 2-12. Dangling pointer with aliased pointers

A subtle problem can occur when using block statements, as shown below. Here pi is

assigned the address of tmp. The variable pi may be a global variable or a local variable.

However, when tmp’s enclosing block is popped off of the program stack, the address is
no longer valid:

   int *pi;

   ...
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   {

      int tmp = 5;

      pi = &tmp;

   }

   // pi is now a dangling pointer

   foo();

Most compilers will treat a block statement as a stack frame. The variable tmp was al‐
located on the stack frame and subsequently popped off the stack when the block state‐

ment was exited. The pointer pi is now left pointing to a region of memory that may

eventually be overridden by a different activation record, such as the function foo. This
condition is illustrated in Figure 2-13.

Figure 2-13. Block statement problem

Dealing with Dangling Pointers
Debugging pointer-induced problems can be difficult to resolve at times. Several ap‐
proaches exist for dealing with dangling pointers, including:

• Setting a pointer to NULL after freeing it. Its subsequent use will terminate the ap‐
plication. However, problems can still persist if multiple copies of the pointer exist.
This is because the assignment will only affect one of the copies, as illustrated in
the section “Double Free” on page 48.

• Writing special functions to replace the free function (see “Writing your own free
function” on page 70).

• Some systems (runtime/debugger) will overwrite data when it is freed (e.g.,
0xDEADBEEF - Visual Studio will use 0xCC, 0xCD, or 0xDD, depending on what
is freed). While no exceptions are thrown, when the programmer sees memory
containing these values where they are not expected, he knows that the program
may be accessing freed memory.

• Use third-party tools to detect dangling pointers and other problems.

Displaying pointer values can be helpful in debugging dangling pointers, but you need
to be careful how they are displayed. We have already discussed how to display pointer
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values in “Displaying Pointer Values” on page 9. Make sure you display them consistently

to avoid confusion when comparing pointer values. The assert macro can also be
useful, as demonstrated in “Dealing with Uninitialized Pointers” on page 162.

Debug Version Support for Detecting Memory Leaks
Microsoft provides techniques for addressing overwriting of dynamically allocated
memory and memory leaks. This approach uses special memory management techni‐
ques in debug versions of a program to:

• Check the heap’s integrity

• Check for memory leaks

• Simulate low heap memory situations

Microsoft does this by using a special data structure to manage memory allocation. This
structure maintains debug information, such as the filename and line number where

malloc is called. In addition, buffers are allocated before and after the actual memory
allocation to detect overwriting of the actual memory. More information about this
technique can be found at Microsoft Developer Network.

The Mudflap Libraries provide a similar capability for the GCC compiler. Its runtime
library supports the detection of memory leaks, among other things. This detection is
accomplished by instrumenting the pointer dereferencing operations.

Dynamic Memory Allocation Technologies
So far, we have talked about the heap manager’s allocating and deallocating memory.
However, the implementation of this technology can vary by compiler. Most heap man‐
agers use a heap or data segment as the source for memory. However, this approach is
subject to fragmentation and may collide with the program stack. Nevertheless, it is the
most common way of implementing the heap.

Heap managers need to address many issues, such as whether heaps are allocated on a
per process and/or per thread basis and how to protect the heap from security breaches.

There are a number of heap managers, including OpenBSD’s malloc, Hoard’s malloc,
and TCMalloc developed by Google. The GNU C library allocator is based on the
general-purpose allocator dlmalloc. It provides facilities for debugging and can help in
tracking memory leaks. The dlmalloc’s logging feature tracks memory usage and mem‐
ory transaction, among other actions.

A manual technique for managing the memory used for structures is presented in
“Avoiding malloc/free Overhead” on page 139.
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Garbage Collection in C
The malloc and free functions provide a way of manually allocating and deallocating
memory. However, there are numerous issues regarding the use of manual memory
management in C, such as performance, achieving good locality of reference, threading
problems, and cleaning up memory gracefully.

Several nonstandard techniques can be used to address some of these issues, and this
section explores some of them. A key feature of these techniques is the automatic deal‐
location of memory. When memory is no longer needed, it is collected and made avail‐
able for use later in the program. The deallocated memory is referred to as garbage.
Hence, the term garbage collection denotes the processing of this memory.

Garbage collection is useful for a number of reasons, including:

• Freeing the programmer from having to decide when to deallocate memory

• Allowing the programmer to focus on the application’s problem

One alternative to manual memory management is the Boehm-Weiser Collector. How‐
ever, this is not part of the language.

Resource Acquisition Is Initialization
Resource Acquisition Is Initialization (RAII) is a technique invented by Bjarne
Stroustrup. It addresses the allocation and deallocation of resources in C++. The tech‐
nique is useful for guaranteeing the allocation and subsequent deallocation of a resource
in the presence of exceptions. Allocated resources will eventually be released.

There have been several approaches for using RAII in C. The GNU compiler provides
a nonstandard extension to support this. We will illustrate this extension by showing
how memory can be allocated and then freed within a function. When the variable goes
out of scope, the deallocation process occurs automatically.

The GNU extension uses a macro called RAII_VARIABLE. It declares a variable and
associates with the variable:

• A type

• A function to execute when the variable is created

• A function to execute when the variable goes out of scope

The macro is shown below:

#define RAII_VARIABLE(vartype,varname,initval,dtor) \

    void _dtor_ ## varname (vartype * v) { dtor(*v); } \

    vartype varname __attribute__((cleanup(_dtor_ ## varname))) = (initval)
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In the following example, we declare a variable called name as a pointer to char. When

it is created, the malloc function is executed, allocating 32 bytes to it. When the function

is terminated, name goes out of scope and the free function is executed:

void raiiExample() {

    RAII_VARIABLE(char*, name, (char*)malloc(32), free);

    strcpy(name,"RAII Example");

    printf("%s\n",name);

}

When this function is executed, the string “RAII_Example” will be displayed.

Similar results can be achieved without using the GNU extension.

Using Exception Handlers
Another approach to deal with the deallocation of memory is to use exception han‐
dling. While exception handling is not a standard part of C, it can be useful if available
and possible portability issues are not a concern. The following illustrates the approach
using the Microsoft Visual Studio version of the C language.

Here the try block encloses any statements that might cause an exception to be thrown
at runtime. The finally block will be executed regardless of whether an exception is

thrown. The free function is guaranteed to be executed.

void exceptionExample() {

   int *pi = NULL;

   __try {

      pi = (int*)malloc(sizeof(int));

      *pi = 5;

      printf("%d\n",*pi);

   }

   __finally {

      free(pi);

   }

}

You can implement exception handling in C using several other approaches.

Summary
Dynamic memory allocation is a significant C language feature. In this chapter, we

focused on the manual allocation of memory using the malloc and free functions. We
addressed a number of common problems involving these functions, including the
failure to allocate memory and dangling pointers.

There are other nonstandard techniques for managing dynamic memory in C. We
touched on a few of these garbage collection techniques, including RAII and exception
handling.
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CHAPTER 3

Pointers and Functions

Pointers contribute immensely to a function’s capability. They allow data to be passed
and modified by a function. Complex data can also be passed and returned from a
function in the form of a pointer to a structure. When pointers hold the address of a
function, they provide a means to dynamically control a program’s execution flow. In
this chapter, we will explore the power of pointers as used with functions and learn how
to use them to solve many real-world problems.

To understand functions and their use with pointers, a good understanding of the pro‐
gram stack is needed. The program stack is used by most modern block-structured
languages, such as C, to support the execution of functions. When a function is invoked,
its stack frame is created and then pushed onto the program stack. When the function
returns, its stack frame is popped off of the program stack.

When working with functions, there are two areas where pointers become useful. The
first is when we pass a pointer to a function. This allows the function to modify data
referenced by the pointer and to pass blocks of information more efficiently.

The second area is declaring a pointer to a function. In essence, function notation is
pointer notation. The function’s name evaluates to the address of the function, and the
function’s parameters are passed to the function. As we will see, function pointers pro‐
vide additional capability to control the execution flow of a program.

In this section, we will establish the foundation for understanding and working with
functions and pointers. Because of the pervasiveness of functions and pointers, this
foundation should serve you well.
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Program Stack and Heap
The program stack and the heap are important runtime elements of C. In this section,
we will carefully examine the structure and use of the program stack and heap. We will
also look at the stack frame’s structure, which holds local variables.

Local variables are also called automatic variables. They are always
allocated to a stack frame.

Program Stack
The program stack is an area of memory that supports the execution of functions and
is normally shared with the heap. That is, they share the same region of memory. The
program stack tends to occupy the lower part of this region, while the heap uses the
upper part.

The program stack holds stack frames, sometimes called activation records or activation
frames. Stack frames hold the parameters and local variables of a function. The heap
manages dynamic memory and is discussed in “Dynamic Memory Allocation” on page
34.

Figure 3-1 illustrates how the stack and heap are organized conceptually. This illustra‐
tion is based on the following code sequence:

void function2() {

    Object *var1 = ...;

    int var2; 

    printf("Program Stack Example\n");

}

void function1() {  

    Object *var3 = ...;

    function2();

}

int main() {

    int var4;

    function1();

}

As functions are called, their stack frames are pushed onto the stack and the stack grows
“upward.” When a function terminates, its stack frame is popped off the program stack.
The memory used by the stack frame is not cleared and may eventually be overridden
by another stack frame when it is pushed onto the program stack.

58 | Chapter 3: Pointers and Functions



Figure 3-1. Stack and heap

When memory is dynamically allocated, it comes from the heap, which tends to grow
“downward.” The heap will fragment as memory is allocated and then deallocated. Al‐
though the heap tends to grow downward, this is a general direction. Memory can be
allocated from anywhere within the heap.

Organization of a Stack Frame
A stack frame consists of several elements, including:

Return address
The address in the program where the function is to return upon completion

Storage for local data
Memory allocated for local variables

Storage for parameters
Memory allocated for the function’s parameters

Stack and base pointers
Pointers used by the runtime system to manage the stack

The typical C programmer will not be concerned about the stack and base pointers used
in support of a stack frame. However, understanding what they are and how they are
used provides a more in-depth understanding of the program stack.

A stack pointer usually points to the top of the stack. A stack base pointer (frame pointer)
is often present and points to an address within the stack frame, such as the return
address. This pointer assists in accessing the stack frame’s elements. Neither of these
pointers are C pointers. They are addresses used by the runtime system to manage the
program stack. If the runtime system is implemented in C, then these pointers may be
real C pointers.
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Consider the creation of a stack frame for the following function. This function has

passed an array of integers and an integer representing the array’s size. Three printf
statements are used to display the parameter’s and the local variable’s addresses:

float average(int *arr, int size) {

   int sum;

   printf("arr: %p\n",&arr);

   printf("size: %p\n",&size);

   printf("sum: %p\n",&sum); 

   

   for(int i=0; i<size; i++) {

       sum += arr[i];

   }

   return (sum * 1.0f) / size;

}

When executed, you get output similar to the following:

arr: 0x500

size: 0x504

sum: 0x480

The gap in the addresses between the parameters and the local variables is due to other
elements of the stack frame used by the runtime system to manage the stack.

When the stack frame is created, the parameters are pushed onto the frame in the op‐
posite order of their declaration, followed by the local variables. This is illustrated in

Figure 3-2. In this case, size is pushed followed by arr. Typically, the return address
for the function call is pushed next, followed by the local variables. They are pushed in
the opposite order in which they were listed.

Conceptually, the stack in this example grows “up.” However, the stack frame’s param‐
eters and local variables and new stack frames are added at lower memory addresses.
The actual direction the stack grows is implementation-specific.

The variable i used in the for statement is not included as part of this stack frame. C 
treats block statements as “mini” functions and will push and pop them as appropriate.

In this case, the block statement is pushed onto the program stack above the average
stack frame when it is executed and then popped off when it is done.

While the precise addresses can vary, the order usually will not. This is important to
understand, as it helps explain how memory is allocated and establishes the relative
order of the parameters and variables. This can be useful when debugging pointer
problems. If you are not aware of how the stack frame is allocated, the assignment of
addresses may not make sense.

As stack frames are pushed onto the program stack, the system may run out of memory.
This condition is called stack overflow and generally results in the program terminating
abnormally. Keep in mind that each thread is typically allocated its own program stack.
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Figure 3-2. Stack frame example

This can lead to potential conflicts if one or more threads access the same object in
memory. This will be addressed in “Sharing Pointers Between Threads” on page 186.

Passing and Returning by Pointer
In this section, we will examine the impact of passing and returning pointers to and
from functions. Passing pointers allows the referenced object to be accessible in multiple
functions without making the object global. This means that only those functions that
need access to the object will get this access and that the object does not need to be
duplicated.

If the data needs to be modified in a function, it needs to be passed by pointer. We can
pass data by pointer and prohibit it from being modified by passing it as a pointer to a
constant, as will be demonstrated in the section “Passing a Pointer to a Constant” on
page 63. When the data is a pointer that needs to be modified, then we pass it as a pointer
to a pointer. This topic is covered in “Passing a Pointer to a Pointer” on page 68.

Parameters, including pointers, are passed by value. That is, a copy of the argument is
passed to the function. Passing a pointer to an argument can be efficient when dealing
with large data structures. For example, consider a large structure that represents an
employee. If we passed the entire structure to the function, then every byte of the struc‐
ture would need to be copied, resulting in a slower program and in more space being
used in the stack frame. Passing a pointer to the object means the object does have to
be copied, and we can access the object through the pointer.
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Passing Data Using a Pointer
One of the primary reasons for passing data using a pointer is to allow the function to
modify the data. The following sequence implements a swap function that will inter‐
change the values referenced by its parameters. This is a common operation found in
a number of sorting algorithms. Here, we use integer pointers and dereference them to
affect the swap operation:

void swapWithPointers(int* pnum1, int* pnum2) {

    int tmp;

    tmp = *pnum1;

    *pnum1 = *pnum2;

    *pnum2 = tmp;

}

The following code sequence demonstrates this function:

int main() {

    int n1 = 5;

    int n2 = 10;

    swapWithPointers(&n1, &n2);

    return 0;

}

The pointers pnum1 and pnum2 are dereferenced during the swap operation. This will

result in the values of n1 and n2 being modified. Figure 3-3 illustrates how memory is

organized. The Before image shows the program stack at the beginning of the swap

function, and the After image shows it just before the function returns.

Figure 3-3. Swapping with pointers

Passing Data by Value
If we do not pass them by pointers, then the swap operation will not occur. In the
following function, the two integers are passed by value:
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void swap(int num1, int num2) {

    int tmp;

    tmp = num1;

    num1 = num2;

    num2 = tmp;

}

In the following code sequence, two integers are passed to the function:

int main() {

    int n1 = 5;

    int n2 = 10;

    swap(n1, n2);

    return 0;

}

However, this will not work because the integers were passed by value and not by pointer.

Only a copy of the arguments is stored in num1 and num2. If we modify num1, then the

argument n1 is not changed. When we modify the parameters, we are not modifying
the original arguments. Figure 3-4 illustrates how memory is allocated for the
parameters.

Figure 3-4. Pass by value

Passing a Pointer to a Constant
Passing a pointer to constant is a common technique used in C. It is efficient, as we are
only passing the address of the data and can avoid copying large amounts of memory
in some cases. However, with a simple pointer, the data can be modified. When this is
not desirable, then passing a pointer to a constant is the answer.

In this example, we pass a pointer to a constant integer and a pointer to an integer.
Within the function, we cannot modify the value passed as a pointer to a constant:

void passingAddressOfConstants(const int* num1, int* num2) {

    *num2 = *num1;

}
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int main() {

    const int limit = 100;

    int result = 5;

    passingAddressOfConstants(&limit, &result);

    return 0;

}

No syntax errors will be generated, and the function will assign 100 to the variable

result. In the following version of the function, we attempt to modify both referenced
integers:

void passingAddressOfConstants(const int* num1, int* num2) {

    *num1 = 100;

    *num2 = 200;

}

This will cause a problem if we pass the constant limit to the function twice:

    const int limit = 100;

    passingAddressOfConstants(&limit, &limit);

This will generate syntax errors that complain of a type mismatch between the second
parameter and its argument. In addition, it will complain that we are attempting to
modify the presumed constant referenced by the first parameter.

The function expected a pointer to an integer, but a pointer to an integer constant was
passed instead. We cannot pass the address of an integer constant to a pointer to a
constant, as this would allow a constant value to be modified. This is detailed in the
section “Constants and Pointers” on page 27.

An attempt to pass the address of an integer literal as shown below will also generate a
syntax error:

    passingAddressOfConstants(&23, &23);

In this case, the error message will indicate that an lvalue is required as the address-of

operator’s operand. The concept of an lvalue is discussed in “Dereferencing a Pointer
Using the Indirection Operator” on page 11.

Returning a Pointer
Returning a pointer is easy to do. We simply declare the return type to be a pointer to
the appropriate data type. If we need to return an object from a function, the following
two techniques are frequently used:

• Allocate memory within the function using malloc and return its address. The
caller is responsible for deallocating the memory returned.
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• Pass an object to the function where it is modified. This makes the allocation and
deallocation of the object’s memory the caller’s responsibility.

First, we will illustrate the use of malloc type functions to allocate the memory returned.
This is followed by an example where we return a pointer to a local object. This latter
approach is not recommended. The approach identified in the second bullet is then
illustrated in the section“Passing Null Pointers” on page 67.

In the following example, we define a function that is passed the size of an integer array
and a value to initialize each element. The function allocates memory for an integer
array, initializes the array to the value passed, and then returns the array’s address:

int* allocateArray(int size, int value) {

    int* arr = (int*)malloc(size * sizeof(int));

    for(int i=0; i<size; i++) {

        arr[i] = value;

    }

    return arr; 

}

The following illustrates how this function can be used:

    int* vector = allocateArray(5,45);

    for(int i=0; i<5; i++) {

        printf("%d\n", vector[i]);

    }

Figure 3-5 illustrates how memory is allocated for this function. The Before image

shows the program’s state right before the return statement is executed. The After image

shows the program’s state after the function has returned. The variable vector now

contains the address of the memory allocated in the function. While the arr variable
went away when the function terminated, the memory referenced by the pointer does
not go away. This memory will eventually need to be freed.

Although the previous example works correctly, several potential problems can occur
when returning a pointer from a function, including:

• Returning an uninitialized pointer

• Returning a pointer to an invalid address

• Returning a pointer to a local variable

• Returning a pointer but failing to free it

The last problem is typified by the allocateArray function. Returning dynamically
allocated memory from the function means the function’s caller is responsible for deal‐
locating it. Consider the following example:
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    int* vector = allocateArray(5,45);

    ...

    free(vector);

Figure 3-5. Returning a pointer

We must eventually free it once we are through using it. If we don’t, then we will have
a memory leak.

Pointers to Local Data
Returning a pointer to local data is an easy mistake to make if you don’t understand

how the program stack works. In the following example, we rework the allocateAr

ray function used in the section “Returning a Pointer” on page 64. Instead of dynami‐
cally allocating memory for the array, we used a local array:

int* allocateArray(int size, int value) {

    int arr[size];

    for(int i=0; i<size; i++) {

        arr[i] = value;

    }

    return arr; 

}

Unfortunately, the address of the array returned is no longer valid once the function
returns because the function’s stack frame is popped off the stack. While each array
element may still contain a 45, these values may be overwritten if another function is

called. This is illustrated with the following sequence. Here, the printf function is
invoked repeatedly, resulting in corruption of the array:

    int* vector = allocateArray(5,45);

    for(int i=0; i<5; i++) {

        printf("%d\n", vector[i]);

    }
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Figure 3-6 illustrates how memory is allocated when this happens. The dashed box

shows where other stack frames, such as those used by the printf function, may be
pushed onto the program stack, thus corrupting the memory held by the array. The
actual contents of that stack frame are implementation-dependent.

Figure 3-6. Returning a pointer to local data

An alternative approach is to declare the arr variable as static. This will restrict the
variable’s scope to the function but allocate it outside of the stack frame, eliminating the
possibility of another function overwriting the variable’s value:

int* allocateArray(int size, int value) {

    static int arr[5];

    ... 

}

However, this will not always work. Every time the allocateArray function is called,
it will reuse the array. This effectively invalidates any previous calls to the function. In
addition, the static array must be declared with a fixed size. This will limit the function’s
ability to handle various array sizes.

If the function returns only a few possible values and it does not hurt to share them,
then it can maintain a list of these values and return the appropriate one. This can be
useful if we are returning a status type message, such as an error number that is not
likely to be modified. In the section “Returning Strings” on page 126, an example of using
global and static values is demonstrated.

Passing Null Pointers
In the following version of the allocateArray function, a pointer to an array is passed
along with its size and a value that it will use to initialize each element of the array. The
pointer is returned for convenience. Although this version of the function does not
allocate memory, later versions will allocate memory:
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int* allocateArray(int *arr, int size, int value) {

    if(arr != NULL) {

        for(int i=0; i<size; i++) {

            arr[i] = value;

        }

    }

    return arr;

}

When a pointer is passed to a function, it is always good practice to verify it is not null
before using it.

The function can be invoked as follows:

    int* vector = (int*)malloc(5 * sizeof(int));

    allocateArray(vector,5,45);

If the pointer is NULL, then no action is performed and the program will execute
without terminating abnormally.

Passing a Pointer to a Pointer
When a pointer is passed to a function, it is passed by value. If we want to modify the
original pointer and not the copy of the pointer, we need to pass it as a pointer to a
pointer. In the following example, a pointer to an integer array is passed, which will be
assigned memory and initialized. The function will return the allocated memory back
through the first parameter. In the function, we first allocate memory and then initialize
it. The address of this allocated memory is intended to be assigned to a pointer to an

int. To modify this pointer in the calling function, we need to pass the pointer’s address.

Thus, the parameter is declared as a pointer to a pointer to an int. In the calling function,
we need to pass the address of the pointer:

void allocateArray(int **arr, int size, int value) {

    *arr = (int*)malloc(size * sizeof(int));

    if(*arr != NULL) {

        for(int i=0; i<size; i++) {

            *(*arr+i) = value;

        }

    }

}

The function can be tested using the following code:

    int *vector = NULL;

    allocateArray(&vector,5,45);

The first parameter to allocateArray is passed as a pointer to a pointer to an integer.
When we call the function, we need to pass a value of this type. This is done by passing

the address of vector. The address returned by malloc is assigned to arr. Dereferencing

68 | Chapter 3: Pointers and Functions



a pointer to a pointer to an integer results in a pointer to an integer. Because this is the

address of vector, we modify vector.

The memory allocation is illustrated in Figure 3-7. The Before image shows the stack’s

state after malloc returns and the array is initialized. Likewise, the After image shows
the stack’s state after the function returns.

To easily identify problems such as memory leaks, draw a diagram of
memory allocation.

Figure 3-7. Passing a pointer to a pointer

The following version of the function illustrates why passing a simple pointer will not
work:

void allocateArray(int *arr, int size, int value) {

    arr = (int*)malloc(size * sizeof(int));

    if(arr != NULL) {

        for(int i=0; i<size; i++) {

            arr[i] = value;

        }

    }

}

The following sequence illustrates using the function:

    int *vector = NULL;

    allocateArray(&vector,5,45);

    printf("%p\n",vector);
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When the program is executed you will see 0x0 displayed because when vector is passed

to the function, its value is copied into the parameter arr. Modifying arr has no effect

on vector. When the function returns, the value stored in arr is not copied to vec

tor. Figure 3-8 illustrates the allocation of memory. The Before malloc image shows

the state of memory just before arr is assigned a new value. It contains the value of 500,

which was passed to it from vector. The After malloc image shows the state of memory

after the malloc function was executed in the allocateArray function and the array

was initialized. The variable arr has been modified to point to a new place in the heap.

The After return image shows the program stack’s state after the function returns. In
addition, we have a memory leak because we have lost access to the block of memory
at address 600.

Figure 3-8. Passing pointers

Writing your own free function

Several issues surround the free function that encourage some programmers to create

their own version of this function. The free function does not check the pointer passed

to see whether it is NULL and does not set the pointer to NULL before it returns. Setting

a pointer to NULL after freeing is a good practice.

Given the foundation provided in the section “Passing and Returning by Pointer” on

page 61, the following illustrates one way of implementing your own free function that
assigns a NULL value to the pointer. It requires that we use a pointer to a pointer:

void saferFree(void **pp) {

    if (pp != NULL && *pp != NULL) { 

        free(*pp);

        *pp = NULL;

    }

}
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The saferFree function calls the free function that actually deallocates the memory.

Its parameter is declared as a pointer to a pointer to void. Using a pointer to a pointer

allows us to modify the pointer passed. Using the void type allows all types of pointers
to be passed. However, we get a warning if we do not explicitly cast the pointer type to
void when we call the function. If we explicitly perform the cast, then the warning goes
away.

The safeFree macro, shown below, calls the saferFree function with this cast and uses
the address-of operator, thus alleviating the need for a function’s user to perform the
cast and to pass the pointer’s address.

#define safeFree(p) saferFree((void**)&(p))

The next sequence illustrates the use of this macro:

int main() {

    int *pi;

    pi = (int*) malloc(sizeof(int));

    *pi = 5;

    printf("Before: %p\n",pi);

    safeFree(pi);

    printf("After: %p\n",pi);

    safeFree(pi);

    return (EXIT_SUCCESS);

}

Assuming malloc returned memory from address 1000, the output of this sequence will

be 1000 and then 0. The second use of the safeFree macro with a NULL value does not
terminate the application, as the function detects and ignores it.

Function Pointers
A function pointer is a pointer that holds the address of a function. The ability of pointers
to point to functions turns out to be an important and useful feature of C. This provides
us with another way of executing functions in an order that may not be known at compile
time and without using conditional statements.

One concern regarding the use of function pointers is a potentially slower running
program. The processor may not be able to use branch prediction in conjunction with
pipelining. Branch prediction is a technique whereby the processor will guess which
multiple execution sequences will be executed. Pipelining is a hardware technology
commonly used to improve processor performance and is achieved by overlapping
instruction execution. In this scheme, the processor will start processing the branch it
believes will be executed. If the processor successfully predicts the correct branch, then
the instructions currently in the pipeline will not have to be discarded.

This slowdown may or may not be realized. The use of function pointers in situations
such as table lookups can mitigate performance issues. In this section, we will learn how
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to declare function pointers, see how they can be used to support alternate execution
paths, and explore techniques that exploit their potential.

Declaring Function Pointers
The syntax for declaring a pointer to a function can be confusing when you first see it.
As with many aspects of C, once you get used to the notation, things start falling into
place. Let’s start with a simple declaration. Below, we declare a pointer to a function that
is passed void and returns void:

   void (*foo)();

This declaration looks a lot like a function prototype. If we removed the first set of

parentheses, it would appear to be a function prototype for the function foo, which is
passed void and returns a pointer to void. However, the parentheses make it a function

pointer with a name of foo. The asterisk indicates that it is a pointer. Figure 3-9 highlights
the parts of a function pointer declaration.

Figure 3-9. Function pointer declaration

When function pointers are used, the programmer must be careful to
ensure it is used properly because C does not check to see whether the
correct parameters are passed.

Other examples of function pointer declarations are illustrated below:

int (*f1)(double);       // Passed a double and 

                         //    returns an int

void (*f2)(char*);       // Passed a pointer to char and 

                         //    returns void

double* (*f3)(int, int); // Passed two integers and 

                         //    returns a pointer to a double

One suggested naming convention for function pointers is to always

begin their name with the prefix: fptr.
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Do not confuse functions that return a pointer with function pointers. The following

declares f4 as a function that returns a pointer to an integer, while f5 is a function

pointer that returns an integer. The variable f6 is a function pointer that returns a pointer
to an integer:

int  *f4();

int  (*f5)();

int* (*f6)();

The whitespace within these expressions can be rearranged so that it reads as follows:

int*  f4();

int (*f5)();

It is clear that f4 is a function that returns a pointer to an integer. However, using

parentheses with f5 clearly bind the “pointer” asterisk to the function name, making it
a function pointer.

Using a Function Pointer
Below is a simple example using a function pointer where a function is passed an integer

and returns an integer. We also define a square function that squares an integer and
then returns the square. To simplify these examples, we ignore the possibility of integer
overflow.

int (*fptr1)(int);

int square(int num) {

    return num*num;

}

To use the function pointer to execute the square function, we need to assign the square
function’s address to the function pointer, as shown below. As with array names, when
we use the name of a function by itself, it returns the function’s address. We also declare
an integer that we will pass to the function:

    int n = 5;

    fptr1 = square;

    printf("%d squared is %d\n",n, fptr1(n));

When executed it will display: “5 squared is 25.” We could have used the address-of
operator with the function name as follows, but it is not necessary and is redundant.
The compiler will effectively ignore the address-of operator when used in this context.

    fptr1 = &square;

Figure 3-10 illustrates how memory is allocated for this example. We have placed the

square function below the program stack. This is for illustrative purposes only. Func‐
tions are allocated in a different segment than that used by the program stack. The
function’s actual location is normally not of interest.
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Figure 3-10. Location of functions

It is convenient to declare a type definition for function pointers. This is illustrated below
for the previous function pointer. The type definition looks a little bit strange. Normally,
the type definition’s name is the declaration’s last element:

typedef int (*funcptr)(int);

...

funcptr fptr2;

fptr2 = square;

printf("%d squared is %d\n",n, fptr2(n));

“Function Pointers and Strings” on page 130 provides an interesting example with respect
to using a function pointer to control how an array of strings is sorted.

Passing Function Pointers
Passing a function pointer is easy enough to do. Simply use a function pointer declara‐
tion as a parameter of a function. We will demonstrate passing a function pointer using

add, sub, and compute functions as declared below:

int add(int num1, int num2) {

   return num1 + num2; 

}

int subtract(int num1, int num2) {

   return num1 - num2; 

}

typedef int (*fptrOperation)(int,int);

int compute(fptrOperation operation, int num1, int num2) {
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    return operation(num1, num2);

}

The following sequence demonstrates these functions:

    printf("%d\n",compute(add,5,6));

    printf("%d\n",compute(sub,5,6));

The output will be an 11 and a –1. The add and sub function’s addresses were passed to

the compute function. These addresses were then used to invoke the corresponding
operation. This example also shows how code can be made more flexible through the
use of function pointers.

Returning Function Pointers
Returning a function pointer requires declaring the function’s return type as a function

pointer. To demonstrate how this is done, we will reuse the add and sub function along
with the type definition we developed in the section “Passing Function Pointers” on
page 74.

We will use the following select function to return a function pointer to an operation

based in a character input. It will return a pointer to either the add function or the

subtract function, depending on the opcode passed:

fptrOperation select(char opcode) {

    switch(opcode) {

        case '+': return add;

        case '-': return subtract;

    }

}

The evaluate function ties these functions together. The function is passed two integers

and a character representing the operation to be performed. It passes the opcode to the

select function, which returns a pointer to the function to execute. In the return state‐
ment, it executes this function and returns the result:

int evaluate(char opcode, int num1, int num2) {

    fptrOperation operation = select(opcode);

    return operation(num1, num2);

}

This function is demonstrated with the following printf statements:

   printf("%d\n",evaluate('+', 5, 6));

   printf("%d\n",evaluate('-', 5, 6));

The output will be an 11 and a –1.
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Using an Array of Function Pointers
Arrays of function pointers can be used to select the function to evaluate on the basis
of some criteria. Declaring such an array is straightforward. We simply use the function
pointer declaration as the array’s type, as shown below. The array is also initialized to

all NULLs. When a block of initialization values are used with an array, its values will be
assigned to consecutive elements of the array. If the number of values is less than the
size of the array, as in this example, the value is used to initialize every element of the
array:

typedef int (*operation)(int, int);

operation operations[128] = {NULL};

Alternatively, we can declare this array without using a typedef as shown below:

int (*operations[128])(int, int) = {NULL};

The intent of this array is to allow a character index to select a corresponding function
to execute. For example, the '*' character will identify the multiplication function if it
exists. We can use character indexes because a character literal is an integer. The 128
elements corresponds to the first 128 ASCII characters. We will use this definition in

conjunction with the add and subtract functions developed in the section “Returning
Function Pointers” on page 75.

Having initialized the array to all NULLs, we then assign the add and subtract functions
to the elements corresponding to the plus and minus signs:

void initializeOperationsArray() {

    operations['+'] = add;

    operations['-'] = subtract;

}

The previous evaluate function is rewritten as evaluateArray. Instead of calling the

select function to obtain a function pointer, we used the operations with the operation
character as an index:

int evaluateArray(char opcode, int num1, int num2) {

    fptrOperation operation;

    operation = operations[opcode];

    return operation(num1, num2);

}

Test the functions using the following sequence:

    initializeOperationsArray();

    printf("%d\n",evaluateArray('+', 5, 6));

    printf("%d\n",evaluateArray('-', 5, 6));

The results of executing this sequence are 11 and –1. A more robust version of the

evaluateArray function would check for null function pointers before trying to execute
the function.
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Comparing Function Pointers
Function pointers can be compared to one another using the equality and inequality

operators. In the following example, we use the fptrOperator type definition and the

add function from the section “Passing Function Pointers” on page 74. The add function

is assigned to the fptr1 function pointer and then compared against the add function’s
address:

    fptrOperation fptr1 = add;

    if(fptr1 == add) {

        printf("fptr1 points to add function\n");

    } else {

        printf("fptr1 does not point to add function\n");

    }

When this is executed, the output will verify that the pointer does point to the add
function.

A more realistic example of where the comparison of function pointers would be useful
involves an array of function pointers that represent the steps of a task. For example,
we may have a series of functions that manipulate an array of inventory parts. One set
of operations may be to sort the parts, calculate a cumulative sum of their quantities,
and then display the array and sum. A second set of operations may be to display the
array, find the most expensive and the least expensive, and then display their difference.
Each operation could be defined by an array of pointers to the individual functions. A
log operation may be present in both lists. The ability to compare two function pointers
would permit the dynamic modification of an operation by deleting the operation, such
as logging, by finding and then removing the function from the list.

Casting Function Pointers
A pointer to one function can be cast to another type. This should be done with care
since the runtime system does not verify that parameters used by a function pointer are
correct. It is also possible to cast a function pointer to a different function pointer and
then back. The resulting pointer will be equal to the original pointer. The size of function
pointers used are not necessarily the same. The following sequence illustrates this
operation:

    typedef int (*fptrToSingleInt)(int);

    typedef int (*fptrToTwoInts)(int,int);

    int add(int, int);

    

    fptrToTwoInts fptrFirst = add;

    fptrToSingleInt fptrSecond = (fptrToSingleInt)fptrFirst;

    fptrFirst = (fptrToTwoInts)fptrSecond;

    printf("%d\n",fptrFirst(5,6));
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This sequence, when executed, will display 11 as its output.

Conversion between function pointers and pointers to data is not guar‐
anteed to work.

The use of void* is not guaranteed to work with function pointers. That is, we should

not assign a function pointer to void* as shown below:

    void* pv = add;

However, when interchanging function pointers, it is common to see a “base” function

pointer type as declared below. This declares fptrBase as a function pointer to a func‐
tion, which is passed void and returns void:

    typedef void (*fptrBase)();

The following sequence demonstrate the use of this base pointer, which duplicates the
previous example:

    fptrBase basePointer;

    fptrFirst = add;

    basePointer = (fptrToSingleInt)fptrFirst;

    fptrFirst = (fptrToTwoInts)basePointer;

    printf("%d\n",fptrFirst(5,6));

A base pointer is used as a placeholder to exchange function pointer values.

Always make sure you use the correct argument list for function point‐
ers. Failure to do so will result in indeterminate behavior.

Summary
Understanding the program stack and heap structures contributes to a more detailed
and thorough understanding of how a program works and how pointers behave. In this
chapter, we examined the stack, the heap, and the stack frame. These concepts help
explain the mechanics of passing and returning pointers to and from a function.

For example, returning a pointer to a local variable is bad because the memory allocated
to the local variable will be overwritten by subsequent function calls. Passing a pointer
to constant data is efficient and prevents the function from modifying the data passed.
Passing a pointer to a pointer allows the argument pointer to be reassigned to a different
location in memory. The stack and heap helped detail and illustrate this functionality.

Function pointers were also introduced and explained. This type of pointer is useful for
controlling the execution sequence within an application by allowing alternate functions
to be executed based on the application’s needs.
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CHAPTER 4

Pointers and Arrays

An array is a fundamental data structure built into C. A thorough understanding of
arrays and their use is necessary to develop effective applications. Misunderstandings
of array and pointer usage can result in hard-to-find errors and less than optimal per‐
formance in applications. Array and pointer notations are closely related to each other
and can frequently be used interchangeably in the right context.

A common misconception is that an array and a pointer are completely interchangeable.
An array name is not a pointer. Although an array name can be treated as a pointer at
times, and array notation can be used with pointers, they are distinct and cannot always
be used in place of each other. Understanding this difference will help you avoid incor‐
rect use of these notations. For example, although the name of an array used by itself
will return the array’s address, we cannot use the name by itself as the target of an
assignment.

Arrays support many parts of an application and can be single or multidimensional. In
this chapter, we will address the fundamental aspects of arrays as they relate to pointers
to provide you with a deep understanding of arrays and the various ways they can be
manipulated with pointers. You will see their use in more advanced contexts throughout
the book.

We start with a quick review of arrays and then examine the similarities and differences

between array and pointer notation. Arrays can be created using malloc type functions.
These functions provide more flexibility than that afforded by traditional array decla‐

rations. We will see how the realloc function can be used to change the amount of
memory allocated for an array.

Dynamically allocating memory for an array can present challenges, especially when
we are dealing with arrays with two or more dimensions, as we have to ensure that the
array is allocated in contiguous memory.
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We will also explore problems that can occur when passing and returning arrays. In
most situations, the array’s size must be passed so the array can be properly handled in
a function. There is nothing inherent in an array’s internal representation that deter‐
mines its length. If we do not pass the length, the function has no standard means of
knowing where the array ends. We will also examine how to create jagged arrays in C,
although they are infrequently used. A jagged array is a two-dimensional array where
each row may have a different number of columns.

To demonstrate these concepts, we will use a vector for single-dimensional arrays and
a matrix for two-dimensional arrays. Vectors and matrices have found extensive use in
many areas, including analyzing electromagnetic fields, weather prediction, and in
mathematics.

Quick Review of Arrays
An array is a contiguous collection of homogeneous elements that can be accessed using
an index. By contiguous, we mean the elements of the array are adjacent to one another
in memory with no gaps between them. By homogeneous, we mean they are all of the
same type. Array declarations use a set of brackets and can possess multiple dimensions.

Two-dimensional arrays are common, and we typically use the terms rows and columns
to describe the position of an array’s element. Arrays with three or more dimensions
are not as common but can be quite useful in some applications. A two-dimensional
array is not to be confused with an array of pointers. They are similar but behave slightly
differently, as will be shown in the section“Using a One-Dimensional Array of Point‐
ers” on page 92.

Variable length arrays were introduced in C99 version of C. Previously, techniques using

the realloc function were used to support arrays whose sizes change. We illustrate the

realloc function in the section “Using the realloc Function to Resize an Array” on page
87.

Arrays have a fixed size. When we declare an array, we need to decide
how big it should be. If we specify too many elements, we waste space.
If we specify too few elements, we limit how many elements we can

process. The realloc function and variable length arrays provide tech‐
niques for dealing with arrays whose size needs to change. With a little
work, we can resize an array and use just the right amount of memory.

One-Dimensional Arrays
A one-dimensional array is a linear structure. It uses a single index to access its members.
The following is a declaration of a five-element array of integers:
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   int vector[5];

Array indexes start with 0 and end at one less than their declared size. Valid indexes for

the array vector start at 0 and end at 4. However, C does not enforce these bounds.
Using an invalid index for an array can result in unpredictable behavior. Figure 4-1
illustrates how the array is allocated in memory. Each element is four bytes in length
and is uninitialized. Depending on the memory model used, as explained in “Memory
Models” on page 16, the size may be different.

Figure 4-1. Array memory allocation

The internal representation of an array has no information about the number of ele‐
ments it contains. The array name simply references a block of memory. Using the

sizeof operator with an array will return the number of bytes allocated to the array. To
determine the number of elements, we divide the array’s size by its element’s size, as
illustrated below. This will display 5:

    printf("%d\n", sizeof(vector)/sizeof(int));

One-dimensional arrays can be readily initialized using a block type statement. In the
following sequence, each element is initialized to an integer starting at one:

    int vector[5] = {1, 2, 3, 4, 5};

Two-Dimensional Arrays
Two-dimensional arrays use rows and columns to identify array elements. This type of
array needs to be mapped to the one-dimension address space of main memory. In C
this is achieved by using a row-column ordering sequence. The array’s first row is placed
in memory followed by the second row, then the third row, and this ordering continues
until the last row is placed in memory.

The following declares a two-dimensional array with two rows and three columns. The
array is initialized using a block statement. Figure 4-2 illustrates how memory is allo‐
cated for this array. The diagram on the left shows how memory is mapped. The diagram
on the right shows how it can be viewed conceptually:

    int matrix[2][3] = {{1,2,3},{4,5,6}};
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Figure 4-2. Two-dimensional array

A two-dimensional array is treated as an array of arrays. That is, when we access the
array using only one subscript, we get a pointer to the corresponding row. This is
demonstrated in the following code sequence where each row’s address and size is
displayed:

    for (int i = 0; i < 2; i++) {

        printf("&matrix[%d]: %p  sizeof(matrix[%d]): %d\n", 

                i, &matrix[i], i, sizeof(matrix[i]));

    }

The following output assumes the array is located at address 100. The size is 12 because
each row has three elements of four bytes each:

&matrix[0]: 100 sizeof(matrix[0]): 12

&matrix[1]: 112 sizeof(matrix[1]): 12

In the section “Pointers and Multidimensional Arrays” on page 94, we will examine this
behavior in more detail.

Multidimensional Arrays
Multidimensional arrays have two or more dimensions. As with two-dimensional ar‐
rays, multiple sets of brackets define the array’s type and size. In the following example,
we define a three-dimensional array consisting of three rows, two columns, and a rank
of four. The term rank is often used to denote the elements of the third dimension:

    int arr3d[3][2][4] = {

        {{1, 2, 3, 4}, {5, 6, 7, 8}},

        {{9, 10, 11, 12}, {13, 14, 15, 16}},

        {{17, 18, 19, 20}, {21, 22, 23, 24}}

    };

The elements are allocated contiguously in row-column-rank order as illustrated in
Figure 4-3.
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Figure 4-3. Three-dimensional array

We will use these declarations in later examples.

Pointer Notation and Arrays
Pointers can be very useful when working with arrays. We can use them with existing
arrays or to allocate memory from the heap and then treat the memory as if it were an
array. Array notation and pointer notation can be used somewhat interchangeably.
However, they are not exactly the same as detailed in the section “Differences Between
Arrays and Pointers” on page 85.

When an array name is used by itself, the array’s address is returned. We can assign this
address to a pointer as illustrated below:

    int vector[5] = {1, 2, 3, 4, 5};

    int *pv = vector;

The variable pv is a pointer to the first element of the array and not the array itself. When

we first assigned a value to pv, we assigned the address of the array’s first element.

We can use either the array name by itself or use the address-of operator with the array’s
first element as illustrated below. These are equivalent and will return the address of

vector. Using the address-of operator is more verbose but also more explicit:

    printf("%p\n",vector);

    printf("%p\n",&vector[0]);

The expression &vector is sometimes used to obtain the address of an array. It differs
from the other notations in that it returns a pointer to the entire array. The other two
approaches yield a pointer to an integer. Instead of returning a pointer to an integer, it
returns a pointer to an array of integers. The use of this type will be illustrated in the
section “Passing a Multidimensional Array” on page 96.

We can also use array subscripts with pointers. Effectively, the notation pv[i] is eval‐
uated as:

   *(pv + i)
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The pointer pv contains the address of a block of memory. The bracket notation will

take the address contained in pv and adds the value contained in the index i using
pointer arithmetic. This new address is then dereferenced to return its contents.

As we discussed in the section “Pointer Arithmetic” on page 20, adding an integer to a
pointer will increment the address it holds by the product of the integer and the data
type’s size. The same is true if we add an integer to the name of an array. The following
two statements are equivalent:

   *(pv + i)

   *(vector + i)

Assume the vector is located at address 100 and pv is located at address 96. Table 4-1
and Figure 4-4 illustrate the use of array subscripts and pointer arithmetic with both
the array name and the pointer for various values.

Table 4-1. Array/pointer notation

Value Equivalent Expression

92 &vector[-2] vector - 2 &pv[-2] pv - 2

100 vector vector+0 &pv[0] pv

100 &vector[0] vector+0 &pv[0] pv

104 &vector[1] vector + 1 &pv[1] pv + 1

140 &vector[10] vector + 10 &pv[10] pv + 10

Figure 4-4. Array/pointer notation

When we add 1 to the array address we effectively add 4, the size of an integer, to the
address since this is an array of integers. With the first and last operations, we addressed
locations outside the array’s bounds. While this is not a good practice, it does emphasize
the need to be careful when using indexes or pointers to access elements of an array.

Array notation can be thought of as a “shift and dereference” operation. The expression

vector[2] means start with vector, which is a pointer to the beginning of the array, shift
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two positions to the right, and then dereference that location to fetch its value. Using

the address-of operator in conjunction with array notation, as in &vector[2], essentially
cancels out the dereferencing. It can be interpreted as go left two positions and then
return that address.

The following demonstrates the use of pointers in the implementation of the scalar
addition operation. This operation takes a value and multiplies it against each element
of the vector:

    pv = vector;

    int value = 3;

    for(int i=0; i<5; i++) {

        *pv++ *= value;

    }

Differences Between Arrays and Pointers
There are several differences between the use of arrays and the use of pointers to arrays.

In this section, we will use the vector array and pv pointer as defined below:

    int vector[5] = {1, 2, 3, 4, 5};

    int *pv = vector;

The code generated by vector[i] is different from the code generated by vector+i.

The notation vector[i] generates machine code that starts at location vector, moves

i positions from this location, and uses its content. The notation vector+i generates

machine code that starts at location vector, adds i to the address, and then uses the
contents at that address. While the result is the same, the generated machine code is
different. This difference is rarely of significance to most programmers.

There is a difference when the sizeof operator is applied to an array and to a pointer

to the same array. Applying the sizeof operator to vector will return 20, the number

of bytes allocated to the array. Applying the sizeof operator against pv will return 4,
the pointer’s size.

The pointer pv is an lvalue. An lvalue denotes the term used on the lefthand side of

an assignment operator. An lvalue must be capable of being modified. An array name

such as vector is not an lvalue and cannot be modified. The address assigned to an
array cannot be changed . A pointer can be assigned a new value and reference a different
section of memory.

Consider the following:

    pv = pv + 1;

    vector = vector + 1; // Syntax error

We cannot modify vector, only its contents. However, the expression vector+1 is fine,
as demonstrated below:
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    pv = vector + 1;

Using malloc to Create a One-Dimensional Array
If we allocate memory from the heap and assign the address to a pointer, there is no
reason we cannot use array subscripts with the pointer and treat this memory as an

array. In the following sequence, we duplicate the contents of the vector array used
earlier:

    int *pv = (int*) malloc(5 * sizeof(int));

    for(int i=0; i<5; i++) {

        pv[i] = i+1;

    }

We could have used pointer notation as shown below; however, the array notation is
often easier to follow:

    for(int i=0; i<5; i++) {

        *(pv+i) = i+1;

    }

Figure 4-5 illustrates how memory is allocated for this example.

Figure 4-5. Array allocated from the heap

This technique creates a region of memory and treats it as an array. Its size is determined
at runtime. However, we need to remember to deallocate the memory when we are
through with it.

In the previous example we used *(pv+i) instead of *pv+1. Since the
dereference operator has higher precedence than the plus operator, the
second expression’s pointer is dereferenced, giving us the value refer‐

enced by the pointer. We then add i to this integer value. This was not
what was intended. In addition, when we use this expression as an

lvalue, the compiler will complain. Thus, we need to force the addition
to be performed first, followed by the dereference operation, in order
for it to work correctly.
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Using the realloc Function to Resize an Array
We can resize an existing array created using malloc with the realloc function. The

essentials of the realloc function were detailed in Chapter 2. The C standard C99
supports variable length arrays. In some situations, this may prove to be a better solution

than using the realloc function. If you are not using C99, then the realloc function
will need to be used. Also, variable length arrays can only be declared as a member of a

function. If the array is needed longer than the function’s duration, then realloc will
need to be used.

To illustrate the realloc function, we will implement a function to read in characters
from standard input and assign them to a buffer. The buffer will contain all of the
characters read in except for a terminating return character. Since we do not know how
many characters the user will input, we do not know how long the buffer should be. We

will use the realloc function to allocate additional space by a fixed increment amount.
The code to implement this function is shown below:

char* getLine(void) {

    const size_t sizeIncrement = 10;

    char* buffer = malloc(sizeIncrement);

    char* currentPosition = buffer;

    size_t maximumLength = sizeIncrement;

    size_t length = 0;    

    int character;

    if(currentPosition == NULL) { return NULL; }

    while(1) {

        character = fgetc(stdin);

        if(character == '\n') { break; }

        if(++length >= maximumLength) {

            char *newBuffer = realloc(buffer, maximumLength += sizeIncrement);

            if(newBuffer == NULL) {

                free(buffer);

                return NULL;

            }

                        

            currentPosition = newBuffer + (currentPosition - buffer);

            buffer = newBuffer;

        }

        *currentPosition++ = character;

    }

    *currentPosition = '\0';

    return buffer;

}

We will start by defining a series of declarations as summarized in Table 4-2.
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Table 4-2. getLine variables

sizeIncrement The size of the initial buffer and the amount it will be incremented by when the buffer needs to be enlarged

buffer A pointer to the characters read in

currentPosition A pointer to the next free position in the buffer

maximumLength The maximum number of characters that can be safely stored in the buffer

length The number of characters read in

character The last character read in

The buffer is created with a size of sizeIncrement. If the malloc function is unable to

allocate memory, the first if statement will force the function to return NULL. An infinite
loop is entered where the characters are processed one at a time. When the loop exits,
a NUL is added to terminate the string and the buffer’s address is returned.

Within the while loop, a character is read in. If it is a carriage return, the loop is exited.

Next, the if statement determines whether we have exceeded the buffer’s size. Other‐
wise, the character is added to the current position within the buffer.

If we have exceeded the buffer’s size, the realloc function creates a new block of mem‐

ory. This block is sizeIncrement bytes larger than the old one. If it is unable to allocate
memory, we free up the existing allocated memory and force the function to return

NULL. Otherwise, currentPosition is adjusted to point to the right position within the
new buffer and we assign the variable buffer to point to the newly allocated buffer. The

realloc function will not necessarily keep your existing memory in place, so you have
to use the pointer it returns to figure out where your new, resized memory block is.

The variable newBuffer holds the allocated memory’s address. We needed a separate

variable, not buffer, in case the realloc was unable to allocate memory. This allows
us to detect and handle the condition.

We did not free buffer if realloc was successful because realloc will copy the original

buffer to the new buffer and free up the old buffer. If we had tried to free buffer, then
it would normally result in the program’s termination because we tried to free the same
block of memory twice.

Figure 4-6 illustrates memory being allocated for the getLine function with an input
string of “Once upon a time there was a giant pumpkin.” The program stack has been

simplified to ignore the local variables except for buffer and currentPosition. The
buffer has been extended four times, as indicated by the rectangle containing the input
string.
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Figure 4-6. Memory allocation for getLine function

The realloc function can also be used to decrease the amount of space used by a pointer.

To illustrate its use, the trim function shown below will remove leading blanks in a
string:

char* trim(char* phrase) {

    char* old = phrase;

    char* new = phrase;

    

    while(*old == ' ') {

        old++;

    }

    

    while(*old) {

        *(new++) = *(old++);

    }

    *new = 0;

    return (char*) realloc(phrase,strlen(phrase)+1);    

}

int main() {

    char* buffer = (char*)malloc(strlen("  cat")+1);

    strcpy(buffer,"  cat");

    printf("%s\n",trim(buffer));

}

The first while loop uses the tmp variable to skip over any leading blanks. The second

while loop copies the remaining characters in the string to the beginning of the string.

It will evaluate to true until NUL is reached, which will evaluate to false. A zero is then

added to terminate the string. The realloc function is then used to reallocate the
memory based on the string’s new length.

Figure 4-7 illustrates the function’s use with an original string of “cat.” The state of string

before and after the trim function executes is shown. The memory in red is the old
memory and should not be accessed.
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Figure 4-7. Realloc example

Passing a One-Dimensional Array
When a one-dimensional array is passed to a function, the array’s address is passed by
value. This makes the transfer of information more efficient since we are not passing
the entire array and having to allocate memory in the stack for it. Normally, this means
the array’s size must be passed. If we don’t, from the function’s perspective all we have
is the address of an array with no indication of its size.

Unless there is something integral to the array to tell us its bounds, we need to pass the
size information when we pass the array. In the case of a string stored in an array, we

can rely on the NUL termination character to tell us when we can stop processing the
array. We will examine this in Chapter 5. Generally, if we do not know the array’s size,
we are unable to process its elements and can wind up working with too few elements
or treating memory outside of the array as if it were part of the array. This will frequently
result in abnormal program termination.

We can declare the array in the function declaration using one of two notations: array
notation or pointer notation.

Using Array Notation
In the following example, an integer array is passed to a function along with its size. Its
contents are then displayed:

void displayArray(int arr[], int size) {

    for (int i = 0; i < size; i++) {

        printf("%d\n", arr[i]);

    }

}

    int vector[5] = {1, 2, 3, 4, 5};

    displayArray(vector, 5);
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The sequence’s output will be the numbers 1 through 5.We passed the number 5 to the
function that indicates its size. We could have passed any positive number and the
function would attempt to display the corresponding number of elements, regardless
of whether the size was correct. The program may terminate if we attempt to address
memory outside of the array’s bounds. The memory allocation for this example is shown
in Figure 4-8.

Figure 4-8. Using array notation

A common mistake is to use the sizeof operator with the array in order
to determine its number of elements, as shown below. However, as ex‐
plained in the section“One-Dimensional Arrays” on page 80, this is not
the correct way of determining its size. In this case, we would be passing
the value of 20 to the array.

    displayArray(arr, sizeof(arr));

It is a common practice to pass a size smaller than the actual number of elements in an
array. This is done to process only part of an array. For example, assume we read in a

series of ages into an array but did not fill up the array. If we called a sort function to
sort it, we would only want to sort the valid ages, not every array element.

Using Pointer Notation
We do not have to use the bracket notation when declaring an array parameter of a
function. Instead, we can use pointer notation as follows:

void displayArray(int* arr, int size) {

    for (int i = 0; i < size; i++) {

        printf("%d\n", arr[i]);

    }

}
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We continued to use array notation within the function. If desired, we could have used
pointer notation in the function:

void displayArray(int* arr, int size) {

    for (int i = 0; i < size; i++) {

        printf("%d\n", *(arr+i));

    }

}

If we had used array notation to declare the function, we could have still used pointer
notation in the function’s body:

void displayArray(int arr[], int size) {

    for (int i = 0; i < size; i++) {

        printf("%d\n", *(arr+i));

    }

}

Using a One-Dimensional Array of Pointers
In this section, we will examine the key aspects of using an array of pointers by using
an array of pointers to integer. Examples of array of pointers can also be found in:

• “Using an Array of Function Pointers” on page 76, where we use an array of function
pointers;

• “How Memory Is Allocated for a Structure” on page 135, where an array of structures
is used; and

• “Passing Arguments to an Application” on page 125, where the argv array is handled.

The purpose of this section is to set the stage for later examples by illustrating the essence
of the approach. The following sequence declares an array of integer pointers, allocates
memory for each element, and initializes this memory to the array’s index:

    int* arr[5];

    for(int i=0; i<5; i++) {

        arr[i] = (int*)malloc(sizeof(int));

        *arr[i] = i;

    }

If this array was displayed, the numbers 0 through 4 would be printed. We used arr[i]

to reference the pointer and *arr[i] to assign a value to the location referenced by the

pointer. Do not let the use of array notation confuse you. Since arr was declared as an

array of pointers, arr[i] returns an address. When we dereference a pointer such as

*arr[i], we get the contents at that address.

We could have used the following equivalent pointer notation for the loop’s body:

        *(arr+i) = (int*)malloc(sizeof(int));

        **(arr+i) = i;
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This notation is harder to follow, but understanding it will further your C expertise. We
are using two levels of indirection in the second statement. Mastery of this type of
notation will separate you from the less experienced C programmers.

The subexpression (arr+i) represents the address of the array’s ith element. We need to

modify the content of this address so we use the subexpression *(arr+i). The allocated
memory is assigned to this location in the first statement. Dereferencing this subex‐
pression a second time, as we do in the second statement, returns the allocated memory’s

location. We then assign the variable i to it. Figure 4-9 illustrates how memory is
allocated.

For example, arr[1] is located at address 104. The expression (arr+1) will give us 104.

Using *(arr+1) gives us its content. In this example, it is the pointer 504. Dereferencing

this a second time using **(arr+1) gives us the contents of 504, which is a 1.

Figure 4-9. Array of pointers

Example expressions are listed in Table 4-3. Reading pointer expression from left to
right and not ignoring parentheses can help in understanding how they work.

Table 4-3. Array of pointers expressions

Expression Value

*arr[0] 0

**arr 0

**(arr+1) 1

arr[0][0] 0

arr[3][0] 3

The first three expressions are similar to those in the previous explanation. The last two
are different. The use of a pointer to a pointer notation suggests we are dealing with an
array of pointers. In effect, this is what we are doing. If we reexamine Figure 4-9 and

pretend each element of arr points to an array of size one, then the last two expressions
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make sense. What we have is a five-element array of pointers to a series of one-element
arrays.

The expression arr[3][0] refers to the fourth element of arr and then the first element

of the array it points to. The expression arr[3][1] does not work because the array the
fourth element is pointing to does not have two elements.

This suggests the ability to create jagged arrays. This is indeed possible and is the subject
of the section“Jagged Arrays and Pointers” on page 102.

Pointers and Multidimensional Arrays
Parts of multidimensional arrays can be treated as subarrays. For example, each row of
a two-dimensional array can be treated as a one-dimensional array. This behavior affects
how we use pointers when dealing with multidimensional arrays.

To illustrate this behavior, we create a two-dimensional array and initialize it as follows:

   int matrix[2][5] = {{1,2,3,4,5},{6,7,8,9,10}};

The addresses and their corresponding values are then displayed:

   for(int i=0; i<2; i++) {

      for(int j=0; j<5; j++) {

         printf("matrix[%d][%d]  Address: %p  Value: %d\n",

                    i, j, &matrix[i][j], matrix[i][j]);

      }

   }

The output follows:

matrix[0][0]  Address: 100  Value: 1

matrix[0][1]  Address: 104  Value: 2

matrix[0][2]  Address: 108  Value: 3

matrix[0][3]  Address: 112  Value: 4

matrix[0][4]  Address: 116  Value: 5

matrix[1][0]  Address: 120  Value: 6

matrix[1][1]  Address: 124  Value: 7

matrix[1][2]  Address: 128  Value: 8

matrix[1][3]  Address: 132  Value: 9

matrix[1][4]  Address: 136  Value: 10

The array is stored in row-column order. That is, the first row is stored sequentially in
memory followed by the second row. The memory allocation is illustrated in
Figure 4-10.

We can declare a pointer for use with this array as follows:

   int (*pmatrix)[5] = matrix;
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Figure 4-10. Two-dimensional array memory allocation

The expression, (*pmatrix), declares a pointer to an array. Combined with the rest of

the declaration, pmatrix is defined as a pointer to a two-dimensional array of integers
with five elements per column. If we had left the parentheses off, we would have declared
a five-element array of pointers to integers. The size of the first dimension is 2 since we

know the dimensions of the matrix. If a different size is used to access the array, then
the results are unpredictable.

If we want to access the second element, 2, using pointer notation, it might seem rea‐
sonable to use the following:

    printf("%p\n", matrix);

    printf("%p\n", matrix + 1);

The output follows:

100

120

The address returned by matrix+1 is not offset by 4 from the beginning of the array.

Instead, it is offset by the first row’s size, 20 bytes. Using matrix by itself returns the
address of the array’s first element. Since a two-dimensional array is an array of arrays,
we get the address of a five-element integer array. Its size is 20. We can verify this with
the following statement, which will display 20:

    printf("%d\n",sizeof(matrix[0]));  // Displays 20

To access the array’s second element, we need to add 1 to the first row of the array as

follows: *(matrix[0] + 1). The expression, matrix[0], returns the address of the first
element of the first row of the array. This address is the address of an array of integers.
Thus, when we add one to it, the size of a single integer is added to it, giving us the
second element. The output will be 104 and 2.

   printf("%p  %d\n", matrix[0] + 1, *(matrix[0] + 1));

We can graphically depict the array as illustrated in Figure 4-11.
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Figure 4-11. Graphically depiction of a two-dimensional array

Two-dimensional array notation can be interpreted as shown in Figure 4-12.

Figure 4-12. Two-dimensional array notation

Passing a Multidimensional Array
Passing a multidimensional array to a function can be confusing, especially when point‐
er notation is used. When passing a multidimensional array, we need to determine
whether to use array notation or pointer notation in the function’s signature. Another
consideration is how to convey the array’s shape. By shape, we are referring to the num‐
ber and size of its dimensions. If we want to use array notation within the function, it
is imperative to specify the array’s shape. Otherwise, the compiler is unable to use
subscripts.

To pass the matrix array, use either:

void display2DArray(int arr[][5], int rows) {

or:

void display2DArray(int (*arr)[5], int rows) {

In both versions the number of columns is specified. This is needed because the compiler
needs to know the number of elements in each row. If this information is not passed,

then it is unable to evaluate expressions such as arr[0][3] as explained in the section
“Pointers and Multidimensional Arrays” on page 94.

In the first version, the expression arr[] is an implicit declaration of a pointer to an

array. In the second version, the expression (*arr) is an explicit declaration of the
pointer.

The following declaration will not work correctly:

void display2DArray(int *arr[5], int rows) {

While it will not generate a syntax error, the array passed is assumed to
be a five-element array of pointers to integers. “Using a One-
Dimensional Array of Pointers” on page 92 discusses arrays of pointers.
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A simple implementation of this function and invocation follows:

void display2DArray(int arr[][5], int rows) {

    for (int i = 0; i<rows; i++) {

        for (int j = 0; j<5; j++) {

            printf("%d", arr[i][j]);

        }

        printf("\n");

    }

}

void main() {

    int matrix[2][5] = {

        {1, 2, 3, 4, 5},

        {6, 7, 8, 9, 10}

    };

    display2DArray(matrix, 2);

}

The function does not allocate memory for the array. Only the address is passed. The
program stack’s state for this call is shown in Figure 4-13.

Figure 4-13. Passing multidimensional array

You may encounter a function declared as follows. It is passed a single pointer and the
number of rows and columns:

void display2DArrayUnknownSize(int *arr, int rows, int cols) {

    for(int i=0; i<rows; i++) {

        for(int j=0; j<cols; j++) {

            printf("%d ", *(arr + (i*cols) + j));

        }

        printf("\n");

    }

}
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The printf statement calculates the address of each element by adding to arr the num‐

ber of elements in the previous row(s), (i*cols), and then adding j to specify the
column. To invoke the function, we can use the following:

    display2DArrayUnknownSize(&matrix[0][0], 2, 5);

Within the function, we cannot use array subscripts as shown below:

    printf("%d ", arr[i][j]);

This is not possible because the pointer is not declared as a two-dimensional array.
However, it is possible to use array notation as shown below. We can use a single sub‐
script since it will be interpreted simply as an offset within the array, whereas two sub‐
scripts cannot be used because the compiler doesn’t know the size of the dimensions:

    printf("%d ", (arr+i)[j]);

The first element’s address is passed using &matrix[0][0] instead of matrix. While

using matrix will execute correctly, a warning will be generated, indicating incompatible

pointer types. The expression &matrix[0][0] is a pointer to an integer, whereas matrix
is a pointer to an array of integers.

When passing an array with more than two dimensions, all but the size of the first
dimension need to be specified. The following demonstrates a function written to dis‐
play a three-dimensional array. The last two dimensions are specified in the declaration:

void display3DArray(int (*arr)[2][4], int rows) {

    for(int i=0; i<rows; i++) {

        for(int j=0; j<2; j++) {

            printf("{");

            for(int k=0; k<4; k++) {

                printf("%d ", arr[i][j][k]);

            }

            printf("}");

        }

        printf("\n");

    }

}

The following code shows the function’s invocation:

    int arr3d[3][2][4] = {

        {{1, 2, 3, 4}, {5, 6, 7, 8}},

        {{9, 10, 11, 12}, {13, 14, 15, 16}},

        {{17, 18, 19, 20}, {21, 22, 23, 24}}

    };

    display3DArray(arr3d,3);

The output follows:
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{1 2 3 4 }{5 6 7 8 }

{9 10 11 12 }{13 14 15 16 }

{17 18 19 20 }{21 22 23 24 }

Allocation of the array’s memory is depicted in Figure 4-14.

Figure 4-14. Three-dimensional array

The expression arr3d[1] refers to the array’s second row and is a pointer to a two-

dimensional array with two rows and four columns. The expression arr3d[1][0] refers
to the second row, first column of the array and is a pointer to a one-dimensional array
of size 5.

Dynamically Allocating a Two-Dimensional Array
Several issues are involved with dynamically allocating memory for a two-dimensional
array, including:

• Whether the array elements need to be contiguous

• Whether the array is jagged

Memory is allocated contiguously when a two-dimensional array is declared as follows:

   int matrix[2][5] = {{1,2,3,4,5},{6,7,8,9,10}};

However, when we use a function such as malloc to create a two-dimensional array,
there are variations in how memory can be allocated. Since a two-dimensional array
can be treated as an array of arrays, there is no reason the “inner” arrays need to be
contiguous. When array subscripts are used with such an array, the array’s noncontig‐
uous nature is handled transparently.

Whether or not it is contiguous can affect other operations, such as
copying a block of memory. Multiple copies may be required if the
memory is not contiguous.
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Allocating Potentially Noncontiguous Memory
The following illustrates one way of allocating a two-dimensional array where the al‐
located memory is not guaranteed to be contiguous. First, the “outer” array is allocated

and then each row is allocated using separate malloc statements:

    int rows = 2;

    int columns = 5;

    

    int **matrix = (int **) malloc(rows * sizeof(int *));

    

    for (int i = 0; i < rows; i++) {

        matrix[i] = (int *) malloc(columns * sizeof(int));

    }

Since separate malloc calls were used, the allocated memory is not guaranteed to be
contiguous. This is illustrated in Figure 4-15.

Figure 4-15. Noncontiguous allocation

The actual allocation depends on the heap manager and the heap’s state. It may well be
contiguous.

Allocating Contiguous Memory
We will present two approaches for allocating contiguous memory for a two-
dimensional array. The first technique allocates the “outer” array first and then all of
the memory for the rows. The second technique allocates all of the memory at once.

The first technique is illustrated in the following sequence. The first malloc allocates
an array of pointers to integers. Each element will be used to hold a pointer to a row.

This is the block allocated at address 500 in Figure 4-16. The second malloc allocates

memory for all of the elements of the array at location 600. In the for loop, each element

of the first array is assigned a portion of the memory allocated by the second malloc:
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    int rows = 2;

    int columns = 5;

    int **matrix = (int **) malloc(rows * sizeof(int *));

    matrix[0] = (int *) malloc(rows * columns * sizeof(int));

    for (int i = 1; i < rows; i++)

        matrix[i] = matrix[0] + i * columns;

Figure 4-16. Contiguous allocation with two malloc calls

Technically, the memory for the first array may be separated from the memory for the
array’s “body.” However, a contiguous region of memory is allocated for the body.

In the second technique shown below, all of the memory for the array is allocated at one
time:

    int *matrix = (int *)malloc(rows * columns * sizeof(int));

This allocation is illustrated in Figure 4-17.

Figure 4-17. Contiguous allocation with a single malloc call

When the array is referenced later in code, array subscripts cannot be used. Instead,
indexes into the array need to be calculated manually, as illustrated in the following code
sequence. Each array element is initialized to the product of its indexes:
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    for (int i = 0; i < rows; i++) {

        for (int j = 0; j < columns; j++) {

            *(matrix + (i*columns) + j) = i*j;

        }

    }

Array subscripts cannot be used because we have lost the shape information needed by
the compiler to permit subscripts. This concept is explained in the section “Passing a
Multidimensional Array” on page 96.

This approach has limited use in the real world, but it does illustrate the relationship
between the concept of a two-dimensional array and the one-dimensional nature of
main memory. The more convenient two-dimensional array notation makes this map‐
ping transparent and easier to use.

We have demonstrated two general approaches for allocating contiguous memory for
a two-dimensional array. The approach to use depends on the needs of the application.
However, the last approach generates a single block of memory for the “entire” array.

Jagged Arrays and Pointers
A jagged array is a two-dimensional array possessing a different number of columns for
each row. Conceptually, this is illustrated in Figure 4-18, where the array has three rows
with a varying number of columns per row.

Figure 4-18. Jagged array

Before we learn how to create such an array, let’s examine a two-dimensional array
created using compound literals. A compound literal is a C construct that consists of
what appears to be a cast operator followed by an initializer list enclosed in braces. An
example of a compound literal follows for both a constant integer and an array of inte‐
gers. These would be used as part of a declaration:

(const int) {100}

(int[3]) {10, 20, 30}

In the following declaration, we create the array arr1 by declaring it as an array of
pointers to an integer and using a block statement of compound literals to initialize it:

    int (*(arr1[])) = {

        (int[]) {0, 1, 2},
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        (int[]) {3, 4, 5},

        (int[]) {6, 7, 8}};

This array has three rows and three columns. The array’s elements are initialized with
the value 0 through 8 in row column order. Figure 4-19 depicts how memory is laid out
for this array.

Figure 4-19. Two-dimensional array

The following sequence displays the addresses and values of each array element:

    for(int j=0; j<3; j++) {

        for(int i=0; i<3; i++) {

            printf("arr1[%d][%d]  Address: %p  Value: %d\n", 

                    j, i, &arr1[j][i], arr1[j][i]);

        }

        printf("\n");

    }

When executed, we will get the following output:

arr1[0][0]  Address: 0x100  Value: 0

arr1[0][1]  Address: 0x104  Value: 1

arr1[0][2]  Address: 0x108  Value: 2

arr1[1][0]  Address: 0x112  Value: 3

arr1[1][1]  Address: 0x116  Value: 4

arr1[1][2]  Address: 0x120  Value: 5

arr1[2][0]  Address: 0x124  Value: 6

arr1[2][1]  Address: 0x128  Value: 7

arr1[2][2]  Address: 0x132  Value: 8

This declaration can be modified slightly to create a jagged array as depicted in
Figure 4-18. The array declaration follows:

    int (*(arr2[])) = {

        (int[]) {0, 1, 2, 3},

        (int[]) {4, 5},

        (int[]) {6, 7, 8}};
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We used three compound literals to declare the jagged array. The array’s elements are
initialized in row-column order starting with a value of zero. The next sequence will

display the array to verify its creation. The sequence required three for loops because
each row had a different number of columns:

    int row = 0;

    for(int i=0; i<4; i++) {

        printf("layer1[%d][%d]  Address: %p  Value: %d\n", 

                row, i, &arr2[row][i], arr2[row][i]);

    }

    printf("\n"); 

    row = 1;

    for(int i=0; i<2; i++) {

        printf("layer1[%d][%d]  Address: %p  Value: %d\n", 

                row, i, &arr2[row][i], arr2[row][i]);

    }

    printf("\n");

    row = 2;

    for(int i=0; i<3; i++) {

        printf("layer1[%d][%d]  Address: %p  Value: %d\n", 

                row, i, &arr2[row][i], arr2[row][i]);

    }

    printf("\n");

The output of this sequence follows:

arr2[0][0]  Address: 0x000100  Value: 0

arr2[0][1]  Address: 0x000104  Value: 1

arr2[0][2]  Address: 0x000108  Value: 2

arr2[0][3]  Address: 0x000112  Value: 3

arr2[1][0]  Address: 0x000116  Value: 4

arr2[1][1]  Address: 0x000120  Value: 5

arr2[2][0]  Address: 0x000124  Value: 6

arr2[2][1]  Address: 0x000128  Value: 7

arr2[2][2]  Address: 0x000132  Value: 8

Figure 4-20 depicts how memory is laid out for this array.
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Figure 4-20. Jagged array memory allocation

In these examples, we used array notation as opposed to pointer notation when accessing
the array’s contents. This made it somewhat easier to see and understand. However,
pointer notation would have worked as well.

Compound literals are useful in creating jagged arrays. However, accessing elements of
a jagged array can be awkward, as demonstrated with the previous three for loops. This
example can be simplified if a separate array is used to maintain the size of each column.
While you can create jagged arrays in C, it may not be worth the effort.

Summary
We started with a quick review of arrays and then examined the similarities and differ‐

ences between array and pointer notation. Arrays can be created using malloc type
functions. These type of functions provide more flexibility than afforded by traditional

array declaration. We saw how we can use the realloc function to change the amount
of memory allocated for an array.

Dynamically allocating memory for an array can present challenges. In the case with
two or more dimensional arrays, we have to be careful to make sure the array is allocated
in contiguous memory.

We also explored the problems that can occur when passing and returning arrays. Pass‐
ing the array’s size to a function is normally required so the function can properly handle
the array. We also examined how to create jagged arrays in C.
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CHAPTER 5

Pointers and Strings

Strings can be allocated to different regions of memory and pointers are commonly
used to support string operations. Pointers support the dynamic allocation of strings
and passing strings to a function. A good understanding of pointers and their use with
strings enables programmers to develop valid and efficient applications.

Strings are a common component of many applications and are a complex topic. In this
chapter, we will explore the various ways of declaring and initializing strings. We will
examine the use of literal pools in C applications and their impact. In addition, we will
look at common string operations, such as comparing, copying, and concatenating
strings.

Strings are regularly passed and returned to functions as pointers to char. When we

pass a string, we can do so either as a pointer to a char or a pointer to a constant char.
The latter approach protects the string from modification within the function. Many
examples used in this chapter provide additional illustrations of the concepts developed
in the function chapter. They differ as they do not need to pass their size to a function.

A string may also be returned from a function to fulfill a request. This string may be
passed to the function to be modified or allocated from within the function. We could
also return a statically allocated string. Each of these approaches will be examined.

We will also examine the use of function pointers and how they can assist sorting op‐
erations. Understanding how pointers work in these situations is the primary focus of
this chapter.

String Fundamentals
A string is a sequence of characters terminated with the ASCII NUL character. The ASCII

character NUL is represented as \0. Strings are commonly stored in arrays or in memory
allocated from the heap. However, not all arrays of characters are strings. An array of
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char may not contain the NUL character. Arrays of char have been used to represent
smaller integer units, such as boolean, to conserve memory space in an application.

There are two types of strings in C:

Byte string

Consists of a sequence of char data type

Wide string

Consists of a sequence of wchar_t data type

The wchar_t data type is used for wide characters and may be either 16 or 32 bits in

width. Both of these strings are terminated by the NUL character. Byte string functions
are found in the string.h file. Wide string functions are found in the wchar.h file. Unless
otherwise noted, we will be using byte strings in this chapter. Wide chars were created
to support non-Latin character sets and are useful in applications that support foreign
languages.

The length of a string is the number of characters in the string. This does not include

the NUL character. When memory is allocated for a string, remember to allocate enough

memory for all of the characters plus the NUL character.

Remember that NULL and NUL are different. NULL is used as a special

pointer and is typically defined as ((void*)0). NUL is a char and is

defined as '\0'. They should not be used interchangeably.

Character constants are character sequences enclosed in single quotes. Normally, they
consist of a single character but can contain more than one character, as found with

escape sequences. In C, they are of type int. This is demonstrated as follows:

    printf("%d\n",sizeof(char));

    printf("%d\n",sizeof('a'));

When executed, the size of char will be 1 while the character literal’s size will be 4. This
anomaly is an artifact of the language design.

String Declaration
String declarations are supported in one of three ways: either as a literal, as an array of
characters, or using a pointer to a character. The string literal is a sequence of characters
enclosed in double quotes. String literals are frequently used for initialization purposes.
They are located in a string literal pool discussed in the next section.

String literals are not to be confused with characters enclosed in single quotes—these
are character literals. As we will see in later sections, when used in place of string literals,
character literals can cause problems.
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An array of characters is illustrated below where we declare a header array whose size

may hold up to 31 characters. Since a string requires the NUL termination character, an
array declared to have 32 characters can only use 31 elements for the actual string’s text.
The string’s location depends on where the declaration is placed. We will explore this
issue in the section “String Initialization” on page 110.

    char header[32];

A pointer to a character is illustrated below. Since it has not been initialized, it does not
reference a string. The string’s length and location are not specified at this time.

    char *header;

The String Literal Pool
When literals are defined they are frequently assigned to a literal pool. This area of
memory holds the character sequences making up a string. When a literal is used more
than once, there is normally only a single copy of the string in the string literal pool.
This will reduce the amount of space needed for the application. Since a literal is nor‐
mally considered to be immutable, it does not hurt to have a single copy of it. However,
it is not a good practice to assume there will only be a single copy or that literals are
immutable. Most compilers provide an option to turn off string pooling. When this
happens, literals may be duplicated, each having their own address.

GCC uses a -fwritable-strings option to turn off string pooling. In

Microsoft Visual Studio, the /GF option will turn on string pooling.

Figure 5-1 illustrates how memory may be allocated for a literal pool.

Figure 5-1. String literal pool
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String literals are frequently allocated to read-only memory. This makes them immut‐
able. It doesn’t matter where a string literal is used or whether it is global, static, or local.
In this sense, string literals do not have scope.

When a string literal is not a constant

In most compilers, a string literal is treated as a constant. It is not possible to modify
the string. However, in some compilers, such as GCC, modification of the string literal
is possible. Consider the following example:

    char *tabHeader  = "Sound";

    *tabHeader = 'L';

    printf("%s\n",tabHeader);   // Displays "Lound"

This will modify the literal to “Lound.” Normally, this is not desirable and should be
avoided. Making the variable a constant as follows will provide a partial solution to this
problem. Any attempt to modify the string will result in a compile-time error.

    const char *tabHeader  = "Sound";

String Initialization
When we initialize a string, the approach we use depends on whether the variable is
declared as an array of characters or as a pointer to a character. The memory used for
a string will be either an array or a memory pointed to by a pointer. When a string is
initialized, we can use a string literal or a series of characters, or obtain the characters
from a different source such as standard input. We will examine these approaches.

Initializing an array of char

An array of char can be initialized using the initialization operator. In the following
example, a header array is initialized to the character contained in a string literal:

    char header[] = "Media Player";

Since the literal “Media Player” is 12 characters in length, 13 bytes are required to rep‐
resent the literal. The array is allocated 13 bytes to hold the string. The initialization will

copy these characters to the array terminated by the NUL character, as illustrated in

Figure 5-2, assuming the declaration is located in the main function.

An array can also be initialized using strcpy function, which is discussed in detail in
the section “Copying Strings” on page 116. In the following sequence, the string literal is
copied to the array.

    char header[13];

    strcpy(header,"Media Player");
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Figure 5-2. Initializing an array of char

A more tedious technique assigns individual characters as follows:

    header[0] = 'M';

    header[1] = 'e';

        ...

    header[12] = '\0';

The following assignment is invalid. We cannot assign the address of a
string literal to an array name.

    char header2[];

    header2 = "Media Player";

Initializing a pointer to a char

Using dynamic memory allocation provides flexibility and potentially allows the
memory to stay around longer. The following declaration will be used to illustrate this
technique:

    char *header;

A common way to initialize this string is to use the malloc and strcpy functions to
allocate and copy a literal to the string, as illustrated below:

    char *header = (char*) malloc(strlen("Media Player")+1);

    strcpy(header,"Media Player");

Assuming that the code is located in the main function, Figure 5-3 shows the state of
the program stack.
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Figure 5-3. Initializing a pointer to a char

In the previous use of the malloc function, we used the strlen function with a string
literal argument. We could have declared its size explicitly as shown below:

    char *header = (char*) malloc(13);

When determining the length of a string to be used with the malloc
function:

• Always remember to add one for the NUL terminator.

• Don’t use sizeof operator. Instead, use the strlen function to de‐

termine the length of an existing string. The sizeof operator will
return the size of an array or pointer, not the length of the string.

Instead of using a string literal and strcpy function to initialize the string, we can use
the following:

    *(header + 0) = 'M';

    *(header + 1) = 'e';

        ...

    *(header + 12) = '\0';

The address of a string literal can be assigned directly to a character pointer as shown
below. However, this does not create a new copy of the string as illustrated in Figure 5-4:

    char *header = "Media Player";
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Figure 5-4. Copying a string literal’s address to a pointer

Attempting to initialize a pointer to a char with a character literal will

not work. Since a character literal is of type int, we would be trying to
assign an integer to a character pointer. This will frequently cause the
application to terminate when the pointer is dereferenced:

    char* prefix = '+';   // Illegal

A valid approach using the malloc function follows:

    prefix = (char*)malloc(2);

    *prefix = '+';

    *(prefix+1) = 0;

Initializing a string from standard input

A string can also be initialized from some external source such as standard input. How‐
ever, potential initialization errors can occur when reading in a string from standard
input, as shown below. The problem exists because we have not assigned memory to

the command variable before attempting to use it:

    char *command;

    printf("Enter a Command: ");

    scanf("%s",command);

To address this problem, we should first allocate memory for the pointer or use a fixed
size array instead of a pointer. However, the user may enter more data than can be held
by these approaches. A more robust approach is illustrated in Chapter 4.

Summary of string placement

Strings can be allocated in several potential locations. The following example illustrates
possible variations with Figure 5-5 illustrates how these strings are laid out in memory:

char* globalHeader = "Chapter";

char globalArrayHeader[] = "Chapter";

void displayHeader() {
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    static char* staticHeader = "Chapter";

    char* localHeader = "Chapter";

    static char staticArrayHeader[] = "Chapter";

    char localArrayHeader[] = "Chapter";

    char* heapHeader = (char*)malloc(strlen("Chapter")+1);

    strcpy(heapHeader,"Chapter");

}

Knowing where a string is located is useful when attempting to understand how a pro‐
gram works and when using pointers to access the strings. A string’s location determines
how long it will persist and which parts of an application can access it. For example,
strings allocated to global memory will always be available and are accessible by multiple
functions. Static strings will always be available but are accessible only to their defining
function. Strings allocated to the heap will persist until they are released and may be
used in multiple functions. Understanding these issues allows you to make informed 
decisions.

Figure 5-5. String allocation in memory

Standard String Operations
In this section, we will examine the use of pointers in common string operations. This
includes comparing, copying, and concatenating strings.
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Comparing Strings
String comparisons can be an integral part of an application. We will examine the details
of how string comparisons are made, as incorrect comparisons can result in misleading
or invalid results. Understanding how comparisons are made will help you avoid in‐
correct operations. This understanding will transfer to similar situations.

The standard way to compare strings is to use the strcmp function. Its prototype follows:

int strcmp(const char *s1, const char *s2);

Both of the strings being compared are passed as pointers to constant chars. This allows
us to use the function without fear of it modifying the strings passed. This function
returns one of three values:

Negative

If s1 precedes s2 lexicographically (alphabetically)

Zero
If the two strings are equal

Positive

If s1 follows s2 lexicographically

The positive and negative return values are useful for sorting strings in alphabetical
order. The use of this function to test equality is illustrated below. The user’s entry will

be stored in command. This is then compared to the literal string:

    char command[16];

    printf("Enter a Command: ");

    scanf("%s", command);

    if (strcmp(command, "Quit") == 0) {

        printf("The command was Quit");

    } else {

        printf("The command was not Quit");

    }

Memory for this example is allocated as shown in Figure 5-6.

There are a couple of incorrect ways to compare two strings. The first approach shown
below attempts to use the assignment operator to perform the comparison:

    char command[16];

    

    printf("Enter a Command: ");

    scanf("%s",command);

    if(command = "Quit") {

       ...

First, it does not perform a comparison, and second, this will result in a syntax error
message complaining about incompatible types. We cannot assign the address of a string
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Figure 5-6. strcmp example

literal to the array name. In this example, we tried to assign the string literal’s address,

600, to command. Since command is an array, it is not possible to assign a value to this
variable without using array subscripts.

The second approach is to use the equality operator:

    char command[16];

    

    printf("Enter a Command: ");

    scanf("%s",command);

    if(command == "Quit") {

       ...

This should evaluate false since we are comparing the address of command, 300, with the
string literal’s address, 600. The equality operator compares the addresses, not what is
stored at the addresses. Using an array name or a string literal by themselves will return
their addresses.

Copying Strings
Copying strings is a common operation and is normally accomplished using the strcpy
function whose prototype follows:

char* strcpy(char *s1, const char *s2);

In this section, we will cover the basic copying process and identify common pitfalls.
We will assume there is a need to copy an existing string to a new dynamically allocated
buffer, though we could also have used an array of characters.

A common application is to read in a series of strings and store each of them in an
array using a minimum amount of memory. This can be accomplished by creating an
array sized to handle the largest string that the user might enter and then reading it into
this array. On the basis of the string read in, we can then allocate just the right amount
of memory. The basic approach is to:
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1. Read in the string using a large array of char

2. Use malloc to allocate just the right amount of memory

3. Use strcpy to copy the string into the dynamically allocated memory

The following sequence illustrates this technique. The names array will hold pointers to

each name read in. The count variable specifies the next available array element. The

name array is used to hold a string that is read in and is reused for each name read. The

malloc function allocates the memory needed for each string and is assigned to the next

available element of names. The name is then copied into the allocated memory:

    char name[32];

    char *names[30];

    size_t count = 0;

    

    printf("Enter a name: ");

    scanf("%s",name);

    names[count] = (char*)malloc(strlen(name)+1);

    strcpy(names[count],name);

    count++;

We can repeat the operation within a loop, incrementing count with each iteration.
Figure 5-7 illustrates how memory is laid out for this process after reading in a single
name: “Sam.”

Figure 5-7. Copying a string

Two pointers can reference the same string. When two pointers reference the same
location, this is called aliasing. This topic is covered in Chapter 8. While this is not
necessarily a problem, realize that the assignment of one pointer to another does not
result in the string being copied. Instead, we simply copied the string’s address.
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To illustrate this, an array of pointers to page headers is declared below. The
page with index 12 is assigned the address of a string literal. Next, the pointer in

pageHeaders[12] is copied to pageHeaders[13]. Both of these pointers now reference
the same string literal. The pointer is copied, not the string:

    char *pageHeaders[300];

    

    pageHeaders[12] = "Amorphous Compounds";

    pageHeaders[13] = pageHeaders[12];

These assignments are illustrated in Figure 5-8.

Figure 5-8. Effects of copying pointers

Concatenating Strings
String concatenation involves the merging of two strings. The strcat function is fre‐
quently used for this operation. This function takes pointers to the two strings to be
concatenated and returns a pointer to the concatenated results. The prototype for the
function follows:

char *strcat(char *s1, const char *s2);

The function concatenates the second string to the end of the first string. The second

string is passed as a pointer to a constant char. The function does not allocate memory.
This means the first string must be large enough to hold the concatenated results or it
may write past the end of the string, resulting in unpredictable behavior. The return
value of the function is the same address as its first argument. This can be convenient

in some situations such as when the function is used as an argument of the printf
function.
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To illustrate the use of this function, we will combine two error message strings. The
first one is a prefix and the second one is a specific error message. As shown below, we
first need to allocate enough memory for both strings in a buffer, then copy the first
string to the buffer, and finally concatenate the second string with the buffer:

    char* error = "ERROR: ";

    char* errorMessage = "Not enough memory";

    char* buffer = (char*)malloc(strlen(error)+strlen(errorMessage)+1);

    strcpy(buffer,error);

    strcat(buffer, errorMessage);

    

    printf("%s\n", buffer);

    printf("%s\n", error);

    printf("%s\n", errorMessage);

We added one to the malloc function’s argument to accommodate the NUL character. If
we assume the first literal immediately precedes the second literal in memory, the output
of this sequence will be as follows. Figure 5-9 illustrates how memory is allocated:

ERROR: Not enough memory

ERROR: 

Not enough memory

Figure 5-9. Correct copy operation

If we had not allocated a separate memory location for the concatenated string, we would
overwrite the first string. This is illustrated in the following example, where a buffer is
not used. We also assume the first literal immediately precedes the second literal in
memory:

    char* error = "ERROR: ";

    char* errorMessage = "Not enough memory";

    

    strcat(error, errorMessage);
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    printf("%s\n", error);

    printf("%s\n", errorMessage);

The output of this sequence follows:

ERROR: Not enough memory

ot enough memory

The errorMessage string has been shifted one character to the left. This is because the

resulting concatenated string is written over errorMessage. Since the literal “Not
enough memory” follows the first literal, the second literal is overwritten. This is illus‐
trated in Figure 5-10, where the literal pool’s state is displayed before and after the copy
operation.

Figure 5-10. Improper string copy operation

We could have used a char array instead of a pointer for the messages, as shown below.
However, this will not always work:

    char error[] = "ERROR: ";

    char errorMessage[] = "Not enough memory";

If we used the following strcpy call, we would get a syntax error. This is because we are
attempting to assign the pointer returned by the function to the name of an array. This
type of operation is illegal:

    error = strcat(error, errorMessage);

If we remove the assignment, as follows, we would likely get a memory access violation,
since the copy operation is overwriting a part of the stack frame. This assumes the array
declarations are in a function, as illustrated in Figure 5-11. Whether the source strings
are stored in the string literal pool or on the stack frame, they should not be used to
directly hold the concatenated result. Always allocate dedicated memory for the
concatenation:

    strcat(error, errorMessage);
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Figure 5-11. Overwriting the stack frame

Another simple mistake made when concatenating strings is using a character literal
instead of a string literal. In the following example, we concatenate a string to a path
string. This will work as expected:

    char* path = "C:";

    char* currentPath = (char*) malloc(strlen(path)+2);

    currentPath = strcat(currentPath,"\\");

We add two to the string length in the malloc call because we need space for the extra

character and the NUL character. We are concatenating a single character, the backslash,
since we used an escape sequence in the string literal.

However, if we used a character literal instead, as shown below, we will get a runtime

error when the second argument is mistakenly interpreted as the address of a char:

    currentPath = strcat(path,'\\');

Passing Strings
Passing a string is simple enough. In the function call, use an expression that evaluates

to the address of a char. In the parameter list, declare the parameter as a pointer to a

char. The interesting issues occur when using the string within the function. We will
first examine how to pass a simple string in the first two subsections and then how to
pass a string requiring initialization in the third section. Passing strings as arguments
to an application is covered in the section “Passing Arguments to an Application” on
page 125.

Passing a Simple String
There are several ways of passing the address of a string to a function, depending on
how the string is declared. In this section, we will demonstrate these techniques using

a function that mimics the strlen function as implemented below. We used parentheses
to force the post increment operator to execute first, incrementing the pointer.
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Otherwise, the character referenced by string would have been incremented, which is
not what is desired:

size_t stringLength(char* string) {

    size_t length = 0;

    while(*(string++)) {

        length++;

    }

    return length;

}

The string should actually be passed as a pointer to a constant char, as
discussed in the section “Passing a Pointer to a Constant char” on page
123.

Let’s start with the following declarations:

    char simpleArray[] = "simple string";

    char *simplePtr = (char*)malloc(strlen("simple string")+1);

    strcpy(simplePtr, "simple string");

To invoke the function with the pointer, we simply use the pointer’s name:

    printf("%d\n",stringLength(simplePtr));

To invoke the function using the array, we have three choices, as shown below. In the
first statement, we use the array’s name. This will return its address. In the second
statement, the address-of operator is used explicitly. This is redundant and unnecessary.
In addition, it will often generate a warning. In the third statement, we used the address-
of operator with the array’s first element. While this works, it is somewhat verbose:

    printf("%d\n",stringLength(simpleArray));

    printf("%d\n",stringLength(&simpleArray));

    printf("%d\n",stringLength(&simpleArray[0]));

Figure 5-12 illustrates how memory will be allocated for the stringLength function.

Figure 5-12. Passing a string
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Now let’s turn our attention to how we declare the formal parameter. In the previous

implementation of stringLength, we declared the parameter as a pointer to a char. We
could have also used array notation as shown below:

size_t stringLength(char string[]) { ... }

The function’s body will stay the same. This change will have no effect on how the
function is invoked or its behavior.

Passing a Pointer to a Constant char
Passing a pointer to a string as a constant char is a very common and useful technique.
It passes the string using a pointer, and at the same time prevents the string being passed

from being modified. A better implementation of the stringLength function developed
in the section “Passing Strings” on page 121 incorporates this declaration as follows:

size_t stringLength(const char* string) {

    size_t length = 0;

    while(*(string++)) {

        length++;

    }

    return length;

}

If we attempt to modify the original string as follows, then a compile-time error message
will be generated:

size_t stringLength(const char* string) {

      ...

    *string = 'A';

      ...

}

Passing a String to Be Initialized
There are situations where we want a function to return a string initialized by the func‐
tion. For example, we may want to pass information about a part, such as its name and
quantity, and then have a formatted string representing this information returned. By
keeping the formatting process in a function we can reuse it in different sections of our
program.

However, we need to decide whether we want to pass the function an empty buffer to
be filled and returned by the function, or whether the buffer should be dynamically
allocated by the function and then returned to us.

When a buffer is passed:
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• The buffer’s address and its size must be passed

• The caller is responsible for deallocating the buffer

• The function normally returns a pointer to this buffer

This approach keeps the buffer’s allocation and deallocation responsibility with the
caller. Returning a pointer to the buffer is common, even if it is unnecessary, as typified

by strcpy and similar functions. The following format function illustrates this
approach:

char* format(char *buffer, size_t size, 

        const char* name, size_t quantity, size_t weight) {

    snprintf(buffer, size, "Item: %s  Quantity: %u  Weight: %u",

            name, quantity, weight);

    return buffer;

}

The snprintf function was used as a simple way of formatting the string. This function
writes to the buffer provided by the first parameter. The second argument specifies the
buffer’s size. This function will not write past the end of the buffer. Otherwise, the

function behaves the same way as printf.

The following demonstrates the use of the function:

printf("%s\n",format(buffer,sizeof(buffer),"Axle",25,45));

The output of this sequence is as follows:

Item: Axle  Quantity: 25  Weight: 45

By returning a pointer to buffer, we are able to use the function as a parameter of the

printf function.

An alternative to this approach is to pass NULL as the buffer’s address. This implies the
caller does not want to provide the buffer or is unsure how large the buffer should be.
This version of the function can be implemented as follows. When length is calculated

the subexpression 10 + 10 represents the largest width anticipated for the quantity and

weight. The one allows space for the NUL termination character:

char* format(char *buffer, size_t size, 

        const char* name, size_t quantity, size_t weight) {

    char *formatString = "Item: %s  Quantity: %u  Weight: %u";

    size_t formatStringLength = strlen(formatString)-6;

    size_t nameLength = strlen(name);

    size_t length = formatStringLength + nameLength + 

            10 + 10 + 1;

    

    if(buffer == NULL) {

        buffer = (char*)malloc(length);

        size = length;
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    } 

    snprintf(buffer, size, formatString, name, quantity, weight);

    return buffer;

}

The function variation to use depends on the needs of the application. The chief draw‐
back of the second approach is that the caller is now responsible for freeing the memory
allocated. The caller needs to be fully aware of how this function should be used; other‐
wise, a memory leak can easily occur.

Passing Arguments to an Application
The main function is normally the first function in an application to be executed. With
console-based programs it is common to pass information to the program to enable or
otherwise control the application’s behavior. These parameters may be used to specify

which files to process or to configure the application’s output. For example, the ls Linux
command will list the files in the current directory based on parameters used with the
command.

C supports command line arguments using the traditionally named argc and argv

parameters. The first parameter, argc, is an integer that indicates how many parameters
are passed. At least one parameter is always passed. This parameter is the name of the

executable. The second parameter, argv, is normally viewed as a one-dimensional
array of string pointers. Each pointer references a command line argument.

The following main function will simply list its arguments one per line. In this version,

argv is declared as a pointer to a pointer to a char:

int main(int argc, char** argv) {

    for(int i=0; i<argc; i++) {

        printf("argv[%d] %s\n",i,argv[i]);

    }

    ...

}

The program is executed with the following command line:

process.exe -f names.txt limit=12 -verbose

The output will be as follows:

argv[0] c:/process.exe

argv[1] -f

argv[2] names.txt

argv[3] limit=12

argv[4] -verbose

Each command line parameter is delineated by whitespace. The memory allocated for
the program is illustrated in Figure 5-13.

Passing Strings | 125



Figure 5-13. Using argc/argv

The declaration of argv can be simplified as follows:

int main(int argc, char* argv[]) {

This is equivalent to char** argv. A more detailed explanation of this notation is found
in “Multiple Levels of Indirection” on page 25.

Returning Strings
When a function returns a string, it returns the address of the string. The main concern
is to return a valid string address. To do this, we can return a reference to either:

• A literal

• Dynamically allocated memory

• A local string variable

Returning the Address of a Literal
An example of returning a literal is shown below. An integer code selects from one of
four different processing centers. The function’s purpose is to return the processing
center’s name as a string. In this example, it simply returns the literal’s address:

char* returnALiteral(int code) {

    switch(code) {

        case 100:

            return "Boston Processing Center";

        case 200:

            return "Denver Processing Center";

        case 300:

            return "Atlanta Processing Center";
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        case 400:

            return "San Jose Processing Center";            

    }

}

This will work fine. Just keep in mind that string literals are not always treated as con‐
stants, as discussed in the section “When a string literal is not a constant” on page 110.

We can also declare static literals as in the following example. A subCode field has been
added and selects between different centers. The advantage of this approach is not hav‐
ing to use the same literal in more than one place and possibly introducing errors by
mistyping the literal:

char* returnAStaticLiteral(int code, int subCode) {

    static char* bpCenter = "Boston Processing Center";

    static char* dpCenter = "Denver Processing Center";

    static char* apCenter = "Atlanta Processing Center";

    static char* sjpCenter = "San Jose Processing Center";

    

    switch(code) {

        case 100:

            return bpCenter;

        case 135:

            if(subCode <35) {

                return dpCenter;

            } else {

                return bpCenter;

            }

        case 200:

            return dpCenter;

        case 300:

            return apCenter;

        case 400:

            return sjpCenter;            

    }

}

Returning a pointer to a static string used for multiple purposes can be a problem.

Consider the following variation of the format function developed in the section “Pass‐
ing a String to Be Initialized” on page 123. Information about a part is passed to the
function and a formatted string representing the string is returned:

char* staticFormat(const char* name, size_t quantity, size_t weight) {

    static char buffer[64];  // Assume to be large enough

    sprintf(buffer, "Item: %s  Quantity: %u  Weight: %u",

            name, quantity, weight);

    return buffer;

}

The buffer is allocated 64 bytes, which may or may not be enough. For purposes of this
example, we will ignore this potential problem. The main problem with this approach
is illustrated with the following sequence:
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    char* part1 = staticFormat("Axle",25,45);

    char* part2 = staticFormat("Piston",55,5);

    printf("%s\n",part1);

    printf("%s\n",part2);

When executed, we get the following output:

Item: Piston  Quantity: 55  Weight: 5

Item: Piston  Quantity: 55  Weight: 5

Since the staticFormat method used the same static buffer for both calls, the last call
overwrote the first call’s results.

Returning the Address of Dynamically Allocated Memory
If a string needs to be returned from a function, the memory for the string can be
allocated from the heap and then its address can be returned. We will demonstrate this

technique by developing a blanks function. This function returns a string containing
a series of blanks representing a “tab,” as shown below. The function is passed an integer
specifying the tab sequence’s length:

char* blanks(int number) {

    char* spaces = (char*) malloc(number + 1);

    int i;    

    for (i = 0; i<number; i++) {

        spaces[i] = ' ';

    }

    spaces[number] = '\0';

    return spaces;

}

    ...

    char *tmp = blanks(5);

The NUL termination character is assigned to the last element of the array indexed by

number. Figure 5-14 illustrates the allocation of memory for this example. It shows the

application’s state just before and after the blanks function returns.

It is the function’s caller’s responsibility to deallocate the memory returned. Failure to
deallocate it when it is no longer needed will result in a memory leak. The following is

an example of when a memory leak can occur. The string is used within the printf
function and its address is subsequently lost because it was not saved:

    printf("[%s]\n",blanks(5));

A safer approach is demonstrated below:

    char *tmp = blanks(5);

    printf("[%s]\n",tmp);

    free(tmp);
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Figure 5-14. Returning dynamically allocated string

Returning the address of a local string

Returning the address of a local string will be a problem since the memory will be
corrupted when it is overwritten by another stack frame. This approach should be
avoided; it is explained here to demonstrate the potential problems with the course of
action.

We rewrite the blanks function from the previous section as shown below. Instead of
dynamically allocating memory, an array is declared within the function and will sub‐
sequently be located in a stack frame. The function returns the array’s address:

#define MAX_TAB_LENGTH 32

char* blanks(int number) {

    char spaces[MAX_TAB_LENGTH];

    int i;    

    for (i = 0; i < number && i < MAX_TAB_LENGTH; i++) {

        spaces[i] = ' ';

    }

    spaces[i] = '\0';

    return spaces;

}

When the function executes it will return the string’s address, but that memory area will
subsequently be overwritten by the next function called. When this pointer is derefer‐
enced, the contents of this memory location may have been changed. The program
stack’s state is illustrated in Figure 5-15.
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Figure 5-15. Returning the address of a local string

Function Pointers and Strings
Function pointers are discussed in depth in “Function Pointers” on page 71. They can
be a flexible means of controlling how a program executes. In this section, we will
demonstrate this capability by passing a comparison function to a sort function. Within
a sort function, comparison of the array’s elements are made to determine whether the
array’s elements need to be swapped. The comparison determines whether the array is
sorted in ascending or descending order, or by some other sorting criteria. By passing
a function to control the comparison, the function is more flexible. By passing different
comparison functions, we can have the same sort function perform in different ways.

The comparison functions we will use determine the sorting order based on the case of

the array’s elements. The following two functions, compare and compareIgnoreCase,

compare two strings based on the case of the strings. The compareIgnoreCase function

converts the strings to lower case before it uses the strcmp function to compare the

strings. The strcmp function was discussed in the section “Comparing Strings” on page

115. The stringToLower function returns a pointer to dynamically allocated memory.
This means we need to free it when we no longer need it:

int compare(const char* s1, const char* s2) {

    return strcmp(s1,s2);

}

int compareIgnoreCase(const char* s1, const char* s2) {

    char* t1 = stringToLower(s1);

    char* t2 = stringToLower(s2);

    int result = strcmp(t1, t2);

    free(t1);

    free(t2);

    return result;

}

The stringToLower function is shown below. It returns a lowercase equivalent of the
string passed to it:
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char* stringToLower(const char* string) {

    char *tmp = (char*) malloc(strlen(string) + 1);

    char *start = tmp;

    while (*string != 0) {

        *tmp++ = tolower(*string++);

    }

    *tmp = 0;

    return start;

}

The function pointer to be used is declared using a type definition as shown below:

typedef int (fptrOperation)(const char*, const char*);

The following sort function’s implementation is based on the bubble sort algorithm. It
is passed the array’s address, its size, and a pointer to the function controlling the sort.

In the if statement, the function passed is invoked with two elements of the array. It
determines whether the array’s two elements will be swapped.

void sort(char *array[], int size, fptrOperation operation) {

    int swap = 1;

    while(swap) {

        swap = 0;

        for(int i=0; i<size-1; i++) {

            if(operation(array[i],array[i+1]) > 0){

                swap = 1;

                char *tmp = array[i];

                array[i] = array[i+1];

                array[i+1] = tmp;

            }

        }

    }

}

A display function will show the array’s contents:

void displayNames(char* names[], int size) {

    for(int i=0; i<size; i++) {

        printf("%s   ",names[i]);

    }

    printf("\n");

}

We can invoke the sort function using either of the two comparison functions. The

following uses the compare function to perform a case-sensitive sort:

    char* names[] = {"Bob", "Ted", "Carol", "Alice", "alice"};

    sort(names,5,compare);

    displayNames(names,5);

The output of this sequence follows:

Alice   Bob   Carol   Ted   alice
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If we had used the compareIgnoreCase function instead, then our output would appear
as shown below:

Alice   alice   Bob   Carol   Ted

This makes the sort function much more flexible. We can now devise and pass as simple
or complex an operation as we want to control the sort without having to write different

sort functions for different sorting needs.

Summary
In this chapter, we focused on string operations and the use of pointers. The structure
of strings and where they are located in memory impacts their use. Pointers provide a
flexible tool for working with strings but also offer numerous opportunities to misuse
strings.

String literals and the use of a literal pool were covered. Understanding literals helps
explain why certain string assignment operations do not always behave as expected.
This is closely related to string initialization, which was addressed in detail. Several
standard string operations were examined and potential problems were identified.

Passing and returning strings to functions are common operations. The issues and po‐
tential problems with these type of operations were detailed, including the problems
potentially occurring when returning a local string. The use of a pointer to a constant
character was also discussed.

Finally, function pointers were used to demonstrate a powerful approach for writing
sort functions. The approach is not limited to the sort operation but can be applied to
other areas.
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CHAPTER 6

Pointers and Structures

Structures in C can represent data structure elements, such as the nodes of a linked list
or tree. Pointers provide the glue that ties these elements together. Understanding the
versatility supported by pointers for common data structures will facilitate your ability
to create your own data structures. In this chapter, we will explore the fundamentals of
structure memory allocation in C and the implementation of several common data
structures.

Structures enhance the utility of collections such as arrays. To create an array of entities
such as a color type with multiple fields without using a structure, it is necessary to
declare an array for each field and keep each value for a field in the same index of each
array. However, with a structure, we can declare a single array where each element is an
instance of the structure.

This chapter expands on the pointer concepts learned so far. This includes the intro‐
duction of pointer notation as used with structures, a discussion of how memory is
allocated for a structure, a technique for managing memory used by structures, and uses
of function pointers.

We will start with a discussion of how memory is allocated for a structure. An under‐
standing of this allocation will explain how various operations work. This is followed
by the introduction of a technique to minimize the overhead of heap management.

The last section illustrates how to create a number of data structures using pointers. The
linked list is discussed first and will serve as the basis for several other data structures.
The tree data structure is discussed last and does not use a linked list.

Introduction
A structure in C can be declared in a number of ways. In this section we will only examine
two approaches, as our focus is on their use with pointers. In the first approach, we
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declare a structure using the struct keyword. In the second approach, we use a type
definition. In the following declaration, the structure’s name is prefixed with an under‐

score. This is not necessary but is often used as a naming convention. The _person
structure includes fields for name, title, and age:

struct _person {

    char* firstName;

    char* lastName;

    char* title;

    unsigned int age;

};

A structure’s declaration frequently uses the typedef keyword to simplify its use later

in a program. The following illustrates its use with the _person structure:

typedef struct _person {

    char* firstName;

    char* lastName;

    char* title;

    unsigned int age;

} Person;

An instance of a person is declared as follows:

    Person person;

Alternately, we can declare a pointer to a Person and allocate memory for it, as shown 
below:

    Person *ptrPerson;

    ptrPerson = (Person*) malloc(sizeof(Person));

If we use a simple declaration of a structure as we did with person, we use the dot

notation to access its fields. In the following example, we assign values to the first

Name and age fields:

    Person person;

    person.firstName = (char*)malloc(strlen("Emily")+1);

    strcpy(person.firstName,"Emily");

    person.age = 23;

However, if we are using a pointer to a structure, we need to use the points-to operator,
as follows. This operator consists of a dash followed by the greater than symbol:

    Person *ptrPerson;

    ptrPerson = (Person*)malloc(sizeof(Person));

    ptrPerson->firstName = (char*)malloc(strlen("Emily")+1);

    strcpy(ptrPerson->firstName,"Emily");

    ptrPerson->age = 23;

We do not have to use the points-to operator. Instead, we can dereference the pointer
first and then apply the dot operator. This is illustrated below, where we duplicate the
previous assignments:
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    Person *ptrPerson;

    ptrPerson = (Person*)malloc(sizeof(Person));

    (*ptrPerson).firstName = (char*)malloc(strlen("Emily")+1);

    strcpy((*ptrPerson).firstName,"Emily");

    (*ptrPerson).age = 23;

This approach is more awkward but you may see it used at times.

How Memory Is Allocated for a Structure
When a structure is allocated memory, the amount allocated to the structure is at min‐
imum the sum of the size of its individual fields. However, the size is often larger than
this sum because padding can occur between fields of a structure. This padding can
result from the need to align certain data types on specific boundaries. For example, a
short is typically aligned on an address evenly divisible by two while an integer is aligned
on an address even divisible by four.

Several implications are related to this allocation of extra memory:

• Pointer arithmetic must be used with care

• Arrays of structures may have extra memory between their elements

For example, when an instance of the Person structure presented in the previous section
is allocated memory, it will be allocated 16 bytes—4 bytes for each element. The fol‐

lowing alternate version of Person uses a short instead of an unsigned integer for age.
This will result in the same amount of memory being allocated. This is because two
bytes are padded at the end of the structure:

typedef struct _alternatePerson {

    char* firstName;

    char* lastName;

    char* title;

    short age;    

} AlternatePerson;

In the following sequence, we declare an instance of both a Person and an Alternate

Person structure. The structures’ sizes are then displayed. Their size will be the same,
16 bytes:

    Person person;

    AlternatePerson otherPerson;

    

    printf("%d\n",sizeof(Person));           // Displays 16

    printf("%d\n",sizeof(AlternatePerson));  // Displays 16
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If we create an array of AlternatePerson, as shown below, there will be padding between
the array’s elements. This is illustrated in Figure 6-1. The shaded area shows the gaps
between the array elements.

    AlternatePerson people[30];

Figure 6-1. Array of AlternativePerson

If we had moved the age field between two fields of the structure, the gap would be
internal to the structure. Depending on how the structure is accessed, this may be 
significant.

Structure Deallocation Issues
When memory is allocated for a structure, the runtime system will not automatically
allocate memory for any pointers defined within it. Likewise, when the structure goes
away, the runtime system will not automatically deallocate memory assigned to the
structure’s pointers.

Consider the following structure:

typedef struct _person {

    char* firstName;

    char* lastName;

    char* title;

    uint age;

} Person;

When we declare a variable of this type or dynamically allocate memory for this type,

the three pointers will contain garbage. In the next sequence, we declare a Person. Its
memory allocation is shown in Figure 6-2. The three dots indicate uninitialized
memory:
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void processPerson() {

   Person person;

   ...

}

Figure 6-2. Person structure uninitialized

During the initialization of this structure, each field will be assigned a value. The pointer
fields will be allocated from the heap and assigned to each pointer:

void initializePerson(Person *person, const char* fn, 

        const char* ln, const char* title, uint age) {

    person->firstName = (char*) malloc(strlen(fn) + 1);

    strcpy(person->firstName, fn);

    person->lastName = (char*) malloc(strlen(ln) + 1);

    strcpy(person->lastName, ln);

    person->title = (char*) malloc(strlen(title) + 1);

    strcpy(person->title, title);

    person->age = age;

}

We can use this function as shown below. Figure 6-3 illustrates how memory is allocated:

void processPerson() {

   Person person;

   initializePerson(&person, "Peter", "Underwood", "Manager", 36);

    ...

}

int main() {

   processPerson();

   ...

}
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Figure 6-3. Person structure initialized

Since this declaration was part of a function, when the function returns the memory for

person will go away. However, the dynamically allocated strings were not released and
are still in the heap. Unfortunately, we have lost their address and we cannot free them,
resulting in a memory leak.

When we are through with the instance, we need to deallocate the memory. The fol‐
lowing function will free up the memory we previously allocated when we created the
instance:

void deallocatePerson(Person *person) {

    free(person->firstName);

    free(person->lastName);

    free(person->title);

}

This function needs to be invoked before the function terminates:

void processPerson() {

   Person person;

   initializePerson(&person, "Peter", "Underwood", "Manager", 36);

    ...

   deallocatePerson(&person);

}

Unfortunately, we must remember to call the initialize and deallocate functions.
The automatic invocation of these operations against an object is performed in object-
oriented programming languages such as C++.

If we use a pointer to a Person, we need to remember to free up the person as shown
below:
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void processPerson() {

    Person *ptrPerson;

    ptrPerson = (Person*) malloc(sizeof(Person));

    initializePerson(ptrPerson, "Peter", "Underwood", "Manager", 36);

      ...

    deallocatePerson(ptrPerson);

    free(ptrPerson);

}

Figure 6-4 illustrates how memory is allocated.

Figure 6-4. Pointer to a person instance

Avoiding malloc/free Overhead
When structures are allocated and then deallocated repeatedly, some overhead will be
incurred, resulting in a potentially significant performance penalty. One approach to
deal with this problem is to maintain your own list of allocated structures. When a user
no longer needs an instance of a structure, it is returned to the pool. When an instance
is needed, it obtains the object from the pool. If there are no elements available in the
pool, a new instance is dynamically allocated. This approach effectively maintains a pool
of structures that can be used and reused as needed.

To demonstrate this approach we will use the Person structure previously defined. A
pool of persons is maintained in an array. A more complex list, such as a linked list, can
also be used, as illustrated in the section “Single-Linked List” on page 142. To keep this
example simple, an array of pointers is used, as declared below:

#define LIST_SIZE 10

Person *list[LIST_SIZE];
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Before the list can be used, it needs to be initialized. The following function assigns NULL
to each element of the array:

void initializeList() {

    for(int i=0; i<LIST_SIZE; i++) {

        list[i] = NULL;

    }

}

Two functions are used to add and retrieve persons. The first is the getPerson function,
as shown below. This function retrieves a person from the list if possible. The array’s

elements are compared to NULL. The first non-null element is returned, and its position

in list is then assigned a value of NULL. If there is no person available, then a new

instance of a Person is created and returned. This avoids the overhead of dynamically
allocating memory for a person every time a new one is needed. We only allocate mem‐
ory if there is none in the pool. The initialization of the instance returned can be done
either before it is returned or by the caller, depending on the needs of the application:

Person *getPerson() {

    for(int i=0; i<LIST_SIZE; i++) {

        if(list[i] != NULL) {

            Person *ptr = list[i];

            list[i] = NULL;

            return ptr;

        }

    }

    Person *person = (Person*)malloc(sizeof(Person));

    return person;

}

The second function is the returnPerson, which either adds the person to the list or

frees it up. The array’s elements are checked to see whether there are any NULL values.

If it does, then person is added to that position and the pointer is returned. If the list is

full, then the pointers within person are freed using the deallocatePerson function,

person is freed, and then NULL is returned:

Person *returnPerson(Person *person) {

    for(int i=0; i<LIST_SIZE; i++) {

        if(list[i] == NULL) {

            list[i] = person;

            return person;

        }

    }

    deallocatePerson(person);

    free(person);

    return NULL;

}

The following illustrates the initialization of the list and adding a person to the list:
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    initializeList();

    Person *ptrPerson;

    ptrPerson = getPerson();

    initializePerson(ptrPerson,"Ralph","Fitsgerald","Mr.",35);

    displayPerson(*ptrPerson);

    returnPerson(ptrPerson);

One problem associated with this approach deals with the list size. If the list is too small,
then more dynamic allocation and deallocation of memory will be necessary. If the list
is large and the structures are not being used, a potentially large amount of memory
may be tied up and unavailable for other uses. A more sophisticated list management
scheme can be used to manage the list’s size.

Using Pointers to Support Data Structures
Pointers can provide more flexible support for simple and complex data structures. The
flexibility can be attributed to the dynamic allocation of memory and the ease of chang‐
ing pointer references. The memory does not have to be contiguous, as is the case with
arrays. Only the exact amount of memory needs to be allocated.

In this section, we will examine how several commonly used data structures can be
implemented using pointers. Numerous C libraries provide equivalent and more ex‐
tensive support than those illustrated here. However, understanding how they can be
implemented can prove to be useful when implementing nonstandard data structures.
On some platforms, the libraries may not be available, and the developer will need to
implement their own version.

We will examine four different data structures:

Linked list
A single-linked list

Queue
A simple first-in first-out queue

Stack
A simple stack

Tree
A binary tree

Along with these data structures, we will incorporate function pointers to illustrate their
power in dealing with generic structures. The linked list is a very useful data structure,
and we will use it as the foundation of the queue’s and stack’s implementation.
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We will illustrate each of these data structures using an employee structure. For example,
a linked list consists of nodes connected to one another. Each node will hold user-

supplied data. The simple employee structure is listed below. The unsigned char data
type is used for age, as this will be large enough to hold people’s ages:

typedef struct _employee{

    char name[32];

    unsigned char age;

} Employee;

A simple array is used for a single name. While a pointer to char may prove to be a more

flexible data type for this field, we have elected to use an array of char to simplify the
examples.

Two comparison functions will be developed. The first one compares two employees

and returns an integer. This function is modeled after the strcmp function. A return
value of 0 means the two employee structures are considered to be equal to each other.
A return value of –1 means the first employee precedes the second employee alphabet‐
ically. A return value of 1 means the first employee follows the second employee. The
second function displays a single employee:

int compareEmployee(Employee *e1, Employee *e2) {

    return strcmp(e1->name, e2->name);

}

void displayEmployee(Employee* employee) {

    printf("%s\t%d\n", employee->name, employee->age);

}

In addition, two function pointers will be used as defined below. The DISPLAY function
pointer designates a function that is passed void and returns void. Its intent is to display

data. The second pointer, COMPARE, represents a function used to compare data refer‐
enced by two pointers. The function should compare the data and return either a 0,

–1, or 1, as explained with the compareEmployee function:

typedef void(*DISPLAY)(void*);

typedef int(*COMPARE)(void*, void*);

Single-Linked List
A linked list is a data structure that consists of a series of nodes interconnected with
links. Typically, one node is called the head node and subsequent nodes follow the head,
one after another. The last node is called the tail. The links connecting the nodes are
easily implemented using a pointer. Each node can be dynamically allocated as needed.

This approach is preferable to an array of nodes. Using an array results in the creation
of a fixed number of nodes regardless of how many nodes may be needed. Links are
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implemented using the index of the array’s elements. Using an array is not as flexible as
using dynamic memory allocation and pointers.

For example, if we wanted to change the order of elements of the array, it would be
necessary to copy both elements, and that can be large for a structure. In addition, adding
or removing an element may require moving large portions of the array to make room
for the new element or to remove an existing element.

There are several types of linked lists. The simplest is a single-linked list where there is
a single link from one node to the next. The links start at the head and eventually leads
to the tail. A circular-linked list has no tail. The linked list’s last node points back to the
head. A doubly linked list uses two links, one pointing forward and one pointing back‐
ward so that you can navigate through the list in both directions. This type of linked list
is more flexible but is more difficult to implement. Figure 6-5 conceptually illustrates
these types of linked lists.

Figure 6-5. Linked list types
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In this section, we will illustrate the construction and use of a single-linked list. The

following shows the structure used to support the linked list. A Node structure is defined
to represent a node. It consists of two pointers. The first one, a pointer to void, holds

an arbitrary data type. The second is a pointer to the next node. The LinkedList struc‐
ture represents the linked list and holds a pointer to the head and the tail. The current
pointer will help traverse the linked list:

typedef struct _node {

    void *data;

    struct _node *next;

} Node;

typedef struct _linkedList {

    Node *head;

    Node *tail;

    Node *current;

} LinkedList;

We will develop several functions that use these structures to support linked list
functionality:

void initializeList(LinkedList*) Initializes the linked list

void addHead(LinkedList*, void*) Adds data to the linked list’s head

void addTail(LinkedList*, void*) Adds data to the linked list’s tail

void delete(LinkedList*, Node*) Removes a node from the linked list

Node *getNode(LinkedList*, COMPARE, void*) Returns a pointer to the node containing a specific data item

void displayLinkedList(LinkedList*, DISPLAY) Displays the linked list

Before the linked list can be used it needs to be initialized. The initializeList func‐

tion, shown below, performs this task. A pointer to the LinkedList object is passed to

the function where each pointer in the structure is set to NULL:

void initializeList(LinkedList *list) {

    list->head = NULL;

    list->tail = NULL;

    list->current = NULL;

}

The addHead and addTail functions add data to the linked list’s head and tail, respec‐

tively. In this linked list implementation, the add and delete functions are responsible
for allocating and freeing memory used by the linked list’s nodes. This removes this
responsibility from the user of the linked list.

In the addHead function listed below, memory is first allocated for the node and the data

passed to the function is assigned to the structure’s data field. By passing the data as a
pointer to void, the linked list is able to hold any type of data the user wants to use.
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Next, we check to see whether the linked list is empty. If so, we assign the tail pointer to

the node and assign NULL to the node’s next field. If not, the node’s next pointer is
assigned to the list’s head. Regardless, the list’s head is assigned to the node:

void addHead(LinkedList *list, void* data) {

    Node *node = (Node*) malloc(sizeof(Node));

    node->data = data;

    if (list->head == NULL) {

        list->tail = node;

        node->next = NULL;

    } else {

        node->next = list->head;

    }

    list->head = node;

}

The following code sequence illustrates using the initializeList and addHead func‐
tions. Three employees are added to the list. Figure 6-6 shows how memory is allocated
after these statements execute. Some arrows have been removed to simplify the diagram.

In addition, the Employee structure’s name array has been simplified:

    LinkedList linkedList;

    Employee *samuel = (Employee*) malloc(sizeof(Employee));

    strcpy(samuel->name, "Samuel");

    samuel->age = 32;

    Employee *sally = (Employee*) malloc(sizeof(Employee));

    strcpy(sally->name, "Sally");

    sally->age = 28;

    Employee *susan = (Employee*) malloc(sizeof(Employee));

    strcpy(susan->name, "Susan");

    susan->age = 45;

    initializeList(&linkedList);

    addHead(&linkedList, samuel);

    addHead(&linkedList, sally);

    addHead(&linkedList, susan);

The addTail function is shown below. It starts by allocating memory for a new node

and assigning the data to the data field. Since the node will always be added to the tail,

the node’s next field is assigned to NULL. If the linked list is empty, then the head pointer

will be NULL and head can be assigned to the new node. If it is not NULL, then the tail’s

next pointer is assigned to the new node. Regardless, the linked list’s tail pointer is
assigned to the node:
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Figure 6-6. addHead example

void addTail(LinkedList *list, void* data) {

    Node *node = (Node*) malloc(sizeof(Node));

    node->data = data;

    node->next = NULL;

    if (list->head == NULL) { 

        list->head = node;

    } else {

        list->tail->next = node;

    }

    list->tail = node;

}

In the following sequence, the addTail function is illustrated. The creation of the em‐
ployee objects has not been duplicated here. The employees have been added in the

opposite order from the previous example using the addTail function. This results in
the memory allocation being the same as shown in Figure 6-6:

    initializeList(&linkedList);

    addTail(&linkedList, susan);

    addTail(&linkedList, sally);

    addTail(&linkedList, samuel);
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The delete function will remove a node from the linked list. To simplify this function,
a pointer to the node to be deleted is passed to it. The function’s user probably has a
pointer to the data but not to the node holding the data. To aid in identifying the node,

a helper function has been provided to return a pointer to the node: getNode. The

getNode function is passed three parameters:

• A pointer to the linked list

• A pointer to a comparison function

• A pointer to the data to be found

The code for the getNode function follows. The variable node initially points to the list’s
head and traverses the list until either a match is found or the linked list’s end is en‐

countered. The compare function is invoked to determine whether a match is found.
When the two data items are equal, it returns a zero.

Node *getNode(LinkedList *list, COMPARE compare , void* data) {

    Node *node = list->head;

    while (node != NULL) {

        if (compare(node->data, data) == 0) {

            return node;

        }

        node = node->next;

    }

    return NULL;

}

The compare function illustrates using a function pointer at runtime to determine which
function to use to perform a comparison. This adds considerable flexibility to the linked
list implementation because we do not need to hard code the comparison function’s

name in the getNode function.

The delete function follows. To keep the function simple, it does not always check for

null values in the linked list or the node passed. The first if statement handles a node
to be deleted from the head. If the head node is the only node, then the head and tail
are assigned null values. Otherwise, the head is assigned to the node following the head.

The else statement traverses the list from head to tail using a tmp pointer. The while

loop will terminate if either tmp is assigned NULL, indicating the node does not exist in

the list, or the node following tmp is the node we are looking for. Since this is a single-
linked list, we need to know which node precedes the target node to be deleted. This
knowledge is needed to assign the node following the target node to the preceding node’s

next field. At the end of the delete function, the node is freed. The user is responsible

for deleting the data pointed to by this node before the delete function is called.

void delete(LinkedList *list, Node *node) {

    if (node == list->head) {
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        if (list->head->next == NULL) { 

            list->head = list->tail = NULL;

        } else {

            list->head = list->head->next;

        }

    } else {

        Node *tmp = list->head;

        while (tmp != NULL && tmp->next != node) {

            tmp = tmp->next;

        }

        if (tmp != NULL) {

            tmp->next = node->next;

        } 

    }

    free(node);

}

The next sequence demonstrates the use of this function. The three employees are added

to the linked list’s head. We will use the compareEmployee function as described in the
section “Using Pointers to Support Data Structures” on page 141 to perform
comparisons:

    addHead(&linkedList, samuel);

    addHead(&linkedList, sally);

    addHead(&linkedList, susan);

    Node *node = getNode(&linkedList,

            (int (*)(void*, void*))compareEmployee, sally);

    delete(&linkedList, node);

When this sequence executes, the program stack and heap will appear as illustrated in
Figure 6-7.

The displayLinkedList function illustrates how to traverse a linked list as shown be‐
low. It starts at the head and displays each element using the function passed as the

second argument. The node pointer is assigned the next field’s value and will terminate
when the last node is displayed:

void displayLinkedList(LinkedList *list, DISPLAY display) {

    printf("\nLinked List\n");

    Node *current = list->head;

    while (current != NULL) {

        display(current->data);

        current = current->next;

    }

}

The following illustrates this function using the displayEmployee function developed
in the section “Using Pointers to Support Data Structures” on page 141:
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Figure 6-7. Deletion example

    addHead(&linkedList, samuel);

    addHead(&linkedList, sally);

    addHead(&linkedList, susan);

    displayLinkedList(&linkedList, (DISPLAY)displayEmployee);

The output of this sequence follows:

Linked List

Susan     45

Sally     28

Samuel    32

Using Pointers to Support a Queue
A queue is a linear data structure whose behavior is similar to a waiting line. It typically
supports two primary operations: enqueue and dequeue. The enqueue operation adds
an element to the queue. The dequeue operation removes an element from the queue.
Normally, the first element added to a queue is the first element dequeued from a queue.
This behavior is referred to as First-In-First-Out (FIFO).

A linked list is frequently used to implement a queue. The enqueue operation will add
a node to the linked list’s head and the dequeue operation will remove a node from the
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tail. To illustrate the queue, we will use the linked list developed in the “Single-Linked
List” on page 142.

Let’s start by using a type definition statement to define a term for queue. It will be based

on a linked list as shown below. We can now use Queue to clearly designate our intent:

typedef LinkedList Queue;

To implement the initialization operation, all we need to do is use the function

initializeList. Instead of calling this function directly, we will use the following

initializeQueue function:

void initializeQueue(Queue *queue) {

    initializeList(queue);

}

In a similar manner, the following will add a node to a queue using the addHead function:

void enqueue(Queue *queue, void *node) {

    addHead(queue, node);

}

The previous linked list implementation does not have an explicit function to remove

the tail node. The dequeue function that follows removes the last node. Three conditions
are handled:

An empty queue

NULL is returned

A single node queue

Handled by the else if statement

A multiple node queue

Handled by the else clause

In the latter case, the tmp pointer is advanced node by node until it points to the node
immediately preceding the tail node. Three operations are then performed in the fol‐
lowing sequence:

1. The tail is assigned to the tmp node

2. The tmp pointer is advanced to the next node

3. The tail’s next field is set to NULL to indicate there are no more nodes in the queue

This order is necessary to ensure the list’s integrity, as illustrated conceptually in
Figure 6-8. The circled numbers correspond to the three steps listed above:

void *dequeue(Queue *queue) {

    Node *tmp = queue->head;

    void *data;
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    if (queue->head == NULL) {

        data = NULL;

    } else if (queue->head == queue->tail) {

        queue->head = queue->tail = NULL;

        data = tmp->data;

        free(tmp);

    } else {

        while (tmp->next != queue->tail) {

            tmp = tmp->next;

        }

        queue->tail = tmp;

        tmp = tmp->next;

        queue->tail->next = NULL;

        data = tmp->data;

        free(tmp);

    }

    return data;

}

Figure 6-8. dequeue function example

Using Pointers to Support Data Structures | 151



The data assigned to the node is returned, and the node is freed. These functions are
illustrated in the following code sequence using the employees created earlier:

    Queue queue;

    initializeQueue(&queue);

    enqueue(&queue, samuel);

    enqueue(&queue, sally);

    enqueue(&queue, susan);

    

    void *data = dequeue(&queue);

    printf("Dequeued %s\n", ((Employee*) data)->name);

    data = dequeue(&queue);

    printf("Dequeued %s\n", ((Employee*) data)->name);

    data = dequeue(&queue);

    printf("Dequeued %s\n", ((Employee*) data)->name);

The output of this sequence follows:

Dequeued Samuel

Dequeued Sally

Dequeued Susan

Using Pointers to Support a Stack
The stack data structure is also a type of list. In this case, elements are pushed onto the
stack’s top and then popped off. When multiple elements are pushed and then popped,
the stack exhibits First-In-Last-Out (FILO) behavior. The first element pushed on to
the stack is the last element popped off.

Like the queue’s implementation, we can use a linked list to support stack operations.
The two most common operations are the push and pop operations. The push operation

is effected using the addHead function. The pop operation requires adding a new func‐
tion to remove the head node. We start by defining a stack in terms of a linked list as
follows:

typedef LinkedList Stack;

To initialize the stack, we add an initializeStack function. This function calls the

initializeList function:

void initializeStack(Stack *stack) {

    initializeList(stack);

}

The push operation calls the addHead function as shown below:

void push(Stack *stack, void* data) {

    addHead(stack, data);

}
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The pop operation’s implementation follows. We start by assigning the stack’s head to a

node pointer. It involves handling three conditions:

The stack is empty

The function returns NULL

The stack contains a single element
If the node points to the tail then the head and tail are the same element. The head

and tail are assigned NULL, and the data is returned.

The stack contains more than one element
In this case, the head is assigned to the next element in the list, and the data is
returned.

In the latter two cases, the node is freed:

void *pop(Stack *stack) {

    Node *node = stack->head;

    if (node == NULL) {

        return NULL;

    } else if (node == stack->tail) {

        stack->head = stack->tail = NULL;

        void *data = node->data;

        free(node);

        return data;

    } else {

        stack->head = stack->head->next;

        void *data = node->data;

        free(node);

        return data;

    }

}

We will reuse the employees’ instances created in the section “Single-Linked List” on
page 142 to demonstrate the stack. The following code sequence will push three em‐
ployees and then pop them off the stack:

    Stack stack;

    initializeStack(&stack);

    push(&stack, samuel);

    push(&stack, sally);

    push(&stack, susan);

    Employee *employee;

    

    for(int i=0; i<4; i++) {

        employee = (Employee*) pop(&stack);

        printf("Popped %s\n", employee->name);

    }

Using Pointers to Support Data Structures | 153



When executed, we get the following output. Because we used the pop function four

times, NULL was returned the last time:

Popped Susan

Popped Sally

Popped Samuel

Popped (null)

Other stack operations sometime include a peek operation where the top element is
returned but is not popped off the stack.

Using Pointers to Support a Tree
The tree is a very useful data structure whose name is derived from the relationship
between its elements. Typically, child nodes are attached to a parent node. The overall
form is an inverted tree where a root node represents the data structure’s starting ele‐
ment.

A tree can have any number of children nodes. However, binary trees are more common
where each node possesses zero, one, or two children nodes. The children are designated
as either the left child or the right child. Nodes with no children are called leaf nodes,
similar to the leaves of a tree. The examples presented in this section will illustrate a
binary tree.

Pointers provide an obvious and dynamic way of maintaining the relationship between
tree nodes. Nodes can be dynamically allocated and added to a tree as needed. We will
use the following structure for a node. Using a pointer to void allows us to handle any
type of data that we need:

typedef struct _tree {

    void *data;

    struct _tree *left;

    struct _tree *right;

} TreeNode;

When we add nodes to a tree, it makes sense to add them in a particular order. This will
make many operations, such as searching, easier. A common ordering is to add a new
node to a tree such that all of the node’s children possess a value less than the parent
node and all of the children on the right possess a value greater than the parent node.
This is called a binary search tree.

The following insertNode function will insert a node into a binary search tree. However,
to insert a node, a comparison needs to be performed between the new node and the

tree’s existing nodes. We use the COMPARE function pointer to pass the comparison func‐
tion’s address. The first part of the function allocates memory for a new node and assigns

the data to the node. The left and right children are set to NULL since new nodes are
always added as leaves to a tree:
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void insertNode(TreeNode **root, COMPARE compare, void* data) {

    TreeNode *node = (TreeNode*) malloc(sizeof(TreeNode));

    node->data = data;

    node->left = NULL;

    node->right = NULL;

    if (*root == NULL) {

        *root = node;

        return;

    }

    while (1) {

        if (compare((*root)->data, data) > 0) {

            if ((*root)->left != NULL) {

                *root = (*root)->left;

            } else {

                (*root)->left = node;

                break;

            }

        } else {

            if ((*root)->right != NULL) {

                *root = (*root)->right;

            } else {

                (*root)->right = node;

                break;

            }

        }

    }

}

First, the root is checked to determine whether the tree is empty. If it is, then a new node
is assigned to the root and the function returns. The root is passed as a pointer to a

pointer to a TreeNode. This is necessary because we want to modify the pointer passed
to the function, not what the pointer points to. This use of two levels of indirection is
detailed in “Multiple Levels of Indirection” on page 25.

If the tree is not empty, then an infinite loop is entered and will terminate when the new
node has been added to the tree. With each loop’s iteration, the new node and current

parent node are compared. On the basis of this comparison, the local root pointer will

be reassigned to either the left or right child. This root pointer points to the current

node in the tree. If the left or right child is NULL, then the node is added as a child and
the loop terminates.

To demonstrate insertNode function, we will reuse the employee instances created in
the section “Using Pointers to Support Data Structures” on page 141. The following

sequence initializes an empty TreeNode and then inserts the three employees. The re‐
sulting program stack’s and heap’s state is illustrated in Figure 6-9. Some lines pointing
to the employees have been removed to simplify the diagram. The nodes’ placement in
the heap have also been arranged to reflect the tree structure’s order:
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    TreeNode *tree = NULL;

    insertNode(&tree, (COMPARE) compareEmployee, samuel);

    insertNode(&tree, (COMPARE) compareEmployee, sally);

    insertNode(&tree, (COMPARE) compareEmployee, susan);

Figure 6-9. insertNode function

Figure 6-10 illustrates the logical structure of this tree.

Figure 6-10. Logical tree organization

Binary trees are used for a number of purposes and can be traversed in three different
ways: pre-order, in-order, and post-order. The three techniques use the same steps, but
they are performed in different orders. The three steps are:

Visit the node
Process the node

Go left
Transfer to the left node
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Go right
Transfer to the right node

For our purposes, visiting a node means we will display its contents. The three orders
are:

In-order
Go left, visit the node, go right

Pre-order
Visit the node, go left, go right

Post-order
Go left, go right, visit the node

The functions’ implementations are shown below. Each passes the tree’s root and a
function pointer for the display function. They are recursive and will call themselves as
long as the root node passed to it is not null. They only differ in the order the three steps
are executed:

void inOrder(TreeNode *root, DISPLAY display) {

    if (root != NULL) {

        inOrder(root->left, display);

        display(root->data);

        inOrder(root->right, display);

    }

}

void postOrder(TreeNode *root, DISPLAY display) {

    if (root != NULL) {

        postOrder(root->left, display);

        postOrder(root->right, display);

        display(root->data);

    }

}

void preOrder(TreeNode *root, DISPLAY display) {

    if (root != NULL) {

        display(root->data);

        preOrder(root->left, display);

        preOrder(root->right, display);

    }

}

The following code sequence invokes these functions:

    preOrder(tree, (DISPLAY) displayEmployee);

    inOrder(tree, (DISPLAY) displayEmployee);

    postOrder(tree, (DISPLAY) displayEmployee);

Table 6-1 shows the output of each function call based on the previous initialization of
the tree.
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Table 6-1. Traversal techniques

pre-order Samuel 32 Sally 28 Susan 45

in-order Sally 28 Samuel 32 Susan 45

post-order Sally 28 Susan 45 Samuel 32

The in-order traversal will return a sorted list of the tree’s members. The pre-order and
post-order traversal can be used to evaluate arithmetic expressions when used in con‐
junction with a stack and queue.

Summary
The power and flexibility of pointers is exemplified when used to create and support
data structures. Combined with dynamic memory allocation of structures, pointers
enable the creation of data structures that use memory efficiently and can grow and
shrink to meet the application’s needs.

We started this chapter with a discussion of how memory is allocated for structures.
Padding between the field’s structures and between arrays of structures is possible. Dy‐
namic memory allocation and deallocation can be expensive. We examined one tech‐
nique to maintain a pool of structures to minimize this overhead.

We also demonstrated the implementation of several commonly used data structures.
The linked list was used to support several of these data structures. Function pointers
were used to add flexibility to these implementations by allowing the comparison or
display function to be determined at runtime.
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CHAPTER 7

Security Issues and the Improper Use of
Pointers

Few applications exist where security and reliability are not significant concerns. This
concern is reinforced by frequent reports of security breaches and application failures.
The responsibility of securing an application largely falls on the developer. In this chap‐
ter, we will examine practices to make applications more secure and reliable.

Writing secure applications in C can be difficult because of several inherent aspects of
the language. For example, C does not prevent the programmer from writing outside
an array’s bounds. This can result in corrupted memory and introduce potential se‐
curity risks. In addition, the improper use of pointers is often at the root of many security
problems.

When an application behaves in unpredictable ways, it may not seem to be a security
issue, at least in terms of unauthorized access. However, it is sometimes possible to take
advantage of this behavior, which can result in a denial of service and thus compromise
the application. Unpredictable behavior that results from improper use of pointers has
been illustrated elsewhere in this book. In this chapter, we will identify additional im‐
proper usages of pointers.

The CERT organization is a good source for a more comprehensive treatment of security
issues in C and other languages. This organization studies Internet security vulnera‐
bilities. We will focus on those security issues related to the use of pointers. Many of the
CERT organization’s security concerns can be traced back to the improper use of point‐
ers. Understanding pointers and the proper ways to use them is an important tool for
developing secure and reliable applications. Some of these topics have been addressed
in earlier chapters, not necessarily from a security standpoint but rather from a pro‐
gramming practice standpoint.
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There have been improvements in security introduced by operating systems (OS). Some
of these improvements are reflected in how memory is used. Although improvements
are typically beyond the control of developers, they will affect the program. Under‐
standing these issues will help explain an application’s behavior. We will focus on Address
Space Layout Randomization and Data Execution Prevention.

The Address Space Layout Randomization (ASLR) process arranges an application’s data
region randomly in memory. These data regions include the code, stack, and heap.
Randomizing the placement of these regions makes it more difficult for attackers to
predict where memory will be placed and thus more difficult to use them. Certain types
of attacks, such as the return-to-libc attack, overwrite portions of the stack and transfer

control to this region. This area is frequently the shared C library, libc. If the location

of the stack and libc are not known, then such attacks will be less likely to succeed.

The Data Execution Prevention (DEP) technique prevents the execution of code if it is
in a nonexecutable region of memory. In some types of attacks, a region of memory is
overwritten with a malicious code and then control is transferred to it. If this region of
code is nonexecutable, such as the stack or heap, then it is prevented from executing.
This technique can be implemented either in hardware or in software.

In this chapter, we will examine security issues from several perspectives:

• Declaration and initialization of pointers

• Improper pointer usage

• Deallocation problems

Pointer Declaration and Initialization
Problems can arise with the declaration and initialization of pointers or, more correctly,
the failure to initialize pointers. In this section, we will examine situations where these
types of problems can occur.

Improper Pointer Declaration
Consider the following declaration:

   int* ptr1, ptr2;

There is nothing necessarily wrong with the declaration; however, it may not be what

was intended. This declaration declared ptr1 as a pointer to an integer and ptr2 as an
integer. The asterisk was purposely placed next to the data type, and a space was placed

before ptr1. This placement makes no difference to the compiler, but to the reader, it

may imply that both ptr1 and ptr2 are declared as pointers to integers. However, only

ptr1 is a pointer.
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The correct approach is to declare them both as pointers using a single line, as shown
below:

   int *ptr1, *ptr2;

It is an even better practice to declare each variable on its own line.

Another good practice involves using type definitions instead of macro definitions.
These definitions allow the compiler to check scoping rules, which is not always true
with macro definitions.

Variables may be declared with the assistance of a directive, as shown below. Here, a

pointer to an integer is wrapped in a define directive and then used to declare variables:

#define PINT int* 

PINT ptr1, ptr2;

However, the result is the same problem as described above. A better approach is shown
below using a type definition:

typedef int* PINT;

PINT ptr1, ptr2;

Both variables are declared as pointers to integers.

Failure to Initialize a Pointer Before It Is Used
Using a pointer before it is initialized can result in a run-time error. This is sometimes
referred to as a wild pointer. A simple example follows where a pointer to an integer is
declared but is never assigned a value before it is used:

   int *pi;

   ...

   printf(“%d\n”,*pi);

Figure 7-1 illustrates how memory is allocated at this point.

Figure 7-1. Wild pointer

The variable pi has not been initialized and will contain garbage, indicated by the el‐
lipses. Most likely this sequence will terminate during execution if the memory address

stored in pi is outside the valid address space for the application. Otherwise, the value

Pointer Declaration and Initialization | 161



displayed will be whatever happens to be at that address and will be presented as an
integer. If we use a pointer to a string instead, we will frequently see a series of strange
characters displayed until the terminating zero is reached.

Dealing with Uninitialized Pointers
Nothing inherent in a pointer tells us whether it is valid. Thus, we cannot simply examine
its contents to determine whether it is valid. However, three approaches are used to deal
with uninitialized pointers:

• Always initialize a pointer with NULL

• Use the assert function

• Use third-party tools

Initializing a pointer to NULL will make it easier to check for proper usage. Even then,
checking for a null value can be tedious, as shown below:

   int *pi = NULL;

   ...

   if(pi == NULL) {

      // pi should not be dereferenced

   } else {

      // pi can be used

   }

The assert function can also be used to test for null pointer values. In the following

example, the pi variable is tested for a null value. If the expression is true, then nothing
happens. If the expression is false, then the program terminates. Thus, the program will
terminate if the pointer is null.

   assert(pi != NULL);

For debug versions of the application, this approach may be acceptable. If the pointer
is null, then the output will appear similar to the following:

Assertion failed: pi != NULL

The assert function is found in the assert.h header file.

Third-party tools can also be used to help identify these types of problems. In addition,
certain compiler options can be useful, as addressed in the section “Using Static Analysis
Tools” on page 173.

Pointer Usage Issues
In this section, we will examine misuse of the dereference operator and array subscripts.
We will also examine problems related to strings, structures, and function pointers.
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Many security issues revolve around the concept of a buffer overflow. Buffer overflow
occurs when memory outside the object’s bounds is overwritten. This memory may be
part of the program’s address space or another process. When the memory is outside of
the program address space, most operating systems will issue a segmentation fault and
terminate the program. Termination for this reason constitutes a denial of service attack
when done maliciously. This type of attack does not attempt to gain unauthorized access
but tries to take down the application and potentially a server.

If the buffer overflow occurs within the application’s address space, then it can result in
unauthorized access to data and/or the transfer of control to another segment of code,
thereby potentially compromising the system. This is of particular concern if the ap‐
plication is executing with supervisor privileges.

Buffer overflow can happen by:

• Not checking the index values used when accessing an array’s elements

• Not being careful when performing pointer arithmetic with array pointers

• Using functions such as gets to read in a string from standard input

• Using functions such as strcpy and strcat improperly

When buffer overflow occurs with a stack frame element, it is possible to overwrite the
return address portion of the stack frame with a call to malicious code created at the
same time. See “Program Stack and Heap” on page 58 for more detail about the stack
frame. When the function returns, it will transfer control to the malicious function.
This function can then perform any operation, restrained only by the current user’s
privilege level.

Test for NULL
Always check the return value when using a malloc type function. Failure to do so can
result in abnormal termination of the program. The following illustrates the general
approach:

    float *vector = malloc(20 * sizeof(float));

    if(vector == NULL) {

        // malloc failed to allocate memory

    } else {

        // Process vector

    }

Misuse of the Dereference Operator
A common approach for declaring and initializing a pointer is shown below:

   int num;

   int *pi = &num;
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Another seemingly equivalent declaration sequence follows:

   int num;

   int *pi;

   *pi = &num;

However, this is not correct. Notice the use of the dereference operator on the last line.

We are attempting to assign the address of num not to pi but rather to the memory

location specified by the contents of pi. The pointer, pi, has not been initialized yet. We
have made a simple mistake of misusing the dereference operator. The correct sequence
follows:

   int num;

   int *pi;

   pi = &num;

In the original declaration, int *pi = &num, the asterisk declared the variable to be a
pointer. It was not used as the dereference operator.

Dangling Pointers
A dangling pointer occurs when a pointer is freed but still references that memory. This
problem is described in detail in “Dangling Pointers” on page 51. If an attempt is made
to access this memory later, then its contents may well have changed. A write operation
against this memory may corrupt memory, and a read operation may return invalid
data. Either could potentially result in the termination of the program.

This has not been considered a security concern until recently. As explained in Dangling
Pointer, there exists a potential for exploiting a dangling pointer. However, this approach
is based on the exploitation of the VTable (Virtual Table) in C++. A VTable is an array
of function pointers used to support virtual methods in C++. Unless you are using a
similar approach involving function pointers, this should not be a concern in C.

Accessing Memory Outside the Bounds of an Array
Nothing can prevent a program from accessing memory outside of the space allocated
for an array. In this example, we declare and initialize three arrays to demonstrate this
behavior. The arrays are assumed to be allocated in consecutive memory locations.

    char firstName[8] = "1234567";

    char middleName[8] = "1234567";

    char lastName[8] = "1234567";

    middleName[-2] = 'X';

    middleName[0] = 'X';

    middleName[10] = 'X';

    printf("%p  %s\n",firstName,firstName);
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    printf("%p  %s\n",middleName,middleName);

    printf("%p  %s\n",lastName,lastName);

To illustrate how memory is overwritten, three arrays are initialized to a simple sequence
of numbers. While the behavior of the program will vary by compiler and machine, this

will normally execute and overwrite characters in firstName and lastName. The output
is shown below. Figure 7-2 illustrates how memory is allocated:

116  12X4567

108  X234567

100  123456X

Figure 7-2. Using invalid array indexes

As explained in Chapter 4, the address calculated using subscripts does not check the
index values. This is a simple case of buffer overflow.

Calculating the Array Size Incorrectly
When passing an array to a function, always pass the size of the array at the same time.
This information will help the function avoid exceeding the bounds of the array. In the

replace function shown below, the string’s address is passed along with a replacement
character and the buffer’s size. The function’s purpose is to replace all of the characters

in the string up to the NUL character with the replacement character. The size argument
prevents the function from writing past the end of the buffer:

void replace(char buffer[], char replacement, size_t size) {

    size_t count = 0;

    while(*buffer != NUL && count++<size) {

        *buffer = replacement;

        buffer++;

    }

}

In the following sequence, the name array can only hold up to seven characters plus the

NUL termination character. However, we purposely write past the end of the array to

demonstrate the replace function. In the following sequence, the replace function is

passed to the name and a replacement character of +:

    char name[8];

    strcpy(name,"Alexander");
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    replace(name,'+',sizeof(name));

    printf("%s\n", name);

When this code is executed, we get the following output:

 ++++++++r

Only eight plus-sign characters were added to the array. While the strcpy function

permitted buffer overflow, the replace function did not. This assumes that the size

passed is valid. Functions like strcpy that do not pass the buffer’s size should be used
with caution. Passing the buffer’s size provides an additional layer of protection.

Misusing the sizeof Operator
An example of misusing the sizeof operator occurs when we attempt to check our
pointer bounds but do it incorrectly. In the following example, we allocate memory for
an integer array and then initialize each element to 0.

    int buffer[20];

    int *pbuffer = buffer;

    for(int i=0; i<sizeof(buffer); i++) {

        *(pbuffer++) = 0;

    }

However, the sizeof(buffer) expression returns 80 since the size of the buffer in bytes

is 80 (20 multiplied by 4 byte elements). The for loop is executed 80 times instead of
20 and will frequently result in a memory access exception terminating the application.

Avoid this by using the expression sizeof(buffer)/sizeof(int) in the test condition

of the for statement.

Always Match Pointer Types
It is a good idea to always use the appropriate pointer type for the data. To demonstrate
one possible pitfall, consider the following sequence. A pointer to an integer is assigned

to a pointer to a short:

   int  num = 2147483647;

   int *pi = &num;

   short *ps = (short*)pi;

   printf("pi: %p  Value(16): %x  Value(10): %d\n", pi, *pi, *pi);

   printf("ps: %p  Value(16): %hx  Value(10): %hd\n",

           ps, (unsigned short)*ps, (unsigned short)*ps);

The output of the snippet follows:

pi: 100  Value(16): 7fffffff  Value(10): 2147483647

ps: 100  Value(16): ffff  Value(10): -1

Notice that it appears that the first hexadecimal digit stored at address 100 is 7

or f, depending on whether it is displayed as an integer or as a short. This apparent
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contradiction is an artifact of executing this sequence on a little endian machine. The
layout of memory for the constant at address 100 is illustrated in Figure 7-3.

Figure 7-3. Mismatched pointer types

If we treat this as a short number and only use the first two bytes, then we get the short
value of –1. If we treat this as an integer and use all four bytes, then we get 2,147,483,647.
These types of subtle problems are what make C and pointers such a challenging subject.

Bounded Pointers
The term bounded pointers describes pointers whose use is restricted to only valid re‐
gions. For example, with an array declared with 32 elements, a pointer used with this
array would be restricted from accessing any memory before or after the array.

C does not provide any direct support for this approach. However, it can be enforced
explicitly by the programmer, as shown below:

    #define SIZE 32

    char name[SIZE];

    char *p = name;

    if(name != NULL) {

        if(p >= name && p < name+SIZE) {

            // Valid pointer - continue

        } else {

            // Invalid pointer - error condition

        }

    }

This approach can get tedious. Instead, static analysis as discussed in the section “Using
Static Analysis Tools” on page 173 can be helpful.

An interesting variation is to create a pointer validation function. For this to happen,
the initial location and range must be known.

Another approach is to use the Bounded Model Checking for ANSI-C and C++
(CBMC). This application checks for various safety and security issues within C pro‐
grams and finds array bounds and buffer overflow problems.

Smart pointers, available in C++, provide a way of simulating a pointer
and support bounds checking. Unfortunately, they are not available in
C.
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String Security Issues
Security issues related to a string generally occur when we write past the end of a string.
In this section, we will focus on the “standard” functions that contribute to this problem.

The use of string functions such as strcpy and strcat can result in buffer overflow if
they are not used carefully. Several approaches have been suggested to replace these

methods, but none have become widely accepted. The strncpy and strncat functions

can provide some support for this operation where a size_t parameter specifies the
maximum number of characters to copy. However, they can also be error prone if the
number of characters is not calculated correctly.

In C11 (Annex K), the strcat_s and strcpy_s functions have been added. They return
an error if buffer overflow occurs. Currently, they are only supported by Microsoft

Visual C++. The following example illustrates the use of the strcpy_s function. It takes
three parameters: a destination buffer, the size of the destination buffer, and a source
buffer. If the return value is zero, then no errors occurred. However, in this example, an
error will result since the source is too large to fit into the destination buffer:

char firstName [8];

int result;

result = strcpy_s(firstName,sizeof(firstName),"Alexander");

The scanf_s and wscanf_s functions are also available to protect against buffer over‐
flow.

The gets function reads a string from standard input and stores the character in a
designated buffer. It can write past the buffer’s declared length. If the string is too long,
then buffer overflow will occur.

Also, the strlcpy and srtlcat functions are supported on some Linux systems but not
by GNU C library. They are thought by some to create more problems than they solve
and are not well documented.

The use of some functions can result in an attacker accessing memory using a technique
known as format string attacks. In these attacks, a user-supplied format string, illustrated
below, is crafted to enable access to memory and potentially the ability to inject code.
In this simple program, the second command line argument is used as the first param‐

eter of the printf function:

int main(int argc, char** argv) {

    printf(argv[1]);

    ...

}

This program can be executed using a command similar to the following:

main.exe "User Supplied Input"
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Its output will appear as:

User Supplied Input

Although this program is innocuous, a more sophisticated attack can do real damage.
Comprehensive coverage of this topic is not provided here; however, more detail on
how to effect such an attack can be found at hackerproof.org.

Functions such as printf, fprintf, snprintf, and syslog all have a format string as
an argument. The simplest defense against this type of attack is to never use a user-
supplied format string with these functions.

Pointer Arithmetic and Structures
Pointer arithmetic should only be used with arrays. Because arrays are guaranteed to be
allocated in a contiguous block of memory, pointer arithmetic will result in a valid offset.
However, they should not be used within structures, as the structure’s fields may not be
allocated in consecutive regions of memory.

This is illustrated with the following structure. The name field is allocated 10 bytes, and
is followed by an integer. However, since the integer will be aligned on a four-byte
boundary, there will be a gap between the two fields. Gaps of this type are explained in
the section“How Memory Is Allocated for a Structure” on page 135.

typedef struct _employee {

    char name[10];

    int age;

} Employee;

The following sequence attempts to use a pointer to access the age field of the structure:

    Employee employee;

    // Initialize eployee

    char *ptr = employee.name;

    ptr += sizeof(employee.name);

The pointer will contain the address 110, which is the address of the two bytes found
between the two fields. Dereferencing the pointer will interpret the four bytes at address
110 as an integer. This is illustrated in Figure 7-4.

Figure 7-4. Structure padding example
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Improperly aligned pointers can result in an abnormal program ter‐
mination or retrieval of bad data. In addition, slower pointer access is
possible if the compiler is required to generate additional machine code
to compensate for the improper alignment.

Even if the memory within a structure is contiguous, it is not a good practice to use

pointer arithmetic with the structure’s fields. The following structure defines an Item
consisting of three integers. While the three integer fields will normally be allocated in
consecutive memory locations, there is no guarantee that they will be:

typedef struct _item {

    int partNumber;

    int quantity;

    int binNumber;

}Item;

The following code sequence declares a part and then uses pointer arithmetic to access
each field:

    Item part = {12345, 35, 107};

    int *pi = &part.partNumber;

    printf("Part number: %d\n",*pi);

    pi++;

    printf("Quantity: %d\n",*pi);

    pi++;

    printf("Bin number: %d\n",*pi);

Normally, the output will be as expected, but it is not guaranteed to work. A better

approach is to assign each field to pi:

    int *pi = &part.partNumber;

    printf("Part number: %d\n",*pi);

    pi = &part.quantity;

    printf("Quantity: %d\n",*pi);

    pi = &part.binNumber;

    printf("Bin number: %d\n",*pi);

Even better, do not use pointers at all, as shown below:

    printf("Part number: %d\n",part.partNumber);

    printf("Quantity: %d\n",part.quantity);

    printf("Bin number: %d\n",part.binNumber);

Function Pointer Issues
Functions and function pointers are used to control a program’s execution sequence,
but they can be misused, resulting in unpredictable behavior. Consider the use of the

function getSystemStatus. This function returns an integer value that reflects the sys‐
tem’s status:
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int getSystemStatus() { 

    int status;

    ...

    return status; 

}

The best way to determine whether the system status is zero follows:

    if(getSystemStatus() == 0) {

        printf("Status is 0\n");

    } else {

         printf("Status is not 0\n");

    }

In the next example, we forget to use the open and close parentheses. The code will not
execute properly:

    if(getSystemStatus == 0) {

        printf("Status is 0\n");

    } else {

        printf("Status is not 0\n");

    }

The else clause will always be executed. In the logical expression, we compared the
address of the function with 0 instead of calling the function and comparing its return
value to 0. Remember, when a function name is used by itself, it returns the address of
the function.

A similar mistake is using a function return value directly without comparing its result
to some other value. The address is simply returned and evaluated as true or false. The
address of the function is not likely to be zero. As a result, the address returned will be
evaluated as true since C treats any nonzero value as true:

    if(getSystemStatus) {

        // Will always be true

    }

We should have written the function call as follows to determine whether the status is
zero.

    if(getSystemStatus()) {

Do not assign a function to a function pointer when their signatures differ. This can
result in undefined behavior. An example of this misuse is shown below:

    int (*fptrCompute)(int,int);

    int add(int n1, int n2, int n3) { 

        return n1+n2+n3;

    }

    fptrCompute = add;

    fptrCompute(2,5);
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We attempted to invoke the add function with only two arguments when it expected
three arguments. This will compile, but the output is indeterminate.

A function pointer executes different functions, depending on the address assigned to

it. For example, we may want to use the printf function for normal operations but
change it to a different function for specialized logging purposes. Declaring and using
such a function pointer is shown below:

     int (*fptrIndirect)(const char *, ...) = printf;

     fptrIndirect("Executing printf indirectly");

It may be possible for an attacker to use buffer overflow to overwrite the function
pointer’s address. When this happens, control can be transferred to an arbitrary location
in memory.

Memory Deallocation Issues
Even when memory has been deallocated, we are not necessarily through with the
pointer or the deallocated memory. One concern deals with what happens when we try
to free the same memory twice. In addition, once memory is freed, we may need to be
concerned with protecting any residual data. We will examine these issues in this section.

Double Free
Freeing a block of memory twice is referred to as double free, as explained in “Double
Free” on page 48. The following illustrates how this can be done:

    char *name = (char*)malloc(...);

    ...

    free(name);     // First free

    ...

    free(name);     // Double free

In an earlier version of the zlib compression library, it was possible for a double-free
operation to result in a denial of service attack or possibly to insert code into the pro‐
gram. However, this is extremely unlikely and the vulnerability has been addressed in
newer releases of the library. More information about this vulnerability can be found
at cert.org.

A simple technique to avoid this type of vulnerability is to always assign NULL to a
pointer after it has been freed. Subsequent attempts to free a null pointer will be ignored
by most heap managers.

    char *name = (char*)malloc(...);

    ...

    free(name); 

    name = NULL;
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In the section “Writing your own free function” on page 70, we developed a function to
achieve this effect.

Clearing Sensitive Data
It is a good idea to overwrite sensitive data in memory once it is no longer needed. When
your application terminates, most operating systems do not zero out or otherwise ma‐
nipulate the memory used by your application. Your old space may be allocated to
another program, which will have access to its contents. Overwriting sensitive data will
make it more difficult for another program to extract useful information from program
address space previously used to hold sensitive data. The following sequence illustrates
zeroing out of sensitive data in a program:

    char name[32];

    int userID;

    char *securityQuestion;

    

    // assign values

    ...

    

    // Delete sensitive information

    memset(name,0,sizeof(name));

    userID = 0;

    memset(securityQuestion,0,strlen(securityQuestion));

If name has been declared as a pointer, then we should clear its memory before we
deallocate it, as shown below:

    char *name = (char*)malloc(...);

    ...

    memset(name,0,sizeof(name));

    free(name);

Using Static Analysis Tools
Numerous static analysis tools are available to detect improper use of pointers. In ad‐
dition, most compilers possess options to detect many of the issues addressed in this

chapter. For example, the GCC compiler’s -Wall option enables the reporting of all
compiler warnings.

The following illustrates the warnings produced by some of the examples included in
this chapter. Here we forget to use open and close parentheses for a function call:

    if(getSystemStatus == 0) {

The result is the following warning:

warning: the address of 'getSystemStatus' will never be NULL

We make essentially the same mistake here:
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    if(getSystemStatus) {

However, the warning is different:

warning: the address of 'getSystemStatus' will always evaluate as 'true'

Using incompatible pointer types will result in a warning:

int (*fptrCompute)(int,int);

int addNumbers(int n1, int n2, int n3) { 

    return n1+n2+n3;

}

    ...

    fptrCompute = addNumbers;

The warning follows:

warning: assignment from incompatible pointer type

Failure to initialize a pointer is usually a problem:

    char *securityQuestion;

    strcpy(securityQuestion,"Name of your home town");

The warning generated is surprisingly lucid:

warning: 'securityQuestion' is used uninitialized in this function

Numerous static analysis tools are also available. Some are free, and others are available
for a fee. They generally provide enhanced diagnostic capabilities beyond those pro‐
vided by most compilers. Because of their complex nature, examples are beyond the
scope of this book.

Summary
In this chapter, we investigated how pointers can affect an application’s security and
reliability. These issues were organized around the declaration and initialization of
pointers, the use of pointers, and memory deallocation problems. For example, it is
important to initialize a pointer before it is used and to potentially clean up the memory

used by a string once the memory is no longer needed. Setting a pointer to NULL can be
an effective technique in many of these situations.

Pointers can be misused in several ways. Many of these involve overwriting memory
outside the string, a form of buffer overflow. The misuse of pointers can cause undefined
behavior in several areas, including mismatching pointer types and incorrect pointer
arithmetic.

We illustrated various techniques to avoid these types of problems. Many involved sim‐
ply understanding how pointers and strings are supposed to be used. We also touch on
how compilers and static analysis tools can be used to identify potential problem areas.
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CHAPTER 8

Odds and Ends

Pointers are vital to almost all aspects of C. Many of these areas are fairly well defined,
such as arrays and functions. This chapter examines several topics that do not neatly fit
into the previous chapters. Coverage of these topics will round out your knowledge of
how pointers work.

In this chapter, we will examine several topics related to pointers:

• Casting pointers

• Accessing hardware devices

• Aliasing and strict aliasing

• Use of the restrict keyword

• Threads

• Object-oriented techniques

With regards to threads, there are two areas of interest. The first deals with the basic
problem of sharing data between threads using pointers. The second discusses how
pointers are used to support callbacks. An operation may invoke a function to perform
a task. When the actual function called changes, this is referred to as a callback function.
For example, the sort function used in Chapter 5 is an example of a callback function.
A callback is also used to communicate between threads.

We will cover two approaches for providing object-oriented type support within C. The
first is the use of an opaque pointer. This technique hides a data structure’s implemen‐
tation details from users. The second technique will demonstrate how to effect poly‐
morphic type behavior in C.
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Casting Pointers
Casting is a basic operator that can be quite useful when used with pointers. Casting
pointers are useful for a number of reasons, including:

• Accessing a special purpose address

• Assigning an address to represent a port

• Determining a machine’s endianness

We will also address a topic closely related to casting in the section“Using a Union to
Represent a Value in Multiple Ways” on page 182.

The endianness of a machine generally refers to the order of bytes within
a data type. Two common types of endian include little endian and big
endian. Little endian means the low-order bytes are stored in the lowest
address, while big endian means the high-order bytes are stored at the
lowest address.

We can cast an integer to a pointer to an integer as shown below:

   int num = 8;

   int *pi = (int*)num;

However, this is normally a poor practice as it allows access to an arbitrary address,
potentially a location the program is not permitted to access. This is illustrated in
Figure 8-1, where address 8 is not in the application’s address space. If the pointer is
dereferenced, it will normally result in the application’s termination.

Figure 8-1. Casting an integer to a bad location
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For some situations, such as when we need to address memory location zero, we may
need to cast a pointer to an integer and then cast it back to a pointer. This is more
common on older systems where a pointer’s size is the same size as an integer. However,
this does not always work. The approach is illustrated below, where the output is
implementation-dependent:

   pi = &num;

   printf("Before: %p\n",pi);

   int tmp = (int)pi;

   pi = (int*)tmp;

   printf("After: %p\n",pi);

Casting a pointer to an integer and then back to a pointer has never been considered
good practice. If this needs to be done, consider using a union, as discussed in the
section“Using a Union to Represent a Value in Multiple Ways” on page 182.

Remember that casting to and from an integer is different from casting to and from
void, as illustrated in “Pointer to void” on page 14.

The term handle is sometimes confused with a pointer. A handle is a
reference to a system resource. Access to the resource is provided
through the handle. However, the handle generally does not provide
direct access to the resource. In contrast, a pointer contains the re‐
source’s address.

Accessing a Special Purpose Address
The need to access a special purpose address often occurs on embedded systems where
there is minimal operating system mediation. For example, in some low-level OS kernels
the address of video RAM for a PC is 0xB8000. This address holds the character to be
displayed in the first row and first column when in text mode. We can assign this address
to a pointer and then assign a character to the location, as illustrated below. The memory
layout is shown in Figure 8-2:

   #define VIDEO_BASE 0xB8000

   int *video = (int *) VIDEO_BASE;

   *video = 'A';

If appropriate, the address can also be read. This is not typically done for video memory.

When you need to address memory at location zero, sometimes the compiler will treat

it as a NULL pointer value. Access to location zero is often needed in low-level kernel
programs. Here are a few techniques to address this situation:

• Set the pointer to zero (this does not always work)

• Assign a zero to an integer and then cast the integer to the pointer
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Figure 8-2. Addressing video memory on a PC

• Use a union as discussed in the section “Using a Union to Represent a Value in
Multiple Ways” on page 182

• Use the memset function to assign a zero to the pointer

An example of using the memset function follows. Here, the memory referenced by ptr
is set to all zeros:

memset((void*)&ptr, 0, sizeof(ptr));

On systems where addressing memory location zero is needed, the vendor will fre‐
quently have a workaround.

Accessing a Port
A port is both a hardware and a software concept. Servers use software ports to indicate
they should receive certain messages sent to the machine. A hardware port is typically
a physical input/output system component connected to an external device. By either
reading or writing to a hardware port, information and commands can be processed by
the program.

Typically, software that accesses a port is part of the OS. The following illustrates the
use of pointers to access a port:

   #define PORT 0xB0000000

   unsigned int volatile * const port = (unsigned int *) PORT;

The machine uses the hexadecimal value address to designate a port. The data is treated

as an unsigned integer. The volatile keyword qualifier indicates that the variable can
be changed outside of the program. For example, an external device may write data to
a port. This write operation is performed independent of the computer’s processor.
Compilers will sometimes temporarily use a cache, or register, to hold the value in a
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memory location for optimization purposes. If the external write modifies the memory
location, then this change will not be reflected in the cached or register value.

Using the volatile keyword will prevent the runtime system from using a register to
temporarily store the port value. Each port access requires the system to read or write
to the port instead of reading a possibly stale value stored in a register. We don’t want
to declare all variables as volatile, as this will prevent the compiler from performing
certain types of optimizations.

The application can then read or write to the port by dereferencing the port pointer as
follows. The layout of memory is shown in Figure 8-3, where the External Device can
read/write to the memory at 0xB0000000:

   *port = 0x0BF4; // write to the port

   value = *port; // read from the port

Figure 8-3. Accessing a port

It is not a good idea to access volatile memory with a nonvolatile vari‐
able. Using such a variable can result in undefined behavior.

Accessing Memory using DMA
Direct Memory Access (DMA) is a low-level operation that assists in transferring data
between main memory and some device. It is not part of the ANSI C specification but
operating systems typically provide support for this operation. DMA operations are
normally conducted in parallel with the CPU. This frees up the CPU for other processing
and can result in better performance.

The programmer will invoke a DMA function and then wait for the operation’s com‐
pletion. Often, a callback function is provided by the programmer. When the operation
completes, the callback function is invoked by the operating system. The callback func‐
tion is specified using a function pointer and is discussed further in the section “Using
Function Pointers to Support Callbacks” on page 188.
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Determining the Endianness of a Machine
The cast operator can also be used to determine the endianness of architecture. Endi‐
an refers to the order of bytes in a unit of memory. The endianness is usually referred
to as either little endian or big endian. For example, for a four-byte representation of an
integer using little endian ordering, the integer’s least significant byte is stored in the
lowest address of the four bytes.

In the following example, we cast an integer’s address as a pointer to a char. The indi‐
vidual bytes are then displayed:

    int num = 0x12345678;

    char* pc = (char*) &num;

    for (int i = 0; i < 4; i++) {

        printf("%p: %02x \n", pc, (unsigned char) *pc++);

    }

The output of this code snippet as executed on an Intel PC reflects a little-endian ar‐
chitecture, as shown below. Figure 8-4 illustrates how these values are allocated in
memory:

100: 78 

101: 56 

102: 34 

103: 12

Figure 8-4. Endian example

Aliasing, Strict Aliasing, and the restrict Keyword
One pointer is said to alias another pointer if they both reference the same memory
location. This is not uncommon, and it can present a number of problems. In the fol‐
lowing code sequence, two pointers are declared and are both assigned the same address:

    int num = 5;

    int* p1 = &num;

    int* p2 = &num;

When the compiler generates code for pointers, it has to assume that aliasing may occur
unless told otherwise. The use of aliasing imposes restrictions on compiler-generated
code. If two pointers reference the same location, either can potentially modify that
location. When the compiler generates code to read or write to that location, it is not
always able to optimize the code by storing the value in a register. It is forced to perform
machine-level load and store operations with each reference. The repeated load/store
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sequence can be inefficient. In some situations, the compiler must also be concerned
about the order in which the operations are performed.

Strict aliasing is another form of aliasing. Strict aliasing does not allow a pointer of one
data type to alias a pointer of a different data type. In the following code sequence, a
pointer to an integer aliases a pointer to a float. This violates the strict aliasing rule. The
sequence determines whether the number is negative. Instead of comparing its argu‐
ment to zero to see whether it is positive, this approach will execute faster:

    float number = 3.25f;

    unsigned int *ptrValue = (unsigned int *)&number;

    unsigned int result = (*ptrValue & 0x80000000) == 0;

Strict aliasing does not apply to pointers differing only by sign or quali‐
fier. The following are all valid strict aliases:

    int num;

    const int *ptr1 = &num;

    int *ptr2 = &num;

    int volatile ptr3 = &num;

However, there are situations where the ability to use multiple representations of the
same data can be useful. To avoid aliasing problems, several techniques are available:

• Use a union

• Disable strict aliasing

• Use a pointer to char

A union of two data types can get around the strict aliasing problem. This is discussed
in the section “Using a Union to Represent a Value in Multiple Ways” on page 182. If your
compiler has an option to disable strict aliasing, it can be turned off. The GCC compiler
has the following compiler options:

• -fno-strict-aliasing to turn it off

• -fstrict-aliasing to turn it on

• -Wstrict-aliasing to warn of strict aliasing-related problems

Code requiring strict aliasing to be turned off probably reflects poor memory access
practices. When possible, take time to resolve these issues instead of turning off strict
aliasing.
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Compilers do not always do a good job at reporting alias-related warn‐
ings. They can sometimes miss aliases and may sometimes report alias
problems where they don’t exist. It is ultimately up to the programmer
to identify alias conditions.

A pointer to char is always assumed to potentially alias any object. Thus, it can be used
safely in most situations. However, casting a pointer to one data type to a pointer to

char and then casting the pointer to char to a second pointer data type will result in
undefined behavior and should be avoided.

Using a Union to Represent a Value in Multiple Ways
C is a typed language. When a variable is declared, a type is assigned to it. Multiple
variables can exist with different types. At times, it may be desirable to convert one type
to another type. This is normally achieved with casting but can also be performed using
a union. The term type punning describes the technique used to subvert the type system.

When the conversion involves pointers, serious problems can result. To illustrate this
technique, we will use three different functions. These will determine whether a floating
point number is positive.

The first function shown below uses a union of a float and an unsigned integer. The
function first assigns the floating point value to the union and then extracts the integer
to perform the test:

typedef union _conversion {

    float fNum;

    unsigned int uiNum;

} Conversion;

int isPositive1(float number) {

    Conversion conversion = { .fNum =number};

    return (conversion.uiNum & 0x80000000) == 0;

}

This will work correctly and does not involve aliasing because no pointers are involved.
The next version uses a union that contains pointers to the two data types. The floating
point number’s address is assigned to the first pointer. The integer’s pointer is then
dereferenced to perform the test. This violates the strict aliasing rule:

typedef union _conversion2 {

    float *fNum;

    unsigned int *uiNum;

} Conversion2;

int isPositive2(float number) {

    Conversion2 conversion;

    conversion.fNum =&number;
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    return (*conversion.uiNum & 0x80000000) == 0;

}

The following function does not use a union and violates the strict aliasing rule since

the ptrValue pointer shares the same address as number:

int isPositive3(float number) {

    unsigned int *ptrValue = (unsigned int *)&number;

    return (*ptrValue & 0x80000000) == 0;

}

The approach used by these functions assumes:

• The IEEE-754 floating point standard is used to represent a floating point number

• The floating number is laid out in a particular manner

• Integer and floating point pointers are aligned correctly

However, these assumptions are not always valid. While approaches such as this can
optimize operations, they are not always portable. When portability is important, per‐
forming a floating point comparison is a better approach.

Strict Aliasing
A compiler does not enforce strict aliasing. It will only generate warnings. The compiler
assumes that two or more pointers of different types will never reference the same object.
This includes pointers to structures with different names but that are otherwise iden‐
tical. With strict aliasing, the compiler is able to perform certain optimizations. If the
assumption is incorrect, then unexpected results may occur.

Even if two structures have the same field but different names, two pointers to these
structures should never reference the same object. In the following example, it is as‐

sumed the person and employee pointers will never reference the same object:

typedef struct _person {

    char* firstName;

    char* lastName;

    unsigned int age;

} Person;

typedef struct _employee {

    char* firstName;

    char* lastName;

    unsigned int age;

} Employee;

Person* person;

Employee* employee;
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However, the pointers can reference the same object if the structure definitions differ
only by their name, as illustrated below:

typedef struct _person {

    char* firstName;

    char* lastName;

    unsigned int age;

} Person;

typedef Person Employee;

Person* person;

Employee* employee;

Using the restrict Keyword
C compilers assume pointers are aliased by default. Using the restrict keyword when
declaring a pointer tells the compiler that the pointer is not aliased. This allows the
compiler to generate more efficient code. Frequently, this is achieved by caching the
pointer. Bear in mind that this is only a recommendation. The compiler may decide not
to optimize the code. If aliases are used, then the code’s execution will result in undefined
behavior. The compiler will not provide any warning when the assumption is violated.

New code development should use the restrict keyword with most
pointer declarations. This will enable better code optimization. Modi‐
fying existing code may not be worth the effort.

The following function illustrates the definition and use of the restrict keyword. The
function adds two vectors together and stores the result in the first vector:

void add(int size, double * restrict arr1, const double * restrict arr2) {

    for (int i = 0; i < size; i++) {

        arr1[i] += arr2[i];

    }

}

The restrict keyword is used with both array parameters, but they should not both
reference the same block of memory. The following shows the correct usage of the
function:

    double vector1[] = {1.1, 2.2, 3.3, 4.4};

    double vector2[] = {1.1, 2.2, 3.3, 4.4};

    

    add(4,vector1,vector2);

In the following sequence, the function is called improperly with the same vector being
passed as both parameters. The first statement uses an alias while the second statement
uses the same vector twice:
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    double vector1[] = {1.1, 2.2, 3.3, 4.4};

    double *vector3 = vector1;

    add(4,vector1,vector3);

    add(4,vector1,vector1);

Though it may sometimes work correctly, the results of the function invocation may
not be reliable.

Several standard C functions use the restrict keyword, including:

• void *memcpy(void * restrict s1, const void * restrict s2, size_t n);

• char *strcpy(char * restrict s1, const char * restrict s2);

• char *strncpy(char * restrict s1, const char * restrict s2, size_t n);

• int printf(const char * restrict format, ... );

• int sprintf(char * restrict s, const char * restrict format, ... );

• int snprintf(char * restrict s, size_t n, const char * restrict for

mat, ... );

• int scanf(const char * restrict format, ...);

The restrict keyword has two implications:

1. To the compiler it means it can perform certain code optimizations

2. To the programmer it means these pointers should not be aliased; otherwise, the
results of the operation are undefined.

Threads and Pointers
When threads share data, numerous problems can occur. One common problem is the
corruption of data. One thread may write to an object but the thread may be suspended
momentarily, leaving that object in an inconsistent state. Subsequently, a second thread
may read that object before the first thread is able to resume. The second thread is now
using an invalid or corrupted object.

Since pointers are a common way of referencing data in another thread, we will examine
various issues that can adversely affect a multithreaded application. As we will see in
this section’s examples, mutexes are frequently used to protect data.

The C11 standard implements threading, but it is not widely supported at this time.
There are numerous libraries that support threads in C. We will use Portable Operating
System Interface (POSIX) threads since they are readily available. Regardless of the
library used, the techniques presented here should be applicable.
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We will use pointers to support a multithreaded application and callbacks. Threads are
an involved topic. We assume you are familiar with basic thread concepts and terms,
and therefore, we will not go into detail about how the POSIX thread functions work.
The reader is referred to O’Reilly’s PThreads Programming for a more detailed discus‐
sion of this topic.

Sharing Pointers Between Threads
When two or more threads share data, the data can become corrupted. To illustrate this
problem, we will implement a multi-threaded function that computes the dot product
of two vectors. The multiple threads will simultaneously access two vectors and a sum
field. When the threads complete, the sum field will hold the dot product value.

The dot product of two vectors is computed by summing the product of the corre‐
sponding elements of each vector. We will use two data structures in support of the

operation. The first one, VectorInfo, contains information about the two vectors being

manipulated. It has pointers to the two vectors, the sum field to hold the dot product,

and a length field to specify the vector segment’s size used by the dot product function.

The length field represents that portion of the vector that a thread will process, not the
entire length of a vector:

typedef struct {

    double *vectorA;

    double *vectorB;

    double sum;

    int length;

} VectorInfo;

The second data structure, Product, contains a pointer to a VectorInfo instance and

the beginning index the dot Product vector will use. We will create a new instance of
this structure for each thread with a different beginning index:

typedef struct {

    VectorInfo *info;

    int beginningIndex;

} Product;

While each thread will be acting on both vectors at the same time, they will be accessing
different parts of the vector, so there is no conflict there. Each thread will compute a

sum for its section of the vectors. However, this sum will need to be added to the sum

field of the VectorInfo structure. Since multiple threads may be accessing the sum field
at the same time, it is necessary to protect this data using a mutex as declared below. A
mutex allows only one thread to access a protected variable at a time. The following

declares a mutex to protect the sum variable. It is declared at a global level to allow
multiple threads to access it:

pthread_mutex_t mutexSum;
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The dotProduct function is shown below. When a thread is created, this function will
be called. Since we are using POSIX, it is necessary to declare this function as returning
void and being passed a pointer to void. This pointer passes information to the function.

We will pass an instance of the Product structure.

Within the function, variables are declared to hold the beginning and ending indexes.
The for loop performs the actual multiplication and keeps a cumulative total in the

total variable. The last part of the function locks the mutex, adds total to sum, and
then unlocks the mutex. While the mutext is locked, no other threads can access the

sum variable:

void dotProduct(void *prod) {

    Product *product = (Product*)prod;

    VectorInfo *vectorInfo = Product->info;

    int beginningIndex = Product->beginningIndex;

    int endingIndex = beginningIndex + vectorInfo->length;

    double total = 0;

    for (int i = beginningIndex; i < endingIndex; i++) {

        total += (vectorInfo->vectorA[i] * vectorInfo->vectorB[i]);

    }

    pthread_mutex_lock(&mutexSum);

    vectorInfo->sum += total;

    pthread_mutex_unlock(&mutexSum);

    pthread_exit((void*) 0);

}

The code to create the threads is shown below. Two simple vectors are declared along

with an instance of VectorInfo. Each vector holds 16 elements. The length field is set
to 4:

#define NUM_THREADS  4

void threadExample() {

    VectorInfo vectorInfo;

    double vectorA[] = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0,

        9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0};

    double vectorB[] = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0,

        9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0};

    double sum;

    vectorInfo.vectorA = vectorA;

    vectorInfo.vectorB = vectorB;

    vectorInfo.length = 4;

A four-element array of threads is created next, along with code to initialize the mutex
and an attribute field for the thread:
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    pthread_t threads[NUM_THREADS];

    void *status;

    pthread_attr_t attr;

    pthread_mutex_init(&mutexSum, NULL);

    pthread_attr_init(&attr);

    pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

    int returnValue;

    int threadNumber;

With each for loop iteration, a new instance of the Product structure is created. It is

assigned the address of vectorInfo and a unique index based on threadNumber. The
threads are then created:

    for (threadNumber = 0; threadNumber < NUM_THREADS; threadNumber++) {

        Product *product = (Product*) malloc(sizeof(Product));

        product->beginningIndex = threadNumber * 4;

        product->info = &vectorInfo;

        returnValue = pthread_create(&threads[threadNumber], &attr, 

                            dotProduct, (void *) (void*) (product));

        if (returnValue) {

            printf("ERROR; Unable to create thread: %d\n", returnValue);

            exit(-1);

        }

    }

After the for loop, the thread attribute and mutex variables are destroyed. The for loop
ensures the program will wait until all four threads have completed. The dot product is
then displayed. For the above vectors, the product is 1496:

    pthread_attr_destroy(&attr);

    for (int i = 0; i < NUM_THREADS; i++) {

        pthread_join(threads[i], &status);

    }

    pthread_mutex_destroy(&mutexSum);

    printf("Dot Product sum: %lf\n", vectorInfo.sum);

    pthread_exit(NULL); 

}

The sum field is thus protected.

Using Function Pointers to Support Callbacks
We previously used a callback function in the sort function developed in Chapter 5.
Since the sort example does not use multiple threads, some programmers do not call
this a callback function. A more widely accepted definition of a callback is when an
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event in one thread results in the invocation, or callback, of a function in another thread.
One thread is passed a function pointer to a callback function. An event in the function
can trigger a call to the callback function. This approach is useful in GUI applications
to handle user thread events.

We will illustrate this approach using a function to compute the factorial of a number.
The function will callback a second function when the factorial has been computed.

Information regarding the factorial is encapsulated in a FactorialData structure and
is passed between the functions. This structure and the factorial function are shown
below. The data consists of the factorial number, the results, and a function pointer for

the callback. The factorial function uses this data to compute the factorial, store the

answer in the result field, call the callback function, and then terminate the thread:

typedef struct _factorialData {

    int number;

    int result;

    void (*callBack)(struct _factorialData*);

} FactorialData;

void factorial(void *args) {

    FactorialData *factorialData = (FactorialData*) args;

    void (*callBack)(FactorialData*); // Function prototype

    int number = factorialData->number;

    callBack = factorialData->callBack;

    int num = 1;

    for(int i = 1; i<=number; i++) {

        num *= i;

    }

    factorialData->result = num;

    callBack(factorialData);

    pthread_exit(NULL);

}

The thread is created in a startThread function as shown below. The thread executes

the factorial function and passes it factorial data:

void startThread(FactorialData *data) {

    pthread_t thread_id;

    int thread =  pthread_create(&thread_id, NULL, factorial, (void *) data);

}

The callback function simply displays the factorial results:

void callBackFunction(FactorialData *factorialData) {

    printf("Factorial is %d\n", factorialData->result);

}
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The factorial data is initialized and the startThread function is called as shown below.

The Sleep function provides time for all of the threads to terminate properly:

    FactorialData *data =

        (FactorialData*) malloc(sizeof(FactorialData));

    if(!data) {

        printf("Failed to allocate memory\n");

        return;

    }

    data->number = 5;

    data->callBack = callBackFunction;

    startThread(data);

    Sleep(2000);

When this is executed, the output will be as follows:

Factorial is 120

Instead of sleeping, the program can perform other tasks. The program does not have
to wait for the thread to complete.

Object-Oriented Techniques
C is not known for its support of object-oriented programming. However, you can use
C to encapsulate data using an opaque pointer and to support a certain level of poly‐
morphic behavior. By hiding a data structure’s implementation and its supporting func‐
tions, the user does not need to know how the structure is implemented. Hiding this
information will reduce what the user needs to know and thus reduce the application’s
complexity level. In addition, the user will not be tempted to take advantage of the
structure’s internal details, potentially causing later problems if the data structure’s im‐
plementation changes.

Polymorphic behavior helps make an application more maintainable. A polymorphic
function behavior depends on the object it is executing against. This means we can add
functionality to an application more easily.

Creating and Using an Opaque Pointer
An opaque pointer can be used to effect data encapsulation in C. One approach declares
a structure without any implementation details in a header file. Functions are then
defined to work with a specific implementation of the data structure in an implemen‐
tation file. A user of the data structure will see the declaration and the functions’ pro‐
totypes. However, the implementation is hidden (in the .c/.obj file).
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Only the information needed to use the data structure is made visible to the user. If too
much internal information is made available, the user may incorporate this information
and become dependent on it. Should the internal structure change, then it may break
the user’s code.

We will develop a linked list to demonstrate an opaque pointer. The user will use one
function to obtain a pointer to a linked list. This pointer can then be used to add and
remove information from the linked list. The details of the linked list’s internal structure
and its supporting function are not available to the user. The only aspects of this struc‐
ture are provided through a header file, as shown below:

//link.h

typedef void *Data;

typedef struct _linkedList LinkedList;

LinkedList* getLinkedListInstance();

void removeLinkedListInstance(LinkedList* list);

void addNode(LinkedList*, Data);

Data removeNode(LinkedList*);

Data is declared as a pointer to void. This allows the implementation to handle any type

of data. The type definition for LinkedList identifies a structure called _linkedList.
The definition of this structure is hidden from the user in its implementation file.

Four methods are provided to permit the use of the linked list. The user will begin by

obtaining a LinkedList’s instance using the getLinkedListInstance function. Once

the linked list is no longer needed, the removeLinkedListInstance function should be
called. Passing linked list pointers allows the functions to work with one or more linked
lists.

To add data to the linked list, the addNode function is used. It is passed the linked list to

use and a pointer to the data to add to the linked list. The removeNode method returns
the data found at the head of the linked list.

The linked list’s implementation is found in a separate file called link.c. The first part of
the implementation, as shown below, declares variables to hold the user’s data and to

connect to the next node in the linked list. This is followed by the _linkedList struc‐
ture’s definition. In this simple linked list, only a head pointer is used:

// link.c

#include <stdlib.h>

#include "link.h"

typedef struct _node {

      Data* data;

      struct _node* next;

} Node;
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struct _linkedList {

    Node* head;

};

The second part of the implementation file contains implementations of the linked list’s
four supporting functions. The first function returns an instance of the linked list:

LinkedList* getLinkedListInstance() {

    LinkedList* list = (LinkedList*)malloc(sizeof(LinkedList));

    list->head = NULL;

    return list;

}

The removeLinkedListInstance function’s implementation follows. It will free each
node in the linked list, if any, and then free the list itself. This implementation can result
in a memory leak if the data referenced by the node contains pointers. One solution is
to pass a function to deallocate the members of the data:

void removeLinkedListInstance(LinkedList* list) {

    Node *tmp = list->head;

    while(tmp != NULL) {

        free(tmp->data);  // Potential memory leak!

        Node *current = tmp;

        tmp = tmp->next;

        free(current);

    }

    free(list);

}

The addNode function adds the data passed as the second parameter to the linked list
specified by the first parameter. Memory is allocated for the node, and the user’s data is
associated with the node. In this implementation, the linked list’s nodes are always added
to its head:

void addNode(LinkedList* list, Data data) {

    Node *node = (Node*)malloc(sizeof(Node));

    node->data = data;

    if(list->head == NULL) {

        list->head = node;

        node->next = NULL;

    } else {

        node->next = list->head;

        list->head = node;

    }

}

The removeNode function returns the data associated with the first node in the linked
list. The head pointer is adjusted to point to the next node in the linked list. The data is
returned and the old head node is freed, releasing it back to the heap.
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This approach eliminates the need for the user to remember to free
nodes of the linked list, thus avoiding a memory leak. This is a signifi‐
cant advantage of hiding implementation details:

Data removeNode(LinkedList* list) {

    if(list->head == NULL) {

        return NULL;

    } else {

        Node* tmp = list->head;

        Data* data;

        list->head = list->head->next;

        data = tmp->data;

        free(tmp);

        return data;

    }  

}

To demonstrate the use of this data structure, we will reuse the Person structure and its
functions developed in “Introduction” on page 133. The following sequence will add

two people to a linked list and then remove them. First, the getLinkedListInstance

function is invoked to obtain a linked list. Next, instances of Person are created using

the initializePerson function and then added to the linked list using the addNode

function. The displayPerson function displays the persons returned by the remove

Node functions. The linked list is then freed:

#include "link.h";

...

    LinkedList* list = getLinkedListInstance();

    

    Person *person = (Person*) malloc(sizeof(Person));

    initializePerson(person, "Peter", "Underwood", "Manager", 36);

    addNode(list, person);

    person = (Person*) malloc(sizeof(Person));

    initializePerson(person, "Sue", "Stevenson", "Developer", 28);

    addNode(list, person);

    person = removeNode(list);

    displayPerson(*person);

    person = removeNode(list);

    displayPerson(*person);

    

    removeLinkedListInstance(list);

There are a couple of interesting aspects of this approach. We had to create an instance

of the _linkedList structure in the list.c file. It needs to be created there because the

sizeof operator cannot be used without a complete structure declaration. For example,
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if we had tried to allocate memory for this structure in the main function, as follows,
we would get a syntax error:

    LinkedList* list = (LinkedList*)malloc(sizeof(LinkedList));

The syntax error generated will be similar to the following:

error: invalid application of ‘sizeof’ to incomplete type ‘LinkedList’

The type is incomplete because the compiler has no insight into the actual definition as

found in the list.c file. All it sees is the _linkedList structure’s type definition. It does
not see the structure’s implementation details.

The user’s inability to see and potentially use the linked list’s internal structure is re‐
stricted. Any changes to the structure are hidden from the user.

Only the signatures of the four supporting functions are visible to the user. Otherwise,
the user is unable to use knowledge of their implementation or to modify them. The
linked list structure and its supporting functions are encapsulated, reducing the burden
on the user.

Polymorphism in C
Polymorphism in an object-oriented language such as C++ is based on inheritance
between a base and a derived class. Since C does not support inheritance we need to
simulate inheritance between structures. We will define and use two structures to illus‐

trate polymorphic behavior. A Shape structure will represent a base “class” and a

Rectangle structure will be derived from the base Shape.

The structure’s variable allocation order has a large impact on how this technique works.
When an instance of a derived class/structure is created, the base class/structure’s vari‐
ables are allocated first, followed by the derived class/structure’s variables. As we will
see, we also need to account for the functions we plan to override.

Understanding how memory is allocated for objects instantiated from
a class is key to understanding how inheritance and polymorphism
work in an object-oriented language. The same is true when we use this
technique in C.

Let’s start with the Shape structure’s definition as shown below. First, we allocate a
structure to hold the function pointers for the structure. Next, integers are declared for

an x and a y position:

typedef struct _shape {

    vFunctions functions;

    // Base variables

    int x;
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    int y;

} Shape;

The vFunction structure and its supporting declarations are defined below. When a
function is executed against a class/structure, its behavior will depend on what it is

executing against. For example, when a display function is executed against a Shape,

then a Shape should be displayed. When it is executed against a Rectangle, then a

Rectangle should be displayed. In an object-oriented programming language this is

typically achieved using a Virtual Table or VTable. The vFunction structure is intended
to serve in this capacity:

typedef void (*fptrSet)(void*,int);

typedef int (*fptrGet)(void*);

typedef void (*fptrDisplay)();

typedef struct _functions {

    // Functions

    fptrSet setX;

    fptrGet getX;

    fptrSet setY;

    fptrGet getY;

    fptrDisplay display;    

} vFunctions;

This structure consists of a series of function pointers. The fptrSet and fptrGet func‐
tion pointers define the typical getter and setter functions for integer type data. In this

case, they are used for getting and setting the x and y values for a Shape or Rectangle.

The fptrDisplay function pointer defines a function that is passed void and returns

void. We will use the display function to illustrate polymorphic behavior.

The Shape structure has four functions designed to work with it, as shown below. Their

implementations are straightforward. To keep this example simple, in the display

function, we simply print out the string “Shape.” We pass the Shape instance to these
functions as the first argument. This allows these functions to work with more than one

instance of a Shape:

void shapeDisplay(Shape *shape) { printf("Shape\n");}

void shapeSetX(Shape *shape, int x) {shape->x = x;} 

void shapeSetY(Shape *shape, int y) {shape->y = y;}

int shapeGetX(Shape *shape) { return shape->x;}

int shapeGetY(Shape *shape) { return shape->y;}

To assist in the creation of a Shape instance, we have provided a getShapeInstance
function. It allocates memory for the object and the object’s functions are assigned:

Shape* getShapeInstance() {

    Shape *shape = (Shape*)malloc(sizeof(Shape));

    shape->functions.display = shapeDisplay;

    shape->functions.setX = shapeSetX;

    shape->functions.getX = shapeGetX;

Object-Oriented Techniques | 195



    shape->functions.setY = shapeSetY;

    shape->functions.getY = shapeGetY;

    shape->x = 100;

    shape->y = 100;

    return shape;

}

The following sequence demonstrates these functions:

    Shape *sptr = getShapeInstance();

    sptr->functions.setX(sptr,35);

    sptr->functions.display();

    printf("%d\n", sptr->functions.getX(sptr));

The output of this sequence is:

Shape

35

This may seem to be a lot of effort just to work with a Shape structure. We can see the

real power of this approach once we create a structure derived from Shape:

Rectangle. This structure is shown below:

typedef struct _rectangle {  

    Shape base;

    int width;

    int height;

} Rectangle;

The memory allocated for the Rectangle structure’s first field is the same as the memory

allocated for a Shape structure. This is illustrated in Figure 8-5. In addition, we have

added two new fields, width and height, to represent a rectangle’s characteristics.

Figure 8-5. Memory allocation for shape and rectangle
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Rectangle, like Shape, needs some functions associated with it. These are declared be‐

low. They are similar to those associated with the Shape structure, except that they use

the Rectangle’s base field:

void rectangleSetX(Rectangle *rectangle, int x) {

    rectangle->base.x = x;

} 

void rectangleSetY(Rectangle *rectangle, int y) {

    rectangle->base.y;

}

int rectangleGetX(Rectangle *rectangle) { 

    return rectangle->base.x;

}

int rectangleGetY(Rectangle *rectangle) { 

    return rectangle->base.y;

}

void rectangleDisplay() { 

    printf("Rectangle\n");

}

The getRectangleInstance function returns an instance of a Rectangle structure as
follows:

Rectangle* getRectangleInstance() {

    Rectangle *rectangle = (Rectangle*)malloc(sizeof(Rectangle));

    rectangle->base.functions.display = rectangleDisplay;

    rectangle->base.functions.setX = rectangleSetX;

    rectangle->base.functions.getX = rectangleGetX;

    rectangle->base.functions.setY = rectangleSetY;

    rectangle->base.functions.getY = rectangleGetY;

    rectangle->base.x = 200;

    rectangle->base.y = 200;

    rectangle->height = 300;

    rectangle->width = 500;

    return rectangle;

}

The following illustrates the use of this structure:

    Rectangle *rptr = getRectangleInstance();

    rptr->base.functions.setX(rptr,35);

    rptr->base.functions.display();

    printf("%d\n", rptr->base.functions.getX(rptr));

The output of this sequence is:

Rectangle

35
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Now let’s create an array of Shape pointers and initialize them as follows. When we

assign a Rectangle to shapes[1], we do not have to cast it as a (Shape*). However, we
will get a warning if we don’t:

    Shape *shapes[3];

    shapes[0] = getShapeInstance();

    shapes[0]->functions.setX(shapes[0],35);

    shapes[1] = getRectangleInstance();

    shapes[1]->functions.setX(shapes[1],45);

    shapes[2] = getShapeInstance();

    shapes[2]->functions.setX(shapes[2],55);

    for(int i=0; i<3; i++) {

        shapes[i]->functions.display();

        printf("%d\n", shapes[i]->functions.getX(shapes[i]));        

    }

When this sequence is executed, we get the following output:

Shape

35

Rectangle

45

Shape

55

While we created an array of Shape pointers, we created a Rectangle and assigned it to
the array’s second element. When we displayed the element in the for loop, it used the

Rectangle’s function behavior and not the Shape’s. This is an example of polymorphic

behavior. The display function depends on the structure it is executing against.

Since we are accessing it as a Shape, we should not try to access its width or height using

shapes[i] since the element may or may not reference a Rectangle. If we did, then we
could be accessing memory in other shapes that do not represent width or height in‐
formation, yielding unpredictable results.

We can now add a second structure derived from Shape, such as a Circle, and then add
it to the array without extensive modification of the code. We also need to create func‐
tions for the structure.

If we added another function to the base structure Shape, such as getArea, we could

implement a unique getArea function for each class. Within a loop, we could easily add

up the sum of all of the Shape and Shape-derived structures without having to first

determine what type of Shape we are working with. If the Shape’s implementation of

getArea is sufficient, then we do not need to add one for the other structures.This makes
it easy to maintain and expand an application.
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Summary
In this chapter, we have explored several aspects of pointers. We started with a discussion
of casting pointers. Examples illustrated how to use pointers to access memory and
hardware ports. We also saw how pointers are used to determine the endianness of a
machine.

Aliasing and the restrict keyword were introduced. Aliasing occurs when two pointers
reference the same object. Compilers will assume that pointers may be aliased. However,

this can result in inefficient code generation. The restrict keyword allows the compiler
to perform better optimization.

We saw how pointers can be used with threads and learned about the need to protect
data shared through pointers. In addition, we examined techniques to effect callbacks
between threads using function pointers.

In the last section, we examined opaque pointers and polymorphic behavior. Opaque
pointers enable C to hide data from a user. Polymorphism can be incorporated into a
program to make it more maintainable.
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We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.
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one-dimensional, 80–81, 86, 92–94
passing to functions, 90–92
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using pointers as, 86, 99–105
resizing, 87–89
size of, 80, 81, 82, 85, 165–166
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ASLR (Address Space Layout Randomization),
160

assert function, 162
assert.h file, 162
assignment operator (=), 43
asterisk (*)

indirection (dereference) operator, 11, 20,
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automatic memory, 2
automatic variables (see local variables)

B
block statements, stack used by, 60
Bounded Model Checking application, 167
bounded pointers, 167
braces ({}), in array initialization, 81, 81, 82
brackets ([]), in array declarations, 80, 81, 82
buffer overflow, 163

array misuse causing, 164–166
dangling pointers causing, 164
dereference operator misuse causing, 163–

164
function pointer misuse causing, 170–172
malloc failure causing, 163
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169–170
pointer type mismatch causing, 166–167
sizeof operator misuse causing, 166
string misuse causing, 168–169

byte strings, 108

C
C data types
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intptr_t type, 19–20

memory models for, 16
size_t type, 17–18
uintptr_t type, 19–20
union of, 181, 182–183
wchar_t data type, 108

C specification, pointer behavior not defined in,
5

callback functions, 175, 179, 188–190
calloc function, 39, 43–44
casting, 20, 176–177

endianness, determining, 180
function pointers, 77–78
integer to pointer to an integer, 9
with malloc function, 40
pointer to an integer, 20
ports, accessing, 178–179
special purpose addresses, accessing, 177–

178
CERT organization, 159
cfree function, 44
char data type, 108
character literals, 108, 113
characters

array of, strings declared as, 109
pointers to, 109, 182

code examples, permission to use, xiii
command-line arguments, 125–126
compact expressions, 4
comparison operators, 20, 25–25, 77–77
compilers, ix

(see also specific compilers)
problems detected by, 173–174

compound literals, arrays using, 102–105
constant pointers

assigning NULL to, 48
to constants, 30–31
to nonconstants, 29–30
pointers to, 31

constants
declaring string literals as, 110
pointers to, 27–29, 63–64

contact information for this book, xiv
conventions used in this book, xii

D
dangling pointers, 48, 51–54, 164
data corruption

returning pointers to local data causing, 66
writing outside of memory block causing, 36
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Data Execution Prevention (DEP), 160
data types (see C data types)
declaration of arrays, 80–83
declaration of pointers, 5–7

to functions, 11, 72–73
improper, 160–161
reading, 7

declaration of strings, 108–109
declaration of structures, 133–134
#define directive, 161
denial of service attack, 163, 172
DEP (Data Execution Prevention), 160
dereferencing pointers, 11

errors involving, 35, 163–164
multiple levels of indirection, 25–26, 31
null pointers, 13

DMA (Direct Memory Access), 179
dot notation, 134
double free, 48–49, 172
double pointers (see multiple levels of indirec‐

tion)
double quotes (“ ”), enclosing string literals, 108
dynamic memory, 2, 33–34

allocating, 4, 34–36, 39–46
amount allocated, 42
for arrays, 86, 99–102
checking return value of, 163
failure to, 41
in a function, 64–66

deallocating, 4, 34, 35, 44, 47–50
after returning from a function, 65
at application termination, 50
assigning NULL after, 48, 172
availability to application, 50
clearing sensitive data when, 173
exception handling for, 56
failure to, hidden memory leaks from, 38
garbage collection for, 55
RAII for, 55–56
referencing pointer following (see dan‐

gling pointers)
twice, 48–49, 172
writing your own function for, 70–71

managing your own pool of, 139–141

E
endianness, 176, 180
equal sign (=)

assignment operator, 43

initialization operator, 43
equal sign, double (==), equality operator, 20
exception handling, 56
exclamation point, equal sign (!=), inequality

operator, 20

F
far pointers, 20
fonts used in this book, xii
format string attack, 168
fprintf function, 169
free function, 4, 34, 35, 39, 47–48

at application termination, 50
assigning NULL after, 48, 172
clearing sensitive data when, 173
not used, hidden memory leaks from, 38
overhead incurred by, 139–141
referencing pointer following (see dangling

pointers)
used twice (double free), 48–49, 172
writing your own, 70–71

function pointers, 71–78
array of, 76–76
calling, 73–74
casting, 77–78
comparing, 77–77
declaration of, 11, 72–73
improper use of, 170–172
passing as parameters, 74–75, 130–132
performance of, 71
returning from a function, 75

functions, ix
(see also specific functions)
callback functions, 175, 179, 188–190
parameters of (see parameters)
returning function pointers from, 75
returning pointers from, 64–67
returning strings from, 126–129
stack used by, 57–61

G
garbage collection, 55
GCC compiler

memory leak detection, 54
modification of string literals, 110
string pooling turned off for, 109
-Wall option, reporting compiler warnings,

173
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gets function, 168
global memory, 2
global pointers, 15, 42
global variables, 33, 42
GNU compiler

dlmalloc, 54
RAII support, 55–56

greater than operator (>), 20
greater than or equal operator (>=), 20

H
handles, compared to pointers, 177
heap, 58–59

corruption of
double free causing, 49
writing outside of memory block caus‐

ing, 36
detecting problems with, 54
dynamic memory allocated from (see dy‐

namic memory)
heap managers, 54–56
hidden memory leaks, 38
Hoard malloc, 54
huge pointers, 20
hyphen (-) (see minus sign (-))

I
indirection (dereference) operator (*), ix, 11, 20,

35, 163–164
(see also dereferencing)

inequality operator (!=), 20
inheritance, 194–198
initialization of pointers, 8–9

failure to, 161–162, 174
to NULL, 162

initialization operator (=), 43
integers, casting to a pointer to an integer, 9
intptr_t type, 19–20

J
jagged arrays, 102–105

L
left angle bracket (<), less than operator, 20
left angle bracket, equal sign (<=), less than or

equal operator, 20
less than operator (<), 20

less than or equal operator (<=), 20
linked lists, 142–149

implementing as arrays, 3
implementing as pointers, 3

local variables
returning pointers to, 66–67
stack used by, 33, 58, 59, 60

lvalue, required to be modifiable, 11, 85

M
macro definitions, declaring pointers using, 161
malloc function, 4, 34–36, 39–42

checking return value of, 163
creating arrays using, 86, 99–102
implementations of, 54
initializing strings using, 111
overhead incurred by, 139–141
for returning a pointer from a function, 64–

66
malloca function, 46
memory

automatic memory, 2
dynamic memory (see dynamic memory)
global memory, 2
heap (see heap)
lifetime of, 2
scope of, 2
special purpose addresses, accessing, 177–

178
stack (see stack)
static memory, 2
types of, 2
virtual memory addresses, 10

memory leaks, 37–39
detecting, 54
failure to deallocate returned pointers caus‐

ing, 66
hidden, 38
lost address causing, 37
structure pointers not deallocated causing,

138
memory models, for C data types, 16
memset function, 43, 178
Microsoft compiler

exception handling, 56
malloca function, 46
memory management, 54

minus sign (-), subtraction operator, 20
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minus sign, right angle bracket (->), points-to
operator, 20, 134

Mudflap Libraries, 54
multiple levels of indirection, 25–26, 31

N
near pointers, 20
NUL ASCII character, 12, 13, 107
NULL

assigning to constant pointers, 48
assigning to freed pointer, 48
initializing pointers with, 162

NULL macro, 12
null pointers, 12–14, 67

O
%o field specifier, printf function, 9
object-oriented type support, 175, 190–198

opaque pointers for, 190–194
polymorphism and inheritance, 194–198

opaque pointers, 190–194
OpenBSD malloc, 54
operators, 20–25

arithmetic operators, 20, 20–24
comparison operators, 20, 25–25
list of, 20

overloading of zero (0), 13

P
%p field specifier, printf function, 9–10
parameters

passed by pointer, 61–62
passed by value, 61, 62
passing a pointer to a pointer as, 68–71
passing arrays as, 90–92
passing function pointers as, 74–75
passing multidimensional arrays as, 96–99
passing null pointers to, 67
passing pointers to constants as, 63–64
passing strings as, 107, 121–125
stack used by, 59, 60

parentheses (())
enclosing data type to cast, 20
in pointer to function declarations, 11, 72

plus sign (+), addition operator, 20
pointer arithmetic, 20

with arrays, 84

not using with structures, 169–170
on pointers to void, 23

pointers, 1–3
aliasing, 52, 117, 180–185
arrays of, 92–94
to arrays, 83–85
using as arrays, 86, 99–105
benefits of, 3–5
bounded pointers, 167
to characters, 109, 182
compared to arrays, 79, 80
compared to handles, 177
to constant char, passing strings as, 123
constant pointers

assigning NULL to, 48
to constants, 30–31
to nonconstants, 29–30

to constant pointers, 31
to constants, 27–29, 63–64
dangling pointers, 48, 51–54, 164
data types for, 16–20
declaration of, 5–7

improper, 160–161
reading, 7

dereferencing, 11
errors involving, 35, 163–164
multiple levels of indirection, 25–26, 31
null pointers, 13

to functions, 71–78
arrays of, 76–76
calling, 73–74
casting, 77–78
comparing, 77–77
declaration of, 11, 72–73
improper use of, 170–172
passing as parameters, 74–75, 130–132
performance of, 71
returning from a function, 75

global pointers, 15, 42
improper use of, detecting, 173–174
initialization of, 8–9

failure to, 161–162, 174
to NULL, 162

memory for (see dynamic memory)
to multidimensional arrays, 94–96
null pointers, 12–14, 67
opaque pointers, 190–194
operators for, 20–25
parameters passed by, 61–62
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to pointers, passing as parameters, 68–71
potential problems with, 5–5
returning from functions, 64–67
size of, 15–20
smart pointers, 167
static pointers, 15, 42
structures implemented using, 141–142

linked lists, 142–149
queues, 149–152
stacks, 152–154
trees, 154–158

to structures, declaration of, 134
types of, matching, 166–167, 174
undefined behavior of, 5
validation function for, 167
value of (an address)

before initialization, 7
displaying, 9–10
losing, memory leaks from, 37
as virtual memory address, 10

to void, 14–15, 23
wild pointers, 161–162
zero (0) assigned to, 12, 13

points-to operator (->), 20, 134
polymorphism, 194–198
ports, accessing, 178–179
printf function

field specifiers for displaying pointer values,
9–10

user-supplied format strings, not using, 169
program stack (see stack)
program termination

address of zero (0) causing, 9
buffer overflow causing, 163
dangling pointers causing, 53
dereferencing null pointer causing, 13
double free causing, 49
freeing memory at, 50
invalid address causing, 6
memory leaks causing, 37, 38
stack overflow causing, 60
string initialized with character literal caus‐

ing, 113
uninitialized pointers causing, 161

Q
queues, 149–152
quotes (see double quotes; single quotes)

R
RAII (Resource Acquisition Is Initialization),

55–56
realloc function, 39, 44–46, 87–89
restrict keyword, 184–185
return-to-libc attack, 160
right angle bracket (>), greater than operator, 20
right angle bracket, equal sign (>=), greater than

or equal operator, 20
runtime system, 33

S
scanf_s function, 168
security, 159–160

ASLR, 160
buffer overflow (see buffer overflow)
CERT organization, 159
clearing sensitive data, 173
denial of service attack, 163, 172
DEP, 160
format string attack, 168
malicious code inserted in memory, 160,

163, 172
return-to-libc attack, 160
stack overflow, 60, 163
VTable, exploitation of, 164

single quotes (' '), enclosing character literals,
108

sizeof operator, 18–19, 35
for arrays, 81
with arrays, 82, 85
improper use of, 166
with pointers to void, 15

size_t type, 17–18
smart pointers, 167
snprintf function, 169
special purpose addresses, accessing, 177–178
stack, 57–61, 152–154

alloca and malloca using, 46
block statements using, 53, 60
local variables using, 33, 58, 59, 60
parameters using, 59, 60
threads using, 60
VLAs using, 46

stack frames, 58, 59–61
stack overflow, 60, 163
standard input, initializing strings from, 113
static analysis tools, 173–174
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static memory, 2
static pointers, 15, 42
static variables, 33

malloc not used for, 42
returning pointers to, 67

stddef.h file, 12
stdio.h file, 12, 17
stdlib.h file, 12, 17, 39
strcat function, 118–121, 168
strcat_s function, 168
strcmp function, 115
strcpy function, 110, 116–118, 168
strcpy_s function, 168
strict aliasing, 181, 183–184
string literal pool, 109–110
string literals, 108

declaring as a constant, 110
memory location for, 109–110
modifying, 110

string.h file, 108
strings, 107–114

byte strings, 108
character literals, 108
comparing, 115–116, 130–132
concatenating, 118–121
copying, 116–118
declared as array of characters, 109

initializing, 110–111
passing to functions, 122

declared as pointer to a character, 109
initializing, 111–113
passing to functions, 122

declared as string literal, 108
initialization of, 110–113, 123–125
length of, 108, 112
memory location of, 113
passing as command-line arguments, 125–

126
passing to functions, 107, 121–125
returning from functions, 126–129
wide strings, 108
writing to memory outside of, 168–169

strlcat function, 168
strlcpy function, 168
strlen function, 112
strncat function, 168
strncpy function, 168
struct keyword, 133

structures, 133–135
declaration of, 133–134
dot notation for, 134
freeing, hidden memory leaks from, 38
implementing with pointers, 141–142
linked lists, 142–149
memory allocation for, 135–136

deallocation issues with, 136–139
managing yourself, 139–141

pointer arithmetic used with, 169–170
pointers to, declaration of, 134
points-to operator for, 134
queues, 149–152
stacks, 152–154
trees, 154–158

subtraction operator (-), 20
syslog function, 169

T
TCMalloc, 54
threads, 175, 185–190

callback functions using, 188–190
sharing pointers between, 186–188
stack used by, 60

trees, 154–158
type punning, 182
typedefs

declaration of pointers using, 161
declaration of structures using, 134

U
uintptr_t type, 19–20
union of data types, 181, 182–183

V
Variable Length Array (see VLA)
virtual memory addresses, 10
VLA (Variable Length Array), 46–47, 87
void, pointers to, 14–15, 23
volatile keyword, 178
VTable (Virtual Table), exploitation of, 164

W
wchar.h file, 108
wchar_t data type, 108
website resources

C specification, 5
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wide strings, 108
wild pointers, 161–162
wscanf_s function, 168

X
%x field specifier, printf function, 9

Z
zero (0)

assigned to pointers, 12, 13
as overloaded, 13
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The animal on the cover of Understanding and Using C Pointers is the piping crow-
shrike, or Australian magpie (Cracticus tibicen). Not to be confused with the piping
crow found in Indonesia, the Australian magpie is not a crow at all; it is related to
butcherbirds and is native to Australia and southern New Guinea. There were once
three separate species of Australian magpie, but interbreeding has resulted in the coa‐
lescence of their three species into one.

Australian magpies have black heads and bodies with varied black and white plumage
on their backs, wings, and tails. The Australian magpie is also called the piping crow-
shrike due to its multi-tonal, complex vocalizations. Like true crows, the Australian
magpie is omnivorous, though it prefers to eat insect larvae and other invertebrates. It
lives in groups of up to two dozen, and all members generally defend the group territory.
During springtime, however, some breeding males will become defensive of their nests
and will engage in swooping attacks on passersby, including human and their pets.

This magpie is a non-migratory bird and has adapted to human environments, as well
as to a mix of forested and open areas. For that reason, it is not endangered, and although
it is considered a pest species in neighboring New Zealand, the magpie may be very
useful in Australia for keeping the invasive cane toad in check. When introduced to
Australia, the cane toad had no natural predators, and its toxic secretions ensured the
multiplication of its numbers. However, the highly intelligent magpie has learned to flip
over the cane toad, pierce its underbelly, and use its long beak to eat the toad’s organs,
thus bypassing the poisonous skin. Researchers are hopeful that the Australian magpie
will become a natural predator of the cane toad and aid in population control.
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