r —)
‘NCCa;
National Centre for Computer Animation

LINUX SYSTEMS PROGRAMMING

JONATHAN MACEY

September 27, 2005

BOURNEMOUTHMEDIA SCHOOL

Contents

| Unix Programming

11

1.2
1.3

2.1

3.1

3.2

3.3

4.1

51
5.2

6.1
6.2

Command Line Arguments

Themain()function e
1.1.1 AsimpleExample
Parsing Command line arguments e
Usinggetopt. e
1.3.1 Asimplegetoptprogram e

Environment Variables

The EnvironmentList e
2.1.1 Setting EnvironmentVariables e
2.1.2 Getting EnvironmentVariables

The Standard I/O Library

Streams and File Objects e
3.1.1 Openingastream e e e e
3.1.2 ReadingandwritingaStream e
3.1.3 Inputfunctions e
3.1.4 OutputFunctions e
3.15 Lineatatmel/lO e
3.1.6 Binaryl/O e
Examples
3.2.1 Positioningastream e
Formatted I/O e
3.3.1 Formatedoutout e
3.3.2 FormatedInput

Executing Processes as a Stream

Reading from a processwithpopen.
4,11 Writingtoaprocess USiNg POPeN v v v v vt e
4.1.2 Butwhyuse popen? e e
4.1.3 AGUlbasedpopenexample o

Showing system Processes

SOrtiNG PrOCESSES . .« o v v o o et e e e e e
Killing processes e e

Creating processes in a program (fork)

6.0.1 Thefork/lexecprocessmodel
Asimple forkexample
The exec family of functions L oo
6.2.1 Asimpleforkandexecexample
6.2.2 forkexecexample2 e

CONTENTS

7 Processes and Threads

7.1

7.2

7.3
7.4

7.5
7.6

7.7
7.8

Benefits of Threadsvs Processes
7.1.1 Multithreading vs. Single threading
Threadslibraries
7.2.1 Asimple pthreadexample
7.2.2 Simple pthreadprogram
7.2.3 Wait for Thread Termination
Detachingthreads
Creating a Key for Thread-SpecificData
7.4.1 Delete the Thread-SpecificDataKey.
7.4.2 Setthe Thread-SpecificDataKey
7.4.3 Getthe Thread-SpecificDataKey
Anexampleprogram
Getting Thread Identifiers e
7.6.1 ComparingThreadIDs
Initializing Threads e
Yield Thread Execution
7.8.1 Setthe Thread Priority
7.8.2 Getthe Thread Priority
7.8.3 SendasSignaltoaThread
7.8.4 The Signal Mask of the Calling Thread
7.85 TerminateaThread

Il Inter-process Communication

8 Introduction to Inter-process Communication (IPC)

8.1

8.2

Pipes e
8.1.1 pPOpeEN e e e
FIFO'S . . .
8.21 FIFOUSES e
8.2.2 UsingaFIFOinashell
8.2.3 Client Server FIFO operations
8.2.4 TestingFIFOserver,

8.25 ClientProgram
8.2.6 Testing the Client/ Serversystem

9 Semaphores

9.1 A semaphore example

10 Shared Memory

10.1 Shared memory Control
10.1.1 Attaching and detaching a shared memory segment
10.1.2 A shared memory Client - Serversystem
10.1.3 ClientProgram

10.2 The ipcs utility

11 Introduction to Unix Socket Programming

11.1 Creating a socket
11.1.1 Establishing Connections.
11.1.2 Bindingan addresstoasocket
11.1.3 Waiting forconnections

11.1.4 Connectingtoaserver
11.2 Networking with TCP/IP

33
33
34
34
34
35
36
37
38
39
39
40
40
42
42
43
43
43
44
45
45
46

48

49
49
52
52
52
53
54
55
55
56

CONTENTS

11.2.1 Byte Ordering. o e e
11.3 ATCP/IP Client Server system i i e
11.3.1 Clientprogram 0 e e
11.3.2 Serverprogram oo i e e e e e e e e e e
11.3.3 Message structure e e
11.3.4 Testingthesystem e
11.3.5 Testing system acrossanetwork,

Il Appendices

A Basic C Programs
A.l The AnatomyofaCprogram. i i it i et i
A.1.1 The Declaration Block / Function DeclarationBlock
A.l.2 TheMaincodeblock
Al.3 FirstCProgram e
A2 CompilingC programs e
A.3 Clnputand Outputfunctionso,
A3.1 StandardIOstreams
A.3.2 FormattedOutput
A.3.3 SimpleFormatCodes. e
A.3.4 Conversion Specification Characters
A.3.5 Usingprintfwithvariables
A.3.6 Formatted Inputusingscanf aa.....
A.3.7 Creating Compound Strings using sprintf

B Basic C syntax

B.1 Comparisonand Logical Operators v it e
B.1.1 Bitwise LogicalOperators e
B.1.2 Assignmentoperators. e e
B.1.3 Conditional EXpressions e
B.1.4 lterations
B.1.5 breakandswitch e

B.2 CDataTypesand Structures 0 i i ittt i i e e
B.2.1 #define e
B.2.2 chardatatype e
B.2.3 Strings
B.2.4 Numericdatatypes e e
B.2.5 Floatingpointdatatypes
B.2.6 Moid e
B.2.7 Size

C Pointers
C.0.8 Whatarepointers? e
C.0.9 Sowhatare PointerUsedfor? uuua...
C.0.10 Pointermechanics e
C.0.11 void pointers o e e e e e e
C.0.12 InConclusion e e e

D Unix Line Editors
D.1 Starting VI e e e e
D.2 CommandModeandInputMode
D.3 Inserting Text e e
D.3.1 Documentnavigation e

CONTENTS

D.3.2 Document Structure . .
D.4 DeletingText
D.5 Making corrections
D.6 Undoing

D.6.1 Joininglines
D.7 Savingwork

D.8 Repeatingacommand.

D.9 Linenumbers
D.10 Markers

D.11 Otherinput modes.
D.12 Cut,Copyand Paste
D.12.1 Buffers

D.12.2 By line number

D.12.3 Cutand Copy (Deleteand Yank)

D.12.4 Using markers
D.125 Paste

D.13 Search and Replace
D.13.1 Special characters . . .
D.13.2 Search and Replace . .

D.13.3 Specialflags

D.13.4 A more powerful SearchandReplace

D.14 Variables

D.14.1 Toggle and Numericvariables

D.14.2 Useful variables
D.15 Mappingkeys

D.16 Executing Console Commands
A Unix Commands

B vireference

99
100
100
101
101
101
102
102
103
103
103
103
104
104
104
105
105
105
105
106
106
106
107
107
107
108

109

115

List of Figures

2.1 EnvironmentList e e 9
4.1 fopeninreadmode e 20
4.2 fopeninwritemode e 21
6.1 Howthe forkcommandworks e 28
8.1 Asimplepipeexample e 50
8.2 Complexpipeexample e 51
8.3 UsingaFIFOinashell ee 53
10.1 Pipesvs Shared MemoryforIPC 62
11.1 Client - Server connectionusingasocket. 70
A.l The Ccompilationprocess e 80
C.1 Simplepointers e e e e 95
C.2 Memory map for pointerexample L L e 96
C.3 Modified Memory map for pointerexample 96
C.4 void pointersexplained e e 97

List of Tables

3.1 Read Write modesforfopen e 14
8.1 DifferentIPCmethods e 49
10.1 shared memory control definitions Lo oL 63
11.1 Protocols available to the Socket Command 68
11.2 Socket Protocol Definitions e 69
A.l printfescape sequUENCES e 83
A2 printfformatstrings L 84
B.1 Comparison and logical operators i 87
B.2 Bitwise Logical Operators e 88
D.1 Commandstoremovetext e 99
D.2 Navigationkeys. e 99
D.3 Special Navigationkeys. e e 99
D.4 Documentnavigation e e e 100
D.5 Deletecommands e 100
D.6 Correction/Replacementcommands e 101
D.7 InputModes e e 103
D.8 Special searchcharacters e 105
D.9 vivariables e e 107

LIST OF TABLES

Note this lab book is based on the excellent book "Advanced@mming in the Unix Envi-
ronment" by W. Richard Stevens. Addison Wesley 1993. Itrizrgly recommended that you
read this book in conjunction with this lab book.

Part |

Unix Programming

Chapter 1

Command Line Arguments

When a program is executed from a commandiihenay be passed different parameters as arguments to
the program. Many examples of this may be seen in the Unixatiper system with standard commands.
For examplds may be used on it's own or with different flags suchsasal where the-al is a command

line argument.

1.1 The main() function

Themain function is the entry point in any C program and may be dedlare@ number of ways as shown
below

Function Declaration: 1: The different forms of main

void main(void)
int main(void)
int main(int argc, char *argvl])

The first statement declares main as not returning a valuaaineceiving any values from the command
line.

The second returns an integer value when the program haslexit

An finally main has two parameters, int argc and char *argiflese are the only parameters that main in
allowed and are used in the following ways

int argc is the argument count and passes the number of argsipessed at the command line.

char * argv is a pointer to a list of command line argumentsciimhay be accessed as if they were a series
of strings.

1i.e. from an xterm or a dos session

CHAPTER 1. COMMAND LINE ARGUMENTS 6

1.1.1 A simple Example

The example below shows how to use argc and argv and prinheuiesults.

Program 1: Simple Argument example

#include <stdio.h>
int main (int argc, char * argv(])

{

int count;

for(count =0; count < argc; count++)

printf("argument no %d = %s\n",count,argv[count]);
return 0;

Running this program using the following command line

argument
argument
argument
argument
argument
argument

no
no
no
no
no
no

abhwNEF O

#argexample -a -b -c -d e

argexample
-a

-b
-C
-d
e

You will notice that the first argument (argv[0]) prints cargexample This is because the whole of the
command line typed is passed into the program.

When the program is executed the command line is parsed ahdspace separated command is placed
into each argv array element. Finally the size of the argayais placed into argc.

1.2 Parsing Command line arguments

The following program parses the command line to find onerefelilags. These arenodel, -mode2and
-help. The mode flags both accept a further parameter but help ddes n

Finally an incorrect parameter causes the program to exit.

Program 2: A more complex argument example

#include <stdio.h>
int main (int argc, char * argv(])

{

int argcount=1; /

int mode;

* argv 1 is the first parameter */

while(argcount < argc)

{

CHAPTER 1. COMMAND LINE ARGUMENTS 7

if(strcmp(argv[argcount],"-model”) == 0)

argcount++;
printf("mode 1 parameter = %s\n",argv[argcount ++]);
mode =1;

else if (strcmp(argv[argcount],"-mode2") == 0)

argcount++;
printf("mode 2 parameter = %s\n",argv[argcount ++]);
mode =2;

else if(strcmp(argv[argcount],"-help") == 0)

argcount++;
printf("Help mode\n");

else

{

printf("unknown command %s\n",argv[argcount]);
exit(1);

}

printf("end of program in mode %d\n",mode);

}

1.3 Using getopt

An easier way to parse command line options is using the atdn@ library function getopt as shown
below

#include <unistd.h>
getopt(int argc, char * const argv[],const char * optstring);

extern char * optarg;
extern int optind, opterr, optopt;

For info typeman 3 getopt

1.3.1 A simple getopt program

Program 3: Using getopt

#include <stdio.h> // for printf

#include <unistd.h> // for various unix defines
#include <stdlib.h> //for getopt

#include <string.h> // for strcpy

#include <stdbool.h> //for bool and true false

/I define the command line argument parameters : indicates 2 nd arg
#define ARGUMENTS "vdhf:"
int main(int argc, char *argvl])

{

CHAPTER 1. COMMAND LINE ARGUMENTS

/I define some inital global variables for the program
bool Verbose = false;

bool Debug = false;

bool Help = false;

/I pointer to hold the string from the command line
char *Argument;

/I the character returned from the getopt function
char c;

/I now loop and parse the command line options
while((c=getopt(argc,argv,ARGUMENTS)) !=EOF)

switch(c) // which option has been chosen
{
case V' @/l -v
printf("Setting Verbose Mode\n");
Verbose = true;
break;
case 'd' : /[-d
printf("Setting Debug Mode\n");
Debug = true;
break;
case 'h’ : /l-h
printf("Help Mode\n");
Help=true;
break;
case 'f' : /I -f [ARG]
printf("passing an argument The argument is %s\n",optarg)
Argument = (char *)malloc(sizeof(optarg));
strcpy(Argument,optarg);
break;
case '?’ : // unknown option report this and exit
/I where optopt is the current option
printf("Unknown argument %c\n",optopt);
printf("Valid arguments are -v -d -h -f [name]\n");
printf("Will now exit\n");
exit(EXIT_FAILURE);

}
}

printf("Argument parsed current modes are as follows\n");
printf("Debug = %d\n",Debug);

printf("Verbose = %d\n",Verbose);

printf("Help = %d\n",Help);

printf("Argument passed is = %s\n",Argument);
/I as we used malloc we need to free any memory we allocated
free(Argument);

return EXIT_SUCCESS;
}

Chapter 2

Environment Variables

2.1 The Environment List

As well as command line arguments every C program is als@gdassenvironment list. Like the argument
list. the environment list is an array of character pointesith each pointer containing the address of a null
terminated C string. The address of the array of pointersrisained in the global variable environ defined
as

extern char *x @nviron;

In figure 2.1the environment consists of 5 strings.

environment environment environment
pointer list strings
envion: [A---->] - - - > HOME=/home/jmacey\0

- - - = PATH=:/bin:/usr/bin\O
- - = = SHELL=/usr/bin/bash\0
- - - > USER=macey\0

- - - =LOGNAME=macey\0

NULL

Figure 2.1: Environment List

In figure 2.1 environ is know as the environment pointer. Tinayeof pointers is known as the environment
list, and the strings the environment strings.

By convention the environment consistsaime = valuevhere name is in upper case. However this is just
a convention and is not enforced by the operating system.

An example of the environment list is shown in the progranowel

Program 4: Environment List program

#include <unistd.h>
#include <stdio.h>

|+ some versions of C don't include the definition of environ in the

9

CHAPTER 2. ENVIRONMENT VARIABLES 10

standard include paths */
extern char *x @nviron;

int main(void)

{

| = create a pointer to point to the current entry in the environm ent list */
char =*current_environ_ptr;

/+* now copy this pointer to point to the first entry in the list */
current_environ_ptr= * environ;
/+* now we loop through all of the environment table entries unti I we
get to the last entry signified by a NULL */
do
{
/+* we now print out the environment string */
printf("%s\n",current_environ_ptr);
/+* now point current_environment_ptr to the next entry in the | ist /
current_environ_ptr= * environ++;
/* and check to see if it is the last */

Ywhile(current_environ_ptr != NULL);

return O;

}

2.1.1 Setting Environment Variables

The Unix kernel never looks at the environment strings -rtiméérpretation is up to application programs.
For example at login time the environment variables HOMEEBJPATH ,etc are set for the shell (which
is generally a c-program) to use.

Other programs require their own environment variablesat@dt or for the program to set environment
variables. This is done by the following C functions

Function Declaration: 2: Environment Functions

#include <stdlib.h>

int putenv(const char * Str);
int setenv(const char *name, const char *value, int rewrite);

Bot h these function return 0 if OK nonzero on error.

void unsetenv(const char *name);

putenvtakes a string of the formame=valueand places it in the environment list. If the name already
exists it’s old definition is first removed.

CHAPTER 2. ENVIRONMENT VARIABLES 11

setenvsetsnameto value If name already exists in the environment then (agifrite is nonzero, the
existing definition for name is first removed. (b)réwrite is 0, an existing definition for name is not
removed (and name is not set to the new value, and no errorsjccu

unsetenvemoves any definition of name. It is not an error if such a defimdoes not exist.

How environment setting works

Environment strings are typically stored at the top of a psse’s memory space (above the stack). Deleting
a string is simple as all the function has to do is remove thietpofrom the list and shuffle the rest up by
one.

However adding a string or modifying and existing string srendifficult, the space at the top of the stack
cannot be expanded because it is at the top of the address spdw process. Since it is at the top it

can’t be expanded upwards and it can't be expanded downveaalise all the stack frames below can't be
moved therefore the following operations must be carrigdiepending upon the state of the environment.

1. If modifying an existing name :

(a) If the size of the newalueis less then or equal to the size of the existirdue it may be
directly replaced.

(b) If the newvalueis larger than the old one, the programmer nmasatloc enough room for the
new string and then replace the pointer in the environmsnwlith the new pointer from the
mallocoperation.

2. If adding a newnamefirst the programmer mustallocenough room foname=valueand copy the
string to this area.

(a) Ifit's the first time the nemamehas been added a new environment list must be created using
mallocto create enough room for the new name to be added. Then thesnfaom the old
list are copied to the new list, adding the new string and lfirthle NULL pointer to the end.
Finally the global variablenvironis set to point to the new list. However it must be noted that
as most of the pointers in the list we allocated before thganm was run they are still located
at the top of the stack.

(b) If it isn’t the first time the new string has been added te #mvironment list then room has
already beemalloced for it sorealloc may be used to allocate more (or less) room for the new
string.

However thesetemandputenvfunctions make this transparent to the programmer.

CHAPTER 2. ENVIRONMENT VARIABLES 12

2.1.2 Getting Environment Variables

There is one function used to fetch values from the envirariag detailed below

Function Declaration: 3: getenv function

#include <stdlib.h>
char =*getenv(const char * name);

returns pointer to value associated with name NULL if not found.

Although the program earlier manipulates #revironvariable directly this should not be used in a hormal
program; instead the getenv function should be used.

Chapter 3

The Standard I/O Library

The Standard I/O library is specified by the ANSI C standarchbee it has been implemented on many
operating systems. This library handles details such dettaifocation and performing I/O in an optimized
way as far a reading and writing block sizes are concerned.

This library was written in 1975 by Dennis Ritchie and was ganeevision of the Portable 1/O library
written by Mike Lesk. However little of this library has chged in the last 24 years.

3.1 Streams and File Objects

When a file is opened a file descriptor is returned and this &ékcdptor is used for each subsequent I/O
operation, when any operation is carried out on the file dgserits is known as a stream.

When a stream is opened the standard 1/O function fopenngtupointer to a FILE object. This object
is a structure which contains information required by ttendard 1/O library to perform 1/O operations,
however this information is effectively transparent to ginegrammer and is not generally used.

3.1.1 Opening a stream

The following three functions are used to open a standardti/€am

Function Declaration: 4: file open functions

#include <stdio.h>

FILE =*fopen(const char * pathname, const char * type)
FILE =*freopen(const char * pathname, const char +type, FILE *fp)
FILE =*fdopen(int filedes, const char *type)

Al three of these functions return file pointer if OK or a NULL on error.

The differences in these three functions are as follows

IHowever this structure may be examined from looking in tidéosh header file

13

CHAPTER 3. THE STANDARD I/O LIBRARY 14

1. fopen opens a specified file.
2. freopen opens a specified file on a specified stream, cldsinsfream first if it is already open.

3. fdopen takes an existing file descriptor and associatesdard 1/0 stream with the descriptor.

ANSI C specifies 15 different values for the type argumentasvs in table 3.1

| type | Description |
rrb open for reading
w wb truncate to 0 length or create for writing
aab append; open for writing at the end of file or create for wgtin
r+r+b rb+ open for reading and writing
w+ w+b wb+ | truncate to 0 length or create for reading and writing
a+ atb ab+ | open or create for reading and writing at end of file

Table 3.1: Read Write modes for fopen

Usingb as part of the type allows the standard 1/0 system to dift&anbetween a text file and a binary
file. Since the Unix kernel doesn't differentiate betweessttypes of file thb has no effect, however on
other operating system (Windows) it does.

3.1.2 Reading and writing a Stream

Once a stream has been opened there are three types of uttéat i@ which may be performed these are
as follow

1. Character at a time I/O.
2. Line atatime I/O

3. Direct /O

3.1.3 Input functions

There are three functions which allow the programmer to ceedcharacter at a time

Function Declaration: 5: File Input Functions

#include <stdio.h>

int getc(FILE *fp);
int fgetc(FILE *fp);
int getchar(void)

Al three functions return the next character if OK or EOF on end of file or error.

Each of these functions return the next character as annetsichar converted to an int. The reason for
specifying unsigned is so that the high order bit, if set,stdtecause the return value to be negative. This
means that if the value is converted to an int all possible WERaracters may be returned as well as the
negative value -1 which generally indicates EOF (end of.file)

CHAPTER 3. THE STANDARD I/O LIBRARY 15

3.1.4 Output Functions

There are three output functions which corresponds to efitte anput functions as follow

Function Declaration: 6: File output functions

#include <stdio.h>
int putc(int c, FILE *fp);
int fputc(int ¢, FILE *fp);
int putchar(int c);

Al three functions return c if OK or ECF on error.

3.1.5 Lineatatimel/O

Line at a time input is provided by the following functions

Function Declaration: 7: Line at a time input functions

#include <stdio.h>
char =fgets(char *bufint n, FILE *fp);
char =*gets(char *buf);

Both return buf if OK NULL on EOF or error.

Both of these functions specify the address of buffer to thadine into. gets reads from stdin while fgets
freads from the specified stream.

With fgets the size of the buffer (characters to read) areifipd by n. This function reads up to and

including the next newline, but no more than n-1 charactasbuffer. The buffer is then terminated by a
NULL byte (\0).

Line at a time output is provided by fputs and puts as follows

Function Declaration: 8: Line at a time output functions

#include <stdio.h>
int fputs(const char *str,FILE *fp);
int puts(const char * Str);

Both functions return nonnegative values if OK or ECF on error.

CHAPTER 3. THE STANDARD I/O LIBRARY 16

3.1.6 Binary /O

The previous functions operated with either one charadter ttme or a line at a time, however it is
sometimes desirable to read or write complete structuresfimm a file. This is done using the following
binary I/O functions

Function Declaration: 9: Binary 10 functions

#include <stdio.h>
size_t fread(void *ptr, size_t size, size_t nobj, FILE *fp);
size_t fwrite(const void *ptr, size_t size, size_t nobj, FILE *fp);

Both these functions return the nunber of object read or witten.

The return type of both the above functions is the variaide_tany variable ending in a _t is known as a
'type’ variable an is used as part of the platform Indepewderf Unix based C programs.

For example in most casefze_twill be an integer, however on some systems it may be a diffeype.
By defining a function to return a user defined type (sucizs) and then definingize_tin a header file
as the correct type for the system; code will remain portable

This is even more important with some structures which hol8 @ependant data such as date / time
information or file system information as this may be stordfkaently on each O/S but all Posix based
Unix systems have a common interface to this by use of thvariable types.

3.2 Examples

The following program opens the file /etc/passwd and primscontents to the console

Program 5: simple file read program

#include <stdio.h>

int main(void)

{

FILE +input_file;

int ip;

printf("attempting to open passwd file...");

if ((input_file = fopen('/etc/passwd", "rt")) == NULL)

printf("File not found or unable to read\n");
exit(1);

}
printf("File Open OK\n\n");

while((ip=fgetc(input_file))!=EOF)
printf("%c",ip);

printf("\nEnd of File Closing ...");
fclose(input_file);

printf("File Closed\n");

}

CHAPTER 3. THE STANDARD I/O LIBRARY

17

The following program reads input from the console usinglgat and writes it to the file writetest.txt

Program 6: simple file write program

#include <stdio.h>
int main(void)
FILE =*output_file;

unsigned char ip;
printf("attempting to open new file...");

if ((output_file = fopen("writetest.txt", "wt")) == NULL)
printf("File not found or unable to write\n");
exit(1);
}

printf("File Open OK\n\n");
printf("Every character typed will be entered into a file\n

printf("Press Enter to write line to File \nPress the ESC key

do

ip=getchar();
fprintf(output_file,"%c",ip);
twhile(ip '=27);
printf("\nEnd of File Closing ...");
fclose(output_file);
printf("File Closed\n");
}

"),

to exit\n");

3.2.1 Positioning a stream

There are several functions which allow the programmer toarthe current position of the file stream.

These are as follows

1. ftell and fseek. These functions assume that the file'gipn<an be stored as a long integer.

2. fgetpos and fsetpos. These are ANSI C functions and magdzkan different non-Unix file systems.

These positioning functions are define as below

Function Declaration: 10: File positioning functions

#include <stdio.h>
long ftell(FILE *fp);

returns the current file position if OK -1L in error

CHAPTER 3. THE STANDARD I/O LIBRARY 18

int fseek(FILE +fp,long offset, int whence);

returns 0 if OK nonzero on error

void rewind(FILE *fp);

The ftell function is passed the file pointer of the current¢atn and returns the current file position as a
long integer.

The fseek function sets the file position indicator for theam pointed to by stream. The new position,

measured in bytes, is obtained by adding offset bytes todbiipn specified by whence. If whence is set
to

SEEK_SET, SEEK_CUR, or SEEK_END, the offset is relativehim start of the file, the current position
indicator, or end-of-file, respectively.

Finally rewind is used to reset the file position of *fp to theginning of the file.

3.3 Formatted I/O

3.3.1 Formated outout

Formated output is implemented using the three printf fiomst as printf and sprintf have already been
covered in appendix A only fprint will be explained here.

Function Declaration: 11: fprintf

#include <stdio.h>
int fprintf(FILE +fp, const char fmt, ...);

This function returns the the number of characters output
if OK or a negative value if output error.

The format function for fprintf is identical to that of prifor example to print the following variable to a
file use

Program 7: A simple fprintf program snipet

#include <stdio.h>

int a=10;

char c='x;

char d[12]="hello world";

FILE =*fp;

..... now open file etc

fprintf(fp,"this is the text %d %c %s \n”,a,c,d);

CHAPTER 3. THE STANDARD I/O LIBRARY 19

3.3.2 Formated Input

Formated input is handled by the three scanf functions. Aafdtas already been covered only the fscanf
variant will be discussed.

Function Declaration: 12: fscanf

#include <stdio.h>
int fscanf(FILE +fp, const char =fmt, ...);

This function returns the number of input items assigned,
or EOF if input error or end of file before any conversion.

Chapter 4

Executing Processes as a Stream

Unix allows the programmer to communicate between prosdesenumber of ways. One of the simplest
is the use of th@popenandpclosefunctions which allow the execution of a process using stieaimilar
to the opening of afile.

As popenreturns a file handle the input or output to the process may leeaccessed by using the usual
file manipulation functions (fprintf, fread etc).

popenandpclosetake the following format

Function Declaration: 13: popen and pclose

#include <stdio.h>
FILE *popen(const char * cmdstring, const char *type);

returns : file pointer if OK NULL on error
int pclose(FILE *fp);

returns termnation status of cndstring, or -1 on error

The functionpopendoes aork andexecto execute themdstring and returns a standard 1/O file pointer.
If typeis “r", the file pointer is connected to the standard outputrofistringas shown in figure 4.1

cmdstring
parent (child)

fp <}—— stdout

result of fp=popen(command,”r");

Figure 4.1: fopen in read mode

If typeis “w”, the file pointer is connected to the standard inputwidstringas shown in figure 4.2

20

CHAPTER 4. EXECUTING PROCESSES AS A STREAM 21

cmdstring
parent (child)

fp p———— >t stdin

result of fp=popen(command,"w");

Figure 4.2: fopen in write mode

4.1 Reading from a process with popen

The following code illustrates the use pdpento read from a process

Program 8: A simple popen program

#include <stdio.h>

int main(void)

{

FILE =*process; //file pointer for process

char buffer[1024]; //a buffer to read the data from popen
int i=0;

/I use popen to create a stream to the Is program so we can read f rom it
process = popen("ls","r");
/lcheck to see if the process opened correctly
if (Iprocess)
{
printf("problem running command\n");
return O;

/I now read from the process fp into buffer
while(fgets(buffer, 1024, process))
printf("%d : %s",i++,buffer);

/I finally we must close the process
pclose(process);
return 1;

}

In the above program the standard output of lhprogram (usually the console) is redirected to the file
pointerprocessghis is then read using tHeead function into the buffer.

This buffer may then be printed out using tentf function.

4.1.1 Writing to a process using popen

The following program demonstrates the writing to a pro@esated using popen.

Program 9: writing to a stream opened by popen

CHAPTER 4. EXECUTING PROCESSES AS A STREAM 22

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <string.h>

int main(void)

{

/I create a data string to be sorted
char data[]="the quick brown fox jumps over the lazy dog";
FILE =*process;

int i;

int length;

/I we need to know how long the string is so we can loop
length=strlen(data);
printf("data is %s\n",data);

/I use popen to create a stream to the sort program so we can wri te to it
process = popen("sort","w");
/lcheck to see if the process opened correctly
if (Iprocess)
{
printf("problem running command\n");
return 0O;

/I now feed each of the characters of the data array into the so rt process
/I each letter must be separated by a new line
for(i=0; i<length; i++)
fprintf(process,"%c\n",datali]);
printf("done \n");
/I finally we must close the process
pclose(process);

return 1;

}

This program opens theort program and reassigns the standard input to the file pgindeess.This file
pointer is then written to using tHerintf function passing each element of the ardaya separated by a
new line character (\n). When this input has finished and thegss is closed the output from sort will be
written to the console.

4.1.2 Butwhy use popen?

One of the most useful applications feopenis the re-direction of process I/0O to a GUI based system.

For example an application such as an IDE for code developmay wish to build an application from a
Makefile, it make no sense for the developers of the IDE to nigewnake, so with the use @openmake
can be run and the output from make re-directed to the IDE

4.1.3 A GUI based popen example

The following example code uses the fltk gui toolkit to geteia@ small gui application to re-direct the
output of any Unix command run to a 'browser’ component.

Program 10: popen used in a gui

CHAPTER 4. EXECUTING PROCESSES AS A STREAM 23

#include <stdio.h>

#include <FL/FIL.H>
#include <FL/FI_Browser.H>
#include <FL/FI_Input.H>
#include <FL/FI_Window.H>
/I declare gui components
FI_Window *mainWindow;
FI_Input *cmd;
FI_Browser *output;

/I define functions
static void cb_Execute(Fl_Input *, void *);

/I main program loop
int main(int argc, char ** argv)
FI_Window * w; // the main form widget

/I create the main form widget

FI_Window * o = mainWindow = new FI_Window(500, 400, "popen demo type in a command");
w=o0;
/Il now add a text input box

Fl_Input * o = cmd = new FI_Input(80, 15, 350, 25, "Type Command Press [en ter] to execute");
o->align(FL_ALIGN_TOP);
/I activate the callback cb_Execute when the enter key is pre ssed
o->when(FL_WHEN_ENTER_KEY);

o->callback((FI_Callback *)cb_Execute);

/I create the browser widget to add the text to

FI_Browser * o= output = new FI_Browser(5, 40, 490, 355);
/I set font and size
o->textfont(FL_COURIER);
o->textsize(12);
/I fg colour Yellow bg colour Blue
0->color(136);
o->textcolor(95);

o->end();

w->show(argc, argv);
return Fl:zrun();

}
/I callback execute every time return is pressed
static void ch_Execute(FI_Input *, void *)

{

char buffer[1024]; // buffer for popen

char command[30]; //buffer for command

output->clear(); // first clear the list box

strcpy(command,cmd->value()); // now copy the command fro m the ip

FILE » f = popen(command,"r"); // now open a process to the command
if (If) /icheck to see if it worked

output->add("problem running command");
else // if it does loop until the process has finished

{

while(fgets(buffer, 1024, f))
output->add(buffer);

pclose(f); // now close the process

As this program is a gui based program it needs lots of diffidibraries and header files. To add these to
the standard compilation line in the console can become etsnime so we use the make utility to build
the application.

The following Makefile is used for the program above and iceked by typing make in the console.

Note that the # symbol is used for comments

CHAPTER 4. EXECUTING PROCESSES AS A STREAM

include directories

INCLUDE_DIR = -l/usr/include -l/usr/local/include
g++ compiler flags

FLAGS = -g -Wall

#library directories

LIB_DIR = -L /usr/X11R6/lib

object files used to link the program
OBJECTS = popengui.o

X windows libs required
XLIBS = -lfltk -IX11 -IXext -IXmu -IXt -IXi -ISM -lICE

flags for compilation

COMPILE = $(INCLUDE_DIR) $(FLAGS)

#flags for link

LINK = $(OBJECTS) $(INCLUDE_DIR) $(FLAGS) $(LIB_DIR) $(XL IBS)

popen gui is made from all the objects
popengui : $(OBJECTS)
g++ -0 popengui $(LINK)

#popengui.o is made from popen.c
popengui.o : popengui.c
g++ -c popengui.c $(COMPILE)

clean :
rm -f x.0
rm popengui
run :
make
popengui&

The above Makefile has 3 targets. typimgke will build the program
typing make cleanwill run the clean target which will remove abb files and thgpoopenguiprogram.

Finally make run will call make and the rupopengui& to run the program.

Chapter 5

Showing system Processes

When a process is created in the Unix operating system iveng unique integer value know as bid.
This is done by the kernel and is the only way a process mayfbysdentified. To determine thgid of
a process in the console thecommand is used as follows

[imacey@Ilocalhost jmacey]$ ps
PID TTY TIME CMD
576 ttypl 00:00:00 bash
577 ttypl 00:00:00 ps

[jmacey@Ilocalhost jmacey]$

The list that follows thegs command shows the pid (process id) and other informatids igrdependant
upon the version gbs used usenan psto find out the flags for the solaris version).

Typingpsin the console will only show the current processes creatditk opened console, however there
are more processes than this owned by different users orystens. To see these the additional flagk
must be used which will show all processes and all the inftionabout the processes.

For example
[jmacey@Ilocalhost jmacey]$ ps -ef
uib PID PPID C STIME TTY TIME CMD
root 1 0 0 14:50 2 00:00:04 init [3]
root 2 1 0 14,50 2 00:00:00 [kflushd]
root 3 1 0 14:50 2 00:00:00 [kpiod]
root 4 1 0 1450 2 00:00:00 [kswapd]
root 5 1 0 14,50 2 00:00:00 [mdrecoveryd]
bin 216 1 0 14551 2 00:00:00 portmap
root 263 1 0 1451 2 00:00:00 syslogd -m 0O
root 274 1 0 1451 2 00:00:00 klogd
daemon 288 1 0 1451 2 00:00:00 /usr/sbin/atd
root 301 1 0 14551 2 00:00:00 /shin/cardmgr
root 315 1 0 1451 ? 00:00:00 inetd
root 329 1 0 1451 2 00:00:00 Ipd

5.1 Sorting processes

It is sometimes necessary to filter the list of processesdw gimly the processes belonging to a particular
user. To do this the output gk -efmay be fed into thgrep utility as follows

25

CHAPTER 5. SHOWING SYSTEM PROCESSES 26

ps -ef |grep $USER

Where jmacey is the user name of the process required.

5.2 Killing processes

To stop a process thHell command is used passing it th& of the process to kill. This command may
also be passed a signal to determine how the process is tonb@dted. The most common signals used
are as follows

-9 SIGKILL
-15 SIGTERM

Usually the -9 signal is used to kill a process in the follogymanner

kil -9 [pid]

Chapter 6

Creating processes in a program (fork)

6.0.1 The fork/exec process model

The Unix process management model is split into two distiperations :

e The creation of a process

e The running of a new program

The creation of a new process is done using the fork() systdhand a new program is run using the
exec(l,Ip,le,v,vp) family of system calls.

These are two separate functions which may be uses indepigndecall to fork() will create a completely
separate sub-process which will be exactly the same as tleatpaConversely calling one of the exec
family of functions will terminate the currently runningggram and starts executing a new one in the
context of the existing process.

The main reason this model is used is the simplicity of op@matvhen creating a new sub-process the
current environment from the parent is used so the programees not setup a new environment to run
the program. After the fork call the program may then useesystalls to modify the environment to suit
the child process and then use the exec functions to run theroxess required.

Function Declaration: 14: fork

#include <sys/types.h>
#include <unistd.h>

pid_t fork(void);

returns: 0 in child, process ID of child in parent, -1 on error.

The new process created by fork is called the child procdsis. flinction is called once but returns twice.
The only difference in the returns is that the return valudéchild is O while the return value in the parent
is the process ID of the new child. The reason the child’s @ssdD is returned to the parent is because

27

CHAPTER 6. CREATING PROCESSES IN A PROGRAM (FORK) 28

a process can have more than one child, so there is no furthallows a process to obtain the process
ID’s of its children.

The reason that fork returns 0 to the child is because a pga@aashave only have a single parent, so the
child can always calyjetppidto obtain the process id of the parent.

Both the child and parent continue executing with the ircttom that follows the call to fork. The child
is a copy of the parent. For example the child gets a copy opéinent’s data space, heap and stack. This
means that when a child is initially created it is an exactyanfthe parent. This is shown in figure 6.1.

shell process parent process
fork(—)/

child
process program executes

shell process

process

execve
> program

Figure 6.1: How the fork command works

It can be seen from the diagram that if the parent is killedkethe child calls an exit() to exit normally
a zombie process is created. This process is inherited bpitq@ocess which is part of the Unix system
boot. These process must then be destroyed by the root usaswits the init function.

6.1 A simple fork example

The following program is split into two parts, each of whichnsists of a simple loop which prints a
character to the console. The child part of the program ptim¢ character C to the console whilst the
parent prints a P to the console.

To demonstrate the fact that the child is an exact copy of #rer, a global variable calleshdvalues
declared in the parent which is used to set the end value dbte the child process will inherit this
variable and use it in the loop.

The parent part of the program has a call towtt() function which causes the parent to wait for the child
to exit before the parent resumes. Therefor the expectgulibat the the program will be 600 C followed
by 600 P.

Program 11: a simple fork example

#include <stdio.h>
int main(void)

/I process id

int pid,i,endvalue;

/I use fork to create a new process
endvalue=1000;

printf("calling fork()\n");

pid=fork();

CHAPTER 6. CREATING PROCESSES IN A PROGRAM (FORK)
/I check to see if fork worked
if(pid <0)

printf("Fork failed\n");
exit(0);

}
else if (pid ==0)

/I in child process
for(i=0; i<endvalue; i++)

printf("C");
fflush(stdout);
}
}
else
{
/I parent process
wait(NULL);
for(i=0; i<endvalue; i++)
{
printf("P");
fflush(stdout);
}
printf("Child Complete");
exit(0);
}
}

29

6.2 The exec family of functions

The main use for the fork function is to allow for the execaotaf another process within a program, fork
creates a child process which is an exact clone of the pareoéss if we wish to execute a new function

after this has been done we use the exec family of functions.

These functions replace the current process (which aftkiisa clone of the parent) with the new process
called by exec. This will replace all of the text, data , staegments and heap of the child process with

that of the new process called.

There are six different exec functions which are describgtié exec man pages

Function Declaration: 15: Exec family of functions

int execl(const char *path, const char *arg, ...);

int execlp(const char *file, const char xarg, ...);

int execle(const char *path, const char xarg , ..., char * const envp[]);
int execv(const char *path, char *const argv[]);

int execvp(const char *file, char *const argv[]);

CHAPTER 6. CREATING PROCESSES IN A PROGRAM (FORK) 30

The first difference in these functions is that the first faketa pathname argument while the last two take
a filename argument. When a filename argument is specified
o if filename contains a slash, it is taken as a pathname,

e otherwise the executable file is searched for in the dirext@pecified by the PATH environment
variable

6.2.1 A simple fork and exec example

The following program demonstrates how to use fork and exeart a process and uses a small program
called child to demonstrate how the parent and the childwareing at the same time. The code for child.c
is as follows

Program 12: child program to be run by parent program

#include <stdio.h>
int main(void)

{

while(1)
printf("C");

}

Know the parent program which executes the child program

Program 13: program to run child program

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <error.h>
#include <signal.h>
#include <errno.h>

int main(void)
pid_t pid;

int status;

if((pid =fork()) < 0)

/I probably out of processes
status =-1;

}
else if (pid == 0)
{

/I in child so we execute process

/I use the execl function to to run a shell an execute the child program
execl("/bin/sh","sh","-c","child",(char *)0);
while(1)
printf("P");

printf("end of program");

}

CHAPTER 6. CREATING PROCESSES IN A PROGRAM (FORK) 31

When this program is executed the child program is spawneadcsld process, and the main (parent)
process continues now the console will print out both C fdldcénd P for parent.

The execl function is used in the above example by callingltirésh shell command and running sh -c
which tells the shell (in this case sh the C shell) to staribmmand mode where the next argument is the
command to be run which in the above example is the child jaragr

6.2.2 fork exec example 2

The following example executes a child process and waitt foidie before continuing the parent process.
This is split into two sections, first is child2.c

Program 14: Child program to be run by parent program

#include <stdio.h>

int main(void)

{

int i=0;

for(i=0; i<100; i++)
printf("c");

}

This program loops 100 times and prints out the charactetletaonsole

The next program executes the above program (child2) and $aiit to finish before it continues

Program 15: Parent program to run child program

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <error.h>
#include <signal.h>
#include <errno.h>

int main(void)

int c=0;

pid_t pid;

int status;

if((pid =fork()) < 0)

/I probably out of processes
status =-1;

}
else if (pid == 0)

/I in child so we execute process
execl("/bin/sh","sh","-c","child2",(char *)0);

}

else

CHAPTER 6. CREATING PROCESSES IN A PROGRAM (FORK) 32

/I now wait for child to die
while(waitpid(pid, &status,0) < 0)
{

printf("in wait pid \n");
iflerrno '=EINTR)

status=-1;
break;
}
}
for(c=0; c<100; c++)
printf(’p");
printf("\nend of program");

}

If the above program is modified to run the original child maog the child will run at the same time as the
parent process but when the parent die so will the child.

Chapter 7

Processes and Threads

A thread, sometimes called a lightweight process, is a dripa utilisation (i.e. a piece of code running
on a cpu). Each thread has the following characteristics

athreadlD

a program counter

a register set

a stack

However unlike a process each thread created by the pammsstime following resources

e code section
e data section

e operating system resources (i.e. opened files, signals etc)

As threads share the same memory and data caution must bevlisedvriting multithreaded code as one
thread may overwrite another threads data however threatiske advantages over the creation of new
processes as it takes much less overhead to create andydestew thread as opposed to a process, also
communication between threads is a lot quicker than intecgss communication.

7.1 Benefits of Threads vs Processes

If implemented correctly threads have some advantagesufijiprocesses, They take:

e Less time to create a new thread than a process, becausentlyecneated thread uses the current
process address space.

e Lesstime to terminate a thread than a process.

e Less time to switch between two threads within the same gsgartly because the newly created
thread uses the current process address space.

e Less communication overheads — communicating betweertkads of one process is simple be-
cause the threads share everything: address space, cupartiSo, data produced by one thread is
immediately available to all the other threads.

33

CHAPTER 7. PROCESSES AND THREADS 34

7.1.1 Multithreading vs. Single threading

¢ Improve application responsiveness — Any program in whielnyractivities are not dependent upon
each other can be redesigned so that each activity is definadhmead. For example, the user of a
multithreaded GUI does not have to wait for one activity tonpbete before starting another.

e Use multiprocessors more efficiently — Typically, applicas that express concurrency requirements
with threads need not take into account the number of avaifadocessors. The performance of the
application improves transparently with additional pssmrs. Numerical algorithms and applica-
tions with a high degree of parallelism, such as matrix rplittations, can run much faster when
implemented with threads on a multiprocessor.

e Improve program structure — Many programs are more effigistrtuctured as multiple independent
or semi-independent units of execution instead of as aeingbnolithic thread. Multithreaded
programs can be more adaptive to variations in user dembadssingle threaded programs.

e Use fewer system resources — Programs that use two or moregses that access common data
through shared memory are applying more than one threadndfacdoHowever, each process has a
fulladdress space and operating systems state. The costbig and maintaining this large amount
of state information makes each process much more expehsina thread in both time and space.
In addition, the inherent separation between processeeqaire a major effort by the programmer
to communicate between the threads in different proceesés synchronize their actions.

7.2 Threads libraries

The interface to multithreading support is through a sutinedibrary,libpthread for POSIX threads, and
libthread for Solaris threads. They both contain code for:

e creating and destroying threads

e passing messages and data between threads

e scheduling thread execution

e saving and restoring thread contexts

7.2.1 A simple pthread example

To create a default thread using the pthread libraryptieead createfunction is used as prototyped
below

Function Declaration: 16: pthread_create

#include <pthread.h>

int pthread_create(pthread_t +thread, const pthread_attr_t *attr, void * (* start_routine, void *),void *arg);

returns 0 OK el se error nunber.

CHAPTER 7. PROCESSES AND THREADS 35

The first argument to the functions is the id of the threadtexeand is returned to the user so a particular
thread may be identified.

Theattr parameter is used to set the attributes of the thread, I#iige is set to NULL then the defaults
are used as follows

It is unbounded

It is nondetached

It has a a default stack and stack size

It inherits the parent’s priority

Next the routine to be created as a thread is passed to th&dires well as the arguments. This is
illustrated more clearly in the following example

7.2.2 Simple pthread program

Program 16: Simple pthread program

#include <pthread.h>

#include <stdio.h>

#include <unistd.h>

/I we must make the compiler aware that this program

/I is to use threads so the thread safe libraries must be used
/I to do this we define the _REENTERANT flag

#define _REENTRANT

/Inext we create a simple function for out thread
void *ThreadRoutine(int number)
while(1) // loop forever

printf("thread %d running\n",number);
sleep(number); // sleep for a time passed as a parameter

}
int main(void)
int t;
pthread_t tid[5]; // an array to keep track of the threads
/I now loop through and create 4 threads passing t as the
/I parameter
for (t=1; t<5; t++)
pthread_create(&tid[t],NULL,(void *)ThreadRoutine,(int *)t);

/I now the parent loops and sleeps for 10
while(1)

printf("parent running\n");
sleep(10);

exit(1);
}

CHAPTER 7. PROCESSES AND THREADS 36

To compile this program we need to include fiteread library as shown in the following command

gcc -Wall -g threadl.c -othreadl -Ipthread

We can now see when running this program that the 1st threagsless than the 4th thread so that the 1st
thread appears to be running quicker.

You can also create a default attribute object vpithread_attr_init() function, and then use this attribute
object to create a default thread.

7.2.3 Wait for Thread Termination

Thepthread_join() function blocks the calling thread until the specified tliréarminates. The specified
thread must be in the current process and must not be detadteeh status is not NULL, it points to a
location that is set to the exit status of the terminatedathrghenpthread_join() returns successfully.

Multiple threads cannot wait for the same thread to terreindithey try to, one thread returns successfully
and the others fail with an error of ESRCH. Afgghread_join() returns, any stack storage associated with
the thread can be reclaimed by the application.

The pthread_join() routine takes two arguments, giving you some flexibilitytsnuse. When you want
the caller to wait until a specific thread terminates, supipét thread’s ID as the first argument. If you are
interested in the exit code of the defunct thread, supplhatidress of an area to receive it. Remember that
pthread_join() works only for target threads that are ntexcteed. When there is no reason to synchronize
with the termination of a particular thread, then that tdrshould be detached.

Think of a detached thread as being the thread you use in msiahices and reserve nondetached threads
for only those situations that require them.

Program 17: pthread_join example program

#include <pthread.h>

#include <stdio.h>

#include <unistd.h>

/I we must make the compiler aware that this program

/I is to use threads so the thread safe libraries must be used
/I to do this we define the _REENTERANT flag

#define _REENTRANT

/Inext we create a simple function for out thread
void *ThreadRoutine(int number)

printf(“thread %d running\n",number);
sleep(number); // sleep for a time passed as a parameter

int main(void)
int t;

pthread_t tid; // an array to keep track of the threads

/I now loop through and create 4 threads passing t as the

/I parameter

pthread_create(&tid,NULL,(void *)ThreadRoutine,(int *)5);
/I now the calling process waits for the thread to finish
pthread_join(tid,NULL);

CHAPTER 7. PROCESSES AND THREADS 37

printf("parent running\n");
exit(1);
}

7.3 Detaching threads

The functionpthread_detach()is an alternative tgpthread_join() to reclaim storage for a thread that is
created with a detachstate attribute set to PTHREAD CREATHENABLE

This guarantees that the memory resources consumed byrdaaltvill be freed immediately when the
thread terminates. However, this prevents other threads $iynchronizing on the termination of the thread
usingpthread_join.

Itis prototyped as follows

Function Declaration: 17: pthread_detach

#include <pthread.h>
int pthread_detach(thread_t tid);

returns 0 OK else error

Thepthread_detach()function is used to indicate to the implementation thatagerfor the threatid can
be reclaimed when the thread terminategidfhas not terminateghthread_detach()does not cause it to
terminate. The effect of multiplpthread_detach()calls on the same target thread is unspecified.

pthread_detach()returns a zero when it completes successfully. Any othermed value indicates that
an error occurred. When any of the following conditions aatedtedpthread_detach()fails and returns
the an error value.

A simple example of calling this function to detach a threashiown below, where two threads are created.
The first is detached so that it will run on it's own. This thilea then joined which should fail as it has
been detached.

The second thread is joined and thus the parent waits foettansl thread to finish until execution resumes.

Program 18: example of pthread_detach

#include <pthread.h>

#include <stdio.h>

#include <unistd.h>

/I we must make the compiler aware that this program

/I 'is to use threads so the thread safe libraries must be used
/I to do this we define the _REENTERANT flag

#define _REENTRANT

/Inext we create a simple function for out thread

CHAPTER 7. PROCESSES AND THREADS 38

void *ThreadRoutine(int number)

{
int i
for (i=0; i<10; i++) //loop to give the thread something to do

printf("thread %d running %d\n",number,i);
sleep(number); // sleep for a time passed as a parameter

}

int main(void)

{

pthread_t tid1,tid2; // create 2 thread id's

/Inow create two threads

pthread_create(&tid1,NULL,(void *)ThreadRoutine,(int *)1);
pthread_create(&tid2,NULL,(void *)ThreadRoutine,(int *)2);

pthread_detach(tid1); //we will now detach thread 1

if(pthread_join(tid1,NULL)>0) // now try to join it
printf("unable to join thread 1\n");

if(pthread_join(tid2,NULL)>0) // and now join thread 2
printf("unable to join thread 2\n");

printf("parent finished\n");

exit(1);

7.4 Creating a Key for Thread-Specific Data

Single-threaded C programs have two basic classes of data:data and global data. For multithreaded
C programs a third class is added: thread-specific data (THS is very much like global data, except
that it is private to a thread.

Thread-specific data is maintained on a per-thread basiB. iJ e only way to define and refer to data
that is private to a thread. Each thread-specific data itereseciated with a key that is global to all threads
in the process. Using the key, a thread can access a pointdrijihat is maintained per-thread.

The functionpthread_keycreate()is used to allocate a key that is used to identify threadifipetata in
a process. The key is global to all threads in the processabitkreads initially have the value NULL
associated with the key when it is created.

pthread_keycreate()is called once for each key before the key is used.There imptdit synchroniza-
tion. Once a key has been created, each thread can bind atedgheskey. The values are specific to the
thread and are maintained for each thread independently.p&hthread binding is deallocated when a
thread terminates if the key was created with a destructatfon. pthread_keycreate() is prototyped by:

Function Declaration: 18: pthread_key_create

#include <pthread.h>
int pthread_key_create(pthread_key_t *Kkey, void (=*destructor) (void *));

returns 0 K el se error;

CHAPTER 7. PROCESSES AND THREADS 39

When pthread_keycreate() returns successfully, theatkackey is stored in the location pointed to by
key. The caller must ensure that the storage and access tkethare properly synchronized. An optional
destructor function, destructor, can be used to free statage. When a key has a non-NULL destructor
function and the thread has a non-NULL value associated thdhkey, the destructor function is called

with the current associated value when the thread exits. ofther in which the destructor functions are

called is unspecified.

pthread_keycreate()returns zero after completing successfully. Any othermretd value indicates that an
error occurred. When any of the following conditions ocqtinread_keycreate() fails and returns an error
value.

7.4.1 Delete the Thread-Specific Data Key

The function pthread_keydelete() is used to destroy artiegishread-specific data key. Any memory
associated with the key can be freed because the key hasrhvedidated and will return an error if ever
referenced. (There is no comparable function in Solarisattis.)

Function Declaration: 19: pthread_key_delete

#include <pthread.h>
int pthread_key_delete(pthread_key t key);

returns 0 ok el se error

Once a key has been deleted, any reference to it witlptinead_setspecific()or pthread_getspecific()
call results in the EINVAL error.

It is the responsibility of the programmer to free any thrspdcific resources before calling the delete
function. This function does not invoke any of the destrt&to

pthread_keydelete()returns zero after completing successfully. Any othermedd value indicates that
an error occurred. When the following condition occuynthread_keycreate()fails and returns the corre-
sponding value.

7.4.2 Set the Thread-Specific Data Key

The functionpthread_setspecific()s used to set the thread-specific binding to the specifiedthspecific
data key. It is prototyped by :

Function Declaration: 20: pthread_setspecific

#include <pthread.h>
int pthread_setspecific(pthread_key_t key, const void *value);

returns 0 OK el se error

CHAPTER 7. PROCESSES AND THREADS 40

pthread_setspecific(yeturns zero after completing successfully. Any othermetd value indicates that
an error occurred. When any of the following conditions acpthread_setspecific(fails and returns an
error value.

Note: pthread_setspecific(Jloes not free its storage. If a new binding is set, the exjdiinding must be
freed; otherwise, a memory leak can occur.

7.4.3 Getthe Thread-Specific Data Key

Usepthread_getspecific(to get the calling thread’s binding for key, and store it ia thbcation pointed to
by value. This function is prototyped by:

Function Declaration: 21: pthread_getspecific

#include <pthread.h>
int pthread_getspecific(pthread_key_t key);

returns 0 OK el se error

7.5 An example program

The following program demonstrates the use of thread speaftafia by creating 10 threads each of which
reference a global variable called buffer_key. This vdeaballocated memory in the thread using malloc
and each thread puts a different character string to thadhre

Program 19: using thread specific data

#include <unistd.h>

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

/I we must make the compiler aware that this program

/I is to use threads so the thread safe libraries must be used
/I to do this we define the _REENTERANT flag

#define _REENTRANT

/ = function prototypes for the re-use of buffer_key */

static void buffer_destroy(void * buf);
void buffer_alloc(void);

char * get_buffer(void);

static void buffer_destroy(void * buf);
static void buffer_key_alloc();

|+ Key for the thread-specific buffer */
static pthread_key_t buffer_key;

|+ Allocate the thread-specific buffer */

CHAPTER 7. PROCESSES AND THREADS

void buffer_alloc(void)

printf(“"calling malloc ..");
/lwhen this is called the buffer key is malloced with 50 bytes
pthread_setspecific(buffer_key,(char *) malloc(50));

}

/= Return the thread-specific buffer */
char * get_buffer(void)

/I this function returns a pointer to the TSD buffer
return (char *) pthread_getspecific(buffer_key);
}

[+ Allocate the key */
static void buffer_key_alloc()

/IThis function allocates the TSD key for the buffer as
/I well as the destructor function
pthread_key_create(&buffer_key, buffer_destroy);

}

/= Free the thread-specific buffer */
static void buffer_destroy(void * buf)

printf(“free buffer\n");
free(buf);

/Inext we create a simple function for out thread

void *ThreadRoutine(char character)

{

int i;

/I this is the local TSD reference we use in the thread routine
char *threadBuffer;

/I now init the TSD buffer

buffer_key_alloc();

buffer_alloc();

/Inow we get a pointer to that buffer so we can use it
threadBuffer=get_buffer();
printf("filling buffer with %c\n",character);

for (i=0; i<50; i++) //now stuff the character passed into th e buffer
threadBuffer[i]=character;

printf("thread sleeping\n");

/Inow sleep

sleep(2);

printf("thread %c string = %s\n",character,threadBuffer);

/ffinally signal that the thread is to exit which

/lwill call the destructor function

pthread_exit(NULL);

}

int main(void)

{

pthread_t tid1[10]; // create an array thread id's
int i;

/Inow create 10 threads

for(i=0; i<10; i++)

pthread_create(&tid1[i], NULL,(void *)ThreadRoutine,(char *)i+57);
printf(*joining final thread\n");
/Inow we join the last thread so the parent waits till it has fi nished

pthread_join(tid1[9],NULL);

printf("parent finished\n");
exit(1);
}

CHAPTER 7. PROCESSES AND THREADS 42
7.6 Getting Thread Identifiers

The functionpthread_self()can be called to return the ID of the calling thread. It is ptgped by:

Function Declaration: 22: pthread_self

#include <pthreead.h>
pthread_t pthread_self(void);

returns thread id

Itis use is very straightforward:

Program 20: pthread_self usage

#include <pthread.h>
pthread_t tid;
tid = pthread_self();

7.6.1 Comparing Thread IDs

The functionpthread_equal()can be called to compare the thread identification numbems®threads.
Itis prototyped by:

Function Declaration: 23: pthred_equal

#include <pthread.h>
int pthread_equal(pthread_t tid1, pthread_t tid2);

Itis use is straightforward to use

Program 21: pthread_equal usage

#include <pthread.h>
pthread_t tid1, tid2;

int ret;

ret = pthread_equal(tidl, tid2);

CHAPTER 7. PROCESSES AND THREADS 43

As with other comparison functiongthread_equal() returns a non-zero value when tid1 and tid2 are
equal; otherwise, zero is returned. When either tid1 or isd&n invalid thread identification number, the
result is unpredictable.

7.7 Initializing Threads

Use pthread_once()to call an initialization routine the first timpthread_once()is called Subsequent
calls to have no effect. The prototype of this function is:

Function Declaration: 24: pthread_once

#include <pthread.h>
int pthread_once(pthread_once_t *once_control,void (*init_routine)(void));

al ways returns 0

7.8 Yield Thread Execution

The functionsched_yield()causes the current thread to yield its execution in favonotker thread with
the same or greater priority. It is prototyped by:

Function Declaration: 25: sched_yield

#include <sched.h>
int sched_yield(void);

returns 0 OK; -1 error

sched_yield()returns zero after completing successfully. Otherwises-teturned and errno is set to
indicate the error condition.

7.8.1 Setthe Thread Priority

Usepthread_setschedparam(jo modify the priority of an existing thread. This functioagino effect on
scheduling policy. Itis prototyped as follows:

Function Declaration: 26: pthread_setschedparam

CHAPTER 7. PROCESSES AND THREADS 44

#include <pthread.h>
int pthread_setschedparam(pthread_t tid, int policy, con st struct sched_param * param);

returns 0 OK; else error

and is used as follows:

Program 22: pthread_setschedparam example

#include <pthread.h>
pthread_t tid;

int ret;

struct sched_param param;

int priority;

| sched_priority will be the priority of the thread */
sched_param.sched_priority = priority;

/= only supported policy, others will result in ENOTSUP */
policy = SCHED_OTHER;

/ = scheduling parameters of target thread */

ret = pthread_setschedparam(tid, policy, ¶m);

pthread_setschedparam(yeturns zero after completing successfully. Any othermregd value indicates
that an error occurred. When either of the following comufi§ occurs, thg@thread_setschedparam()
function fails and returns an error value.

7.8.2 Getthe Thread Priority

To get the priority of a theread the following function is dse

Function Declaration: 27: pthread_getschedparam

#include <pthread.h>
int pthread_getschedparam(pthread_t tid, int policy, str uct schedparam *param);

returns 0 OK el se error;

An example call of this function is:

Program 23: pthread_getschedparam example

CHAPTER 7. PROCESSES AND THREADS 45

#include <pthread.h>
pthread_t tid;
sched_param param;

int priority;

int policy;

int ret;

|+ scheduling parameters of target thread */

ret = pthread_getschedparam (tid, &policy, ¶m);

/ = sched_priority contains the priority of the thread */

priority = param.sched_priority;

pthread_getschedparam(yeturns zero after completing successfully. Any othermetd value indicates
that an error occurred. When the following condition ocgthie function fails and returns the error value
set.

7.8.3 Send a Signal to a Thread

Signal may be sent to threads is a similar fashion to thosprfuress as follows:

Program 24: Sending a signal to a thread

#include <pthread.h>
#include <signal.h>

int sig;

pthread_t tid;

int ret;

ret = pthread_Kkill(tid, sig);

pthread_kill() sends the signadig to the thread specified yd. tid must be a thread within the same
process as the calling thread. The sig argument must bedasigiial of the same type defined for signal()
in signal.h

When sig is zero, error checking is performed but no signattsally sent. This can be used to check the
validity of tid.

This function returns zero after completing successfullgy other returned value indicates that an error
occurred. When either of the following conditions occuyathread_kill() fails and returns an error value.

7.8.4 The Signal Mask of the Calling Thread

The functionpthread_sigmask()may be used to change or examine the signal mask of the ciliegd.
Itis prototyped as follows:

Function Declaration: 28: pthread_sigmask

#include <pthread.h>
#inclue <signal.h>
int pthread_sigmask(int how, const sigset_t *new, sigset_t *old);

returns 0 K el se error

CHAPTER 7. PROCESSES AND THREADS 46

how determines how the signal set is changed. It can have one ébllowing values :

e SIG_SETMASK Replace the current signal mask with new, whene indicates the new signal
mask.

e SIG_BLOCK Add new to the current signal mask, where new iatdis the set of signals to block.

e SIG_UNBLOCK Delete new from the current signal mask, whexe indicates the set of signals to
unblock.

When the value of new is NULL, the value of how is not significand the signal mask of the thread is
unchanged. So, to inquire about currently blocked sigaaisign a NULL value to the new argument. The
old variable points to the space where the previous signakrnsastored, unless it is NULL.

pthread_sigmask()returns a zero when it completes successfully. Any othermed value indicates that
an error occurred. When the following condition occursrgéd_sigmask() fails and returns an errro value.

Example uses of this function include:

Program 25: pthread_sigmask example

#include <pthread.h>
#include <signal.h>

int ret;

sigset_t old, new;

ret = pthread_sigmask(SIG_SETMASK, &new, &old); / * set new mask */
ret = pthread_sigmask(SIG_BLOCK, &new, &old); / * blocking mask */
ret = pthread_sigmask(SIG_UNBLOCK, &new, &old); / * unblocking */

7.8.5 Terminate a Thread

A thread can terminate its execution in the following ways:

e By returning from its first (outermost) procedure, the ti®atart routine; segthread_create()
e By calling pthread_exit(), supplying an exit status

e By termination with POSIX cancel functions; spihread_cancel()

Thepthread_exit() is used terminate a thread in a similar fashion the exit(afprocess :

Program 26: pthread_exit example

#include <pthread.h>
int status;
pthread_exit(&status); / * exit with status */

CHAPTER 7. PROCESSES AND THREADS 47

The pthread_exit() function terminates the calling thredtthread-specific data bindings are released. If
the calling thread is not detached, then the thread’s ID hadkit status specified by status are retained
until the thread is waited for (blocked). Otherwise, stasugnored and the thread’s ID can be reclaimed
immediately.

Thepthread_cancel()function is used to cancel a thread

Function Declaration: 29: pthread_cancel

#include <pthread.h>
int pthread_cancel(pthread_t thread);

returns 0 K el se error

and is used as follows :

Program 27: pthread_cancel example

#include <pthread.h>
pthread_t thread;

int ret;

ret = pthread_cancel(thread);

How the cancellation request is treated depends on theddttte target thread. Two functions,

pthread_setcancelstate(andpthread_setcanceltype(see man pages for further information on these
functions), determine that state.

pthread_cancel()returns zero after completing successfully. Any othermetd value indicates that an
error occurred. When the following condition occurs, thediion fails and returns an error value.

Part Il

Inter-process Communication

48

Chapter 8

Introduction to Inter-process
Communication (IPC)

Unix inter-process communication is a big area which hasvedowith the different strains of Unix into
different mechanisms to communicate between processestable 8.1 shows the different IPC methods
available to the different versions of Unix.

| IPC Type | Posix1 | xPG3 | v7 | SVR2 | SVR3.2| SVR4 | 4.3BSD | 4.3+BSD | Linux |
PIpeS * * * * * * * * *
FIFO’S * * * * * * * *
stream pipes * * * * *
Named Stream pipes * * * * *
message queues * * * * *
semaphores * * * * *
shared memory * * * * *
sockets * * * *
streams * * *

Table 8.1: Different IPC methods

As table 8.1shows the only method of IPC available to allieeisof Unix are half duplex pipes. The first
seven entries in the table are usually used for IPC betweamrepses on the same host while the last two
are used for communicating between different hosts.

8.1 Pipes

Pipes are the oldest form of Unix IPC and are available toaabions of Unix but they have two limitations

1. They are half-duplex :- data flows in one direction.

2. The can be used only between processes that have a comeestian Normally a pipe is created
by a process, the process calls fork, and the pipe is usedtbatthie parent and the child.

A pipe is created by using the pipe function as follows

49

CHAPTER 8. INTRODUCTION TO INTER-PROCESS COMMUNICATIONRC) 50

Function Declaration: 30: pipe

#include <unistd.h>
int pipe(int filedes[2]);

pipe returns 0 if OK -1 on error

Two file descriptors are returned through the filedes argunfigades[0] is open for reading and filedes[1]
is open for writing. The output of filedes[1] is the input fdeties[O].

User Process

—PDfido 1]

kernel
pipe K

Figure 8.1: A simple pipe example

As the figure 8.1shows a pipe has been created between thepsaosss which is not really useful as a
single process can easily talk to itself. A more useful métbbusing a pipe is when it is used between

two processes after a fork has been called to communicatebata parent and a child as shown in figure
8.2.

CHAPTER 8. INTRODUCTION TO INTER-PROCESS COMMUNICATIONRC) 51

Parent Child
fork
—D
o] o[fdo] fo[a]
A iy
1 1
N I

|
Lo kernel
1
_-22]7] pee X

Figure 8.2: Complex pipe example

What happens after the fork depends on which direction af flewv is required. If data is to be sent from
the parent to the child the parent closes the read end of gee(fd[0]) and the child closes the write end
(fd[1]). For communication from child to parent the oppesg done.

The following program demonstrates the creation of a pipetal data from parent to a child.

Program 28: Simple pipe program

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>

int main(void)

{

int n,fd[2];
pid_t pid;
char line[50];

if (pipe(fd) <0)
{

printf("pipe error\n");
exit(1);

}
if((pid =fork()) <0)

printf(“fork error\n");
exit(1);

}
else if(pid >0)
{

/Iparent

close(fd[0]);

printf("Parent writing to child\n");
write(fd[1],"Hello child process\n",20);
}

else

{

/I child

close(fd[1]);
n=read(fd[0],line,21);

printf("Child n=%d String = %s\n",n,line);

write(STDOUT_FILENO,line,n);

exit(0);
}

CHAPTER 8. INTRODUCTION TO INTER-PROCESS COMMUNICATIONRC) 52

This program first creates a pipe and grabs the file desciipt@ach end of the pipe in the array fd. next
a child is created using the fork command and then the pageisssome data to the child using the write
command. The child then uses the read command to read theatdticom the parent.

8.1.1 popen

This method of talking between processes is nicely wrapjpeid the popen and pclose functions. These
two functions do exactly the same as above only the file d@ses and the fork are all part of the function
call;

8.2 FIFO’s

FIFO’s are sometimes called named pipes, as shown preyipips can only be used to communicate
between related processes with a common ancestor (i.entparéork -> child) however FIFO’s allow
unrelated processes to communicate with each other.

This is implemented by creating a FIFO as a type of file, udiegnkfifo function as shown below

Function Declaration: 31: mkfifo

#include <sys/types.h>
#include <sys/stat.h>

int mkfifo(const char * pathname, mode_t mode);

returns 0 if OK -1 on error

The mode argument for the mkfifo function is the same as thiah&open function and the access permis-
sions follow the same structure as that for any Unix file.

To communicate with the FIFO the open command is used to dyeelRIFO and the standard 1/O functions
close, read, write, unlink etc are used to communicate with i

8.2.1 FIFO Uses

There are two ways to use a FIFO these are

1. Used by shell commandsto pass data from one shell pigelargother without creating intermediate
temporary files.

2. Used in a client server application to pass data betweé&erd and a server.

CHAPTER 8. INTRODUCTION TO INTER-PROCESS COMMUNICATIONRC) 53

8.2.2 Using a FIFO in a shell

FIFO’s can be used to duplicate output streams in a serieBatif @ommands. The following example
demonstrates how this may be done (however it is a theoretieanple and will not work in the console).

This example is shown in figure 8.3where a file needs to be pseckby two programs

prog2

infle —3 progl

—prog3

AI-[> fifo {Mprog3

prog2

infle —JX progl | tee

Figure 8.3: Using a FIFO in a shell

The top part of figure 8.3 shows how the file infile is to be preedsand the bottom part shows how this
could be implemented using shell commands

First a FIFO is created using the command mkfifo, after thag®mrun as a background process with its
input directed from the fifo.

After this the tee utility is used to split the output of pragio two (this can be thought of as a plumbing
tee piece which has one input and two outputs).

Finally progl is started with it's output fed into tee whidteh feeds to the fifo and prog2 so the file may
be proceed by both programs.

This is done in the console as follows

mkfifo fifol
prog3 < fifol&
progl < infile |tee fifol | prog2

As mentioned previously this is only an example and will notkvhowever the mkfifo fifol will create the
fifo, it is also interesting to see what the default file pesiuias are as shown below with the output of Is
-al fifol

prw-r--r-- 1 jmacey users 0 Jan 11 13:27 fifol

CHAPTER 8. INTRODUCTION TO INTER-PROCESS COMMUNICATIONRC) 54

8.2.3 Client Server FIFO operations

The following programs show a simple client / server systaimgia FIFO (named pipe) the first program
FifoServer.c is shown below

Program 29: Simple fifo Server program

#include <unistd.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <stdio.h>

/I First lets define the name for the FIFO

#define FIFONAME "myfifo"

/land next RW RW RW permisons to be used by the chmod function

#define FIFOPERM S_IWUSR | S_IRUSR | S_IWGRP | S IRGRP | S_IW OTH | S_IROTH

int main(void)

{
int fd;
int exitflag=1,count;
char buffer[50];
printf("Starting FiFo Server\n");
/ffirst we create a FIFO with no permissions
if(mkfifo(FIFONAME,0)!=0)
{

printf("error creating FIFO\n");
exit(1);
}

/I next we change the file permissons
iftchmod (FIFONAME,FIFOPERM) == -1)
{

printf("error in chmod \n");
exit(1);
}

/I finally we open the FIFO as read only
if ((fd = open(FIFONAME,O_RDONLY)) <0)
{

printf(“error opening FIFO\n");
exit(1);
}

printf("FIFO open Waiting\n");
/I Now we wait for some Input
do

/lthe read command constantly polls the fifo for data but
/Iwill only respon if count is > 0
count=read(fd,buffer,50);

if(count >0)
{
/I now we print out the responce
printf("From Client : %s\n",buffer);
if(buffer[0] == 1)
exitflag=0;

}
Jwhile(exitflag!=0);
/ffinally we close the fifo

close(fd);

/I and finally remove the fifo from the system
remove(FIFONAME);

return O;

}

CHAPTER 8. INTRODUCTION TO INTER-PROCESS COMMUNICATIONRC) 55

8.2.4 Testing FIFO server

As the FIFO is effectively a file on the system it is possibleetst the server without the client program.
This is done in the following way

Compile the Server usirggc -Wall -g FifoServer.c -o FifoServer
Now open two consoles
In the first console run the server by typirifpServer

In the second console typeho “hello fifo” > myfifo

a M v nhoRE

The server window will respond witfrom Client : hello fifothis will be followed by some garbage
characters which is due to the server program reading armff&0.

o

Now try cat FifoServer.c >myfifo which will send the C soeifde to the server

7. Finally echo ! > myfifo which will terminate the server aredmove the fifo

8.2.5 Client Program

The client program below reads the input from stdin and sértdghe server via a FIFO when the return
key is pressed. A string starting with an ! will cause therdlignd the server to quit

Program 30: fifo server program

#include <stdio.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

/I define the name of the fifo to use
#define FIFONAME "myfifo"

int main(void)

{
int fd;
char buffer[50];

printf("Opening FiFo to Server\n");

/lopen the fifo to Write

if ((fd = open(FIFONAME,O_WRONLY)) <0)
{

printf("error opening FIFO is server running?\n“);
exit(1);
}

printf("FIFO open Waiting\n");
do

printf("Enter a string Ret to send ! Enter to quit\n");
/Inow get some ip into the buffer
fgets(buffer,50,stdin) ;

/I NULL terminate the string
buffer[strlen(buffer)-1]="0’;

/land write it to the fifo

write(fd, buffer,sizeof(buffer));

}while(buffer[0] !="");
/ffinally close the fifo
close(fd);

CHAPTER 8. INTRODUCTION TO INTER-PROCESS COMMUNICATIONRC) 56

return 0O;

}

8.2.6 Testing the Client / Server system

Compile the Client usingcc -Wall -g FifoClient.c -o FifoClient
Now open three consoles

In the first console run the server by typirifpServer

In the second console run tR#oClient

Now type in the client window and the data will be sent tosbever

o o M w N PF

run another client in the third server window and type mriessages will also be sent to the senver.

Chapter 9

Semaphores

Semaphores are a method for allowing processes to lock theterdata or other processes and may be
considered similar to using traffic lights to stop the flow qfracess.

Any process creating a semaphore and accessing a resolmawsto be in a ’critical section’. Once
one process is within the critical section no other procesdlowed to enter this section so the semaphore
is used to signal that the resource is in use and may not besextentil the process leaves the ‘critical
section’ and removes the semaphore lock.

In a computer the semaphore appears as a simple integer. c&gsr¢or thread) waits for permission to
proceed by waiting for the integer to become 0. The procaspiibceeds sends a signal which increments
the integer to 1. When it is finished, the process changesthaphores value by subtracting one fromit.

Semaphores let processes query or alter status informeatitthey are often used to monitor and control
the availability of system resources such as shared meregments.

To obtain a shared resource a process needs to do the fajjowin

1. Test the semaphore that controls the resource.

2. If the value of the semaphore is positive the process carnhgsresource. The process decrements
the semaphore value by 1 indicating that it has used one fiofttbe resource.

3. If the value of the semaphore is 0, processes goes to steitthe semaphore value is greater than
0. When the process wakes up it returns to step 1.

When a process is done with a shared resource that is ceuttm}l a semaphore, the semaphore value is
incremented by 1. If any other processes are asleep, wédtirige semaphore they are awakened.

To implement semaphores correctly, the test of a semaphalesand the decrementing of this value must
be an atomic operation. For this reason semaphores ardyusgglemented in the kernel.

When using semaphores the first function to call is semgetiwdibtains a semaphore id. this is prototyped
as shown below

Function Declaration: 32: semaphore

#include <sys/types.h>

#include <sysl/ipc.h>

#include <sys/sem.h>

int semget(key_t key, int nsems, int flag);

returns semaphore IDif OK -1 on error

57

CHAPTER 9. SEMAPHORES 58

Wherekeyis the private key to reference the semaphosemds the number of semaphores available to
the semaphore set. This value is set to the number of senegpteruired if we are creating a semaphore
set, or 0 (don't care state) if we are attaching to an exitamgaphore set.

Theflag element of the structure define the access permissions sethaphore as well as the method of
creation.

The functionsemopatomically performs an array of operations on a semaphaore se

Function Declaration: 33: semop

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

int semop(int semid,struct sembuf semoparray[],size_t no ps);

returns O if OK -1 on error

semoparrays a pointer to an array of semaphore operations

Function Declaration: 34: sembuf

struct sembuf
{
ushort sem_num; //member # in set (0 .1 nsems-1)
short sem_op; //operation negative O or positive
short sem_flg; // IPC_NOWAIT, SEM_UNDO

h

nops specifies the number of operations (elements) in the ar ray.

The operation on each member of the set is specified by thesgnding value; this value can be negative,
0 or positive.

The operation on a semaphore is as follows

1. The easiest case is wheam_ogs positive. This corresponds to the returning of resoulgethe
process. The value aEm_ops added to the semaphores value. If the undo flag is specied, op
is also subtracted from the semaphores adjustment valdledqrocess.

2. If sem_ops negative this means we want to obtain resources that the®ore controls.
If the semaphore value is greater than or equal to the alesefiliie ofsem_op(the resources are
available) the absolute value eém_ops subtracted from the semaphore and this guarantees the
resulting value for the semaphore is greater or equal to thelfundo flag is specified the absolute
value ofsem_ops also added to the semaphores adjustment value for thiggso
If the semaphores value is less than the absolute valsernf o{resource not available)

CHAPTER 9. SEMAPHORES 59

(a) if IPC_NOWAIT is specified, return is ,made with an errbEAAGAIN;

(b) if IPC_NOWAIT is not specified, the semncnt value of thenaphore is incremented (as the
process is going to sleep) and the calling process is suspgantil one of the following occurs

i. The semaphores value becomes greater than or equal tbsbkige vale obem_ofi.e.
the resources have been released) andeéhe opvalue is decremented.

ii. The semaphore is removed from the system and an ERMICeisted
iii. Asignalis caught by the process and the EINTR error eated.

3. If sem_ogs 0 this means that we wait until the semaphores value is l@elsemaphores value is
currently 0 the function returns immediately; If the semaigs value is non zero :
(a) if IPC_NOWAIT is specified return with error EAGAIN;

(b) if IPC_NOWAIT is not specified, theemzcnwalue for the semaphore is incremented (as we
are going to sleep) and the calling process is suspenddaardf the following occurs

i. The semaphores value becomes 0. (done waiting)
ii. The semaphore is removed from the system and an ERMICeisted
iii. Asignalis caught by the process and the EINTR error eated.

The atomicity of the semop is because it either does all tleeadjpns in the array or it does none of them.

9.1 A semaphore example

Program 31: Semaphore example program

#include <stdio.h>
#include <sys/types.h>
#include <sysl/ipc.h>
#include <sys/sem.h>
#include <unistd.h>

int main(void)

int ij;

int pid; //p[id of process

int semid; //return value from sem get

key t key =1234; // key to be passed to semget

int semfly = IPC_CREAT |0666; //creation flags for semaphor e set
int nsems =1; // number of semaphores

int nsops; //number of operations to do

struct sembuf sops[2]; //array of operations to perform

printf("init semaphore\n");
/lsetup a semaphore
if ((semid = semget(key,nsems, semflg)) == -1)

perror("Semget failed ");
exit(1);

/I now get a child process
if((pid = fork()) < 0)

perror("fork failed ");
exit(1);

}
/I child code
if(pid == 0)
{_
i=0;
printf("in child\n");

CHAPTER 9. SEMAPHORES

while(i <3)
{

nsops=2;

sops[0].sem_num=0; // use 1 track

sops[0].sem_op =0; //wait for flag to become 0
sops[0].sem_flg = SEM_UNDO; //take off ASYNC
sops[1].sem_num=0;

sops[1l].sem_op =1; // take control of track

sops[1].sem_flg = SEM_UNDO | IPC_NOWAIT; //take off sem
/Il now report the semaphore state

if((j= semop(semid,sops,nsops))==-1)

perror("Child : semop failed");
else

printf("Child : semop returned %d\n",j);

printf("Child : process taking control of track %d\n",semi
sleep(5); //do nothing i.e. simulate some process

nsops =1; //

/I now give up the semaphore by setting op to -1
sops[0].sem_num=0;

sops[0].sem_op = -1; //by setting op to -1
sops[0].sem_flg = SEM_UNDO [IPC_NOWAIT;

/I and finally report/set the semaphore state
if((j=semop(semid,sops,nsops)) == -1)

perror("Child : semop failed");
else

{
printf("Child : process giving up\n");
sleep(5);

++i;
}

else //parent this has the same operation as the child
{
i=0;
printf("in parent\n");
while(i <3)
{
nsops=2;
sops[0].sem_num=0;
sops[0].sem_op =0;
sops[0].sem_flg = SEM_UNDO;
sops[1].sem_num=0;
sops[1].sem_op =1;
sops[1].sem_flg = SEM_UNDO [IPC_NOWAIT;

if((= semop(semid,sops,nsops))==-1)
perror("Parent : semop failed");

else
{
printf("Parent : semop returned %d\n"j);
printf("Parent : process taking control of track %d\n",sem
sleep(5);
nsops =1,
sops[0].sem_num=0;
sops[0].sem_op = -1;
sops[0].sem_flg = SEM_UNDO [IPC_NOWAIT;
if((j=semop(semid,sops,nsops)) == -1)

perror("Parent : semop failed");
else
printf("Parent : process giving up\n");

sleep(5);

++i;

CHAPTER 9. SEMAPHORES 61

printf("Done\n");
return O;

}

This program creates a child process and uses a single gawphore to allow only the parent or the child
be running at one time. The output of this program is showawel

init semaphore

in parent

Parent : semop returned 0

Parent : process taking control of track 0
in child

Parent : process giving up

Child : semop returned O

Child : process taking control of track O
Child : process giving up

Parent : semop returned 0

Parent : process taking control of track O
Parent : process giving up

Child : semop returned O

Child : process taking control of track 0
Child : process giving up

Parent : semop returned 0

Parent : process taking control of track 0
Parent : process giving up

Child : semop returned 0

Child : process taking control of track O
Child : process giving up

Done

Done

Chapter 10

Shared Memory

Using pipes two processes can communicate with each othgadsing messages from one process to the
other via the kernel. The use of shared memory allows twogs®ses to communicate by using a given
region of memory and reading or writing messagesto the dhasmory area. This is the fastest form of
IPC as no data needs to be copied between client and serveruthme of these two methods are shown
in figure 10.1.

process A [M] process A

shared memory

process B [}« process B o

kernel ” kernel

Message Passing Shared Memory

Figure 10.1: Pipes vs Shared Memory for IPC

The main difficulty of using shared memory is the synchraioseof processes so they can share the same
region of memory without corrupting the system integrityr lExample if a server is placing data into a
section of shared memory the client should not try to acdesstil the server has finished. To stop this
semaphores or record locking are used.

A process creates a shared memory segment using shmge&)original owner of the shared memory
segment can assign ownership to another user with the ghtttion, another process which has the
correct permissions can also perform operations on theedhaemory segment by using the shmctl()
function.

The first function called when using shared memory is usiha#yshmget function as detailed below

Function Declaration: 35: shmget

62

CHAPTER 10. SHARED MEMORY 63

#include <sys/types.h>

#include <sysl/ipc.h>

#include <sys/shm.h>

int shmget(key_t key, int size, int flag)

returns shared nenory IDif OK -1 on error

Thekeyargument is used to uniquely identify the memory area anteisame as theeyargument has in
the semaphore.

The sizeargument is the size in bytes of the requested shared memdrthashmflgargument specifies
the initial access permissions an control creation peioriss

When the call succeeds it returns the shared memory segbehthis call is also used to get the ID of the
existing shared segment from another process.

10.1 Shared memory Control

To alter the permissions and other characteristics of acatéd shared memory segment shenctlfunc-
tion is used

Function Declaration: 36: shmctl

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

int shmctl(int shmid, int cmd,struct shmid_ds * buf)

returns O if OK -1 on error

The process must have the effectslamidof owner, creator or superuser to perform this command. The
cmdargument is set as one of the commands in table 10.1.

| Command | Action |
SHM_LOCK Lock the specified shared memory segment in memory
SHM_UNLOCK Unlock the shared memory segment
IPC_STAT return status information of memory into buf
IPC_SET Set the effective user/group id and permissions
IPC_RMID remove shared memory segment

Table 10.1: shared memory control definitions

CHAPTER 10. SHARED MEMORY 64

10.1.1 Attaching and detaching a shared memory segment

Once a shared memory segment has been created a processsaitteait's address space by callisigmat
as prototyped below

Function Declaration: 37: shmat

#include <sys/types.h>

#include <sysl/ipc.h>

#include <sys/shm.h>

void *shmat(int shmid,void *addr,int flag)

returns pointer to shared nmenory seg if OK -1 on error

The address in the calling process at which the segmentashattl depends on ttaeldr argument and
whether the SHM_RND bit is specified flag.

1. if addris 0 the segment is attached at the first available addresstedlby the kernel. This is the
recommended technique.

2. If addris non zero and SHM_RND is not specified, the segment is atthahthe address given by
addr.

3. Ifaddris non zero and SHM_RND is specified, the segment is attadtibd address given byaddr
- (addr modulus SHMLBA)). The SHM_RND command stands for “roundHNILBA stands for
“low boundary address multiple” and is always a power of 2.ai\the arithmetic does is round the
address down to the next multiple of SHMLBA

If the SHM_RDONLY bit is set in the flag argument the memorytiaehed as read only. Otherwise the
memory segment is attached as read and write.

When the shared memory is no longer requiredghmdtfunction is called passing the address of the
shared memory segment attached. This function does notveethe shared memory segment from the
system and the identifier created from the calktangetis still in existence. To remove it thehmctl
function is called passing the command IPC_RMID.

Function Declaration: 38: shmdt

#include <sys/types.h>
#include <sysl/ipc.h>
#include <sys/shm.h>

int shmdt(void *addr);

returns 0 if OK, -1 on error

CHAPTER 10. SHARED MEMORY 65

10.1.2 A shared memory Client - Server system
The following programs show a shared memory system allog&¥ bytes of shared memory in the server
and placing some text in it.

The client attaches to the memory segment and reads thefidatyy; the client changes the first entry in
the shared memory segment into a * and the server exits.

Program 32: Shared memory Server program

#include <stdio.h>
#include <sys/types.h>
#include <sysl/ipc.h>
#include <sys/shm.h>
#include <unistd.h>

/I first define the size of the memory segment
#define SHMSIZE 27

int main(void)

char c;

int shmid;

key_t key;

char *shm, =s;

/I now define a unique key for the area

key = 5678;

/Inow create a shared memory segment with RW permissions
if((shmid = shmget(key,SHMSIZE,IPC_CREAT |0666)) <0)

perror("shmget");
exit(1);

/I now attach to it
if((shm = shmat(shmid,NULL,0)) == (char *) -1)

perror(“shmat");
exit(1);
}

/Inow we assign the pointer s to point to the base of
/lthe shared memory segment
s=shm;
/I now step through the alphabet and put this value in
/I the shared memory location
for(c="a’; c<='z"; c++)
* S++=C;
*s=(char)NULL;
/I now we loop checking the first character in the memory
/I segment to see if it is changed into a
while(*shm =" *7)

{

printf(".");
fflush(stdout);
sleep(1);

/I detach and remove the shm ID so it can be reused
/I this is a bit like using a free after a malloc
if(shmdt(shm)<0)

perror("detach failed");
exit(1);
}

if(shmctl(shmid,IPC_RMID,0) <0)
{

perror("removal of shared memory failed");
exit(1);

}
printf("Server Exiting\n");
exit(0);

}

CHAPTER 10. SHARED MEMORY 66

10.1.3 Client Program

Program 33: Shared Memory client

#include <stdio.h>
#include <sys/types.h>
#include <sysl/ipc.h>
#include <sys/shm.h>
#include <unistd.h>

/I define the size of the shared mem region
#define SHMSIZE 27

int main(void)

int shmid;

key_t key;

char *shm, =xs;

/I and specify a key

key = 5678;

/Inow get the segment

if((shmid = shmget(key, SHMSIZE,0666)) <0)

perror("shmget");
exit(1);

/I and now attach to it
if((shm = shmat(shmid,NULL,0)) == (char *) -1)

perror("shmat");
exit(1);

}
/ffinally step through the segment printing out the data
for(s= shm; *s I=(char)NULL; s++)
putchar(*s);
putchar(’\n’);
/Inow change the first element in the segment
shm="";
/ffinally detach the segment
if(shmdt(shm)<0)

perror("detach failed");
exit(1);

}
printf("client Exiting \n");
exit(0);
}

10.2 The ipcs utility

The ipcs utility is a console based utility which prints o information on IPC facilities for the user of
the system.

To test the ipcs function run the MemServer program in a densoxdow. In another console type ipcs
which will return the following

CHAPTER 10. SHARED MEMORY 67

—————— Shared Memory Segments --------

key shmid owner perms bytes nattch status
0x7b01217c O jmacey 600 1024 3 dest
0x0000162e 513 jmacey 666 27 1

—————— Semaphore Arrays --------
key semid owner perms nsems status

—————— Message Queues --------
key msqid owner perms used-bytes messages

This shows two shared memory segments belonging to jmadeg.s&cond segment shows the segment
allocated to the MemServer program (27 bytes).

If a program does not clear a shared memory segment properipérm utility may be used to remove a
redundantipc.

Chapter 11

Introduction to Unix Socket
Programming

Like most Unix resources sockets are implemented througfilthabstraction. When a socket is created
a file descriptor is returned. Once this file descriptor hanh@operly initialised processes may read and
write to as with a normal file.

When the socket is no longer required it should be closedainilie resources associated with it may be
freed.

11.1 Creating a socket

New sockets are created using the socket() system callhwhtarns a file descriptor for the uninitialised
socket. When created the socket must be tied to a protocdlibutot connected to anything.

The function prototype fosocketis as follows

Function Declaration: 39: socket

#include <sys/types.h>

#include <sys/socket.h>
int socket(int domain, int type, int protocol);

-1 is returned if an error occurs; otherwise the return value is a descriptor referencing the socket

The three parameter specify the protocol to use as showblm 14.1

| Parameter | Use |

int domain | Specifies the protocol family
int type Either SOCK_STREAM or SOCK_DGRAM
int protocol | Specifies which protocol to use.

Table 11.1: Protocols available to the Socket Command

68

CHAPTER 11. INTRODUCTION TO UNIX SOCKET PROGRAMMING 69

The protocol families usedfor parameter one of the sockkammshown in table11.2 .

| Address | Protocol | Protocol Description |
AF_UNIX PF_UNIX Unix Domain
AF_INET PF_INET TCP/IP (Version 4)
AF_AX25 PF_AX25 AX.25, used by amateur radio
AF_IPX PF_IPX Novell IPX
AF_APPLETALK | PF_APPLETALK | ApleTalk DDS
AF_NETROM PF_NETROM NetROM, used by amateur radio

Table 11.2: Socket Protocol Definitions

11.1.1 Establishing Connections

After a stream socket is created it needs to be connectebéddte it is of any use. Connecting to a socket
is inherently asymmetrical as each side does it differently

The server side of the socket gets the socket ready to be cieuht® and then waits for something to
connect to it. This usually requires the server to start &ed tontinuously wait for a client to connect to
it.

The Client side of the system will create a socket and tellsygtem which address to connect to. The
client then attempts to establish a connection, if the cotimeis successful bi-directional communication
is allowed.

11.1.2 Binding an address to a socket

Both server and client processes need to tell the systemhvaltidress to use for the socket. Attaching an
address to the local side of the socket is called binding dleket and is done through theénd() system
call.

Function Declaration: 40: bind

#include <sys/types.h>
#include <sys/socket.h>

int bind(int sock, struct sockaddr *my_addr, int addrlen);

returns 0 K -1 on error

The first parameter is the socket being bound , the socketdestdrned from the call teocket() and the
other parameters specify the address to use for the locpbémtd

11.1.3 Waiting for connections

After creating a socket the server binds the socket to theeaddhey are listening to. After the socket is
bound to an address the server tells the system it is wilbredlow other processes to establish connections

CHAPTER 11. INTRODUCTION TO UNIX SOCKET PROGRAMMING 70

to the socket (at the specified address) by calling listerce@msocket is bound to an address the operating
system is able to handle processes attempts to connect tadthess.

The connection is notimmediately established. The listection must first accept the connection attempt
through the accept system call. New connections attemattve been made to addresses that have been
listened to are called pending connections until the cotmorexhave been accepted.

The listen and accept functions are prototyped as follows

Function Declaration: 41: listen accept

#include <sys/socket.h>
#include <sys/types.h>

int listen(int sock, int backlog);
returns 0 K el se -1;

int accept(int sock, struct sockaddr * addr, int * addrlen);

returns -1 on error else socket descriptor

Both of these functions expects the socket file descriptotha first parameter. Listens other parameter,
backlog, specifies how many connection may be pending orottleesbefore further connection attempts
are refused. Historically this value is set to 5 however gdawalue must sometimes be used.

The accept function changes a pending connection to anliskidh connection. The established connec-
tion is given a new file descriptor which accept returns. Tée descriptor inherits its attributes from the
socket that was listened to.

The addr andaddrlen parameters point to data that the operating system fills ih thie address of the
remote (client) end of the connection. Initialpgidrlen should point to an integer containing the size of
the bufferaddr points to. accept returns a file descriptor if the connedaccepted or less than 0 if the
connection has failed.

The whole client / server connection is shown in the figurd. 11.

Sacket()
Socket()
Bind()
Connect() Listen()
- T _*Accept()

.

[Connection established |

Figure 11.1: Client - Server connection using a socket

CHAPTER 11. INTRODUCTION TO UNIX SOCKET PROGRAMMING 71

11.1.4 Connecting to a server

Like servers clients may bind the local address to the sdoketediately after creating it. Usually the
client doesn't do this and skips the bind stage.

The client then connects to a server using the connect fumstiown below

Function Declaration: 42: connect

#include <sys/socket.h>
#include <sys/types.h>

int connect(int sock, struct sockaddr * servaddr, int addrlen);

returns 0 K el se -1;

The process passes to connect the socket that is being ¢ednéatlowed by the address to which the
socket should be connected.

11.2 Networking with TCP/IP

The primary use for sockets is to allow applications runringlifferent machines to talk to one another.
The TCP/IP protocol family is the protocol used on the Ingétand Unix allows for the use of TCP/IP to
act as both server and client.

11.2.1 Byte Ordering

Different kinds of computers use different conventionstfog ordering of bytes within a word. Some
computers put the most significant byte within a word firsis(ih called "big-endian” order), and others
put it last ("little-endian” order).

So that machines with different byte order conventions @anraunicate, the Internet protocols specify a
canonical byte order convention for data transmitted dvemetwork. This is known as the network byte
order.

When establishing an Internet socket connection, the prognust make sure that the data in $ive_port
andsin_addr members of thesockaddr_in structure are represented in the network byte order. If the
program is encoding integer data in the messages sent thtbegocket, the program should convert this
to network byte order too. If the program doesn’t do this,phegram may fail when running on or talking
to other kinds of machines.

If the program usegetservbynameandgethostbynameor inet_addr to get the port number and host ad-
dress, the values are already in the network byte ordereaytan be copied directly into tiseckaddr_in
structure.

Otherwise, they have to be converted explicitly. To do Hiens andntohs are used to convert values for
the sin_port member;htonl andntohl to convert values for thein_addr member. (Remembestruct
in_addr is equivalent tainsigned long int) These functions are declaredrietinet/in.h and are shown
below

CHAPTER 11. INTRODUCTION TO UNIX SOCKET PROGRAMMING 72

Function Declaration: 43: host to network conversion fiorct

#include <netinet/in.h>

unsigned long int htonl(unsigned long int hostlong);
unsigned short int htons(unsigned short int hostshort);
unsigned long int ntohl(unsigned long int netlong);
unsigned short int ntohs(unsigned short int netshort);

Thehtonl() function converts the long integer hostlong from host bytieoto network byte order.
Thehtons() function converts the short integer hostshort from host loytler to network byte order.
Thentohl() function converts the long integer netlong from networkebgtder to host byte order.
Thentohs() function converts the short integer netshort from netwattie forder to host byte order.

On the i80x86 (PC based machines) the host byte order is 1Sigstficant Byte first, whereas the network
byte order, as used on the Internet, is Most Significant Byse fi

11.3 ATCP/IP Client Server system

The following design example shows a simple TCP / IP ServéGlient. The Server is used to manipulate
a message sent to it by the client depending upon a mode seirtdn the message from the Client.

11.3.1 Client program

The client program accepts 4 argument and they must be irotiheat order. The arguments are as follows

Client <hostname> <port num> <-mode[1,2]> <’message”™

host : this is the hostname of the server machine. This magrelite the a text based hostname (such as
madon12) or a dot seperated IP address (100.200.11.82)

portnum : the portnum parameter tells the client which poetgerver is listening on.

-mode[1 or 2] mode 1 tells the server to return the ASCII numviadues of the message sent. mode 2 tells
the server to reverse the message and return it to the client

message this is the message sent to the server to be maaipufa space is to be used in the message the
message must be placed in quotes e.g. (“message with space”)

Program 34: SocketClient

/ *hkkkkkkkkkkkk
SocketClient.c
Usage SocketClient hosthame port_num -mode[a,b]
-model "Message" message is returned as ASCII Numbers

CHAPTER 11. INTRODUCTION TO UNIX SOCKET PROGRAMMING

-mode2 "Message" is reversed

Simple Unix Socket based client which sends a message to

Server in the form -model < "message" > or -mode2 < "message" >
the server returns ASCIl num of message to Client in model

and returns message reversed.

Written by J.P. Macey
Version 1.0
14/2/1999

Sk ok ok /

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <netinet/in.h>
#include <netdb.h>
#include <arpal/inet.h>
#include <sys/socket.h>

FhkkEFIFFFEIIK

Function Prototypes

Fkdkkk Kk gk kK /

void usage(void);
void ErrorExit(char * message);

int main(int argc, char * argv(])

|+ local variables */
char hostname[20];
int portnum;

int sockethandle; / * handle of the socket x/

int mode; / * mode handle to be sent to the Server */
int ammount; / * ammount of data rx from the Server */
char buf[1024]; / * buffer to send data to server */
struct sockaddr_in hostaddress;

struct in_addr inaddr;

struct hostent * host;

char ClientData[1024];

/= check to see if correct ammount of arguments */
if(argc<5)
usage();
/* now copy command line parameter so we can use them */
else

/* now copy hostname and portnum */
strcpy(hostname,argv[1]);
portnum = atoi(argv[2]);
/* now decide which mode were in */
if (strcmp(argv[3],"-model")==0)
mode = 1,
else if(strcmp(argv[3],"-mode2")==0)
mode =2;
else ErrorExit("Client: invalid command line");

printf("Client: Hostname = %s port = %d\n",hostname,portn um);
printf("Client: in mode %d\n",mode);
[+ finally create data to send to Server */
sprintf(ClientData,"mode%d %s",mode,argv[4]);
printf("Client: Sending %s to Server\n",ClientData);

/* now see if we can resolve the hostname
first we see if it is a dot seperate ip addr
i.e. 194.34.34.124 */
if(inet_aton(hostname,&inaddr))
host = gethostbyaddr((char *)&inaddr, sizeof(inaddr),AF_INET);
else

/+* we must have a text based host name so we must check the

DNS to see if we can resolve it */
host = gethostbyname(hostname);
printf("Client: Doing gethostby name %s\n " host->h_name);
[+ it looks as if the host is not valid so we exit */
if(thost)

ErrorExit("Client: Host name lookup failed");

73

CHAPTER 11. INTRODUCTION TO UNIX SOCKET PROGRAMMING 74

|+ create a simple socket */
/* now we create a socke to connect to the server
using TCP/IP and STREAM connection */
if((sockethandle=socket(AF_INET,SOCK_STREAM,0)) <0)
ErrorExit("Client: An Error has occured\n”);
/* now load the port number into the ip structure and save it */
hostaddress.sin_family = AF_INET;
hostaddress.sin_port = htons(portnum);

[+ finally we copy the first ip addr of the host into the hostaddr structure */
memcpy(&hostaddress.sin_addr,host->h_addr_list[0],s izeof(hostaddress.sin_addr));

/+ now see if we can connect to the socket and thus the server */
if(connect(sockethandle, (struct sockaddr *)&hostaddress,

sizeof(hostaddress)))
ErrorExit("Client: Error connecting to socket\n ");

/+ It seems the socket is active and the server is running
So we can send the data to the Server :-)
this is done using the write function passing it the
sockethandle and the data */
ClientData[strlen(ClientData)]="\0";
write(sockethandle,ClientData,strlen(ClientData));

/* now we read the reply from the server */
ammount=read(sockethandle,buf,sizeof(buf));

printf("Client: received %d bytes of data\n",ammount);
printf("Client: data is %s\n",buf);

/+ and finally close the socket handle so it may be used again */
close(sockethandle);
return O;

}

/ *hkkkkkkkkkkkk

void usage(void) print program usage and exit
No return value
No parameters

Sk ok k /
void usage(void)
printf("Usage SocketClient hostname port_num -mode[a,b] \n");
printf("-model \"Message\" message is returned as ASCIl Nu mbers\n");
printf("-mode2 \"Message\" is reversed \n");
exit(1);
}
/ Fkkkkkkkkkkkkk
void ErrorExit(char *message) print error message and exit

No return value
char *message : message text to be printed before exiting

Sk ko ok /

void ErrorExit(char * message)

printf("Client: %s\n",message);
printf("Client: Exiting with value 1\n");
exit(1);

}

11.3.2 Server program

The server program opens a socket and listens for the cbecrinect to it with a message. When the
message arrives it is parsed by the Server and then acteddepending upon the mode string.

The server is used in the following way

Server <portnum> where portnum is the port to which the serve r will listen.

CHAPTER 11. INTRODUCTION TO UNIX SOCKET PROGRAMMING

75

Program 35: SocketServer

/ Fokdekkkkkkdkkkok
Server.c Usage Server portNUM
Simple Unix Socket based server which recives messages from
Client in the form -model < "message" > or -mode2 < "message" >
model returns ASCIl num of message to Client
mode2 returns message reversed to Client

Written by J.P. Macey

Version 1.0
14/2/1999
Sk ko ok /
#include <sys/socket.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <netinet/in.h>
/ *hkkkkkkkkkkkk
Function Prototypes
Fkkkkkkkkkkkkk /
void usage(void);
void ErrorExit(char * message);
void GetClientMessage(int ConnectionHandle);
void parseClientMessage(int ConnectionHandle,char * message);
/ Fkkk ko kkkkok /
int main(int argc, char * argv(])
/ * local variables */
int portnum; / * port number used by socket */
int sockethandle,connectionhandle; / * handles used by sockets */
[+ ip addr structures used by server */
struct sockaddr_in hostaddress;
int addrLength;
[+ check command line args to see if correct */
if (argc<2)
usage();
else
[+ convert command line porthum to integer */
portnum = atoi(argv[1]);
printf("Server: Using port = %d\n",portnum);
}
|+ create a simple socket */
[+ using TCP/IP and STREAM connection */
if((sockethandle=socket(AF_INET,SOCK_STREAM,0)) <0)
ErrorExit("Server: Unable to Create Socket");
/* now load the port number into the ip structure and save it */
hostaddress.sin_family = AF_INET;
hostaddress.sin_port = htons(portnum);
memset(&hostaddress.sin_addr,0,sizeof(hostaddress.s in_addr));
/* Bind the socket to port address */
if(bind(sockethandle,(struct sockaddr *) &hostaddress,sizeof(hostaddress)))
ErrorExit("Server: Failed to bind Port address ");
else printf("Server: IP - Addr / Port Bound \n");
/* now tell the server to listen to the ip */
if(listen(sockethandle,5))
ErrorExit("Server: Error listening to socket");
else printf("Server: Listening on port %d\n",portnum);
/* now tell the server to loop and wait for the client to
connect to it. If the client contacts the server the GetClien tMessage

code is executed */

while((connectionhandle = accept(sockethandle,(struct sockaddr *) &hostaddress,&addrLength)) >=0)

CHAPTER 11. INTRODUCTION TO UNIX SOCKET PROGRAMMING

GetClientMessage(connectionhandle);
/= it is important to close connection handle once it has been us
close(connectionhandle);

/* an error occured so we must close the handle and exit nicely
this error is most likely that the socket has been closed
by external influences */
if(connectionhandle <0)
ErrorExit("Server: Lost connection handle");
close(sockethandle);

return 0;
}
/ *kkkkkkkkkkkkk
Function Prototypes
Fkkkkkkkkkkkkk /
/ Fkkkkkkkkkkkkk
void ErrorExit(char *message) print error message and exit
No return value
char *message : message text to be printed before exiting
*kkkkkkkkkkkkkk /
void ErrorExit(char * message)
printf("Server: %s\n",message);
printf("Server: Exiting with value 1\n");
exit(1);
}
/ *hkkkkkkkkkkkk
void usage(void) print program usage and exit
No return value
No parameters
Sk ko k /
void usage(void)
printf("Usage Server port_num \n");
exit(0);
}
/ Fkkkkkkkkkkkkk
void GetClientMessage(int ConnectionHandle) get message from client
No return value
int ConnectionHandle pointer to socket handle
Sk kk ok k /

void GetClientMessage(int ConnectionHandle)

{
char buf[1024]; / * buffer to receive data */
int ammount; / * counter to size of data */

printf("Server: contacted by client\n");
printf("Server: Reading data into Buffer\n");
|+ use the read function to read data from socket into
buffer buf size of the data returned in ammount */
ammount=read(ConnectionHandle,buf,sizeof(buf));

printf("Server: received %d bytes of data\n",ammount);
printf("Server: data is %s\n",buf);
/* now we have the data from the client we have to do

something with it */
parseClientMessage(ConnectionHandle,buf);

}

/ Fkkkkkkkkkkkkk
void parseClientMessage(int ConnectionHandle,char * message)
take the buffer read from the client and do something
No return value
int ConnectionHandle pointer to socket handle
char * message : message received from the client

*kkkkkkkkkkkkkk /
void parseClientMessage(int ConnectionHandle,char * message)

int ilength,j;

ed */

76

CHAPTER 11. INTRODUCTION TO UNIX SOCKET PROGRAMMING 77

char tempbuff[6];
char returnbuff{1024];
char conv[4];

| «first parse first 5 character to find which mode */
for (i=0; i<5; i++)
tempbufflil=messagel[i];
/* as we're using strings we need to null terminate ;-) */

tempbufffi]="\0";
length = strlen(message);
printf("Server: mode message = %s length =%d\n",tempbuff, length);

/+ now find which mode so we can construct a return message */
if(strcmp(tempbuff,"model”) == 0)

/* now we take the individual characters from the message and
write them as ASCIl numbers to an array called returnbuff */

sprintf(conv,"%d",(intymessage[6]);

strepy(returnbuff,conv);

for(i=7; i<length; i++)
sprintf(conv,"%d",(int)messageli]);
strcat(returnbuff,” ");
strcat(returnbuff,conv);

printf("Server: returning %s\n",returnbuff);

/+* This mode we need to reverse the string */
else if(strcmp(tempbuff,"mode2") == 0)
{
for (i=length-1, j=0; j<length-6; i--, j++)
returnbufffj]l=messageli];
/+ and don't forget to NULL terminate :-< */

returnbuff[j]="\0’;

[+ this must mean an error has occured in transmission
as the client checks for this when parsing the command line
the error must have occured in tx. Which is unlikely but it is
best to check just in case :-) */

else ErrorExit("Server: incorrect message passed”);

[+ finally we use the write function to send the data back to
the client
Note the use of strlen(returnbuff)+1 rather than using size of
this means that only the length of the string is sent back
and not the full buffer which is 1024 long. This saves
transmission bandwidth and makes the program more efficien t o/
write(ConnectionHandle,returnbuff,strlen(returnbuff)+1);

11.3.3 Message structure

The message passed to the Server from the client is coreddrastfollows

modeX message data

where X will be either 1 for returning ASCII or 2 for reversitite string. The message start from the 6th
byte and ends when a NULL (\0) is found.

The message passed back from the Server is a simple chamatinayo encoding.

CHAPTER 11. INTRODUCTION TO UNIX SOCKET PROGRAMMING 78

11.3.4 Testing the system

To compile the client type

gce -Wall -g SocketClient.c -0 SocketClient

To compile the server

gcc -Wall -g SocketServer.c -0 SocketServer

The Server may be started in the following way
SocketServer 2001&

After this the Client may be used as follows
SocketClient localhost 2001 -model ‘“this is a test”

11.3.5 Testing system across a network

To test the system across a network we need to open two simetiftee first shell do the following
rlogin madonXX -l u97xxxxxx
where madonXX is one of the madon machines from 1 -16 and uS&<s your user number.

Change to the directory where the server executable is anid with a portnumber. It is important to use
a unique port number so if the server failes to open a portlikédy that that number is in use to try a
different one.

Now on the second console run the client program passingaherof the host the server is on and the
port that was used. The Client server system should now wangsly across the network.

Part Il

Appendices

79

Appendix A

Basic C Programs

C is a compiled language. This means that it has to go througmeer of stages before a program is
generated. Figure A.1 show the stages of generating an Et#eyrogram from C source files.

C .h
Source header
Files files

Library
Files
(.a .so0)

\/

Executable

Figure A.1: The C compilation process

The C compiler takes C source files which may include othenne= files know as header files (identified
by a .h extension). If the syntax of the C program is correcaahime level object file (.0) is generated

This object file is then linked by the linker program to prodam executable program.

If more than one C source file is used for the program an objecwvll be generated for each C source
file. The linker will then combine all of the object files inta axecutable program.

A.1 The Anatomy of a C program

To keep the layout of a C source file consistent and easier iotaawe will break it into three sections
as follows

1just because a source file compiles doesn’t necessarily imeiiidink or even run if it does link.

80

APPENDIX A. BASIC C PROGRAMS 81

e Declaration Block
e Main Code Block

e Function Declaration Block

A.1.1 The Declaration Block / Function Declaration Block

The first part of the C source file is the Declaration Block. sT$ection is used to Declare any resources,
variables or functions that the C program will use.

The #include directive

The #include directive is a precompiler instruction whishuged to include other files into the main source
file. The syntax is as follows #include <stdio.h> which ird#s the function prototypes for the standard
input output routings This statement is similar to the java Import statement.

Function Prototypes

If the C source file uses functions which are defined by the, tiserprototypes for the functions need to
be declared. This is to allow the compiler to identify anydtions the user has defined. The following
example show a user defined function called add_numbers

Function Declaration: 44: user defined functions

[= function prototype */
int add_numbers(int num1, int num2);

: Main code block

/= function declaration */
int add_numbers(int num1, int num2)

{

return numl+numa2;

}

Variable Declarations

If global variables are to be uskthey are also declared in the first section of the C source file.

2There are many different header files in the C language albtying different functions. As more C functions are useafen
Header files will be included.

3The uses of global variables is discouraged as they are vengpo errors, however it is inevitable that they are samesiused!

APPENDIX A. BASIC C PROGRAMS 82

A.1.2 The Main code block

The main code block is where the main structure of the progsgrtaced. This contains all of the function
calls and control structures of the program. The entry gotota program is a special function called main.
There can only be one instance of main in a C program, andribis this point that all other elements of
the program are called.

A.1.3 First C Program

The following code is the classic hello world program usedgenerations to show the basic of any pro-
gramming language.

Program 36: hello world

#include <stdio.h>

int main(void)

{

printf("Not Hello World again\n");
return 1;

}

To compile this C source code save it into a file Hello.c

A.2 Compiling C programs

On Unix systems there are many different C compilers, homtheestandard C compiler on most systems
is gcc. gee has a number of different options to allow the tseustomise the behavior of the compiler.
For the most part the following options will be used :-

-0 <Name> Produces an output program <name>
-Wall Print all Warnings
-g Add debug information

The format of gcc is the following gcc <source file>.c -Wall<executable name> so for the first example
we would use the following

gcc Hello.c -Wall -0 Hello

A.3 C Input and Output functions

C has a number of input and output functions all defined irstti®.h* header file however for general use
two of the formatted io functions will be used. These jariatf andscant

4open the file /usr/include/stdio.h to see all of the funatiprototyped in stdio.h

APPENDIX A. BASIC C PROGRAMS 83

A.3.1 Standard 10 streams

Under normal circumstances every Unix program has threarsits opened for it when it starts up, one for
input, one for output, and one for printing diagnostic onemessages. These are typically attached to the
user’s terminal but might instead refer to files or other desj depending on what the parent process chose
to set up.

The input stream is referred to as “standard input”; the gusfream is referred to as “standard output”;
and the error stream is referred to as “standard error”. glesns are abbreviated to form the symbols
used to refer to these files, nametgin, stdout, andstderr.

The streanstderr is unbuffered. The streastdout is line-buffered when it points to a terminal. Partial
lines will not appear untifflush or exit is called, or a newline is printed. This can produce unexqbct
results, especially with debugging output.

A.3.2 Formatted Output
In it's simplest formprintf may be used to print simple text strings. An example of this slaown in

the previous section with the cogeintf(“Not Hello world again\n”); This prints to the standard output
(stdout) which is directed to the terminal that the process is extint.

A.3.3 Simple Format Codes

Theprintf function uses format codes to modify the behavior of the ¢exttained within the quotes. The
simplest of these are the escape sequences which are pitdiyedleand are described in table A.1.

| Escape Sequence Function |

\n Prints a Newline and Flushes stdm*t
\r Forces the line back to the beginnimg
\t Prints a Tab space
\\ Prints a single \
\ Prints a single “

%% Prints a single %

Table A.1: printf escape sequences

An Example of using these escape sequences is shown in thpkxeode below

Program 37: examples of printf

#include <stdio.h>
int main(void)

{

printf("Simple printf Example\n");

printf("\tThis\tis\ttab\tspaced\n");

printf("\n\nNow Two New Lines before and after\n\n");

printf("Now a \nNewline\nin the middle\n");

printf("Now to print a \\ or a %% or \" \n");
printf("\nEach\rtime\rthe\rline\ris\rprinted\ra\r\r eturn\ris\rcalled\n");
return 1;

}
5From the Redhat Linux UNIX Programmer’'s Manual V2.0

APPENDIX A. BASIC C PROGRAMS 84

A.3.4 Conversion Specification Characters

Conversion specification characters are used to convep@mntdifferent data types. Tharintf function
does this in the following way

int printf(const char *format, ...);

The integer return parameter of printf returns how manyatiars have been printed. The format string is
contained in double quotes (") and can contain the follgwin

e Plain Text
e Escape Sequences beginning with a/

e Conversion Specification Characters identified by %

After the quotes a list of the conversion characters areratghby a comma in the following format

printf("This is a number %d\n",2);

The %d specifies that the first argument after the end quotenisnegber and should be converted and
printed.Table A.2 lists of the some of the format strings.

| Format String | Meaning |

%d Integer Decimal

%0 Octal Decimal

%X Hexadecimal

%f Floating Point (Decimal Notation)

%e Floating Point (1.E notation)

%c First Character or argument is printed
%s Argument is taken to be a string

Table A.2: printf format strings

As well as these argument width specifiers may also be spicffie example to print a decimal in the
format 001 002 ...100 the format strifg003d would be used indicating that the string should be padded
with leading zeros and that the string will not exceed 3 digit

A.3.5 Using printf with variables

printf may also be used to print the value of a variable or to consérstring of variables. The following
example prints out the value of three variable types

Program 38: more printf

APPENDIX A. BASIC C PROGRAMS 85

#include <stdio.h>
int main(void)

int a=10;

float b=35.32;

char c[6]={'h’;’e’,I',’I"'0’,\0};

printf("int a = %d float b = %f string c= %s\n",a,b,c);
return 1;

}

In this example three variables are declared, a an integarflbating point and finally ¢ an array of
characters (a stinfy) Theprintf function is then used to print out the values of the variables

It is important that the variables are placed in the correquence according to the conversion characters
else the results will be unpredictable.

It is also important that the correct number of argumentpagsent else garbage will be printed, however
if too many arguments are presented any without a convesgiecifier will be ignored.

A.3.6 Formatted Input using scanf

Thescanffunction is used to collect user input frastdin. It used a similar method of format specifiers to
printf, however the input is terminated by the return keynggiressed.

To input a decimal value the following code is used

Program 39: using scanf

#include <stdio.h>

void main(void)

{

int a;

printf("Enter a number :");

scanf("%d",&a);

printf("The Number Entered was a= %d",a);
return 1;

}

Itis important to notice th&a in the parameter to scanf. This indicates that the data isfassed to the
memory location pointed to by the address of a.

A.3.7 Creating Compound Strings using sprintf

A compound string is a string constructed from other vagaldnd text. This is useful for generating a
longer text string from other data types.

6C does not have an explicit string data type so strings afametas arrays of characters.

APPENDIX A. BASIC C PROGRAMS 86

The function to create compound stringssintf ”. sprintf is very similar toprintf however the output is
placed into a string rather than to the screen. The formahfefunction is as follows

Function Declaration: 45: sprintf

#include <stdio.h>

sprintf(<compound string>,"Conversion string",...);

The first parameter is either a character array (char S&0jypr a char pointer (char *String). The second
parameter is used to specify any text to be used and the @orespecification characters in the same
format asprintf , finally the variables to be converted are placed in sequandeghe same restrictions as
printf apply.

The code below shows how this is implemented

Program 40: creating a compound string using sprintf

#include <stdio.h>
int main(void)
char inputa[10],inputb[10],compound[50];

printf("Enter a String :\n");
scanf("%s",&inputa);

printf("\nEnter another String :\n");
scanf("%s",&inputb);

sprintf(compound,“compound string = %s %s\n",inputa,inp utb);
printf("%s\n",compound);
return 1;

}

In this example three character arrdgise initialized inputa and inputb are assigned to be 10 chersand
compound 50 characters to hold the result. Then scanf istasegut the values into inputa and inputb.
sprintf is then used to create a compound string from the hpatted values and then the string is output
using printf.

It must be noted that this example is in no way perfect. Theityat character arrays can only hold a
string 10 characters long. If this length is exceeded thgnam will have an undetermined output an may
also be liable to core dump (crash). There are a number of teagygercome this problem which will be
discussed later.

“string print formatted
8C has no String data type, however as a string is just a clearaotay a string may be constructed by char string[10] which
creates a 10 character string.

Appendix B

Basic C syntax

The following appendix gives a list of basic 'C’ syntax whiefill be used throughout the assignments and
exercises in this unit.

B.1 Comparison and Logical Operators

For selection and iteration the following operators arause

| C Notation | Meaning |

< less than

> greater than

<= less than or equal to
>= greater than or equal tp
== equal to

I= not equal to
&& logical and

Il logical or

! not

Table B.1: Comparison and logical operators

From the table B.1 we can say that < > <=>= are all relationalaiprs and == != are equality operators.

In C the expression x < b is of integer type and its value iseeith (false) or 1 (true). Also any other
negative number is also interpreted as false. Thereforitloaving statement

if (n!=0)
may be written a#f(n)
B.1.1 Bitwise Logical Operators

Table B.2 shows operators for bit manipulation and they aamplied to the following data typést,
short, long, unsigned, char

87

APPENDIX B. BASIC C SYNTAX 88

| C Notation | Meaning |

& bitwise AND

| bitwise OR

A bitwise EXCLUSIVE OR
<< left Shift
>> right Shift

~ one’s compliment

Table B.2: Bitwise Logical Operators

For example if a=23 b=26 the value of c=a&b is 18 as shown below

a= 23 = 00010111
b= 26 = 00011010 &
c= 18 = 00010010

For each of the bit places in the above example the logicalt&kien and the result placed in c.

B.1.2 Assignment operators

In C a single equal sign (=) is the assignment operator asrshothe example x=a+b.

There are, however, some short hand versions of the assigimperators which at first may seem confus-
ing but allow for very compact code. These are as follows

| Assignment| Short hand|

X=x+a X+=a
y=y-b y-=b
u=u+1 ++U
v=v-1 -V

The value of ++u is the incremented value of u, so first u isam@&nted and then it's value is used. The
opposite order is also possible. If u++ is used the old vafug is used first and u is then incremented
afterwards. so after the execution of

u=5; v=5; x=++u; y=v++; we have u=v=x=6 and y = 5

B.1.3 Conditional Expressions

The special character palr: are used to build special conditional expressions in tha#br
expression 1 ? expression 2 : expression 3

For example

a<b ? b-a : a-b

APPENDIX B. BASIC C SYNTAX 89

so b-ais executed if a is less than b
or a-b ifain not less than b

In most cases the thestatement is used for conditional execution of statemethtsansed in the following
way

if (expression) {statement}

The if statement may also be expanded to the following form

if (expression) {statementl}
else {statement2}

or even further to

if (expression) {statementl}
else if (expression) {statement2}
else {statement 3}

B.1.4 lterations

C has the following constructions for loops

1. The while-statement
2. The for-statement

3. the do - while -statement

A while statement has the following form

while (expression) {statement}

and has the advantage that the expression is first evaluadkeithen the statement(s) executed only if the
condition is true.

Conversely the do - while statement shown below will alwayscete the statement(s) at least once and
then repeat the statements dependant upon the condition

do
{

statement(S)
}while(condition);
Finally the for loop which has the following syntax
for(start value; test; increment)
For example the following code will execute a simple loop timfpout the value of x
int x;

for (x=0; x<10; x++)
printf("x= %d \n",x);

APPENDIX B. BASIC C SYNTAX 90

B.1.5 break and switch

The statement break; terminates the (innermost) loop trahns the statement. It may be used in any of
the iteration statements for example

while(1)

ch = getchar();
ifch == 'q)

break;
else printf("%c",ch);

}

In the above example the variable ch is used to read input fhenstandard input (key board) ch is then
checked to see if it is the character 'q’. If is is the loop isk®n out of using the break statement else the
loop continues and prints out the character pressed.

The case statement is a very elegant way of doing multipte tesan ordinal value (such as char int etc)
and has the following format

ch=getchar();
switch(ch)
{
case 'a’ :
statementl
break;
case b’ :
statement2
break;
default :
do this by default
break;

}

In the above example if the key a is pressed the case statewvileexecute statement 1. If b is pressed
statement2 is executed. If any other value is assigned toectigfault value will be executed.

B.2 C Data Types and Structures

C has a number of data types and has the ability to allow thgranomer to define custom data types built
up from the basic C data types.

B.2.1 #define

#define is a pre-processor function which the C compiler tizedlow code to be more readable. For
example if the value LENGTH is to be used the following codeildde generated

#define LENGTH 100
char data[LENGTH];

When the C compiler is used it will first replace any instantthe define LENGTH with the value 100.
If the definition is used throughout the code it makes it easiechange the value LENGTH as only the
definition need be changed.

It is also standard practice to use upper case when definimgiants so they may be differentiated from
variables.

APPENDIX B. BASIC C SYNTAX 91

#define may also be used to define macros and code segmengsfalltkving example a macro Max is
defined and then used in the main code

Program 41: using #define

#include <stdio.h>

#define Max(x,y) x >y ? x : y

int main(void)

Lo

int ij;

float a,b;

printf("Enter two ints and two real numbers\n");
scanf("%d %d %f %f" &i,&j,&a,&b);
printf("\nMaximum values %d %f",Max(i,j),Max(a,b));
return 1;

}

When this code is compiled the reference to Max is replacéid the code x >y ? x : y. The ? operator
returns either x or y depending upon the operator x >y if x isxigreturned else y is returned.

B.2.2 char data type
A charis the smallest data type available in the C language. Itusieg one byte and is generally used to
represent characters.

The range of &haris -127 -> 0 -> 128. Therefore if a value greater than 128 igyassl to achar it will
be converted to a negative number where 129 == -127 and 255 == -

To force achar to be positive thainsigned prefix is used in the following waynsigned char and will
force the char to be in the range 0 - 255.

unsigned may be used with any data type to force it to be positive.

B.2.3 Strings

As mentioned previously there is no string data type, howastring may be created by using an array of
chars as followschar String[50];. This creates an array index from 0 to 49 to haftividual characters.

Although this is simple to create and use this method is vefficient as the memory allocated is 50 bytes.

B.2.4 Numeric data types

The simplest numeric data type is time this is used to store whole numbers and by defauibhtis signed.

Integer literals may also be used to allow the assignmentgfrbal (default) Hexadecimal, characters and
octal values. These may be written in the following way

| Literal | Format |
decimal 026385
octal 00020770123

Hexadecimal| 0x0 0x2 0x3f 0x53

APPENDIX B. BASIC C SYNTAX 92

Characters may be assigned to an integer using the singlesjuas follows

inta="c’;
B.2.5 Floating point data types
The floating point data type is used to represent floatingtpanimbers. Like integers floating point types

come in three sizedloat (single-precision)double(double precision) antbng double(extended preci-
sion).

B.2.6 Void

Thevoid is syntactically a fundamental type. It can, however, belusdy as part of a more complicated
type. It is used either to specify that a function does natrrea value or as the base type for pointers to
objects of an unknown type.

B.2.7 Size

The size of C data types are usually measured in multipldsso$ize of achar, however the size of ehar
is dependant upon the architecture of the machine and O§ beéd.

The program below is used to display the size of various gastusing thaeizeoffunction.

Program 42: size of C data types

#include <unistd.h>
#include <stdio.h>

int main(void)
{

char a;

int b;

float c;
double d;
long e;
void *f;
short I;
long int g;
short int h;

char =i
int xj;
float *Kk;

printf("a char is %d bytes\n" sizeof(a));
printf("an int is %d bytes\n",sizeof(b));
printf("a float is %d bytes\n",sizeof(c));
printf("a double is %d bytes\n",sizeof(d));
printf("a long is %d bytes\n",sizeof(e));
printf("a void * is %d bytes\n",sizeof(f));
printf("a short is %d bytes\n",sizeof(l));
printf("Extended data types \n");

printf("a long int is %d bytes\n",sizeof(g));
printf("a short int is %d bytes\n",sizeof(h));
printf("a char * IS %d bytes\n",sizeof(i));
printf("an int * is %d bytes\n",sizeof()));

APPENDIX B. BASIC C SYNTAX

printf("a float * is %d bytes\n",sizeof(k));
return 1;
}

93

Appendix C

Pointers

Pointers get a lot of bad press, and to most people they arends¢ difficult (both conceptually and
practically) elements of the C/C++ language for the novicgpammer to grasp.

C.0.8 What are pointers?

Pointers are variable just like any other variables. They ima defined using any data types and are
differentiated from other data types by the use of the astérbeing placed before the variable name as
shown in the examples below

float *ptrRealNumber;
char *ptrCharacterString;
int *ptrFunction();

int *ptrArray;

C.0.9 So what are Pointer Used for ?

Pointers are used to point(!) into a program, this meangliegtcan directly access areas of memory in use
by the program by storing the address of another variables i$tsimilar to the pass by reference method
of passing data to a function.

Due to this flexibility pointers allow the programmer to deeand manipulate data structures which may
grow or shrink known as dynamic data structures.

C.0.10 Pointer mechanics

Pointers differ from normal variables in the following ways
e Normally a variable directly contains a specific value
e A pointer contains the (memory) address of a variable thatains a specific value

e A variable namalirectly references a value and a poinitedirectly references a value.

e Referencing a value through a pointer is calledirection.

94

APPENDIX C. POINTERS 95

This is shown in figure C.1.

int count

count directly
4 references a variable
whose value is 4

int *countPtr int count

countPtr indirectly
O —— 4 references a variable
whose value is 4.

Figure C.1: Simple pointers

In the above examplmt countis an integer variable which has had the value 4 assignedbly utsing
count=4;i.e. countis referenced directly.

In the second section a pointet *countPtr has been declared and is indirectly referencedotonti.e.
countPtrpoints to the memory addressaduntby using the unary & prefix as follows

countPtr = &count;
In words the above code meacmuntPtris pointing to the area of memory (the addressyadnt

A simple pointer example

The following program demonstrates a simple pointer usage

Program 43: A simple pointer program

#include <unistd.h>
#include <stdio.h>

int main(void)

L

int i;

int = ptrl;

i=5;

printf("l given the value 5 directly %d\n",i);

ptrl=&i; // ptrl now points to i

* ptrl=10;

printf("Now using the pointer ptrl now equals %d\n"i);
return 1;

}

First the integer i is declared, after this an integer poiptel) is declared using the * to indicate it is a
pointer. After this the variableis directly given the value 5 by using the assignment ope(afcand just
to prove that this has happened the value is printed out.

Next the pointeptrl is assigned to point to the memory address where the vaiiad$ides.

APPENDIX C. POINTERS 96

The next assignmeriptrl=10; tells the program to “store 10 in the location pointed aphy”.

If we assume that the program’s memory starts at addresQGidthe variabléis at 0x102 angbtrl at
0x106 as shown by the memory map in figure C.2.

ptri=&i;

0x100
[0x102
0x104
ptrl 0x102 0x106
0x108
Ox10A

Figure C.2: Memory map for pointer example

In the memory map in figure C.2 ptriholds the value of &i (0x)@hen the assignmemptrl=10; is made
the value is placed into the address pointed tptoly as shown in figure C.3.

*ptrl=10;
0x100
[10 0x102
0x104
ptrl 0x102 0x106
0x108
0x10A

Figure C.3: Modified Memory map for pointer example

C.0.11 void pointers

To avoid compilation errors a pointer must be of the same >be variable it is pointing to. For example
intPtr = &charC; would give a compilation error. However to overcome thishjpea thevoid data type
may be used and allows a pointer to point to any data type, Vewwee must explicitly tell the compiler
what data type theoid pointer should be as shown in the example program below

Program 44: void pointer example

#include <unistd.h>
#include <stdio.h>
int main(void)

{

int i;

char c;

float f;

void *ptrMorph;

APPENDIX C. POINTERS

ptrMorph = &i;
*((int *)ptrMorph) =10;

ptrMorph =&c;
*((char *)ptrMorph)="c’;

ptrMorph=&f;
* ((float *)ptrMorph)= 25.45f;

printf("i=%d c=%c f=%f\n",i,c,f);
return 1;

}

97

The main difference in this program from the previous exaniplthe use of theoid *ptrMorph and the

use of typecasting on the variable assignment. This is exqddn figure C.4.

(1) 'm a Pointer

; (4)So assign it a value
2) A float pointer of 25.45f

- >*((float *)ptrMorph)=25.45f;

t?a)allthough ptrMorph is
of type void *
I'm forcing it to be
a float value

Figure C.4: void pointers explained

C.0.12 In Conclusion

Every expression has a type as well as a value, the type ofxtression&i is a pointer and tells the
compiler that 'we want the address off i". To make the use dfifgos easy we must match the type of the

pointers exactly such as
inti;

int *ptrl;

ptri=&i;

However to allow for more flexibility we can use theid pointer type to point to any data tyfeit we

must type cast theoid pointer to the correct type.

Appendix D

Unix Line Editors

vi provides basic text editing capabilities. Three aspects ofake it appealing. Firsti is supplied with

all UNIX systems. Secondji uses a small amount of memory, which allows efficient openatvhen

the network is busy. Third, becauseuses standard alphanumeric keys for commands, you can use it
on virtually any terminal or workstation in existence witlidhaving to worry about unusual keyboard
mappings. As a point of interestj is actually a special mode of another UNIX text editor caléed
Normally you do not need to usxexcept invi mode.

D.1 Starting VI

To start vi use the following command

#vi sample '

The terminal window will clear and displays the contentshef file, sample Since this file doesn’t contain
any text vi uses the tilde (~) character to indicate lineshengcreen beyond the end of the file. vi uses a
cursor to indicate where the next command or text insertibirtake effect. The cursor looks like a small
rectangle the size of one character, the character insideuttsor is known as the current character.

At the bottom of thevi window is a line called thenodelire. This is used to display the current line, the
name of the file and the current status/of

D.2 Command Mode and Input Mode

vi has two modescommand modandinput mode In command mode \@xecutes different commands
dependent upon which keys and key combinations are pressédas search and replace, cut and copy
text etd. Whenvi is started it is ircommand mode

To switch fromcommando input modepress the i key (you don't need to press tHRETURN. vi then
lets you insert text at the current cursor position. To swiiack to theeommand modpress theeSCkey.
The ESCkey may also be used to cancel an uncompleted command @aothmand mode

Some versions ofi do not indicate whicimodethe editor is in so pressing tlESCkey a couple of times
will return to the command mode and this is usually indicdtedi beeping.

Ifor a list of these commands see Appendix B

98

APPENDIX D. UNIX LINE EDITORS 99

D.3 Inserting Text

While in input modeall text typed is inserted into the document, howevierecognises some special
keystrokes as shown in table D.1.

| Command | Action |

CTRL + W | Erase the previous word
CTRL + U | Erase the currentline

BkSp Delete previous character
RETURN | Starta newline

Table D.1: Commands to remove text

D.3.1 Document navigation

In most modern versions @i the arrow keys may be used to move within the document. THiswwrk

in both modes of/i and allows easy navigation, however in older versiongi @nd whervi is used on a
terminal some of these key will not work. So to allow movemgitihin a documentin command mode the
special keys shown in table D.2are used.

| Key | Action |
k Move up one line
h line move one character to the left
I line move one character to the right
j Move down one line

Table D.2: Navigation keys.

To add to this modern versionsfalso recognise the following special keys for navigatioaeitherinsert
or command modas shown in table D.3.

| Key | Action |
Home | Return cursor to beginning of the current line
End Place cursor at the last character of the current Jine
PgUp | Move up one page

PgDn | Move down one page

Table D.3: Special Navigation keys

D.3.2 Document Structure

vi has it's own way of specifying the structure of a documentescdbed below

Sentence A sentence is all the characters between normal sentenctyation marks such as fullstops
(.) question marks (?) and exclamation marks (!). A blan& Biso ends a sentence.

Line The text between two RETURN characters forms a line. Henisgibssible to have

Paragraph A paragraph is a sequence of lines which are not interrupteahip blank lines.

APPENDIX D. UNIX LINE EDITORS 100

Using these definitions the navigation commands shown ie Gnay be used in the command mode.

| Command | Cursor Moves to |

b beginning of previous word

w beginning of next word

e end of current/ next word

0 (zero) or ~| beginning of line

$ end of line

(beginning of current/ previous sentence
) beginning of next sentence

{ beginning of current / previous paragraph
} end of current paragraph

H top line on screen

M middle line on screen

L bottom line on screen

Table D.4: Document navigation

D.4 Deleting Text

Sometimes text needs to be deleted, in modern versiovisioéd BkSpandDel keys may be used imsert
modeas with a normal editor, sBkspwill delete to the left of the current cursor position abdl will
delete to the right.

There are also other delete commands which may be used in aochmode as shown in table D.5.

| Command | Action |

X Delete only the current character

D Delete to the end of the line

db Delete from the current character to the beginning of theszumword
de Delete from the current character to the end of the currend wo

dd Delete the current line

dw Delete from the current character to the beginning of the wexd

Table D.5: Delete commands

Notice that the second letter of the command specifies the sdimnk of text as the cursor movement
commands shown in table 5 and you can use delete with any 4 thevement specifiers.

D.5 Making corrections

Instead of deleting a character or word when it is incorvébas the ability to change or replace words and
characters. These commands are shown in table D.6.

APPENDIX D. UNIX LINE EDITORS 101

| Command | Action

Change word.

Overwrite to the end of the line

Replace a single character with another one

Overwrite characters starting from the current cursortjosi
Substitute one or more characters for a single character
Substitute the current line with a new one

wnln — 9
Py Og

Table D.6: Correction / Replacement commands

The change commarwworks like the delete command and any of the text portioni§pesfrom table 5
can be used.

D.6 Undoing

vi will allow the user to undo the last change by pressingitkey. Modern versions ofi allow for multiple
undos but this must be used with caution as the last thingeshteay be the text itself and this will leave
a blank document.

D.6.1 Joining lines

It is possible to link two or more lines together, usually &ese deleting text has created a lot of empty
space. Thd command combines the current line with the line below it.

D.7 Saving work

vi provides several ways of saving changes as shown below

‘w RETURN '

This saves the current file (“w” is short for “write”), to exit use the following command

:q RETURN '

These commands may also be combined to save work andi ésitshown below

'wgq RETURN '

A shorthand for the above command (write and quigd(shift zz).

Sometimes a file has been modified and the user wishes to eRitwtisaving the file, to do this use the
following command

:q! return '

Note that this command must be used with caution as exiiingthis method will lose any changes made
to the file (andvi will not prompt to ask the user if they are sure!)

APPENDIX D. UNIX LINE EDITORS 102

D.8 Repeating a command

vi allows the user to repeat a command by pre-fixing the commatidarnumber which indicates how
many times the command is to be repeated so for example tyBangvill delete three words from the
current cursor position.

This will also work for insertion of text so the commaf@iHello! ESCwill insert the Hello! 10 times
from the current cursor position.

If a number is typed in error (and remember that when in conthmaadevi doesn'’t display any of the
characters typed) just press the ESC key which will resettinemand.

D.9 Line numbers

Manyvi commands use line numbevws counts the number of return characters and each of thesetsons
of a line (as some lines may be longer than ¥hdisplay width). vi uses line numbers in cut copy and
paste commands, and many programs such as compilers givenegssages and warnings based on line
numbers therefore moving to a line is a useful feature.

Enablevi to print line numbers next to each line issue the followinghamand

:set number RETURN '

This command displays the line numbers in the Left margirheft window, however it may cause long
lines to wrap but this will not damage the text in the document

To jump to any line in the document tli& command is used. The following example shows some of its
uses

1G

6G

The first command moves the cursor to the 1st line of the filen @soown will move the cursor to the end
of the document and finally 6G moves the cursor to the sixthdifthe file.

Modern versions o¥i also allow movement to a line by typing théollowed by the line number as shown
below

112 RETURN '

To turn off line numbers the following command is typed

:set nonumber '

To find out more detailed information about where the cursesgCtrl + G which gives the following
display

"sample" [Modified][New file] line 2 of 18 --11%-- col 1

APPENDIX D. UNIX LINE EDITORS 103
D.10 Markers

vi allows the user to set markers within a document to allow lquiavigation to various parts of the
document. These markers are only valid for the length of éissisn and will not be restored when a file is
exited and re-edited.

To set a marker the characters “a” - “z” are used to indicagentfarks and to set a marker in command
mode thankey is pressed followed by the mark character. For exampdetta marker on a line using a as
the marker the following command will be used.

ma '
To navigate to a set mark thes used followed by the mark character as follows
Lﬁ

Which will move the cursor to the mark position. Unforturiptel does not indicate where the marks are
set in the text, however if a mark does not exist the mode lifienform the user by displayingfMark not
set.

D.11 Other input modes

Besides inset modé has other modes which allow for the input of text. These aosvshin table D.7 and
vi will display the current mode on thmodeline.

| Command | Mode Name | Insertion Point |

a append just after the current character
A Append end of the current line

i insert just before the current character
I Insert beginning of the current line

0 open new line below the current line
(0] Open new line above the current ling

Table D.7: Input Modes

D.12 Cut, Copy and Paste

vi allows sections of text to be cut, copied or pasted to othes jpd the document. First the text is cut or
copied to a temporary buffer then it is pasted into a new lonat

D.12.1 Buffers

vi uses a buffer to store the temporary text. There are nine atedtbuffers in addition to an undo buffer.
The undo buffer contains the most recent delete. Usuallfebafcontains the most recent delete, buffer
2 the next and so on until buffer 9, and deletes after 9 are lastlso has 26 named buffers (a-z) These
buffers are useful for storing blocks of text for later retdl. These buffers are independent of marker
letters.

APPENDIX D. UNIX LINE EDITORS 104

The contents of the buffer does not change until differextt ite put into the buffer. Unless the text is
changed the buffer remains until the end of the session, thstiné marker buffers the text buffers are lost
when the current vi session ends.

D.12.2 By line number

Two simple commands from thex command set let the user cut and copy text by entering theeréing
lines) and the destination line. Thecommand moves (cuts and pastes) a range of text, antatimemand
transfers (copies and pastes) it all of the commands havieltbe/ing format

:linemdestlineMove (cut) line number, linel, to the line just below line noen, destline.
:linel,line2mdestlineMove (cut) lines between linel and line2 below line numbesttihe.
:lineltdestline Transfer (copy) line number, linel, to the line just belomelnumber, destline.

Jlinel,line2tdestlineTransfer (copy) lines between linel and line2 below line hamdestline.

D.12.3 Cutand Copy (Delete and Yank)

vi calls cut and copy delete and yank respectively. When tedtlisted or yanked it is possible to place it
into a specified buffer. If no buffer is specified the defaulffér is used (buffer 0).

The delete and yank commands take the following form
1. Move the cursor to one end of the desired text.

2. If desired, specify a named buffer by typing a buffer name)(elsevi uses the automatic buffers
1-9

3. Type a repetition number, if needed (to copy 5 words or &slifor example)
4. Type d to delete text or y to yank text

5. Type a cursor movement (see table yidtto delete lines oyyto yank lines.

For example to copy 17 lines from the current position usddhewing commands

17yy '

The mode line will then indicate how many lines were yanked.

D.12.4 Using markers
Text may be deleted or yanked using buffers to do this usedflering command sequence

1. Move the cursor to one end of the text to select

2. Typemletter to specify a buffer

3. Move the cursor to the other end of the text selection
4

. If desired specify a buffer to save the text into usirigtter, if none is specifiedi uses the automatic
buffer.

Typed ory to delete or yank the text

o

6. Using letter from the marker typletter to delete or yank the text between the mark and the current
cursor location.

APPENDIX D. UNIX LINE EDITORS

D.12.5 Paste

To paste text from the buffer involves three steps as follows

1. Move the cursor to the desired pasting location

105

2. If retrieving text from a named buffer, specify the buffer typing “letter. Otherwisevi uses the
automatic buffers

3. Typep to paste the buffered text just after the current characteype P to paste it just before the
current character.

D.13

Search and Replace

vi can search the entire file for a given string of text by usirgy tbharacter followed by the desired string
which will search forward form the current cursor positiarbackwards using the key followed by the
search string. To execute the search press the RETURN key.

To find the next occurrence of the string pressthey to move forwards to the next occurrence\bto
move backwards. Whevi reaches the end of the file it will move to the beginning of thetf the next /
first occurrence of the string.

D.13.1 Special characters

vi supports special characters which act as wildcards or lsexausions. These special characters are
shown in table D.8.

| Usage| Action | Example | Matches |
[ccec] | match any of the characters cccc /sa[fn] any string beginning witlsafollowed either by arf or ann
[*ccec] | match all characters except cccc /["a]nd any string containingnd not preceded by aa. (i.e. not and)
[c1-c2] | match any character between c1 and c2 | /[d-h]er any string containin@r preceded by eithett e f gor h
\<cccc | match words beginning cccc N\<eac any string beginning witleac
cccc\> | match words ending in cccc /und\> any string ending witlund
Accce | match lines beginning with ccc /Nin any line beginning withn
cccec$ | matches lines ending with cccc /stop$ any line ending wittstop
. match any single character /il any string with the character i[any char]l in sequence
c* match any single character 0 or more timegmb*d any string containing b and d 0 or more times
x match any characters /b.*k any string containing b and k

Table D.8: Special search characters

Note that cccc stands for any number of characters (incfudinmbers) and most other characters. Special
charactersare $. *[] " \. If these characters are requirgddrsearch string the backslash is used before
the character to allow it to be used . For example if $14F0gsiired in a search the command to search
would be N$14F0. To specify a single backslash use \\.

D.13.2 Search and Replace

vi can also search and replace using one of the budkioommands. The format of the command is as

follows

APPENDIX D. UNIX LINE EDITORS 106

:linel,line2s/oldstring/newstring '

So if every occurrence of the teiktwere to be replaced witklse if on lines 15 - 32 the following command
would be used

15,32sliflelse if '

If only one line number is specified the command only workstat tine. If no line is specified then the
action will take place on the current line. It must also beeddhat only the first occurrence of the search
string in the line is modified and any further occurrencesgmered. The search and replace may also be
repeated using th& command on the current line dmenumnber&will repeat the command for the line
number passed, or to repeat across number of lines,line2&

D.13.3 Special flags

It is possible to add a flag to the search and replace commaedflag then tellsvi to replace every
occurrence or to ask for confirmation before each replacermeradd a flag the following form is used

:linel,line2s/oldstring/newstring /flag '

c

If the flag isc vi will wait for conformation before each change and the usédl lveive to press y or n
followed by a RETURN to accept or reject the change. If the fiagd is &g a global search and replace
is executed this will replace every occurrence of the stiinthe current line (not just the first as in the
previous example) this is known as a global replace.

D.13.4 A more powerful Search and Replace

Theexcommandg can be used with the substitute commaitd find and replace every occurrence of a
string pattern in an entire file. The syntax for the global otend is

:g/string/commands '

The global command finds each line in the file that has stringgamd then applies the commands to it.
This can be applied in the following way

:g/oldstring/s//newstring/g '

The oldstring does not have to be added to the in the seartbfgihe command as it is already presentin
the global command.

D.14 Variables

vi maintains several variables that controls different aspeftits appearance. Some of these have already
been explained such aset number :set showmode

APPENDIX D. UNIX LINE EDITORS 107

D.14.1 Toggle and Numeric variables

The two types of variables are toggle variables and numeri@bles. Toggle variables turn an option on
or off (like displaying line numbers), while numeric variab take a number as an argument.

To turn on an off a toggle variable the following syntax isdise

:set variable
:set novariable

Numeric variables are set with an equals sign and the carngipg value. For example to set the tab stops
to be 4 spaces the following is typed

:set tabstop=4 '

Table D.9 shows some of the variable which may be set.

| Variable | Default | Description
ignorecase | noignorecase | Do not distinguish between capitals and lower case lettesgarches
number nonumber Display line numbers
showmode | noshowmode | Displays the input mode, bland for command mode.
wrapscan wrapscan When a search completes it goes back to the beginning of ée fil
report report=5 When more than this number of lines are change vi reports it
tabstop tabstop=8 Sets tab stops to multiples of this value
wrapmargin | wrapmargin=0| Sets the right margin .

Table D.9: vi variables

D.14.2 Useful variables

The variables shown in table D.9 are only a small subsecfitimeovariables used withivi to see all of the
variables use the following command

:set all '

D.15 Mapping keys

A single keystroke may be mapped to a sequence of commandis this the function keys are used with
the following commands

‘map <F2> 1G '

Note that the <F2> shown above will be printed on the modewihen the F2 key is pressed. The rest of
the command tellgi to go to the first line of the file when F2 is pressed.

APPENDIX D. UNIX LINE EDITORS 108
D.16 Executing Console Commands

vi allows the user to execute Unix commands whilst within thisoedTo do this the ! is used followed by
the command to be executed as the following example shows

Ish

This will drop vi into the command shell and allow the user to execute any Wixncands required. To
return tovi exit followed by RETURN must be typed.

Appendix A

Unix Commands

Command 1: cd [dir]

Usage :
change directory

Flags :
no flags

Examples :
cd /etc changes to the etc directory
It must be noted that cd is built into the shell

Command 2: chmod [options] mode files

Usage :
change the access mode of one or more files. Only the ownes fifglor a super user may change the mode

Flags :
-R recursively descend directory arguments whilst settiogles

File permissions are set on the basis of User Group and woddeach section may have a Read Write
and eXecute bit set. These are set using an octal numberdbragédghe three groups. To set each bit the
following values are used

4 Read
2 Write
1 Execute

A fourth bit may be set which precedes the User Group Worldflagese use the following octal values
4 sets the user ID on execution

2 Set the group ID on execution
1 set sticky bit

Examples :
chmod 700 * set all files to have rwx permissions for owner amgermissions for group and world

109

APPENDIX A. UNIX COMMANDS

chmod 755 * set file permissions to rwxr-xr-x for all files

110

Command 3: cp [options] filel file2
cp [options] files directory

Usage :
Copy filel to file2 or copy one or more files to the same names teeatdry

Flags :
-i interactive mode (prompts for y/n for each file
-r recursively copy a directory, its files and subdirectsrie

Examples :
cp test.c test.c.old copy the file test.c to a new file tegtic.o
cp * ./backup copy all the files in the current directory to eedtory called backup

Command 4: du [options] [directories]

Usage :
prints the disk usage of the directory specified or preserttiry if not specified.

Flags :

-a print usage for all files not just subdirectories

-s printf on the grand total for cache named directory (ilensmode)
-k print disk usage in K bytes not blocks

Examples :
du -ks print the total disk usage for the current directory

Command 5: find pathname(s) condition(s)

Usage :

Used to find files, find has numerous uses dependant upon th&ioor set in the command line

Flags :

-exec command{} execute a unix command on finding a file
-name find a file with a specific name

-ok same as exec but prompts fory / n

Examples :
find ./ -name "*.c" finds all files with a .c extention
find ./ -name "*.0" -0k {} \;

Command 6: grep [options] [regexp] [files]

Usage :
search one or more files for lines that match the regular esjme regexp

Flags :
-C print out a count of matched lines
-iignore case

APPENDIX A. UNIX COMMANDS 111

-l list file names not matched lines
-S suUppress error messages

Examples :
grep main * find all files which contain the phrase main
grep -i myFunction *.c search for the text myFunction igngrcase in all files in the current directory

Command 7: gunzip [options] filename.gz

Usage :
unzip a GNU zipped file

Flags :
-l list contents but dont unzip file

Examples :
gunzip test.gz unzip the file test.gz

Command 8: gzip [options] filename.gz

Usage :
create a GNU zipped file

Flags :
-# 1 -9 compression ration 1 == fast 9 == best compression

Examples :
gzip -9 test.tar compress the file test.tar

Command 9: head [-n] [files]

Usage :
print the first n lines of a file

Flags :
-n number of lines to print

Examples :
head -n1 /etc/* prints the first line of every file in /etc

Command 10: Ip/ Ipr [options] files

Usage :
sends files to print spooler

Flags :
-P [name] specifies the name of the printer
-#n number of copies to print

Examples :
Ipr -P DrEvil notes.ps will print the file notes.ps

APPENDIX A. UNIX COMMANDS 112

Command 11: Is [options] [names]

Usage :
List information obout files - current directory is used byaidt

Flags :

-l list in long format

-a show all files

-R list subdirectories recursively

- list by file creation / modification time
-d show directories

Examples :

Is -al list all files in a directory

Is -IR list all files including subdirectories

Is -1d /bin /etc list the status of directories /bin and /etc
Is *.c list all of the .c files in the current directory

Command 12: mkdir [options] directories

Usage :
make a directory(s)

Flags :
-m mode used to set the access mode for the new directory
-p create parent directories as needed

Examples :

mkdir test creates a directory called test

mkdir -p /test/d1/old creates the whole directory struetur

mkdir -m 700 test creates a directory called test with rwx—ernpissions (see chmod for more details on
permissions

Command 13: more [options] files

Usage :
Displays the named files in the console one screen at a time

Flags :

use the space key to scroll pages
PgUP moves up

PgDn moves down

g exits

Examples :
more /etc/passwd displays the contents of the /etc/paskwvd fi

Command 14: mv [options] sources target

Usage :

APPENDIX A. UNIX COMMANDS

mv is used to move or rename files.

113

Flags :
-i interactive mode prompt user y/n
-f force move even if target file exists

Examples :

mv filel.c file2.c renames filel.c file2.c

mv * ./backup moves all files to the backup directory

mv mydir myolddir rename a directory for mydir to myolddir

Command 15: pwd

Usage :
print working directory

Flags :
no flags

Examples :
pwd will print the current directory within the shell

Command 16: rm [options] files

Usage :
delete on or more files.

Flags :

-f force removal

-i interactive mode prompt y/n
-r recurse subdirectories

Examples :

rm *.c remove all c files from the current directory

rm -rf mydir remove contents of mydir as well as the directitsglf
rm -rf * remove every thing in the current directory downward

Command 17: rmdir [options] directories

Usage :
remove directory

Flags :
-P recurse subdirectories
-s suppress standard error messages

Examples :
rmdir temp removes the temp directory

Command 18: tar [options] files

Usage :

APPENDIX A. UNIX COMMANDS

create a tape archive (or a file in the current directory)

114

Flags :

v verbose mode

f specify file name and do not look for tape drive
c create a tape archive (tar file)

X extract an existing tar file

Examples :

tar cfv mydir.tar ./mydir/* create a tar file of the directarnydir called mydir.tar
tar vfx mydir.tar extracts the contents of the tar file mysir.

Appendix B

vi reference

Legenda

defaultvalues | 1

<*> “* must not be taken literally

*] “*is optional

"X <ctrl>X

<sp> space

<cr> carriage return

<lIf> linefeed

<ht> horizontal tab

<esc> escape

<erase> your erase character

<Kkill > your kill character

<intr> your interrupt character

<a-z> an element in the range

N number (*' = allowed, -’ = not appropriate)
CHAR char unequal te< ht>|<sp>

WORD word followed by <ht>|<sp>|<If >

Searching

Command Meaning

‘ta <name> Search in the tags file[s] where name> is defined (file, line), and go to it.

B Use the name under the cursor in a ":ta” command.

T Pop the previous tag off the tagstack and return to its positi

:[x,ylg/ < string>/< cmd> Search globally [from line x to y] for string>> and execute the ‘ex< cmd> on each occurrence. Multipke cmd>'s are separated by ‘[
[x.ylg/ <s1>//<s2>/<c> Search globally [from line x to y] for s1> and execute the ‘ex’ command c> on each line betweer’s1> and the line that matches s2>.
:[x,ylv/ <string>/< cmd> Execute<.cmd> on the lines that don’t match.

Undoing changes

Command Meaning

u Undo the latest change.

V] Undo all changes on a line, while not having moved off it (uhfoately).
:q! Quit vi without writing.

el Re-edit a messed-up file.

Deleting text

Everything deleted can be stored into a buffer. This is aehidy puttinga “’ and a lettekca-z> before the delete command. The deleted text will be in théebufith the used letter. If
<A-Z> is used as buffer name, the conjugate buffea-z> will be augmentedi(e., appended) instead of overwritten with the text. The undéebalways contains the latest change.
Buffers <1-9> contain the latest 9 LINE deletions (“'1' is most recent) eS#so ‘remembering text'.

N Command Meaning

* X Delete <* > chars under and after the cursor.

* X <*> chars before the cursor.

* d<move> From begin to endpoint 0&* > <move>.

* dd <*> lines.

- D The rest of the line.

* < <move> Shift the lines described by * > < move> one shiftwidth to the left.
* << Shift <* > lines one shiftwidth to the left.

* . Repeat latest command * > times.

- :[x,yld Delete lines x through y (default current line and next).

115

APPENDIX B. VI REFERENCE

Move commands

116

N Command Meaning
* h "H < erase> <*> chars to the left.
* j <If> "N <*> lines downward.
* | <sp> <*> chars to the right.
* k P <*> lines upward.
* $ To the end of line<* > from the cursor.
- B To the first CHAR of the line.
* _ To the first CHAR<* > - 1 lines lower.
* - To the first CHAR<* > lines higher.
* + <cr> To the first CHAR<* > lines lower.
- 0 To the first char of the line.
* | To column<* > (<ht>: only to the endpoint).
* f<char> <*> <char>s to the right (find).
* t<char> Till before <* > < char>s to the right.
* F<char> <*> <char>sto the left.
Till after <*> <char>s to the left.

Repeat latest TTt[F[T <* > times.

Idem in opposite direction.

<*> words forward.

<*> WORDS forward.

<*> words backward.

<* > WORDS backward.

To the end of word<* > forward.

To the end of WORD<* > forward.

Go to line<* > (default EOF).

To line <* > from top of the screen (home).

To line <* > from bottom of the screen (last).

To the middle line of the screen.

—|=|r|z|o|m| o |=|=| 5| =]

<*> sentences forward.

<*> sentences backward.

<*> paragraphs forward.

<*> paragraphs backward.

- 1l To the next section (default EOF).

- [To the previous section (default begin of file).

- ‘<az> To the mark.

- ‘<az> To the first CHAR of the line with the mark.

- “ To the cursor position before the latest absolute jump (aEware examples /' and ‘G’).

- " To the first CHAR of the line on which the cursor was placed kethe latest absolute jump.
- /< string> To the next occurrence of string>>.

- < string> To the previous occurrence ef string>>.

- /< string>/+[n]

To n-th (default 1st) line after next occurrence<gbtring>>.

- ?2< string> ?+[n]

Idem, searching in the opposite direction.

- / <string>/-[n]

To n-th (default 1st) line before next occurrence<oétring>.

- ?< string>?-[n]

Idem, searching in the opposite direction.

. Ny iy [fool;/bar - to next ‘foo’, then to next ‘bar’
- <find>[; <find>] Perform successive ‘/'|'?" actions. For e><ample‘?f00,‘,_‘/bar - to line before previous foo’, then to nextrba
- n Repeat latest /'|'?" (next).
- N Idem in opposite direction.

- %

Find the next bracket and go to its match (also with ‘{'|'} @t’|T).

Appending text (end with <esc>)

N Command Meaning

* a <* > times after the cursor.

* A <*> times at the end of line.

* i <*> times before the cursor (insert).

*] <* > times before the first CHAR of the line

* [On a new line below the current (open). The countis only usefa slow terminal.
* [¢] On a new line above the current. The count is only useful oow &#rminal.

* > < move> Shift the lines described by * > <move> one shiftwidth to the right.

* >> Shift <* > lines one shiftwidth to the right.

* [<a-zA-Z1-9>]p

Put the contents of the (default undo) bufter > times after the cursor.
A buffer containing lines is put only once, below the curriéame. See ‘deleting text’.

* [<a-zA-Z1-9>]P

Put the contents of the (default undo) bufter > times before the cursor.
A buffer containing lines is put only once, above the curtan. See ‘deleting text'.

Repeat previous command* > times.

If the last command before a ‘. command references a nurdb®rifer, the buffer number is incremented first (and the t@iignored):

- Iyt <>

Copy lines x through y (default current line) to be after liki@ > . See ‘remembering text’.

Changing text (end with <esc>)

N Command Meaning

* r<char> Replace<* > chars by<char> - no <esc>.

* R Overwrite the rest of the line, appending chargé > - 1 times.

* s Substitute<* > chars.

* S <*> lines.

* c<move> Change from begin to endpoint ef * > < move>.

* cc <*> lines.

* C The rest of the line an&l* > - 1 next lines.

* =< move> If the option ‘lisp’ is set, this command will realign the & described by * > <move> as though they had been typed with the option ‘ai’ set top.

- Switch lower and upper cases (should be an operator, like ‘c’

* J Join <* > lines (default 2).

* . Repeat latest command * > times ('J' only once).

- & Repeat latest ‘ex’ substitute command, e.g. ‘:s/wrongdjoo

- Xyl Join lines x through y (default current line and next).

- :[x,ylj! Idem, but with no space inbetween.

- x.ylm<I> Move lines x through y (default current line) to be after lktd >. See ‘remembering text’.

- xyls/<p>I<r>I<f> Substitute (on lines x through y) the pattetp> (default the last pattern) witk(r>. Useful flags<f> are ‘g’ for ‘global’
(i.e. change every non-overlapping occurrencedqf>) and ‘c’ for ‘confirm’ (type 'y’ to confirm a particular substition,
else<cr>). Instead of /" any punctuation CHAR unequal tolf > can be used as delimiter.

APPENDIX B. VI REFERENCE

substitute replacement patterns

117

The basic meta-characters for the replacement patteraend * ’; these are given as\& and *\ ' when ‘nomagic’ is set. Each instance of ‘&’ is replaced by ttharacters which
the regular expression matched. The meta-character ‘ dstan the replacement pattern, for the defining text of thevipus replacement pattern. Other meta-sequences poisible
replacement pattern are always introduced by the escapdraater \'. The sequence\n’ (with ‘n’ in [1-9]) is replaced by the text matched by thetimregular subexpression enclosed
between \ ("and *\)". The sequences\u’ and *\I' cause the immediately following character in the rephaeet to be converted to upper- or lower-case respectivéhisfcharacter is

a letter. The sequence§ U’ and *\ L' turn such conversion on, either untl\ E' or *\ e’ is encountered, or until the end of the replacement pat®ee the ‘magic’ option for additional

meta-characters. Some examples of substitutions are shelow.

:s/foo/\ u& - turn ‘foo’ into ‘Foo’

:s/foo/\ U& - turn ‘foo’ into ‘FOO’

:s/\ (foo\) \ (bar\)/\U\ 1\ E \u\2 - turn ‘foo bar’ into ‘FOO Bar'
:s/foo/\ u&/|s/bar/ - capitalize foo, then capitalize bar

Remembering text (yanking)

With yank commands you can put< a-zA-Z>' before the command, just as with delete commands (seetidglext’). Otherwise you only copy to the undo buffer. Usithe capital

letters appends to the buffer. The use of buffera-z> is THE way of copying text to another file; see the &ile >’ command.

N Command Meaning

* y<move> Yank from begin to endpoint o& * > < move> .

* yy <*> lines.

* Y Idem (should be equivalent to 'y$’ though).

- [x.yly <a-zA-Z> Yank lines x through y into named bufer. Using the cay ill append to the buffer.

- m<a-z> Mark the cursor position with a letter.
:/aaalka - mark next line matching aaa

- Xk <a-z> Mark line x (default current) with a letter. The letter canuzed to refer to the line in another ex command;;nggfb --drizf;;t::\;igzi ﬁ:g 2:&;’;3 fl;)lljlgwmg it
“bm. - move that line to be after current line

Commands while in append|change mode

Command Meaning

‘@ If typed as the first character of the insertion, it is repthadth the previous text inserted (max. 128 chars), he insertion is terminated.

Vv Deprive the next char of its special meaning (egesc>).

"D One shiftwidth to the left, but only if nothing else has begped on the line.

0D Remove all indentation on the current line (there must betherahars on the line).

D Idem, but it is restored on the next line.

T One shiftwidth to the right, but only if nothing else has begped on the line.

“H < erase> One char back.

‘W One word back.

<Kkill > Back to the begin of the change on the current line.

<intr> Like <esc> (butyou get a beep as well).

Writing, editing other files, and quitting vi

In ‘" ‘ex’ commands - if not the first CHAR on the line - ‘%’ denes the current file, ‘#' is a synonym for the alternate file ighmormally is the previous file). As first CHAR on the line
‘%’ is a shorthand for ‘1,$". Marks can be used for line nunsbio: '<a-z>. In the ‘w'|':f']'.cd’|':€’|':n’ commands shell meta-chracters can be used.

Command Meaning

iq Quit vi, unless the buffer has been changed.

:q! Quit vi without writing.

“Z Suspend vi.

W Write the file.

‘w <name> Write to the file<name>.

w > > <name> Append the buffer to the fileZname>.

w! <name> Overwrite the file<name>.

X,y W < name> Write lines x through y to the file<name>.

wq Write the file and quit vi; some versions quit even if the writgs unsuccessful! Use ‘ZZ’ instead.
y73 Write if the buffer has been changed, and quit vi. If you haweked vi with the *-r’ option,

- some versions of vi don’'t handle the ‘recover’ option vergilv

you'd better write the file explicitly (‘:w’ or :w!"), or qut the editor explicitly (:q"") if you don’t want to overwri the file

x[<file>] Idem [but write to<file >].

x! [<file>] “w! [<file>] and q'.

pre Preserve the file - the buffer is saved as if the system hadiashed; for emergencies,
when a “‘w' command has failed and you don’t know how to saveryeork (see ‘vi-r’).

:f <name> Set the current filename ta. name>.

ccd [<dir>] Set the working directory te< dir > (default home directory).

scd! [<dir>] Idem, but don’t save changes.

e [+<cmd>] <file> Edit another file without quitting vi - the buffers are not olgad (except the undo buffer),

so text can be copied from one file to another this way. [Exethe ‘ex’ command<cmd> (default ‘$’)
when the new file has been read into the buffer¢md> must contain na<sp> or <ht>. See ‘vi startup’.

el [+<cmd>] <file> Idem, without writing the current buffer.

- Edit the alternate (normally the previous) file.
rew Rewind the argument list, edit the first file.
rew! Idem, without writing the current buffer.
n[+<cmd>] [<files>] Edit next file or specify a new argument list.
! [+ <cmd>] [<files>] Idem, without writing the current buffer.

:args Give the argument list, with the current file between ‘[afid *

APPENDIX B. VI REFERENCE

Display commands

N Command Meaning

- "G Give file name, status, current line number and relativetjposi

- L Refresh the screen (sometimes P’ or “R’).

- R Sometimes vi replaces a deleted line by a ‘@’, to be deletedRdysee option ‘redraw’).

* “E Expose< * > more lines at bottom, cursor stays put (if possible).

* Y Expose<* > more lines at top, cursor stays put (if possible).

* "D Scroll <* > lines downward (default the number of the previous scroltjalization: half a page).
* U Scroll <* > lines upward (default the number of the previous scrolljatization: half a page).
* F <*> pages forward.

* "B <*> pages backward (in older versions "B’ only works withouting).

- xy]l List lines x through y (default current), making invisiblearacters visible.

- :[x,ylp Print lines x through y (default current).

- X,ylnu List lines x through y (default current), with line numbeexnto each line.

If in the next commands the fielet wi > is present, the windowsize will change towi >. The window will always be displayed at the bottom of the sore

N Command Meaning

* z[wi] <cr> Put line<* > at the top of the window (default the current line).

* z[wi]+ Put line<* > at the top of the window (default the first line of the next page

* z[wi]- Put line<* > at the bottom of the window (default the current line).

* zZ[wi” Put line <* > at the bottom of the window (default the last line of the poeis page).
* z[wi]. Put line<* > in the centre of the window (default the current line).

Switch and shell commands

118

N Command Meaning

- Q B <intr> <intr> Switch from vi to ‘ex’.
- : An ‘ex’ command can be given.

- i Switch from ‘ex’ to vi.

- :sh Execute a subshell, back to vi by “"D’.

- :[x.y]! <cmd> Execute a shelk cmd> [on lines x through y; these lines will serve as input fgcmd> and will be replaced by its standard output].

- ! [<args>] Repeat last shell command [and appeqdrgs>].

- :[x.y]! <cmd> ! [<args>] Use the previous command (the second ‘!' in a new command.

* I <move> < cmd> The shell executes.cmd>, with, as standard input, the lines describeddy > < move>, next the standard output replaces those lings.
* I <move>! <args> Append < args> to the last< cmd> and execute it, using the lines described by the curreht> < move>.

* M <cmd> Give <* > lines as standard input to the sheflcmd>>, next let the standard output replace those lines.

* [<args>] Use the previous< cmd> [and append<args> toiit].

- X,y w!<cmd> Let lines x to y be standard input fet cmd> (notice the< sp> between the ‘w’ and the 'I").

- 1t <cmd> Put the output ok cmd>> onto a new line.

- or <name> Read the file<name> into the buffer.

The most important options

Option Meaning
ai autoindent - In append mode aftekacr> the cursor will move directly below the first CHAR on the praws line.
However, if the option ‘lisp’ is set, the cursor will align tte first argument to the last open list.
aw autowrite - Write at every shell escape (useful when comgifrom within vi).
dir=<string> directory - The directory for vi to make temporary files (déf&/tmp’).
eb errorbells - Beeps when you goof (not on every terminal).
ic ignorecase - No distinction between upper and lower cases wharching.
‘¢ - move backward (forward) over S-expressions
lisp Redefine the following commands: ‘{, ¥ - idem, but don't stop at atoms See option ‘ai’.
‘I, m - go to previous (next) line beginning with a ‘("
list <If > is shown as ‘$’,<ht> as “I'.
Instead of<sp> a <ht> can be used, instead of ‘vi’ there can be ‘ex’.
nu number - Numbers before the lines.
para=< string> paragraphs - Every pair of chars «string>> is considered a paragraph delimiter nroff macro (for ‘{’ afiyl

A <sp> preceded by a\indicates the previous char is a single letter macro.
“:set para=R bp' introduces ‘.P’ and *.bp’ as paragraph delimiters.
Empty lines and section boundaries are paragraph bousdatde

redraw The screen remains up to date.

remap If on (default), macros are repeatedly expanded until theyiachanged.
Example: if ‘0’ is mapped to ‘A, and ‘A’ is mapped to ‘I', thefo’ will map to ‘I' if ‘remap’ is set,
else it will map to ‘A,

report=<*> Vireports whenever e.g. a delete or yank command affects> or more lines.
o readonly - The file is not to be changed. However, :w!" willesvide this option.
sect=< string> sections - Gives the section delimiters (for ‘[and ‘]|3ee option ‘para’.
A {' beginning a line also starts a section (as in C functipns
sh=<string> shell - The program to be used for shell escapes (defaultEESHdefault /bin/sh’)).
SW=<* > shiftwidth - Gives the shiftwidth (default 8 positions).
sm showmatch - Whenever you append a)", vi shows its matchsibit the same page;
also with ‘{" and ‘}. If there’s no match at all, vi will beep.
taglength=<* > The number of significant characters in tags (0 = unlimited).
tags=<string> The space-separated list of tags files.
terse Short error messages.
to timeout - If this option is set, append mode mappings willtterpreted only if they're typed fast enough.
ts=<* > tabstop - The length of aht>; warning: this is only IN the editor,
outside of it<<ht>s have their normal length (default 8 positions).
wa writeany - No checks when writing (dangerous).
warn Warn you when you try to quit without writing.
wi= <* > window - The default number of lines vi shows.
wm=<*> wrapmargin - In append mode vi automatically puts# > whenever

there is a<sp> or <ht> within <wm>> columns from the right margin
(0 =don’t put a<If > in the file, yet put it on the screen).

ws wrapscan - When searching, the end is considered ‘stuckietbegin of the file.

APPENDIX B. VI REFERENCE 119

+ changing and viewing options

Command Meaning

:set < option> Turn <option> on.

:set no< option>> Turn <option> off.

:set < option>=< value> Set < option> to <value>.

:set Show all non-default options and their valueq.
:set < option>"? Show < option>'s value.

:set all Show all options and their values.

