
Department Informatik

Technical Reports / ISSN 2191-5008

Hans-Georg Eßer

Treating Memory Management and Filesystems
as One Topic

Technical Report CS-2011-04

April 2011

Please cite as:

Hans-Georg Eßer, “Treating Memory Management and Filesystems as One Topic,” University of Erlangen, Dept. of

Computer Science, Technical Reports, CS-2011-04, April 2011.

Friedrich-Alexander-Universität Erlangen-Nürnberg
Department Informatik

Martensstr. 3 · 91058 Erlangen · Germany

www.informatik.uni-erlangen.de





Treating Memory Management and Filesystems as

One Topic

Hans-Georg Eßer

IT Security Infrastructures

Dept. of Computer Science, University of Erlangen, Germany

h.g.esser@informatik.uni-erlangen.de

Abstract—Teaching memory management aligned with

filesystems in an Operating Systems course instead of

treating them as separate topics can increase students’

understanding and improve their grades in end-of-term

examinations. In a survey they also state that they like

this method. This article describes modifications made to

a classic course and the results gained through exam and

survey evaluations.

Index Terms—Operating Systems, Didactics, Memory

Management, Filesystems

I. INTRODUCTION

When we gave an Introduction to Operating Systems

(OS) course in summer 2009, we tested a new way of

presenting the two topics Memory Management (MM)

and Filesystems (FS) and evaluated the effects on the

students.

Most classical OS courses contain a superset of these

topics:

• Processes (and Threads)

• Scheduling

• Synchronization and Deadlocks

• Memory Management

• Filesystems

Threads are not always part of an introductory OS

course, since almost all relevant principles can be under-

stood by exclusively looking at processes. Sometimes the

filesystems are not treated within the first course and are

left for a second course that deals with further aspects of

OS. However, all courses known to us which do contain

both memory management (MM) and filesystems (FS)

keep these two topics separate.

We felt that there was a certain redundancy in treating

MM and FS concepts separately. For example, in simple

partitioning / allocation schemes, such as fixed size

partitioning, where each process is given a fixed amount

An extended abstract of this report appears in the ITiCSE ’11

proceedings [5].

of memory or a file can use a fixed amount of disk

space, students have to see identical concepts twice.

Other examples are

• contiguous allocation vs. non-contiguous allocation,

• internal and external fragmentation,

• using bitmaps to keep track of free areas (on disk

or in memory), and

• indirection (for keeping a list of blocks used by a

file) vs. paging with split page tables.

The goal was to test whether a combined treatment

of MM and FS concepts could improve the students’

understanding while repurposing redundant lecture time

(for e. g. explaining fragmentation in both contexts).

Thus we created a modified OS course for the summer

term 2009 that was based on the same course held in

summer 2008, but with MM and FS combined into one

chapter.

We evaluated the results of these changes with two

methods:

• Class results in the end-of-term exam were com-

pared, for this purpose each question in the tests was

classified as MM related, FS related, or other, and

students’ individual marks on each question were

recorded separately. The percentage PFM of gained

marks in FS/MM questions was then compared with

the overall percentage PT of gained marks. We

observed an increase from 87.9 % to 97.8 % in

the ratio PFM/PT .

• Students were given a questionnaire at the end of the

term, and they were asked their opinions about the

combined treatment. The results gained through this

questionnaire are positive, too, but they are weaker

in that the students could not base their assessments

on knowing both types of teaching OS concepts, but

only the new combined approach.



A. Outline

Section II discusses some topics which are relevant for

both FS and MM and motivates the combined treatment.

In section III some other alternative approaches to

teaching OS principles are presented.

Sections IV and V present the modified course and

the results of the two evaluations.

Finally, section VI concludes the article with a sugges-

tion for experimenting with combined MM/FS treatment

in other OS courses.

II. COMMON TOPICS IN FILESYSTEMS

AND MEMORY MANAGEMENT

We now look at some of the common topics in more

detail. Readers familiar with OS principles may decide

to skip to the next section, others may want to refer to

an OS textbook such as Stallings [12] to which we will

give references.

A. Allocation

Since the course is an introduction to OS, simple con-

cepts are presented in the beginning. For both MM and

FS partitioning deals with the questions

• How to split a disk so that several files can be

written to the disk?

• How to split the main memory (RAM) so that

several processes (and the OS itself) can reside in

memory?

The simplest approach is called fixed-size partitioning

and splits e. g. 1 GiB1 of RAM into chunks of 128 MiB

allowing for up to eight processes to be placed in RAM

(actually only seven or less since part of the RAM will

be reserved by the OS). In a similar way a disk of size 1

GiB can be partitioned into chunks of 128 MiB, letting

the system store up to eight files on the disk.

In both cases this approach has the same problems

(inflexible: no more than eight processes/files, size lim-

itation of 128 MiB per process/file), and in the next

step a modification called variable-size partitioning is

introduced. Variability can mean that there is still a

fixed partitioning of disk or memory (but with varying

partition sizes) or that any pre-partitioning is given up

completely in favor of dynamically partitioning as the

system runs.

Ultimately this series of incremental improvements to

the initial fixed-size partitioning leads from contiguous to

non-contiguous allocation methods, delivering different

1In this paper IEC prefixes are used: 1 KiB = 2
10 bytes, 1 MiB =

2
20 bytes, and 1 GiB = 2

30 bytes.

results for MM and FS, e. g. paging which has no

FS equivalent and file allocation tables with indirection

blocks which has no MM equivalent. Note however that

split page tables show some relatedness to file access via

multiple indirection blocks, which uses similar methods

to solve the lookup problem. (Where in memory does

the n-th page of a process reside? Where on the disk

does the n-th block of a file reside?)

Looking at MM and FS at the same time can yield

interesting questions, such as: When paging solves the

out-of-memory problem by storing memory content on

disk, is there a similar method to solve the out-of-disk-

space problem?2

See chapters 7.2 and 12.6 of Stallings [12] for further

information.

B. The Locality Principle

For both MM and FS the locality principle states that

access sequences often have a locality property, consider

e. g. a loop through an array of integers stored in RAM

or the complete sequential reading of a file. When

creating a MM subsystem or a filesystem it makes sense

to do it in such a way that performance profits from

locality. In the case of memory, the translation look-

aside buffer (TLB) and the CPU’s internal cache(s) can

increase access to memory locations in the same page;

for filesystems caching reads from the disk or writes to

the disk increases speed when the system caches and

buffers blocks after reading and before writing.

For a detailed description of locality and the TLB, see

chapter 8.1 of Stallings [12].

C. Internal and External Fragmentation

Internal fragmentation is a waste of resources: memory

or disk space has been allocated to a process or a file

and remains unused. It occurs maximally e. g. in paging

when there is some page size N and the process requires

kN+1 bytes of RAM; it occurs in file storage when the

least allocatable (block) size is N and a file has size

kN + 1.

External fragmentation is a result of contiguous alloca-

tion in which repeated allocations and de-allocations lead

to the existence of small holes between allocated areas

which are too small to be useful for a process or a file.

Note that this does not exactly match the fragmentation

2Actually there is, if the memory hierarchy is extended with a

robot-operated magnetic tape library, though this is more related to

swapping than to paging. The technology is typically referred to as

Hierarchical Storage Management.



that occurs in modern filesystems where it means non-

contiguous allocation with portions of a file spread all

over the disk, though it is related since in general a non-

contiguous filesystem tries to store files contiguously;

defragmenters enforce this.

When fragmentation is presented for MM and FS,

details of the internal and external variants need only be

explained once; the concepts translate directly from one

topic to the other. Even the idea of a disk fragmenter can

partially translate to memory, think of garbage collection

with compactification in interpreter languages.

See chapter 7.2 of Stallings [12] for further informa-

tion.

D. Topics without Equivalents

There are a few topics in both the MM and FS parts

which have no equivalent in the other area and thus will

not profit directly from the combined approach. They

can be inserted in the course where they fit naturally.

Examples are:

• Replacement Strategies: For paging there are var-

ious page replacement strategies whose goal it is

to reduce the overall number of page faults. (A

page fault occurs when a memory page was paged

out to disk and a memory position within this

page is accessed: the page then has to be reloaded

from the disk and the process has to be blocked

until this action has completed.) Nothing similar

exists for filesystems, unless a Hierarchical Storage

Management is in use.

• Journaling: Modern filesystems use journaling to

store information about metadata changes (or in

some cases data changes) before actually perform-

ing those changes in order to make recovery from

an unexpected system failure faster; they remove

the need for a filesystem check to scan the whole

disk. There is no related procedure for dealing with

memory.

E. Making the Affinity Explicit

In a traditional OS course students will also note that

some concepts from MM reappear in FS (or the other

way round), while some concepts do not. However,

the modifications suggested and tested by us make this

affinity explicit. The similarity of MM and FS in some

areas becomes obvious and lets students focus on overall

concepts instead of details (while not neglecting the

details but letting students put them into the whole

picture more easily).

This should make students more capable of transfer-

ring knowledge from one area to another. There are

other topics in Computer Science where solutions to

problems exist which are similar to those found in

OS. For example a student attempting to learn about

databases may find it easier to understand the atomicity

property of a transaction if he/she previously dealt with

synchronization issues in an OS course.

III. RELATED WORK

Most research in the domain of didactics in operating

systems focuses on lab exercises, some attempts have

been based on educational theory, e. g. on constructivism.

The problem that has been receiving the most attention

is: How can the theoretical lectures on OS concepts

enable students to actually implement or modify the

implementation of operating systems? To this end sev-

eral approaches have been tested, since educators have

several choices:

• It is possible to show the creation of a complete

yet simple system from scratch, as was done by

Tanenbaum [13] who includes the full source code

of the Minix operating system in his Minix book

and refers to code in the text. Hartley [7] used Minix

in an OS lab class that followed a theoretical OS

course.

• Another option is to start with a working limited

system and let the students extend its functionality

by e. g. including a more sophisticated memory

management subsystem or improving the filesystem

[1].

• Some have suggested to use a real-world system,

such as Linux or a BSD variant [2], of which full

source code is available, and focus on understanding

aspects of its implementation.

• All of these work with systems that execute on real

hardware. An alternative is to use a system that is

intended to run on a virtual machine, where both

the OS and the virtual hardware were designed for

teaching purposes and thus do not have to deal

with real-world problems. MMIX [8], SOsim [9],

and ULIX [6] follow this approach.

A lower-level alternative is to only teach students

to use the functions (system calls) provided by the

OS, e. g. by writing multi-threaded programs which use

synchronization primitives available in the OS [14] or

writing a ps-like tool by extracting process information

from the kernel [11].

However, none of the recent publications have ques-

tioned the traditional treatment of memory management



and filesystem concepts as separate entities. From a

didactical point of view it is valid to ask which concepts

should be taught in which order. For example, van

Merriënboer et al. [10] suggest “whole task learning”

(keeping complex problems intact instead of breaking

them down into small and well-understandable but use-

less sub-problems) and the “variability principle” (us-

ing a concept, procedure, etc. in various settings) in

his research on 4C/ID (Four Components Instructional

Design). In the context of operating systems these lead

to attempting to teach OS principles in a way such that

the overall connectedness of all separate OS topics is

apparent and recurring concepts are shown in several

areas.

IV. THE MODIFIED COURSE

Modifications were made on a course held in summer

2008. The original course had the following structure:

1) Processes and Threads,

2) Interrupts,

3) Scheduling,

4) Synchronization and Deadlocks,

5) Filesystems,

6) Memory Management.

For the new course all parts except FS and MM were

left unchanged, while the two topics were combined

into one larger chapter. The following list is an outline

of the FS/MM chapter, lecture notes on this chapter

which were available to the students, can be found

online [3]. In addition our slides are online, too, though

only in German language [4]. The combined FS/MM

part discussed the following topics:

1) Introduction / Overview

a) Tasks of Filesystems
b) Tasks of Memory Management

2) Contiguous / Non-Contiguous Allocation

3) Internal and External Fragmentation

4) Contiguous Allocation

a) Dynamic Partitioning
b) Handling Free Space: Linked Lists, Bit Maps
c) Allocation: First-Fit, Best-Fit, Worst-Fit,

Quick-Fit, Buddy System
d) MM: Code Relocation, Memory Protection

5) Non-Contiguous Allocation

a) Blocks (FS) and Pages (MM)
b) MM: Segmentation
c) FS: Indirection with Multi-Layer Index

Blocks
d) FS: Unix Filesystems, Linux VFS, Ext3 FS
e) MM: Virtual Memory (Paging)

i) Translation Look-Aside Buffer
ii) Inverted Page Tables

iii) Multi-Layer Paging
iv) Page Faults, Page Replacement Strategies

f) Locality Principle

6) FS: Swapping

While the 2008 course consisted of 33 lessons (à 45

minutes) of which six lessons dealt with MM and five

lessons with FS, the new (2009) course was 34 lessons

long and treated MM and FS in 11 lessons.

V. EVALUATION

This section presents results from students’ exams and

their feedback via a questionnaire as well as an interpre-

tation of these results.

A. Exam Results

In both terms the exams allowed students a selection

of questions to work on. With all questions worth 130

points, 95 points already led to the best available grade

(1.0 in the German scale).

• In the old course (summer 2008) 27 students

took the final exam. 130 points were divided into

34 points (26.2 %) for MM questions, 24 points

(18.5 %) for FS questions, and 72 points (55.4 %)

for other topics.

• One year later 16 students took the final exam.

A total of 130 points were divided into 29 points

(22.3 %) for MM questions, 27 points (20.8 %)

for FS questions, and 74 points (56.9 %) for other

topics.

Thus the distribution of the topics was similar in both

exams. In both courses students had the opportunity to

participate in a trial exam with tasks similar to the ones

in the final exam. Also students from both years were

able to find and download old exam questions from the

Internet if they cared to search for them. Thus, means

of exam preparation were very similar for both groups.

Table I shows in its upper part how many of the

available marks were gained by the students on average.

Each exam question was classified as either (a) Memory

Management (MM) related, (b) Filesystems (FS) related,

or (c) not related to either. In cases where questions

required knowledge belonging to more than one class,

marks for “subquestions” were recorded separately.

Since it is not helpful to compare students’ successes

from two different academic years, it makes sense to

look at relative success: we compared how well students

handled MM and FS questions with their overall perfor-

mance by calculating quotients such as PM/PT (where



TABLE I

COMPARISON OF STUDENTS’ EXAM RESULTS.

(I a) Values before normalizing

Old New

PM Memory Management (MM) 48.20% 52.59%

PF Filesystems (FS) 58.80% 72.92%

PFM FS+MM 52.59% 62.39%

PT overall 59.83% 63.80%

(I b) Values after normalizing *)

Old New Change

PM/PT MM 80.56% 82.43% + 2.32%

PF /PT FS 98.28% 114.29% +16.30%

PFM/PT MM+FS 87.90% 97.79% +11.25%

PT /PT overall 100.00% 100.00% —

*) Percentages in Table I b were derived from those in
Table I a by dividing each value by the same column’s

overall value.

PM is the average percentage of MM points gained in

the exams and PT is the average overall percentage of

points). The lower part of Table I shows the results: in

the new course all these relative values are higher than

in the old one.

In addition the exam results of 2009 were also com-

pared with those of another Operating Systems course

held at the same university and in the same term by Prof.

Vogt, a different lecturer. One of the major differences

in that course was that filesystems were not treated at

all, since they were left for an “Operating Systems II”

course in the following term. 22 students took that exam,

on average achieving 64.0 out of 100 points (64 %).

Of those 100 points, 24 were for memory management

questions, and the test takers received an average of 16.8

of those 24 points (70 %) (cf. Table II).

B. Student Questionnaire

In the last lessons of both lectures end-of-term evaluation

forms were given to the students, with the 2009 form

containing extra questions which dealt spefically with the

combined treatment of FS and MM topics. Table IV on

the next page shows the results: nine of the ten evaluation

participants (90 %) stated that the combined treatment

made sense (50 % agreed completely, 40 % agreed with

this statement), and 80 % said that the frequent changes

between FS and MM did not cause confusions (10 %

said it was confusing). All of the ten participants agreed

with the statement “The combination made it easy to

understand that many concepts from one topic translate

to the other topic”.

However, the question whether more topics should be

combined in a similar fashion in future courses was

TABLE II

EXAM RESULTS IN FILESYSTEM-LESS COURSE.

Other Course Absolute Normalized

MM 70.00% 109.38%

FS 0.00% 0.00%

overall 64.00% 100.00%

TABLE III

GENERAL ANSWERS FROM QUESTIONNAIRES.

Course Old New

Lectures were interesting 1.6 1.2

I liked coming to the lectures 1.6 1.4

Lectures were well-structured 1.2 1.1

I would recommend this course 1.3 1.0

Overall grade for this course 1.4 1.1

Grade for lecturer’s didactics 1.6 1.4

answered more sceptically – 30 % approved, 20 %

disapproved, and 50 % were neutral or had no opinion.

Table III shows answers to some general questions

about the course. Students could give marks on a 1–5

scale with 1 meaning “total agreement” and 5 mean-

ing “total disagreement”; for the last two questions

grades could vary between 1 = very good, 2 = good,

3 = satisfactory, 4 = sufficient, and 5 = insufficient.

C. Limitations

The statistical strength of the evaluations is low since

only 27 students took the final exams in 2008 (16 in

2009) and only ten students filled out the 2009 course’s

evaluation form. Thus we do not claim to have found re-

liable evidence that treating MM and FS simultaneously

must lead to improved understanding of the concepts

and better grades in the exams. However, the results do

suggest that an increase similar to the one observed in

this research is possible.

Readers should also note that the FS contents were

not completely identical in both terms (whereas the MM

contents were almost identical) since the focus lay on

topics which appear in both FS and MM for the 2009

course, whereas no such restriction applied for the 2008

course.

We taught all lectures in the 2008 and 2009 courses

except for the FS part in the old course which was taught

by a different lecturer. However, in both terms we created

exam questions and graded the answers for all topics.

D. Interpretation of the Results

The small increase of +2.32 % in the memory manage-

ment section is too small to be considered meaningful,



TABLE IV

RESULTS FROM THE STUDENT QUESTIONNAIRE.

Question / Statement Avg. 1 2 3 4 5 n/a

1. Combined treatment of the topics makes sense 1.6 50% 40% 10% 0% 0% 0%

2. Frequent change between properties of filesystems and memory manage-

ment is confusing

4.1 0% 10% 10% 40% 40% 0%

(Negation of the above statement) 1.9 40% 40% 10% 10% 0% 0%

3. The combination made it easy to understand that many concepts from one

topic translate to the other topic

1.4 60% 40% 0% 0% 0% 0%

4. More topics should be combined this way 2.8 20% 10% 40% 10% 10% 10%

The meaning of 1–5 is: 1 = agree completely, 2 = agree, 3 = neutral, 4 = disagree, 5 = disagree completely. n/a: not
applicable. The questionnaire was filled out by ten students. Statement (2) is also shown negated in line below for better

comparison.

especially since the number of test takers was rather

small. The increase of +16.3 % in the filesystems section

seems significant, but may be influenced by the differ-

ences in the FS topic selections and the lecturers who

taught the FS parts.

An interesting observation is that in the FS-less course

students got slightly higher marks for the MM questions

(109.38 %, cf. Table II) than for the other topics, whereas

in the two courses held by us they received lower

marks for the MM questions (80.56 % / 82.43 %) and

average or higher marks for the FS questions (98.28 %

/ 114.29 %; cf. Table I b). A possible interpretation of

this result is that treating closely related topics separately

has a worse effect than leaving one of these topics out

completely. If this hypothesis could be confirmed, an OS

course should either drop the FS topic (and leave it for

another term) or combine MM and FS.

VI. CONCLUSIONS AND FURTHER WORK

Results from the double evaluation motivate further

research in this area: Since students performed better

in the exam and also valued the combined treatment,

it makes sense to search for further OS topics that

are typically treated separately but might also bene-

fit from being combined. As an example, threads are

sometimes only introduced after processes have been

fully dealt with, while other lecturers have decided to

discuss threads early on during the process introduction.

However, processes and threads are not related in the

same way that memory management and filesystems

are. Instead some knowledge about processes is required

to talk about threads, since the latter “live” inside the

former.

As to the results presented in this paper, since the

classes consisted of only small numbers of students, it

would be helpful to repeat this comparison with larger

groups of students, ideally with a class large enough

that it could be split by pretesting and forming two

equally strong groups which then attend lectures that

are identical except for the presentation of FS and MM

topics.

More generally, it would be interesting to identify

further Computer Science topics which are traditionally

taught separately but share many concepts, and apply

the same approach to their teaching. An example for

this (synchronization in OS vs. atomicity of database

transactions) was already given above. The overall idea

behind this is a shift of focus from concrete topics to

general concepts which form the basic building blocks

of many problem solutions found in Computer Science.

VII. ACKNOWLEDGEMENTS

We would like to thank Christian Vogt (Munich Univer-

sity of Applied Sciences) for sharing his exam questions

and his students’ exam results with us and Felix Freiling

(University of Erlangen-Nuremberg) for helpfully com-

menting on a draft version of this paper.

REFERENCES

[1] Christopher, W. A., Procter, S. J., and Anderson, Th. E. 1993.

The Nachos instructional operating system. In Proceedings

of the USENIX Winter 1993 Conference. USENIX Associa-

tion, Berkeley, CA, USA, 4-4. http://http.cs.berkeley.edu/∼tea/

nachos/nachos.ps

[2] Claypool, M., Finkel, D., and Wills, C. 2001. An Open Source

Laboratory for Operating Systems Projects. In Proceedings of

the Innovation and Technology in Computer Science Education

(ITiCSE) Conference, Canterbury, UK. ftp://ftp.cs.wpi.edu/pub/

techreports/pdf/00-24.pdf

[3] Eßer, H.-G. 2009. Operating Systems. Munich University of

Applied Sciences. Summer Term 2009. Lecture Notes, ch. 6.

http://hm.hgesser.de/bs-ss2009/skript/skript-bs-kap06.pdf

[4] Eßer, H.-G. 2009. Betriebssysteme. Munich University of Ap-

plied Sciences. Summer Term 2009. Slides. http://hm.hgesser.

de/bs-ss2009/

http://http.cs.berkeley.edu/~tea/nachos/nachos.ps
http://http.cs.berkeley.edu/~tea/nachos/nachos.ps
ftp://ftp.cs.wpi.edu/pub/techreports/pdf/00-24.pdf
ftp://ftp.cs.wpi.edu/pub/techreports/pdf/00-24.pdf
http://hm.hgesser.de/bs-ss2009/skript/skript-bs-kap06.pdf
http://hm.hgesser.de/bs-ss2009/
http://hm.hgesser.de/bs-ss2009/


[5] Eßer, H.-G. 2011, Combining Memory Management and File-

systems in an Operating Systems Course (Poster abstract). In

Proceedings of the 16th Annual Conference on Innovation and

Technology in Computer Science Education (ITiCSE 2011),

June 2011

[6] Freiling, F. C. 2008. The Design and Implementation of the

ULIX Operating System. Unpublished, available on request.

[7] Hartley, S. J. 1990. Experience with MINIX in an operating

systems lab, SIGCSE Bulletin (ACM Special Interest Group on

Computer Science Education) 22(3):34–38.

[8] Knuth, D. E. 1999. MMIXware: a RISC computer for the third

millennium, Springer-Verlag, Berlin, Heidelberg, ISBN: 3-540-

66938-8.

[9] Maia, L. P., Machado, F. B., and Pacheco Jr., A. C. 2005.

A constructivist framework for operating systems education: a

pedagogic proposal using the SOsim, ITiCSE ’05, pp. 218–222.

[10] van Merriënboer, J. J. G., Clark, R. E., de Croock, M. B. M.

2002. Blueprints for complex learning: The 4C/ID-Model. Edu-

cational Technology Research and Development, 50(2):39–64.

[11] Ramakrishnan, S. and Lancaster, A.-M. 1993. Operating Sys-

tems Projects: linking theory, practice and use. In Proceedings

of the 24th SIGCSE technical symposium on Computer science

education (SIGCSE ’93). ACM, New York, NY, USA, 256-260.

[12] Stallings, W. 2005. Operating Systems. Internals and Design

Principles. 5th ed. Pearson Education.

[13] Tanenbaum, A. S. 1987. Operating Systems: Design and Imple-

mentation, Prentice-Hall.

[14] Wagner, T. D. and Ressler, E. K. 1997. A practical approach to

reinforcing concepts in introductory operating systems. SIGCSE

Bulletin (ACM Special Interest Group on Computer Science

Education) 29(1):44–47.


	Introduction
	Outline

	Common Topics in Filesystems and Memory Management
	Allocation
	The Locality Principle
	Internal and External Fragmentation
	Topics without Equivalents
	Making the Affinity Explicit

	Related Work
	The Modified Course
	Evaluation
	Exam Results
	Student Questionnaire
	Limitations
	Interpretation of the Results

	Conclusions and Further Work
	Acknowledgements
	References

