Linux Programming Bible

by John Goerzen 1SBN:0764546570

Hungry Minds © 2000 (837 pages)

All-in-one reference for wide range of Linux programming topics. = LS
| inux -

Table of Contents . e

Linux Programming Bible

Preface

Part | - Shell and Basic Tools

Chapter 1 - Introducing the Linux Programming Environment

Chapter 2 - Introducing Shell Programming

Chapter 3 - Working with Regular Expressions

Chapter 4 - Introducing Emacs

Chapter 5 - Understanding Linux Data Files and Scripts

Part Il - The C Environment

Chapter 6 - Welcometo gcc

Chapter 7 - Managing Projects with GNU Make

Chapter 8 - Memory Management

Chapter 9 - Librariesand Linking

Chapter 10 - Debugging with gdb

Part 11 - The Linux Model

Chapter 11 - Files, Directories, and Devices

Chapter 12 - Processesin Linux

Chapter 13 - Understanding Signals

Chapter 14 - Introducing the Linux 1/0O System

Chapter 15 - Looking at Terminals

Part 1V - Taking to the World

Chapter 16 - Shared Memory and Semaphores

Chapter 17 - Using Pipes and FIFOs

Chapter 18 - Internet Sockets

Chapter 19 - Advanced TCP/IP Sockets

Part VV - The Glue: Perl

Chapter 20 - Introducing Perl

Chapter 21 - Manipulating Data with Perl

Chapter 22 - CGI Programming

Chapter 23 - SQL Databases with DBI

Part VI - Graphical Interfaces with X

Chapter 24 - GUIs with Perl/Tk

Chapter 25 - Building GUIs with Ghome

Part VI - Putting It All Together

Chapter 26 - Archiving and Collaboration with CVS

Chapter 27 - Understanding Security and Code

Chapter 28 - Optimizing Performance

Preface

The secret is out—there’ s something special about Linux. The operating system that began life as a way for then-student Linus
Torvaldsto do his homework has evolved into a powerful force in the marketplace, literally earning money overnight.

What is so special about Linux? And why should you, a programmer, care? You'll find the answersin the pages of this book.
Linux is more than just a new operating system. It represents the very best of what developers all over the world over like to see.
Its rich multitasking capabilities and powerful communication features enable you to write powerful and fast applications quickly.
Linux supports literally dozens of languages, including C, C++, Perl, Java, LISP, Prolog, Scheme, Pascal, BASIC, two shell
flavors, assembler, Ada, Smalltalk, and FORTRAN. The program-ming environment in Linux is first-rate; many tools have had a
chance to be refined since before Linux even existed, thanksto its UNIX heritage.

AsLinux isafairly new system, | discovered that thereis alack of information for the Linux programmer. That is where this book
comes in. By reading this book, you not only get to learn what Linux is doing under the hood, but aso how to take advantage of
that knowledge in your own applications. Most of the extensive code examples in this book are complete programs, ready to run,
and some of which are also available online.

Why You Need This Book



Part of the power of Linux isits versatility. For example, you can pick any of five different ways to communicate between
programs. Or, you can pick from various different languages to implement your code. With this flexibility comes decisions. Don't
get me wrong, | love choices—having many options when solving a problem makes it easier to solve. But you need information—
which communica-tion methods are right for you, for instance. There is little existing documentation that gives you a big picture
like this. Furthermore, when you are ready to imple-ment your program, you need to know not only why to use a certain feature,
but how to use it. Through the use of examples and commentary in this book, you will see the ideas and concepts put into action,
and use the code as a basis for your own programs.

Linux is also helping to break new ground in computing. It has one of the best shared library systems available anywhere, but
again the system is new enough that barely any documentation exists for it at all. Before this book, programmers had to stumble
their way through the system before being able to use shared libraries effectively. The Linux Programming Bible shows you
exactly how shared libraries work and how you can use them.

In addition to its use as a tutorial, the Linux Programming Bible can help you as a reference book as well. Because of its in-depth
coverage of so many different aspects of Linux, you're sure to find the information you need here.

With the huge installed base of Linux, most rapid growth in the industry, and rich development environment, companies are
realizing that they lose customers and money by not supporting Linux. It is my hope that this book will be able to help you develop
programs on Linux, and | want to welcome you to the Linux revolution!

Prerequisites

Before you begin programming in Linux with this book as your guide, | need to make sure that you have afew things ready to go.
Ideally, you should meet the following requirements before you start to work with this book:

« You should have a working knowledge of a programming language, preferably C, C++, or Perl. This knowledge does not have
to come from Linux. You will be introduced to Linux-specific features in C and C++ throughout this book.

* You should have Linux installed on your computer.

¢ You should have a basic understanding of how to get around in Linux: files, directories, and afew command-line basics. For
the chapters on GUI program-ming (Chapters 24 and 25), you also should be able to navigate the X Window System interface.

If you meet these three simple prerequisites, this book is for you. Anyone from someone just making the switch to Linux to someone
that has been programming on Linux for years will benefit from the information presented in these pages.

How ThisBook Is Organized

Y ou can read this book either as a reference or asatutorial. If you want to read the book as atutorial, you might find it most useful
to read it in the order presented more or less.

Because of the huge volume of information, | have split the book into seven main parts. Here is a summary of each of the seven
parts and what you can find in each.

Part |: Shell and Basic Tools

Thefirst part of the book introduces you to some basics that will form an undercur-rent through the entire remaining part of the
book. In Chapter 1, for instance, you will learn about the design of the Linux development environment, as well as how to find
reference material online and navigate through the different material available to you.

The remaining chaptersin Part | cover some other basics. Chapter 2 introduces shell programming. Many people like to use a good
editor and development environment; Chapter 4 introduces you to Emacs, which is both. For parsing tasks, regular expressions can
be found in many areas, and you will learn about them in Chapter 3. The first part concludes with Chapter 5, which takes alook at
datafiles and scriptsin Linux.

Part |1: The C Environment

The C environment in Linux is not only the largest, but also of the most immediate interest to programmers. Because Linux itself
iswrittenin C, you'll find that function callsin other languages, such as Perl, are implemented in terms of the underlying C
version. The chaptersin Part |1 cover C (and C++) programming, starting with the C compiler in Chapters 6 and 7, moving
through memory management and libraries in Chapters 8 and 9, and ending with the debugger in_Chapter 10.

Part I11: The Linux Model

2



Before we can talk about more advanced topics such as multitasking, you need to have some knowledge of what is going oninside
Linux. That isthe focus of this part of the book. In Chapter 11, you will learn how datais stored on Linux—a key to being able to
take advantage of some of the more advanced features of the Linux file system. You'll also learn about the process model, which
is an undercurrent of most of the rest of the topics that will be presented in Chapter 12. Chapters 13 through 15 finish up with
discussions on signals, Linux /O, and terminals.

Part 1V: Talking tothe World

Now we come to one of the most exciting aspects of Linux—talking to everyone. Linux literally makes this possible. Support for
communication in Linux has been there since day one—not just an afterthought. Y ou can see this for yourself in therich array of
communication tools that are available for your use.

The discussion of communication begins with coverage of shared memory and semaphores in Chapter 16. Though other models,
such as pipes, are now preferred over shared memory for some things for which it was once popular, still shared memory isa
unique way of approaching communication. Some people, especially those doing real-time projects, find shared memory to be the
fastest method of communication available.

After shared memory, | turn to the more standardized methods of communication in Linux. These include pipes and FIFOs, which
are discussed in Chapter 17. Chapters 18 and 19 are devoted to the topic of sockets, which are used for communication across the
Internet. With the knowledge you get from this part of the book, you will be able to write your own Internet client or server
software, and you will literally be able to talk to the world!

Part V: The Glue-- Per|

No book on Linux programming would be complete without devoting some space to Perl. Perl is alanguage that is rapidly gaining
favor as one used for all the odd jobs that face a programmer. It is especially agile in bringing together data from many different
sources, processing it, and generating output suitable for further analysis or import into other systems. With its integrated support
for CGI, SQL databases, and powerful parsing capabilities, it's a natural fit for Linux.

Chapters 20 and 21 cover general Perl topics, introducing you to Perl and then teaching you how to use it to manipulate your data.
Chapters 22 and 23 conclude with coverage of CGI programming with Perl, and SQL database access from Perl.

Part VI: Graphical Interfaces With X

The X Window System, the dominant GUI in Linux, isapowerful and exciting envi-ronment for writing GUI programs. In this
section, you will learn two different ways of doing so: Perl/Tk and Gnome._Chapter 24 covers perl/TK and Chapter 25 covers
Gnome.

Part VII: Putting It All Together

There are some concepts that | want to present to you that do not fit neatly into any other part because they are applicable to
everything you have done. These topics are presented in Part V11. The part begins with Chapter 26, which covers CV S—a powerful
tool for managing your projects and aiding collaboration on them. Chapter 27 covers security, which is one of the most important
topicsthat any Linux programmer must face. Finally, you will learn about some ways to improve the performance of your code on

Linux in Chapter 28.
Part |: Shell and Basic Tools

Chapter List

Chapter 1: Introducing the L inux Programming Environment

Chapter 2: Introducing Shell Programming

Chapter 3: Working with Regular Expr essions

Chapter 4: Introducing Emacs

Chapter 5: Under standing Linux Data Files and Scripts
Chapter 1. Introducing the Linux Programming Environment

Overview



Welcometo the Linux programming environment! This chapter introduces you to some of the basic concepts of programming in
Linux—how Linux thinks about the world. These are concepts that you will read about in more detail later in the book. This chapter
also shows you how to find help when you need it. You'll find information about online manual pages, info pages, Perl program
documentation, and Internet resources here.

Basic Linux Programming Concepts

The programming environment in Linux is one that follows one of the design philosophies of Linux itself. That is, you are given
many small components that you can assemble in any way you wish to solve your task.

As an example, you have a C preprocessor, alinker, an assembler, and a compiler. If you want, you can call these all manually to
build your program. Many people, however, prefer to just let the gce front-end automatically handle those details.

Y ou may observe, as you start programming in Linux, that a number of the tools are command-line based. Thisis correct, but there
isareason for it: It is much easier to reuse and automate command line tools than GUI tools. In fact, there are several GUI
environ-ments that provide you with a graphical interface to these command line tools.

The C-development environment on Linux consists of the C-development tools (compiler, linker, etc.), an optional project
management utility (make), an editor or IDE (Emacs), and analysis tools (gdb). People who work in large groups or require
archiving may also use a source code control system (CVS).

There are also afew other pieces of the puzzle. These are actually present on every platform, but you may not be aware of them.
Oneisthe C library. On Linux, the C library provides everything from basic string functions, such as strcpy(), to functionsto
access the system’ s database of users. The C library system consists of both alibrary to be linked into your programs and a set of
header files.

Development with Perl is similar, although Perl programs require no compilation. Therefore, there is no compiler, and little need
for a project management utility in Perl.

Next we will look at the Linux design and how it differs from Programming in the Windows 95 and 98 environments.
Linux Design

If you are new to the Linux platform, there are several important distinctions that | would like to mention in regard to its design.
Some other operating systems, particularly other POSIX systems, might have many of these in common. However, if you are
accustomed to programming in Windows 95 or 98 environments, you might find significant differences here:

e Linux is multitasking. Y ou can create multiple threads and processes at once. Y ou can never assume that yoursisthe only
instance of the program running; both the same user and other users may be running other copies of it. There-fore, you have to
be careful to synchronize accessin some situations.

e Linux isatrue multi-user system. This means that there are security measures involved to isolate one user’ s files from another.
Y our programs will not be able to modify or replace any file on the system as they can on some other platforms, unless they
are running as the superuser (root).

e Linux hastimesharing. Timesharing means that there can be several userslogged in to the system at once, or that a single user
may be logged in more than once. People may use technologies such astelnet or X to log on to the system remotely. Thus your
programs need to be aware that they may be executed by several users simultaneously.

For simple programs, these differences are irrelevant. If you are writing an editor, for instance, you most likely don't care about
timesharing or multitasking, since the system is handling all these details for you. But what if you are working with a database or
some other shared resource? In this case, you have to synchronize with other processes to make sure that no two processestry to
writeto the file or database at once. This might mean synchronizing with other copies of your own program or with other
programs.

Linux hasarich history. Linux isdesigned to work like UNIX, an operating system that’s been around since approximately 1970.
Over the years, UNIX has evolved significantly. It turns out that one key aspect of the design on UNIX—giving the user small
components and then assembling them as desired—is one of the most useful aspects of Linux. It underlies not just shell scripting, but
also shared library systems and widget libraries for the X Window System.

Linux Documentation

One of the most important things about being a programmer in any environment is to know where to turn when you need
information. This book can be the first place to look for many questions. If you can’t find the answer you need within these pages,

4



you can look in the array of online documentation that comes with any Linux system.

Back in the early days of UNIX, the system shipped with volumes upon volumes of bound documentation—dry reference material,
with few examples, filling up entire bookshelves. The modern descendents of these books are called manpages (short for “manual
pages’ from the defunct paper editions). In this chapter, you'll learn about these and other forms of documentation on your Linux
system.

If you get stuck and need to ask someone for help, you can check out various Internet resources. Some common ones include
Usenet newsgroups, Web sites, online chat areas, and more. The Internet is the primary vehicle for communication for
development on Linux itself, and you can find archives of discussions on everything from kernel design to selections of standard
pathnames, because most development work is done openly.

In some cases, people use the phrase, “the source is the documentation.” Because Linux comes with complete source code, if you

ever have a question that no docu-mentation can answer for you, you can go directly to the source code for the operating system to
find out. While preparing material for this book, for instance, | referred to the source code many timesto find out specific details of

behavior in Linux.
M anpages
In Linux and UNIX systems, manpages are the mainstay of reference information. These pages are primarily reference material,
and one manpage exists for virtually every shell command, system call, library function, configuration file, and daemon on the
system. The entries in manpages often presuppose knowledge about the topic they’ re documenting and contain few examples, so
you'll need some other material—such as this book—to help you with the information that you won't find in the manpages.
Manpages in Linux are separated into eight sections, each with a specific general topic:
* Section 1 covers shell commands and user-level programs.
* Section 2 documents system calls.
* Section 3 documents C and C++ library calls and macros.
» Section 4 documents special files and devices that you might find as kernel modules, /dev entries, or /proc entries.
 Section 5 documents the format of various files on the system; mostly configuration files.
» Section 6 historically covers games, but these are increasingly covered under section 1.
« Section 7 describes languages (such as SQL) or mini-languages.
 Section 8 describes daemons or other sysadmin-only commands.
To look up a manpage, use the command man topic, where topic is the name of the command, program, function, macro, or file
about which you want information. For instance, to find information on Is, you can type man |s at the prompt. The man browser
searches for Isin each section, beginning with section 1 and pro-gressing to section 8, and then displays the first page that it finds.
Inthis case, thereis only one entry in section 1. (Notice that page is somewhat misleading; the man page for Isisreally four pages

long!)

In most situations, man invokes either more or lessto display the page. Y ou can press spacebar to advance a page, Enter to
advance aline, b to go back a page, and / to search. When done, you can press g to quit.

The front page |ooks something like Figure 1-1.



la

liat direciery conbenila

STHOPSIS

I= [OPTIOND. .. CEILED...

OESCRIPTION

List imforsation sbowt the FILEs Cthe current directory by
default),  Sort entries alphabetically if none of —cftuSUY
T ——nart.

~a. ==all
do not hide erbrien silarting with .

#, —alewost-all
do not List isplied . snd ..

Figure 1-1: Manual page of Is

Sometimes, you'll find that a given entry may occur in multiple sections. For instance, the kill entry is both acommand (in section
1) and asystem call (in section 2). If you are trying to find documentation on the system call, typing man kill will get you
documentation on the shell command. What you need to do is explicitly specify the manual section by typing man section topic
(e.g., man 2 kill). You'll be taken directly to the entry in that particular section of the manual. While you' re programming, you'll
probably use entries in sections 2 and 3 the most. If you have a configured printer in Linux, you can also get atypeset hardcopy of
any manpage on the system. To do so, you can use a command such as:

$man -t 2Kkill | Ipr

The -t instructs the system to generate PostScript output, which is then piped to the printer spooler. Y ou can also omit the section
number if it's unambiguous, as before with the |s example.

If you are unsure of where the information about a particular topic is located, you can perform a keyword search with -k. Consider
this example:

$ man -k syslog
syslog (2) - read and/or clear kernel message ring buffer; set console loglevel
syslog (3) - send messages to the system logger
Sys::Sydlog (3pm) - Perl interface to the UNIX syslog(3) calls
syslog (2) - read and/or clear kernel message ring buffer; set console loglevel
syslog (3) - send messages to the system logger
sydog (3pm) [Sys.:Sydog] - Perl interface to the UNIX syslog(3) calls
sydog-facility (8) - Setup and remove LOCALX facility for sysklogd
sydog.conf (5) - syslogd(8) configuration file
syslogd (8) - Linux system logging utilities.
syslogd-listfiles (8) - list system logfiles

This causes the manual browser to display alist of al the manpages whose name or topic contains the string “syslog.”

Aswith other Linux commands, the manpage browser comes with its own man-page, which you can view with by typing man
man at the command prompt. It gives you a summary of the command-line arguments available for the browser.

When referring to manpages, or even to specific functions, it is customary to include the section number. For instance, if | mention
printf(3), thisis areference to the printf function, as documented in section 3 of the manual. Such usage is common not only in this
book but in other literature, both online and off, as well.

Info Pages

Although manpages are the backbone for reference information in Linux for some time, some information is being presented
increasingly in GNU info format. GNU info is a hypertext format that is used to present information. It can be viewed in several
viewers including a standal one viewer named info, a special mode in Emacs or XEmacs, a CGl script to present info pages as
HTML, and various X-based interfaces. In this section, I’ ll discuss the standalone browser first, and then | will cover the mode as
it is seen in XEmacs; these are the two most popular methods of reading info pages.



If you run info with no arguments, by default it displays a main menu of available topics, as shown in Figure 1-2. Y ou can also
invoke info on a particular manual; for instance, info libc displays the documentation for the C library.

in.

] Hoda: Top
Thin [the Direciory nodel gives s menu of mojor topics. Typing “d”

reiurns bere. “q° exitm. "7 lisis all INFO commands. "h™ gives a

primer for Firsi-tisers. “mlexinfofRetuwrnd™ visits Tesinfe topic.

etc.
Or click seuse buiton # on o senu lies or cross referemce to select
-= PLERSE w0 DOCURENTADZON 1O THLS TREE. (See INFD tepie Firadl.) -——

In Debian Lirmx, Info “dir” sntries sre sdded with the commmral
“install-infa”, Please refer to install-infoiB) Tor ysage detpils.

= Henu: The List of sajor topics begina onm the next line.

Development
o Mutoconf: (mutoconfl.  Crante source code configuration meripin
w BFd: (LFd).

Thin im the top of the IRFO tree

The Binary File Descriptor Likrary.
Fi For g++ and Libges

Thes GHU debuegger.
T gger’ = internale.

Figure 1-2: Theinfo browser

When an info page is displayed, you’ll need to know how to navigate it. Table 1-1 lists the keys that you can use to navigate info

pages.

Table 1-1: Info Page Navigation Keys

I
Key

I
N
P
U

Enter

M

F

L
Spacebar

Backspace

Function

Takes you to the next page in sequence after the present one, as displayed at the top of the screen.
Takes you to the previous page in sequence after the present one, as displayed at the top of the screen.
Takes you up one level in the page hierarchy, as displayed at the top of the screen.

Displays whatever link is under the cursor at the time.

Follows alink from a menu, and asks you which entry to use.

Follows a standard cross-reference, which usually has “Note” listed close to it.

Displaysthe last page shown. Thisis similar to clicking a Back button in a web browser.

Scroll forward by one page.

Scroll backward by one page.

Navigation in the XEmacs version of the info browser is somewhat easier. Y ou enter the info browser by pressing Ctrl+H, theni or
by clicking the Info icon on the tool bar. XEmacs'sinfo browser is mouse-aware and presents an interface not unlike that of aweb
browser. Figure 1-3 shows the index page of XEmacs'sinfo browser.



Tha [ Usin fpps Oplioes Dufles Taoks ino
IS |

Grie aaw Hidir To TRLL LE i ol
Thln |tas ploescooy acds) glees & mean of majer
retacns hare, “o° amimw; P01 T
Frikes fow BLrdk-uimews, "0

o

Pr plinl meuss Bartas 7 oen 8

-—- FLEASE SIO SOCUMENTATION TO TELN TEEE. {34 IEPT Aapdo ELEMK.| -—-

W Celian Ligas, Cadd “SLE sAkEles A0d sdisd Wil She STl
rLamtali-inda Fissse Teder to teatell-iadock) oo asage Getedls.

Figure 1-3: Index page of XEmacs'sinfo browser

You can use al of the same keystrokes in the XEmacs info browser as you can in the standalone version. To follow alink, smply
middle-click it.

Tip If your mouse has only two buttons, you may simulate a middle-click by pressing both buttons at once.

Per| Documentation

The documentation for Perl is unique among that on Linux in that Perl isthe only language that providesits own documentation
system. Y ou may find some informa-tion through the regular manpages. The perl(1) manpage contains alisting of all the other
Perl pages. Of these, perlfunc(1) will probably be of the most practical use.

In addition to these pages, many Perl modules provide their own documentation in the form of a POD. Y ou can view these
modules’ manuals by typing perldoc modulename, which displaysthem in aformat similar to amanual page. Some Linux
distributions pre-format module POD documentation into manual pages for you, so you can access it via the standard manual page
interface as well.

Y ou can also look up information on a specific part of Perl. For example, you can type perldoc -f split to find documentation on the
built-in split function. Y ou can also type perldoc Data::Dumper to find information on the module by that name.

Program Documentation

Many programs also come with text filesor HTML files that describe their opera-tion. These files may contain anything from a
few brief usage hints to a complete overview of the principles behind the algorithms used inside the program. For programs you
install, these files are usually in the distribution source tarball. For distributions, you can generally find these filesin
/usr/doc/programname or /ust/share/doc/programname. Some distributions also include the program version in the doc path. You
may sometimes need to use zless to view this documentation, especialy if it's compressed.

If applicable, you also might check to see if a webpage exists for your program, and if so, check it for the documentation. Some
programmers prefer to keep some documentation there.

Sometimes, this documentation might come in PostScript format, indicated by a.ps extension. To view such documents, you’ll
need, at minimum, the GhostScript interpreter or a PostScript printer. Many people prefer to use gv to display thosefiles; itisa
nice front-end to the GhostScript interpreter.

| mentioned at the start of this chapter that you can sometimes treat source code as documentation. In such a case, you might want
to look at the files and direc-tories inside /usr/include, which includes the prototypes and definitions of the functions and macros
used in your C programs. Some other important directories in the areainclude /usr/include/sys, /usr/include/linux, and
Jusr/include/asm.

Y ou can also find source code for your programs. Exactly where thisis stored depends on your distribution; some may haveit on a
separate CD with separate packages; others, with the same CD asthe binaries. Y ou might also check inside /ust/src to seeif you
can find source code there. In particular, thisis atraditional place to put the sourcesto the Linux kernel, which can be a useful
resource.



One trick that is useful when you are trying to find a certain entry in either the header files or the kernel sourceisto change into
either /usr/include or /usr/src/linux and issue a command line such as grep sigaction “find . -type f* that will search for the specified
string in all files underneath the current directory.

I nternet Resour ces

As you work with programming on Linux, you'll find alot of resources are available on the Internet for your use. One of the most
famous of these isthe Linux Documen-tation Project (LDP), at http://www.linuxdoc.org/. The LDP contains alot of
documentation on Linux, most of which is geared at system administrators or end users instead of developers. However, several of
their HOWTOs and mini-HOWTOs do contain information that useful to programmers. Some distributions also contain this
information in either /usr/doc/HOWTO or /usr/share/doc/[HOWTO.

Several websites provide information on Linux and links to other information. Among the most well-known are http://linux.com/
and http://linuxlinks.com/. Y ou also can use a search engine such as http://www.google.com/ to find information about Linux from
the various corners of the Internet.

Additionally, you can find a number of newsgroups in the comp hierarchy relating to UNIX and Linux programming. Hereis alist
of some of these newsgroups that are relevant to some of the topics covered in this book:

 comp.os.linux.development.apps

 comp.os.linux.development.system

 comp.os.linux.x

* comp.security.unix

» comp.unix.internals

* comp.unix.programmer

* comp.unix.shell
If your news server carriesit, you can find a number of newsgroups in the linux hierarchy that could be helpful as well.
If you want to participate in real-time chat with other Linux programmers and users, point your IRC client (such as xchat or ircll if
you're using Linux) to the server irc.us.openprojects.net (for American servers; use irc.eu.openprojects.net for European servers, or
irc.openprojects.net for arandom server). Channels you may be interested in include #linpeople and #linuxhelp. There are also
distribution-specific channels such as #debian and #redhat.

Summary

In this chapter, you learned about the various sources of documentation in Linux. Specifically, you learned:
» Linux isbased on asystem of using small components that can be assembled in different ways to solve a given problem.

» Linux’'s programming environment fits this model by giving you many tools that you can use to write programs.

e Linux is multitasking, multi-user, and timesharing. Some programs may not care; other programs may take advantage of these
specific features.

* You can find reference information online on your Linux system.
» Manpages contain reference information and are separated into eight sections.
» A reference, such as printf(3), means to look up the printf function in section 3 of the manual.
» GNU info documentation is a hypertext format. Many different viewers exist, including a mode for Emacs and X Emacs.
»  Perl containsits own set of manpages, as well as a perldoc tool for looking up information on Perl or its modules.
*  Many programs ship with some documentation files, which distributions often package and place in /usr/doc or /usr/share/doc.

» Several resources are available on the Internet if you need additional information.



Chapter 2: Introducing Shell Programming
Overview

Welcome to the exciting world of programming under Linux! Throughout this book, I'll cover topics that range from Perl to
C++—languages you probably have heard of, if not used, even if your programming experience hasn’'t been under the Linux or
UNIX platforms. However, aplaceto start is certainly with shell programming.

Shell programming often can be the easiest way to accomplish some simple tasks, such as finding data, some simple data
manipulations, file management, and so on. Furthermore, as you learn about programming with the shell, you also learn about
many of the commands that are available in Linux. These commands can be used with equal ease at both the interactive command
line and a shell script.

In this chapter, you'll be introduced to Bash, the most popular shell in Linux. Then | discuss redirection and piping, two powerful
ways to combine Linux utilities to achieve powerful solutions. Next, I'll cover variables, useful both for saving keystrokes and
storing data for later usage, and functions, which enable you to combine commandsin more powerful ways. Finally, | go into loops,
conditionals, and shell utilities, which document ways to use flow control in your programs and other common utilitiesin your
scripts.

Quick Introduction to Bash

When you log on to your Linux machine or open an xterm, chances are that your default shell is Bash. Bash isthe GNU Project’s
shell. The GNU Project is a part of the Free Software Foundation that is responsible for many of the programming tools you’ll be
using on Linux. If you have experience with other shells, you may be interested to know that Bash is a derivative of the Bourne
shell but adds many features from Korn, and even a few from csh. If you are unsure whether or not your shell is Bash, you can
type at the shell prompt:

$ echo $BASH_VERSION
2.02.1(1)-release

If you get a version number displayed on your screen, such as 2.02.1(1)-release in this example, you know that you are running
Bash. If instead you get an error message or no version number, you probably are running a different shell. To invoke Bash, you
can generally type:

$ exec /bin/bash

As you know by now, you can type commands at a Bash command line and the shell will execute them for you. Thisisonly a
small part of Bash's functionality, however. In addition to this, Bash provides functionality for shell scripts. These scripts are, in
their simplest form, just collections of commands that are run one after another—a way to automate repetitious tasks. However,
the capabilities of scripts don’t end there. Shell scripting isa simplistic programming language in itself, and combined with the
shell utilitiesin Linux, can enable you to craft solutions to some problems in aremarkably short amount of time.

Creating a script

Thisisagood timeto learn how to create a shell script. Thefirst step isto open a script file in your favorite editor. If you have
experience with Linux, you aready may have an editor with which you're familiar; feel freeto useit. If you're new to Linux
editors, you can try the Emacs editor; alittle experience with it now could come in handy when you get to the Chapter 4,
“Introducing Emacs.”

Suppose you want to hame your file myscript. To edit the file with Emacs, type this at the shell prompt:
$ emacs myscript

Depending on which version of Emacs you have, and whether or not you are running in X (the graphical interface system used in
Linux), Emacs will either start in your terminal or bring up another window in X. Either way, you're ready to begin typing in the
script. Type the following:

#!/bin/bash

echo Hello!

echo Thisis my first script with Bash.
echo Press Enter to exit.

read

10



Now, you're ready to save. To do this, press C-x C-s, that is, hold down the Ctrl key and press X, and then do the same for S. (You
can actually hold down the Ctrl key and press the other two in that order.) Emacs will save the file. Now, exit Emacs with C-x C-c.

When you're back at the prompt, you can now test your script:
$ sour ce myscript
Hello!
Thisismy first script with Bash.
Press Enter to exit.

If al iswell, the above should appear on your screen. After you press Enter, the script will exit. If you get an error message,
double-check that you typed in the script exactly as shown here.

Generally, you don’t use the source command to execute a script but it can be useful in some situations. Usually, you will want to
mark your script executable. This sets a flag telling the operating system that the script can be executed as a program.

If you don’t mark it executable, but try to run it, you get the following error:

$ ./myscript
bash: ./myscript: Permission denied

To mark the script executable, use the chmod command:
$ chmod a+x myscript
Now, you can try executing the script:
$ ./myscript
Hello!
Thisismy first script with Bash.
Press Enter to exit.
Thistime, the script works!
To summarize, here are the steps for creating a Bash script:
1. Load thefile into your favorite editor.
2. Make sure that thefirst line of the script is: #!/bin/bash.
3. Save the script and exit the editor.
4, Mark the script executable with chmod a+x scriptname.
5. You can now run the script with ./scriptname.

Tip When you want to run an executable or script stored in your current directory (as opposed to one that comes with the
system), you will want to use ./ in front of the name. The reason is that the current directory (signified by the period)
isgenerally not in the list of directories searched for when running a program (specified in the PATH variable). This
is because explicitly including the current directory in PATH can be a security risk. Therefore, you need to specify
the directory when running these programs. As a shortcut, you can simply use the period to specify the current
directory instead of having to type out the entire path to the executable.

Bash startup
When aBash session isinvoked, the shell can execute a shell script for you automatically. Many programmers use these to set
some options such as, what the shell prompt should be, how frequently new e-mail should be checked, or even how many
programs should run when logging in. A whole system of scripts can be executed with Bash at startup. The primary one is named

.profile.

If you create a shell script and save it with the name .profile, it will be executed every time you log in. Sometimes this script may

11



not be executed when you want it to, such as when you run Bash in an xterm. In that case, you can set a symbolic link to point
.bashrc sto .profile with this command:

$In -s .profile .bashrc

Return values

Whenever you run acommand at the Bash command prompt or in a script, this program has a return value (also known as an exit
code). Thusfar, you probably have not had a need for examining this return value. However, many constructsin Bash take
advantage of it. The return valueis used in if statements, for instance, to determine whether a certain action should be taken. It can
also be used to determine when to run other commands.

Y ou may use echo $? to display the exit code from the last command to run. Table 2-1 shows how the codes can be interpreted.

Table2-1: Exit Codesand Their M eanings

Exit Code M eaning
L
0 The program terminated successfully.
1-127 The program terminated with an error condition. Some programs assign a specific meaning to their

return codes, so you may be able to find more information by looking up the specific return code in
the documentation for the program.

128 or above The program was terminated by a signal. The exit code, minus 128, indicates the signal nhumber that
terminated the program.

Let’slook at some examples. When a program finishes successfully, it should return a successful value (zero) to the shell asin the
following example:

$ls/proc

1 2 4 529 9222 ksyms  dabinfo
12011 2066 4685 544 976 loadavg sound
13192 2067 4686 551 bus locks  stat
1372 2108 4687 556 cmdline  meminfo swaps
1452 2111 482 5812 cpuinfo  misc sys
1453 2177 499 615 devices modules tty
15 2220 501 618 dma mounts  uptime
1622 24293 506 640 filesystems net version
1623 25497 509 650 fs parport

16231 25499 513 651 ide partitions

16234 25561 517 652 interrupts pci

16285 26000 518 653 ioports rtc

17008 26004 519 817 kcore SCSi

17010 3 520 818 kmsg self

$ echo $?

0

In this example, you can see that |s performed itstask normally; that is, it displayed alist of files asis customary. No errors
occurred, so running echo $? caused a zero to be displayed, indicating successful execution.

However, sometimes things can go wrong. For example, you might specify an invalid filename or directory after typing Is. When
this happens, |s can't find the information to display, and thus returns an error code. Here' s an example of what happens when Is
encounters an error.

$ Is/proc/some-nonexistant-filename

12



Is: /proc/some-nonexistant-filename: No such file or directory
$echo $?
1

Thistime, the exit code was 1, indicating an error. At this point, your script might take some special action because of the
problem. Depending on the script, this action might include aborting the script, calling some special subroutine to clean up after
the error, displaying a special message, or even simply ignoring the error.

Simple command combinations

When you want to run a series of commands, you give them to Bash one per line either at the prompt or in a script. Asyou get into
more complex shell scripting, however, you'll find that more powerful ways of chaining commands together become useful.

Chaining with the Semicolon

The simplest way to chain two commands together is with the semicolon. When you combine two commands with the semicolon,
Bash acts as if you typed them at the prompt, or in a script, one per line.

Asan example, first try two separate commands at the prompt:

$ Is/dev/hda*

/dev/ihda /dev/hdal3 /dev/hdal8 /dev/hda4 /dev/hda9
/dev/hdal /dev/hdald /dev/hdal9 /dev/hda5
/dev/hdalO /dev/hdal5 /dev/hda2 /dev/hdab
/dev/hdall /dev/hdal6 /dev/hda20 /dev/hda7
/dev/hdal2 /dev/hdal7 /dev/hda3 /dev/hda8

$ echo Done.

Done.

As expected, Bash executes your first command, and then your second. If you know that you will want to execute the second right
after the first, you can combine them with a semicolon as follows:

$Is/dev/hda*; echo Done.

/dev/inda /dev/hdal3 /dev/hdal8 /dev/hda4 /dev/hda9
/dev/hdal /dev/hdald /dev/hdal9 /dev/hda5
/dev/hdalO /dev/hdal5 /dev/hda2 /dev/hdab
/dev/hdall /dev/hdal6 /dev/hda20 /dev/hda?
/dev/hdal2 /dev/hdal?7 /dev/hda3 /dev/hda8

Done.

When you press Enter to send the command to the shell, Bash runs both commands, one after the other, before returning to the
prompt.

More than two commands can also be used in this fashion. In fact, there is no fixed limit on the number of commands that can be
chained together with the semicolon. Y ou might choose to use three commands on one line, asin following example:

$ echo Starting.; Is/dev/hda*; echo Finishing.
Starting.

/dev/hda /dev/hdal3 /dev/hdal8 /dev/hdad /dev/hdad
/dev/hdal /dev/hdald /dev/hdal9 /dev/hdab
/dev/hdalO /dev/hdal5 /dev/hda2 /dev/hdab
/dev/hdall /dev/hdal6 /dev/hda20 /dev/hda7?
/dev/hdal2 /dev/hdal? /dev/hda3 /dev/hda8
Finishing.

Asdiscussed earlier, Bash executes each command, one at atime.
Conditional Chaining
Although combining commands with a semicolon can be useful at the shell prompt, it ssmply provides another option for

something already present in the shell script language. There are more options for combining commands. Thefirst oneisa
Boolean OR operation, which means that the second (and subsequent) command should be executed only if the prior one fails. If

13



you have multiple commands, the effect isto continue until one command succeeds or the end of the commands is reached.

The second option is a Boolean AND operation, which means that the second (and subsequent) command should be executed only
if the prior one is a success. In this case, the effect isto continue until one command fails or the end of the command is reached.

Y ou must use the double-pipe symbol to execute the Boolean OR. This command is frequently used to emit an error message
when something fails, as in the following example:

$Is-l /proc/foo || echo Thelsfailed.
Is: /proc/foo: No such file or directory
Thelsfailed.

$echo $?

0

In this case, the Is command returned an error. Therefore, Bash proceeds to the next command, the echo. Incidentally, this one
returns true. The entire statement takes on the return value of the last command, so echo $? displays the return value from the
previous echo command.

Recall that the || will continue executing commands until one of them is successful. In the next example, the final command is not
executed because of this behavior:

$1s-l /proc/foo || echo Thelsfailed. || echo Bye
Is: /proc/foo: No such file or directory
Thelsfailed.

Thistime, the Isreturns failure, as before. The first echo invocation is then called to display its message. The echo command, of
course, has no trouble doing that, so it returns a success code. Because success is reached, there is no need to execute the final
echo command.

If |s succeeds, none of the following commands are executed. In the following example, because Isis a success, it isthe last
command run:

$ls-I /proc/tty || echo Thelsfailed. || echo Bye

total O
dr-xr-xr-x 2root root 0 Jul 24 20:13 driver
-r--r--r-- lroot root 0 Jul 24 20:13 drivers
dr-xr-xr-x 2root root 0 Jul 24 20:13 Idisc
-r--r--r-- 1lroot root 0 Jul 24 20:13 Idiscs

Essentially, Bash will continue executing commands with the OR operator, trying to find one that works, and when such a
command is found, it doesn’t execute any more commands until the next line.

In contrast, the AND operator will continue executing commands but will stop after one fails as in the following example:

$ls-d/* && Is-d /usr/* & & Is/usr/fool* & & echo done
/bin  fetc [initrd /mnt /tmp  /vmlinuz.old

/boot /floppy /lib /proc fusr

/cdrom /ftp  /lost+found /root /var

/dev /home /massl  /sbin /vmlinuz

lusr/A3  /ust/games Jusr/local Jusr/share
Jusr/X11R6 /usr/i486-linuxlibcl /usr/lost+found /usr/src
/usr/bin  /usr/include /usr/man

/usr/dict /usr/info usr/openwin

Jusr/doc  /ust/lib /usr/shin

Is: lusr/foo/*: No such file or directory

Thistime, the first two |s commands were a success. If you use the || operator, execution will stop after the first Is command
returns a successful result. However, with the & & operator, execution proceeds on to the third Is command. This one looks for a
nonexistent file, and returns an error code. Because of that, the echo command is never executed.

Y ou might also consider combining the two operators. The rules for doing so can be a bit confusing at first, but a quick example
shows the most popular usage for doing so:

14



$1s/proc/foo & & echo It Worked || echo Failure
Is: /proc/foo: No such file or directory
Failure

In this example, you are executing a command (1s). If this command is successful, one action istaken; if it's unsuccessful, another
action is taken.

To ensure that you get the expected results you should try using both operators with a valid Is command. In the following example,
thelsis successful, so the first echo is executed; because it is successful, the second is skipped:

$ls/proc & & echo It Worked || echo Failure
1 182 204 236 bus kmsg pci

103 185 205 237 cmdline  ksyms  scsi
105 192 206 238 cpuinfo loadavg self
113 195 207 239 devices locks  dabinfo
118 196 208 240 dma meminfo  stat
121 197 214 241 fb misc swaps
13 198 215 280 filesystems modules sys
144 199 216 281 fs mounts  tty

149 2 217 3 ide mtrr uptime
162 200 218 4 interrupts net version
172 202 219 557 ioports  parport

176 203 226 apm kcore partitions

It Worked

Y es, the command did work as expected. However, you might note that the above command works exactly the same as:

$if Is/proc; then echo It Worked; else echo Failure; fi
1 182 204 236 bus kmsg pci

103 185 205 237 cmdline  ksyms  scsi
105 192 206 238 cpuinfo loadavg self
113 195 207 239 devices locks  dlabinfo
118 196 208 240 dma meminfo  stat
121 197 214 241 fb misc swaps

13 198 215 280 filesystems modules sys
144 199 216 281 fs mounts  tty

149 2 217 3 ide mtrr uptime

162 200 218 4 interrupts net version
172 202 219 563 ioports  parport

176 203 226 apm kcore partitions

It Worked

Many programmers will readily identify this form as being more similar to other structured programming languages, and rightly
so. Perl (and to alesser extent, C) supports something resembling the syntax of the first form.

Caution Although these two commands work the same in the preceding examples, they do not in some cases. In
particular, if the first echo were replaced by a command that failed, both the echo and the final command would
be executed. Therefore, in non-trivial situations, the if syntax is generally preferable because it avoidsthis
problem.

The following two commands are not identical. The first will proceed to announce failure; the second will remain quiet after
displaying the output:

$ls/proc & & false|| echo Failure

1 182 204 236 bus kmsg pci

103 185 205 237 cmdline  ksyms  scsi
105 192 206 238 cpuinfo loadavg self
113 195 207 239 devices locks  dabinfo
118 196 208 240 dma meminfo  stat
121 197 214 241 fb misc swaps

13 198 215 280 filesystems modules sys

15



144 199 216 281 fs mounts  tty
149 2 217 3 ide mtrr uptime
162 200 218 4 interrupts net version
172 202 219 564 ioports  parport

176 203 226 apm kcore partitions
Failure

$if Is/proc; then false; else echo Failure; fi
1 182 204 236 bus kmsg pCi

103 185 205 237 cmdline  ksyms  scsi
105 192 206 238 cpuinfo loadavg self
113 195 207 239 devices locks  dlabinfo
118 196 208 240 dma meminfo  stat
121 197 214 241 fb misc swaps
13 198 215 280 filesystems modules sys
144 199 216 281 fs mounts  tty
149 2 217 3 ide mtrr uptime
162 200 218 4 interrupts net version
172 202 219 565 ioports  parport

176 203 226 apm kcore partitions

Both commands successfully executed Is. The first command then executed the false command, which is a simple program that
always returns an unsuccessful return value. Instead of ending there, this command went on to display Failure even though thels
was a success. This behavior is probably a bug. The second command executed the same Is, and the same fal se command.
However, it skips the echo if the Isis successful, regardless of the result of the false command. Thisis probably the desired
behavior.

Wildcards
Shell scripts frequently need to be capable of processing groups of files at once. Linux shells provide a capability of specifying
multiple files at once by giving a particular pattern. These files that match the pattern are then specified as if they had been typed
on the command line. Wildcards are the special characters used to form these patterns. The entire operation of specifying groups of
filesin thisway is often referred to as globbing.

Each wildcard has a special meaning; that is, it can represent certain characters. Table 2-2 lists the most common wildcards and
explains their meaning and usage.

Table 2-2: Common Wildcards

Character M eaning Example

* Matches zero or more characters. *.c matches the a.c, asdf. ¢, and even .cfiles.

? Matches exactly one character. Letter9?.txt matches Letter90.txt, Letter9s. txt,

Letter9A.txt, and Letter9..txt, but not
Letter95A..txt.

[...](character class) Matches exactly one character from the Letter9[ A13].txt matches only Letter9A.txt,
characters specified between the Letter91.txt, and Letter93.txt. No other files
brackets. match.

[...](character range) Matches exactly one character from the Letter9[a-c1-3].txt matches Letter9a.txt,
range(or ranges) of characters specified Letter9b.txt, Letter9c.txt, Letter91.txt,
between the brackets. Letter92.txt, and Letter93. txt. No other files

match.

[~...](Negated character class Matches exactly one character that does Letter9["9a-c1-2].txt matches any files that
or range) not occur in the specified ranges or would normally match the Letter9?. txt pattern
characterslisted. except for the files Letter99.txt, Letter9a. txt,

16



Letter9b.txt, Letter9c. txt, Letter91.txt, and

Letter92.txt.
{1} Alternation; matches exactly one of the Letter{ 90,92,ABC} .txt matches only the files
given substrings. Letter90. txt, Letter92.txt, and LetterABC.txt.

Quoting and escaping

In some situations, you may prefer to avoid having the shell interpret the wildcards, variables, or other special characters that may
occur on your command lines. Bash provides you with ways to indicate that these items should not be treated as normal characters,
without special meaning.

There are two methods for doing this. The first method, quoting, enables you to enclose whatever items you want to be taken
literally inside either single or double quotes. The second method, escaping, enables you to place a backslash immediately before
the character that you wish to be taken literally.

Y ou use two characters for quoting: “ and ‘. The double-quote character is a bit weaker than the single-quote character; the double-
guote permits some special characters to function as they normally do. The single quote is stronger and prevents nearly everything
from functioning. Let’s examine a situation in which the single quote is more useful than the double quote, which is shown in the
following example:

$ echo hi >“Test File”
$ls-I Test File
Is: Test: No such file or directory
Is: File: No such file or directory
$ls-1“Test File’
-rw-rw-r-- 1 username username 3 Jul 23 09:08 Test File
$rm*“Test File"

Thefirst line generates afile named Test File (note the space) and places the word “hi” into it. The second lineis an attempt to
display information about the file. However, it doesn’t work. In this situation, the space character is special! It acts as a separator
between files, so Bash tells|s that it should act upon two separate files: Test and File. Obvioudly, thisisn’t quite going to work
right.

Next, the third command places the filename inside double quotes. Thistime, Bash does not split the name into two files, so Is
looks for information on only onefile. Similarly, with the rm command, the file must be placed in quotesin order for it to function

properly.

A key difference between  and * lies with variable interpolation, which will be discussed in the Variables section later in this
chapter. The* character prohibits variable interpolation, while the “ character does not. This means that the dollar signis not safe
inside strings quoted with the double quote. Here's an example of that behavior:

$ echo “ Path: $PATH”

Path: /usr/local/bin:/usr/bin:/bin:/usr/bin/X 11:/usr/games
$ echo ‘Path: $PATH’
Path: $PATH

Because of this, many Bash programmers prefer to use single quotes for safety unless they have a specific reason to use double
guotes.

An alternative to quoting is escaping. Escaping can provide some benefits;, when you use escaping for a particular character, you
always know that it is effective. A problem occurs when a string being quoted must contain the quote character itself; in such a
Situation, escaping must be used.

Escaping is done in Bash by inserting a backslash before the special character. Y ou don’t need to enclose the entire string in
guotes. However, every special character must be escaped. Here is an example:

$ echo hello > “ Another Test File”
$ls-l Another Test\ File
Is: Another: No such file or directory

17



Is: Test File: No such file or directory

$Is-lI Another\ Test\ File

-rw-rw-r-- 1 user user 6 Jul 23 09:25 Another Test File
$rm Another\ Test\ File

Thefirst line uses quoting as before. In the second line, one of the space characters is escaped. Because of this, Islooks for two
instead of three files; however, thisis still not the desired behavior. When both spaces are escaped, the entire name is passed to Is
intact just as with the quotes. Similarly, the filename is passed intact with rm.

Unlike quotes, you should not escape things that are not specia characters. Some sequences, such as \n, have special meanings and
generate other charactersin some situations.

Sometimes you may need to combine escapes with quotes. A typical example occurs when the string that is quoted contains an
exampl e of the quote character itself. This situation can be extremely confusing at a shell prompt, so create the following script
and name it quotetest.sh:

#!/bin/bash

echo ‘Mary said, “I don’t use DOS.”’

After you have saved the file, you need to mark it executable, and then run it:
$ chmod a+x quotetest.sh
$ ./quotetest.sh

Jquotetest.sh: line 3: unexpected EOF while looking for matching
Jquotetest.sh: line 4: syntax error: unexpected end of file

Bash obviously had some terrible trouble trying to deal with that statement. What happened is that the apostrophe in “don’t” was
treated as the end of the quoted string. When Bash encountered the quote after the word DOS, it considered it to be the start of a
new quoted string. However, this new string was never terminated.

The solution to this messis to use escaping. Should you stay with single quotes and escape the apostrophe, or should you use
double quotes and escape them inside the string as necessary? Well, recall earlier that the single quotes are stronger than the
double quotes. One of the things that this applies to is escaping; escaping the apostrophe isn't going to help. You can try this at the
prompt:

$echo‘Test\ Test2
Test\ Test2

The backslash was taken literally, and did not cause Bash to actually print the embedded quote. The solution is to use double-quote
characters. Modify the script so it looks like this:

#!/bin/bash
echo “Mary said, \"I don't use DOS.\"”
Thistime, the string is set off by double quotes. When you try running that script, you finally get the desired result:

$ ./quotetest.sh
Mary said, “I don’t use DOS.”

The script looks a bit complicated, but really it’s not tricky once you understand what’ s going on. Everything is as we' ve seen
before, prior to the first backslash. The\” sequence tells Bash to print a quote character rather than use that character to indicate
the end of the string. Because the string is delimited by double quotes in this situation, the embedded apostrophe doesn’t pose any
challenge. Towards the end of the string, there is another \” sequence. Once again, thisinforms Bash to print the character instead
of interpreting it as the end of the string. Finally, the last character on the line is the character that closes the string.

Another option for all of thisisto use escaping. Y ou could useit like this:

$ echo Mary\ said\ \"I\ don\'t\ use\ DOS.\"
Mary said, “I don’'t use DOS.”

18



This option is somewhat less intuitive; you must escape every space and quote character. However, the effect is the same as with
the double quotes used above.

Y ou should be familiar with two more specia cases. Firgt, if you want to send a backslash itself to a program, you need to escape
it. Thisis done asfollows:

$ echo Good \\ Morning
Good \ Morning

$ echo Good \ M orning
Good Morning

Notice that the backslash didn’t appear in the output from the second command. The reason isthat Bash interpreted it as escaping
the following space. In the first command, however, it did appear.

One other reason you might want to use the backslash is to enable you to split long lines into pieces. If you choose to do that, the
backslash must be the very last character on the line preceding the one with which it should be combined. Here' s an example
script.

#1/bin/bash

Is -l /dev/hdal /dev/hda2 /dev/hda3 \
/dev/hda4 /dev/hdab /dev/hdab \
/dev/hda7

In this script, the long Is command line was split into three parts to make editing and manipulation easier. When the script isrun,
Bash will combine the three parts back into a single line before executing the command.

Comments

Y ou can insert comments into your Bash script. Like Perl, comments begin with a# symbol. Any text from that symbol until the
end of the line isignored by Bash. Here are some examples of using comments in a script.

#1/bin/bash
# ThisisaBash script.

Is/proc # Display alist of filesin /proc
cat /proc/devices # Display the devices on the system
cat /proc/interrupts # Display alist of IRQs

Commenting is avery important part of writing programs. As you move into writing larger and larger ones, comments will play an
increasingly important role in maintainability and documentation. This idea applies to shell scripts as well.

Note Theline beginning with #! at the start of each shell script has special meaning for the operating system. It indicates the
name of the interpreter used to execute the script. However, because # is the Bash comment character, Bash ignores the
line when the fileis processed as a script. Therefore, it does not bother Bash when your script is executed.

Redirection and Piping

One of the most powerful features of the Linux shell is being able to combine programs in unique, arbitrary ways to form solutions
to new problems. The primary ways of doing this are with redirection and piping.

Redirection enables you to take that which would normally be displayed on the terminal and saveit into afile. Also, input
redirection enables you to substitute the contents of a file for what would normally be typed on the keyboard.

Piping enables you to chain commands together, sending the output from one command into the input of the next. All the
commands run simultaneously, processing the data at once, as parts of a pipe.

These different capabilities are made possible by the Linux notion of the standard input and output for programs. By default, each
program has three standard file handles: standard input, standard output, and standard error. Standard input is used for reading
data, and reads data from the terminal’ s keyboard by default. Standard output is used for displaying normal data, and is connected
to the terminal’ s screen by default. Standard error is used for displaying error messages, and is also connected to the terminal’s

19



screen by default.
Table 2-3 contains a summary of these three I nput/Output (1/0O) channels.

Table 2-3: Standard Input/Output Channels

L
Name Shorthand Number Purpose Default Connection
L
Standard Input Stdin 0 Reading input for a program The terminal’s keyboard
Standard Output stdout 1 Displaying normal output The terminal’s display
from a program
Standard Error stderr 2 Displaying error messages The terminal’ s display
or warnings of unusual
Situations
L

Output redirection

The most straightforward way to use redirection isto use output redirection. Inits simplest form, the messages that normally go to
the screen instead are placed into afile.

$Is-l /dev/hda*

brw-rw---- 1root disk 3, 0Feb2221:41 /dev/hda
brw-rw---- 1root disk 3, 1Feb2221:41 /dev/hdal
brw-rw---- 1root disk 3, 10 Feb 22 21:41 /dev/hdal0
brw-rw---- 1root disk 3, 11 Feb 22 21:41 /dev/hdall
brw-rw---- 1root disk 3, 12 Feb 22 21:41 /dev/hdal2
brw-rw---- 1root disk 3, 13 Feb 22 21:41 /dev/hdal3
brw-rw---- 1lroot disk 3, 14 Feb 22 21:41 /dev/hdal4
brw-rw---- 1root disk 3, 15 Feb 22 21:41 /dev/hdal5
brw-rw---- 1root disk 3, 16 Feb 22 21:41 /dev/hdal6
brw-rw---- 1root disk 3, 17 Feb 22 21:41 /dev/hdal?
brw-rw---- 1root disk 3, 18 Feb 22 21:41 /dev/hdal8
brw-rw---- 1root disk 3, 19 Feb 22 21:41 /dev/hdal9
brw-rw---- 1root disk 3, 2Feb2221:41 /dev/ihda2
brw-rw---- 1root disk 3, 20 Feb 22 21:41 /dev/hda20
brw-rw---- 1root disk 3, 3Feb2221:41 /dev/ihda3
brw-rw---- 1root disk 3, 4Feb2221:41 /dev/ihdad
brw-rw---- 1root disk 3, 5Feb2221:41 /dev/hdab
brw-rw---- 1root disk 3, 6 Feb2221:41 /dev/ihdab
brw-rw---- 1root disk 3, 7 Feb2221:41 /dev/ihda?
brw-rw---- 1root disk 3, 8Feb2221:41 /dev/ihda8
brw-rw---- 1root disk 3, 9Feb2221:41 /dev/ihda9

$Is-I /dev/hda* > listing

Thefirst Iscommand displays along listing of the filesin /dev beginning with hda. Asis customary, thislisting is displayed on the
screen. The second command requests the same listing, this time redirecting the output into the file named listing. The greater-than
symbol ( >) isthe output redirection operator; it requests that the items that would normally go to standard output be sent to the
specified file. To be specific, it is changing what standard output is connected to; normally, it's connected to the terminal’s
display. Here, standard output is connected to the file named listing. Y ou can verify that thisfile actually contains the data that
normally would have been sent to the screen by using the cat command:

$cat listing
brw-rw---- 1root disk 3, 0Feb2221:41 /dev/nhda
brw-rw---- 1root disk 3, 1Feb2221:41 /dev/ihdal

20



brw-rw---- 1root disk 3, 10 Feb 22 21:41 /dev/hdal0
brw-rw---- 1root disk 3, 11 Feb 22 21:41 /dev/hdall
brw-rw---- 1root disk 3, 12 Feb 22 21:41 /dev/hdal2
brw-rw---- 1root disk 3, 13 Feb 22 21:41 /dev/hdal3
brw-rw---- 1root disk 3, 14 Feb 22 21:41 /dev/hdal4
brw-rw---- 1root disk 3, 15 Feb 22 21:41 /dev/hdal5
brw-rw---- 1root disk 3, 16 Feb 22 21:41 /dev/hdal6
brw-rw---- 1root disk 3, 17 Feb 22 21:41 /dev/hdal?
brw-rw---- 1root disk 3, 18 Feb 22 21:41 /dev/hdal8
brw-rw---- 1root disk 3, 19 Feb 22 21:41 /dev/hdal9
brw-rw---- 1root disk 3, 2Feb 22 21:41 /dev/ihda2
brw-rw---- 1root disk 3, 20 Feb 22 21:41 /dev/hda20
brw-rw---- 1root disk 3, 3 Feb2221:41 /dev/ihda3
brw-rw---- 1root disk 3, 4Feb2221:41 /dev/ihdad
brw-rw---- 1root disk 3, 5Feb2221:41 /dev/ihdab
brw-rw---- 1root disk 3, 6 Feb2221:41 /dev/ihdab
brw-rw---- 1root disk 3, 7 Feb2221:41 /dev/hda?
brw-rw---- 1root disk 3, 8Feb2221:41 /dev/hda8
brw-rw---- 1root disk 3, 9Feb2221:41 /dev/ihda9

And, indeed, the contents is as expected. Now, let’s move on to something a bit stranger—standard error redirection. Notice that,
in the preceding table, standard output and standard error are sent to your screen by default. However, when dealing with
redirection, they are not treated the same:

$Is-I /dev/hda* /dev/nonexistant
Is: /dev/nonexistant: No such file or directory
brw-rw---- 1root disk 3, 0Feb2221:41 /dev/ihda

brw-rw---- 1root disk 3, 1Feb2221:41 /dev/hdal
brw-rw---- 1root disk 3, 10 Feb 22 21:41 /dev/hdal0
brw-rw---- 1root disk 3, 11 Feb 22 21:41 /dev/hdall
brw-rw---- 1root disk 3, 12 Feb 22 21:41 /dev/hdal2
brw-rw---- 1root disk 3, 13 Feb 22 21:41 /dev/hdal3
brw-rw---- 1lroot disk 3, 14 Feb 22 21:41 /dev/hdal4
brw-rw---- 1root disk 3, 15 Feb 22 21:41 /dev/hdal5
brw-rw---- 1root disk 3, 16 Feb 22 21:41 /dev/hdal6
brw-rw---- 1root disk 3, 17 Feb 22 21:41 /dev/hdal7
brw-rw---- 1root disk 3, 18 Feb 22 21:41 /dev/hdal8
brw-rw---- 1root disk 3, 19 Feb 22 21:41 /dev/hdal9
brw-rw---- 1root disk 3, 2Feb2221:41 /dev/ihda2
brw-rw---- 1root disk 3, 20 Feb 22 21:41 /dev/hda20
brw-rw---- 1root disk 3, 3 Feb2221:41 /dev/ihda3
brw-rw---- 1root disk 3, 4 Feb 22 21:41 /dev/ihdad
brw-rw---- 1root disk 3, 5Feb2221:41 /dev/hdab
brw-rw---- 1root disk 3, 6 Feb2221:41 /dev/ihdab
brw-rw---- 1root disk 3, 7 Feb2221:41 /dev/hda?
brw-rw---- 1root disk 3, 8Feb2221:41 /dev/hda8
brw-rw---- 1root disk 3, 9Feb2221:41 /dev/ihda9

$1s-I /dev/hda* /dev/nonexistant > listing
Is: /dev/nonexistant: No such file or directory

Notice how everything except the error message was redirected thistime. Thisis because Is sent the error message to standard
error instead of standard output. The message is still displayed on the screen because you did not redirect standard error.

Recall from Table 2-3 that standard output is file descriptor number 1 and standard error is number 2. With this knowledge, you
can tell Bash what to do with each specific file descriptor.

$1s-I /dev/hda* /dev/foo > listing 2> listing.err
$cat listing.err
Is: /dev/foo: No such file or directory

In this example, the standard output is sent to the file listing. If you don't specify a particular file descriptor with the > operator,
file descriptor 1 (standard output) is assumed. However, you also sent standard error (file descriptor 2) to the file listing.err. Now,

21



displaying listing.err shows the message that before managed to escape to the screen. If you were to run cat listing, you would see
the same file listing as you have seen before.

In this particular case, you ended up with separate files for standard output and standard error. Sometimes it’ s preferable to have
both standard output and standard error sent to asingle file. Y ou can do this by redirecting standard output, and then telling Bash
to send standard error to standard output.

$1s-I /dev/hda* /dev/foo > listing 2>& 1
$cat listing
Is: /dev/foo: No such file or directory
brw-rw---- 1root disk 3, 0Feb?2221:41/dev/hda

brw-rw---- 1root disk 3, 1Feb2221:41 /dev/ihdal
brw-rw---- 1root disk 3, 10 Feb 22 21:41 /dev/hdal0
brw-rw---- 1root disk 3, 11 Feb 22 21:41 /dev/hdall
brw-rw---- 1root disk 3, 12 Feb 22 21:41 /dev/hdal2
brw-rw---- 1root disk 3, 13 Feb 22 21:41 /dev/hdal3
brw-rw---- 1root disk 3, 14 Feb 22 21:41 /dev/hdal4
brw-rw---- 1root disk 3, 15 Feb 22 21:41 /dev/hdal5
brw-rw---- 1root disk 3, 16 Feb 22 21:41 /dev/hdal6
brw-rw---- 1root disk 3, 17 Feb 22 21:41 /dev/hdal?7
brw-rw---- 1root disk 3, 18 Feb 22 21:41 /dev/hdal8
brw-rw---- 1root disk 3, 19 Feb 22 21:41 /dev/hdal9
brw-rw---- 1root disk 3, 2Feb 22 21:41 /dev/ihda2
brw-rw---- 1root disk 3, 20 Feb 22 21:41 /dev/hda20
brw-rw---- 1root disk 3, 3 Feb2221:41 /dev/ihda3
brw-rw---- 1lroot disk 3, 4Feb2221:41 /dev/hda4
brw-rw---- 1root disk 3, 5Feb2221:41 /dev/hdab
brw-rw---- 1root disk 3, 6 Feb2221:41 /dev/hdab
brw-rw---- 1root disk 3, 7 Feb2221:41 /dev/ihda?
brw-rw---- 1root disk 3, 8Feb2221:41 /dev/hda8
brw-rw---- 1root disk 3, 9Feb2221:41 /dev/ihda9

In this case, you capture the output from |s exactly asit appeared on the screen previously. The 2>& 1 syntax tells Bash to send that
which would normally go to file descriptor 2 (standard error) to file descriptor 1 (standard output). Because file descriptor 1
aready was redirected to afile, standard error will be sent to that file as well.

This operation is so common that Bash has a special shortcut for it. This command is the same as the one you just ran:
$Is-I /dev/hda* /dev/foo & > listing
That is, &> filenameis equivalent to > filename 2>& 1.

All of the commands you have been dealing with are destructive to the output file. That is, if the output file (listing or listing.err in
these examples) already exists, the existing contents will be erased and replaced by the new contents. That is the desired behavior
but sometimesit is preferable to leave the existing contents intact and simply append data to the end of afile. Bash provides a
special redirection operator that opens the filesin append mode. That is, if there is datain the file, the new data that is entered will
be added to the end of the file, after any data already there.

The basic operator for an append is>. In many situations, you will find that shell scripts start with the > operator to ensure that any
existing datain afileis cleared. Then, the > operator is used to add data after that. Of course, if your script iswriting to afile that
already exists and you want to preserve that data, you should not use the > operator:

$1s-I /dev/hdal > listing
$Is-I /dev/hda[2-9] > listing
$cat listing

brw-rw---- 1root disk 3, 1Jul 4 1998 /dev/hdal
brw-rw---- 1root disk 3, 2Jul 4 1998 /dev/hda2
brw-rw---- 1root disk 3, 3Jul 4 1998 /dev/hda3
brw-rw---- 1root disk 3, 4Jdul 4 1998 /dev/hdad
brw-rw---- 1root disk 3, 5Jul 4 1998 /dev/hdab
brw-rw---- 1root disk 3, 6Jul 4 1998 /dev/hdab
brw-rw---- 1root disk 3, 7Jul 4 1998 /dev/hda7

22



brw-rw---- 1root disk 3, 8Jul 4 1998 /dev/hda8
brw-rw---- 1root disk 3, 9Jul 4 1998 /dev/hda9

In this example, you can tell what is going on. The first Iscommand wrote its one line of output to the file. Then, the second
command wrote its eight lines of output to the same file, appending them after the first. Thus, the data from the second command
is appended to the file that already existed.

Y ou can also use appending with redirection. For example, you can use 2>filename to send standard error to afile. Y ou may aso
use a command such as this:

$1s-l /dev/hdal0 /dev/foo > listing 2>& 1
$cat listing

brw-rw---- 1root disk 3, 1Jul 4 1998 /dev/hdal
brw-rw---- 1root disk 3, 2Jul 4 1998 /dev/hda2
brw-rw---- 1root disk 3, 3Jul 4 1998 /dev/hda3
brw-rw---- 1root disk 3, 4Jul 4 1998 /dev/ihdad
brw-rw---- 1root disk 3, 5Jul 4 1998 /dev/hda5
brw-rw---- 1root disk 3, 6Jul 4 1998 /dev/hdab
brw-rw---- 1root disk 3, 7Jul 4 1998 /dev/hda7
brw-rw---- 1root disk 3, 8Jul 4 1998 /dev/hda8
brw-rw---- 1root disk 3, 9Jul 4 1998 /dev/hda9

Is: /dev/foo: No such file or directory
brw-rw---- 1root disk 3, 10Jul 4 1998 /dev/hdal0

Thus, you may redirect both standard output and standard error to be appended to afile.

Input redirection

So far, we have been dealing with the data that programs generate. Y ou can also control the data that is fed into programs with
Bash. Consider the smple program called rev. Thetask of rev isto take whatever you type at the keyboard, reverse it, and then
display it on-screen. When you are done with rev, press Ctrl+D to exit. A sample session with rev might go like this:

$rev

Hello.

.olleH

Linuxisgreat!

Itaerg si xuniL

1234 one two threefour
ruof eerht owt eno 4321
Ctrl+D

So, rev 1ooks like a somewhat boring little program. After all, if you can type something forwards, you can probably type it
backwards.

But imagine that you have three megabytes of text that you need to reverse for some odd reason. Perhaps it would be easier to
redirect theinput for rev than to type it in. As an example, we'll ook at the /proc/devicesfile. Thisfile may be quite different on
your system but should have essentially the same form.

$ cat /proc/devices
Character devices:
1 mem
2 pty
3ttyp
4 ttyS
5cua
6lp
7 vcs
10 misc
14 sound
128 ptm
136 pts



Block devices:
1 ramdisk
2 fd
3ided
8«
22 idel
$rev </proc/devices
:secived retcarahC
mem1
ytp 2
pytt 3
Sytt 4
auch
pl 6
scv 7
csim 01
dnuos 41

mtp 821stp 631

:secived kcolB
ksidmar 1

df 2

Oedi 3

ds8

ledi 22

Y ou may also note at this point that instead of running cat /proc/devices, you can use cat < /proc/devices. The cat program happens
to accept filenames on its command line; not all do.

It isalso possible to redirect the input and output from a program at the same time as in following example:

$grep -v devices: </proc/devices > filel
$rev <filel >file2

$ cat file2

mem 1

ytp 2

pytt 3

Sytt 4

auch

pl 6

scv 7

csim 01 dnuos 41

mtp 821stp 631

ksidmar 1
df 2

Oedi 3
ds8

ledi 22

In this example, the grep -v statement removes two lines: those containing the word “devices:”. The result is then saved into afile.
Thisfileis sent through rev and saved in another file, which isfinally displayed by cat. When you send data from one program to
another like this, pipes are generally a better solution than redirection; they completely avoid the need to have temporary files to
hold the output of one program before sending it to the input of the next.

Pipes

Pipes enable you to take the output from one program and send it directly to the input of another. No temporary files are created
with pipes. Rather, both programs are invoked and run at the same time. When the first generates some output, it is fed directly

24



into the second asinput. No files are created by the process because the data is sent directly from one process to the next.

Pipes are used with the vertical bar character (which may appear as either abroken or solid vertical bar on your keyboard). To redo
the previous example with pipes, it would look like this:

$grep -v devices: </proc/devices|rev | cat
mem 1

ytp 2

pytt 3

Sytt 4

auc 5

pl 6

scv 7

csim01

dnuos 41

mtp 821stp 631

ksidmar 1
df 2

Oedi 3
ds8

ledi 22

Note that the call to cat is actually unnecessary; unless you redirect or pipe it away, the output from rev will go to standard outpuit.
Here are some more practical uses of piping:

$Is/dev/hd* | wc-|
168

This command counts the number of filesin /dev that begin with the letters hd. When Isis run in this fashion, it generates alist of
the matching files, one per line. Thisisthen fed to wc -l, which displays a count of the lines of output—168 in this case. Therefore,
168 files match /dev/hd*.

Y ou can also use this to replace text. In the following example, the device filename is capitalized:
$Is-l /dev/ihda* | sed shda/HDA/

brwxrwx--x 1root disk 3, OJul 4 1998 /dev/HDA
brw-rw---- 1root disk 1Jul 4 1998 /dev/HDA1

brw-rw---- 1root disk , 10 Jul 4 1998 /dev/iHDA10
brw-rw---- 1root disk , 11 Jul 4 1998 /dev/iHDA11
brw-rw---- 1root disk , 12 Jul 4 1998 /dev/iHDA12
brw-rw---- 1root disk , 13Jul 4 1998 /dev/iHDA13
brw-rw---- 1root disk , 14 Jul 4 1998 /dev/iHDA14
brw-rw---- 1root disk , 15Jul 4 1998 /dev/iHDA15
brw-rw---- 1root disk , 16 Jul 4 1998 /dev/iHDA16
brw-rw---- 1root disk , 17 Jul 4 1998 /dev/iHDA17
brw-rw---- 1root disk 18 Jul 4 1998 /dev/HDA18
brw-rw---- 1root disk 19Jul 4 1998 /dev/HDA19

2Jul 4 1998 /dev/HDA2
20 Jul 4 1998 /dev/HDA20

brw-rw---- 1root disk
brw-rw---- 1root disk

WWWWWWWWwWwWwwWwwWwwwwwwwww

brw-rw---- 1root disk , 3Jul 4 1998 /dev/iHDA3
brw-rw---- 1root disk , 4Jul 4 1998 /dev/iHDA4
brw-rw---- 1root disk , 5Jul 4 1998 /dev/HDAS
brw-rw---- 1root disk , 6Jul 4 1998 /dev/IHDAG6
brw-rw---- 1root disk , 7Jdul 4 1998 /dev/iHDA7
brw-rw---- 1root disk , 8Jul 4 1998 /dev/IHDAS
brw-rw---- 1root disk 9Jul 4 1998 /dev/HDA9

The sed command here is used to match a particular pattern in text, and replace it with something else. In this case, hdais replaced
with HDA. Much more powerful patterns are also possible with grep and sed by using regular expressions, which are discussed in
detail in Chapter 3, “Working with Regular Expressions.” As a quick introduction, the following command removes much of the

25



display:
$Is-l /dev/ihda* | sed ‘g .* [MA-Z]* I

Jul 4 1998 /dev/hda

Jul 4 1998 /dev/hdal
Jul 4 1998 /dev/hdal0
Jul 4 1998 /dev/hdall
Jul 4 1998 /dev/hdal2
Jul 4 1998 /dev/hdal3
Jul 4 1998 /dev/hdal4
Jul 4 1998 /dev/hdal5
Jul 4 1998 /dev/hdal6
Jul 4 1998 /dev/hdal?
Jul 4 1998 /dev/hdal8
Jul 4 1998 /dev/hdal9
Jul 4 1998 /dev/hda2
Jul 4 1998 /dev/hda20
Jul 4 1998 /dev/hda3
Jul 4 1998 /dev/hda4
Jul 4 1998 /dev/hda5
Jul 4 1998 /dev/hdab
Jul 4 1998 /dev/hda7
Jul 4 1998 /dev/hda8
Jul 4 1998 /dev/hda9

In this particular case, sed was used to trim much of the output of Is -1, leaving only the date. Don’t worry about the particular sed
command for now; you'll understand how to use regular expressions when you read Chapter 3.

Here' s one more example of piping before moving on. This example takes four commands in a pipeline:

$Is/dev/hda[1-9] | sed s/dev/.. | tac | rev
9adh
8adh
7adh
6adh
5adh
4adh
3adh
2adh
ladh

Examining this command, first you see an Is command that displays the first nine hda files. Next, the leading /dev/ from each
filename is stripped off by the sed command. Then, the lines (not their contents) are reversed by tac; that is, instead of going from
1t0 9, the order of the lines now goes from 9 to 1. Finally, the rev command reverses the contents of each line.

Command substitution

Another powerful feature of Bash isits capability of transforming the output from commandsinto arguments for others. One usage
of thisisto operate on a selected set of files. Consider this example:

$less grep -l Linux *.txt
The text between the backticksis treated as a command to execute. In this case, grep -l is used to display alist of all .txt files
containing the word Linux. Because it occurs inside the backticks, each name is then converted to be an argument to less, which is
used to display the files. Y ou might prefer to use cat instead of lessto generate a display of the contents of all the matching files
combined.

In Bash, you can a so use a $(command) syntax to take the place of the ‘command” syntax. This method enables nesting; that is,
you can use command substitution inside another command substitution. For instance, it might be used like this:

$ cat $(grep -l Linux $(find . -name “ *.txt"))

26



In this case, the find program is used to find al of the .sh filesin or beneath the current directory. Then, grep searches through
them and generates alist as before, and finally, the content in al the files are displayed.

You'll learn more uses for loops when they are introduced later in this chapter, but for now, here’'s an example:
for FILE in *.txt; do mv $FILE “echo $FILE | sed ‘ /txt$/html/’*; done

In this case, for any files with an extension of .txt, this extension is changed to .html.
Variables

Now that you have learned many of the basic elements of the Bash syntax, it’stime to move on to data storage. Of course, data can
often be stored in files. However, thisis inconvenient. Like any programming language you'll find on Linux, variables are
necessary in order to accomplish more complex tasks.

Assigning values to avariableis quite simple. The following example stores the word listing in the variable FILENAME.
$ FILENAME-=listing

By convention, all caps are used for variable names, but thisis not a requirement that isimposed on you by Bash. To access the
contents of avariable, you simply add a dollar sign to the front of it. Y ou can then use this virtually anywhere—on command lines,
in strings, and even in the middle of some filenames.

$ FILENAME=listing
$ echo SFILENAME
listing

$ DEVICEDIR=/dev
$I1s$DEVICEDIR/hda* > $FILENAME
$cat SFILENAME
/dev/hda

/dev/hdal

/dev/hdal0
/dev/hdall
/dev/hdal2
/dev/hdal3
/dev/hdal4
/dev/hdal5
/dev/hdal6
/dev/hdal?7
/dev/hdal8
/dev/hdal9

/dev/hda2

/dev/hda20

/dev/hda3

/dev/hdad

/dev/hdab

/dev/hdab

/dev/hda7

/dev/hda8

/dev/hda9
$rm$FILENAME

In this example, the value listing is assigned to the variable FILENAME. Then, DEVICEDIR is set to hold the value /dev. Now,
there isa command that says this:

Is$DEVICEDIR/hda* > $FILENAME

When Bash encounters thisline, it first replaces $DEVICEDIR with /dev and $FILENAME with listing. The command is then
executed asis customary.

If you ever wish to remove a variable, you can use the unset command. This command will delete the variable and the memory
holding its contents.

27



$MYVAR=myvalue
$echo SMYVAR
myvalue

$unset MYVAR
$echo SMYVAR

Another interesting effect of variables is delayed expansion of wildcards. Consider the following example, which illustrates this
behavior.

$ MYVAR=/dev/hda*

$echo“$MYVAR”

/dev/hda*

$ echo SMYVAR
/dev/hda /dev/hdal /dev/hdal0 /dev/hdall /dev/hdal2 /dev/hdal3 /dev/hdal4 /dev/hdals /dev/hdal6 /dev/hdal? /dev/hdal8
/dev/hdal9 /dev/hda2 /dev/hda20 /dev/hda3 /dev/hdad /dev/hdab /dev/hdab /dev/hda? /dev/hda8 /dev/hda9

When you use a variable inside double quotes, asis done with the first echo command in this example, the variable isinserted
verbatim; its contents are not examined further by the shell. However, when it is used outside of the quotes, the shell is free to
examine its contents. In this case, the shell expands the wildcard to afile list. If you prefer to store the namesin the variable right
from the start, you can use command substitution to your advantage. For example:

$MYVAR="echo /dev/hda*"

$echo“$MYVAR”
/dev/hda /dev/hdal /dev/hdal0 /dev/hdall /dev/hdal2 /dev/hdal3
/dev/hdal4 /dev/hdal5 /dev/hdal6 /dev/hdal7 /dev/hdal8
/dev/hdal9 /dev/hda2 /dev/hda20 /dev/hda3 /dev/hdad /dev/hdab
/dev/hda6 /dev/hda? /dev/hda8 /dev/hda9

$echo SMYVAR
/dev/hda /dev/hdal /dev/hdal0 /dev/hdall /dev/hdal2 /dev/hdal3
/dev/hdal4 /dev/hdal5 /dev/hdal6 /dev/hdal7 /dev/hdal8 /dev/hdal9
/dev/hda2 /dev/hda20 /dev/hda3 /dev/hdad /dev/hdab /dev/hdab
/dev/hda? /dev/hda8 /dev/hda9

Thistime, both expressions display the same text. Thisis because MY VAR held the list of filenames from the start. This behavior
can be useful if, for instance, the set of files that might match a given pattern could change during the execution of a script.

Environment variables

Thereisaspecial type of variable known as an environment variable. These variables are specia in two ways: 1) they can be
passed to your script by other programs, and 2) any programs that are invoked from your script inherit the environment variables.

Identifying an environment variable in Bash is hot always easy. Y ou can set avariable asis done normally. If you want it to be
flagged as an environment variable, you then need to use the export command:

$ LESS=-i
$export LESS
$echo $LESS
-i

In this example, you can tell that even after a variable has been exported, it can still be accessed as any other variable in Bash. The
lessfile viewer will look for an environment variable named LESS. If it can find one, it will process the options contained in it.
Here, the -i option tellslessto treat all searches as case-insensitive ones.

You can get alist of al variablesin the current context, whether or not they are marked as environment variables, by running set.
Thislist will contain a number of variables that you did not set explicitly. Some are set for you by Bash itself; others, by various
initialization scripts. Your own list may differ significantly from the one shown here:

$ et
BASH=/bin/bash

BASH_VERSINFO=([0]="2" [1]="02" [2]="1" [3]="1" [4]="release” [5]="alpha-unknown
-linux-gnu™)

28



BASH_VERSION="2.02.1(1)-release’

BIBINPUTS="~/bibtex’

CV SROOT=/home/username/cvsroot

DIRSTACK=()

DISPLAY=:0.0

EDITOR=/usr/binfemacs

EUID=1000

GROUPS=()
HISTFILE=/home/username/.bash_history

HISTFLESIZE=500

HISTSIZE=500

HOM E=/home/username

HOSTNAME=myhost

HOSTTY PE=alpha

LESS=-i

LOGNAME=username

MACHTY PE=al pha-unknown-linux-gnu

MAILCHECK=60

MINICOM="-| -c on’

MPAGE=-bL etter

OPTERR=1

OPTIND=1

OSTY PE=linux-gnu

PAGER=less
PATH=/home/username/bin:/usr/local/bin:
Jusr/bin:/bin:/usr/bin/X 11:/usr/games:

PILOTRATE=115200
PIPESTATUS=([0]="0")

PPID=32533

PS1="\h \W\$

ps2=">"

PA="+"

PWD=/home/username

SHEL L =/bin/bash

SHEL L OPT S=braceexpand:hashal | : histexpand:
monitor: history:interactive-comments:

emacs

SHLVL=1

TERM=xterm-debian

UID=1000

USER=username

WINDOWID=67108878
WMAKER_BIN_NAME=/usr/bin/X11/WindowM aker
WRASTER_COLOR_RESOLUTIONO=4
=cd

Thislist can serve as an excellent reference as you read through the next section on special variables; it presents some examples of
the contents of those variables.

Special variables

Bash defines numerous special variables. These variables areinitialized to special values by Bash; the values can then be used in
your script. Alternatively, some of them are set by you and cause Bash to act in special ways. Some of these variables do not
necessarily have special meaning to Bash but rather to other programs on the system. Finally, some do not act as true variables at
al, but they are till accessed with the traditional interface. Remember that to read the current value of any of these items, you
need to use the dollar signin front of them. Thisistrue even for strange looking ones; for instance, echo $$ isvalid to display the
pid of the current shell. Table 2-4 lists these variables.

Table 2-4: Bash Special Variables

29



Variable Name

0

From1to9

BASH

BASH_VERSION

BASH_VERSINFO

DISPLAY

EUID

HISTCMD

HISTFILE

HISTSIZE

HOME

30

Primary Access M ethod

Read

read

read

read

read

read

read

read

read

read

read

read

write

read

read

write

write

read

Description

Use this variable to get the Linux process ID of the
most recent process set to background

Contains all parameters to the current context. When
used in double quotes, evaluates to separate quoted
values, one for each parameter passed to the current
context.

Contains the number of parameters to the current
context.

Contains all parameters to the current context. If used
within double quotes, the result is a single parameter
containing all passed parameters, separated by spaces.

Containsthe Linux process ID of the current Bash
process.

Contains alist of the current option flags (from the set
command), one letter each, with no separation.

Contains the full path name of the current process
during initialization. When looking for mail, contains
the name of the current mail file. At all other times,
contains the final argument to the previous command.
Holds the name of the current process or script.

Contains the first nine parameters to the current script
or function.

Contains the full path name of the current shell.

A printable string that contains the version number of
your Bash version

Contains an array of information about the current
version of Bash.

Contains the name of and display

number on the machine on which X-based GUI clients
should display their interfaces.

Contains the numeric effective user 1D of the current
shell process.

Contains the numeric index of the current command in
the command history.

Contains the location of the file to hold the Bash
history; defaults to SHOME/.bash_history.

Specifies the maximum size of the command history.

Contains the full path name of the home directory for
the current user.



HOSTNAME

HOSTTYPE

IFS

LANG

LD_LIBRARY _

PATH

LD_PRELOAD

LINENO

MACHTYPE

MAIL

MAILCHECK

OLDPWD
OSTYPE

PATH

PPID

PS1

PWD

RANDOM

REPLY

read

read

write

write

write

write

read

read

write

write

read

read

write

read

write

read

read

read

Contains the short name of the current machine.

Contains the short name of the current machine’'s
architecture.

Holds the value of the Internal Field Separator. This
value isused for splitting up commands into their
component parts.

Indicates the current (or preferred) locale to programs
that support Linux internationalization. Assuch, it is
frequently used as an environment variable.

Specifies additional (colon-separated) locationsin
which to search when loading the shared libraries for
dynamically-linked executables.

Specifies alist (space-separated) of specific librariesto
be loaded into dynamically linked programs before any
others, including those specified by the program itself.
For security reasons, this specification can be
incompatible with setuid and setgid features

When used within a shell or function, contains the
offset in lines from the start of that shell or function.

Contains the GNU machine type identifier for this
machine

Informs you when new mail arrivesin a UNIX mbox-
style mailbox. If you want Bash to automatically
inform you, set this variable to point to the location of
that mailbox.

Contains the interval, in seconds, which indicates how
frequently the specified mailbox should be checked for
new mail.

Holds the name of the previous working directory.
Holds the name of the current operating system.

This variable holds a colon-separated list of directories
that should be searched for binaries when executing
Linux programs. Thisis generally an environment
variable.

The process | D of the current process's parent process.

This variable holds a string describing how to generate
the main prompt in Bash.

Contains the name of the current working directory.

Returns a different random value each time the
contents of this variable is accessed. The exact range of
the values returned isimplementation- dependant, so its
usefulness can be limited.

Contains the value of the data read from standard input
when accessed after the read command, unless a
different variable is specified to read.

31



SECONDS read Contains the number of seconds that elapsed since the
current shell process was invoked.

SHELLOPTS read Contains alist of the current shell options.

ulD read Contains the numeric real user ID of the owner of the
current shell process.
Functions

In addition to creating separate scripts to perform repetitive tasks, you can use functions within scripts (or even at the command
line) to minimize the need to retype code multiple times. Y ou must define Bash functions before you can use them.

These functions can take parameters just as shell scripts can. A key difference between the two is that the shell script generally
requires the invocation of a separate process to handle the script. Thus, the script cannot modify variablesin the current shell’s
context. Furthermore, there is overhead with starting another shell process.

On the other hand, sometimesiit is good to have a script that cannot modify variablesin the current shell. For instance, if the script
is acting almost as a complete program with its own internal variables, it's generally a good ideato keep it isolated from the
current shell.

A function is defined in a script as follows:

function MyFunc {
commandl
command?2
command3

}

Y ou can use this function later as you would use any other command. Y ou can also call it with arguments. The following examples
are valid waysto call the function:

MyFunc
MyFunc *.c
MyFunc /dev/hda*

Let’s create a sample function and corresponding script. Type the following code into your favorite editor, and save it as func.sh:
#1/bin/bash

function CountMatches {
echo -n “Number of matches for $1: “
Is$1 2>/dev/null | wc -|

}

CountMatches /dev/hda*
CountMatches /proc/*
CountMatches /foo/*

This particular script will execute, but it will not display the intended results—the number of files that match the given pattern.
Mark the script executable and run it:

$ chmod a+x func.sh

$ ./func.sh

Number of matches for /dev/hda: 1
Number of matches for /proc/1: 11
Number of matches for /foo/*: 0

Notice how the number of matches are not correct; you already know that there is more than one match for /dev/hda*. Also, the

text reported by the function does not match the pattern sent to it. Further investigation reveals the reason: the text passed to the
function is not quoted. Because the function looks at $1 (the first parameter) only, it should display one result.

32



Why then the count of 11 for /proc/1? The reason isthat /proc/1 is adirectory. Try looking at it yourself at a prompt:

$ls-l /proc/1

Is: /proc/l/exe: Permission denied
Is: /proc/l/root: Permission denied
Is: /proc/L/cwd: Permission denied

total 0
-r--r--r-- lroot root 0 Jul 26 05:47 cmdline
[rwx------ lroot root 0 Jul 26 05:47 cwd
-[-------- 1root root 0 Jul 26 05:47 environ
Irwx------ lroot root 0 Jul 26 05:47 exe
dr-x------ 2root root 0 Jul 26 05:47 fd
pr--r--r-- 1root root 0 Jul 26 05:47 maps
-rW------- 1root root 0 Jul 26 05:47 mem
[rwx------ lroot root 0 Jul 26 05:47 root
-r--r--r-- lroot root 0 Jul 26 05:47 stat
-r--r--r-- lroot root 0 Jul 26 05:47 statm
-r--r--r-- lroot root 0 Jul 26 05:47 status

Y ou can expect permission denied errorsin this listing when running this particular command. In thislisting, if Isis given the
name of a directory, by default, it displays the contents of the directory instead of the directory itself.

Now, perhaps you would like to fix the problems with the script. One way to go about that is to quote the pattern. Change your
script so it matches the following code:

#!/bin/bash

function CountMatches {
echo -n “Number of matches for $1: “
Is$1 2>/dev/null | wc -|

}

CountMatches ‘/dev/hda*’
CountMatches ‘/proc/*’
CountMatches ‘ /foo/*’

Because the patterns are now quoted, they won't be expanded until asked for with $1 in the function itself. Try running this new
script:

$ ./func.sh

Number of matches for /dev/hda*: 21
Number of matches for /proc/*: 724
Number of matches for /foo/*: 0

The value for /dev/hda* now appears correct. However, there is still something strange going on with /proc/*. A quick
examination shows that there are not really as many filesin /proc as indicated:

$ls/proc

1 173 196 233 bus kmsg pci

103 176 197 237 cmdline  ksyms  scsi
105 183 198 247 cpuinfo loadavg self
113 186 199 248 devices locks  dabinfo
118 187 2 249 dma meminfo  stat
121 188 205 250 fb misc swaps
13 189 206 251 filesystems modules sys
134 190 207 252 fs mounts  tty
136 191 208 3 ide mtrr uptime
146 193 209 4 interrupts net version
156 194 210 400 ioports  parport

160 195 232 apm kcore partitions

If you run Is/proc/*, you will see the difference; when you use /proc/*, the shell explicitly mentions every entry in /proc, including

33



the directories. When a directory is explicitly givento s, Is displaysits contents. So, the result isthat Is is displaying much more
than is being asked for.

To avoid this, use Is -d, which tellsIs to display only the directory names. When you make this change, your func.sh should look
likethis:

#1/bin/bash

function CountMatches {
echo -n “Number of matches for $1: “
Is-d $1 2>/dev/null | wc -|
}
CountMatches ‘/dev/hda*’
CountMatches ‘/proc/*’
CountMatches ‘/foo/*’

Now, try running this modified script. Thistime, you should be getting correct results for each item as in the following example.

$ ./func.sh

Number of matches for /dev/hdar: 21
Number of matches for /proc/*: 84
Number of matches for /foo/*: 0

The results are now correct. However, note that there is no way to determine that an error occurred with the /foo/* pattern. You
can detect errors by making several modifications:

#1/bin/bash

function CountMatches {
MATCHES="Is-d $1 2>/dev/null | wc -I"
echo “$MATCHES’
if [ SMATCHES!=0] ; thenreturn O ; elsereturn 1; fi

}

function DispMatches {
if MATCHES="CountMatches “$1"" ; then
echo -n “Number of matches for $1: “
echo SMATCHES
else
echo “$1lisnot avalid pattern.”
fi

}

DispMatches ‘/dev/hda*’
DispMatches ‘/proc/*’
DispMatches * /foo/*’

There are several constructsin this script that you have not yet been introduced to. Several things about this new version of the
script should be noted. Firgt, the backtick operator is used twice to capture the output from a command: once in CountMatches to
capture the output of wc -1, and once in DispMatches to actually capture the output of the CountMatches function. Also, the
functionality to count the number of matches has been separated from the code to display this number in a pleasant way. The
reason for thisisthat some other function or code in the script might want to get a count of the matches without actually getting a
message to go along with it. With the separate functions, doing this becomes easy. Also, take special note of thisline:

if MATCHES="CountMatches “$1"" ; then
Thereisareason that $1 is enclosed in double quotes. If it were not in quotes, it would be expanded right there—in
DispMatches—before being passed to CountMatches. If this premature eval uation would occur, the result would be the same as

with the earlier bug; that is, CountMatches would generally report only one match.

Now, try running this script. Notice how it is able to detect the error with /foo/* thistime:

34



$ /func.sh

Number of matches for /dev/hda*: 21
Number of matches for /proc/*: 86
/fool* is not avalid pattern.

Now that the script works, you may be wondering why things are done in certain ways. For instance, why bother with capturing
the output from the CountM atches function when CountMatches could simply return the number of matches to the caller? The
reason is that the return call can return only an exit code that isin the range of 0 to 255 in Bash. If a pattern matches more than 255
files, this method yields incorrect results.

What about using some global variable for holding the number of matches? Perhaps CountMatches could set this variable and
DispMatches could read it. Although this option would work in this particular case, it is not agood ideain general. The reason is that
things can become tricky if global variables are used for communication, especially in larger scripts or programs. Y ou must always
remember to retrieve the value from the variable immediately, or it may be clobbered. Furthermore, if you wish to write arecursive
function for some reason, using globals for communication will probably not be an option.

Conditionals and L oops

There are many uses for various conditional expressionsin Bash. A conditional issimply alanguage construct that enables your
program to do one thing if a given expression istrue, and a different thing if the expression isfalse.

In Bash, you were introduced to a sort of lazy conditional: the & & and || operators. Although these can result in conditional
execution of commands, the operators in Bash specifically designed for the purpose are more powerful.

The cornerstone of the Bash conditionalsistheif ... fi clause. The Bash documentation provides aformal definition of it:
if list; thenlist; [ elif list; thenlist; ] ... [ elselist; ] fi
This definition, unfortunately, makes the statement look more difficult than it really is. An if statement can be very simple:

$if Is/foo; then echo Success.; else echo Failure,; fi
Is: /foo: No such file or directory
Failure.

In thisexample, if the call to Isis a success, then one message is printed. Otherwise, a different message is displayed. Thissimple
example shows all that there is to the basic usage of the if statement in Bash. Essentially, the return value of the test expression (Is
[foo in this case) is checked. If it indicates a successful completion, then the “then” clause is executed. Otherwise, the optional
“else” clauseis executed.

Using conditionals can get more complex if you need to nest your conditionals. Here' s one exampl e script:
#!/bin/bash

if [ -x /bin/foo]; then

echo “/binffoo exists and is executable. Exiting.”
elif [ -x /bin/bash ]; then

echo “/bin/bash exists and is executable. Exiting.”
elif [ -x /bin/sh]; then

echo “/bin/sh exists and is executable. Exiting.”
else

echo “Found no executable program.”
fi

In this script, the elif definesan “elseif” condition. That is, in this situation, Bash keeps trying each condition until it finds one that
istrue. If none of them are true, the final else clause is executed. Running this script produces the following output:

/bin/bash exists and is executable. Exiting.
Testing with [ ...]

In Bash, you typically need to test various items. In the previous example, the script tests to see whether certain files exist and are

35



executable. Sometimes, you may need to test for the existence of files. In other situations, you may want to compare two strings to
seeif they are equal.

There are two equivaent ways to perform this testing. One is to put the test expression inside [ ] characters. The other isto use the
test command. Both use the same syntax. As an illustration, the example in the previous section also works with test

#1/bin/bash

if test -x /bin/foo ; then

echo “/binffoo exists and is executable. Exiting.”
elif test -x /bin/bash ; then

echo “/bin/bash exists and is executable. Exiting.”
elif test -x /bin/sh ; then

echo “/bin/sh exists and is executable. Exiting.”
else

echo “Found no executable program.”
fi

The syntax of test is simple; it takes some options indicating what it should check, and returns an exit code indicating whether or
not the expression turns out to be true.

Table 2-5 shows the operatorsintestand [ ... ].

Table2-5: Test and [ ] Operators

I
Syntax Description
L

I expression Evaluatesto trueif the specified expression is false. This can be used to
negate any of the other tests.

-b filename Evaluatesto trueif the specified filenameis a block special device.

-c filename Evaluatesto trueif the specified filename is a character special device.

-d filename Evaluatesto trueif the specified filename is a directory

-efilename Evaluatesto trueif the specified filename exists, regardless of itstype.

-f filename Evaluatesto trueif the specified filenameis a normal file.

-g filename Evaluates to true if the specified filename has the setgid bit set.

-G filename Evaluates to true if the specified filename is owned by the same group as the
effective GID of the current process.

-k filename Evaluatesto true if the specified filename has the sticky bit set.

-L filename Evaluatesto trueif the specified filename is a symbolic link.

-n string Evaluatesto true if the specified string has a nonzero length.

-O filename Evaluatesto trueif the specified filename is owned by the same person as
the effective UID of the current process.

-p filename Evaluatesto trueif the specified filenameis a FIFO (named pipe).

-r filename Evaluatesto trueif the current user’s permissions are sufficient to read data

36

from the specified file.



-Sfilename

-t [fd]

-u filename

-w filename

-X filename

-z string

Expressionl -a expression2

Expressionl -0 expression2

filenamel -ef filename2

filenamel -nt filename2

filenamel -ot filename2

numberl —eq number2

numberl —ne number2

numberl —{e number2
numberl —{t number2

numberl —ge number2

numberl —gt number2
String
stringl = string2

stringl != string2

Evaluatesto true if the specified filename corresponds to a UNIX domain
socket.

Evaluatesto trueif the specified file descriptor correspondsto areal
terminal. The default for fd is 1 — standard output.

Evaluates to true if the specified filename has the setuid bit set.

Evaluatesto trueif the current user’s permissions are sufficient to write data
to the specified file.

Evaluatesto trueif the current user’s permissions are sufficient to execute
the specified file.

Evaluatesto trueif the specified string is zero-length.
Evaluatesto true if both specified expressions are al so true.

Evaluatesto trueif at least one specified expression is true; a binary or
operation.

Evaluatesto true if both specified file names correspond to the same inode
number on the same device.

Evauatesto trueif the first file's last modified date is newer than that of the
second.

Evauatesto trueif the first file's last modified date is older than that of the
second.

Evaluatesto true if numberl is numerically equal to number2.

Evaluatesto true if numberl is numerically different (not equal) than
number 2.

Evaluatesto true if numberl is numerically less than or equal to number2.
Evaluatesto true if numberl is numericaly strictly less than number2.

Evaluatesto true if numberl is numerically greater than or equal to
number2.

Evaluatesto true if numberl is numerically strictly greater than number2.
Evaluatesto true if the specified string has a nonzero length.
Evaluatesto trueif both strings are equal.

Evaluatesto trueif the strings specified are not equal.

case

The case command is used to select one option out of alist of alternatives based on the value of something. It can be thought of as
amore elegant replacement for some long lists of if ... elif statements. The basic syntax as defined in the Bash documentationis:

caseword in [ (pattern [ | pattern] ...) list;; ] ... esac

This definition looks somewhat confusing. Instead of worrying about it, here's an example script that you can type and save as
case.sh:



#!/bin/bash
echo -n “Enter your favorite Linux command: “
read

case “$REPLY” in
sed)
echo “sed is used for stream editing.”
echo “You can try this. echo Hi | sed di/j/”

grep | egrep)
echo “grep and egrep are used for pattern matching.”
echo “You can aso use regular expressions with egrep.”

bash)
echo “Bash isapopular shell under Linux.”

*awk)
echo “These tools are interpreters for the awk language.

*)
echo “I’'m not familiar with the $REPLY command “
echo “but here’ s what Bash knows about it: “
type $REPLY

esac

This script begins by prompting the user for a favorite Linux command. This command isread and stored in REPLY . Then,
depending on the command that is supplied, a special message is displayed. This is where the case comesin; it provides a set of
patterns (that use the same rules as wildcards) for checking the data.

For instance, if the supplied string matches sed, then the commands for sed (up until the double semicolon) are executed. If the
string matches either grep or egrep, then those commands are executed.

If the command matches the wildcard pattern *awk, then information about the awk interpretersis displayed. Finaly, if nothing
else matches, the * pattern isfound. Because * matches anything, and occurslast, it effectively acts as a default case if nothing else
matches. If this occurs, a message is displayed indicating that the script isn’t familiar with the

particular command. It then uses a Bash built-in command, type, to get some information about it.

Try the script afew timesto see how it works. Here are some sample sessions:

$ Jcase.sh

Enter your favorite Linux command: gawk
These tools are interpreters for the awk language.
$ /case.sh

Enter your favorite Linux command: egrep

grep and egrep are used for pattern matching.

Y ou can also use regular expressions with egrep.
$ Jcase.sh

Enter your favorite Linux command: less

I’m not familiar with the less command

but here’ s what Bash knows about it:
lessis/usr/bin/less

$ Jcase.sh

Enter your favorite Linux command: nawk

38



These tools are interpreters for the awk language.

Apparently, the case statement worked as desired in this example. It enabled the script to identify particular input options, and to
take appropriate action based on what was supplied.

while

The first looping construct to examine in Bash is called while. Like its counterparts, which go by the same name in other
languages, while will continue executing a piece of code until the exit condition turns false. In Bash, the syntax is defined as:

whilelist; do list; done

A simple exampleis reading input and acting upon it. Here is a sample session. Like before, you can use Ctrl+D to indicate that
you are done supplying input:

$whileread; do echo “You typed: $SREPLY”; done
I’m experimenting with while!

Y ou typed: I’'m experimenting with while!

gwerty

Y ou typed: qwerty

Ctrl+D

Y ou could aso do something more complex with awhile loop. Here is a script, based on the previous concept:
#!/bin/bash
echo “Type some text; press Ctrl+D when done.”

echo -n “Your input: “

while read; do
TEXT="echo “$REPLY" |rev’
echo “Reversed, your messageis: $TEXT”
echo -n “Your input:

done

The indentation used in this script is strictly optional. However, it is quite useful for larger scripts, as it makes the structure of the
script visually discernible. Running this script produces the following:

$ /while.sh

Type some text; press Ctrl+D when done.

Y our input: Good mor ning!

Reversed, your message is: !gninrom dooG
Your input: Linux isgreat!

Reversed, your messageis. !taerg i xuniL
Your input: Whileisinteresting.

Reversed, your message is. .gnitseretni si elihW
Your input: Ctrl+D

Y ou might notice that when you exit this program, the prompt appears directly after the “Y our input” message instead of on its
own line. Thisis because you used echo -n, which suppresses the automatic use of the newline character. The solution to the
problem isto print a newline after exiting the loop. This simple script modification will make the script look like this:

#!/bin/bash
echo “Type some text; press Ctrl+D when done.”

echo -n“Your input:

while read; do
TEXT="echo “$REPLY" |rev’
echo “Reversed, your message is: $TEXT”
echo -n “Your input:

done



echo
If you choose to run the script again, you will see that the prompt occurs at the normal position after exiting the script.
for

The for syntax is used to iterate over a predetermined list of items, executing specific commands for each one. The Bash
documentation defines the syntax as follows:

for name [ in word; ] do list ; done

Thisissimilar to the foreach syntax in some other languages. In Bash, the name refers to the name of a variable. For each itemin
the list, the specified variable will be set to hold that item. Then the given commands will be executed asillustrated by the
following example:

#1/bin/bash

for FILENAME in/dev/hda*; do
echo “| found the file $FILENAME”
done

When Bash evaluates this statement, it first expands /dev/hda* to the list of matching files. Then, for each file, FILENAME is set
to its name and the echo command is executed for the file. Running the script produces the following output:

$ /for.sh

| found the file /dev/hda

| found the file /dev/hdal
| found the file /dev/hdal0
| found the file /dev/hdall
| found the file /dev/hdal2
| found the file /dev/hdal3
| found the file /dev/hdal4
| found the file /dev/hdal5
| found the file /dev/hdal6
| found the file /dev/hdal7
| found the file /dev/hdal8
| found the file /dev/hdal9
| found the file /dev/hda2

| found the file /dev/hda20
| found the file /dev/hda3

| found the file /dev/hda4

| found the file /dev/hdab

| found the file /dev/hdab

| found the file /dev/hda7

| found the file /dev/hda8

| found the file /dev/hda9

You can aso use for to iterate over lists of arbitrary items. You don’'t have to restrict yourself to using only filenames:

$ for NAME in Jill Richard Sam Jane; do echo “Hello, SNAME.” ; done
Hello, Jill.
Hello, Richard.
Hello, Sam.
Hello, Jane.

Y ou can also use the for command to perform several operations on asingle set of files. Seeif you can determine what the
following script does:

#!/bin/bash

for FILENAME in “grep -I Linux Report-199[7-9].txt™; do
40



echo “Processing $FILENAME...”
a2ps -2 $FILENAME
mail -s “Contents of file SFILENAME” friend@example.com < $FILENAME
fax send 555-1234 $FILENAME
done

This short shell script is quite powerful. First, it selects those text reports from 1997 to 1999 that contain the word Linux in them.
Then, for al those files, it does the following:

 Displays a message on the user’s screen indicating the current status of the script.

«  Processesthe file with a2ps, which adds page borders, a filename, and reformats the text so that it prints on half as much
paper. Then thisfileis sent to the printer. (Note that a2psis an optional utility that you may havetoingall if it isn't available
by default on your system.)

e Sendsan e-mail to friend@example.com, the body of which is the contents of the file. The subject of this message is set to
“Contents of file,” followed by the name of thefile.

» SendsaFAX of the document to somebody at 555-1234.

So, by combining for with afew other shell constructs already covered, as well asafew basic Linux utilities, you have a solution for
some specialized document processing. Other optimizations and enhancements are possible as well. For instance, if you have a more
advanced FAX suiteinstalled, the FAX could be queued for background delivery. Also, you could opt to rename or move the files
after they have been dealt with. Y ou could use the output of find to search documents that are deep in the directory tree. All of this
can take place without any user interaction; it’s fully automated.

Shell Utilities

Y ou will find a number of useful shell utilities that you can use in your scripts or while programming. All of these have manpages
available on-line in your Linux system; to view the manpage, simply use man command, where command is the name of the
program for which you are looking for information. Some of these are implemented as shell built-ins; that is, the shell handles the
command for you, rather than a separate program to do so.

Many of them read from standard input and write to standard output. This means that they areideal for being combined with others
in apipeline. For instance, you could use:

cat somefile.txt | sort | uniq | tac

Thiswill read data from somefile.txt, sort it, remove the duplicates, and then invert the order of itslines. There are several other
useful toolsfor the shell; they are summarized in Table 2-6.

Table 2-6: Useful Toolsfor Shell Scripts

L
Command Purpose
L
awk Thisisan interpreter for the awk programming language.
Bash Starts up another shell process beneath the current one.
cat [file...] Reads from each specified file in order, displaying its entire contents to standard output.

The effect of thisisto concatenate the files together, hence the name. If no names are
specified, cat copies from standard input to standard outpui.

exec command [arguments.....]  Executes the specified program, with the given optiona arguments. This program replaces
the current shell. That is, the current shell ceases to exist once the program begins. When
the program exits, you will probably be logged off or your xterm closed.

find Selects files based on a search through directories for files with matching name,
modification dates, permissions, or other attributes. The manpage for find contains an

41



exhaustive description of its syntax.

grep / egrep Search inside of files for specific text or patterns. The egrep tool uses regular expressions
for searches, and on Linux, grep can use regular expressions as well.

gunzip Sends uncompressed data to standard output when compressed data is piped to gunzip.

gzip Reads data on standard input, and writes a compressed version to standard output. This
command can be used in a pipe. Normally, after the datais compressed, the pipeline ends;
the data will be saved to afile. This program can also work on separate files.

perl Invokes the interpreter for the Perl programming language.

rev Copies from standard input to standard output, reversing the order of the charactersin each
line of thefile.

sed Reads from standard input, makes some modifications to the data, and writes the result to
standard output; that isit’s a stream editor. Today, the most frequent use of sed is its pattern
replacement operator, g///.

tac Copies from standard input to standard output, reversing the order in which the lines appear
(but not the order of charactersin those lines).

tee Reads from standard input, and copies the data to multiple sources. It can write the datato
several filesas well asto standard output, for instance.

tr Performs basic transformations on data. For instance, the command tr A-Z a-z will convert
all capital letters to lowercase in itsinput. This command reads from standard input, makes
the modifications, and writes the result to standard outpui.

sort Reads from standard input, sortsthe linesin thefile, and writes the ordered data to standard
output.

uniq Removes duplicate lines from input. Y ou usually have to send the input through sort before you

can send it through uniq. The output from uniq is the same as the input, with duplicate lines
removed.
Summary

In this chapter, you learned about shell scripting with Bash. Shell scripts can be created with any text editor and contain commands
like those you could type at a shell prompt.

42

Executable Bash scripts should start with #!/bin/bash and must be marked executable with chmod a+x. Programs and
commands indicate success or failure with areturn value: 0 for success, or any nonzero value for failure. This value can be
used with conditionals to determine what to do next. Wildcards are used to select a group of filenames based on a pattern.
Quoting and escaping are used to prevent the normal interpretation of special charactersin Bash.

There are three standard file descriptors for each Linux process: standard input, standard output, and standard error. Bash
enables you to redirect any of those to or from afile. Furthermore, you can use a pipe to send the output from one program
directly into the input of another. Another option is command substitution, which converts the output of one program into

arguments for another.

Variables are used to store small amounts of data for later access. They can be set with the equalssign (=), or by Bashina
situation such as afor loop. The contents of variables are accessed with the dollar sign ($). Variables may be exported to the
environment, which enables programs invoked by the shell to see their values. There are also many specia variables, which

enable your scriptsto find out information about the shell and the machine it’s running on, and to control some aspects of shell
behavior.

Functions are used to store frequently used code in only one place. Unlike shell scripts, functions modify variablesin the
current shell, so they must be used with care. Functions, once defined, can behave like any other shell command when called.

Conditionals are used to make execution of some code dependent upon the success or failure of some earlier command or
expression. Loops are used either to iterate over alist of items, or to continue executing a block of code until some condition



becomes false. Thetest, or [ ... ], operator can be used to perform some simple tests that are useful with conditionals and loops.

e Linux comeswith arich variety of shell utilities that make excellent additions to your scripts. Many of these utilities are
specifically designed for use in a pipeline, so they can be easily combined in powerful ways. Utilities exist to do everything from
searching files, to finding files, and sorting them.

Chapter 3: Working with Regular Expressions

Overview

Reading and processing data is one of the most frequent tasks that programmers face, and programming under Linux is no exception.
Many Linux languages offer a standard-ized parsing mechanism known as regular expressions. In this chapter, you will learn all
about this mechanism and how to use it. The chapter begins with an introduction to regular expressions. It continues with coverage of
three major areas of regular expressions. character classes, quantifiers, and alternation and grouping. Finally, you will learn how to
use regular expressionsin various languages.

Introducing Regular Expressions

Many times, when writing programs, you need to parse data—separate input into its component bits. Sometimes, this pars-ing is
easy—maybe your input data is separated by commas. Sometimes, the task is much more difficult, especially if your input is more
free-form. Y ou may even have to pick out the values you want from within free-form text. This type of task can be very tricky.

No matter what language you use, even if you don't use regular expressions, your parsing algorithms, no doubt, will be focused
around recognizing patterns. Y ou might notice that certain text is always ignored, such as column headings. Or, the values that you
want might be separated by commas. Maybe you notice that there is one record per line, or one record per page. All of these are
patterns that you can use to pick out the pieces of useful data from your input.

In some languages, such as C, you write code to explicitly search through your input. Even with functions such as strtok() and
strsep(), this process can be difficult and bug-prone.

Regular expressions provide an alternative to writing search algorithms. With regular expressions (also known as regexps), you
define the pattern that you are looking for, and let the regular expression engine do the searching for you. The regular expression
pattern that you give to the engine defines which parts of the text are interesting, and can return those bits only. Alternatively, it
can return all text that matches your pattern—presumably for later processing or display.

Regular expressions are not tied to any particular language, although Perl makes particularly heavy use of them. Y ou can find
regular expression support in grep (searches through files), sed (edits files based on regular expressions), severd libraries for C,
and several other languages and utilities as well.

In this chapter, you will learn how to form basic regular expression patterns, how to fit regular expressions to patternsin data, and
then more advanced regular expression syntax such as quantifiers, character classes, grouping, and alternation. Finally, you'll learn
about some particular features or limitations of the regular expression support in some of the different languages that support them.

To the greatest extent possible, the examplesin this chapter are designed to work with regular expressions in any language that
uses them. However, some languages have a more powerful implementation than others, and so some of these examples may only
work in alanguage with such an implementation, such as Perl.

Patterns

Thefirst step to writing a useful regular expression is to figure out what sort of patterns are present in your data. In some
situations, thisistrivial. For instance, here are afew lines from the /etc/passwd file on my Linux machine:

root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh
sys:x:3:3:sys./dev:/bin/sh
sync:x:4:100:sync:/bin:/bin/sync
games:x:5:100:games./usr/games./bin/sh
man:x:6:100:man:/var/catman:/bin/sh
Ip:x:7:7:1p:/var/spool/Ipd:/bin/sh
mail:x:8:8:mail:/var/spool/mail:/bin/sh
news.x:9:9:news:/var/spool/news:./bin/sh
uucp:x:10:10:uucp:/var/spool/uucp:/bin/sh
proxy:x:13:13:proxy:/bin:/bin/sh

43



postgres:x:31:32:postgres./var/postgres./bin/sh

From this example, you can already note several features about the data. For one, there is one record per line, and the fields in the
record are separated by colons. With a bit more knowledge of the format, you know that there are fields for user-name, password,
uid (numeric user ID), gid (numeric group ID), real name, home directory, and default shell.

Thisisaformat that is very easy to parse with aregular expression. Most languages are well suited towards regular expression
parsing with the one record per line format.

A format that is more difficult to parse is the output from an |s -l command. For instance, consider these lines from such a
command:

drwxr-xr-x 3 root root 1024 Feb 7 16:42 CORBA
-rw-r--r-- 1root root 6350 Jun 9 16:01 Muttrc
-rw-r--r-- 1root root 1646 Jan 11 1998 adduser.conf
drwxr-xr-x 2 root root 1024 May 24 19:01 ae
-rw-r--r-- 1lroot root 233 Oct 26 1998 aliases.safe
Irwxrwxrwx 1 root root 27 Jul 12 07:23 localtime ->
Jusr/share/zoneinfo/CST6CDT
drwxr-xr-x 5root root 1024 Jul 18 10:19 texmf
-rw-r--r-- 1root root 373 Feb 16 11:03 updatedb.conf
-rw-r--r-- 1root root 222 Sep 30 1998 upload.sites
drwxr-xr-x 4 uucp uucp 1024 Apr 30 20:31 uucp
-rw-r--r-- 1root root 4623 Feb 10 15:18 vnc.conf
-rw-r--r-- 1root root 3293 Sep 28 1998 wgetrc
drwxr-xr-x 3 root root 1024 Oct 30 1998 xemacs
-rw-r--r-- 1root root 56 Feb 17 22:18 ytalkrc

From thislisting, you can tell that there is a pattern. Each line starts out with some permissions, a count of the hard links, the user
and group that own the file, and its size. After that, there is a date. But this date is not always in the same format. Some-times, it
lists the month, day, and time; other times, it lists the month, day, and year. After that, there' s afilename. But, if thefileisa
symbolic link, the name of the linked-to file will follow.

So, even though the format is not hard to understand when you look at the display onscreen, it can be difficult to parse for a
program.

Regular expression syntax

Table 3-1 summarizes the syntax in regular expressions. This table is designed to be your map through the vast terrain of regular
expressions. You can use it to find the operator you need, to discover what an operator used by someone else does, or simply to
browse and see what you can do with regular expressions. If you use regular expressions frequently in your programming, and you
probably will if you do alot of parsing, thistable will no doubt become a val uable reference.

Note Don't worry if you don’t understand the meaning of most of the items here yet; they will be explained in detail in
the remainder of this chapter. Some of these items apply only to certain languages, and some languages define
more special operators than are listed here. Some of these differences will be highlighted at the end of the chapter,
but if you are having difficulties with a given regular expression in a particular language, consult the
documentation for that language. Of the items listed here, the most likely to cause trouble are the various
backdash operators.

Table 3-1: Regular Expression Syntax Elements

Syntax Description Example
I
\ Escape operator; the next character (if special) has Foo.*\.txt matches any string beginning
its literal meaning. Some languages may ascribe with Foo and ending with .txt.
44

special meanings to sequences with normal
characters, such as\n.



\Oxx

\a

\b

\B

\d

\D

\f

\n

\r

\s

\S

\t

\w

Matches the octal character indicated by the xx
digits.

Matches the ASCII bell character. Thisisthe same
as \x07 and\007.

Matches the beginning of the string. Thisis a Perl-
ism; it acts exactly like the caret character (")
except it does not match multiple times when them
option is used.

Matches the boundary between two words. This
does not actually match any particular character,
but rather a specific location.

The opposite of \b, matches any location that is not
aword boundary.

Matches any digit character. The definition of this
varies between implementation and locale, but you
can generally consider it to be the same as[0-9].

The opposite of \d, matches any character that is
not adigit. and even Report___.txt.

Matches the ASCII form-feed character.

Matches the ASCI| newline character. With some
implementations, this may match the carriage
return character also. Some implementations strip
off the final newline before passing the string to
the regular expression parser, so if you are looking
for the end of the line, you may want to use $
instead.

Matches the ASCII carriage return character.

Matches any white space character. The exact
definition of this can vary potentially between
locales, but generally include spaces, tabs, carriage
returns, and linefeeds.

The opposite of \s, matches any character that is
not a white space character.

Matches the ASCII horizontal tab character.

Matches aword character. Thiswill vary between
locales, as the aphabet in some areas includes
characters not present in others. In English, thisis
generally the same as[0-9a-zA-Z ].

Bell\0O07Beep matches a string that
begins with Bell, and then has the ASCI|
bell character, and ends with Beep.

Bell\aBeep matches a string that begins
with Bell, and then has the ASCI| bell
character, and ends with Beep.

\AHello matches only a string whose
first five letters are Hello.

1234\b.+9 matches 1234 2359 and 1234
a9 but not 123489.

1234\B.+9 matches 1234689 and
1234asdf9 but not 1234 589.

Report\d+ matches Report12,
Report1351134, and Report0, but not
ReportA.

Report\D+ matches ReportA,
ReportForBab,

Form\fFeed matches a string containing
the words Form and Feed, separated only
by the ASCII form-feed character.

inel\nLine2 matches a Lstring
containing two lines, with the first
ending with Linel and the second
beginning with Line2.

Word1\rWord2 matches a string
containing Word1 and Word2, separated
only by the carriage return character.

Foo\st+Bar matches a string ontaining
Foo and Bar, cseparated by at least one
white space character.

Foo\S+Bar matches a string containing
Foo and Bar, with at |east one non-white
space character between them. For
instance, Fool234Bar, Foo Bar,
FoogwertyBar, and FooBazBar

Tab\tHere matches text with an
embedded horizontal tab character.

The pattern \w+ matches any word
without embedded white space.
Examplesinclude Linux4Y ou,
RegexpsAreFun, and so on.

45



\W

\xyy

\Z

[ ...] (character class)

[[:anum:]]

[:alpha]]

[:blank:]]

[[zentrl:]]

[[:digit:]]

[[-graph:]]

[[:lower]]

[[:print:]]

46

The opposite of \w, matches any character that
would not be matched by \w.

Matches the character specified by the two-digit
hexadecimal number yy.

ThisisaPerl-ism. Thisactslike $, but doesn’t
match multiple times when the m optionisin
effect.

Matches any single character Depending on the
implementa- tion and options given to the regular
expression engine, this may or may not match a
newline character..

Denotes a character class. This usage givesa
listing of characters, any of which may be matched
once. Ranges may also be specified. Negation may
be specified by using aleading ” after the opening
bracket.

Matches alphabetic and numeric characters;, the
same as [[:apha][:digit:]]

Matches alphabetic characters. The definition of
this may vary between locales, but in English, it
generally means[A-Za-Z].

Matches horizontal white space characters.
Currently, this matches only space and tab.

Matches the ASCII control characters, which are
generally characters 1 through 31 in ASCII.

Matches any numeric character. Thisisthe same as
writing [0-9].

Matches non-white space characters that are
printable. Thisincludes, for instance, alphabetic
characters, numbers, and so on.

Matches lower-case alphabetic characters. In

English locales, thisisthe same as[a-Z].

Matches printable characters. Thisisthe opposite
of[[:cntrl:]]

The pattern \W+ matches any string
without word charactersin it. Examples
include !<>,\~", and “;".

The pattern \x07 matches the ASCII bell
character.

The pattern .*end\Z matches such strings
asend, ThislsTheend, I'm at the
string’s end, and so on.

Hello.txt matches Hello4txt, Hellogtxt,
Hello!txt, and even Hello.txt.

Letter199[14-79] matches only
Letter1991, Letter1994, Letter1995,
Letter1996, Letter1997, and Letter1999.
Letter199["14-79] matches many items,
such as Letter199Q, Letter1992,
Letter199!, and many more.

The pattern Word1[[:alnum:]]+Word2
matches patterns such as
Word1Helloword2,
Word1123456789Word2, and any others
with at least one a phanumeric character
between Word1 and Word?2.

The pattern Word1][[:alpha]]Word2
matches patterns such as
Word1Helloword2 and
Word1GoodbyeWord2, and any others
with at least one a phabetic character
between the first and second words.
Numeric characters do not match this
pattern.

The pattern Lotg[:blank:
1]+OAf[[:blank:]] Spaces matches patterns
such as Lots Of Spaces, Lots  Of
Spaces, and Lots Of  Spaces.

The pattern Strange[[:cntrl:]]Characters
matches two words separated by one
control character.

Hi [[:digit:]]+ matches such strings as Hi
123456789, Hi 12, and Hi 99.

The pattern To:[[:graph]] matches a
string such as To:q, To:5, and so on.

The pattern [[:lower:]] matches such
strings as linuxprogrammingisfun,
regularexpressionsareuseful, and so on.

[[:print:]]+ matches almost any string
that contains plain text characters.



[[:punct:]]

[[:space:]]

[[:upper:]]

[[:xdigit:]]

{x}

{x}

{x.y}

Matches punctuation characters. This can vary
significantly between locale, but for English
locations, consider it to be essentially any
nonal phanumeric keys in the main area of your
keyboard.

Matches white space characters. These might
include space, tab, carriage return, linefeed, form
feed, vertical tab, and so on.

Matches uppercase |etters. The precise listing of
the letters that match can vary between locale.

Matches characters that are valid hexadecimal
digits.

Matches the preceding character or operator
exactly x times.

Matches the preceding character or operator at
least x times.

Matches the preceding character or operator no less
than x times and no more than y times.

Denotes alternation in a pattern, used to specify
multiple options for matches at a particular point.
Unless used inside the grouping operator, ( ... ), the
entire regular expression is split into pieces, any of
which will be considered a successful match.

Indicates that the preceding operator should match
as few times as possible while still allowing the
regular expression to find amatch. Thisisvalid in
Perl only.

Matches the end of the current line. This does not
correspond directly to any particular character; it is
simply used to match the end of the line. Language
options and imple- mentation details may modify
the notion of line.

Matches the beginning of the current line. This
does not directly correspond to any particular
character; it is simply used to match the beginning
of aline. Language options and implementation
details may modify the notion of line.

Modifies the behavior of the immediate preceding
character or operator to match O or more times.

The pattern [[:punct:]] matches such
characters as %, (, and $.

Word1][[:space:]]+ Word2 matches two
words separated by at |east one white
space character. They could perhaps be
on different lines or even different pages,
depending on your language and options.

The pattern [[:upper:]]+ matches any
string consisting solely of uppercase
characters. Examples include WOW,
HELLO, LINUX, and GNU.

The pattern [[:xdigit:]] will match strings
containing solely hexadecimal

characters. Examples of these can
include 01234ABCD, FOOF, AA55, and
FFEF.

Q{5} matches only the string QQQQQ.

Q{5,} matches strings such as QQQQQ,
QQQAQQQ, and QQRRAQQQQQQ.

Q{ 3,5} matches only the strings QQQ,
QQQQ, and QQQQQ.

Report.]Memo199. matches such strings
as ReportA, Memo1999, Report2, and
Memo199a.

The pattern .+2(Q+) ensures that the
trailing Q charactersin the string are
returned. With this question-mark
operator, a string such as LinuxQQQQ
returns the QQQQ string. Without it, the
same string returnsonly asingle Q
because the .+ before matches the
remaining ones.

Linux.$ matches only the strings that end
with the word Linux and then one other
character.

"Hello matches only those lines whose
first five characters spell Hello.

Document.* html matches any string
beginning with Document and ending

a7



(The standard behavior isto match exactly 1 time.) with html, including such examples as
Document. html, Document12.html,
Document135html, and even

Documenthtml.

(...) This operator servestwo functions: 1) it actsasa (Memo|Report)20.\.txt matches
grouping operator, restricting the boundaries of the Memo201.txt, Report20a.txt, and
alternation operator; and 2) it is used to denote Report209.txt. Furthermore, the
interesting segments of the regular expression, matching text for the alternation (either
which are then processed in an implementation- Memo or Report) will be returned or
specific way such as setting special variables or assigned to avariable, depending on the
returning arrays. language or implementation in use.

+ Matches the immediate preceding character or 7+ matches stringssuch as 7, 77, 77777,
operator 1 or more times. and 7777777.

An introduction to egrep

One of the most basic, and most useful, tools that you will find for doing simple pattern matching is grep. Thereis an extension to
grep, named egrep that supports more powerful pattern matching like the regular expressions in other languages such as Perl. On
many Linux systems, grep is actually the same as egrep. However, in order to maintain portability, it's agood ideato get into the
habit of using egrep when you want to use sophisticated regular expressions.

The egrep tool is fundamentally simple. Y ou give it a pattern (regexp) to look for and some datain which to look. It then displays
al linesin the file that the pattern is capable of matching. For such a simple concept, it's amazing the power that is behind egrep.

Asan example, I'll look at some ways to manipulate the /etc/passwd file. For this book, | have selected afew lines from areal
passwd file that | can use as examples. If you want to follow along and get the same results, you should type the following datato
your favorite editor:

root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh

sys:x:3:3:sys:/dev:/bin/sh
sync:x:4:100:sync:/bin:/bin/sync
games:x:5:100:games./usr/games./bin/csh
man:X:6:100: man:/var/catman:/bin/sh
|p:x:7:7:1p:/var/spool/lpd:/usr/bin/tcsh
www-data:x:33:33:www-data:/var/www:/bin/sh
pilot:x:1002:1002:Pilot Guy,,,:/home/pilot:/bin/bash

Y ou can save the file with the name passwd in your home directory, for example, and it will work fine for you with these
examples. If you prefer to use your own passwd file, note that it may not have some of the particular situations that will arisein
these examples. However, you can still try to follow along; however, cd to /etc first.

Given the preceding snippet, some of these examples may seem a bit trivial. However, when you realize that some passwd files
can contain thousands of entries, searching them like thisis a powerful capability indeed.

When you invoke egrep, it expects at least one parameter: the pattern to look for. If you runit like this, you will need to pipe the
datainto it, or redirect its standard input. Alternatively, you may specify one or more filenames on its command line, and it will
read directly from those files.

For the first egrep example, start by finding away to get alist of al the people that use the csh shell. A first try might look like
this:

$ egrep csh passwd
games:x:5:100:games./usr/games./bin/csh
Ip:x:7:7:1p:/var/spool/lpd:/usr/bin/tcsh

Close, but not quite right. Notice how it found the string csh in the second displayed line, so it was displayed as well. Y ou need to
48



find away to narrow it down to find only the csh users. By using regular expressions, you can do that. The key isto match the
string :/bin/csh when it occurs at the end of the line. For example:

$ egrep ‘:/bin/csh$’ passwd
games.x:5:100:games./usr/games./bin/csh

That's better! | need to explain afew details about this example, though. First, note the usage of the dollar sign at the end of the
pattern. If you look up that character in Table 3-1, you'll notice that it is used to match the end of the line. In this case, you need to
be sure that the text being matched is at the end of the line. The colon before the pattern is not a special regular expression
character; it simply matches the colon in the passwd file. If you didn’t explicitly match the colon, then paths such as
{usr/local/bin/csh could match as well. Finally, note that the pattern isin single quotes. Thisis because the dollar signisaso a
shell special character. To prevent the shell from trying to interpret the dollar sign as a shell character, it's a good idea to place any
pattern containing such charactersin single quotes.

An introduction to sed

Sed is so named because it is a Stream Editor. That is, sed is used to perform automated edits on a data stream, and write the
results to standard output. Sed is, actually, a simplistic programming language. In this chapter, I'll use only one or two of these
features. The features I’ll explore, however, do not require you to learn the programming language, and in fact, map directly into
Perl statements. Therefore, you'll have some knowledge for dealing with Perl regular expressions later.

Instead of giving sed a pattern, like you do with egrep, you give it acommand. This command could be anything ranging from

deleting aline to a search and replace request. | will use this search and replace feature, affectionately known to sed aficionados as
gll.

The syntax of ¢/// isthis:
§/search-pattern/repl acement-pattern/[ options]
For the time being, the options will not be important. Here’s alook at a simple example:

$ sed s/csh/CSH/ passwd
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh
sys:x:3:3:sys:/dev:/bin/sh
sync:x:4:100:sync:/bin:/bin/sync
games:x:5:100:games:./usr/games./bin/CSH
man:x:6:100:man:/var/catman:/bin/sh
[p:x:7:7:1p:/var/spool/lpd:/usr/bin/tCSH
www-data: x: 33: 33:www-data:/var/www:/bin/sh
pilot:x:1002:1002:Pilot Guy,,,:/home/pilot:/bin/bash

This command went through the input, searching for the csh text on each input line. When the text was found, it was changed to
CSH and then displayed. Y ou can aso do more interesting things. For instance, if you want to delete everything from the input
except the shell, you can run this:

$ sed 9™ .*:// passwd
/bin/bash
/bin/sh
/bin/sh
/bin/sh
/bin/sync
/bin/csh
/bin/sh
Jusr/bin/tcsh
/bin/sh
/bin/bash

What happened here? Well, first, sed is given a pattern to match. In this case, that pattern indicated to start matching with the
beginning of the line, and continue up until and including the last colon on the line. This leaves only the shell that is not matched.
Then, sed istold to replace the matched portion with an empty string—which has the effect of deleting that part of the line.

49



Y ou could achieve the opposite effect by matching only the text after the final colon. Because of this, you need to match all text
that is not a colon and occurs only prior to the end of the line. Here's one way to do that:

$sed ‘S[N:]*$/" passwd
root:x:0:0:root:/root:
daemon:x:1:1:daemon:/usr/shin:
bin:x:2:2:bin:/bin:

sys:x:3:3:sys./dev:
sync:x:4:100:sync:/bin:
games:x:5:100:games./usr/games.
man:X:6:100:man:/var/catman:
[p:x:7:7:1p:/var/spool/lpd:
www-data: x:33: 33:www-data:/var/ www:
pilot:x:1002:1002:Pilot Guy,,,:/home/pilot:

In this case, a particular feature of the character classis used to match everything except the colon. The asterisk indicates that this
character class should match zero or more times, up until the end of the line. Then, the matched part is del eted.

Regular expressionsin Perl

Perl isafull-fledged modern programming language. One of its most useful featuresisitsintegrated regular expression support,
which is quite powerful. Perl’ s regular expression support enables you to generate an array full of values based on picking apart
data with aregular expression, al in one single command. This functionality, as well as many more advanced uses for it, makes a

very powerful solution in Perl.

Cross-Reference

Perl programming will be discussed in more detail in Chapter 20, “Introducing Perl.”

For now, | am going to introduce to you a Perl program that enables you to see how Perl evaluates your regular expressions. Don't
worry if you don't understand the code in this program now; I'll analyze it (and make some improvements) later in Chapter 21,
“Manipulating Data with Perl.” Type the following text using your favorite editor, and save the result as pattest:

#!/usr/bin/perl

while (1) {
print “ Enter pattern”;
print “, or . to re-use previous,” if (BLASTREGEXP);
print “ or leave empty to exit:\n";
print “>*;
$REGEXP = <STDIN>;
chomp $REGEXP;
if (SREGEXPeq‘.") {
$REGEXP = $LASTREGEXP;

}

exit (0) unless (SREGEXP);

print “ Enter string to match”;
print “ or . to re-use previous’ if (BLASTSTRING);

print “:\n”;

print “>*;

$STRING = <STDIN>;

chomp $STRING;

if ($STRING eq*‘.") {
$STRING = $LASTSTRING;

}

$LASTREGEXP = $REGEXP;
50



$LASTSTRING = $STRING;

@MATCHES = $STRING =~ /$REGEXFY/;
if (B#MATCHES > -1) {
print “ Successful match!\n”;
print “There were“ . ($#MATCHES) + 1.
“ strings returned: \n”;
$counter = 0;
foreach SMATCH (@MATCHES) {
$counter++;
print “ String $counter: $SMATCH\n";
}
}else{
print “ There was not a successful match.\n";
}
print “\n\n”;

}

Now, as with shell scripts, you need to mark the program executable. Do so by typing the following shell command:
$ chmod a+x pattest
Now, it'stime to give our pattern-testing program atry. Here's a sample session with it:

$ /pattest

Enter pattern or leave empty to exit:
>ALinux Is*Great$

Enter string to match:

> Linux IsGreat

Successful match!

There were 1 strings returned:
String 1: 1

Enter pattern, or . to re-use previous, or leave empty to exit:
>,

Enter string to match or . to re-use previous:

> Linux IsReally Great
Successful match!

There were 1 strings returned:
String 1: 1

Enter pattern, or . to re-use previous, or leave empty to exit:
>,
Enter string to match or . to re-use previous:
> Linux IsReally Great!
There was not a successful match.

Enter pattern, or . to re-use previous, or leave empty to exit:
>

Here, | supplied one pattern for testing; as a shortcut, you can simply use a period in place of the pattern thereafter—this can really
save some tedious typing. Then, | tried three strings with that pattern. Each time, pattest displayed a correct result; the third string
will not match because of the trailing exclamation point; the pattern indicated that Great must be the last word on the line.

When you place items inside the grouping operator, Perl returnsthem in array form. Here is one example:
$ /pattest

Enter pattern or leave empty to exit:
> ALinux(.*)Great$



Enter string to match:

> Linux IsGreat

Successful match!

There were 1 strings returned:
String 1: Is

Because | placed the match inside of parentheses this time, the effect is that any text that | insert between the two words will be
returned in array form. The pattest program then displays each item in the array, so you can see exactly what Per! is returning.

Y ou can use pattest to confirm the validity of the rest of the regular expression examplesin this chapter. Better yet, you can use it to
experiment with regular expressions on your own.
Understanding Character Classes

Character classes are devices used in regular expressions for specifying which characters are acceptable at a particular point, or
which are not. With character classes, you can specify charactersindividually or give arange of allowable characters.
Furthermore, you can negate the meaning of your character class, indicating which characters are not acceptable instead of
indicating which characters are acceptable.

A simple usage might be to specify arange of allowable numbers. This might occur, for instance, when you are looking for data
with a specific date. Here's an example:

Letters from 199[0-246-9]

Thisregular expression indicates that and of the characters between 0 and 2, 6, and 9, or the number 4 will be acceptable at that
position. Thus, the strings that this regular expression will match include:

Letters from 1990
Letters from 1991
Letters from 1992
Letters from 1994
Letters from 1996
Letters from 1997
Letters from 1998
Letters from 1999

Thistype of usageisfairly straightforward. Y ou can, however, combine character classes to form new types of patterns. For
instance, consider the following regular expression:

Letters from 19[89][2-5]

With this pattern, any year whose third digit isan 8 or 9 and final digit falls between 2 and 5, inclusive, will be matched. Thus,
these are the potential matches for the previous pattern:

Letters from 1982
Letters from 1983
Letters from 1984
Letters from 1985
Letters from 1992
Letters from 1993
Letters from 1994
Letters from 1995

So, for each option in the first character class, each option in the second is valid. Y ou can think of it in terms of the regular
expression engine eval uating each option in the second for each option in the first, although generally this would not be the
agorithm used internally by the engine.

Another feature presented by the character classis negation. That is, you can specify which characters should not occur at a
particular location. Negation isindicated by aleading caret (") in the character class. Here' s an example:

Letters from 199["0-246-9]

This particular regular expression matches so many strings that it’s not practical to list all of the possibilities here, but here are

52



some of the strings that match:

Letters from 1995
Letters from 199!
Letters from 199z
Letters from 199=
Letters from 1993
Letters from 199\

So, you can see that everything except those particular characterslisted are valid. This may not be the desired effect in this

situation, but it can be helpful often with parsing. For instance, earlier | used such a syntax to match everything except for a colon.

Y ou can use that kind of syntax to your benefit, often combined with quanti-fiers. For instance, you may want to match a number
of charactersthat are not spaces. Y ou can simply use negation with a character class along with a quantifier indicating how many
characters to match, as discussed in the next section.

Asafina note, if you want to include a dash () in your character class, you can make it either the first or the last character in the
class. If you want to include the caret in your class, you can make it the last character in the class—or any position other than the
first character.

For instance, the following character class allows both to match:
[A-Za-z™-]
If you try it out with pattest, you can see the result:

$ /pattest

Enter pattern or leave empty to exit:
> [A-Za-z"-]

Enter string to match:

>A

Successful match!

There were 1 strings returned:
String 1: 1

Enter pattern, or . to re-use previous, or leave empty to exit:
>,

Enter string to match or . to re-use previous:
> -
Successful match!
There were 1 strings returned:
String 1: 1

Enter pattern, or . to re-use previous, or leave empty to exit:
>,
Enter string to match or . to re-use previous:
> N
Successful match!
There were 1 strings returned:
String 1: 1

Enter pattern, or . to re-use previous, or leave empty to exit:
>,

Enter string to match or . to re-use previous:
>5

There was not a successful match.

Enter pattern, or . to re-use previous, or leave empty to exit:
>

53



From these results, you can verify that indeed the dash and the caret are allowed to match this particular character class, and those
characters not specified are correctly prevented from matching.
Using Quantifiers

When you are looking for datain aregular expression, you frequently need to specify how many times certain characters may
appear. For instance, you might want to indicate that the pattern matcher should skip over any number of spaces when searching
for data.

Quantifiers provide away to do this. They work by specifying how many times the immediately preceding character or operator is
supposed to match. One of the most frequently used quantifiersis the asterisk (*). Thisindicates that the preced-ing item should
match zero or more times. Here are some examples.

Hi*

zero times, the H all by itself matches.

Whereas this may be useful in some cases, quantifiers frequently are combined with other items to achieve more powerful results.
For instance, the period means that the regular expression should match any single character at that position. So, adding an asterisk
after it means that the regular expression matches any number of characters. As an example, consider this:

Linux Is.*Great
Thisregular expression will match many various strings. Some of them are:

Linux IsGreat
Linux Is Really Great
Linux 1s123456789Great

Basically, thisregular expression allows anything (including nothing) to be inserted between Is and Great.

Sometimes, matching zero or more timesis not appropriate. In many cases when parsing text files, you face a situation in which
you know white space will separate different values, but you don't know how much white space there will be. In this case, you
have to match at least one character of white space, so the asterisk isn’t appropriate. Instead, you can use the plus character (+).
For instance:

Linux Is.+Great
This regular expression will match the following:

Linux Is Really Great
Linux 1s123456789Great

And, of course, there are many other strings that can match. Note, though, that Linux IsGreat will no longer match this regular
expression. The reason is that, unlike the asterisk, the plus character must have something in its place.

Another example of quantifiers are the braces. These enable you to specify precisely how many times the preceding item can
match. Y ou can specify either one or two numbers inside the braces. If you specify one number only, then you ask that the
previous item be matched exactly that many times. If you add a comma after that number, you ask that the previous item be
matched no less than the number of timesindicated. Finally, if you provide two numbers, you ask that the previousitem be
matched no less than the first number or no greater than the second. Y ou may also want to note that the asterisk and the plus
characters are equivalent to {0,} and {1,}, respectively.

Here are some examples of the bracesin action:
Report-.{ 3,} -finished

Report-.{ 3,9} -finished

Report-.{ 9} -finished

Thefirst line of text there matches anything with at least three charactersin the middle. Some matches include the following:

54



Report-Nov-finished
Report-November-1999-finished
Report-+=?-finished

The second line matches anything that has at |east three characters but no more than nine in the center. The final line matches
anything that has exactly nine charactersin the center.

Another powerful feature of quantifiersis that they can be combined with other operators to greatly extend their capabilities. For
instance, you could use the following to pick apart a passwd fileline in Perl:

AT T) 1)) (1T )$

Thislooks like a strange, convoluted mess, but taken one piece at atime, it makes sense. First, be aware that the pattern needs to
match the entire line, so the start-of-line (*) and end-of-line ($) operators are used. Next, you need to match seven different
sections of data for which any character except the colonis valid. Some of these sections could be empty; for simplicity’ s sake, we
assume that all of them could be here. So, to match everything except the colon, you use the character class[”:]. Then, to indicate
that character class appliesto zero or more charac-ters, the asterisk follows. These things are enclosed in parentheses, which
indicate to Perl that they should be set in the resulting array. Finally, between each

parenthesis group, there is a colon, which matches the separator. Let’s seeif pattest is capable of correctly understanding this
pattern:

$ /pattest

Enter pattern or leave empty to exit:

> AT )TN ()N ): ([T )$
Enter string to match:

> pilot:x:1002:1002:Pilot Guy,,,:/home/pilot:/bin/bash
Successful match!

There were 7 strings returned:
String 1: pilot
String 2: x
String 3: 1002
String 4: 1002

String 5: Pilot Guy,,,

String 6: /home/pilot

String 7: /bin/bash

Indeed, the match was successful! Notice how each of the seven components of the string is separated into its own element in the
array.

Note Perl also provides a split operator that can accomplish this same task with less effort. For details, see the Perl
language notes later in this chapter.

Now that you managed to dissect a passwd file line, I'll move on to something more complex: Is - output. First, I'll analyze the
output in terms of Is -I. For your convenience, here’s areproduction of the data set that was printed from Is -l earlier in this
chapter:

drwxr-xr-x 3root root 1024 Feb 7 16:42 CORBA
-rw-r--r-- 1root root 6350 Jun 9 16:01 Multtrc
-rw-r--r-- l1lroot root 1646 Jan 11 1998 adduser.conf
drwxr-xr-x 2root  root 1024 May 24 19:01 ae
-rw-r--r-- 1lroot root 233 Oct 26 1998 aliases.safe
Irwxrwxrwx 1root root 27 Jul 12 07:23 localtime -> /usr/share/z
drwxr-xr-x 5root root 1024 Jul 18 10:19 texmf
-rw-r--r-- 1root root 373 Feb 16 11:03 updatedb.conf
-rw-r--r-- 1root root 222 Sep 30 1998 upload.sites
drwxr-xr-x 4 uucp uucp 1024 Apr 30 20:31 uucp
-rw-r--r-- 1root root 4623 Feb 10 15:18 vnc.conf
-rw-r--r-- 1root root 3293 Sep 28 1998 wgetrc
drwxr-xr-x 3root root 1024 Oct 30 1998 xemacs
-rw-r--r-- 1root root 56 Feb 17 22:18 ytalkrc

55



Our anaysis can begin with the basics. The file contains various columns, separated by white space—either spaces or tabs. In Perl,
the \s operator repre-sents white space, so thisis convenient. In other languages, you'll have to use a character class for that
instead. Now then, looking at the first five fields on each line, you can tell that they come in aregular order: permissions, number
of hard links, name of the user owning the file, name of the group owning the file, and the file size. The next part istrickier: the
date. However, as long as you don’t care about exactly what the date is, you will note that with either date format, there are three
separate items. The line is then terminated by the filename—usually. If there’sa symbolic link, that accounts for one more

element.

Because it took a whole paragraph to describe the format, you might imagine that the corresponding regular expression would be
somewhat complex. That is, in fact, correct. Hereit is:

AOSH\sH\SH\sH\SH)\SHASH\sHISH\sHISHSHSHSHSH)
\s+([*>]+)(-> .+){0,1}$

That's a monster of aregular expression! Even though it appears astwo lines here, itisall asingle expression. I'll ook through
each part:

 The leading * matches the start of the line.

Now, you need to match the mode and permissions area. Y ou can do this by matching everything that is not white space. In
Perl, there isa\S operator for this purpose. Thisis then enclosed in parentheses to indicate that it ought to be returned to Perl
for later usage. After all of the permissions datais matched, you have to match the white space separating it from the next
entry, which accounts for the \s+. In Perl, \sis used to match white space.

A similar (\S+)\s+ pattern is used to match the hard link count, and return the count (without the trailing white space) into an
array.

* The same (\S+)\s+ patternis also used for the name of the owner, the group, and the file size.

When you arrive at the date, the following is used to match it: (\S+\s+\S+\s+\S+) This part of the expression matches three
separate fields, separated by at least one character of white space. Because all of these are inside of parentheses, the three
fields are returned into one position in the array.

» Then, a\st+ matches the space between the date and the filename.

([*>]+) isthe pattern that matches the filename. Y ou may be wondering why | didn’t simply use (.+) hereinstead of the
character class. The reason is that the symbolic link is optional. Normally, regular expression operators are greedy; because the
symbolic link is optional, the .+ would have slurped up al the remaining text (including any symbolic link, if any) up until the
end of the line. By excluding the greater-than sign, through the use of the [*>] character class, you can force the engine to stop
matching when it gets to that spot. Because text remains after it, the engine backtracks to the point where the optional

symbolic link pattern can take effect.

The optional symbolic link is matched with (-> .+){ 0,1} . Because the symbolic link is optional, the { 0,1} quantifier follows
the parentheses indicating this. Inside the parentheses, there is the simple matter of matching the -> symbol and any text that

followsit.

* Finally, adollar sign concludesthe line.

Try some examples of thisin the pattest program. That program shows you exactly what is returned into the array by the
parentheses:

$ Jpattest
Enter pattern or leave empty to exit:
> A\SH\sH(\SH\sH(\SH\sH(\SH)\s+(\S+)\s+(\SHSHSHSHSH)
\s+([*>]+)(->.+){0,1}$
Enter string to match:
> drwxr-xr-x 3root root 1024 Feb 7 16:42 CORBA
Successful match!
There were 8 strings returned:
String 1: drwxr-xr-x
String 2: 3
String 3: root

56



String 4: root

String 5: 1024

String 6: Feb 7 16:42
String 7: CORBA
String 8:

The pattern worked! All of the components of the listing were separated into separate parts. For the next test, try aline with a date
in the other format.

Enter pattern, or . to re-use previous, or leave empty to exit:
>,
Enter string to match or . to re-use previous:
>-rw-r--r-- 1root root 3293 Sep 28 1998 wgetrc
Successful match!
There were 8 strings returned:
String 1: -rw-r--r--
String 2: 1
String 3: root
String 4: root
String 5: 3293
String 6: Sep 28 1998
String 7: wgetrc
String 8:

Once again, everything parsed correctly. Notice how string 8 is always empty; thisis where the symbolic link will go if it is
present. Try asample that has a symbolic link init:

Enter pattern, or . to re-use previous, or leave empty to exit:

>,
Enter string to match or . to re-use previous:

> |rwxrwxrwx 1lroot root 27 Jul 12 07:23 localtime -> /usr /shar e/zoneinfo/CST6CDT
Successful match!

There were 8 strings returned:

String 1: [rwxrwxrwx

String 2: 1

String 3: root

String 4: root

String 5: 27

String 6: Jul 12 07:23

String 7: localtime

String 8: -> /usr/share/zoneinfo/CST6CDT

Success again! Thistime, the string 8 isfilled in with the appropriate data from the symbolic link. Notice, though, that the ->
symbol was included here. With the knowledge of regular expressions presented thus far, it's nontrivial to rid yourself of it.
However, one option you do have in these situationsis to use alternation (discussed later in this chapter) and actually provide two
separate options for evaluation in a single regular expression.

From this experience, you can see how simply combining quantifiers with other syntactic elements can provide you with much
power. Y ou successfully parsed, with one regular expression, the text from alisting containing either nine or ten fields (depending on
whether or not a symbolic link is present) and atotal of four different variations. All of this was parsed with a piece of code that
occupies slightly more than one line. Parsing the same text requires many more lines, and most likely even greater complexity, in a
language that does not have a pattern-matching capability such as regular expressions.

Introducing Alternation and Grouping

Y ou have already seen how character classes work and how extremely powerful then can be. Thisis great for many types of
matching. However, there is an addi-tional situation not covered well by character classes. If you have a set of different options for
strings, instead of single characters, that you need matched, character classes do not really help you. Thisiswhere aternation
comes in. With this capa-hility, you can specify several different options for a match. These options can be as long as you wish,
and represent different options the engine can use when trying to find a match for your pattern.

What's more, though, is that these options can use all the standard regular expression operators you' ve already learned about. That
is, you can effectively get aregular expression inside of aregular expression!

57



The most basic usage of alternation isto provide several separate complete regular expressions. Thisis done by using the pipe
symboal, |, to separate the various options from each other. For instance:

Letters from 199[0-246-9]|Doc-.{ 3} -finished
This generates matches such as the following:

Letters from 1990
Doc-123-finished
Letters from 1992
Letters from 1994
Doc-GCC-finished
Letters from 1995
Letters from 1996
Letters from 1999
Doc-----finished

Notice how extremely different these things are, and how you could match such drastically different strings with a single regular
expression. If your datais highly variable, or if it arrivesin an unknown order, you can use alternation to help sort it out. This
particular usage of alternation isfairly straightforward.

However, alternation is rarely used to split an entire regular expression into pieces. Rather, it is more commonly used to split up
piecesinside of alarger expression. To do this, you have to define boundaries of what should be split. These are defined when you
use grouping. Grouping separates part of the regular expression to which you want to apply aternation. Y ou can think of it asa
similar, but much more powerful, equivalent to Bash's{...} operator. Here's an example:

(Letter|Report)s (toffrom) 199[0-246-9]

This regular expression can match atotal of 32 (2 letter or report times 2 to or from times 8 digits) different strings. Some of the
matching ones include:

Letters from 1990
Reports from 1992
Lettersto 1999
Reports to 1996
Letters from 1992
Reports from 1994

Thisisafairly basic usage of grouping compared to some of the more advanced things that are possible, when data arrivesin

different formats.
Supporting Regular Expressionsin Linux

Many different Linux languages have support for regular expressions. Thiswide support is part of their appeal. However, there are
differences between the support in these various languages. Some add their own special extensions that they support. A few of
these differences are noted here.

Perl

Of late, Perl has been pushing the envelope with regular expressions, often intro-ducing new features before they appear in other
regular expression systems. For details on Perl regular expressions, see the perlre(1) manpageperIre. Many of the Perl syntax
options have been mentioned in this chapter, but there are some additional things to mention as well.

$1 Variables

Perl not only returns an array of matching values when you use the parentheses; it sets special variables as well. These variables
have names such as $1, $2, $3, and so on, each corresponding to the appropriate match in the string. For instance, consider this
code:

#!/usr/bin/perl
$val = <STDIN>;
58



chomp $val;

@VALUES = $val =~ ["Perl is \SH)\s(.+)¥/;

print “Values, first: $V ALUES0]; second: $VALUES[1]\n";
print “Variables, first: $1; second: $2\n”;

When run, it produces aresult like this:

$ Jspecialvar.pl

Perl isvery nice!

Values, first: very; second: nice!
Variables, first: very; second: nice!

So you can see that the variables and the array hold the same thing. There are some things to watch out for with the variables,
however. Thefirst isthat they are overwritten automatically with the next regular expression. Because regular expressions are used
quite frequently in many Perl programs, you may bein for asurprise if you try to access a variable, but it has been replaced with
data from a different regular expression. The second is that, if you want to pass along a group of matches to somewhere else, an
array is better for the task anyway.

The array does have its downsides. For one, if you are simply looking for a quick match that you' Il use immediately afterwards,
it's an extra hassle to create an array when $1 will do. There can also be aslight performance hit if you do this when the $1
variables will be sufficient.

Regular Expression Operators
In Perl, there are two main regular expression operators: m// and §///. In this chapter, we have been using the m// operator. The
leading misimplicit if it is not specified and you are using slashes to delimit the regular expression. The m// is the matching
operator, and §/// is the replacement operator, which works like the one in sed.
Each of these can take options, which are specified immediately following the closing slash. Y ou may specify as many as you
want; simply put the corresponding character after the slash with no spaces or other separation between them. Table 3-2 lists the
options available to you in Perl.
Table 3-2: Perl Regular Expression Options
L
Option Behavior
L
C The current position within the search is no longer rewound when the g option is specified. Valid for m// only.
E
G
|
M
@]
S
X

Indicates to Perl that the replacement part of the operator should a so be treated as aregular expression. Valid
for g/// only.

Causes Perl to use aglobal search (or replace for §///). Normally, only the first match is found. With this
option, Perl continues searching the string for additional possible matches.

Causes the regular expression to match strings without regard to case. That is, suspend the normal case-
sensitive behavior of regular expressions.

Modifies the behavior of ~ and $ such that they match the beginning and end of linesinside the string, instead
of the beginning and end of the entire string.

Tells Perl that your regular expression should be compiled only one time. Thisis of primary concern within a
loop. If your expression remains constant; that is, any interpolated variables do not change during the course of
the loop, you can tell Perl to only compile the expression once. This gives your program a performance benefit.

Causes the string to be treated as a single line. Operators such as . will now match the newline character.

Allow comments and white space inside the regular expression; see the perlre manpage for more details.



In addition to these options, you have even more. Y ou can use characters other than slashes for your regular expression delimiters.
The valid ones are generally the punctuation keys on your keyboard. Thisis of primary importance when you want to use slashes

in your pattern (and thus want to avoid having to escape them inside the pattern, which can make the pattern less readable). As an

example, the following code snippets all match the same thing:

JusrVlocal\/binV.*/
m/usrVlocalVVbinV.*/
m’ usr/local/bin/.*’

The split Operator

One frequently occurring situation in data parsing is that you need to split data based upon a certain separator. This separator could
be asingle character, asin the colon for the passwd file. Or, it could be alonger string or pattern. With Perl’s split operator, you
specify the pattern that is used to delimit the different parts. For the passwd file, for instance, this would simply be a colon. This
pattern is not included in any of the resulting strings themselves; it’ s only used to determine where to break them apart.

Recall the pattest program from earlier. With afew simple modifications, it can become a splittest program. Here is the code for
splittest:

#!/usr/bin/perl

while (1) {
print “Enter split pattern”;
print “, or . to re-use previous,” if (LASTREGEXP);
print “ or leave empty to exit:\n";
print “>*;
$REGEXP = <STDIN>;
chomp $REGEXP;
if (BREGEXPeq‘."){
$REGEXP = $LASTREGEXP;

}

exit (0) unless (SREGEXP);
print “Enter string to match”;
print “ or . to re-use previous’ if (BLASTSTRING);

print “:\n”;

print “>*;

$STRING = <STDIN>;

chomp $STRING;

if ($STRING eq*.") {
$STRING = $LASTSTRING;

}

$LASTREGEXP = $REGEXP,
$LASTSTRING = $STRING;

@MATCHES = split(/$SREGEXP/, $STRING);

print “There were “ . ($#MATCHES + 1) . “ strings returned: \n”;
$counter = 0;

foreach SMATCH (@MATCHES) {

$counter++;

print “ String $counter: $SMATCH\n";

}
print “\n\n”;

}

Y ou can test the split operator by using a simple regular expression suitable for splitting apart passwd file lines. Remember that the
regular expression for the split operator is one that matches the delimiter:

$ /splittest
Enter split pattern or leave empty to exit:

60



>
Enter string to match:
> pilot:x:1002:1002: Pilot Guy,,,:/home/pilot:/bin/bash
There were 7 strings returned:
String 1: pilot
String 2: x
String 3: 1002
String 4: 1002
String 5: Pilot Guy,,,
String 6: /home/pilot
String 7: /bin/bash

In this case, asingle-character regular expression is able to pick apart the passwd file entries—much simpler than the previous one.
You cantry it again on another line, just to make sureit isn’t afluke:

Enter split pattern, or . to re-use previous, or leave empty to exit:
>
Enter string to match or . to re-use previous:
> www-data: x: 33: 33:www-data: /var 'www:/bin/sh
There were 7 strings returned:
String 1: www-data
String 2: x
String 3: 33
String 4: 33
String 5: www-data
String 6: /var/www
String 7: /bin/sh

Again, the match is successful. Now, try something more complicated. Y ou can give pattest aregular expression to match, and
then modify passwd file lines a bit to see what happens:

$ /splittest

Enter split pattern or leave empty to exit:
> [

Enter string to match:

> pilot:x: 1002: 1002|Pilot Guy|[/home/pilot|/bin/bash
There were 7 strings returned:
String 1: pilot
String 2: x
String 3: 1002
String 4: 1002

String 5: Pilot Guy

String 6: /home/pilot

String 7: /bin/bash

Thistime, Perl istold to match either the colon or the pipe as a separator. As you can see, when some of the colons are changed to
pipe symbolsin the passwd file line, Perl is still able to split the line apart.

sed and awk

These two languages use essentially the same regular expression support, which isfairly standard regular expression syntax. Some
important additions to these languages are the character class operators such as [[:apha]]. These are useful not only as shortcuts,
but also because the notion of what constitutes an al pha-numeric character varies between locales. For instance, some languages
contain characters with umlauts, while English does not. Using simply [A-Za-z] can mean that your programs will parse data
incorrectly when used outside of English-speaking areas.

The info page for gawk (GNU awk) describes regular expressions as used in both sed and gawk.
C/C++

Neither C nor C++ has built-in support for regular expressions. However, severa libraries are available to add such support. One that
is recommended these days is Philip Hazel’ s Perl-Compatible Regular Expression (pcre) library. It comes with some distributions. If

61



yours doesn’t have it, you may find it via anonymous FTP to cus.cam.ac.uk in the directory /pub/software/programs/pcre.
Summary

This chapter discussed the usage of regular expressions. Specifically, you learned:
* Parsing jobs find patterns in data.
» Regular expressions are used to indicate what these patterns are.
» Many different languages have regular expression support, and there are some differences between their implementations.
« Atool called egrep enables you to search through afile for lines matching a certain regular expression.
» The sed command enables you to use regular expressions to make modifications to data as it passes through.
* Perl has support for regular expressions as an integral part of the language.

* You use character classes to specify which characters can match at a given point. Y ou also can negate them by using the »
symbol.

e Quantifiers are used to indicate how many times the preceding item can match. When combined with character classes, they
form a powerful way of matching text.

»  Parentheses can be used both to indicate items to be returned (or placed in avariable) and to indicate grouping. When using
grouping combined with alternation, you achieve the powerful capability of using aregular expression nested inside another.

» Perl also provides a split command, which is useful when you break apart data that is separated by a certain pattern.
» The sed and gawk systems add some unique options that act like a character class.

* You can also find regular expression libraries for C.
Chapter 4: Introducing Emacs

Overview

Asyou program in Linux, no doubt you will run into the two editors that form the mainstay in the arsenal of Linux and UNIX

programmers: vi and Emacs, and their derivatives. These two editors have been around for years and predate Linux itself. In this

chapter, | cover the Emacs editor, which isan IDE (Integrated Development Environment) as well as an editor. You'll learn about the

different flavors of Emacs, how to use the different modes in Emacs, the IDE features of Emacs, and getting help from Emacs.
Emacs 101

Emacs comesin severa flavors. Your first task in using the system is going to be picking which flavor to use. The standard
version is GNU Emacs from the FSF (Free Software Foundation). There are also several derivatives of GNU Emacs that you can
use. Among them, the most popular is XEmacs. XEmacsis, in large part, compatible with GNU Emacs but adds a much better
graphical interface to the system. Both XEmacs and GNU Emacs are powerful, full-featured editors with interfaces for both X and
the console. Y ou may use GNU Emacs instead of XEmacs for the examples in this chapter; the screenshots and the menus will
look a hit different, but other than that, all will be the same. The two editors are sometimes collectively referred to as Emacsen.

Figure 4-1 shows the startup screen of XEmacs. As soon as you press any key, you will be taken to the * scratch* buffer, which
you can use as atemporary scratchpad.

62



Fiee Bl bbb S Opbirs Bullirs Tookh Lol ivint e

#EEEQ‘EEJEJ& [AFAER A=)

XEwmacs

B gt pamann 3.4 -mmscalds (linas. malsp od cho mes 4 LPER sm Lapsd

P17 |coppeighi oy ERE-DRED rves modivers roscdsdion, e

foprripht &) DfS-188d Lacid. BEsc

Digaprighf (G SREF-IEP7 Ewe Mlorevreness, Dae 811 Bights Bavresd
COpFEIENE [T} ERF-2NPE Board af Tesslast. FRIverdily of I0dimaed
toprripht o) [AFE-1808 mea wing

TIBmAES LSSl WAL ANECLOTELT WO WARLRNTT, AFRe D5 oM Sor ALl deanili.
| s Tay pive cur copdes od sEDesny tFps AT dsmcriie-copgisg to nes the cmeditid
=

3y gl TVBE Ok C-i dap inEromaniss on GEUIRe] She BAREEY WeTLEn
SLILL I L
|'E- Bame Sdd Nl ConbEal B .
24 EERMTE. TFE+ C-X ©-0.
2 ukpcial v osien EEmace.
1 T0bh, WAGh Fou Bk Rdd b Pidd oElisd s

i«
quaseiy amcsd guEsiibom, 6 [P T—y E

“vucratchr | LED EEASCRSLLES poemoLlmoRdloaee s s e e 1
dvea

Figure4-1: The XEmacs startup screen

From here on, the screenshots and examplesin this chapter will focusin XEmacs.

Emacs key notation

The first thing you will learn about is the key notation in Emacs. The Emacs key sequence notation is used to specify keyboard
combinations that are used to invoke commands. They are shown to you by the XEmacs menus, by online help, and by other
documentation. For the purposes of consistency in this chapter, | will refer to key notation asis done in Emacs and XEmacs.
Emacs and X Emacs were both designed to be completely operable without any sort of GUI or pointing device (such as a mouse).
As such, you can operate the system completely by using the keyboard. Many programmers prefer to do this, even when running
the system in agraphical environment, because it is faster than moving the hands from the keyboard to the mouse. Others prefer to
use the mouse extensively. Either approach is possible; you'll learn which you prefer after working with the system for some time.

Because of the tremendous number of features available in the XEmacs system, some have multi-key combinations to access.

Evenif you don’t like to use these key combinations, you can still use the mouse; or completely reconfigure the keyboard in
XEmacs.

The key notation used in Emacsen is as follows:
» Keysthat should be pressed simultaneously are separated by dashes.
» Keysthat should be pressed and then released in a series are separated by spaces.

* Cisused to represent the Control key.

e M isused to represent the Meta key. On PC keyboards, this will be one of the Alt keys, or perhaps a Windows key, depending
on how your distribution configures the keyboard. If you can’t find the key, you can press and release Esc to function as the
Meta key—in fact, in some terminal situations, thisisthe only way to do so.

* RET isused to represent your Return or Enter key.
For instance, thisis how you save the current file in Emacs:

CxC-s

Press Ctrl, and then press X. Do the same for S. Note that it is not necessary to release Ctrl between the two keys; you can simply
hold it down. Some other applications might describe the same action as Ctrl+X+S.

Sometimes, you are asked to type aword. For instance, you might see the following:

M-x query-replace RET

63



This meansto press M-x (probably Alt+X, or Esc X), and then type the word query-replace, and then press Return (Enter).

As an alternative to these key combinations, you can use the menus. For instance, you may navigate to the File menu and select
Save. The XEmacs menus conveniently list the keyboard shortcuts, so you can pick them up as you go.

Now | will show you how to load afile into XEmacs and edit it. | will use the second example file from Chapter 10, “Debugging
with gdb;” if you want to work with the same file on your system, you may find it printed at the end of Chapter 10.

To load the file, you may use C-x C-f from the keyboard. Y ou may also choose Open from the File menu. If you use the former,
you will be given an areain which to type the filename at the bottom of your X Emacs window; this areais called the minibuffer. If
you choose to use the menus, and are using X, you will be given a navigation box. Y ou may type the filename or use the mouse to
find one; highlight and middle-click on your choice. The file will now load into the editor.

Tip If your mouse has two buttons instead of three, you will not have a middle mouse button. In most cases, you can
simulate the middle button by pressing the left and right buttons simultaneously.

At this point, you should be aware of the following important key combinations:
* C-gisacancel key, which generally exits any special mode you may be in or cancels any current command.
* C-x C-cisused to exit Emacs.

e C-hentersthe help area. C-hi brings up the GNU info browser; C-h a brings up apropos, which you can use to search for
information on atopic.

* C-x C-fisused to load a new file into Emacs.

* C-x C-sisused to save the current file.

* C-x k isused to tell Emacs to close the current buffer.

Navigation
When you run Emacs or XEmacs under X, many of the keys you may be accustomed to already will work. These include the
arrow keys, Page Up, Page Down, Backspace, Home, End, Insert, Ctrl+Home, and Ctrl+End. Although thisis great when you run
Emacs or XEmacs under X, it is not so great when you run these editorsin aterminal. Many terminal emulation programs do not
have the correct implementation of these keys, or the keys are simply not defined for a given terminal. In those cases, you can use
the following keys as a substitute:
*  M-<(same as Esc+Shift+comma) positions the cursor at the top of the document. C-Home may also do the same thing.

* M-> positions the cursor at the bottom of the document. C-End may also do the same thing.

* C-apositions the cursor at the start of the current line. Y ou can think of this as going to the start of the line, just asthe letter a
is at the start of the alphabet. Home may also do the same thing for you.

» C-epositions the cursor at the end of the current line. The End key may also do the same thing for you.

Finaly, you will often need to go to a specific line number within afile. To do this, press M-g, and then the number, and then
RET. If you are using a very old version of Emacs, you may need to type M-x goto-line RET instead of M-g.

Tip You can ask Emacsto display the line number of your current line on the status bar. To enable this, type M-x line-
number-mode RET.

Sear ching
Emacs has a unique interactive search feature. With this feature, the system starts the search immediately as you begin typing. You
can see how each additional letter affects the result right as you type it; often, you don’t even need to finish typing the search word

or phrase you were looking for.

To start a search, press C-s. Y ou will be prompted for the search phrase. Y ou may typeit at this point. If you find your match,
press Enter and you' |l be returned to the document. If you want to search with the same term again, simply press C-s again; do not

64



press Enter until you have completely finished your search. Figure 4-2 shows what your screen will look like when you are
partially done typing in the search word, getinput.

wraca: chin-c FEE | SN
| sty

WEakem N~ - —— EERekeil 1 ANIG-1.8
J-Eamrod | gening

Figure 4-2: Searchin progress

Y ou can also recall aprevious search term by pressing C-s C-s when starting a new search. Just remember to press Enter when you
have found the item you were looking for.

Y ou may also press C-g to cancel a search; this returns your cursor to the location prior to beginning the search.

The Emacsregion

When you wish to perform a particular operation on a certain part of text in Emacs, you activate the region. Y ou can do this by
simply highlighting the block with the mouse. Alternatively, you may do the same with the keyboard after enabling the region.
When using the keyboard, first move to one end of the region—either the start or the end—and then press C-@ (Ctrl+Shift+2).
Now, position the cursor to the other end of the region. At this point, you are ready to do something with the region.

Y ou could use it in a manner akin to the clipboard in other applications. Here are the commonly used commands for such a usage:
* You can cut the text with C-w.
* You can copy the text with M-w.

» You can paste a copy of previously cut or copied text with C-y (the “y” stands for “yank”).

Y ou can use any of these commands either after highlighting text with the mouse or with the keyboard. There are many more
commands that operate on aregion. These commands can do things as varied as indenting the whole region, wrapping the text in
it, or turning it into alarge comment in your current programming language.

Buffers

Emacs allows you to open many files at once. When you do this, you are working with several buffersin Emacs. A buffer in
Emacsis simply an areathat you use to edit files. When you open afile with C-x C-f, Emacs creates a buffer in which you edit the
file. Y ou can open other files in additional buffers with the same command. If you want, you can load up another file. Now, both
filesare present in your editor.

There are several waysto switch between buffersin your current window. The first isto use the Buffers menu. The contents of that
menu are set to include all the different buffers that are open at the moment. Y ou can switch between them by selecting the buffer
that you wish to edit.

Y ou can also switch buffers by using the keyboard. The command for thisis C-x b. If you press RET at this point, you'll be
switched immediately to the buffer that you were editing prior to this one. Otherwise, you may type the name of the buffer to
which you will switch. Finally, you may simply press Tab to display alist of buffers available as shown in Figure 4-3. Y ou may
then type the name of the buffer you wish to use, or middle-click it.

65



mrca: chio=1oc EEE i“‘l
W

P Fl bhda Sgge Oghiors Duifers Took:

PEEISEREHEFEREE

Wiaimiom s — - - — Gt 1 AR A0~ L .5
Flik basnoalep oo B completisn to Gelecs Lt
Fips Hew 6F prisc te mive e this Beller. Tar Bepbasrd sslenti

Fossibles CORpletions aTed
#lomplatione * #
ELTT= TP

Wk A -4 - EERkeiE 1 PEEAGE S LERLY |CRBpLEbLAR 2 LEN | —-——1k —&iE
wuirch te badiscy odedawals enid-1.a3

Figure4-3: PressTabto seealist of available buffers

Windows
Switching buffersis a powerful way to work with multiple files, but another powerful option is windows. These are separate areas
on the screen. Y ou can work on different sections of the same buffer in these separate windows, or you can work on separate
buffers. The windows can be tiled horizontally or vertically.

When you create or remove awindow, the buffers being edited are not modified. When awindow is closed, the buffer in which
you are editing the file is not closed; you can still switch to all your buffers as described in the previous Buffers section.

Table 4-1 lists the key commands that you can use to work with multiple windows. Y ou can find equivalent options for most of
these key commands under the File menu.

When you first use acommand such as C-x 2 to split awindow, you may want to |oad separate files into each one. If you already
have multiple buffers going, you may use C-x b or the Buffers menu in one. Alternatively,

you may open new filesin each window. Y ou can even have two windows working on different parts of the same file.

Table4-1: Window-Related Key Sequences

Key Command Function
L
C-x0 Deletes the current window. The buffer is unaffected. Note that thisis the number zero.
Cx1 Deletes all windows except for the current one. The buffers are unaffected.
C-x2 Splits the current window into two separate ones, one on top of the other.
C-x3 Splits the current window into two separate ones, side-by-side.
C-xo Switches to the other window. Y ou can also do this by clicking in it. Note that thisis aletter O, not

anumber zero.

It's even possible to split windows several ways as shown in Figure 4-4.

66



mrca: chio=1oc EEE "{‘_ﬂ
s

IMIlr-': EERmNEr 4 PEE SEAmLETEED |
npar = gerhapuEii
Aogah me =13 LA [Eg
PCLACDSN IAQe] CONLTSL, LEPOTS
I
o

B e T TN TR LY ) JE Fih j=—mnb] == Tog

Figure 4-4: Anexample of split windows
To create the display as shown in Figure 4-4, start by splitting the current screen with C-x 2. Then, select the top window and press
C-x 3. Thus, you can split windows multiple times.

When you’re done with windows, you can press C-x 0 and C-x 1 to get rid of them. Pressing C-x 0 removes only the current
window; pressing C-x 1 removes all windows except the current one.

Frames

When you are running Emacsin X, you have access to another powerful feature: separate frames. Frames act as windows, except
they are created in a separate top-level window on your X display. Because of this, you cannot use framesin aterminal.

A new frameis created with C-x 5 2 and the current frame is deleted with C-x 5 0. It isimportant to remember that even when you
have several frames, they al belong to a single editor. Thus, you can switch between your various buffersin each of them.

Additionally, inside each separate frame, you can create multiple windows (as shown in Figure 4-5).

Fils Tl bhis Sgpn Opsenc fuffen Tosho ©

ST FIZIIEI“"'ILJ:I.PEIQSI.i.lqkl.ﬂl"’*l

Bincicds

an TEANtECs LET LAp

panar w FHy cw
i
I Remiu A,

ﬂ

L L L D T I 17 =

Figure 4-5: Anexample of an additional window inside separate frames

Y ou can use your window manager’s standard controls for moving and resizing your frames because they act as normal X
windows.

Because al these frames correspond to a single Emacs process, when you exit Emacs with C-x C-c, all will be closed. The same

applies to saving files; because the buffers are the same, but displayed in different frames, saving a buffer one place effects the
buffer in every frame.

67



Syntax and paren highlighting

For this section, you might want to open up a C file for editing in XEmacs. Start the session by turning on syntax and paren
highlighting. Go to the Options menu, select Syntax Highlighting, and then Colors. Go back to Options [~ Syntax Highlighting and
choose Most. From the Paren Highlighting menu in Options, select Expression. Notice how XEmacs has highlighted the syntax for
you. Strings are green; C keywords are highlighted in yellow, comments are in red, variables and preprocessor directives are blue,
and data types are purple. XEmacs understands the syntax of dozens of languages, including all of the ones covered here. To the
greatest extent possible, XEmacs uses the same colors for syntax highlighting between all the different supported languages. If you
now select Save Options from the Options menu, X Emacs automatically enables syntax highlighting for you each time you use it.

Syntax highlighting is atremendous benefit to programmers. Not only does it make your life easier by making it easier to read
through code, but it can also help you write good code. Consider, for instance, if you mistakenly forget to close a string with a
quotation mark. The code that you type after that will remain green, instead of its proper color. You can immediately notice that
there was a problem while writing the code.

Another powerful feature isthe so-called paren highlighting. This feature highlights more than parentheses; it also works with
braces, brackets, and other items that occur in pairs. As you write code, or even as you move through it, the system highlights the
expression matched by your delimiters. Thisis great for ensuring that all your parentheses and braces are lined up properly—
failure to do thisisamgjor cause of bugs and syntax errors | ater.

Consider the example from this screenshot. XEmacs highlighted a portion of the code, starting at the opening brace that
corresponds to the closing brace.

Y our entire expression is highlighted; you can see instantly which statements fall within the boundaries of the block. If you make a
mistake and your delimiters no longer match properly, XEmacs can sometimes detect this even as you write code, and highlights
the incorrect areain pink.

Major Modes

In Emacs, whenever you edit afile, you do so in a particular mode. This mode enables Emacs to provide additional or specialized
capabilities, depending on the specific type of file you are editing. Programmers appreciate capabilities such as syntax
highlighting, commenting assi stance, automatic indentation, controlled reindentation, and several other features.

C

The C mode is one of the most well-known and full-featured modes in XEmacs. As you' ve already seen, it has syntax and paren
highlighting features. However, the features go much farther than that.

Indentation

One of the most powerful featuresin the C mode is the indentation support. This feature enables you to get proper indentation for
your code, and also to re-indent code should the need arise. The primary key to do thisisthe Tab key. When you edit codein
Emacs, the Tab key does not insert atab character asit doesin other editors. Instead, it automatically indents your current line to
the proper position. As an example, consider what happens if the code is not properly indented, as shown in Figure 4-6.

woomca: chi=7c FEE

FEEEEREEREFEEREES

Hala

n

LT etz o T UL e P
Frint bufisr

68



Figure 4-6: Anexample of bad indentation

If you want to fix this problem, you can move your cursor to each line and press Tab, once per line. Y ou don’t even have to put the
cursor at the start of the line; anywhere on the line will do. In this case, it’s generally best to start with indenting from the top of
the code sample as opposed to the end. This way, Emacs can learn the proper indentation from your code as an example.

Another powerful feature enables you to define for XEmacs which style of indentation you prefer. Thisis used when the system
does automatic indentation for you. The command to do thisis M-x c-set-style RET or simply C-c. XEmacs prompts you for your
selection. Select bsd for these examples.

Y ou can now re-indent the entire document according to the BSD style. To do this, highlight the entire document, and then run M-
X indent-region. Y ou can also do this entirely from the keyboard by specifically using the following key sequence:

M-< C-@ M-> M-x indent-region RET

Emacs then re-indents your file. In this case, the primary difference you’ll notice isthat more space is being used for indentation.
However, even if you don’t use indentation, the result will be the same; Emacs will indent the entire file as appropriate.

Comments

One of the most important aspects of writing maintainable code is good documentation. Y ou often do thisin the form of
comments. The C mode in Emacs contains agood deal of support for helping you write comments.

One useful command is M-;—so named because the semicolon is the comment character in LISP, the language from which the
internal programming language of Emacsis derived.

When you press M-; the editor set up a comment, indented to the right. Now you can type your comment in the area as if you had
set up your own.

Emacs can do more than create placeholders for comments. It al'so can comment or uncomment large sections of code. Although
this definitely is not good practice in production-quality code, you sometimes need to do this for debugging or tracking purposes
while developing.

If you highlight some text, you can see how this works. After highlighting the text, press C-c C-c or choose Comment Out Region
from the C menu.

Figure 4-7 shows a screenshot of the resullt.

wraca: chin-c FEE | SN
| sty

{AREL Gk B | Gl BAST ] |
maxvel = CONRTED,

maxwel » =L3 |
priatmssnans |pvslees | naees

peincip-rn Lepur cemeived; aobieg to displey.ias |

8
L a1+ % L NR L Lt L)

Figure 4-7: Anexample of commented-out code

Notice how Emacs automatically commented out the linesin the area. However, on line 12, thereisanissue. A comment was
already on that line, and C is not alanguage that permits embedded comments. So, at this point, compilation will fail because of
the problem on line 12.



Y ou also can remove the comments; highlight the same region and select Uncomment Region from the C menu. Emacs removes
all the commentsthat it added.

Preprocessor Expansion

Emacs can run a portion of your code through the C preprocessor so that you can see the effect of macros, conditional compilation,
and include statements on your code. For instance, consider the effect of the following screenshot:

To achieve this effect for yourself, follow these steps:
1. Type the code as you see it in the top window.
2. Highlight it as aregion.
3. Press C-c C-eto invoke the macro expansion. Y ou also can select Macro Expand Region from the C menu to do this.

Emacs then creates a second window and displays the result of the macro expansion there—you can see that the CALCULATE
macro was expanded in this case. If you have any #include lines, and you expand that region, the entire included file will appear in
the result. Therefore, you may wish to be cautious when expanding those lines, lest you have a huge amount of output to wade
through to find something useful.

Auto State

The C environment in Emacs also has more features to help speed the development process. When running in auto mode, the C
environment automatically takes care of inserting new lines, dealing with indentation, and other related tasks while you type. In
many cases, this means you don’t need to press Enter while you are coding; the system takes care of that automatically.

To engage auto mode, press C-c C-aor run M-x c-toggle-auto-state RET. As you type while in this mode, you'll notice that
whenever you press the semicolon, the editor automatically positions your cursor on the next line, properly indented. Y our code
can end up looking exactly the same as if you had not used auto mode; it simply takes you fewer keystrokesto create.

If at some time you wish to turn the auto mode off again, simply press C-c C-aor run M-x c-toggle-auto-state. The system will
return to normal behavior.

Perl mode

Emacs editors typically also have very strong support for Perl programming. The Perl mode found in modern flavors of Emacsis
very powerful indeed. Y ou should be aware that there are several different implementations of a Perl mode floating around, and
several different versions of each of these. Therefore, you may have a different implementation than the one shown in this section.
However, many things are quite similar between the different implementations of a Perl mode in Emacs in general. Current
versions of Emacs generally come with a mode named CPerl, which is a powerful Perl mode with a number of advanced features.

Note One of the challenges of writing an Emacs mode for Perl is that the Perl syntax can be difficult to parse because of
its many features and different ways of doing things. Y ou may find that, if you take frequent advantage of the
more esoteric features of Perl, occasionally your syntax highlighting may be off; however, usually you won't see
any problems other than those.

Several modesin Emacs are based on the C mode; you'll find that the Perl mode is no exception. Many of the keystrokes for doing
various commands related to comments and indentations are the same. For instance, to insert a comment to the right on the current
ling, C-; is till the correct key.

There are some unigue features of the CPerl mode in Emacs. Oneisthat it can display the syntax for various functions directly
within Emacs. To do this, move your cursor over the item on which you want help, and press C-c C-hv. The statuslinein Perl
displays a syntax summary of the option.

Some versions of the CPerl mode also have extra support for dealing with POD (Plain Old Documentation) documentation in your
Perl files. Y ou can investigate these options under the Perl menu. Some options under Perl docs in the menu include a way to view
the result of the POD in the file being edited, and other options include rescanning for PODs and here-documents.

Other modes

70



Emacs comes with editing modes for virtually every language you might work with. Some of the other modes that you may find
useful in Linux include shell scripts, Makefiles, LISP, Prolog, LaTeX, plain text, and many more. Most of them try to use the same
keystrokes that were popularized with the C or LISP modes. Therefore, you won't have to re-learn your commands when editing
different types of files.

Occasionally, Emacs may not be able to determine automatically which mode to use for a specific file. This could happen, for
instance, when you edit afile with no extension. Y ou can switch modes manually with a command such as M-x c-mode, but you
can tell Emacs to use a different mode automatically.

Y ou can do this by adding aline near the top of your file to specify the mode. The following example has onein its second line.
Y ou will want to comment it out by using whatever syntax is appropriate for the language you' re editing. For instance, if you're
editing a Perl script, you might start it out like this:

#!/usr/bin/perl
#-*- Mode: Perl; -*-

When you load afile that contains this comment into your editor, Emacs automatically switches to the appropriate Perl mode.
Emacsasan IDE

Emacsis more than a basic programmer’ s editor. The Emacs system includes support for integrated compilation and debugging of
your programs. This support enables you to work with building, running, and debugging programs from numerous languages—all
without leaving the Emacs environment.

In Emacs, there is an emphasis on integrated. Other IDEs offer you an editor, an interface to a build system, and a debugger from a
single interface. Compared to Emacs, these systems look positively outdated. Emacs offers those basic features. In addition, it
enables you to run your programs within the system, and even multitask with them, to examine their output with features such as
the built-in web browser to read your e-mail with one of the several built-in mail readers. With Emacs, you can also cut and paste
directly with your code or debugger to telnet el sewhere, and even play some games after along day of programming—all without
ever |eaving the Emacs environment.

Every one of these features is completely customizable. Thanks to the ELISP programming language that is behind much of
Emacs, if the built-in ways to exchange data between these different components aren’t sufficient for you, you can script and
automate the coordination completely to your every whim.

So are all these things really useful for development? Absolutely; although perhaps we should exclude the games from this list.
When you are sitting comfortably at your own Linux machine, you can run all the various separate programsin X that you want.
Y ou can have your own web browser, your own debugger, your own shell windows, and so on. However, you are not always so
lucky. Many programmers need to work through a text-only terminal, where the integration in Emacsis very important.

Even if you are working solely in X, the benefits of having components in Emacs fully integrated and scriptable can be a
tremendous asset to your development process. For instance, you can press a single hotkey while reading your e-mail that can
cause the contents of your message to be piped to your newly compiled program, and display the output in a web browser as
HTML.

Compiling programs

Emacs enables you to compile your software while in the Emacs environment. When you do this, the editor can tie together the
output from the compilers with the code of your program. This means that you can jump instantly to the location of an error or
warning by simply middle-clicking it.

Y ou can find such options under the Tools menu. When you select Compile from that menu, Emacs asks you for a compile
command. If you have a Makefile, you can accept the default. Otherwise, you will want to supply the compilation command line
appropriate for your program.

If your compilation has any errors or warnings, Emacs shows them in a separate window as shown in Figure 4-8.



wrnca: chi-lx EEE

Pk Eckl bl Sgpre Dgbiars Dudffers Tooh £

P EERREE R

Wk B - — EEFakeli 1 P HEBEL A L Ca |SRBpLLAA LER TE

FRTILRG STTOC DEERAQeE. .. fons

Figure 4-8: Error Display in XEmacs

Now, if you middle-click (or move the cursor to the location and press Enter) the error message, you will be taken to the location
of the error in your source. In this case, the problem is simple: a capitalization error. Sometimes, your output may contain
hundreds of warnings; being able to skip directly to each one can be a huge time saver.

Asyou may have noticed, the default for the compile command is an invocation of make. Emacs is perfectly capable of working
with make and dealing with multiple files; there is no need to worry about Emacs support for large projects.

Debugging

Many integrated development environments provide a debugger. Although many provide a limited debugger, XEmacs provides a
full-fledged interface to the powerful gdb debugger.

Cross-Reference
For more details on using gdb, see Chapter 5, “Understanding Linux Data Files and Scripts.”

When you use gdb in XEmacs, you get al the standard gdb features that you get when it is run any other way. However, some
additional features are included as well, mostly by way of interface improvements.

To start with, when you debug a program using gdb in XEmacs, you can watch your own code file as execution proceeds through
the program. This option is much easier to use than the default gdb operation, which displays only the current instruction.

Furthermore, because you can recompile directly from XEmacs, and the debugger runs with a buffer holding your source code,
making modifications, recompiling, and rerunning in the debugger is a simple operation.

To invoke the debugger inside Emacs, select gdb from the Tools menu. The system then prompts you for the name of the
executable to debug. When you provide the name, gdb will be invoked. At first, you will see a screen that is essentially the same as
the standard gdb screen. Go ahead and set a breakpoint at the program entry point and begin the program. After you do this, the
screen is split as shown in Figure 4-9.

72



P e T i e i il =

Fis Fdil Appx Optione fiTen Tools Comindl Comind? Hilery

& @[ @| r w vi[% 60l 2|0 &

Bl Fublic Licemes: aad Fod ace
bt uaEaE EERhALE B L ds

Figure 4-9: Debugging in XEmacs

The editor now highlights your current point of execution in the source for your program. Thereis no longer any need for gdb to
display the code because it is now available directly from your Emacs window; therefore, the code output is omitted in the gdb
window.

In the gdb window, you can use all of your traditional gdb commands; you don’t need to learn any new commands when you use
gdb in Emacs. For instance, if you decide to watch how variables change over time, you can use the display command in the gdb
window exactly as you would in standard gdb. The lower window continues to trace through your code as it executes, regardless of
the variables you are watching in the upper window.

Y ou also may use gdb with a corefile in Emacs. To do so, invoke it with M-x gdb-with-core. Thistime, Emacs prompts you for the
program and the name of the corefile.

Using tags

Another powerful feature of Emacsis the capability of using tags. With these tags, the editor can identify which filesbelong to a
single project. More importantly, the tags indicate exactly what isin each of these files. For instance, with C programs, the tags
can indicate which file contains a given function. When editing your files, then, you can skip directly to any function—regardless
of thefilein which it islocated. Moreover, you can apply various commands to the entire group of filesinstead of your current file
only. For instance, a search operation could affect all filesin the group.

To provide you with this functionality, Emacs needs to analyze your files and store information about the tags to be used with
them. Traditionally, you do this by using afile named TAGS. Y ou generate this file by running the etags program at the command
line, giving it the names of the files you wish to index. For instance:

$etags*.c
The etags program analyzes your source code and produces a TAGS file for use inside Emacs.

Now, you can use the Tags optionsin the Tools menu to navigate through your files. Y ou might want to start with Find Tag (M-.)
to see what happens. For example, type a function name. Emacs skips directly to the file containing that function, opening it if
necessary, and positions your cursor on the line of its start. If the function appears in more than one file, you can continue to search
for additional instances of it by using M- (that’s ESC+comma).

Shellsin Emacs

Emacsis much more than a run-of-the-mill editor. In fact, it is often billed as the editor that includes everything and the kitchen
sink! One unique feature of Emacsis the capability of running a shell inside the editor—and using commands more reminiscent of
atext editor to manipulate your command line. Some users absolutely love this feature; othersreally dislikeit. You may or may
not like to useit for yourself, but you can at least give it atry.

Y ou can fire up ashell by typing M-x shell RET. You will receive a screen that looks like an ordinary shell window, albeit with
various Emacs decorations around it. But do not be fooled; this window is anything but ordinary.

73



Try typing a command such as an |s command. If you're running in XEmacs and have color highlighting turned on, you'll notice
immediately that your commands are highlighted for you.

When you enter your Is command, you see a directory output asis usual. Now press the up arrow. Instead of accessing a command
history, you are moving about within the shell area—both with the program output and with your commands. Y ou can even edit
this output from other programs on-screen. After doing that, you can use the output as a command, or even save the buffer
containing your interactions to a disk file as a transcript of your session.

Experiment a bit. For instance, after running an Is command, you can move the cursor back up to some output and press Enter.
Emacsinstantly copies the entire line of output underneath your cursor to the shell command prompt, as shown in Figure 4-10.

coat
el
ceal
ive
0]
oAt
[
=
el
21

iSaslle ruai Lf==ALd

Figure 4-10: Running a shell in Emacs

At this point, if you press Enter, Emacs sends the command to the shell. Otherwise, you can make modifications to it before you
send it to the shell and then press Enter. Either way, you have a new capability: directly moving the cursor through output and
easily using it on the command line.

Another interesting capability of the shell isthat, in some situations, Emacs can become aware of your command history with the
shell. This extends beyond the involvement of Emacs al the way to the shell itself as shown in Figure 4-11.

File EE MES e Oplasd OTre Tais (ETET] (ETELE e

J.,.JJ..J,HJJJJJWLJ”JEJ;;IE reeiy e

B P - - - - 1 e o, e il s el

i ol i
s e

TR

o,

[ s et
ol Seray
[ e e

ol reental

Figure4-11: Using the Shell with Emacs

Even though most of the commands that Emacs lists are not issues from inside X Emacs but from a separate shell, they are still
recognized by the editor.

74



Also note that certain functions in Emacs use the shell mode for interaction. The gdb interaction is one such situation. The features
of the shell environment are thus available there as well.

The shell environment does have some drawbacks. Because it takes control of the terminal under which the shell is running, full-
screen terminal-based programs such as EIm will not function properly. If you still need those features, you can use the term
feature found in newer Emacsen.

Theterm mode

Current versions of Emacs ship with aterm mode. Thisis afull-fledged terminal emulator in which you can run any full-screen
applications such as Elm, ircll, or various other applications that use the terminal. The advantages of running programs inside
Emacs like this include the capability of running multiple commands at once, even with a single terminal. With the capability of
opening several windows in your Emacs session, you can view multiple programs at once—without needing to resort to a
graphical system such as X.

This convenience comes as a cost, however. Because Emacs essentially must pass through commands verbatim and receive datain
the same manner, you don’t get the fancy editing support of the shell mode. Nevertheless, the term mode can be useful—especially
if you are telnetting to other locations for instance.

Y ou may also wonder: if al the data must be passed through to the terminal verbatim, how can commands be executed in the
parent Emacs system? Y ou have two options: you can use amouse if you're running Emacsin X, or you can use the escape
character. The escape character is C-c by default. When you press C-c, the characters you type after that are interpreted by Emacs
instead of sent to the terminal. If you need to send ato the underlying terminal, you can press C-c twice.

Y ou invoke term mode by typing M -x term RET. After you type this, Emacs prompts you for the command to run—your shell by
default. Accept the default and use your shell. In Figure 4-12, you can see the full-screen interface of Midnight Commander
running inside your XEmacs session!

Fas D Rhas (P Upless Duiies s Tearaod

ST S A

S

taft Fils canmaad optican
E-FiE e
I

3 Bad L1 LR BiA
wad get back to BO with d-p sgmin

[}
HMECHIY TARALT WOslelE Pralloa

re) zhar cwnbd L1¥ 1= =lat

Figure 4-12: Midnight Commander inside aterm window
Y ou can run multiple programs with tiled windows, by starting up multiple instances of aterm. It is generally best to split the
windows first, and then invoke the term.
Thereisatrick here. Normally, a second invocation of M-x term will re-open the first buffer. In order to prevent this, you need to
rename the first buffer. To do this, you need to issue a command to Emacs; the escape character doesn’t provide this by default, so
you need to switch the terminal into line mode, issue the command, and then switch it back. Y ou can do so with the following
command:

C-c C-j M-x rename-uniquely RET C-c C-k

Now, you get to invoke another terminal. Figure 4-13 shows X Emacs running with two terminal windows. The top window is
actually running its own copy of XEmacs inside the parent copy of XEmacs; the bottom window is running theircll chat program.

75



FaE E REEs (PP Dplesd uiiors Taas Tesnaod

,,J,J,,JJJJ-JnJmJﬂJEJ;;IE’LJﬂEJE_:

sxmacy winescr ApLEdy qrupmic Lege ssrss

TEmaais F0.4 CErerabic (Llesx, ®ole) of The KT 4 L on Lhped

L IMei¥) Fres eliwaie Fieeis

W MEERAREY) thpa O-h 0w lar fuld densils
SE -0 8§07 BB EpTLER bE ked dhe Al
SELME 19K TEEN L. | ==L =~ Pl == —mmmm e =
Guan4rY process smitedy restart with CWem grasscv-stact’

Fozooy--r - BEMACE| "teCTdnaleais EE4IR| GARS TEE}==—-Liles fObes—em e o e
Gad TUGE MSGrbE. Pleksd Tedpess S48 Peled. Thaabs.

an Beasld Reusl Teillens L2197
AN Bendc§ ssaal. 43 nn..-.....n

M?l :1-: HH :n-l: IHII"H.I! an .Hn !rd

- A_,; ellegy, for uile s
i Iwu-l-u WS Lawenced Langisoss:

= Hads ae kE7 Per ums T
||| T3ah% JgGation T RFps Phalp TAC Nabp
1

| Wozpeyy o# ¢ WEmare ) Starninalfdlp £farm) SAer runi A RIL

Figure 4-13: Two termsin XEmacs

Using this windowing capability is not limited to the X interface. Y ou can also do this when running Emacs in a simple terminal—
thisis probably the most powerful application of the term because normally, you do not have windowing capabilities with asimple
terminal.

Dired

Thusfar, you' ve seen that the IDE that is Emacs includes support for compiling, debugging, running, and multitasking with your
programs. Y ou also get support for managing your files through a mode called Dired. Dired can be used as a simple file picker, or
as afile manager. It runsinside of Emacs, and thusisintegrated completely with the system.

Y ou invoke Dired by specifying a directory instead of afilename when opening afile. For instance, you might specify C-c¢ C-f /usr
to open Dired on the /usr directory. When Dired starts, you get output resembling that from the Is - command. From here, you can
move the cursor to aline and press Enter to edit the file—or display the directory. As usual, if you are using the mouse, you may
middle-click the appropriate area to do the same.

The XEmacs menus for Dired are excellent because you have many options from the menus. The character commands for Dired
can be difficult to remember, especially if you don’t use them frequently, so consider the menus your friends. Figure 4-14 shows
Dired operating on the /usr directory, with the Do menu pulled down.

e F nhEs AppS Oploss Piies Teis Sber Mae (0] Regean Lok e

=12 2 DIRIZIRE v,

Eumrap Hig gl M i =

| Wozraey DLrsds wmr idared by namai LL3==ALd
M oBG BadLasd.

Figure 4-14: Dired working with /usr

w3
The built-in web browser available for Emacsiswa3. Thisis aweb browser that, when run under a system such as XEmacs,

76



features full support for graphics, tables, and several other modern niceties. Although you may find better rendering with a
program such as Netscape, you'll probably find that it’'s very convenient to have a browser integrated into Emacs. To invoke the
w3 browser, run M-x w3 RET, or select it from the Apps menu in XEmacs.

When it opens, you see an introduction screen such as that shown in Figure 4-15. The operation of this browser is similar to that of
others with which you may be familiar; the button bar and the menu bar both are modified to have web-specific itemsin them. The
primary difference to be aware of from the start is that the middle button is used to follow links instead of the left button asis
customary with other browsers.

e L L

=22 8% DI2l4]
s+~ EMACS/V

A
"
o

3f yoa ron Leva any problers. gl
B e praRler

BEyIERTIALUE CXAR
Fo Wnils srheis S

P
fir for T cf 5
uarnesr o3 che wsl oan ismadistely b pot to wnck

BLch Dmace/ed, Fou BawE FEC AGCTHEC THAGN TO E4vSr Lesvs DmsIN. roo all the
man-balisvecs: this reslly is r ooed thingitm

. 5
W11 Bmaan/HY 4.0 oo
(FBllrsuaiag ar. o ocelasd, bppE g

Figure 4-15: w3 in action

Gnus

Not satisfied with only being able to read mail, telnet, surf the web, write programs, run debuggers, and play Tetris from within an
editor, the Emacs programmers set out to write Gnus—a mail and Usenet news reader written solely in ELISP and integrated into
Emacs.

Gnusisinvoked by either running M-x gnus RET or by selecting the appropriate option from the Apps menu. The Gnus system
presents, in traditional Emacs fashion, an integrated interface for reading mail and news, along with message filtering, pre- and
post-processing, scoring, and many more options that can be applied to both. Again as with Emacsitself, Gnusis completely
scriptable and, with ELISP, can be customized in virtually infinite ways.

Gnusis configured through a .gnus file. This file defines where mail and news come from, how they are split, and also any
additional customizations. For details on thisfile, you may consult the online info documentation for Gnus or the information on
the website at www.gnus.org.

Figure 4-16 shows a system that uses Gnusto read a multitude of e-mail. The listing on the screen is a summary of the folders on
the system with the amount of mail in each.

77



Figure 4-16: Summary screen in Gnus

For some users who are looking for a simpler but somewhat less powerful mail reader, the VM reader (also built into XEmacs)
may prove a more viable option; it can aso be found in the Apps menu.

Version control
AsI’ll discussin detail in Chapter 26, “ Archiving and Collaboration with CVS,” version control systems such as CV S (Concurrent

Version System) can be extremely beneficia for the development process, especially if multiple users are involved. Emacs, of
course, has (surprise) integrated support for CV'S. The module that provides this support is called vc.

Note If the examplesin this chapter do not work for you, you may need to load the vc module into Emacs manually.
Y ou can do that by running M-x load-library RET vc RET.

The command of primary use is C-x v v, which checks in your current file to the repository. The system asks for a changelog
entry, which you can supply. When you are finished with the change comments, press C-c C-c and the file will be checked in with
your comments.

The version control support in vcisnot limited to CV'S; it will also work with RCS. This can be convenient as you get asingle
interface to different version control systems available for Linux.
Getting Help

Emacsisalarge and extremely versatile system. There is alarge amount of documentation available with Emacs, and it comesin
several forms.

Y ou can access al of the help in Emacs by using C-h. Ironically enough, the Backspace key on some keyboards and with some
systems will transmit that keystroke as well. From the initial C-h keypress, you select a command that will select the particular
type of help to display. If you presstwo question marks at this point, you receive a summary of all the C-h commands, as shown in
Figure 4-17.

78



Pl B ke g (TR BT Toe
MRS A b

tea mavs eyped Belp, the balp charsurar
(Fws B wr BES o wecoll tAroogh thas

tha csnrand biaed woorhan bey.
nlkalBar ranElIen

ARl BLEGE Eeled.

ng pasBEges

T T T T I T TN
WLECKS LOFEES LMK Gurmaad. I—

Figure4-17: Summary of C-h commands

Some of the most useful commands from thislist include C-c, d, C-f, i, and t. Take alook by finding information about the

command that opens files, C-x C-f. First thing you should do is find the appropriate function name. To do that, you use C-h ¢. The
full key sequenceis:

C-hcC-x CA
The system responds with the name of the corresponding function. In this case, it displays:

C-x C-f runs the command find-file

Armed with thisinformation, you can go forth and look up more information about the specific function. Y ou can use C-h d to
bring up a summary of the command’s usage. Running C-h d find-file RET displays a summary of the command:

“find-file' isan interactive compiled Lisp function
-- loaded from “files.elc”
(find-file FILENAME & optional CODESY S)

Edit file FILENAME.

Switch to a buffer visiting file FILENAME,

creating one if none already exists.

Under XEmacs/Mule, optional second argument specifies the
coding system to use when decoding the file. Interactively,

with a prefix argument, you will be prompted for the coding system.

Thus, you get a basic summary. However, you may want to get some more detailed information about the command. In this case,
you can try C-h C-f to bring up the info page for the specific command you are curious about. In this case, the system bringsup a
good deal of information about find-file, including an ELISP scripting example.

Now, you can view the info documentation covering that specific command with C-h C-c. Info documentation is a hypertext
documentation format used extensively by Emacsen and by various GNU software programs. Emacs contains an integrated
browser for info documentation. Y ou can invoke it on a specific part of the documentation with C-h C-c, or you can invoke it on
the top of the Info tree with C-h i. Each documentation page in Info documents have specified ways of navigating. Y ou can select

options from a menu, navigate up, forwards, or back-wards by using buttons on the tollbar or by using links inside the document
itself.

When you first open the info browser, you see the master index. The actual contents varies depending on exactly which Linux
distribution you have, which Emacs version you have, and what software you have.
Summary

In this chapter, you were introduced to the Emacs text editing and development system. Y ou learned that:
» Emacs comesin different flavors, with different interfaces, but with much of the same technology under the hood.

79



» Emacs hasits own special key notation for use in documentation and in scripts.
» Emacs has basic editing features.
« Emacs has different editing modes available, depending on the specific type of file you are working with.
» These modes define features syntax highlighting, extra commands and keystrokes, and so on.
e Cand Perl modes are two examples of editing modes. Both provide a full suite of useful tools.
* Emacs can also be used asan IDE.
» Emacsisbig onintegration, with many components integrated into the system and written in ELISP.
* You can perform tasks such as compilation, debugging, and running your software all from within Emacs.

* The C-h keystrokeisthe first step towards finding help. Additional information can be found beneath that menu.
Chapter 5: Understanding Linux Data Filesand Scripts

Overview

In this chapter, you'll learn about some of the system files on a Linux system. Although some of your programs may not need to
deal with these files, others may need to know this information. For instance, you might want an e-mail program to be capable of
finding out the real name that corresponds to a given username. A web server would want to be started at system boot time. An
FTP server would want to be started when connections to the proper port arrive.

If you are writing a program that needs to interact well with the system—particularly one that you distribute—you need to make sure
you interact with system files properly. Y ou must use proper locations for your configuration files, and read existing configuration
files properly.

General Concepts

In Linux, most configuration information is stored in plain text files. Many programs have both system-wide and user-specific
configuration systems. The system-wide configuration generally is stored in /etc or a subdirectory thereof. User-specific
configuration information generally is stored in the user’s home directory, with a filename beginning with a period. The Is program
avoids displaying such files, and wildcards avoid matching them by default. For instance, a shell might look first in /etc/profile and
then augment (or override) those settings with a .profile file in the user’s home directory.

With this approach, configuration files can be edited with any text editor; no special binary editor is required. Furthermore, each
application is free to use a configuration file format that best suitsits needs. For instance, the format necessary to describe printers
isfar different from that necessary to describe mail routing and rewriting tables. This approach works well for almost every part of
the system.

The downside isthat this system can be somewhat inefficient. For instance, if agiven fileis accessed frequently, there can be a
performance hit. For this reason, afew files such as the passwd file are stored in a database format, generated from the plain text
version. Because most configuration files are processed infrequently and are small, this particular problem does not apply to a
majority of programs.

Because standard files are used to store configuration information, the existing Linux permissions mechanism is used to control
who can read or write to the configuration of a given program. These permissions are used to prevent non-root users from writing
to the configuration filesin /etc and to prevent other users from modifying their own configuration files.

You'll alsofind that Linux’s capability of mounting directories and filesin any place in the file system hierarchy enables you to
create a high level of organization and structure in the file system—a level unattainable by other operating systems that do not have
such a system.

File system Layout

Thefile system layout in Linux can vary between distributions. Each distribution seeks to integrate hundreds or even thousands of
packages and may settle on different standard locations for files.

In an attempt to rectify these problems, programmers got together and created the Linux Filsystem Standard (FSSTND). Many
Linux distributions settled on this standard. Because of the expanding nature of Linux, particularly the proliferation of the system

80



on non-Intel platforms, a newer version called the Filesystem Hierarchy Standard (FHS) appeared. Distributions are moving in the
direction of this new standard. Some names or locations are presently in a state of flux because of this change but the differences
are not significant relative to the overall picture. For details on these standards, see the web site at http://www.pathname.com/fhs/.

[: Theroot of everything

The root of the directory treein Linux is/. This directory should contain either no files (only directories) or only very few files,
such as akernel image. The root directory isthe first mounted by the kernel; it is, in fact, necessary to do so in order to boot the
system. The scripts and programs contained in this file system are then responsible for starting up the remainder of the system.

Here's a sample listing on one system, which should look similar to yours.

drwxr-xr-x 2root root 2048 Jul 20 15:18 bin
drwxr-xr-x 2 root root 1024 Jun 25 23:10 boot
drwxrwxr-x 2root cdrom 1024 Jun 2 19:22 cdrom
drwxr-xr-x 3 root root 19456 Aug 7 09:48 dev
drwxr-xr-x 67 root  root 5120 Aug 7 09:48 etc
drwxrwxr-x 2root floppy 1024 Jun 2 19:22 floppy
drwxr-xr-x 2root root 1024 Jun 2 18:43 ftp
drwxrwsr-x 7 root  staff 1024 Jul 20 15:28 home
drwxr-xr-x 2root root 1024 Jun 2 19:22 initrd
drwxr-xr-x 5root  root 4096 Jul 20 15:17 lib
drwxr-xr-x 2root root 12288 Jun 2 13:33 lost+found
drwxr-xr-x 2root root 1024 Feb 1 1999 mnt
dr-xr-xr-x 58 root root 0 Aug 7 04:48 proc
drwx------ 6root root 1024 Jul 20 19:02 root
drwxr-xr-x 2root root 3072 Jul 20 15:20 shin
drwxrwxrwt 3root root 2048 Aug 7 19:18 tmp
drwxr-xr-x 18 root root 1024 Jul 20 15:21 usr
drwxr-xr-x 14 root root 1024 Jul 20 15:15 var

Each of these directories has specific purposes. Many users partition some directory trees for special use, in which case the
rename() call cannot be used to move files from one tree to another. Table 5-1 lists the purposes of these directories.

Table5-1: Standard Directoriesand Typical Functions

Directory Function

L
/bin Holds basic system binaries such as|s and cat. This directory must not be moved off the root partition.
/boot Contains files required to boot the system. Examples of filesincluded here are the kernel image itself, a

map file, and perhaps some data for the architecture-specific boot |oader. This directory must not be
moved off the root partition.

/cdrom Is aready-made mount point for accessing CD-ROM disks. Some distributions instead place thisin
/mnt/cdrom.
/dev Holds the entries for the various devices present on a Linux system. This directory must be present on the

root partition.

letc Holds configuration files and initialization scripts for the system. This directory must be present on the
root partition.

/home Typically holds home directories for each user, except root, with an account on the system. Thereisno
reason that this must be the path; the path for each user’s home directory is specified in the passwd file
entry.

/lib Contains the basic dynamic libraries necessary to run the programs required to start up and boot a basic



/lost+found

/mnt

/proc

[root

/sbin

Itmp

Jusr

Ivar

/dev: devicefiles

system. It should not be moved off the root partition.

Isan entry found on every file system. This directory should not be deleted. If afile system ever develops
acorruption, the file system repair tool (fsck) can sometimes place whatever data it can recover in this
directory.

Isadirectory created for you by many distributions. Some distributions include additional directories
beneath it; others have the directory without any subdirectories. In either case, the directory (or tree) is
there for you to mount things temporarily. Y ou are, of course, not required to useit; it'sthereasa
convenience.

Isavirtual area. The filesand directoriesin /proc are not real and do not exist on any disk on the system.
Rather, they are generated by the system to communicate system information to (and from) various
programs. For instance, the process display utility ps can use /proc to get information about the processes
running on the system. Y our programs can get all sorts of information about the system by examining the
various files and information in this directory.

Isthe home directory for the root user. It must always remain on the root partition.

Contains the programs and binaries necessary to boot the system. It must not be moved off the root
partition. Unlike /bin, the filesin /shin are generally not designed to be run by ordinary users of the
System.

Isthe canonical repository for temporary files and data. Because of security concerns, it is advised that this
directory not be used. It still may be used, but must be done with extreme care.

Isthelocation for static files and data to be used by usersin the normal course of running the system. This
is often the largest, or nearly the largest, partition on a workstation. This tree should be considered read-
only except during program installation or removal.

Contains varying data. This could include cache data, persistent state information, or even a high-score file
for games.

When hardware devices are accessed on Linux systems by application programs, they are accessed through a specific entry
customarily located in the /dev tree. These files have tuned permissions carefully. For instance, the device files for fixed disks are
kept carefully guarded; any unauthorized access could permit security breaches.

There are ahuge number of filesin this directory; my systems have anywhere from 900 to 1200 filesin this directory. Hereisa
summary of some of the files and their purposes:

» Theapm biosfileinteracts with the Advanced Power Management system found in many laptops and even some desktops.

e Theaudio filesinteract with the audio system—namely, digital waveform audio on a sound card.

* The cdrom entry is a symbolic link to the device used for the CD-ROM on your machine.

» The dsp entries also are used to interact with digital audio.

* Thefd entry isasymbolic link into the appropriate areain /proc corresponding to the file descriptors held by the current

process.

e Thefd* devices (followed by at least one numeric digit) correspond to the floppy drives on the system.

e Thehd devices correspond to | DE devices on your system. There are additional devices that correspond to the multiple
partitions that some devices have.

e Theinitrd device holds the initial RAM disk for the system, and is used frequently on Linux boot floppies or rescue disks.

82



 The Ip devices communicate with the computer’s parallel port.
» The midi devices communicate with the sound card’s synthesizer.
» The mixer device controls the amplitude of the various sound outputs from your sound card.

* Thenull device accepts anything sent to it and simply discardsit. Any attempt to read from this device yields an immediate
end-of-file result with no data.

e The psaux device communicates with the PS/2 mouse port on your system.

e Thepty devices are pseudo-terminals that you can use in your programs. For details on pseudo-terminals, see Chapter 15,
“Looking at Terminals.”

e Therandom and urandom devices give you a stream of random characters. Some C library calls may use these devicesto give
you random numbers when asked for.

» The scd devices correspond to the SCSI CD-ROM devices that may be present on your system.

* Thesd devices correspond to the SCSI disks that may be present on your system. Like their IDE versions, there are
corresponding device entries for devices that support partitions.

The tty device corresponds to the controlling terminal of the current process, regardless of which file that really is.

The tty* devices, followed by numbers, correspond to the virtual consoles present on your system.

e ThettyS* devices communicate with the serial ports on your system. Some older programs may use cua devices; these devices
are deprecated. Only the ttyS devices should be used for serial communication.

* Thezerodevice, like the null device, accepts anything sent to it and discards it. When read from, the device gives you an
endless stream of null characters.

With afew exceptions, your programs rarely will interact directly with these files, but you will sometimes encounter them through
library cals.

/etc: configuration and startup files

Virtually all of the system-wide configuration files on any given Linux system reside in the /etc directory. These files hold per-
application configuration information, system information such as which partitions are mounted in the file system, and
initialization scripts.

If your application isinstalled as part of the default installation of an operating system, most likely it places one or more
configuration files under /etc—assuming configuration files are necessary. There is no set format for these files; you are free to use
whatever format suits your application best. However, Linux administrators are accustomed to several “familiar” formats: the
printcap format, a shell format (key/value pairs separated by an equals sign), a colon-separated data file (such as passwd), and a
newer C-style format like that whichis used in BIND 8. Unless thereis a special reason not to use these forms, it is best to stick to
them so that the administrator doesn’t have to learn a new configuration file format.

The other key feature of the files present in /etc isthat the system startup files reside here. These files vary between distributions;
consult your distribution’ s documentation or the init(1) manpage for more details. In general, though, the initialization scripts
reside in /etc/init.d or /etc/rc.d/init.d and are shell scripts. If your program is started at boot, it needsto register itself with the
system’ s startup system by providing a script that is placed in these locations, and setting some symbolic links.

/usr: standard system programs

The /usr tree contains programs installed as part of the operating system for the general use by users on the system. Many system
binariesreside in /usr/bin. Binaries for the X11 system typically are stored in /usr/X11R6/bin. Many system-shared libraries reside
in/ust/lib, and X11 librariesin /usr/X11R6/lib/X11.

Linux application developers should note the /usr/local directory, which stores applications not shipped with an operating system.
Thisincludes any application distributed by any third party. The /usr/local/bin,

83



Jusr/local/lib, and other directoriesin the hierarchy are used by these applications.

The/usr treeis considered one that can be mounted read-only except during software installation and deinstallation. Keep thisin
mind when you install your software; do not try to write anything here after the initial installation.

Furthermore, the /usr/share hierarchy is becoming more prominent. This directory contains non-executable read-only data in the
/usr hierarchy. Examples include documentation, manpages, and info documents. These files are platform-independent, so they are
prime candidates for NFS mounting in some situations—even if the Linux systems in question are not using the same system
architecture.

/var: variable data

Datathat is variable—that is, changing—should be stored in /var. Typical examples of this sort of data include spoal files, queue
files, cache data, state information, and data files or databases storing varying information.

Some prominent examples include /var/mail (or /var/spool/mail), which is the default primary mail repository for users of the system;
Ivar/state/sendmail, which holds persistent state information for the sendmail server; and /var/cache/man, which holds preformatted
manpages.

passwd and shadow Files

Two filesin /etc are so important that they need some extra explanation. The /etc/passwd file holds information about each user
account on the system. The format of thefile is one record per line, with the fields separated by olons. The fieldsin the traditional
passwd file format are:

* Username on the system.

» Hashed version of the login password. This may be set to a special value if shadow passwords are in use on the system.

* Numeric UID for this account.
* Numeric GID for the default group for this account.

« GECOSfidd, typically containing areal name, phone number, address, or some other related personal information.
« The full path to the home directory for the person.

e Thefull path to the default shell for the person. This entry must be present in /etc/shells.

Many of these fields are self-explanatory. However, the hashed password field deserves some additional attention. With a
traditional passwd file, the value is generated by the C library’s crypt() call. Thisis a one-way hash algorithm, meaning that it is
not possible to decrypt the password after it is encrypted. To authenticate users, the password supplied is encrypted, and if this
encrypted result is the same as the one listed for the correct password, the supplied password is considered a match.

Here are afew sample lines from a passwd file. Because the system from which this example comesis using shadow passwords,
the real passwords are not shown in thisfile:

root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh

sys:x:3:3:sys./dev:/bin/sh
sync:x:4:100:sync:/bin:/bin/sync
games.x:5:100:games./usr/games./bin/sh
man:x:6:100:man:/var/catman:/bin/sh
|p:x:7:7:1p:/var/spool/lpd:/bin/sh
aliasix:70:65534:gmail alias:/var/gmail/alias:/bin/sh
gmaild:x:71:65534:gmail daemon:/var/gmail:/bin/sh
gmails:x:72:70:gmail send:/var/gmail:/bin/sh

This schemeistechnically secure. However, there are problems with password compromises. The reason is that many users choose
insecure passwords for their accounts, sometimes as insecure as their login name or a name from the GECOS field. Crackers have
written tools to try various permutations of these words, adding some from a dictionary, and resulting in various guesses. With
these sorts of tools, up to athird of the passwords on some systems are guessed. Keep in mind that this problem only appliesto

84



passwords that are guessable.

In an effort to prevent these tools from functioning, the encrypted passwords need to be hidden. The remainder of the account
information still needs to be available to programs—everything from Isto e-mail tools need it. The solution isto move the
password data into a separate file. Thisfile has restricted read permissions, keeping crackers at bay.

The problem remains—how are legitimate programs to be granted access to the datain that file? In many modern systems, the
password is group-readable by a special system group. Programs needing to read it are setgid to that group, but good design
dictates that they maintain this setgid permission only when actually needing to read from the file. Some older systems may have
these programs setuid to root, which is somewhat more dangerous.

The shadow file, which holds this data, is a superb place to introduce newer features into the authentication mechanism. Some of
these features include password and account expiration information. The specification for the shadow file on Linux is:

» The username of the account.
» The hashed password for the account.
» The date the password was last changed, recorded in days since January 1, 1970.

e A count of the number of days before the password must be changed. If this value is zero, no password change is mandated by
the system.

«  Number of days prior to password change that a warning should be given to the user whose account this belongs to.

e Thedate the account should be disabled because of an expired password, measured in the number of days after password
expiry that the password has not been changed.

» The expiration date of the account, measured in the number of days since January 1, 1970.
* A reserved, and currently unused, field.
Here are afew sample lines from thisfile; note that at least one account here (root’s) has an actual encrypted password listed:

root: TPwk6TEMDd3Ng:10618:0:99999:7:::
daemon:*:10529:0:99999:7:::
bin:*:10529:0:99999:7:::
Sys:*:10529:0:99999:7:::
sync:*:10529:0:99999:7:::
games:*:10529:0:99999:7:::
man:*:10529:0:99999:7:::
Ip:*:10529:0:99999:7:::
mail:*:10529:0:99999:7:::
news:*:10529:0:99999:7:::
uucp:*:10529:0:99999:7:::
proxy:*:10529:0:99999:7:::
majordom:*:10529:0:99999:7:::

Accessing account infor mation from a shell
Several utilities are available on a Linux system for the purpose of modifying the passwd and/or shadow files.
For system administrators, a key tool isadduser. This program adds a new account to the system. The syntax of the adduser
command varies between distributions but takes at |east a username as a command-line parameter. Some versions of adduser may

then prompt you for additional information, or ask for it on the command line. Some systems also provide a deluser command that
removes a user from the system.

The vipw command is recommended for editing the passwd or shadow password files by hand. Y ou should never edit these files
by hand without using vipw. If you don’t use vipw, you can corrupt the files unless your system isin single-user mode because
other processes may try to write to the files at the same time you do.

When run without arguments, vipw loads the passwd file into your favorite editor for modifications. If you run vipw -s, the



shadow file opens for you to edit. Additionally, the vigr utility can do the same with the group file.

The chfn and chsh utilities modify the “finger name” (GECOS field) and default shell of a given account, respectively. When run
asroot, they enable you to make these modifications for any account. When run as aregular user, that user is permitted to change
the values on the user’s own account only.

The passwd utility allows the same type of capability for the password of a given account. The root user can also modify the
password expiration date, the account status, whether or not the account is considered locked, and so on. For more details on this
utility, see the passwd(1) manpage; the capabilities vary from system to system and depend on whether or not shadow passwords
arein use.

Bash defines some variables that can provide some quick information about the user who is running a script. For instance, $UID
expands to the numeric user |D of the person running the script; SHOME to that person’s home directory; and $USER to the text
username of the person. Note that these variables should not be relied upon as absolutely secure, as they can be modified by the

user.

Accessing account information from C

C on Linux provides numerous functions for getting information about the current process and the passwd file. Y ou should never
read the file directly; always use the C functions. Some systems use a network system such as NI S to provide a shared passwd file
across machines; simply reading the file does not provide correct results in these cases. Furthermore, the system can use a database
version of these files to improve performance; the C functions utilize this but a manual search most likely does not.

C provides severa functions to get this data. Oneis getpwnam(), which returns a pointer to a static variable of type struct passwd.
This structure is defined in pwd.h as follows:

struct passwd
{
char *pw_name; /* Username. */
char *pw_passwd,; * Password. */
uid_t pw_uid; [* User ID. */
gid_t pw_gid; /* Group ID. */
char *pw_gecos; /* Redl name. */
char *pw_dir; /* Home directory. */
char *pw_shell; /* Shell program. */
b

The argument to getpwnam() is a string—the person’s username. The getpwnam() function will search for this username, returning
the appropriate record if it isfound. If not, NULL is returned.

The following C function returns a user’ s home directory:

char * getuserhomedir(char *user)

{
static char homedir]_POSIX_PATH_MAX];

struct passwd *pws;

pws = getpwnam(user);
if ('pws)
return NULL;

strepy(homedir, pws->pw_dir);
return homedir;

}

This function simply asks getpwnam() for the information on the specified user, savesit off, and returns the value. Y ou’'ll want to
include string.h, pwd.h, and limits.h for this code.

Y ou can perform a similar operation with a person’s numeric UID. The following code can do that for you:

char * gethomedir(int uidtofind)
{

86



static char homedir]_POSIX_PATH_MAX];
struct passwd *pws;

pws = getpwuid(uidtofind);
if (Ipws)
return NULL;

strepy(homedir, pws->pw_dir);
return homedir;

}

In this example, you can see that the only difference liesin the call to getpwuid() instead of getpwnam(). The getpwuid() call
yields the same result as getpwnam(), except that instead of searching for a username, it searches for anumeric UID. When
combined with the getuid() call, which returns the numeric uid of the owner of the current process, you can get information about
the person running your program by using this code:

getpwuid(getuid())

Thereis aso agetpwent() function that enables you to step through the passwd file, reading in each line. If you are doing a search,
you should use a different function if possible. Otherwise, if you need to look at each record, then this is the function you should
use. When you' re done with getpwent(), you should call endpwent() to close out the file. The following code uses getpwent():

/* Finds the highest uid in passwd file and sets the nextuid global
variable to the next number. */
void inituid(void)
{
struct passwd *entry;
uid_t nextuid = 0; /* uid_t is defined in sys/types.h */
printf(* Scanning for next available uid...\r"); fflush(stdout);
while ((entry = getpwent()))
if ((entry->pw_uid > nextuid) & &
(entry->pw_uid < 32767)) /* Compensate for broken systems */
nextuid = entry->pw_uid;
endpwent();
nextuid++;
printf(“The next uid will be %d%-20c\n”, nextuid, *.");

}

In this example, you can see that getpwent() returns NULL when it encountered the end of the file. Therefore, using it in awhile
loop like this one is a common.

These functions are also available in Perl, and they function in the same way. A crypt() function is also used for generating the
string for the passwd file. Thistoo isused in Perl; see the next example for a sample usage.

Accessing from Per|

Perl provides access to the same functions as C for getting information from the passwd file. The examplesin the C section above
work almost the same way in Perl. In Perl, instead of returning a struct, the functions return an array with the elements in the order
of the elementsin the struct.

Both Perl and C aso provide the crypt() function, and they work the same way. Take alook at this simple Perl script:
#!/usr/bin/perl

print “ Enter atwo-character salt: “;
chomp($salt = <STDIN>);
print “ Enter the desired password: “;
chomp($plain = <STDIN>);
print “\n\nThe crypt stringis. ~ “ . crypt($plain, $salt) . “\n\n”;

The two-character salt is chosen randomly. Y ou can run the program and watch the results:

87



$ chmod a+x gencrypt.pl
$ ./gencrypt.pl

Enter atwo-character salt: LI

Enter the desired password: Hey!

Thecrypt stringis:  LIKIfmvCV1/QA

$ ./gencrypt.pl

Enter atwo-character salt: NU

Enter the desired password: Hey!
Thecrypt stringis.  NUH1wl1m77j2
$ ./gencrypt.pl

Enter atwo-character salt: LI

Enter the desired password: Hello!
Thecrypt stringis:  LI86QkktO1hho
$ ./gencrypt.pl

Enter atwo-character salt: LI

Enter the desired password: Hey!
Thecrypt stringis:  LIKIfmvCV1/QA
In this example, you can see that:

» Two different passwords hashed with the same salt produce different results.

* The same password hashed with different salts produce different results.

* A single password hashed with the same salt produces the same result.
Thislast behavior isrelied upon for password authentication in the system. When a user triesto log in, his or her password is run
through crypt() using the same salt as before (notice that the salt forms the first two characters of the crypt() output). If the result
matches the one on record, the password is considered a match.

group File

The group file defines the group on the system and which users are in them. Thisfileis a simple colon-delimited format akin to the
passwd file. The format of the group fileis:

» The name of the group.
* A group password.
* The numeric gid of the group.

e The comma-separated listing of members of the group. This optional listing does not include users that list this group as their
defauilt.

Your Linux distribution defines a number of groups that have predetermined functions on your systems. Some of these groups are
intended for you to add users to; others, for specific programs on your system. If your application requires access to files by some
users on the system, you (or the administrator) must add a custom entry to this group file.

Here are some sample lines from a group file:

root:x:0:
daemon:x:1:mgjordom

88



bin:x:2:
sysix:3:
adm:x:4:
tty:x:5:
disk:x:6:
Ip:x:7:Ip
mail:x:8:
news:.x:9:

Most of these group files simply define the name of a group. The daemon group, however, indicates that the majordom user isa
member of the group. Because he or she isa member, that user can read any files that are group-readable by daemon, and can write to
any filesthat are group-writable by daemon.

init Files

When the system boots, the /shin/init program takes control of initializing the system and the user-land software. This task
includes mounting and checking drives, initializing the network, and starting software and servers. The process of starting and
stopping these serversis regulated by runlevels, the precise meaning of which can vary from distribution to distribution.

Theinit scriptsreside in either /etc/init.d or /etc/rc.d/init.d, depending on your distribution. The scripts are invoked by init and are
shell scripts used to start up particular system services.

Theinit scripts take a particular argument. The start and stop arguments are used by init itself. For the convenience of the system
administrator, many distributions define additional arguments as well, such asrestart or reload. The init scripts on your system
vary from the mundane to the extraordinarily complex.

Y ou may want to examine some of the scriptsin your system for ideas. Some distributions add commands or have typical ways of
accomplishing things; again, consult your distribution’ s documentation for specific details.

Listing 5-1 shows an example script from the Debian GNU/Linux operating system.
Note Listing 5-1 is available online.
Listing 5-1: Debian’s/etc/init.d/sendmail script
#!/bin/sh

# Start or stop sendmail

#

# Robert Ledlie <rob@mars.org>

# Johnie Ingram <johnie@netgod.net>

# David Rocher <rocher@mail .dotcom.fr>
# Richard Nelson <cowboy@debain.org>

# How often to run the queue
Q:H 10m11

PATH=/bin:/usr/bin:/shin:/usr/sbin
DAEM ON=/usr/shin/sendmail
COMMAND=/usr/shin/sendmail
PIDFILE=/var/run/sendmail.pid
NAM E=sendmail
FLAGS="defaults 50"

test -x $SDAEMON -a-d /usr/doc/sendmail || exit O

case“$1” in
start)
(cd /var/spool/mqueue & & rm -f [Inx]f* )
echo -n “ Starting mail transport agent: sendmail”
start-stop-daemon --start --quiet --pidfile SPIDFILE --exec $DAEMON --startas SCOMMAND -- -bd -q” $Q”
echo“.”

89



stop)
echo -n “ Stopping mail transport agent: sendmail”
start-stop-daemon --stop --quiet --pidfile $PIDFILE --exec $SDAEMON
&ho “ .11

restart)
$0 stop

sleep 2
$0 start

reload)
echo -n “Reloading sendmail configuration...”
start-stop-daemon --stop --signal 1 --quiet \
--pidfile $PIDFILE --exec $DAEMON
echo “done.”

force-reload)
$0 reload

debug)
start-stop-daemon --stop --signal 10 --verbose \
--pidfile $PIDFILE --exec $DAEMON

*)
echo “Usage: /etc/init.d/sendmail { start|stop|restart|rel oad|force-rel oad|debug} ”
exit1
esac
exit0
In this script, you can see that the system implements the standard commands. The script is recording the PID of the process when
it is started so the PID can be reused when shutting down to properly stop the server.

When the init process starts, it must be told exactly what to do. It must know which runlevel to bring up, which terminals should
have a getty process, and what to do when certain special events occur. Thisinformation is defined ininittab file.

The format of the inittab file is a colon-delimited file akin to the passwd file. However, inittab doesn’t have such rigid format
controls and allows comments. Listing 5-2 shows a sample file that we can analyze.

Note Listing 5-2 isavailable online.
Listing 5-2: Sample/etc/inittab file

# letc/inittab: init(8) configuration.
# $Id: inittab,v 1.8 1998/05/10 10:37:50 miquels Exp $

# The default runlevel.
id:2:initdefault:

# Boot-time system configuration/initialization script.
# Thisisrun first except when booting in emergency (-b) mode.
si::sysinit:/etc/init.d/rcS

# What to do in single-user mode.
~~:S:wait:/shin/sulogin

90



# letc/init.d executes the S and K scripts upon change
# of runlevel.
#
# Runlevel O is halt.
# Runlevel 1 issingle-user.
# Runlevels 2-5 are multi-user.
# Runlevel 6 isreboot.

10:0:wait:/etc/init.d/rc O

11:1:wait:/etc/init.d/rc 1

|12:2:wait:/etc/init.d/rc 2

13:3:wait:/etc/init.d/rc 3

|14:4:wait:/etc/init.d/rc 4

|5:5:wait:/etc/init.d/rc 5

16:6:wait:/etc/init.d/rc 6

# Normally not reached, but fallthrough in case of emergency.
Z6:6:respawn:/sbin/sulogin

# What to do when CTRL+ALT+DEL is pressed.
ca12345:ctrlaltdel:/shin/shutdown -t1 -a-r now

# Action on special keypress (ALT-UpArrow).
kb::kbrequest:/bin/echo “Keyboard Request--edit /etc/inittab to let this work.”

# What to do when the power fails/returns.
pf::powerwait:/etc/init.d/powerfail start
pn::powerfailnow:/etc/init.d/powerfail now
po::powerokwait:/etc/init.d/powerfail stop

# [sbin/getty invocations for the runlevels.
#

#The“id" field MUST be the same asthe last
# characters of the device (after “tty”).
#
# Format:

# <id>:<runlevels>:<action>:<process>
1:2345:respawn:/shin/getty 38400 tty1l
2:23:respawn:/shin/getty 38400 tty2
3:23:respawn:/shin/getty 38400 tty3
4:23:respawn:/shin/getty 38400 tty4
5:23:respawn:/shin/getty 38400 tty5
6:23:respawn:/shin/getty 38400 tty6

# Example how to put a getty on a serial line (for aterminal)
#

#T0:23:respawn:/shin/getty -L ttyS0 9600 vt100
#T1:23:respawn:/shin/getty -L ttyS1 9600 vt100

# Example how to put a getty on a modem line.
#

#T 3:23:respawn:/sbin/mgetty -x0 -s 57600 ttyS3

Reading this file from the top to the bottom, the first noncomment line you see is the initdefault line. This line defines the runlevel
that the system entersinto by default during boot. The next line with content is the sysinit line. Thisisthe script that is used to
initialize vital parts of the system. Typical duties for the script include mounting file systems, checking filsystems, and configuring

the networking support on your machine.

The next line defines what program to use when the system is brought down into single-user mode. In this case, the sulogin
program is run. This program requires the operator to enter the root password. Some older distributions do not have this; it iswise

toadd it inif multiple users have physical access to the console of your system.



Next, you see the definitions for the actions to take when being brought up into each specific runlevel. These scripts are
responsible for making sure that the appropriate processes are running (or not running) for that particular runlevel.

Following those lines, there are definitions of what occurs when special events occur. These events include a Ctrl+Alt+Delete
reguest, a special keyboard request, and situations in which a UPS (Uninterruptible Power Supply) unit indicates when main power
islost—or restored.

After these definitions, there are definitions of the terminal s that are used on the system. Most Linux distributions default to starting
up six virtual terminals. The getty program handles the initial login process; in this case, accepting username and password
information. Finally, there are examples of how you can set up a serial terminal (as with a null-modem cable) and a dial-in modem
terminal.

Network Files

Besides the configuration and initialization files on your system, you should be aware of afew others. These fall into the network
file category, and are particularly relevant when you are writing network server programs.

DNSfiles

The Domain Name System (DNS) is the distributed database responsible for converting from the domain names used by humans
to access I nternet servers and the numeric addresses used internally by the TCP/IP protocol. When your programs call functions
that perform DNS lookups, such as gethostbyname(), the standard implementation of these functions causes the system
configuration files to be consulted.

The most well-known of these configuration filesis resolv.conf (located in the /etc directory), which defines the location of your
system’s DNS servers and how to query them. Its entries specify the | P addresses of the servers used by your system. It can aso
specify adomain search order for resolving names that are not fully qualified.

An example file might be:

nameserver 10.0.0.1
nameserver 127.0.0.1
nameserver 10.11.12.13
search example.com

This states that the nameserversresiding at 10.0.0.1, 127.0.0.1, and 10.11.12.13 should be queried, in that order, when the system
needs to access a nameserver. Additionaly, if afully-qualified domain is not specified, the example.com domain will be implicitly
searched for a match.

Another relevant fileis the /etc/hosts file, which holds local definitions of hosthames. The hosts defined in this file do not require a
DNS lookup. Y our own machine and localhost are always listed in here. Other machines that you may need to contact evenin lieu
of aworking DNS system (such as NFS or NIS servers) should also be listed here. This way, your machine can continue to
function even if the DNS server is down for some reason—an important step in network stability.

The /etc/nsswitch.conf file defines the order in which these files are checked. Here’' s a samplefile:

passwd: compat
group: compat
shadow: compat

hosts: filesdns
networks: files

protocols:  db files
services: dbfiles
ethers: db files
rpc: dbfiles

netgroup: nis
In this way, the methods of accessing various types of information are clearly defined. For instance, to look up the IP address of a

given hogt, first the file is checked and then, if no satisfactory result was obtained from the file, DNSis queried. Thisis defined on
the hostslinein the file.

92



Security files

Also important are the network security files on your system. The most prominent of these are the files for TCP wrappers that
define which machines are allowed to connect and access a given service, and which are not. These capabilities are defined in two
files: /etc/hosts.allow and /etc/hosts.deny. Documentation for these files can be found in the hosts_access(5) manpage. These files
work together to specify which hosts may connnect to which services. If there is no line matching a given connection request,
access is granted by default. If aline in hosts.deny matches a connection request, access is denied unlessthereisalinein
hosts.allow that matches the same connection request. This TCP wrapper mechanism only controls who may connect to your
servers, hot what they may do when connected.

Both files have the same syntax: a service name, a colon, and then a definition of which hosts may connect. Here' sa sample
hosts.deny file to analyze:

# [etc/hosts.deny: list of hoststhat are _not_ allowed to access the system.
# See hosts_access(5) and /usr/doc/net/portmapper.txt
#

# Example:  ALL: some.host.name, .some.domain

# ALL EXCEPT in.fingerd: other.host.name
#

# The PARANOID wildcard matches any host whose name does not match its
# address.
#ALL: PARANOID

ALL: PARANOID, ALL@ALL EXCEPT .example.com, localhost
imapd: PARANOID, ALL@ALL

uucp: ALL@ALL
telnetd, telnet, ssh, rlogin, rexec, rsh: ALL@ALL

Inthisfile, accessis denied by default to al userson all hosts (ALL@ALL) and to hosts that have suspicious DNS (PARANOID)
to all services on the system. Note that you could use ALL instead of ALL@ALL; the latter smply does ident lookups where
possible, and can log more information to your log files. Any hostsin the example.com domain, or the local machine, are
exempted from this blanket deny rule already.

Next, the imap service denies connects from everywhere, including the local machine. The same occurs with UUCP. Findly,
several remote access services declare the same thing.

Recalling that a hosts.allow file takes precedence over a hosts.deny file, take alook at this hosts.allow file:

sendmail: ALL

intalkd: ALL@ALL EXCEPT PARANOID
in.ntalkd: ALL@ALL EXCEPT PARANOID
cvs. ALL@ALL EXCEPT PARANOID

According to thisfile, any machineis allowed to connect to the sendmail service on your local machine. Also, any machine with
working DNS is permitted to connect to the talk and CV S services on your machine. These rules override the blanket deny in the
hosts.deny file.

At this point, it should be noted that not all services honor the hosts.deny and hosts.allow files. Web servers, for instance, typicaly
do not because of speed considerations. However, because Web documents are essentially public anyway, there’s no particular
need for thistype of mechanism for Web servers.

Most serversthat are started from the inetd super-server use TCP wrappers. Several other programs link in the library; examples
include sendmail and ssh.

Super-server file
One significant piece of the networking puzzle remains: inetd, the Internet super-server. This program listens for connections to
some of the simpler services on the system. Some of these are handled internally by inetd; most are passed on to individual

programs that handle them. These items are defined in /etc/inetd.conf.

Thisfile defines services for which the super-server listens (the details are covered later in Chapter 18, “Introducing TCP/IP




Sockets'). Here are afew lines from a sample file:

discard stream tcp  nowait root internal
discard dgram udp wait root interna
daytime stream tcp  nowait root internal
daytime dgram udp wait root internal
time stream tcp nowait root internal
time dgram udp wait root internal

#:STANDARD: These are standard services.

telnet stream tcp  nowait root /usr/shin/tcpd /usr/shin/in.telnetd
#<ftp-of f>#ftp stream tcp  nowait root /usr/shin/tcpd /usr/shin/in.ftpd
ftp stream tcp  nowait root /usr/shin/tcpd /usr/shin/ftpd

The non-internal servicesin this example each have /usr/shin/tcpd in them. Thisisthe call to the TCP wrappers. If the TCP wrappers
confirm that the connection is to be accepted, then tcpd invokes the actual server process.
Summary

In this chapter, you learned about the various files and scriptsthat are part of the initialization and configuration of Linux and its
components. Specifically, you learned:

* Linux programstypicaly use plain text files for configuration. Many store the configuration files in the /etc directory and the
per-user information in each user’s home directory.

* Linux has astructured file system. The root file system holds files and directories necessary for theinitial startup of the
system. As part of thisfile system, /etc contains configuration and initialization files and /dev holds entries for system devices.
The /usr tree has standard files for use during normal system operations. The /var tree contains data that may be variable. A
virtual file system can be found in /proc, which provides information about the system.

The passwd fileis used to store information about the users with accounts on the system.

e Many modern distributions use a shadow password system, which stores the actual hashed password data in the /etc/shadow
file, which is not readable by al users for security reasons.

The group file defines which groups are present on the system, and which users are members of them.

e Theinit programisresponsible for many aspects of system initiaization. It usesinitialization scripts from /etc/init.d or
/etc/re.d/init.d and has a configuration file in /etc/inittab.

e Thenameserversto use for DNS lookups are defined in /etc/resolv.conf and the order to use when performing lookupsis
defined in /etc/nsswitch.conf.

* You may block accessto certain services or hosts by using /etc/hosts.allow and /etc/hosts.deny.
* Theinetd.conf fileis used to configure the inetd super-server, which listens for requests on the behalf of many smaller serverson
the system.
Part Il: The C Environment

Chapter List

Chapter 6: Welcometo gcc

Chapter 7: Managing Projectswith GNU M ake

Chapter 8: Memory M anagement

Chapter 9: Librariesand Linking

Chapter 10: Debugging with gdb

Chapter 6: Welcometo gcc
94



Overview

Asyou work with your Linux development environment, much of your work will revolve around the centerpiece of the C
development environment, gcc. gec, short for the GNU C Compiler, is the standard C compiler on GNU/Linux systems.

This chapter will introduce you to and get you up to speed with gcc. You'll first learn the basic usage of gcc to compile single-
module programs. Then, | will cover topics such as compiler warnings, debug symbols, and optimizations. In the next section,
you'll learn about the big picture of the compilation process on Linux, including all of the tools and programs that gcc uses to

generate your executables.

After discussing what the tools are and what they do, you'll be introduced to the ways in which you work with larger (multi-module)
projects. Finally, some more advanced gcc options, such as linking with libraries and compilation with pipes, are discussed.
Compiling Programswith gcc

Now, I'll go through some sample usage of gcc together. First, | present for you a sample program to try compiling with gcc. Y ou
can use your favorite editor to type it in. For the purposes of this example, save it astestl.c. Here' sthe code:

#include <stdio.h>

void main(void) {
printf(“Hello World'\n");

}

This program looks—rightly so—fairly simple. Later, gcc will point out a few things that ought to be fixed, but for now, compile
the program. To compile the program, type:

gcc testl.c
Tip If you are using Emacs or XEmacs, you may press M-x and then type compile RET gcc test1.c RET to compile the
program from within Emacs. Later, for simple programs such as this one, you can run them in an Emacs shell as
well: M-x shell RET.
Depending on your specific version of gcc, you may get awarning at this point. Ignoreit for now; I'll talk about warnings later in
the chapter. When gcc runs with the above usage, it generates a file named a.out that contains your program. Y ou can run the
program, as follows:

$ .Ja.out
Hello World!

You've just compiled your first C program on Linux!

That was fairly trivial. However, unless you like naming every one of your programs a.out, you'll enjoy using the —o option of gcc,
which enables you to change the names of your program. To use this option, type the following command:

gcc—otestltestl.c

Thisis much better! Y ou now have a file named test1 instead of a.out. As with the a.out program, you can run your newly named
program:

$ ./testl
Hello World!

So, you can see that —o sets the output filename for gec.
Warnings

Now, on to another important topic: warnings. Warnings are controlled by the “W switch to gcc. Y ou can enable all of the most
common warnings with the “Wall command like so:

$gcc—Wall —otestltestl.c
testl.c:3: warning: return type of “main’ isnot “int’

95



Note If you use adifferent version of gcc than that used for this book’s examples, your warning messages may differ;
thisis normal.

The gec compiler smartly pointed out that my main() function isn’t exactly standard—excellent. Notice that even though there was
awarning, gcc still compiled your program; it only aborts compilation on errors.

Now, perhaps, someone decides to fix the program like so:
#include <stdio.h>

int main(void) {
printf(“Hello World'\n");
}

Now, try to compile this:

$gcc—Wall —otestltestl.c
testl.c:5: warning: control reaches end of non-void function

Another good catch on gec’s part; because the main() function is declared to return an integer, and yet it doesn’t, the return valueis
undefined. A proper fix hereisfairly trivial. Change your test1.c to the following:

#include <stdio.h>
#include <stdlib.h> /* for EXIT_SUCCESS */

int main(void) {
printf(“Hello World!\n™);
return EXIT_SUCCESS;

}

Now try compiling this one. Y ou will get no warnings!

Another useful option isthe -Werror switch, which causes gec to treat al warnings as errors. Thisis particularly useful when
using automated compilation, such as with the GNU make tool. When —-Werror is used, gcc will not finish the compilation if any
warning is detected. Therefore, you don’t want to include thisin release versions of software because other users' compilers may
generate warnings on different things. However, when working with large projects with which gcc or make may generate several
thousand lines of output, having the compilation aborted in this manner can be beneficial. Y ou can use -Werror as follows:

$gcc-Wall “Werror —otest1 testl.c

While gcc’ s warnings in this case were not really earth-shattering matters, you'll find that, as you write more complex programs,
the -Wall switch can be an extremely valuable tool for tracking down and preventing bugs. | recommend that you use —Wall
whenever you compile programs as a matter of habit; it's hard to go wrong with something that can often catch errors before you
realize they’re present!

Optimizationswith gcc
One of the most exciting features of modern C compilersisthe optimizer. The optimizer is a part of the compiler that is capable of
examining your code (or the assembler code generated by the compiler), identifying those areas that are suboptimal, and rewriting
them using code that does the same thing in less space or with better performance. gcc is no exception; it has a powerful and
highly configurable optimizer that can be applied to your programs.

Optimization Options
In gce, you can enable optimizations by using one of the -O options. Y ou can specify several different levels of optimization for
gec. If you simply use -O, thisistaken aslevel one (or -O1); -O isthe same as -O1. In general, you can go up to level three (or-
03).

So, to use basic optimizations, you might use a command line such as the following:

$ gce -Wall -O1 -0 myprogram myprogram.c
96



Y ou can, of course, also use-02, -O3, or -O in place of -O1 above on your command line. These options control how aggressive
gcc’ s optimizer is; the higher the number, the more aggressive gcc becomes with optimizations. More aggressive optimizations
mean that your code runs faster.

Optimization Pitfalls

Optimization sometimes means tremendous gains for your program’s performance. However, you should be aware of some
potential pitfalls.

First, the more aggressive gcc becomes with optimizations, the longer it takes your program to compile. Therefore, some prefer to
compile without optimizations during day-to-day development, but enable optimizations when the time to release and finish the
program nears.

Second, some options—most notably, -O3—can increase the size of the generated program. Usually this differenceis
insignificant, but sometimesit can be important. If a program uses more RAM, then swapping may occur on the machines on
which it runs, which can hurt performance more than the gain from the more efficient (but larger) code.

Finally, as mentioned earlier, debugging can be difficult when optimization is enabled. Because the optimizer can eliminate code
that does not have ause in the final program, or re-arrange some statements for better performance, tracing the execution of the
program can be difficult at best. Therefore, | recommend that you avoid optimizations as much as possible when debugging your
programs.

Many people prefer to compile their programs with -O2 This option often provides the best compromise between optimization
strength, compile time, and code size.

Optimizations: A Sample Session

In this section, we will take alook at some sample code to demonstrate optimization. The following code is the sample code for
the test2.c program. This code is written inefficiently on purpose; you'll see how dramatic a difference gcc’s optimizer can make
with the execution time of the program. Note that the results you'll see here are more significant than those provided by the
optimizer in atypical rea-life situation, but nonetheless, you can sometimes see these results.

Here is the code for test2.c:
#include <stdio.h>

int main(void) {
int counter;
int ending;
int temp;
int five;
for (counter = 0; counter < 2* 100000000 * 9/ 18 + 5131,
counter += (5-3)/2) {
temp = counter / 15302;
ending = counter;
five=5;
}
printf(“five = %d; ending = %d\n”, five, ending);
return O,

}
First, compile the program without optimizations, by typing the following:
$gce-Wall -otest2 test2.c
Normally, you would run the program by simply using ./test2. However, thistime, you need to get some statistics. In order for the
information to be useful, you need to time the execution on a machine that is not doing anything else, although you can still get
some useful information even from aloaded system. Y ou can do this with the time command, which reports information on

resource utilization of your program when it finishes. Here is the command:

$time ./test2



five=5; ending = 100005130

real  Om15.146s
user 0m14.960s
sys 0mo0.000s

These results almost certainly will be different on your system unless you have the same speed machine as the one on which this
program was run. If the program takes an extremely long time to run, you may want to change the 1700000000 number in the code

to something smaller.

The time command is indicating that the program took a little more than 15 seconds to execute. Of thistime, about 14.9 seconds
were spent by the CPU with this program. If you are running the program on a heavily loaded machine, you might notice alarger
difference between these two values.

Tip You can seethisfor yourself by opening two windows or terminals, and starting the program simultaneously in each.

Finally, the sys value indicates that a negligible amount of time is spent handling system calls, which is to be expected; almost all
of thetimein this programisfor computation, and the only output occurs inside the printf() function.

Now, try gcc on the program again, this time with basic optimizations enabl ed:
$gcc-Wall -O1 -otest2 test2.c
And examine the results of execution thistime:

$ time ./test2
five = 5; ending = 100005130

real  0m2.220s
user 0m2.200s
sys 0mo0.000s

A significant improvement; the execution time went from 15 seconds to about 2 seconds. In other words, the program took about 7
times longer to execute without optimizations as it takes now.

For comparison, one might want to use the -O2 level of optimization:
$gcc-Wall -O2 -otest2 test2.c

$time ./test2
five = 5; ending = 100005130

reAl  0ml.444s
user 0ml1.420s
sys 0mo0.000s

In round numbers, the program takes only about 75 percent as long to run with -O2 asit did with -O1. Thisis not as large asthe
previous difference, but till significant.

Y ou might also want to try with -O3:
$gcc-Wall -O3 -o test2 test2.c

$time ./test2
five = 5; ending = 100005130

real Oml.421s
user 0m1.400s
sys 0mo0.000s

Here, thereis still an improvement, but it's smaller this time—only about two hundredths of a second. Still, the improvement may
be meaningful. For instance, if your program performs computations that take hours to complete, that which isasmall difference
here may become a large difference later.

98



As | mentioned previoudly, thisis a contrived example; the code in this program was designed specifically such that the optimizer
has alot of improvements to make. Although gcc’s optimizer is powerful, you can help by writing good code to start with. If you
write code that is concise and has a good flow of logic, the optimizer may be able to do even more for you—or you may not even
need optimizations at all.

If you analyze the code used in the preceding examples, you will see that there are many apparent problems. Here they are:

» First, the ending value of the counter is calculated every time through the loop as 2 * 100000000 * 9/ 18 + 5131. If the code is
modified such that it simply ends at 100005131, the computer no longer has to calculate the value each time through the loop.
Note that in this case, the optimizer simply performs that cal culation beforehand. If you, for instance, have a variable myvar
and use 2 * myvar asthe ending value, this has to be recalculated each time through the loop; the optimizer can’'t help in this
case. Y ou may want to use atemporary variable to hold the value instead.

e Theincrement isdefined as (5 - 3) / 2—that is, 1. Again, the computer has to make a cal culation here, defining what the end
valueis. Simply using counter++ would save some time.

* Thetemporary variable temp itself is never used; it is wasteful to assign something to it each time through the loop.

« BEven though the five variable isused, still it isinefficient to assign the same value to it each time through the loop. It’s better
to do that only once, either before or after the loop.

*  The same concept applies with the ending variable. Because we know where the loop ends, it is possible to compute this as
one less than the ending value—that is, 100005130. Therefore, assigning this every time through the loop is also unnecessary.

« After you make the changes noted previously, the loop is empty; it only modifies counter. Because counter is used nowhere
else, it can be removed as well.

Here' s arevised version of the code, which incorporates the changes previously mentioned:
#include <stdio.h>

int main(void) {
int ending = 100005130;
intfive=5;
printf(“five = %d; ending = %d\n”, five, ending);
return O;
}

Even before running the code, you can tell that it's more straightforward and easier to follow. Now, try compiling and running it:

$gce-Wall -otest2 test2.c
$time ./test2
five = 5; ending = 100005130

reAl Om0.004s
user 0m0.000s
sys 0mo0.000s

That's an incredible difference over even -O3. The origina program took over 350 times longer, even with full optimizations.

Thus, there are two important points here: one, that the gcc optimizer can dramatically improve the performance of programs; and
two, that you often can do more to increase the program speed than the optimizer can, if you write good code. Y es, gcc is smart,
but a good programmer can still be more effective with speed optimizations.

Generating debug symbols
Another powerful feature of modern development systems is the availability of powerful debugging tools. These tools provide you,

the programmer, with powerful ways to trace the execution of a program and to isolate problems. The GNU Debugger (gdb), isan
example of such atool. Here, you will learn how to compile your programs such that gdb can work with them.

99



Cross-Reference

The GNU Debugger (gdb), is discussed in detail in Chapter 10, “Debugaing with gdb.”

Before you can use gdb properly with your programs, you need to compile them with debugging symbols. When you do this, gcc
inserts extrainformation into the object files (.0) and executable filesthat it generates. This extra information enables gdb to
determine the relationship between the compiled code and the lines in your source file. Without that information, gdb would not be
able to determine which line of code your program is executing at any given time.

These debug symbols are not compiled into your programs by default because of one important side effect: they increase the size
of the executable, sometimes significantly. It is possible, however, to remove debug symbols from an already compiled program
by using the strip(1) utility. This means that it’s not necessary to recompile your programs after you' re done debugging them.

Thereis acaveat with the powerful debug symbols mechanism, though. The uses of these symbols can be incompatible with
optimizations. Because gcc can sometimes modify the order in which instructions are performed to gain speed benefits, the flow of
control used by the final program may differ from that which you wrote, which can make debugging confusing or even practically
impossible. For thisreason, it is best to avoid using the -O or optimization-enabling —f options when you intend to debug a given
piece of code eventually.

To generate debugging symbols, you use the —g option to gcc. Inits basic form, it generates a default set of debugging options,
which are usually sufficient. Y ou might use acommand such as:

$gcc—g—-Wall —otestltestl.c

Y ou can also enable more debugging information, which can be useful in some cases. If you will be using the gdb debugger (or
one of its derivatives) later, you will want to use acommand like this:

$ gcc —ggdb3 -Wall —o testl testl.c

The gdb part of the preceding line instructs gcc to generate debugging symbols with the gdb extensions. The 3 means that it ought
to use level-3 debugging information, the highest level possible. Thus, you get the maximum possible debugging information with
—ggdb3. Level 3 adds information such as macro definitions to the debugging information, which can be valuable in certain
situations.

We will look at an example of using debugging symbols to analyze a crash. Consider the following code:
#include <stdio.h>

int main(void) {
int input = 0;
printf(“Enter an integer: “);
scanf(“%d”, input);
printf(“ Twice the number you supplied is %d.\n", 2 * input);
return O;
}

This simple program will crash with a core dump when run. For the sake of this example, assume that you don’t know this
beforehand. Y ou might compile the program like this:

$ gce -Wall -o crash crash.c

Some newer versions of the compiler will issue awarning about line 6 in the preceding example, which is a hint of trouble yet to
come.lgnore that for now and try running the program:

$ /crash
Enter an integer: 5
Segmentation fault

What a surprise—the program crashed! The next step isto compile with debugging symbols:

100



$ gcc -ggdb3 -Wall -o crash crash.c

Now, you need to enable core dumps. Under the Bash shell (the default with most Linux systems), you can do so by running:
$ ulimit -c unlimited
Next, run the program again:

$ ./crash
Enter an integer: 5
Segmentation fault (core dumped)

Excellent—it crashed again! Y es, this may sound ironic, but notice that you now have a file named core. This file can unlock the
secret of why the program crashed.

The next step isto load the program and core file into gdb for analysis:

$gdb crash core
GNU gdb 4.18
Copyright 1998 Free Software Foundation, Inc.
GDB isfree software, covered by the GNU Genera Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type “show copying” to see the conditions.
There is absolutely no warranty for GDB. Type “show warranty” for details.
This GDB was configured as “i686-pc-linux-gnu”...
Core was generated by "./crash’.
Program terminated with signal 11, Segmentation fault.
Reading symbols from /lib/libc.so.6...done.
Reading symbols from /lib/ld-linux.so.2...done.
#0 0x400686fb in _10_vfscanf () from /lib/libc.s0.6

The last several lines are the ones that are interesting. First, the fact that the program crashed because of a segmentation fault
indicates that some memory issue was probably at hand. Then, the fact that the crash occurred in a function containing the word
scanf (10 _vscanf ()) isahint. You can, however, get more detailed information:

(gdb) bt

#0 0x400686fb in _10_vfscanf () from /lib/libc.s0.6
#1 0x4006a048 in scanf () from /lib/libc.s0.6

#2 0x8048448 in main () at crash.c.6

Skipping past the first two lines, which occur inside of the C library, you see something that occurred on line 6 of crash.c. Now,
one more check:

(gdb) frame 2

#2 0x8048448 in main () at crash.c:6
6 scanf(“%d”, input);

(gdb) print input

$1=0

First, you switch to frame 2 (the value on the appropriate line of the bt output). Then, you ask gdb to display the value of the
variable input just before the crash. It is still zero—the value 5 was not stored into it, confirming the suspicion that the call to the
scanf() function caused the crash.
Now that the problemisisolated, you may exit gdb by typing the following:
(gdb) q

Don't worry if you didn’t understand all of the commands sent to gdb. These topics will be covered in more detail in Chapter 10,
“Debugging with gdb.”

Now that you know where the problem is, you can modify crash.c and insert an ampersand before input on line 6. Y our program
will now look like this:

101



#include <stdio.h>

int main(void) {
int input = 0;
printf(“Enter an integer: “);
scanf(*%d”, &input);
printf(“ Twice the number you supplied is %d.\n", 2 * input);
return O,

}

Compiling and running this code resultsin a working program:

$gcc-Wall -o crash crash.c

$ /crash

Enter an integer: 5

Twice the number you supplied is 10.

This gives you only a quick glance at gdb and what it can do when you add debugging symbols to your program. The debugger also
can run through your program step by step, and can enable you to examine it whileit isrunning instead of after it has crashed. All
these details will be covered in Chapter 10.

Taking a Look at the Big Picture of gcc

Thusfar, you have learned how to use basic gcc options to generate a program, control optimization levels, enable debugging
symbols, and so on. However, alot of detail has been hidden from your view. Thisis done intentionally, so that using and learning
the system is simplified. When you want to work with more advanced situations, though, it isimportant to understand the pieces of
the puzzle and how they fit together. After you understand this, you can better understand various error or warning messages that
might be produced at different times during the build process, or be able to control more precisely how your programs get
compiled and linked.

In traditional UNIX fashion, the build system contains a number of components that you can assemble together to form a
comprehensive solution to a problem. Even though you may have not noticed, running gcc does much more than run the compiler.
A compiler simply trandates source code to assembly code. After that, an assembler must be run to generate object code. Finaly, a
linker must be run to bind the object code together with all the things necessary for it to run.

Asyou have used it thus far, gcc has taken care of these extra details for you automatically. Even though you didn’t explicitly
regquest it, gcc has used several programs to generate your final output. I’ m going to lead you through a small tour of the
components, and, like a museum tour, I’ finish up with alook at the Linux developer’s gift shop, filled with useful knick-knacks
and small tools.

The C compiler: gcc
Thusfar, this entire chapter covered gcc. At this point you should note that many of the programs discussed in the next section can
be invoked by gcc, and in fact are invoked by gcc if you use it as the examplesin this chapter have. Thus, gcc is more than a
compiler; it'salso afront-end that can be used to take care of the details of the build process for you.

The C++ compiler: g++
The GNU C++ compiler, g++, performs the same function for C++ programs as gcc does for C programs. Strictly speaking, gcc
can compile C++ code, as well, given the proper circumstances. However, the result will not always be correct without manually
specifying additional options. Therefore, when compiling C++ programs, g++ is generally the proper route to take. The options
accepted by g++ are the same as those accepted for gcc, so there is no need to relearn commands.
When dealing with C++ code, you (generally) should give it a.C or .cxx extension (as opposed to .c) such that both the C++
compiler and other programmers can properly identify the code as C++ code. Then, you use g++ to compile in the same fashion as
you would use gcc. For instance, consider this C++ program:

#include <iostream.h>

int main(void) {

int input;

102



cout << “Enter anumber: “;
cin > input;

cout << “Twice the number you supplied is“ << 2 * input << end|;
return O;

}

Assuming you save it as test3.C, you may compile this code by using the following command:

$g++-Wall -o test3 test3.C

Executing the program is done in the same fashion as with C programs:

$ Jtest3
Enter a number: 21
Twice the number you supplied is 42

The C preprocessor: cpp

The cpp (C Preprocessor) command is responsible for the evaluation of macros, conditional compilation, and other tasks that need
to take place before the code is passed through the compiler properly. In general, any of the # syntax items, and the code that they
act upon, is preprocessed by cpp. For instance, consider the following code snippet:

#define FOO (5 * 2)
printf(“%d\n”, FOO * 2); /* Display the number */

After running through cpp, the code will be modified to read:

printf(“%d\n”, (5* 2) * 2);

S0, cpp removes comments, interprets macros, handlesinclude files, handles #if and #ifdef statements, and almost anything else

that starts with a# sign. The gcc compiler normally calls cpp automatically; you also can call it with gcc -E or by using cpp on the
command line.

Note Some Linux distributions do not place cpp on your default path. Y ou might need to find it for yourself if you get
an error when you try to use it; look under /usr/lib/gee-lib and its subdirectories.

Oneinteresting thing to noteisthat cpp is not restricted to use with C programs. Because cpp does not deal in any way with the
code it generates, one can use it to generate non-C code. Some people use it to automate the generation of HTML code for web
pages,; others, to process configuration files for networked computers.

Tip If you want to try cpp in such a situation, you will probably want to use the -P option (which inhibits generation of
line number information) on its command line, which prevents the output of line number information.

TheGNU Linker: Id

With virtually every program you write, there are multiple parts that have to be brought together to form the final executable. Even
if your program contains only one module that you’ ve written, as is the case with the samples encountered thus far, still you must
use the linker (1d). Items such asthe C library, program initialization code, and so on, must be included. Without the C library, for
instance, you wouldn’t have such library function calls as strepy() or getpwnam() available. Without these calls, you lose the
capability of doing even some simple tasks unless you write your own replacements.

If larger programs are in your future, most likely you’ll want to split them into separate modules. When thisis done, the linker
combines all the modules together, bringsin the C library and startup code, and generates the finished product. Again, the linker
playsavital part in the generation of your executables.

Normally, |d isinvoked by the compiler to generate the final executable. Y ou can use ld manually, however, if you want more
fine-grained control over the linking process.

The GNU Assembler: as

When gcc compiles your code, it generates assembly code. The job of as (GNU Assembler) isto take this assembly code and
generate the object (binary) code that is used to form the .o files, libraries, or the final executable. The as programis rarely called

103



independently; rather, it is almost always invoked by gcc. However, if you have a desire to program with assembly language—
perhaps for fine-grained performance optimization or kernel modifications—you can invoke as manually also.

Note that because assembly is alow-level type of code, it varies between different platforms, even with the same operating system.
For instance, the assembly code used to perform computations on a 32-bit x86 platform can vary significantly from that used to do
the same computations on a 64-bit Alpha platform.

TheArchiver: ar

To build static libraries, you need to use the ar (the archiver) program. This program is used for combining several small filesinto
one largefile. In the case of static libraries, thisis precisely what must be done: you combine multiple .o filesinto asingle .afile.

The M akefile Interpreter: make

Large programs can often contain dozens or even hundreds of separate modules. If compiling the program meant manually
invoking gcc for each of these modules, the build procedure would be long, tedious, and error-prone. Y ou might have to remember
exactly which files have been modified, which files might depend on code elsewhere, and the proper gcc options for each of these
items. Hopefully, as you are thinking about how tedious it would be to invoke gec several hundred times, you' re thinking, what a
nightmare! Well, the make program is designed to automate this entire process.

With make, afile called Makefile is created. This file describes how to build each component of the system by using a set of rules.
These rules define the commands necessary to build a component (such asacall to gec or ar) as well as dependencies. For
instance, if you modify a header file that several C source filesinclude, you will want to rebuild these files to use the modifications
to the header file. However, to save time, you probably don’t want to rebuild al the other modules. GNU make is capabl e of
figuring out such situations based on the rules in the Makefile, and thus can compile only the minimum set of files necessary to
bring the final product up-to-date relative to the source.

Like cpp, make is not restricted to working only with C source code. Some use it to generate code for languages such as Pascal or
Fortran, or even for other tasks such as automating web sites or the building of packages for a Linux distribution.

Unlike many of the programs covered to this point, make is not invoked by gcc. Rather, make invokes gcc.
The GNU Debugger: gdb

While not strictly part of the build process, gdb (GNU debugger) most certainly is part of the development process. As previously
discussed, with gdb, you can track down any bugs that may be present in your software. Features of gdb include postcrash
analysis, step-by-step execution, conditional breakpoints, and other modern debugger features.

Library Dependency Display: 1dd

Theldd (Library Dependency Display) tool shows you which shared libraries a given executable (or library) requiresin order to
run. For asimple C program, the display often contains only two items: the C library, libc, and the dynamic loader, 1d-linux. For
instance:

$1dd ./myprogram
libc.s0.6 => /lib/libc.s0.6 (0x40004000)
Nlib/ld-linux.s0.2 => /lib/Id-linux.s0.2 (0x2aa2a000)

For C++ programs, you' |l often see these, plusthe C++ library (something like libg++, libstdc++, libc++, libg++272, and so on,
depending on your distribution, library, and compiler versions). Here is a simple example:

$1dd /test3
libstdc++-libc6.1-1.s0.2 => /ust/lib/libstdc++-libc6.1-1.s0.2 (0x40004000)
libm.s0.6 => /lib/libm.s0.6 (0x40049000)
libc.s0.6 => /lib/libc.s0.6 (0x40067000)
Nlib/ld-linux.s0.2 => /lib/Id-linux.s0.2 (0x2aa2a000)

This sample shows the usage of three libraries. The first line, mentioning libstdC++-libc6.1-1.50.2, indicates that the C++ library is
linked into the program. The second line, with libm.s0.6, tells you that the math library is used. The third line, libc.s0.6, indicates
that the standard C library is also used. The final line, /lib/ld-linux.s0.2, is the standard inclusion of the dynamic loader.

For more complex programs, many libraries may be included:

104



This programis bringing along support for various graphics formats (libjpeg, libpng, libXpm, and so on), graphical interfaces,
sound support, compression support, database support, and several other libraries. Linux makesit possible to easily utilize an

libgnorba.so.27 => /usr/lib/libgnorba.so.27 (0x40004000)
libgnomeui.so.32 => /usr/lib/libgnomeui.so.32 (0x40010000)
libart_lgpl.s0.2 => /usr/lib/libart_lgpl.so0.2 (0x400cf000)
libgdk_imlib.so.1 => /usr/lib/libgdk_imlib.so.1 (0x400dd000)
[ibSM.s0.6 => /usr/X 11R6/1ib/libSM .s0.6 (0x4010b000)
libl CE.s0.6 => /usr/X 11R6/lib/libl CE.s0.6 (0x40114000)
libgtk-1.2.50.0 => /ust/lib/libgtk-1.2.50.0 (0x4012b000)
libgdk-1.2.50.0 => /usr/lib/libgdk-1.2.50.0 (0x4024c000)
libgmodule-1.2.50.0 => /usr/lib/libgmodul e-1.2.50.0 (0x40282000)
libXi.s0.6 => /usr/X 11R6/lib/libXi.s0.6 (0x40285000)
libX ext.s0.6 => /usr/X 11R6/lib/libX ext.s0.6 (0x4028d000)
libX11.50.6 => /usr/X 11R6/lib/libX 11.50.6 (0x40299000)
libgnome.s0.32 => /usr/lib/libgnome.s0.32 (0x4033f000)
libgnomesupport.so.0 => /usr/lib/libgnomesupport.so.0 (0x40353000)
libesd.s0.0 => /ust/lib/libesd.so.0 (0x4035a000)
libaudiofile.so.0 => /usr/lib/libaudiofile.so.0 (0x40361000)
libm.s0.6 => /lib/libm.s0.6 (0x4036f000)
libdb.s0.3 => /lib/libdb.s0.3 (0x4038c000)
libglib-1.2.50.0 => /usr/lib/libglib-1.2.50.0 (0x403c8000)
libdl.s0.2 =>/lib/libdl.s0.2 (0x403ea000)
libORBIitCosNaming.so.0 => /ust/lib/libORBitCosNaming.so.0 (0x403e000)
libORBIt.50.0 => /usr/lib/libORBIt.s0.0 (0x403f6000)
libl1OP.s0.0 => /usr/lib/libl | OP.s0.0 (0x40434000)
libORBItutil.s0.0 => /usr/lib/libORBItutil.s0.0 (0x40444000)
libnsl.s0.1 => /lib/libnd .s0.1 (0x40446000)
libgtkxmhtml.so.1 => /usr/lib/libgtkxmhtml.so.1 (0x4045c000)
libXpm.so.4 => /usr/X11R6/1ib/libX pm.so.4 (0x404b9000)
libjpeg.s0.62 => /ust/lib/libjpeg.so.62 (0x404c7000)
libpng.so.2 => /usr/lib/libpng.so.2 (0x404e7000)
libz.s0.1 => /usr/lib/libz.s0.1 (0x40513000)
libc.s0.6 => /lib/libc.s0.6 (0x40522000)
Nlib/ld-linux.s0.2 => /lib/Id-linux.s0.2 (0x2aa2a000)

existing codebase in your own programs.

Cross-Reference

See Chapter 9, “Libraries and Linking,” for details on building the libraries themsel ves.

The programmer’s gift shop

In addition to the programs discussed already, there are several other small, useful tools on your system that can be useful when
building software. Many are part of the GNU binutils package (as are Id and as), but others are from separate packages. Here are

some of the toolsthat can be helpful while you’ re devel oping software:

The GNU profiler, gprof, is used to benchmark programs. Gprof has finer granularity than time; it can identify particular

functions or sections of code that are bottlenecks.

The debug symbol stripper, strip, is used to remove debugging symbols from a program or object compiled with -g. Y ou can
use strip to do thisinstead of recompiling the program without the debugging information.

The strings program can look inside of binary files and display only the parts that contain plain text.

strace displays the system calls made by a program and the arguments to those calls. The functionality here can overlap
somewhat with gdb, but you can get some other useful information from strace as well. A related program is Itrace, which

105



traces library calls.

e The makedepend tool, although part of the X11 development suite, can nevertheless be used for many other types of programs.
Thistool analyzes the code and automatically produces the appropriate dependency linesin a Makefile, saving you from having
to update them on aregular basis.

Working with Large Projects

The easiest way to deal with small blocks of C code isto place all the code into asingle file and compile thisfile with gcc.
However, when your code size startsto increase, this approach starts to get impractical. Finding the desired line of code within a
file containing tens or hundreds of thousands of lines can be difficult. Editors start to become less efficient and more memory-
hungry as they must work with large files. Coordinating multiple people working on a development team is difficult when only
one file needs to be edited. And recompiling a huge file after making a change to only one line of code is a waste of valuable time.

C provides you with a powerful way to split up your work. By using separate C modules—or functions and data contained in
separately compiled .c source files—you can separate your work into logical chunks. Furthermore, each of these chunks can be of
a manageable size, making navigation within your program’s source simpler. When collaborating with members of ateam, what
would otherwise be a serious management problem is simplified; as long as team members work on only certain files,
synchronizing changes between them becomes easier, especially when atool such as CVSis used.

There are benefits for the future as well; a good programmer always keeps future uses of code in mind. After the code is separated
into modules, assembling these modules into alibrary can be easy. After being made into alibrary, use of the code in other
projectsistrivial aswell.

Having said all this, you should note that there could be some downsides to using modules. The use of global variables can be
made more difficult, although many would (justly) argue that global variable usages ought to be minimized anyway. If modules
are not split at logical places, the result can be more difficult to navigate than the original. However, aslong as care is exercised,
modules are not difficult.

Note Thisbook doesn't aim to teach you the intricacies of C; sufficeit to say that you will need to use the extern
keyword and probably manage a series of .h files for prototypes as well. Here, the aim isto cover those aspects of
multiple modules specific to the build system in Linux.

For the sake of discussion, I'll assume that you have three modules as part of your program: io.c, init.c, and compute.c. Most
likely, your io.c module handles input and output from the program; init.c, the initialization for the program; and compute.c,
whatever computation is necessary. The exact separation of capabilitiesis not relevant to gec, but isindeed quite relevant to the
programmer.

To compile the entire program the simplistic way, one could use this:

$ gcc -Wall -0 myprogram io.c init.c compute.c
When used like this, gcc compiles each .c file, and then links them all together to form the final product. For small projects, this
approach is workable. However, you are still recompiling the entire program every time there is even a minor change, so thereis
not much advantage for compile time.
The next step isto split the compilation into separate steps. To do this, use the -c¢ option of gcc. The -c option tells gee that you do
not intend to generate the final executable immediately; rather, gcc ssimply generates an .o file. This .o file contains the compiled
code from one .c file only; it is not executable by itself. So, first, you compile the .c filesinto .o files:

$gcc-Wall -c-oio.0io.c

$gce -Wall -c-oinit.oinit.c

$ gce -Wall -¢ -o compute.o compute.c

Now there are three .o files that correspond to the three .c files. These are not executable alone; to generate the final executable,
you run:

$ gcc -0 myprogram i0.0 init.o compute.o

Note -Wall isnot specified for the last command. Thisis because it would have no effect; this final gcc command is not
compiling anything—it's simply linking everything together to generate the final executable.

Consider a situation in which you may have modified one linein init.c. Rather than recompile compute.c and io.c as well, you

106



simply can recompile init.c and then relink:

$gcc-Wall -c-oinit.oinit.c
$ gcc -0 myprogram init.o i0.0 compute.o

Some benefit becomes apparent now; only one file has to be recompiled. If your program contains hundreds of files, this
advantage can be much more significant than with this particular example. The link processisfairly fast relative to the compilation
step, so you come out ahead.

Y ou may be thinking at this point that it is tedious to use four commands to recompile the program instead of only one. Well, if so,
you're right. Makefiles, discussed in Chapter 7, “Managing Projects with GNU make,” can be used to great advantage to automate
this process. Here is a simple Makefile that builds this program:

OBJS =i0.0init.0 compute.o
EXECUTABLE = myprogram
CFLAGS =-wadll

CC=gcc

# End of configuration options
al: $(EXECUTABLE)

$(EXECUTABLE): $(0OBJS)
$(CC) -0 $(EXECUTABLE) $(OBJS)

%.0: %.C
$(CC) $(CFLAGS) -c-0 3@ $<

clean:
-rm $(OBJS) $(EXECUTABLE) *~

Don’'t worry about the syntax right now; | will cover thisin Chapter 7, “Managing Projects with GNU make.” There is one thing to
note, though. When you look at the lines that are indented from the left, you must use the tab key to indent them. Do not use a
series of spaces.

Y ou can modify this Makefile (note that it must be named Makefile to work by default) for your own purposes. Generally, you
only need to modify the list of .o filesin the first line and the executable name on the second line.

Givethis Makefile atry. First, delete any existing .o files and your executable; you can also do this by running make clean.
Now, type make and press Enter. Watch what happens:

$ make

gce-Wall -c-oio.oio.c

gce -Wall -c -oinit.oinit.c

gce -Wall -c -0 compute.o compute.c
gcc -0 myprogram i0.0 init.o compute.o

The make program automatically ran all the commands that you manually ran earlier. Already some timesaving is apparent. Recall
the earlier scenario of modifying init.c. Make a modification to that file now and type make again:

$ make
gcec-Wall -c -oinit.oinit.c
gcc -0 myprogram i0.0 init.o compute.o

The make program figured out that only one file was modified. So, it recompiled only that one file and then relinked the program.
GNU make performed exactly the same actions that you did manually earlier; however, it determined the necessary actions and
carried them out without any input from you, saving lots of time.

Using Advanced gcc Options

In addition to the gcc options that control basic file generation, there are also many other options that enable you to fine-tune gcc
operations. For instance, you can control everything from where to include the files to the way in which the development tools are

107



invoked.
Specifying sear ch paths

When building a project, gcc has a default search path to use for things like include files and libraries. Y ou will find that you will
often need to add components to this path. For instance, if compiling a Tk program, you may need to add an entry to the search
path so that gcc can find the header files for Tk that your program uses. Or, if programming for X, you may need to add an entry to
the directory search path so that the linker can find the libraries necessary for your program.

The options for adding an entry to the include file search path and the library search path, respectively, are -I and -L. Examples of
each option are shown below.

For instance, assume you have a program that wantsto include afile named scsi.h. Y our system may have this file under
Jusr/include/scsi, which is not on the default search path. Therefore, you might use:

gce -Wall -1/usr/include/scsi -0 myprogram myprogram.c
Doing so will enable the preprocessor to find the scsi.h file that your program wants.

A similar concept applies to the search path for libraries. If your program needsto link to the X11 library, for instance, you may
need to inform the linker of the location of thislibrary. Y ou can do so by using:

gcc -L/usr/X11R6/lib -Wall -0 myprogram myprogram.c -1X11
Linking with libraries

When writing many programs, you will need to link with libraries. These libraries can be anything from ones that implement
mathematical functions to ones that provide support for using a graphical interface in the X Window System. They can be either
static or shared; gcc can work with both.

The basic option to useto link in alibrary with your current programis-l (alowercase L). This option should be specified at the
final link stage of your compile only, which brings together all the .o files. If you are compiling directly from .c sourcefileto a
final executable, you should use -l on that gcc command line.

For instance, if you want to use the math library, you would probably include math.h in your program. Then, when compiling, you
would need to link in the math library, named simply m. Therefore, a command such as the following would be appropriate:

gce -Wall -o mathprogram mathprogram.c -Im

If you want to use the preceding Makefile example with a math program, you could modify it to include the math library in the
final link stage, as follows:

OBJS =i0.0init.0 compute.o
EXECUTABLE = myprogram
CFLAGS =-Wall

CC=gcc

# End of configuration options
al: $(EXECUTABLE)

$(EXECUTABLE): $(OBJS)
$(CC) -0 $(EXECUTABLE) $(OBJS) -Im

%.0: %.c
$(CC) $(CFLAGS) -c -0 3@ $<

clean:
-rm $(OBJS) $(EXECUTABLE) *~

With this option, the final link command will be:

108



gce -0 myprogram i0.0 init.o compute.o -Im

If you later wish to use Idd on the generated executable, you will confirm that the math library (libm) hasindeed been included.
Y ou can add any number of libraries to the gcc command line with -, and they will al be linked in.

Speeding compilation with pipes

The build process requires many steps—preprocessing, compilation, assembly, and linking to name afew. Normally, gcc handles
many aspects of these tasks for you, automatically invoking programs as necessary.

However, by default, this can be slow because there are many temporary filesinvolved. For instance, gcc will create atemporary
file holding the output of the preprocessor, another one with the output of the compiler, and perhaps a third with the output of the
assembler. Reading and writing these files takes time.

There is another way of communicating that can be more efficient: pipelines. With pipelines, several programs are invoked at
once, with the output from one being sent directly to the input of another where possible. Temporary files are avoided with this
scheme.

SMP (multiprocessor) machines derive extra benefit from the pipelining system; one process can execute on one processor while
another process runs on a separate processor, both simultaneously working on different parts of the build process.

The potential downside to this approach is that more memory isrequired for the build. Because more processes can be stored in
memory, and they must hold some datain RAM as well, the memory requirements increase. In most situations, thisisnot a
problem given today’ s machines, but it can be difficult—and thus can hurt performance—if you are using an older system or one
with little memory to spare.

The pipeline compilation process is specified by giving the -pipe option to gecc. After that, gcc takes care of setting up the
appropriate pipes. A sample command line might be:

gcc -pipe -Wall -O3 -0 test2 test2.c

The difference in compilation time may not be noticeable on smaller projects. However, with larger projects, the difference can
become quite significant.

Peeking at gcc with -v

All of the interactions between the various build programs are normally hidden from view. Their details are generally unimportant
and distracting. However, you can request the details to be shown as gcc runs; to do so, you use the -v option:

$gcc-v-Wall -O3 -otest2 test2.c
When you run this command, gcc displays alot of details about its build process. Following is the output with commentary:

Reading specs from /usr/lib/gcc-1ib/i486-linux/egcs-2.91.66/specs
gcc version eges-2.91.66 Debian GNU/Linux (eges-1.1.2 release)

Thusfar, gcc is specifying its version number and where it retrieved some build information. If your display is different from this,
the remaining part of the output may differ aswell, possibly significantly. Thisis normal; do not worry if there is a difference.

{usr/lib/gce-lib/i486-linux/eges-2.91.66/cpp -lang-c -v -undef -D__ GNUC_=2-D___ GNUC_MINOR_=91-D__ELF _ -Dunix -
Di386-D__i386__ -Dlinux-D_ELF_-D__unix__-D_i386__ -D_i386__-D__linux__-D__unix-D__i386-D__linux -
Asystem(posix) -D__OPTIMIZE__ -Wall -Asystem(unix) -Acpu(i386) -Amachine(i386) -Di386 -D__i386-D__i386__ -Di486 -
D_i486-D__i486__test2.c /tmp/ccdiildO.i

The preceding output shows where gcc invokes the C preprocessor, cpp. Thisis all asingle command line, and quite alarge one at
that—be glad that gcc generatesit automatically! Most of the options that you see are -D options, telling the preprocessor what
symbols should be interpreted as predefined.
GNU CPP version egcs-2.91.66 Debian GNU/Linux (eges-1.1.2 release) (1386 Linux/ELF)

Now, the output is coming from the preprocessor. Next, it identifies its version number and then gets down to business:

109



#include “...” search starts here:

#include <...> search starts here:
/usr/local/include
Jusr/lib/gce-lib/i486-linux/eges-2.91.66/include
/usr/include

End of search list.

The preprocessor displays the search path for header (include) files. It first displays any directories for filesincluded with
guotation marks, and then the path for those included with angle brackets. There are no additional messages from cpp; the next
message is from gcc and indicates the execution of another program as follows:

usr/lib/gec-lib/i486-linux/egces-2.91.66/ccl /tmp/cediildO.i -quiet -dumpbase test2.c -O3 -Wall -version -o /tmp/ccmrFelv.s

The ccl program is the compiler proper; it actually does the grunt work of compiling. Notice that it reads a..i file generated by cpp
and generates a .sfile for the assembler.

GNU C version egcs-2.91.66 Debian GNU/Linux (eges-1.1.2 release) (1486-linux) compiled by GNU C version egcs-2.91.66
Debian GNU/Linux (egcs-1.1.2 release).

ccl identifiesits version and then displays no additional messages as it proceeds.
as-V -Qy -o /tmp/cc5Ux7Gf.o tmp/ccmrFelv.s

The preceding shows how gcc invokes the assembler, telling it to generate an object file, and taking the assembler source file (.s)
asinput.

GNU assembler version 2.9.1 (i486-linux), using BFD version 2.9.1.0.25
Next, the assembler identifies its version and then proceeds with no additional output.

{usr/lib/gce-1ib/i486-linux/eges-2.91.66/collect2 -m elf 1386 -dynamic-linker /lib/ld-linux.so.2 -o test2 /usr/lib/crtl.o /usr/lib/crti.o
{usr/lib/gce-lib/i486-linux/eges-2.91.66/crtbegin.o -L/usr/lib/gee-lib/i486-linux/eges-2.91.66 /tmp/cc5Ux7Gf.o -Igec -Ic -Igee
lusr/lib/gec-lib/i486-linux/eges-2.91.66/crtend.o /ust/lib/crtn.o

Thisisthe invocation of the linker, which performsthe final stage in the build process. Notice some familiar names: |d-linux, the
dynamic loader; and -Ic, which includes the C library. There are also some unfamiliar names, such as crtbegin.o, which handle
certain initializations for the program.

An interesting contrast occurs when you use -pipe for compiling programs:

$ gce -pipe-v -Wall -O3 -o test2 test2.c
Reading specs from /usr/lib/gcc-1ib/i486-linux/egcs-2.91.66/specs
gce version eges-2.91.66 Debian GNU/Linux (egcs-1.1.2 release)

Thusfar, everything is asit was before. However, note the differencein the following example:

Jusr/lib/gee-lib/i486-linux/eges-2.91.66/cpp -lang-c -v -undef -D__ GNUC__=2-D__GNUC_MINOR_=91-D__ ELF__ -Dunix -
Di386-D__i386__ -Dlinux-D__ELF__-D__unix__-D_i386__ -D_i386__ -D_ linux__-D__unix-D__i386-D__linux -
Asystem(posix) -D__ OPTIMIZE__ -Wall -Asystem(unix) -Acpu(i386) -Amachine(i386) -Di386 -D__i386-D__ 1386 -Di486 -
D_ i486-D__i486_ test2.c|
Jusr/lib/gec-lib/i486-linux/eges-2.91.66/ccl -quiet -dumpbase test2.c -O3 -Wall -version -0 - |
as-V -Qy -o /tmp/cc3vU3IB.o -

The components are invoked at once by gcc, and gec sends the output from one program directly to the input of the next program.
It invokes the preprocessor, sending its output to ccl, whose output goes to the assembler. Only the link step cannot be performed
here, because it requires all filesto be ready before linking.

Now, all these programs display their initialization messages:
GNU CPP version egcs-2.91.66 Debian GNU/Linux (eges-1.1.2 release) (1386 Linux/ELF)

#include “...” search starts here:
#include <...> search starts here:

110



/usr/local/include
lusr/lib/gec-lib/i486-linux/eges-2.91.66/include
Jusr/include
End of search list.
GNU C version egcs-2.91.66 Debian GNU/Linux (eges-1.1.2 release) (1486-linux) compiled by GNU C version egcs-2.91.66

Debian GNU/Linux (egcs-1.1.2 release).
GNU assembler version 2.9.1 (i486-linux), using BFD version 2.9.1.0.25

The compilation and assembly finishes, and execution now moves on to linking. Thisis the same as seen before:
lusr/lib/gec-lib/i486-linux/eges-2.91.66/collect2 -m elf 1386 -dynamic-linker /lib/Id-linux.so.2 -o test2 /usr/lib/crtl.o /usr/lib/crti.o
lusr/lib/gec-lib/i486-linux/eges-2.91.66/crtbegin.o -L/usr/lib/gee-lib/i486-linux/eges-2.91.66 /tmp/cc3vU3IB.o -Igec -Ic -Igec
lusr/lib/gec-lib/i486-linux/eges-2.91.66/crtend.o /ust/lib/crtn.o

Being pedantic with ANSI C
When you write code that needs to be portable to nonLinux or nonUNIX platforms, you must adhere to the standards set down in
the ANSI C specification. The gcc compiler and Linux environment both add numerous extensions to the language. By default,
gcc also doesn't deal with afew undesirable aspects of ANSI C.

You can tell gec to disable its extensions to ANSI C. This can be useful if you want to check to see if your programs will compile
on other platforms. Also, some programs written for pure ANSI C may not compile with the GNU extensions.

Y ou can use the -ansi option to enable this type of behavior when compiling your programs. For a step farther, there isthe -
pedantic option. This one disables even more GNU extensions and additional features. Additionally, it generates al warnings that
the ANSI C standard mandates, and programs that use nonstandard extensions won’t compile.
If you are writing software solely for Linux platforms, these options are not of interest. However, if your program will be running on
other platforms (particularly non-UNIX platforms), they can be useful in your development process. Note, however, that some
standard code may emit warningsin this situation, so its usefulness may not be as great as you might hope. Using these options does
not guarantee that programs will compile elsewhere. They are merely useful guides.
Summary

In this chapter, you learned how to use gcc and its companion programs. In particular, you learned:

» The main program to compile your programsis called gcc.

« You can invoke gcc with —W options to enable useful warnings.

* You can enable various levels of optimizations with —O. These optimizations can improve the performance of your program,
but writing good code can have an even greater effect.

* You can enable the generation of debug symbols with —g or —ggdb3. These enable you to use gdb to track down problemsin
your code.

e There are many tools that work along with gcc to perform such tasks as preprocessing your code, assembling it, and linking
the code. Many of these tools are invoked automatically by gcc, but sometimes you may want to invoke them manually.

* You can split your programs into modules to decrease recompilation time during development. The GNU make program can
automate the build process, and is quite handy in these situations.

*  When you need to include or link with code not on the standard search paths, you can use - and —L, respectively.
* If you need to use some code from alibrary, you can do so with the - option to gcc.

«  Specifying the —pipe option to gce often can speed the compilation of your programs because temporary files are no longer
necessary.

« The-v option enables you to see details about what is going on under the hood of gcc.

e The-ansi and —pedantic options turn on additional warnings and greater strictness when compiling your code.
Chapter 7: Managing Projectswith GNU M ake

111



Overview

As your programs get larger, the process necessary to build them becomes more complex and time-consuming. The Linux
environment provides atool to help you with this process: GNU make. In this chapter, you'll learn how to use GNU make, what it
can do, and how to apply it to your needs.

Introducing GNU M ake

If you have ever seen the assembly line for any fairly complex product, such as a car, you know that the process of building that
product is detailed, precise, and involved. Everything must be built properly, and al the parts must be linked together to form the
final product. If something goes wrong, your car may end up looking more like the surplus materials from an old Pinto plant.

In order to get your new car built properly, managers—both human and computerized—control the processin which it is built.
Thus, an element of central control regulates the flow of materials from one areato the next.

Although a problem with the build process in your program probably is not going to cause your next car to have a strange
appearance, the same principles apply. With all but the smallest of projects, the build process involves executing dozens, hundreds,
or even thousands of commands. If these were all executed manually, the build process would be so long and error-prone that it
would be extremely difficult to compile and link your programs.

Therefore, there is an automation system for the assembly line that is the build process for your code. Y ou define the rules that
govern how your code is built. The system then applies those rules to build your project.

Y ou define these rules in afile generally named Makefile. Y ou then use a Makefile interpreter, such as GNU make that ships with
Linux, to processit and build your project. This program invokes your compilers, linkers, assemblers, and other build programs as
necessary to generate afinal executable. After you type make on the command line, the system automatically examines your rules
and the files present on the system and determines exactly what actions need to be taken to completely build your project. These
actions could end up spanning thousands of commands, and could even involve parallel processing—a true extension of the
assembly line metaphor into the Linux build process.

While you are in the development process, you frequently need to make changes to only afew filesin a project, rebuild the
program, and then test them. When you use make for your project, the system automatically detects the changes, and then
performs actions necessary to update the program with your changes. Y ou don't explicitly tell make what changed; it detects the
changes on its own, recompiles only that which is necessary, and re-links your program.

In this section, you will learn how to write these Makefiles and how to use them. Asyou proceed, you'll even learn how to create
intelligent Makefiles that can automatically detect many things about their environment so that you often don’'t need to tell them
even the names of the files that comprise your program!

Principles of M akefiles

At afundamental level, a Makefile is nothing more than a collection of rules. Each rule defines three things. The first isthefile
itself. Thisisthefile that will be built when the ruleis processed.

The second is the process that you must go through to make files into the final product. For instance, when working with C
programs, you must compile a C file (.c) into an object file (.0) first, and then link together all the .o filesto generate the final
executable. Y our rules can define this process.

Thethird item that you must define isthe list of dependencies for each file. These dependencies must be created before you can
process afile. For instance, afinal executable depends onits .o files. Thesefiles, in turn, depend on .c files. In this way, even
though you never specifically mention the process to go through from source to executable, the system is smart enough to figure it
out.

Dependencies aren’'t necessarily the files that are built. They can be other arbitrary files. For instance, a C program might list an
include file as a dependency. This means that if the include file is updated, the C file will be recompiled to take into account the
changes. The dependencies could refer to other rules. For instance, you may require that a configuration scan be performed before
the compile begins.

A simple M akefile

Consider asimple start to the world of make. In this example, we'll use the same situation as was featured in the end of Chapter 6,
“Welcome to gcc.” This code consists of three C source files and one header file.

112




For compute.c, the sourceis:
extern int someglobal;

int computer(void) {
return 5 * someglobal;
}

For init.c, the sourceis:

#include <stdio.h>
#include “myprogram.h”

int someglobal = 11,

int main(void) {
foo();
return O,

}

For io.c, the sourceis:

#include <stdio.h>
#include “myprogram.h”

int foo(void) {
printf(“The valueis: %d.\n", computer());
return 1,

}

For the header file, myprogram.h, the sourceis:

int computer(void);
int foo(void);

Asyou can see, thisis not terribly complex code. In this chapter, | will focus on how the code is built rather than the code itself.
Next, I'll use asimple Makefile for this code. This Makefile israther crude, and I’'ll improve it later in this chapter.
Caution You must use the Tab key to indent the lines (as shown in the following example); spaces will not work in this

situation. Make considers lines beginning with atab to be parts of asingle rule; lines that do not begin
specifically with atab are parsed differently. If you use spacesinstead of a Tab, your Makefile will not work.

Here isthe code for the Makefile:

# Lines starting with the pound sign are comments.
#

#"all” isthe default target. Simply make it point to
# myprogram.

al: myprogram

# Define the components of the program, and how to
# link them together.

# These components are defined as dependencies; that is,
# they must be made up-to-date before the .

myprogram: i0.0 init.o compute.o
gcc -0 myprogram i0.0 init.o compute.o

113



# Define the dependencies and compile information for the three C source
# codefiles.

compute.o: compute.c
gce -Wall -c -o compute.o compute.c

init.o: init.c myprogram.h
gcc -Wall -c -o init.oinit.c

i0.0: i0.c myprogram.h
gce-Wall -c-oio.oio.c

Now, you can compile your entire program with a single command at the prompt. The make program first looks for the name to
the left of the colon, also called atarget (in this example, the target is named al). In this case, all is set to depend on myprogram.

In make, a dependency means that the item on the left of the colon must have been updated at the same time or more recently than
each item on theright side. In this particular case, all is not the name of an existing file, so it will evaluate myprogram every time
make is invoked.

The myprogram target then indicates a dependency on three object files. This means that the object files must be up-to-date before
you can run the commands necessary to build the final executable named myprogram. If any of these object files are newer than
the final executable, the final executable is re-built; otherwise, there is no need to do so.

Next, thereis an entry for each of the object files. Each entry indicates the dependency on a C source file for the build process.
That is, if the specific C source fileis updated, the object file must be re-built. Some entries also indicate a header file; the same
rule appliesthere.

The entire build process isbased on these rules. Now you can watch as make builds your program:

$ make

gcc-Wall -c-oio.0io.c

gcec-Wall -c -oinit.oinit.c

gce -Wall -c -0 compute.o compute.c
gcc -0 myprogram i0.0 init.o compute.o

The commands in the preceding example are executed in the correct order. First, the C source files are compiled into object files.
Next, these object files are linked to form the final executable. This ordering is all possible because of the dependencies; the final
executable requires that the object files be up-to-date. To make these files current, make must compile the C source code into
object code.

Watch what happensif you run make again. Thistime, because the progam already is compiled and no modifications are made, no
compilation is necessary as shown in the following example:

$ make
make: Nothing to be done for “all’.

When run with already-built code as was done here, make checksto seeif al the files are up-to-date. They are, so it exits without
doing anything. Y ou can see what happens when one file is modified. Y ou can either load it into your favorite editor and re-save,
or you can use the touch command, which updates its timestamp to the current time, effectively pretending to have updated the
file. Watch what happens when you re-run make after doing this:

$touchio.c

$ make

gcc-Wall -c-oio.0io.c

gcc -0 myprogram i0.0 init.o compute.o

This time, make evaluates the dependencies as before. When it reachesio.o, make notices that io.c is newer; i0.0 must be
recompiled. Then, because io.0 was recompiled, the program must be re-linked. Make automatically detects these conditions and
takes the appropriate actions. Notice that make does not compile the files that have not changed—compute.c and init.c. This saves
you time, because the code that does not need recompilation is left alone.

Smarter M akefiles
114



In this Makefile, thereisalot of repetition. Two things that are repeated are the gcc command line options and the dependency
rules for each particular C sourcefile.

To simplify the command line options, you can use variables in your Makefile. This not only reduces the typing (and possible
errors) necessary to create your rules, but also enables you to change the rules throughout the entire file by modifying one or two
lines. This can be abig win for large files.

Setting variablesin aMakefile is similar to doing the same in Bash; you use the equals sign (=) to separate the variable name, on
the left, from the new value on the right. To access the contents of the variable later, the syntax is dightly different. With make,
you use $(VARIABLE) to access the contents of the variable named VARIABLE.

The following revision of the Makefile incorporates these ideas:

# Lines starting with the pound sign are comments.
#

CC=gcc
CFLAGS=-Wadll
COMPILE=$(CC) $(CFLAGS) -c

#“all” isthe default target. Simply make it point to myprogram.
al: myprogram

# Define the components of the program, and how to link them together.
# These components are defined as dependencies; that is, they must be
# made up-to-date before the code is linked.

myprogram: i0.0 init.o compute.o
$(CC) -0 myprogram i0.0 init.0 compute.o

# Define the dependencies and compile information for the three C source
# codefiles.

compute.o: compute.c
$(COMPILE) -0 compute.o compute.c

init.o: init.c myprogram.h
$(COMPILE) -oinit.oinit.c

i0.0: i0.c myprogram.h
$(COMPILE) -c-oio0.0i0.c

This revision eliminated the duplication of options such as-Wall on each line. If you want to add optimization to the options, you
need to modify only one line—the CFLAGS one—to add the options. Y ou don’t need to modify each of the compilation lines.

Y ou might also notice that the COMPILE variable is set based on the contents of two others. There is no problem with using the
contents of one variable (or even multiple variables) to set another.

This solution has addressed one of the problems. However, thereis still much more that you can do to improve this specific
Makefile. For example, you can eliminate the separate listing for each C source file. Y ou can do this by specifying a generic rule
for all C source files. Here's arevised version of the Makefile; note that the version in the following example is not completely
correct yet:

# Lines starting with the pound sign are comments.
#

CC=gcc

CFLAGS=-Wall
COMPILE=$(CC) $(CFLAGS) -c

115



#“all” isthe default target. Simply make it point to myprogram.
al: myprogram

# Define the components of the program, and how to link them together.
# These components are defined as dependencies; that is, they must be
# made up-to-date before the code is linked.

myprogram: i0.0 init.o compute.o
$(CC) -0 myprogram i0.0 init.0 compute.o

# Define the dependencies and compile information for the three C source
# codefiles.

%.0: %.C
$(COMPILE) -0 $@ $<

The last two lines in this Makefile are the interesting ones; they take the place of all the separate rules that were in the area earlier.
Instead of several separate rules, there is a generic rule that indicates that any file ending with .o depends on afile with the same
base name, but a.c extension. A rule for compiling these filesis then defined. This rule looks much the same as the typical rules
used earlier, but there are two unique characters at the end—the $@ and $< operators.

Thefirst operator, $@, is replaced by the name of the target; in this case, the object file. Asusual, gcc istold which filename to
use for writing its output, and that filename isindicated by $@. The other operator, $<, indicates the file that needs to be compiled;

in this case, that fileisa C source code file. This bit of information obviously needs to be passed along to gcc as well, and such is
done.

As| mentioned earlier, thereisa small problem with the Makefile in the preceding example. Recall that two object fileslisted aC
header file along with a sourcefile in their dependency list. This particular Makefile omits that listing, and thus the dependency on
the header file will not be recognized by make.

This can be fixed by manually declaring a special dependency for these particular files. Here is afixed version of this Makefile:

# Lines starting with the pound sign are comments.
#

CC=gcc
CFLAGS=-Wall
COMPILE=$(CC) $(CFLAGS) -c
#"all” isthe default target. Simply make it point to myprogram.
al: myprogram
# Define the components of the program, and how to link them together.
# These components are defined as dependencies, that is, they must be
# made up-to-date before the code is linked.

myprogram: i0.0 init.o compute.o
$(CC) -0 myprogram i0.0 init.0 compute.o

# Define a special dependency on a header file.
init.o io.0: myprogram.h

# Specify that al .o files depend on .c files, and indicate how
#the .c files are converted (compiled) to the .o files.

%.0: %.C
$(COMPILE) -0 $@ $<

The additional line that starts with init.o demonstrates several important points. First, multiple targets are listed on the | eft side of

116



the colon; thisisindeed an acceptable syntax with make. Second, the line itself defines a dependency but defines no corresponding
build rule. Thisalso is acceptable; make realizes that the specified file must be re-built and uses the standard build rule for .o files
as defined in the %.0 line.

At this point, the new Makefile has reached a point where it performs in exactly the same fashion as the first Makefile presented in
this chapter, but with much less effort on your part. With afew more modifications, the Makefile will end up like the one
demonstrated in Chapter 6, “Welcome to gcc.” Hereisthat Makefile, with afew slight modifications:

# Lines starting with the pound sign are comments.
#

# These things are options that you might need
# to tweak.

OBJS =i0.0init.0 compute.o
EXECUTABLE = myprogram

# Y ou can modify the below as well, but probably

# won't need to.
CC=gcc
CFLAGS = -Wall

COMPILE = $(CC) $(CFLAGS) -c
#“all” isthe default target. Simply make it point to myprogram.

al: $(EXECUTABLE)

# Define the components of the program, and how to link them together.

# These components are defined as dependencies; that is, they must be
# made up-to-date before the code is linked.

$(EXECUTABLE): $(OBJS)
$(CC) -0 $(EXECUTABLE) $(OBJS)

# Add any special rules here.
i0.0 init.o: myprogram.h

# Specify that all .o files depend on .c files, and indicate how
# the .c files are converted (compiled) to the .o files.

%.0: %.c
$(COMPILE) -0 $@ $<

clean:
-rm $(OBJS) $(EXECUTABLE) *~

Let’s analyze this version of the Makefile from start to finish to see how it works. It starts out by declaring two variables that hold
information about the components of the program, and then the name of the program itself. With these options, you can easily re-
use your Makefile with other projects; you may need to modify these first two lines only!

The next three variables are ones you’ ve seen before; they are exactly the same and have the same purpose in this Makefile. After
those variables, you see the all target, which functions the same asit did before; the only difference hereisthat the executable
name is defined by a variable instead of being hard-coded into the rule.

Next, you see aline that begins with $§(EXECUTABLE), which defines the rule for the final link step of the program. The
difference here, though, is that many more things are used from variables. The executable’ s name comes from a variable, showing
that it isindeed acceptable to use a variable for the name on the left side of a colon. The dependencies are defined by $(OBJS),
which expandsto alist of the object files that was defined at the top of the file. Then the compilation step uses the name of the
compiler as defined in the previous example, as well as the same variables for the executable name and object files.

Next, thereisthe special rule line covering the dependency on the header file. Thisis the same line that was used in previous

117



editions of the Makefile. Following that isthe generic compilation rule, which is again the same as the one used in previous
Makefile versions.

The Makefile ends with a clean target, which makesits first appearance in this version of the Makefile. The purpose of this target
isto make a convenient way for you to remove compiled files, editor backup files, and other similar files that may have
accumulated during the devel opment process and return to a pristine source tree. This target has no dependencies, and no other
targets depend on it. Therefore, thereis no way that it can be automatically executed by make.

Tip Theonly way to invoke the clean target is by giving an option to make on the command line, as demonstrated in the
following example. The single line for the rule’s actions, shown above, begins with a dash. This has special meaning
to make; it indicates that if the command that is present on that line fails, make should ignore the error and proceed
with normal processing. Such an error might occur, for instance, if there were no files that rm needed to delete. The
command line itself indicates that the object files, the executable file, and editor backup files (which typically have a
trailing tilde) are supposed to be removed.

If you want to remove these files, you can invoke make with the clean target, as shown in the following example:

$ make clean

rmio.o init.o compute.o myprogram *~

rm: cannot remove *~': No such file or directory
make: [clean] Error 1 (ignored)

In this particular case, there were no editor backup files to remove, so rm complained about that pattern. However, because of the
dash, make reports the error but ignoresit. Y ou can now test out the new Makefile on your newly cleaned directory if you wish:

$ make

gcc-Wall -c-oio.0io.c

gcec-Wall -c -oinit.oinit.c

gce -Wall -c -o compute.o compute.c
gcc -0 myprogram i0.0 init.o compute.o

Now the program is recompiled with the new, smarter Makefile. This Makefile is much more versatile and effectively scalesto larger
projects. Furthermore, it can be re-used on additional projects with very few modifications.
Using Intelligent M akefiles

Thusfar, you have seen ways to instruct make on how to build your program, what the dependencies for your program are, and
similar tasks. GNU make has many more features, however. Rather than giving the information to make manually, you can create
an intelligent Makefile that tells the system how to build your program and determine the relevant information automatically.
These techniques traditionally are not covered in generic UNIX documentation because they are not portable to other UNIX
systems; the extra features used in this section will only work with GNU make. Because Linux distributions use GNU make, you
can use these features on any Linux platform safely.

The goa of the intelligent Makefile is to minimize the amount of information that must be given to make prior to building your
program.

A good place to start iswith the list of object filesin your program. Because most users have only one directory for a program, and
one program per directory, it seems silly to have to manually specify alist of object filesin the Makefile, especialy if such alist
can be determined based on the files in the current directory. The capability of automatically determining thistidbit of information
eliminates the need to manually update the Makefile each time a new file is added to the program or an old file is removed.
Furthermore, this enables the Makefile to be much more portable to other projects.

Two variable types

In GNU make, you can use two different types of variables. The first type is commonly used in Makefiles and has been used in the
examples you have seen up to now. Thiskind of variable is re-evaluated each timeit is used. That is, if it mentions other variables
or functions, those references are not expanded immediately. Rather, they are expanded each time the variable is used. This can be
advantageous. For instance, you can specify a variable that references another variable that does not yet exist at the time of the
assignment to the first, because the inclusion of the second does not occur until the variable is actually expanded later on.

However, thisis not desirable for your purposes,. One reason is, the set of files that match a given wildcard can change each
moment while the contents of the Makefile are executed. Another reason is, matching wildcardsis a (relatively) slow operation;
it's best to perform wildcard matches once and re-use the results in the future.

118



GNU make has an alternative syntax assigning values to variables specifically geared towards your needs. Simply use := instead of
= when assigning a value to avariable. For instance, if you take aline of code from the sample Makefile used in the previous
section, you could say:

COMPILE := $(CC) $(CFLAGS) -¢

In that particular Makefile, there is no apparent difference. However, if you consider a situation in which the value of the CC
variable might change after thisline of code, there is a difference. When you use the normal syntax, the expansion of COMPILE
changes as well. When you use this aternative syntax, the value of COMPILE is fixed until you explicitly change it.

Wildcards: problemsand solutions

Suppose you want to automatically obtain alist of all the object filesin your current directory. Thislist could be used such that the
developer does not have to list those files explicitly in a Makefile.

Y our first inclination might be to use a simple wildcard, such as:

OBJS=*.0

Several problems arise with this approach. For one, the wildcard is evaluated every time something makes reference to the
variable. Because the set of object filesin the directory obviously can change as components are compiled, this solution can lead to
very strange—or even unpredictable—results.

Additionally, this syntax works only if the project is aready in afully compiled state. Before a program is compiled, no object
filesarein the directory. Thus, the wildcard matches nothing and make thinks that you have afile named literally *.o that you wish
to generate. This solution is obviously incorrect.

Furthermore, there is, again, a performance issue where the wildcard has to be evaluated each timeit is used, which isaslow
operation. Therefore, it is preferable to evaluate the wildcard once only, if possible.

Recalling the discussion of the two types of variables—CC and CFLAGS— you might decide to modify the code to use the
alternative syntax instead. Y our second attempt could be the following:

OBJS:=*.0
Unfortunately, thisis also incorrect. In this particular case, the effect is the same: OBJS is simply set to the string *.0.

Consider a completely different approach: the wildcard function in make. This function causes make to expand a wildcard itself
and use the result. Therefore, you could try the following:

OBJS = $(wildcard *.0)
Thistime, OBJS will expand to the list of object files each time it is referenced. However, as discussed earlier, when you use
normal syntax, there are problems both with a changing list of files and with performance. So, you should use the aternative
syntax in this situation; that is:

OBJS := $(wildcard *.0)
Thistime, thefilelist is expanded immediately, and OBJS contains alist of object files—but only if they are present when make is
invoked. What you really need isalist of the C source files, and then away to convert thislist into alist of files of the same name,
but with an .o extension. Cleverly, the make authors provided afacility for doing this: the patsubst function. Y our next step isto
put it to use. You might use thisfirst as follows:

TEMP := $(wildcard *.c)
OBJS := $(patsubst %.c,%.0,$(TEMP))

Thisisthe first syntax example thus far that produces a correct, desired result! Note that the previous example can be rewritten
such that the usage of atemporary variable is unnecessary:

OBJS := $(patsubst %.c,%.0,$(wildcard *.c))

119



Now you have now reduced the number of linesin the Makefile that require customization to only two: the name of the executable
and any special dependencies. Before proceeding to change the file in some more significant ways, here’swhat it looks like with
the wildcard change:

# Lines starting with the pound sign are comments.
#

# Thisis one of two options you might need to tweak.
EXECUTABLE = myprogram

# Y ou can modify the below as well, but probably

# won't need to.
CC=gcc
CFLAGS=-wadl

COMPILE = $(CC) $(CFLAGS) -¢
SRCS := $(wildcard *.c)
OBJS := $(patsubst %.c,%.0,$(SRCS))

#"all” isthe default target. Simply make it point to myprogram.
al: $(EXECUTABLE)

# Define the components of the program, and how to link them together.
# These components are defined as dependencies, that is, they must be
# made up-to-date before the code is linked.

$(EXECUTABLE): $(OBJS)
$(CC) -0 $(EXECUTABLE) $(OBJS)

# Add any special rules here.
i0.0 init.o: myprogram.h

# Specify that al .o files depend on .c files, and indicate how
#the .c files are converted (compiled) to the .o files.

%.0: %.C
$(COMPILE) -0 $@ $<

clean:
-rm $(OBJS) $(EXECUTABLE) *~

explain:
@echo “The following information represents your program:”
@echo “Final executable name: $(EXECUTABLE)”
@echo “Sourcefiles:  $(SRCS)”
@echo “Object files:  $(OBJIS)”

There'sanew target here: explain. Thistarget displays the information that is detected (or, in the case of the executable, supplied)
so that you can see what is going to be done. If you run make explain at the command line, you'll receive this outpuit:

$ make explain
The following information represents your program:
Final executable name: myprogram
Sourcefiles:  compute.cinit.cio.c
Object files:  compute.o init.oi0.0

Note | want to draw your attention to two things about explain. First, thereisan at sign (@) at the start of each line. The
reason for thisis that, normally, make will display each command line prior to executing it. Thus, each line would
be displayed twice, which is rather unsightly. The leading at sign suppresses this extra display. Second, al the
output isin quotes. Thisis not strictly necessary in many cases, because echo displays all of its arguments.

120



However, because arguments are space-separated, the extra spacesin the last two lines would not be preserved,
and their visual effect would be lost.

Dependency calculations

Now that you have determined the names of all the source and object filesin your project automatically, wouldn't it be nice to
calculate all their dependencies automatically? Thisis, in fact, probably more of a benefit for the programmer than automatically
figuring out the names of the object files. When dependencies are calculated manually, a programmer must update the Makefile
every time it includes another custom file or removes an existing include statement. Cal cul ating dependencies automatically can
mean that the Makefile never needs to be updated, even when new modules are added to the code that have dependencies on new
header files.

Programmers have used many different algorithms over the years to generate these dependencies automatically. There are
programs that actually modify the Makefile, such as makedepend. Some programmers prefer to generate a giant file containing all
the dependencies. GNU make has some features that allow a third option: generating one file per source file, each containing
dependency information.

The basic ideais to go through and create a dependency file for each source file with the necessary information. Then, when you
use make' sinclude directive, these files are read into and parsed asif they’re part of the main Makefile already. This approach is
beneficial in several ways. First, because there is one dependency file per source file; you can declare a dependency of the
dependency file on the source file, thus allowing the dependencies to be updated automatically when necessary. Second, because
each source file has its dependencies in a separate file, you don't have to update the dependencies for everything when only one
fileis modified. Finally, you derive benefit from a feature of GNU make'sinclude directive.

The dependency files are generated when you use the -M output from gcc. This option tells the compiler (more specifically, the
pre-processor) to suppress the normal actions. Instead, it examines the source file and outputs an actual make rule indicating the
dependencies for the given file. Thisis exactly what is needed herel

The generated rule lists the .o file on the left, followed by the name of the C file and any header files that are included along the
way. Thisis great, but to form a completely correct solution, you need to make the dependency filelist all of these filesas
dependencies also. Thisway, if a given header file is modified (perhaps to include an additional header fileitself), the
dependencies are updated as well. Fortunately, asimple call to sed will deal with this.

Asafinal word of introduction before presenting the updated Makefile, | want to discuss the include operator in GNU make. This
operator was originally designed to pull information from other Makefiles into the current one, but GNU make has extended the
operator such that it is useful for our purposes as well. Effectively, we will be pulling mini-Makefiles into the master one; each of
these smaller files will contain two rules for dependencies.

GNU make'sinclude operator has two useful features. Thefirst isthat it automatically rebuilds the files that are included, if
necessary. If these filesdon’'t exist, or are out-of-date, GNU make looks for arule to rebuild them in the current Makefile. If such a
ruleis found, the files are built using therule.
A second feature isthat, if any of these files need to be re-built, make automatically resetsitself, allowing all of these filesto be
loaded in their updated state. Traditional make utilities do not support this sort of reset, meaning that old dependencies may have
been used even if newer ones were available.
Listing 7-1 shows a Makefile that automatically generates dependencies and incorporates all of the preceding information.
Note Listing 7-1 isavailable online.
Listing 7-1: M akefile sample
# Lines starting with the pound sign are comments.
#
# Thisis one of two options you might need to tweak.
EXECUTABLE = myprogram
# Y ou can modify the below as well, but probably

# won’'t need to.
#

121



# CCisfor the name of the C compiler. CPPFLAGS denotes pre-processor
# flags, such as -1 options. CFLAGS denotes flags for the C compiler.
# CXXFLAGS denotes flags for the C++ compiler. Y ou may add additional
# settings here, such as PFLAGS, if you are using other languages such

# as Pascal.

CC=gcc

CPPFLAGS =

CFLAGS =-wadl -02

CXXFLAGS = $(CFLAGYS)

COMPILE = $(CC) $(CPPFLAGS) $(CFLAGS) -c

SRCS := $(wildcard *.c)
OBJS := $(patsubst %.c,%.0,5(SRCS))
DEPS := $(patsubst %.c,%.d,$(SRCS))

#"all” isthe default target. Simply make it point to myprogram.
al: $(EXECUTABLE)

# Define the components of the program, and how to link them together.
# These components are defined as dependencies; that is, they must be
# made up-to-date before the code is linked.

$(EXECUTABLE): $(DEPS) $(OBJS)
$(CC) -0 $(EXECUTABLE) $(0OBJS)

# Specify that the dependency files depend on the C source files.

%.d: %.c
$(CC) -M $(CPPFLAGS) $< > $@
$(CC) -M $(CPPFLAGS) $< | sed s\\.o/.d/ > $@

# Specify that al .o files depend on .c files, and indicate how
#the .c files are converted (compiled) to the .o files.

%.0: %.C
$(COMPILE) -0 $@ $<

clean:
-rm $(0OBJS) $(EXECUTABLE) $(DEPS) *~

explain:
@echo “The following information represents your program:”
@echo “Final executable name: $(EXECUTABLE)”
@echo “Sourcefiles:  $(SRCS)”
@echo “Object files:  $(OBJIS)”
@echo “Dependency files. $(DEPS)”

depend: $(DEPS)
@echo “Dependencies are now up-to-date.”

-include $(DEPS)

Having seen this new Makefile, | will review the changes that have been made in it. The first changes occur near the top where
variables are declared. Thereis agreater degree of specialization now; there is a separate CPPFLAGS for pre-processor directives.
Thisis necessary so that only those options can be passed to gcc when it cal culates the dependencies; the others should not be
passed along when dependencies are being calculated. Additionally, as you'll see shortly when | discussimplicit rules, there can
be other benefitsto splitting them up in such away as well.

Another new variable is DEPS, which is generated in a fashion similar to OBJS, except the dependency files will have a .d
extension. So generating alist of dependency files can be done in the same way as generating the list of object files.

122



Here's an example of the next change that occurs with thisrule:

$(EXECUTABLE): $(DEPS) $(OBJS)
$(CC) -0 $(EXECUTABLE) $(OBJS)

Thistime, the list of dependency filesisalso listed. Technically, thisis not necessary because make implicitly evaluates those files

whenever it starts, but listing them here can be a good reminder that the dependencies do need to be up-to-date when a programis
compiled.

Next, thereis anew rule that specifies how the dependencies should be calculated. Thisisathree-linerule:

%.d: %.c
$(CC) -M $(CPPFLAGS) $< > $@
$(CC) -M $(CPPFLAGS) $< | sed s\\.o/.d/ > $@

Thefirst line specifies that, at a minimum, each dependency file depends on the corresponding C source file, and must be
regenerated if that fileis modified. The second and third lines list the specific commands used to build the dependency file. The
first command simply invokes gcc, and dumps its output directly into the dependency file. The second command again invokes
gcc, but this one changes the rule filename from .o to .d and then appends the result to the end of the file. Thisis done so that the
dependency file can be re-built even if al that was modified was a header file included a few levels down, for instance.

The next modification is to the clean target, which lists the dependencies as additional generated files to remove when reguested.

Note Oneinteresting thing to noteisthat if make clean isrun on an aready-cleaned directory, the dependency files will
be re-built and then promptly deleted:

$ make clean

gcc-Mio.c>iod

gce -M io.c | sed s\\.o/.d/ > io.d

gce -M init.c > initd

gce -M init.c | sed s\\.o/.d/ > init.d

gcc -M compute.c > compute.d

gce -M compute.c | sed s\.o/.d/ > compute.d

rm compute.o init.0 i0.0 myprogram compute.d init.d io.d *~
rm: cannot remove “compute.o’: No such file or directory
rm: cannot remove “init.0’: No such file or directory

rm: cannot remove "i0.0’: No such file or directory

rm: cannot remove “myprogram’: No such file or directory
rm: cannot remove *~': No such file or directory

make: [clean] Error 1 (ignored)

The reason for thisisthat the include directive in the Makefile depends on the.d filesimplicitly. So, after they are built, the file can
be processed normally.

After the %.d rule, thereis a modification to the explain target that simply displays an extraline of output indicating the names of
the dependency files. Then, there is a new target named depend. This target is never invoked directly from another; like clean and
explain, it must be invoked from the command line. The depend target is used to re-build the dependency files, if necessary.

Thefinal line of the fileisthe include directive. The leading dash means to suppress warnings of afile to be included doesn’t exist;

the file is generated automatically and then included anyway, so the warnings simply amount to junk on-screen. The filesto
include are those listed by the DEPS variable.

Now that you’ ve seen this Makefile, take alook at what it does with a few sample executions. Starting from a clean directory, you
can see al the stepsthat are taken in order to build the program:

$ make

gcc-M io.c>iod

gce -M io.c | sed s\\.o/.d/ > i0.d
gce -M init.c > init.d

gce -M init.c | sed \\.o/.d/ > init.d
gcc -M compute.c > compute.d

123



gcec -M compute.c | sed s\\.o/.d/ > compute.d
gce -Wall -O2 -c -0 compute.o compute.c
gce -Wall -0O2 -c -o init.o init.c

gcc-Wall -O2 -c-oio.0i0.c

gcc -0 myprogram compute.o init.o i0.0

Y ou can seethat it generated the dependency files, and then compiled the program. Here's alook at one of those dependency files:

$catiod
i0.0: io.c /usr/include/stdio.h /usr/include/features.h \
lusr/include/sys/cdefs.h /usr/include/gnu/stubs.h \
usr/lib/gec-lib/i486-linux/egcs-2.91.66/include/stddef.h \
Jusr/lib/gec-lib/i486-linux/eges-2.91.66/include/stdarg.h \
/usr/include/bits/types.h /usr/include/libio.h \
Jusrfinclude/_G_config.h /usr/include/bits/stdio_lim.h
myprogram.h
io.d: io.c /usr/include/stdio.h /usr/include/features.h \
{usrf/include/sys/cdefs.h /usr/include/gnu/stubs.h \
Jusr/lib/gec-lib/i486-linux/eges-2.91.66/include/stddef.h \
Jusr/lib/gce-1ib/i486-linux/eges-2.91.66/include/stdarg.h \
/usr/include/bits/types.h /usr/include/libio.h \
Jusr/include/_G_config.h /usr/include/bits/stdio_lim.h myprogram.h

Note Your dependency file will probably be different from mine because different distributions or compiler versions
use different header files and locations. However, in all cases, you should note an inclusion of stdio.h and
myprogram.h.

Y ou can see the two entries generated by the two separate invocations of gcc. The first declares the dependencies of the object file;
the second, the same dependencies, but applied to the dependency file itself. Notice that both of them list much more than simply
myprogram.h! Also, they arelist all of the system header files that are included by the program—or by other system header files
that the program includes.

Tip You can suppress theinclusion of these system header files by using -MM instead of -M in the gcc invocation.
Now, confirm that nothing is recompiled when nothing needs to be. The make program should report that there is nothing to do:

$ make
make: Nothing to be done for “all’.

Try modifying a file and see what happens now. In this example, touch will be used again:

$ touch compute.c
$ make

gcc -M compute.c > compute.d

gce -M compute.c | sed s\\.o/.d/ > compute.d
gce -Wall -O2 -c -0 compute.o compute.c
gcc -0 myprogram compute.o init.o i0.0

Thistime, the system regenerated the dependency file for compute.c and then recompiled the file and rebuilt the final executable.
Thisis essentially the same as had occurred before, with the exception that the dependency file is updated.

Another test would be to modify the .h file and see of two out of the three files get recompiled and their dependency files
regenerated:

$ touch myprogram.h

$ make

gcc-M io.c>iod

gce -M io.c | sed s\\.o/.d/ > i0.d
gce -M init.c > init.d

gce -M init.c | sed \\.o/.d/ > init.d
gce -Wall -0O2 -c -o init.o init.c
gcc-Wall -O2 -c-0io.0i0.c

124



gcc -0 myprogram compute.o init.o 0.0

The dependency files are updated, the source is recompiled, and the program is re-linked—everything worked perfectly.

This sort of capability in the Makefile may seem like overkill for a project this small. However, when your projects start to contain
dozens, hundreds, or even thousands of modules, maintaining a M akefile can become a big chore. Knowing these techniques
enables you to re-use the Makefile in many other situations.

At this point, the Makefile already automatically:
* Detects the names of all the C sourcefilesin the project.
« Determines the names of all the appropriate object files, given the names of those C source files.
» Determines the names of the dependency files, given the names of those source files.
» Determines the dependencies for each source file and stores them in afile for re-use automatically.

* Regenerates these dependencies automatically when necessary.

That's quite a bit of automation! Y et, e more can be done. Notice how the preceding rules apply to C source files only. Of course,
the Makefile could be modified trivially so the rules apply to C++ source files only, or with a bit more effort, to Pascal source files
only. Athough these modifications are not difficult, think about another alternative for a moment: wouldn’t it be great if the system
could take the appropriate action automatically based on the particular language in use?

Of course! Now the question is, how can this be done? Severa rules rely on files with names ending in .c. Y ou can no longer rely
on that sort of rule for other languages.

I’ [l approach the answer in steps so you can see how the changes progress from one system to another. The first step that can be
taken isto use one of make's built-in implicit rules for compilation. Although we haven't used it thus far, GNU make comes with a
number of rules that can be applied for compilation purposes. It knows how to compile programs written in C, C++, Pascal, Ada,
and many other languages. Instead of manually defining rules for each of these, you simply can use the built-in ones. The info

documentation for make describes each of these built-in rules. As an example, the built-in rule for compiling C programsis
defined as:

$(CC) -c $(CPPFLAGS) $(CFLAGS)

Now you can see one of the other benefits of arranging variables asthey are in the example Makefile: they fit nicely with the
implicit rules. So, what you actually can do is delete from the Makefile the rule for compiling the C program. A few variables are
added or modified at the top of the Makefile as well. There is a more specific section for C++ compilation, and there is a separate
LINKCC defined. Thisis the name of the compiler you should use for the final link step; it may be g++ if your program is
predominantly C++-based or gcc if it's mostly C-based. It’sinitially set to equal the C compiler.

Listing 7-2 shows what the M akefile looks like now.
Note Listing 7-2 isavailable online.
Listing 7-2: M odified M akefile
# Lines starting with the pound sign are comments.
## Thisis one of two options you might need to tweak.

EXECUTABLE = myprogram

# Y ou can modify the below as well, but probably
# won't need to.
#

# CC isfor the name of the C compiler. CPPFLAGS denotes pre-processor
# flags, such as -1 options. CFLAGS denotes flags for the C compiler.
# CXXFLAGS denotes flags for the C++ compiler. Y ou may add additional

125



# settings here, such as PFLAGS, if you are using other languages such
# as Pascal.

CPPFLAGS =
LINKCC = $(CC)

CC=gcc
CFLAGS =-wall -02

CXX =g++
CXXFLAGS = $(CFLAGYS)

SRCS := $(wildcard *.c)
OBJS := $(patsubst %.c,%.0,3(SRCS))
DEPS := $(patsubst %.c,%.d,$(SRCS))

#"all” isthe default target. Simply make it point to myprogram.
al: $(EXECUTABLE)

# Define the components of the program, and how to link them together.
# These components are defined as dependencies, that is, they must be
# made up-to-date before the code is linked.

$(EXECUTABLE): $(DEPS) $(OBJS)
$(LINKCC) -0 $(EXECUTABLE) $(OBJS)

# Specify that the dependency files depend on the C source files.

%.d: %.c
$(CC) -M $(CPPFLAGS) $< > $@
$(CC) -M $(CPPFLAGS) $< | sed s\\.o/.d/ > $@

# Specify that al .o files depend on .c files, and indicate how
#the .c files are converted (compiled) to the .o files.

clean:
-rm $(0OBJS) $(EXECUTABLE) $(DEPS) *~

explain:
@echo “The following information represents your program:”
@echo “Final executable name: $(EXECUTABLE)”
@echo “Source files:  $(SRCS)”
@echo “Object files:  $(0OBJS)”
@echo “Dependency files. $(DEPS)”

depend: $(DEPS)
@echo “Dependencies are now up-to-date.”

-include $(DEPS)

Notice the absence of any rule explicitly stating how the C code is compiled. Thus far, the Makefile is capable of compiling C++
files but is not capable of identifying them yet because of the wildcard in use.

The wildcard needs a bit more work before it can be used with these different languages. For your information, on Linux, C source
filesend with .c, and C++ files can end with either .cc or .C. This complicates life a bit, but not terribly.

The first thing you should do is re-work the wildcards. Thisis what they look like now:

SRCS := $(wildcard *.c) $(wildcard *.cc) $(wildcard *.C)
OBJS := $(patsubst %.c,%.0,$(wildcard *.c)) \

126



$(patsubst %.cc,%.0,$(wildcard *.cc)) \
$(patsubst %.C,%.0,$(wildcard *.C))
DEPS := $(patsubst %.0,%.d,$(0OBJS))

Asyou can see, the source listing is simply the collection of files with all the different extensions. The object listing has to be more

picky, because it has to convert each file type individually. The dependency then is rewritten in terms of the object list, so it

doesn’t have to do the same thing.

Now, you need anew dependency rule for the files with each new extension that specifies how to generate the dependency file.

Anexampleis:

%.d: %.C
$(CXX) -M $(CPPFLAGS) $< > $@
$(CXX) -M $(CPPFLAGS) $< | sed s\.ol.d/ > $@

The same will need to occur for .cc files. now your Makefile is language-neutral, and it has support for both C and C++ files. With

afew more additions, you could add many other languages as well. Listing 7-3 shows the finished Makefile.

Note Y ou can find the finished Makefile shown in Listing 7-3 online.
Listing 7-3: Finished multi-language M akefile

# Lines starting with the pound sign are comments.
#

# These are the two options that may need tweaking

EXECUTABLE = myprogram
LINKCC = $(CC)

# Y ou can modify the below as well, but probably
# won't need to.
#

# CC isfor the name of the C compiler. CPPFL AGS denotes pre-processor
# flags, such as -1 options. CFLAGS denotes flags for the C compiler.
# CXXFLAGS denotes flags for the C++ compiler. Y ou may add additional
# settings here, such as PFLAGS, if you are using other languages such

# as Pascal.

CPPFLAGS =
LDFLAGS =

CC=gcc
CFLAGS =-Wadl -02

CXX =g++
CXXFLAGS = $(CFLAGYS)

SRCS := $(wildcard *.c) $(wildcard *.cc) $(wildcard *.C)
OBJS := $(patsubst %.c,%.0,$(wildcard *.c)) \

$(patsubst %.cc,%.0,$(wildcard *.cc)) \

$(patsubst %.C,%.0,$(wildcard *.C))
DEPS := $(patsubst %.0,%.d,$(0BJS))

#“all” isthe default target. Simply make it point to myprogram.
al: $(EXECUTABLE)

# Define the components of the program, and how to link them together.
# These components are defined as dependencies; that is, they must be

127



# made up-to-date before the code is linked.

$(EXECUTABLE): $(DEPS) $(OBJS)
$(LINKCC) $(LDFLAGS) -0 $(EXECUTABLE) $(OBJS)

# Specify that the dependency files depend on the C source files.

%.d: %.c
$(CC) -M $(CPPFLAGS) $< > $@
$(CC) -M $(CPPFLAGS) $< | sed s\\.o/.d/ > $@

%.d: %.cc
$(CXX) -M $(CPPFLAGS) $< > $@
H(CXX) -M $(CPPFLAGS) $< | sed s\\.o/.d/ > $@

%.d: %.C
$(CXX) -M $(CPPFLAGS) $< > $@
$(CXX) -M $(CPPFLAGS) $< | sed s\\.o/.d/ > $@

# Specify that all .o files depend on .c files, and indicate how
# the .c files are converted (compiled) to the .o files.

clean:
-rm $(OBJS) $(EXECUTABLE) $(DEPS) *~

explain:
@echo “The following information represents your program:”
@echo “Final executable name: $(EXECUTABLE)”
@echo “Sourcefiles:  $(SRCS)”
@echo “Object files:  $(OBJS)”
@echo “Dependency files: $(DEPS)”

depend: $(DEPS)
@echo “Dependencies are now up-to-date.”

-include $(DEPS)

To see how your Makefile works, you can create a zero-byte C++ module. Thiswill have no effect on the program but will go
through the motions of compilation and linking. Y ou can use the touch command to create thisfile, as shown in the following

example.

$touch foo.cc
$ make clean
rm compute.o init.o i0.0 foo.o myprogram compute.d init.d io.d foo.d *~
rm: cannot remove “compute.o’: No such file or directory
rm: cannot remove ‘init.0’: No such file or directory
rm: cannot remove "i0.0’: No such file or directory
rm: cannot remove f00.0": No such file or directory
rm: cannot remove “myprogram’: No such file or directory
rm; cannot remove *~': No such file or directory
make: [clean] Error 1 (ignored)

Depending on whether or not your system is already in the clean state, you may or may not get the same output from make clean.
However, from this point on, you should get output much the same as is shown here:

$ make explain

g++ -M foo.cc > foo.d

g++ -M foo.cc | sed s\\.o/.d/ > foo.d
gcc-M io.c>iod

gce -M io.c | sed s\\.o/.d/ > i0.d

gce -M init.c > init.d

gce -M init.c | sed s\\.o/.d/ > init.d

128



gcc -M compute.c > compute.d

gcc -M compute.c | sed s\\.o/.d/ > compute.d

The following information represents your program:
Final executable name: myprogram

Sourcefiles:  compute.cinit.cio.c foo.cc

Object files:  compute.o init.o0 i0.0 f00.0
Dependency files: compute.d init.d io.d foo.d

Notice how a different compiler was used to get the dependency information from the C++ module as was used for the C module.
On the other hand, it properly identified object and dependency files with the single standard name, which is good.Now try
building your project and seeiif it worked. The build should look like the following example:

$ make

gce -Wall -0O2 -c compute.c -0 compute.o
gce -Wall -02 -cinit.c-oinit.o

gcc-Wall -O2 -cio.c-0i0.0

g++ -Wall -O2 -cfoo.cc -o foo.o

gcc -0 myprogram compute.o init.o i0.0 f00.0

Everything was executed according to the plan. The C++ program was compiled with the separate compiler (according to a built-in
rule), and the C program was compiled with the normal C compiler, again according to a built-in rule.
Building Other Files

Besides programs built from code from C or C++, you can build files from other types of data. For instance, you could build a
PostScript file containing the result of processing aLaTeX document. Or, you could build a manpage from the appropriate source

code. Some people use make and a pattern language such as m4 to build websites. The make program is versatile enough to handle
all of these tasks quite well.

Consider a situation in which you might want to build a website with HTML files that were pre-processed. This pre-processor
could be m4, some sort of specialized Web language, or even the C pre-processor.

Asasimple example of what can be done with this sort of system, you might have three files. This system builds upon the
example in the previous section. One could be a standard inclusion item for your HTML—maybe a header or some macros. The
first file contains some quick macros that can be used with all the pages; name it stdinc.hmac:

<IDOCTYPE HTLM PUBLIC “-//W3C//DTD HTML 4.0 Transitional//EN"
“http://www.w3.0rg/TR/REC-html 40/l cose.dtd” >

#define_STDHEAD(a) <HEAD><TITLE>a</TITLE></HEAD>
#define_BODYHEAD <H1>myprogram sample information</H1>\
<p>\
Thisis some sample text for your program. \
This text appears on each generated HTML page that uses\
the bodyhead macro. \
<P>
The second file is the first one to generate some HTML, pagel.mac:
#include “ stdinc.hmac”
<HTML>
_STDHEAD(Sample Document Page 1)
<BODY>
_BODYHEAD
Thisisthefirst page.
/* Thistext will never appear in the final document. */

</BODY>

129



</HTML>

And now, athird file to generate HTML,:
#include “ stdinc.hmac”

<HTML>

_STDHEAD(Sample Document Page 2)
<BODY BGCOL OR=#5555FF>
_BODYHEAD

Thisisthe second page.

/* Thistext will never appear in the final document. */

</BODY>

</HTML>

To generate these files, some simple calls to cpp are needed. Y ou can modify the Makefile from above so that it knows how to
build all of these files—and even figures out dependencies.

Listing 7-4 shows an updated version of the same intelligent Makefile that was used in Listing 7-3. Thistime, the Makefile knows
how to generate HTML code from the .mac files.

Note Listing 7-4 is available online.
Listing 7-4: Updated M akefile that generatesHTM L

# Lines starting with the pound sign are comments.
#
# These are the options that may need tweaking

EXECUTABLE = myprogram
LINKCC = $(CC)

OTHERS = pagel.html page2.html
OTHERDEPS = pagel.d page2.d

# Y ou can modify the below as well, but probably
# won't need to.
#

# CCisfor the name of the C compiler. CPPFLAGS denotes pre-processor
# flags, such as -1 options. CFLAGS denotes flags for the C compiler.
# CXXFLAGS denotes flags for the C++ compiler. Y ou may add additional
# settings here, such as PFLAGS, if you are using other languages such

# as Pascal.

CPPFLAGS=

LDFLAGS =

CC=gcc
CFLAGS =-Wwadl -02

CXX =g++
CXXFLAGS = $(CFLAGYS)

130



SRCS := $(wildcard *.c) $(wildcard *.cc) $(wildcard *.C)
OBJS := $(patsubst %.c,%.0,$(wildcard *.c)) \

$(patsubst %.cc,%.0,$(wildcard *.cc)) \

$(patsubst %.C,%.0,$(wildcard *.C))
DEPS := $(patsubst %.0,%.d,$(OBJS)) $(OTHERDEPS)

#"all” isthe default target. Simply make it point to myprogram.
al: $(EXECUTABLE) $(OTHERS)

# Define the components of the program, and how to link them together.
# These components are defined as dependencies, that is, they must be
# made up-to-date before the code is linked.

$(EXECUTABLE): $(DEPS) $(OBJS)
$(LINKCC) $(LDFLAGS) -0 $(EXECUTABLE) $(OBJS)

# Specify that the dependency files depend on the C source files.

%.d: %.c
$(CC) -M $(CPPFLAGS) $< > $@
$(CC) -M $(CPPFLAGS) $< | sed s\\.o/.d/ > $@

%.d: %.cc
P$(CXX) -M $(CPPFLAGS) $< > $@
H(CXX) -M $(CPPFLAGS) $< | sed s\\.o/.d/ > $@

%.d: %.C
$(CXX) -M $(CPPFLAGS) $< > $@
$(CXX) -M $(CPPFLAGS) $< | sed s\\.o/.d/ > $@

%.d: %.mac
cpp -M $< | sed s\\.mac\\.o/.html/ > $@
cpp -M $< | sed s\\.mac\\.o/.d/ > $@

%.html: %.mac
cpp-P< $< > $@

clean:
-rm $(OBJS) $(EXECUTABLE) $(DEPS) $(OTHERS) *~

explain:
@echo “The following information represents your program:”
@echo “Final executable name: $(EXECUTABLE)”
@echo “Other generated files: $(OTHERS)”
@echo “Sourcefiles:  $(SRCS)”
@echo “Object files:.  $(OBJS)”
@echo “Dependency files. $(DEPS)”

depend: $(DEPS)
@echo “Dependencies are now up-to-date.”

-include $(DEPS)

Now I'll review the specific additions to the Makefile that generates these files. First, there are two new variables at the top:
OTHERS and OTHERDEPS. The OTHERS variable is used to specify additional filesthat will be generated. The OTHERDEPS
variable is used to specify additional dependency files. The reason for thisis that there is not a generic rule to determine names of
the dependency files given other files with arbitrary names and extensions. Furthermore, many types of files will not even have the
capability of generating these dependencies automatically, or generating dependencies may not even make sense with some types

of files.

131



Then, afew lines down, the DEPS variable is updated to include the OTHERDEPS in the list of dependency files. Below that, the
all target is also updated to indicate that the additional files need to be compiled.

After that, nothing changes until the following lines:

%.d: %.mac
cpp -M $< | sed s\\.mac\\.o/.html/ > $@
cpp -M $< | sed S\\.mac\\.o/.d/ > $@

Here, adependency file is generated. We can use the same technique as for C and C++ programs neatly, but there is one twist.
Because the cpp -M option assumes that the output is named .0, and it is named .html in this case, sed must be used to correct it.
Now, you get results like this:

pagel.html: pagel.mac stdinc.hmac
pagel.d: pagel.mac stdinc.hmac

The final modifications include the rule for generating the HTML code, and additional listings of variables in clean and explain.
When you run make on a clean directory now, you get the following messages:

$ make

cpp -M page2.mac | sed s'\\.mac\\.o/.html/ > page2.d
cpp -M page2.mac | sed §\\.mac\\.o/.d/ > page2.d
cpp -M pagel.mac | sed s\\.mac\\.o/.html/ > pagel.d
cpp -M pagel.mac | sed s\\.mac\\.o/.d/ > pagel.d
g++ -M foo.cc > foo.d

g++ -M foo.cc | sed s\\.o/.d/ > foo.d
gcc-Mio.c>iod

gce -M io.c | sed s\\.o/.d/ > io.d

gcc -M init.c > initd

gce -M init.c | sed s\\.o/.d/ > init.d

gcc -M compute.c > compute.d

gcec -M compute.c | sed s\\.o/.d/ > compute.d

gce -Wall -0O2 -c compute.c -0 compute.o

gce -Wall -02 -cinit.c-oinit.o

gce -Wall -02 -cio.c-0i0.0

g++ -Wall -O2 -cfoo.cc -o foo.o

gcc -0 myprogram compute.o init.o i0.0 f00.0

cpp -P < pagel.mac > pagel.html

cpp -P < page2.mac > page2.html

Now you can take a look at the generated HTML code. Notice how some elements of the code occur in both output files but are
defined once only—in stdinc.hmac. Imagine the possibilities for alarge website: the entire look and feel of the site could be
modified by making a change to a single macro file and re-running make! Here is the result from processing these two HTML
files:

$ cat pagel.html

<IDOCTYPE HTLM PUBLIC“-//W3C//DTD HTML 4.0 Transitional//EN"
“http://www.w3.org/TR/REC-html 40/l cose.dtd” >

<HTML>
<HEAD><TITLE> Sample Document Page 1 </TITLE></HEAD>

<BODY>

<H1>myprogram sample information</H1> <P> This is some sample text for your program. This text appears on each generated
HTML page that uses the bodyhead macro. <P>

132



Thisisthe first page.

</BODY>

</HTML>
$ cat page2.html

<IDOCTYPE HTLM PUBLIC “-//W3C//DTD HTML 4.0 Transitional//EN"
“http://www.w3.0rg/TR/REC-html 40/l cose.dtd” >

<HTML>
<HEAD><TITLE> Sample Document Page 2 </TITLE></HEAD>

<BODY BGCOL OR=#5555FF>

<H1>myprogram sample information</H1> <P> This is some sample text for your program. This text appears on each generated
HTML page that uses the bodyhead macro. <P>

Thisisthe second page.

</BODY>

</HTML>

Notice several things about this output. First, there are several blank linesin the output at alocation where there were no blank lines
in the input. The stdinc.hmac file causes this. Everything from that file (such as the doctype tag at the start) is passed through
literally, except the special declarations like macros. Thus, even blank linesin that file are passed through literaly. For HTML files,
thisis not a problem; you can see that the page displays fine in any HTML browser. Notice, too, that the macro callsin the source
files that were expanded; the title, for instance, was a parameter to a macro call.

Using Recur sive make

When you are dealing with large projects, you may elect to separate the source into subdirectories based on the particular
subsystems that are contained in those parts of the code. When you do this, you can have one large Makefile for the entire project.
Alternatively, you may find it more useful to have a separate Makefile for each subsystem. This can make the build system more
maintai nable because the top-level Makefile does not have to contain the details for the entire program; these can be present solely
in each individual directory.

To assist with this sort of configuration, GNU make has severa features to help. One isthe MAKE variable, which can be used to
invoke a recursive make, and pass along several relevant command-line options. Y ou can use the -C option to tell make to enter a
specific directory, where it will then process that directory’ s Makefile.

A recursive make descends into each subdirectory in your project building files. Each subdirectory may, in turn, have additional
subdirectories that the build process needs to examine. By designing a recursive make, you end up traversing the entire tree of your
project to build al the necessary files.

One way to do that is with this type of syntax:

targetname:
$(MAKE) -C directoryname

Note that targetname and directoryname must be different for thisto work. Another option, especially useful if you have large

133



numbers of subdirectories, isto use aloop to enter each of them. This approach will be demonstrated in the examplein Listing 7-5.

Another important capability isthe communication of variable settings between the master make and the others that it invokes.
There are two main waysto do this. Thefirst isto have afile that isincluded by all of the Makefiles. Another, usually superior,
way isto export variables from the top-level make to its child processes.

Thisis done with the same syntax that Bash uses to export variables to its sub-processes—the export keyword. Y ou will want to
export options such as the ones that C compiler used, the options passed to it, and the so on. Which files should be compiled will
vary between the different directories and thus should not be passed along.

Note that you can actually combine approaches. For instance, you might want to use include files to define make rules, and
variable exports to pass along variable contents, using each for its particular strong points.

Another question for you to consider is how to combine the items produced in the subdirectories into the main project. Depending

on your specific needs, the subsystems could be completely separate executables, generating libraries, or ssimply part of your main

executable. One popular option is to have a specific directory for the object files—a directory into which all object files are placed.
A more modular option isto create alibrary; you'll learn about that option in Chapter 9, “Libraries and Linking.”

Listing 7-5 shows a version of the intelligent Makefile devel oped before that will act as atop-level Makefile for a project
containing two additional subsystems, input and format.

Note Listing 7-5isavailable online.
Listing 7-5: Top-level recursive M akefile

# Lines starting with the pound sign are comments.
#
# These are the options that may need tweaking

EXECUTABLE = myprogram

LINKCC = $(CC)

OTHEROBJS = input/test.o format/formattest.o
OTHERS = pagel.html page2.html
OTHERDEPS = pagel.d page2.d

DIRS = input format

# Y ou can modify the below as well, but probably
# won't need to.
#

# CC isfor the name of the C compiler. CPPFL AGS denotes pre-processor
#flags, such as -1 options. CFLAGS denotes flags for the C compiler.
# CXXFLAGS denotes flags for the C++ compiler. Y ou may add additional
# settings here, such as PFLAGS, if you are using other languages such

# as Pascal.

export CPPFLAGS =
export LDFLAGS =

export CC = gcc
export CFLAGS = -Wall -O2

export CXX = g++
export CXXFLAGS = $(CFLAGYS)

SRCS := $(wildcard *.c) $(wildcard *.cc) $(wildcard *.C)
OBJS := $(patsubst %.c,%.0,$(wildcard *.c)) \

$(patsubst %.cc,%.0,$(wildcard *.cc)) \

$(patsubst %.C,%.0,$(wildcard *.C))
DEPS := $(patsubst %.0,%.d,$(0BJS)) $(OTHERDEPS)

134



#“all” isthe default target. Simply make it point to myprogram.
al: $(EXECUTABLE) $(OTHERS)

subdirs:
@for dir in $(DIRS); do $(MAKE) -C $$dir; done

# Define the components of the program, and how to link them together.
# These components are defined as dependencies; that is, they must be
# made up-to-date before the code is linked.

$(EXECUTABLE): subdirs $(DEPS) $(OBJS)
$(LINKCC) $(LDFLAGS) -0 $(EXECUTABLE) $(OBJS) $(OTHEROBJS)

# Specify that the dependency files depend on the C source files.

%.d: %.c
$(CC) -M $(CPPFLAGS) $< > $@
$(CC) -M $(CPPFLAGS) $< | sed s\\.o/.d/ > $@

%.d: %.cc

H(CXX) -M $(CPPFLAGS) $< > $@

H(CXX) -M $(CPPFLAGS) $< | sed s\\.o/.d/ > $@
%.d: %.C

$(CXX) -M $(CPPFLAGS) $< > $@

H(CXX) -M $(CPPFLAGS) $< | sed s\\.o/.d/ > $@

%.d: %.mac
cpp -M $< | sed s\\.mac\\.o/.html/ > $@
cpp -M $< | sed S\\.mac\\.o/.d/ > $@

%.html: %.mac
cpp-P< $< > $@

clean:
-rm $(OBJS) J(EXECUTABLE) $(DEPS) $(OTHERS) *~
@for dir in $(DIRS); do $(MAKE) -C $$dir clean; done

explain:
@echo “The following information represents your program:”
@echo “Final executable name: $(EXECUTABLE)”
@echo “Other generated files; $(OTHERS)"
@echo “Sourcefiles:  $(SRCS)”
@echo “Object files:  $(OBJIS)”
@echo “Dependency files. $(DEPS)”
@echo “Subdirectories:  $(DIRS)”

depend: $(DEPS)
@for dir in $(DIRS); do $(MAKE) -C $&dir ; done
@echo “Dependencies are now up-to-date.”

-include $(DEPS)

Several changes are made to this file from the previous version. First, note the addition of the OTHEROBJS variable; here, the
additional generated object files are listed. Then, note how many of the variables are exported. These variables are not defined in
the Makefiles in the subdirectories since their val ue gets passed along from this Makefile. Then, there is a new subdirstarget. This
target uses afor loop to ensure that the Makefile in each directory gets processed. The leading at sign (@) suppresses the normal
output of this command, which can be a bit confusing if you are watching the output of make as it proceeds.

Next, notice that the executabl e includes an additional dependency on the subdirs target. The remaining changes occur within the
clean, explain, and depend targets, each of which is updated to list information about or process the subdirectories.



The Makefile for one of the subdirectories can look like the one shown in Listing 7-6. In this particular example, the fileis used
for both subdirectories because it detects what needs to be processed automatically.

Note Listing 7-6 is available online.
Listing 7-6: Lower-level M akefile

#
# These are the options that may need tweaking

OTHERS =
OTHERDEPS =
DIRS =

# Y ou can modify the below as well, but probably
# won't need to.
#

# CC isfor the name of the C compiler. CPPFL AGS denotes pre-processor
#flags, such as -1 options. CFLAGS denotes flags for the C compiler.
# CXXFLAGS denotes flags for the C++ compiler. Y ou may add additional
# settings here, such as PFLAGS, if you are using other languages such

# as Pascal.

SRCS := $(wildcard *.c) $(wildcard *.cc) $(wildcard *.C)
OBJS := $(patsubst %.c,%.0,$(wildcard *.c)) \

$(patsubst %.cc,%.0,$(wildcard *.cc)) \

$(patsubst %.C,%.0,$(wildcard *.C))
DEPS := $(patsubst %.0,%.d,$(OBJS)) $(OTHERDEPS)

#"all” isthe default target. Simply make it point to myprogram.
al: $(OBJIS) $(OTHERS) $(DIRS)

#$(DIRS):
# $(MAKE) -C $<

# Define the components of the program, and how to link them together.
# These components are defined as dependencies; that is, they must be
# made up-to-date before the code is linked.

# Specify that the dependency files depend on the C source files.

%.d: %.c

$(CC) -M $(CPPFLAGS) $< > $@

$(CC) -M $(CPPFLAGS) $< | sed s\\.o/.d/ > $@
%.d: %.cc

$(CXX) -M $(CPPFLAGS) $< > $@

H(CXX) -M $(CPPFLAGS) $< | sed s\\.o/.d/ > $@

%.d: %.C
$(CXX) -M $(CPPFLAGS) $< > $@
$(CXX) -M $(CPPFLAGS) $< | sed s\\.o/.d/ > $@

%.d: %.mac
cpp -M $< | sed s\\.mac\\.o/.html/ > $@
cpp -M $< | sed \\.mac\\.o/.d/ > $@

%.html: %.mac
cpp-P< $<>$@

136



clean:
-rm $(OBJS) $(EXECUTABLE) $(DEPS) $(OTHERS) *~

explain:
@echo “The following information represents your program:”
@echo “Other generated files; $(OTHERS)”
@echo “Sourcefiles:  $(SRCS)”
@echo “Object files:  $(OBJS)”
@echo “Dependency files. $(DEPS)”

depend: $(DEPS)
-include $(DEPS)

Note that this file is somewhat smaller than the top-level file. Thisfile does not need to define compiler information, because that
information is passed down by the top-level file. Also, thisfile generates no executable; it simply generates some object files that
get linked in by the top-level file.

The example files above use two new files for testing, input/test.cc and format/formattest.c. Y ou can create them by using mkdir
and touch, like so:

$ mkdir input format
$touch input/test.cc
$ touch for mat/for mattest.c

When you run make on thisfile, you get the following output:

$ make
cpp -M page2.mac | sed s\\.mac\\.o/.html/ > page2.d
cpp -M page2.mac | sed s\\.mac\\.o/.d/ > page2.d
cpp -M pagel.mac | sed s\\.mac\\.o/.html/ > pagel.d
cpp -M pagel.mac | sed s\\.mac\\.o/.d/ > pagel.d
g++ -M foo.cc > foo.d
g++ -M foo.cc | sed s\\.o/.d/ > foo.d
gcc-Mio.c>iod
gce -M io.c | sed s\\.o/.d/ > i0.d
gce -M init.c > init.d
gce -M init.c | sed s\\.o/.d/ > init.d
gcc -M compute.c > compute.d
gcc -M compute.c | sed s\.o/.d/ > compute.d
make] 1]: Entering directory “/home/username/t/my/input’
g++ -M test.cc > test.d
g++ -M test.cc | sed S\\.o/.d/ > test.d
make[1]: Leaving directory “/home/username/t/my/input’
make[1]: Entering directory “/home/username/t/my/input’
g++ -Wall -O2 -ctest.cc-otest.o
make[1]: Leaving directory “/home/username/t/my/input’
make[1]: Entering directory “/home/username/t/my/format’
gce -M formattest.c > formattest.d
gce -M formattest.c | sed s\\.o/.d/ > formattest.d
make[1]: Leaving directory “/home/username/t/my/format’
make[1]: Entering directory “/home/username/t/my/format’
gce -Wall -02 -c formattest.c -o formattest.o
make[1]: Leaving directory “/home/username/t/my/format’
gce -Wall -0O2 -c compute.c -0 compute.o
gce -Wall -02 -cinit.c-oinit.o
gce -Wall -02 -cio.c-0i0.0
g++ -Wall -O2 -cfoo.cc -o foo.o
gce -0 myprogram compute.o init.o i0.0 foo.0 input/test.o format/formattest.o
cpp -P < pagel.mac > pagel.html
cpp -P < page2.mac > page2.html

137



In this example, make descends into the subdirectories, executes commands there, and then returns to the top level. In fact, this
method of using recursion can be used to descend more than one level into subdirectories. Many large projects, such as the Linux

kernel, use this method for building.

Y ou also may notice that additional commands descend into the subdirectories as well. The clean target is one such example:

$ make clean
rm compute.o init.o i0.0 foo.0 myprogram compute.d init.d io.d foo.d pagel.d page2.d pagel.html page2.html *~

rm: cannot remove *~': No such file or directory
make: [clean] Error 1 (ignored)
make[1]: Entering directory “/home/username/t/my/input’

rmtest.o test.d *~

rm: cannot remove *~': No such file or directory

make[1]: [clean] Error 1 (ignored)

make[1]: Leaving directory “/home/username/t/my/input’
make[1]: Entering directory “/home/username/t/my/format’

rm formattest.o formattest.d *~

rm: cannot remove *~': No such file or directory

make[1]: [clean] Error 1 (ignored)

make[1]: Leaving directory “/home/username/t/my/format’
Summary

In this chapter, you learned about automating the build process for your projects by using make. Specificaly, the following points
were covered:

¢ Building complex projects manually could be time-consuming and error-prone. The make program presents away to
automate the build process.

» A Makefile contains the rules describing how a processis to be built.

» Eachrule describes three things: the file to be built, the files it requires before it can be built, and the commands necessary to
build it.

» Variables can be used in Makefiles to reduce the need for re-typing of information.
» Variables can be either evaluated immediately, or on-the-fly whenever they are used.

» Makefiles can be made more reusable by automatically determining things about their environment and the projects they are
building. Wildcards are one way to do this.

« Manually coding dependencies can be a difficult and time-consuming chore. Y ou can automate this process as well by taking
advantage of some features of the pre-processor and some unique syntax in your Makefile.

e Makeisnot limited to dealing only with C or other programming languages. It can also build various other types of files, such
asHTML.

Chapter 8: Memory M anagement

Overview

Managing memory is afundamental concern to people programming in C. Because C operates on such alow level, you manage
memory allocation and removal yourself; that is, the language does not implicitly do this for you. Thislevel of control can mean a
performance benefit for your applications. On the other hand, the number of options for managing memory can be daunting, and

some algorithms can be complex.

In this chapter, you will see how memory is allocated and managed in C programs under Linux. 1’1l also look at atopic that is of
tremendous importance today—security. You'll see how easy it isto write programs with gaping security holes—and you’ Il how
to write your own programs so that you can avoid these sorts of holes.

You'll aso learn how some basic data structures, such as arrays and linked lists, can be applied in Linux programs.

138



Dynamic versus Static M emory

When you are writing programs in C, there are two ways that you can ask for memory to use for your purposes. Thefirst is static
memory—memory that the system allocates for you implicitly. The second is dynamic memory—memory that you can allocate on
reguest. Let’s take a detailed look at each type of memory.

Statically allocated memory

Thisform of memory is allocated for you by the compiler. Although technically, the compiler may actually allocate and de-
allocate memory behind the scenes when variables go in and out of scope, this detail is hidden from you.

The key to thistype of memory isthat it is always there whenever you arein the relevant area. For instance, an int declared at the
top of main() is always there when you are in main().

Because this memory is always present, static allocation is the only way that you can use variables without manipulating pointers
yourself. But the benefit goes deeper than alleviating worries about dereferencing pointers. When dealing with dynamic memory,
you have to be extremely careful about how it is used. Because dynamic memory is, essentially, a big chunk of typeless RAM (the

functions even return a pointer to void), you can access it easily as an integer and then a float—which is not the desired result;
safeguards against accidentally doing this are looser.

More important, when you use dynamic memory, you must remember to manually free the memory when you are finished with it.
By contrast, you don’'t have to worry about any of these details when you use memory that is allocated statically.

However, there are some significant drawbacks to using static memory as well. First, a statically allocated item created inside a

function is not valid after the function exits, which is a big problem for functions that must return pointers to data such as strings.
The following code will not necessarily produce the desired resullt:

char *addstr(char *inputstring) {
int counter;
char returnstring[80];

strepy(returnstring, inputstring);
for (counter = 0; counter < strlen(returnstring); counter++) {
returnstring[counter] += 2;

}

return returnstring;

}

The problem here is that you return a pointer when you return the returnstring item. However, because the memory that holds
returnstring becomes deallocated after the return of the function, the results can be unpredictable and can even cause a crash. You
can observe this behavior by putting the preceding code fragment into a complete program, as shown in this example:

#include <stdio.h>
#include <string.h>

char *addstr(char *inputstring);

int main(void) {
char *strl, *str2;

strl = addstr(“Hello");
str2 = addstr(“ Goodbye”);

printf(“strl = %s, str2 = %s\n”, strl, str2);
return O,
}
char *addstr(char *inputstring) {
int counter;
char returnstring[80];

strepy(returnstring, inputstring);

139



for (counter = 0; counter < strlen(returnstring); counter++) {
returnstring[counter] += 2;

}

return returnstring;

}

If you compile and run this program, you won't get the output that you might expect. In fact, some gcc versions warn you that an
error will result if you return a pointer to memory that goes out of scope:

$gcec-Wall -0 ch8-1ch8-1.c
ch8-1.c: In function “addstr’:
ch8-1.¢:25: warning: function returns address of local variable
$ ./ch8-1
strl =, str2=

The preceding example demonstrates one reason to use a dynamically allocated string instead of a statically allocated one: you can
return a pointer to such a string because it is not deallocated until you explicitly request it to be.

There is yet another problem in the function. Y ou absolutely must give the returned string asize in the declaration. Here, it is

defined to have 80 characters. This may be enough to process a single word but it won't be enough to process 10,000 characters;
attempting to do so would cause the program to crash.

Y our solution may be to declare returnstring to be 10,001 characters. There are two problems with this approach, however: First, if
astring comes along that’s 10,100 characters, your program will still crash. Second, it's wasteful to allocate 10,000 characters of
space when you' re processing 20-character words. To solve these issues, you need dynamically allocated memory.

Dynamically allocated memory

When you use dynamically allocated memory, you control all aspects of its allocation and removal. This means that you allocate

the memory when you want it, in the size you want. Similarly, you remove it when you' re done with it. This may sound great at
first, and it isfor many reasons, but it’s more complex than that.

Properly managing dynamic memory can be a big challenge when you run large programs. Remembering to free memory when
you are done with it can be difficult. If you fail to free memory when you are done with it, your program will silently eat more

memory until it cannot either alocate any more or the system crashes because of lack of memory, depending on local security
settings. Thisis obvioudy abad thing.

To alocate memory dynamically in C, you use the malloc() function, which is defined in stdlib.h. When you finish using memory,
you heed to use freg() to get rid of it. The argument to malloc() indicates how many bytes of memory you want to allocate; you

then get a pointer to that memory. If this pointer isNULL, it means there was an allocation problem and you should be prepared to
handle this situation.

Note In C++, you can (and generally should) use the new and delete operators to allocate and remove memory.

Here is the sample program. This program will take your input, add 2 to each character (thus H becomes J), and display the result.
It has been rewritten to use dynamic allocation:

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

char *addstr(char *inputstring);

int main(void) {
char *strl, *str2;

strl = addstr(“Hello");
str2 = addstr(*“ Goodbye”);

printf(“strl = %s, str2 = %s\n”, strl, str2);
free(strl);

140



free(str2);
return O;

}

char *addstr(char *inputstring) {
int counter;
char *returnstring;

returnstring = malloc(strlen(inputstring) + 1);
if ('returnstring) {

fprintf(stderr, “Error alocating memory; aborting!\n");
exit(255);
}
strepy(returnstring, inputstring);

for (counter = 0; counter < strlen(returnstring); counter++) {

returnstring[ counter] += 2;

}

return returnstring;

}

When you try to compile and run this program, you no longer get warning messages and the output is as you would expect:

$gcec-Wall -0 ch8-1ch8-1.c
$ ./ch8-1

strl = Jgnnq, str2 = Iqqfd{ g

The behavior in the function call allocates memory and then copies a string into it. Because there is such a frequent need to do this,

there is even a function specialized for it—strdup(). Y ou can simplify the program by modifying the function such that the

program reads like this:

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

char *addstr(char *inputstring);

int main(void) {
char *strl, *str2;

strl = addstr(“Hello");
str2 = addstr(“ Goodbye”);

printf(“strl = %s, str2 = %s\n”, strl, str2);
free(strl);
free(str2);
return O;
}

char *addstr(char *inputstring) {
int counter;
char *returnstring;

returnstring = strdup(inputstring);

if (‘returnstring) {
fprintf(stderr, “Error alocating memory; aborting!\n");
exit(255);
}

for (counter = 0; counter < strlen(returnstring); counter++) {
returnstring[counter] += 2;

}

141



return returnstring;

}

Now that you have aworking program, fairly ssmplein design, I’m going to complicate things a bit. Consider the following code,
which has a memory problem:

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

char *addstr(char *inputstring);

int main(void) {
char *strl, *str2;

strl = addstr(“Hello");
str2 = addstr(“ Goodbye”);

printf(“strl = %s, str2 = %s\n”, strl, str2);

strl = addstr(“Hey!”);
printf(“strl = %s\n”, strl);

free(strl);
free(str2);

return O;

}

char *addstr(char *inputstring) {
int counter;
char *returnstring;

returnstring = strdup(inputstring);

if (Ireturnstring) {
fprintf(stderr, “Error alocating memory; aborting!\n");
exit(255);
}
for (counter = O; counter < strlen(returnstring); counter++) {
returnstring[ counter] += 2;

}

return returnstring;

}

If you compile and run the program, you'll seethat it appearsto run fine. But the program has what is called a memory |eak—
there is memory allocated that is never freed. Furthermore, after the mistake is made in this program, the memory can never be
freed again. The problemisthat strl is assigned a new value—pointing to a new chunk of dynamically allocated memory—before
its previous contents are freed. This means that the pointer to the previous chunk islost. That older area of memory remains
allocated, and because the pointer to it islost, it can never be freed again. Thisis one type of bug that can easily infest larger
programs.

Fortunately, clearing it up is not terribly difficult. Y ou can do so by simply adding free(str1); before the new addstr() value is
assigned to strl. In this case, the distinction is somewhat academic, because all memory is returned to the operating system when the

program exits. However, you can see the problems that can creep up, especially for long-running programs such as servers. In fact, in

the past, some well-known servers have actually restarted themselves periodically to avoid draining system resources because of
memory leaks.
Security and Design Concer ns

Memory issues are frequently behind security problemsin C or C++ code. One key problem is the memory leak, as discussed in
the previous section. A heavily loaded server can see its resources eaten up by a program with bad memory leaks, which can result

142



in sluggish performance or even downtime. However, far more insidious problems that can affect your servers. These problems
can lead to break-ins, denial of service (DoS) attacks, compromise of some system accounts, and unauthorized modification of
data, to name afew.

As| mentioned earlier in this chapter, if more than 80 characters are copied into an area that only has space for an 80-character
string, the program will crash. Thisis generally true. However, if thisextradatais carefully crafted, it is possible for a cracker to
insert his or her code into your software. Thisis possible because string copy operations that take the program outside the string
buffer’ s boundaries actually can overwrite memory areas related to the code of your program. It takes a significant technical
knowledge of the internal workings of the system and operating system to be able to manage such an attack, but with the
proliferation of the Internet, such attackers are becoming more common.

Therefore, it isvital that you always make sure that your buffers are sufficiently sized to hold the data placed in them. Remember,
too, that even if you plan to deal with datathat is only 80 characterslong, and even if your program could not possibly have valid
input longer than that, a cracker could still send your program longer input. Therefore, you must never assume that your input will
be a reasonable length; you must always ensure either that it is or that you use dynamically allocated memory that has a sufficient
size to accommodate your input.

The importance of this cannot be overstated. Dozens of bugs in programs, accounting for hundreds or even thousands of security
compromises, are attributed to this type of programming error. Also, thisis not a problem unique to programming on Linux; it can
occur on amost any platform running almost any operating system, including popular non-UNIX PC operating systems.

Because the primary concern for these programs lies with servers, do not assume that you can ignore the problem for other types of
software. Thistype of problem can cause security breaches for setuid or setgid programs just as easily (and perhaps even more so)
asfor network server software. To summarize, any software that runs with privileges different from the person using it, and
accepts input from that person, could have a buffer overflow vulnerability. Thisincludes a lot of software—web servers, file
transfer servers, mail servers, mail readers, Usenet servers, and also many tools that are included with an operating system.

For your programs, there are two simple but extremely important options for dealing with these problems:

* You can choose to use dynamically allocated memory whenever possible, such as the modification made to the sample code
presented earlier in this chapter.

« You can perform explicit bounds checking when reading or processing data, and to reject or truncate data that is too long.

Sometimes, both methods are used. For instance, when arbitrary dataisfirst read into a program, perhaps with fgets(), it may be
read in 4K chunks. The data may then be collected and stored in a dynamically allocated area—perhaps a linked list—for later
analysis.

The first option has already been demonstrated in the previous section. Now, consider the second option, which uses buffers with a
fixed size but are designed to prevent overflows. Here isaversion of the code presented in the previous section, modified to work
in this fashion:

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

void addstr(char *inputstring);
int main(void) {

addstr(“Hello™);
addstr(“ Goodbye");

return O;

}

void addstr(char *inputstring) {
int counter;
char printstring[5];

strncpy(printstring, inputstring, sizeof(printstring));
printstring[si zeof (printstring) - 1] = 0;

143



for (counter = O; counter < strlen(printstring); counter++) {
printstring[counter] += 2;

}

printf(“Result: %s\n”, printstring);
}

In this example, a buffer with room for only five charactersis alocated. Although thisis, no doubt, smaller than you would
alocate in most real-life situations, you can easily see the effect of the code in this situation. When you compile and run the code,
it does the following:

$geec -Wall -0 ch8-2 ch8-2.c
$ ./ch8-2

Result: Jgnn

Result: 1qgf

The string is truncated by the strncpy() call in the function. The next line adds the trailing null character to mark the end of the
string. The strncpy() function does not add this null character to the string that was truncated; you must add it yourself. Otherwise
the resulting string will be essentially useless because it will not have an end that C/C++ can recognize, or it will end at an
incorrect location. The space necessary for this character cuts one character off the maximum size of the string, which is why only
four characters were displayed.

Thistype of algorithmis useful if you know that your data always should be under a certain size, but want to guard against longer
data, whether benign or malicious. As you can see, the longer items are modified; if you really expect to deal with data that size, this
algorithm is not for you; you are better off with some type of dynamic structure.

Advanced Pointers

Pointers are the keys to many types of data structuresin C. Without pointers, you cannot access dynamic memory features at all.
They enable you to build complex in-memory systems, giving a great deal of flexibility to deal with data whose quantity—or even
type—is unknown when the program is being written.

They are also keys to string manipulation and data input and output in C. A thorough understanding of pointers can help you write
better, more efficient programs. This section does not aim to teach you the basics of pointer usage in C. However, it will help you
apply your existing skills to some more advanced—and in some cases, unique Linux—topics.

Earlier, | mentioned a situation in which a given algorithm might not be sufficient. A linked list system can help here. When you
arereading in data of an unknown size, you have to read it in chunks. This is because the functions that are used to read data must
place the data in a certain size of memory area. In this case, you must devise away to splice together this split data later.

Listing 8-1 is a sample program that does that exactly. It uses fgets() to read the data in 9-byte chunks. The buffer size is 10 bytes,
but recall that one byte is used for the terminating null character.

Next, asimple linked list is used to store the data. Thislinked list has one special item: an integer named iscontinuing. If this
variable has atrue value, then it indicates that the current structure does not hold the end of the string; that will be contained in a
future element in the linked list. This variableis used later when the data is recalled from memory so that the reading a gorithm
knows how to re-assemble the data.

Because dynamic memory is used, this code can handle data as small as a few bytes or hundreds of megabytes of memory. Listing
8-1 presents the code.

Note Listing 8-1 isavailable online.
Listing 8-1: Dynamic allocation with linked list
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define DATASIZE 10

typedef struct TAG_mydata {
144



char thestring[ DATASI ZE];
int iscontinuing;
struct TAG_mydata * next;

} mydata;

mydata * append(mydata * start, char *input);
void displaydata(mydata * start);
void freedata(mydata * start);

int main(void) {
char input[ DATASIZE];
mydata *start = NULL;

printf(“Enter some data, and press Ctrl+D when done\n");

while (fgets(input, sizeof (input), stdin)) {
start = append(start, input);
}

displaydata(start);
freedata(start);
return O;

}

mydata * append(mydata * start, char *input) {
mydata * cur = start, *prev = NULL, *new;

[* Search through until reach the end of the link, then add a new element. */

while (cur) {
prev = cur;
Cur = cur->next;

}

* cur will be NULL now. Back up one; prev isthe last element. */
cur = prev;
/* Allocate some new space. */

new = malloc(sizeof(mydata));
if (Inew) {
fprintf(stderr, “ Couldn’t allocate memory, terminating\n”);
exit(255);
}

if (cur) {
[* If there’ s already at least one element in the list, update its next
pointer. */
cur->next = new;
} else{
[* Otherwise, update start. */
start = new;

}

/* Now, just set it to cur to make manipulations easier. */
cur = new;
[* Copy in the data. */

strepy(cur->thestring, input);
145



/* 1f the string ends with \n or \r, it ends the line and thus
the next struct does not continue. */

cur->iscontinuing = !(input[strlen(input)-1] ==‘\n" ||
input[strien(input)-1] == ‘\r");
cur->next = NULL,;

/* Return start to the caller. */

return start;

}

void displaydata(mydata * start) {
mydata * cur;
int linecounter = O, structcounter = O;
int newline = 1;

cur = start;
while (cur) {
if (newline) {
printf(“Line %d: “, ++linecounter);
}
structcounter++;
printf(“%s’, cur->thestring);
newline = !cur->iscontinuing;
Cur = cur->next;

printf(“This data contained %d lines and was stored in %d structs.\n”,
linecounter, structcounter);

}

void freedata(mydata * start) {
mydata *cur, *next = NULL;

cur = start;
while (cur) {
next = cur->next;
free(cur);
cur = next;
}
}

Before | continue, | want to call your attention to the strepy() call in the append() function. Although | did not perform bounds
checking here, the code is not insecure in this case. Bounds checking is not necessary at this location because fgets() guarantees
that it will return no more than a 9-byte (plus 1 null byte) string. Nothing is added to that string, so | know that the string passed in

to the append() function will be small enough to avoid causing a security hazard.

Furthermore, it is easy to pass the entire group of data between functions. All that they need is a pointer to the start of the linked
list, and everything will work well.

When you compile and run this program, you receive the following output:

$ gce -Wall -0 ch8-3 ch8-3.c

$ ./ch8-3

Enter some data, and press Ctrl+D when done.

Hi!

Thisisareally long line that will need to be split.
Thisisalso afairly long line.

Here

are

several

146



short

lines

for

testing.

Ctrl+D

Line 1: Hi!

Line2: Thisisareally long line that will need to be split.
Line 3: Thisisaso afairly long line.

Line 4: Here

Line5: are

Line 6: severd

Line 7: short

Line 8: lines

Line9: for

Line 10: testing.

This data contained 10 lines and was stored in 19 structs.

Analyzing this output, you can see that even though the program could process the input in chunks of 10 bytesonly, it is till able
to re-assembl e the data properly. Not only that, but it is able to process 10 lines of input; there is no particular limit. So, although it

issafeto do thisin this particular case, a modification elsewhere in the program could lead to future problems. Also, atruncation
is not acceptable; we want to preserve the data. So I’ll show you some alternatives.

There are other, more sensible ways to store the data. With the examples that follow, you will gradually evolve the code until it
reaches such a state. The first modification that you can make is a change to the structure’s definition. The structure carries space
inside for the string. Make the structure carry a pointer to a dynamically allocated area of memory. This has the advantage that its
contents can be arbitrarily large. Listing 8-2 shows arevision of the code with this modification.

Note Listing 8-2 isavailable online.
Listing 8-2: Linked list with revised structure

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define DATASIZE 10

typedef struct TAG_mydata {
char *thestring;
int iscontinuing;
struct TAG_mydata * next;

} mydata;

mydata * append(mydata * start, char *input);
void displaydata(mydata * start);
void freedata(mydata * start);

int main(void) {
char input[ DATASIZE];
mydata *start = NULL;

printf(* Enter some data, and press Ctrl+D when done\n”);
while (fgets(input, sizeof (input), stdin)) {
start = append(start, input);

displaydata(start);
freedata(start);
return O;

147



mydata * append(mydata * start, char *input) {
mydata * cur = start, *prev = NULL, *new;

[* Search through until reach the end of the link, then add a new element. */

while (cur) {
prev = cur;
Cur = cur->next;

}

/* cur will be NULL now. Back up one; prev isthe last element. */
cur = prev;
[* Allocate some new space. */

new = malloc(sizeof(mydata));
if (Inew) {
fprintf(stderr, “ Couldn’t allocate memory, terminating\n”);
exit(255);
}

if (cur) {
[* If there’ s already at least one element in the list, update its next
pointer. */
cur->next = new;
} else{
[* Otherwise, update start. */
start = new;

}

/* Now, just set it to cur to make manipulations easier. */
cur = new;
[* Copy in the data. */

cur->thestring = strdup(input);
if (Icur->thestring) {
fprintf(stderr, “ Couldn’t all ocate space for the string; exiting!\n”);
exit(255);
}

* 1f the string ends with \n or \r, it ends the line and thus
the next struct does not continue. */

cur->iscontinuing = !(input[strlen(input)-1] ==‘\n’ ||
input[strien(input)-1] == *\r’);
cur->next = NULL;

/* Return start to the caller. */

return start;

}

void displaydata(mydata * start) {
mydata * cur;
int linecounter = 0, structcounter = 0
int newline=1,

cur = start;
while (cur) {

148



if (newline) {

printf(“Line %d: “, ++linecounter);
}
structcounter++;
printf(“%s’, cur->thestring);
newline = !cur->iscontinuing;
Cur = cur->next;

printf(“This data contained %d lines and was stored in %d structs.\n”,

linecounter, structcounter);

}

void freedata(mydata * start) {
mydata *cur, *next = NULL;

cur = start;

while (cur) {
next = cur->next;
free(cur->thestring);
free(cur);
cur = next;

}

}

The changes that had to be made here cause the memory to be allocated for thestring by a call to strdup(). The only other change
necessary is that this memory now must be explicitly freed, so the changes were not extensive.

If you compile and run this code, you'll find that the output isidentical to the output from the other version of the code:

$ gce -Wall -o ch8-3 ch8-3.c
$ ./ch8-3

Enter some data, and press Ctrl+D when done.
Hi!

Thisisareally long linethat will need to be split.
Thisisalso afairly long line.

Here

are

several

short

lines
for
testing.

Ctrl+D

Line 1: Hi!

Line2: Thisisareally long line that will need to be split.

Line3: Thisisalso afairly long line.

Line 4: Here

Line5: are

Line 6: severd

Line 7: short

Line 8: lines

Line 9: for

Line 10: testing.

This data contained 10 lines and was stored in 19 structs.

From here, the evolution inevitably takes you to a situation in which it is no longer necessary to split lines between structures. This

is because there is now the capability to store strings of any length in each structure, thanks to dynamic allocation of the memory
for the string. Therefore, the data can be combined asit is being put into the linked list. Listing 8-3 shows a version of the code

that does that exactly.

Note Listing 8-3 isavailable online.

149



Listing 8-3: Linked list with append at insert time

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define DATASIZE 10

typedef struct TAG_mydata {
char *thestring;
struct TAG_mydata * next;

} mydata;

mydata * append(mydata *start, char *input, int newline);
void displaydata(mydata * start);
void freedata(mydata * start);

int main(void) {
char input DATASIZE];
mydata *start = NULL;
int newline= 1,

printf(“Enter some data, and press Ctrl+D when done\n");

while (fgets(input, sizeof(input), stdin)) {
start = append(start, input, newline);
newline = (input[strlen(input)-1] ==‘\n" ||
input[strlen(input)-1] == *\r’);
}

displaydata(start);
freedata(start);
return O;
}
mydata * append(mydata * start, char *input, int newline) {
mydata * cur = start, *prev = NULL, *new;

[* Search through until reach the end of the link, then add a new
element if necessary. */

while (cur) {
prev = cur;
Cur = cur->next;

}

/* cur will be NULL now. Back up one; prev isthe last element. */
cur = prev;

/* Allocate some new space, if necessary. */

if (newline|| 'cur) {
new = malloc(sizeof(mydata));
if ('new) {
fprintf(stderr, “ Couldn’t allocate memory, terminating\n”);
exit(255);
}

if (cur) {
[* If there’ s already at least one element in the list, update its next
pointer. */
cur->next = new;

150



}else{
[* Otherwise, update start. */
start = new;

}

/* Now, just set it to cur to make manipulations easier. */

Cur = new;
cur->thestring = NULL; /* Flagit for needing new allocation. */
} * (newline || Icur) */

[* Copy in the data. */

if (cur->thestring) {
cur->thestring = realloc(cur->thestring,
strien(cur->thestring) + strlen(input) + 1);
if (lcur->thestring) {
fprintf(stderr, “Error re-allocating memory, exiting!'\n");
exit(255);
}
strcat(cur->thestring, input);
}else{
cur->thestring = strdup(input);
if (fcur->thestring) {
fprintf(stderr, “ Couldn’t allocate space for the string; exiting'\n");
exit(255);
}
}

cur->next = NULL;
/* Return start to the caller. */

return start;

}

void displaydata(mydata * start) {
mydata *cur;
int linecounter = 0, structcounter = 0;

cur = start;
while (cur) {
printf(“Line %d: %s’, ++linecounter, cur->thestring);
structcounter++;
Cur = cur->next;

printf(“This data contained %d lines and was stored in %d structs.\n”,
linecounter, structcounter);
}

void freedata(mydata * start) {
mydata *cur, *next = NULL;

cur = start;

while (cur) {
next = cur->next;
free(cur->thestring);
free(cur);
cur = next;

}

}

151



Y ou will notice several important things about this code. First of all, you are introduced to a new function: realloc(). This function
takes an existing block of memory that is already dynamically allocated, allocates a new block of the specified size, initializes the
new block to the contents of the old one to the extent possible, frees the old block, and returns a pointer to the new one. Internaly,
the implementation may be different if your platform allows it, so the pointer may not change necessarily. However, you can till
think of it as taking the preceding steps, which are the ones you must take if you do the same thing with your own code.

The code to generate the output is much simpler now. All it hasto do is some simple counting and displaying now. Thereisno
longer any need to merge strings together at that point, because they aready are merged.

This example probably did not introduce you to new syntax for pointers. Rather, it introduced you to new uses for the syntax you
aready know. In the next section, | will introduce you to a system that uses pointers to pointers to strings—and with good reason!

Parsing data

When you need to separate data into separate piecesin C, things can start to get tricky. If you don’'t know the length of the input,
or the number of elements that will be present, you inevitably need to use dynamically allocated memory. Y ou need to either use a
construct such as alinked list, described in the previous section, or an array of strings. In C, because astring is, itself, an array, and
an array is simply a pointer, you end up with a pointer to the start of an array that contains pointers to the start of another array!

Interestingly, you may have already encountered such a situation: the command-line arguments to your program, passed through
argv, are passed in such a manner. Here, you'll learn how to create and popul ate such an item, based on parsing apart a command
line.

When you need to separate some data into parts, you normally use strtok(), which isdefined in ANSI C. This function takes a
string and a delimiter asits arguments. It then changes the delimiter to aNULL in the string, saves the location for the next
invocation, and returns a pointer to the start of the first substring. The next timeit is called, it returns a pointer to the start of the
second substring, and so on until all pieces of the string have been parsed, at which time it returns NULL.

Degspite the warning in the manpage (which says “Never use this function!”), strtok() is often the best way to pick apart datain C.
However, there are some problems with it. First, it modifies your input string; this can be a bad thing if you want to be able to
preserve the original string. Second, because it stores various pointersinternally (by using static variables), you must not have a
situation in which two parsing operations with strtok() could occur simultaneously. This means that you cannot use it in
multithreaded applications. Also, if you use strtok() in main(), in some kind of loop, and inside this loop you call another function
that also uses strtok(), things will get messed up because strtok() may think it's operating on the wrong string.

Although | thoroughly warned you not to use this function, see what happens when you try it out! Following is a program that
implements parsing with strtok(). More than that, it shows you how certain functions of a shell operate internally by setting up
some simple redirection if necessary. You'll learn more about those functionsin future chapters.

This codeisafully functional, but rudimentary, shell (see Listing 8-4). Because of the size of the code, | present it herein its
entire, final form instead of building up to the final version. Following the code, | describe it and highlight the role that pointers
play in this system.

Note Listing 8-4 isavailable online.
Listing 8-4: A rudimentary shell

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <pwd.h>
#include <fentl.h>
#include <limits.h>
#include <signal.h>
#include <sygtypes.h>
#include <sys/resource.h>
#include <sys/wait.h>

#define MAXINPUTLINE 10240
#define MAXARGS 1024
#define PARSE_NOPIPE -1 /* Default is no pipe */

152



#define PARSE_USEPIPE -2 /* Using pipes, but FD not yet known */

int background;
static int pipefd[2];

void parse_cmd(char *cmdpart);

void splitcmd(char *cmdpart, char *argq[]);
char *expandtilde(char *str);

void freeargs(char *argd]);

void argsdelete(char *argd[]);

char *parseredir(char oper, char *argd]);
int checkbackground(char *cmdline);

void stripcrlf(char *temp);

char *gethomedir(void);

char * getuserhomedir(char * user);

void signa_c_init(void);

void waitchildren(int signum);

void parse(char *cmdline);

void striptrailingchar(char *temp, char tc);

int main(void) {
char inputf MAXINPUTLINE];

signal_c_init();

printf(“Welcome to the sample shell! Y ou may enter commands here, one\n”);

printf(“per line. When you're finished, press Ctrl+D on aline by\n”);

printf(“itself. 1 understand basic commands and arguments separated by\n”);

printf(* spaces, redirection with < and >, up to two commands joined\n”);

printf(“by a pipe, tilde expansion, and background commands with & .\n\n");

printf(“\n$ “);

while (fgets(input, sizeof(input), stdin)) {
striperlf(input);

parse(input);
printf(“\n$ “);

}
return O,
}
void parse(char *cmdline)
char *cmdpart[2];
pipefd[0] = PARSE_NOPIPE; /* Init: default isno pipe*/
background = checkbackground(cmdline);

[* Separate into individual commandsiif there is a pipe symbol. */

if (strstr(cmdline, “[7))
pipefd[0] = PARSE_USEPIPE;

/* Must do the strtok() stuff before calling parse_cmd because
strtok isused in parse_cmd or the functions parse_cmd calls. */

cmdpart[0] = strtok(cmdline, “[");
cmdpart[1] = strtok((char *)NULL, “[");
parse_cmd(cmdpart[0]);

if (cmdpart[1]) parse_cmd(cmdpart[1]);

153



[* parse_cmd will do what is necessary to separate out cmdpart and run
the specified command. */

void parse_cmd(char *cmdpart)
{
int setoutpipe = 0; /* TRUE if need to set up output pipe
after forking */
int pid; [* Set to pid of child process */
int fd; * fd to use for input redirection */

char *argf MAXARGS + 5];
char *filename; [* Filename to use for 1/O redirection */

splitcmd(cmdpart, args);

if (pipefd[0] == PARSE_USEPIPE) {
pipe(pipefd);
setoutpipe = 1;

}

pid = fork();
if ('pid) { [* child */
if (setoutpipe) {
dup2(pipefd[1], 1); /* connect stdout to pipe if necessary */

}

if (Isetoutpipe & & (pipefd[0] > -1)) {
/* Need to set up an input pipe. */
dup2(pipefd[0], 0);

filename = parseredir(‘<’, args);

if (filename) { /* Input redirection */
fd = open(filename, O_RDONLY);
if ('fd) {
fprintf(stderr, “Couldn’t redirect from %s’, filename);
exit(255);

}
dup2(fd, 0);
}

if ((filename = parseredir(‘>’, args))) { /* Output redirection */

fd = open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
if ('fd) {

fprintf(stderr, “Couldn’t redirect to %s\n”, filename);

exit(255);

}
dup2(fd, 1);
}

if (fargg0]) {
fprintf(stderr, “No program name specified.\n");
exit(255);

}

execvp(args[0], args);
[* If failed, die. */
exit(255);
} ese{ [* parent */
if ((!background) & &
('setoutpipe))
waitpid(pid, (int *)NULL, 0);

154



else
if (background)

fprintf(stderr, “BG process started: %d\n”, (int) pid);
if (pipefd[0] >-1) { /* Closethe pipeif necessary. */
if (setoutpipe)

close(pipefd[1]);
else

close(pipefd[0]);

}
} 1% if (pid) */
freeargs(args);
} I* parse cmd() */

* splitemd() will split a string into its component parts.

Since splitcmd() uses strdup, freeargs() should be called on the
args array after it is not used anymore. */

void splitcmd(char *cmdpart, char *argg[])
{

int counter = 0;
char *tempstr;

tempstr = strtok(cmdpart, “ “);

argd0] = (char *)NULL,;

while (tempstr & & (counter < MAXARGS - 1)) {
args{counter] = strdup(expandtilde(tempstr));
arggcounter + 1] = (char *)NULL;

counter++;

tempstr = strtok(NULL, “ “);

}

if (tempstr) { /* Broke out of loop because of num of args */

fprintf(stderr, “WARNING: argument limit reached, command may be truncated.\n");
}
}

[* expandtilde() will perform tilde expansion on str if necessary. */

char *expandtilde(char *str)
{
static char retva[MAXINPUTLINE];

char tempstr[MAXINPUTLINE];
char *homedir;

char *tempptr;
int counter;

if (str[0] 'I=*~")returnstr;  /* Notilde -- no expansion. */
strepy(tempstr, (str + 1)); /* Make atemporary copy of the string */
if ((tempstr[O] =="/") || (tempstr[0] == 0))
tempptr = (char *)NULL,;
else{ /* Only parse up to aslash */
[* strtok() cannot be used here because it is being used in the function

that calls expandtilde(). Therefore, use a simple substitute. */
if (strstr(tempstr, “/"))

*(strstr(tempstr, “/7)) = O;
tempptr = tempsitr;
}

if (‘tempptr) || 'tempptr[0]) {

[* Get user’s own homedir */
homedir = gethomedir();

155



} ese{ [* Get specified user’s homedir */
homedir = getuserhomedir(tempptr);
}

/* Now generate the output string in retval. */
strcpy(retval, homedir); [* Put the homedir in there */
/* Now take care of adding in the rest of the parameter */

counter = 1;
while ((str[counter]) & & (str[counter] !=‘/")) counter++;

strcat(retval, (str + counter));

return retval;
}

/* freeargs will free up the memory that was dynamically allocated for the
array */

void freeargs(char *argq[])
{

int counter = 0;

while (argg[counter]) {

free(argg counter]);
counter++;

}
}

/* Calculates number of argumentsin args */

void calcargc(char *argq[], int *argc)

{
*argc=0;
while (argg[*argc]) {
(*argc)++; /* Increment while non-null */
}
(*argc)--; /* Decrement after finding anull */
}

[* parseredir will seeif it can find aredirection operator oper
inthearray argd[], and, if so, it will return the parameter (filename)
to that operator. */

char *parseredir(char oper, char *argg[])
{

int counter;

int argc;

static char retva[MAXINPUTLINE];

calcargc(args, &arge);

for (counter = argc; counter >= 0O; counter--) {
fflush(stderr);
if (argg counter][0] == oper) {
if (arggcounter][1]) { /* Filename specified without a space */
strepy(retval, args{counter] + 1);
argsdelete(args + counter);
return retval;

156



} else{ [* Space seperates oper from filename */

if (‘arggcounter+1]) { /* Missing filename */
fprintf(stderr, “Error: operator %c without filename”, oper);

exit(255);

}
strepy(retval, args[ counter+1]);
argsdelete(args + counter + 1);

argsdelete(args + counter);

return retval;

}

}

return NULL; /* No match */
}

/* Argsdelete will remove a string from the array */

void argsdelete(char *argg[])
{
int counter = 0;
if (largg[counter]) return; /* Empty argument list: do nothing */
free(argg counter]);
while (argd counter]) {
args counter] = arggcounter + 1];
counter++;
}
}

void striperlf(char *temp)

while (temp[0] &&
((temp[strien(temp)-1] == 13) || (temp[strlen(temp)-1] == 10))) {
temp[strlen(temp)-1] = 0;

}

char * gethomedir(void)
{
static char homedir[_POSIX_PATH_MAX * 2]; /* Just to be safe. */
struct passwd *pws,

pws = getpwuid(getuid());
if (Ipws) {
fprintf(stderr, “getpwuid() on %d failed”, (int) getuid());
exit(255);
}

strcpy(homedir, pws->pw_dir);
return homedir;

}

char * getuserhomedir(char * user)
{
static char homedir[_POSIX_PATH_MAX * 2]; /* Just to be safe. */
struct passwd *pws,

pws = getpwnam(user);
if ('pws) {
fprintf(stderr, “getpwnam() on %s failed”, user);
exit(255);
}

157



strcpy(homedir, pws->pw_dir);
return homedir;

}

void signal_c_init(void)

{

struct sigaction act;

sigemptyset(& act.sa_mask);
act.sa flags= SA_RESTART;

act.sa_handler = (void *)waitchildren;
sigaction(SIGCHLD, &act, NULL);
}

void waitchildren(int signum)
while (wait3((int *)NULL,
WNOHANG,

(struct rusage *)NULL) > 0) {}
}

[* Check to see whether or not we should run in background */
int checkbackground(char *cmdline)
{ [* First, strip off any trailing spaces (this has not yet been run
through strtok) */
gtriptrailingchar(cmdline, * *);

/* We arelooking for an ampersand at the end of the command. */

if (cmdlingstrlen(cmdline)-1] ==‘&") {
cmdling[strlen(cmdline)-1] = 0; /* Remove the ampersand from the command */

return 1; /* Indicate that thisis background mode */
}
return O;
}
void striptrailingchar(char *temp, char tc)
{

while (temp[0] & & (temp[strlen(temp)-1] == tc)) {
temp[strlen(temp)-1] = 0;
}
}

Analyzing the code

Now I’ll go over some of the interesting parts of this program. For now, I'll skip over signals, duplicating file descriptors, and the
like because those will be covered in more detail in later chapters such as Chapter 13, “Understanding Signals,” and Chapter 14,
“Introducing the Linux 1/0.”

The program starts with a simple loop, asking for input. It first strips the trailing newline character off the input, and then sends it
over to be parsed. Then, if there is a pipe symbol, the command line is split into two parts, each of which is processed individually.

The function parse_cmd() does much of the processing. One of the first thingsit doesis call splitemd(), which uses strtok()—one
particular interest here. Notice the definition of args: char *argd[]. Recall that thisis the same as both char arg9[][] and char
** args—pointer to a pointer to a character.

When strtok() isfirst called, it is passed a string and the separation token; in this case, a space. It returns a pointer to the first part
of the string. Then, in the loop, the value returned goes through tilde expansion, is dynamically allocated, and then placed in the

158



args array. Finally, strtok() isinvoked again. In the second and subsequent invocations, the first parameter should be the null value.

After this goes through, argsis an array containing pointers to strings—strings that happen to be the individual arguments parsed
from the command line. The end of thisarray is marked with a null value; otherwise, when reading the array, the software would
not know that it has found the last pointer to a string.

After splitcmd(), you see the expandtilde() function. Asits name implies, this function is used to perform tilde expansion on the
input. It is called once for each argument and does the following:

1. Checksto seeif the argument begins with atilde (~) character. If not, additional processing is not necessary, and it is
returned to the caller unmodified. Otherwise, a copy of the string, excluding the leading tilde (~) character, is made and
placed in tempstr.

2. Determines whether the tilde should expand to the home directory of the user running the shell, or if a different home
directory was specified. If aslash followsthe tilde, or nothing at all follows the tilde, the home directory of the user running
the shell is used; otherwise, the specific username that is given is the one to use. The tempptr variable is set to the username
that needsto be used, or NULL if that username is the person running the shell.

3. Fetches the appropriate home directory and placesit in the homedir variable. Thisvalueis copied to the return value. A loop
then skips past the username specification, if any, and then adds the remainder of the string to the return value.

The freeargs() function simply steps through an array, freeing the memory pointed to by the pointersin the array. The calcargc()
function uses asimilar loop, but it is designed to figure out how many entries are in an array. Skipping down a bit, the argsdel ete()
function is another similar one. It removes a string from the middle of the array, and shifts all the remaining elements down so that
there is no gap. The argsdelete() function does following to remove a string:

1. Verifiesthat it isgiven avalid argument to delete; if not, it returnsimmediately.
2. Frees the memory used by that argument.
3. Moves the remaining elements down the array in its loop.

Y ou use the stripcrlf() function to remove the end-of-line character or characters from a given string, if they are present. The loop
isfarly straightforward. Aslong asthe string is not zero-length, and there is an end-of-line character at the end of it, remove the
last character of the string. The striptrailingchar() function is similar to this one.

When you use this code, you should be aware that adequate bounds checking and error checking systems are not necessarily
present. There are some cases where the return values of function calls are not checked but should be, and several cases where
there are potential buffer overflows. Also, several errors are treated as fatal and simply cause the program to exit. If you are
writing something for production use, you want to be less abrupt when an error is encountered, and more stringent with boundary
checking. In order to keep the program as simple and small as possible, these things were not always included here.

Now that you’ ve seen the code and analyzed it, it’s time to compile and run the program to seeif it really works. Notice how some
commands do not generate an error, and how wildcards do not work. Listing 8-5 shows a sample session with this shell.

Note You can find the sample shell session in Listing 8-5 online.
Listing 8-5: Example shell session

$gcc-Wall -0 ch8-4 ch8-4.c

$ ./ch8-4
Welcome to the sample shell! 'Y ou may enter commands here, one
per line. When you're finished, press Ctrl+D on aline by
itself. | understand basic commands and arguments separated by
spaces, redirection with < and >, up to two commands joined
by a pipe, tilde expansion, and background commands with &.

$ echo Hello!
Hello!

$ls/proc
159



1 2 224 240 295 321 cpuinfo kmsg partitions version
13 200 226 241 296 344 devices ksyms pci

141 206 227 242 297 4 dma loadavg scsi

143 209 228 243 3 486 fb locks self

151 216 229 257 306 487 filesystems meminfo slabinfo
156 219 230 262 316 508 fs misc  stat

159 220 231 263 317 510 ide modules swaps

179 221 232 266 318 apm interrupts mounts sys

186 222 238 290 319 bus ioports mtrr tty

196 223 239 294 320 cmdline kcore net  uptime

$ Is/dev/hda*
Is: /dev/hda*: No such file or directory

$ pwd
/home/jgoerzen/rec/private/t/cs6971_3

$ echo ~root
[root

$ cd ~root

$ pwd
/home/username

$ some_nonexistant_command

$ls/proc|grepin
cmdline

cpuinfo

interrupts
meminfo

slabinfo

$ls/proc|grepin>foo

$rev<foo
enildmc
ofniupc
stpurretni
ofnimem
ofnibals

$rmfoo

$ echo “Bye”
“Bye’

$ Ctrl+D

Y ou will notice afew thingsin this example. First, the asterisk was not expanded in the example because wildcards were not
implemented. Second, there is no way to change directories because no shell internal commands such as cd were implemented. When
abad command istried, there is simply no output because no error message is printed at that point; this can be confusing.

Finding Problems

Code problems relating to pointers often can be difficult to track down. If you attempt to dereference anull pointer, for instance,
your program will crash and you probably can get good results from analyzing the core file with gdb as described in Chapter 10,
“Debugging with gdb.” However, few pointer problems are as easy to debug as this one.

If you have a problem with a buffer overrun that causes the program to crash, sometimes the stack is so corrupted that the core file
produced is not helpful in tracking down the problem; gdb may be unable to determine where the program crashed. In these
situations, you often have to trace through the program with gdb until you have pinpointed the location of the problems.

160



If you are having trouble trying to use pointers that are already freed, or not allocated, one useful tip isto aways set the pointer to
NULL after it isfreed or when it isfirst defined. Thisway, you can test for anull valuein your code—or, you are guaranteed a
crash if you try to dereference it, but this crash should not corrupt the stack, so gdb can easily pinpoint the location of the problem.

Another common problem is memory leaks, which can be much more difficult to track down. These occur when memory is allocated,
but not freed when it is no longer needed. Several additional tools can assist you with tracking down these problems. Among themiis
the FSF (Free Software Foundation) checker program, which may be found at http://www.gnu.org/software/checker/. However,
because of the nature of the problem being traced, this program is not compatible with all Linux distributions and works with only
one Linux architecture (i386).

Summary

In this chapter, you learned about memory alocation in C under Linux. Specifically, the following topics were covered:
e There are two waysto get memory in C: by static allocation, and by dynamic allocation.

« Statically allocated memory is easy to work with because the system takes care of alocating and deallocating the memory
implicitly.

o Statically allocated memory is less flexible than dynamically allocated memory because you must know the size ahead of time,
and you cannot change size during program execution.

e Dynamic memory is allocated with a call to malloc() and deallocated with acall to free(). In C++, the new and delete
keywords can be used for dynamic memory allocation and deallocation.

* When you use any type of memory, but especially when you use statically allocated memory that islimited in size, itis
extremely important that you do not allow data larger than the buffer size into the buffer. Failure to take note of thisissue can
lead to security compromises caused by buffer overruns.

« Dynamically allocated memory can permit data structures that grow in memory at runtime. Y ou studied examples of linked lists,
which have no limits on either the amount of data or the number of elements that they can store. Y ou also studied an array of
pointers, which has no limit on the amount of data that it can store but does limit the number of elements.

Chapter 9: Librariesand Linking

Overview

One of the most powerful concepts that we have with modern computer programming languages is the reuse of code. For instance,
C gives us functions that enable us to use the same code in many different parts of the program. We also have macros that enable
the same thing. Y ou can even link together multiple modules so that you can separate your code and still be able to reuseit.

With libraries on Linux, you can go a step farther. Libraries enable you to share code between programs, not just within them.

Consider, for instance, a function such as strcat(). This function is used by potentially thousands of programs on your system. Rather

than have a separate copy for each of them, you could put a copy of the function into alibrary that all these programs can use—and in

fact, that is done on a Linux system. In this chapter, you will be introduced to the Linux library systems and shown how to use them.
Introduction to Libraries

Librariesin Linux comein two flavors: static and shared (or dynamic) libraries. The static libraries descend from long ago in the
history of UNIX but still have asignificant place in modern Linux systems. Dynamic libraries are relatively new additions to
Linux and other UNIX operating systems, but they present several very useful features.

The core impact of both these library technologies is that they affect the link process of your programs. When you compile a
program, the linker (Id) isinvoked to generate the final executable. It is responsible for taking code from all your different modules
and merging it into a working program.

Static libraries enter this process, at compile time. These libraries are simply packaged-up collections of object files that can be
linked into your program. The code in the library islinked into the executable at compile time and always accompaniesit.

Dynamic libraries are an entirely different situation. With adynamic library, al that is added at compile time is a mere hook,
which says that when the program is run, it needsto bring in a dynamic library in order to work. Later, when the program isrun,
the dynamic library isloaded into memory and then the program is allowed to proceed. This method has several advantages and
several disadvantages. Among its advantages are memory savings. Rather than requiring each program to have a copy of the
library, asingle copy is kept on the system. This means that only a single copy of the library needs to be in memory at any given

161



time, and dozens or even hundreds of programs can use that single copy in memory.

Another advantage of using dynamic librariesis that you can upgrade them easily. Consider, for instance, a situation in which a
library has a bug that causes programs to crash occasionally. If the library author releases a new version of the library to fix this
problem, al that you have to do is compile the new library, install it, and restart your program if it’s still running. There's no need
to make any modification to the programs that use the library. On the other hand, with static libraries, you have to recompile not
only thelibrary itself, but you also have to recompile each and every application that happens to use it. This can be troublesome,
especially because it’s not possible to determine exactly which static libraries executables might use by simply looking at their
binaries.

One other unique feature of dynamic librariesis the capability of overriding the behavior of any dynamic library that you're using.
By exploiting this capability, you can, for instance, add features to printf() or more error-checking to unlink(). Thisis
accomplished by preloading your own library in front of another, such asthe system’s standard libc. Y ou aso might replace a
different library completely. Users have done this to give dozens of programsin X a more up-to-date feel (xaw3d), or to replace
authentication mechanisms.

In addition to the capability of being linked in automatically when a program starts, your program can request that a given library
be linked in dynamically—at run time. Several programs, such as Apache and Listar, exploit this capability to allow pluggable
modul es contai ning user-defined extensions to the program that are loadable and configurable entirely at run time.

There are some downsides to dynamic libraries, however. First, a program not carrying all its pieces within its own executable can
cause potential problems. On modern systems, thisrisk is usually negligible; however, certain system-recovery tools such as fsck that
may run when no dynamic library files are available should not be compiled with shared libraries. Second, conflicts can arise when
new versions of alibrary introduce changes incompatible with previous versions of the shared library. Modern Linux provides
methods for dealing with and preventing these problems, but these mechanisms are in the hands of the library authors; if the authors
make a mistake (and you do not have source!), you may be stuck with having to recompile your programs anyway. Finally, on
register-deprived architectures such as the x86, there may be a performance hit by using dynamic libraries. Thisis because the
optimizer has one less register to use for optimization purposes. This difference is almost always insignificant, but if your programis
doing extensive processing inside of dynamic libraries, you might want to benchmark the dynamic library performance and compare
it to that of static libraries.

Building and Using Static Libraries

Creating a static library isfairly simple. Essentially, you use the ar program to combine a number of object (.0) files together into a
single library, and then run ranlib to add some indexing information to that library.

For these examples, I'll start with the safecalls library from Chapter 14, “Introducing the Linux 1/O.” The code in that chapter is
written so that you can use it as a separate module; here, you can useit asalibrary as well.

To make things more interesting, 1’1l add a separate file, safecalls2.c that implements two more safe wrappers. Listing 9-1 shows
the code for that file.

Note Listing 9-1 isavailable online.
Listing 9-1: safecalls2.c
/* John Goerzen

This module contai ns wrappers around a number of system callsand
library functions so that a default error behavior can be defined.

*/

#include <sys/types.h>
#include <unistd.h>
#include <stdio.h>
#include “safecalls.h”
#include “ safecalls2.h”
#include “errno.h”

off_t safelseek(int fildes, off t offset, int whence) {
off tretval;

162



retval = |seek(fildes, offset, whence);
if (retval == (off_t) -1)

HandleError(errno, “Iseek”, “failed”);
return retval;

}

int safefseek(FILE *stream, long offset, int whence) {
int retval;

retval = fseek(stream, offset, whence);
if (retval ==-1)

HandleError(errno, “fseek”, “failed”);
return retval;

}

It also has an accompanying .h file, safecalls2.h:

/* John Goerzen
*/

#ifndef SAFECALLS2 H__
#define SAFECALLS2 H__

#include <stdio.h> /* required for FILE * stuff */
#include <sygtypes.h>
#include <signal.h>

off_t safelseek(int fildes, off _t offset, int whence);
int safefseek(FILE *stream, long offset, int whence);

#endif
If you want to use this code in a separate program, you can do so without building a separate library. First, look at the standard
usage of the code in a program. The following code purposely triggers an error. The error is trapped in safecalls2.c, which then

must call afunction in safecalls.c to handleit. Here' s the code:

#include <stdio.h>
#include <errno.h>

/* The next four are for system-call 1/O */
#include <unistd.h>
#include <sys/types.h>
#include <fentl.h>
#include “ safecalls.h”
#include “ safecalls2.h”
int write_buffer(int fd, const void *buf, int count);

int main(void) {
int outfile;

/* Open thefile */
outfile = safeopen2(“test.dat”, O_RDWR | O_CREAT | O_TRUNC, 0640);
safel seek(1, 10000, SEEK_SET);

return O;
}

To compile this, you must use acommand line such as the following:

163



$ gcec-Wall -0 ch9-1 ch9-1.c safecalls.c safecalls2.c
Notice that you have to specify all three names on the command line. Now, run the program and observe the result:

$./ch9-1

*** Error in Iseek: failed

*** Error cause: Illegal seek
In this case, your “library” consists of two modules only and is not a serious inconvenience. However, some libraries include
dozens or hundreds of modules, many megabytesin size. For the purposes of the examples in this chapter, however, I'll use these
two filesonly.

To create an archive, you need to use the ar command to generateit. To avoid confusion, I'll call the library safec. First you must
compile to object code by running gcc -c:

$ gce -c -Wall -o safecalls.o safecalls.c
$ gce -c -Wall -o safecalls2.0 safecalls2.c

Now, you're ready to build the library file. Use the command to so:
$ar cr libsafec.a safecalls.o safecalls2.0

This convention dictates that the name of the library should be preceded by lib and suffixed with .afor static libraries. Before your
library isready to use, you have to add the index symbols:

$ranlib libsafec.a

Great! Now you can use your library. If you run your own system, you probably will copy it into /usr/local/lib at this point.
Otherwise, you simply can leaveit in your current directory. Here's how you compile your program now:

$gcc-L. -Wall -0 ch9-1 ch9-1.c -Isafec

The-L. option tells the linker to look in the current directory, indicated by the dot, for the library. Normally, it looks in the system
library directories only. The -Isafec requests that the library be pulled in for linking.

Y our program is now ready, linked against your static library! Y ou can run it exactly as you ran the program previously.
Before moving on to dynamic libraries, here’' s a simple Makefile that can be used to automate this process:

CFLAGS=-Wall -L.

CC=gcc

OBJS=ch9-1.0
LIBOBJS=safecdlls.o safecalls2.0
AR=ar rc

al: ch9-1

ch9-1: $(OBJS) libsafec.a
$(CC) $(CFLAGS) -0 $@ ch9-1.0 -Isafec

libsafec.a: $(L1BOBJS)
$(AR) $@ $(LIBOBJS)
ranlib $@

%.0: %.c
$(CC) $(CFLAGS) -c-0 3@ $<

clean:
-rm $(OBJS) $(LIBOBJS) libsafec.ach9-1

In this example, the executable (ch9-1) declares a dependency on the object files as well asthe library. The library then declares a
dependency on its object files. All of these object files are compiled. The library is built, and finally the executableis built with the

164



library linked in. If you’ ve tried the example commands from earlier in this section, first run make clean so you can see the whole
process and then observe the output:

$ make

gcc-Wall -L. -c -o ch9-1.0 ch9-1.c

gcc -Wall -L. -c -o safecalls.o safecalls.c
gce -Wall -L. -c -0 safecalls2.0 safecalls2.c
ar rc libsafec.a safecalls.o safecalls2.0
ranlib libsafec.a

gce -Wall -L. -0 ch9-1 ch9-1.0 -Isafec

It's exactly the same process as you went through in the preceding example, only it has been conveniently optimized for you.

At this point, you have completely built and used your static library. Because the library isincluded in your executable, it'sincluded
just asit would have been if you linked the program without using alibrary. There are no additional issues with using the static
library.

Building and Using Dynamic Libraries

Dynamic libraries are a much more powerful and versatile system than the static libraries | discussed in the previous section. This
additional flexibility introduces some additional complexity, as you shall seein this section.

Here isaMakefile that you can use to build a program using a dynamic library, and its corresponding library:

CFLAGS=-Wall -L.
LIBCFLAGS=$(CFLAGS) -D_REENTRANT -fPIC
CC=gcc
OBJS=ch9-1.0
LIBOBJS=safecdlls.o safecalls2.0
AR=ar rc
LIBRARY=libsafec.s0.1.0.0
SONAME-=libsafec.so.1

al: ch9-1

ch9-1: $(OBJS) $(LIBRARY)
$(CC) $(CFLAGS) -0 $@ ch9-1.0 -Isafec

$(LIBRARY): $(LIBOBJS)
$(CC) -shared -WI,-soname, $(SONAME) -0 $@ $(LIBOBJS) -Ic
In -sf $@ libsafec.so
In -sf $@ $(SONAME)

ch9-1.0: ch9-1.c
$(CC) $(CFLAGS) -c-0 3@ $<

%.0: %.C
$(CC) $(LIBCFLAGS) -c -0 3@ $<

clean:
-rm $(OBJS) $(LIBOBJS) $(LIBRARY) libsafec.so $(SONAME) ch9-1

When you run this Makefile, you get the following output:

$ make
gcc-Wall -L. -c -o ch9-1.0 ch9-1.c
gce-Wall -L. -D_REENTRANT -fPIC -c -0 safecalls.o safecalls.c
gce -Wall -L. -D_REENTRANT -fPIC -c -0 safecalls2.0 safecalls2.c
gcc -shared -WI,-soname,libsafec.so.1 -o libsafec.s0.1.0.0 safecalls.o safecalls2.0 -Ic
In -sf libsafec.s0.1.0.0 libsafec.so
In -sf libsafec.s0.1.0.0 libsafec.so.1
gce -Wall -L. -0 ch9-1 ch9-1.0 -Isafec

165



Now, I'll review exactly what is being done here. The Makefile begins by compiling the main C file. Next, it compiles the two
modules for the library. Notice the specia options on those command lines. The -D_REENTRANT causes the preprocessor
symbol _REENTRANT to be defined, which activates special behavior in some macros. The -fPIC option enables generation of
position-independent code. Thisis necessary because the libraries are loaded at run time, into a position in memory that is not
known at compiletime. If you fail to use these options, your library will not necessarily work properly.

After these are compiled, the shared library islinked. The -shared option tells the compiler to generate shared library code. The -
WI option causes the following options to be passed to the linker; in this case, the linker receives -soname libsafec.so.1. The -0
option, as usual, specifies the output filename. It then specifies the two object files and explicitly requests that the C library be
included. I'll talk about the intricacies of the soname in the next section.

Next, two required symbolic links are created; these will also be specified in the next section. Finally, the executableis linked—
incidentally, using the same command as was used before.

To run this executable, you have two options:
* You may copy the libsafec.so* filesto adirectory that islisted in /etc/ld.so.conf and then run the Idconfig utility as root; or
e You may run export LD_LIBRARY_PATH="pwd", which adds your current directory to the library search path.

These steps are necessary because dynamic libraries are loaded at run time instead of compile time. By default, your current
directory is not included in the Run-Time Library (RTL) search path, so you have to specify it manually—exactly as you did with -
L. on the command line to gcc. Finally, try running it:

$ ./ch9-1
*** Error in |seek: failed
*** Error cause: Illegal seek

Success! Your program runs and obligingly issues its customary error message. Y ou’ ve built your first dynamic library!
Using Advanced Dynamic Library Features

As| mentioned before, there’ s alot more to dynamic libraries than the benefits inherent in a smaller memory footprint, code
sharing, and easier updates. In this section, I'll talk about the mechanisms that enable some of these benefits as well as some
additional features of dynamic libraries that you can explore.

Theldd tool

Thereisawonderful tool on your system that examines information about shared libraries—|dd. The purpose of Idd is simple: it
shows you which libraries your executable requires, and where the dynamic loader manages to find them on your system. Each
executable on your system contains alist of the dynamic libraries that it requires to run. When the executable is invoked, the
system is responsible for loading these libraries. The Idd tool shows you these details. Consider the following output:

$1dd ./ch9-1
libsafec.s0.1 => /home/jgoerzen/t/libsafec.so.1 (0x40013000)
libc.s0.6 => /lib/libc.s0.6 (0x4001d000)
Nlib/ld-linux.s0.2 => /lib/ld-linux.so0.2 (0x40000000)

This output indicates that the sample program requires three shared objects. Thefirst isthe shared library built here, libsafec.so.1.
The run-time loader found it under the home directory. The second is the system standard C library, which was found under /lib.
Thefinal oneisthe dynamic loader itself; in this case, the absolute path must be embedded in the executable.

The Idd tool can be an extremely useful for diagnostic purposes, to see just how your libraries are being loaded at run time.
Additionally, it is useful for educational purposes to see what is going on behind the scenes of your application.

The soname

One of the most important, and often confusing, aspects of shared librariesis the soname—short for shared object name. Thisisa
name embedded in the control datafor a shared library (.s0) file. As| aready mentioned, each of your programs contains alist of
the libraries required. The contents of this list are a series of library sonames, which the dynamic loader must find—Idd shows you
this process.

The key feature of the soname isthat it indicates a certain measure of compatibility. When you upgrade libraries on your system,

166



and the new library has the same soname as the old, it is assumed that programs linked with the old library will still work fine with
the newer one. This behavior makes possible the easy bug fixes and upgrades that you get with shared librariesin Linux.

Similarly, if the soname in the new library is different, the assumption is that the two are not compatible. But do not fear—nothing
can prevent you from having two copies of the same library on your system at once—one for programs linked against the older
version, and another for programs linked against the newer version. It is because of this behavior that modern Linux distributions
are so easily capable of running programs compiled against an old version of the C library despite drastic changes to it that would
otherwise render the old programs inoperable.

In the Makefile for the examplein the “Building and Using Dynamic Libraries’ section, | explicitly declared the soname.
Convention holds that when the major version number of alibrary changes, the upgrade is incompatible and the soname should
thus be upgraded as well; however, when the minor version numbers change, a soname upgrade is thus unnecessary.

| maintain three filesin the library location (typically /usr/lib) for each library. Hereis how it was done with thislibrary:

* Themain file containing the library’s code (libsafec.s0.1.0.0 in this case) typically has the entire version number of the library.
The other two files are symlinks to it. This behavior allows you to have multiple copies of alibrary with the same soname on
the system and you can switch between them simply by adjusting two symlinks. Furthermore, it clarifies exactly what library
is being invoked by the soname.

* The second file has a name that corresponds to the soname of the library, which is asymlink to the main file. In this example,
thefileislibsafec.so.1. Because the soname does not change except for mgjor changes that are not backwards-compatible,
using asymlink hereis great. Thisfile must exist; it isthe one that is used by the dynamic loader to load the library into your
programs.

e Thethird fileis simply the name of the library, libsafec.so in this case. Thisfileis used solely to compile (or link) programs
and is not used by the dynamic loader in any way. This enables you to use syntax such as -lsafec to gcc; otherwise, you would
have to reference the library by specific path and name. By permitting this compilation convenience, you enable programs to
compile easily regardless of the underlying library. Furthermore, the compile/link processis not harmed because the linker
extracts the soname from the library’ s contents.

Now, imagine that you made a major upgrade to the safec library and released safec version 2.0.0. The libsafec.so.1 and
libsafec.s0.1.0.0 files remain in place unmodified so that the programs already compiled and linked with them continue to run. The
new libraries libsafec.s0.2 and libsafec.s0.2.0.0 are installed aongside them for the use of programs compiled and linked with the
new library. Finally, the libsafec.so symbolic link is changed to point to the new version, so that newly compiled programs will use
the new library instead of the old one.

Hopefully, you can’t help but marvel at the beauty and simplicity of this scheme. For years, one of the most prevalent problems for
Windows operating systems has been issues with DLL (their shared library) versioning problems. One application may require one
version, and another application may require an older, incompatible version, but the system doesn’t provide a good, clean way for
both applications to be happy. This meansthat it isliterally impossible to have two programs executing simultaneously with two
completely different versions of the libraries loaded (unless you resort to some more drastic steps).

With Linux, each application specifically declares the version that it wants through the use of the soname. Library authors also can
declare which versions are compatible with each other, by either retaining or changing the soname, so you end up with no dynamic
library versioning conflicts.

Thanks to this versatile shared library system, Linux programmers use them extensively. It's not at al uncommon to find Linux
installations contai ning hundreds, perhaps even thousands, of shared libraries. These libraries exist for doing everything from
reading from JPEG filesto processing ZI P archives. Most are used by dozens of programs on the system. This reduces
development time for programmers, decreases resource utilization for you, and provides for an easier and less-intrusive upgrade
path.

The dynamic loader

The Linux dynamic loader (also known as the dynamic linker) isinvoked automatically when your program isinvoked. Itsjobis
to ensure that all the libraries that your program needs are loaded into memory, in their proper version. The dynamic loader, named
either 1d.so or Id-linux.so, depending on your Linux libc version, must complete its job with little outside interaction. However, it
does accept some configuration information in environment variables and in configuration files.

Thefile /etc/ld.so.conf defines the locations of the standard system libraries. Thisistaken as a search path for the dynamic loader.
For the changes there to take effect, you must run the Idconfig tool as root. This updates the /etc/Is.so.cache file, which is actually

167



the one used internally by the loader.
Y ou can use several environment variablesto control the behavior of the dynamic loader (see Table 9-1).

Table9-1: Dynamic Loader Environment Variables

Variable Purpose
L
LD _AOUT_LIBRARY_PATH The same function asLD_LIBRAY _PATH but for the deprecated a.out
binary format.
LD _AOUT_PRELOAD The same function as LD_PREL OAD, but for the deprecated a.out binary
format.
LD _KEEPDIR Applicableto a.out libraries only; causes the directory that may be specified

with them to be ignored.

LD_LIBRARY_PATH Adds additional directoriesto the library search path. Its contents should be
acolon-separated list of directories in the same fashion asthe PATH
variable for executables. This variable isignored if you invoke a setuid or

setgid program.

LD _NOWARN Applicable to a.out libraries only; causes warnings about changing version
numbers to be suppressed.

LD _PRELOAD Causes additional user-defined libraries to be loaded before the others such

that they have an opportunity to override or redefine the standard library
behavior. Multiple entries can be separated by a space. For programs that
are setuid or setgid, only libraries also marked as such will be preloaded. A
systemwide version also can be specified in /etc/ld.so.perload, which is not
subject to this restriction.

Notice how several options relate to a.out. The a.out binary format was used before the current one (ELF). No current distribution
uses a.out anymore, so these a.out options are intended for unique circumstances only.

Working with LD_PREL OAD

One of the most unique features of the shared library system in Linux isthe LD_PRELOAD item described in Table 9-1. This
enables you to replace any function called in any library that the program uses with your own version. This kind of power is
extremely wide-ranging and can be used for everything from adding new features to correcting bugs. Sometimes, it may be used to
swap in an entirely different behavior for something—for instance, to use a different type of encryption for passwordsin an
authentication system.

Listing 9-2 shows some code that intercepts the call to safelseek() in our wayward program and instead writes some data out to
screen.

Note Listing 9-2 isavailable online.
Listing 9-2: Sample Codefor LD_PRELOAD
#include <difcn.h>
#include <stdio.h>
#include <syg/types.h>

#include <unistd.h>

#include “ safecalls.h”
168



#include “ safecalls2.h”
/* Declare awrapper around Iseek. */

off_t Iseek(int fildes, off_t offset, int whence) {
/* A pointer to the “real” Iseek function. Static so it only
hasto befilled in once.*/

static off_t (*funcptr)(int, off_t, int) = NULL;

if (‘funcptr) {
funcptr = (off_t (*)(int, off_t, int)) disym(RTLD_NEXT, “Iseek”);
}

if (fildes==1) { /* Error condition is occuring */
fprintf(stderr, “Hey! 1I’ve trapped an attempt to Iseek on fd 1. 1'm\n”);
fprintf(stderr, “returning you afake success indicator.\n");
return offset;
} else{ [* Otherwise, passit through. */
fprintf(stderr, “OK, passing your Iseek through.\n");
return (*funcptr)(fildes, offset, whence);
}
}

/* And one around safeopen?, just for kicks. */

int safeopen2(const char * pathname, int flags, mode_t mode) {
gtatic int (*funcptr)(const char *, int, mode_t) = NULL;

if (Ifuncptr) {
funcptr = (int (*)(const char *, int, mode_t)) disym(RTLD_NEXT,
“safeopen?”);
}

fprintf(stderr, “I’m passing aong a safeopen2() call now.\n");
return (*funcptr)(pathname, flags, mode);
}

Name this code interceptor.c. Before demonstrating how it isused, I’ [l examine how it works.

The code begins by declaring a function named Iseek()—this will intercept calls to the standard function of that name. This new
function must have the exact same prototype as the standard one, which it does. Inside the function, the first variable declaration is
arather odd-looking one. It is a pointer to afunction of atype that returns off_t and takes an int, an off_t, and an int—a function of
the Iseek variety, in this case. In the function, the first thing to do is see if that variable is set yet. If not, you need to do so.

Thisvariableisused if you want to pass along the call to the wrapper function all the way to the standard one. If you simply want
to intercept a function call with no intention of ever passing the call back to the standard one, you have no need for this sort of
trickery.

At this point, you need to know the address of the Iseek() function in the standard libraries. The disym() function can tell you. The
RTLD_NEXT argument tells disym() to look only in the libraries loaded after this one for the specified symbol. The function
returns its address, which is stored away for later use.

Next, the function checksto seeif it received a request to Iseek on the file descriptor 1—the error in the program. If so, it printsa
warning message and then returns a code that indicates a successful seek—all without ever calling the real Iseek() function or
moving any file position indicator.

If the file descriptor is not 1, the normal processing mode is assumed. The function callsthe real |seek() (as stored in funcptr),
passes along the arguments, and returns the result back to the caller.

The wrapper around safeopen2() worksin asimilar way. It finds the address of the real function and savesit. Then it addsits own
special behavior before passing al the necessary information on to the real function.

169



Here is how you compile this library, assuming you hamed it interceptor.c:

$ gce -shared -WI,-soname,libinter ceptor.s0.0 -o libinter ceptor.s0.0.0.0 inter ceptor.c -Idl -Ic
$In -slibinter ceptor.so0.0.0.0 libinter ceptor.s0.0

The-ldl linein the preceding example bringsin functions from the dl library, which happens to contain the implementation of
disym that is necessary in this program.

Now you're ready to experiment. Remember that you must set LD_LIBRARY_PATH as described in the “Building and Using
Dynamic Libraries’ section if you aren’'t copying librariesinto your system directory.

$export LD_PRELOAD=libinterceptor.so.0
$ ./ch9-1

I’m passing along a safeopen2() call now.

Hey! I'vetrapped an attempt to Iseek onfd 1. I'm
returning you a fake success indicator.

Also take note of the new output from ldd:

$1dd ./ch9-1
libinterceptor.s0.0 => /home/jgoerzen/t/libinterceptor.so.0 (0x40014000)
libsafec.s0.1 => /home/jgoerzen/t/libsafec.so.1 (0x40016000)
libc.s0.6 => /lib/libc.s0.6 (0x4001f000)
libdl.s0.2 => /lib/libdl.s0.2 (0x400fa000)
Nlib/ld-linux.s0.2 => /lib/ld-linux.so0.2 (0x40000000)

Y ou can see the inclusion of the interceptor library even though this was not specified when the program was compiled. Moreover,
thelibdl library isincluded because libinterceptor requiresit. Now, be sure that you unset LD_PRELOAD or else you will mess up
other applications!

$unset LD_PRELOAD
Using dlopen

Another powerful library function that you can use is dlopen(). This function will open a new library and load it into memory. This
function primarily is used to load in symbols from libraries whose names you do not know at compile time. For instance, the
Apache web server uses this capability to load in modules at run time that provide certain extra capabilities. A configuration file
controls the loading of these modules. This mechanism prevents the need to recompile every time a module should be added or
deleted from the system.

Y ou can use dlopen() in your own programs as well. The dlopen() function is defined in difcn.h and isimplemented in the d
library. It takes two parameters: a filename and a flag. The filename can be the soname of the library as we have been using thus
far in our examples. The flag indicates whether or not the library’ s dependencies should be evaluated immediately. If set to
RTLD_NOW, they are evaluated immediately; otherwise, if set to RTLD_LAZY, they are evaluated when necessary.
Additionally, you can specify RTLD_GLOBAL, which causes libraries that may be loaded later to have access to the symbolsin
this one.

After the library isloaded, you can pass along the handle returned by dlopen() as the first parameter to disym() to retrieve the
addresses of the symbolsin the library. With this information, you can dereference the pointers to functions aswe did in the in
Listing 9-2 example and call the functionsin the loaded library.
Summary
In this chapter, you learned about static and dynamic librariesin Linux. Specifically, you learned:
 You can use two different types of librariesin Linux: static and dynamic.
» Static libraries are loaded into the executable when it is compiled. Dynamic libraries are loaded when the executableis run.

» Dynamic libraries are more powerful but are also much more complex.

« Static libraries are built by compiling code normally to object files, putting them in an ar archive, and then running ranlib.

170



They are linked in with the -I option on the command-line.

*  Dynamic libraries are built by compiling with -fPIC -D_REENTRANT. Then, the object files are linked together with gcc -
share and the soname specified with a command such as -WI,-soname,libname-4.

e Thedynamic linker, |d-linux.so, can be controlled by several different environment variables and system-wide configuration
files.

* YoucanuseLD_LIBRARY_PATH to add directoriesto the standard library search path.

* The LD_PRELOAD option enables you to override functions in the standard libraries.
Chapter 10: Debugging with gdb

Overview

One of the most frequent tasks that any programmer must face, no matter how good, is the task of debugging. When your program
compiles, it may not run properly. Perhaps it crashes completely. Or it simply might not perform some function correctly. Maybe
its output is suspect, or it doesn’t seem to prompt for the correct input. Whatever the case, tracking down these problems,
especially with alarge program, can be the most difficult part of the journey towards developing a correct fix. Here's where gdb
(the GNU debugger) enters the picture. This program is a debugger—a system that helps you find bugs in software.

In this chapter, you will learn about using gdb to debug your C and C++ programs. Although gdb does have support for other
compiled languages, these are by far the most common ones that it is used with. You'll learn about the basic features of gdb and how
it can be used to step through your code asiit runs. Then you'll learn some more advanced features for running programs, such as
waysto display data, set breakpoints, or set watches. Finally, the chapter will explain how you can analyze a core dump to find out
what caused a program to crash.

The Need for gdb

The point of gdb is to help you out of a bind. Without such atool, you are at a serious disadvantage. To track down some bugs,
you may have to add voluminous statements to generate special output from your program. For some programs, such as network
daemons, thisisn't possible at all; they have to resort to other methods such as logging. Sometimes the very act of adding special
code to help find abug may effect the bug itself. And finally, you have no methods of performing post-mortem analysis of
programs that have crashed and generated a core dump.

With gdb, you get all of these features, and more. Y ou can step through your code, line by line, as it executes. As you do this, you
can see the logic flow, watch what happens to your variables and data, and see how various instructions effect the program.
Another timesaving feature enables you to set breakpoints. These enable your program to execute normally until a certain
condition is reached. This condition could be that a variable has taken on a certain value, or even that a certain place in the code
has been reached.

The gdb feature set includes other useful options. For one, gdb enables you to analyze a core file generated by a program that has
crashed. By doing so, you can figure out what caused the crash, find out the last instruction called before the crash, examine all
variables prior to the crash, and examine the stack (provided it was not damaged by the crash) prior to the point that the program
exited. Another option isthat gdb can attach itself to an already running process—a feature great for debugging network servers,
programs that fork, or ones that need to run for some time prior to encountering a situation that triggers a bug.

Y ou can use gdb without modifying your code; simply ask gcc to generate some additional information, and you are ready to go.
Y ou simply load up your program inside gdb, and you can step through it. Alternatively, you can start with a core dump to see
exactly what happened.

As an example, consider this code from Chapter 6, “Welcome to gec”:

#include <stdio.h>

int main(void) {
int input = 0;
printf(“ Enter an integer: “);
scanf(“%d”, input);
printf(“ Twice the number you supplied is %d.\n", 2 * input);
return O;
}

171



When you run the program, you get:

$ /crash
Enter an integer: 5
Segmentation fault

Thisisn’t particularly helpful. All that you know is that the program runs fine until it tries to read input. From these messages only,
you don’t know whether the program crashes at that point or later. With gdb, you can trace through your code as it executes, line by
line, to watch what happens and to pinpoint the location of a problem. With the Linux core dump feature, you can also analyze the
results from gdb after a program exits, even if it wasn’t running under gdb when it crashes.

Stepping Through Your Code

Using gdb to step through your code is one of the most commonly used features of the debugger. When you do this, you can get an
inside look at how your program is functioning. Y ou can see which commandsit’ s executing, what the variables are, and many

more details.

Debugging tutorial

Start with a simple program that doesn’t have any bugsin it. This gives you a chance to see how to trace through your code. Then,
you’ |l see how to apply this knowledge to tracking down bugs.

Hereis the source code for the first example program:
#include <stdio.h>

int getinput(void);
void printmessage(int counter, int input);

int main(void) {
int counter;
int input;

for (counter = O; counter < 200; counter++) {
input = getinput();
if (input == -1) exit(0);
printmessage(counter, input);

return O;
}

int getinput(void) {
int input;

printf(“Enter an integer, or use -1 to exit: “);
scanf(* %d”, &input);
return input;

}

void printmessage(int counter, int input) {
static int lastnum = 0;

counter++;

printf(“For number %d, you entered %d (%d more than last time)\n”,
counter, input, input - lastnum);
lasthum = input;

}

Before moving on to an example of this code, | want to highlight two things about it for those who are newer to the C language.
First, notice how both the main() and printmessage() functions contain a variable named counter. Inside the printmessage()
function, commands operate on the local counter variable—not the one from main(). Thisvariable isinitially set to hold the same
value as the one in main(), however, because it is passed in during the function call.

172



The second thing to notice at this point is the static int declaration inside the printmessage() function. This indicates that, even
when that variable falls out of scope when the function exits, its value should be preserved for the next invocation of the function.

Having taken note of this, you should try to compile and run the program now. Recall from Chapter 6, “Welcome to gcc,” that -
ggdb3 includes the maximum amount of debugging information in an executable, so you should compile with that option. For

example:

$ gce -ggdb3 -0 ch10-1 ch10-1.c
$ ./ch10-1
Enter an integer, or use -1 to exit: 215
For number 1, you entered 215 (215 more than last time)
Enter an integer, or use -1 to exit: 300
For number 2, you entered 300 (85 more than last time)
Enter an integer, or use -1 to exit: 100
For number 3, you entered 100 (-200 more than last time)
Enter an integer, or use -1 to exit: 5
For number 4, you entered 5 (-95 more than last time)
Enter an integer, or use -1 to exit: -1

From this output, you should have no trouble seeing that this programis afairly straightforward one, and its actions are, likewise,
straightforward. Now, take alook at it in the debugger. I'll show you some interaction with gdb in the following example and then

explain what happened.

$ gdb ch10-1
GNU gdb 4.18
Copyright 1998 Free Software Foundation, Inc.
GDB isfree software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type “show copying” to see the conditions.
There is absolutely no warranty for GDB. Type “show warranty” for details.
This GDB was configured as * alphaev56-unknown-linux-gnu” ...

(gdb)

The first thing that occurs here is an invocation of gdb. The debugger loads, and comes up with the sample program ready to use.
Although some output from gdb may be different from this example, you do not worry about this; the differences will be in areas

that are not relevant to your purposes.

The main interface to gdb is the (gdb) prompt. At this prompt, you enter your commands for gdb. The first thing you should do is
set a breakpoint for the start of the main() function. A breakpoint indicates that gdb should stop executing a program at that point
to give you a chance to step through it. Setting a breakpoint at main()enables you to start tracing execution at that point. So, go

ahead and set the breakpoint as follows:

(gdb) break main
Breakpoint 1 at 0x1200004a8: file ch10-1.c, line 6.

The debugger confirms that the breakpoint is set, and shows you the location. Now it’s time run the program:

(gdb) run
Starting program: /home/jgoerzen/t/ch10-1

Breakpoint 1, main () at ch10-1.c:6
6 intmain(void) {

Y our program begins executing, and then immediately hits the breakpoint for the main() function. The gdb debugger indicates that
breakpoint 1 has been hit, and then displays the next line of code to be executed.

To step through your code, you normally start with the step command. This executes one line of code:

(gdb) step

main () at ch10-1.c:10

10 for (counter = 0; counter < 200; counter++) {
(gdb) s

173



11 input = getinput();
(gdb) Enter

getinput () at ch10-1.c:18
18 int getinput(void) {

The step command is used here to execute three lines of code. The first step executed line 6 of the program. Then, a gdb shortcut is
used. With gdb, you can abbreviate commands in many cases. In this situation, the sis used as a shortcut for the step command.
After stepping past line 10, the loop is entered. Stepping on line 11 causes execution to go into the getinput() function. Notice
another shortcut here—simply pressing Enter causes the previous command (a step, in this case) to be executed again as follows:

(gdb) s
getinput () at ch10-1.c:21
21 printf(“ Enter an integer, or use -1 to exit: “);
(gdb) s
22 scanf(“%d", &input);
(gdb) print input
$1 = 1439424

Y ou may be wondering why there is no output on-screen after stepping past line 21, which displays a prompt. The reason isthe
buffering used by printf() and the other similar functions. The prompt appears when scanf() is executed.

Another new concept is demonstrated here: displaying values of variables. After stepping past line 21, | asked gdb to display the
contents of the variable named input. Because this request occurs prior to reading in avalue for that variable with scanf(), the
content of the variable is essentially random. Now, step through the scanf(). Predicting the result, you should see the prompt from
the earlier printf() displayed, and input read from the terminal. Take alook and see if that really happens:

(gdb) s
Enter an integer, or use -1 to exit: 150
23 return input;

Indeed it does! The scanf() is executed, the prompt is displayed, and input is read from the terminal. The following example
confirms that the value of the input variable has changed:

(gdb) print input
$2 =150

Because the program is ready to return avalue, stepping at this point shortly goes back to the main() function as shown in the
following example:

(gdb) s

24}

(gdb) s

main () at ch10-1.c:12

12 if (input == -1) exit(0);

Now take alook at a new command: display:

(gdb) display counter

1: counter =0

(gdb) display input

2: input = 150

(gdb) s

13 printmessage(counter, input);
2: input = 150

1: counter =0

At first glance, display appears to act the same as print acted before. However, there is a difference. When you use display, the
values of those variables are shown each time the debugger stops the program pending your instructions. This means that when
you step through a program, those values are displayed after each line of code. And in fact, you can see this. After stepping over
line 12, gdb first displays the line of code that will be executed by the next command, and then the values of those two variables.
Watch what happens when you step into the printmessage() function:

174



(gdb) s

printmessage (counter=0, input=150) at ch10-1.c:26
26  void printmessage(int counter, int input) {
(gdb) s

printmessage (counter=0, input=150) at ch10-1.c:29
29 counter++;

(gdb) disp counter

3: counter =0

The debugger no longer is displaying the values of counter and input. Why? Well, the reason is that the counter and input variables
that it displayed beforehand are now out of scope—they cannot be accessed from within printmessage(). This function does
contain variables named counter and input, but these variabl es, although named the same, are actualy different. The debugger is
now asked to display counter:

(gdb) s
31 printf(“For number %d, you entered %d (%d more than last time)\n”,
3: counter =1
(gdb) s
For number 1, you entered 150 (150 more than last time)
33 lasthum = input;
3: counter =1
(gdb) s
34}
3: counter =1

While stepping through this code, you can watch as the value of counter isincremented. Then, line 31 displays the values of these
two variables. The lasnum variable is set, and then the function is ready to return:

(gdb) s
main () at ch10-1.c:10
10 for (counter = O; counter < 200; counter++) {
2: input = 150
1: counter =0

Notice how gdb is saying that counter is zero again. Thisis because the value of this counter variable in main() never changed;
only the one in printmessage() was modified. Now step through an entire iteration of the loop so you can see it all together:

(gdb) s

11 input = getinput();

2: input = 150

1: counter =1

(gdb) s

getinput () at ch10-1.c:18

18 int getinput(void) {

(gdb) s

getinput () at ch10-1.c:21

21 printf(“Enter an integer, or use -1 to exit: “);
(gdb) s

22 scanf(“%d", &input);

(gdb) s

Enter an integer, or use -1 to exit: 12
23 return input;

(gdb) s

24}

(gdb) s

main () at ch10-1.c:12

12 if (input == -1) exit(0);
2:input =12

1: counter =1

(gdb) s

13 printmessage(counter, input);
2:input =12

175



1: counter =1
(gdb) s

printmessage (counter=1, input=12) at ch10-1.c:26
26  void printmessage(int counter, int input) {
3: counter =1
(gdb) s

printmessage (counter=1, input=12) at ch10-1.c:29
29 counter++;
3: counter =1
(gdb) s

31 printf(“For number %d, you entered %d (%d more than last time)\n”,
3: counter = 2
(gdb) s

For number 2, you entered 12 (-138 more than last time)
33 lasthum = input;
3: counter = 2
(gdb) s
34}
3: counter = 2
(gdb) s

main () at ch10-1.c:10

10 for (counter = 0; counter < 200; counter++) {
2:input =12
1: counter =1

That was alot of work—and a lot of information. Note afew things, though. First, gdb remembers your display requests, and when
it enters the printmessage() function, it again starts displaying the counter variable present in that scope. Second, many of these
messages are repetitious. If you already know how your functions work, or that they work correctly, thereis no need to step into
them.

To avoid stepping through functions that you don’t need to review, gdb has a command called next. The next command acts like
step, with the exception that it will not trace into your functions. Following is an example of aloop using next:

(gdb) next
11 input = getinput();
2:input =12
1: counter = 2
(gdb) n
Enter an integer, or use -1 to exit: 10
12 if (input == -1) exit(0);
2:input =10
1: counter = 2
(gdb) n
13 printmessage(counter, input);
2: input = 10
1: counter = 2
(gdb) n
For number 3, you entered 10 (-2 more than last time)
10 for (counter = 0; counter < 200; counter++) {
2:input =10
1: counter = 2

The difference hereis quite significant! Y ou are no longer forced to wade through functions that you may consider irrelevant. So,
this can be a great time-saver if you know where your problemslie. Many users use both next and step while debugging their
programs; doing so is perfectly fine.

Before proceeding to the next section, exit gdb as follows:

(gdb) quit
The program isrunning. Exit anyway? (y or n) y

Debugging other processes

176



Developers sometimes face the special need to debug processes that are already running. This might be the case when a process
cannot be started from inside the debugger. For instance, the process may be started by the inetd super-server or at boot time. Or,
perhaps the process needs to run for some time before you can look at it. Maybe a program that isinside a debugger doesn’t know
how to invoke the process.

In any of these cases, attaching gdb to the process after it is started may be your best (or only) option for debugging. Y our
debugger provides you with two ways to do this. Y ou can specify the numeric PID of the process on the gdb command line, or you
can use the attach command while aready in gdb.

| will review this type of capability by using the examplein Listing 10-1. Y ou will need to open two X windows for this example,
or use two different virtual consoles because you'll be interacting with two separate interfaces. In your first window, start up the
program as you normally would:

$ ./ch10-2
Enter a string, or leave blank when done: Hi!

Now, leave this program running. In a second window, the first thing you need to do is determine the process ID (PID) of the
running process. Y ou can do that with the following command:

$psax|grep chl0-2|grep -v grep
532ptgl S 0:00./ch10-2

This command saysto list all processes, search for lines that contain the text ch10-2, and eliminate the lines that contain the text
grep. The far-left number isthe process ID to use. Most likely, your number will be different than this one; substitute your number
for mine in the following examples.

With this piece of information, you are ready to invoke gdb on the already running process. Y ou can do so by typing gdb ch10-2
532 on the command line, as shown in the following example. Again, replace the number 532 with your particular PID value:

$ gdb ch10-2 532
GNU gdb 4.18
Copyright 1998 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type “show copying” to see the conditions.
Thereis absolutely no warranty for GDB. Type “show warranty” for details.
This GDB was configured as “i686-pc-linux-gnu”...

/homel/jgoerzen/t/532: No such file or directory.

Attaching to program: /home/jgoerzen/t/ch10-2, process 532
Reading symbols from /lib/libc.so.6...done.

Reading symbols from /lib/ld-linux.so.2...done.

0x400b8884 in read () from /lib/libc.s0.6

In the preceding example, the line that begins with “ Attaching to program” confirms that gdb managed to successfully attach itself
to the program.

At this point, the question to ask is—where in the program is the execution? The debugger tells you; the last line indicates that it's
inaread() call. The program doesn’t contain aread() call; in fact, this call occurs from within the C library, as the debugger
indicates. It s probably more useful to obtain a backtrace and find out where the execution isin your own code. I'll discuss the
backtrace in the following example in more detail when you get a chance to analyze core dumps:

(gdb) bt
#0 0x400b8884 in read () from /lib/libc.so.6
#1 0x400ffeé6cin _ DTOR _END__ () from/lib/libc.s0.6
#2 0x4006bbb9 in _10_new_file_underflow () from /lib/libc.so0.6
#3 0x4006cd1lin 10 default uflow () from/lib/libc.s0.6
#4 0x4006cc30in __uflow () from/lib/libc.s0.6
#5 0x40068fd5 in _|O_getline_info () from /lib/libc.s0.6
#6 0x40068f86 in _|O_getline () from /lib/libc.s0.6
#7 0x40068790 in fgets () from /lib/libc.s0.6

177



#8 0x80485d7 in getinput () at ch10-2.¢:35
#9 0x8048537 inmain () at ch10-2.c:19

Thefirst eight stack frames (numbered zero through seven) in this particular case occur inside the C library. Go ahead and step so
that you can return to your own code:

Note Your debugger may not show the frames from the C library (numbered zero through seven above), or it may show
different frames depending on your library version. This variation is normal; if you do not have the debugging
librariesinstalled (they are optional and may not be installed by default), you will not see these extra frames.
Therefore, you will also not need to step until returning to your own code as shown in the example below.

(gdb) s
Single stepping until exit from function read,
which has no line number information.

At this point, gdb appearsto hang. It hasn't really, but I’ll examine exactly what is going on beneath the hood. When you attach to
the process, the processisinside the read() system call. Thisis not where you send a debugger when working on some ordinary
code. Furthermore, several more stack frames occur inside the C library. Again, these are not areas that you will trace into—and,
in fact, you can’t trace into them unless you have special versions of the library.

When you ask gdb to step while the process is deep within those frames, gdb simply executes the code until control returns to your
software. This means that gdb executes code until the fgets() function returns. The gdb program is now waiting for the return from
fgets(). The function will not return until you type something in the other window. Do so now:

Enter a string, or leave blank when done: M akefile

At this point, you'll notice activity in your own gdb window. For now, keep pressing the S key until you get back to your own
area. The output may be different on your system and you may need to press s a different number of times, but the ideais the
same. Because gdb cannot trace the code in these areas, it simply executesit and lets you know when it changes stack frames:

0x4006c311in 1O file read () from/lib/libc.so.6
(gdb) s

Single stepping until exit from function _|O_file_read,
which has no line number information.

0x4006bbb9 in |0 _new_file underflow () from/lib/libc.s0.6
(gdb) s

Single stepping until exit from function _IO_new_file_underflow,
which has no line number information.

0x4006cd1lin _|O_default_uflow () from/lib/libc.so.6
(gdb) s

Single stepping until exit from function _1O_default_uflow,
which has no line number information.

0x4006cc30in __uflow () from/lib/libc.s0.6
(gdb) s

Single stepping until exit from function __uflow,

which has no line number information.

0x40068fd5 in _1O_getline_info () from /lib/libc.so0.6
(gdb) s

Single stepping until exit from function _IO_getline_info,
which has no line number information.

0x40068f86 in _10_getline () from /lib/libc.s0.6

(gdb) s

Single stepping until exit from function _|O_getline,

which has no line number information.

0x40068790 in fgets () from /lib/libc.s0.6

(gdb) s

Single stepping until exit from function fgets,

which has no line number information.

getinput () at ch10-2.c:36

36 input[strlen(input)-1] = 0;

Y ou have now returned to your own code. For future reference, you might note that you can set atemporary breakpoint with

178



tbreak (see the section on breakpoints later in this chapter) for line 36, and then use the continue command to proceed to this
location.

Now, you might notice that the program in the other window appearsto be stalled. That is correct; the code there is executing only
asyou permit it. Go ahead and tell gdb to execute code until the return from the getinput() function:

(gdb) finish

Run till exit from#0 getinput () at ch10-2.c:36

0x8048537 in main () at ch10-2.c:19

19 svalueg| counter] = getinput();

Valuereturned is $1 = (struct TAG_datastruct *) 0x8049b00

The debugger enables the program to execute until the end of the getinput() function. For good measure, confirm that you can
examine variables at this point:

(gdb) s

20 if (Isvaluegcounter]) break;
(gdb) print svalues] counter]->string
$2 = 0x8049b10 “Makefile’

The variable display is successful. Continue stepping through the code for a few instructions:

(gdb) s
21 maxval = counter;
(gdb) s
18 for (counter = 0; counter < 200; counter++) {
(gdb) s
19 svalueq] counter] = getinput();
(gdb) s
getinput () at ch10-2.c:34
34 printf(“Enter a string, or leave blank when done: “);
(gdb) s
35 fgets(input, 79, stdin);
(gdb) s

At this point, you have returned to the input area. As before, gdb is waiting for the code that reads your input to execute. Type
something in the application window. In the following example, | typed gdb:

Enter a string, or leave blank when done: gdb
After doing so, gdb returns with a prompt. Now use continue to tell gdb to let the program finish executing:
36 input[strlen(input)-1] = 0;
(gdb) continue
Continuing.
The application window displays another prompt. Press Enter to leave it blank and enable the program to terminate:
Enter a string, or leave blank when done: Enter
This structure has a checksum of 798. Itsstringis:
Makefile

The program exits and the shell prompt returns. Meanwhile, in gdb’ s window, you see:

Program exited normally.
(gdb)

In other words, gdb confirms that the program successfully exited.
Displaying Data

In the previous section, | gave you atour of using gdb to step through your programs, and | introduced you to many features of
gdb. One of them is the capability of displaying data from your program. Here, you'll learn more details about these capabilities

179



and how to use them.
Using the print and display commands
The two most commonly used commands for displaying data are print and display. These commands are more powerful than
simple integer value displays. Listing 10-1 shows you a program that contains some more complex data structures. This program
uses structures, arrays of pointers, and other more tricky data structures.
Note Listing 10-1 is available online.
Listing 10-1: Example for debugging: ch10-2.c
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
typedef struct TAG_datastruct {
char *string;
int checksum;
} datastruct;

datastruct *getinput(void);
void printmessage(datastruct * todisp);

int main(void) {

int counter;
int maxval = 0;
datastruct * svalues[200];

for (counter = O; counter < 200; counter++) {
svalueg| counter] = getinput();

if (svaluegcounter]) break;

maxval = counter;

}
printmessage(sval ues maxval / 2]);

return O;
}

datastruct * getinput(void) {
char input[80];
datastruct *instruct;
int counter;

printf(“Enter a string, or leave blank when done: “);
fgets(input, 79, stdin);
input[strlen(input)-1] = O;
if (strlen(input) == 0)
return NULL,;
instruct = malloc(sizeof (datastruct));
instruct->string = strdup(input);
instruct->checksum = 0;
for (counter = O; counter < strlen(instruct->string); counter++) {
instruct->checksum += instruct->string[ counter];
}

return instruct;

}

void printmessage(datastruct *todisp) {
printf(“ This structure has a checksum of %d. Itsstring is:\n”,
todisp->checksum);

180



puts(todisp->string);
}

It'swould be useful to examine the normal output of this program before examining it with the debugger.

Here's a sample execution:

$ ./ch10-2
Enter a string, or leave blank when done: Hello
Enter astring, or leave blank when done: Thisisthe second line.
Enter a string, or leave blank when done: Thisisthethird
Enter a string, or leave blank when done: gdb isinteresting
Enter a string, or leave blank when done: Hmm...!
Enter astring, or leave blank when done: Enter
This structure has a checksum of 1584. Itsstringis:
Thisisthe third

Examining the code, you can see that there is a datastruct in which data is stored. The main() function contains an array of pointers
to such structs. Note that this array is not an array of structsitself; rather it is an array of pointersto structs. Thus, thereisaloop
that is used to populate this array with data. In thisloop, the getinput() function is called. This function returns a pointer to a struct,
which isthen placed into the array. If the pointer is null, the loop exits before filling al 200 elements. Otherwise, the maxval
variableis set to the current array index. Finally, an element near the middle of the populated array is selected for printing. The
pointer is passed to printmessage(), which displays the information. After that, the program exits.

Hereis an example of how gdb is capable of accessing the data in this program:

$ gce -ggdb3 -Wall -0 ch10-2 ch10-2.c
$ gdb ch10-2
GNU gdb 4.18
Copyright 1998 Free Software Foundation, Inc.
GDB isfree software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type “show copying” to see the conditions.
There is absolutely no warranty for GDB. Type “show warranty” for details.
This GDB was configured as “ & phaev56-unknown-linux-gnu”...
(gdb) break main
Breakpoint 1 at 0x1200005b8: file ch10-2.c, line 15.
(gdb) run
Starting program: /home/jgoerzen/t/ch10-2

Breakpoint 1, main () at ch10-2.c:15
15 int maxval = 0;

Thusfar, this has been standard fare for starting a program in a debugger. Suppose you wish to examine the contents of the svalues
array at this point. Your first inclination, no doubt, would be to use print svalues. Giveit atry:

(gdb) print svalues

$2 = {0x0, 0x0, 0x0, 0x0, 0x20000013490, 0x2000011dd90, 0x3e8, 0x3e8, 0x3e8,
0x3e8, 0x2000011dd88, 0x120000040, 0x0 <repeats 13 times>, 0x1, 0x0, 0xO,
0x0, Ox11ffff558, 0x0, 0x1, 0x0, 0x120000190, 0x0, 0x0, 0x0, 0x2000011€168,
0x2000033e1c0, 0x20000347290, 0x0, 0x2000011€168, 0x2000, 0x20000347290,
0x3e8, 0x0, 0x20000010210, 0x2000001e200, 0x20000151b58, 0x20000343560,
0x2000033e1c0, 0x340, 0x0, Ox11ffff750, 0x0, 0x2000011€168,
OxfiffFfFFFFfffff, Ox20000347290, 0x2000014fa58, 0x20000341bd8,
0x200003474b8, 0x200003474a8, 0x200003476a8, 0x11ffff7a0, 0x20000010210,
0x2000001e200, 0x20000150ac0, 0x200003428d0, 0x0, 0x2000011e168, 0x0,

This sort of thing continues for several more pages. At this point the values are random memory contents, and mean essentially
nothing. To confirm this, you can try dereferencing a pointer as follows:

(gdb) print svalueq[0]->checksum
Cannot access memory at address 0x8.

181



If you attempt to access that value in your program at this point in its execution, it will segfault (crash because of a memory access
problem). Step through the program a bit so that you can have some useful datato work with:

(gdb) s

18 for (counter = O; counter < 200; counter++) {
(gdb) s

19 svalueq] counter] = getinput();

(gdb) s

getinput () at ch10-2.¢:29
29  datastruct *getinput(void) {
(gdb) s
getinput () at ch10-2.c:34
34 printf(“ Enter a string, or leave blank when done: “);
(gdb) s
35 fgets(input, 79, stdin);
(gdb) s
Enter a string, or leave blank when done: Hello.
36 input[strlen(input)-1] = 0;

Take alook at the contents of the input string now:

(gdb) print input
$3 = “Hello.\n\000_\003\000 \001", ‘\O0O’ <repeats 11 times>,
“\001\000\000\000\000\002\000\0002_\021\000\000\002\000\000\b\r\001\000\000\002\000\0000\r\000\000\000\002\000\000\002\000\000\00

This may seem rather strange for output of a string that should contain only one word. There is a simple explanation, however.
Recall that in C, strings are merely arrays. The data placed into the string overwrites the memory near the start only; it does not
touch the remaining parts of the string. After the newline character (\n), anull character (\00O) isinserted. The null character
indicates the end of the string in C; this precise behavior is used by the following line to strip off the newline character:

(gdb) s

37 if (strlen(input) == 0)

(gdb) print input

$4 = “Hell0.\000\000_\003\000 \001", ‘\000’ <repeats 11 times>,
“\001\000\000\000\000\002\000\000%_\021\000\000\002\000\000\b\r\001\000\000\002\000\0000\r\000\000\000\002\000\000\002\000\000\00

Notice that the \n is gone; it was replaced by \000. Y ou also can use familiar constructs from the language being debugged to
access arrays. For instance:

(gdb) print input[0]
$5=72'H

This print command is used to display the single character (H) at the start of the string—the first element of the array. Step through
the program a bit further:

(gdb) s
39 instruct = malloc(sizeof (datastruct));
(gdb) s
40 instruct->string = strdup(input);
(gdb) s
41 instruct->checksum = 0;
(gdb) s
42 for (counter = 0; counter < strlen(instruct->string); counter++) {

Now take alook at the contents of the instruct variable. Y our first inkling might be to use the following:

(gdb) print instruct
$6 = (datastruct *) 0x120100f80

Thisisn't particularly useful; because instruct is a pointer, gdb obligingly displays the data—its memory address. Perhaps it would
be more useful to examine the data of the structure pointed to by the variable:

182



(gdb) print *instruct
$7 = { string = 0x120100fa0 “Hello.”, checksum = 0}

Y es, dereferencing the pointer produces useful results! The debugger obligingly displays the different itemsin the struct, and their
contents. You also can use standard C syntax to drill deeper. For instance:

(gdb) print instruct->string[Q]
$8=72'H

Continue stepping through the code:

(gdb) s

43 instruct->checksum += instruct->string[ counter];
(gdb) s

42 for (counter = 0; counter < strlen(instruct->string); counter++) {
(gdb) s

43 instruct->checksum += instruct->string[ counter];

Thisloop is particularly uninteresting. Continue with the function until it exits by using the finish command in gdb. Here isthe
resulting output:

(gdb) finish

Run till exit from#0 getinput () at ch10-2.¢:43
0x1200005d8 in main () at ch10-2.c:19

19 svalueg| counter] = getinput();
Valuereturned is $9 = (datastruct *) 0x120100f80

Stepping now assigns the relevant value to the appropriate spot in the array of pointers. Take another ook at the array:

(gdb) print svalues
$10 = { 0x120100f80, 0x0, 0x0, 0x0, 0x20000013490, 0x2000011dd90, 0x3e8, 0x3e8,
0x3e8, 0x3e8, 0x2000011dd88, 0x120000040, 0x0 <repeats 13 times>, 0x1, 00,
0x0, 0x0, 0x11ffff558, 0x0, Ox1, 0x0, 0x120000190, 0x0, 0x0, 0O,
0x2000011e168, 0x2000033e1c0, 0x20000347290, 0x0, 0x2000011e168, 0x2000,
0x20000347290, 0x3e8, 0x0, 0x20000010210, 0x2000001ea00, 0x20000151h58,
0x20000343560, 0x2000033e1c0, 0x340, 0x0, 0x11ffff750, 0x0, 0x2000011e168,

Notice how the first value in this example, 0x120100f80, isidentical to the value returned when you used the finish command.
Good!

Examining memory

While learning about print and display in the previous section, you saw many memory addresses. Although you can often
dereference pointers to access them, sometimes you want to drill down to alower level. To do this, gdb provides a command
named x. The syntax of X is

x/format address

where format specifies how many items should be displayed, followed by how the memory should be displayed. Following isan
example from the already-running program:

(gdb) print *svalueg 0]

$12 = {string = 0x120100fa0 “Hello.”, checksum = 546}
(gdb) x/2c 0x120100fa0

0x120100fa0: 72‘H’ 101‘¢€

Here, determining the memory addressisthe first thing that is done. In this case, it is 0x120100fa0. The address will be different in
your situation; simply use the address given to you in the examples. Then, gdb is asked to display two characters starting at that
address, which it does.

(gdb) x/1s 0x120100fa0
183



0x120100fa0:  “Hello.”
In this example, gdb is asked to display one string from that location, which gives the entire word. The various formats supported
by x are summarized in Table 10-1. Note that when using the numeric items, you can specify a size after the item. For instance,
x/5xb will print the hexadecimal values of five bytes.

Table 10-1: Gdb x Command For mats

Character M eaning

Address (pointer)

Displays the corresponding item by bytes

Char

Decimal

Float

Displays the corresponding item by giant words (8 bytes)
Displays the corresponding item by half-words
Octd

String

Binary (raw characters)

Unsigned (decimal)

Displays the correspinding item by words

Hexadecimal

ngc”mo:rm-noom:pl

Using the printf command

Another way to display datain gdb is by using its built-in printf command. Like the printf() function in C, this command accepts a
format specifier and various arguments. Here's an example of how the printf command is used:

(gdb) printf “%2.25, (char *)0x120100fa0
He(gdb)

Asyou see, you also can access memory directly by using gdb’s printf command. Note, though, that the output was unfortunately
not suffixed with a newline character, so the output and the prompt run together. Better add a newline character asyou doin C,
such as:

(gdb) printf” 9% 2.2s\n”, (char *)0x120100fa0
He

Better! But printf is even more powerful than that. Consider this bit of code:

(gdb) printf “%d\n”, 100 * svalueg 0]->checksum
54600

184



As you can see, you can eval uate simple expressions here. Thisis not limited to printf, but printf often provesto be an ideal place
in which to use them.

Using the set command

In addition to displaying variables, you can modify them. This can be useful if, for instance, you spot your program doing
something wrong with variables, but wish to reset them to the correct value and continue tracing execution. Alternatively, you may
purposely prefer to set variables to certain val ues to be able to determine whether or not your code is capable of dealing with them.

Consider this example:

(gdb) print svalueq[0]->checksum
$1 =546
(gdb) set variable svalueg 0]->checksum = 2000
(gdb) print svalueq[0]->checksum
$2 =2000

Y ou can see that gdb has modified the value of the variable. If you run the program, the variable will remain with the new value.
Using Breakpoints and Watches

Often when debugging a large program, you may have some idea of where to locate a problem. Stepping through the entire
program, even skipping function calls, could be prohibitive. A better solution, then, is to use breakpoints or watches.

These are used to interrupt execution of a program when a certain condition becomes true. This condition could be: that a variable
is set to a certain value, that execution of the program reaches a certain point, or even that a certain arbitrary expression becomes

true.
Setting breakpoints

The simplest way to set breakpointsis with the break command. With this command, you simply specify alocation in the code at
which execution should be interrupted and control should be given to you and the debugger. For example:

$ gdb ch10-2
GNU gdb 4.18
Copyright 1998 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type “show copying” to see the conditions.
There is absolutely no warranty for GDB. Type “show warranty” for details.
This GDB was configured as * alphaev56-unknown-linux-gnu” ...
(gdb) break ch10-2.c:21
Breakpoint 1 at 0x12000061c: file ch10-2.c, line 21.
(gdb) break printmessage
Breakpoint 2 at 0x120000848: file ch10-2.c, line 48.

In this example, two breakpoints are set—one on line 21 of the program and another on line 48. The debugger automatically finds
the location of the start of the function in the second case. If you run the program now, it will execute until it getsto the
breakpoint:

(gdb) run

Starting program: /home/jgoerzen/t/ch10-2
Enter a string, or leave blank when done: Hello!

Breakpoint 1, main () at ch10-2.c:21
21 maxval = counter;

The program isinvoked and proceeds to run until it encounters the first breakpoint. At this point, you are free to do whatever you

need to do to continue debugging the program. Perhaps you will step through the code, or examine the contents of some variables.

When you are done, you can issue a continue command, which causes execution to resume until a breakpoint is reached again or
the program exits.

(gdb) s
18 for (counter = O; counter < 200; counter++) {

185



(gdb) s
19 svalueg[ counter] = getinput();
(gdb) continue
Continuing.
Enter a string, or leave blank when done: Hello!

Breakpoint 1, main () at ch10-2.c:21

21 maxval = counter;

(gdb) continue

Continuing.

Enter astring, or leave blank when done: Enter

Breakpoint 2, printmessage (todi sp=0x100000002) at ch10-2.c:48
48  void printmessage(datastruct *todisp) {

In this situation, gdb is asked to continue twice, and does so both times until another breakpoint is reached. If you continue a third
time, gdb continues until the program exits:

(gdb) continue
Continuing.

This structure has a checksum of 533. Itsstringis:
Hello!

Program exited normally.

Y ou can also set a conditional breakpoint, one that only triggersif some other condition istrue. This can be particularly useful if a
problem only occurs when certain values are set to variables, such asin the following example:

$ gdb ch10-2
GNU gdb 4.18
Copyright 1998 Free Software Foundation, Inc.
GDB isfree software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type “show copying” to see the conditions.
There is absolutely no warranty for GDB. Type “show warranty” for details.
This GDB was configured as “ & phaev56-unknown-linux-gnu”...
(gdb) break 21
Breakpoint 1 at 0x12000061c: file ch10-2.c, line 21.

Here, the program is loaded and a breakpoint is set for line 21. Now, you apply a condition to the breakpoint. Notice how gdb
assigned a number to the breakpoint—it is breakpoint 1. To apply a condition to it, you specify which breakpoint, and then the
expression that must be true in order for execution to be interrupted:

(gdb) condition 1 svalueq counter]->checksum > 700
(gdb) run

Starting program: /home/jgoerzen/t/ch10-2

Enter astring, or leave blank when done: Hi

Enter a string, or leave blank when done: Hello

Enter a string, or leave blank when done: How areyou?

Breakpoint 1, main () at ch10-2.c:21
21 maxval = counter;

Now the program will continue running until the condition becomes true, asit will only when a sufficiently large string is
encountered. After the expression becomes true, the breakpoint takes effect, and the execution is interrupted.

The GNU debugger also provides a capability called temporary breakpoints. These are breakpoints that are hit only once. That is,
as soon as the breakpoint istriggered, it is automatically deleted. Note that it is possible to assign a condition to atemporary
breakpoint exactly as you can to a standard one.

The command to set up atemporary breakpoint is tbreak, as shown in the following example. This output uses the code for ch10-
4.c, printed in the Core dump analysis section:

186



$ gdb ch10-4
GNU gdb 4.18
Copyright 1998 Free Software Foundation, Inc.
GDB isfree software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type “show copying” to see the conditions.
Thereis absolutely no warranty for GDB. Type “show warranty” for details.
This GDB was configured as “i686-pc-linux-gnu”...
(gdb) tbreak 43
Breakpoint 1 at 0x8048647: file ch10-4.c, line 43.
(gdb) run
Starting program: /home/jgoerzen/t/ch10-4
Enter a string, or leave blank when done: Hello!
getinput () at ch10-4.c:43
43 instruct->checksum += instruct->string[ counter];
(gdb) continue
Continuing.
Enter a string, or leave blank when done; Hi!
Enter a string, or leave blank when done: Enter

Notice how the breakpoint was triggered only once, even though the program passed through that section of code many more
times. Interestingly enough, this tbreak command is the same as the following two commands:

break 43
enable delete 1

This requests that a breakpoint should be created, and that breakpoint 1 should be deleted after it is triggered.

Setting watches

Y ou can cause execution of a program to be aborted when a certain condition becomes true by using watches. Y ou can set an
arbitrary expression to be watched with the watch command. When this expression becomes true, the execution isimmediately
interrupted. That is, watches are not tied to interrupting execution at any particular point in the program; rather, they interrupt
excecution whenever the expression turns true.

Because watches are not tied to a specific part of code, and thus are evaluated at arbitrary times, if any of the variables used in the
watch go out of scope, the watch expression no longer can be evaluated. Breakpoint conditionals do not have this particular
problem because they are evaluated only at fixed placed in the code.

Here’'saquick look at some code you can use to examine watches, named ch10-3.c:
#include <stdio.h>

int main(void) {
int counter;
for (counter = 0; counter < 30; counter++) {
if (counter % 2 ==0) {
printf(“ Counter: %d\n”, counter);
}
}
}

When run, the result isfairly simple:

$ gce -ggdb3 -0 ch10-3 ch10-3.c
$ ./ch10-3
Counter: 0
Counter: 2
Counter: 4
Counter: 6
Counter: 8

187



Counter: 10
Counter: 12
Counter: 14
Counter: 16
Counter: 18
Counter: 20
Counter: 22
Counter: 24
Counter: 26
Counter: 28

If you start this program inside gdb, you will have an opportunity to set a particular watchpoint to interrupt execution halfway
through, for instance:

$ gdb ch10-3
GNU gdb 4.18
Copyright 1998 Free Software Foundation, Inc.
GDB isfree software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type “show copying” to see the conditions.
Thereis absolutely no warranty for GDB. Type “show warranty” for details.
This GDB was configured as “ & phaev56-unknown-linux-gnu”...

So gdb is started in normal fashion. Observe what happens if awatch is set at this particular point:

(gdb) watch counter > 15
No symbol “counter” in current context.

Thisis because execution has not reached the main() function yet, and as such, the counter variableis not in scope yet. Step
through the code until it is.

(gdb) break main

Breakpoint 1 at 0x120000428: file ch10-3.c, line 3.
(gdb) run

Starting program: /home/jgoerzen/t/ch10-3

Breakpoint 1, main () at ch10-3.c:3
3 int main(void) {

(gdb) s

5 for (counter = O; counter < 30; counter++) {
(gdb) s

6 if (counter % 2 == 0) {

Now that we are in scope of the relevant variable, try to set the watch again:

(gdb) watch counter > 15
Hardware watchpoint 2: counter > 15

And try running the program:

(gdb) continue
Continuing.

#0 main () at ch10-3.c:6
6 if (counter % 2 == 0) {
Counter: O

Counter: 2

Counter: 4

Counter: 6

Counter: 8

Counter: 10

Counter: 12

Counter: 14

188



Hardware watchpoint 2: counter > 15

Oldvalue=0
New value=1
0x8048418 in main () at ch10-3.c:5
5 for (counter = O; counter < 30; counter++) {

And so the execution of the program isinterrupted by the specified watch expression. This expression is can be thought of as being
continuously evaluated until its truth value changes.

Here'salook at a situation in which awatch will not work. I'll refer to the ch10-2.c code again for this example:

$ gdb ch10-2
GNU gdb 4.18
Copyright 1998 Free Software Foundation, Inc.
GDB isfree software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type “show copying” to see the conditions.
Thereis absolutely no warranty for GDB. Type “show warranty” for details.
This GDB was configured as “i686-pc-linux-gnu”...
(gdb) break getinput
Breakpoint 1 at 0x80485h9: file ch10-2.c, line 34.
(gdb) run
Starting program: /home/jgoerzen/t/ch10-2

Breakpoint 1, getinput () at ch10-2.¢c:34

34 printf(“Enter a string, or leave blank when done: “);
(gdb) s

35 fgets(input, 79, stdin);
(gdb) s

Enter a string, or leave blank when done: Hi

36 input[strlen(input)-1] = 0;
(gdb) s

37 if (strlen(input) == 0)
(gdb) s

39 instruct = malloc(sizeof (datastruct));
(gdb) s

40 instruct->string = strdup(input);
(gdb) s

41 instruct->checksum = 0;
(gdb) s

42 for (counter = 0; counter < strlen(instruct->string); counter++) {
(gdb) watch instruct->checksum > 750

Hardware watchpoint 2: instruct->checksum > 750

Now awatchpoint is set. However, see what happens when execution continues:

(gdb) continue

Continuing.

#0 getinput () at ch10-2.c:42
42 for (counter = 0; counter < strlen(instruct->string); counter++) {
Watchpoint 2 deleted because the program has left the block in

which its expression is valid.

0x8048537 in main () at ch10-2.c:19

19 svalueq] counter] = getinput();

Immediately when the relevant variable goes out of scope, the watch expression cannot be evaluated, and gdb informs you of this.

Therefore, you can see that both breakpoints and watches have their uses, but neither is necessarily a solution for every problem.
Core Dump Analysis

When your programs crash, you want to find out why. Sometimes, you can’t run gdb on the program to trace its execution.

189



Perhaps the program is running on someone else’s compuiter, or it is timing-sensitive and manually stepping through it would
cause unacceptable delays.

So what can you do in acase like this? Well, you can, in many cases, determine the cause of a crash even after a program has
ended. This capability comes thanks to Linux’s core dump facility. When your program crashes, Linux can create a core file from
it. Thisfile contains a copy of the process's memory and other information about it. With thisinformation, gdb can enable you to

find out details about what the program was doing when it crashed.

Before we begin analyzing core dumps, first you need to make sure that they are enabled on your account. Some distributions or
system administrators may disable core dumps by default. Y ou can enable them by running this command:

$ ulimit -c unlimited

Having done that, you can work with these core files. Consider the code in Listing 10-2, which contains a small modification from
the ch10-4.c codein use earlier.

Note Listing 10-2 is available online.
Listing 10-2: Example with a bug
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
typedef struct TAG_datastruct {

char *string;
int checksum;
} datastruct;

datastruct * getinput(void);
void printmessage(datastruct *todisp);

int main(void) {

int counter;
int maxval = 0;
datastruct *sval ueg[200];

for (counter = O; counter < 200; counter++) {
svalueg| counter] = getinput();
if (svaluegcounter]) break;
maxval = counter;

}
printmessage(sval ue  maxval * 2]);

return O;
}

datastruct * getinput(void) {
char input[80];
datastruct *instruct;
int counter;

printf(“Enter a string, or leave blank when done: “);
fgets(input, 79, stdin);
input[strlen(input)-1] = O;
if (strlen(input) == 0)
return NULL;
instruct = malloc(sizeof (datastruct));
instruct->string = strdup(input);
instruct->checksum = 0;
for (counter = O; counter < strlen(instruct->string); counter++) {

190



instruct->checksum += instruct->string[ counter];
}

return instruct;

}

void printmessage(datastruct *todisp) {
printf(“ This structure has a checksum of %d. Itsstringis:\n”,
todisp->checksum);
puts(todisp->string);
}

Now, compile and run the program. This time, when you run it, you won’t be running it inside gdb; it will be running on its own:

$ gce -ggdb3 -0 ch10-4 ch10-4.c
$ ./ch10-4
Enter a string, or leave blank when done: Hi!
Enter astring, or leave blank when done: | like Linux.
Enter a string, or leave blank when done: How ar e you today?
Enter a string, or leave blank when done: Enter
This structure has a checksum of -1541537728. Itsstringis:
Segmentation fault (core dumped)

Obviously, something is seriously wrong here. Because the printed checksum isincorrect, the program crashed. To see what
happened, the first thing you should do is load the corefile into gdb. Y ou do this as follows:

$ gdb ch10-4 core
GNU gdb 4.18
Copyright 1998 Free Software Foundation, Inc.
GDB isfree software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type “show copying” to see the conditions.
There is absolutely no warranty for GDB. Type “show warranty” for details.
This GDB was configured as “i686-pc-linux-gnu”...
Core was generated by "./ch10-4'.
Program terminated with signal 11, Segmentation fault.
Reading symbols from /lib/libc.s0.6...done.
Reading symbols from /lib/ld-linux.so.2...done.
#0 0x8048686 in printmessage (todisp=0x0) at ch10-4.c:49
49 printf(“ This structure has a checksum of %d. Its string is\n”,

Already, you have some clues to determine the problem. The debugger notes that the program crashed from a segmentation fault,
and that it can trace the problem to a call to printf(). Thisis already more information than you may sometimes have, but I'll go
into more detail.

From here, agood first step isto find out exactly where in the program the system was prior to the crash. Y ou can do this by
getting a stack backtrace using either the bt or info stack commands. The following example shows the outpuit:

(gdb) bt
#0 0x8048686 in printmessage (todisp=0x0) at ch10-4.c:49
#1 0x804858ein main () at chl0-4.c:24

Here, gdb istelling you what the last line to be executed in each function is. The interesting one isin frame zero (the frame
numbers are on the left), on line 49. Thisis the line highlighted by gdb in the above example.

Something else isinteresting. Notice that it says todisp is zero when printmessage() was called. Because todisp is a pointer, it
should never be zero. Y ou can verify its state by using print:

(gdb) print todisp
$1 = (struct TAG_datastruct *) 0x0

So, how you have deduced that the problem is not with printmessage(), but rather with itsinvocation. To examineitscal in
main(), you need to change the active stack frame to frame 1, whichiisin main():

191



(gdb) frame 1
#1 0x804858ein main () at ch10-4.c:24
24 printmessage(svalues{maxval * 2]);

Now in frame 1, you can examine the variablesin main(). Here, you should look at several variablesto ensure that they seem
valid:

(gdb) print counter
$2=3
(gdb) print maxval
$3=2
(gdb) print svalueg[1]
$4 = (struct TAG_datastruct *) 0x8049b00
(gdb) print *svalueg[1]
$5 = {string = 0x8049b10 “I like Linux.”, checksum = 1132}

Thusfar, everything isin order. Now look at the value that is being passed in to printmessage():

(gdb) print svaluegmaxval * 2]
$6 = (struct TAG_datastruct *) 0x0

There isadefinite problem there! Thistime, take another look at svalues, dereferencing the pointer:

(gdb) print *svaluegfmaxval * 2]
Cannot access memory at address 0x0.

Now you have pinpointed the problem. The expression svaluesimaxval * 2] islooking outside the range of those itemsin svalues
that already had pointers stored.

Although this kind of analysis of core dumps can be extremely useful, it is not fool proof. If the stack was corrupted before the
program completely crashed, you may not be able to get much useful data at all. In those cases, you are probably limited to tracing
through the program. However, in many cases, core dump analysis can prove quite useful.

Here'salook at another program. Thisis the example from the printing and displaying data section in this chapter. Consider two
Separate invocations of the program:

$ ./ch10-2
Enter a string, or leave blank when done: Hello!
Enter a string, or leave blank when done: | enjoy Linux.
Enter a string, or leave blank when done: Gdb is interesting!
Enter a string, or leave blank when done: Enter
This structure has a checksum of 1260. Itsstringis:
| enjoy Linux.
$ ./ch10-2
Enter astring, or leave blank when done: Enter
Segmentation fault (core dumped)

The program crashed after the second invocation. Y ou can load up gdb to find out what happened. After doing so, you can
formulate a fix. Start by loading the program in gdb:

$ gdb ch10-2 core
GNU gdb 4.18
Copyright 1998 Free Software Foundation, Inc.
GDB isfree software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type “show copying” to see the conditions.
There is absolutely no warranty for GDB. Type “show warranty” for details.
This GDB was configured as “i686-pc-linux-gnu”...
Core was generated by "./ch10-2'.
Program terminated with signal 11, Segmentation fault.
Reading symbols from /lib/libc.so.6...done.

192



Reading symbols from /lib/Id-linux.so.2...done.
#0 0x8048696 in printmessage (todisp=0x0) at ch10-2.c:49
49 printf(“ This structure has a checksum of %d. Itsstringis\n”,

Asbefore, start with a backtrace. Notice, though, where gdb says todisp=0x0; thisis a clue that some invalid value got passed in to
the printmessage() function:

(gdb) bt
#0 0x8048696 in printmessage (todisp=0x0) at ch10-2.c:49
#1 0x804859e in main () at ch10-2.c:24

Indeed, the suspicions are confirmed. Switch to frame number 1 and get some context:

(gdb) frame 1

#1 0x804859e in main () at ch10-2.c:24
24 printmessage(svalues maxval / 2]);
(gdb) list

19 svalueq] counter] = getinput();

20 if (Isvaluegcounter]) break;

21 maxval = counter;

22 }

23

24 printmessage(svalues{maxval / 2]);
25

26 return O;

27}

28

The debugger obligingly displaysalist of the code surrounding the call to printmessage(). At this point, take alook at the values of
the variables involved in the call to that function:

(gdb) print maxval

$1=0

(gdb) print svaluegmaxval / 2]
$2 = (struct TAG_datastruct *) 0x0

From this, you can see that maxval is set to zero, which is not incorrect. In fact, this can happen legitimately if the user supplies
only one line of input; that intput will have an index of zero. However, the problem isthat maxval also is set to zero if thereisno
input at al. Because of this, you can’t test maxval to see whether or not a result should be displayed. One solution to this dilemma
isto initialize maxval to -1. Thiswill never be avalue that you will see as an array index, so there is no chance of it being
mistaken for alegitimate index into your array. With that in mind, you can test maxval to see whether or not you ought to print out
some data. Listing 10-3 shows a version of the code with thisfix.

Listing 10-3: Fixed example code

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/* ch10-2.c: Fixed version of the code. */

typedef struct TAG_datastruct {
char *string;
int checksum;

} datastruct;

datastruct *getinput(void);
void printmessage(datastruct * todisp);

int main(void) {
int counter;
int maxval = -1;

193



datastruct *sval ueg[200];

for (counter = O; counter < 200; counter++) {
svalueg| counter] = getinput();

if (svaluegcounter]) break;

maxval = counter;

}

if (maxval > -1) {

printmessage(sval ues{maxval / 2]);
} else{

printf(“No input received; nothing to display.\n”);
}

return O;
}

datastruct * getinput(void) {
char input[80];
datastruct *instruct;
int counter;

printf(“ Enter a string, or leave blank when done: “);
fgets(input, 79, stdin);
input[strlen(input)-1] = O;
if (strlen(input) == 0)

return NULL,;

instruct = malloc(sizeof (datastruct));

instruct->string = strdup(input);
instruct->checksum = 0;

for (counter = O; counter < strlen(instruct->string); counter++) {

instruct->checksum += instruct->string[ counter];

}

return instruct;

}

void printmessage(datastruct *todisp) {
printf(“ This structure has a checksum of %d. Itsstring is:\n”,
todisp->checksum);
puts(todisp->string);
}

If you run this code now, you' Il notice no problems at all:

$./ch10-2
Enter a string, or leave blank when done: Hello!
Enter a string, or leave blank when done: | enjoy Linux.
Enter astring, or leave blank when done: Gdb isinteresting!
Enter astring, or leave blank when done: Enter
This structure has a checksum of 1260. Itsstringis:
| enjoy Linux.
$ ./ch10-2
Enter a string, or leave blank when done: Enter
No input received; nothing to display.
Command Summary

The gdb debugger contains alarge assortment of commands available for your use. Y ou can find information about these
commands while in gdb by using the help command. For your benefit, many of the most useful commands are listed in Table 10-2,
along with their syntax and a description of their purpose and use.

Table 10-2: gdb Debugger Commands

194



Command

Attach
Awatch

break | hbreak

Bt

Cdll

catch catch

catch exec
catch exit
catch fork
catch signal
catch start
catch stop
catch throw
catch vfork
cd

clear

Arguments

Filename

PID

expression
Line-number
Function-name

* Address

[full]

function

[exception]

[name]

[exception]

directory

[Line-Number]

[Function-Name]

Description

Attaches to the specified process or the specified file for debugging
purposes

Interrupts your program whenever the given expressionis
accessed—that is, whenever it is either read from or written to.

Causes program execution to be interrupted at the specified location,
which may be aline number, afunction name, or an address
preceded by an asterisk. If the command specified is hbreak, then it
reguests hardware support for the breakpoint. This support is not
necessarily available on all platforms.

Displaysalisting of all stack frames active at the present time. If full
is specified, local variables from each frame present are also
displayed. Y ou can interact with a given frame by using the frame
command.

Performs a call to the specified function in your program. The
arguments should be the function name along with the parameters, if
necessary, using the syntax of the language of the program being
debugged.

Causes program execution to be interrupted when the named
exception is caught, or when any exception is caught if the name is
omitted.

Causes program execution to be interrupted when the program
attemptsto call a member of the exec series of functions.

Causes execution to be interrupted when a processis almost ready to
exit.

Causes execution to be interrupted when thereis a call to fork().

Causes program execution to be interrupted when the specified
signal name isreceived by the program. If no signal nameis
specified, it interrupts execution when any signal is received.

Causes process execution to be interrupted when a new processis
about to be created.

Causes the execution to be interrupted (asit were) just prior to the
program’ s termination.

Causes process execution to be interrupted when some code throws
an exception. If a specific exception is named, it only hasthis effect
when the thrown exception is the one being watched for.

Interrupts the program’ s execution when vfork() is called.

Changes the current working directory for both the debugger and the
program being debugged to the indicated directory.

Removes the breakpoint from the specified location. If no locationis
specified, it removes any breakpoints set for the current line of the
program’ s execution.

195



commands

condition

continue

delete breakpoints
delete

display

delete

tracepoints

detach

directory

disable <breakpoints
| display

| tracepoints>
display
enable

enable delete

enable <display |
tracepoints>

enable once

finish

frame

help

196

[*Address]
[number]

(see description)

number expression

[count]

[number [number

)|

[number [number

)

[number [number

)

directory

[number [number

)

expression

[number [number ...

1]

[number [number

)

[number [number

)

number [number ...]

number

[topic [topic...]]

Lists gdb commands to be executed when the specified breakpoint is
hit. If no breakpoint is specified, it applies to the most recently set
breakpoint. See gdb’s help commands option for details on
specifying the list of commands to gdb.

Applies the specified expression as a condition to the breakpoint
with the number specified. When this syntax is used, the breakpoint
only causes execution interruption if the given expression evaluates
to true when the breakpoint is encountered.

Causes the program execution to continue until another event is
encountered to interrupt such execution. If the optional count is
specified, it causes the breakpoint (if any) that caused the last
execution interruption to be ignored for the specified number of
iterations over it.

Deletes the specified breakpoints, or all breakpoints if no breakpoint
numbers are specified

Deletes the specified display requests, or all such requestsif no
numbers are specified.

Deletes the specified tracepoints, or al tracepointsif no numbers are
specified.

Causes gdb to detach from a process, which proceeds to execute
normally. If gdb is debugging afile, gdb proceeds to ignore thefile.

Indicates that the specified directory should be added to the
beginning of the search path used for locating files containing source
code for the program being debugged.

Prevents the specified item from being acted upon, or all items of the
specified type if the number is omitted.
Like print, but causes the expression to be displayed each time the

execution stops and returns control to gdb.

Enables the specified breakpoints (after a prior disable command),
or al breakpoints if no numbers are specified.

Enables the specified breakpoint (or al breakpoints), but it will be
deleted after the breakpoint is triggered once.

Re-enables the specified display or tracepoint items, after a prior
disable command. If no numbers are specified, al display or
tracepoint items will be re-enabled.

Enables specified breakpoint for one encounter. When the
breakpoint is triggered, it becomes disabled again automatically.

Continues execution until a breakpoint is encountered or the current
function returnsto its caller.

Selects the specified stack frame for examination or manipulation.
See the bt command to find out the numbers available.

Displays help, optionally on a specific (specified) topic.



info

list

next

print

printf

ptype

pwd

quit

run

set variable

show

until

xbreak

name

[File:]Line- Number

[File:]Function-
Name

* Address

[count]

expression

format, [expression
[.expression]]

type

[command-line
arguments]

variable-name value

variable-name value
name

[File]]Linux-
Number]

[[File]] Function-
Name]

[*Address|

/CountType [Size]
Address

Function-name

* Address

Displays information about the debugger and the program being
debugged. See help info inside gdb for alisting of the information
that can be displayed.

Displays specified lines of source code. With no arguments, it
displays at least ten lines after the most recently displayed source
code line. With a single dash, it displays ten lines prior to the
preceeding display. With one argument, specifying aline number,
function name, or address, it begins display at that location and
continues for approximately ten lines. Two arguments, each of those
types, indicate start and end ranges; the output could span more than
ten linesin this case. Either the line number or the function can be
preceeded by afilename and a colon.

Causes the program to step through aline (as with the step
command). However, unlike step, called functions are executed
without being traced into. The optional argument is arepeat count
and defaults to one.

Displays the result from evaluating the specified expression. A
typical usageisto display the contents of variables.

Displays information using the syntax of printf() in C. The
arguments are the format string and then any necessary arguments,
separated by commas.

Displays the type of the indicated element.

Displays the current working directory of your process being
debugged, which is also the current working directory of gdb.

Exits the gdb debugger.

Starts executing the program to be debugged. If any arguments are
specified, they are passed to the program as command-line
arguments. The run command understands wildcards and 1/0
redirection, but not piping.

Sets the specified internal gdb variable to the indicated value. For a
list of the variables that can be set, use help set in gdb.

Sets the specified program variable to the indicated value.

Displays the item requested by the argument. For acomplete list, use
help show in gdb.

Continues execution until the program reaches a source line greater
than the current one. If alocation is specified (using the same syntax
as break), execution continues until that location is reached.

Displays adump of memory at the specified address, showing a
certain number of elements of the specified type. For details, type
help x from inside gdb or see the Examining Memory section in this
chapter.

Sets a breakpoint to trigger on exit from the function with the
specified name or address.

197



In this chapter, you were introduced to many gdb commands. There remain yet more commands that you can use while debugging
your programs. If you require more details about these commands, you may consult the documentation internal to gdb (with the help
command) or the info documentation provided with gdb.

Summary

In this chapter, you learned how to use gdb to find bugs in your code. Specifically, you learned:

198

Tracking down bugs in code can be difficult. The GNU Debugger, gdb, isatool that you can use to make the task much easier.

You can use gdb as atool to step through your code, often line-by-line. When you invoke gdb, you simply tell it the name of
the program to be debugged, and it will load it into the debugger.

Y ou can use the break command to set a breakpoint, which is alocation at which the debugger interrupts program execution so
you may inspect the program. One thing to do when debugging from the start of the progam is to set a breakpoint at the main()
function, with the command break main.

Y ou also can use threak to set atemporary breakpoint, one that is deleted automatically after it has been triggered once.

Y ou can examine the contents of your variables by using the print command. The display command is similar, although
display asks the debugger to display the result of the expression each time execution is interrupted instead of once only.

The step and next commands enable you review your code one line at atime. They differ in that the next command executes
your functions without stepping into them.

Y ou use the bt command to obtain a stack backtrace. Thisis particularly useful when working with core dumps or attaching to
an aready-running process.

Y ou can set watches with the watch command. Watchpoints interrupt execution when the value of an expression changes.
Beware of scope issues, though.

Y ou use the continue command to ask the program to resume execution after it was interrupted, perhaps by a breakpoint or a
watchpoint.

Linux can dump useful information about a crash to afile called core when a program crashes. The debugger can use thisfile
to help you piece together why the program crashed.

In addition to the commands discussed in this chapter, gdb has a wide array of commands that you can use. Many are highlighted
in Table 10-2. Also, you can get information on gdb from its help command.



PartI1l: TheLinux Modé€
Chapter List

Chapter 11: Files, Directories, and Devices

Chapter 12: Processesin Linux

Chapter 13: Understanding Signals

Chapter 14: Introducing the Linux 1/O System

Chapter 15: Looking at Terminals

Chapter 11: Files, Directories, and Devices
Overview

Linux provides a powerful concept of access to data, one that is probably not new to you but has some new twists. In Linux, access
to virtually any aspect of the system, ranging everywhere from on-disk files to scanners, is accomplished through the file and
directory structure. The ideais to make it possible for you to access as much as possible through a single, unified interface.

In this chapter, you'll first find out how Linux manages your files so that you can understand what information is available and how
to ask for it. After that, you will learn about the different input/output systems available on Linux, the similarities and differences
between them, and when to use each. Finally, you will learn about “specia” files—things that may look like afile but really represent
something entirely different.

The Nature of Files

The Linux operating system organizes your datainto a system of files and directories. This systemiis, at the highest level, much the
same as that used in other operating systems, even though Linux has its own terminology (for instance, “directories’ in Linux
mean the same thing as “folders’ in Windows). If you have used other UNIX systems, you may aready be familiar with the
terminology used with Linux asit is essentially the same as that used for other UNIX operating systems. As with any modern
operating system, your programs can open, read from, write to, close, and modify files. By using the appropriate system calls, you
can do the same for directories.

What about the devices on your Linux system, though? How could a program communicate with a scanner to bring in images?
How would a sound editor play your files on your sound card? How does a disk partitioning utility talk to your hard drive?

The answer to all of these questions lies in the special filesin your Linux file system. With Linux, you can use asingle set of
system calls, and thus a single interface, for basic file access, scanner access, hard drive access, Internet communication,
communication with pipes and FIFOs, printer access, and many more functions.

Fundamentally, three items relate to the treatment of filesin Linux. These are the directory structure, the inode, and the file's data
itself.

The directory structure exists for each directory on the system. This structure contains alist of the entries in the directory. Each
entry contains a name and an inode number. The name enables access from programs, and the inode number provides a reference
to information about the file itself.

The inode holds information about the file. It does not hold the file's name or directory location, given that these details are part of
the directory structure. Rather, the inode holds information such as the permissions of the file, the owner of thefile, the file size,
the last modified time for the file, the number of hard links to the file, quota information about the file, special flagsrelating to the
file, and many other details. Because Linux permits hard links to files, which essentially allow multiple filenamesto refer to a
single block of data on disk, putting the filename in the inode just doesn’t make sense, because multiple filenames may reference
the same inode.

Thethird area, thefile' sdata, isin alocation (or locations) specified in the inode. Some file system entries, such as FIFOs and
device specid files, do not have a data area on the disk. Both files and directories do have data areas.

Y our programs can get information from the directory structure by using the opendir() functions. The stat() system call is used to
get information from an inode. The file's data can be accessed through normal file operation functions such as fgets() and open().

199



Finaly, if you are dealing with a symboalic link, readlink() can give you the location it points to.
stat() and Istat()

The stat() and Istat() functions provide the primary interface to the information stored in the inode information for afile. They fill a
structure of type struct stat with information. The fields of this structure are defined in the stat(2) manpage. If you include
sysd/stat.h, you also get access to macros used for interpreting that data. The program in Listing 11-1 displays all data provided by
these functions.

The difference between the two functions is that Istat() will not follow a symbolic link, instead returning information about the link
itself. The stat() function, on the other hand, will trace symboalic links until the end of the chain, as most functions do. The codein
Listing 11-1 uses both functions.

Note Listing 11-1 isavailable online.
Listing 11-1: Demonstration of stat() and Istat(): ch11-1.c

#include <stdio.h>
#include <sys/stat.h>
#include <unistd.h>
#include <errno.h>
#include <stdarg.h>
#include <time.h>
#include <limits.h>

void printinfo(const struct stat sbuf, const char *name);
void pline(const char *desc, const char *fmt, ...);

void pbool(const char *desc, int cond);

char *myctime(const time_t *timep);

int main(int argc, char *argv[]) {
struct stat sbuf;

if (argc!=2) {
printf(“ Syntax: %s filename\n”, argv[Q]);
return(l);

}

[* Firgt, look at thefile. If it'salink, givesinformation about
thelink. */

printf(“Information for file %s:\n\n", argv[1]);
if (Istat(argv[1], &sbuf) ==-1) {

perror(“Istat failed”);

return(2);
}

printinfo(sbuf, argv[1]);
if (S_ISLNK (sbuf.st_mode)) {

printf(“\n \n");
printf(“Information for file pointed to by link\n\n");

if (stat(argv[1], &sbuf) ==-1) {
perror(*stat on link failed”);
return(3);

}

printinfo(sbuf, “”);
}

return O;

200



}

void printinfo(const struct stat sbuf, const char *name) {
pline(* Device’, “%d”, sbuf.st_dev);
pline(“Inode”, “%d", sbuf.st_ino);
pline(* Number of hard links’, “%d”, sbuf.st_nlink);
pbool (“ Symbolic link”, S_ISLNK(sbuf.st_mode));
if (S_ISLNK(sbuf.st_mode)) {
char linkname PATH_MAX * 2];
int length;

length = readlink(name, linkname, sizeof(linkname) - 1);
if (length ==-1) {

perror(“readlink failed");
}

linkname[length] = 0;
pline(*Link destination”, linkname);

}

pbool (“Regular file”, S ISREG(sbuf.st_mode));
pbool (“Directory”, S |SDIR(sbuf.st_mode));

pbool (“ Character device”, S ISCHR(sbuf.st_mode));
pbool (“Block device’, S ISBLK (sbuf.st_mode));
pbool (“FIFO", S_ISFIFO(sbuf.st_mode));

pbool (“ Socket”, S ISSOCK (sbuf.st_mode));

printf(“\n”);

pline(“ Device type’, “%d”, sbuf.st_rdev);

pline(“Filesize”, “%d”, sbuf.st_size);

pline(* Preferred block size”, “%d”, sbuf.st_blksize);

pline(* Length in blocks’, “%d”, sbuf.st_blocks);

pline(“ Last access’, “%s’, myctime(& sbuf.st_atime));

pline(“ Last modification”, “%s’, myctime(& sbuf.st_mtime));
pline(“Last change’, “%s’, myctime(& shuf.st_ctime));

printf(“\n");

pline(* Owner uid”, “%d”, sbuf.st_uid);
pline(* Group gid”, “%d”, sbuf.st_gid);
pline(* Permissions’, “0%o0”, sbuf.st_mode &

(SISUID | S ISGID | S_ISVTX | S IRWXU | S_IRWXG | S IRWXO));
pbool (“setuid”, sbuf.st_mode & S ISUID);
pbool (“setgid”, sbuf.st_mode & S |SGID);
pbool (“sticky bit”, sbuf.st_ mode & S ISVTX);
pbool(“User  read permission”, sbuf.st_mode & S IRUSR);
pbool (“User write permission”, sbuf.st mode & S IWUSR);
pbool (“User execute permission”, sbuf.st mode & S IXUSR);
pbool (“Group read permission”, sbuf.st_mode & S IRGRP);
pbool (“Group write permission”, sbuf.st_mode & S IWGRP);
pbool (“ Group execute permission”, sbuf.st mode & S IXGRP);
pbool (“Other read permission”, sbuf.st mode & S IROTH);
pbool (* Other write permission”, sbuf.st_ mode & S IWOTH);
pbool (“ Other execute permission”, sbuf.st mode & S_IXOTH);

}

void pline(const char *desc, const char *fmt, ...) {
va list ap;

va_start(ap, fmt);

201



printf(“%30s: “, desc);
vprintf(fmt, ap);
printf(“\n");

}

void pbool(const char *desc, int cond) {
pline(desc, cond ?“Yes’ : “No”);
}

char *myctime(const time_t *timep) {
char *retval;

retval = ctime(timep);

retval[strlen(retva) - 1] = 0; [* strip off trailing \n */
return (retval + 4); [* strip off leading day of week */
}

Before you run this code, I’ d like to make some observations about the code itself. First, the pline() function uses the variable
argument list support in C, which iswhy it looks somewhat strange if you haven’t used that support before. Also, perror() is
simply afunction that displays the supplied error text and then the reason for the error.

Cross-Reference

Y ou can find details about the pline() function in Chapter 14, “Introducing the Linux 1/0.”

When the program begins, it first runs Istat() on the supplied file. If thiscall to Istat() is successful, the information for that file is
printed. If the supplied filename was a symbolic link, the program runs stat()on it and then displays the information for the file
pointed to by the link.

The printinfo() function is responsible for displaying the information retrieved from the stat() or Istat() call. It starts by printing out
some numbers. Then, if the fileisasymbolic link, readlink() isrun on it to get the destination of the link, which is then displayed.
Then, parts of the st_mode field in the structure are displayed. Thisfield is abig bitfield, meaning that you can use binary AND
operations to isolate individual parts. The S_IS* macros are effectively isolating parts, and thisis done manually later on. The
stat(2) manpage indicates the actual values of each of these, but you are encouraged to use the macros whenever possible to ensure
future compatibility and portability.

After displaying the times, owner, and group, the code again displays information gathered from st_mode. Y ou can see it pick out
a permission number in the same format that you can supply to chmod. Then, it isolates each individual permission bit and
displaysit for you. For instance, the value sbuf.st._ mode & S IRUSR will evaluate to trueif the user read permission bit is set, or
falseif it is not. From the code example, you can see exactly how to find out all of thisinformation for your own programs.

Let'stake alook at some examples of the type of data that the program can generate. First, here’s the result when looking at a
plain file from /etc:

$ ./ch11-1 /etc/exports
Information for file /etc/exports:

Device: 770
Inode: 36378
Number of hard links: 1
Symbolic link: No
Regular file: Yes
Directory: No
Character device: No
Block device: No
FIFO: No
Socket: No

202



Devicetype: 0
Filesize: 115
Preferred block size: 4096
Length in blocks: 2
Last access; Jun 3 13:31:41 1999
Last modification: Oct 4 22:34:01 1998
Last change: Jun 2 19:27:17 1999

Owner uid: O
Group gid: 0
Permissions; 0644
setuid: No
setgid: No
sticky bit: No
User read permission: Yes
User writepermission: Yes
User execute permission: No
Group read permission: Yes
Group write permission: No
Group execute permission: No
Other read permission: Yes
Other write permission: No
Other execute permission: No

From this output, you can observe many interesting things about the file system. First, you get the device number. Thisis not often
useful in user-mode programs, but one potential useis to determine whether two files are on the same file system. This can be
useful because certain operations, such as moving files with rename() or setting a hard link, only work if both files are on the same
file system. Comparing these values from two different files can tell you whether you're dealing with a single file system.

Next, you get the inode number, which is of little immediate use but can be useful if you are looking at the file system at alow
level. Then, you get the hard link count. In Linux, each directory entry that references thisfile is considered to be a hard link.
Therefore, for anormal file, thisvalueistypically 1. For directories, the value will always be at least 2. The reason is that each
directory contains an entry named ., which isahard link to itself, as well as an entry named .., which isahard link to its parent.
Therefore, because of the link to itself, each directory will have ahard link count of at least 2. If the directory has any
subdirectories, the count will be greater because of the links to the parent in each subdirectory.

The remaining lines in the first section indicate what type of file you are dealing with. In this case, it's aregular file, so that isthe
only bit turned on.

The next section displays some information about the file that you might sometimes get fromIs. Y ou get the file's size and dates.
The Is program uses the last modification value as its default date to display. The last change value refers to the date of the last
modification to the inode itself (for instance, a change in ownership of the file). The last access corresponds to the last read from
thefile.

The preferred block size has no implications for many programs. For regular file systems, though, it can be useful. Thisindicates
that the system likes to perform input or output from the file in chunks of data of this size. Usually, your data will be of arbitrary
size, and you will just ignore this value. However, consider a case in which you are copying data from one file to another file—
perhaps 200 megabytes of data. The operation is ssimple: read some data, write it out, and repeat until you have read and written all
of the data. But how big of a buffer do you use? That is, how much data should you read and write with each call? Well, this value
istelling you the answer—you should use a 4096-byte buffer, or perhaps some multiple of that value.

The last block of text isfor the permission settings on the file. The uid and gid values come from separate entries; all the other
ones come from st_mode. The predefined macros for analyzing these entries are used here; you can conveniently test for read,
write, and execute permissions for each of the three categories (user, group, and other). Also, there are macros to test for setuid,
setgid, and the sticky bit.

Now let’stake alook at an example that demonstrates both symbolic links and a block device. Listing 11-2 shows /dev/cdrom,
which, on my system, isa symbolic link to /dev/hdc.

Note Listing 11-2 isavailable online.

203



Listing 11-2: Sample execution of ch11-1

$ ./ch11-1 /dev/cdrom
Information for file /dev/cdrom:

Device: 770
Inode: 53538
Number of hard links: 1
Symbolic link: Yes
Link destination: hdc
Regular file: No
Directory: No
Character device: No
Block device: No
FIFO: No
Socket: No

Devicetype: 0
Filesize: 3
Preferred block size: 4096
Length in blocks: 0
Last access: Sep 4 07:25:24 1999
Last modification: Sep 4 07:25:24 1999
Last change: Sep 4 07:25:24 1999

Owner uid: O
Group gid: 0
Permissions: 0777
setuid: No
setgid: No
sticky bit: No
User read permission: Yes
User write permission: Yes
User execute permission: Yes
Group read permission: Yes
Group write permission: Yes
Group execute permission: Yes
Other read permission: Yes
Other write permission: Yes
Other execute permission: Yes

Information for file pointed to by link

Device; 770
Inode: 52555
Number of hard links; 1
Symbolic link: No
Regular file: No
Directory: No
Character device: No
Block device: Yes
FIFO: No
Socket: No

Device type: 5632
Filesize: 0
Preferred block size: 4096
Lengthin blocks: O
Last access. Jun 2 13:38:47 1999
Last modification: Feb 22 21:42:19 1999
Last change: Jun 18 12:09:31 1999

204



Owner uid: O
Group gid: 29
Permissions: 0771
setuid: No
setgid: No
sticky bit: No
User read permission: Yes
User write permission: Yes
User execute permission: Yes
Group read permission: Yes
Group write permission: Yes
Group execute permission: Yes

Other read permission: No
Other write permission: No
Other execute permission: Yes

Listing 11-2 shows several things. First of al, you see how the symbolic link is handled. The Istat() call providesinformationin
st_mode that indicates that the file isalink, and then readlink() indicates its destination.

Note However, note that the code does not run stat() on the information returned by readlink(). There are several
reasons for that. First, note that the link did not have an absolute path in it. Thisis perfectly valid, and the
operating system has no problem with this syntax. However, if you were to manually use this value, you would
have to ensure that you either took care of the directory issue yourself or changed into the directory of the link
before working with it. By using the first file, you avoid the problem. Furthermore, you can have multiple levels
of symbolic links on a Linux system. The stat() call will go through all of them and display the results of the final

destination.

Thefinal file, /dev/hdc in Listing 11-2, isablock specia device file. This means that it corresponds to a special driver in the

kernel, and accessing it means that you are accessing a particular device directly. Inthis case, it isan IDE device, but it could also
correspond to atape drive, SCSI port, scanner, or other such device. A block device is one whose communication is done in blocks
of data, usually of afixed size. For instance, atape drive might require that all communication is done in chunks that are 1 kilobyte

insize. A hard drive might require 512-byte blocks. The following code shows an example of the information that is given for a

special file such as /dev/ttySO:

$ ./ch11-1 /dev/ttySO
Information for file /dev/ttyS0:

Device: 770
Inode: 53353
Number of hard links: 1
Symbolic link: No
Regular file: No
Directory: No
Character device: Yes
Block device: No
FIFO: No
Socket: No

Device type: 1088
Filesize: 0
Preferred block size: 4096
Length in blocks: 0
Last access: Aug 15 14:03:27 1999
Last modification: Aug 15 14:06:24 1999
Last change: Aug 15 14:06:27 1999

Owner uid: 0
Group gid: 20
Permissions: 0660
setuid: No

205



setgid: No
sticky bit: No
User read permission: Yes
User write permission: Yes
User execute permission: No
Group read permission: Yes
Group write permission: Yes
Group execute permission: No
Other read permission: No
Other write permission: No
Other execute permission: No

The preceding output is an example of a character device, /dev/ttySO—the first serial communications port on your system. Aside
from the special appearance in the first section, this may appear to be a zero-byte file. However, reading from or writing to it will
actually cause you to read from or write to your computer’s seria port!

The following program output presents the results of displaying the information about a directory:

$ ./ch11-1 /usr
Information for file /usr:

Device; 773
Inode; 2
Number of hard links: 17
Symbolic link: No
Regular file: No
Directory: Yes
Character device: No
Block device: No
FIFO: No
Socket: No

Devicetype: 0
Filesize: 1024
Preferred block size: 4096
Length in blocks. 2
Last access: Jun 3 07:29:42 1999
Last modification: Aug 12 21:03:47 1999
Last change: Aug 12 21:03:47 1999

Owner uid: O
Group gid: 0
Permissions; 0755
setuid: No
setgid: No
sticky bit: No
User read permission: Yes
User write permission: Yes
User execute permission: Yes
Group read permission: Yes
Group write permission: No
Group execute permission: Yes
Other read permission: Yes
Other write permission: No
Other execute permission: Yes

The preceding output highlights an important facet of file system storage on Linux: adirectory has an inode just like any other file.
It also has data, just like any other file. The difference liesin the mode flag that tells the operating system that it is dealing with a
directory (with specially formatted directory information) instead of just a normal file. The directory contents are written
automatically by the operating system when the directory’ s contents are modified—for instance, when files are created or deleted.
It is not possible to manually modify a directory. However, one common requirement for programsisto be able to read
information about a directory, which is described in the following section.

206



opendir (), readdir (), and friends

In order to read the contents of a directory, you need to open a directory handle. Thisis done by calling opendir() with the name of

the directory you wish to examine. After calling this function, you can use many others to examine the directory. Chief among
them is readdir(), which lets you retrieve directory entries one at atime. Y ou can also use telldir(), which gives you a position in
the directory. A companion to telldir() oneis seekdir(), which lets you reposition inside the directory. The rewinddir() function
returns to the beginning of the directory, and closedir() closes your directory handle. Finally, scandir() iterates over the directory
structure, running one of your functions on each entry, much like standard file 1/0 calls.

The following program enables you to go through a directory and display alisting similar to Is. This program is written in Perl,
which offers the same functions for these things as C, with syntax that is quite similar. Its nameis ch11-2.pl:

#/usr/bin/perl -w

# Perl’sunlessisaninverseif. That is, unless(a) isthe same as
#if (1(a).

unless (SARGVI[0]) {
die “Must specify a directory.”
}

#-d isaPerl shorthand. It does a stat() on the passed filename, and
# then looks at the mode. If the filename isadirectory, it returnstrue;
#if not, it returns false.

unless (-d $SARGV[Q]) {
die “The filename supplied was not a directory.”

}

# Thisisthe same as DIRHANDLE = opendir(“filename”) in C.
#1n C, you can use DIR *DIRHANDLE; to declare the variable.

opendir(DIRHANDLE, $ARGV]Q]) or die “Couldn’t open directory: $!”;

#In C, readdir() returns a pointer to struct dirent, whose members are
# defined in readdir(3). In Perl, returns one file in scalar context,
# or al remaining filenamesin list context.

while ($filename = readdir(DIRHANDLE)) {
print “$filename\n”;

}

closedir(DIRHANDLE);

To make this program executable, you need to use chmod. Go ahead and do that now, and then run it:

$ chmod a+x ch11-2.pl
$ ./ch11-2.pl lusr

lost+found
bin
shin

lib

doc
man
share
dict
games
include
info

207



sc

X11R6

local

openwin
1486-linuxlibcl

There you have it—a basic usage of readdir(). The program was able to present you with alisting similar to Is of all filesin the
directory. Let'stake it a step farther and get arecursive listing of the directory. This means that a directory, and all its
subdirectories, should be listed. Here' s the code for such a program:

#/usr/bin/perl -w

# Perl’sunlessisaninverseif. Thatis, unless(a) isthe same as

#if (1(a)).

unless (SARGVI[0]) {
die “Must specify a directory.”
}

#-d isaPerl shorthand. It does a stat() on the passed filename, and
# then looks at the mode. If the filename isadirectory, it returnstrue;
#if not, it returns false.

unless (-d SARGVIQ]) {
die “The filename supplied was not a directory.”

}
dircontents($JARGV[0], 1);

sub dircontents{
my ($startname, $level) = @ _;
my $filename;
local *DH; # Ensure that the handle is locally-scoped

# Thisisthe same as DH = opendir(“filename”) in C.
#In C, you can use DIR *DH; to declare the variable.

unless(opendir(DH, $startname)) {
warn “Couldn’t open directory $startname: $!”;
return undef;

}

# In C, readdir() returns a pointer to struct dirent, whose members are
# defined in readdir(3). In Perl, returns one file in scalar context,
# or al remaining filenamesin list context.

while ($filename = readdir(DH)) {
print(* * x (3* ($levd - 1)), “$filename\n”);
if ($filenamene’. &&
$filenamene‘..' &&
I - “$startname/$filename” & &
-d “ $startname/$filename”) {
dircontents(“ $startname/$filename”, $level + 1);
}
}

closedir(DH);
}

There are several important things to note about this code. First, you need to determine whether or not each fileis a directory; you
also need to see whether or not it should be descended into. At first, you might think that a simple call to -d is sufficient (or a call
to stat() in C). However, thisis not the case. The reason? Every directory has. and .. entries. If you continuously scan those, you'll

208



get in an endless loop, scanning the same directory over and over. Therefore, those special entries are excluded. Then, thereisa
problem with symbolic links. Recall that -d is equivalent to doing a stat() call, which follows links. If thereis a symbolic link that
pointsto ., for instance, then the same problem will arise as before: an endlessloop. So, if thefileis not a specia one
corresponding to the current directory or its parent, is not a symbolic link, and is a directory, then it is descended. Also, the
previous fatal error of being unable to open a directory is transformed into a mere warning—if there is a problem, such as
permission denied, somewhere along the tree, it’s better to just ignore that part of the tree than to completely exit the program.
Thisiswhat is done in the dircontents subroutine in the previous code, although this example al so issues a warning.

Also notice that the program adds $startname to the start of the filename whenever checking or descending into a directory. The
reason is that the filename is always relative. So, for instance, if the person running the program isin a home directory and
reguests information about /usr, and the program encounters a directory named bin, it needsto ask for /usr/bin, not just bin—which
would produce the bin directory in the user’s home directory.

Running this revised version on /usr produces over 65,000 lines of output on my laptop; enough to fill over 900 pages with
filenames. Listing 11-3 shows the revised version on a smaller directory area: /etc/X11.

Note Listing 11-3 isavailable online.
Listing 11-3: Example processing /etc/X11

$ ./ch11-2.pl /etc/X11

Xsession.options
Xresources

xbase-clients

xterm

xterm~

xfreeB6-common

tetex-base
window-managers
fvwm

system.warnings
update.warn
pre.hook
default-style.hook
system.fvwm2rc
init.hook
restart.nook
init-restart.hook
mai n-menu-pre.hook
mai n-menu.hook
menudefs.hook
post.hook

xinit

xinitrc
wm-common

Xview
textswrc

ttyswrc
text_extras_menu

209



XF86Config
WindowM aker

background.menu
menu.prehook
menu
menu.ca
menu.cz
menu.da
menu.de
menu.el
menu.es
menu.fi
menu.fr
menu.gl
menu.he
menu.hr
menu.hu
menu.it
menu.ja
menu.ko
menu.nl
menu.no
menu.pt
menu.ru
menu.se
menu.dl
menu.tr
menu.zh CN
menu.zh_TW.Big5
plmenu
plmenu.dk
plmenu.fr
plmenu.hr
plmenu.zh CN
wmmacros
menu.posthook
menu.hook
plmenu.da
plmenu.it
appearance.menu

Xsession

fonts

100dpi

xfonts-100dpi.alias
misc

xfonts-base.alias
xfonts-jmk.alias
75dpi

xfonts-75dpi.alias
Speedo

210



xfonts-scalable.scale
Typel

xfonts-scalable.scale
xserver

SecurityPolicy
XF86Config~
Xmodmap
Xserver
afterstep

menudefs.hook
Xserver~
Xloadimage
window-managers~

Listing 11-3 demonstrates how the program is able to descend into directories. Thanks to the level information passed along, it's also
possible to indent the contents of a directory to make a visually appealing output format.
/O Methods

When you are performing input or output with files on a Linux system, there are two basic waysto do it in C: stream-based 1/0 or
system call I/0. C++ also has a more object-oriented stream system, which is similar in basic purpose to the stream-based 1/0 in C.
The stream-based 1/0O is actually implemented in the C library as alayer around the system call functions. The stream 1/O adds
additional features, such as formatted output, input parsing, and buffering to increase performance.

However, for some tasks, you need to use system call 1/0. For instance, if you are writing a network server, you need to use the
system callsto at least establish your connection. Moreover, you often need to do the same when you need to work with select() or
other advanced 1/0 tasks—generally, ones that deal with things other than files.

How can you tell the difference? Asageneral rule, the stream functions have names beginning with an f, whereas the system call
versions do not. For instance, you have fopen, fread, fwrite, and fclose as opposed to open, read, write, and close. Also, the stream
functions deal with aFILE * handle, whereas the system call versions deal with an integer file descriptor.

Asanote, thisdifferenceis only relevant for C and similar languages. M ost languages do not provide two separate systems for
doing I/O asis done with C.

Stream /O

Thisisthe typical 1/0 system as you have learned with C in general. Stream-based 1/O gives you accessto the library’s extra
functions for formatting output, such as fprintf(), and parsing input, such as fscanf(). Here's a sample program:

#include <stdio.h>
#include <errno.h>

#define ITERATIONS 9000000

int main(void) {
int number;
char writestring[100];
int counter;
int size;
FILE *output;

printf(“Please enter a number: “);
scanf(“%d”, & number);

number /= 2;

211



printf(“Writing %d copies of %d to afile\n”, ITERATIONS, number);
output = fopen(“testfile”, “wb");
if (foutput) {

perror(* Can’'t open output file”);

exit(255);
}

sprintf(writestring, “%d”, number);
size = strlen(writestring);

for (counter = O; counter < ITERATIONS; counter++) {
fwrite(writestring, size, 1, output);
}

fclose(output);
return O,

}

The stream I/O functions automatically create the output file if it doesn’'t exist. In this case, fopen() automatically createsthefile if
it does already exist. Then, several copies of a number are written out to the file. Note that no error-checking is done on the writes
or the close, which is not something that you should let slip by in production code. When | time this execution, the program takes
about seven seconds to run—this result will be important later when looking at system call 1/O.

One feature of stream /O isthat 1/O is buffered—that is, the system call to actually carry out the operation isn’t issued until a
certain amount of data has been queued up, or a newline character is encountered. Because a system call can be expensive in terms
of performance, this behavior can really help to speed up your program.

However, it can also introduce some problems. Y ou may want to make sure that your data is written out immediately. Or, if you
need to mix system-call 1/0 with stream /O in your program, you need to make sure that both are always written out immediately,
or else the output may be mixed up.

A function to use to do that is called fflush(). This function takes as a parameter a specific file handle, and it will completely carry
out any pending I/O for your file handle. A flush isimplicitly carried out for you whenever you try to read input, or when you
write out a newline character.

System call 1/0

When you need to interact with the I/O subsystem on alower level, you will need to use system call I/0. Usualy, you will not
need to do this when dealing with files or general 1/0. However, when dealing with network sockets, devices, pipes, FIFOs, or
other special types of communication, system call 1/0 may be the only reasonable way to work.

Here isaversion of the previous program, rewritten to use system call 1/0 for actually writing out to afile:

#include <stdio.h>
#include <errno.h>
#include <syg/types.h>
#include <syg/stat.h>
#include <fcntl.h>
#include <unistd.h>

#define ITERATIONS 9000000

int main(void) {
int number;
char writestring[100];
int counter;
int size;
int output;

printf(“Please enter a number: “);
scanf(“%d”, & number);

212



number /= 2;

printf(“Writing %d copies of %d to afile\n”, ITERATIONS, number);
output = open(“testfile’, O_CREAT | O_TRUNC);
if (foutput) {
perror(* Can’'t open output file”);
exit(255);
}

sprintf(writestring, “%d”, number);
size = strlen(writestring);

for (counter = O; counter < ITERATIONS; counter++) {
write(output, writestring, size);

}

close(output);
return O;

}

Note Notice that the parts of the program that interact with the user are still written to use stream 1/0O. Using stream 1/0
for these tasks is much easier because you get the convenience of using calls such as printf() to format your
output.

The code looks quite similar to that which used stream I/O. A file is opened, datais written to it in aloop, and then the fileis
closed. The differenceis that this example uses the system call 1/0 functions instead of the stream 1/O functions. For asimple
program like this, there isreally no reason to go this route, but you can see that the basic ideais the same, even if the functions are
different.

Because there is no buffering before making a system call when you use this type of 1/O, the performance of this program is quite
abit worse. In fact, it takes amost three times as long to run with system call 1/O asit does with stream 1/0O. The lesson: stream
1/0 gives you performance benefits in many cases, if it is versatile enough for your needs.

On another note, some of these functions do not guarantee that they will write out all the data you requested at once, even if there
isno error. You will generally not see this behavior when dealing with files, but it can become more common when dealing with a
network, as the operating system is forced to split the datainto blocks for transmission. Here's a function that you can use in your
programsto ensure that all the data is written properly:

/*
This function writes certain number of bytes from “buf” to afile
or socket descriptor specified by “fd”. The number of bytesis
specified by “count”. “fd” SHOULD BE A DESCRIPTOR FOR A FILE,
OR A PIPE OR TCP SOCKET. It returns the number of bytes written
or -1 on error.
*/

int write_buffer(int fd, char *buf, int count)

{
char *pts = buf;
int status=0, n;

if (count < 0) return (-1);

while (status != count) {
n = write(fd, ptststatus, count-status);
if (n<0) return (n);
status += n;

}
return (status);

Along the same lines, the functions do not guarantee that they will read as much information as you have asked for either.

213



Therefore, if you know in advance that you are expecting information of afixed size, you may find it useful to have a function to
read data until that size is reached. Here is such a function that you can use:

/*
This function reads certain number of bytes from afile or socket
descriptor specified by “fd” to “buf”. The number of bytesis
specified by “count”. “fd” SHOULD BE A DESCRIPTOR FOR A FILE,
OR A PIPE OR TCP SOCKET. It returns number of bytes read
or (<0) on error.
*/

int read_buffer(int fd, char *buf, int count)
{

char *pts = buf;
int status=0, n;

if (count < 0) return (-1);

while (status != count) {
n = read(fd, ptststatus, count-status);
if (n<O0) returnn;
status += n;

}
return (status);

If you use this function, take care to make sure that your buffer is at least count characters long. If you don’t, your program could
crash.
Special Files

Y ou have seen how to interact with standard files already. However, some entities on your Linux system appear to be files but are
not really files at all. These are sometimes called “specia” files.

Special files can be of many different types. Often, they correspond to actual devices on the system, asis the case with many of the
filesin /dev. When you read from or write to one of these files, you are actually communicating with some device that is attached
to your system! So, you can, for instance, communicate with the first serial port by opening /dev/ttyS0.

Other special files can be FIFOs (also known as named pipes). These are used to communi cate between two processes on the
system. When you open one of these files, you will actually be exchanging data with another process on the same system.

Cross-Reference

Y ou can find more details about FIFO filesin Chapter 17, “Using Pipes and FIFOs.”

Findly, thereisthe /proc file system. This area contains information about your system, which devices are connected to it, and which
processes are running on the system. Many programs, such as ps, get the information they need to run from /proc.
Summary

In this chapter, you learned about how files are dealt with internally in Linux. Specifically, you learned:
* The file system consists of one inode per file.

« Directory information is stored on the file system as a directory specid file.
* You can access information from the inode with stat() and Istat().

* You can read the destination of a symbolic link with readlink().

214



« Directory information can be found with opendir() and its relatives.
* Many different types of entries are present on a Linux file system, such asfiles, directories, devices, FIFOs, and sockets.

» C provides two types of 1/0 for your use: system call 1/0O and stream 1/O.
Chapter 12: Processesin Linux

Overview

One of the most important ideas about the Linux environment isthat of the process. In this chapter, 1’1l show you what processes are
all about. After that, I’ll discuss some basics of dealing with processesin Linux, how to manage these processes, and how to get
information back from them. This chapter concludes with an overview of synchronization issues and security issues relating to
processes.

Under standing the Process M odel

The process model in Linux undercuts everything that your program does, from loading it into memory, to running it, and to
handling its exit. Moreover, processes manage multiple programs, enable these programs to run at once, and much more.

Before examining processes, it may be useful to look at an analogy. |magine a warehouse full of boxes—each box representing a
process. The contents of each box are prevented from mixing with the contents of another box. A box may contain many pages of
paper—as a process might contain many pages of memory. The boxes probably are marked with labels on the outside, identifying
who the box belongs to and what isin it. Similarly, processes have infor-mation that identify the user that owns the process and the
program that’s running in the process.
Finally, somebody manages the entire operation. In the physical world, if you'rein amilitary situation or perhaps a certain chicken
restaurant chain, this person is called a colonel. In Linux, the part of the system that manages the processesiis likewise the kernel.

Introducing Process Basics
Inthis section, I'll discussthe big picture of processes. There are afew exceptions to some of the rulesin this section, such asif
you're using shared memory or threading, but the principles discussed in this section still hold unless you knowingly make some
changes.
Every program running on your system isrunning in its own process. In fact, every copy of every program running hasits own
process. That is, if you start up an editor twice, without closing the first invocation before starting the second, you'll have two
processes running that editor.

A process has the following attributes associated with it:

* PID (Process ID)

*« Memory area

* File descriptors

* Security information

* Environment

* Signa handling

* Resource scheduling

* Synchronization

* State
Each process has a unique numeric process I D, better known as the PID. Each PID occurs only once on the system at any given
moment, but if your system remains online for long enough, they are reused eventually. The PID isthe primary way of identifying

aparticular process.

Each process also has a memory area associated with it. This area holds the code for the program that is running in that process. It
also holds the data (variables) for that particular program. Any change that you make in the variables or memory of one processis

215



restricted to that process. The operating system prevents these changes from affecting other processes, which is a mgjor source of
Linux's stability relative to some other operating systems. One errant process can crash itself but the rest of the system will
continue unharmed.

Processes a so have file descriptors associated with them. Y ou were introduced already to the three default file descriptors:
standard input, standard output, and standard error. These file descriptors are opened by default for your program in most
situations. Any other file descriptors that you might open (for instance, if you open afile) or any changes that you make to the
default ones take effect in your process only. No other processes on the system are directly effected. Of course, if other processes
are reading the data you are writing, there is an effect; however, the file descriptors of one process are not modified by a changein
another.

Some security information is associated with processes as well. At a minimum, processes record the user and the group of the
person that owns the process, which, generally, isthe person that started it. Asyou’ll see later, there can be much more security
information to deal with in some special situations.

There is an environment that goes with each process. This environment holds things such as environment variables and the
command line used to invoke the program that is running in the process.

A process can send and receive signals, and act based on them. These enable standard execution to be interrupted to carry out a
special task. Signal reception is based on security of the process.

Cross-Reference

For more details, see the discussion of signalsin Chapter 13, “Understanding Signals.”

A processis also the unit for scheduling system resources for access. For instance, if 20 programs are running on a system with a
single CPU, the Linux kernel alter-nates between each of them, giving them each a small amount of time to run, and then rapidly
switching to the next. Thus, each process gets a small time slice, but because it gets these frequently, it seems asif the systemis
actually managing to run all 20 processes simultaneoudly. In systems with more than one CPU, the kernel decides which process
should run on which CPU, and manages multitasking issues between them. A process can have certain values, such as a priority
level, that modify how much time a process gets from the CPU or how big itstime dlice is. The security settings of the process
govern accessto the priority level.

Synchronization with other programs is also done on a per-process level. Processes may request and check for locks on certain
files to ensure that only one process is modifying the file at any given time. Processes also may use shared memory or semaphores
to communicate with and synchronize between each other. I'll discuss some synchronization issues in this chapter.

Cross-Reference

Chapter 14, “Introducing the Linux 1/0,” covers file locking in more detail and Chapter 16, “ Shared Memory and Semaphores,”
covers shared memory/semaphores in more detail.

Finally, each process has a state. It may be running, waiting to be scheduled for running, or sleeping—that is, not processing anything
because it’s waiting for an event to occur, such as user input or the release of alock.
Starting and Stopping Processes

When you want to create a new processin Linux, the basic call to do thisisfork(). Thisis, incidentally, one of the few callsin
Linux that are able to return twice; you'll see why next.

When you fork a process, the system creates another process running the same program as the current process. In fact, the newly
created process, called the child process, has all the data, connections, and so on as the parent process and execution continues at
the same place. The single difference between the two is the return value from the fork() system call, which returnsthe PID of the
child to the parent and a value of 0 to the child. Therefore, common practice isto examine the return value of the call in both
processes, and do different things based on it.

216



Basic forking

I'll start out with a basic program. The following code will simply fork a process and each of these processes will print a message,
and then exit:

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>

int main(void) {
pid_t pid;

pid = fork();

if (pid==0) {

printf(“Hello from the child processi\n”);
} elseif (pid 1=-1) {

printf(“Hello from the parent. I’ ve forked process %d.\n", pid);
} else{

printf(“ There was an error with forking.\n");

This code will fork. If the return value is 0, it means that the current process is the child from the fork. If the valueis not -1, it
means that the fork was successful and the return value indicates the PID of the new process. On the other hand, if the valueis -1,
then the fork failed.

When you run this program, you will get two messages—one from the parent and one from the child. Because these are separate
processes, these messages appear in essentially arandom order. If you run the program several times, you'll get the messagesin
both orders. For instance, here are sample executions from my system:

$./ch12-1
Hello from the parent. I've forked process 458.
Hello from the child process!
$./ch12-1
Hello from the child process!
Hello from the parent. I've forked process 460.

The reason for getting two messages is that the two separate processes can have their CPU time scheduled in any order, because
they really are running as separate programs now.

Executing other programs
Besides forking, you'll often have a need to invoke other programs. Thisis done with the exec family of functions. When you run
exec, your process's current image is replaced with that of the new program. That is, if your call to an exec function is successful,

the call will never return—a different program will run in its place in your process.

Sometimes this may be what you want. Sometimes you may prefer both processes to continue executing. Or, you may prefer the
parent to wait until the child is finished executing—the behavior of, for instance, the Linux shell.

An Example of exec()
I'll start with an example of a program in which the program in the process is completely replaced by the child:

#include <stdio.h>
#include <unistd.h>

int main(void) {

printf(“Hello, thisis a sample program.\n”);
execlp(“ls’, “Is’, “/proc”, NULL);

217



printf(“This code is running after the exec call .\n");
printf(“Y ou should never see this message unless exec failed.\n");
return O;

}

Thisisafairly smple program. It starts out by displaying a message on the screen. Then, it calls one of the exec family of
functions. The| in the name means to use an argument list passed to it, and the p meansto search the path. The first argument is
the name of the program to run. The remaining arguments are passed to it as argv. Recall that argv[0] is conventionally the name
of the program, so the program name is duplicated. The next argument contains a directory list. The final argument, a null pointer,
tellsthe system that it reached the end of the argument list, and must be present.

Unless the exec call fails, you will never see the remaining information because the code for this program will be replaced
completely by that for the program being executed. To that end, try running it to verify the result:

$ ./ch12-2

Hello, thisis a sample program.

1 198 250 267 323 347 4 filesystems meminfo  dabinfo
114 2 255 268 324 348 404 fs misc stat

116 200 259 272 325 349 5 ide modules  swaps
124 201 260 277 328 350 apm interrupts mounts  sys
129 204 261 285 329 354 bus ioports  mitrr tty

132 208 262 286 333 357 cmdline kcore net uptime
14 209 263 290 343 360 cpuinfo kmsg partitions version
143 241 264 3 344 391 devices ksyms pci

152 243 265 317 345 392 dma loadavg scs

160 247 266 322 346 39 fb  locks self

Indeed you can see that the program image in memory is replaced by the program image of Is. None of the messages at the end of
the original program are displayed.

Details of exec()

The system provides you with many options for executing new programs. The manpages list the following options for syntax:

int execl(const char *file, const char *arg, ...);

int execlp(const char *file, const char *arg, ...);

int execle(const char *file, const char *arg, ..., char *const envp[]);
int execv(const char *file, char *const argv[]);

int execvp(const char *file, char *const argv[]);

int execve(const char *file, char *const argv[], char *const envp[]);

These calls are al prototyped in unistd.h. Each of these commands begins with the name of the program to execute. The ones
containing a p—execlp() and execvp()—will search the PATH for thefileif it cannot be located immediately. With all other
functions, this should be the full path to the file. Relative paths are permissible, but with all of these functions, you should use an
absolute path whenever possible for security reasons.

The three |l functions—execl(), execlp(), and execle()—take alist of the arguments for the program on the command line. After
the last argument, you must specify the special value NULL. For instance, you might use the following to invoke Is:

execl(*/bin/ls’, “/bin/ls’, “-I", “/etc”, NULL);

Thisisthe same as running the shell command Is -1 /etc. Notice that, for this and all the functions, the first (zeroth, to the executed
process) argument should be the name of the program. This is usually the same as the specified filename.

The vv functions—execv(), execvp(), and execve()—use a pointer to an array of strings for the argument list. Thisis the same
format asis passed in to your program in argv in main(). The last item must be NULL. Here is how you might write the same
command in the previous example with execv():

char *argumentg[4];

arguments[0] = “/bin/Is’;
argumentg[1] =“-I”;

218



arguments[ 2] = “/etc”;
arguments[3] = NULL;

execv(“/bin/ls’, arguments);

Thistype of syntax is particularly useful when you do not know in advance how many arguments you will need to pass to the new
program. Y ou can build up your array on the fly, and then use it for the arguments.

The e functions—execle() and execve()—enable you to customize the specific environment variables received by your child
process. These functions are not usually used, which enables the new process to inherit the same environment that the current one
has. However, if you specify the environment, it should be in a pointer to an array of pointersto strings, exactly like the
arguments. This array also must be terminated by NULL.

When an exec...() call succeeds, the new program inherits none of the code or data from your current program. Signals and signal
handlers are cleared. However, the security information and the PID of the process are retained. Thisincludes the uid of the owner

of the process, although setuid or setgid may change this behavior. Furthermore, file descriptors remain open for the new program
to use.

Waiting for processes

Y ou must consider several very important things when you are dealing with multiple processes. One of them isto clean up after a
child process exits. In the example of forking thus far in this chapter, this was not done because the parent exited almost
immediately and thus the init process inherited the problem and took care of it. However, if both processes need to hang around for
awhile, you need to take care of these issues yourself.

The problem isthis: when a process exits, its entry in the process table does not completely go away. Thisis because the operating
system iswaiting for a parent process to fetch some information about why the child process exited. This could include areturn
value, asignal, or something else along those lines. A process whose program terminated but still remains because its information
was hot yet collected is dubbed a zombie process. Here' s a quick example of thistype of process:

#include <stdio.h>
#include <unistd.h>
#include <syg/types.h>

int main(void) {
pid_t pid;

pid = fork();

if (pid==0) {
printf(“Hello from the child processi\n”);
printf(“ The child is exiting now.\n");
} elseif (pid 1=-1) {
printf(“Hello from the parent, pid %d.\n", getpid());
printf(“ The parent has forked process %d.\n", pid);
sleep(60);
printf(“The parent is exiting now.\n");
} else{
printf(“There was an error with forking.\n");
}
}

Thereisnow asleep call in the parent to delay its exit for a minute so you can examine the state of the system’s process table in
another window. When you run the program, you will seethis:

$./ch12-3

Hello from the parent, pid 448.
Hello from the child process!

The child is exiting now.

The parent has forked process 449.

Now, in a separate window or terminal, take the process ID of the child. In this case, it is449. Find its entry with a command like

219



this:

$psaux | grep 449 | grep -v grep
jgoerzen 449 0.0 0.0 0O Opts/0O Z 08:18 0:00[ch12-3 <defunct>]

Y ou should observe two things here. First, note that the state of the processisindicated as Z—that is, a zombie process. As another
reminder to you, ps also indicates that the process is defunct, meaning the same thing.

To clear out this defunct process, you need to wait on it, even if you don’t care about its exit information. Y ou can use a family of
wait calls, some of which I'll go over in this section.

Family of wait Calls

Firdt, let’slook at an example. Listing 12-1 is an example of a modified version of a previous program that waits for the child to
exit.

Note Listing 12-1 isavailable online.
Listing 12-1: First wait() example

#include <stdio.h>
#include <unistd.h>
#include <stdarg.h>
#include <time.h>
#include <syg/types.h>
#include <sys/wait.h>

int tprintf(const char *fmt, ...);

int main(void) {
pid_t pid;

pid = fork();

if (pid==0) {
tprintf(“ Hello from the child processi\n”);
tprintf(“ The child is exiting now.\n");
} eseif (pid!=-1) {
tprintf(“ Hello from the parent, pid %d.\n", getpid());
tprintf(“ The parent has forked process %d.\n", pid);
waitpid(pid, NULL, 0);
tprintf(“ The child has stopped. Sleeping for 60 seconds.\n");
sleep(60);
tprintf(“ The parent is exiting now.\n");
} else{
tprintf(“ There was an error with forking.\n”);
}
return O;

}

int tprintf(const char *fmt, ...) {
va list args;

struct tm *tstruct;

time_t tsec;

tsec = time(NULL);
tstruct = localtime(&tsec);

printf(* %02d:%602d:%602d %5d| “,
tstruct->tm_hour,
tstruct->tm_min,
tstruct->tm_sec,

220



getpid());

va start(args, fmt);
return vprintf(fmt, args);

}

This code introduces a new function, tprintf(), which will be useful in the examplesin the rest of this chapter. It presents an
interface similar to that of printf() to the caller but internally it prints out the current time and the current PID before displaying the
message. |n thisway, you can track the progress through the program in time.

The body of the code has a new call, one to waitpid(). This causes the execution of the parent to be put on hold until the forked
child process has exited. When the child process exits, the parent gathers up its exit information and then continues to execute.
Hereisthe output you' Il get from running this program:

Note Some things may appear in adifferent order, depending on whether the parent or the child will be capable of
displaying its output first.

$./ch12-4

14:58:27 358| Hello from the parent, pid 358.

14:58:27 359| Hello from the child process!

14:58:27 358| The parent has forked process 359.

14:58:27 359| The child is exiting now.

14:58:27 358| The child has stopped. Sleeping for 60 seconds.
14:59:27 358| The parent is exiting now.

If you use a ps command, as in the preceding example, while the parent is sleeping, you would see that there is no longer any
zombie process waiting to be collected. Rather, waitpid() call picks up the information and allows it to be removed from the
process table.

If you plan to fork many processes, it would be easier on you if you don’t have to specifically wait for each one, assuming your
parent is supposed to continue executing. Therefore, you can have a signal handler that automatically waits for any child process
when it exits, meaning that you don’t have to explicitly code any such wait yourself. Listing 12-2 shows a modification of the code
from Listing 12-1 to do exactly that.

Cross-Reference

For more details on signals and signal handlers, see Chapter 13, “Understanding Signals.”

Note Listing 12-2 is available online.

Listing 12-2: Signal handler for waiting

#include <stdio.h>
#include <unistd.h>
#include <stdarg.h>
#include <time.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <signal.h>

int tprintf(const char *fmt, ...);
void realsleep(int seconds);
void waitchildren(int signum);

int main(void) {
pid_t pid;

pid = fork();
221



if (pid==0) {
tprintf(“ Hello from the child processi\n”);
tprintf(“ The child is sleeping for 15 seconds.\n");
realseep(15);
tprintf(“ The child is exiting now.\n");

} elseif (pid!=-1) {
/* Set up the signal handler. */
signal (SIGCHLD, (void *)waitchildren);

tprintf(“Hello from the parent, pid %d.\n", getpid());
tprintf(“ The parent has forked process %d.\n", pid);
tprintf(“The parent is sleeping for 30 seconds.\n");
realsleep(30);
tprintf(“ The parent is exiting now.\n");

} else{
tprintf(“ There was an error with forking.\n");

}

return O;

}

int tprintf(const char *fmt, ...) {
va list args;

struct tm *tstruct;

time t tsec;

tsec = time(NULL);
tstruct = localtime(&tsec);

printf(“ %602d:%602d:%02d %5d| “,
tstruct->tm_hour,
tstruct->tm_min,
tstruct->tm_sec,
getpid());

va start(args, fmt);
return vprintf(fmt, args);

}

void waitchildren(int signum) {
pid_t pid;

while ((pid = waitpid(-1, NULL, WNOHANG)) > 0) {
tprintf(* Caught the exit of child process %d.\n", pid);
}
}

void realsleep(int seconds) {
while (seconds) {
seconds = sleep(seconds);
if (seconds) {
tprintf(* Restarting interrupted sleep for %d more seconds.\n”, seconds);
}
}
}

There are several implementation details to go over here. First of al, notice that the sleep() call can return before itstimeisup if a
signal arrivesthat is not ignored by your code. Therefore, you have to watch for this. If this occurs, sleep() will return the number
of seconds remaining, so asimple wrapper around it will take care of this problem.

Then, take note of the signal() call in the parent area. Thisindicates that whenever the parent process receives SIGCHLD, the
waitchildren() function isinvoked. That function is an interesting one, even though it has only two lines of code.

222



Itsfirst line sets up aloop. Aslong as waitpid() continues finding child processes that have exited, the loop continues executing.
For each process, amessage is displayed. In your programs, you probably will eliminate the message and thus have an empty loop
body. The -1 valueis used for the PID in the call to waitpid() so that any child process will be found; inside the signal handler, you
don’'t necessarily know exactly which process exited or even which processes are your children. The signal handler doesn’t care
about the exit status of the child, so it passes NULL for that value. Finally, it uses WNOHANG. This way, after all exited child
processes are waited upon, it returns a different code that breaks the loop, instead of simply blocking execution of the parent until
another process decidesto exit.

Details of wait

There are anumber of variants of the wait functionsin Linux, just as there are a number of variants of the exec calls. Each call has
its own special features and syntax. The various wait functions are declared as follows:

pid_t wait(int * status)
pid_t waitpid(pid_t pid, int *status, int options);
pid_t wait3(int *status, int options, struct rusage *rusage);
pid_t wait4(pid_t pid, int *status, int options,
struct rusage *rusage);

Thefirst two calls require the inclusion of sys/types.h and sys/wait.h, and the last two require those as well as sysresource.h. Each
of these functions returns the PID of the process that exited, O if they were told to be non-blocking and no matching process was
found, and -1 if there was an error. By default, these func-tions block the caller until there is a matching child that has exited and
has not been waited upon yet. This means that execution of the parent process will be suspended until the child process exits. Of
coursg, if there are child processes that have already exited (which would make them zombies), the wait functions can return right
away with information from one of them, without blocking execution in the parent.

If the status parameter iSNULL, it isignored. Otherwise, information is stored there. Linux defines a number of macros, shown in
Table 12-1, that can be used with an integer holding the status result to determine what exactly happened. These macros are called,
for instance, as WIFEXITED(status).

Note Note that the macros take the integer as the parameter, not a pointer to it as does the function.

Table 12-1: Macros Used with Integers

Macro M eaning
I

WEXITSTATUS Returns the exit code that the child process returned, perhaps through a call to exit(). Note that
the value from this macro is not usable unless WIFEXITED is true.

WIFEXITED Returns true if the child process in question exited normally.

WIFSIGNALED Returns atrue value if the child process exited because of asignal. If the child process caught the
signal and then exited by calling something like exit(), thiswill not be true.

WIFSTOPPED Returns atrue value if the WUNTRACED value is specified in the options parameter to waitpid()
and the process in question causes waitpit() to return because of that.

WSTOPSIG Gets the signal that stops the processin question, if WIFSTOPPED istrue.

WTERMSIG Gets the signal that terminates the processin question, if WIFSIGNALED istrue.

Several of these functions take a parameter named options. It isformed by using a bitwise or (with the | operator) of various
macros. If you wish to use none of these special options, simply use avalue of 0. Linux defines two options, WNOHANG and
WUNTRACED. WNOHANG means that the call should be non-blocking. That is, it should return immediately even if no child
exited instead of holding up execution of the parent until a child does exit. WUNTRACED returns information about child

223



processes that are stopped, whereas normally these would be ignored.

For waitpid(), the pid option can have some special meanings as well. If itsvalueis -1, then waitpid() waits for any child process.
If the value is greater than O, then it waits for the process with that particular PID. Values of 0 or strictly lessthan -1 refer to
process groups, which are used for sending signals and terminal control and are generally used only in special-purpose applications

such as shells.

The wait3() and wait4() calls are used if you need to get process accounting information from the child. If the rusage parameter is
NULL, this extrainformation isignored; otherwise, it is stored into the structure pointed to. This sort of account-ing information is
rarely needed by the parent; you can find the definition of the rusage structure in /usr/include/sys/resource.h or

/usr/include/bits/resource.h.

Combining forces

Y ou may have noticed that the shell on Linux exhibits behavior that | haven't quite covered. When you run a program in the shell,
the shell is dormant while the program executes, and then it returns back to life exactly where you left off, and with the same PID

to boot.

This cannot be done solely with calls to exec functions; those would replace the shell completely. It also can’t be done with a
fork() call and then an exec, because the shell would continue executing while the called program executes simultane-ously! The
solution isto have your program fork, then have the parent wait on the exit of the child. Meanwhile, the child should call exec to

load up the new program. Listing 12-3 shows an example of this technique.
Note Listing 12-3 isavailable online.
Listing 12-3: Forking with exec and wait

#include <stdio.h>
#include <unistd.h>
#include <stdarg.h>
#include <time.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include <stdlib.h>

int tprintf(const char *fmt, ...);
void waitchildren(int signum);

int main(void) {
pid_t pid;

pid = fork();

if (pid==0) {
tprintf(“ Hello from the child processi\n”);
setenv(“PS1”, “CHILD \\$ “, 1):
tprintf(“1’m calling exec.\n");
execl(“/bin/sh”, “/bin/sh”, NULL);
tprintf(*'Y ou should never see this because the child is already gone.\n);
} elseif (pid 1=-1) {

tprintf(“ Hello from the parent, pid %d.\n", getpid());
tprintf(“ The parent has forked process %d.\n", pid);
tprintf(“ The parent is waiting for the child to exit.\n");
waitpid(pid, NULL, 0);
tprintf(“ The child has exited.\n");
tprintf(“ The parent is exiting.\n");

} else{
tprintf(“ There was an error with forking.\n”);

}

return O;

224



}

int tprintf(const char *fmt, ...) {
va list args;

struct tm *tstruct;

time_t tsec;

tsec = time(NULL);
tstruct = localtime(&tsec);

printf(“%02d:%602d:%602d %5d| “,
tstruct->tm_hour,
tstruct->tm_min,
tstruct->tm_sec,
getpid());

va dtart(args, fmt);
return vprintf(fmt, args);

This code invokes the shell. Before it does, it setsthe PS1 environment variable. If your shell is Bash, thiswill change the prompt
for the child. Here is a sampl e interaction with the program.

Note In Bash, the symbol $$ refersto the PID of the current process.

$ ./ch12-6
16:40:25 482| Hello from the parent, pid 432.
16:40:25 483| Hello from the child process!
16:40:25 483|1'm calling exec.
16:40:25 482| The parent has forked process 483.
16:40:25 482| The parent iswaiting for the child to exit.
CHILD $ echo Hi, | amPID $$
Hi, | an PID 483
CHILD $Is-d/proc/i*
/proc/ide /proc/interrupts /proc/ioports
CHILD $ exit
16:41:31 482| The child has exited.
16:41:31 482| The parent is exiting.

Asyou can see from the output, the parent is blocked while the child is executing—precisely the desired behavior. As soon asthe

child exits, the parent continues along on its way.
Using Return Codes

In the previous section where | covered wait functions, there is information on afew macros that deal with the return code of a
child process. Thisisthe value that is returned from the argument to exit() or returned from an instance of return whilein main().

Generally, Linux programs are expected to return O for success and some value greater than 0 on failure. Many programs,

particularly shell scriptsand utilities, use these numbers for information. For instance, the make utility checks the return code of all

the programs it invokes, and if thereisafailure, it will normally halt the make so that the problem can be corrected. Shell scripts

can useif and operators, such as & &, to change their behavior depending on whether or not a given command succeeded or failed.

The exit code makes more sense for some programs than for others. For instance, if the Is program is given aname of asingle
directory to list, and that directory does not exist, clearly an error occurs and it is the duty of Isto report the error and return an

appropriate exit code. On the other hand, if your application isa GUI one, you might inform the user of the error and then continue

executing, rather than exit immediately with an error code.

Returning exit codesis simple, as you’ ve seen; you simply have your program pass a nonzero value to a call to exit(). Catching the

codesis not hard either. Listing 12-4 shows a version of the previous program that displays some information about the cause for

termination of the executed program.

Note Listing 12-4 isavailable online.

225



Listing 12-4: Reading return codes

#include <stdio.h>
#include <unistd.h>
#include <stdarg.h>
#include <time.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include <stdlib.h>

int tprintf(const char *fmt, ...);
void waitchildren(int signum);
int main(void) {

pid_t pid;

int status;

pid = fork();

if (pid==0) {
tprintf(“ Hello from the child processi\n™);
setenv(“PS1”, “CHILD \\$“, 1):
tprintf(“1’m calling exec.\n");
execl(“/bin/sh”, “/bin/sh”, NULL);
tprintf(“'Y ou should never see this because the child is already gone\n”);
} elseif (pid !'=-1) {

tprintf(“ Hello from the parent, pid %d.\n", getpid());
tprintf(“ The parent has forked process %d.\n", pid);
tprintf(“ The parent is waiting for the child to exit.\n");
waitpid(pid, & status, 0);
tprintf(“ The child has exited.\n");
if (WIFEXITED(status)) {

tprintf(“ The child exited normally with code %d.\n",

WEXITSTATUS(status));

if (WIFSIGNALED(status)) {
tprintf(“The child exited because of signal %d.\n",
WTERMSIG(status));

tprintf(“ The parent is exiting.\n");
} else{

tprintf(“ There was an error with forking.\n");
}
return O;

}

int tprintf(const char *fmt, ...) {
va list args;

struct tm *tstruct;

time_t tsec;

tsec = time(NULL);
tstruct = localtime(&tsec);

printf(“%02d:%602d:%602d %5d| “,
tstruct->tm_hour,
tstruct->tm_min,
tstruct->tm_sec,
getpid());

va start(args, fmt);
226



return vprintf(fmt, args);

}

This program uses several of the macros documented earlier to figure out why the child exited, and then to figure out more
information about its exit. | will use a few sample invocations of the program so that you can see what it manages to do. Hereis
the output from the first example:

$ ./ch12-7
18:32:14 523| Hello from the parent, pid 523.
18:32:14 524| Hello from the child process!
18:32:14 524|1'm calling exec.
18:32:14 523| The parent has forked process 524.
18:32:14 523| The parent iswaiting for the child to exit.
CHILD $ exit
exit
18:32:18 523| The child has exited.
18:32:18 523| The child exited normally with code 0.
18:32:18 523| The parent is exiting.

In this case, the child process, which is the shell, exited normally—returning code zero to the parent. Next you can see that other
codes can get passed along. When you specify a number as a parameter to exit on the command line, this number is returned as the
shell’s exit status. In the following example, you can see how the parent process detected the new exit code:

$ ./ch12-7
18:33:30 525| Hello from the parent, pid 525.
18:33:30 526| Hello from the child process!
18:33:30 526| I’ m calling exec.
18:33:30 525| The parent has forked process 526.
18:33:30 525| The parent iswaiting for the child to exit.
CHILD $exit 5
exit
18:33:32 525| The child has exited.
18:33:32 525| The child exited normally with code 5.
18:33:32 525| The parent is exiting.

As you can see, the parent capable of detecting that a different code was returned thistime. Finally, here’s an example of
termination by signal:

$ ./ch12-7
18:34:35 527| Hello from the parent, pid 527.
18:34:35 528| Hello from the child process!
18:34:35 528|1'm calling exec.
18:34:35 527| The parent has forked process 528.
18:34:35 527| The parent iswaiting for the child to exit.
CHILD $ echo My pid is$$
My pid is 528
CHILD $kill 528
CHILD $kill -9528
18:34:44 527| The child has exited.
18:34:44 527| The child exited because of signal 9.
18:34:44 527| The parent is exiting.

In this example, the child processfirst displaysits PID. Then, it sendsitself SIGTERM. However, the shell either has a handler for or
isset to ignore SIGTERM, so nothing happens. Then the processis sent SIGKILL (number 9). Thissignal cannot be caught, and so
the process inevitably dies. The parent detects that the child exited because of a signal and displays the signal number that caused the
exit.

Synchronizing Actions

Sometimesit is necessary for two or more processes to be capable of synchronizing their actions with each other. Perhaps they
both need to write to afile, but only one should ever be writing to the file at any given moment to avoid potential corrup-tion. Or,
maybe a parent process needs to wait until a child process accomplishes a given task before continuing. There are many different
ways of synchronizing actions. Y ou might use file locking (described in Chapter 14), signals (Chapter 13), semaphores (Chapter

227



16), apipe or FIFO (Chapter 17), or sockets (Chapters 18 and 19). Some of these actions, such asfile locking and semaphores, are
designed specifically for synchronization uses. The remaining items are general -purpose communication tools that you also can
use for the specific purpose of inter-process synchronization.

For instance, you might have a process fork off a child to handle a specific task so that both can continue operating separately from
each other. The child might exit later when it’s done, which automatically sends a catchable SIGCHLD signal to the parent.

Y ou must deal with several issues relative to synchronization that span any particular method used to implement it. Thisisa
somewhat tricky topic and it helps to be familiar with the issues surrounding it.

Synchronization issues are often among the most difficult to track down when bugs crop up. A given program may operate
perfectly for tens of thousands of execu-tions, and then suddenly its own data files get corrupted, and you have to figure out why.
If the program is one that can ever be run with two processes at once, you have to be aware of synchronization issues. Any
program such as a CGI automati-cally hasto deal with these issues, as do most network server applications.

Atomic versus non-atomic oper ations

Sometimes you perform atask that either needs to be completed entirely or fail entirely without the possibility of any other process
to run asimilar instruction at the same time. For instance, if you want to append data to the end of afile, you need to seek to the
end and then perform a write. If two processes are appending data to the end of afile, though, what happens is the second process
writes data between the time the first does a seek and does a write.

This happens because the seek/write operation is not atomic. If that operation were atomic, then both seek and the write would take
place before any other processis alowed to write datato the file (or at least to the end of it). Linux provides away to do this. It's
called the append mode, in which any write is preceded automatically by an atomic seek to the end of thefile.

Cross-Reference

The append mode is discussed in_ Chapter 14, “Introducing the Linux I/O System.”

Here' s another example. Consider a case in which you have software that generates serial numbers for a product. Y ou want to
assign these numbers sequentially, so you have asmall file that simply holds the next number to use. When you need a new serial
number, you open up the file, read its contents, seek back to the start, and write out a value one larger than the current one.
However, being a successful company, you have several people assigning these numbers all at once. What happens if one process
reads the value, but another reads the same value before the first has had a chance to increment it? The result is that two products
receive the same serial number, which is clearly abad situation.

The answer to this problemis that the entire operation of reading the number, seeking back to the start of thefile, and writing the
result needs to be atomic; no other instances of the application should be able to interact with the file while you are. Linux
provides a capability called file locking that enables you to deal with such a situation.

Cross-Reference

Chapter 14, “Introducing the Linux 1/O System,” covers the file locking capability.

Deadlock

Consider the following situation. There are two files, A and B, that your process needs to access. It needs to do things to both of
them without interference, so it requests alock on file A, and when thislock is granted, it requests alock on file B.

A separate process has the same requirements, but it requests alock on file B and then alock on file A. Thereis a potential for
deadlock in this situation. Consider what would happen if the first process receivesits lock on file A, and then the second process
receivesitslock on file B. In such a case, the first process will try to lock file B while the second process tries to lock file A.
Neither process will be able to ever move forward because of this situation. Both processes will be completely locked until one of

228



themiskilled.

This problem is dubbed deadlock, and it occurs when synchronization attempts to go haywire, causing two or more processes to be
stalled, each waiting for the other to do something. Like other synchronization problems, this one can be difficult to diagnose.
Fortunately, though, you can attach gdb to an already-running, hung process and figure out where it is encountering trouble. If it's
inside a call to a synchronization function such as flock(), you can bet that you have a deadlock problem.

Y ou can take some steps to prevent deadlock from occurring. For one, try to avoid locking multiple resources at once. Thisis one
of the most common causes of deadlock. If you absolutely must do this, take care to always lock them in the same order. Failing to
do so isan invitation for deadlock to occur, which is not good. When you release resources, release them in an order opposite from
which you requested them.

Race conditions

The examples of synchronization problems—the incrementing counter problem, deadlock, the append problem, and so on—are all
instances of a more general class of problem called the race condition. A race condition occurs any time you have an operation
whose outcome depends solely on the order in which processes at a critical part of code are scheduled for execution by the kernel.
That is, two processes race to complete something.

Note Race conditions can also occur with situations other than two processes competing for aresource. Y ou could also
have this occur within one process, such as with callback functionsin Perl/Tk, or due to alogic error in asingle
process. However, the most widely encountered problem deals with multiple processes racing for accessto a
single resource.

Now | will examine the examples earlier in this section. The incrementing counter problem is an example of arace condition. If
the first processis capable of completing its increment and writing the result back out before the second process reads anything
then everything will be fine. On the other hand, if the second process reads its value before the first has a chance to finish, the data
becomes corrupted.

In addition to some of the races highlighted above, other race conditions exist that are commonly encountered in Linux systems.
One of them is the so-called /tmp race, which is a serious security problem in many shell scripts.

On Linux systems, the /tmp directory is a place for storing temporary files. Typi-cally, it is cleaned out when the system boots, or
it is cleaned periodically by a cron job. The /tmp directory is used as scratch space for all sorts of different programs that need a
space to shove data temporarily. The /tmp is a world-writable directory, which means that it allows any user with an account on
the system to place files or directories there.

So far, thisis fine. However, any user with an account on the system also can place symbolic links there. Thisisfine aswell,
unless users become malicious about it.

Suppose the system administrator of a Linux system routinely runs a program that writes data out to a file named /tmp/mydata. If
one of the users with an account on the system notices this, the user maliciously might create a symbolic link named /tmp/mydata
pointing to the file /etc/passwd. The next time the system admini-strator runs the program, it will open up /etc/mydata for writing.
However, being a symbolic link, it will open up /etc/passwd, truncate the file, and replace it with the temporary datal This will
mean that nobody, including the sytem adminstrator, will be able to log on to the system—a major problem! Note that the sameis
applicable to other users on the system. An attacker might create a symbolic link to, for instance, somebody’s mail inbox,
destroying its entire contents of a program running as the other user tried to open the symbolic link for writing.

Some users thought of this problem, and decided that they would try to thwart the potential attacker by checking to see if thefile
/tmp/mydata exists before opening it, perhaps by attempting to stat it. Perhaps this might work, but not always. If an attacker
manages to create the file between the time the program checked for its existence and the time the program opened it, the same
vulnerability exists. Attackers have been able to do thistoo.

Cross-Reference
For more details about stat(), see Chapter 11, “Files, Directories, and Devices.”

So you must defeat this type of attack. One way is to use mkdir() to create a directory in /tmp. With mkdir(), you can specify the
229




permissions on the directory, which are set in an atomic fashion when the directory is created, so you can prevent anyone else from
creating filesin it. When you' re done, simply remove the directory and continue on your way.

Another way isto avoid the use of /tmp altogether. Perhaps you can store your files in the home directory of a calling user, or you
might be able to redesign your pro-gram to avoid the need for temporary files altogether. There are other solutions that can provide
you with an atomic operation, but these are some of the easiest to understand and implement.

Spinning and busy waiting

Spinning is not solely a synchronization issue but frequently is enountered as such. A programis said to be spinning if it is running
through aloop without apparently making progress. A specific example of thisisthe busy wait, in which a program continually
runs through aloop waiting for a certain event to occur.

For example, on some old PCs, one reads input from the keyboard by repeatedly polling the keyboard to seeif thereis any data
thereto read. Thisis, of course, possible on Linux by using non-blocking reads. However, doing so is avery bad idea; you eat up
lots of CPU resources that could otherwise go to other processes, and makes yourself out to be a resource hog.

Linux provides the programmer with many capabilities specifically designed to help avoid the need to busy wait. Among your
alternativesto busy waits are setting signal handlers to invoke when a certain event occurs, using the select() call for multiplexing
across I/0 channels, and simply having better algorithm design. Some users might insert a command like sleep(1) each time through
the loop, claiming that it is no longer busy waiting. In reality, it still is busy waiting, except less CPU resources are consumed
because the program does not consume resources while sleeping.

Understanding Security

One of the most confusing aspects of the process model on Linux isthat of security. I'll start by covering the basics and then 1’1
go into more detail about the process security model.

Basics

In its most simple (and most common) case, each Linux process essentially holds two values: auid and agid. These values are
used by the Linux kernel to determine what the process can do, and in some cases, what can be done to the process.

Asan example, if you try to open afile, your process s uid is compared with the uid of the file owner. If they are the same, you
can open thefile. If not, you need some additional permissions, such as group or world permission, to be able to open the file.
Similarly, if you want to send a signal to a process, the recipient process must have the same uid as the sending process. In this
way, the system prevents people from causing unwanted effectsin each other’s processes.

When you log in to a Linux system, your uid and gid values are set (by the login program, typically) and then the shell’s processis
invoked. Because the uid and gid are values that are passed along through both fork() and exec(), any programs that you start
inherit these same values.

Internals
The system described previously sounds pretty simple, and it is. Most programs live out their lives with a single uid and gid value
only. However, there are really eight such values, plus another, somewhat of a maverick one, asyou'll see next. Table 12-2 lists
the eight val ues associated with a process.

Table 12-2: Per-Process Security Attributes

Attribute M eaning Functions
I
real user ID The uid of the person that invoked this getuid(), setuid(), setruid(), setreuid()
process.
effective user ID The user 1D under which the processis geteuid(), setuid(), seteuid(),setreuid()

currently running, for the purpose of
evaluating permissions.

230



filesystem user ID

Saved user ID

real group ID
effective group ID

filesystem group ID

saved group ID

The user ID that is used solely for
evaluating permissions of file system
access. Inalmost all cases, thisis
identical to the effective user ID.

The original effective user 1D of the
process that is set when the program
running in the processisfirst invoked.

The uid of the primary group of the
user that invoked this process.

The primary group ID under which the
processis currently running.

The primary group ID under which file
system accesses are authenticated
against. In aimost all circumstances,
thisisidentical to the effective user ID.

The original effective group ID of the
processthat is set when the program
running in the

setfsuid() setsthisvalue specificaly. Itis
also implicitly set by any call changing
the effective uid, such as
setuid(),seteuid(), and setreuid().

setuid(), but only if the process's
effective uid isthat of the superuser.

getgid(), setgid(), setrgid(),setregid()

getegid(), setgid(), setegid(),setregid()

setfsgid() sets this value specifically.
Also, itis set implicitly by any call
changing the effective gid, such as
setgid(), setegid(), and setregid().

setgid(), but only if the process's
effective uid is the superuser. processis
first invoked.

Don't worry about the specific meanings of all these attributes right now; I'll go into these later when | discuss the Linux setuid()
and setgid() mechanism. What you can learn from this table is that the process security model in Linux is much more complex than
asingle uid and a single gid. Each process may have these eight different values. One may indicate, for instance, a certain uid to be
used for file system access. Other activities, such as sending and receiving signals, may be authenticated based on a different uid.
There are many different functions that you can use to change these values, each having some fairly complex invocation rules.

In Table 12-2, note that the filesystem user 1D and filesystem group ID values are features unique to Linux. Other operating
systems do not necessarily have those features, so their use is discouraged unless you specifically must modify the file system uid
without modifying the effective uid, which is an extremely rare requirement. Furthermore, Linux implements these functions
according to the POSIX saved | Ds specification; other, particularly older, operating systems may not have as many features or
behave in the same manner as Linux in thisregard. Therefore, if you need to port code using setuid or setgid features to or from
Linux, make certain that you check the documentation on both platforms to ensure that your actions have the desired effect.

When anormal processisinvoked, al four of the user ID values and al four of the group 1D values are set to asingle value: the
uid of the process and the gid of the process, respectively. A great majority of programs on your system act in this fashion.

However, some programs have more complex requirements. When such a program is started, the real uid and real gid of the
process are saved. The remaining three fields for both the gid and the uid are set to the new values. After thisisdone, it is possible
to switch back and forth between permission sets.

Besides these eight values, there is a ninth attribute to be considered as well: the supplementary group list. Thisisalist of
additional groups, beyond the user’s login group, to which the user is considered a member, as defined in /etc/group. The contents
of thislist can only be changed by a process whose effective uid is that of the superuser (0), and even then, changing the value of
thislist (except in some cases to completely zero it out) is not recommended. Y ou get the contents of the list by using getgroups()
and it can be set with setgroups() or initgroups(). Because thislist does not change across setuid or setgid changes, it can be
ignored for the remainder of the discussion on setuid and setgid, and their rolesin the Linux security model.

setuid and setgid

Most programs on Linux are content with working under the permissions of the user that runs them. However, there are some
situations in which other permis-sions are necessary.

Consider, for example, a game that maintains a high-scores file. Y ou do not want people to be capable of arbitrarily editing the

file, because doing so gives them the opportunity to cheat and record whatever scores they like. So you need to restrict permissions
on the file such that normal accounts don’t have write access to it.

231



But what about the game program itself? It needs to have write access, but it doesn’t have such access because it’s running under
the permissions of the user running it. To get around this problem, you can make the game setuid. This means that, when the game
starts, it will run under the permissions of some other user, and it will be capable of freely flipping between the two permission
sets while running. In other words, this enables the game to run as the normal user for most of itslife, but flip to the special uid
when it needs to write to the file.

To make a program setuid, you turn on the setuid bit of itsfile in the file system, and chown the file to the user that it should be
setuid to. Similarly, to make a program setgid, you turn on the setgid bit of itsfilein the file system, and chgrp thefile to the group
that it should be setgid to. When such a program isinvoked, the saved ID, effective ID, and file system ID are al set to the new
value; only thereal I1D indicates the original person who runsit.

Depending on your perspective, the setuid/setgid mechanism could be the single greatest mistake in the entire 30-year history of
UNIX, or afeature that permits modern applications to function. Most people take a more moderate approach and view
setuid/setgid as a hecessary evil that should be avoided whenever possible, but one that does have a certain place on the system.

setuid- and setgid-Related Functions

I’m going to give you a summary of all the different functions that effect the process’'s permission settings on a Linux system so
that you can better understand what the examples are doing. After that, thereis an extremely important discussion on the security
implications of using these functions, and tipsto avoid problems. The setuid/setgid feature of Linux is one of the most frequent
sources of security bugs, especially when combined with other problems such as buffer overflows, so extreme caution must be
exercised when writing setuid/setgid software.

Table 12-3 lists al the setuid- and setgid-related functionsin Linux. The Modifies column indicates what values the function can
modify. The May Change To column indicates the possible values that may be used when changed. Note that if the effective uid is
0, for the superuser, any of these values may be changed to anything. The Returns column indicates the value returned by the
function, and the Notes column indicates special notes about a function.

These functions require the inclusion of unistd.h and sys/types.h. They are prototyped as follows:

uid_t getuid(void);

gid_t getgid(void);

int setuid(uid_t uid);

int setgid(gid_t gid);

uid_t geteuid(void);

gid_t getegid(void);

int seteuid(uid_t euid);

int setegid(gid t egid);

int setreuid(uid_t ruid, uid_t euid);
int setregid(gid_t rgid, gid_t egid);
int setfsuid(uid_t fsuid);

int setfsgid(uid_t fsgid);

Table 12-3 Process setuid/setgid Functions

Function Modifies May ChangeTo Returns Notes
L

getuid n‘a n‘a Real uid.

getgid n‘a n‘a Real gid.

setuid Real uid (if run by Real uid, effective uid, 0 on success, -1 on Behaves as
superuser), saved uid. failure. seteuid() unless
effective uid, file running as
system uid, saved SUperuser.
uid (if and only if
run by the
superuser).

232



setgid

geteuid

getegid
seteuid
setegid

setreuid

setregid

setfsuid

setfsgid

Use of setuid- and setgid-Related Functions

Resl gid, effective
gid, file system
gid, saved gid(if
and only if run by
the superuser).

n/a
n/a
Effective uid, file

system uid.

Effective gid, file
system gid.

Real uid, effective

uid, file system
uid.

Redl gid, effective

gid, file system

gid.

File system uid.

File system gid.

Real gid, effective gid,
saved gid.

n/a

n/a

Real uid, effective uid,
saved uid.

Redl gid, effective uid,
saved gid.

Real uid, effective uid,
saved uid.

Redl gid, effective gid,
saved gid.

Effective uid, real uid,
saved uid, file system
uid.

Effective gid, real gid,
saved gid, file system
gid.

0 on success, -1 on
failure.

The current effective
uid of the process.

The current effective
gid of the process.

0 on success, -1 on
failure.

0 on success, -1 on
failure.

0 on success, -1 on
failure.

0 on success, -1 on
failure.

Previousfile system
uid value on success,
current file system uid
value on failure.

Previousfile system
gid value on success,
current file system gid
value on failure.

Behaves as
setegid() unless
running as
SUperuser.

Some Linux
documentation
incorrectly states
that this function
is capable of
modifying the
saved uid. Thefile
system uid is set
to the new
effective uid.

Some Linux
documentation
incorrectly states
that this function
is capable of
modifying the
saved gid. Thefile
system gid is set
to the new
effective gid.

Should be avoided
except in extreme
situations.

Should be avoided
except in extreme
situations.

Now that you’ ve seen what the various functions are, here is an example of how to use them. Listing 12-5 demonstrates how to
open afile normally only openable by root. To do this, the program must run setuid to root, as | will explain later.

Note Listing 12-5 isavailable online.

Listing 12-5: Sample setuid program

233



#include <stdio.h>
#include <unistd.h>
#include <stdarg.h>
#include <time.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fentl.h>
#include <unistd.h>
#include <stdlib.h>
#include <errno.h>

int tprintf(const char *fmt, ...);
void enhancedperms(void);
void normal perms(void);

void tryopen(void);

int ruid, euid;

int main(void) {

/* FIRST THING: save of uid valuesand IMMEDIATELY ditch extra permissions.

*/

ruid = getuid();
euid = geteuid();
normal perms();

* 1f the two values were equal, the program wasn't set setuid in the
filesystem (or was just run by root in the first place). */

if (ruid == euid) {

tprintf(“Warning: This program wasn’'t marked setuid in the filesystem\n”);
tprintf(“or you are running the program as root.\n");

}

tryopen();
enhancedperms();
tryopen();

normal perms();

tprintf(* Exiting now.\n");
return O,

}

int tprintf(const char *fmt, ...) {
va list args;

struct tm *tstruct;

time t tsec;

tsec = time(NULL);
tstruct = localtime(&tsec);

printf(“ %602d:%602d:%02d %5d| “,
tstruct->tm_hour,
tstruct->tm_min,
tstruct->tm_sec,
geteuid());

va start(args, fmt);

return vprintf(fmt, args);

}

234



void enhancedperms(void) {

if (seteuid(euid) ==-1) {

tprintf(“ Failed to switch to enhanced permissions: %s\n”,
sys_errlist[errna]);
exit(255);
} else{
tprintf(* Switched to enhanced permissions.\n”);

}

}

void normalperms(void) {

if (seteuid(ruid) ==-1) {

tprintf(“ Failed to switch to normal permissions: %s\n”,
sys errlist[errno]);
exit(255);
}else{
tprintf(* Switched to normal permissions.\n”);

}

}

void tryopen(void) {
char *filename = “/etc/shadow”;
int result;

result = open(filename, O_RDONLY);

if (result ==-1) {
tprintf(“ Open failed: %s\n”, sys_errlist[errno]);

} else{
tprintf(* Open was successful .\n");
close(result);

}

}

This program is designed to show you how setuid can effect the program. When the program begins, it runs with the enhanced (0)
effective uid. Thefirst thing it doesisit saves off the real and effective uids, and then it immediately getsrid of the enhanced uid.
Notice that throughout the program, it uses the extra permissions as little as possible, immediately reverting to the real uid when

done.

The program tries to open the /etc/shadow file, which should exist on most Linux systems. Only root should be capable of opening
thisfile; its permissions prevents other users from being capable of doing so. Compile and test this program first without marking

it setuid in the file system:

$ gce -Wall -o ch12-8 ch12-8.c
$./ch12-8
09:26:47 1000| Switched to normal permissions.
09:26:47 1000| Warning: This program wasn't marked setuid in the filesystem.
09:26:47 1000| Open failed: Permission denied
09:26:47 1000| Switched to enhanced permissions.
09:26:47 1000| Open failed: Permission denied
09:26:47 1000| Switched to normal permissions.
09:26:47 1000 Exiting now.

Notice that this program displays its effective uid at the start of each line instead of displaying its process ID. My personal uid is
1000; yours may be different. Recall that programs that are not marked setuid have all four uid values set to the same thing. So
when this program thinks it’ s switching to the ehnahced permissions (based on the saved effective uid), really it is not making any

change at all. Therefore, both open attempts fail.

To mark the program setuid to root, you need to log in as or su to root. Here's how you might do that:

$su
Password: Your Password
# chown root ch12-8

235



# chmod u+sch12-8
# exit

Now, back at your normal account, try running the program again. Notice the difference in the results this time:

$./ch12-8

09:30:25 1000| Switched to normal permissions.
09:30:25 1000| Open failed: Permission denied
09:30:25 0] Switched to enhanced permissions.
09:30:25 0] Open was successful.

09:30:25 1000| Switched to normal permissions.
09:30:25 1000| Exiting now.

Thistime, the program’ s effective uid did change when it called seteuid(). More-over, the call to open() successfully managed to
open the file for reading because the program was running as root at the time. Notice how the same call failed between the time the
program gave up its extra permissions and it reclaimed them.

If you glance at Table 12-3, you'll notice that, if your effective uid is 0, the setuid() function can be used to change the effective,
real, and saved uids. Y ou can do thisto remove any possibility of your process regaining the enhanced (or any other) permissions
permanently. If you are not running with an effective uid of 0, you cannot possibly ditch these permissions permanently.

Listing 12-6 shows a modification of the code to demonstrate that. Notice that the program dies when it tries to regain root
permissions after they were permanently revoked.

Note Listing 12-6 isavailable online.
Listing 12-6: Revoking per missions

#include <stdio.h>
#include <unistd.h>
#include <stdarg.h>
#include <time.h>
#include <syg/types.h>
#include <syg/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdlib.h>
#include <errno.h>

int tprintf(const char *fmt, ...);
void enhancedperms(void);
void normal perms(void);

void permnormal perms(void);
void tryopen(void);

int ruid, euid;
int main(void) {

/* FIRST THING: save of uid valuesand IMMEDIATELY ditch extra permissions.
*/

ruid = getuid();
euid = geteuid();
normal perms();

[* 1 the two values were equal, the program wasn't set setuid in the
filesystem. */

if (ruid == euid) {
tprintf(“Warning: This program wasn’t marked setuid in the filesystem.\n");
}

236



tryopen();
/* Try to open with enhanced permissions. */

enhancedperms();
tryopen();

/* Print out the info while using enhanced permissions. */
tprintf(“Real uid = %d, effective uid = %d\n”, getuid(), geteuid());

* Permanently switch to normal permissions and display the information. */
permnormal perms();
tprintf(“Real uid = %d, effective uid = %d\n”, getuid(), geteuid());

tprintf(“Now, I'll try to go back to enhanced permissions.\n”);
enhancedperms();
tryopen();
normal perms();

tprintf(* Exiting now.\n");
return O;
}

int tprintf(const char *fmt, ...) {
va list args;

struct tm *tstruct;

time_t tsec;

tsec = time(NULL);
tstruct = localtime(&tsec);

printf(* %02d:%02d:%602d %5d| “,
tstruct->tm_hour,
tstruct->tm_min,
tstruct->tm_sec,
geteuid());

va dtart(args, fmt);
return vprintf(fmt, args);

}

void enhancedperms(void) {

if (seteuid(euid) ==-1) {

tprintf(“ Failed to switch to enhanced permissions: %s\n”,
sys errlist[errno]);
exit(255);
} else{
tprintf(* Switched to enhanced permissions.\n”);

}

}

void normalperms(void) {

if (setevid(ruid) ==-1) {

tprintf(“ Failed to switch to normal permissions: %s\n”,
sys errlist[errna));
exit(255);
} else{
tprintf(“ Switched to normal permissions.\n”);

}

}

237



void tryopen(void) {
char *filename = “/etc/shadow”;
int result;

result = open(filename, O_RDONLY);

if (result ==-1) {
tprintf(“ Open failed: %s\n”, sys_errlist[errno]);

} else{
tprintf(“ Open was successful .\n");
close(result);

}

}

void permnormal perms(void) {
if (setuid(ruid) ==01) {
tprintf(* Failed to permanently switch to normal permissions: %s\n”,
sys_errlist[errna]);
exit(255);
} else{
tprintf(* Permanently switched to normal permissions.\n”);

Like the previous program (see Listing 12-5), when this program starts, it automati-cally has the enhanced permissions because it
is marked setuid in the file system. Like the previous one, it removes these permissions as soon as possible. It triesto open the file,
and then attai ns the enhanced permissions and tries to open the file a second time. This program then permanently removes the
enhanced permissions from its process. As an exercise, it tries to recapture those permissions, but this will fail and the program
will exit.

Here is what the execution of the program looks like if properly marked setuid:

$./ch12-9
10:12:21 1000| Switched to normal permissions.
10:12:21 1000| Open failed: Permission denied
10:12:21 0] Switched to enhanced permissions.
10:12:21 0] Open was successful.
10:12:21 O] Real uid = 1000, effective uid = 0
10:12:21 1000| Permanently switched to normal permissions.
10:12:21 1000| Redl uid = 1000, effective uid = 1000
10:12:21 1000| Now, I’ll try to go back to enhanced permissions.
10:12:21 1000| Failed to switch to enhanced permissions. Operation not permitted

Asbefore, if you run the program without marking it setuid, all of these requests will succeed but will have no effect. Hereisthe
output of such an execution:

$./ch12-9
10:12:01 1000| Switched to normal permissions.
10:12:01 1000| Warning: This program wasn't marked setuid in the filesystem.
10:12:01 1000| Open failed: Permission denied
10:12:01 1000| Switched to enhanced permissions.
10:12:01 1000| Open failed: Permission denied
10:12:01 1000| Redl uid = 1000, effective uid = 1000
10:12:01 1000| Permanently switched to normal permissions.
10:12:01 1000| Redl uid = 1000, effective uid = 1000
10:12:01 1000| Now, I'll try to go back to enhanced permissions.
10:12:01 1000] Switched to enhanced permissions.
10:12:01 1000| Open failed: Permission denied
10:12:01 1000| Switched to normal permissions.
10:12:01 1000| Exiting now.

setuid/setgid side effects
238



Because these systems introduce extra capability for programs to access files, some other subsystems are affected if you choose to
make your program setuid or setgid. Generally, this takes the form of disabling a certain behavior for security reasons.

Behavior Across exec()

When you want to execute another program, you need to be aware of what happens. Not all of thisis documented in manpages for
the exec functions, so there is a chance that the behavior may change eventually.

When you call exec on aprogram, it copiesthe real and effective uid and gid values from the existing process first. Then, it checks
for setuid or setgid bits and makes changes to effective permissions as warranted. Finally, it copies the effective uid and effective
gid to the saved uid and saved gid, respectively.

This means that the permissions for the executed program depend on exactly how the permissionsin your program were set prior
to the call. If the effective uid (or gid) isthe same asthe real uid (or gid) in your program, meaning that presumably you either
permanently or temporarily removed the enhanced permissions, the called program will have no access at all to enhanced
permissions.

On the other hand, if your effective uid (or gid) is set to an enhanced value at the time you call exec, the called program will have
this asits effective uid and saved uid—essentially behaving asif it were setuid, even if it is not.

Therefore, it is highly recommended that you drop additional permissions by calling seteuid() prior to executing another program.
Additionally, you can find some more security warnings about exec() in the next section.

Impact on ld-linux.so
This effects you only if you are manipulating shared libraries.
L
Cross-Reference
See Chapter 9, “Libraries and Linking,” for more details on shared libraries.

The Linux dynamic loader disables certain behavior if it isbeing called to link a setuid or setgid program. It ignores the
LD_PRELOAD environment variable. If it does not, this would enable the user to override library calls with others that potentially
could run with the extended permissions of the setuid program, which would be a big security risk.

The loader also ignoresthe LD_LIBRARY_PATH and LD_AOUT_LIBRARY_PATH environment variables for asimilar reason.
In this case, users could provide trojan libraries that would pretend to be real ones but could abuse the extra permissions of a setuid
program.

Impact on fork()
When you call fork(), al of the uid and gid information is copied to the child process. Therefore, immediately after the fork, the
permission information isidentical between the parent and child process. If your child (or, for that matter, the parent) processis
doing something for which it does not need the extra permissions, you should remove (permanently, if possible) these permissions
from the process.

Staying secure with setuid/setgid
In addition to introducing some powerful capabilities, setuid and setgid also intro-duce an amazing potential for problems. In

addition to the security ideas presented here that are specifically applicable to the setuid and setgid programs, there are other
security principles that you should also be familiar with and apply.

Cross-Reference

The other security principles that you should apply are mentioned in Chapter 27, “Understanding Security and Code.” The

239



security issues that relate to the buffer overflow problem are of particular importance.

Most of these tips operate on the principle of least permission. This means that your software should always be written such that,
at any given moment, it has the least possible permissions required to accomplish a given task.

Don’t setuid to root

One of the most dangerous things you possibly could do is make a program setuid to root. Sometimes, there is no way around it
and the program must be setuid to root. However, if at al possible, avoid this.

Consider the example of the game program that needs to write out its score file. Instead of making the program setuid to root, a
wise programmer instead creates a special user on the system and makes the program setuid to that user. That way, if thereisa
flaw in the game’s code or a security violation occurs, the potential harm is far less.

Another option isto create a group for the program to use and make it setgid to that group.
Remove Extra Permissions Immediately

Immediately after you save away the necessary information, you should ditch the extra permissions. Later on in your program, you
should reclaim them only when doing so is necessary for proper operation of the program. Furthermore, you should remove the
extra permissions permanently if possible, and as soon as possible.

Doing so can help prevent damage that may occur from a bug in your program or a security breach involving your program. Even
if you are certain that your program is secure and bug-free, it doesn’t hurt to be cautious just in case you may have overlooked
something.

Never Use execlp() or execvp()

If you run a program that is setuid, you should absolutely never use these func-tions. The reason is that they rely on the PATH that
is passed in to you by the user running the program. Consider what might happen if you run execlp() onIs, but the PATH starts
with an entry pointing to that user’s home directory. If you run the program with full permissions, all that the user hasto do is
place a custom Is binary somewhere on the PATH before the system’s copy of Is, and instantly the user can get custom code to run
with extra permissions.

Because of this problem, you should always use absol ute pathnames when you want to use exec for something new from a setuid
program. The only time that you should consider execlp() isif you completely drop your enhanced permissions, either temporarily
or permanently. Even so, as a precaution, you should avoid it if possible.

Never Invoke a Shell or Use System()

Another thing that you should avoid is executing a shell. Shells grab many things from the environment, and if they are passed
material from the user, it is possible to convince them to do undesired things with their extended permissions. For instance, a
historic way to exploit this would be to embed something such as, ; rm -rf /etc in input (such as a filename) to a setuid program. If
the program uses a shell or calls system() for it, the shell will see the semicolon, treat it as a command separator, and then proceed
to delete all of the /etc directory if the program is run setuid to root.

Because the system() library call isimplemented in terms of acall to the shell, you should avoid it as well. Along the same lines,
you should double-check any input that you send to an executed program whileit is setuid. Y our checks should make sure that
only sensible and expected types of input are passed through. If you are using Perl, its taint-checking features will help identify
these problems for you. Additionally, if you are using Perl, you should avoid the backtick and glob items because both of them are
also implemented in terms of the shell.

Close File Descriptors

Thisoneisasimple but important tip. If you have a program that is setuid, and the program used thisto its advantage to open afile
to which it would otherwise not have had access (or had less access), these extra permissions stay with that file descriptor even if
you subsequently relinquish your enhanced permissions. There-fore, you should always close such file descriptors as soon as
possible. In no case should you exec another program without first closing any such file descriptors in your own program because
your own file descriptors and their permissions are passed on to the executed program. Imagine, for instance, a program that reads
/etc/shadow and then executes another program. If the first program does not close the file descriptor for /etc/shadow, the second

240



can read the contents of that file even if it is not invoked with any other special permissions.
Bewar e of the umask

Although your programs should be specifying explicitly good and secure permissions when files or directories are created via calls
to open() or mkdir(), sometimes they aren’t. When you run setuid, you may prefer to create files that the normal user invoking
your program cannot read from or write to. However, if you are a bit sloppy and the original invoker istriesto obtain accessto
these files, the original user’s umask may be set such that your program creates the file with incorrect permissions while setuid. A
quick fix isto manually issue a call such as umask(022) to reset it to a more normal value.

Watch for Deadly Signals

Asyou'll learn in the Sending Signals section of Chapter 13, “Understanding Signals,” your process can only receive signals from
another process whose effective uid is the same as yours, or from the superuser. However, when you are running a program that is
setuid, your effective uid may change from moment to moment as execution progresses. Signals can be sent that may make your
program dump core or die in some cases, and you should be extremely cautious with them.

Note that thisis the original impetus for the creation of the file system uid and gid on Linux. The Linux NFS server wanted to
setuid to aless privileged uid than it would normally use (root). However, when it did that, it could become vulnerable to signals
sent to it by the owner of such an account. Therefore, it simply sets the file system uid to avoid this problem.

Heed General Security Principles
Earlier in this chapter, | touched on the /tmp race problem. Be careful about thisin your own programsif they are setuid. Also,

take note of all the security issues mentioned in Chapter 27, “Understanding Security and Code”; they become even more
important in aprogram that is setuid or setgid.

Avoid setuid/setgid Entirely
Another way to help ensure the security of your programsisto avoid the usage of setuid or setgid code entirely. Some alternatives
that may work for you might be implementing a client/server pair. The server could run with the necessary permissions from the

start, and the client could run without setuid, asking the server for the specific information that it needs. Although thisis not
always aviable aternative, it can be for some tasks. Y ou have alarge number of optionsto choose among.

Cross-Reference
See Chapters 17 through 19 for details on some of the options.

Some would argue that avoiding setuid/setgid entirely is your best option. It may well turn out to be, but there can still be cases when
setuid/setgid permissions are practically unavoidable.
Summary
In this chapter, you learned about the Linux process model. Specifically, you learned:

» Each processisits own separate space, providing only certain well-defined ways to communicate with other processes.

»  Because each process has its own memory area, one errant process cannot cause another one to crash as well; the worst it can
do is cause itself to terminate.

» Each processis associated with information, such asits environment, file descriptors, scheduling information, and security
information.

e Tocreate anew process, you use fork(). This call creates a copy of the existing process, and both processes then continue to
execute simultaneously.

e Torun another program, you use exec(). This call replaces the program running in the current process with a different
program; your current program ceasesto exist unless the call fails for some reason.

241



*  Processesleave around certain information after they terminate. If you don't clean it up, it can use up valuable space in the
processtable.

* You can wait either until a process exits or clean up the information from an already exited process by using one of the wait()
family of functions.

« If you want your process to continue when starting a new one, you should fork and then execute the new program.

Y ou can find out why a process exited by examining the status information from one of the wait() functions.
 Synchronization between processes is atricky but important topic.
< An atomic operation cannot be interrupted by another similar operation.

« Deadlock occurs when two or more processes are waiting for each other to release some resource.

» Race conditions occur when random flukes of scheduling influence whether or not your code will work.

» Busy waiting occurs when your program continuously polls for an event to occur instead of waiting to be told of it.
 Each process has a set of eight ID values plus alist of groups.

* You can manipulate these values and groups in setuid or setgid programs, but doing so can be dangerous.
Chapter 13: Understanding Signals

Overview

Signals are away of informing a process that an event has occurred. In this chapter, you will learn about the mechanics of signals.
Then, you'll learn about signal handlers, which are used to allow the execution of your program to be diverted to a special function
when asignal isreceived. After that, you will find out how to transmit signals, the interaction between signals and system calls, and
some potential pitfallsthat may arise from the use of signals.

The Use of Signals

Linux offers you many different ways to enable processes to communicate between each other. Processes might use an Internet
socket to communicate with a process on a computer in adifferent country. Or, they might use a pipe to communicate with a
process on the same computer.

Sgnals are aso aform of communication, but they are designed to solve a different problem. Rather than sending data from place
to place, asignal is sent to a process to inform it that a certain event occurred. For instance, if | am running a program and press
Ctrl+C, the process receives SIGINT—the interrupt signal. By default, this causes the process to terminate. However, if the
processis something like an editor, | might want something else to occur. So, | can have the process catch the SIGINT signal and
do something specific when it occurs. That is, no matter where in the code the program is, when it receives SIGINT, it will
immediately execute the handler for it. In the case of an editor, the handler might save the user’ s file and then exit. Or, it might ask
for confirmation to exit. Finally, it may just ignore SIGINT altogether.

Signals can be useful in other ways as well. Suppose that you are doing some complex calculations, perhapsin atight loop, that
take several hoursto complete. Every 30 seconds, you'd like to inform the operator of the status of the program. Y ou don’t update
it every time through the loop, because this would significantly slow down the program. However, without signals, you have to
poll the system time every time through the loop. Although faster than doing 1/0 (input or output) every time, itis till a
performance burden.

Rather than polling the system, you can ask the operating system to send you a signal 30 seconds in the future. Y ou then continue
with your calculations, never needing to bother to check the time. After 30 seconds, the operating system sends your process a
signal. This causes your program to jump to the signal handler, which might print out the status information and ask for another
signal to be sent 30 seconds | ater.

As another example, if you are communicating with another process with something like a pipe, and that process suddenly exits,

your process will be sent a SIGPIPE signal informing you of this. If one of your process's child processes exits, you'll receive a
SIGCHLD signal, possibly an indication that you should wait on the child process.

242



Cross-Reference

Chapter 12, “Processesin Linux,” cover waiting on the child process.

Signal Handlers

Normally, when your process receives asignal, the system will take action on it. This could mean just ignoring the signal, or it
could mean terminating your process. If you want something else to occur, you can register a handler for any particular signal.

When your process receives asignal, if you have a handler set for that signal, the handler function is called immediately. This
occurs regardless of where the execution point isin your code; when your program receives asignal, it is sent to the handler

immediately.

When you register asignal handler, you use the signal(2) call. There are two signals you cannot catch: SIGSTOP and SIGKILL.

All others can have handlers registered for them.

Two specia signal handlers are also available: SIG_IGN, which ignores the signal completely; and SIG_DFL, which restores the

system default behavior when a given signal is received.

Basic handlers

Here's an example of a program that sets a handler for SSIGTERM rather than let the program die when that signal is received:

#include <stdio.h>
#include <signal.h>
#include <stdarg.h>
#include <time.h>
#include <unistd.h>
#include <sys/types.h>

int tprintf(const char *fmt, ...);
void sighandler(int signum);

int main(void) {
char buffer[200];

if (signal(SIGTERM, &sighandler) == SIG_ERR) {
tprintf(“ Couldn’t register signal handler.\n");
}

while (1) {
fgets(buffer, sizeof(buffer), stdin);
tprintf(“ Input: %s’, buffer);

return O;
}

int tprintf(const char *fmt, ...) {
va list args;

struct tm *tstruct;

time_t tsec;

tsec = time(NULL);
tstruct = localtime(&tsec);

printf(“%602d:%602d:%02d %5d| “,
tstruct->tm_hour,
tstruct->tm_min,
tstruct->tm_sec,
getpid());

va start(args, fmt);
return vprintf(fmt, args);

243



}

void sighandler(int signum) {
tprintf(* Caught signal SIGTERM.\n");
}

Asyou run this program, it will ssimply echo back your input to you. Now, in a separate window, use kill pid to send it a
SIGTERM signal. Each line of output conveniently contains the pid for your use. Instead of terminating on the spot, it prints out a
message and continues. After printing the message, the code resumes whatever it was doing before (in this case, probably waiting
for input). You can exit the program by using Ctrl+C. Here's some sample output:

$./ch13-1

Hi!

20:19:02 764| Input: Hi!

Il send you a signal now.

20:19:10 764] Input: I'll send you a signal now.
20:19:13 764| Caught signal SIGTERM.

You got it!

20:19:48 764 Input: You got it!

Y ou can also have multiple signals delivered to a single handler. Moreover, you can also have multiple handlersin your program.
Listing 13-1 shows a program that uses both of these methods.

Note Listing 13-1 isavailable online.
Listing 13-1: A Multi-signal handler

#include <stdio.h>
#include <signal.h>
#include <string.h>
#include <stdarg.h>
#include <time.h>
#include <unistd.h>
#include <syg/types.h>

int tprintf(const char *fmt, ...);
void sighandler(int signum);

void continuehandler(int signum);
char buffer[200];

int main(void) {

* Initialize buffer in case someone interrupts the program before
assigning anything to it. */

strepy(buffer, “None\n™);

if (signal(SIGTERM, &sighandler) == SIG_ERR) {
tprintf(“ Couldn’t register signal handler for SIGTERM .\n");
}

if (signa(SIGINT, &sighandler) == SIG_ERR) {
tprintf(“ Couldn’t register signal handler for SIGINT .\n");
}

if (signal(SIGCONT, &continuehandler) == SIG_ERR) {
tprintf(“ Couldn’t register signal handler for SIGCONT .\n");
}

while (1) {
fgets(buffer, sizeof (buffer), stdin);
tprintf(“ Input: %s’, buffer);

244



}
return O;

}

int tprintf(const char *fmt, ...) {
va list args;

struct tm *tstruct;

time_t tsec;

tsec = time(NULL);
tstruct = localtime(&tsec);

printf(* %02d:%602d:%602d %5d| “,
tstruct->tm_hour,
tstruct->tm_min,
tstruct->tm_sec,
getpid();

va dtart(args, fmt);
return vprintf(fmt, args);

}

void sighandler(int signum) {
tprintf(“ Caught signal %d.\n", signum);
}

void continuehandler(int signum) {
tprintf(“ Continuing.\n");
tprintf(“'Your last input was: %s’, buffer);
}

Thistime, the program catches two more signals. SIGTERM and SIGINT will both be handled by the sighandler() function.
SIGCONT will be handled by the continuehandler() function. Give this program atry to see how it works:

$./ch13-2

Hello.

10:12:49 443| Input: Hello.
Thisisanother test.

10:12:52 443 Input: Thisis another test.
Ctrl+C

10:12:53 443| Caught signal 2.

Notice that Ctrl+C will no longer exit the program. Y ou can also go into another window and send it SIGTERM by running kill
pid, where pid is the process I D of the sample program, (443) in this example. When you do so, the process will show:

10:14:55 443| Caught signal 15.
Next, you can try suspending the process with Ctrl+Z:

Thisissome moreinput.
10:15:30 443| Input: Thisis some more input.
Ctrl+zZ
[1]+ Stopped chl3-2
$ls-d /procli*
/proc/ide /proc/interrupts /proc/ioports
$fg
chl13-2
10:15:44 443| Continuing.
10:15:44 443| Your last input was: This is some more input.

So, you can cause the program to stop (which sends it an uncatchable SIGSTOP signal). Then, you might do something else, such
asrun |s. When you' re ready to continue again, the program receives SIGCONT. When it does, the handler conveniently shows

245



you your last input to help you remember where you left off. Other programs might redraw the screen or take other actions to
restore context, if necessary.

Notice that even if the program is stopped, it can still receive signals queued for examination upon continuing as shown in this
example (watch what happens when the program returns):

Hereissome moreinput.
10:24:01 443| Input: Here is some more input.

[1]+ Stopped Jch13-2
$kill 443
$kill -INT 443
$fg
chl13-2
10:24:15 443| Continuing.
10:24:15 443| Your last input was: Here is some more input.
10:24:15 443| Caught signal 15.
10:24:15 443| Caught signal 2.

Because this program catches the standard signals used to kill it, it's a bit harder to convince to terminate. Y ou’ll need to send it
SIGKILL (number 9), which is uncatchable. In this example, you can use kill -9 443 to achieve the desired result.

Blocking signals

Sometimes you may prefer to delay the delivery of signalsto your program. Instead of having them be totally ignored or having
them interrupt your flow of execution by calling a handler, you may want the signal to be blocked for the moment but still
delivered later. Y ou might be executing some timing-critical piece of code, or the signal may cause confusion for the user.

In our particular case, consider the situation in which SIGTERM isreceived in the middle of entering a string. The program will
display a message immediately, and the screen will display a confusing message. Rather than doing this, it would be better to
notify the user of the signal reception later, after each line of input.

Listing 13-2 shows a program that will do just that for two out of the three signals that the program catches.
Note Listing 13-2 isavailable online.
Listing 13-2: Blocking signals

#include <stdio.h>
#include <signal.h>
#include <stdarg.h>
#include <time.h>
#include <string.h>
#include <unistd.h>
#include <syg/types.h>

int tprintf(const char *fmt, ...);
void sighandler(int signum);

void continuehandler(int signum);
char buffer[200];

int main(void) {
sigset_t blockset;

[* Initialize buffer in case someone interrupts the program before
assigning anything to it. */

strepy(buffer, “None\n™);
if (signal(SIGTERM, &sighandler) == SIG_ERR) {
tprintf(“ Couldn’t register signal handler for SSIGTERM .\n");
}

246



if (signal(SIGINT, &sighandler) == SIG_ERR) {
tprintf(“ Couldn’t register signal handler for SIGINT .\n");
}

if (signal(SIGCONT, & continuehandler) == SIG_ERR) {
tprintf(“ Couldn’t register signal handler for SSIGCONT.\n");
}

sigemptyset(& blockset);
sigaddset(& blockset, SIGTERM);
sigaddset(&blockset, SIGINT);

while (2) {
sigprocmask(SIG_BLOCK, &blockset, NULL);
fgets(buffer, sizeof (buffer), stdin);
tprintf(“ Input: %s’, buffer);
sigprocmask(SIG_UNBLOCK, &blockset, NULL);
}

return O;

}

int tprintf(const char *fmt, ...) {
va list args;

struct tm *tstruct;

time t tsec;

tsec = time(NULL);
tstruct = localtime(&tsec);

printf(“ %602d:%02d:%02d %5d| “,
tstruct->tm_hour,
tstruct->tm_min,
tstruct->tm_sec,
getpid());

va start(args, fmt);
return vprintf(fmt, args);

}

void sighandler(int signum) {
tprintf(* Caught signal %d.\n", signum);
}

void continuehandler(int signum) {
tprintf(“ Continuing.\n");
tprintf(“ Y our last input was: %s”, buffer);
}

Let’slook at how this code worksits magic. First, we declare avariable of type sigset_t. Thisisthe generic signal set type that
holds a set of signals. Down below, it isinitialized to be the empty set. Then, two signals, those we will eventually want to block,
are added to the set by the calls to sigaddset(). In order to actually block the signals, the sigprocmask() function is called with a
SIG_BLOCK parameter. After this call, theinput is read and printed. Then, sigprocmask() is called again, but thistime with a
SIG_UNBLOCK parameter. If any signals were pending but not delivered due to the previous block, they will all be delivered and
handled before sigprocmask() returnsto the caller. Therefore, any pending signals are handled at thistime.

Note that you can also use SIG_ SETMASK for sigprocmask(). The other two options (SIG_BLOCK and SIG_UNBLOCK)add or
subtract entries from the process’s signal mask; this one sets it to an absolute value. Therefore, the first call, to block some signals,
could be the same. The one to remove blocking could use SIG_ SETMASK with an empty set to achieve the same effect.

When the loop resets to the top, the relevant signals are once again blocked before input isread. In this way, the signals are always
blocked while input is being read from the terminal but are allowed to be delivered once for each time through the loop.

247



Before looking at a sample session of code, you should be aware of a special case when Ctrl+C is pressed to send SIGINT or
Ctrl+Z is pressed to send SIGSTOP. Y ou aready know that the terminal, by default, sends input to the programsin line-sized
chunks. Internally, the terminal driver keeps a buffer of input before delivering it to the program, so that the terminal driver can
handle backspace correction and the like. Pressing Ctrl+C or Ctrl+Z will erase the contents of the buffer, so when you press one of
these keys, even though the screen may not reflect it, the buffer is being erased. Y ou’'ll be able to see that behavior in the following
example:

$./ch13-1
Thisisa normal line of input.
14:57:15 676| Input: Thisisanormal line of input.
| am sending SIGINT here Ctrl+C in the middle of thisline.
14:57:35 676| Input: inthe middle of thisline.
14:57:35 676| Caught signal 2.
Now | will send SIGSTOP at the end of thisline Ctrl+Z
[1]+ Stopped .Ich13-3
$fg
ch13-3
14:58:04 676| Continuing.
14:58:04 676| Your last input was: in the middle of thisline.
and now I'll type another line.
14:58:10 676| Input: and now I’ll type another line.

Now watch what happens when you send SIGTERM from another window. Nothing. However, after you type another line of
input, the program indicates that it received SIGTERM:

Hereissome moreinput.
14:59:44 676| Input: Here is some more input.
14:59:44 676| Caught signal 15.

Y ou can also check to see what signals are pending (waiting for delivery due to being blocked) without causing the signals to
actually be delivered. Listing 13-3 demonstrates one way to do that, as an add-on to the application.

Note Listing 13-3 isavailable online.
Listing 13-3: Pending signals

#include <stdio.h>
#include <signal.h>
#include <stdarg.h>
#include <time.h>
#include <string.h>
#include <unistd.h>
#include <syg/types.h>

int tprintf(const char *fmt, ...);
void sighandler(int signum);

void continuehandler(int signum);
char buffer[200];

int main(void) {

sigset_t blockset, pending;
int pendingcount;

[* Initialize buffer in case someone interrupts the program before
assigning anything to it. */

strepy(buffer, “None\n™);

if (signal(SIGTERM, &sighandler) == SIG_ERR) {
tprintf(“ Couldn’t register signal handler for SSIGTERM .\n");

248



}

if (signal(SIGINT, &sighandler) == SIG_ERR) {
tprintf(“ Couldn’t register signal handler for SIGINT .\n");
}

if (signal(SIGCONT, & continuehandler) == SIG_ERR) {
tprintf(“ Couldn’t register signal handler for SSIGCONT .\n");
}

sigemptyset(& blockset);
sigaddset(& blockset, SIGTERM);
sigaddset(&blockset, SIGINT);

while (2) {
sigprocmask(SIG_BLOCK, &blockset, NULL);
fgets(buffer, sizeof (buffer), stdin);
tprintf(“ Input: %s’, buffer);

* Process pending signals. */

sigpending(& pending);
pendingcount = 0;
if (sigismember(& pending, SIGINT)) pendingcount++;
if (sigismember(& pending, SIGTERM)) pendingcount++;
if (pendingcount) {
tprintf(“ There are %d signals pending.\n”, pendingcount);
}

/* Deliver them. */

sigprocmask(SIG_UNBLOCK, &blockset, NULL);

return O;
}

int tprintf(const char *fmt, ...) {

va list args;
struct tm *tstruct;
time_t tsec;

tsec = time(NULL);
tstruct = localtime(&tsec);

printf(* %02d:%602d:%602d %5d| “,
tstruct->tm_hour,
tstruct->tm_min,
tstruct->tm_sec,
getpid();

va dtart(args, fmt);
return vprintf(fmt, args);

void sighandler(int signum) {
tprintf(“ Caught signal %d.\n", signum);
}

void continuehandler(int signum) {
tprintf(“ Continuing.\n");
tprintf(* Y our last input was: %s”, buffer);
}

249



The sigpending() function fillsin asignal set just like one that was manually created earlier. Y ou can then use sigismember() to
test to see whether a particular entry in the signal is set. Thisinformation is checked to seeif any signals were pending. In our
situation, the algorithm presented is sufficient. Note, though, that there is a race condition in the code. If anew signal arrives that
is blocked between the time that sigpending() is run and the time that the print statement is run, the displayed count can be
incorrect. The handlers will still be run when they are unblocked, even if the program displays the incorrect output.

Advanced handlers

Linux provides another way to define handlers: sigaction(). This function enables you to be more precise about what happens
when a given signal isreceived. The sigaction() function is defined as follows:

int sigaction(int signum, const struct sigaction *act, struct sigaction *oldact);

To usethis function, you pass it asignal number, a pointer to asignal action structure, and a pointer to a structure to fill in with the
old information, which may be NULL if you don’t care about the old information.

The structure has the following definition:

struct sigaction {
void (*sa_handler)(int);
void (*sa_sigaction)(int, siginfo_t *, void *);
sigset t sa mask;
int sa flags;
}

Y ou can specify a standard signal handler as with signal() in the sa_handler field. Alternatively, if you specify SA_SIGINFO in
the sa_flags area, you may specify a handler in sa_sigaction instead. This handler is passed more information about the signal
received, as you will learn later in this section.

The sa_mask field isasignal set indicating which signals should be automatically blocked when the signal handler for this signal
is executing. These are automatically unblocked when the signal handler returns. By default, the signal for this handler is
automatically included, but this default behavior can be suppressed by specifying SA_NODEFER or SA_NOMASK in the

sa flags area.

You may use avalue of O for sa flagsto use all the default options. If you prefer to set flags, the value can be attained by taking
the bitwise OR of the available flags shown in Table 13-1.

Table 13-1: Flag and Their M eanings

L
Flag M eaning
L
SA NOCLDSTOP Indicates that, if the specified signal is SIGCHLD, the signal should only be delivered when a
child process is terminated, not when one stops.
SA_NODEFER Suppresses automatic blocking of the signal handler’s own signal while the signal handler is
executing.
SA_NOMASK Same as SA_NODEFER.
SA_ONESHOT After the specified signal handler has been called once, the signal handler is automatically
restored to SIG_DFL.
SA_RESETHAND Same as SA_ONESHOT.
SA RESTART Enables automatic restart of the system calls that would not normally automatically restart after

receiving this signal.

250



SA_SIGINFO Specifies that you will specify the signal handler with sa_sigaction instead of sa_handler.

Y ou also need to be aware of the second and third parameters to the signal handler specified with sa_sigaction. Of them, siginfo_t
isastructure, which is defined as follows:

siginfo_t {
int s_signo; /* Signal number */
int s_errno; /* Anerrno value */
int s_code;, /* Signal code*/
pid t s pid; /* Sending processID */
uid t s_uid; /* Real user ID of sending process */
int §_status; /* Exit value or signal */
clock_t si_utime; /* User time consumed */
clock_t si_stime; /* System time consumed */
sigva_ts_vaue; /* Signal value*/
int s_int; /* POSIX.1bsignal */
void* s _ptr; /* POSIX.1b signal */
void* d_addr; /* Memory location that caused fault */
int s_band; /* Band event */
int s fd; /* Filedescriptor */

}

Not al of these memberswill be set for every signal or for every method of sending asignal. For instance, si_addr only makes
sense for signals such as SIGSEGV and SIGBUS that indicate a problem at a specific address. The possible values for si_code are
defined in Table 13-2.

Table 13-2: Possible Valuesfor si_code

L
Code Meaning Valid For
L
BUS ADRALN An address alignment problem has occurred. SIGBUS only
BUS ADRERR There was an access attempt to a machine address that does not exist. SIGBUS only
BUS OBJERR An error specific for this particular object occurred. SIGBUG only
CLD_CONTINUED A child process, currently stopped, has received SIGCONT. SIGCHLD only
CLD_DUMPED A child process terminated with an error that generally causes a core SIGCHLD only
dump.
CLD_EXITED A child process has exited. SIGCHLD only
CLD_KILLED A child process has been killed. SIGCHLD only
CLD_STOPPED A child process has been stopped by SIGSTOP or similar. SIGCHLD only
CLD_TRAPPED A child being traced has encountered a trap. SIGCHLD only
FPE_FLTDIV There was an attempt to perform a floating-point divide by zero. SIGFPE only
FPE_FLTINV An invalid floating-point operation was attempted. SIGFPE only
FPE FLTOVF A floating-point overflow condition has been detected. SIGFPE only
FPE_FLTRES The floating-point operation result may be rounded. SIGFPE only

251



FPE_FLTSUB
FPE_FLTUND
FPE_INTDIV
FPE_INTOVF
ILL_BADSTK
ILL_COPROC
ILL_ILLADR
ILL_ILLOPC
ILL_ILLOPN
ILL_ILLTRP
ILL_PRVOPC
ILL_PRVREG
POLL_ERR
POLL_HUP
POLL_IN

POLL_MSG

POLL_OUT

POLL_PRI

SEGV_ACCERR

SEGV_MAPERR

SI_ASYNCIO
SI_KERNEL
SI_MESGQ
SI_QUEUE
SI_TIMER

SI_USER

TRAP_BRKPT

TRAP_TRACE

I
252

An out-of-range floating-point subscript was used.

A floating-point underflow condition has been detected.

There was an attempt to perform an integer divide by zero.
Aninteger overflow condition has been detected.

A stack error has occurred.

Anillegal coprocessor operation was attempted.

Anillegal addressing mode error occurred.

Anillegal opcode error occurred.

Anillegal operand error occurred.

Anillegal trap error occurred.

Anillegal attempt to use a privileged opcode occurred.
Anillegal attempt to access a privileged register occurred.

An error has occurred with one of the watched descriptors.
The remote end of one of the watched descriptors has been closed.
Datais available for reading on one of the watched descriptors.

It is now possible to read a message from one of the watched
descriptors.

It is now possible to write data to one of the watched descriptors.

It is now possible to read high-priority input data from one of the
watched descriptors.

An access error has occurred due to lack of permission to access the
requested address.

A mapping error has occurred.

Asynchronous (non-blocking) 1/0O has finished.
The kernel generated this signal.

M essage queue state changed.

The signal came from siggqueue.

A timer expired, causing the signal to be sent.

Signal was user-generated by this or another process. See “Signal
Sending” later in this chapter.

A process breakpoint has been reached.

A process trace condition has occurred.

SIGFPE only
SIGFPE only
SIGFPE only
SIGFPE only
SIGILL only
SIGILL only
SIGILL only
SIGILL only
SIGILL only
SIGILL only
SIGILL only
SIGILL only
SIGPOLL only
SIGPOLL only
SIGPOLL only

SIGPOLL only

SIGPOLL only

SIGPOLL only

SIGSEGV only

SIGSEGV only
All signals
All signals
All signals
All signals
All signals

All signals

SIGTRAP only

SIGTRAP only



Considering this additional information that can be delivered to the application, let’ s rewrite it to take advantage of it. Listing 13-4

presents a new version that uses sigaction to catch its signals.
Note Listing 13-4 is available online.
Listing 13-4: Example with sigaction

#include <stdio.h>
#include <signal.h>
#include <stdarg.h>
#include <time.h>
#include <unistd.h>
#include <string.h>
#include <syg/types.h>

#f defined(__linux_ ) && 'defined(SI_KERNEL)
#define S|_KERNEL 0x80
#endif

int tprintf(const char *fmt, ...);

void sighandler(int signum, siginfo_t *info, void *extra);

void continuehandler(int signum, siginfo_t *info, void *extra);
char buffer[200];

int main(void) {
struct sigaction act;
sigset_t blockset, pending;
int pendingcount;

/* Initialize buffer in case someone interrupts the program before
assigning anything to it. */

strepy(buffer, “None\n™);
[* Set some valuesto apply to all the signals. */

sigemptyset(& blockset);
act.sa_mask = blockset;
act.sa flags= SA_SIGINFO;

[* Two signals use the same handler. */
act.sa_sigaction = & sighandler;
if (sigaction(SIGTERM, &act, NULL) == -1) {
tprintf(“ Couldn’t register signal handler for SSGTERM .\n");

if (sigaction(SIGINT, &act, NULL) == -1) {
tprintf(“ Couldn’t register signal handler for SIGINT .\n");
}

/* A different handler for the third. */
act.sa_sigaction = & continuehandler;
if (sigaction(SIGCONT, &act, NULL) ==-1) {
tprintf(“ Couldn’t register signal handler for SSIGCONT.\n");
}

* blockset is still the empty set. */

sigaddset(& blockset, SIGTERM);
sigaddset(&blockset, SIGINT);

253



while (1) {
sigprocmask(SIG_BLOCK, &blockset, NULL);
fgets(buffer, sizeof (buffer), stdin);
tprintf(“Input: %s’, buffer);

/* Process pending signals. */

sigpending(& pending);
pendingcount = 0;
if (sigismember(& pending, SIGINT)) pendingcount++;
if (sigismember(& pending, SIGTERM)) pendingcount++;
if (pendingcount) {
tprintf(“There are %d signals pending.\n”, pendingcount);
}

[* Deliver them. */

sigprocmask(SIG_UNBLOCK, &blockset, NULL);
}

return O;

}

int tprintf(const char *fmt, ...) {
va list args;

struct tm *tstruct;

time t tsec;

tsec = time(NULL);
tstruct = localtime(&tsec);

printf(“ %602d:%602d:%02d %5d| “,
tstruct->tm_hour,
tstruct->tm_min,
tstruct->tm_sec,
getpid());

va start(args, fmt);
return vprintf(fmt, args);

void sighandler(int signum, siginfo_t *info, void *extra) {
tprintf(* Caught signal %d from “, signum);

switch (info->si_code) {

case SI_USER: printf(“a user process\n”);

break;
case SI_KERNEL: printf(“the kernel\n");
break;

default: printf(“something strange\n”);

}
}

void continuehandler(int signum, siginfo_t *info, void *extra) {

tprintf(* Continuing.\n”);
tprintf(“'Your last input was: %s’, buffer);

}

The structure of this program is fundamentally the same as of the other signal-using programs | have discussed so far. It registers a
signa handler for three signals, handles blocks, and the like. However, it uses the advanced sa_sigaction feature of sigaction().

Signal Sending

Tosend asignal isfairly easy. You need to know two pieces of information: which signal to send, and what processto send it to.
You can find alist of the available signalsin the signal (7) manpage. Y ou may only send signals to processes that you own, or if
you are running as root, you may send signals to any process. Y ou can also request asignal to be sent to yourself at a certain point

254



in the future. Let’sfirst look at the basics.

You can send asignal to yourself by calling raise(). It takes a single parameter, the signal number to send. Listing 13-5 shows an
example that causes the program to terminate by SIGKILL when the user typesin exit as the inpuit.

Note Listing 13-5 isavailable online.
Listing 13-5: Example of sending a signal

#include <stdio.h>
#include <signal.h>
#include <stdarg.h>
#include <time.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <string.h>

int tprintf(const char *fmt, ...);
void sighandler(int signum);

void continuehandler(int signum);
char buffer[200];

int main(void) {

sigset_t blockset, pending;
int pendingcount;

/* Initialize buffer in case someone interrupts the program before

assigning anything to it. */
strepy(buffer, “None\n™);

if (signal(SIGTERM, &sighandler) == SIG_ERR) {
tprintf(“ Couldn’t register signal handler for SSIGTERM .\n");
}

if (signal(SIGINT, &sighandler) == SIG_ERR) {
tprintf(“ Couldn’t register signal handler for SIGINT .\n");
}

if (signal(SIGCONT, & continuehandler) == SIG_ERR) {
tprintf(“ Couldn’t register signal handler for SSIGCONT .\n");

}

sigemptyset(& blockset);
sigaddset(& blockset, SIGTERM);
sigaddset(&blockset, SIGINT);

while (2) {
sigprocmask(SIG_BLOCK, &blockset, NULL);
fgets(buffer, sizeof (buffer), stdin);
tprintf(“ Input: %s’, buffer);

* Process pending signals. */

sigpending(& pending);
pendingcount = 0;
if (sigismember(& pending, SIGINT)) pendingcount++;
if (sigismember(& pending, SIGTERM)) pendingcount++;
if (pendingcount) {
tprintf(“ There are %d signals pending.\n”, pendingcount);

255



}
/* Deliver them. */

sigprocmask(SIG_UNBLOCK, &blockset, NULL);
[* Exitif requested. */

if (stremp(buffer, “exit\n”) == 0) {
raise(SIGKILL);
}
}
return O;

}

int tprintf(const char *fmt, ...) {
va list args;

struct tm *tstruct;

time_t tsec;

tsec = time(NULL);
tstruct = localtime(&tsec);

printf(* %02d:%602d:%602d %5d| “,
tstruct->tm_hour,
tstruct->tm_min,
tstruct->tm_sec,
getpid();

va dtart(args, fmt);
return vprintf(fmt, args);

}

void sighandler(int signum) {
tprintf(“ Caught signal %d.\n", signum);
}

void continuehandler(int signum) {
tprintf(“ Continuing.\n");
tprintf(“'Your last input was: %s’, buffer);
}

When the program runs, and you type in exit, the program will send itself a SIGKILL signal, which will cause it to exit. Of course,
in this case, you could just as easily call exit(), but sometimes you need to send yourself another signal—for instance, to invoke an
alarm handler before an alarm is due.

Y ou can also send asignal to another process. The function to do thisiskill(2). This function takes two parameters: the pid of the
process to send the signal to, and the signal to send.

These two functions are fairly self-explanatory and uninteresting. More interesting is the alarm(2) function, which arranges for
your process to receive asignal at a specified point of time in the future. The single argument to alarm() is the number of seconds
in the future at which the SIGALRM signal should be sent to your process. Whenever you call alarm(), any previously requested
alarms (but not pending blocked SIGALRM signals!) are canceled, and the time remaining on one of these previous requestsis
returned. Listing 13-6 shows a version of the program that will automatically exit after thirty seconds of inactivity.

Note Listing 13-6 is available online.
Listing 13-6: Example with inactivity timeout
#include <stdio.h>
#include <signal.h>

#include <stdarg.h>
#include <time.h>

256



#include <string.h>
#include <unistd.h>
#include <syg/types.h>
#include <string.h>

int tprintf(const char *fmt, ...);
void sighandler(int signum);

void continuehandler(int signum);
void aarmhandler(int signum);
char buffer[200];

int main(void) {

sigset t blockset, pending;
int pendingcount;

/* Initialize buffer in case someone interrupts the program before
assigning anything to it. */

strepy(buffer, “None\n™);

if (signal(SIGTERM, &sighandler) == SIG_ERR) {
tprintf(“ Couldn’t register signal handler for SIGTERM .\n");

if (signal(SIGINT, &sighandler) == SIG_ERR) {
tprintf(“ Couldn’t register signal handler for SIGINT.\n");
}

if (signal(SIGCONT, & continuehandler) == SIG_ERR) {
tprintf(“ Couldn’t register signal handler for SSIGCONT .\n");

}

if (signa(SIGALRM, &aarmhandler) == SIG_ERR) {
tprintf(“ Couldn’t register signal handler for SSIGALRM .\n");

}

sigemptyset(& blockset);
sigaddset(& blockset, SIGTERM);
sigaddset(& blockset, SIGINT);

while (1) {
sigprocmask(SIG_BLOCK, &blockset, NULL);
aarm(30);
fgets(buffer, sizeof (buffer), stdin);
tprintf(“Input: %s’, buffer);

[* Process pending signals. */
sigpending(& pending);
pendingcount = 0;

if (sigismember(& pending, SIGINT)) pendingcount++;

if (sigismember(& pending, SIGTERM)) pendingcount++;
if (pendingcount) {

tprintf(“ There are %d signals pending.\n”, pendingcount);

}
[* Deliver them. */

sigprocmask(SIG_UNBLOCK, &blockset, NULL);

[* Exit if requested. */

257



if (stremp(buffer, “exit\n”) == 0) {
raise(SIGKILL);
}
}
return O,

}

int tprintf(const char *fmt, ...) {
va list args;

struct tm *tstruct;

time t tsec;

tsec = time(NULL);
tstruct = localtime(&tsec);

printf(“%602d:%02d:%02d %5d| “,
tstruct->tm_hour,
tstruct->tm_min,
tstruct->tm_sec,
getpid());

va start(args, fmt);
return vprintf(fmt, args);

}

void sighandler(int signum) {
tprintf(* Caught signal %d.\n", signum);
}

void continuehandler(int signum) {
tprintf(“ Continuing.\n");
tprintf(“'Your last input was: %s’, buffer);
}

void alarmhandler(int signum) {
tprintf(“No activity for 30 seconds, exiting.\n");
exit(0);
}

The program requests an alarm for 30 seconds in the future immediately before reading aline of input. Each time alineis read, the
alarmisreset immediately prior. Y ou can now see the effects by running the program:

$./ch13-7
Hello.
18:44:51 1100 Input: Hello.
Thisisatest.
18:44:56 1100| Input: Thisis atest.
Il now wait for 30 seconds.
18:44:59 1100 Input: I’ll now wait for 30 seconds.
18:45:29 1100| No activity for 30 seconds, exiting.
$

Thisisone of several options for requesting a signal in the future. Y ou can also use the setitimer() function, which gives you more
control and precision. It is defined as follows, with the header in sys/time.h:

int setitimer(int which, const struct itimerval *value, struct itimerval *ovalue);
The which parameter can take three options:

1.  ThefirstisITIMER_REAL, which causes your timer to count time according to system clock. It will send the SIGALRM
signal when the time has expired, just as the alarm() function will, so you cannot really use the two of these together.

258



2. Thesecond optionisITIMER_PROF, which counts time whenever your program is executing. The SIGPROF signal is sent
when it has expired.

3. Thefinal optionisITIMER_VIRTUAL, which tracks time only when the process is executing in user mode. When it expires,
SIGVTALRM is sent.

The itimerval structure is defined as follows:

struct itimerval {
struct timeval it_interval; /* next value */
struct timeval it_value; /* current value */

b

Theit_value field specifies the amount of time until the next triggering of the alarm. If it is zero, the alarm is disabled. The
it_interval field specifies a value to which the alarm should be reset to after each time it istriggered; if it is zero, the alarm will
only be triggered once. The structure that it usesis defined as:

struct timeval {
long tv_sec; [* seconds */
long tv_usec; /* microseconds */

H

So you can see that you get more precision with this function than alarm(), although keep in mind that the time required to set the
alarm, that to deliver the signal, and the time taken up by other processes on the system may affect the accuracy of the signal.

So, you might be able to rewrite your program to use this type of timer as shown in Listing 13-7.
Note Listing 13-7 isavailable online.
Listing 13-7: Example using setitimer()

#include <stdio.h>
#include <signal.h>
#include <stdarg.h>
#include <time.h>
#include <string.h>
#include <sys/time.h>
#include <unistd.h>
#include <sys/types.h>
#include <string.h>

int tprintf(const char *fmt, ...);
void sighandler(int signum);

void continuehandler(int signum);
void alarmhandler(int signum);
char buffer[200];

int main(void) {
struct itimerval itimer;
sigset_t blockset, pending;

int pendingcount;

/* Initialize buffer in case someone interrupts the program before
assigning anything to it. */

strepy(buffer, “None\n™);
if (signal(SIGTERM, &sighandler) == SIG_ERR) {

tprintf(“ Couldn’t register signal handler for SSGTERM .\n");
}

259



if (signal(SIGINT, &sighandler) == SIG_ERR) {
tprintf(“ Couldn’t register signal handler for SIGINT .\n");
}

if (signal(SIGCONT, & continuehandler) == SIG_ERR) {
tprintf(“ Couldn’t register signal handler for SIGCONT .\n");
}

if (signal(SIGALRM, &aarmhandler) == SIG_ERR) {
tprintf(“ Couldn’t register signal handler for SSIGALRM .\n");
}

sigemptyset(& blockset);
sigaddset(& blockset, SIGTERM);
sigaddset(&blockset, SIGINT);

itimer.it_interval.tv_usec = 0;
itimer.it_interval.tv_sec = 0;

itimer.it_valuetv_usec = 0;
itimer.it_valuetv_sec = 30;

while (2) {
sigprocmask(SIG_BLOCK, &blockset, NULL);
setitimer(ITIMER_REAL, &itimer, NULL);
fgets(buffer, sizeof (buffer), stdin);
tprintf(“Input: %s’, buffer);
* Process pending signals. */

sigpending(& pending);
pendingcount = O;
if (sigismember(& pending, SIGINT)) pendingcount++;
if (sigismember(& pending, SIGTERM)) pendingcount++;
if (pendingcount) {
tprintf(“There are %d signals pending.\n”, pendingcount);
}

[* Deliver them. */
sigprocmask(SIG_UNBLOCK, &blockset, NULL);
[* Exitif requested. */

if (stremp(buffer, “exit\n”) == 0) {
raise(SIGKILL);
}
}
return O;

}

int tprintf(const char *fmt, ...) {
va list args;

struct tm *tstruct;

time_t tsec;

tsec = time(NULL);
tstruct = localtime(&tsec);

printf(* %02d:%602d:%602d %5d| “,
tstruct->tm_hour,
tstruct->tm_min,
tstruct->tm_sec,

260



getpid());

va start(args, fmt);
return vprintf(fmt, args);

}

void sighandler(int signum) {
tprintf(* Caught signal %d.\n", signumy;
}

void continuehandler(int signum) {
tprintf(“ Continuing.\n");
tprintf(*Y our last input was: %s”, buffer);
}

void alarmhandler(int signum) {
tprintf(*No activity for 30 seconds, exiting.\n");
exit(0);

}

Signalsand System Calls

When you decide to register asignal handler for some signal's, the semantics of some system calls can be modified. The system
calsthat can block “forever”—(those that can read from the network or aterminal, and those that wait for other events) are
included. Normally, they are not affected by signals. However, if you register a handler, the operating system can assume that you

want the system call interrupted when a signal arrives. When this occurs, the system call will exit with a failure code and set errno
to EINTR.

Sometimes this can be a desired behavior, but sometimes you may prefer to inhibit this behavior. Y ou can do so by setting the
SA_RESTART flag on the signal when its handler is registered with sigaction().

Caution If you don't set thisflag, your code may incorrectly interpret asignal asafailurein asystem call. Worse, if
you're assuming that a system call will succeed (reading from the terminal, for instance) and instead it fails,
data corruption in your program can occur. Therefore, if you're using these signals, you need to be aware of the
potential consequences.

For these reasons, many users prefer to use sigaction() in programs such that the semantics of signal delivery can be
more tightly controlled.
Dangersof Signal Handlers

In addition to the potential problems with system calls, you may encounter other dangers in using signal handlers.

First, it is possible for anew signal to arrive while your program is already executing asignal handler. In this case, the existing
signal handler’s execution is interrupted, and it is called a second time. After the second execution finishes, the first resumes, and
when it finishes, the program begins executing again. Keep thisin mind especialy if you are using static variables; you should
take advantage of sigaction’s capability to automatically block signals while in a handler in this situation.

Another potential concern arises when you use the fork() or exec() functions. Keep in mind that when you use the fork() function,
signal handlers and masks are propagated to the child process, but pending signals are not. When you execute a new program, all
thesignalsarereset to SIG_DFL.

It is possible to prevent the default behavior, such as an exit, for some signals. However, this can have unfortunate side-effects.
Users may be confused when they can’t kill a process. The process may be ignoring signals that are warning it of an impending
system shutdown, and thus may be avoiding a chance to save data before a crash.

Y ou can also use the longjmp() and siglongjmp() functionsto jump out of asignal handler. While thisis possible, thisis not
necessarily agood idea. If you try to use one of these functions to escape from SIGABORT, your program will exit anyway.
Summary

In this chapter, you learned about the following aspects of signals:

» Signals are sent to a process when a certain event occurs.

261



A process may catch asignal and direct it to a special signal handler that takes some action when it is received.

e Youcan usesignal() to register a handler for asignal, restore the default behavior, or tell the operating system to ignore the
signal.

You can find alist of available signals on your machine by running kill <. You can also find alist in signal (7).

e If you use sigaction(), you can more tightly control the delivery of signals and let your handlers receive more detailed
information about the signals they are called upon to process.

A signal can be delivered to your own process by using raise() or to other processes by using kill().

e You can use aarm() and setitimer() to request signals be automatically delivered to your process at some time in the future.
Chapter 14: Introducing the Linux I/O System

Overview

In this chapter, you'll be introduced to the I/O and communication subsystems on Linux. You'll find that, in Linux, you’'ll use many
of the items documented here to do everything from reading from files and terminals to communicating over the Internet with a
computer in adifferent country. Linux tries to present you with a unified interface to the I/O system wherever possible. Therefore,
not only can asingle set of code read from adisk file aseasily asit can read from a network connection, but also you can access
things such as hardware devices and system ports with the same interface.

Library versus System Call

In Linux, you will frequently encounter two different ways of handling input and output (1/0) on the system. The first involves
directly using system calls. These calls include such items as open(), read(), write(), and socket(). The second involves using the
ANSI Clibrary calls such as fopen(), fread(), fwrite(), and fprintf().

The difference between these two ways of 1/0O handling goes deeper than simply having a different name. The C library calls,
commonly known as the stream 1/0O calls, are actually wrappers around the system calls. Therefore, they technically don’t add any
featuresto your program that you could not write yourself.

However, stream |/O calls provide a number of conveniences that are extremely beneficia to your programs. For one, they
automatically buffer output, minimizing the need to call the system calls and improving performance. Second, you have
convenience functions such as fprintf() that enable you to format output and write it out all at once. Finally, they take care of some
details of system calls for you, such as handling system calls that have been interrupted by asignal.

Cross-Reference

See Chapter 13, “Understanding Signals,” for details on system calls.

Although these features are great for many programs, they can be a hindrance for others. For example, the stream /O functions do
not have some features necessary for communicating over a network. Moreover, the buffering tends to make network
communication difficult because it can interfere with the protocol being used. Sometimes you may need more control than they
give you, and thus you may need to use the system calls directly.

Considering these different sets of requirements, people often prefer to use stream 1/O for terminal and file interaction, and system
call 1/O for network and pipe use. It is easy to use both methodsin a single program, as long as you use only one method for any
given file descriptor. In fact, you can use both methods for a single file descriptor as well, but such usage reguires extreme care
and can be difficult.

Y ou can mix and match between the two features—the fileno() function gives you the file descriptor for a stream and the fdopen()
function opens a stream based on an already open file descriptor. Note, though, that it is generally unwise to use both methods
simultaneously.

In this chapter, I'll use both methods. I'll start by showing you programs that do the same thing written using each method to give
you a basis for comparison.

262



Stream 1/0

Stream |/O is the method taught in many C textbooks and classes because it is a portable way to do /0. System call 1/O may not
necessarily be portable to non-Linux or non-UNIX platforms, especially if it contains more advanced system call 1/O features.

One of the features of stream I/O isits built-in buffering, which can be a performance win for your applications. However, be
aware that data that you write with one of these functionsis not written out immediately. If you are writing out information such as
status messages, network communication, or the like, you can use the fflush() call to flush it all out immediately.

Hereisafairly basic program that uses stream /O functions; notice that this program does no error-checking at al (whichisa
problem that I'll address shortly):

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

void stripcrlf(char *temp);

int main(void) {
FILE *outfile;
char input[80];

printf(“ Select output filename: “);
fgets(input, sizeof (input), stdin);
striperlf(input);

outfile = fopen(input, “w");
printf(“ Please enter some numbers. Use -1 when you want to exit.\n");

do{
fgets(input, sizeof(input), stdin);
fwrite(input, strlen(input), 1, outfile);
striperlf(input);
fprintf(outfile, “New: %d\n”,
atoi(input) * 5+ (20 * 100) - 12);
} while (atoi(input) !=-1);
fclose(outfile);
return O,

}

void striperlf(char *temp)
while (strlen(temp) & & temp[0] & &

((temp[strien(temp)-1] == 13) || (temp[strien(temp)-1] == 10))) {
temp[strlen(temp)-1] = 0;

This program reads in afilename and opensit up for writing. Then it enters aloop, reading some numbers. It writes out the
number, and then a new number is generated based on the existing one to the file. The program continues doing so until -1 is
supplied, at which time it writes it out, closes the output file, and exits.
Next, I'll add some error-checking to the program. Asit is, the program would never know if the datait’ strying to write out
simply disappears into the ether. To make sure that the I/O calls are successful, the program needs to check the return values for
them. Listing 14-1 shows the revised program, which has these checks.
Note Listing 14-1 isavailable online.
Listing 14-1: Revised program to check return values of 1/0

#include <stdio.h>

263



#include <string.h>
#include <stdlib.h>
#include <errno.h>

void stripcrlf(char *temp);

int main(void) {
FILE *outfile;
char input[80];

printf(“ Select output filename: “);
fgets(input, sizeof (input), stdin);
striperlf(input);

outfile = fopen(input, “w");
if (loutfile) {
printf(“ Error opening output file: %s\n”,
sys errlist[errno));
exit(255);
}

printf(“Please enter some numbers. Use -1 when you want to exit.\n");

do{
fgets(input, sizeof(input), stdin);
if (fwrite(input, strlen(input), 1, outfile) != 1) {
printf(“Error writing: %s\n”,
sys_errlist[errna]);
exit(255);
}
striperlf(input);
if (fprintf(outfile, “New: %d\n”,
atoi(input) * 5+ (20 * 100) - 12) < 1) {
printf(“ Error writing: %s\n”,
sys errlist[errno]);
exit(255);

}

} while (atoi(input) !=-1);
fclose(outfile);
return O,

}

void striperlf(char *temp)

while (strlen(temp) & & temp[0] & &
((temp[strien(temp)-1] == 13) || (temp[strien(temp)-1] == 10))) {
temp[strlen(temp)-1] = 0;

Thistime, the program checks more return codes. It still does not check fgets(), printf(), and fclose(). Also, the error-checking for
fprintf() isimperfect; because | don’'t know an exact count of the amount of data it will be writing, | can’t specifically check its
return value for matching that count. The following section presents an alternative approach that uses system call 1/0 instead of
stream 1/0.

System call 1/0
The same task can be accomplished by using system call 1/O instead of stream I/O. Listing 14-2 presents a modified version of the
previous program using system call 1/0 for the output to a file and stream 1/O for reading and writing from the terminal. Thisisa

model that is not infrequently encountered; especially when stream 1/0 is used for reading from the terminal and system call 1/0
for interaction with a network connection.

264



Note Listing 14-2 isavailable online.
Listing 14-2: Example with stream /O

#include <stdio.h>

#include <string.h>
#include <stdlib.h>
#include <errno.h>

/* The next four are for system call 1/0O */

#include <unistd.h>
#include <syg/types.h>
#include <syg/stat.h>
#include <fentl.h>

void stripcrlf(char *temp);
int write_buffer(int fd, const void *buf, int count);

int main(void) {
int outfile;
char input[80];
char buffer[80];

printf(“ Select output filename: “);
fgets(input, sizeof (input), stdin);
striperlf(input);

outfile = open(input, O WRONLY |O_CREAT | O_TRUNC, 0640);

if (outfile==-1) {
printf(“ Error opening output file: %s\n”,
sys errlist[errno]);
exit(255);
}

printf(“Please enter some numbers. Use -1 when you want to exit.\n");

do{
fgets(input, sizeof(input), stdin);
if (write_buffer(outfile, input, strlen(input)) < 0) {
printf(“Error writing: %s\n”,
sys_errlist[errna]);
exit(255);

}
striperlf(input);

sprintf(buffer, “New: %d\n”,
atoi(input) * 5+ (20 * 100) - 12);

if (write_buffer(outfile, buffer, strlen(buffer)) < 0) {
printf(“Error writing: %s\n”,
sys_errlist[errna]);
exit(255);

}

} while (atoi(input) !=-1);
close(outfile);
return O;

}

void striperlf(char *temp) {
while (strlen(temp) & & temp[0] &&

265



((temp[strien(temp)-1] =

temp[strlen(temp)-1] = 0;

}
/*

= 13) || (temp[strlen(temp)-1] == 10))) {

This function writes certain number bytes from “buf” to afile
or socket descriptor specified by “fd”. The number of bytesis
specified by “count”. It returns the number of bytes written,

or <0 on error.
*/

int write_buffer(int fd, const void *buf, int count)

{
const void *pts = buf;
int status=0, n;
if (count < Q) return (-1);

while (status !'= count) {

n = write(fd, ptst+status, count-status);

if (n<0) return (n);
status +=n;

}

return (status);

}

Now I’ll review the changes. First, outfile is replaced with an integer file descriptor instead of aFILE *. Second, the opening of
the output file is different. Although the call is more involved, it does give much more flexibility, and an opportunity to assign
permissions automatically asit is opened (that is the function of the last argument).

Y ou can call open() two ways; it is defined like this:

int open(const char *pathname, int flags);
int open(const char * pathname, int flags, mode_t mode);

In general, when you are using the O_CREAT flag, you should take care to specify a mode. In all other situations, specifyingitis
unnecessary and the specification will beignored if present. Table 14-1 lists the valid values for flags. Note that you must specify
exactly one of O_RDONLY, O_ WRONLY, or O_RDWR. The remaining flags are optional and can be or’d with one of the above
three flags to generate the final value.

Table 14-1: Flag Values

Flag

O_APPEND

O_CREAT

O_EXCL

O_NDELAY

O_NOCTTY

266

M eaning

Causes all writes to take place after a seek to the end of the file, which takes place atomically with
the actual write. This behavior is not guaranteed across network file systems.

Creates the requested file with the specified mode (with umask applied) if it does not already exist.

Causes open to fail if the file already exists when used with O_CREAT. This behavior is not
guaranteed across network file systems, however.

Same as O_NONBLOCK.

Prevents aterminal special device from automatically becoming your process's controlling terminal
if you try to open it.



O_NOFOLLOW Mandates that the final name in the supplied filename not be a symbolic link.

O_NONBLOCK Indicates that the file should be opened with non-blocking semantics on later 1/O calls dealing with
this descriptor.
O_RDONLY Opensthefile for reading only.
O_RDWR Opensthefile for reading and writing.
O_SYNC Forces an immediate commit to the physical device when writing data to this descriptor.
O _TRUNC Causes the file' s existing contents to be deleted on open, if the file exists.
O_WRONLY Opensthefile for writing only.
L

Next, notice the call to write_buffer(). Instead of simply calling write(), the program instead calls this special function, which I’ll
go over next. Also notice that | use sprintf() to generate the output string. For the ultimate in speed, | might write my own integer-
to-string conversion routine to add on later, but for this program, this sprintf() call will be fine.

Now take alook at the write_buffer() function. This function is necessary because write() does not guarantee that it will write out
all that you request at once. It may write out half of it, or aslittle as one byte. It does guarantee that it will write at least one byte
before returning unless thereis an error.

Therefore, you need to restart the write() call if some bytes remain unwritten. That way, you are guaranteed that, if write_buffer()
returns with no error code, then the write is a success. This function begins by validating itsinput. It then proceeds to enter aloop.
In the status variable, it keeps a count of how many bytes were written thus far; thisis of course initialized to 0. After each write,

the value of nisexamined. If it indicates an error, the error code is returned. Otherwise, it isacount of bytes written, whichis
added to the value in status. If status still is not up to size, it continues writing until it is.

Now, how about using system call 1/O for the terminal interaction as well? Using it to write out to the terminal istrivial; using it to

read is a bit more difficult. Before you begin, you need to know three standard values—file descriptor O corresponds to standard
input, 1 to standard output, and 2 to standard error. I'll use the first two values in the program shown in Listing 14-3.

Note Listing 14-3 isavailable online.
Listing 14-3: System call I/O for terminal interaction

#include <stdio.h>

#include <string.h>
#include <stdlib.h>
#include <errno.h>

/* The next four are for system call 1/0O */

#include <unistd.h>
#include <syg/types.h>
#include <syg/stat.h>
#include <fcntl.h>

void stripcrlf(char *temp);
int write_buffer(int fd, const void *buf, int count);
int read_buffer(int fd, void *buf, int count);
int readnistring(int socket, char *buf, int maxlen);
int readdelimstring(int socket, char *buf, int maxlen, char delim);
void exiterror(char * message, int errnum);

const char *MESSAGE _filename = “ Select output filename: “;
const char *MESSAGE_numbers =

“Please enter some numbers. Use -1 when you want to exit.\n";
int main(void) {

267



int outfile;
char input[80];
char buffer[80];
[* Write the prompt for filename and read in the filename. */

write_buffer(1, MESSAGE _filename, strlen(MESSAGE_filename));
readnlstring(0, input, sizeof(input));

/* Open thefile*/

outfile = open(input, O_ WRONLY | O_CREAT | O_TRUNC, 0640);

if (outfile==-1) {
exiterror(* Error opening output file: “, errno);

}

/* Write the basic instructions. */
write_buffer(1, MESSAGE_numbers, strlen(MESSAGE_numbers));

do{
/* Read aline of input, */
readnlstring(0, input, sizeof(input));

[* Write it out with trailing newline. */
if (write_buffer(outfile, input, strlen(input)) < 0) {
exiterror(“Error writing: “, errno);

if (write_buffer(outfile, “\n”, 1) < 0) {
exiterror(“Error writing: “, errno);

}

sprintf(buffer, “New: %d\n”,
atoi(input) * 5+ (20 * 100) - 12);
if (write_buffer(outfile, buffer, strlen(buffer)) < 0) {
exiterror(“ Error writing: “, errno);

} while (atoi(input) !=-1);
close(outfile);
return O,

}

void striperlf(char *temp) {
while (strlen(temp) & & temp[0] & &
((temp[strien(temp)-1] == 13) || (temp[strien(temp)-1] == 10))) {
temp[strlen(temp)-1] = 0;

}

/*
This function writes certain number bytes from “buf” to afile
or socket descriptor specified by “fd”. The number of bytesis
specified by “count”. It returns the number of bytes written,
or <0 on error.
*/

int write_buffer(int fd, const void *buf, int count) {
const void *pts = buf;

int status=0, n;

if (count < Q) return (-1);

268



while (status !'= count) {
n = write(fd, ptst+status, count-status);
if (n<0) return (n);
status +=n;

}

return (status);

}

int read_buffer(int fd, void *buf, int count) {
void *pts = buf;
int status=0, n;

if (count < 0) return (-1);

while (status !'= count) {
n = read(fd, ptststatus, count-status);
if (n<1)returnn;
status += n;

}

return (status);

}

int readnlstring(int socket, char *buf, int maxlen) {
return readdelimstring(socket, buf, maxlen, ‘\n’);
}

int readdelimstring(int socket, char *buf, int maxlen, char delim) {
int status;
int count = 0;
while (count < maxlen - 1) {
if ((status = read_buffer(socket, buf+count, 1)) < 1) {
printf(“Error reading.\n");
return -1,

if (buf{count] == delim) { /* Found the delimiter */
buf[count] = 0;
return O;

}

count++;

buf[count] = 0;
return O;

}

void exiterror(char *message, int errnum) {
write_buffer(1, message, strlen(message));
write_buffer(1, sys errlist[errnum], strlen(sys_errlist[errnum]));
write_buffer(1, “\n”, 1);
exit(255);
}

The code for this program sure has become larger! 1'll go over the pieces here. The main() function is fairly similar to its previous
state. A few common messages are given now in constants so that taking their length becomes easier for use with write_buffer().A
readnlstring() function that reads a single line (terminated by the newline character) using system call 1/O is the rough equivalent

of fgets() in the stream 1/O world.

Displaying the error message on exit is now more complex, so that task now has its own function, exiterror(). The only remaining
function from the standard I/O library now is sprintf(), and it doesn’t perform any 1/0 directly.

The new read_buffer() function performs the same function as the write_buffer() does, so make sure that a certain number of bytes
areread in before returning to its caller. Then there is the readdelimstring() function, for which readnlstring() is a simple wrapper.



The purpose of readdelimstring() isto be capable of reading in data separated by a specific delimiter—in this case, a newline
character. The readdelimstring() function reads in the string, chops off the delimiter, and saves the result. This function is not terribly
efficient asis but making it more efficient would require a much more complex agorithm, and it is plenty fast for our purposes here.
The key to theinefficiency isthat it reads datain chunks of one byte at atime.

Error Conditions

One of the most important aspects of dealing with input and output in any program is the proper detection and handling of errors.
Although your program may encounter no error at all for almost 100 percent of the time that it runs, the occasion on which
something does go wrong is often the most likely to cause data corruption and problemsin your program. The cause for afailure
could be something such as a user entering awrong filename, adisk filling up, a network link going down, or even abug in
another program that you' re piping data to.

Thefirst step toward preventing data loss from /O errorsis to take proper stepsto identify these error conditions when they occur.
For instance, you need to properly check the return values of calls to open() to make sure that the files really are open as you
requested. Y ou should check the return values of callsto write() to make sure that adisk did not fill up while you were writing
your data out. Y ou should check the return value of close() to be sure that all the data is capable of being physically written to disk
without any physical media problem.

Many programmers ignore the return values of close(), intentionally or unintentionally. Especially prevalent is atendency to not
check the return value of callsto fclose() or close()—notice that the examplesin this chapter represent a somewhat typical
approach to error-checking: input from the terminal or output to it is not really checked. One can often assume that the terminal is
functional if the program is executing; however, programs that may have information piped to or from them cannot make this
assumption.

Another concern is the actual data coming in. Even if you check to make sure that reads are successful, you may not check to
ensure that the data read is as you expect it to be. For instance, in the program in Listing 14-3, the input was not checked to ensure
it was actually a number—or even that it was not a blank line. In this particular program, that won't cause any serious harm
because it’s simply for demonstration purposes—the result in the output file really doesn’t matter. However, sometimes this can be
abig issue. For instance, if you are expecting afirst and alast name on aline, and get only afirst name, a sorting function may fail
because there is no value for the last name.

Using a wrapper library

Asyou saw in Listing 14-3, checking for errors after every call can be tedious—and, at a certain point, so annoying that some
developers opt to forsake proper error-checking during development. To help make error-checking easier for programs, | wrote a
module that consists of some functions that wrap around the actual calls. These functions automatically check for problems, and if
one is detected, an appropriate error is printed automatically. The functions in the wrapper can also exit the program automatically,
or raise asignal that can be caught. It will write to stderr by default, but this can be changed to a different file handle to enableit to
writeto alog file, or to a pipe that is connected to another process that does the actual logging, for instance:

The code for this module comes in two files: aheader file and a C source file. Here is the header file, safecalls.h.:

#ifndef SAFECALLS H__
#define_ SAFECALLS H__

#include <stdio.h> /* required for FILE * stuff */
#include <syg/stat.h> I* required for struct stat stuff */
#include <syg/types.h>
#include <signal.h>
#include <unistd.h>

#ifndef SAFECALLS C
FILE *SafeLibErrorDest
#endif

char *safestrdup(const char *s);

char *safestrncpy(char *dest, const char *src, size t n);
char *safestrcat(char *dest, const char *src, size t n);
int safekill(pid_t pid, int sig);

char * safegetenv(const char * name);

int safechdir(const char *path);

int safemkdir(const char *path, mode_t mode);

270



int safestat(const char *file_name, struct stat *buf);

int safeopen(const char *pathname, int flags);

int safeopen2(const char * pathname, int flags, mode _t mode);

int safepipe(int filedes[2));

int safedup2(int oldfd, int newfd);

int safeexecvp(const char *file, char *const argv[]);

int saferead(int fd, void *buf, size t count);

int safewrite(int fd, const char *buf, size t count);
int safeclose(int fd);

FILE *safefopen(char * path, char * mode);

size t safefread(void *ptr, size t size, size t nmemb, FILE * stream);
char *safefgets(char *s, int size, FILE * stream);

size t safefwrite(void *ptr, size t size, size t nmemb, FILE *stream);
int safefclose(FILE * stream);
int safefflush(FILE * stream);
void *safemalloc(size t size);

void HandleError(int ecode, const char * const caller,

const char *fmt, ...);

#endif
Listing 14-4 shows the C source file, safecalls.c.
Note Listing 14-4 isavailable online.
Listing 14-4: safecalls.c, a wrapper

/* This module contains wrappers around a number of system calls and
library functions so that a default error behavior can be defined.

*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <syg/types.h>
#include <syg/stat.h>
#include <fentl.h>
#include <unistd.h>
#include <malloc.h>
#include <signal.h>
#include <errno.h>
#include <stdarg.h>

#define_ SAFECALLS C__
#include “ safecalls.h”

[* Thefirst two are automatically set by HandleError. The third you can
set to be the file handle to which error messages are written. |If
NULL, istaken to be stderr. */

const char * SafeLibErrorLoc;
int SafeLibErrno = 0;
FILE *SafeLibErrorDest = NULL;

char * safestrdup(const char *s)
{

char *retval;

retval = strdup(s);
if ('retval)

271



HandleError(0, “strdup”, “dup %s failed”, s);
return retval;

}

char *safestrncpy(char *dest, const char *src, size t n)

if (strlen(src) >=n)
HandleError (0, “strncpy”, “Attempt to copy string \” %s\"\n”
“to buffer %d byteslong”, src, (int) n);
return strncpy(dest, src, n);
}

char *safestrcat(char *dest, const char *src, size t n)
{
if ((strlen(src) + strlen(dest)) >=n)
HandleError(0, “strcat”, “ Attempt to strcat too big a string”);
return strncat(dest, src, n - 1);

}

int safekill(pid_t pid, int sig)
int retval;

retval = kill(pid, sig);
if (retval ==-1)
HandleError(errno, “kill”, “kill (pid %d, sig %d) failed”, (int) pid, sig);
return retval;
}

char *safegetenv(const char * name)

{

char *retval;

retval = getenv(name);
if ('retval)

HandleError(errno, “getenv”, “ getenv on %s failed”, name);
return retval;

}

int safechdir(const char * path)
{
int retval;
retval = chdir(path);
if (retval ==-1)
HandleError(errno, “chdir”, “chdir to %s failed”, path);
return retval;

}

int safemkdir(const char *path, mode_t mode)

{
int retval;

retval = mkdir(path, mode);
if (retval ==-1)

HandleError(errno, “mkdir”, “mkdir %s failed”, path);
return retval;

}

int safestat(const char *file_name, struct stat *buf)
{

272



int retval;
retval = stat(file_name, buf);

if (retval ==-1)
HandleError(errno, “stat”, “Couldn’t stat %s’, file_name);
return retval;
}
int safeopen(const char * pathname, int flags)
{
int retval;

if ((retval = open(pathname, flags)) == -1) {
HandleError(errno, “open”, “open %s failed”, pathname);

}
return retval;

}

int safeopen2(const char * pathname, int flags, mode_t mode)

{
int retval;

retval = open(pathname, flags, mode);
if (retval ==-1)

HandleError(errno, “open2”, “Open %s failed”, pathname);
return retval;

}
int safepipe(int filedeg[2])
{

int retval;

retval = pipe(filedes);

if (retval ==-1)
HandleError(errno, “pipe’, “failed”);
return retval;
}
int safedup2(int oldfd, int newfd)
{
int retval;

retval = dup2(oldfd, newfd);

if (retval ==-1)
HandleError(errno, “dup2”, “failed”);
return retval;
}
int safeexecvp(const char *file, char *const argv[])
{
int retval;

retval = execvp(file, argv);

if (retval ==-1)
HandleError(errno, “execvp”, “execvp %s failed”, file);
return retval;
}
int saferead(int fd, void *buf, size t count)
{
int retval;

retval = read(fd, buf, count);
if (retval ==-1)

273



HandleError(errno, “read”,
“read %d bytes from fd %d failed”, (int) count, fd);
return retval;

}

int safewrite(int fd, const char *buf, size_t count)

{
int retval;

retval = write(fd, buf, count);
if (retval ==-1)
HandleError(errno, “write”,
“write %d bytes to fd %d failed”, (int) count, fd);
return retval;

}

int safeclose(int fd)
{

int retval;

retval = close(fd);

! (Iiﬁa:(; (;é)rr{or(errno, “close”, “Possible serious problem: close failed”);
%eturn retval;

}
FILE * safefopen(char * path, char *mode)

{ FILE *retval;

retval = fopen(path, mode);
if (‘retval)

HandleError(errno, “fopen”, “fopen %s failed”, path);
return retval;

}

size t safefread(void *ptr, size t size, size t nmemb, FILE * stream)

{

size tretval;

retval = fread(ptr, size, nmemb, stream);
if (ferror(stream))

HandleError(errno, “fread”, “failed”);
return retval;

}

char *safefgets(char *s, int size, FILE *stream) {
char *retval;

retval = fgets(s, size, stream);

if (‘retval)
HandleError(errno, “fgets’, “failed”);
return retval;
}
size t safefwrite(void *ptr, size t size, size t nmemb, FILE * stream)
{
size tretval;

retval = fread(ptr, size, nmemb, stream);
if (ferror(stream))

274



HandleError(errno, “fwrite”, “failed”);
return retval;

}

int safefclose(FILE * stream)

{
int retval;

retval = fclose(stream);
if (retval I=0)

HandleError(errno, “fclose”, “Possibly serious error: fclose failed”);
return retval;

}

int safefflush(FILE * stream)

{
int retval;

retval = fflush(stream);
if (retval 1= 0)

HandleError(errno, “fflush”, “fflush failed”);
return retval;

}

void *safemalloc(size t size)

{
void *retval;

retval = malloc(size);
if (‘retval)

HandleError(0, “malloc”, “malloc failed”);
return retval;

}

void HandleError(int ecode, const char * const caller,
const char *fmt, ...) {

va list fmtargs;
struct sigaction sastruct;
FILE *of = (SafeLibErrorDest) ? SafeLibErrorDest : stderr;

[* Safe theseinto global variables for any possible signal handler. */

SafeLibErrorLoc = caller;
SafeLibErrno = ecode;

[* Print the error message(s) */
va_ start(fmtargs, fmt);

fprintf(of, “*** Error in %s: “, caller);
viprintf(of, fmt, fmtargs);
va_end(fmtargs);
fprintf(of, “\n");
if (ecode) {
fprintf(of, “*** Error cause: %s\n”, strerror(ecode));

}

/* Exitif no signal handler. Otherwise, raiseasignal. */
sigaction(SIGUSR1, NULL, & sastruct);

if (sastruct.sa_handler != SIG_DFL) {

raise(SIGUSR1);

275



}else{
exit(254);
}
}

I’ll examine how this code works. A function is created in the safecalls.c file for each function that should be wrapped. This
function calls the real one, passing along the appropriate arguments. It checksto seeif thereisany error. If so, it calls HandleError,
passing along errno (if applicable; 0 otherwise) and a printf-style format string.

HandleError, then, receives thisinformation. It uses C's variable argument support to be able to pass the format string and any
other itemsto vfprintf(). HandleError saves the first two argumentsin global variables—this way, if you have asignal handler, you
can examine those variables for a hint asto what is going on—or perhaps to decide how to handle the situation.

Then, HandleError prints out the error messages. If no signal handler is registered for SIGUSR1 (or more precisely, the handler is
not the default; SIG_IGN till causesit to raise the signal), the HandleError function simply terminates the program. Otherwise, it
will raise that signal and then return.

Note What isbeing doneisasimplistic form of exception handling. If you are using a language that already has

exception handling capabilities, such as C++ or Perl, you can avoid the mess of using asignal handler and simply
throw an exception.

If you want to add more functions to this program, doing so is not hard; you simply can add a function in the safecalls.c file,
following the form used by the others. When you'’ ve done that, add the prototype to the safecalls.h file and you' re ready!

All of these functions are completely interoperable and interchangeable with their standard counterparts. Y ou can use the normal
ones when you want to omit error-checking or prefer to handle the error-checking yourself.

Using a wrapper library with your own program

To use this wrapper system with your own programs, you simply need to include the header file in your program and use the
equivalent safe version of the system calls. If you want to customize the error behavior, you can register asignal handler for

SIGUSRL. Listing 14-5 shows a modified version of the previous example program, designed to work with these safecalls.c
functions.

Note Listing 14-5 isavailable online.
Listing 14-5: Sample usage of safecalls.c

#include <stdio.h>

#include <string.h>
#include <stdlib.h>
#include <errno.h>

/* The next four are for system call 1/0O */

#include <unistd.h>
#include <syg/types.h>
#include <syg/stat.h>
#include <fcntl.h>
#include “safecalls.h”

void stripcrlf(char *temp);
int write_buffer(int fd, const void *buf, int count);
int read_buffer(int fd, void *buf, int count);
int readnistring(int socket, char *buf, int maxlen);
int readdelimstring(int socket, char *buf, int maxlen, char delim);
void exiterror(char * message, int errnum);

const char *MESSAGE _filename = “ Select output filename: “;
const char *MESSAGE_numbers = “Please enter some numbers. Use -1 when you want to exit.\n”;

int main(void) {

276



int outfile;
char input[80];
char buffer[80];

/* Write the prompt for filename and read in the filename. */

write_buffer(1, MESSAGE _filename, strlen(MESSAGE_filename));

readnlstring(0, input, sizeof(input));

/* Open thefile*/

outfile = safeopen2(input, O WRONLY | O_CREAT | O_TRUNC, 0640);

/* Write the basic instructions. */

write_buffer(1, MESSAGE_numbers, strlen(MESSAGE_numbers));

do{
/* Read aline of input, */
readnlstring(0, input, sizeof(input));

[* Write it out with trailing newline. */
write_buffer(outfile, input, strlen(input));
write_buffer(outfile, “\n”, 1);

sprintf(buffer, “New: %d\n”,
atoi(input) * 5+ (20 * 100) - 12);

write_buffer(outfile, buffer, strlen(buffer));
} while (atoi(input) !=-1);
safeclose(outfile);
return O,

}

void striperlf(char *temp) {
while (strlen(temp) & & temp[0] & &
((temp[strien(temp)-1] == 13) || (temp[strien(temp)-1] == 10))) {
temp[strlen(temp)-1] = 0;

}

/*
This function writes certain number bytes from “buf” to afile
or socket descriptor specified by “fd”. The number of bytesis
specified by “count”. It returns the number of bytes written,
or <0 on error.
*/

int write_buffer(int fd, const void *buf, int count) {
const void *pts = buf;
int status=0, n;

if (count < Q) return (-1);

while (status !'= count) {
n = safewrite(fd, ptststatus, count-status);
if (n<0) return (n);
status += n;

}

return (status);

}

int read_buffer(int fd, void *buf, int count) {
void *pts = buf;

277



int status=0, n;
if (count < 0) return (-1);

while (status !'= count) {
n = saferead(fd, pts+status, count-status);
if (n<1)returnn;
status +=n;

}

return (status);

}

int readnlstring(int socket, char *buf, int maxlen) {
return readdelimstring(socket, buf, maxlen, ‘\n’);

}

int readdelimstring(int socket, char *buf, int maxlen, char delim) {
int status,
int count = 0;

while (count < maxlen - 1) {
if ((status = read_buffer(socket, buf+count, 1)) < 1) {
printf(“Error reading.\n");
return -1,

if (buf[{count] == delim) { /* Found the delimeter */
buf[count] = 0;
return O;

}

count++;

}
buf[count] = 0;
return O;

}

void exiterror(char *message, int errnum) {
write_buffer(1, message, strlen(message));
write_buffer(1, sys errlist[errnum], strlen(sys_errlist[errnumy));
write_buffer(1, “\n”, 1);
exit(255);
}

To compile this program, you'll need to run:
$ gcc -Wall -0 ch14-05 ch14-05.c safecalls.c
Now watch what happens when you run it and try, for instance, to give it a bad filename:
$ ./ch14-05
Select output filename: /tmp/no/such/file/exists
*** Error in open2: Open /tmp/no/such/file/exists failed
*** Error cause: No such file or directory
So, you didn’'t have to make any test at all in the main program for this error; it was caught, dealt with, and caused the program to
exit. This simplifies your task significantly!
Advanced 1/0

Y ou should be familiar with several more advanced concepts as | proceed into more detailed descriptions of the I/0 system on
Linux.

278



Cross-Reference

To make the most of this section, you should review the material presented in Chapter 11, “Files, Directories, and
Devices.”

Sparsefiles

An interesting thing occurs when you attempt to seek past the end of afilein Linux. If you do this, you cause the file to grow. If
you then write data at this new location, you leave a hole between the end of the previous data and the start of the new data.

What goes into that hole then? The answer is: nothing. Y ou might have a 10-byte write, seek 10MB into it, and write another 10
bytes. The file will show up as being over 10MB but really uses only 1 or 2KB of disk space because of the hole.

When you try to read into this hole, the operating system generates a stream of NULL charactersfor you. It looks asif thereis
really datathere (albeit alarge chunk of NULLS), but therereally isn't.

Sparse files may occur more frequently with certain file types. Examples might include core dumps, some types of binaries, some
types of libraries, and so on. Particularly, thisislikely to happen to files that are intended to be memory-mapped as executable.

Listing 14-6 shows a quick program that creates such a sparsefile.
Note Listing 14-6 is available online.
Listing 14-6: Creating a sparsefile

#include <stdio.h>

#include <string.h>
#include <stdlib.h>
#include <errno.h>

/* The next four are for system call 1/0O */

#include <unistd.h>
#include <syg/types.h>
#include <syg/stat.h>
#include <fcntl.h>
#include “safecalls.h”

int write_buffer(int fd, const void *buf, int count);

int main(void) {
int outfile;

/* Open thefile*/
outfile = safeopen2(“test.dat”, O_WRONLY | O_CREAT | O_TRUNC, 0640);

write_buffer(outfile, “Hi”, 2);
Iseek(outfile, 10485760, SEEK _SET);
write_buffer(outfile, “Hi”, 2);

safeclose(outfile);
return O;

}

/*
This function writes a certain number of bytes from “buf” to afile
or socket descriptor specified by “fd”. The number of bytesis
specified by “count”. It returns the number of bytes written,
or <0 on error.

279



*/

int write_buffer(int fd, const void *buf, int count) {
const void *pts = buf;
int status=0, n;

if (count < Q) return (-1);

while (status !'= count) {
n = safewrite(fd, pts+status, count-status);
if (n<0) return (n);
status += n;

}
return (status);

}

To compile this program, you might want to use a command such as:
$ gcc —Wall —o ch14-6 ch14-6.c safecalls.c

Y ou need to specifically mention safecalls.c on your call to gcc. If you don’t, the code for the wrapper will not be included and the
program will fail to link.

This program writes out Hi, seeks 10MB into the file, and writes out the same string again. After you run it, you get the following
file:

$ls-l test.dat
-FW-r----- 1 jgoerzen jgoerzen 10485762 Oct 12 05:47 test.dat

Thisisnormal. But check the actual disk space usage:

$ls-stest.dat
4 test.dat

Thisfile used only four blocks (each block is 1K by default on Linux)! Therefore you can see that the file isindeed sparse.

Non-blocking 1/0

Normally, when you perform 1/0, the function you call waits before returning until the data has been read or entered into the
buffer for writing. This often means that you must wait on a device or person before the operating will return. This waiting can
sometimes take along time—even days, if a person gets up and leaves the terminal.

Occasionally, you may want to perform an operation such as, “give me some dataif there is any that’sready.” Y ou can achieve
this by using non-blocking I/O. With non-blocking 1/0, the function calls return immediately, whether or not they actually
performed the requested action.

Non-blocking I/O is available only with system call 1/0O. Y ou can enable it by specifying O NONBLOCK in the flags to the open
cal. After this, when you call an I/O function that would normally block, you will receive an error value from your call. The
global variable errno will be set to EAGAIN because the operation cannot yet be completed.

Y ou can use this type of support to work with a queuing mechanism, when you are working with many file descriptors, and so on.
However, for many of these tasks, you should probably use select() or poll() instead for modern applications.

These settings are separate from the blocking/non-blocking options for file locking, although they serve the same basic purpose.
M emory-M apped 1/0

One of the most fascinating capabilities of Linux is memory-mapped 1/O. This feature enables you to literally map afileinto a
memory region. When you access that memory, as with a standard pointer, the appropriate operation is performed automatically on
the underlying file.

There are two main reasons that you might prefer to use memory-mapped /O instead of standard system call or stream 1/0O. The
first involves speed. If you are reading datain bulk, you will find that using memory-mapped 1/0 isfaster. The reason isthat this

280



prevents the system from having to perform additional memory copies of data from kernel to user space, asis necessary when

using more conventional functions.

The other reason is that you may prefer to have an interface to the file of thistype. This sort of interface lends itself to certain types

of features. For instance, you can pass around pointersinto the file, which act like normal memory to functions but really are

referencing the data on-disk.

There are some disadvantages to using this method. For one, when you map a part of the file into memory, you must define a

specific size ahead of time. This size cannot shrink or expand. Therefore, adding data to files can be tricky when you use thistype
of method to do it. Also, you can only memory-map regular files and other seekable things like them. Y ou cannot memory-map a

socket, a pipe, or anything of that sort because they are inherently unseekable.

To write out to afile, you must first generateit. You can do so quickly by generating a sparse file as was donein Listing 14-6.
Listing 14-7 shows a program that uses memory-mapped 1/O to write datainto afile.

Note Listing 14-7 is available online.
Listing 14-7: Example of memory-mapped 1/0O

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <errno.h>
#include <sygmman.h>

/* The next four are for system call 1/0O */
#include <unistd.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fentl.h>
#include “ safecalls.h”

int write_buffer(int fd, const void *buf, int count);
int main(void) {
int outfile;
char * mapped;
char *ptr;
/* Open thefile */
outfile = safeopen2(“test.dat”, O_RDWR | O_CREAT | O_TRUNC, 0640);

Iseek(outfile, 1000, SEEK _SET);
safewrite(outfile, “\0”, 1);

mapped = mmap(NULL, 1000, PROT_READ | PROT_WRITE, MAP_SHARED,

outfile, 0);
if (!mapped) {
printf(“mmap failed.\n");
}

ptr = mapped,;
printf(“Please enter a number: \n");
fgets(mapped, 80, stdin);

ptr += strlen(mapped);

sprintf(ptr, “Y our number timestwo is: %d\n”,
atoi(mapped) * 2);

printf(*'Y our number timestwo is: %d\n”,
atoi(mapped) * 2);

281



msync(mapped, 1000, MS_SYNC);
munmap(mapped, 1000);

safeclose(outfile);
return O;

}

/*
This function writes certain number bytes from “buf” to afile
or socket descriptor specified by “fd”. The number of bytesis
specified by “count”. It returns the number of bytes written,
or <0 on error.
*/

int write_buffer(int fd, const void *buf, int count) {
const void *pts = buf;
int status=0, n;

if (count < Q) return (-1);

while (status !'= count) {
n = safewrite(fd, pts+status, count-status);
if (n<0) return (n);
status += n;

}

return (status);

}

I'll go over the code for this program. This program uses the safecalls library, so you will need to specify it on your gcc command
asyou did for the code in Listing 14-6. This program begins normally enough by opening up afile for output. It seeks 1000 bytes
into it, and writes out a single byte—a quick-and-easy way to make the file look like it’s 1000 bytes long for mmap(). Then, there
isthe call to mmap(). The first argument is a suggested location for the memory block. There is no guarantee that mmap() will use
that location, and so it is usually set to NULL. The second argument is the number of bytes from the file that should be mapped
into your process's address space. The third argument specifies the permissions for this areain memory. The options and their
meanings are in the following table:

L
Option M eaning
L
PROT_EXEC The information in the memory area contains machine code and may be executed. Thisis very rarely
seen in user-mode applications.
PROT_NONE No type of accessis permitted.
PROT_READ Read access to the mapped areais permitted.
PROT_WRITE Write access to the mapped areais permitted.
L

The fourth argument defines the flags for the memory map. Three such flags are available. At least one of MAP_SHARED or
MAP_PRIVATE must be specified; the MAP_FIXED flag is optional and may be specified in combination with either of the
others. The flags and their meanings are in the following table:

Flag M eaning

I
282



MAP_FIXED Causes mmap() to return with an error if it is unable to use the suggestion for the memory location of

the mapped area.
MAP_PRIVATE Any modifications made to the mapped areawill not be written back to the disk file.
MAP_SHARED If writing is permitted, changes to the mapped areain memory will be reflected by the appropriate

changeto thefile.

The fifth argument to mmap() describes the file descriptor whose contents should be mapped into memory. In the examplein
Listing 14-7, that file descriptor is the one corresponding to the test file. The sixth argument indicates the offset into that file at
which the mapped region begins. In this case, the mapped region starts at the very beginning of the file. However, if you prefer to
map only data later onin the file instead, you may use this option to specify where to start.

Now that the memory is mapped, you can use the variable named mapped to accessit. Thisvariable is a pointer to the start of the
memory-mapped region. Y ou can thus access the file directly by accessing this variable. Notice how the call to fgets() uses this
variable as the name of its buffer. This means that as soon as the data is read from the keyboard, it's already on its way out for
being written to the file, simply by virtue of the fact that it was placed directly into the mapped area of memory.

Then there's a helper variable, ptr, which advances past the point of the initial read so that it's easy to keep track of where more
data should be placed. After that, sprintf() is called to write the data out to the file. This may seem odd, but remember that writing
the data out to the area that ptr is pointing to effectively writesit out to the file! For convenience, there’ salso acall to printf() that
enables you to see exactly what was written out.

After the program is done writing, it needs to do three things: synchronize the mmapped area, unmap it, and close the file. The
synchronization step is necessary because, like with system call 1/0, mmap does not always write data out to disk automatically.
However, unlike the system call 1/0, calling munmap() (the rough equivalent of close) does not cause the pending data to be
flushed to disk. Therefore, you must do that manually to ensure that everything gets written.

To do this, you simply call msync, passing it the pointer to the start of the mapped region, the length, and some flags. Y ou should
set exactly one of MS_ASYNC or MS_SYNC; the remaining oneis optional. The following table lists the flags and their
meanings.

Flag M eaning
L
MS ASYNC Causes the synchronization to be performed asynchronously. That is, the writeis set to occur

but msync() may return to its caller before the write is complete.

MS SYNC Forces the write to be performed synchronously. The msync() function will not return until the
write is complete.

MS_INVALIDATE Tellsthe system to inform any process that has mapped this region of the file that the datain the
file has changed, forcing areload of fresh datainto the buffers for these other mappings.

Finally, after synchronizing the memory, the memory is unmapped with acall to munmap(). Again, this takes two arguments: the
pointer to the start of the mapped region and its length. After you call munmap(), that region may no longer be accessible and
definitely will not be tied to the contents of the file.

select() and poll()

Thus far in our programming examples, you' ve only encountered a need to read from or write to a single file descriptor or stream
at atime. For most programs, thisis how their lifespan is spent—reading some data, processing it, writing back out the result.
However, some programs—particularly network applications—often need to monitor more than one file descriptor at atime. For
instance, a network client for an interactive chat needs to be capable of monitoring both the user’ s keyboard for input to send to the
remote user and the network for data to be displayed locally.

283



With the mechanisms we have studied thus far, there is no good way to do this. Y ou might elect to use non-blocking I/0 and poll
each file descriptor. However, this gets you into trouble with busy waiting. So, perhaps you decide to insert asleep() call. If you do
this, you are still busy waiting, but its effects are diminished. However, this also adversely affects performance, possibly even to
such a degree that the program is no longer usable for interactive chat.

Y ou might consider something along the lines of using blocking 1/0 for local input and non-blocking 1/O for network input,
effectively polling the network for information every time the local user types a message. Thisis essentially the approach used by
anumber of the more simplistic network clients out there, such asthe one for FTP. However, for interactive chat, thisis not
exactly agood idea—it causes unacceptable delays when trying to carry on a conversation.

The select() function

What you need is afunction that keeps an eye on a set of file descriptors for you and blocks until something occurs with at |east
one of them. Well, Linux provides exactly such a function for your use: select().Y ou give the select() function three sets of file
descriptors to watch. When something relevant to your process occurs on one of the watched descriptors, the call returns and you
are told which file descriptor (or descriptors) are ready for action from you.

This interface means an excellent solution to the problem mentioned previoudly. Y ou no longer have to worry about how you will
possibly get data in from both of the descriptors because the operating system automatically handles those details and informs you
only when at least one of them is ready to give you some information.
Listing 14-8 shows the code for a program that demonstrates the usage of the select() call.
Note Listing 4-8 is availablkloe online.

Listing 14-8: Example of select()

/*
Chapter 14 example program 8

Here we demonstrate the use of select().
*/
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include “ safecalls.h”
int write_buffer(int fd, const void *buf, int count);
int pipeg2]; [* [Q] for reading, [1] for writing */
int child(void);
int parent(void);
int main(void) {
pid_t pid;
safepi pe(pipes);
pid = fork();

if (pid==0)
return child();

if (pid > 0)
return parent();

return 255;
}

284



/* Thethild process will just send some random data over to the parent

every 10 seconds. */

int child(void) {
char buffer[80];

close(piped[Q]); /* Get rid of unneeded pipe */
srand(time(NULL));

do{

sleep(10);
sprintf(buffer, “Message %d\n”, rand());
} while (write_buffer(pipeg[1], buffer, strlen(buffer)) !=-1);

return O;

}

int parent(void) {
char buffer[100];
fd_set readfds;

close(pipeg[1]); [* Get rid of unneeded pipe */

printf(“Y ou may enter some data. I'll read it and data from the\n”);

printf(“other process and display each.\n\n");

while(1) {
FD_ZERO(& readfds);
FD_SET(0, &readfds); [* standard input */
FD_SET(piped 0], &readfds); /* child process */

select(pipes[0] + 1, &readfds, NULL, NULL, NULL);

if (FD_ISSET(0, &readfds)) {
buffer[saferead(0, buffer, sizeof(buffer) -1)] = 0;
printf(“'Y ou typed: %s\n”, buffer);

}

if (FD_ISSET (piped[0], &readfds)) {
buffer[saferead(piped 0], buffer, sizeof(buffer) -1)] = 0;
printf(“Child sent: %s\n”, buffer);

}
}
}

/*
This function writes certain number bytes from “buf” to afile
or socket descriptor specified by “fd”. The number of bytesis
specified by “count”. It returns the number of bytes written,

or <0 on error.

*/

int write_buffer(int fd, const void *buf, int count) {

const void *pts = buf;
int status=0, n;

if (count < 0) return (-1);

while (status !'= count) {
n = safewrite(fd, pts+status, count-status);

if (n<0) return (n);
status +=n;

285



}
return (status);

}

To compile this program, you may use a command like this:
$ gcc —Wall —o ch14-8 ch14-8.c safecalls.c

This program is divided into two separate parts: the parent and the child. The program forks near the beginning, but only after first
establishing a pipe.

Note Pipesare covered in detail in Chapter 17, “Using Pipes and FIFOs.” For the moment, though, al that you need to
know isthat a pipe is a method of communicating from one process to another—when one process writes to a
pipe, the other process can read the data from it.

The child process does nothing but put data in the pipe. Every 10 seconds, the child process puts data into the pipe consisting of
some text and a randomly generated numeric message.

The parent is somewhat more complex. It begins by displaying some brief help text to the screen. Then, it enters its main loop. The
select() call operates on sets of file descriptors, which are defined in fd_set variables. There are several macrosto use to
manipulate these sets. FD_ZERO clears all descriptors, FD_CLR clears one specific descriptor, FD_SET adds one descriptor, and
FD_ISSET tests whether the given descriptor is set in the set. After running select(), the input sets themselves are modified. In this
case, | just rebuild them every time through the loop. If you have more than two descriptors to watch, you may prefer to make a
copy of the sets and then simply restore from the copy for each call to select().

The arguments for select() start with the number of the highest descriptor in any set, plus 1. After that, there is a pointer to the set
of descriptors to watch for reading, a pointer to the set to watch for writing, and a pointer to the set to watch for errors. Finally,
there is a pointer to a struct timeval indicating the maximum time to wait for an event to occur. Because we don’t have atime limit
and don't care about the writing or error conditions, those three parameters are left to NULL. Because standard input is O, the other
file descriptor must be higher, so one plus standard input’s number is the value for the first parameter.

After the call to select() returns, you know that datais ready to be received on at least one, and perhaps both, of the descriptors
being watched. The set of descriptorsis tested to see exactly which one has received data. For each particular option, if it has
received some data, thisdataisread in. Notice that | don't use read_buffer() here. The reason isthat a hit from select indicates that
there is some data waiting—in this case, probably not enough to fill up the entire buffer. Therefore, simply using a standalone
read() call (or a saferead(), which does the same thing) is best. It probably will not fill the buffer—but this way, the program does
not block waiting for data to arrive on this single descriptor.

Because this method is used, you need to be aware that the strings read in from read() are not null-terminated. Therefore, you need
to do that yourself. Conveniently, the return value from read() indicates the number of bytes read, so it makes a nice index into the
string for the purposes of appending atrailing null character.

Before giving this program atry, | want to give you one final caution. The terminal driver does not deliver data to programs as you
type them; rather, it waits until you press Enter and then delivers your entire line all at once. Therefore, if input arrives from the
child process while you are in the middle of aline on the parent, the results can be visually confusing as your input line will be
interrupted on-screen but not interrupted with itsinput. By using a system such as ncurses, you can partition off the screen to avoid
this problem, but that would unnecessarily complicate this particular program.

Here is some sample outpuit:
$ ./ch14-08
Y ou may enter some data. I'll read it and data from the

other process and display each.

Hello!
Y ou typed: Hello!

Thisissome sampleinput.
Y ou typed: Thisis some sample input.

Child sent: Message 591369805

286



It lookslike the client isworking.
Y ou typed: It looks like the client is working.

Child sent: Message 133889111

Bye.
Y ou typed: Bye.

Ctrl-C

Y ou can see that the program was indeed capable of receiving and immediately processing messages from both the keyboard and
the other process.

The poll() function

In addition to using select(), you can use the poll() call. It does the same sort of thing—it waits for activity on a specified set of file
descriptors. However, its semantics may make it easier to work with in some situations. Listing 14-9 shows a rewrite of this code
to use poll() instead of select().

Note Listing 14-9 is available online.
Listing 14-9: Example of poll()

/*
Chapter 14 example program 9

Here we demonstrate the use of poll().
*/

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <syg/poll.h>
#include “safecalls.h”

int write_buffer(int fd, const void *buf, int count);
int pipeg2]; [* [Q] for reading, [1] for writing */

int child(void);
int parent(void);

int main(void) {
int pid;
safepi pe(pipes);
pid = fork();

if (pid==0)
return child();

if (pid>0)
return parent();

return 255;
}

/* Thethild process will just send some random data over to the parent
every 10 seconds. */

int child(void) {
287



char buffer[80];

close(pipeq[Q]); [* Get rid of unneeded pipe */
srand(time(NULL));

do{
sleep(10);
sprintf(buffer, “Message %d\n”, rand());
} while (write_buffer(pipeq[1], buffer, strlen(buffer)) = -1);

return O;
}

int parent(void) {
char buffer[100];
struct pollfd pfdg2];

close(piped[1]); /* Get rid of unneeded pipe */
printf(*'Y ou may enter some data. I'll read it and data from the\n”);
printf(“other process and display each.\n\n");

pfdg0].fd = 0;
pfdg[0].events = POLLIN;
pfds[1].fd = pipes[0];
pfdg[1].events = POLLIN;

while(1) {
poll(pfds, 2, 0);

if (pfdg[0].revents & & POLLIN) {
buffer[saferead(0, buffer, sizeof (buffer) -1)] = 0;

printf(“Y ou typed: %s\n”, buffer);
}

if (pfdg[1].revents && POLLIN) {

buffer[saferead(piped 0], buffer, sizeof (buffer) -1)] = 0;
printf(“Child sent: %s\n”, buffer);
}

}
}

/*

This function writes certain number bytes from “buf” to afile
or socket descriptor specified by “fd”. The number of bytesis

specified by “count”. It returns the number of bytes written,
or <0 on error.

*/

int write_buffer(int fd, const void *buf, int count) {
const void *pts = buf;
int status=0, n;

if (count < Q) return (-1);

while (status !'= count) {
n = safewrite(fd, pts+status, count-status);
if (n<0) return (n);
status += n;
}
return (status);
}

288



There are no changes to the child implementation for this program, but there are some changes to the main loop of the parent
process. The poll() function takes an array of structures, which are defined as follows:

struct pollfd {

int fd; [* file descriptor; -1 to ignore */
short events;,  /* requested events */

short revents; /* returned events */

b
Each entry specifies the file descriptor. In the eventsfield, you specify which events you want to trigger. When one gets triggered,

the function returns and fills out the revents field showing which one (or which ones) triggered. Table 14-2 lists and describes the
various events.

Table 14-2: Eventsfor poll()

Event M eaning Valid For
L

POLLERR An error occurred on this file descriptor. revents only
POLLHUP A hangup condition occurred. revents only
POLLIN Y ou can read data on this file descriptor. events and revents
POLLNVAL The specified file descriptor is not valid. revents only
POLLOUT Y ou can write data now on this file descriptor. events and revents
POLLPRI Thereis high-priority datato read. events and revents
POLLRDBAND Data from a non-normal band can be read. events and revents
POLLRDNNORM Normal-priority data can be read. events and revents
POLLWRBAND Y ou can write data to a nonzero band. events and revents
POLLWRNORM Same as POLLOUT. events and revents

The second parameter to poll() is a count of the number of structuresin the array; in the examplein Listing 14-9, that number is 2.
Thefina valueis atimeout, measured in milliseconds. The 0 value disables the timeout, so that iswhat is used.

After poll() returns, the remaining logic is the same as that for select: find out which descriptors have some action pending and
work with it. In this case, that means checking to see whether POLLIN is set on each of the descriptors. If it is, go ahead and read
the datain as before.

Thisexampleisafairly ssimple one. However, bear in mind that for things such as network servers, select() and poll() give you a
great deal of flexibility and room to expand your server. These can be an alternative to multi-process servers, which sometimes can
consume more resources than a single-process multiplexing server that uses select() or poll().

Advisory Locking

One of the most common problems on a multitasking operating system such as Linux is synchronization between two processes. A
specific instance of these problemsis synchronizing access to files. On a system where you easily might have a dozen copies of a
program running at once, if they all want to write to asingle file, the potential for corruption to that file is significant.

There needs to be some way for processes to coordinate their accesses to files. This method needs to work not only for different
instances of a single program but between different programs as well.

289



The answer on Linux is called advisory file locking. This means that programs call a function provided by the operating system to
coordinate their accesses. It is called advisory because programs that are not aware of or do not take into account the file locks will
not be prevented from accessing the file; systems that prevent access from any process at al implement mandatory locking. Either
method works and each has its own unique advantages and disadvantages. Linux now has experimental optional mandatory
locking, but the advisory locking is far more prevalent and is more portable to other UNIX operating systems as well.

Y ou can use many different functions for locking in Linux and UNIX systems—flock(), fentl(), and lockf() are among them. In
this section, 1’1l describe flock(). In Linux, these are al interfaces around the same underlying code, so thereis not a large amount
of difference, save some feature difference between them.

When you want to lock afile with flock, you have a choice of two different lock types: a shared lock and an exclusive lock. With a
shared lock, multiple processes can have a shared lock on afile. If you request an exclusive lock, no other process may have alock
onthefileat al. Therefore, with these semantics, you typically use a shared lock for systemsthat are reading or an exclusive lock
for systems that are writing. Thisis because simply reading from afile does not conflict with other processes that are doing the
same. However, there are problems when two processes try to write at once, or when a process tries to read from a section that
another process is writing to—the reading process may get the old data, the new data, or a combination of both.

Listing 14-10 presents a sample program that demonstrates file locking. Y ou can start this program up multiple times to see what it
does.

Note Listing 14-10 isavailable online.
Listing 14-10: Example of locking

#include <stdio.h>
#include <sygffile.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fentl.h>

#include “ safecalls.h”

void display(int fd);
void add(int fd);
int flockwrapper(int fd, int operation);
int write_buffer(int fd, const void *buf, int count);
int read_buffer(int fd, void *buf, int count);

int main(void) {
int input;
int fd;

fd = safeopen2(“ch14-10.dat”, O_CREAT | O_RDWR, 0640);

printf(“ Select: \n");
printf(“1. Display file\n");
printf(“2. Add to file\n”);
printf(“\nY our selection: “);
scanf(“%d”, &input);

switch (input) {
case 1: display(fd);
break;
case 2: add(fd);
break;
default: printf(“Invalid selection. Exiting.\n");

}
return O;

}

[* Display thefiles. Request alock such that processes writing won't
be able to do that while I'm reading. */

290



void display(int fd) {
int data;

flockwrapper(fd, LOCK_SH);
while (read_buffer(fd, & data, sizeof(int)) > 0) {
printf(“Data: %d\n”, data);

}
close(fd);
}

/* Add new entries. Request alock to block everything else. */
void add(int fd) {
int data;

flockwrapper(fd, LOCK_EX);
Iseek(fd, 0, SEEK_END);

do{
printf(“ Enter a number (-1 when done): “);
scanf(“%d”, &data);
write_buffer(fd, &data, sizeof(int));
} while (data!= -1);
close(fd);
}

int flockwrapper(int fd, int operation) {
printf(* Obtaining %s lock on fd %d\n”,
(operation & LOCK_SH) ?“shared” : “exclusive”,
fd);
if (flock(fd, operation | LOCK_NB) !=-1) return O;

printf(“ Another process has alock; please wait until it is released.\n");

return flock(fd, operation);
}

/*
This function writes certain number bytes from “buf” to afile
or socket descriptor specified by “fd”. The number of bytesis
specified by “count”. It returns the number of bytes written,
or <0 on error.
*/

int write_buffer(int fd, const void *buf, int count) {
const void *pts = buf;
int status=0, n;

if (count < 0) return (-1);

while (status !'= count) {
n = safewrite(fd, ptststatus, count-status);
if (n<0) return (n);
status += n;

}

return (status);

}

int read_buffer(int fd, void *buf, int count) {
void *pts = buf;
int status=0, n;

if (count < 0) return (-1);
while (status !'= count) {

291



n = saferead(fd, pts+status, count-status);
if (n<1)returnn;
status += n;

}

return (status);

}

This program can do two things: display the contents of afile and add datato it. | use the appropriate type of file locking to
demonstrate how to do so. When displaying data, the program requests a shared lock. This shared lock enables other processes to
read the data at the same time. Because an exclusive lock is used for writing when adding to the file, no other processes are
allowed access.

There isawrapper around flock() that exploits the non-blocking option. It uses this wrapper so that it can display a message if
there is going to be adelay, so that the user knows what is going on. The LOCK _NB option indicates a non-blocking lock. One
other option that has not been used is LOCK_UN, which releases alock. Note that closing afile or exiting the process
automatically releases alock.

Try running this program in awindow. Y ou can compile and start it up like this:

$ gcc —Wall —o ch14-10 ch14-10.c safecalls.c
$ ./ch14-10

Select:

1. Display file

2. Add tofile

Your selection: 2

Obtaining shared lock on fd 3
Enter a number (-1 when done): 1
Enter a number (-1 when done): 2
Enter a number (-1 when done): 3

Now, without exiting the program in Listing 14-10, fire up another copy in another window or terminal. Take alook and see what
happens when you try to read:

$ ./ch14-10
Select:

1. Display file
2. Addtofile

Your selection: 1
Obtaining shared lock on fd 3
Another process has alock; please wait until it is released.

If you open up yet athird process for the purpose of writing, you'll get something similar:

$ ./ch14-10
Select:

1. Display file
2. Addtofile

Y our selection: 2
Obtaining shared lock on fd 3
Another process has alock; please wait until it is released.

Now, if you go back to the first process and type -1 to cause it to exit, you'll see that one of the other processes will obtain alock.
If the second one gets the lock firgt, it displays the file and exits immediately, and then the third gets the lock for writing.
Otherwise, the third asks you for data, and when it is done, the second process displays the file.

Beware of deadlock problems when using file locking. Some programs may lock many files at once. A genera hint isto always lock

filesin the same order, and release locks in the opposite order in which you acquired them.
Summary

292



In this chapter, you learned about input and output (1/0) on Linux. Specifically, you learned:
e Two different types of basic /O in Linux are library (stream) 1/O and system call /0.
» Stream I/O is buffered automatically before the system call level and operates with FILE * variables.

« Systemcall I/O isamore low-level interface, and often requires more coding on your part to achieve the same as stream |/O.
However, many functions possible with system call 1/O are not available with stream 1/O.

< Handling of error conditionsin your programs is one of the most important things you can do to ensure data integrity in your
software.

One way to handle errors conveniently isto use wrappers around functions that might fail.

Y ou can create sparse files, or files with holes in them, by seeking past the end of afile and writing data there.

* You can use non-blocking 1/0 when you prefer to have a function return immediately, whether it has executed your regquest or
not.

* Memory-mapped 1/O enables you to access files as you would normally access memory.

e Theselect() and poll() functions enable your program to request that the system watch several descriptors for activity and
inform you when a request event occurs on at least one of them.

» You can use advisory locking to coordinate accessto filesto prevent data corruption.
Chapter 15: Looking at Terminals

Overview

This chapter covers the aspect of Linux that deals with terminals. Thisisavery large system, dealing with many different types of
devices and requirements. It encompasses the xterm emulator for X, hardware terminals, modems, kernel terminal drivers, terminal
emulation, pseudo-terminals, and more.

The modern Linux approach to terminals derives from that in the early versions of UNIX. Back in the early days of UNIX, one
might frequently use a console connected via a serial connec-tion (possibly even a modem) to communicate with the system, run
programs, and the like. Therefore, the system needs to keep track of some basic attributes of the line, such asthe signaling rate
(expressed in bps), some link characteristics, and the like.

As more vendors released terminals, each invented their own command set for their terminals. This command set enables the
terminals to understand commands from applications requesting them to erase some text, reposition the cursor on the screen,
display bold or inverse video, and so on. Linux needs away to be able to generalize terminal access; writing several thousand
different applications, one for each terminal type, is ssimply not practical. Therefore, Linux uses a capa-bilities database known as
terminfo for storing what each terminal is capable of and how to invoke the features on it. For programmers, alibrary such as
ncurses handles the details of working with the terminfo database; all you have to do isissue library calls to perform actions.

Applications also heed some preprocessing to be done by the kernel on their behalf. For instance, consider how much work it
would beif you had to manually process backspace charac-ters each time you tried to read input from the terminal. To solve this
problem, the UNIX and Linux systemsinclude, by default, some simple line-editing support in the terminal driversin the kernel.
This enables the user to type in input line by line, taking advantage of the Backspace key to make corrections, and then feed the
result to you when a complete line of input is ready. Some programs, however, need this behavior to be turned off. For instance, an
editor can’t wait until Enter is pressed to handle three presses of the up arrow; it should handle thisimmediately. Similarly, a
Backspace key may have more significance in an editor than in traditional line-editing mode. It may be able, for instance, to delete
an entire block if one is selected.

Another concern is: what happens when someone presses one of the “ special keys’? The answer isthat the terminal driver must
intercept the keystroke, parse the input, and send an appropriate signal to the process if necessary.

In your user programs, you need to be able to understand different terminal signals for particular events. For instance, different
terminals send a different code for the left arrow press. Y our programs may need to be able to interpret these keypresses and, if so,
you'll need to know how to deal with the input. Fortunately, ncurses and the terminfo system come to your rescue yet again, as
they also describe the information that the terminal itself sends.

293



In some cases, you may want to be able to provide the terminal driver features for devicesthat are not really aterminal. For instance,
a person telnetting into your system will want to be able to use terminal driver features such as line editing with the Backspace key
while logged in. These features, however, are provided in the kernel terminal driver and require aterminal device on which to
operate. Thisis where pseudo-terminals come in. They provide away for programs to pretend to be areal terminal and thus play
nicely with the system.

Terminal Attributes

With all this power and diversity, it should come as no surprise that manipulating terminal s can be a complex process. The primary
way to do thisisthrough tcgetarttr() and tcsetattr(). Dozens of flags are available; in fact, the manpage spends seven whole pages
summarizing the available flags and control items.

Both tcgetattr() and tcsetattr() use a struct termios. This structure is defined as follows:

struct termios {

teflag_t c iflag;  /* input modes */
tcflag_t ¢ oflag;  /* output modes */
tcflag_tc cflag;  /* control modes */
tcflag_tc Iflag;  /* local modes*/
cc_tc cc[NCCS];  /* control chars*/

H

Thetraditional way to set terminal attributes in this way isto first call tcgetattr() to populate this structure, make necessary
changes, and then call tcsetattr() to put the new items into effect. Listing 15-1 shows an example that puts the terminal into raw
mode, and then reads one character at atime.

Note Listing 15-1 isavailable online.
Listing 15-1: Sample of raw mode, ch15-1.c

#include <termios.h>
#include <unistd.h>
#include <stdio.h>

int main(void) {
int input;

struct termios save, current;

tcgetattr(0, &save);
current = save;

current.c_Iflag &= ~ICANON;
current.c_Iflag &=~ECHO;

current.c_cc[VMIN] = 1;
current.c cc[VTIME] =0;

tcsetattr(0, TCSANOW, &current);

printf(“Enter some text, Q to stop.\n");

while ((input = getc(stdin)) '='Q’) {
printf(*Y ou typed: %c\n”, input);

}

tcsetattr(0, TCSANOW, & save);

printf(“ Terminal values back to default.\n");
printf(“Try sometext again, Q to stop.\n");
while ((input = getc(stdin)) '='Q’) {
printf(“'Y ou typed: %c\n”, input);
}

294



return O;

Run this program and note the result. If you type Hello (not shown in the following program run because it doesn’t echo the first

time), it will display the message immediately as you press the keys. The second instance of the loop will wait until the entire line

has been input before processing any of it. Here' s the output:

$ ./ch15-1

Enter some text, Q to stop.
You typed: H

You typed: e

Y ou typed: |

Y ou typed: |

You typed: 0

Y ou typed: !

Terminal values back to default.
Try some text again, Q to stop.
Hi!

Y ou typed: H

You typed: i

You typed: !

Y ou typed:

ByeQ
You typed: B
You typed: y
You typed: e

It is extremely important that you always reset your terminal to the default state upon exit. If you don't, the user’s shell and future

programs may be confused and display improperly. Thisisthe reason for saving the terminal state information at the beginning
and restoring it later.

Theterminal attributes are separated into four categories: input, output, control, and local attributes. In this program, only the local
attributes are considered relevant, although any of the others could have been modified as well. The &= syntax means to perform a
bitwise AND on the variable and the rvalue (the value to the right of the equals sign), and to assign the result back to the variable.
In this case, we are wanting to shut off a bit, so the bitwise AND is used to remove a single bit from the bitmask. If you wanted to
add on some hits, you could use |- NAME to do that (no leading ~ this time).

This bitwise AND syntax is used to remove two bits. echo and canonical. Turning off canonical mode turns off the standard line
editing. This step is necessary if your program isto be able to read one line at a time from the terminal. Echo is turned off as well
because having the output appear would only lead to confusion, and the input is displayed soon enough anyway.

That brings us to the termios structure member ¢_cc. Thisis used to control how data is sent to the calling program. When thereis
no longer aline break to fall back upon, how does the terminal driver know when to send data to the process? Because reading
from the input a character at atime can (and frequently is) inefficient in most cases, you can set this variable to a minimum value
and/or time after which data is returned. For instance, you could cause it to return whatever datais still pending after 10 seconds
waiting. Or, asin this case, you can ask it to return after a certain number of characters have been read.

Attributes are available for control for virtually every aspect of the terminal driver. These include speed, flow control, byte size,
handling of lowercase characters (some extremely old terminals did not support lowercase letters), control charac-ters (you can
prevent Ctrl+C from having any effect or remap it to a different character), and many other attributes. However, as most programs
that are interested in these attributes also present a full-screen terminal interface, such attributes are usually modified through the
interface of a system such as ncurses.

Many of the more intricate details of tcsetattr() and tccgetattr() are automatically handled for your convenience and sanity by libraries

such as ncurses. However, if you don't quite need the power and size of ncurses, you can use these functions to control the terminal
aswell.
Pseudo-ter minals

Sometimesit is necessary for aprogram to interject itself in the line of communi-cation between a program and its final output
device. This could be the case, for instance, for atelnet daemon—instead of writing data to aterminal, the program will need to

295



send data across a network. The UNIX program script, which makes alog of your actions, acts in the same fashion as well.

You can’'t simply use pipes, because pipes lack functions that programs need, and they are not bidirectional. A program needs to
be able to find out information about its environment—its window size, its terminal emulation, and so on—that are not available
with a pipe. Thisis where the pseudo-terminals enter the picture. These devices ook and act like real terminals, but in reality, they
are not.

In this chapter, | am going to present you with a custom version of the “script” program. This program will create a pseudo-
terminal, fork, and exec your shell. On the parent side, the program will need to pass standard input on to the client and pass
standard output on to both the screen and afile. Thisis done by forking again, to create one handler for each direction. Thus, the
entire system will make up three processes. Listing 15-2 shows the source code.

Note Listing 15-2 isavailable online.
Listing 15-2: Example script replacement

#include <pty.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fentl.h>
#include <unistd.h>
#include <errno.h>
#include <syg/ioctl.h>
#include “safecalls.h”

int masterfd, output, execpid, childpid;
struct termios origsettings;

void save(void);
void master(void);
void master_frompty(void);
void master_topty(void);
int write_buffer(int fd, const void *buf, int count);
void catchchildren(int signum);

int main(void) {
struct winsize size;

tcgetattr(0, & origsettings);
ioctl(0, TIOCGWINSZ, (void *) &size);

output = safeopen2(“ mytypescript”, O CREAT |O_WRONLY | O_TRUNC, 0600);
execpid = forkpty(& masterfd, NULL, &origsettings, &size);

switch (execpid) {
case 0: dave(); break;
case -1: HandleError(errno, “forkpty”, “failure”); break;
default: master(); break;

}

return O;

}

[* Hereisthe process to handle the slave side. Thedlave PTY has
already been set to be the controlling terminal, so al that’s left
to doisexec. */

void slave(void) {
printf(* Starting process, use exit to return...\n");

296



if (execl(“/bin/sh”, “/bin/sh”, NULL) ==-1) {
HandleError(errno, “execl”, “failure to exec /bin/sh”);
}
}

/* Master needsto set it up to copy in two directions: from stdin to
the pty and from the pty to stdout and the file. */

void master(void) {
childpid = fork();
if (childpid ==-1) {
HandleError(errno, “fork”, “failed to fork second child”);
return;

}

if (childpid ==0) {
master_frompty();
return;

}

/* Set up signal handlersto exit and kill off other processif any
one of the other processes dies. */

signal(SIGCHLD, & catchchildren);

master_topty();

void master_frompty(void) {
char buffer[2000];
ssize t size;

while ((size = read(masterfd, buffer, sizeof(buffer))) > 0) {
write_buffer(output, buffer, size);
write_buffer(1, buffer, size);
}
}

void master_topty(void) {
char buffer[2000];
ssize t size;
struct termios newt;

newt.c_iflag &= ~(ICRNL | INPCK | ISTRIP|IXON | BRKINT | IXOFF | IXANY |
INLCR | IGNBRK);
newt.c_oflag &= ~OPOST;
newt.c_Iflag &= ~(ECHO | ICANON | NOFLSH | ISIG | IEXTEN);
newt.c_cflag |= CSS;
newt.c_cflag &= ~CSIZE;

newt.c_cc[VMIN] =1,
newt.c_cc[VTIME] =0;

tcsetattr(0, TCSANOW, & newt);

while ((size = read(0, buffer, sizeof(buffer))) > 0) {
write_buffer(masterfd, buffer, size);
}
}

int write_buffer(int fd, const void *buf, int count) {
const void *pts = buf;

297



int status=0, n;
if (count < 0) return (-1);

while (status !'= count) {
n = safewrite(fd, ptststatus, count-status);
if (n<0) return (n);
status +=n;

}

return (status);

}

void catchchildren(int signum) {
kill(execpid, SIGTERM);
kill(childpid, SIGTERM);
tcsetattr(0, TCSANOW, &origsettings);
printf(“Process exited; back to normal!\n”);
exit(0);

}

To compile this program, you will need to use a command like the following:
$ gcc —Wall —o myscript myscript.c —util

You need to link in the util library because it is where forkpty() is defined. Other than that, there is nothing special that needsto be
done to compile this program.

Let’s go over the code for this program. It begins by grabbing the terminal settings for this terminal and its window size with calls
to tegetattr() and ioctl (). These settings are to be used for two purposes. First, for the new process created in forkpty(), the terminal
(the pty slave) will be initialized with these settings. The forkpty() call will automatically handle this task based on the pointers to
origsettings and size that are passed in. Then, in master_topty() (described in the following text), the parent process's terminal will
have to be modified, and it will need to be reset to its original value upon exit.

After grabbing the settings, the output file is opened with a call to safeopen2(). After that, the ptys are created and the process
forksall at once by calling forkpty(). For this to work, two ptys are created. One is the master, which the master processes monitor.
The other isthe slave pty, which is hooked up to the slave process.

If the processis the slave, the dave() function isinvoked. This function prints out a message and then execs the shell. That isthe
end of our code for the dave.

If the processis the master, it forks again. Thisis doneto create one process to handle communication in each direction. That is,
there will be one process to handle copying from the input to the terminal and another to handle copying from the terminal to the
output file and the screen. The child process of this fork invokes the master_frompty() function. The parent process registers a
signal handler for SIGCHLD events. Thisisto clean up after exited processes as covered in Chapter 13, “Understanding Signals.”
Then, the parent process invokes master_topty().

The master_frompty() function copies data from the pty to two destinations: the output file and the screen. The screenis
represented by standard output, which is file descriptor number 1. Therefore, it uses two write_buffer() calls for each read: oneto
write to the file and one to write to standard output.

The master_topty() cal needsto do some terminal initialization before it is ready to handle data. It needs to set the terminal to a mode
such that it gets datain as raw aform as possible. The reason is that some programs in the slave (for instance, a text editor) may
reguire this. Since the slave hasits own terminal, with its own driver, it will do its own line buffering, so there is no need for the
master to continue to do so. After setting these attributes, it enters aloop to copy the data from standard input (file descriptor 0) to the
dave'sterminal.

Ncur ses

The name ncurses stands for new curses, meaning that is a new, improved, and completely compatible reimplementation of the
standard curses library. The ncurses program enables full-screen 1/O with your programs.

Theideaisthat you can create full-screen applications, such as editors, dialog utilities, and the like, by using ncurses. Y ou may
also want to investigate Perl/Tk or Gnome as you make your decisions for an interface for your program. There are some

298



impressive advantages for using ncurses, though.

Chief among these advantages is speed. The ssimple truth is that no GUI interface can ever even come close to the speed of afull-
screen ncurses-based one. The reason is that a text-mode interface requires far less data to generate the image. Whereas an X
interface requires fonts, cursors, and bitmaps, and it sends many graphics commands down the wire, an ncurses interface requires
none of that; it is simply text with afew commands to relocate or change a bit of the attribute information. This becomes
extremely important when running applications remotely over the Internet. X does support remote execution of applications;
however, most Internet links today are not sufficiently fast and latency-free to run most X applications at a satisfactory speed.

One advantage over command-line interfaces is that an ncurses interface can enable the user to fill out forms, browse the Web, and
the like—all without requiring a graphical interface.

The ncurses approach has some downsides too, however. For one, many users tend to use terminal emulators with imperfect or
downright broken terminal emulation, asis the case, for instance, with the standard telnet program that ships with Windows. These
users may get confused when their own terminal emulators do not make sense of the data being sent.

Also, the GUI is able to display more data and in a more powerful way. Graphics, icons, buttons, and the like all provide assistance
when your application isinherently graphical. For instance, if you had to write a paint program, you would probably prefer to
work in a GUI environment than with ncurses.

Several Linux vendors have embraced or will shortly embrace installation and configuration tools based on ncurses or one of its
derivatives. This can only be good; often, the initial installation phase is working from a single floppy disk, and space is so tight
that there is no way that X would fit onto that disk. However, a ssimple, easy-to-understand interface is also of paramount
importance (beginning users are the ones that need this more than anyone) at install time. Confuse people, and your product fails.

I’ll show you modified versions of two programsthat | wrote some years ago. Both use ncurses; the first is written in C, and the
second is written in Perl. From the first example, you'll be able to see just how much more professional your interface can look if
you cleared the screen and did not require an Enter keypress for menu selections. The second example, in Perl, uses the Perlmenu
package and the Curses binding for Perl (both available from CPAN and http://www.perl.com/CPAN-local/modules/).

Tip Some Linux distributions may come with both Perl’s Curses package and the Perlmenu system available for install.
If you are using such adistribution, you may want to install that version instead of the one from CPAN, as your
distribution’s software will usually be easier to install. In Debian GNU/Linux, the relevant packages are named
libncurses-perl and perlmenu.

The first application presented below illustrates basic interaction with curses. It was written way back when | was first learning
about writing sort algorithms; I’ ve stripped out al but three from the code. The basic ideais that you run the genrandom program
(which it aso builds) to create afile full of random integers. Then, you load that file into this program, which gives you an
interface to select a sort algorithm, a function to verify that everything was properly sorted, and so on.

This program comes in three pieces: a simple Makefile, the main code, and a program to generate a file with many random
integersin it. First, here’ sthe Makefile;

CC=gcc
CFLAGS:=-Wadll -03
LINK := $(CC)

EXECS = genrandom ch15-2

al: $(PROGRAM)
@if [ “x$(PROGRAM)” =“x" |; then\
for PNAME in $(EXECS); do $(MAKE) PROGRAM=$$PNAME; done; \
fi

$(PROGRAM): $(PROGRAM).0
$(LINK) -0 $@ $< -Incurses

$(PROGRAM).0: $(PROGRAM).c
$(CC) $(CFLAGS) -c -0 $@ $<

clean:
-rm $(EXECS) *.0 *~

299



Next, the file to generate random numbers, genrandom.c:

/*
genrandom will create atext file with the following specifications:
* Thefirst line will contain the number of integers
* Each following line will contain arandomly generated integer,
up to the number of integers specified on the first line
*/

#include <stdio.h>
#include <sys/time.h>
#include <limits.h>
#include <stdlib.h>

int main(int argc, char *argv[])

{
unsigned long num, counter;
FILE *outfile;
int seed;
if (argc<2){
printf(“ Syntax: genrandom filename\n”);
printf(“It will write the numbers to the filename passed, and the\n™);
printf(“line will contain the number of integers written.\n”);
exit(255);
}

printf(“ Enter number of lines to create: “);
scanf(“%lu”, &num);
outfile = fopen(argv[1], “wt");
if (‘outfile) exit(255);
fprintf(outfile, “%lu\n”, num);
seed = (int)(time(NULL) / (ULONG_MAX / INT_MAX));
printf(“Using seed %d\n”, seed);
srandom(seed);
for (counter = 1; counter <= num; counter++) {

fprintf(outfile, “%d\n”, (int)(random() / (LONG_MAX / INT_MAX)));

if (!(counter % 10000)) [* printf isSL O W when dealing

with thousands of calls*/
printf(“Wrote %lu of %lu numbers, %d%%\r”, counter, num, (int)(100 * counter / num));

}

fclose(outfile);

printf(“\n"); /* Add terminating newline */
return O,

Note that the preceding program does not actually use curses. Listing 15-3 shows the code that does.
Note Listing 15-3 isavailable online.
Listing 15-3: Example usage of curses
* Include some standard stuff... */

#include <stdio.h>
#include <string.h>
#include <sys/time.h>
#include <malloc.h>
#include <limits.h>
#include <stdlib.h>
#include <memory.h>
#include <signal.h>

[* Cursesis used for interactive operation */

300



#include <curses.h>
[* Standard macros */

#ifndef TRUE
#define TRUE 1
#endif

#ifndef FALSE
#define FALSE O
#endif

#ifndef NULL
#define NULL O
#endif

[* Type used for the array */
typedef int typearray;

/* Defines for type of array in memory */
#define ARRAYTYPE_NONE 0

#define ARRAYTYPE_UNSORTED 1
#define ARRAYTYPE_SORTED 2

[* Definesfor type of sort */
#define INSERTIONSORT 1
#define MERGESORT 2
#define HEAPSORT 3

/* Some global information */

int isinteratvive = TRUE; [* Trueif running interactively */
typearray* globalarray = NULL,; [* Main array, used for sorting */
unsigned long arraysize = 0; [* Size of main array....Thisis

stored in avery big number so
that very large arrays can be
accommodated. */

time_t start = 0; [* Start time, in seconds */
intis firstline size= TRUE; [* Trueif thefirst line of file
is number of elementsin the
file*/
int arraytype = ARRAYTYPE_NONE; [* Type of array in memory */
char defoutput[80]; * Default output file/viewer */
char definput[80]; [* Default input file */

int sorttype = HEAPSORT;

/* Function prototypes */
void mainmenu(void);
void readitin(void);
void reset(void);
void toggleint(int *togglevar, int min, int max);
void runsort(void);
void insertionsort(void);
void mergesort(unsigned long first, unsigned long last);
void heapsort(void);
void writeoutput(void);
void changeviewer(void);
void checkvalidity(void);
void setinputfile(void);
void mergesort_merge(unsigned long first, unsigned long last);

301



void heapsort_buildheap(unsigned long heapsize);

void heapsort_heapify(unsigned long node);

void heapsort_heapsort(unsigned long node);

void heapsort_swap(unsigned long index1, unsigned long index2);

int main(void) {

/* Curses may cause program to die with SIGSEGV or other signal if the
TERM variable isincorrectly set. Thisisdueto abugin some versions
of curses. The above message will appear only for an instant if
curses works correctly because the screen will be cleared with a curses

cal.*/

initscr(); cbreak(); clear(); refresh();  /* Set up curses */
printw(*\n Notes on operation:\n”);
printw(* * If you are using afilein which the first line denotes the\n”);
printw(* number of elementsin the file, and thus should * not* be\n”);
printw(* included in any sort, you will need to select option 3 before\n”);
printw(* doing anything else\n\n");
printw(* * Put license/copyright thing here perhaps.\n\n”);
printw(“Press any key to continue.”);
refresh();
getch();
clear();
/* Do some initialization */
strepy(defoutput, “|less’);
strepy(definput, “INPUTINT. TXT");
sigblock(sigmask(SIGPIPE)); /* Ignore the SIGPIPE signal --
Otherwise program would terminate
if user ends the viewer before
all data had been sent through

the pipe */
mai nmenu();
endwin(); /* End curses*/
if (globaarray) free(globalarray); /* If the array is still alocated,
freeit. */

return O,
}
void mainmenu(void)
{
int selection = 0;

int maxy, maxx;

getmaxyx(stdscr, maxy, maxx);
do{
clear();
move(maxy - 1, 0);
attron(A_REVERSE);
printw(* Sometimes a status bar goes here. “);
attroff(A_REVERSE);
move(0, 0);
printw(*Main Menu\n”);
printw(*0. Exit program\n”);
switch (arraytype) {
case ARRAYTYPE_NONE:
printw(“ Cannot sort [no datain memory]\n”);
break;
case ARRAYTYPE_UNSORTED:

302



}

printw(* Sort the array\n”);
break;
case ARRAYTYPE_SORTED:
printw(“No sort necessary [data loaded and sorted]\n”);
break;
}
switch (arraytype) {

case ARRAYTYPE_NONE: printw(* Cannot sort (no data loaded into memory)\n”); break;

case ARRAYTYPE_UNSORTED: printw(“2. Sort the array\n”); break;
case ARRAYTY PE_SORTED: printw(* No sort necessary (data already sorted)\n"); break;
}
printw(“3. Toggle method of determining size of array to hold data\n”);
printw(* Current: “);
if (is firstline_size)
printw(“[First line of input denotes size of data]\n”);
else
printw(“[Count linesin file before sorting]\n");
if (arraytype)
printw(“4. View or output sorted data\n”);
else
printw(“ There must be datain memory before it can be viewed.\n");
printw(*5. Change output file or viewer [%s]\n", defoutput);
if (arraytype == ARRAYTY PE_SORTED)
printw(*6. Check validity of sorted array\n”);
else
printw(“ Array not yet sorted; validity test unavailable\n");
printw(*7. Set type of sort: *);
switch (sorttype) {
case INSERTIONSORT: printw(“[insertion sort]\n”); break;
case MERGESORT: printw(“[merge sort]\n”); break;
case HEAPSORT: printw("“[heap sort]\n"); break;

}
printw(“8. Set input filename [%s]\n”, definput);
refresh();
noecho(); [* Turn off echo */
selection = getch();
echo();
switch (selection) {
case‘l’: /* Load datainto memory */
if (arraytype) reset(); /* Reset if datain memory */
readitin();
arraytype = ARRAYTYPE_UNSORTED;
break;

case ‘2 if (arraytype == ARRAY TYPE_UNSORTED) runsort(); break;
case ‘3': toggleint(&is firstline size, 0, 1); break;
case ‘4': if (arraytype) writeoutput(); bresk;
case‘5': changeviewer(); break;
case'6': if (arraytype == ARRAY TY PE_SORTED) checkvalidity(); break;
case ' 7': toggleint(& sorttype, INSERTIONSORT, HEAPSORT); break;
case '8': setinputfile(); break;
}
[* Other cases either exit program
or areignored */
} while (selection I=0’);

void readitin(void)

{

unsigned long counter;
FILE *infile;
int tempbuffer, fscanfresult;

arraysize = 0;

303



clear();
infile = fopen(definput, “rt");
if (linfile) {
printw(“Error opening input file %s. Data not read.\n", definput);
printw(“Press any key...”);
refresh();
getch();
return;
}
printw(* Reading data...\n"); refresh();
if (lis_firstline_size) {
printw(* Counting lines:\n”);
infile = fopen(definput, “rt");
while (!feof(infile)) {
if (('feof(infile)) && (fscanf(infile, “%d”, &tempbuffer))) arraysize++;
if (I(arraysize % 10000)) { /* It goesfaster if screen not updated
for every singleline...hereit is updated
every 10000 lines*/
printw(“Got %lu lines\r”, arraysize);

refresh();
}
}
arraysize--; [* The above code, using fscanf, always
will yield one greater than the actual
sizedueto aquirk in fscanf. Here
thisis compensated for. */
rewind(infile); /* Reset to the beginning */
clearerr(infile);
} else [* First line denotes size */
if (Mfscanf(infile, “%lu”, &arraysize)) arraysize = 0;
if (arraysize)

printw(* There are %lu integersin the datafile\n”, arraysize);
ese{
printw(* Empty or corrupted datafile, read failed.\n");
printw(* Press any key..\n");
refresh();
getch();
fclose(infile);
return;

}
refresh();
/* Now allocate the array in dynamic memory */
globalarray = calloc(arraysize, sizeof (typearray));
if (‘globalarray) {
printw(“Could not allocate memory. Press any key to continue.\n");
refresh();
getch();
fclose(infile);
return;

}

for (counter = O; counter < arraysize; counter++) {
if (!(counter % 10000)) {
printw(“Read %lu of %lu elements, %d percent done\r”,
counter, arraysize, (int)(100 * counter / arraysize));
refresh();

}
do
fscanfresult = fscanf(infile, “%d", globalarray + counter);
while (Ifscanfresult & & !feof(infile));
if (feof(infile)) {

304



printw(* Unexpected end of file, read aborted. Memory freed.\n");
printw(* Counter = %d\n", counter);
printw(* Press any key.\n");
refresh();
free(globalarray);
globalarray = NULL;
getch();
return;
}
}

arraytype = ARRAYTYPE_UNSORTED;
}

void reset(void) [* Reset state of program */

if (globalarray) {
free(globalarray);
globalarray = NULL;
}
arraytype = ARRAYTYPE_NONE;
arraysize=0;

}

void toggleint(int *togglevar, int min, int max)
{
if (++*togglevar > max) *togglevar = min;

}

void runsort(void)
{
clear();
start = time(NULL);
printw(* Running sort: “);
switch (sorttype) {
case INSERTIONSORT: printw(“insertion sort...\n"); refresh();
insertionsort(); break;
case MERGESORT: printw(* merge sort...\n"); refresh();
mergesort(0, arraysize-1); break;
case HEAPSORT: printw(“heap sort...\n"); refresh(); heapsort(); break;
}
arraytype= ARRAYTYPE_SORTED;
printw(* Elapsed time was: %lu seconds\n”, time(NULL) - start);
printw(“Please note: Other processes on a multi-tasking operating system\n”);
printw(“may have an effect on the amount of time a given sort takes.\n");
printw(*\nPress any key to continue.”);
refresh();
getch();
}

void insertionsort(void)

{

register unsigned long X, y;
int temp_holder;

for (x = 1; x < arraysize; x++) {
temp_holder = *(globalarray + x);
y=Xx
while (y > 0 && temp_holder < *(globalarray +y - 1)) {
*(globalarray +y) = *(globalarray +y - 1);
y--,

305



*(globalarray +y) = temp_holder;
}
}

void mergesort(unsigned long first, unsigned long last)

/* the 1 is added to the value because, for instance, if you
have an array with 2 elements, firstis0, lastis 1,
then last - first = 1, but space isreally needed for 2.
*/
unsigned long mid;
if (first < last) { /* If they’'re the same, don't bother */
mid = (first + last) / 2;
mergesort(first, mid);
mergesort(mid+1, last);
mergesort_merge(firgt, last);
}
}

void mergesort_merge(unsigned long first, unsigned long last)

{

typearray *temparray = calloc(last - first + 1, sizeof(typearray));
unsigned long mid = (first + last) / 2;
unsigned long position = 0, left = first, right = mid + 1;

if (Itemparray) {

printw(* FATAL ERROR IN mergesort(): COULD NOT ALLOCATE ENOUGH MEMORY\n");
printw(* FOR TEMPORARY ARRAY. ABORTING.\n");
refresh();

exit(255);
}

while ((left <= mid) && (right <=last)) /* Runtheloop aslong
as both left and right
portions of the array
contain data */
if (*(globalarray + left) < *(globalarray + right))
*(temparray + position++) = *(globalarray + left++);

else
*(temparray + position++) = *(globalarray + right++);
/* Now copy any remaining elementsinto temparray */

/* Because of the “&&” above, only one of the below will execute. */

while (left <= mid)

*(temparray + position++) = *(globalarray + left++);
while (right <= last)

*(temparray + position++) = *(globalarray + right++);
/* Now copy temparray back into globalarray */

memcpy(globalarray + first, temparray,
(last - first + 1) * sizeof(typearray));

/* And free the memory used by temparray */

free(temparray);

306



/* Variables for heapsort funtions */

unsigned long heapsize;

void heapsort(void)

{
heapsize = arraysize; /* Initialize it */
printw(“ heapsort: building the heap\n”);
refresh();

heapsort_buildheap(heapsize);
printw(* heapsort: sorting the heap\n”);
refresh();
heapsort_heapsort(heapsize);

}

void heapsort_buildheap(unsigned long heapsize)
{

unsigned long node;

/* Because an unsigned item is used here, the heapify function has to
be called once later....because node should never go below 0 */

for (node = heapsize / 2; node > 0; node--)
heapsort_heapify(node);
heapsort_heapify(0);
}
void heapsort_heapify (unsigned long node)
{
unsigned long left = (node + 1) * 2 - 1,
right = (node + 1) * 2,
largest; /* Index of largest */

if ((left < heapsize) &&
(*(globalarray + left) > *(globalarray + node)))
largest = left;
else
largest = node;

if ((right < heapsize) & &
(*(globalarray + right) > *(globalarray + largest)))
largest = right;

if (largest I= node) {
heapsort_swap(node, largest);
heapsort_heapify(largest);

}

}

void heapsort_heapsort(unsigned long node)
{

unsigned long i;

for (i=node- 1;i>=1; --i) {
heapsort_swap(0, i);
--heapsize;
heapsort_heapify(0);
}
}

307



void heapsort_swap(unsigned long index1, unsigned long index2)
{
typearray tempholder;
tempholder = *(globalarray + index1);
*(globalarray + index1) = *(globalarray + index2);
*(globalarray + index2) = tempholder;
}

void writeoutput(void)

{
FILE *outfile;
int ispipe = FALSE;
unsigned long counter;
if (defoutput[0] !="]")
outfile = fopen(defoutput, “wt");
else{
clear(); refresh();  /* Clear the screen before piping */
outfile = popen(defoutput + 1, “w”);
ispipe = TRUE;

}
if (‘outfile) {
printw(* Error opening output file! Press any key to continue..\n");
refresh();
getch();
return;
}
for (counter = O; counter < arraysize; counter++) {
if (fprintf(outfile, “%d\n", *(globalarray + counter)) == EOF) {
clear();
if (ispipe) { * Viewer/program exited early */
printw(“ Pipe closed before all data could be sent.\n");
pclose(ouitfile);
} ese{ /* Some sort of disk error */
printw(* Error writing data to file!\n");
fclose(outfile);
}
printw(“Press any key.\n");
refresh();
getch();
return;

}

}
if (ispipe) pclose(outfile);
else fclose(outfile);
clear();
printw(*“ Write/view successful.\n");
printw(* Press any key...\n");
refresh();
getch();
}

void changeviewer(void)

clear();
printw(“Here you can set the file to write output to, or a viewer to use.\n”);
printw(“To write the output to afile, just enter the filename. To pipe\n”);
printw(“the output to a program, use the pipe character (|) followed by\n");
printw(“the command line to use to invoke the program. For instance, to\n”);
printw(“use the less file viewer, typein \"[less\” (w/o the quotes).\n”);
printw(* Enter your selection: “);

refresh();

nocbreak(); [* Re-enables things like backspace! */

308



getstr(defoutput);

cbreak(); [* Back to “raw” mode for curses */
}
void checkvalidity(void)
{

unsigned long counter;
int last = INT_MIN; /* Init to lowest possible value */
clear();
printw(“ Performing check on sorted data to ensure it is correctly sorted.\n");
for (counter = O; counter < arraysize; counter++) {
if (*(globalarray + counter) < last)
printw(* Item %lu (%d) less than item %lu (%d)\n”,
counter, *(globalarray + counter),
counter - 1, *(globalarray + counter - 1));
else
if (counter % 10000 == 0) {
printw(“1tem %lu OK\r”, counter);
refresh();

last = *(globalarray + counter); /* Reset it for next time */
}
printw(“Scan finished. Problemsin sorted data, if any, are shown above\n”);
printw(“1f no problems are shown above, sorted data has been sorted\n”);
printw(“ correctly.\n\n");
printw(“Press any key to continue.\n");
refresh();
getch();
}

void setinputfile(void)

clear();

printw(* Input filename: “);

refresh();

nocbreak(); getstr(definput); cbreak();
}

Because thisis alarge and somewhat complex system, I’d like to lead you through what it looks like to the user before you take a
look at itsinternals. First, you' Il want to use genrandom to get some random numbers. It will ask you how many to make; the
answer depends on your system. On my 366MHz laptop, one million lines sort in about eight seconds; the same number of lines
sort in under one second on a 600MHz Alpha machine. Y ou may prefer to use fewer linesif you have a slower machine or more if
you have afaster machine. | ran it like this:

$ ./genrandom data.txt
Enter number of linesto create: 1000000
Wrote 1000000 of 1000000 numbers, 100%

Next, fire up the main program by running the program in Listing 15-3. After the intro screen, you'll get a main screen. Press 8 to
pick the filename and enter data.txt. Then, your screen will ook like this:

Main Menu

0. Exit program

1. Load data into memory [no datain memory]
Cannot sort (no dataloaded into memory)

3. Toggle method of determining size of array to hold data
Current: [First line of input denotes size of data)
There must be datain memory before it can be viewed.

5. Change output file or viewer [|less]
Array not yet sorted; validity test unavailable.

7. Set type of sort: [heap sort]

8. Set input filename [data.txt]

309



Sometimes a status bar goes here.

The program offers you options that can be toggled. Y ou can put number 1, then number 2 to watch as it uses a progress indicator
in curses. Let’stake alook at how it works, with an eye toward the interaction with ncurses.

Its interaction with the ncurses system begins with this line of code:
initscr(); cbreak(); clear(); refresh();  /* Set up curses*/

This code accomplishes four things. First, the curses system isinitialized, which must be done before you can use it for anything
else. Second, the program disables the line buffer with the call to cbreak(). The effect isthe same as the calls to tcsetattr() in
Listing 15-2. Next, it clearsthe screen. Finally, it calls refresh().

With ncurses, before any changes take effect, you must call refresh(). This may seem like a pain, but in redlity it is an advantage,
because it gives ncurses a chance to optimize for your terminal. For instance, if your program moves the cursor first to line 5, then
toline 18, line 6, line 9, and line 7 in that order, thisisalot of moving. The program could reorder it to go to the line 18, then to
line 5, and just print the remaining ones in order with no explicit repositioning required. It aso lets you draw things on the screen
without letting the user know that you' ve already started to draw them.

Next, you see a series of printw() calls. These are the curses equivalent of printf() for the standard output. Again remember that
they do not take effect until another call to refresh(). In curses, you may create mini-windows inside your screen, each with its own
virtual coordinate system; wprintw() will let you target an arbitrary window. The default window is stdscr, and it’s all that’s used
in this program.

The program then calls getch(). Because the terminal isin cbreak() mode, the effect isthat pressing any key on the keyboard
causes the program to go to the next menu immediately.

It then calls mainmenu() to display the menu, and then—quite important—calls endwin() to reset the terminal to its natural state
and clean up after ncurses. Never exit a program without calling that function!

Inside mainmenu() itself, the first thing you seeisacall to getmaxyx, a macro. It will give you the dimensions of the terminal
window in which it is running, independent of any particular virtual window. These values are saved. Then, the main menu loop is
entered. First, it clears the screen. Then it moves the cursor to the very last line on the screen at the left edge. It turns on reverse
video, prints a message, and then turns reverse video back off. After doing that, it returns to the upper-left corner and proceeds to
display the main menu.

Then, it turns off echo before reading the selection (it could be unsightly other-wise), reads the input, and then reenables echo
because it may be needed later for reading data from the user.

Notice that in changeviewer(), the program calls nocbreak(). If it didn’t do this, you wouldn’t be able to see your text as you type
it! It then calls getstr(), which is actually insecure because it does not have a maximum size limitation; getnstr() is better. However,
because this program is not running setuid or setgid, it is not of concernin this particular situation. After reading the input, it
returns to cbreak mode.

Notice the calls to attron() and attroff(). These calls cause a specified terminal attribute to be enabled or disabled. Y ou can use
attron() and attroff() to set these things one at atime. Or you can use attrset() to set them all at once; just use a bitwise OR to
combine the values. Table 15-1 lists the possible values for this option.

Table 15-1: Attributesfor ncurses

310



Name M eaning
L
A_ALTCHARSET Specifies aterminal’s alternate character set.
A_BLINK Specifies blinking mode. Not all terminals support a blink; some will use a separate color to

indicate blinking.

A_BOLD Specifies bold text mode.

A_DIM Causesthe text to be dim.

A_INVIS Specifiesinvisible mode.

A_NORMAL Special item that resets everything to normal mode. Generally only used with attrset().
A_PROTECT Specifies protected mode.

A_REVERSE Specifiesinverse video mode.

A_STANDOUT Specifies highlighting, the exact method of which isterminal dependent. This often means bold,

or acombination of bold and underlining.

A_UNDERLINE Specifies underline mode. Some terminals cannot display underline and may instead use a

separate color or bold to indicate it.

COLOR_PAIR(X) Uses specified color; see the discussion on color later in this section.

Many terminals support these attributes. On the other hand, many more modern terminal s are geared more toward color. For
instance, the Linux text console by default supports color but not underline mode. The xterm terminal in Linux’s X graphical

interface supports both. The ncurses library does include support for color on the terminal. Listing 15-4 features a sample program

that demonstrates this support.
Note Listing 15-4 is available online.
Listing 15-4: Example of color with ncurses
#include <curses.h>
void doexit(int exitcode);

int main(void) {
initscr(); cbreak(); noecho();
start_color();
clear();
if (Thas_colors()) {
printw(“I’m sorry, but your terminal does not allow color changes.\n”);
doexit(255);
}

init_pair(1, COLOR_RED, COLOR BLACK);
attrset(COLOR_PAIR(1));

printw(*Here’'s something in anice red. Maybe useful for awarning\n”);
printw(* message.\n\n");

attrset(COLOR_PAIR(1) | A_BOLD);

printw(“Notice how you can get bright colors by adding the A_BOLD\n");
printw(“attribute.\n\n");

311



init_pair(2, COLOR_WHITE, COLOR_BLUE);
attrset(COLOR_PAIR(2));

printw(* Here’ s white on blue\n”);
attrset(COLOR_PAIR(2) | A_BOLD);
printw(“And thisis alighter white on blue.\n\n");

init_pair(3, COLOR_YELLOW, COLOR_BLACK);
attrset(COLOR_PAIR(3));

printw(“Notice that the \" dark\” yellow appears brown on some terminals.\n”);
attrset(COLOR_PAIR(3) | A_BOLD);

printw(“But it becomes yellow when the bright version is used.\n\n");
attrset(COLOR_PAIR(0));

printw(* Press any key to watch what happens when a pair is redefined.\n");
refresh();
getch();

init_pair(1, COLOR_GREEN, COLOR_BLACK);
attrset(COLOR_PAIR(1));

printw(“Notice the existing text printed to the screen with this\n™);

printw(“pair is not modified, but this new text has the new color.\n");

attrset(A_NORMAL);
printw(*Y ou can use A_NORMAL or COLOR_PAIR(0) to return to\n");
printw(“the terminal’ s default color.\n\n");
doexit(0);
return O; [* to suppress warning */

}

void doexit(int exitcode) {
printw(“Press any key to exit.\n");
refresh();
cbreak();
noecho();
getch();
endwin();
exit(exitcode);

To compile this code, you may use gecc as normal, with one exception: you will need to add —Incurses to the end of your
commmand line. This flag will tell the compiler to link with the ncurses library.

Theideahereisthat, first, color support must beinitialized. Then, you should test to seeif your terminal supports color. If not,
usually you would resort to using more conventional attributes such as bold and underline. Because this program is speci-fically
about color, exit if the terminal doesn’t support it.

Then, to use color, you first need to initialize a color pair. Each pair consists of two attributes: a foreground color and a
background color. To actually use the pair, you use its number as an argument to COLOR_PAIR(X) inside of one of the attribute-
setting functions such as attrset().

Switching gears a bit, here is a program that uses Perlmenu. Perlmenu is alibrary layered on top of the Curses library for Perl,

which issimply a Perl binding for the familiar C library. As such, you can use Curses and Perlmenu commands in a program that
uses Perlmenu. And, if you're curious about how Perlmenu draws itsitems, you can simply look at its source code.

The program here is a scaled-down version of a quick application to help track grades on assignments. It uses Perlmenu to achieve
apleasant interface, with scrolling, highlighting, and so on—more full-featured than the sample C programin Listing 15-4. Thisis

largely because Perlmenu can handle all of these details automatically, freeing the programmer to concentrate on higher levels of
interface and program design.

This program consists of one main Perl script and several sample data files that you can play with. Listing 15-5 shows the script.
Listing 15-5: Using cursesin Perl
#!/usr/bin/perl
312



$HEADER = ‘Chapter 15 Example5';

BEGIN { $Curses::OldCurses=1; }
use Curses;
use perlmenu;

&menu_prefs(0, 0, 0, “”, “n”, O, 1);

$window = &initscr();
&menu_curses_application($window);

# A few subs to automate curses access

sub cprintw {
printw @_;
refresh;

}

# Main program starts here
& scrheader;

cprintw “Loading data, please wait...”;
&loaddata;
cprintw “\nDone\n”;

& mainmenu;
endwin();

sub scrheader {
clear; refresh;
attron(A_BOLD);
cprintw “$HEADER\n\n";
attroff(A_BOLD);
refresh;

}

sub loaddata {
cprintw “students...”;
&loaddata_students;
cprintw “grades...”;
&loaddata grades;
cprintw “assignments...”;
&loaddata_assignments;
cprintw “categories...”;
&loaddata _categories;

}

sub loaddata_students {
open SFILE, “<students’ or die “Couldn’t open studentsfile”;
foreach (<SFILE>) {
chomp;
($id, $name) = /(.+?)[\s;:]+(*)/;
$students{ $id} = $name;

}

sub loaddata_grades {
open GFILE, “<grades’ or return;
foreach (<GFILE>) {
chomp;

313



($id, $name) = /(A+?A)[\s;:]+(*)/;
$grades{ $id} = $name;
}
}

sub loaddata_categories {
$catnum = 0;
open CFILE, “<categories’ or die “Couldn’t open categoriesfile’;

foreach (<CFILE>) {
chomp;
($catnam, $pcat) = /(.+?)[;:1(+)/;
$eatlist[$catnum] = $catnam;
$catprint{ $catnam} = $pcat;
$catnum++;

}

}

sub loaddata_assignments {
$anum = 0;
open AFILE, “<assignments’ or die “Couldn’t open assignmentsfile’;
foreach (<AFILE>) {
chomp;
($c, $a, $p) = /(+)\s;: ] (+A[:]+(X);
$categories] $anum] = $c;
$assignments $anum] = $a;
$possible[$anum] = $p;
Sanum-++;
}
}

sub mainmenu {
while (2) {
&menu_init(1, “Main Menu”, 0, “SHEADER”, “Press g to quit”);
& menu_quit_routine(“endwin”);
&menu_item(“Add grades’, “add”);
&menu_item(“View/Modify grades’, “view");
&menu_item(“ Generate report”, “report”);
$choice = &menu_display(“”);

SWITCH: {
if ($choice eq“add”) {
&assignmenu(l);
last SWITCH,;

}

if ($choice eq“view") {
&usermenu(l);
last SWITCH,;

}
if ($choice eq “report”) {
& scrheader;
cprintw(“ Report generator not in this sample\n\n”);
cprintw “Press Enter to continue.\n”;
<STDIN>;
last SWITCH;

# argument:

314



# 1if should call usermenu; O otherwise.

sub assignmenu{
my $adefault = 0;
while (1) {
if ($_[0] == 0) {

& parsegrades; # Make sure grades for menu are current
}

&menu_init(1, “ Select assignment”, 0,
($.10]) ?“(Add Grades)” :
“User: $students{ $curstudent} ($curstudent)”);
for ($i =0; $i < $anum; $i++) {
if ($_[0]) { # Selecting before user
&menu_item(sprintf(“%-35s %-3s possible”,

$assignments[ $i],
$possible[$i]), $i);
} ese{ # Selecting AFTER user
& menu_item(sprintf(“%-35s %-3s of %-3s’,
$assignments[$i],
$curgrades[$i],
$possible[$i]), $i);
}
}
my $topline = 0;
if ($adefault > 0) {
$topline = 1;
$adefault--;
}

$curassign = & menu_display(“”, $topline, $adefault);
if ($curassign eq “%UP%") { return; }

$adefault = $curassign + 1;

if ($adefault >= ($anum)) { $adefault = 0; }

if ($.00]) {
& usermenu(0);
}else{
& parsegrades;
& setgrade;

}
} #while (1)
}

# argument:
# a 1if should call assignmenu; O otherwise.

sub usermenu {
my $udefault = 0;
my $z =0;
while (1) {
&menu_init(1, “Select auser”, 0,
(! $_10]) ?“Assignment: $assignments[$curassign]”
D “(View/Modify)");
$z=0;
foreach (sort keys %students) {
if ($.[0] == 0){
Scurstudent = $ ;
& parsegrades;
$_ = $curstudent;
& menu_item(sprintf(* %-15s %-30s %-3s of %-3s”,

$§udents{ $ 3},
$curgrades] $curassign],

315



$possible[$Scurassign]), “$ :$2");
} else{
&menu_item(sprintf(“%-15s %s’,$_ $students{$ }), “$_:$z");
}

$z++;

}
my $topline = 0;
if ($udefault > 0) {

$topline=1;

$udefault--;
}
$curstudent = & menu_display(*”, $topline, $udefault);
if ($curstudent eq “%UPY%") {

return;

}

($curstudent, Sudefault) = Scurstudent =~ /(.+?):(.+)/;
# Find the proper setting for udefault

$udefault++; #Add 1

if ($udefault >= (scalar(keys %students))) {
$udefault = O;

}

& parsegrades;
if ($.10]) {
&assignmenu(0);
} else{
& setgrade;
}

}
}

# Setsthe grade

sub setgrade {
& scrheader;

cprintw(“ld: $curstudent\n”);
cprintw(“ Student: $students{ $curstudent}\n”);
cprintw(“ Assignment: $curassign, $assignments|$curassign];$possible[$curassign] possible\n\n”);
cprintw(“ Current grade: $curgrades $curassign]\n”);
cprintw(“New grade: “);

my $foo;
getstr($foo);
$curgrades[$curassign] = $foo;
chomp $curgrades $curassigny;
& setgrades,
&writegrades;

}

# Generate a curgrades array with this student’s current grades
sub parsegrades {
@curgrades = $grades{ $curstudent} =~ m/(\d*),/g;
}
# Convert the curgrades array back to the comma-delimited format

sub setgrades {
316



$grade="*";

for ($i = 0; $i < $anum; $i++) {
$grade .= “S$curgrades[$i],”;

}

$grades{ $curstudent} = $grade;
}

# Write the gradesfile

sub writegrades {

open GFILE, “>grades’ or die “Couldn’t write to gradesfile”;

foreach (sort keys %students) {
print(GFILE sprintf(“%-8s%s\n”", $ _, $grades{$ }));

}
close GFILE;
}

Here isthe first sample data file, named assignments:

Computers:Slide-Rulein C:30

Computers:Coffee Pot Robot:30

Computers:Language Assimilator in Perl:50
Physics:Electricity and Water:30

Physics:Magnetic Fields, Floppies, and Refrigerators:50
Linux:Benchmark System:30

Linux:Al Assignment Grader:200

Here is the second sample data file, named categories:

Computers
Physics
Linux

And thisisthe final one, students:

1003 Herman Hollerith
2001 Dave

1002 Blaise Pascal
3141 Isaac Newton
1970 Ken Thompson
9876 Niklaus Wirth
2023 LinusTorvalds

When you run the program, you get a main menu with three items: add grades, view/modify grades, and generate areport. If you
pick Add Grades, by using the arrow keys to move the highlight, you then get a menu listing the different assign-ments on the
system, along with the number of possible points on each. Pick one of these and you see alist of students. Select one and you can
assign the grade immediately to that person.

The program’ s interface details are all handled by Perlmenu; all that it hasto do istell Perlmenu what the menus are and what goes
in them, and Perlmenu then will draw the menus with Curses.

Thisis convenient for severa reasons. Firgt, it frees you from having to deal with the low-level details of having to worry about
exactly where to position the cursor, how to draw the menus, and the like. Second, you can actually look at the code for Perlmenu to
find out how it works relative to the curses library—this can be useful if you want to write your own programsin curses. Finally, you
can extend Perlmenu (perhaps by adding color support) so that, though its basic framework is still available to help you, it can draw
thingsin a different way.

Summary

In this chapter, we discussed terminal interaction. Specifically, the following were covered:

317



» Terminals can bereal hardware devices or virtual terminals. They are referenced by entriesin /dev.
» Terminals have attributes governing their modes, which specify things such as the state of echo and line buffering.

*  Pseudo-terminals let you set up a program to process that data going to and from a given terminal. They do so by pretending to
be areal terminal.

» To present full-screen interfaces, you use the curses/ncurses library.
» Thislibrary includes support for things such as cursor relocation, colors, attribute settings, and windowing.

* InPerl, you also have the option of using the Perlmenu library, which handles the lower-level ncurses interactions for you.
Part IV: TalkingtotheWorld

Chapter List

Chapter 16: Shared Memory and Semaphores

Chapter 17: Using Pipesand FIFOs

Chapter 18: Internet Sockets

Chapter 19: Advanced TCP/I PSockets

Chapter 16: Shared Memory and Semaphores
Overview

Linux provides several different ways for you to communicate between the processes on your system. One of these ways is shared
memory, which I'll cover in this chapter. I’ll show you where shared memory is useful and in what situations you might want to use
another technique. Then, I'll talk about the synchronization issues that arise with shared memory, and how to use semaphores to deal
with them. I'll close with some sample programs that actually use shared memory and semaphores to communicate.

Uses of Shared Memory

Shared memory is generally regarded as the lowest level of communication possible between two processes on a Linux system.
Shared memory allows two or more processes to share a block of memory. Normally, in Linux, each process has its own data area,
completely separate from all others on the system. However, this shared memory support allows processes to request from the
system aregion of memory that they all have access to.

Raw shared memory would theoretically be the fastest way of communicating between two processes. The first can ssimply read
datain and place it directly into shared memory; the second can then read the data directly from the shared memory segment.
What’ s more, a given shared memory segment can be used by more than two processes, enabling a sort of “broadcast” of datato
many processes on the system. In practice, things are rarely that simple; synchronization issues are extremely important when
dealing with shared memory.

Even with just this one simple example, synchronization plays a part. First, there has to be some way for the second process to
know when the first is done placing data into the shared memory segment. Y our solution might be to have a byte somewhere that
is set to 1 when there's data to be picked up. This means that the client must busy-wait until that byte changes—a very poor
solution. Then there are issues about how the first process knows when the second has picked up the data, such that more can be
inserted into the area.

To handle these synchronization issues, most users rely on semaphores, which were introduced to work with just these sorts of
situations. Semaphores enable you to implement a sort of locking for arbitrary events. They’re not tied to files, or even to memory;
they can be used for any purpose.

Shared memory and semaphores are both a part of the SYSV IPC (System V interprocess communication) subsystem. For this

reason, you'll see that the process of requesting them, some details of usage, and the process of releasing them when done are similar.

Y ou may be interested to note that SY SV IPC also includes a third facility, message queues. However, these are outdated and rarely

used anymore because of the more modern, flexible, and faster options available with things such as pipes and FIFOs.
Synchronization with Semaphores

318



Before you can even start to do anything useful with shared memory, you need to be able to properly synchronize your accesses to

it. Thisis where semaphores enter the scene. Semaphores are a shared resource that enables you to synchronize access to any

resource, not just shared memory. However, semaphores are most commonly used alongside applications that use shared memory.

I'll start with the code in Listing 16-1. This code has some problems that I’ll clean up as| go along.

Note Listing 16-1 isavailable online.
Listing 16-1: First semaphor e example

#include <stdio.h>
#include <syg/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include <sys/shm.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>

int semheld = 0;

void release(int id);
void request(int id);

/* The union for semctl may or may not be defined for us. This code, defined
in Linux’s semctl() manpage, is the proper way to attain it if necessary. */

#if defined(__GNU_LIBRARY__) && !defined(_SEM_SEMUN_UNDEFINED)
/* union semun is defined by including <sys/sem.h> */
#else
[* according to X/OPEN we have to define it ourselves */
union semun {
int val; [* value for SETVAL */
struct semid_ds*buf;  /* buffer for IPC_STAT, IPC_SET */
unsigned short int *array; /* array for GETALL, SETALL */
struct seminfo*__buf;  /* buffer for IPC_INFO */
|
#endif

int main(int argc, char *argv[]) {
intid;
union semun sunion;

/* No arguments: “server”. */
if (argc<2){
[* Request a semaphore. */
id = semget(IPC_PRIVATE, 1, SHM_R | SHM_W);

/* Initialize its resource count to 1. */

sunion.val =1,
semctl(id, 0, SETVAL, sunion);
} else{

/* Open up the existing one. */

id = atoi(argv[1]);

printf(“Using existing semaphore %d.\n", id);
}

if id==-1) {
printf(“ Semaphore request failed: %s.\n”, strerror(errno));
return O;

319



}
printf(“ Successfully allocated semaphore id %d\n”, id);

while (2) {
int selection;
printf(“\nStatus: %d resources held by this process.\n”, semheld);
printf(“Menu:\n");
printf(“1. Release aresource\n”);
printf(“2. Request aresource\n”);
printf(“3. Exit this process\n”);
printf(“Y our choice: *);

scanf(“%d", & selection);

switch(selection) {
case 1: release(id); break;
case 2: request(id); break;
case 3: exit(0); break;
}
}

return O;
}

void release(int id) {
struct sembuf sb;

if (semheld < 1) {
printf(“I don’t have any resources; nothing to release\n”);
return;

}

sh.sem _nhum =0;
sh.sem op =1;
sh.sem flg=0;

semop(id, &sh, 1);
semheld--;

printf(“ Resource released.\n");
}

void request(int id) {
struct sembuf sb;

if (semheld > 0) {
printf(“I already hold the resource; not requesting another one.\n");
return;

}

sh.sem_num = 0;
sh.sem op =-1;
sh.sem flg=0;

printf(“ Requesting resource...”);
fflush(stdout);

semop(id, &sh, 1);
semheld++;

printf(“ done\n™);
320



}

To compile this program, you may use a command such as this:
$gcc—-Wall —o ch16-1 chl6-1.c

Let’stake alook at how this program works, and then watch it in action. The program beginsin main(). There are two waysto
start it: one is without any command-line parameters. In this case, it creates a new semaphore in the system and displaysitsID.
The second is by specifying the ID of the semaphore already created by the first process.

Note The semaphore ID is unique on the entire system; if the ID isvalid in one process, it will work in any other
process as well, assuming that these other processes have permission to access that semaphore. Contrast this with
the behavior of the file descriptor, whose number is specific to a given process and means nothing anywhere el se.

The semaphore is created by calling semget(). The arguments to this function are a key, the number of semaphores, and flags. The
key isused if you are attempting to locate an already created semaphore but don’t know its 1D. Hopefully your program and
another will have agreed beforehand on a unique ID. However, this method is not recommended because there is nothing to
guarantee that the key really was generated by your program. Therefore, usually IPC_PRIVATE is used here. This causes the OS
to ignore the key and create a new semaphore for you. It isthen your job to communicate the ID to the other process. Y ou might
do this by forking after you create it, by writing it to afile or pipe, or through some other means.

The second argument to semget() is an entry for the number of semaphoresto create. It is possible to use multiple semaphores; this
is sometimes necessary if multiple resources or operations need to be synchronized at once; it is more convenient to use multiple
semaphore under the same ID because you can request certain operations to be atomic.

Finaly, there are the flags. Valid flagsinclude IPC_CREAT and IPC_EXCL, which function as O_CREAT and O_EXCL do for
open(2). Additionally, you can specify permissions SHM_R or SHM_W for user read and write permissions, (SHM_R > 3) or
(SHM_W > 3) for group read and write permissions, and (SHM_R > 6) or (SHM_W > 6) for world read and write permissions.

Next we need to initialize the semaphore. Basically, semaphores are initialized to the number of units of the resource that are
available. In most cases, thiswill be 1, but it could be avalue larger than that. When a process wants to obtain alock, it
decrements thisvalue by 1. If the value is aready 0, the processis blocked until some other process releases alock and the value is
incremented. So, we first have to set our semaphoreto 1.

Thisisdone by calling semctl(). Thisisageneric control function used mainly to set up or inquire about a given semaphore. Itis
not a general-use function for your program to use when the semaphore is being manipulated; rather, it should be used only when
the semaphores are being initially configured.

One of the argumentsisaunion. Thisis an interesting situation because originally the standard was that the OS would not declare
the union but that you had to do so yourself. However, some people decided that it would be easier to have the OS declareit asis
done with virtually everything else on the system. This caused errors compiling programs that assumed the definition did not
already exist, so it was removed. Thisis the reason for the strange-looking compiler code; it checksto see whether or not the
semaphore is defined, and if it is not, it definesit here.

The first argument to semctl() isthe ID of the semaphore on which you want to operate. The second argument indicates which
semaphore in the set to use. Because this example program has only one such semaphore, the number 0 (corresponding to the first
one) isused. The third argument is a command. Its possible values are summarized in Table 16-1.

Table 16-1: Optionsfor semctl()

Command M eaning
L
GETALL Places the values for each semaphore in the set into an array specified by arg.array.
GETNCNT Returns the number of processes waiting on alock for the given semaphore.
GETPID Returns the PID of the process that last completed an operation with semop() on the given
semaphore.

321



GETVAL Returns the value of the specified semaphore.

GETZCNT Returns the number of processes waiting for the semaphore’ s value to be 0.

IPC_RMID Causes the semaphore to be removed immediately.

IPC_SET Sets someinternal values of the semaphore as indicated by the struct semid_ds that arg.buf points to.
IPC_STAT Gets status information and puts it into the structure whose address isindicated at arg.buf.

SETALL Setsthe values for all the semaphore in the set, using those specified in arg.array.

SETVAL Sets the value for the one specific semaphore indicated.

In the event that the ID number was passed on the command line, the process simply needs to read that in and useiit.

Then, the program enters the main menu. Normally, the program would lock the resource before using it and unlock it afterward;
here, however, you'll notice that because no actual resource is locked, the program keeps track of its own use of the semaphore. In
thisway, it can prevent potential strangenessif the user might, for instance, try to decrement the semaphore from a process that
does not have alock on the semaphore.

Thereal fun occursin request() and release(). Let’slook at the request() function (at the end of the program) first. It begins by
checking how many semaphores are held already; if any are, it displays an error and returns. Otherwise, request() fills the members
of the sembuff structure indicating what they will do. It says that the semaphore should be decremented. Becauseitisat a
maximum of 1, thiswill indicate to future processes that the resource isin use, and they’ Il have to wait for it to become available.

The request() function executes this action by filling out the structure and calling semop(). The structure is defined as:

struct sembuf {
short sem_num; /* semaphore number: O = first */
short sem_op; /* semaphore operation */
short sem _flg; /* operation flags */

}

Here, the semaphore number indicates which semaphore to operate upon within the semaphore set. The operation indicates what
should be done to it. A positive number indicates that value should be added, indicating a release of resources. A negative number
subtracts that value from the semaphore, indicating a consumption of resources. Two flags are available for sem_flg: SEM_UNDO
and IPC_NOWAIT. If SEM_UNDO is specified, and if the process exits without releasing consumed resources, these resources
will be freed by the operating system. If IPC_NOWAIT is specified, the call will be nonblocking.

Y ou can pass an array of such structures to the semop() function. If you do so, the last argument should be a count of the number
of structuresin your array; otherwise, you can leave it at 1 for a single modification.

Unless IPC_NOWAIT isindicated, the call will block until all requested operations can be performed. In the request function, a
message is printed and then flushed so that it appears immediately. The semop() function isinvoked, the internal count is
incremented, and it returns.

The release() function does just about the same thing: it releases the resource by calling semop(), except thistime it uses a positive
number in sh.sem_op.

Notice that there is no attempt to release resources or delete the semaphore as the program exits. Unlike such things asfile
descriptors and file locks, semaphores and shared memory neither release resources nor delete themselves when a process exits.
I’ll remedy that in afuture version of this code.

Let’slook at some sample output. Y ou will need two terminals available. On the first terminal, run this program:

$ ./ch16-1
Successfully allocated semaphore id 770

322



Status: O resources held by this process.
Menu:

1. Release aresource

2. Request aresource

3. Exit this process

Y our choice: 2

Requesting resource... done.

Status: 1 resources held by this process.
Menu:
1. Release aresource
2. Request aresource
3. Exit this process
Y our choice: 2
| already hold the resource; not requesting another one.

Status: 1 resources held by this process.
Menu:

1. Release aresource

2. Request aresource

3. Exit this process

Y our choice:

Y ou have requested aresource in this process, and you have confirmed that the process will detect an attempt to request two
resources. Note the semaphore |D printed out at the top; in this example, it’s 770. Now, start up a second process, passing that
number on the command line;

$ ./ch16-1 770
Using existing semaphore 770.
Successfully allocated semaphoreid 770

Status: O resources held by this process.
Menu:

1. Release aresource

2. Request aresource

3. Exit this process

Y our choice: 2

Requesting resource...

The process is now blocked until the other process rel eases the resource. In the other window, press 1 to release aresource. The
first window will show no resources held; the second will show 1 held. In the first, go ahead and request a resource again. Now the
first window will block. In the second process, press 3 to exit. Notice that the lock in the first processis not released; the program
does not automatically release resources upon exit. There is now no way to recover from this problem; you' Il have to press Ctrl+C
to terminate the first process.

Thisis not the only problem. The other is that the semaphore resource still exists in the computer, taking up memory. Try running
this at the prompt:

$ipcs

------ Shared Memory Segments --------
key shmid owner perms bytes nattch status

------ Semaphore Arrays --------

key semid owner perms nsems status
0x00000000 770  jgoerzen 600 1

------ M essage Queues --------
key msgid owner perms used-bytes messages

Even though both processes have exited, the resource remains. You'll have to manually removeit:

323



$ipcrm sem 770
resource deleted

Now, let’s fix some of the problemsin the program so that it is more robust. Listing 16-2 presents a new version of the code.
Note Listing 16-2 is available online.
Listing 16-2: Revised semaphor e example

#include <stdio.h>
#include <syg/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include <sys/shm.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <signal.h>

int semheld = 0;
int master = 0;
intid=0;

void release(int id);
void request(int id);
void delete(void);

/* The union for semctl may or may not be defined for us. This code, defined
in Linux’'s semctl() manpage, is the proper way to attain it if necessary. */

#if defined(___GNU_LIBRARY__) && !defined(_SEM_SEMUN_UNDEFINED)
/* union semun is defined by including <sys/sem.h> */
#else
[* according to X/OPEN we haveto defineit ourselves */
union semun {
int val; [* value for SETVAL */
struct semid_ds*buf;  /* buffer for IPC_STAT, IPC_SET */
unsigned short int *array; /* array for GETALL, SETALL */
struct seminfo*__buf;  /* buffer for IPC_INFO */
|
#endif

int main(int arge, char *argv[]) {
union semun sunion;

/* No arguments: “server”. */
if (argc<2){
[* Request a semaphore. */
id = semget(IPC_PRIVATE, 1, SHM_R | SHM_W);

if (id!=-1){
/* Delete the semaphore when exiting. */
atexit(& delete);

/* Initialize its resource count to 1. */

sunion.val = 1;

if (semctl(id, 0, SETVAL, sunion) == -1) {
printf (“semctl failed: %s\n”, strerror(errno));
exit(255);

}

324



}

master = 1,
} else{

/* Open up the existing one. */

id = atoi(argv[1]);

printf(“Using existing semaphore %d.\n", id);
}

if (id==-1) {
printf(“ Semaphore request failed: %s.\n”, strerror(errno));
return O;

}

printf(“ Successfully allocated semaphore id %d\n”, id);

while (2) {
int selection;
printf(“\nStatus: %d resources held by this process.\n”, semheld);
printf(“Menu:\n");
printf(“1. Release aresource\n”);
printf(“2. Request aresource\n”);
printf(“3. Exit this process\n”);
printf(“Y our choice: *);

scanf(“%d", & selection);

switch(selection) {
case 1: release(id); break;
case 2: request(id); break;
case 3: exit(0); break;
}
}

return O;

}
void release(int id) {
struct sembuf sb;

if (semheld < 1) {
printf(“I don’t have any resources; nothing to release\n");
return;

}

sh.sem _nhum =0;
sh.sem op =1;
sh.sem_flg=SEM_UNDO;

if (semop(id, &sb, 1) ==-1) {
printf(“ semop release error: %s\n”, strerror(errno));
exit(255);
}
semheld--;

printf(“ Resource released.\n");
}

void request(int id) {
struct sembuf sb;

if (semheld > 0) {
printf(“I already hold the resource; not requesting another one.\n”);

325



return;

}
sh.sem_num = 0;
sh.sem op =-1;

sb.sem_flg = SEM_UNDO;

printf(“ Requesting resource...”);
fflush(stdout);

if (semop(id, &sb, 1) ==-1) {
printf(*“ semop release error: %s\n”, strerror(errno));
exit(255);

semheld++;

printf(“ done\n™);
}

void delete(void) {
printf(“Master exiting; deleting semaphore\n™);
if (semctl(id, O, IPC_RMID, 0) == -1) {
printf(“ Error releasing semaphore\n”);
}
}

This code isimproved in several ways. For one, there is now error handling to make sure that the return values of functions are
appropriate. Without error handling, the processes might think that they have alock on aresource even if they do not because of an
error.

Also, an atexit() handler has been registered. In this example, the “master” will delete the semaphore when it is finished with it.
For amore complex use of semaphores, stay tuned; the shared memory applications that follow make more demanding use of
them.

Tip Although the atexit() handler is called for normal termination, it is not called when there is a Ctrl+C event. Y ou might want
to add asignal handler for that situation. For more details on signal handlers, see Chapter 13, “Understanding Signals.”
Communicating with Shared M emory

Shared memory isliterally a block of memory accessible to multiple processes. In this section, I'll build up asmall client/server
application that uses shared memory to pass messages between two such processes.

Shared memory requires a synchronization method in order to be useful. For this purpose, semaphores are almost always selected.
Therefore, we can begin to implement a program by extending the previous example.

The program here, at the moment, works with only two processes. Later, it will be updated to work with any number of processes.
Theideaisthat the client reads some input from a user and sends the data to the server; the server then printsit out.

Y ou might initially think of using an algorithm like this for the server:

locksem(semid, 0);
printf(“Message received: %s\n”, buffer);
unlocksem(semid, 0);

And something like this for the client:

locksem(semid, 0);
fgets(buffer, sizeof (buffer), stdin);
unlocksem(semid, 0);

In these examples, locksem() locks the semaphore and unlocksem() unlocksit. However, there is a serious problem with these
functions. Consider the server side first. What if, between the time the server unlocks and the time it relocks the semaphore, the
client has not been scheduled for execution? The server will print the message twice. Thisis not desirable at al. The same could

326



happen on the client side: it could ask for the message twice.

In order to solve the problem, you need two semaphores. one for reading and one for writing. Listing 16-3 shows just such a
system.

Note Listing 16-3 is available online.
Listing 16-3: Shared memory example

#include <stdio.h>
#include <sygtypes.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include <sys/shm.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <signal.h>
#include “ safecalls.h”

/* The union for semctl may or may not be defined for us. This code, defined
in Linux’s semctl() manpage, is the proper way to attain it if necessary. */

#if defined(__ GNU_LIBRARY_ ) && !defined( SEM_SEMUN_UNDEFINED)
/* union semun is defined by including <sys/sem.h> */
#else
[* according to X/OPEN we have to define it ourselves */
union semun {
int val; /* value for SETVAL */
struct semid_ds *buf; [* buffer for IPC_STAT, IPC_SET */
unsigned short int *array; /* array for GETALL, SETALL */
struct seminfo*__buf;  /* buffer for IPC_INFO */
|
#endif

#define SHMDATASIZE 1000
#define BUFFERSIZE (SHMDATASIZE - sizeof(int))

#define SN_EMPTY 0
#define SN_FULL 1

int DeleteSemid = O;

void server(void);

void client(int shmid);

void delete(void);

void sigdel ete(int signumy;

void locksem(int semid, int semnum);

void unlocksem(int semid, int semnum);

void waitzero(int semid, int semnum);

void clientwrite(int shmid, int semid, char *buffer);

int safesemget(key_t key, int nsems, int semflg);

int safesemctl (int semid, int semnum, int cmd, union semun arg);
int safesemop(int semid, struct sembuf * sops, unsigned nsops);
int safeshmget(key t key, int size, int shmflg);

void *safeshmat(int shmid, const void *shmaddr, int shmflg);

int safeshmctl(int shmid, int cmd, struct shmid_ds *buf);

int main(int argc, char *argv[]) {

327



/* No arguments: “server”. */
if (argc<2){

server();
} else{

client(atoi(argv[1]));

return O;

}

void server(void) {
union semun sunion;
int semid, shmid;
void *shmdata;
char *buffer;

/* First thing: generate the semaphore. */
semid = safesemget(IPC_PRIVATE, 2, SHM_R | SHM_W);
DeleteSemid = semid;
/* Delete the semaphore when exiting. */
atexit(& delete);
signa (SIGINT, &sigdelete);

/* Initially empty should be available and full should not be. */

sunion.val = 1;
safesemctl(semid, SN_EMPTY, SETVAL, sunion);
sunion.val = 0;

safesemctl(semid, SN_FULL, SETVAL, sunion);
/* Now allocate a shared memory segment. */
shmid = safeshmget(IPC_PRIVATE, SHMDATASIZE, IPC_CREAT | SHM_R | SHM_W);

[* Map it into memory. */
shmdata = safeshmat(shmid, O, 0);

/* Mark it to automatically delete when the last holding process exits. */
safeshmctl(shmid, IPC_RMID, NULL);

* Write the semaphore id to its beginning. */
*(int *)shmdata = semid;

buffer = shmdata + sizeof(int);

printf(“ Server is running with SHM id ** %d **\n”,
shmid);

/*****************************************************************

MAIN SERVER LOOP

*****************************************************************/

while (1) {
printf(“Waiting until full...”);
fflush(stdout);
locksem(semid, SN_FULL);
printf(“ done\n");

printf(“Message received: %s\n”, buffer);
328



unlocksem(semid, SN_EMPTY);
}
}

void client(int shmid) {
int semid;
void *shmdata;
char *buffer;
shmdata = safeshmat(shmid, 0, 0);

semid = *(int *)shmdata;
buffer = shmdata + sizeof(int);

printf(“Client operational: shmid is%d, semid is %d\n”,
shmid,
semid);

while (1) {
char input[3];

printf(“\n\nMenu\nl. Send a message\n”);
printf(“2. Exit\n");

fgets(input, sizeof(input), stdin);

switch(input[0]) {
case ‘1’: clientwrite(shmid, semid, buffer); break;
case‘2': exit(0); break;
}
}

}

void delete(void) {
printf(“\nMaster exiting; deleting semaphore %d.\n", DeleteSemid);
if (semctl(DeleteSemid, 0, IPC_RMID, 0) ==-1) {
printf(“Error releasing semaphore\n”);
}
}

void sigdelete(int signum) {
[* Calling exit will conveniently trigger the normal
deleteitem. */

exit(0);
}

void locksem(int semid, int semnum) {
struct sembuf sb;

sh.sem_num = semnum;
sh.sem op =-1;
sh.sem _flg=SEM_UNDO;

safesemop(semid, &sh, 1);
}

void unlocksem(int semid, int semnum) {
struct sembuf sb;

sh.sem_num = semnum;

329



sh.sem op =1;
sh.sem_flg=SEM_UNDO;

safesemop(semid, &sb, 1);
}

void waitzero(int semid, int semnum) {
struct sembuf sb;

sh.sem_num = semnum;
sh.sem op =0;
sh.sem flg=0; /* No modification so no need to undo */
safesemop(semid, &sh, 1);
}

void clientwrite(int shmid, int semid, char *buffer) {
printf(“Waiting until empty...");
fflush(stdout);
locksem(semid, SN_EMPTY);
printf(“ done\n™);

printf(“ Enter message: “);
fgets(buffer, BUFFERSIZE, stdin);
unlocksem(semid, SN_FULL);

}

int safesemget(key _t key, int nsems, int semflg) {
int retval;

retval = semget(key, nsems, semflg);
if (retval ==-1)

HandleError(errno, “semget”, “key %d, nsems %d failed”, key, nsems);
return retval;

}

int safesemctl(int semid, int semnum, int cmd, union semun arg) {
int retval;

retval = semctl(semid, semnum, cmd, arg);
if (retval ==-1)
HandleError(errno, “semctl”, “semid %d, semnum %d, cmd %d failed”,

semid, semnum, cmd);
return retval;

}

int safesemop(int semid, struct sembuf * sops, unsigned nsops) {
int retval;

retval = semop(semid, sops, hsops);
if (retval ==-1)
HandleError(errno, “semop”, “semid %d (%d operations) failed”,
semid, nsops);
return retval;

}

int safeshmget(key_t key, int size, int shmflg) {
int retval;

retval = shmget(key, size, shmflg);
if (retval ==-1)

HandleError(errno, “shmget”, “key %d, size %d failed”, key, size);
return retval;

330



}

void *safeshmat(int shmid, const void *shmaddr, int shmflg) {
void *retval;

retval = shmat(shmid, shmaddr, shmflg);
if (retval == (void *) -1)

HandleError(errno, “shmat”, “shmid %d failed”, shmid);
return retval;

}

int safeshmctl(int shmid, int cmd, struct shmid_ds *buf) {
int retval;

retval = shmctl(shmid, cmd, buf);
if (retval ==-1)
HandleError(errno, “shmctl”, “shmid %d, cmd %d failed”,
shmid, cmd);
return retval;
}

There are many things to go over about this code. Thistime, | want you to see how it works before using it. Before continuing, you
need the safecalls.c file from Chapter 14, “Introducing the Linux I/O.” This program actually uses only its HandleError function,
so if you don’'t want to type or download it all, you can make do with just that.

Then, compile this program like this:
$ gce -Wall -o ch16-3 ch16-3.c safecalls.c

After this, you are ready to start up a server process. Here's what you need to type at the prompt:

$./ch16-3
Server isrunning with SHM id ** 126724 **
Waiting until full...

The server will continue running until you press Ctrl+C; it will not want any more input from you now.

Next, you can start up a client process. To do so, giveit the SHM ID that the server printed out on its command line. For instance,
in thisexample, 1'd type:

$ ./ch16-4 126724
Client operational: shmidis 126724, semid is 3330

Menu
1. Send a message
2. Exit

The client looks up the shared memory segment, reads the semaphore ID, and then presents you with the main menu. Pick option 1
to send a message:

1
Waiting until empty... done.
Enter message: Hello, thisis atest!

Menu
1. Send a message
2. Exit

The client sent the message. On the server side, you'll see this response:

331



Waiting until full... done.
Message received: Hello, thisis atest!

Waiting until full...

This occurs each time you send it a message. Now, you can go ahead and exit the client and press Ctrl+C to exit the server, or
experiment a bit more if you wish. When you exit the server, it automatically deletes its semaphore as before.

Now let’stake alook at the code and find out what makes this program tick. We begin by declaring two constants: SN_EMPTY
and SN_FULL. These are used to access particular semaphores inside the semaphore set. Thistime, instead of only one semaphore
in the set, there are two. Next are prototypes for many different functions in the program.

Asyou arrive at main(), things are fairly simple: main() either calls the server function or passes along the integer conversion of
the argument to the client function. After doing that, it returns a success code to its caller.

The first thing the server() function doesis create a new semaphore. This is done exactly as was done before. The ID issaved in
DeleteSemid, and atexit() is called. Thistime, because pressing Ctrl+C exits the server, asignal handler isregistered aswell. This
deletes the semaphore when the program exits by SIGINT.

Next, the two semaphores in the semaphore set are initialized. Thefirst, SN_EMPTY, isinitialized to 1. The SN_FULL semaphore
isinitialized to zero, meaning that a process must explicitly unlock it before another one can get alock init.

Now the shared memory segment is allocated. The SHMDATASIZE value was defined at the top of the program to be 1000 bytes.
Itiscreated, and an ID isreturned. In order to actually access the shared memory, it has to be mapped into memory—the job of
shmat(). This function takes an 1D, arecommended address, and flags. The last two parameters are rarely used; this program just
sets them to zero.

Because shared memory has a concept of being attached, the kernel can keep a usage counter. Unlike semaphores, you can request
that shared memory be automatically deleted when the last process using it terminates. That iswhat is done with the call to
safeshmctl().

At this point, there was a decision. The server could have printed out the IDs for both the semaphore and the shared memory for
the client to use. Instead, we are a bit sneaky about it: only the ID for the shared memory is printed; the ID for the semaphoreis
written into the shared memory itself. Because this value never changes, and the server is guaranteed to write to it before clients do
(clients don’t even know the ID of the shared memory yet), there’ s no need to worry about locking it. | cast the void * variable
shmdatato an int * variable, dereferenceit, and assign the semaphore ID to it. Then, the variable buffer (which will be used for the
rest of the program) isinitialized to point to the shared memory area, just past this semaphore ID. The server prints out the shared
memory |D and then entersits main loop.

The server waits until the client signals that the buffer is full (by unlocking the SN_FULL semaphore). When that is done, the
server getsthe lock, displays the message, and then unlocks the SN_EMPTY semaphore for the client.

Y ou may want to think of the locking and unlocking as wait and signal operations, respectively. When you lock a semaphore, you
are waiting until it isavailable. In this program, when you unlock it, you are signaling the other process that it has become
available.

Now you arrive at the client() function. It gets the shared memory ID passed in from main(). The client() function first reads the
semaphore ID and then sets buffer—similar to what was done in the server() function. Then, it entersits main loop. It offersto
read from the terminal or exit. If you choose to read, it calls clientwrite(); otherwise, it exits.

The delete() and sigdelete() functions are already fairly familiar or trivial enough; we'll skip them. The locksem() and unlocksem()
functions are the equivalents of the request() and return() functions in the earlier example. The waitzero() function is not used by
this program but is included for completenessif you want to use this code somewhere else. Its purpose isto block until the
semaphore’ s value is zero (that is, until someone has obtained alock on it) but not modify the semaphore itself.

After these functions, you find the implementation of clientwrite(). It's quite similar to the server() function. It waits until it can
lock SN_EMPTY, reads the message from the keyboard, and then unlocks SN_FULL. Notice that for performance reasons you
would normally move the fgets() call before the locksem() call, but it is here for demonstration purposes, as I'll explain shortly.

After these functions, you see the implementations of the safe wrappers around calls, which are used for error detection. These are
written in the same fashion as those described in Chapter 14.

332



Now you have seen this program, but it is not very robust. It supports only one client and one server. Let’s rewrite it so that this

restriction is removed. We'll rename what is now the client to the “ producer” and what is now the server to the “consumer.” Many

computer science textbooks address the producer/consumer problem, of which thisis an instance.

Consider the benefits of the code in Listing 16-4. Y ou can write a system that institutes a job processing system. Any number of
processes may queue jobs. Serversto process them may enter or leave the system at any time. Y ou can even implement a queue
simply by modifying Listing 16-4 to have alarger buffer and handle a situation of adding new entries at an offset into the shared

memory (which is not terribly difficult).
Note Listing 16-4 isavailable online.
Listing 16-4: Revised shared memory example

#include <stdio.h>
#include <syg/types.h>
#include <syg/ipc.h>
#include <sys/sem.h>
#include <sys/shm.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <signal.h>
#include “safecals.h”

/* The union for semctl may or may not be defined for us. This code, defined
in Linux’s semctl() manpage, is the proper way to attain it if necessary. */

#if defined(__GNU_LIBRARY__) && !defined(_SEM_SEMUN_UNDEFINED)
/* union semun is defined by including <sys/sem.h> */
#else
[* according to X/OPEN we have to define it ourselves */
union semun {
int val; [* value for SETVAL */
struct semid_ds*buf;  /* buffer for IPC_STAT, IPC_SET */
unsigned short int *array; /* array for GETALL, SETALL */
struct seminfo*__buf;  /* buffer for IPC_INFO */
|
#endif

#define SHMDATASI ZE 1000
#define BUFFERSI ZE (SHMDATASIZE - sizeof(int))

#define SN_EMPTY 0
#define SN_FULL 1
#define SN_LOCK 2

int DeleteSemid = 0;

void consumer(int shmid);

void producer(int shmid);

int masterinit(void);

char *standardinit(int shmid, int *semid);

void delete(void);

void sigdelete(int signum);

void locksem(int semid, int semnum);

void unlocksem(int semid, int semnum);

void waitzero(int semid, int semnum);

void producerwrite(int shmid, int semid, char *buffer);

int safesemget(key _t key, int nsems, int semflg);
int safesemctl(int semid, int semnum, int cmd, union semun arg);
int safesemop(int semid, struct sembuf * sops, unsigned nsops);

333



int safeshmget(key t key, int size, int shmflg);
void *safeshmat(int shmid, const void *shmaddr, int shmflg);
int safeshmctl (int shmid, int cmd, struct shmid_ds *buf);

int main(int argc, char *argv[]) {
char selection[3];
int shmid;
/* No arguments: “master */
if (argc<2){
shmid = masterinit();
} else{
shmid = atoi(argv[1]);
}

printf(“Shall | be a[C]Jonsumer or a[P]roducer process? “);
fgets(selection, sizeof (selection), stdin);

switch(selection[0]) {
case‘p':
case 'P': producer(shmid); break;
case‘C':
case ‘C': consumer(shmid); break;
default: printf(“Invalid choice; exiting.\n");
}
return O;
}
void consumer(int shmid) {
int semid;
char *buffer;

buffer = standardinit(shmid, & semid);

printf(“ Consumer operational: shmidis%d, semid is%d\n”,
shmid,
semid);

while (1) {
printf(“Waiting until full... *);
fflush(stdout);
locksem(semid, SN_FULL);
printf(“done; “);

printf(“waiting for lock... “);
fflush(stdout);
locksem(semid, SN_LOCK);
printf(“done\n™);

printf(“Message received: %s\n”, buffer);
unlocksem(semid, SN_LOCK);
unlocksem(semid, SN_EMPTY);
}
}

void producer(int shmid) {
int semid;
char *buffer;

buffer = standardinit(shmid, & semid);

printf(“Producer operational: shmidis%d, semidis%d\n”,
shmid,

334



semid);

while (2) {
char input[3];

printf(“\n\nMenu\nl1. Send a message\n”);
printf(“2. Exit\n");

fgets(input, sizeof(input), stdin);
switch(input[0]) {
case ‘1': producerwrite(shmid, semid, buffer); break;
case '2': exit(0); break;
}
}
char *standardinit(int shmid, int *semid) {

void * shmdata;
char *buffer;

shmdata = safeshmat(shmid, 0, 0);

*semid = *(int *)shmdata;
buffer = shmdata + sizeof(int);

return buffer;

}
int masterinit(void) {
union semun sunion;
int semid, shmid;
void *shmdata;
/* First thing: generate the semaphore. */
semid = safesemget(IPC_PRIVATE, 3, SHM_R | SHM_W);
DeleteSemid = semid;
/* Delete the semaphore when exiting. */
atexit(&delete);
signal(SIGINT, &sigdelete);

/* Initially empty should be available and full should not be.
The lock will also be availableinitialy. */

sunion.val = 1;
safesemctl(semid, SN_EMPTY, SETVAL, sunion);
safesemctl(semid, SN_LOCK, SETVAL, sunion);
sunion.val = 0;
safesemctl(semid, SN_FULL, SETVAL, sunion);
/* Now allocate a shared memory segment. */
shmid = safeshmget(IPC_PRIVATE, SHMDATASIZE, IPC_CREAT | SHM_R | SHM_W);
/* Map it into memory. */
shmdata = safeshmat(shmid, O, 0);

/* Mark it to delete automatically when the last holding process exits. */

335



safeshmctl(shmid, IPC_RMID, NULL);
* Write the semaphore id to its beginning. */
*(int *)shmdata = semid;

printf(* *** The system is running with SHM id %d \n”,
shmid);

return shmid;
}

void delete(void) {
printf(“\nMaster exiting; deleting semaphore %d.\n", DeleteSemid);
if (semctl(DeleteSemid, 0, IPC_RMID, 0) ==-1) {
printf(“ Error releasing semaphore\n”);
}
}

void sigdelete(int signum) {
[* Calling exit will conveniently trigger the normal
deleteitem. */

exit(0);
}

void locksem(int semid, int semnum) {
struct sembuf sb;

sh.sem_num = semnum;
sh.sem op =-1;
sh.sem _flg=SEM_UNDO;

safesemop(semid, &sh, 1);
}

void unlocksem(int semid, int semnum) {
struct sembuf sb;

sh.sem_num = semnum;
sh.sem op =1;
sh.sem_flg=SEM_UNDO;

safesemop(semid, &sb, 1);
}

void waitzero(int semid, int semnum) {
struct sembuf sb;

sh.sem_num = semnum;
sh.sem _op =0;
sh.sem flg=0; /* No modification so no need to undo */

safesemop(semid, &sb, 1);
}

void producerwrite(int shmid, int semid, char *buffer) {
printf(“Waiting until empty... “);

fflush(stdout);

locksem(semid, SN_EMPTY);

printf(“done; waiting for lock...\n");
fflush(stdout);

336



locksem(semid, SN_LOCK);
printf(“Enter message: “);
fgets(buffer, BUFFERSI ZE, stdin);

unlocksem(semid, SN_LOCK);
unlocksem(semid, SN_FULL);
}

int safesemget(key_t key, int nsems, int semflg) {
int retval;

retval = semget(key, nsems, semflg);

if (retval ==-1)
HandleError(errno, “semget”, “key %d, nsems %d failed”, key, nsems);
return retval;
}
int safesemctl(int semid, int semnum, int cmd, union semun arg) {
int retval;

retval = semctl(semid, semnum, cmd, arg);
if (retval ==-1)
HandleError(errno, “semctl”, “semid %d, semnum %d, cmd %d failed”,
semid, semnum, cmd);
return retval;
}

int safesemop(int semid, struct sembuf * sops, unsigned nsops) {
int retval;

retval = semop(semid, sops, hsops);

if (retval ==-1)
HandleError(errno, “semop”, “semid %d (%d operations) failed”,
semid, nsops);
return retval;
}
int safeshmget(key t key, int size, int shmflg) {
int retval;

retval = shmget(key, size, shmflg);

if (retval ==-1)
HandleError(errno, “shmget”, “key %d, size %d failed”, key, size);
return retval;
}
void *safeshmat(int shmid, const void *shmaddr, int shmflg) {
void *retval;

retval = shmat(shmid, shmaddr, shmflg);
if (retval == (void *) -1)

HandleError(errno, “shmat”, “shmid %d failed”, shmid);
return retval;

}

int safeshmctl(int shmid, int cmd, struct shmid_ds *buf) {
int retval;

retval = shmctl(shmid, cmd, buf);
if (retval ==-1)
HandleError(errno, “shmctl”, “shmid %d, cmd %d failed”,

337



shmid, cmd);
return retval;
}

The codeis now complete! Y ou simply start up one process, which allocates the shared memory and semaphore. Then, you can start
up as many other processes as you wish, of either type, and add them into the system simply by passing them the shared memory ID.
To really see how things work, you need to start up at least two producers and two consumers. Thereisalot of internal reshuffling of
code to make things a bit better suited to the producer/consumer model. There is a new semaphore, SN_L OCK. Using this semaphore
makes the program a full-fledged producer/consumer solution. Although this current scheme does not require that, it isthere as an
example for you should you have a system that would benefit from buffers.

Summary

In this chapter, you learned about shared memory and semaphores. Specifically, you learned:
» Shared memory can be very fast, but access can be complicated due to synchronization requirements.

*  Both shared memory and semaphores are examples of parts of the SY SV IPC (System V interprocess communication) system,
and so they are created in similar ways.

*  Semaphores are used to provide resource synchronization. Resources are said to be available if the semaphore is positive, or
unavailableif it is zero.

e Semaphores cannot be automatically deleted when the program exits, so you should use atexit() or signal handlers to make
sure that they are deleted.

e Youcanuse SEM_UNDO to cause the resources regquested by a process to be released, but the semaphore itself will not be.
» Each semaphore allocated actually contains a customizable amount of semaphores under asingle ID.
» Shared memory is usually implemented with semaphores as the synchronization method.

*  When you have a shared memory ID, you must attach it to your process with shmat().
Chapter 17: Using Pipesand FIFOs

Overview

As| continue our discussion of communication on Linux, | now turn away from shared memory and toward file descriptor—based
communication. Pipes are provided for your use for setting up lines of communication between two processes on your local
machine. Instead of using open(2) to create a pipe, you use pipe(2). After that, however, you use standard system calls such as
read(2) and write(2), just as you would with a more “normal” file descriptor.

Cross-Reference

For more information on using system-call input and output, please see the information in Chapter 14, “Introducing the
Linux I/0."

Pipes are intended solely for communication between two processes. When you create a pipe, you actually get two file
descriptors—one for reading and one for writing. Any data that is written to the write side of the descriptor can later be read back
from the read side.

Compared with the shared memory and semaphore system, pipes are afar easier method to use for communication between
processes. Pipes can be a bit slower, and unlike shared memory, you cannot use a single pipe for more than two processes. Instead
you might have to use a solution such as setting up aline of pipes (a pipeline) to shuttle data from one process to the next, which
will certainly be slower. On the other hand, because pipes are used as standard file descriptors, they are the method of choice for
communication between two processes that use file descriptor 1/0 aready. For instance, thisis the type of device that the shell
imple-ments to handle pipelines created with | in the shell, because any terminal 1/0 is ultimately implemented in terms of file
descriptors.

338



Another advantage is that pipes function much like their more complex big brother, the TCP/IP socket suite. Y ou can start out with
using communication only locally, and then later graduate to using TCP/I P sockets to permit communication on the Internet. Some
parts of your code will have to be modified—especially the initialization code—but as long as you are doing basic reads and writes
on file descriptors, the bulk of your code should still be operational even with this completely different method of communication.
Most communication in Linux, in fact, occurs with the file descriptor model; this chapter and the two chapters following it focus
entirely on communication with this model, and pipes are afitting introduction to it.

A FIFO isaparticular type of pipe that has a presence in the file system. It is used to allow processes to establish a connection with
each other without requiring them to have previously forked, alimitation of standard pipes which you shall see in the text that
follows.

Setting Up Pipes

To create a pipe, you must first ssimply call pipe(2). The function will create the file descriptor pair and place them in atwo-
element array for your use. After this, you need to cause communication to occur between processes. The standard approach isto
call pipe(2), obtain your descriptors, and then use the fork() system call. Each end will close one of the descriptors. For instance, if
the child process will do the writing and the parent the reading, the child process should close the reading end of the pipe and the
parent should close the writing end.

Listing 17-1 shows a sample program to create a pipe and then communicate over it. Notice how it must fork and then the two
processes use the pipe file descriptors that were opened before the fork.

Note Listing 17-1 isavailable online.
Listing 17-1: Pipe example

#include <stdio.h>
#include <unistd.h>
#include <errno.h>
#include <stdarg.h>
#include <time.h>

#include “ safecalls.h”
#define FD_READ 0
#define FD_WRITE 1

void parent(int pipefdg 2]);
void child(int pipefds[2]);

int write_buffer(int fd, const void *buf, int count);

int read_buffer(int fd, void *buf, int count);

int readnistring(int socket, char *buf, int maxlen);

int readdelimstring(int socket, char *buf, int maxlen, char delim);
int tprintf(const char *fmt, ...);
pid_t safefork(void);

int main(void) {
int pipefdg2];

safepi pe(pipefds);

if (safefork())
parent(pipefds);

else
child(pipefds);

return O;

}

void parent(int pipefds 2]) {
char buffer[100];
[* First, close the descriptors that the parent doesn’t need.
Since the parent will not be reading from the terminal -- only
the child will -- close off standard input as well. */

339



close(pipefdsFD_WRITE]);
close(0);

tprintf(“ The parent is ready.\n");
/* Now wait for data, and display it. */

while (readnlstring(pipefds[FD_READ], buffer, sizeof(buffer)) >=0) {
tprintf(* Received message: %s\n”, buffer);
}
tprintf(“No more data; parent exiting.\n");
safeclose(pipefdsFD_READ]);

void child(int pipefds[2]) {
char buffer[100];

[* First, close the descriptor that the child doesn’t need. */
close(pipefds{FD_READ]);
tprintf(“ The child is ready.\n");

tprintf(* Enter message (Ctrl+D to exit): *);
while (fgets(buffer, sizeof(buffer), stdin) != NULL) {
tprintf(“ Transmitting message: %s\n”, buffer);
write_buffer(pipefdfFD_WRITE], buffer, strlen(buffer));
tprintf(* Enter message (Ctrl+D to exit): “);
}
tprintf(“ Client exiting.\n");
safeclose(pipefdsFD_WRITE]);

/*
This function writes a certain number of bytes from “buf” to afile
or socket descriptor specified by “fd”. The number of bytesis
specified by “count”. It returns the number of bytes written,
or <0 on error.
*/

int write_buffer(int fd, const void *buf, int count) {
const void *pts = buf;
int status=0, n;

if (count < 0) return (-1);

while (status !'= count) {
n = safewrite(fd, pts+status, count-status);
if (n<0) return (n);
status +=n;
}
return (status);

}

int read buffer(int fd, void *buf, int count) {
void *pts = buf;
int status=0, n;
if (count < 0) return (-1);

while (status !'= count) {
n = saferead(fd, pts+status, count-status);

340



if (n<1)returnn;
status +=n;
}
return (status);
}

int readnlstring(int socket, char *buf, int maxlen) {
return readdelimstring(socket, buf, maxlen, ‘\n’);

}

int readdelimstring(int socket, char *buf, int maxlen, char delim) {
int status;

int count = 0;

while (count < maxlen - 1) {
if ((status = read_buffer(socket, buf+count, 1)) < 1) {

printf(“ Error reading: EOF in readdelimstring()\n”);
return -1;

if (buf[count] == delim) { /* Found the delimiter */
buf[count] = 0;
return O;
}
count++;
}
buf[count] = 0;
return O,

}

int tprintf(const char *fmt, ...) {
va list args;

struct tm *tstruct;

time t tsec;

tsec = time(NULL);
tstruct = localtime(&tsec);

printf(* %02d:%602d:%02d %5d| “,
tstruct->tm_hour,
tstruct->tm_min,
tstruct->tm_sec,
getpid());

va_start(args, fmt);
return vprintf(fmt, args);

}

pid_t safefork(void) {
pid tretval;

retval = fork();
if (retval ==-1)
HandleError(errno, “fork”, “failed”);
return retval;
}

To compile this program, you' lI need the safecalls.c and safecalls.h files from Chapter 14, “Introducing the Linux 1/O.” Then run
gcc with the arguments shown to compile:

$ gce -Wall -0 ch70-1 ch17-1.c safecalls.c
The program begins by defining some macros for the read and write sides of the descriptors to make things easier to remember

341



later. Then, inside main(), the pipeis created, and the results are stored in pipefds(). After doing that, the program forks, each side
going to its respective function.

In the parent() function, the write descriptor is closed. Because the child will be the only one reading from standard input, it closes
the read descriptor on its end. Then, the parent reads strings from the input descriptor of the pipe and displays them. Finally, it will
closeits end of the pipe and exit.

The child similarly closes the reading end of the pipe, which it will not be using. Then it enters aloop reading data from the
keyboard. After reading each line of input, it prints a message, writesit to the pipe, and repeats the loop.

Note that because both processes are writing to the same terminal, some strange-ness is bound to occur unless they carefully
synchronize their actions. One way to address this problem is to use a semaphore for locking display to the screen. Another way is
to open a second pipeline for the server to communicate an acknowledgment of receipt to the client. The client can wait for this
message to arrive before displaying its output.

The program in Listing 17-1 will successfully communicate with the server. However, because we do not synchronize the result
from the server (pipes are one way) and both processes are sharing a single terminal, the result can be a bit confusing. Let’ stake a
look at the output anyway:

$./ch17-1
13:51:31 337| The parent is ready.
13:51:31 338| The child isready.
13:51:31 338| Enter message (Ctrl+D to exit): Hello!
13:51:34 338| Transmitting message: Hello!

13:51:34 338| Enter message (Ctrl+D to exit): 13:51:34 337| Received message: Hello!
Thisisanother message
13:51:41 338| Transmitting message: Thisis another message

13:51:41 338| Enter message (Ctrl+D to exit): 13:51:41 337| Received message: Thisis another message
Ctrl+D
13:51:55 338| Client exiting.
Error reading: EOF in readdelimstring()
13:51:55 337| No more data; parent exiting.

Situations such as this are rare where both processes are writing to the same terminal. In this case, you can solve the problem
simply by eliminating some of the prompting on the client side.

There' s another problem: the server is getting an error condition when it tries to read at the end. Specifically, what’s happening is
it has detected that the other end has closed the pipe, and thus that there is no more datato read. Thisis not really an error, just an
event, but the function is expecting to be able to read until a newline. One solution here isto change the protocol a bit such that the
client informs the server when it is exiting. Another option is to modify the function that is generating the error message so that it
remains silent when an end-of-file condition occurs.

Listing 17-2 shows a rewritten version of the program in Listing 17-1 that takes these things into consideration.
Note Listing 17-2 isavailable online.
Listing 17-2: Revised pipe example
#include <stdio.h>
#include <unistd.h>
#include <errno.h>
#include <stdarg.h>
#include <time.h>

#include “ safecalls.h”

#define FD_READ 0
#define FD_WRITE 1

void parent(int pipefdg2]);
342



void child(int pipefds[2]);

int write_buffer(int fd, const void *buf, int count);

int read_buffer(int fd, void *buf, int count);

int readnistring(int socket, char *buf, int maxlen);

int readdelimstring(int socket, char *buf, int maxlen, char delim);
int tprintf(const char *fmt, ...);
pid_t safefork(void);

int main(void) {
int pipefdg2];

safepi pe(pipefds);

if (safefork())
parent(pipefds);

else
child(pipefds);

return O;

}

void parent(int pipefdg 2]) {
char buffer[100];
[* First, close the descriptors that the parent doesn’t need.
Since the parent will not be reading from the terminal -- only
the child will -- close off standard input as well. */

close(pipefd|FD_WRITE]);
close(0);

tprintf(“ The parent is ready.\n");
/* Now wait for data, and display it. */

while (read_buffer(pipefds]FD_READ], buffer, 1) > 0) {
if (buffer[0] ==‘E") {

tprintf(“ Received exit code from child.\n");

break;

}
if (buffer[0] =='M") {
readnlstring(pipefds FD_READ], buffer, sizeof(buffer));
tprintf(* Received message: %s\n”, buffer);
} else{
tprintf(* Received unknown action code\n");
}
}
tprintf(“ Parent exiting.\n");
safeclose(pipefd{FD_READ]);

}
void child(int pipefdg[2]) {
char buffer[100];

/* First, close the descriptor that the child doesn’t need. */
close(pipefd§ FD_READ]);

tprintf(“ The child isready. Enter messages, or Ctrl+D when done\n”);
while (fgets(buffer, sizeof(buffer), stdin) != NULL) {

[* Send a message code and then the message. */

write_buffer(pipefdsfFD_WRITE], “M”, 1);

write_buffer(pipefd FD_WRITE], buffer, strlen(buffer));
}

343



write_buffer(pipefdFD_WRITE], “E", 1);
tprintf(“ Client exiting.\n");
safecl ose(pipefds FD_WRITE]);

/*
This function writes certain number bytes from “buf” to afile
or socket descriptor specified by “fd”. The number of bytesis
specified by “count”. It returns the number of bytes written,
or <0 on error.
*/

int write_buffer(int fd, const void *buf, int count) {
const void *pts = buf;
int status=0, n;

if (count < Q) return (-1);

while (status !'= count) {
n = safewrite(fd, ptststatus, count-status);
if (n<0) return (n);
status += n;

}

return (status);

}

int read buffer(int fd, void *buf, int count) {
void *pts = buf;
int status=0, n;

if (count < Q) return (-1);

while (status !'= count) {
n = saferead(fd, pts+status, count-status);
if (n<1)returnn;
status += n;

}

return (status);

}

int readnlstring(int socket, char *buf, int maxlen) {
return readdelimstring(socket, buf, maxlen, ‘\n’);

}

int readdelimstring(int socket, char *buf, int maxlen, char delim) {
int status;
int count = 0;

while (count < maxlen - 1) {
if ((status = read_buffer(socket, buf+count, 1)) < 1) {
printf(“Error reading: EOF in readdelimstring()\n”);
return -1;

if (buf[count] == delim) { /* Found the delimiter */
buf[count] = 0;
return O;
}
count++;
}
buf[count] = 0;
return O;
}

344



int tprintf(const char *fmt, ...) {
va list args;

struct tm *tstruct;

time_t tsec;

tsec = time(NULL);
tstruct = localtime(&tsec);

printf(“%02d:%602d:%02d %5d| “,
tstruct->tm_hour,
tstruct->tm_min,
tstruct->tm_sec,
getpid());

va dtart(args, fmt);
return vprintf(fmt, args);

}

pid_t safefork(void) {
pid_t retval;

retval = fork();
if (retval ==-1)

HandleError(errno, “fork”, “failed”);
return retval;

}

Thistime, before the child sends anything to the parent, it sends a one-character code indicating what’ s going on. This code will be
M (to indicate a message follows) or E (to indicate that the client is exiting). The parent receivesthis code, and if it isan E, it
won't even try to read a message; it will break out of itsloop immediately.

Watch what happens when this version of the programisrun:

$./ch17-2
15:46:50 786| The parent is ready.
15:46:50 787| The child isready. Enter messages, or Ctrl+D when done.
Hello!
15:46:52 786| Received message: Hello!
Thisisanother test.
15:46:56 786| Received message: Thisis another test.
Ctrl+D
15:46:58 787| Client exiting.
15:46:58 786| Received exit code from child.
15:46:58 786| Parent exiting.
Implementing Redirection

Sometimes it would be nice for your program to invoke another one, but instead of having the output of this other program go to
the terminal, have it go to your program for additional processing. Or, you might prefer to be able to supply custom input to one of
these other programs such that they read their input from your program instead of from the keyboard. Y ou can do this by using the
fork() and exec() calls; first, however, you need to change the child process.

The system provides a function called dup2() that allows you to copy a file descriptor to another number. Because, for instance,

standard output is always number 1, if you copy your pipe file descriptor over the terminal file descriptor that normally resides at
position 1, any output from the child process will go to the parent instead. Listing 17-3 shows a program that does just such a

thing.
Note Listing 17-3 isavailable online.
Listing 17-3: Using redirection

#include <stdio.h>

345



#include <unistd.h>
#include <errno.h>
#include <stdarg.h>
#include <time.h>

#include “ safecalls.h”

#define FD_READ 0
#define FD_WRITE 1

void parent(int pipefdg 2]);
void child(int pipefds[2]);
int write_buffer(int fd, const void *buf, int count);
int read_buffer(int fd, void *buf, int count);
int readnlstring(int socket, char *buf, int maxien);
int readdelimstring(int socket, char *buf, int maxlen, char delim);
int tprintf(const char *fmt, ...);
pid_t safefork(void);

int main(void) {
int pipefdg[2];

safepi pe(pipefds);

if (safefork())
parent(pipefds);

else
child(pipefds);

return O;

}

void parent(int pipefdg 2]) {
char buffer[100];
[* First, close the descriptors that the parent doesn’t need.
Since the parent will not be reading from the terminal -- only
the child will -- close off standard input as well. */

close(pipefdsFD_WRITE]);
close(0);

tprintf(“ The parent is ready.\n");
/* Now wait for data, and display it. */

while (readnlstring(pipefds[ FD_READ], buffer, sizeof(buffer)) >=0) {
tprintf(“ Received message: %s\n”, buffer);

}
tprintf(“No more data; parent exiting.\n");
safeclose(pipefd{FD_READ]);

void child(int pipefds[2]) {
[* First, close the descriptor that the child doesn’t need. */
close(pipefds{FD_READ]);
tprintf(“ The child is ready.\n");
safedup2(pipefds{FD_WRITE], 1);

execlp(“ls’, “Is’, “/proc/self”, NULL);
tprintf(“ Exec failed, exiting\n”);

346



/*
This function writes a certain number of bytes from “buf” to afile
or socket descriptor specified by “fd”. The number of bytesis
specified by “count”. It returns the number of bytes written,
or <0 on error.
*/

int write_buffer(int fd, const void *buf, int count) {
const void *pts = buf;
int status=0, n;

if (count < 0) return (-1);

while (status !'= count) {
n = safewrite(fd, pts+status, count-status);
if (n<0) return (n);
status +=n;

}
return (status);

int read buffer(int fd, void *buf, int count) {
void *pts = buf;
int status=0, n;

if (count < 0) return (-1);

while (status !'= count) {
n = saferead(fd, ptst+status, count-status);
if (n<1)returnn;
status +=n;

}

return (status);

}

int readnlstring(int socket, char *buf, int maxlen) {
return readdelimstring(socket, buf, maxlen, ‘\n’);

}

int readdelimstring(int socket, char *buf, int maxlen, char delim) {
int status,
int count = 0;

while (count < maxlen - 1) {
if ((status = read_buffer(socket, buf+count, 1)) < 1) {
return -1,

if (buf{count] == delim) { /* Found the delimiter */
buf[count] = 0;
return O;

}

count++;

buf[count] = 0;
return O;

}

int tprintf(const char *fmt, ...) {
va list args;

struct tm *tstruct;

time t tsec;

tsec = time(NULL);

347



tstruct = localtime(&tsec);

printf(* %02d:%602d:%02d %5d| “,
tstruct->tm_hour,
tstruct->tm_min,
tstruct->tm_sec,
getpid());

va_ start(args, fmt);
return vprintf(fmt, args);

}

pid_t safefork(void) {
pid tretval;

retval = fork();
if (retval ==-1)

HandleError(errno, “fork”, “failed”);
return retval;

}

This programis similar to the first example. The extra error message has been removed from the function now, however, given
that we no longer have control over the protocol because another application is generating the data being sent to the parent.

The parent receives the output of the s command over the pipe and displays this output with its own additional messages before
each line. Thus, you'll get output that looks something like this:

$ ./ch17-3

15:57:33
15:57:33
15:57:33
15:57:33
15:57:33
15:57:33
15:57:33
15:57:33
15:57:33
15:57:33
15:57:33
15:57:33
15:57:33

838| The parent is ready.
839| The child isready.

838| Received message:
838| Received message:
838| Received message:
838| Received message:
838| Received message:
838| Received message:
838| Received message:
838| Received message:
838| Received message:
838| Received message:
838| Received message:

cmdline
cwd
environ
exe

fd
maps
mem
root
stat
statm
status

15:57:33 838| No more data; parent exiting.
If you would prefer instead to send data as input to the child, you need only keep the writer open on the parent and the read descriptor
open on the child, and use the dup2() call on that descriptor to descriptor number 0 on the child. Note also that the stream 1/0O system
provides a function named popen() that performs a similar task but uses system() and stream 1/O for its communication. This may be
appropriate in some cases, but not necessarily in all situations.

Addressing Communication | ssues

Asyou have seen, pipes are not bi-directional; that is, data can flow through pipesin only one direction. This could be finein
many cases. However, sometimes you might prefer to have bi-directional communication between processes. In these situations,
you have two options. Oneisto open two sets of file descriptors (for atotal of four) between the parent and the child: one set for
communication in one direction and another for communication in the other direction. Another option isto use a different type of
communication that works bidirectionally, such as a socket. | discuss sockets in Chapters 18 and 19.

Some people may try to use pipes for communication within a single process. Thisisamost always a bad idea and can result in
deadlock. The reason is that awrite to a pipe will not necessarily return until there is a corresponding read from the other end.
However, your process cannot do so because it is still trying to write. A better solution might be to simply use an internal buffer
for storage of the data that you need to pass along.

Another problem isthat there is no way, with a standard pipe, to be able to open it save by a single process before afork. This means
that arbitrary processes cannot connect to it later, which is no doubt a bad thing. In order to address thisissue, you'd use FIFOs.

348



Using FIFOs

FIFO stands for “first in, first out”—the first data to be written to the FIFO is the first to be read out later. A FIFO (also known as
named pipe) isaspecial kind of pipe; it has an entry in the file system. This entry is created with the mkfifo(3) library call or the
mkfifo(1) shell command. After it has been created, any process with proper permissions can open it. Reads from the resulting file
descriptor will read data from whatever program connected to writeto it. No datais actually stored on the disk for this type of
entry; it is solely there as a way for two programs to rendezvous without one having to have forked off the second.

After your programs are done using the FIFO, you will need to remove it. The FIFO is not automatically removed from the file
system by the system. Y ou can use the standard unlink() call to remove the FIFO.

Listing 17-4 shows arewrite of the program in Listing 17-2 to use a FIFO. If started without command-line parameters, it will
create a FIFO and then read from it. Otherwise, it will hook up to the existing FIFO whose location is specified on the command
line and writeto it.

Note Listing 17-4 is available online.
Listing 17-4: Sample usage of FIFOs

#include <stdio.h>
#include <unistd.h>
#include <errno.h>
#include <stdarg.h>
#include <time.h>
#include <sygtypes.h>
#include <syg/stat.h>
#include <fentl.h>

#include “ safecalls.h”

void parent(char *argv[]);
void child(char *argv[]);
int write_buffer(int fd, const void *buf, int count);
int read_buffer(int fd, void *buf, int count);
int readnlstring(int socket, char *buf, int maxien);
int readdelimstring(int socket, char *buf, int maxlen, char delim);
int tprintf(const char *fmt, ...);
pid_t safefork(void);

int main(int argc, char *argv[]) {
if (argc < 2)

parent(argv);
ese

child(argv);

return O;
}

void parent(char *argv[]) {
char buffer[100];
int fd;
/* Close standard input. Don’'t need it. */

close(0);
[* Create the FIFO and open it. */
if (mkfifo(*chl7-fifo”, 0600) ==-1)

HandleError(errno, “mkfifo”, “failed to create ch17-fifo”);

349



tprintf(“ The server islistening on chl7-fifo.\n");

/* Thiswill block until someone else connectsto write. */
fd = safeopen(“chl17-fifo”, O_RDONLY);

tprintf(“ Client has connected.\n");

/* Now wait for data, and display it. */

while (readnlstring(fd, buffer, sizeof(buffer)) >= 0) {
tprintf(“ Received message: %s\n”, buffer);

}
tprintf(“No more data; parent exiting.\n");

safeclose(fd);
/* Delete the FIFO. */

unlink(*ch17-fifo");
}

void child(char *argv[]) {
int fd;
char buffer[100];

fd = safeopen(argv[1], O_ WRONLY);
tprintf(“ The client isready. Enter messages, or Ctrl+D when done\n™);

while (fgets(buffer, sizeof(buffer), stdin) '= NULL) {
write_buffer(fd, buffer, strlen(buffer));

tprintf(“ Client exiting.\n");
safeclose(fd);

}

/*
This function writes a certain number of bytes from “buf” to afile
or socket descriptor specified by “fd”. The number of bytesis
specified by “count”. It returns the number of bytes written,
or <0 on error.
*/

int write_buffer(int fd, const void *buf, int count) {
const void *pts = buf;
int status=0, n;

if (count < 0) return (-1);

while (status !'= count) {
n = safewrite(fd, ptststatus, count-status);
if (n<0) return (n);
status +=n;

}
return (status);
}

int read_buffer(int fd, void *buf, int count) {
void *pts = buf;
int status=0, n;

350



if (count < 0) return (-1);

while (status !'= count) {
n = saferead(fd, pts+status, count-status);
if (n<1)returnn;
status +=n;
}
return (status);
}

int readnlstring(int socket, char *buf, int maxlen) {
return readdelimstring(socket, buf, maxlen, ‘\n’);
}

int readdelimstring(int socket, char *buf, int maxlen, char delim) {
int status,

int count = 0;

while (count < maxlen - 1) {

if ((status = read_buffer(socket, buf+count, 1)) < 1) {
return -1;

if (buf{count] == delim) { /* Found the delimiter */
buf[count] = 0;
return O;
}
count++;
}
buf[count] = 0;
return O,

}

int tprintf(const char *fmt, ...) {
va list args;

struct tm *tstruct;

time t tsec;

tsec = time(NULL);
tstruct = localtime(&tsec);

printf(“%602d:%02d:%02d %5d| “,
tstruct->tm_hour,
tstruct->tm_min,
tstruct->tm_sec,
getpid());

va start(args, fmt);
return vprintf(fmt, args);

}

pid_t safefork(void) {
pid_t retval;

retval = fork();
if (retval ==-1)

HandleError(errno, “fork”, “failed”);
return retval;

}

Here is a sample result from running this code. First the parent side:

$ ./ch17-4

351



17:29:54 1035| The server islistening on ch17-fifo.

17:29:58 1035] Client has connected.

17:30:05 1035| Received message: Hello, thisis a message.
17:30:07 1035| Received message: Here' s another one.

17:30:11 1035| Received message: I’ m done sending messages now.
17:30:11 1035| No more data; parent exiting.

And now from the client side:

$ ./ch17-4 ch17-fifo
17:29:58 1036| The client isready. Enter messages, or Ctrl+D when done.
Hello, thisis a message.
Here sanother one.
I’ m done sending messages now.
Ctrl+D
17:30:11 1036| Client exiting.
Summary

In this chapter, you learned about using pipes and FIFOs to communicate between processes. The following topics were discussed:

e A pipeisaunidirectional interprocess communication mechanism that uses file descriptors and standard system-call 1/O to do
most functions.

« A FIFOisanamed pipe; that is, it has an entry in the file system although no datais stored in the file system to accompany a
named pipe.

» Touseapipe, you get an array of two file descriptors, then fork.

* You can use dup2(2) to copy a pipe's descriptor in place of standard input, output, or error to redirect the input or output of
another program before using exec() to start it.

e TouseaFIFO, one process needs to run mkfifo(). Then, both processes need to open it; one for reading and one for writing.

e TheFIFO entry in the file system does not disappear by itself; you have to unlink it when you’ re done with it.
Chapter 18: Internet Sockets

Overview

In Chapter 17, you learned about pipes as a method for communicating between processes residing on a single machine. In this
chapter, I’ll introduce you to TCP sockets, which are used to communicate with processes that may reside on different machines.

This capability gives you an amazingly powerful tool. Y ou can now exchange data with processes on other machines, letting you
accomplish tasks such as distributed or parallel processing and true client/server applications. Moreover, you can set up
information servers, such as Web servers, by using these calls. The networking that Linux uses natively for LAN purposesisthe
same as the networking used by the Internet, unlike some other operating systems. Y ou have a complete, full-featured suite of
tools for handling Internet communicationsin Linux.

Along with all this power, though, comes a significant amount of added complexity. Dealing with a network introduces a significant
number of variables and wildcards that are not present when you are communicating solely with another process on your local
machine. In order to deal with these situations, you will have to go to some extra effort to ensure the correctness of your program.

An Introduction to TCP/IP

In order to have a clear understanding of how your programs work, and why the system calls behave as they do, you need to
understand a few details about the underlying communication mechanism, the problems the designers of TCP faced, and how they
resolved them. Although it’ s technically possible to write a program without this understanding, you'll most likely write far better
code if you know a bit about the inner workings of the system.

The problems

As networks have evolved, the need has arisen for a way to organize communication across them. Because | nternet
communication may pass through many different connections and routers, the communication method must be robust enough to
detect failures. Because a single wire may hold communication between multiple processes on a computer, or even multiple

352



computers, there has to be a way to share the wire with different computers and processes while still ensuring that data sent to or
from one particular process is kept separate from data from all the others. The systems need to be sure not to send data faster than
the recipient can processit. For communication to be reliable, there needs to be away to confirm that the remote machine has
received a given transmission.

Another problem is with the network itself. The protocol has to deal with network failuresin a proper way, without causing data
loss. This can be very tricky because the very nature of a network failure means a communication loss occurs, in which the remote
end cannot necessarily betold to clean up after a problem.

The protocol has to be able to deal with situations that arise without interrupting the network communication, if possible. For
instance, if a network connection is overloaded (more datais being sent than it can accommodate), it will have to drop some data.
A good protocol should be resilient in the face of this; it should detect the loss and resend the lost data.

The solutions

In order to provide a communication method to address these issues, designers crafted alayered stack of protocols based upon IP,
the Internet Protocol. As a developer, you are most interested in TCP, the Transmission Control Protocol, which is used for most
I nternet communication.

TCP isapacket protocol. This means that when you send data from your program, no matter how largeit is, it is separated into
small packets for transport. These packets typically are no larger than one or two kilobytes. Each packet is stamped with some
control information: which computer sent the packet, which port sent the packet (more on portsisin the Addressing section
below), which computer the packet is going to, and which port the packet is going to. There is also some extra control information,
a sequence number, and a checksum, which is used to ensure that the data in the packet has not been corrupted.

The sequence number is important because sometimes packets may be delivered out of order. Most programs are extremely
sensitive to order of data and could not deal with this sort of problem. Therefore, TCP will automatically encode an order number,
and the receiving computer will automatically reassemble the packetsin the correct order and discard duplicates.

Additionally, this packet mechanism permits multiplexing of the network connection—that is, a single connection can be shared
between multiple processes. Thisis possible because each packet sent is identified with the sending and receiving information.

When a system receives an intact TCP packet, it sends back an acknowledgment to the sender. The sender will continue trying to
send packets until it receives such an acknowledgment. This behavior means that communication can get through (albeit slowly)
even if some packet loss occurs, as may be the case with an overloaded network connection. Additionally, it allows the sender to
pace itself such that it does not transmit data at a speed faster than the recipient can processit, in that the sender can refrain from
sending new data until receipt of most of the older data has been acknowledged.

Moreover, because the packets are stamped with the sender’ s address, if there is a network error along the way, the sender can
sometimes be informed about it and return an error to the application. Of course, things do not always happen this way (sometimes
the error communication can’t reach your program due to this very failure).

Finally, in order to establish communication, the two processes must first agree to communicate with each other; otherwise, there's
no point in sending data across the network. With TCP, this is done with the so-called three-way handshake.

Let'slook at an analogy to help you understand the issues: a chess game played by mail. When you start, you need to confirm that
you will be playing the game, and figure out such issues as who will take the first move. For the sake of thisdiscussion, let's
assume that it normally takes about a day for your letters to be delivered and perhaps two weeks to contemplate each move.

Y ou might take the first move, and send off aletter to your friend with the move. Knowing the postal service, you never trust the
letter to get there; it could get lost, misdirected, crushed, folded, spindled, or mutilated—you just never know. Because your friend
may take some time before sending you the next move, you need to confirm the receipt of the one you sent. Therefore, your friend
will mail you back an acknowledgment confirming receipt of the information you sent. If you don’t receive this acknowledgment
in the expected timeframe (perhaps two days), you can resend the information, thinking that the postal service haslost your letter.

Thereis another possibility: the postal service may have lost the acknowledgment. If thisis the case, you need to make sure to
number your moves, because your friend may receive two copies of thisone. Y ou don't want someone else to mistake the
information as your next move, so you agree on a system of numbering. If either of you receives more than one copy of asingle
item, you send an acknowledgment for each but only read the first. That way, in case the acknowledgment was lost, your friend
knows you received the information, but you will not process (read) it twice.

There' s another thing to consider: what if you're a much better chess player than your friend? Well, you might anticipate your

353



opponent’s moves, and decide to go ahead and send along your moves before even hearing what the other moves are. For chess,
thisisabit of a stretch of the analogy, but please bear with me anyway. So you might write five letters, and want to send them all
to your opponent—properly humbered, of course. But your opponent’s mailbox can only hold three letters, and if the postal
service tries to jam more letters in the mailbox, you can be sure that some will be lost or arrive in an unreadable state.

Y our solution is to use flow control—wait for acknowledgments for previous information before sending new information. In this
case, you could send at most three letters ahead of the recipient, based on the arrival of the acknowledgments. This three-letter
limit is known as a diding window; that is, at any given time, there may be a window of three packets in transit.

Notice also how the postal service implements something anal ogous to multiplexing: the resources of the mail delivery trucks are
shared between all the packets being transferred. In the same way, the resources of the network are shared between all the packets
being electronically transferred.

Just as the postal service can accidentally drop your letter out the back of atruck or spill coffee al over it, so too an electronic
network can drop your packets or corrupt them. The communication method that you may use with a chess game is not unlike that
used with TCP. Because TCP guarantees that your data will arrive intact and in the proper order unless a catastrophic failure
preventsit, it istermed areliable protocol. With TCP, data gets through correctly or not at al.

A note about jargon

Because communication across a network can be complex, you should grow familiar with some jargon specific to this system.
First, when we say server in relation to TCP/IP networking, we usually refer to a server process, although sometimes this could
mean the actual computer that runs that process. TCP/IP lends itself to a client/server programming model, but aside from the
initial connection, there is nothing that requires this method be used.

A similar situation is true for the client: the word could apply to the client machine, but more often, to the client process. Again, this
distinction may or may not be relevant after the initial connection has been established.
Unique Challenges of TCP/IP

Y ou have already been introduced to some of the challenges facing people who use a distributed network for communication. The
deceptively simple problem that the network does not always deliver data reliably means some rather complex interactions occur
with your programs. Y ou have to be able to deal with long delays as TCP resends packets that may have been dropped. Y ou have
to deal with network outages that could interrupt communication between your program and the remote. Y ou have to deal with a
situation in which the remote process or computer may crash.

Asan example, let’'s consider a simple problem. Programs on various computers need to get a unique identifier from a central
location. Identifiers must not be used twice, and they must all be used in sequence (there should be no gaps). They may be used to
generate unique customer 1Ds or something similar.

S0, you decide to write a server that takes arequest for an 1D and gives out the next available item. Normally, thisiseasy. The
server givesout an 1D, and then the client machines will use it for whatever purpose is necessary. However, what happensif a
network failure occurs as thisis going on? The server has no way of knowing whether or not the client actually received the ID—a
lack of an acknowledgment could be because the network went down before the ID was received by the client or because it went
down after it was received by the client but before the acknowledgment was transmitted. There is no easy solution to this problem;
the server isleft in an unfortunate situation of not knowing what to do with agiven ID.

Although there are ways that you can reduce the problem, a better option may be to just prevent it from occurring in the first place.
Perhaps you should make the server both generate and process the ID, meaning that a network failure would not prevent a generated
ID from being used.

Protocols

When you send data from computer to computer with TCP/IP, you have to send it in such away that the computer on the remote
end understands what you’re trying to communicate. For instance, if you are writing a networked chess game, you need to have an
agreed-upon way of encoding the chess movesinto aform that can be communicated between the two machines, and decoding the
data from the network such that the program can processiit.

In a stacked system such as TCP/IP, there are already other protocols at work that you don’t even have to worry about. There are
signaling protocols that define the voltages, signaling speeds, and the like used by the physical medium such as Ethernet or a
modem. There isthe TCP/IP suite, itself a collection of protocols built upon an existing physical protocol set. All of these exist to
support your own application with its own protocol.

The protocol that’s right for you can vary depending on what your program does and what sort of data it needs to communicate.

354



Although TCP, at its lower level, splits your data stream into packets, you are never told and have no control over where this
occurs, in that the packets are reassembled for you. When you read data from the network, you have no inherent indication of
when the sending computer is finished sending a block of data. Contrast this with reading from a terminal, which (by default)
returns data to your program one line at atime. Reading the same line, say a 70-character line, from the network may result in a
chunk of 2 bytes, one of 60 bytes, and then one of 8 bytes—there is no way to know beforehand. Therefore, you must develop a
way of communicating between your two processes such that they each know when they’ ve received afull block of data.

There are many different ways to do this. One of the most common is to send a fixed-length size indicator before sending the data

itself. Thissize indicator isthen read in its entirety by the recipient. The recipient then reads data in the amount indicated from the
network, thus ensuring that it gets the entire communication and nothing more. Using this method has the advantage that it is fairly
simple to code on both ends, which can be abig plus. A disadvantageisthat it generally prevents users from being able to connect

directly to your server and type commandsto it, which can be useful for debugging.

Another common method is to use a certain end-of-request marker. Many protocols used on the Internet, such as SMTP for mail
and HTTP for Web traffic, use this method and use the carriage return or linefeed (something like \n) as their end-of-request
marker. From the perspective of the program sending the data, this is an extremely simple way to go. However, for the recipient,
the task is a bit more difficult. The input must be processed, scanned for this marker. Some programs simply read from the
network one byte at a time when using this type of protocol. Although this leadsto easy coding, it is quite slow, and a more
complex buffering system often has to be worked out. Additionally, there is another potential problem: what if the request itself
needs to contain the marker character? In some cases, this will never occur. However, it’s quite possible in some other cases. In
these situations, you actually have to encode the usage of the character in the data, and decode this usage on the recipient side.
Therefore, if you are transmitting binary data across the network, you cannot use the marker character method unless you perform
what could be costly processing on both ends to encode the data.

Another option is only useful in some situations, such as a chess game. If your regquests are always the same size, then you can
simply have each side read data in blocks of that size. In chess, you aways have a source square and a destination square for your
move—so you could simply always send datain this certain size. The program on the other end would know about it and would
read datain chunks of that fixed size.

The issue of identifying the start and end of arequest or response is only part of the issue of communication, but it is frequently the
most tricky. Another issueisthat of sending binary data. Sometimes you may prefer to, for instance, send an integer in binary form
instead of using something like sprintf() to convert it to text and then parse it back to binary on the remote. Doing so is faster and
easier, athough it again does make it difficult to talk to the server manually. There isatrick, though: different platforms use different
internal representations for binary data such as integers. To overcome this problem, designers have devised a network byte order for
these things, which is a standard representation for the data over the network. The data is converted into the network byte order, sent
across the network, and converted to the appropriate local representation on the other end. The functions to do that include htonl()
and htons() for converting from host to network order, and ntohl() and ntohs() for converting from network to host order.
Addressing

Oneissue that you never had to worry about when dealing with pipesis addressing. Y ou never needed to worry about it because
the issue simply did not exist—you were always talking to the local machine, so there was no need to find out the location of a
remote one. Furthermore, because you would get the descriptors and then fork, there was no need to be able to locate a particular
process on a machine.

With the Internet, thisis somewhat more difficult. Y ou have several issuesto contend with. First of all, you have to be able to
identify the remote machine. Internally, the Internet Protocol uses a 32-bit number (up to 15 characters long in dotted-quad form)
that uniquely identifies each host on the Internet. In the not-so-distant future, 64-bit addresses will be used, which will provide four
billion times more addresses (for a total address space of roughly 18 quintillion or 1.8 * 10 ~ 19 unique addresses). Although
machines like to deal with numeric addresses, us humans are quite different. It's much easier for us to remember a name than a 12-
digit number. Moreover, it is useful to structure addressing hierarchically for larger organizations, just as snail mail addressing is
hierarchical (country, state, city, city region, street, building number, and sometimes even the unit inside that building). To achieve
this hierarchical arrangement, there is a distributed database for resolving names into numeric addresses, collectively known as the
Domain Name System (RFC 1591). To access the Domain Name System (DNS), you can use the library call gethostbyname().

Y ou typically use this call to do things such as resolve www.idgbooks.com into an address such as 38.170.216.15.

Thisisonly half of the puzzle. The second part is identifying the proper process with which to communicate on the remote (server)
machine, after you have identified the remote machine. Consider the fact that there could easily be dozens of processes on the
remote waiting for connections. One could be an HTTP (Web) server, another could be FTP, and athird could be atelnet server. If
you want to connect to the Web server, you surely don’t want to communicate with the FTP or telnet server instead. Moreover, on
your own machine, you may have several copies of a Web browser that you want to run at once. Y ou need the results from Web
serversto be directed to the proper processlocally. In other words, you need to be able to uniquely identify processes on each end
of the communication.

355



However, the next question becomes: how can you do this? Y ou might first think that you could use process IDs; just direct a
packet to a specific machine and process. Unfortunately, there are several problems. First, if you're connecting to a server, how do
you know what process ID it has? PIDs are assigned in such a way that the server is never guaranteed to have the same PID.
Besides, some programs need to open up multiple connections. Web browsers, for instance, do this so that they can download
multiple graphics at once while loading a page. If you refer to an endpoint of communication by just a machine name and process
ID, you lose the ability to separate out the data for the two different connections within the same process. Thisis obviously
unacceptable.

To solve this problem, designers came up with the notion of ports. A port issimple. For a client process, when it opens up a
connection to a server, the system will allocate it the next available port (there are thousands possible). The client doesn't care
which port it gets; it just needs one. Thisis aunique identifier corresponding to a single endpoint of communication. When packets
arrive from the server, they are sent to that port on the client’s machine. The kernel knows which processis using that port, and
more important, which socket is using it, and sends the data to the proper place.

On the server, the situation is somewhat different. The port can’t be picked entirely randomly; there has to be away for the client
to identify the server for connection. The typical method for thisisto agree on a particular port beforehand. The server will begin
listening on this port, and the client will connect to that port on the server.

There is a system allowing symbolic names for these predefined port names—also known as services—permitting them to be
looked up instead of hard-coded into a program. Thisis similar in concept, albeit much less sophisticated, to the Domain Name
System. To perform a symbolic lookup, you typically use the getservbyname() library call.

There is one additional twist to the issue of ports. Linux enforces arule that only the root user is able to open a socket with a port
number less than 1024. This prevents applications from hijacking system services and masquerading as a legitimate server. Unless
your program will be running as root and specifically needs this protection, your server should use a port number greater than 1024,
Y ou might want to also consult your /etc/services file to make sure you are not choosing a number that is already taken by a well-
known service. On the client side, you’ll randomly be assigned a number greater than 1024 if not running as root, so there is nothing
to worry about there.

Client-Side Connections

In this section, I’m going to provide for you what is probably the smallest and most simple program. If you really stretch the
definition, you could even call thisa Web browser. The program connects to a Web server, requests a single document, and
displays the result. Listing 18-1 shows a copy of the source code to this sample program. Note that the greater part of the code is
used to establish a connection instead of actually do the communication. When you run the program, you'll need to give it two
arguments: a server name and a port name or number. 1’1l show you an example of running it after presenting the code.

Note Listing 18-1 isavailable online.
Listing 18-1: Sample web client

#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>
#include <errno.h>
#include <arpalinet.h>
#include “ safecalls.h”

#define PROTOCOL “tcp”
#define REQUEST “GET / HTTP/1.0\n\n”

int write_buffer(int fd, const void *buf, int count);

int main(int argc, char *argv[]) {
int sockid;
struct servent * serviceaddr;
struct hostent * hostaddr;
struct protoent *protocol;
struct sockaddr_in socketaddr;
char buffer[1024];
int count;

356



[x**x*%xx Gten 1: resolve hames and generate the socket structure. */
[* Firgt, initialize the socketaddr. */

bzero((char *) & socketaddr, sizeof(socketaddr));
socketaddr.sin_family = AF_INET;

/* Resolve the service name. */

serviceaddr = getservbyname(argv[2], PROTOCOL);
if (!serviceaddr) {
HandleError(0, “ getservbyname”, “service resolution failed”);

}
socketaddr.sin_port = serviceaddr->s_port;

/* Resolve the host name. */

hostaddr = gethostbyname(argv[1]);
if ('hostaddr) {
HandleError(0, “gethostbyname”, “host resolution failed”);

}
memcpy(& socketaddr.sin_addr, hostaddr->h_addr, hostaddr->h_length);

/* Resolve the protocol name. */

protocol = getprotobyname(PROTOCOL);
if (!protocol) {

HandleError(0, “getprotobyname”, “protocol resolution failed”);
}

/* Note: using SOCK_STREAM below since thisisonly TCP. */
[rx*xxx%xx% Gen 2: Create the socket for this end. */

sockid = socket(PF_INET, SOCK_STREAM, protocol->p_proto);
if (sockid < 0) {
HandleError(errno, “socket”, “couldn’t create socket”);

}

[rx*xxx%xxx% Gen 3: Connect the socket to the server. (Almost donel) */

if (connect(sockid, & socketaddr, sizeof(socketaddr)) < 0) {
HandleError(errno, “connect”, “connect call failed”);

}

/********************************************************************/

/* The channel for communication to the server has now been established.

Now, request the document at the server root. */
write_buffer(sockid, REQUEST, strlen(REQUEST));
/* Request has been sent. Read the result. */

while ((count = saferead(sockid, buffer, sizeof(buffer) - 1))) {
write_buffer(1, buffer, count);

}

return O;
}

int write_buffer(int fd, const void *buf, int count) {
const void *pts = buf;

357



int status=0, n;
if (count < 0) return (-1);

while (status !'= count) {
n = safewrite(fd, ptststatus, count-status);
if (n<0) return (n);
status +=n;

}

return (status);

}

Let’s step through this code and watch what it does. The first step isthe biggest—it is responsible for gathering information and
using it to fill out the sockaddr_in structure. Firgt, it initializes the structure to al nulls and sets the protocol family to indicate the
Internet protocol. Next, it resolves the service name. After that, it queries the DNS for the host name. This actionis alittle strange
in that the result needs to be copied into the structure by using memcpy(); the reason is that the types are incompatible for a direct
assignment. Finally, the protocol entry is found.

With step 2, a socket is created. The socket is a special-purpose file descriptor. Each side uses a socket for communication. This
call does not actually connect it to the remote; rather, it creates an entry for the socket in the system. Finally, with step 3, the
socket is actually connected. At this point, the TCP handshake occurs and the two machines begin talking to each other.

After the socket has been created, you can refer to it as with any other file descriptor. You'll note that, unlike pipes, the socket is
bidirectional—it is both written to and read from. A request is sent, which will obtain the top page from a Web server. After
sending the request, the program enters aloop reading data until the Web server closes the connection. The data read is ssimply
printed out to the screen.

To compile the program, you'll need the safecalls.c and safecalls.h files from Chapter 14, “Introducing the Linux I/0.” Y ou can
then compile with a command like this:

$ gce -Wall -o ch18-1 ch18-1.c safecalls.c

When you run the program, it expects two parameters: the name of a server and the name of a protocol. For the protocol, you
should use HTTP, asit’s designed to communicate with a Web server. Here's an example of running the program:

$ ./ch18-1 www.apache.org http
HTTP/1.1 200 OK
Date: Thu, 28 Oct 1999 03:31:07 GMT
Server: Apache/1.3.10-dev (Unix) ApacheJServ/1.0 PHP/3.0.6
Content-Location: index.html
Vary: negotiate
TCN: choice
Last-Modified: Tue, 05 Oct 1999 16:43:47 GMT
Connection: close
Content-Type: text/html

<IDOCTYPE HTML PUBLIC “-//W3C//DTD HTML 3.2 Final//EN">
<HTML>
<HEAD>
<TITLE>Apache Project Development Site</TITLE>
</HEAD>

To be sure, there is actually far more output than this; you can see for yourself that the entire HTML source for this front page is
returned. Y ou can also experiment with trying other servers, although you should be aware that you'll only be able to request the root
page, because the program isn’t sophisticated enough to request other pages.

Server-Side Connections

Setting up a connection for a server is abit more complex than doing the same for a client. In order to form a server, you actually
need to use two file descriptors. Thefirst is designed solely to listen for connections. After a connection is received, asecond is
created to deal with the communication. Asyou'll seein abit, this mechanism is necessary to support a server that can handle
multiple connections. Listing 18-2 presents the source code for afirst attempt at a server.

358



Note Listing 18-2 isavailable online.
Listing 18-2: Sample server

#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>
#include <errno.h>
#include <arpalinet.h>
#include “safecalls.h”

#define PROTOCOL “tcp”
#define SERVICE 7797
#define WELCOME “Y ou have connected to the counting server. Welcome!\n”

int write_buffer(int fd, const void *buf, int count);

int readnistring(int socket, char *buf, int maxlen);

int read_buffer(int fd, void *buf, int count);

int readdelimstring(int socket, char *buf, int maxlen, char delim);

int main(void) {
int listensock, workersock;
struct protoent *protocol;
struct sockaddr_in socketaddr;
char buffer[1024];
char size[100];
int addrlen;
int trueval = 1;

[x***x%%x Gten 1. generate the socket structure and resolve names. */

bzero((char *) & socketaddr, sizeof (socketaddr));
socketaddr.sin_family = AF_INET;
socketaddr.sin_addr.s addr = INADDR_ANY;
socketaddr.sin_port = htons(SERVICE);

/* Resolve the protocol name. */

protocol = getprotobyname(PROTOCOL);
if (!protocol) {
HandleError(0, “getprotobyname”, “protocol resolution failed”);

}
/* Note: using SOCK_STREAM below since thisisonly TCP. */

[x**xxx%xx% Gren 2. Create the master socket */

listensock = socket(PF_INET, SOCK_STREAM, protocol->p_proto);
if (listensock < 0) {
HandleError(errno, “socket”, “couldn’t create socket”);
[xx**x%xx% Gtep 3: Bind it to a port. */

if (bind(listensock, & socketaddr, sizeof(socketaddr)) < 0) {
HandleError(errno, “bind”, “couldn’t bind to port %d”, SERVICE);

}

/* Let others connect to it immediately upon exit. */
setsockopt(listensock, SOL_SOCKET, SO_REUSEADDR, &trueval, sizeof(trueval));

[xx**x%xx% Gtep 4: Listen for connections. */

359



if (listen(listensock, 0) < 0) {
HandleError(errno, “listen”, “couldn’t listen on port %d”, SERVICE);
}

printf(“Listening for a connection...\n");
[xr*xx%xx% Giep 5: Accept a connection from the client. */

workersock = accept(listensock, & socketaddr, & addrlen);
if (workersock < 0) {

HandleError(errno, “accept”, “couldn’t open worker socket”);
}

[k kxS k K Ready to communicate! */

printf(* Received connection from aclient at );
printf(“%s port %d\n”, inet_ntoa(socketaddr.sin_addr),
ntohs(socketaddr.sin_port));

write_buffer(workersock, WELCOME, strlen(WELCOME));

while(readnlstring(workersock, buffer, sizeof(buffer)) >= 0) {
sprintf(size, “Size: %d\n”, strlen(buffer) - 1);
write_buffer(workersock, size, strlen(size));
if (strncmp(buffer, “exit”, 4) == 0) break;
}

printf(“ Shutting down.\n");

safecl ose(workersock);
safecl ose(listensock);

return O;
}

int write_buffer(int fd, const void *buf, int count) {
const void *pts = buf;
int status=0, n;

if (count < Q) return (-1);

while (status !'= count) {

n = safewrite(fd, pts+status, count-status);
if (n<0) return (n);
status += n;
}
return (status);
}

int read buffer(int fd, void *buf, int count) {
void *pts = buf;
int status=0, n;

if (count < Q) return (-1);

while (status !'= count) {
n = saferead(fd, pts+status, count-status);
if (n<1)returnn;
status += n;
}

return (status);
360



int readnlstring(int socket, char *buf, int maxlen) {
return readdelimstring(socket, buf, maxlen, ‘\n’);

}

int readdelimstring(int socket, char *buf, int maxlen, char delim) {
int status,
int count = 0;

while (count < maxlen - 1) {
if ((status = read_buffer(socket, buf+count, 1)) < 1) {
return -1,

if (buf[count] == delim) { /* Found the delimiter */
buf[count] = 0;
return O;

}

count++;

}
buf[count] = 0;
return O;

}

There isafive-step connection processin this situation. The first step initializes the socket address structure. In this case, we know
the port number (defined as 7797) ahead of time, so thereis no need to do alookup on that. The protocol is still looked up, but
notice that there is no need to look up a host—that’ s because the clients look up the server, not the other way around.

With step 2, you create the master, or listening, socket. As with the client, the socket can’t actually do anything until it is
connected to something useful. Therefore, we need a few more stepsto get everything into gear.

In step 3, the socket is bound to a port on the server machine. This registers the socket as using that port with the operating system;
it isthe step immediately prior to alisten. After that, as a convenience, the SO_REUSEADDR option is set. Normally, when your
program exits, the system may prevent another program from binding to the same port for afew seconds; if you're going to be
experimenting with this program, it’s useful to inhibit that behavior so you can restart the server immediately. In step 4, the system
istold to listen for connections.

Beginning with step 5, these actions can be repeated for every server in the system. Many servers will handle multiple requests and
might fork after the call to accept. Some might instead loop, resetting themsel ves and then using accept() to get new connections.
The accept() call will wait until a client connection request is received. When such arequest is received, it returns a new file
descriptor—a worker socket—through which all the communication to the client must take place. Additionally, if its second
parameter isnot NULL, it will fill out details about this connection in the sockaddr_in structure pointed to by the argument. These
details are printed out in the code.

The communication itself isfairly straightforward; the program reads a string terminated by a newline character and sends a string
containing the size back to the client. It does this until the client closes the connection (causing readnistring() to return avalue less
than 1) or until the supplied string begins with “exit.”

Now, let’stry this program out. First, start the server. Then, you can use telnet to connect to it. If you are not live on a network,
you can use telnet localhost 7797 to connect from your own machine. If you are, you can use any machine on your network (or the
entire Internet if you are properly connected to it) to connect to your new server; simply substitute the server’s host name for
localhost in the example. Here is a sample interaction from the client side:

$telnet localhost 7797
Trying 127.0.0.1...
Connected to localhost.
Escape character is‘"]".
Y ou have connected to the counting server. Welcome!
Hello!
Size: 6
Thisisatest of the new server.

361



Size: 33
1

Size: 1
2

Size: 1
9

Size: 1
10

Size: 2
bye
Size: 3
exit
Size: 4
Connection closed by foreign host.

The server worked! It accepted the connection, handled the data, and sent the result back to the client. In the window running the
server process, you'll see something like this:

$./ch18-2

Listening for a connection...

Received connection from aclient at 127.0.0.1 port 1399
Shutting down.

The server listened for a connection, informed you when it received one, and then shut down when requested. Notice that every
time you connect, a different port number will be reported. This is because the port number for the client is assigned by the
operating system as mentioned before.

This server works, but it has some limitations. For one, it can handle only one client at atime. Thisis not really acceptable.
Imagine a Web server that could handle only one client at atime--if there were alarge file that took 20 minutes to download, no
pages would be served until it was completely transferred! In almost every case, you want your server to be able to handle multiple
reguests at once. A second problem is that the server would exit after handling only one request. Again, thisis no doubt not what
you really want; a server that only handles one request is most often not very useful.

One solution to these problemsisto have the server fork off when it gets a connection request from a child. Listing 18-3 shows a
version of the code that does just that.

Note Listing 18-3 isavailable online.
Listing 18-3: Sample server code that forks

#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/resource.h>
#include <sys/wait.h>
#include <netdb.h>
#include <errno.h>
#include <arpalinet.h>
#include <signal.h>
#include “ safecalls.h”

#define PROTOCOL “tcp”
#define SERVICE 7797
#define WELCOME “Y ou have connected to the counting server. Welcomel\n”

int write_buffer(int fd, const void *buf, int count);
int readnlstring(int socket, char *buf, int maxien);
int read_buffer(int fd, void *buf, int count);
int readdelimstring(int socket, char *buf, int maxlen, char delim);
void waitchildren(int signum);
pid_t safefork(void);

362



static int connectioncount = O;

int main(void) {
int listensock, workersock;
struct protoent * protocol;
struct sockaddr_in socketaddr;
char buffer[1024];
char size[100];
int addrlen;
int trueval = 1,
struct sigaction act;
[* Initialize the signal handler. */

sigemptyset(&act.sa_mask);

act.sa flags= SA_RESTART;
act.sa_handler = (void *)waitchildren;
sigaction(SIGCHLD, &act, NULL);

[x**xx%%x Gten 1: generate the socket structure and resolve names. */

bzero((char *) & socketaddr, sizeof(socketaddr));
socketaddr.sin_family = AF_INET;
socketaddr.sin_addr.s addr = INADDR_ANY;
socketaddr.sin_port = htons(SERVICE);

/* Resolve the protocol name. */

protocol = getprotobyname(PROTOCOL);
if (!protocol) {
HandleError(0, “getprotobyname”, “protocol resolution failed”);

}
/* Note: using SOCK_STREAM below since thisisonly TCP. */

[xr*xx%xxx% Gren 2. Create the master socket */
listensock = socket(PF_INET, SOCK_STREAM, protocol->p_proto);

if (listensock < 0) {
HandleError(errno, “socket”, “couldn’t create socket”);

}

[x***x%xx% Gtep 3: Bind it to a port. */

if (bind(listensock, & socketaddr, sizeof(socketaddr)) < 0) {

HandleError(errno, “bind”, “couldn’t bind to port %d”, SERVICE);

}

/* Let others connect to it immediately upon exit. */

setsockopt(listensock, SOL_SOCKET, SO_REUSEADDR, &trueval, sizeof(trueval));
[xx**x%xx% Gtep 4: Listen for connections. */

if (listen(listensock, 0) < 0) {

HandleError(errno, “listen”, “couldn’t listen on port %d”, SERVICE);
}

printf(“ The server isactive. You may terminate it with Ctrl-C.\n");

while (1) {
workersock = accept(listensock, & socketaddr, & addrlen);

363



if (workersock < 0) {
HandleError(errno, “accept”, “couldn’t open worker socket”);

}

connectioncount++;

if (safefork()) { [* parent process */
safeclose(workersock);  /* don’t need this socket for the parent */
printf(“ Received connection from aclient at “);
printf(“%s port %d\n”, inet_ntoa(socketaddr.sin_addr),
ntohs(socketaddr.sin_port));
printf(“ There are %d clients active.\n”, connectioncount);
} ese{ [* child process*/
safeclose(listensock);
write_buffer(workersock, WELCOME, strlen(WELCOME));

while(readnl string(workersock, buffer, sizeof(buffer)) >= 0) {
sprintf (size, “Size: %d\n”, strlen(buffer) - 1);
write_buffer(workersock, size, strlen(size));
if (strncmp(buffer, “exit”, 4) == 0) break;
}

safeclose(workersock);
exit(0);
}
}

printf(“ Shutting down.\n");
safecl ose(listensock);

return O;

}

int write_buffer(int fd, const void *buf, int count) {
const void *pts = buf;
int status=0, n;

if (count < Q) return (-1);

while (status !'= count) {
n = safewrite(fd, ptststatus, count-status);
if (n < 0) return (n);
status += n;

}

return (status);

}

int read_buffer(int fd, void *buf, int count) {
void *pts = buf;
int status=0, n;

if (count < Q) return (-1);

while (status !'= count) {
n = saferead(fd, pts+status, count-status);
if (n<1)returnn;
status += n;

}

return (status);

}

364



int readnlstring(int socket, char *buf, int maxlen) {
return readdelimstring(socket, buf, maxlen, ‘\n’);
}

int readdelimstring(int socket, char *buf, int maxlen, char delim) {
int status,

int count = 0;

while (count < maxlen - 1) {

if ((status = read_buffer(socket, buf+count, 1)) < 1) {
return -1,

if (buf{count] == delim) { /* Found the delimiter */
buf[count] = 0;
return O,

}

count++;

buf[count] = 0;
return O;

}

void waitchildren(int signum) {
while (wait3((int *)NULL,
WNOHANG,
(struct rusage *)NULL) > 0) {
connectioncount--;
printf(“ A client disconnected.\n");
printf(“ There are %d clients active.\n", connectioncount);

}
}

pid_t safefork(void) {
int retval;

retval = fork();

if (retval ==-1) {
HandleError(errno, “fork”, “fork failed”);

}

return retval;

}

This program simply continues accepting connections as long as it continues to run. When a connection comes in, the program forks
acopy of itself to process the connection and immediately goes back to accepting new connections. In this way, each connection can

be processed in its own process, without blocking other connections from coming in and being processed. Altogether, thisisabig
win for the server.

A Network Library

Asyou write network programs, you'll find that you are repeating many tasks over and over. A library of networking calls can
help you write programs faster, to be able to reuse more code, and to reduce bugs that may be introduced by reimplementing code.
Here isthe code for the library. Some functionsin it have not yet been discussed; they’ Il be covered in the next chapter. After

presenting the code for the library, I'll explain afew details to you and demonstrate a rewrite of an earlier program in this chapter
using the new library.

First, look at Listing 18-4, the header file, networkinglib.h.
Note Listing 18-4 isavailable online.

Listing 18-4: Network library header: networkinglib.h

365



/* Don’t include thisfile twice... */
#ifndef _ NETWORKINGLIB H
#define_ NETWORKINGLIB H__

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <arpalinet.h>
#include <string.h>
#include <fentl.h>
#include <stdio.h>
#include <malloc.h>
#include <errno.h> [* errno global variable */
#include “safecalls.h”

#ifndef INADDR_NONE
#define INADDR_NONE Oxffffffff
#endif

#ifndef COPY_BUFSIZE
#define COPY_BUFSIZE 101024  /* Buffer size for copiesis 10K */
#endif

[* Basic reading and writing */
int read_buffer(int fd, char *buf, int count);
int write_buffer(int fd, char *buf, int count);

/* String/delimited reading and writing */

int writestring(int sockid, char *str);

int readstring(int sockid, char *buf, int maxlen);

int readnlstring(int sockid, char *buf, int maxlen);

int readdelimstring(int sockid, char *buf, int maxlen, char delim);

I* Integer reading and writing */

int read_netulong(int fd, uint32_t *value);
int write_netulong(int fd, const unsigned long int value);

[* Datacopy */
int copy(int in, int out, unsigned long maxbytes);
/* Reverse DNS lookups and friends */

char *getmyfqdn(void);
char *getfgdn(const char *host);

/* Network initialization */

void socketaddr_init(struct sockaddr_in * socketaddr);
int socketaddr_service(struct sockaddr_in * socketaddr,
const char *service, const char *proto);
int socketaddr _host(struct sockaddr_in *socketaddr,
const char *host);
int resolveproto(const char *proto);
int prototype(const char *proto);
int clientconnect(const char *host, const char *port, const char *proto);
int serverinit(const char *port, const char *proto);

/* Miscellaneous */

366



void stripcrlf(char *temp);
#endif
And now, Listing 18-5 shows the code itself, networkinglib.c.
Note Listing 18-5 is available online.
Listing 18-5: Net work library: networkinglib.c

/*

Library for:

* general networking

* sockets, pipes, etc.

* unbuffered 1/0

* other itemsrelating to the above

by John Goerzen, Linux Programming Bible
*/

#include <ctype.h>
#include <stdlib.h>
#include “networkinglib.h”

static int checkstring(const char *string);

[* checkstring() is a private function used only by thislibrary. It checks
the passed string. It returns false if there are no nonnumeric
characters inthe string, or true if there are such characters. */

static int checkstring(const char *string) {
int counter;
for (counter = 0; counter < strlen(string); counter++)
if (!(isdigit(string[counter])))
return 1;
return O;

}
/* Send a string, including terminating null. readdelimstring() could be

perfect for reading it on the other end. And in fact, readstring()
usesjust that. */

int writestring(int sockid, char *str) {
return write_buffer(sockid, str, strlen(str) + 1);
}

/* Reads a string from the network, terminated by anull. */

int readstring(int sockid, char *buf, int maxlen) {
return readdelimstring(sockid, buf, maxlen, 0);

}

[* Reads a string terminated by a newline */

int readnlstring(int sockid, char *buf, int maxlen) {
return readdelimstring(sockid, buf, maxlen, ‘\n’);

}
I* Reads a string with an arbitrary ending delimiter. */

int readdelimstring(int sockid, char *buf, int maxlen, char delim) {

367



int count = 0, status;

while (count <= maxlen) {
status = saferead(sockid, buf+count, 1);
if (status < 0) return status;
if (status< 1) {
HandleError(0, “readdelimstring”, “ unexpected EOF from socket”);
return status;

if (buf{count] == delim) { /* Found the delimiter */
buf[count] = 0;
return O;

}

count++;

}

return O;

}

[* Copies data from the in to the out file descriptor. If numsize
is nonzero, specifies the maximum number of bytesto copy. If
itis0, datawill continue being copied until in returns EOF. */

int copy(int in, int out, unsigned long maxbytes) {
char bufferf COPY_BUFSIZE];
int indata, remaining;

remaining = maxbytes,

while (remaining || !maxbytes) {
indata = saferead(in, buffer,
(fremaining || COPY_BUFSIZE < remaining) ? COPY_BUFSIZE
: remaining);
if (indata < 1) return indata;
write_buffer(out, buffer, indata);
if (maxbytes) remaining -= indata;

}
return (0);
}

/*
This function will write a certain number of bytes from the buffer
to the descriptor fd. The number of bytes written are returned.
This function will not return until all datais written or an error
OCCuUrs.
*/

int write_buffer(int fd, char *buf, int count) {
int status =0, result;

if (count < Q) return (-1);

while (status !'= count) {
result = safewrite(fd, buf + status, count - status);
if (result < Q) return result;
status += result;

}

return (status);

}

/*
This function will read a number of bytes from the descriptor fd. The

368



number of bytes read are returned. In the event of an error, the

error handler isreturned. In the event of an EOF at the first read

attempt, O isreturned. In the event of an EOF after some data has

been received, the count of the already-received datais returned.
*/

int read buffer(int fd, char *buf, int count) {
char *pts = buf;
int status=0, n;

if (count < 0) return (-1);

while (status !'= count) {
n = saferead(fd, pts+status, count-status);
if (n<O0) return n;
if (n==0) return status;
status +=n;
}
return (status);

}

/* Reads a uint32 from the network in network byte order.

A note on the implementation: because some architectures cannot
write to the memory of the integer except al at once, a character
buffer is used that is then copied into place al at once. */

int read netulong(int fd, uint32_t *value) {
char buffer[sizeof (uint32_t)];
int status,

status = read buffer(fd, buffer, sizeof(uint32_t));
if (status != sizeof(uint32_t)) {
HandleError(0, “read _netulong”, “unexpected EOF");
return -1;

bcopy(buffer, (char *)value, sizeof(uint32_t));
*value = ntohl (*value);
return (0);

}

/* Write an unsigned long in network byte order */

int write_netulong(int fd, const unsigned long int value) {
char buffer[sizeof (uint32_t)];

uint32_t temp;

int status;

temp = htonl(value);
bcopy((char *)&temp, buffer, sizeof(temp));
status = write_buffer(fd, buffer, sizeof(temp));
if (status != sizeof(temp)) return -1;
return (0);
}

/* Returnsthe fully qualified domain name of the current host. */
char *getmyfqdn(void) {

char hostname[200];

gethostname(hostname, sizeof(hostname));

return getfqdn(hostname);

}

369



/* Returns the fully qualified domain name of an arbitrary host. */
char *getfgdn(const char *host) {

struct hostent * hp;

static char fqdn[200];

hp = gethostbyname(host);
if (‘hp)
return (char *)NULL;
safestrnepy(fadn, (hp->h_aliases[0]) ? hp->h_aliases[0] : hp->h_name,
sizeof(fqdn));
return fadn;
}

void socketaddr_init(struct sockaddr_in *socketaddr) {
bzero((char *) socketaddr, sizeof (* socketaddr));
socketaddr->sin_family = AF_INET;
}

int socketaddr_service(struct sockaddr_in * socketaddr,
const char *service, const char *proto) {
struct servent * serviceaddr;
/* Need to allow numeric as well astextual data. */

[* 0: passright through. */

if (stremp(service, “0") ==0)
socketaddr->sin_port = 0;
else{ /* nonzero port */
serviceaddr = getservbyname(service, proto);
if (serviceaddr) {
socketaddr->sin_port = serviceaddr->s_port;
} ese{ /* name did not resolve, try number */
if (checkstring(service)) { /* and it's atext name, fail. */
HandleError(0, “socketaddr_service”, “no lookup for %s/%s’,
service, proto);
return -1;

if ((socketaddr->sin_port = htons((u_short)atoi(service))) == 0) {
HandleError(0, “socketaddr_service”, “numeric conversion failed”);
return -1;
}
}
}

return O;
}

int socketaddr_host(struct sockaddr_in * socketaddr,
const char *host) {
struct hostent * hostaddr;
hostaddr = gethostbyname(host);
if ('hostaddr) {
HandleError(0, “ socketaddr_host”, “ gethostbyname failed for %s’, host);
return -1;

}

memcpy(& socketaddr->sin_addr, hostaddr->h_addr, hostaddr->h_length);
return O;

}

int resolveproto(const char *proto) {
struct protoent *protocol;

370



protocol = getprotobyname(proto);
if ('protocoal) {
HandleError(0, “resolveprota”, “getprotobyname failed for %s’, proto);
return -1;

}

return protocol->p_proto;
}
int prototype(const char *proto) {
if (stremp(proto, “tcp”) == 0) return SOCK_STREAM;
if (stremp(proto, “udp”) == 0) return SOCK_DGRAM;
return -1;

}

int clientconnect(const char *host, const char *port, const char *proto) {
struct sockaddr_in socketaddr;
int sockid;

socketaddr_init(& socketaddr);
socketaddr_service(& socketaddr, port, proto);
socketaddr_host(& socketaddr, host);

sockid = socket(PF_INET, prototype(proto), resolveproto(proto));
if (sockid < 0) {
HandleError(errno, “clientconnect”, “socket failed”);
return -1;

}

if (connect(sockid, & socketaddr, sizeof(socketaddr)) < 0) {
HandleError(errno, “clientconnect”, “connect failed”);
return -1;

}

return sockid;

}

int serverinit(const char *port, const char *proto) {
struct sockaddr_in socketaddr;
int mastersock;
int trueval = 1,
socketaddr_init(& socketaddr);
socketaddr.sin_addr.s addr = INADDR_ANY;
socketaddr_service(& socketaddr, port, proto);

mastersock = socket(PF_INET, prototype(proto), resolveproto(proto));
if (mastersock < 0) {
HandleError(errno, “serverinit”, “couldn’t create socket”);
return -1;

}

if (bind(mastersock, & socketaddr, sizeof(socketaddr)) < 0) {
HandleError(errno, “serverinit”, “bind to port %d failed”,
socketaddr.sin_port);
return -1;

}

setsockopt(mastersock, SOL_SOCKET, SO REUSEADDR, &trueval, sizeof(trueval));
if (prototype(proto) == SOCK_STREAM) {
if (listen(mastersock, 5) < 0) {
HandleError(errno, “serverinit”, “listen on port %d failed”,
socketaddr.sin_port);
return -1;

371



}
}

return mastersock;

}

/* Removes CR and LF from the end of a string. */
void striperlf(char *temp)

while (strlen(temp) & &
((temp[strien(temp)-1] == 13) || (temp[strien(temp)-1] == 10))) {
temp[ strlen(temp)-1] = 0;
}
}

You'll find that this code is mostly the same as the code you have already seen. There are some modifications to allow it to work
in more situations, such as when HandleError() does not cause program termination. The service resolving routine will now allow
you to specify numeric port names, so you can, for instance, substitute 80 for HTTP for a Web server.

Included below are rewrites of the first and third examples from this chapter, now designed to use the library. Notice how easy
establishing a network connection suddenly becomes, and how easy communication can be as well. Hereis arewrite of the simple
client:

#include <string.h>

#include <syg/types.h>

#include <sys/socket.h>

#include <netdb.h>

#include <errno.h>

#include <arpal/inet.h>

#include “ safecalls.h”

#include “networkinglib.h”

#define PROTOCOL “tcp”
#define REQUEST “GET / HTTP/1.0\n\n"

int main(int argc, char *argv[]) {
int sockid;

sockid = clientconnect(argv[ 1], argv[2], “tcp”);

/* The channel for communication to the server has now been established.
Now, request the document at the server root. */

write_buffer(sockid, REQUEST, strlen(REQUEST));
/* Request has been sent. Read the result. */
copy(sockid, 1, 0);

return O;

}

The program is now far shorter and alot easier to understand. Because all of the work is shoved off to the network library, you can
make the program work with alot less code used itself. To compile, you can use:

$ gcc -Wall —o newclient newclient.c networkinglib.c

The server program gets a benefit as well, although because it is a bit more complex, the difference is not quite as apparent—
however, it till sheds almost 100 lines as shown in Listing 18-6.

Note Listing 18-6 isavailable online.

372



Listing 18-6: Revised network library code

#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/resource.h>
#include <sys/wait.h>
#include <errno.h>
#include “ safecalls.h”
#include “networkinglib.h”

#define PROTOCOL “tcp”
#define SERVICE “7797"

#define WELCOME “Y ou have connected to the counting server. Welcome!\n”

void waitchildren(int signum);
pid_t safefork(void);

static int connectioncount = 0;
int main(void) {
int mastersock, workersock;
struct sigaction act;
struct sockaddr_in socketaddr;
int addrlen;
char buffer[1024];
char size[100];

[* Initialize the signal handler. */

sigemptyset(& act.sa_mask);

act.sa flags= SA_RESTART,;
act.sa_handler = (void *)waitchildren;
sigaction(SIGCHLD, &act, NULL);

mastersock = serverinit(SERVICE, PROTOCOL);
printf(“ The server isactive. You may terminate it with Ctrl-C.\n”");

while (2) {
workersock = accept(mastersock, & socketaddr, & addrlen);
if (workersock < 0) {
HandleError(errno, “accept”, “couldn’t open worker socket”);

}

connectioncount++;

if (safefork ()) { [* parent process */
safecl ose(workersock); * don't need this socket for the parent */
printf(“ Received connection fromaclient at “);
printf(“%s port %d\n”, inet_ntoa(socketaddr.sin_addr),

ntohs(socketaddr.sin_port));

printf(“ There are %d clients active.\n", connectioncount);

} else{ [* child process */

safecl ose(mastersock);
write_buffer(workersock, WELCOME, strlen(WELCOME));

while(readnl string(workersock, buffer, sizeof(buffer)) >= 0) {
sprintf(size, “Size: %d\n”, strlen(buffer) - 1);
write_buffer(workersock, size, strlen(size));
if (strncmp(buffer, “exit”, 4) == 0) break;
}

safecl ose(workersock);

373



exit(0);
}
}

printf(“ Shutting down.\n");
safecl ose(mastersock);

return O;
}

void waitchildren(int signum) {
while (wait3((int *)NULL,
WNOHANG,
(struct rusage *)NULL) > 0) {
connectioncount--;
printf(“ A client disconnected.\n”);
printf(“ There are %d clients active.\n", connectioncount);

}
}

pid_t safefork(void) {
int retval;
retval = fork();

if (retval ==-1) {
HandleError(errno, “fork”, “fork failed”);

}
return retval;

}

Summary

In this chapter, you were introduced to communication via TCP/IP. Specificaly, | covered these points:

TCP/IP alows you to communicate between different machines instead of just different processes on a single machine.

TCP/IP uses a packet transmission method that allows multiplexing and resilience in the face of some packet loss.

One challenge that faces you as a programmer is identifying endpoints of requests (addressing).

Each endpoint of a TCP connection isidentified by an IP address and a port number.

The Domain Name System (DNS) is used to convert host namesinto | P addresses.

Connecting from a client involves looking up the service, looking up the server’s | P address, initializing a few other details,
and then connecting the socket to the server.

Connecting from a server involves looking up the service, initializing a few details, binding to a port, listening on that port,
and accepting connections. A server will use at least two sockets: one for listening for new connections and one for actually

interacting with clients.
* Alibrary of network routines is often helpful to streamline the design of your programs.
Chapter 19: Advanced TCP/IP Sockets
Overview

In Chapter 18, you learned about the basics of writing programs that interact with each other over a network. In this chapter, you will
learn about two more advanced topics that relate to networking. The first introduces you to a new way to write your server:
multiplexing with select() or poll(). The second new topic introduces the connectionless User Datagram Protocol (UDP).

Server Design and M ultiplexing

In the example of a server in the Chapter 18, the server forks off a new copy of itself to deal with every client connection. Thisis

374



often an algorithm that works well. However, there are times when a more sophisticated variant of it would work better or when a
different algorithm entirely would be better.

There are several potential problems that you might encounter with the algorithm used in the server in Chapter 18. Firdt, it is
vulnerable to a denial of service attack; an attacker could strike up a huge number of connections, causing the server to fork until
all the system memory is exhausted. This problemis easily addressed by refusing to fork if the connec-tion count exceeds a certain
value; the connections could be refused at that point. Another problem isthat, for large and complex servers, forking can be an
expensive operation. Finally, if your server has light computation or large amounts of data, you may be able to attain better
performance by switching between requests inside your server instead of asking the operating system to do task switching for you.

Thislast option is often implemented in terms of a polling mechanism based upon select() or poll(). Sometimes, this can be a great
opportunity. For instance, the Boa Web server has proved itself to be faster than forking Web servers in many situations due to its
tight internal mechanism wrapped around select(). However, this mechanism is not always appropriate. For one thing, the
reguirements for buffering can be extremely complex. Because you must never attempt to read more data than isimmediately
available, you need to have a buffer area set aside for each file descrip-tor that you'll potentially read from, into which you can
store partial results. Not only that, but sometimes bits of the next request may come along with the end of the current one—or even
several more. Therefore, dealing with a single-process multiplexing server like thisis no easy task.

Steps can be taken to shore up servers that use the forking model. For one thing, you might consider preforking—that is, forking
off some processes at the begin-ning of the server’slife span and simply having them continue running. They won't exit after a
connection has been serviced; they’ll just wait for more to arrive. This saves on the overhead of forking new processes, but you
still have the overhead of task switching.

What follows is an example of the server from Chapter 18, “Internet Sockets,” rewritten to use select() instead of forking. First,
Listing 19-1 shows the code for a new buffering library, queue.c.

Note Listing 19-1 isavailable online.
Listing 19-1: Server with select() multiplexing, queue.c

#include <string.h>
#include <stdlib.h>
#include “safecalls.h”
#include “ queue.h”

static struct gtype *gstart = NULL;
static struct gtype *gend = NULL;

#ifndef TRUE
#define TRUE 1
#endif

#ifndef FALSE
#define FALSE O
#endif

* enq() isthe heart of the queue system. It accepts a pointer to a string

that contains null-terminated raw data that arrived over the network

connection. It splits the data up into individual commands, and queues them.
*/

int addtoqueue(int id, char *data) {
struct qtype *item;
int iscompleted = 0;
char *substring = data, *endloc = data;
char *newdata= NULL; /* To hold new data*/

while ((endloc = strstr(substring, “\n"))) {

[* While there are till newlinesto process... */
iscompleted = 1,

*(endloc) = 0;

item = findincomplete(id);

375



if (item->data) {

[* We are finishing data for thisitem. */
newdata = safemalloc(strlen(item->data) + strlen(substring) + 2);

if ("newdata) return O;
strcpy(newdata, item->data);
strcat(newdata, substring);
free(item->data);
item->data = newdata;

} else{
item->data = safestrdup(substring);
if (! item->data) return O;

}

item->iscomplete = TRUE;

substring = (char *)(endloc + 1);

}

/* At this point:
- substring could point to anull character, if we just finished
aterminating newline and are at the end of the string
- substring could point to avalid part of the data. In this case,
thereis partial dataremaining. */

if (*substring) { /* More data. */
item = findincompl ete(id);

/* Same code as above.... almost! */

if (item->data) {
/* We are finishing data for thisitem. */
newdata = safemalloc(strlen(item->data) + strlen(substring) + 2);
if ("newdata) return O;
strepy(newdata, item->data);
strcat(newdata, substring);
free(item->data);
item->data = newdata;
}else{
item->data = safemall oc(strlen(substring) + 2);
if (litem->data) return O;
strepy(item->data, substring);
}

item->iscomplete = FALSE;
}

return TRUE;
}

struct qgtype *degany(void) {
struct gtype *item = gstart;

while (item) {
if (item->iscomplete)
return degptr(item); * deqgptr() just returnsitem */
item = item->next;

}
return (struct qtype *)NULL;
}

struct qtype *deqid(int id) {
struct gtype *item = gstart;

while (item) {

376



if ((item->id == id) && (item->iscomplete))
return degptr(item);
item = item->next;
}
return (struct qtype *)NULL;

}
struct qtype *degptr(struct gtype * pointer) {

struct gtype * previtem = gstart;
if (Igstart) return (struct gtype *)NULL; /* empty queue! */
if (qstart == pointer) { /* firstitemin queue*/
gstart = pointer->next;
if (gend == pointer) /* only item in queue */
gend = gstart;
} else while ((previtem) & & (previtem->next != pointer))
previtem = previtem->next;
if (Iprevitem) return previtem;

/* OK, now...previtem is the item immediately preceding the one do be
dequeued. */

previtem->next = pointer->next;
if (gend == pointer) gend = previtem;

return pointer;

}
int deleteallid(int id) {

struct qtype *item = gstart, * next;
while (item) {
next = item->next; /* Must save it because item may be deleted! */
if (item->id ==id)
if ('deleteitem(item)) return FALSE;
item = next;
}
return TRUE;

}

int deleteitem(struct gtype *item) {
/* Dequeue */

if ('degptr(item)) return FALSE;

[* De-allocate memory. */
if (item->data) free(item->data);
free(item);

return TRUE;
}

struct qtype *findincomplete(int id) {

struct qtype *item = gstart;
while (item) {
if ((item->id ==id) && (!(item->iscomplete))) return item;
item = item->next;
}

/* Not found; create anew onefor ‘em. */

item = createitem();

377



item->id = id;
return item;

}
struct qtype * createitem(void) {
struct qtype* item;
item = allocq();
if (item) return item; /* error condition */

/* Insert into the queue. */

if ("gend) { /* Queueisempty */
gstart = gend = item;
} else{
gend->next = item,
gend = item;

}

[* Set up reasonable defaults. */

item->next = (struct gtype *)NULL;
item->data = (char *)NULL;
item->iscomplete = FALSE;
item->id = 0;

return item;

}

struct qtype *allocq(void) {
return (struct qtype *)malloc(sizeof (struct qtype));
}

You'll aso need its header file, queue.h, which appearsin Listing 19-2.
Note Listing 19-2 isavailable online.
Listing 19-2: Header file queue.h
[*
*r}eader file for queue implementations

#ifndef _ QUEUE H__
#define_ QUEUE H__

struct qgtype { [* Each entry in queue will be of thistype */
char *data;
int iscomplete; /* TRUE if it isacomplete line
no entry will ever have more than one line
*/
struct qtype * next; /* Pointer to next entry
the queue isimplemented as a linked list */
intid; /* Unique ID (socket number works here) */

b
/************ FUNCTIONS ************/

/* Add data to the queue. */
int addtoqueue(int id, char *data);

/* Will dequeue and return the first completed item in the queue.
NULL isreturned if there are no completed items in the queue.

378



Datais NOT de-allocated. */
struct qtype *degany(void);

/* Will dequeue and return the first item matching the givenid. NULL is
returned if no *completed* items match the givenid. */
struct qtype *deqid(int id);

/* Will dequeue the item pointed to. Used internally by queue.c. Returns
pointer. Memory not freed. */
struct qtype *degptr(struct gtype * pointer);

/* Will DELETE all items associated with the givenid. Will also de-allocate
memory, etc. */
int deleteallid(int id);

/* Will DELETE only the item pointed to. Will free memory. */
int deleteitem(struct gtype *item);

/* Will find any incomplete one matching the given id.
If there are no matching items, will return a pointer to a new queue
entry to befilled in. */
struct qgtype *findincomplete(int id);

/* Will return a pointer to a new, empty queue entry that is already
properly linked into the chain. */
struct gtype * createitem(void);

struct qtype *allocq(void);
#endif /* _QUEUE_H__ */
Listing 19-3 shows the program that uses this buffering library.
Note Listing 19-3 isavailable online.
Listing 19-3: Main server code, ch19-1.c

#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/resource.h>
#include <sys/wait.h>
#include <errno.h>
#include “safecals.h”
#include “networkinglib.h”
#include “ queue.h”

#define PROTOCOL “tcp”
#define SERVICE “7797”
#define WELCOME “Y ou have connected to the counting server. Welcomel\n”

int main(void) {
int mastersock, workersock;
char buffer[1024];
char sizebuf[100];
int nfds = getdtablesize();
struct gtype *item;

fd set orig_fdset, fdset;
int counter, size;

mastersock = serverinit(SERVICE, PROTOCOL);

379



printf(“ The server isactive. Y ou may terminate it with Ctrl-C.\n”");

FD_ZERO(&orig_fdset);
FD_SET(mastersock, &orig_fdset);

while (1) {
/* Restore watch set as appropriate. */
bcopy(&orig_fdset, & fdset, sizeof(orig_fdset));

select(nfds, & fdset, (fd_set *)O0, (fd_set *)0,
(struct timeval *)0);
if (FD_ISSET(mastersock, & fdset)) {
/* New connection! */
printf(“ Received connection from a client.\n");
workersock = accept(mastersock, NULL, NULL);
FD_SET (workersock, &orig_fdset);
write_buffer(workersock, WELCOME, strlen(WELCOME));
}

/* Data on existing connection. Add to the queue. */

for (counter = 0; counter < nfds; counter++) {
if ((counter != mastersock) && FD_ISSET(counter, & fdset)) {
size = saferead(counter, buffer, sizeof(buffer) -1);
buffer[size] = 0; /* add trailing null */
addtoqueue(counter, buffer);
}
}

[* Processitemsin the queue. */

while ((item = degany())) {
sprintf(sizebuf, “Size: %d\n”, strlen(item->data) - 1);
write_buffer(item->id, sizebuf, strlen(sizeburf));
if (strncmp(buffer, “exit”, 4) == 0) {
safeclose(item->id);
FD_CLR(item->id, &orig_fdset);
}
deleteitem(item);
}
}
safecl ose(mastersock);

}
To compilethis, you'll need to use acommand like this:
$ gcc -Wall -0 ch19-1 ch19-1.c queue.c safecalls.c networkinglib.c

This program is based upon select; for more details on it, see Chapter 14, “Introduc-ing the Linux I/0.” The basic ideais simple:
read from whatever socket is ready to be read from, shove the items on the queue, and process whichever ones are ready.
However, for simplicity’ s sake, this program is really more simply done than it could be. For one thing, it doesn’'t detect when the
client has disconnected without using exit(). Also, it should be using a queueing system for writing data as well; the write_buffer()
calls are definitely a potential bottleneck if the network cannot transmit the data as fast as the program can write it.

It's not altogether uncommon to need to do multiplexing from the client side as well. Most frequently, this need arises when dealing
with both network input and keyboard input. For instance, an IRC client needs to be able to read from both whenever there is data
ready; blocking on either one could cause some problems. Therefore, you can use select() or poll() to simply watch both the socket
and standard input. With this mechanism, and a bit of the same queuing as used in the preceding program (Listings 19-1 through 19-
3), you can achieve a higher quality of user interaction in your client-side programs.

User Datagram Protocol

380



Like TCP, the User Datagram Protocol (UDP) is based on the Internet Protocol (1P). However, there are significant differences between
UDP and TCP. UDP isan unreliable protocol; that is, packets may be lost, delivered out of order, delivered twice, and so on. With UDP,
you are expected to take care of these things for yourself. The benefit to UDP is that, especially for one-time communication over
networks that are generally reliable, overhead islower (sometimes significantly so) compared to TCP due to the relaxing of
requirements to keep the data intact.

UDP does guarantee that, if a packet gets through to your application, the data in that packet is correct, so you do not need to do your
own error detection. Y ou can use connect() just as with TCP to connect to a remote host. However, unlike with TCP, you can use a
single socket to communicate with multiple remotes with UDP; simply reconnect to a different one or use the UDP-specific sendmsg()
function.

UDP implementations in the kernel perform no buffering; if your program is using buffers that are not large enough to accommaodate the
input, for instance, the input will ssimply be dropped. Y ou are solely responsible for splitting your communica-tions into packets before
sending them out the door and onto the wire, rather than relying on the underlying protocol to do this for you.

Summary

In this chapter, you read about some more advanced networking concepts:

» The algorithm that causes a server to fork anew copy of itself for each client connection has some problems and is not always the
best option.

* You can avoid forking entirely by writing a single-process multiplexing server using select() or poll().

« If you go thisroute, you introduce some complex buffering issues that you have to take care of. The example program here
demonstrates how to take care of the most important of them, but you may often need to buffer output as well.

» Multiplexing can aso be useful for aclient that needs to read from both the network and the keyboard.

» UDP offers an alternative to TCP for programs needing high speed but that can withstand some packet loss.

381



Part V: The Glue; Perl
Chapter List

Chapter 20: Introducing Per|

Chapter 21: Manipulating Data with Perl|

Chapter 22: CGIl Programming

Chapter 23: SOL Databaseswith DBI

Chapter 20: Introducing Per|
Overview

A book on Linux programming cannot be complete without alook at Perl. Perl has, in recent years, become the language of choice
for many scripting and data processing tasks. In this chapter, you will be introduced to Perl. The chapter begins by explaining the
design behind Perl—what problemsit is used to solve, and how it can work with the system. In the First Steps section, I’ll present
some sample Perl code and explain how it works. After that, | will cover four different aspects of Perl: data structures, subroutines,
flow control, and object-oriented programming.

Perl Design Philosophy

Perl is one of the most fascinating languages available for Linux today. It is often described as a“glue language”—that is, Perl is
very good at communicating with all sorts of other systems and languages and is frequently used to automate communication
between them. For instance, Perl can talk both to Web servers using CGI and to SQL database servers using DBI. Not surprisingly,
Perl is afrequently used language for making databases available on the Web.

Perl draws its syntax from many sources. You'll find that the basic syntax resembles C to alarge degree—semicolons end
statements, braces delimit blocks, and so on. However, added on to this C-based syntax is a large assortment of features from
various other languages such as sed, awk, grep, various shells, and even C++. Add into this melting pot of languages additional
features unique to Perl, such as transparent database tie-ins, built-in associative arrays (hashes), enhanced regular expressions, and
the like, and you get an amazingly versatile and powerful language.

The overall philosophy of this designis“don’'t constrain the programmer.” Y ou get a tremendous amount of freedom in Perl. The
documentation that accompanies it, for instance, demonstrates three completely different ways of implementing a case statement in
Perl. When you are parsing data, you can just as easily parse one line at atime, or ask Perl to surp the entire file into memory and
then parse the result. Y ou can use variable interpolation (as with a shell) to generate strings, or you can use sprintf() asin C to do
that—or you can use both. And these are but a few examples of the flexibility of Perl.

Perl’ s quoting is another example of flexibility. Aswhen shell programming, you have different quotes depending on what you
want to be interpolated, but you also have ways to automatically parse strings as certain types of quoted material, split them up,
and assign them to arrays.

Perl’ s object-oriented features are afairly new addition to the language. They’re not as mature as the object-oriented featuresin a
language such as Java, notably missing data hiding and powerful inheritance features. Nevertheless, Perl approaches OOP (Object-
Oriented Programming) in a completely unique way, as you will see in the OOP Features section at the end of this chapter.

Perl modules can plug into the interpreter at run time and can be written either in Perl or in another language such as C. Therefore,
you can extend Perl with anything that you can write in Perl as well as anything you can write in another language such as C or
C++. Developers have used this module capability to write alarge number of modules that you can plug in to your Perl system. To
name just a few examples, Perl includes modules or integrated support for HTML parsing, XML parsing, compression, graphical
user interfaces, SQL database communication, date/time manipulation, socket-level 1/0, MIME, synchronization with PalmPilot
devices, sound, database usage, serialization and deserialization of arbitrary objects, embedded Perl inside other programs such as
Web servers, communication with servers such as FTP and SMTP, and many more programming needs. Therefore, not only is Perl
apowerful glue language, but it also isa powerful automation language.

All of this power and flexibility does come at a price: it can be somewhat difficult to learn the language or to read others' code
until you' ve been using Perl alot.

I
382



Cross-Reference

For more details, see Programming Perl, second edition; Linux(r) Programming (IDG Books Worldwide, ISBN 1-55828-
507-5); and Discover Perl 5 (IDG Books Worldwide, ISBN 0-7645-3076-3).

Variables

In Perl, “normal” (scalar) variablesthat hold a single value are named, and they are always accessed with aleading dollar sign. For
instance, the following is a bit of Perl:

$x =5;
Sy =%x * 2;

This code causes the scalar variable x to be assigned the value 5. It also causes the scalar y to be assigned twice the value of x.
Note Notice the dollar signs are used every time the scalar variable is accessed.
Asin the shell, variables in Perl can be interpolated into strings. For instance, you can use the following:

print “The value of y is$y.\n";
printf “1 can also display it with printf: %d\n”, $y;

In Perl, whether the internal value of ascalar isastring or anumeric valueis not relevant. If it's a string and you attempt to
perform an arithmetic operation on it, it will be converted to a numeric value as necessary. Similarly, if you need a string
representation of avalue, it will be converted to a string as appropriate. All of this takes place behind the scenes, which isvery
handy for reading in and parsing data. There is no need to specifically convert the dataread in from a keyboard or file into an
integer or floating-point format; Perl automatically doesit for you when necessary. Here isa sample of this conversion:

$x ="5";
Sy =%x * 2;

The previous code is still quite valid and will produce the same result as the preceding example. The string containing the digit 5 is
simply converted into a number when necessary.

There are actually four types of variablesin Perl: scalars, lists (or arrays), hashes (or associative arrays), and subroutines. Besides
strings and numbers as described in the preceding paragraphs, a scalar in Perl can aso hold areference, which is similar in concept
to apointer in C. Each type of variable hasits own unique prefix character, as shown in Table 20-1.

Table 20-1: Variablesand Prefix Characters

Variable Type Prefix
L

scalar $

list Q@

subroutine &

hash %

These namespaces are kept separate. That is, $x is not the same as @x.

Tip This can be the source of some confusion with Perl. To make things simpler, generally it is best to keep the names

383



unique.
Arrays

Perl arrays are quite powerful. They automatically shrink or expand as data is added to or removed from them, so there is no need
to predefine the size of your arrays. Setting one up can be as simple as:

@myarray = (‘Hi, thisisthe first element’, ‘second’,
‘third’, ‘last’);

Y ou can pass around the entire array to functions (called subroutinesin Perl) by calling it @myarray. Y ou can also access
individual elements of the array, using an index starting with 0. For instance:

print $myarray[0Q];

Thiswill display Hi, thisisthe first element on your screen. Notice that you use adollar sign ($) instead of the at sign (@) when
you are accessing just one element of the array instead of the array in aggregate. The reason is that the dollar sign is always used
when accessing a scalar value, and each individual element of an array is a scalar. Note also that $myarray[0] and $myarray refer
to two entirely different variables: The first indicates the first element in the array named @myarray. The second indicates the
contents of the scalar named $myarray.

Hashes

Like arrays, hashes are used to store separate pieces of datain one place. However, thisisreally where the similarity ends.
Whereas an array isindexed by a numeric value, a hash isindexed by akey. This key is something that you can pick. It can be any
word, a phrase, whatever—just so long asit’ s unique within a given hash.

If you are used to programming in C, think of a Perl hash as somewhat of a dynamic structure, one to which you can add and
remove variables at will. Y ou can set up a hash by assigning all the values at once, as shown in the following examples:

%myhash = (‘color’ => ‘purple’, ‘size’ => ‘large’,
‘location’ => ‘Alaska);

%myhash2 = (red => 0xff0000,
green => 0x00ff00,
blue => 0x0000ff);

%myhash3 = (‘city’, ‘ Seattle’, ‘weather’, ‘wet’,
‘cars, 2);

This sets up three separate hashes. As you might have deduced from this example, Perl’s syntax for creating hashesisfairly
flexible. In the first one, we see that the attribute color is set to purple, size to large, and location to Alaska. In the second one, the
key red is set to have the value 0xff0000, and so on. In the final one, the key city is set to be Seattle, weather to wet, and so forth.

The => operator provides you with some useful shortcuts. For one, you are able to omit the quotes on the key (the value to the left
of the operator) if you prefer. Thisis done with the %myhash2 example above. Also, it provides anice visual indication of the
mapping from a key to avalue. Note that the reason that the values to the right of the operator are not quoted in the second
example is because they’ re numeric instead of string data, not due to any special feature of this operator.

The third example shows that you can use a simple list of elementsto set up a hash. The elements are taken as a key followed by a
value, for as many elements as are present. This could make an interesting way for you to create a hash based on the contents of an

array.
Now that your hash is set up, you'll want to accessits data. Y ou can do that as shown in these examples:

print $myhash?{ ‘red'};

print $myhash3{ city};
$myhashl{size} = ‘microscopic’;
$somekey = ‘gray’;

$myhash2{ $somekey} = Oxababa5;

So, you can see that you access the individual elements by using the curly brace syntax. As before, you can omit the quotes on the
key nameif it consists solely of regular characters. Y ou can also use avariable for the key name (or the data for that matter). Y ou

384



can also assign to individual elements using this syntax, and in fact, you could build your entire hash thisway if you prefer.

Note An array storesits elementsin aset order. A hash isunordered; generally, it is used by accessing specific keys directly.
You can request all its elements, but there is no guarantee that you' |l get them back in the same order that you put them
in. In fact, you probably won't.
First Steps

Now that we've talked about a few Perl basics, it’ stime to start into some Perl programs. First, any Perl program needs to begin
with aline indicating the location of the Perl interpreter, as with shell scripts. Thisline is generaly the following (it may vary
dightly if your system has the Per| interpreter in a different location):

#!/usr/bin/perl

Note that thisis the same situation as you have with executable shell scripts. Additionally, though, many users prefer to enable
warningsin Perl, similar to warnings from gcc. This can be done by extending the first line:

#/usr/bin/perl -w

Now, when you create a Perl script, you need to mark it executable. Like shell scripts, you use chmod to do that. Y ou can use the
following command to do so:

chmod a+x myscript.pl

Tip If youdon't want to go to the effort to make your script executable, you can also invoke a program on the command
line. For instance, you may use perl myscript.pl to invoke this program.

Now let’stry a simple program:
#/usr/bin/perl -w

print “ Please type something: “;
$input = <STDIN>;

chomp $input;

print “Y ou typed: ‘$input’\n”;

Analyzing the code, it starts out with a standard invocation of Perl. It then proceeds to read a line of input from standard input, the
terminal. When used in ascalar context, <STDIN> reads and returns one line of input. Here, that lineis placed in the $input
variable. The next line of code, calling chomp, removes the newline character that is at the end of the input string. Then, the
program prints out a string with the result, and then exits.

In the paragraph above, | mentioned scalar context. Perl has a system whereby functions can determine what type of data the caller
expects them to return. In this case, when the caller expects a single item (a scalar) to be returned, <STDIN> returns asingle line.
If you used it in a situation where the caller wanted an array, for instance @AlILines = <STDIN>, the <STDIN> operator would
return an array containing al linesin thefile. It returns one line per array element. Y ou can then see that the operator behaves
differently in scalar and in array context.

You can read in alarge amount of data at once. For instance, you can use <STDIN> in an array context to do that. Hereisan
example:

#/usr/bin/perl -w
@input = <STDIN>;
$counter = 0;
foreach $key (sort @input) {
chomp $key;
$counter++;
print “Line $counter: \" $key\"\n";
}

This code reads input until end-of-fileis reached, storing it al in the array @input. A counter isinitialized to zero. The code then

385



initializes a counter to zero, which it uses later to count the number of lines. The foreach foreach |oop executes once for each item
in the @input array.

Note Note that the sort function sorts @input.
Each pass through the loop, the $key scalar variable holds the current element in the @input array. The chomp function removes
the trailing newline character (to avoid extra blank linesin our output) and the counter isincremented. The print statement prints

out the current line number and the text of the line. Here's an example of running this code:

$ chmod a+X ch20-1.pl

$ ./ch20-1.pl
good
morning

this

is

a

test

of

some

perl

sorting

code.

Ctrl+D

Linel: “a
Line2: “code.”
Line 3: “good”
Line4: “is’
Line 5: “morning”
Line6: “of”
Line7: “perl”
Line 8: “some”
Line 9: “sorting”
Line 10: “test”
Line 11: “this’

The program worked as expected. It read some input into an array and displayed that array, sorted, with line numbers.

Asdescribed in Chapter 3, “Working with Regular Expressions,” Perl has extensive support for regular expressions. Hereisa
sample use of them:

#/usr/bin/perl -w

while ($inputline = readinput()) {
(Skey, $value) = $inputline =~ /N[ =]+)=(.+)¥/;
if (Pkey && $value) {
$hash{ $key} = $value;
} else{
print “Bad input, try again.\n”;
}
}

foreach $key (sort keys %hash) {
print “$key is set to the value $hash{ $key}\n";
}

sub readinput {
print “Enter a key=value pair, or type END when done: “;
$input = <STDIN>;
return undef unless $input;
chomp $input;

return undef if $input =~ /*END$/i;
386



return $input;
}

Let’s go over this code. First, thereisamain loop. It calls the readinput subroutine. That subroutine prompts the user to enter some
data—a key and a value separated by an equal sign—and then checksto seeif it istimeto exit. If theinput lineis empty, or it
matches the word “end,” thisisthe end of the input. When thisis the case, undef is returned to the caller, indicating that the

function has nothing to return. Thisissimilar to NULL in C in some situations.
Notice the shortcut notation in Perl:
return undef unless $input;
isthe same as:

unless ($input) {
return undef;

}

Note that, unlike C, Perl requires braces with the preceding syntax even if they enclose only one statement. The preceding shortcut
isalso the same as:

if (!$input) {
return undef;

}

Also, when you simply evaluate a string like this, not even comparing it to anything, the result will be falseif the scalar holds
undef or azero-length string, or true otherwise. Therefore, it isagreat way to check if valid input is still forthcoming.

Let’slook at another spot of code in that function before returning to the main program. Y ou see the following:

return undef if $input =~ /"END$/i;
Rewriting this code resultsin the following code:

if (Sinput =~ /"END$/i) {
return undef;
}

Now, let’slook at it. Thisisaregular expression match. The =~ sign says that the pattern on the right should be applied to the
scalar on the left. So, you get atrue result if the input matches the word end, in a case-insensitive fashion (because of the trailing i

flag) or afalse result otherwise.
Back in the main program, thereisasimilar use:

(Skey, $value) = $inputline =~ /N[ =]+)=(.+)¥/;

In this case, the return value feature of parenthesesin aregular expression is exploited. The first string to be returned would be any
text up until the first equal sign in the string, and the second string is all text after that equal sign. This pattern is applied to
$inputline. The regular expression matching operator returns a list corresponding to each element on the right.

In Perl, alist can actually be an Ivalue—that is, appear on the left side of an assignment operator. Each item from the right will be
placed into the corresponding location on the left. Therefore, $key holds the value from the first parenthesis match, and $value the
text from the second. Then, there is another if test performed. If either or both of these strings are not matched, the corresponding
variable will be set to undef. Thisindicates that the regular expression did not properly match and that the input was corrupt. The
code detects this and issues a warning message if that occurs, or stuffs the data into the hash otherwise.

Then, you see this code:
foreach $key (sort keys %hash) {

which can be rewritten in a more C-like form as:

387



foreach $key (sort(keys(%hash))) {

Asyou might guess, the keys item returns an array of all the keysin the hash, in no particular order. Thislist is then sorted before
it is passed along for use in the foreach loop.

Let’s give the program a whirl:

$ chmod a+x ch20-2.pl

$ ./ch20-2.pl

Enter a key=value pair, or type END when done: Hi!

Bad input, try again.
Enter akey=value pair, or type END when done: greeting=Hi!
Enter a key=value pair, or type END when done: os=L inux
Enter a key=value pair, or type END when done: equal sign==
Enter a key=value pair, or type END when done: language=per|
Enter a key=value pair, or type END when done: color=magenta
Enter a key=value pair, or type END when done: some long key=some long value
Enter a key=value pair, or type END when done: end

color is set to the value magenta

equal sign isset to the value =

greeting is set to the value Hi!

language is set to the value perl

0sis set to the value Linux

some long key is set to the value some long value

From this example, you can see that the key for a hash may be several wordslong, asis the case for the key named equal sign here.
Additionally, the data can have any value, and the input error-detection code does work. Perl also allows you to open and work
with arbitrary files. Here is an example of doing so:

#/usr/bin/perl —w

print “Enter afilename: “;
$filename = <STDIN>;
chomp $filename;

open OUTFILE, “>%$filename” or
die “Couldn’t open output file: $!”;

print “ Enter a number: “;
$number = <STDIN>;
print OUTFILE $number * 3, “\n";

close OUTFILE;

This code first prompts the user for afilename, reads it, and strips off the trailing newline. Then, it tries to open the file named for
writing. The > sign in open means to open the file for writing; if it is omitted, the file is opened for reading only. Y ou can also use
the > sign to open afile for appending. The OUTFILE file handle is set up for thisfile. If the open call fails, it returns an error
condition. When it does this, the or operator stepsin and the die command is run. This command displays an error message and
then causes the program to terminate. The error message to be displayed in this case contains $!, which holds the error result from
the last failed operation—like errno in C.

After opening thefile, the user is prompted for a number, which is read and then written. Note that in this case, thereis no chomp
on the input. The reason is that the input will be converted to a number anyway (because it is multiplied by three), so thereis no
need to explicitly remove the trailing newline character.

Also note that there is no comma after the filehandle name in the print call. Thisis different from the syntax in C, and from the syntax
of many other thingsin Perl. The code will not work if you insert acomma at that place.
Data Structures

Earlier in this chapter, you were introduced to some of the different types of variables that are to be found in Perl. Here, we'll go
into more detail on each of them, but I'll first introduce you to references in Perl.

388



References

Perl does not have direct hardware-level pointer support asis present in C. However, it does have references, which perform
essentially the same function—with some added flexibility as well.

In Perl, the operator to create areference is the backslash (). Thisis roughly the same as the address-of (&) operator in C. The
dereferencing operator is the dollar sign. Y ou can create a reference to any type of variable, and even a few other types of entities
aswell. Let’s examine afew examples of using references:

@array =(1,1,2,3,5, 8);
$arrayref = \@array;

foreach $key (@$arrayref) {
print “$key\n”;
}

In this code snippet, an array is created. We then create areference to it and save the reference in avariable. Inside the foreach
statement, the dereferenced value is used. Notice that the at signis still used even when dealing with a reference—thisis because
you are till dealing with alist value after dereferencing it.

Y ou can also create similar things with hashes:

%hash = (keyl => 1, key2 => 2, key3 => 3);
$hashref = \%hash;

foreach $key (sort keys %$hashref) {
print “$key = $$hashref{ $key}\n”;
}

Note the double dollar sign. Thisis used because one dollar sign causes the dereference of the reference. The other indicates that a

scalar value is being accessed, as usual with a hash. Perl defines a shortcut for this situation, similar to the C -> operator:
#/usr/bin/perl -w

%hash = (keyl => 1, key2 => 2, key3 => 3);
$hashref = \%hash;

foreach $key (sort keys %$hashref) {
print “$key = $hashref->{ $key}\n";
}

The so-called arrow operator (->) indicates that the preceding item is to be dereferenced. Thistrick actually appliesto arrays as
well, but it is used more frequently with hashes.

So, where are these references useful ? Well, there are numerous situations. Sometimes, you may want to pass along a large data
structure—say an array or hash—to functions. As | will explain shortly, references are often much better for passing these types
than passing the data by value. Perl’s object-oriented features are almost always used with references, another important use for
references.

In C, dealing with pointers can be tricky. Y ou have to worry about allocating and freeing memory, keeping track of sizes of
allocated memory, and the like. References in Perl have no such problem. Perl automatically allocates memory for you when you

need it, and automatically frees memory when there are no variables or references pointing to it anymore. This mechanism, called

a garbage collector, makes life with Perl references alot easier than with C.

Anonymous r efer ences
Y ou can also create references to so-called anonymous data—that is, data that has never before been assigned to avariable. As
usual, Perl gives you several waysto do so, and I'll highlight the easiest and most frequently used ones here. Here is a script that

demonstrates al of these uses:

#/usr/bin/perl -w

389



$scalarref = \"Hi";
$arrayref =[1, 2, 3,4,5,6,7, 8,9, 10, 11, 12];
$hashref = {keyl => 1, key2 => 2, key3 => 3};

print “$$scalarref\n”;

foreach $key (@$arrayref) {
print “Array: $key\n”;
}

foreach $key (sort keys %$hashref) {
print “Hash: $key = $hashref->{ $key}\n”;
}

Creating a reference to an anonymous scalar istrivial: simply use a backslash before the scalar’ s value. To create areference to an
anonymous array, you simply use brackets instead of parentheses to build the array. Note that \(1, 2, 3) isnot the same as[1, 2, 3];
the former isin fact treated as (\1, \2, \3)—an array of three references, instead a reference to an array with three elements.

Likewise, to create an anonymous hash, you use braces instead of the normal parenthesis syntax. By using this syntax, you can
create references to arrays and hashes from scratch—without ever needing to have an actual variable hold the data.

When you run the preceding code, you get the following output:

So everything did work as expected.
Symboalic references

In addition to the standard reference behavior described previously, Perl also provides another capability for references: symbolic
references, somewhat analogous to symboalic linksin the Linux file system.

This capability allows you to actually dereference a string. The string is taken to be the name of avariable or subroutine, whichis
then referred to as appropriate. This can be a great way to eliminate ugly case statements based on input if you are expecting
certain values to arrive; simply dereference a string as a symbolic reference and use that!

$foo=2;
$name = “foo”;
$foo += 3;

print “$$name\n”;
In this particular example, using a symbolic reference was not an advantage. However, it could have been had you read $name

from the keyboard. In general, you should not use symbolic references unless you are in a situation in which standard references
will not work.

390



Arrays

In the previous section, you were briefly introduced to arrays. Now, we'll go into more detail, describing some features and quirks
of Perl arrays, and then showing an example of arraysin action.

First, we need to cover an important concept: how do you combine two arrays? Well, it turns out that in Perl, thisisas simple as
(@arrl, @arr2)—the result will be an array consisting of all elements from the first array, followed by all elements from the
second. Note that the preceding syntax does not return an array containing two embedded arrays as it might in some other
languages. To do that, you need to use array references. Note that this behavior makes it absolutely necessary to use references if
you want to pass more than one array to a subroutine.

Another feature is the capability to find out how many elements arein your array. To do this, you use $#arrl, for instance. Perl
actually returns the index of the last element in the array, and because it starts counting at zero, you just need to add 1 to the result
to get a count of the number of elements present. Note that if you are using an array reference, you would use a syntax such as
$H$arrayref—just think of the $# as replacing the @ in this situation.

Note Perl actually provides a variable named $[ that can be used to change the index of the first element in an array
(and the first character in a substring). It israrely used because it isavery easy way to cause confusion and thusis
highly discouraged, but if you use it, you will have to modify your length cal culations appropriately because your
indexing will not start at zero.

Now, on to arrays of arrays—also known as multidimensional arrays. These are supported in Perl, but with atwist: you use
operators that deal with referencesto arrays. The bracket syntax still makes it look like you're dealing with traditional
multidimensional arrays and, in fact, you can treat them either in that way or as arrays of references. Here is a program that
creates, and then displays, such an array:

#/usr/bin/perl -w

$arrayref = [1, 3, [500, 600, 700], 8, 9, [1000, 1100, [2000, 2100] ], 10];

printit($arrayref, 0);

sub printit {

}

my ($ref, $count) = @_;
my $key;
my $counter = 0;
foreach $key (@$ref) {
print “ “ x ($count * 3);
if (ref $key) {
printf “%3d: nested array:\n", $counter;
printit($key, $count + 1);
} else{
printf “%3d: %d\n”, $counter, $key;
}

$counter++;

}

print “\n\$arrayref->[5][2][0] = $arrayref->[5][2][O]\n";

This code begins by setting up areference to an array. Thisarray contains not only some typical elements, but also references to
additional arrays. These can be accessed as if they are multidimensional arrays. Then, the code invokes the printit() function.

This subroutine takes two parameters: a reference to an array and a count of how far indented each line should be. We'll go into
more detail on these items in the section on subroutines, later in this chapter.

The function iterates over the list by using foreach—as you have seen several times already. For each element, it starts by printing
out an appropriate amount of space. The x operator means to copy the string on the left for the number of repetitions indicated by
the expression on the right. Next, the program tests the key value to seeif it isareference. If it is areference, the programis
dealing with a nested array (in this situation; it could also be a reference to an embedded hash, scalar, or whatever if you are
working with a different program). In this case, the subroutine displays a message and then calls itself to process the nested array.
If the key value is not a nested array, its valueis simply displayed. Finally, the element counter is incremented.

391



At the very end of the program, there is a print statement, displaying a single value from the array. It illustrates how you can access
asingle nested value and, in fact, shows that the syntax is quite like that of languages such as C. Here you can see the complete
output from this program:

$ ./ch20-5.pl
01
1:3
2: nested array:
0: 500
1: 600
2: 700
38
4.9
5: nested array:
0: 1000
1: 1100
2: nested array:
0: 2000
1: 2100
6: 10

$arrayref->[5][2][0] = 2000

In Chapter 11, “Files, Directories, and Devices,” a similar recursive algorithm was used to display adirectory listing. It did itsjob,
but there could be a problem—if you need to access the listing in your program, particularly if you need to do so more than once,
the Chapter 11 code had no way to save the results. Let’s now rewrite that code to use nested arrays—and use the printing code
from right here to display the result. Listing 20-1 shows an example of code that uses arrays to hold the data.

Note Listing 20-1 isavailable online.
Listing 20-1: Example of nested arrays
#/usr/bin/perl -w

# Perl’sunlessisaninverseif. Thatis, unless(a) isthe same as

#if (1(a)).

unless (SARGVI0]) {
die “Must specify a directory.”
}

#-d isaPerl shorthand. It does a stat() on the passed filename, and
# then looks at the mode. If the filename isadirectory, it returnstrue;
#if not, it returns false.

unless (-d SARGVIQ]) {
die “The filename supplied was not a directory.”

}

my $dirs = dircontents(SARGV[0]);
printit($dirs, 0);

sub dircontents{
my $startname = shift @_;

my $filename;
my $retval = []; # Initialize with an empty array reference
local *DH; # Ensure that the handle islocally scoped

# Thisisthe same as DH = opendir(“filename”) in C.
#In C, you can use DIR *DH; to declare the variable.

392



unless(opendir(DH, $startname)) {
warn “Couldn’t open directory $startname: $!”;
return undef;

}

# In C, readdir() returns a pointer to struct dirent, whose members are
# defined in readdir(3). In Perl, returns one file in scalar context,
# or al remaining filenamesin list context.

while ($filename = readdir(DH)) {
if ($filenamene’. &&
$filenamene*..’ &&
I -| “$startname/$filename” & &
-d “$startname/$filename”) {
push(@$retval, dircontents(* $startname/$filename”));
} else{
push(@$retval, $filename);
}
}

closedir(DH);
return $retval;
}

sub printit {
my ($ref, $count) = @_;
my $key;
my $counter = 0;

foreach $key (@$ref) {
print“ “ x ($count * 3);
if (ref $key) {
printf “%3d: subdirectory\n”, $counter;
printit($key, $count + 1);
} else{
printf “%3d: %s\n”, $counter, $key;
}
$counter++;
}
}

The codein Listing 20-1 is quite similar to both the code from Chapter 11 and the earlier example (ch20-5.pl). Thistime, however,

the filenames are pushed onto the array instead of being displayed. First, let’slook at thisline, which is used if the file being
examined is not adirectory:

push(@$retval, $filename);
This causes the current filename to be placed at the end of the array. Notice that the push operator expects an array, and not a
reference to one, asits first argument. Also, you can pass more than one value to push at once—even another array—and all those
values will be added to the end of your current array.
Now let’stake alook at the command used when the system is processing afile that is adirectory. That codeis:

push(@$retval, dircontents(“ $startname/$filename”)):

This calls the function itself on the subdirectory. The call returns a reference to an array, which is then pushed onto the end of the
current array—just as needed to form an array of the same type as used previously.

However, there is a problem: the filename information for this directory islost—it is never placed onto the array. In the next

section, we'll go over nested hashes, which present a solution for this problem. Let’s take alook at the output, which will
demonstrate the problem:

393



$ ./ch20-6.pl /etc/modutils
0:.
1.
2: dliases
3: paths
4. subdirectory
0:.
1.
2:i386
3: m68k.amiga
4: m68k.atari
5: m68k.generic
6: m68k.mac
7. alpha
5: pcmcia
6: setserial

Nested hashes

Now that you’ ve seen the possibilities of references, and nested arrays, it’s time to move on to another topic: nested hashes. As
you saw in the commentary about Listing 20-1, there was a problem with the array. We really want to store at least two pieces of
data for each file. Y ou could use a separate array for the second piece of data, but that gets clumsy.

Furthermore, to find a given file, you have to manually search the array. With a nested hash, you can traverse the hash just as you
traverse adirectory tree! We'll first look at a simple port of the existing code to use a hash, and then take alook at adding some
more featuresto it that are made possible by hashes. Listing 20-2 shows code that uses hashes to store the data.

Note Listing 20-2 is available online.
Listing 20-2: Example of hashes
#/usr/bin/perl -w

# Perl’sunlessisaninverseif. Thatis, unless(a) isthe same as

#if (1(a)).

unless (SARGVIQ]) {
die“Must specify adirectory.”
}

#-d isaPerl shorthand. It does a stat() on the passed filename, and
# then looks at the mode. If the filename isadirectory, it returnstrue;
#if not, it returns false.

unless (-d SARGVIQ]) {
die “The filename supplied was not a directory.”

}

my $dirs = dircontents($JARGV[Q]);
printit($dirs, 0);

sub dircontents{
my $startname = shift @_;

my $filename;
my $retval = {}; # Initialize with an empty hash reference
local *DH; # Ensure that the handle islocally-scoped

# Thisisthe same as DH = opendir(“filename”) in C.
#In C, you can use DIR *DH; to declare the variable.

unless(opendir(DH, $startname)) {
warn “Couldn’t open directory $startname: $!”;

394



return undef;
}

# In C, readdir() returns a pointer to struct dirent, whose members are
# defined in readdir(3). In Perl, returns one file in scalar context,
# or al remaining filenamesin list context.
while ($filename = readdir(DH)) {
if ($filenamene‘.’ &&
Hilenamene*.’ &&
I - “$startname/$filename” & &
-d “$startname/$filename”) {
$retval->{ $filename} = dircontents(“ $startname/$filename”);
}else{
$retval->{ $filename} = 1;
}
}

closedir(DH);
return $retval;

}

sub printit {
my ($ref, $count) = @_;
my $key;
my $counter = 0;

foreach $key (sort keys %$ref) {
print“ “ x ($count * 3);
if (ref $ref->{ $key}) {
printf “%3d: subdirectory %s\n”, $counter, $key;
printit($ref->{ $key}, $count + 1);
} else{
printf “%3d: %s\n”, $counter, $key;
}
$counter++;
}
}

Not much has changed in this code. Instead of pushing strings onto an array, we now insert strings into a hash. Y ou can traverse
this hash by path; for instance, if you started at root, you could use $ref->{ etc} ->{ X11} ->{ xdm} ->{ X startup} to get to the entry
for /etc/X 11/xdm/X startup—nested, similar to the filesystem.

Noticethat if it is not dealing with a directory, the program really has no meaningful value to insert, so it simply inserts the value
1. You could, however, be storing much more information. Consider the following example: instead of simply having each hash
entry point to either a subdirectory hash or a useless value, why not have each hash entry point to another hash holding some
useful information? Perhaps this would be some information such as the file's size, modification date, and so on. Then, if the
particular filein question is a directory, an extrafield in the hash can indicate that. Note that what we are building hereis
essentially afile object—and you'll see another rewrite of this code to use it as such later on in this chapter. For now, though, we'll
proceed without adding object-oriented features to the program. Listing 20-3 shows the code for the added features.

Note Listing 20-3 is available online.
Listing 20-3: Revised hash example
#/usr/bin/perl -w

# Perl’sunlessisaninverseif. Thatis, unless(a) isthe same as
#if (1(a).
unless ($ARGV[0]) {
die“Must specify adirectory.”
}
395



# -d isaPerl shorthand. It does a stat() on the passed filename, and
# then looks at the mode. If the filename isadirectory, it returnstrue;
#if not, it returns false.

unless (-d $SARGV[Q]) {
die “The filename supplied was not a directory.”

}

my $dirs = dircontents($JARGV[Q]);
printit($dirs, 0);

sub dircontents{
my $startname = shift @_;

my $filename;
my $retval = {}; # Initialize with an empty hash reference
local *DH; # Ensure that the handle islocally scoped

# Thisisthe same as DH = opendir(“filename”) in C.
#1n C, you can use DIR *DH; to declare the variable.

unless(opendir(DH, $startname)) {
warn “Couldn’t open directory $startname: $!”;
return undef;

}

# In C, readdir() returns a pointer to struct dirent, whose members are
# defined in readdir(3). In Perl, returns one file in scalar context,
# or al remaining filenamesin list context.

while ($filename = readdir(DH)) {
$retval->{ $filename} = { name => $Hfilename,
size => -s“ $startname/$filename”,
age => -M “$startname/$filename’};
if ($filenamene’. &&
$Hfilenamene‘..’ &&
I -| “$startname/$filename” & &
-d “$startname/$filename”) {
$retval->{ $filename} ->{ subdir} = dircontents(* $startname/$filename”);
}
}

closedir(DH);
return $retval;
}

sub printit {
my ($ref, $count) = @_;
my $key;
my $counter = 0;

foreach $key (sort keys %$ref) {
print“ “ x ($count * 3);
if (exists($ref->{ $key} ->{ subdir})) {
printf “%3d: subdirectory %s (%d bytes)\n”, $counter, $key,
$ref->{ $key} ->{size};
printit($ref->{ $key} ->{ subdir}, $count + 1);
}else{
printf “%3d: %s (%d bytes)\n”, $counter, $key, $ref->{ $key} ->{size};
}

$counter++;

}
396



}
Now things start to get interesting! At the heart of it al isthis:
$retval->{ $filename} ={ name => $filename,
size => -s“ $startname/$filename”,
age => -M “S$startname/$filename’};

This code creates a reference to an anonymous hash. This hash contains the file’' s name (so you don’t have to pass along the hash
key separately), its size, and its age. Then, if thereis a subdirectory, an additional item named subdir is added to the hash, the
value of which is areference to a hash for that subdirectory. Thus, to get to the information for the same /etc/X 11/xdm/X startup
file as described earlier, you'd now need to use $ref->{ etc} ->{ subdir} ->{ X 11} ->{ subdir} ->{ xdm} ->{ subdir} ->{ X startup} . Thisis
clearly more typing; on the other hand, you now have more useful information in the hash. When the information is being printed

out, it too hasto trace through this additional level to get to some information; however, that information was not available at all
before. Here is the output of running this revised code:

$ ./ch20-8.pl /etc/modutils
0: . (1024 bytes)
1. .. (6144 bytes)
2: aiases (1259 bytes)
3: subdirectory arch (1024 bytes)
0: . (1024 bytes)
1. .. (1024 bytes)
2: alpha (35 bytes)
3: 1386 (35 bytes)
4: m68k.amiga (623 bytes)
5: m68k.atari (624 bytes)
6: m68k.generic (251 bytes)
7: m68k.mac (277 bytes)
4: paths (1161 bytes)
5: pcmcia (37 bytes)
6: setserial (487 bytes)
Subroutinesand Scope

Like C, Perl offers functions. In Perl, they are called subroutines—you’ ve already seen examples of them in this chapter. Let's
divein and take alook at the details.

Perl subroutines can be called with a syntax similar to the syntax for internal functions, but there are a few extratwists that you
haven't seen yet. Here are examples of calling a subroutine named mysub:

mysuby();

mysub(1, 2, 3);
mysub(“abcde”, “xyz");
& mysub;

The first example invokes the subroutine without passing any arguments. The second passes it three integers, and the third passes

it two strings. The final example invokes it with the use of the older ampersand notation. This notation is rarely needed today, but
may still be used.

If your subroutines take parameters, these parameters are passed in using the @ _ array. Generally the first thing you will want to
do is save the contents of that array for later use. If you are expecting only one argument, atypical way to do that is:

my $arg = shift @ _;

This removes the argument from the front of the array and returnsit, for assignment to your variable. If you are expecting multiple
arguments, you might do this:

my ($scalarl, $scalar2, $scalar3, @remainder) = @_;

This code will take the first three arguments and place them into the corresponding scalar variable. Any remaining arguments
(perhaps from an array) will be placed into the array. These variables can then be used |ater.

Notice the my keyword that occurs here. Thisis a scoping operator. This operator indicates that the variables being created should
exist in the namespace of only the current subroutine—which is avery good thing. Otherwise, your subroutines may inadvertently

397



overwrite variables used by the main program, or even by other invocations of your own subroutine! Because the function used in
the earlier example program was recursive, this was a requirement; otherwise, the variables would definitely get overwritten.

Whenever you use any variable in a subroutine, whether or not it was passed in, you should declare it my unless there is a strong
reason not to. In fact, it’s not a bad ideato do that in all your code; getting into the habit can be good, and you can help isolate
variables between different modules.

Subroutinesin Perl return values just asthey do in C. If no explicit return statement is present, the return value of a subroutine is
simply the return value of the last statement run.

Calling asubroutinein Perl 5isdonejust asitisin C, with parenthesis. Y ou might occasionally see code that usesthe & sign to
call subroutines. Thisis mostly—but not always—a holdover from days of earlier Perl versions.

One interesting thing that you can do with subroutinesis create references to them—for instance, $ref = \& sub. Moreover, you can
even use an anonymous subroutine, as demonstrated in this example:

#/usr/bin/perl -w

my $subref = sub {
my $arg = shift @_;
print “Hello, I am an anonymous sub ($arg)!\n”

b
& $subref(“realy”);

Here, you set up areference to an anonymous subroutine. This subroutine takes a single argument and prints out a message with
that argument embedded in it. The reference is then dereferenced and the value displayed. This is one case where the ampersand
(&) isrequired—this code will not work without it.

Y ou are now able to pass along arbitrary code as parameters to functions, with interesting results. Perl/Tk makes extensive use of
this feature. In our previous code examples, for instance, you might pass along a custom subroutine for printing out the
information for any given file, so that you can use a single function to walk through the list and prepare for printing, but with a
custom output format.

Cross-Reference

Chapter 24, “GUIs with Perl/TK,” covers Perl/TK.

There is another note about subroutines with which you should be aware. In Chapter 8, “Memory Management,” | warned you never
to return apointer to alocal variable in C. Y ou do not have this problem with Perl; you may freely return referencesto local
variables. The reason is that even though the local variable may disappear from the namespace after the subroutine exits, if thereis
something pointing to it, its data will not. Thisis due to Perl’ s garbage collection mechanism, which will ensure that nothing is
removed until it is no longer being used. Therefore, you do not have to worry about variables going out of scope after they (or rather,
pointers to them) have been indicated for being returned to the caller.

Flow Control

Like C, Perl provides a variety of methods for various loops and conditionals. Many of them function in a manner similar to their
C equivalents. For instance, the if operator in Perl works in almost the same way—the difference is that Perl requires braces
around the action, whereas C makes them optional. Perl’s version, though, has another syntax, as demonstrated in the following
line of code;

print “Hi\n" if ($shouldprint);
In this example, if the conditional istrue, the print statement is executed; otherwise, it is skipped. Perl also provides an unless
statement, which is essentially an if but with animplied not. Y ou can useit just as the if statement with both syntax varieties, as
shown in this example:

print “Hi\n" unless ($skipPrint);

398



This would display the message unless the variable is true, presumably asking for the message to be skipped.

Y ou have already seen examples of Perl’s foreach statement. This takes avariable and alist of items. The variableis set to the
value of eachitem in thelist, in order, and the supplied code is executed once per item. As an example, it was used earlier in this
chapter in this context:

foreach $key (sort keys %$hashref) {
print “Hash: $key = $hashref->{ $key}\n";
}

This caused Perl to set $key to each key in the hash, one key at atime, and to execute the print command for each such key.
Perl also supports a C-style for loop, which looks almost identical to the C version. Here's a quick example of one such loop:

for ($a=0; $a< 200; $a++) {
print “$a\n”;
}

Perl doesn’'t have a built-in case statement but does offer several alternatives from which to choose. One of the more popular ones
involves using a particular feature of the for statement to temporarily set Perl’s default variable, $_, to the variable you're tying to
match—qgreat for regular expressions. Unlike in C, the example that follows doesn’t require just numbers to match, it can use any
arbitrary expression to obtain a match:

SWITCH: for ($foo) {
[abc/ && do { print “aphan”; last; };
Ixyz/ && do { print “ending\n”; last; };
$foo == && do { print “second\n”; last; };
die“Couldn’t match input to switch.”;

}

Because the = = operator requires two arguments, you can’'t omit $foo there, but you can omit $foo with the regular expressions with
this syntax. The die call at the end isthe default, which is called if nothing matches. This can, of course, be omitted if you prefer.
OOP Features

Oneinteresting addition to Perl is support for object-oriented programming (OOP). This support is implemented in a unigue way
and is built atop Perl modules.

Perl modules are used for more than just OOP; they make it easy to add new functionality to Perl programs by bringing in third-

party modules (libraries). The Comprehensive Perl Archive Network, CPAN, has a repository of modules available online. Y ou
can seeit at http://www.perl.com/CPAN-local/. In this book, in fact, we use some modules from CPAN in later chapters.

Cross-Reference

In Chapter 22, “CGI Programming,” | use CGl.pm. Chapter 23, “SQL Databases with DBI,” | use the DBI module, and, in
Chapter 24, “GUIs with Perl/Tk,” | use the Tk module. There are thousands more available for your use as well.

Each object in Perl, with its corresponding classes, is defined in a Perl module file. This means that they live in a separate
namespace from the main program and thus don’t have (direct) accessto your program’s main variables. Making such access more
difficult isa good thing, though—it helps to encourage writing reusable objects that do not depend on certain things being present
in the main program for their functionality.

An object is created by using the bless operator; blessis given areference and a class name. Typically, a Perl module that
implements an object will define a new subroutine that will create such areference, blessit, and return it to the caller. Perl also
defines new syntaxes that can be used for calling methods for the object.

If you call a generic method, you can use a syntax such as Classname->new() or new Classname() to call a generic subroutine from
the class. When you use this syntax, Perl automatically passes the name of the object to the subroutine asiits first argument. After

399



you have an object, you should use, for example, $object->display() to invoke methods. When an object is called this way, Perl
automatically passes the reference to the object as the first parameter to any subroutine.

As an example of object-oriented programming, 1’1 take the example of a directory traversal program from earlier and
reimplement it with objects. This example will require two files. The first is ch20-10.pl, included in Listing 20-4.

Note Listing 20-4 is available online.
Listing 20-4: Example code: ch20-10.pl
#/usr/bin/perl -w
require FileObject;

# Perl’sunlessisaninverseif. Thatis, unless(a) isthe same as

#if (1(a)).

unless (SARGVI0]) {
die “Must specify a directory.”
}

# -d isaPerl shorthand. It does a stat() on the passed filename, and
# then looks at the mode. If the filename isadirectory, it returnstrue;
#if not, it returns false.

unless (-d SARGVI[Q]) {
die “The filename supplied was not a directory.”

}
my $dirs = dircontents(SARGV[0]);
printit($dirs, 0);

sub dircontents{
my $startname = shift @_;

my $filename;
my $retval = {}; # Initialize with an empty hash reference
local *DH; # Ensure that the handle islocally scoped

# Thisisthe same as DH = opendir(“filename”) in C.
#1n C, you can use DIR *DH; to declare the variable.

unless(opendir(DH, $startname)) {
warn “Couldn’t open directory $startname: $!”;
return undef;

}

#In C, readdir() returns a pointer to struct dirent, whose members are
# defined in readdir(3). In Perl, returns one file in scalar context,
# or al remaining filenamesin list context.

while ($filename = readdir(DH)) {
my $object = new FileObject($startname);
$object->popul ate($filename);
if ($object->{isdir}) {
$obj ect->setsubdir(dircontents(* $startname/$filename”));

}
$retval->{ $filename} = $object;
}

closedir(DH);
return $retval;
}

400



sub printit {
my ($ref, $count) = @_;
my $key;

foreach $key (sort keys %$ref) {
$ref->{ $key} ->display($count);
if ($ref->{ $key}->{isdir}) {
printit($ref->{ $key} ->{ subdir}, $count + 1)
}
}
}

The second required file is FileObject.pm (see Listing 20-5). Note that this second file does not need to be marked executable nor

doesit need the bangpath on the first line. Thisis becauseit is not called directly; rather, it isloaded by Perl after parsing the

require statement in file ch20-10.pl.
Note Listing 20-5 is available online.
Listing 20-5: Example code: FileObject.pm
package FileObject;

sub new {
my ($class, $startfile, $filename) = @ _;
my $self = { startfile => $startfile} ;
bless($sealf, $class);
if ($filename) {
$self->popul ate($filename);
}

return $self;
}

sub populate {
my ($self, $filename) = @ ;

$self->{size} = -s $self->{ startfile} . “/$filename”;
$self->{ age} = -M “$self->{ startfile} /Sfilename”;
$self->{ name} = $filename;
if ($filenamene*.’ &&
$filenamene‘..’ &&
I -l “$self->{ startfile} /$filename” & &
-d “ $self->{ startfil e} /Sfilename”) {
$salf->{isdir} = 1;
} else{
$self->{isdir} = 0;
}
}

sub setsubdir {
my ($self, $subdir) = @_;

unless ($self->{isdlir}) {

die “ Attempt to set subdirectory on non-directory!”;

}

$self->{ subdir} = $subdir;
}
sub display {

my ($self, $level) = @_;
$level = 0 unless $level;

401



print“ “ x (3* $level);

printf “%s%s (%d bytes)\n”,
($self->{isdir} ?“directory “ : "),
$self->{ name},
Peelf->{size};

Now that you have both parts of the code, let’s go over them and examine what it is that they do. The main part, ch20-10.pl, first
says require FileObject. This causes Perl to load in the FileObject.pm file as a separate package. Inside dircontents, there is aloop
as before that runs readdir. This time, however, the first thing that’ s done inside the loop is to generate a new object, passing along
the starthame (which is the path of the object that it needs to use for stat). Then, it calls $object->popul ate($filename), which tells
the object to set al of itsinternal data structures based on the passed name—that is, get its size, age, and the like and take note of
them. If the object isadirectory, its contents are set as such; otherwise, the object isfine asis. Finally, the object is added to the
main hash. Note how much cleaner this has made the while loop—the object essentially knows how to find out details about itself,
so there isno need to do that in the main loop!

Likewise, the subroutine to display the objectsis similarly compacted to just four lines of actual code. The key isthat it callsthe
object’s display method, which does the grunt work of displaying the object to the screen.

In FileObject.pm, the first thing that the code does is declare itself to be a Perl package named FileObject. It then definesiits
methods. The first method, new, starts by generating an anonymous hash and saving it into $self. It takes note of the passed
starting position astheinitial entry in that hash. Then it blesses $self, using the implicitly passed class name. If afilename was
passed in as well, it goes ahead and calls the populate method; otherwise, that isleft to the caller to do later. Finaly, it returnsthe
newly created object to the caller.

The populate subroutine is used to find out information about the object. Aswith al the remaining subroutinesin thisfile, $self is
passed automatically by Perl as the first parameter. The subroutine fills out various fields in its object. The setsubdir function
performs a similar duty, although note that it has a consistency check. If someone tries to set a subdirectory on an object that is not
adirectory, an error is emitted.

Next, the display subroutine displays the object on the screen. Thisis fairly straightforward, using code similar to that used in
earlier versions of the code.

Finaly, you see the two characters at the end of the file: 1;. They are there because Perl wantsto know if your module loaded
properly. If your module has not, Perl will abort compilation of your program. If it has loaded properly, Perl continues with its
normal execution. Thisvalueissimply the last value evaluated by the module. Because this module has no initialization code that
could possibly fail, it smply says 1 so that Perl gets atrue value from it.

Let’srunthisfinal version of the code over /etc/X11 so that you can see that it does indeed work to traverse several directories
deep (see Listing 20-6).

Note Listing 20-6 isavailable online.
Listing 20-6: Sample output

$ chmod a+x ch20-10.pl

$ ./ch20-10.pl /etc/X11

. (1024 bytes)

.. (6144 bytes)

directory WindowMaker (2048 bytes)
. (2048 bytes)
.. (1024 bytes)
appearance.menu (553 bytes)
background.menu (1170 bytes)
menu (8164 bytes)
menu.ca (10101 bytes)
menu.cz (4189 bytes)
menu.da (9164 bytes)
menu.de (4126 bytes)
menu.el (8731 bytes)

402



menu.es (4331 bytes)
menu.fi (7204 bytes)
menu.fr (9238 bytes)
menu.gl (3799 bytes)
menu.he (6958 bytes)
menu.hook (29056 bytes)
menu.hr (7312 bytes)
menu.hu (7925 bytes)
menu.it (4048 bytes)
menu.ja (7570 bytes)
menu.ko (8423 bytes)
menu.nl (3223 bytes)
menu.no (7008 bytes)
menu.posthook (0 bytes)
menu.prehook (0 bytes)
menu.pt (7812 bytes)
menu.ru (4548 bytes)
menu.se (7561 bytes)
menu.dl (7645 bytes)
menu.tr (6512 bytes)
menu.zh_CN (7233 bytes)
menu.zh TW.Big5 (7361 bytes)
plmenu (4461 bytes)
plmenu.da (9069 bytes)
plmenu.dk (11409 bytes)
plmenu.fr (4830 bytes)
plmenu.hr (5694 bytes)
plmenu.it (4684 bytes)
plmenu.zh_CN (3376 bytes)
wmmacros (2397 bytes)
XF86Config (20488 bytes)
Xloadimage (842 bytes)
Xmodmap (547 bytes)
directory Xresources (1024 bytes)
. (1024 bytes)
.. (1024 bytes)
tetex-base (126 bytes)
xbase-clients (36 bytes)
xfree86-common (349 bytes)
xterm (895 bytes)
Xserver (249 bytes)
Xsession (3672 bytes)
Xsession.options (235 bytes)
directory afterstep (1024 bytes)
. (1024 bytes)
.. (1024 bytes)
menudefs.hook (36511 bytes)
directory fonts (1024 bytes)
. (1024 bytes)
.. (1024 bytes)
directory 100dpi (1024 bytes)
. (1024 bytes)
.. (1024 bytes)

xfonts-100dpi.alias (3154 bytes)

directory 75dpi (1024 bytes)
. (1024 bytes)
.. (1024 bytes)
xfonts-75dpi.alias (3066 bytes)
directory Speedo (1024 bytes)
. (1024 bytes)
.. (1024 bytes)

xfonts-scalable.scale (564 bytes)

403



directory Typel (1024 bytes)
. (1024 bytes)
.. (1024 bytes)
xfonts-scalable.scale (1075 bytes)
directory misc (1024 bytes)
. (1024 bytes)
.. (1024 bytes)
xfonts-base.alias (9940 bytes)
xfonts-jmk.alias (5424 bytes)
directory fvwm (1024 bytes)
. (1024 bytes)
.. (1024 bytes)
default-style.hook (309 bytes)
init-restart.hook (357 bytes)
init.hook (409 bytes)
mai n-menu-pre.hook (259 bytes)
main-menu.hook (385 bytes)
menudefs.hook (36642 bytes)
post.hook (121 bytes)
pre.hook (253 bytes)
restart.hook (97 bytes)
system.fvwma2rc (15195 bytes)
system.warnings (3462 bytes)
update.warn (199 bytes)
window-managers (338 bytes)
directory wm-common (1024 bytes)
. (1024 bytes)
.. (1024 bytes)
directory xinit (1024 bytes)
. (1024 bytes)
.. (1024 bytes)
xinitrc (188 bytes)
directory xserver (1024 bytes)
. (1024 bytes)
.. (1024 bytes)
SecurityPolicy (2929 bytes)
directory xview (1024 bytes)
. (1024 bytes)
.. (1024 bytes)
text_extras_menu (703 bytes)
textswrc (2409 bytes)
ttyswrc (444 bytes)
Summary

In this chapter, you received a quick introduction to the Perl programming language. Specifically, you learned:
« Perl isa“gluelanguage,” doing agood job of tying together data coming from many different sources.

e Perl’ssyntax largely resembles that of C but also includes numerous features from shell, awk, sed, grep, and various other
UNIX tools or languages.

 Perl supports four main types of variables: scalars, lists, hashes, and subroutines.

» References are available, which are similar in concept to pointersin C.

« All memory allocation and deallocation in Perl is done automatically.

» By using references, you can build complex data structures such as nested arrays or nested hashes.
» The my operator isimportant to enforce local scoping rulesin subroutines.

 Perl features object-oriented functionality as an addition to its package system.
404



Chapter 21: Manipulating Data with Per|
Overview

Now that you have learned some basics of Perl, it'stime to address an areathat is one of Perl’s greatest strengths: its data
mani pulation support. In this chapter, you will learn how to get data into your Perl programs, process the data once you have it,
implement some persistent storage mechanisms, and generate output from your programs.

Reading Data

Perl provides you with several different waysto get datainto your program. Because many Perl programs are written to read data
from line-oriented files such astext files, it's no surprise that Perl has operators designed for just such uses.

The main such operator is the angle-bracket operator, which reads line-oriented data from a machine. When used in a scalar
context, it returns one line of input. When used in alist context, it continues reading data into memory until EOF (end of file) is
reached, and it returns a list whose elements are the linesin thefile. Like some similar functionsin C, this operator does not strip
off the trailing newline; Perl’s chomp function is great for this.

Y ou can also use this operator in aloop. The following code is an illustration of a very common usage of the angle-bracket
operator in aloop:

#/usr/bin/perl -w

my $counter = 1;

while (my $line = <STDIN>) {
chomp $line;
print “Line $counter: $line\n”;
$counter++;

}

Aslong as the <STDIN> continues to return data, the while loop will continue to run. The newline is removed by chomp, the line
is printed, and you get output. For instance:

$ls/etc/X11 | ./ch21-1.pl
Line 1: WindowM aker
Line 2: XF86Config

Line 3: Xloadimage

Line 4: Xmodmap

Line 5: Xresources

Line 6: Xserver

Line 7: Xsession

Line 8: Xsession.options
Line 9: afterstep

Line 10: fonts

Line 11: fvwm

Line 12: window-managers
Line 13; wm-common
Line 14: xinit

Line 15: xserver

Line 16; xview

Y ou can a'so open arbitrary files for reading. For instance, here’ s a simple program to count the number of linesin afile:
#/usr/bin/perl -w

print “Enter afilename: “;
chomp ($filename = <STDIN>);

open INFILE, $filename or
die “Couldn’t open file $filename: $1\n";

$counter = 0;

405



while (<INFILE>) {
$counter++;

}

print “Lines: $counter\n”;
This program prompts for a filename. Note the shortcut on line 4—the input is chomped whileit isbeing read in.

Some programs, especially programs like CGI programs, and some utility scripts, need to read data from the process's
environment variables. This can be done by accessing the special %ENV hash. The keys of this hash are the environment variable
names, and their values are, of course, the contents of the variables themselves. For instance, $ENV{ PATH} correspondsto the
system’s current search path for your process. Y ou can both read from and write to these items just as you would any other hash.

Y ou can also read arguments passed on the command line. Perl has an @ARGV array that functionsin a manner similar to argv in
C. However, Perl does not include the name of the script in the array. Furthermore, there is no argc; you can access that
information with $#ARGV.

Asa special feature, you can have your program read through lines of any files specified on the command line, one after another.
Perl will automatically open them and feed them to your program. And if one of the items on the line is a single dash, Perl will
read standard input at that point—essentially mimicking the behavior of cat:

#/usr/bin/perl -w
$counter = 0;

while (<>) {
$counter++;

}

print “Lines: $counter\n”;
You can run this program, for instance, like this:

$ ./ch21-2.pl /etc/passwd /etc/group /etc/X 11/XF86Config
Lines: 700

Tip Noticethe <> operator in the example Perl program immediately above. This operator reads input aline at atime, just like
<STDIN> did. However, the difference is that <> will read input from each file specified on the command line for the
program. In this casg, it read input from /etc/passwd, /etc/group, and /etc/X 11/XF86Config before finally returning an end
of fileindication. If no files are specified on the command like, <> revertsto <STDIN>.

Parsing and Processing Data

One of the most powerful features of Perl isits capability to easily pick apart data and processit. In Chapter 3, “Working with
Regular Expressions,” you learned about the power of regular expressions. Perl integrates regular expressions into the language,
and they form an important part of it. Y ou can use them for string comparisons—but comparisons much more powerful than
simply determining whether two strings are equal. With regular expressions, you get to indicate precisely how nearly equal strings
have to be to be considered a match. Furthermore, these regular expressions can be engineered by your own software on the fly—
that is, any string can be aregular expression.

In Chapter 3, | introduced a pattern testing program named pattest. Here is its code:
#!/usr/bin/perl

while (1) {
print “ Enter pattern”;
print “, or . to re-use previous,” if (LASTREGEXP);
print “ or leave empty to exit:\n";
print “>*;
$REGEXP = <STDIN>;
chomp $REGEXP;
if (SREGEXPeq‘."){
$REGEXP = $LASTREGEXP,

406



}

exit (0) unless (SREGEXP);
print “Enter string to match”;
print “ or . to re-use previous’ if (BLASTSTRING);

print “:\n”;

print “>*;

$STRING = <STDIN>;

chomp $STRING;

if ($STRING eq*.") {
$STRING = $LASTSTRING;

}

$LASTREGEXP = $REGEXP,
$LASTSTRING = $STRING;

@MATCHES = $STRING =~ /$REGEXF/;
if (B#MATCHES > -1){
print “ Successful match!\n”;
print “There were“ . ($#MATCHES + 1) . “ strings returned: \n”;
$counter = 0;
foreach SMATCH (@MATCHES) {
$counter++;
print “ String $counter: $SMATCH\n";
}
}else{
print “ There was not a successful match.\n";
}
print “\n\n”;
}
Let'stake alook at this code. First, the program starts with while(1)—this means that the loop will continue forever—although
thereis an exit condition (exit (0) unless (REGEXP);)in it. Then, the user is prompted for a pattern. If the data entered issimply a
period, then the program uses the previoudly entered value. If the regular expression supplied is empty, the program exits. The
program similarly prompts for a string to match, and again, it can reuse the last one if desired. Then, we come to thisline:
@MATCHES = $STRING =~ /$REGEXF/;

This code causes the regular expression to be applied to the input string. If any items were returned, they are placed into that array,
which isthen displayed. Then, the cycle repeats.

Y ou can make this a more useful program by being able to pipe data to it—perhaps in a fashion similar to grep (see Chapter 4); but
this way, you get Perl’ s regular expression support instead of grep’s. Here’' sarevised version of the code:

#/usr/bin/perl -w
Ppattern = shift ARGV
while ($string = <>) {
chomp $string;
@matches = $string =~ /$pattern/;

if ($#matches>-1) {

print “Match: (*;
print join(*, *, @matches);
print “)\n”;
}
}

This code isindeed much shorter, but it may be more useful than the other. Consider, for instance, using it to isolate a permission
string and file size from an Is listing:

$1s-l fetc/X 11 | Jpattest ‘A (\S+H)\sd+HsHD+Hs+(\d+)’
407



Match: (drwxr-xr-x, 2048)
Match: (-rw-r--r--, 20488)
Match: (-rw-r--r--, 842)
Match: (-rw-r--r--, 547)
Match: (drwxr-xr-x, 1024)
Match: (-rw-r--r--, 249)
Match: (-rwxr-xr-x, 3672)
Match: (-rw-r--r--, 235)
Match: (drwxr-xr-x, 1024)
Match: (drwxr-xr-x, 1024)
Match: (drwxr-xr-x, 1024)
Match: (-rw-r--r--, 338)
Match: (drwxr-xr-x, 1024)
Match: (drwxr-xr-x, 1024)
Match: (drwxr-xr-x, 1024)
Match: (drwxr-xr-x, 1024)

Using split
Another use for parsing isto split apart a string based on a certain delimiter. This function is more or less the inverse of the regular
expression match. Instead of specifying the text to match, you specify aregular expression indicating the text not to match. When
you are parsing data that has a fixed separator, split isideal. Examples include the passwd file (a colon separator), English text (a

space separator between words), comma-delimited files, and even some forms of column-based output. Here is arewrite of pattest
that uses split:

#/usr/bin/perl -w
$pattern = shift @ARGV;
while ($string = <>) {
chomp $string;
@matches = split(/$pattern/, $string);

if ($#tmatches> -1) {

print “Match: (*;
print join(*, *, @matches);
print “)\n”;

}

}

Y ou can take alook at how this code works by again working with a directory listing, using it (recall that because the spaceisa
shell metacharacter, it needs to be quoted on the command line):

$1s-l fetc/X11 | Jsplittest * ¢
Match: (total, 41)

Match: (drwxr-xr-x, , , 2, root, , , , , root, , ,,,,,,, 2048, Sep, 11, 10:40, WindowM aker)
Match: (-rw-r--r--, , , 1, root, ,,, , root, , ,,,,,, 20488, Jul, 20, 15:26, X F86Config)
Match: (-rw-r--r--, , , 1, root, ,,,,root,,,,,,,,,, 842, Apr,, 5, , 1998, Xloadimage)
Match: (-rw-r--r--, ,, 1, root, ,,, , root, ,,,,,,,,, 547, May, 27, 07:40, Xmodmap)
Match: (drwxr-xr-x, , , 2, roet, ,, , , root, , ,,,,,,, 1024, Sep, 15, 16:05, Xresources)

Thistype of output continues on. What is happening is that each space is matched separately. Y ou can achieve a more useful result
by using aregular expression that matches one or more spaces. Here' s arevised version of the preceding code:

$ls-l /etc/X11 | /splittest * +’

Match: (total, 41)

Match: (drwxr-xr-x, 2, root, root, 2048, Sep, 11, 10:40, WindowM aker)
Match: (-rw-r--r--, 1, root, root, 20488, Jul, 20, 15:26, XF86Config)
Match: (-rw-r--r--, 1, root, root, 842, Apr, 5, 1998, Xloadimage)
Match: (-rw-r--r--, 1, root, root, 547, May, 27, 07:40, Xmodmap)
Match: (drwxr-xr-x, 2, root, root, 1024, Sep, 15, 16:05, Xresources)
Match: (-rw-r--r--, 1, root, root, 249, Jun, 2, 20:36, Xserver)

408



Match: (-rwxr-xr-x, 1, root, root, 3672, Aug, 26, 21:50, X session)
Match: (-rw-r--r--, 1, root, root, 235, May, 27, 07:52, X session.options)
Match: (drwxr-xr-x, 2, root, root, 1024, Sep, 11, 10:40, afterstep)
Match: (drwxr-xr-x, 7, root, root, 1024, Jun, 2, 19:34, fonts)

Match: (drwxr-xr-x, 2, root, root, 1024, Sep, 11, 10:40, fvwm)

Match: (-rw-r--r--, 1, root, root, 338, Aug, 31, 19:30, window-managers)
Match: (drwxr-xr-x, 2, root, root, 1024, May, 13, 19:42, wm-common)
Match: (drwxr-xr-x, 2, root, root, 1024, Aug, 31, 19:40, xinit)

Match: (drwxr-xr-x, 2, root, root, 1024, Aug, 31, 19:41, xserver)

Match: (drwxr-xr-x, 2, root, root, 1024, Jun, 18, 12:08, xview)

Using grep

Another useful function in Perl is named grep. Itsfunction is similar to the well-known command by that name: to check each
element in an array for a match on a certain pattern, and return alist of corresponding elements. Y ou can easily rewrite the
preceding code to use grep—in fact, you can write your own simple version of the grep command in Perl in just avery few lines of
code:

#/usr/bin/perl -w
$pattern = shift @ARGV;

foreach $match (grep(/$pattern/, <>)) {
print $match;

}

This short bit of code does what hundreds or even thousands of lines would do in other languages—thanks to Perl’ s built-in regular
expression support. Take alook at the results:

$ls-l /etc/X11 | /mygrep X

-rw-r--r-- 1root root 20488 Jul 20 15:26 XF86Config
-rw-r--r-- 1root root 842 Apr 5 1998 Xloadimage
-rw-r--r-- 1root root 547 May 27 07:40 Xmodmap
drwxr-xr-x 2root root 1024 Sep 15 16:05 Xresources
-rw-r--r-- 1root root 249 Jun 2 20:36 Xserver

-rwxr-xr-x 1root root 3672 Aug 26 21:50 Xsession
-rw-r--r-- 1root root 235 May 27 07:52 X session.options

This code behaves almost exactly like the grep command! Notice that you can aso rewrite it with alittle bit more effort by
implementing the functionality of Perl’s grep function yourself. Here's a version of the program that does the same as the
preceding version, but without using grep:

#/usr/bin/perl -w
Ppattern = shift ARGV

foreach $match (<>) {
print $match if $match =~ /$pattern/;

}

Running this program gives the same results as before, as you can see here:

$ls-l Jetc/X11 | /mygrep X
-rw-r--r-- 1root root 20488 Jul 20 15:26 XF86Config
-rw-r--r-- 1root root 842 Apr 5 1998 Xloadimage
-frw-r--r-- 1root root 547 May 27 07:40 Xmodmap
drwxr-xr-x 2root root 1024 Sep 15 16:05 Xresources
-rw-r--r-- 1root root 249 Jun 2 20:36 Xserver
-rwxr-xr-x 1root root 3672 Aug 26 21:50 Xsession
-rw-r--r-- 1root root 235 May 27 07:52 X session.options
Storing Data

409



Another common concern when writing programsis how to use persistent storage for data. With small, simple programs, simply
writing data out to atext file and reading it back in the next time the program runs may be sufficient. However, consider a situation
in which you have ten thousand—or ten million—records. This process may not be a practical solution in that case. Or consider a
case in which you have nested arrays or hashes as described in Chapter 20, “Introducing Perl.” In this situation, a flat text file may
reguire a complex format and some significant work to recreate the structuresin memory when reading it back in.

Perl provides features for both of these problems, and more. For the problem of storing large amounts of data, Perl enables you to
transparently tie structures such as hashes to an on-disk database. This means that any access to those structures actually takes
place from disk, freeing you from the constraints of available memory and enabling you to obtain a convenient persistent storage
method at the same time.

For the problem of storing complex structures, Perl provides the Data Dumper, which can take any Perl structure and generate a
string representation of it. This string representation is actually valid Perl, so your Perl program can read it back in later and (with
afew exceptions) recreate the in-memory contents exactly as they were before writing the data out—automatically.

Y ou can even combine these two methods and store output from the Data Dumper in a database. Additionally, Perl is capable of
communicating with numerous SQL database serversif your data storage needs require something more robust. Thistopic will be
discussed in Chapter 23, “SOQL Databases with DBI”; for now, we'll concentrate on the simpler ways to store data. Although both
methods involve a database, the two are significantly different. The database type being described in this chapter is useful if you
have simple key/value pairs that need to be stored, as with a hash. A SQL database could be more useful if your datais more
complex or if you need data analysis or query tools in the database engine.

Using databases

Perl provides you with a wonderful capability to extend your programs to provide fast, persistent storage for data structures such as
hashes—with almost no changesto your code. Thisis accomplished by using Perl’ s tie operator. After you use tie, operations such
as reading or writing from your hash actually take place from an on-disk database. Because the database is on the disk instead of in
memory, the data can be reloaded into your program later. Not only that, but because the datais on disk, you can potentially deal
with much more data than would fit into memory.

Note Perl providestie-insto several different database engines. In this chapter, I'll use the Berkeley db system for the
examples. Thisis standard on many current Linux distributions, but if you are running a custom version of Perl or
an older distribution, you may not have this. Therefore, you may need to replace every occurrence of DB_File
with SDBM_File. Also, be aware that sdbm has a 1K per-record size limit, whereas the Berkeley db system does
not.

Of course, these features can come at a price: disk access can be significantly slower than memory access, athough operating
system caching often helps. Also, certain things cannot be stored in a database—at least not if you expect them to be able to be
reloaded later. These include items such as references or object associations. So, these databases are best suited to storing scalar
data.

As ademonstration of how to modify a program to store its data in a database, let’s take a program from an earlier chapter and
modify it for use with a database (see Listing 21-1). The first version will simply add a database tie-in, but it will have afew
problems. We'll analyze the problems and then fix the code to work better.

Listing 21-1: Example of tie
#/usr/bin/perl -w
use DB _File;

my %dirs= ();
tie(%dirs, “DB_File”, “Dirs.hash”) or die “Couldn’t tie: $1\n";

# Perl’sunlessisaninverseif. That is, unless(a) isthe same as

#if (1(a)).

unless (SARGVIQ]) {
print “Displaying saved data:\n”;
printit(\%dirs, 0);
exit 0;

}
410



# -d isaPerl shorthand. It does a stat() on the passed filename and
# then looks at the mode. If the filename isadirectory, it returnstrue;
#if not, it returns false.

unless (-d $SARGV[Q]) {
die “The filename supplied was not a directory.”

}

dircontents(3ARGV|[0], \%dirs);
printit(\%dirs, 0);

untie(%odirs);

sub dircontents{
my ($startname, $retval) = @_;

my $filename;
$retval = {} unless ($retval);
local *DH; # Ensure that the handle islocally scoped

# Thisisthe same as DH = opendir(“filename”) in C.
#In C, you can use DIR *DH; to declare the variable.

unless(opendir(DH, $startname)) {
warn “Couldn’t open directory $startname: $!”;
return undef;

}

# In C, readdir() returns a pointer to struct dirent, whose members are
# defined in readdir(3). In Perl, returns one file in scalar context,
# or al remaining filenamesin list context.

while ($filename = readdir(DH)) {
if ($filenamene’. &&
$filenamene’..’ &&
I - “$startname/$filename” & &
-d “$startname/$filename”) {
$retval->{ $filename} = dircontents(“ $startname/$filename”);
} else{
$retval->{ $filename} = 1;
}
}

closedir(DH);
return $retval;
}

sub printit {
my ($ref, $count) = @_;
my $key;
my $counter = 0;

foreach $key (sort keys %$ref) {
print“ “ x ($count * 3);
if (ref $ref->{$key}) {
printf “%3d: subdirectory %s\n”, $counter, $key;
printit($ref->{ $key}, $Scount + 1);
} else{
printf “%3d: %s\n”, $counter, $key;
}

$counter++;

}
411



This program was modified very little to use atied hash. One change actually ties the hash to the database, and a corresponding
change allows the subroutine to directly work on this hash. It is, of course, possible to assign to the entire hash at once, but by
working on individual hash elements, its existing contents are not replaced unless you're using a duplicate key. Therefore, it's
possible to store multiple directory treesin the database at once. However, these modifications are not quite sufficient, as you can
see from running the program:

$./ch21-2.pl fetc/X11

: WindowM aker

: XF86Config

: Xloadimage
Xmodmap

: Xresources

» Xserver

: Xsession

. Xsession.options
10: afterstep

11: fonts

12: fvwm

13: window-managers
14: wm-common

15: xinit

16: xserver

17: xview

ONOURNWNREO

©

The problem here is that the program no longer recognizes directories as such. The reason isthat the following test fails:

if (ref $ref->{$key}) {

Interestingly, if you comment out the line that ties the database to the hash, the program works fine. The reason is that the hash can
no longer store areal reference if tied to a database because the database doesn’t support this. Instead, the reference is converted
into a string (containing essentially some useless numbers) for storage into the databases. Thus, when the subroutine tries to check
if the value stored in the database is areference, it gets a negative result. Note that you can display the saved contents of the
database by running this program with no arguments—the program indicates that it' s displaying the saved data and then proceeds
to give you output exactly like normal.

In order to fix this problem, you need to modify the code such that it doesn’t need to store references in the main hash. This means
that you can’t store things recursively any longer—perhaps you just need to take a different approach. Listing 21-2 shows a
version of the code that stores data without using nested hashes, thus avoiding that problem.

Listing 21-2: Revised tie example

#/usr/bin/perl -w

use DB _File;

my %dirs= ();

tie(%dirs, “DB_File”, “Dirs.hash”) or die “Couldn’t tie: $1\n";

# Perl’sunlessisaninverseif. That is, unless(a) isthe same as
#if (1(a).

unless (SARGVI[Q]) {
print “Displaying saved data:\n”;
printit(\%dirs, 0);
exit 0;

}

412



# -d isaPerl shorthand. It does a stat() on the passed filename and
# then looks at the mode. If the filename isadirectory, it returnstrue;
#if not, it returns false.

unless (-d $SARGV[Q]) {
die “The filename supplied was not a directory.”

}

dircontents($ARGV[0], \%dirs);
printit(\%dirs, 0);

untie(%odirs);

sub dircontents{
my ($startname, $retval) = @_;

my $filename;
$retval = {} unless ($retval);
local *DH; # Ensure that the handle islocally scoped

# Thisisthe same as DH = opendir(“filename”) in C.
#1n C, you can use DIR *DH; to declare the variable.

unless(opendir(DH, $startname)) {
warn “Couldn’t open directory $startname: $!”;
return undef;

}

# In C, readdir() returns a pointer to struct dirent, whose members are
# defined in readdir(3). In Perl, returns one file in scalar context,
# or al remaining filenamesin list context.

while ($filename = readdir(DH)) {
if (Bfilenamene’. &&
$filenamene*..’ &&
I - “$startname/$filename” & &
-d “$startname/$filename”) {
dircontents(“ $startname/$filename”, $retval);
}else{
Pretval->{ “ $startname/$filename’} = -s “ $startname/$filename’”;
}
}

closedir(DH);
return %$retval;
}

sub printit {
my ($ref, $count) = @_;
my $key;
my $counter = 0;

foreach $key (sort keys %$ref) {
print“ “ x ($count * 3);
printf “%3d: %s (%d bytes)\n”, $counter, $key, $ref->{ $key};
$counter++;
}
}

Thistime, instead of hashes being nested for directories, entire pathnames are stored as the keys for the hash. Now there’s no need
to have nested hashes, and the subroutine to print the results could actually be modified to parse the pathnames to determine
indentation if desired. To take alook at the results, first you need to remove the existing Dirs.hash file so that data from a previous
version of the program does not creep into this one. Then, try the program:

413



$rm Dirs.hash
$ ./ch21-3.pl /etc/X11
0: /etc/X11/. (1024 bytes)
1: /etc/X11/.. (6144 bytes)
2: letc/X 11/WindowM aker/. (2048 bytes)
3: /etc/X11/WindowMaker/.. (1024 bytes)
4: etc/X11/WindowM aker/appearance.menu (553 bytes)
5: /etc/X 11/WindowM aker/background.menu (1170 bytes)
6: /etc/X11/WindowM aker/menu (8164 bytes)
7: letc/X11/WindowM aker/menu.ca (10101 bytes)
8: /etc/X11/WindowM aker/menu.cz (4189 bytes)
9: /etc/X11/WindowM aker/menu.da (9164 bytes)
10: /etc/X11/WindowM aker/menu.de (4126 bytes)
11: /etc/X11/WindowM aker/menu.el (8731 bytes)

The output actually continues for many more lines on my system but is truncated here; you can see that directories are properly
being traversed. However, there is adownside. Recall that the system was able to store not only size but also information such as

age in anested hash. Not only that, but it could also store an object there. Well, this sort of thing is now impossible because you
can only store a string in the hash.

However, there is a sol ution—nhave a subroutine that generates a string representation of the data, and another that converts the
string back to a hash. Doing this is sometimes referred to as serialization of data. Serialization can be annoying, but if you use

something like Perl’ s object-oriented features, it can be implemented in a fashion that is not terribly cumbersome. Listing 21-3
shows a version of the FileObject code that adds support for serialization.

Listing 21-3: FileObject.pm: an object with serialization
package FileObject;

# Can be invoked with:
# oartfile

# sartfile, filename
# seridform

sub new {
my ($class, $startfile, $filename) = @ ;
my $self = { startfile => $startfile} ;
bless($self, $class);

if (Sstartfile =~ m'MII") {
$salf->deserialize($tartfile);

} elsif ($filename) {
$self->popul ate($filename);

return $self;
}

sub populate {
my ($self, $filename) = @ _;

$self->{size} = -s $salf->{ startfile} . “/$filename’;
$self->{age} = -M “ $self->{ startfile} /Sfilename’;
$self->{ name} = $filename;
if ($filenamene’. &&
$filenamene*..’ &&
I -l “$self->{ startfile} /$filename” & &
-d “$self->{ startfile} /$filename”) {
$self->{isdir} = 1;
}else{
$salf->{isdir} = O;

414



}
}

sub deserialize {
my ($self, $seridform) = @ ;

$seriaform =~ sNII';
($salf->{ startfile},
$eelf->{size},
$self->{ age},
$self->{ name},
$self->{isdir}) = split(‘\[', $seridform);
}

sub seridize {
my $self = shift @_;

return “//f” . join(‘[, $self->{ startfile},
$salf->{size},
$self->{ age},
$self->{ name},
$salf->{isdir}):
}

sub setsubdir {
my ($self, $subdir) = @_;

unless ($self->{isdir}) {
die “ Attempt to set subdirectory on non-directory!”;

}

$self->{ subdir} = $subdir;
}

sub display {
my ($self, $level) = @ _;
$Slevel = 0 unless Slevel;
print“ “ x (3* $level);
printf “%s%s (%d bytes)\n”,
($self->{isdir} ?“directory “ : “"),
“$self->{ startfile} /$sel f->{ name} ",
Pself->{size};
}
1
Listing 21-4 is the Perl program to accompany the previous code. It has been modified to use serialization as well.
Listing 21-4: Example usage of FileObject
#/usr/bin/perl -w

use DB _File;
require FileObject;

my %dirs = ();
tie(%dirs, “DB_File”, “Dirs.hash”) or die “Couldn’t tie: $\n";

# Perl’sunlessisaninverseif. Thatis, unless(a) isthe same as
#if (1(a)).

415



unless (SARGVIQ]) {
print “Displaying saved data:\n”;
printit(\%dirs, 0);
exit 0;

}

#-d isaPerl shorthand. It does a stat() on the passed filename and
# then looks at the mode. If the filename isadirectory, it returnstrue;
#if not, it returns false.

unless (-d SARGVIQ]) {
die “The filename supplied was not a directory.”

}

dircontents($ARGV[0], \%dirs);
printit(\%dirs, 0);

untie(%dirs);

sub dircontents{
my ($startname, $retval) = @_;

my $filename;
$retval ={} unless ($retval);
local *DH; # Ensure that the handle islocally scoped

# Thisisthe same as DH = opendir(“filename”) in C.
#1n C, you can use DIR *DH; to declare the variable.

unless(opendir(DH, $startname)) {
warn “Couldn’t open directory $startname: $!”;
return undef;

}

#In C, readdir() returns a pointer to struct dirent, whose members are
# defined in readdir(3). In Perl, returns one file in scalar context,
# or al remaining filenamesin list context.
while ($filename = readdir(DH)) {

my $object = new FileObject($startname);

$object->popul ate($filename);

if ($object->{isdir}) {

dircontents(“ $startname/$filename”, $retval);

$retval->{ “ $startname/$filename’} = $object->serialize();
}

closedir(DH);
return %$retval;
}

sub printit {
my ($ref, $Scount) = @ _;
my $key;
my $counter = 0;

foreach $key (sort keys %6$ref) {
my $object = new FileObject($ref->{ $key});
$obj ect->display($count);
}
}

Examining the code, you can see that FileObject.pm contains some new code. There is a subroutine called serialize that generates a

416



simple string based on the contents of the object. As a special identifier, it startsthis string out with three slashes so that it is easily
distinguishable from others. Then it joins together various data from the object, separated by the pipe symbol.

Note The pipe symbol, and even the three leading slashes, are valid charactersin the file system, so this code can fail if
files containing such codes are encountered. Solutionsto this problem could be a further encoding of the strings

(perhaps in a hexadecimal notation), selection of alternative characters, or encoding length information and then
the strings themsel ves.

An accompanying deserialize function does the opposite—it first strips off the leading slashes and then splits the input into the
original parts. The new function has been modified as well with a handy shortcut: if it is called with a seriaized version of the
object (which it can detect from the leading slashes), it initializes the object to its deserialized form. Thus, the printit function in
the main program can simply create an object for each entry in the database and ask the object to display itself.

Note that the subdir information is not stored in the serialized string. The reason isthat thisinformation is simply areference, and
as you know, references cannot be stored in a database. However, because the object is not being used in a nested fashion in this
program anyway, that limitation is not a problem.

If you want to try out this program, go ahead and do so. As usual, first remove the Dirs.hash file. Then try the program. Hereis an
example of the results after a second execution of the program, where it is called to display the data it saved the first time:

$ ./ch21-4.pl
Displaying saved data:
letc/X11/. (1024 bytes)
letc/X11/.. (6144 bytes)
directory /etc/X11/WindowM aker (2048 bytes)
letc/X 11/WindowM aker/. (2048 bytes)
letc/X11/WindowMaker/.. (1024 bytes)
[etc/X11/WindowM aker/appearance.menu (553 bytes)
letc/X11/WindowM aker/background.menu (1170 bytes)
letc/X11/WindowM aker/menu (8164 bytes)
letc/X11/WindowM aker/menu.ca (10101 bytes)
letc/X11/WindowM aker/menu.cz (4189 bytes)

Again, this output continues for over a hundred additional lines, but you can see the point. The data, including full filename and
size, has been saved in the database and can be recalled without having to traverse the directory tree again.

Using the Data Dumper

You saw earlier in this chapter all the hoops that were necessary to be able to store complex data structures in a database. Perl
offers away to ease those problems, though: the Data Dumper, known in Perl as Data::Dumper. This piece of code takes
something—almost anything—and effectively serializes the entire object. What's more impressive, though, isthat the serial
representation of the object is actually executable Perl code. Thus, to load in such a serialized version and recreate the original, all
you haveto do isrun eval over it. Thus, this type of code may be ideal for the dilemma of nested hashes as you have already seen.

However, there are some downsides as compared to the database format. First, the Data Dumper does not provide atie interface,
so this sort of access can not happen automatically. Second, the Data Dumper is not well-suited to dealing with large amounts of
data, because it must store everything in memory (and even two copiesin memory, for abrief time). Thus, it cannot really be used
as away of manipulating large amounts of data by using a hard drive. If you want to serialize data in a security-conscious
environment, for instance as a network server, you will not want to use the Data Dumper, because restoring the data allows people
to run arbitrary Perl code in the input, a security hazard. Finally, Data Dumper can be somewhat slow compared to a database. So
it's mostly useful for saving data between program executions—perhaps as a Save operation in your program.

That said, usage of the Data Dumper is extremely easy; serializing even alarge and complex data structure (such as one that
contains objects) or nested hashes is not difficult. Listing 21-5 shows arevised Perl program. It also requires a FileObject.pm file;
either the final version from Chapter 20 or the version presented in the previous section here will work fine.

Listing 21-5: Using the Data Dumper

#/usr/bin/perl -w

use Data::Dumper;
require FileObject;

417



# Perl’sunlessisaninverseif. Thatis, unless(a) isthe same as
#if (1(a).

unless (SARGVI[0]) {
my $datastr;
my $dirs;

print “No argument found, displaying information from Dirs.dump!\n”;

open DUMPFILE, “Dirs.dump” or die “Couldn’t read from Dirs.dump: $I\n”;
$datastr = join(*’, <DUMPFILE>);

eval $datastr;
printit($dirs, 0);
exit 0;
}
#-d isaPerl shorthand. It does a stat() on the passed filename and
# then looks at the mode. If the filename isadirectory, it returnstrue;

#if not, it returns false.

unless (-d SARGVIQ]) {
die “The filename supplied was not a directory.”

}

my $dirs = dircontents($JARGV[Q]);
open DUMPFILE, “>Dirs.dump” or die “Couldn’t open Dirs.dump: $\n"

my $dump = new Data::Dumper([$dirs], [‘dirs']);

$dump->Indent(1);
print DUM PFILE $dump->Dump;

sub dircontents{
my $startname = shift @_;

my $filename;
my $retval = {}; # Initialize with an empty hash reference
local *DH; # Ensure that the handle islocally scoped

# Thisisthe same as DH = opendir(“filename”) in C.
#1n C, you can use DIR *DH; to declare the variable.

unless(opendir(DH, $startname)) {
warn “Couldn’t open directory $startname: $!”;

return undef;
}

#In C, readdir() returns a pointer to struct dirent, whose members are
# defined in readdir(3). In Perl, returns one file in scalar context,
# or al remaining filenamesin list context.

while ($filename = readdir(DH)) {
my $object = new FileObject($startname);

$object->popul ate($filename);

if ($object->{isdir}) {
$obj ect->setsubdir(dircontents(* $startname/$filename”));

}
$retval->{ $filename} = $object;
}

closedir(DH);
return $retval;

}

418



sub printit {
my ($ref, $count) = @_;
my $key;

foreach $key (sort keys %$ref) {
$ref->{ $key} ->display($count);
if ($ref->{ $key}->{isdir}) {
printit($ref->{ $key} ->{ subdir}, $count + 1)
}
}
}

Looking at the code, take note of a new use statement at the top that bringsin the Data Dumper. Instead of aborting when no
argument is passed, the program then instead |oads the saved data and displaysit. To do that, the program first opens Dirs.dump
for reading. Thefileisthen read in and stored in $datastr. The join call here simply joins together al the stringsin the array that
represents the whole file that the angle-bracket operator returns. The eval function isinvoked, which actually parses the input
string as Perl code—inside this code, the $dirs variable is set. The information is then printed out and the program exits.

If an argument was present, the reference to a hash ($dirs) is built exactly as before. Then the output dump file is opened for
writing. A new object is created. The parameters to new are areference to an array containing all the items to dump and a second
reference to an array containing their names; this second reference to an array is optional. Because only one thing is being dumped,
it ($dirs) is passed as the sole element in the first array and its name as the sole element in the second. After that, the output
indentation style is set, and then the data is dumped. Note that nothing is even displayed in this situation; the only way to get a
display from this code isto run it with no arguments, forcing it to load its data from the saved file. Try running it the first time:

$./ch21-5.pl /etc/X 11

The program traverses the specified directory and savesitsresults. If you're curious, you can actually look at these results—
they're plain ASCII. Here are the first few lines from that file on my system; these lines may be different on yours:

$dirs={
‘fvwm’ => bless( {
‘subdir’ => {

‘default-style.hook’ => bless( {
‘name’ => ‘default-style.hook’,
‘isdir =>10,

‘size’ => 309,

‘age’ =>109.185381944444’,

‘startfile’ => ‘/etc/X11/fvwm’
}, ‘FileObject’ ),
‘init.hook’ => bless( {

‘name’ => ‘init.hook’,

isdir => 10,

‘size’ => 409,

‘age’ =>109.185381944444’,

‘gtartfile’ =>‘/etc/X 11/ fvwm’
}, ‘FileObject’ ),

Note that the system completely understood the nested object, even taking care to bless the objects as they are recreated.
Everything was preserved, down to the last detail. Y ou can check on the results of reading the data back in:

$ ./ch21-5.pl
No argument found, displaying information from Dirs.dump!
/etc/X11/. (1024 bytes)
letc/X11/.. (6144 bytes)
directory /etc/X11/WindowM aker (2048 bytes)
etc/X 11/WindowM aker/. (2048 bytes)
letc/X 11/WindowMaker/.. (1024 bytes)
[etc/X 11/WindowM aker/appearance.menu (553 bytes)
/etc/X 11/WindowM aker/background.menu (1170 bytes)
/etc/X 11/WindowM aker/menu (8164 bytes)
/etc/X11/WindowM aker/menu.ca (10101 bytes)

419



[etc/X 11/WindowM aker/menu.cz (4189 bytes)
/etc/X 11/WindowM aker/menu.da (9164 bytes)

This information once again continues for over one hundred lines. Y ou can see from here that the data was read back in properly.
It was able to be printed out with absolutely no modification to that code whatsoever—something that took more work with the
database.

The Data Dumper really isthat simple to use. In most cases, it is able to make a perfect representation of your informationin a
string, which can be restored by simply running eval on the string.

Data Dumper options
In the sample codein Listing 21-5, there was a line that told the Data Dumper how to indent its output. There are several options
available to you in this fashion. These are set with the syntax $obj->Item(newval ue)—although some of them make the new value

optional. Table 21-1 lists the options that you may set for Data Dumper.

Table21-1: Data: Dumper Options

Option M eaning
Bless If for some reason you prefer to use a function other than bless when restoring objects, you can passits

name as a string to this configuration option.

Deepcopy When using objects containing references, it's possible to have more than one reference pointing to the
same data. With this option, the dumped data will try to minimize this behavior. Usually, you prefer the
dumped data to be as much like the original as possible, so the default is 0, but you can set it to 1 to enable
this other behavior.

Freezer If you want something special to be done to your objects before they are dumped, you can use this option
to indicate a particular method name. If you specify a method with Freezer, that method will be run
immediately before the Data Dumper dumps the object in question. See also the Toaster option.

Indent Determines how the output from the Dumper will be indented. The optionsare 0, 1, 2, and 3.0ption 0
causes there to be no indentation. In fact, there will be no white space at all—everything will be on one
singleline.

Option 1 causes the indentation to be similar to ($level * 2)—that is, the indentation value for each level is
constant. Thisis often useful if option 2 produces output that is too wide to conveniently work with.

Option 2 (the default) indents each line such that it lines up with various items on the preceding line. This
has the effect of generally indenting things more, but for objects without much nested data, it can be more
readable than option 1.

Option 3 adds comments to the output indicating the index of each value in an array. Other than that, it is
like option 2.

Names Replaces Data Dumper’slist of the names of the objects to dump. If no valueis specified, it smply returns
the existing settings.

Pad Causes each line to begin with the specified string. The default isto use no pad.
Purity Setting this value to 1, instead of the default of O, causes the Data Dumper to go to more effort to recreate
various sets of references. Option O is sufficient for most situations, but if you have a complex network of

references, you may need to try option 1.

Quotekeys When this option is set to 1, keys for a hash are aways enclosed in single quotes. When it is set to 0, keys
are not quoted unless necessary. The default is 1.

420



Terse When set to 1, causes the Data Dumper to generate output that may be more easily parsable by hand, but
may not necessarily form legal Perl code. The default is 0.

Toaster Like the Freezer option, except the specified method is called immediately after the datais restored. Asa
special additional requirement, this method must also return $self.

Useqq When set to 1, causes Data Dumper to use double quotes instead of single quotes for strings. The Data
Dumper will escape any characters necessary for this usage. Thisoption is not yet availablein all
implementations and may slow down both the dump and the restore process.

Values Replaces the Data Dumper’ slist of the objects to dump. If no value is specified, it smply returnsthe
existing settings.
Varname Changes the standard variable name used for generating names for variables whose names have not been

passed to the Data Dumper. The default isVAR.
Output and Special Concerns

Y ou have already seen many scripts that generate output in one form or another. Some may simply display messages on the
screen; others save data into files. Here, we'll go into some more detail on these items and on dealing with files themselves.

Basic output
The most basic way to generate output in Perl isto use print to display data on standard output, the terminal. Because Perl provides
you with variable interpolation (the capability to put the contents of avariable directly inside a string), thisis often all that is

necessary. Thereisfrequently no need to use something as complex as C's printf() in Perl.

Using print is simple. It takes one or more strings as arguments and displays them to standard output, one after another. Perl’s print
does not automatically add a newline at the end of the text; you need to use \n in your string to do that.

For more rigorous printing needs, Perl has printf. This function works the same asits C counterpart—it takes a format string and
then zero or more additional items, depending on the format string. Perl supports most all the syntax of the C version, except for
the asterisk operator, which is unnecessary in Perl due to string interpolation.
Output to filesor commands
In order to write data to arbitrary files, you first need to open the filesasin C. With Perl, you use the open command. Itsfirst
argument is afile handle that should be created for the file, and the second argument is a string indicating the access type and the
filename. For instance, to open afile for writing, you could use:
open(FILEHANDLE, “>filename”);
There are also other options that you can use. For instance, you can open afile in append mode by using a syntax like this:
open(FILEHANDLE, “>filename”);

Optionsfor open

Y ou can even send output to, or read input from, arbitrary commands. Table 21-2 presents a list of the most common options that
you can pass to Perl’s open.

Table 21-2: Optionsfor open

L
Option Location M eaning
L
< start Opensthefile for reading. If omitted, thisisthe default behavior.
> start Opensthefile for writing. If the file already exists, its contents will be erased. If the file

does not already exigt, it will be created.
421



> start Opens the file for writing in append mode. All data will be added to the end of the file.
If the file does not already exist, it will be created.

+< start Opensthefile for both reading and writing.

+> start Also opensthe file for both reading and writing, but will destroy any data already in the
file. Therefore, +< is generally preferable.

[ start Opens a pipe to the program specified after the pipe character. Data written to the file
handle will be sent directly to the program.

| end Opens a pipe from the program specified before the pipe character. Reads on the file
handle will read data directly from the program.

Once you have opened afile handle, you can use standard functions like print and printf to writeto it. Simply specify the file
handle on the line for those functions. Note, however, that you should not put a comma after the file handle. As an example, all of
these forms are valid ways to do this:

print FILEHANDLE “Hi”, “ there\n”;
print(FILEHANDLE “Good”, “ morning\n”);
print FILEHANDLE (“How”, “ are youn");
printf FILEHANDLE “%s\n", “Hello”;

Passing file handles

File handles are somewhat unique in Perl, as they do not behave like regular variables. However, they still do have an entry in the
Perl namespace, so they can be passed—but with a unique syntax. To pass afile handle, you can use the \* FILEHANDLE syntax.
To deal with the file handle in the function, then, you just use the variable that you stored the passed value in. Here is an example:

#/usr/bin/perl -w
open HANDLE, “>blah.txt” or die “Couldn’t open file: $!”;
printit\*HANDLE);

sub printit {
my $fh = shift @_;

print $fh “Hil\n";
}

The system was able to write out to that file handle successfully. Inside the printit subroutine, you can use $fh just as you would
have used HANDLE in the main program. Y ou can also pass the file handle from printit to another subroutine; ssimply pass $fh to
it.

It's also possible to read from afile handle passed in such a manner. The following program, for instance, tells a subroutine to read
from standard inpuit:

#/usr/bin/perl -w
readit(\* STDIN);
sub readit {
my $fh = shift @_;
my $text;

while ($text = <$fh>) {
print “You typed: $text”;
}

422



}

Scoping file handles
Another problem that could ariseis that you need file handles to be valid only in a particular subroutine—normally, they are global
to each package in your program. We needed this sort of functionality, for instance, with the recursive function in the example
program. Whenever a subroutine opens afile for its own private use, it really ought to keep the file handle private.

Y ou keep the handle private by declaring the typeglob for the file handle local; my will not work for this particular situation. For
example:

local *FILEHANDLE;
open(FILEHANDLE, “>file.txt");
Cross-Reference
For more information on my, see the Subroutines and Scope section in Chapter 20, “Introducing Perl.”

This code snippet will force the handle named FILEHANDLE to be valid only in the current subroutine (or onesthat it calls). It will
not be visible once the subroutine returns, or if a called subroutine also declares alocal item named FILEHANDLE.
Summary

In this chapter, you learned about dealing with datain Perl. Specifically, you learned:

* You can use the angle-bracket operator with afile handle to read lines from the file. For instance, <STDIN> will read lines
from standard inpuit.

» The %ENV hash contains the process's environment variables.
« Basic regular expression operators, split, and grep can all be used to find or parse data.
» You can storeinformation in alocal database by tying a hash to the database.
» Thustying a hash enables you to both have persistent storage and use data greater than will fit into memory at once.
» Databases can only store scalar information, so nested structures cannot be stored in them.

e The Data Dumper can dump a perfect representation of nearly all data structures, but it is slower than databases and loads all
the datainto memory at once.

 You can use basic functions like print and printf to write data out to files.
* To pass afile handle, use \* FILEHANDLE.

» Tomake afile handle created in a subroutine local, use local *FILEHANDLE before opening it.
Chapter 22: CGI Programming

Overview

Today, the World Wide Web has become an increasingly important part of the Internet, responsible for everything from providing
documentation to taking online orders for products. Originally, the Web was made up of static data—that is, files on disk. However,
astechnology evolved, newer ways of getting information to the web browser were developed. This chapter deals with a way of
generating information on-the-fly to present to the browser. This information may be calculated based on information the browser
sent to the server before, such as the results of a search request. Or it may be customized in some way for a particular user. Maybe it
isused to display a screen that always has a summary of special sales for today. It might be used to generate content based on a
database—perhaps a current temperature or weather forcast, or inventory information for a product.

CGI and the Web

423



Asfar as web browsers are concerned, this sort of dynamically generated content is no different from any other. It's still made up
of HTML code, and is sent to the browser in exactly the same way. The difference, then, is on the server side. Instead of simply
sending afile that contains HTML to the browser, the server invokes a program. This program then generates the HTML that is
sent to the browser.

Sometimes certain things need to be communicated between the server and the program that runs. This might include the data
supplied in an input form, the IP address of the remote host, and so on. Thisis where the Common Gateway Interface (CGI) comes
in: it defines how these data is passed between the server and the program, and lets you use the same program with many different
servers—or a program written in any number of different languages with your servers.

Y ou can, of course, write a program in any language that manually parses the information passed to you with CGI. However, Perl
offers you several CGl libraries that do these tasks for you, thus freeing you up to concentrate on the things that are specific to
your CGI scripts.

Several different CGl libraries are available with Perl. In this chapter, | will use CGIl.pm, which actually ships with some current
Perl distributions. Thisisafull-featured and robust library that is used by many people for their scripts.

Note Inorder to run the CGI examplesin this chapter on your own machine, you'll need a working web server and a
CGl directory within that server that is capable of running your scripts. The exact way of configuring this varies
depending on the web server you're running; consult your server documentation for details. Unlike the other Perl
scripts we' ve dealt with thus far, CGI scripts are executed by the web server, not directly by you. You simply need
to move them in place, mark them executable, and then pull up the URL that corresponds to your script by using a
web browser.

While there is no requirement that CGI scripts receive data from a user, acommon use for CGI scriptsisto receive input from a
web-based form and generate the appropriate result. This could mean saving the datain afile, emailing it to someone, or simply
displaying requested information back to the browser.

Y our forms will ask for information from the reader, and will pass the resultsin to your CGI script. Your script can then retrieve the
information from the CGI object and use it to generate areply.
Writing CGI Scripts

It's time to begin writing some CGI scripts. I'll start with afairly basic one that simply displays a greeting—a classical “Hello
World” example:

#!/usr/bin/perl -Tw

use CGI qw(:standard);
print header;

print start_html(‘Hello World!");
print “Hello, World!<P>";
print “Greetings from process $$\n”;

print end_html;

When you look at this Perl code, you'll notice the first line already contains something new: -T. This option enables Perl’ s taint
mode. In this mode, any data that comes from an unsecure source—as input in a CGl script, from an environment variable, from a
file, and so on—is not allowed to be used in an insecure area until is has been validated by your program. Taint checking is a great
way to make sure that your scripts are as secure as possible.

Tip You may have noticed anew syntax in the above example: qw(:standard). The qw operator is Perl’ s quote-by-word
operator. That means that you can specify several items inside the parentheses, separated by a space. Perl will
convert these items into the elements of an array. This handy shortcut is frequently used with CGIl.pm.

Then, by setting $|, you disable the output caching in the Perl 1/0 routines. For a script such asthis, thisis not really necessary.

However, if your scripts take alittle while to run (for instance, when displaying search results), it's useful to give users partial
information as soon as possible.

424



Next thereisaline that bringsin the CGlI library and various standard variables and functions such as header and start_html. The
HTTP header is printed next, followed by the HTML header, and a message. Then, there is a message containing the process ID to
display—just so you can see that the content is dynamic. Each time you reload the page, this value changes.

Finally, the HTML closing tags are printed, and then the script exits. The following is the code that it generates:

<IDOCTYPE HTML PUBLIC “-//IETFH/DTD HTML//EN">
<HTML><HEAD><TITLE>Hello World!</TITLE>
</HEAD><BODY >Hello, World!<P>Greetings from process 1331
</BODY></HTML>

Thefirst two lines, and up until the start of the message, are generated by start_html. The last lineis generated by the last linein
the program. When viewed in aweb browser, it appears as follows:

Hello, World!
Greetings from process 1331
With afew modifications, you can make this program interactive. Here's a modified version:

#/usr/bin/perl -Tw

use CGI gw(:standard);
my $q = new CGl;

print header;
print start_html(*Hello World!");

if ($0->param(‘ message’)) {
print “Hello, World!<P>";
print “Greetings from process $$\n<P>\n";
print “Y our message was;\n<FONT COLOR=blue>";
print $g->param(‘ message');
print “</FONT>\n";
} else{
print <<’EOF’;
Please enter a message:<P>
<FORM METHOD=POST>
<input type="text” name="message” size=30>
<BR>
<input type="submit” name="submit” value="Go">
</FORM>
EOF

}

print end_html;

Thistime, when you first invoke the CGI script, it displays aform asking for a message. It does this because there was no item
named message passed in to the CGlI the first time that you run it. However, when you fill out that field on the form and click Go,
the text that you type is sent al ong as the message value, which can be accessed with $g->param(‘ message’) in this case.
Therefore, the logic isfairly straightforward—if there is a message, display it; if not, ask for it. Note that the initial form contains
nothing dynamic; that is, you could embed it in a standard HTML fileif you prefer.

To go abit farther, make the code such that the user can switch between the entry and the display screens at will, and that the CGlI
program can keep track of some data while thisis being done:

#!/usr/bin/perl -Tw

425



use CGI gw(:standard);
my $q = new CGl;

print header;
print start_html(*Hello World!");

my $count = $g->param(‘ count’) ? $g->param(‘count’) : 1;

if ($g->param(‘ mode’) eq ‘display’) {
print “Hello, World!<P>";
print “Greetings from process $$\n<P>\n";
print “Message number $count:\n<FONT COLOR=blue>";
print $g->param(‘ message’);
print “</FONT>\n<P>\n";
print <<”EOF";
<FORM METHOD=POST>
EOF
print ‘ <input type="hidden” name="count” value="";
print $count + 1;
print ““>";
print <<"EOF";

<input type="submit” name="submit” value="Enter another message”>
</FORM>
EOF
} else{
print <<”EOF";
Please enter message number $count:<P>
<FORM METHOD=POST>
<input type="text" name="message" size=30>
<input type="hidden” name="count” value="$count”>
<input type="hidden” name="mode" value="display”>
<BR>
<input type="submit” name="submit” value="Go">
</[FORM>
EOF

}

print end_html;

Thistime, there are two screens, both with dynamic content, and both with forms. Several things are tracked between the screens.
Thefirst is a message count. If the CGlI isinvoked with no count, the variable $count is set to 1; otherwise, it's set to the value that
was passed in. Then, if no mode parameter was passed to the CGl, it displays a default screen, which is the message inputthat
occurs after the else. Note that, in addition to having an input field for the text, there are two hidden fields as well. These enable
the form to pass aong data to the CGI when the form is submitted without the user having to supply it. Thus, we pass aong the
count automatically—there’ s no need for the user to have to worry about it. Also, we pass along a mode value that tells the script
that it should go into a display mode instead of asking for a message.

When the script is run with a mode parameter set to display, it displays a standard Hello World message. But after that, it generates
another form. This form has no opportunity for input; it just contains a hidden field. Thisfield contains the value of count, plus
one. Thisway, when the user clicks the submit button, the count will be incremented for the next message.

To makeit easier for the user, it might be nice to be able to suggest the last message as a default for the text input area the next
timeit'sdisplayed. It's possible to do that with the existing framework, but it can get a bit ugly to have to do al of this manually.
Fortunately, the CGI library provides anice way to build forms automatically. What's more, the form elements automatically set
their defaultsto the current value, instantly making the form friendly for users. Here's a version of the code that does essentially
the same as the preceding example, but has been rewritten to use the CGl libraries form functions (from here on, I'll use these
functionsin code in this chapter):

426



#!/usr/bin/perl -Tw
$=1;

use CGI qw(:standard);
my $q = new CGl;

print header;

print start_html(‘Hello World!");
my $count = $g->param(‘ count’) ? $g->param(‘count’) : 1;

if ($g->param(‘ mode’) eq ‘display’) {
print “Hello, World!<P>";
print “Greetings from process $$\n<P>\n";
print “Message number $count:\n<FONT COLOR=blue>";
print $g->param(‘ message’);
print “</FONT>\n<P>\n";
print $g->startform(-method => ‘ POST");
print $g->hidden(-name => ‘count’, -default => $count + 1,
-override => 1), “\n";
print $g->hidden(-name => ‘ message’), “\n”;
print $g->submit(‘ submit’, ‘ Enter another message'), “\n”;
print $g->endform;
} else{
print “Please enter message number $count:<P>\n";
print $g->startform(-method => ‘ POST");
print $g->textfield(-name => ‘ message’, -size => 30), “\n";
print $g->hidden(-name => ‘ count’, -value => $count), “\n”;
print $g->hidden(-name => ‘mode’, -value => ‘display’), “\n<BR>\n";
print $g->submit(‘ submit’, ‘Go’), “\n”;
print $g->endform;

print end_html;

Notice how much cleaner this code is. Not only isit shorter than the previous version, but it does more. Let’ s take alook at how
the code is working. As before, I'll begin the analysis with the default screen, the code for which occurs after the el se statement.
The familiar prompt asks for a message. Then, there isthe start of aform. The first item in the form isatext entry field of size
30—the same as was used before. Because the CGl library uses defaults, if there is a value for message passed in to the script, it
automatically sets the default here. Next, the count valueis placed in a hidden field. The default mechanism would work here, too,
except on the first time—you have to pass in the value there because no previous value for count was passed in. Then thereisa
hidden field for the mode setting, a submit button, and the end of the form.

Looking at the code for the display screen, again there is the familiar code displaying the message in blue. Then thereisthe form,
which starts out with a hidden field for the count. This time, the default has to be set explicitly. What's more, because we are
changing the value of thisitem, you need to tell the CGlI library to override the normal default; otherwise, the normal default takes
precedence over the onein your script. Following that, there is another hidden field with the message. Thisis so that the entry
screen has something to show for the default. Notice once again that you don’t have to say explicitly what the field's contents are
because the CGI library automatically sets the default based on what was passed in to the script. Finally, thereis a submit button
and the end of the form.

Many CGI scriptsrun in asequential mode order. That is, they display a page of information, and then successive ordered pages
based on the input that went before. Thisis common in online ordering and payment systems, database interfaces, and so on.
Listing 22-1 extends the simple message-display program to run in this sort of system.

Note Listing 22-1 isavailable online.

Listing 22-1: CGI script with multiple pages

427



#!/usr/bin/perl -Tw

# Turn off output buffering.

# Bring in the CGlI library.
use CGI qw(:standard);

# Create anew CGI object.
my $q = new CGl;

# Print the HT TP header.
print header;

# Select a default mode.
my $mode = “mode " . ($g->param(‘ mode’) || ‘ start’);

# Eliminate something invalid.

unless ($mode =~ /*mode_[a-zA-Z]+$/) {
$mode = ‘mode_error’;

}

# Call the subroutine that handles that mode.
& $mode();

# End the HTML.

print end_html;

###H program exits here ###

sub mode_start {
print start_html(* Welcome to Message Displayer’);
print <<’EOF’;
Welcome to the Message Displayer! Through this program, you will get
to compose a message and select how it will be displayed on-screen.
<p>
EOF
print ContinueButton(‘ EnterMessage’);

}

sub mode_EnterMessage {
print start_html(* Message Displayer: Enter Message’);
print <<’EOF’;
Now isthe timeto enter the message to display. Y ou will have
options to configure it later.
<p>
EOF

# Generate aform to use to enter the message.

print $g->startform(-method => * POST");
print “Y our message:\n<BR>\n";
print $g->textarea(-name => ‘message’,
-rows => 10,
-columns => 40);

428



print “<BR>";
print ContinueButton(‘ SelectColor’, 1);
print $g->endform;

}

sub mode_SelectColor {
# If there was no message, jump back to that mode.
unless ($g->param(‘ message’)) {
return mode_EnterMessage();
}

# Now start this one.
# Here are the colorsfor thelist.

my @colors= (‘red’, ‘green’, ‘blue’, ‘yellow’, ‘black’, ‘white',
‘orange’, ‘pink’, ‘#FFFFFF, ‘#AC0000', ‘#FFOOFF');

# Start the HTML and display the existing message.

print start_html(* Message Displayer: Select Color’);
print <<"EOF’;
Y ou now need to select the color for your message. Y our messageis:
<HR>
EOF
print $g->param(‘ message');
print “<HR>\n";

# Start the form.
print $g->startform(-method => ‘ POST");

# Display thelist.
print $g->scrolling_list(-name => ‘color’,
-values => \@colors,
-Size=> 4,
-default => ‘blue’);
print “<P>\n";

# Display the button to use to continue to the next step.
print ContinueButton(* SelectFont’, 1);
print $g->endform;

}

sub mode_SelectFont {
# If no message or color, jump back alevel.
# Thisisfor error-checking.
unless ($g->param(‘ message’) & & $g->param(‘ color’)) {
return mode_SelectColor();

}

# Now start this one.
print <<EOF;
Now that you have selected your message and its color, you get to select some

attributes for it. You may select none, al, or any number in between.
<pP>

Attributes:
<BR>
EOF
print $g->startform(-method => * POST");
print $g->checkbox_group(-name => ‘font’,
-values=>['bold’, ‘italic’, ‘underline’,

429



‘large’, ‘small’],
-linebreak => ‘true’);
print ContinueButton(‘ Confirm’, 1);
print $g->endform;
}

sub mode_Confirm {
# If no message or color, jump back alevel.
unless ($g->param(‘ message’) & & $g->param(‘ color’)) {
return mode_SelectColor();

}

# Now start this one.

print <<"EOF";
Here isthe data you have submitted for processing. If you believe thisis
correct, click Continue to view your message.
<p>
<TABLE WIDTH="100%" BORDER>
EOF
print “<TR><TD><B>Message</B><TD>", $g->param(‘ message’), “\n”;
print “<TR><TD><B>Color</B><TD>", $g->param(‘ color’), “\n";
print “<TR><TD><B>Attributes</B><TD>";
if ($g->param(‘font’)) {
print join(*, *, $g->param(‘font’));
} else{
print “None”;
}
print “\n</TABLE>\n";

print ContinueButton(* finish’);
}

sub mode finish {
# If no message or color, jump back alevel.
unless ($g->param(‘ message’) & & $g->param(‘ color’)) {
return mode_SelectColor();

}

# Now start this one.

my @closetags;

print <<’ EOF';

Hereis your message:

<HR>

EOF
print ‘<font color="", $g->param(‘color’), *“>;
unshift @closetags, ‘</[FONT>';

InsertAttr(‘bold’, ‘<B>", ‘</B>", \@closetags);
InsertAttr(‘italic’, ‘<I>’, ‘</I>", \@closetags);
InsertAttr(‘underling’, ‘<U>’, ‘</U>", \@cl osetags);
InsertAttr(‘large’, ‘<FONT SIZE="+2">", ‘</FONT>', \@cl osetags);
InsertAttr(‘small’, ‘<FONT SIZE="-2">", ‘</[FONT>', \@closetags);
print $g->param(‘ message');

# Display the closing tags.
print join(*’, @closetags);

print “\n<HR>\nThanks for using Message Displayer!\n”;
430



}

sub InsertAttr {

my ($val, $start, $end, Sarr) = @ _;

# unshift is used instead of push below because we want the values
# 1o be inserted at the start of the array since they have to be
# displayed in the inverse order that the were added.

if (isinarr($val, $g->param(‘font’))) {
print $start;
unshift @$arr, $end;

}
}

sub mode_error {

print start_html(* Error’);

print “1"m sorry, there was an error. Please use your browser’s back\n”;
print “button and retry the operation.\n”;

# This sub displays the button that takes the user to the next mode.

sub ContinueButton {

my ($mode, $suppressform) = @ _;
my $retval =*";
unless ($suppressform) {
$retval = $g->startform(-method => ‘POST’) . “\n”;

}

# Copy everything except the mode.
$retval .= CopyParams(‘ mode’) . “\n”;
# Insert the item for this mode.
$retval .= $g->hidden(-name => ‘mode’, -value => $mode,
-override=>1) . “\n”;
$retval .= $g->submit(‘ submit’, ‘ Continue’) . “\n”;
unless ($suppressform) {
$retval .= $g->endform . “\n”;

}

return $retval;
}

# Thisis used to generate hidden fields to pass along the current values
#to the next invocation. The parameters are an array of valuesto * not*

# pass along.

sub CopyParams {
my @keysTolghore=@_;
unshift @keysTolgnore, ‘submit’;
my $retval =*";
my $parameter;

foreach $parameter ($g->param) {
if ('isinarr($parameter, @keysTolgnore)) {
$retval .= $g->hidden(-name => $parameter,
-value => [$g->param($parameter)],
-override=>1) . “\n”;
}
}

return $retval;

431



}

# Returnstrue if the search term is found as an element in the array, or
#falseif not.

subisinarr {
my ($search, @array) = @_;
my $thisvalue;

foreach $thisvalue (@array) {
return 1 if ($thisvalue eq $search);

}

return O;

}
This program may seem complex, but if you analyze it in small chunks, perhapsit can be demystified a bit.

The program startsin afairly standard way, by bringing in the CGI library, printing a header, and so on. These three commands do
that:

use CGI qw(:standard);
my $q = new CGl;
print header;

Then it generates a string that is used to select which subroutine to use. Thisis done by generating a string that is used as a soft
reference, and then invoking it as a subroutine with that name. So, there is one subroutine for each mode in the program. After the

specified subroutine runs, the HTML footer is printed and the program exits. Hereisthe code that sets the $mode variable and
callsthe indicated subroutine:

my $mode = “mode " . ($g->param(‘ mode’) || ‘ start’);
unless ($mode =~ /*mode_[a-zA-Z]+$/) {
$mode = ‘mode_error’;

}
& $mode();

The first mode is named start, and is set as the default if no mode is specified, as may be the case if the CGI script were just
starting. It displays a short welcome message and a continue button. This button takes the person to the next mode.

This next mode, EnterM essage, asks the user to supply a message. When Continue is pressed, the script isinvoked again, with the
mode parameter indicating to go into the color selection area. Here's the code for the form generated in the EnterM essage mode:

print $g->startform(-method => ‘ POST");
print “Y our message:\n<BR>\n";
print $g->textarea(-name => ‘message’,
-rows => 10,
-columns => 40);
print “<BR>";
print ContinueButton(‘ SelectColor’, 1);
print $g->endform;

The same framework is used for picking colors, selecting fonts, and confirming the input. That is, there is a prompt for dataand a
confirmation button that takes the user to the next mode in sequence. Then, the final message is displayed.

The ContinueButton subroutine is responsible for generating the HTML for the Continue button. It can either generate the entire
form or live within another form. This program uses it within another form in all but the very first screen. It adds a hidden value
for the next mode, and then copies the hidden values for anything passed into this invocation of the script.

The CopyParams subroutine is responsible for doing this copying. Its parameters are the list of parameters to not copy, possibly
because they will be overridden by something else. Take specia note of the way the hidden field is created here. The value that it
is set to is passed in as a reference to an anonymous array, whose elements are returned by $g->param. The reason for thisis that
sometimes, there may be multiple values for a single parameter. For instance, the attribute selection screen may return values of
font set to both bold and italic. If only one of these is passed through, the remainder of the information islost. By using this syntax,

432



all the values are preserved for the next invocation of the script.

Finally, theisinarr subroutine determines whether agiven element isin an array. Thisisa useful all-around function that you'll
probably find a use for even in non-CGI programs. Here' s its source code:

subisinarr {
my ($search, @array) = @_;
my $thisvalue;

foreach $thisvalue (@array) {
return 1 if ($thisvalue eq $search);

}

return O;

}

Perl’s CGl library is quite extensive; its manual page, which is mostly reference material, goes on for over 50 pages. For more
information about various other features, such as other form elements, or the arguments to use with them, please consult the CGlI
manpage on your Linux system, or use perldoc CGl.

Dealing with Connectionless I ssues

One of the problems facing programmers of CGlI scriptsis that the communication between the web browser and the web server is
essentially connectionless. That is, the browser requests some information, receives a response, and then disconnects. No
connection is maintained between the two. Moreover, a CGI script starts, executes, and finishes once for each connection. So, any
variables you set in your script, of course, will not be set the next time the script is run.

Many scripts need away to carry information along from one page to another. The example in the previous section needed this to
carry the message from the first to the last screen. Other common needs are with online ordering systems, to keep track of a
shopping cart contents or payment information; or search engines, to keep track of the query through multiple result pages.

One way of doing thisisto pass around all the information in hidden form fields. This method is simple and easy to implement.
However, it has some downsides. If the data being saved islarge, you can annoy your users by making them re-upload it for each
click they make. Not only that, but if you want to pass around this data outside a form (such as with a standard link), it is
somewhat difficult.

One solution to this problem is to generate a unique identification number or string at the first page. Only thisidentification
information is passed along in the form from screen to screen; the submitted data are stored on the server, presumably in a
database. This eliminates the problem with large data but instantly requires more server resources and a more complex script. Itis
possible to use this with both standard links and forms, because the data for the standard link is fairly smple. However, you have
to remember to passit along with each link.

Another option is to store this identification information or various other small itemsin a cookie. An advantage hereis that you do
not have to worry about passing the information from screen to screen because the user’s browser does this for you. However,
beware! Cookies are inherently unreliable and there' s little you can do about that because they’ re outside of your control. Many
proxy servers intercept cookies and block them from being set. Current browsers have options to disable cookie support, and some
current browsers don't have cookie support at all. Therefore, although cookies are quite useful in theory, in practice, their
usefulness is somewhat limited.

One approach isto use cookiesif available and fall back on hidden form fields if necessary. This enables you to use the elegance
of cookiesif possible, and to still present a useful interface if they’re not available.

Some people choose to use cookies solely for noncritical functions. For instance, visitors to a site may be capable of selecting the
background color for the site, and this selection could be saved in their browsers as a cookie for any CGI script on the site to
follow. Although this may be a nice feature, it’s certainly not critical, and the added effort to implement it without cookies may not
be worth it.

When passing along any but the most trivial of information from one connection to the next, the second and third methods here
require some type of database storage on the server. In these situations, you may want to look at a Perl tied database if your server
issmall. Beware, though, that you need to lock your database file lest it be corrupted by two CGls writing to it at once!

Cross-Reference

433



See Chapter 14, “Introducing the Linux 1/0O,” for more details on file locking. Perl implements flock with the same syntax
asthe C call, so you should find locking in Perl easy to use after usingitin C.

For more serious needs, or serversthat are under a higher load, afull-fledged SQL database is probably called for. Some sites
already have such a database in place, such as Oracle. If you do not, don’t worry; several Open Source database servers are
available for free and have relatively easy installation procedures.

Cross-Reference

See Chapter 23, “SQL Databases with DBI,” for more details on using SQL databases within Perl.
Solving Perfor mance | ssues

AsI’ve aready mentioned, the CGI script is started fresh for each request that comesin. Thisisfine for CGI scripts that are not
used frequently (many times per minute). However, on a highly loaded server, this can significantly bog down the processor. This
effect only becomes worse if there is a SQL database backend for your script, because establishing a connection to one of these
databases typically can take alittle bit of time.

One solution isto use Apache’s mod_perl support. This module actually embeds a Perl interpreter inside the web server itself. This
means that your scripts can be loaded, compiled, and initialized once but yet till serve al the connection requests to them. This
can be amajor performance win for heavily loaded sites.

However, it also means that your scripts must be written in a much more careful way. Variables left around, files left open, and so
on, are not disposed of automatically when a page is sent because your script really doesn’t exit in those cases. Therefore, although
it's possible to have code that works both with and without the mod_perl environment, it can be a bit tricky. For more details, visit
http://perl.apache.org/.

There are other options. Oneisto use asmall C program as the CGI. This C program might open a socket to the real Perl script, pass
it the information, and pass the response back to the browser. In this situation, there is still afork and an exec, but the small C
program will have a much lower startup time. A final option isto use FastCGI support, which implements an idea similar to the
above.
Summary

In this chapter, you learned about writing CGI scripts for dynamic web page creation. Specifically, you learned:

» CGl scripts offer you away to become more interactive with visitors to your web site.
» Although CGI programs can be written in any language, Perl’s CGlI library makes an easy and powerful way to do so.

* Your scripts can receive input from the user by using forms.

 Stateinformation can be passed to your script by using hidden form fields.

» Other solutions, such as SQL databases and cookies, also can be helpful in preserving state information.

* Anembedded Perl interpreter in your web server can provide a boost for performance.
Chapter 23: SQL Databases with DBI

Overview

Asaglue language, one of the most crucial features of Perl liesin Perl’s ability to access data stored in databases. Since more and
more datais stored in ever-growing databases, it's essential that Perl provides the glue to get at your data. Perl does thisthrough a
series of add-on modules, designed to access.

This chapter coversthe DBI, or database interface, series of Perl modules, modules that provide the glue to talk to many different
databases such as Oracle or Informix. DBI goes further, though, in providing a consistent interface to access all these disparate
systems. That makes your job alot easier and really helps when you need to convert data from one database to another, for
example.

434



The DBI module itself provides the consistent interface. Then, to access a particular database, such as Oracle, you make use of a
special database driver, or DBD module, DBD::Oraclein this case.
Introducing Databases

Asdiscussed in Chapter 21, “Manipulating Data with Perl,” data storage is often one of the trickiest parts of writing alarge
application. Perl providestie-ins to some simple databases, but often thisis simply not sufficient. Y our application may need
something more powerful. Perhaps the database needs to reside on a computer separate from your application. Or perhaps you
need to be able to have many different processes—or even computers—access the data in the database at once. Y ou may need to
work with certain subsets of the data, or to be able to retrieve information using more than one key. Finally, maybe you need a
relational database so that you can join together information from multiple tables into a single coherent result.

SQL databases provide you with these capabilities. SQL, short for Structured Query Language, isitself only a query language, but
it forms a standard front end to many heavy-duty databases such as Oracle, mySQL, PostgreSQL , and Informix. Each database
manufacturer starts with SQL as a base and then adds on some unique features. Thus, SQL is similar but not identical across
different databases.

More important, though, are several other ideas inherent in modern SQL databases. First, there is a separation between your
process and the database server. This means that the server can just as easily be running on your own machine asit can be running
on amachine down the hall or across the country. These database servers can be accessed across the network.

Another important feature is that the database servers themselves can do some basic data analysis for you, thanks to the power of
SQL. The server evaluates your SQL requests and sends the result back to you.

There are several different ways to access these SQL databasesin Perl. One way is to use vendor-specific libraries. However, these
are implemented differently for each vendor, meaning that a change to adifferent SQL database server later could be extremely
difficult due to a change in the underlying API.

There is abetter way, though. Y ou can use the database interface, or DBI, module. DBI provides a universal front end for SQL
databases. It uses a driver architecture such that each different database type supported in Perl has its own database driver, or
DBD.

Y our applications are written using routines from DBI. DBI then converts these to appropriate lower-level calls to a database
library through the use of a DBD. This driver or library encodes the request for transmission to the database server. The server,
which may or may not be on your own computer, handles the request and sends the result back. The DBD parses the result, and
your application fetches it through DBI routines. Thus, even though the communications protocol and library may be significantly
different for each database, you can use almost identical calls for them in Perl.

To be able to run the examples in this chapter, you'll need three pieces of software: the DBI library, a SQL database supported by
DBI, and the DBD for your chosen database. Debian GNU/Linux ships with all of these; other distributions may or may not have
all of those pieces. If you need the DBI or DBD software, you can download it from

http://www.symbol stone.org/technology/perl/DBI/index.html. In this chapter, I’ll be using the PostgreSQL RDBMS for the
examples. ThisisaFree SQL database that runs well on Linux. If you do not have it aready, you may find it at
http://www.postgresqgl.org/.

Tip If you need help with installing DBI, you may consult the README file that comes with the DBI package. The DBI
site also contains some documentation on the topic.

Note Other SQL databases supported by DBI, such as mySQL or Oracle, will work fine as well, although some
examples may have to be modified dightly to work with them, especially with the connect calls and certain data
types.

I’ [l assume before proceeding that you have installed all of the software previously described aready and have it in aworking
condition. These examples are written with version 1.12 of DBI; if you have an older version and encounter difficulties, consider
upgrading your DBI (and perhaps DBD as well) to the latest version.

First Stepswith DBI

When you work with DBI, the general order of code is asfollows. Y ou will first connect to the database server, possibly passing
along some authentication information. Thiswill give you a database handle. Then you' |l generate queries and use DBI’ s prepare
method to ready them for query. After doing this, you'll receive a statement handle, which can be used to fetch the results of that
one particular query. When you have all the results, you'll be finished with the statement handle. Y ou may prepare and retrieve
many more items during your program’ s lifetime. When your program is finished, you'll disconnect from the database and exit.

435



Listing 23-1 shows one program that reads SQL commands from the operator, sends these commands to the database, and returns
the result. Note that this code is actually a bit more complex than most that you'll deal with because it doesn’t know in advance
what will be returned. However, you'll be able to use this program throughout the rest of the chapter to send commands directly to
the SQL server without having to write a separate program to send each one.

Note Most databases include such atool already; however, their interfaces vary significantly. For instance, PostgreSQL
includes psgl, and Oracle includes sglplus.

Note Listing 23-1 isavailable online.
Listing 23-1: Using the DBI module
#/usr/bin/perl -w

use DBI; # DBI library
use DBD::Pg; # Postgres driver

my $DBUSER = $ENV{USER};
my $SDBNAME = $DBUSER,;
# Connect to the database.

my $dbh = DBI->connect(“ dbi:Pg:dbname=$DBNAME”", “", “") or die
“Couldn’t connect to database: “ . DBI::errstr;

# Loop to read from terminal.

my $input;
my $querystr = *';
printmessage();

while ($input = <STDIN>) {
chomp $input; # Strip off trailing CR
Sinput =~ s\s+$//g; # Strip off other trailing whitespace
if ($input =~/;%/) { # If ends with a semicolon...
Sinput =~ &/;%//; # Strip off the semicolon
$querystr .= $input;  # Append to the query string
runquery($querystr);  # Run the query
$querystr = *'; # Reset querystring for next iteration
printmessage(); # Print instructions
} else{
$querystr .= “$input “;  # Append to query string
}
}

$dbh->disconnect;

sub printmessage {
print <<EOF;

Enter your query here. After each query, enter a semicolon at the end of the
last line or on aline by itself. When you're finished with the program,
press Ctrl+D.

EOF
}

sub runquery {
my $querystr = shift @_;
my $rowcount;

print “\n”;

436



my $sth = $dbh->prepare($querystr);

unless ($sth) {
print “Prepare FAILED: “ . $dbh->errstr . “\n”;
return;

}

my $executeresult = $sth->execute();

if (!$executeresult) {
print “ Execute FAILED: “ . $dbh->errstr . “\n”;
return;

}

$executeresult = “unknown” if ($executeresult == -1);
print “SUCCESS.\n”";

# If thiswas a query, display the results.

if ($sth->{NUM_OF _FIELDS}) {
print “Columns: “;
printjoin(‘, ¢, @{ $sth->{ NAME}}), “\n";
$rowcount = $sth->dump_results();

}

print “Number of rows returned or modified: “,
($rowcount) ? $rowcount : $executeresult, “\n”;

Let’s go through this code and analyze what it does. It begins by bringing in the DBI library and the DBD for PostgreSQL. Then, it
sets some defaults for the database name for the server, and a username if this would be used. After doing this, it connects to the
database server. If the connection fails, it prints out an error message indicating the reason for the failure. Next, it defines afew
variables, prints out a help message, and then enters aloop.

In thisloop, the code continues reading from standard input until EOF is reached. For each line, the trailing carriage return
character is stripped off. Then, any trailing white space is stripped off—this makes it easier to look for a semicolon at the end.
After stripping off this white space, the program checks to see if the line ends with a semicolon. If so, the semicolon is stripped,
the result is appended to the query string, and the runquery subroutineis called. After it returns, the query string isreset, the help is
displayed again, and the loop restarts. If there was no trailing semicolon, the input is simply appended to the query string, followed
by a space (for white space for separation from this line and the next).

After all theinput is through, the program disconnects from the database server and exits. The printmessage subroutine is
uninteresting; it ssimply displays a message. The runquery subroutine is the heart of the program. It handles most of the interaction
with the database server.

It begins by taking a query string as a parameter and printing out a blank line to visually separate the results from the query. Then
you cometo thisline:

my $sth = $dbh->prepare($querystr);

Thus begins the query within the database engine. Depending on the database, the query may be checked for syntax now, or later.
If there is aproblem, an error value is returned, and the unless check following the call to prepare will print out the error and exit
the subroutine. Otherwise, a statement handle is returned and stored in $sth. Whereas the database handle, $dbh, corresponds to all
communication with a particular database, a statement handle corresponds to all interaction with one particular query of the
database. From here on, only the statement handle will be used in this particular subroutine.

After preparing the statement handle, we execute it. This causes the query or request passed in to the function to be taken care of in
the database itself. Again, there is a possibility of failure here. If the syntax is bad, some databases will abort at this point. If this
happens, an error message is displayed and the subroutine returns.

Otherwise, if the request affected an unknown number of rows, thisis noted. This could be the case, for instance, during a create
table request. Regardless of the type of request, a message indicating a successful execution is displayed.

437



Next, the code needs to branch depending on what type of a query it was. In broad terms, there are two types of queriesin SQL:
select and nonselect queries. The former return data; the latter may make modifications but do not return any data from the database
itself. If the query was a select one, there will be at least one field (or column) in the result set. Therefore, you can use $sth-
>{NUM_OF FIELDS} to determine whether or not the query returned data. If it did, the code prints out alist of the columns,
followed by the data itself. Otherwise, the code simply skips to displaying how many rows were affected by the request.

Using SQL

Now that we covered getting started with the DBI series of modules, the next step is to go through some of the basic requests you
can make from your Perl scripts. These requests include creating new tables in the database, inserting data into tables, reading data
from the database, deleting items and updating records.

Note that this section is not intended to be a thorough introduction to SQL. SQL is avery powerful and versatile language; it can
be used to perform sophisticated data analysis and pull together data from many different sources. The following examples will go
over some of the capabilities of SQL, but you should consult a good SQL reference or tutorial if you wish to learn the full scope of
the language.

Note SQL isnot really designed for interactive use as we are doing in this chapter; however, this can be a useful
learning tool. SQL is designed such that you will write front ends to the database, tailored for your specific needs.
These are the things that you will learn how to do in this section. I'll show you several things here, interjecting my
comments between the items of information. Note also that SQL is case insensitive everywhere except inside
string literals. Many users, however, prefer to give SQL keywordsin al caps to distinguish them from
surrounding text, and | use that convention here.

To help get abetter handle on SQL itself, we'll use the ch23-1.pl example program provided previously. With this program, you

enter in SQL commands directly, allowing you to concentrate on the SQL commands themselves and not worry about the
underlying Perl code.

Creating atable

All data stored in a SQL database must be placed inside atable. SQL dataistyped; that is, you must declare what kind of data will
occur in each field ahead of time. The following tableis created to have two fields, an integer field and atext field:

$ ./ch23-1.pl
Enter your query here. After each query, enter a semicolon at the end of the
last line or on aline by itself. When you're finished with the program,

press Ctrl+D.

CREATE TABLE mytable (

number int,

string text

)i

SUCCESS.
Number of rows returned or modified: unknown

Now let’'s add some data. From here on, even though the program displays the help text, I'll omit it in the following section.
Inserting data
The following examples show how to insert new records into the database, in this case into the new table we just created.
INSERT INTO mytable VALUES (5, ‘qwerty’);

SUCCESS.
Number of rows returned or modified: 1

INSERT INTO mytable VALUES (5, ‘Hello');

SUCCESS.
Number of rows returned or modified: 1

438



INSERT INTO mytable VALUES (10);

SUCCESS.
Number of rows returned or modified: 1

INSERT INTO mytable (string, number) VALUES (‘ Goodbye', 25);

SUCCESS.
Number of rows returned or modified: 1

INSERT INTO mytable VALUES (5, ‘Hello');

SUCCESS.
Number of rows returned or modified: 1

These examples inserted five new records into the table. Note that the third query did not specify a string. Thisis permissible;
values in the database can be empty (or NULL in SQL terms) unless thisis specifically banned in the table definition. Before we
fetch some of the data back, let’s examine some things that could cause errors:

INSERT INTO mytable VALUES (5, Hello);

DBD::Pg::st execute failed: ERROR: Attribute hello not found
Execute FAILED: ERROR: Attribute hello not found

INSERT INTO someothertable VALUES (5, ‘Hello’);

DBD::Pg::st execute failed: ERROR: someothertable: Table does not exist.
Execute FAILED: ERROR: someothertable: Table does not exist.

INSERT INTO mytable VALUES (‘Hello", ‘ Goodbye');

DBD::Pg::st execute failed: ERROR: pg_atoi: error in “Hello”: can't parse “Hello”
Execute FAILED: ERROR: pg_atoi: error in “Hello”: can't parse “Hello”

Thefirst query failed because the string was not quoted. The second failed because it tried to insert datainto a table that had not
previously been created. The third failed because it tried to insert a string into an integer field. Note that two error messages are

printed for each problem: one generated by DBI and one generated by this code. Y ou can disable the duplicate DBI error message
by using $dbh->{ PrintError} = 0.

Reading data

Now that there is some data in the database, let’ s read it back. Here are some queries to do just that. In the following examples, the
SQL SELECT query allows you to retrieve data from the database.

SELECT * FROM mytable;

SUCCESS.

Columns; number, string

‘5, ‘qwerty’

‘5, ‘Hello’

*10’, undef

‘25", ‘Goodbye’

‘5, ‘Hello’

5rows

Number of rows returned or modified: 5

Thisisabasic query. The asterisk tells the database server to select al fields (also known as columns) from the table. These are
returned in arbitrary order. Note that the entry that had a NULL string shows up as undef in the previous example.

The next example shows how to ask for only a particular column, instead of all of the columns, as shown here:

439



SELECT number FROM mytable;

SUCCESS.

Columns. number

‘5

‘5

10

o5

‘5

5rows

Number of rows returned or modified: 5

SELECT string, number from mytable;

SUCCESS.
Columns: string, number
‘qwerty’, ‘5’
‘Hello’, ‘5’
undef, ‘10’
‘Goodbye’, ‘25’
‘Hello’, ‘5’
5rows
Number of rows returned or modified: 5

The previous two queries specifically request certain columns to be returned. The first requests only the number column be
returned, and the second requests them both, but in a nonstandard order.

Now we can select certain columns, and re-arrange the order of the output. The next step isto select only those records that meet a
certain criteria, such asthe value in a particular column being larger than a certain amount. For example:

SELECT * FROM mytable WHERE number > 5;

SUCCESS.

Columns. number, string

*10', undef

‘25, ‘Goodbye’

2 rows

Number of rows returned or modified: 2

The previous query asks for both columns, but only those rows whose number value is greater than 5. In this table, two rows match
that criterion, and they are returned:

Y ou can use SQL to help sort the output as well, as shown in this example:
SELECT * FROM mytable ORDER BY number DESC;

SUCCESS.

Columns; number, string

‘25, ‘Goodbye’

*10’, undef

‘5, ‘qwerty’

‘5, ‘Hello’

‘5, ‘Hello’

5rows

Number of rows returned or modified: 5

This query returns all the data but requests that it be sorted in descending order by number. If you omit DESC, the results would be
sorted in traditional ascending order.

Y ou can go further and use SQL to calculate statistics on the data in the database, as shown in this example:

440



SELECT MAX(number), AVG(number), SUM (number) FROM mytable;

SUCCESS.

Columns: max, avg, sum

‘25, 10", ‘50’

1rows

Number of rows returned or modified: 1

Here you glimpse three basic statistical functionsin SQL. The first returns the maximum value of the given column in the
database; the second, the mean average; and the third, the sum of all valuesin that column. Notice that even though this operates
on all five rows of the database, there is only one row of return information.

Y ou can a'so get a count of the number of records:
SELECT COUNT(*) FROM mytable;

SUCCESS.

Columns. count

1] 51

1rows

Number of rows returned or modified: 1

Here, you see away to find out how many rows are in the table; simply request a count of them. Again, only one row of
information is returned.

Y ou can combine the SQL count function with other criteria for a more complicated query. For example:

SELECT number, COUNT(*)
FROM mytable
GROUP BY number
ORDER BY number;

SUCCESS.

Columns; number, count

1] 51 , I3!

‘10, ‘1

‘25,1

3rows

Number of rows returned or modified: 3

Here isamore tricky example. This one uses grouping to restrict what is returned. What is happening hereis that the results are
grouped by number. Therefore, there is one output row for each unique value held in the column named number occurring in the
input. Then, when the data is output, we apply the count and see that there are three rows in the input with a number of 5, and one
each with anumber of 10 and 25.

Updating tables

Y ou can update the data stored in your tables after it has been placed there. To do this, you use the SQL update command. Here
are some examples of this command:

UPDATE mytable SET string = ‘Hi" WHERE number = 10;

SUCCESS.
Number of rows returned or modified: 1

UPDATE mytable SET string = ‘Five’ WHERE number = 5;

SUCCESS.
Number of rows returned or modified: 3

Thefirst query fillsin the missing text value. The second causes every row whose number value is 5 to have a string value of Five.

441



Here are the results from these modifications:
select * from mytable;

SUCCESS.

Columns; number, string

‘25", ‘Goodbye’

‘10', ‘Hi’

‘5, ‘Five

‘5", ‘Five

‘5", ‘Five

5rows

Number of rows returned or modified: 5

Y ou can see that the database carried out the actions you requested. Note that it is extremely important to remember the WHERE
clause. If it isleft off, every row in the table will be updated. For some databases, this could mean messing up millions of records
of datal Here is an example of that:

UPDATE mytable SET string = ‘Good Morning’;

SUCCESS.
Number of rows returned or modified: 5

SELECT * FROM mytable;

SUCCESS.

Columns; number, string

‘25", *Good Morning’

‘10", ‘Good Morning’

‘5, ‘Good Morning’

‘5, ‘Good Morning’

‘5, ‘Good Morning’

5rows

Number of rows returned or modified: 5

Deleting information

Y ou can also remove rows of information from atable. To remove data, you'll use a syntax similar to that for the update
command:

DELETE FROM mytable WHERE number =5;

SUCCESS.
Number of rows returned or modified: 3

SELECT * FROM mytable;
SUCCESS.

Columns. number, string

‘25", ‘Good Morning’

‘10", ‘Good Morning’

2 rows

Number of rows returned or modified: 2

The database has thus removed three rows from the table, leaving only 2. Note again that you need to be sure to include the
WHERE clause, or else every row in the table will be deleted!

The following example shows what happens when you del ete everything:
DELETE FROM mytable;

SUCCESS.
442



Number of rows returned or modified: 2
SELECT * FROM mytable;

SUCCESS.
Columns; number, string

0 rows
Number of rows returned or modified: OEO

The preceding command removed all rows from the table. The select query was successful but returned an empty result set. You
can also completely remove atable. Thiswill have the effect of deleting everythinginit aswell. For example:

DROP TABLE mytable;

SUCCESS.
Number of rows returned or modified: unknown

SELECT * FROM mytable;

DBD::Pg::st execute failed: ERROR: mytable: Table does not exist.
Execute FAILED: ERROR: mytable: Table does not exist.

Joining tables

One of the most powerful features of SQL, and one that makesit relational, liesin its capabilities to join together data from

different tables. To present thisinformation, you'll need to create two tables and add in some data for them. Here are the queries to

issue. You can type these in to the same ch23-1.pl example program that you’ ve been using thus far:

CREATE TABLE states (
abbrev char(2) NOT NULL PRIMARY KEY,
name text NOT NULL

);

INSERT INTO states VALUES (‘AK’, ‘Alaska);
INSERT INTO states VALUES (‘AL’, ‘ Alabama);
INSERT INTO states VALUES (‘KY’, ‘Kentucky');
INSERT INTO states VALUES (‘KS', ‘Kansas));
INSERT INTO states VALUES (* OK’, ‘Oklahoma);
INSERT INTO states VALUES (‘' TX’, ‘Texas');
INSERT INTO states VALUES (‘NY’, ‘New York');

CREATE TABLE addresses (
name text NOT NULL,
addressl text NOT NULL,
address2 text,
city text NOT NULL,
state char(2) NOT NULL,
zZip char(10) NOT NULL

);

INSERT INTO addresses VALUES (
‘Joe Brown'’,
‘1234 S. AnyStreet’,
‘Apartment 12,
‘Oklahoma City’,
‘OK’,
12345-6789');

INSERT INTO addresses VALUES (
‘Jane Smith’,
‘9876 W. Somewhere Street’,

443



NULL,
‘Buffalo’,
‘NY’,
‘98765");

There are several new conceptsintroduced here. The first isthe NOT NULL specification. This means that, when datais being
inserted into atable, the database will refuse to insert any request that leaves the given field empty. This specification is used to
ensure data consistency. Another new concept isthe PRIMARY KEY specification. When you specify this, two things happen.
First, the database requires that all data entered must have a unique value for that field; no two rowsin the table may have the
same val ue there. Second, this specification enables certain optimizations within the query engine to make possible faster replies.

After you have completed the preceding items, your tables should look like this:
SELECT * FROM states;

SUCCESS.

Columns; abbrev, name
‘AK’, ‘Alaska

‘AL’, ‘Alabama

‘KY’, ‘Kentucky’

‘KS, ‘Kansas'

‘OK’, ‘Oklahoma'
‘TX', ‘Texas

‘NY’, ‘New York’

7 rows

Number of rows returned or modified: 7

SELECT * FROM addresses;

SUCCESS.
Columns: name, addressl, address2, city, state, zip
‘Joe Brown’, ‘1234 S. AnyStreet’, ‘ Apartment 12’, ‘ Oklahoma City’, ‘OK’, *12345-6789’
‘Jane Smith’, ‘9876 W. Somewhere Street’, undef, ‘Buffalo’, ‘NY’, ‘98765
2 rows
Number of rows returned or modified: 2

Y ou can do a basic lookup on the states of residence of each person here. Y ou might use a query like this:
SELECT name, state FROM addr esses,

SUCCESS.

Columns. name, state

‘Joe Brown’, ‘OK’

‘Jane Smith’, ‘NY’

2 rows

Number of rows returned or modified: 2

But what if you want the full state name? Well, you conveniently have those (well, seven of them anyway) in another table. What
you need to do isjoin the data from these two tables together. Here's how you might do that:

SELECT addresses.name, states.name
FROM addresses, states
WHERE addresses.state = states.abbrev;

SUCCESS.

Columns; name, name

‘Joe Brown’, ‘ Oklahoma’

‘Jane Smith’, ‘New York’

2 rows

Number of rows returned or modified: 2

Great! You' ve just brought together data from two tables!
444



Before continuing, clean up these two tables:
DROP TABLE addresses;

SUCCESS.
Number of rows returned or modified: unknown

DROP TABLE states;

SUCCESS.
Number of rows returned or modified: unknown

When done, press Ctrl+D to exit the program.
Using Databasesin Applications

In this section, I'll show you how to use Perl code to automate communication with a database. I'll start with a program that
creates two tables and populates one of them. Then, 1’1l add an address book application, written in CGI, with a DBI back end to

store the data.

DBI with the command line

Listing 23-2 presents a simple program that reads information in from the keyboard and inserts it into a database. This application
could also be used to receive data piped in from a different program.

Note Listing 23-2 isavailable online.
Listing 23-2: Inserting information into a database
#/usr/bin/perl -w

use DBI; # DBI library
use DBD::Pg; # Postgres driver

my $DBUSER = $ENV{ USER};
my $DBNAME = $DBUSER;

# Connect to the database.

my $dbh = DBI->connect(* dbi:Pg:dbname=$DBNAME”", “”, “") or die
“Couldn’t connect to database: “ . DBI::errstr;

$dbh->{ PrintError} = 0;

CheckOrCreateTable(“ states”,
“CREATE TABLE sates (
abbrev char(2) NOT NULL PRIMARY KEY,
fullname text NOT NULL)");
CheckOrCreateTable(* addresses’,
“CREATE TABLE addresses (
id varchar(40) NOT NULL PRIMARY KEY,
name text NOT NULL,
address] text NOT NULL,
address? text,
city varchar(30) NOT NULL,
state char(2) NOT NULL,
zip varchar(10) NOT NULL)");

my ($input, $abbrev, $full);

print “Enter states, one per line, with the abbreviation followed by\n”;
print “the full name. Press Ctrl+D when done.\n\n";

445



while ($input = <STDIN>) {
chomp $input;

my ($abbrev, $full) = Sinput =~ /*(\WAW)\s+(.+)$/;
$abbrev = uc $abbrev;

InsertState($abbrev, $full);
}

sub CheckOrCreateTable {
my ($table, $querystr) = @ _;

if ($dbh->do(* SELECT * FROM $table WHERE 1 = 0")) {
print “ Table $table already exists; not recreating.\n”;
} else{
print “Creating table $table\n”;
$dbh->do($querystr) or die
“Couldn’t create table; “ . $dbh->errstr;
}
}

sub InsertState {
my ($abbrev, $fullname) = @_;

print “Inserting: $abbrev => $fullname\n”;

my $result = $dbh->do(“INSERT INTO states (abbrev, fullname)
VALUES (‘$abbrev’, ‘$fullname’)”);

unless ($result) {
warn “Insert failed: “ . $dbh->errstr;
}
}

Listing 23-2 isa program that will do two simplethings. First, it will create tablesif necessary. Second, it will read data from the
keyboard and insert it into atable.

When the program starts, it first connects to the database and turns off the error display. Then it checks for the existence of two
tables and creates them if necessary. In the loop, it reads states and descriptions from the user. It makes sure that the abbreviation
islisted in uppercase and inserts these val ues into the database.

The CheckOrCreateTable subroutine uses a new command: $dbh->do. This can be used as a shortcut for the normal prepare and
execute sequence if you are not expecting any data to be returned. Then it runs a select that will never return any data (1 will never
equal 0). If the statement succeeds, the table is already present and no additional action is necessary. Otherwise, the tableis
missing and it is created.

The InsertState subroutine simply displays a message and then sends an INSERT query to the database. This can help save you
typing or enable you to pipe data into the program without having to know what the tables are or how to insert the data. Hereisa
sample run of the program:

$ ./ch23-2.pl
Creating table states
Creating table addresses
Enter states, one per line, with the abbreviation followed by
the full name. Press Ctrl+D when done.

NY New York

Inserting: NY => New Y ork
CA California

Inserting: CA => Cdifornia
TX Texas

446



Inserting: TX => Texas

NV Nevada

Inserting: NV => Nevada

SD South Dakota

Inserting: SD => South Dakota
NC North Carolina

Inserting: NC => North Carolina
MD Maryland

Inserting: MD => Maryland
ME Maine

Inserting: ME => Maine

FL Florida

Inserting: FL => Florida
Ctrl+D

For every state you supplied, the program inserted aline in the database.

Note Some database servers may cause this program to display diagnostic messages while it runs. For instance, some
PostgreSQL servers may display messages about creating an implicit index. These messages are harmless and are
for your information only; the program will detect if there was a problem with the database.

Try running the program again. Y ou can add some more information. Also note that it will detect that the tables already exist and
not try to recreate them:

$ ./ch23-2.pl
Table states already exists; not recreating.
Table addresses already exists; not recreating.
Enter states, one per line, with the abbreviation followed by
the full name. Press Ctrl+D when done.

UT Utah
Inserting: UT => Utah
CA California
Inserting: CA => Cdifornia
Insert failed: ERROR: Cannot insert a duplicate key into a unique index
Ctrl+D

Notice that because the abbreviation for the state was declared a primary key, the database has prevented you frominserting a
duplicate record for California. If you want, you can now examine the contents of the table with the query tool from earlier in this
chapter.
Use the ch23-1.pl example program and enter in the following query:
SELECT * FROM states,
SUCCESS.

Columns; abbrev, fullname
‘NY’, ‘New York’

‘CA’, ‘Cdifornia
‘TX’, ‘Texas
‘NV’, ‘Nevada

‘SD’, ‘ South Dakota’

‘NC’, ‘North Carolina

‘MD’, ‘Maryland’

‘ME’, ‘Main€’

‘FL’, ‘Florida

‘UT’, ‘Utah’

10 rows

Number of rows returned or modified: 10

If you want, you can go ahead and add entries for the remaining states, or you can just leave it at this. You'll need this table, with
at least these 10 states, for the following examples.

447



DBI with CGlI
One of the most popular uses of the DBI software is to store data for interactive Web sites. Because most SQL database servers
have some built-in locking support, and this does not require locking the entire database, multiple processes can get along better.
Additionally, the more powerful query capabilities and larger scalability of SQL databases over the DBM databases means that
these are most often used when alarge amount of dataisin question. Here, | present a simple application: an address book. This
address book contains no security; you might want to add on a separate table containing accounts and passwords and authenticate
users that way. For now, though, we'll concentrate on the basics. Listing 23-3 shows the complete code for this application. I'll go
through it in detail and demonstrate how it works. Before trying it out, you'll need to have created the two tables as specified
previously.

Note Listing 23-3 isavailable online.

Listing 23-3: The address book application

#/usr/bin/perl -Tw

# Turn off output buffering.

$=1

# Bring in the CGl library.

use CGI qw(:standard);

# Display errorsif possible.

use CGl::Carp gw(fatalSToBrowser);

# Bring in databases and connect.

use DBI;
use DBD::Pyg;

my $DBUSER = ‘jgoerzen’;
my $DBNAME = $DBUSER,;

$dbh = DBI->connect(* dbi:Pg:dbname=$DBNAME", $DBUSER, “”) or die
“Couldn’t connect to database: “ . DBI::errstr;
$dbh->{ PrintError} = 0; #Don't print errors.
$dbh->{ RaiseError} = 1; # Dieon errors, and display to browser.
# Create anew CGI object.

my $q = new CGl;
my SNAME = $g->url(-relative => 1);

# Print the HTTP header.
print header;
# Select a default mode.
my $mode = “mode " . ($g->param(‘ mode’) || ‘ start’);
# Eliminate something invalid.
unless ($mode =~ /*mode_[a-zA-Z]+$/) {

$mode = ‘mode_error’;

}

448



# Call the subroutine that handles that mode.
& $mode();
#End the HTML.

print end_html;
$dbh->disconnect;

#HH program exits here ###

sub mode_start {
print start_html(* Welcome to Address Book’);

# Display introductory text.
print “Welcome to the address book! With this application, you can\n”;
print “add entries to the address book and look up other entries\n”;
print “ There are currently <B>";

# Find out the number of itemsin the database.
# Thisistransformed to SELECT COUNT (*) FROM addresses
print simplequeryval ( COUNT (*)’, ‘addresses’);

print “</B> addresses in the database.\n<P>\n";
print “ Please select an action:”;

# Display the menu.

print $g->startform(-method => ‘ POST");
print $g->radio_group(-name => ‘mode’,
-values => [‘search’, ‘add’, ‘browse’, ‘modify’],
-default => ‘search’,
-linebreak => 1,
-labels => {‘search’ => *Search For Entries’,
‘add’ =>‘Add anew entry’,
‘browse’ => ‘Browse all entries,
‘modify’ =>‘Modify or delete an entry’'}
);
print $g->submit(‘ submit’, ‘Go’);
print $g->endform;

}
## This subroutine displays alist of all the entriesin the database.

sub mode_browse {
my $thisentry;
print start_html(‘ Address Book: Browse');

print “Here are al the entries in the address book. Y ou may\n”;
print “read them here and go back to the <A HREF=\"$NAME";
print “\”>main menu</A> when done\n<P><HR>\n";

# Generate the query and perpareit.
my $sth = $dbh->prepare(“ SELECT id, name, addressl, address2, city,
fullname, zip FROM addresses, states

WHERE addresses.state = states.abbrev
ORDER BY name”);

$sth->execute();

# Fetch each row and display it. Add aline after each one.
449



while ($thisentry = $sth->fetchrow_arrayref) {
print EntryHTML ($thisentry, 1);
print “<HR>\n";
}

# Close the statement handle.
$sth->finish();
# Add alink back to the main menu.

print “<A HREF=\"$NAME\">Back to main menu</A>\n";
}

# This subroutine is responsible for adding information into the database.

sub mode_add {
# Implement this a unique way. Add some dummy information to the
# database and then re-call thisin terms of amodify! This saves
# coding effort, since essentially it's the same task anyway.

my $id = Generatel D();

$dbh->do(“INSERT INTO addresses VALUES (‘$id’,
‘Put New Name Here',
‘Addressline 1’,
NULL,
‘New City’,
‘NY’,
‘00000")");

# Shove theid into the CGI object.
$g->param(-name => ‘id’, -value => $id);
# Now go over to modify.

return mode_modify();

}

# Handle the modifications to data. Need to have anid; if none given,
# ask for one.

sub mode_modify {
my $id = $g->param(‘id’);
my $entry;

print $g->start_html (* Address Book: Modify’);
# If there wasn't an id passed along....

unless ($id) {
print “ Please enter the id of the record you want to modify. If you\n”;
print “do not know the id, you should use one of the options from\n”;
print “the <A HREF=\"$NAME\">main menu</A> to retrieve records and\n”;
print “click on modify from there\n<P>\n";
print $g->startform(-method => * POST");
print $g->textfield(-name => ‘id’,
-size => 40,
-maxlength => 40);
print $g->hidden(-name => ‘mode’, -value => ‘modify’);
print $g->submit(‘ submit’, ‘Go’);

450



print $g->endform;
return;

# Load it up from the database. Thistime, use the 2-character
# state abbreviation instead of the expanded state name.

@entry = queryrow(“SELECT * FROM addresses WHERE id = ‘$id'");

print “Here is your chance to make changes. If you prefer to cancel\n”;

print “the operation, just <A HREF=\"$NAME\">return to the main menu</A>.\n";

print “<P><HR>\n";
# Display the original record for reference.

print “Original record, id <TT>$id</TT>:<P>\n";
print EntryHTML(\@entry, 0);
print “<HR>New value: <P>\n";

# Display the form for the new record.
print $g->startform(-method => ‘ POST");
print EntryHTML(\@entry, O, 1);
print $g->hidden(-name => ‘mode’, -value => ‘modifySave’, -override => 1);
print $g->hidden(-name => ‘id’, -value => $id, -override => 1);
print “<HR>";
print $g->submit(* submit’, * Change to above values');
print “<BR>\n";
print $g->submit(‘ delete’, ‘ Delete the above record’);
print $g->endform;
}

# Thisis called after somebody clicks a Submit button on the modify screen.
# Itsresponsibility is to issue either an update or a delete as appropriate.

sub mode_modifySave {
print $g->start_html (* Address Book: Saved Changes');
my $id = $g->param(‘id’);

if ($g->param(‘delete’)) {
$dbh->do(“DELETE FROM addresses WHERE id = ‘$id'");
print “The requested record, with id of <TT>$id</TT>, has been\n”;
print “deleted.\n”;
} else{
my $queryval =*';
my $key;
my $first = 1;

# Generate the query.
$queryval .= “UPDATE addresses set “;

foreach $key (‘name’, ‘addressl’, ‘city’, ‘state’, ‘zip’) {
unless ($first) {
$queryval .=, “;
}
$first = 0;
$queryval .= “\n $key = * . $dbh->quote($g->param($key));
}

if ($g->param(‘ address2")) {
$queryval .=“, \n address2 = * . $dbh->quote($g->param(‘ address2’));
} else{

451



$queryval .=, \naddress2 = NULL";
}

$queryval .= “\n WHERE id = ‘$id'”;
$dbh->do($queryval);
print “ The requested change has been made. The query used was.<P>\n";

print “<PRE>\n";
print $g->escapeHTML ($queryval);
print “</PRE>\n";

}

print “<HR>";
print “Now go <A HREF=\"$NAME\">back to the main menu</A>.";

}

# This subroutine is used to implement a database search.

sub mode_search {
print start_html(“ Address Book: Search”);
my $search = $g->param(‘ search’);

unless ($search) {
print “You can search through the database of addresses using this\n”;
print “screen. Type your text below. 1'll searchin al the fields\n”;
print “of the database and return any that contain a portion of the\n”;
print “text. For states, you may use either the 2-letter abbreviation\n”;
print “or the full name. These searches are case-sensitive.\n<P>\n";
print “ Search text:<BR>\n";
print $g->startform;
print $g->textfield(-name => ‘search’,
-size => 40);
print $g->hidden(-name => ‘mode’, -value => ‘search’, -override => 1);
print $g->submit(‘ submit’, ‘ Search’);
print $g->endform;
return;

}

print “<H1>Search Results</H1>\n";
print “Here are the results for the search for: \n";

print $g->escapeHTML ($search), “\n<P><HR>\n";

my $querystr =*’;
my $first = 1;

my $key;

my $thisentry;

$querystr .= “SELECT id, name, addressl, address2, city, fullname, zip\n”;
$querystr .= “FROM addresses, states\n”;
$querystr .= “WHERE addresses.state = states.abbrev AND (\n”;
foreach $key (‘name’, ‘addressl’, ‘address?’, ‘city’,
‘state’, ‘fullname’, ‘zip’) {
unless ($first) {
$querystr .=“ OR\n";
}
$first = 0;
$querystr .= $key LIKE “ . $dbh->quote(‘ %' . $search . ‘%’) . “ “;
}

$querystr .= “\n)\nORDER BY name”;

$sth = $dbh->prepare($querystr);
$sth->execute();

while ($thisentry = $sth->fetchrow_arrayref) {

452



print EntryHTML ($thisentry, 1);
print “<HR>\n";
}

$sth->finish;

print “My query was.:<BR>\n";
print “<PRE>\n";

print $g->escapeHTML ($querystr);
print “</PRE>\n";

print “<HR>Now go back to the <A HREF=\"$NAME\" >main menu</A>.";

}

sub mode_error {
print start_html(* Error’);

print “1"m sorry, there was an error. Please use your browser’s back\n”;
print “button and retry the operation.\n”;

}

# This subroutine displays HTML of agiven entry. Only the first argument
#isrequired. The argumentsare;
#

# $entry, areference to an array that DBI might return
#

# $editlink, set to true if there should be alink to the modify page
# for thisentry.
#

# $textfields, set to true if the result should be text entry fields

# instead of normal text, such as might be used for modification.
#

# Thereturn value is a string to send to the Web browser.

sub EntryHTML {
my (Sentry, $editlink, $textfields) = @ ;
my $retval =*7;

# Print out the start of the table.
$retval = “<TABLE><TR><TD><B>Name</B></TD>\n";

# Name
$retval .=“<TD>";
if ($textfields) {

$retval .= $g->textfield(-name => ‘name’,
-default => $entry->[1],
-override=>1,
-size => 40);
} else{
Sretval .= Sentry->[1];
}

# If there' s supposed to be an edit link, show it.
if ($editlink) {
# Decrease font size. Add abracket. Start the URL.

$retval .= <FONT SIZE=-1>[<A HREF=\"$NAME?mode=modify&id=";

# Insert a URL -escaped version of theid.
$retval .= $g->escape($entry->[0]);

# Close it out.

453



$retval .= “\">modify</A>]</FONT>";
}

# Print the rest.
$retval .= “</TD></TR>\n";
$retval .= “<TR><TD><B>Address</B></TD><TD>";

if ($textfields) {
$retval .= $g->textfield(-name => ‘addressl’,
-default => $entry->[2],
-override=>1,
-size => 40);
}else{
$retval .= $entry->[2];

}

if ($textfields) {
$retval .= “<BR>\n";
my $newval =*7;

if ($entry->[3]) {
$newval = $entry->[3];
}

$retval .= $g->textfield(-name => ‘address?’,
-default => $newval,
-override=>1,
-size => 40);
} esf ($entry->[3]) {
# If it’satwo-line address, combine them with a<BR>.
$retval .= “<BR>$entry->[3]";
}
$retval .= “</TD></TR>\n";
$retval .= “<TR><TD><B>City, State, Zip</B></TD><TD>";
if ($textfields) {
$retval .= $g->textfield(-name => ‘city’,
-default => $entry->[4],
-override=>1,
-size => 20);
$retval =", “;
my @states = queryarr(“ SELECT abbrev FROM states ORDER BY abbrev”);
$retval .= $g->popup_menu(* state’,
\@states,
$entry->[5]);
$retval .= “;
$retval .= $g->textfield(-name => ‘zip’,
-default => $entry->[6],
-override=>1,
-size=>10);
}else{
Pretval .= “$entry->[4], $entry->[5] $entry->[6]";

$retval .= “</TD></TR></TABLE>\n";
return $retval;

}

# This subroutine is used to generate aunique ID. It doesthis by

# getting the current time and tacking the current process ID onto

# its end, which should be unique. Note that many databases have a
# much better way of doing thisbuilt in. PostgreSQL, for instance,

# has a sequence that you can use. Others have a“serial” designation
#for fields. If your database has that, you should use it, but beware
#that it is not completely portable. | chose this becauseit is

454



# portable. $$ isthe pid of the current process.

sub Generatel D {
return time() . “;$$”;

}

# Here are some database query functions. They are around to
# make your life easier. Y ou can use them in your own programs, too;
# just copy them out of here.

# simplequeryval... awrapper around queryval

sub simplequeryval {
my ($colret, $table, $collookfor, $colmatch) = @ _;
my $querystr;

$querystr = “SELECT $colret FROM $table’;
if ($colmatch) {
$querystr .= * WHERE $collookfor = $colmatch”;

}

return queryval ($querystr);

# Takes a query and returns the single value from the single column
# that the query resulted in. Useful for things like getting COUNT (*).

sub queryval {
my ($query) = @_;
my @retval = queryarr($query);
return $retval[0];

}

# Takes aquery and returns an array of al valuesin the single
# column that the query returns.

sub queryarr {

my ($query) = @_;

return querycolarr(0, $query);
}

# Takes aquery for a select and returns an array of
# al the valuesin the indicated column.

sub querycolarr {
my ($column, $query) = @_;
my @retval = ();

my $sth = $dbh->prepare($query);
unless ($sth) {
return @retval;

}

unless ($sth->execute) {
return @retval;

}
my $result = $sth->fetch;

455



while (defined($result)) {
push @retval, $result->[$column];
$result = $sth->fetch;

}

$sth->finish;

return @retval;
}

# queryrow takes an arbitrary query and returns the returned row.

sub queryrow {
my ($query) = @_;
my @retval = ();
my $sth = $dbh->prepare($query);
$sth->execute;
@retval = $sth->fetchrow;

$sth->finish;
return @retval;

This programis quite alarge one! It presents a more simplified CGI interface than the one in Chapter 22, but nevertheless, it is
fairly large. | tried to add commentsin the code to help you out, and we'll go over some issues here as well. Don't let the size
overwhelm you; take it in small chunks, and you' [l see how everything fits together.

Note that because most CGI programs run with the permissions of the Web server, it’s not possible to auto-detect the database
username by looking at the environment anymore. Therefore, before this will work for you, you'll need to change thisline:

my $DBUSER = ‘jgoerzen’;
Just replace my username with yours and everything will work fine.

Initialization

Thisprogramin Listing 23-3 beginsitslifein a manner quite similar to many othersthat you've seen. It importsthe CGI library.
The next statement isinteresting. It captures error-handling calls, such as die and warn, and instead of emitting an error to standard
error (which would probably go into the server’s error log), it emits the error to the user’s browser.

After taking care of handling errors, the program imports the database libraries as before. There are afew other interesting things
to note here. The PrintError option is turned off; there’s no need to simply display an error message. However, RaiseError is
turned on. This causes DBI to generate afatal error (with die) whenever there is a problem. By turning thison, | no longer have to

explicitly check for error conditions all over in my code, because with this CGI script, there’ s no need to be able to recover
gracefully from such a condition.

A new CGI object isalocated, and it is interrogated to find out the name of the script. Thisis used for building up URLs later.
In the next sections, | discuss the major subroutines in the Listing 23-3 source file.
mode_start

When somebody starts the script, it enters this routine by default. The program displays some introductory information, explaining
that thisisindeed an address book. Then it wantsto tell the user how many entries are in the book. To do this, it needsto get a
count of the entriesin the addresses table from the database. No problem! Thanks to a helper function, thisis done inline without
having the mess with statement handles right here.

After finishing the introductory text, amenu is displayed. Just to be different, it's made up of radio buttons and a Submit button.
The user selects the operation to perform from the radio button and then clicks the Submit button.

mode_browse

456



The mode_browse function is the first function in the script that does some more deep-down work with the database. It begins by
displaying some usual text. Then it proceeds to prepare aquery. This query fetches the data from the addresses table and then joins
that with the full state name from the statestable. Finally, it orders the result by the name of the person.

The execute function is called, and then the results are returned. | use the fetchrow_arrayref here, just because it’s alittle bit faster.
Thisisn't terribly performance-critical code, but | want to show you how it’s done. For each record in the database, we get a
reference to an array containing itsfields. The fieldsin the array are given in the order they were requested in the select. This
reference is passed on to EntryHTML for display. After that, a horizontal ruleis printed to separate the records from each other.
Finally, when all the rows have been retrieved, the statement handle is closed and the function finishes.

mode_add

When the user selects the option to add a new record, mode _add isinvoked. Itsjob isto insert a new record into the database and
let the user fill it out. But this code is sneaky about it. It inserts a new record into the database but then calls the modify function to
let the user fill it out. This saves some recoding. So, the first thing to do isto nab aunique ID. For this, the Generatel D functionis
called. Next, aquery consisting of an insert is executed. After the query is executed, the code shoves an ID parameter into the CGlI
object and then calls modify.

mode_modify

Like the other functions, mode_modify starts out by displaying some basic information. If no ID was passed in, it generates aform
for the user to enter one. If an ID was received, the fun begins.

Firgt, the program needs to retrieve the entry that the ID refersto. It does this by calling queryrow. It then displays the original
record, and then a new record. Finaly, it generates two Submit buttons. one to delete the record and one to save the changes. In
either case, the modifySave function will be called next time to commit the changes to the database.

mode_modifySave

The mode_modifySave function is invoked after somebody works at the modify screen. If the user clicked the Delete button, the
function goes to the database and deletes the requested data. On the other hand, if the user clicked on the Modify button, the
function needs to issue an update query. It uses aloop to generate parts of the string for each key except for address2. Thisoneis
handled specialy; the database value is set to NULL if the form field was empty.

Notice the usage of $dbh->quote. When you work with stringsin SQL, you enclose them in single quotes. However, if you have a
string with an embedded quote character, you have to escape the quote by doubling that character. Y ou have to be careful to
always watch out for quotesin the data so that no mistake could result from someone trying to use an apostrophe in the input, for
example. If you were really concerned about security, you'd do the same with the $id variable, or else check it for valid characters
ahead of time. You'll find that the quoting mechanism is used many times throughout the program in Listing 23-3 as well.

The query is changed if necessary, and to help you see what’s going on, the final query is printed out to the Web browser. Finally,
the program prints out a link to return to the main menu.

mode_search
The search function beginsin a manner similar to the modify one. If no search term was specified yet, the function asks for one
after displaying some help. If a search term has been specified, again a query is built up and send to the database. This query
introduces a new operator: LIKE. When you use thisinstead of equals, it permits the use of wildcards. In this case, the percent sign
is used, which meansin SQL what the asterisk does in the UNIX shell. So, each field is searched using the percent signs to seeiif it
contains the string anywhere.

As with the browse function, a simple loop processes the results from the query. After the loop finishes, the query is printed out for
your benefit.

EntryHTML
The EntryHTML function is called by several othersto generate an HTML rendering of the address of a given person. The
function has several options; it can generate either a plain text rendering or arendering that provides text fields for input. Much of

the function is simply the selection between the various output options for displaying information and tables.

Query Functions

457



The Listing 23-3 program ends with a number of small query functions. These are utility functions designed to help you deal with
reguests for certain types of frequently used small groups of data. For instance, the simplequeryval function is provided to let you
quickly receive a single value from a database, without having to go to the effort to prepare, execute, fetch, and finish with a
statement handle. This can be quite a useful utility.

Examples

So that you can put together all the pieces, | want to show you two examples of the queries the program generates. Here is what the
code generates when you make a modification:

UPDATE addresses set

name = ‘John Do¥€’,

addressl = ‘12345 S. Someone''s Ave.’,
city = ‘ Somewhere’,

state ="'SD’,

zip=10101",

address2 = ‘ Suite 9876’

WHERE id = *939072323;2624'

Notice the quoting that occurred for addressl; the apostrophe was doubled to prevent problems. When the datais read back later, it
will appear normal. Here’ s an example of the query generated for a search:

SELECT id, name, addressl, address2, city, fullname, zip
FROM addresses, states
WHERE addresses.state = states.abbrev AND (

name LIKE ‘%Pierre%’ OR

addressl LIKE ‘%Pierre%’ OR

address2 LIKE ‘%Pierre%’ OR

city LIKE ‘%Pierre%’ OR

state LIKE ‘%Pierre%’ OR

fullname LIKE ‘%Pierre%s’ OR

zip LIKE ‘%Pierre%’

)
ORDER BY name

Summary
In this chapter, you learned about communicating with SQL databases by using DBI. Specifically, you learned:
» DBI isaway to communicate with a SQL database in a mostly database-independent fashion.
» SQL isapowerful query language used by databases that communicate with DBI.
» Datain SQL isstored in tables and is organized into rows and columns.
* Entries can be empty unless NOT NULL is specified.
» Specifying PRIMARY KEY forces uniqueness for that particular column.
< DBI isuseful in many different types of applications and can be used in both command-line and Web-based applications.

e It'simportant to remember to quote input for the server.
Part VI: Graphical Interfaceswith X

Chapter List

Chapter 24: GUIswith Perl/Tk

Chapter 25:
Chapter 24: GUIswith Perl/Tk

Overview

458



One of the most persistent trends over the past decade is that of the graphical user interface (GUI) becoming popular in the
computing marketplace. Thereisareason for this. With a graphical interface, you can present information and interact with the
user in more ways than you can with atext interface. Thisis because you can use the likes of arbitrary pictures, different forms of
input (mouse), and multiple panes (windows) on the user’s screen. By making clever use of these features, such as realistic icons,
intuitive menus, and online help, you can make your program easier to learn—and sometimes easier to use as well.

In this chapter, you will learn about GUI programming with Perl/Tk. I’ll start with an introduction to GUI programming, which will
help you decide whether or not a GUI is appropriate for your application. After that, you'll learn about event-based programming,
which isadifferent way about learning about keystrokes and mouse movements, and X clients. The next three sections will take you
on atour of Perl/Tk, where you will learn about different widgetsin Perl/Tk and how to use them. The chapter concludes with alook
at geometry managers, which are used to lay out widgetsin your windows, specia concerns of Perl/Tk, and the SpecTcl interface
design tool.

GUI Programmingin Linux

In the introduction to this chapter, | mentioned a number of benefits that you can derive from using a graphical interface. However,
along with all these benefits, there are also downsides. GUI programming is much more complex than programming for a plain-
text interface. GUI programs require more CPU power and carry alarger memory burden. They require more bandwidth and so
cannot be efficiently run remotely except on fast links. Poorly designed GUI s can be more difficult to use than a corresponding
text interface. Finally, GUI programs are generally hard to automate, especially the kind of data transfer that you are used to
accomplishing with piping on the Linux command line.

In anutshell, you need to evaluate whether a GUI isright for your program. A GUI can be especially useful if you are putting an
interface on a program for people that need to have the least possible learning time, similarity with an existing sutie of GUI tools,
and have little experience with atext interface. On the other hand, a GUI can be slower, larger, difficult to write, and hard to
automate.

Basics of the X Window System

When you are writing a GUI under the Linux operating system, you are aimost always writing a GUI that runs under the X
Window System. If you are coming from a different GUI environment, such as Microsoft Windows, you will need to understand
that although the X environment may look similar to Windows on the surface, underneath the system is quite different.

X is separated into two parts: the clients and the server. Generally, you have one X server running on each machine. The server is
responsible for interacting directly with the hardware, displaying images on the monitor, reading input from a keyboard or mouse,
and the like. This functionality is separate from the applications that run with X; the X server solely manages clients and server
resources (such as the display). It does not provide any applications of its own.

Clients are the applications in the system. A client may be aword processor, an editor, a spreadsheet, a game, or any other
program that you want to run in a graphical environment. There are also special clients that can run on your system. One such
client is the window manager, which is responsible for managing the placement and decoration of the top-level windows on your
system. A window manager can do things like create atitle bar for windows, enable you to drag windows to new locations,
minimize windows, and the like.

It's easy to get confused with the prevailing terminology. The X server is called a“server” because it manages access to shared
resources, just like any other server on your system. In this case, the shared resources are your display, mouse, keyboard, and any
other input devices that you might have. The different applications on your system need access to these things, and the server
manages this access on behalf of the clients. From atechnical perspective, the X server listens for connections on a predefined port
just as other servers do, and clients connect to that port just as with other servers.

L ocation independence

Due to the separation of the client from the server in X, there are some fascinating possibilities that do not exist in other graphical
environments. Chief among them is that it makes no difference to the X server whether or not a client is running on your own
machine. To X, it isjust as natural to have aclient running on a machine down the hall but interacting with you on your own
screen asit isto have the client running on your own machine. In fact, some users have clients running on a dozen different
computers—perhaps spanning two or three continents—displaying on their X screens seamlessly integrated with applications
running on the local machine. The clients, then, can connect over aLAN, over the Internet, or to the server running on the local
machine.

Everything is dealt with in alocation-independent basis. The “clipboard” in X, for instance, can hold data from any client and can
be pasted into any client, regardless of location.

459



When you start up aclient, it needs to know which server to connect to. Thisis generally specified by setting the DISPLAY
environment variable. Thisvariableis set for you by default when you start X; if you want to change it, you can do so. The X(1x)
manpage contai ns information on the format of this variable as well as access control to prevent unwanted clients from connecting to
your server.

Anatomy of a Client

When you are writing an application to run in the GUI X environment, you are writing an X client. Y ou amost never need to
modify the X server. It is bundled with the operating system and presumed already functional by the time any clients enter the
picture.

Xlib

Like many thingsin Linux, X clients may have several layers of libraries. The lowest layer, known as Xlib, handles the actual
communication between the client and the server. That is, Xlib isresponsible for encoding requests to and decoding responses
from the form suitable for transport across a network—or across the local machine. Xlib works on avery low level with the X
protocol, providing an interface essentially to the protocol itself. Although it istechnically possible to write an X client without
using Xlib, few if any programmers do so today.

Widget sets

Because Xlib works on such alow level with the X protocol, most programmers (except widget set authors) prefer to use a widget
set for their programs. Thisis because it is almost always easier and faster to think of the display in terms of buttons, menus, and
pictures instead of manually painting the pixels and lines that form the buttons, manually displaying the menus and handling
mouse input for them, and so forth. Many different widget sets are available from which a programmer may choose. Examples of
widget sets include the Athena Widgets (Xaw), Tk, Gnome/GTK, Qt, wxWindows, and many others. In this chapter, I'll be using
the Tk widget set, asimplemented in Perl.

Each widget set hasits own way of interacting with the programmer. Some may be tied to features found in specific languages; for
instance, Qt is based on an object-oriented metaphor. Others may provide a more low-level approach, such as the Athena Widgets
do. Not only that, but each widget set is responsible for rendering its own objects to the display. For instance, a scroll bar widget
from the Athena Widget set looks and acts differently than one from the Tk widget set.

The Tk widget set isamodern, full-functioning widget set with sporting interface elements with 3D bevels. It borrows some ook
and feel from both UNIX and Windows environments, and it addsin its own unique ideas, to get a widget set that should feel quite
natural to many people. Some of its own unique features include tear-off menus and tight integration with Perl.

Hierarchical windows

In Tk, a“window” is much more than you might be traditionally accustomed to considering awindow. A window in Tk is
everything from your application’s window on the desktop to a button, atext entry box, a menu, or agroup of similar items. Thus,
windowsin Tk are nested—arranged hierarchically. This corresponds to how items appear on-screen. For instance, a button might
appear inside a configuration panel, which is inside a tabbed notebook, itself inside a top-level dialog box, which happensto be a
child of the application’s main window. The window hierarchy in Tk will reflect this ordering. When you are done with the dialog
box, for instance, it is destroyed, and all the windows inside it are automatically destroyed as well.

Configuration

Because the nature of the programsin X isto use a hierarchy to the programs’ advantage, configuration is hierarchical aswell.
This gives the user much more control over the applications than in Microsoft graphical environments. For instance, from the
single X configuration system (X resources), one can configure not only the default background color of all windows on the
system, but also the default color of one particular application—or even one particular dialog box in an application. Y ou can go so
far asto individually tweak each button in an application.

Thisisall thanks to the X resources system, which allows usersto configure things at as high or aslow alevel asthey like. You
can configure the color of al buttons on the system, al buttonsin an application, all buttonsin a single dialog box, or one button
in particular—just to pick an example.

In general, defaults can be set by an application or by the system administrator and selectively overridden by each individua user.
Event-Based Programming

With atraditional model, when you need to get input from the user, you prompt for it. Y ou may display a menu of options, or
some other similar interface. But the point is that in each case, you first display a menu or prompt, then read input from that menu

460



or prompt only, and then act upon that input.

With a GUI, there are often dozens, or even hundreds, of possible options. The user may pop up adialog box and then proceed to
bring up a second dialog box. Each of these boxes may contain buttons, text fields, and the like. Simply displaying information and
waiting for aresponse turns out not to be so simple in this case.

The answer to thisis event-based programming. With this type of programming, you simply declare how things are to be drawn.
Then, you indicate what is to be done when a certain event occurs. For instance, when the user clicks an OK button, you might
want to call a subroutine to save the file. When the user clicks a Help button, you would want to bring up some online help.

With this model, after you initialize your program, your own code is finished executing; there is nothing for it to do until some sort
of event occurs. When an event happens for which you were listening, the Tk system invokes the code that you had bound to that
event. Frequently this code is a subroutine.

Having your own code invoked from somewhere else like thisistermed a callback. The flow of control passes out of your own
code until some particular event bringsit back into your code. Y ou handle the event and then control passes back to Tk again.

Thus, after initializing all your applications, you call the Tk MainLoop function. This function handles all the events for your
program, makes necessary screen updates, and invokes callbacks as appropriate.
First Steps

For afirst program, I’ ll show you how to pop up a simple window on the screen:
#/usr/bin/perl -w
use Tk;

my $window = new MainWindow;
$window->title(*Hi!");
$window->L abel (-text => “Hello from Perl/Tk!")->pack;
$window->Button(-text => “Exit”,

-command => \& exitbutton)->pack;
MainL oop;

sub exitbutton {
exit(0);
}

Note To usethiscode, you will need the Perl::Tk library. Many distributions may include it on the CD or network site.
If yours does not, you may find it at http://www.perl.com/CPAN-local/modules/by-module/Tk/. As of the date this
text is written, the latest version there is named Tk800.015.tar.gz. Installation instructions accompany the
distribution in the README file.

Going over the code, you can see that the script begins as any other Perl script does, with a call to the Perl interpreter. After that,
the Tk routines are brought in by the use command. Next, the program creates a new top-level main window for the application.
Thetitle of thiswindow is set and appears in the window manager. Then a Label widget is created. This widget gets placed in the
main window because of how it is called: $window->Label. The text for the label is set using the normal syntax for Perl hashes.
Finally, the label is packed. This meansthat it is actually set to appear on-screen by calling the Tk packer to fix its position. Unless
you pack something with Tk, it won't actually appear.

After the label, abutton is created. Thistime, it has specific text, just like the label. However, it also involves a callback. Note that
you can simply pass a reference to a subroutine for the callback command. When the user clicks the Exit button, that subroutine
will be called, which happens to cause the program to terminate.

Figure 24-1 shows how this program looks on-screen. Note that your screen may look different if you are using a different window
manager (the below screenshot was made with Afterstep) or have different color preferences.

461



OMHT ERE

el e Peri T
Exit. |

Figure 24-1: Perl/Tk Hello World

Y ou can also create multiple top-level windows on the screen. Here's a modification to the program earlier in this chapter that
doesjust that:

#/usr/bin/perl -w

use Tk;
use strict;

my $window = new MainWindow();
$window->title(*Hi!");
$window->Label (-text => “Hello from Perl/Tk!")->pack;
$window->Button(-text => “Exit”,
-command => \& exitsub)->pack;
MainL oop;

sub exitsub {
my $w = $window->Toplevel();
Sw->title(* Goodbye');
$w->L abel (-text => * Y ou are now leaving the demonstration program.’)->pack;
$w->Button(-text => “OK", -command => sub { $w->destroy;
$window->destroy; })->pack;

Thistime, thefirst part of the program looks quite similar to the other program. However, notice the difference in the subroutine
called when someone clicks the button.

Thistime, that subroutine creates a new top-level window. Thus, there will be two windows on-screen from this program when the

Exit button is clicked. Some text isinserted by using alabel, and a button is created. Notice that the callback for this button is not a

call to a standard subroutine. Rather, it is areference to an anonymous subroutine created in place! This anonymous subroutine

destroys both windows. When all the windows are destroyed, the MainLoop returns, and the program exits. Y ou don’t have to

explicitly call exit(0) in this case because the MainLoop automatically terminates when all the windows have been destroyed.
Object Attributes

Each object in your program has certain attributes, including color, the eventsthat it islistening for, font information, and even the
text or information that it is displaying. Listing 24-1 shows a program that enables you to manipulate those attributes.

Note Listing 24-1 isavailable online.
Listing 24-1: Sample program: a color picker

#/usr/bin/perl -w

462



use Tk;

# Create a hash to hold information about the three different color areas.

my %areas= (‘red’ => "', ‘green’ =>"’, ‘blue’ =>"’);
# Create the main window.

my $window = new MainWindow();
$window->title(* Color Picker’); # Giveit atitle.
# Create the top label text.

$window->Label (-text => “Y ou may select your colors here.”)
->pack(-side => ‘top’);

# Create each area, pack it, and store it into the hash.
foreach my $name (‘red’, ‘green’, ‘blue’) {
$areas->{ $name} = ColorArea($name, $window->Frame);
$areas->{ $name} ->{ frame} ->pack(-fill => ‘x’);
}
# Create the label for the bottom of the window.

my $colorlabel =

$window->L abel (-text => ‘foo’)->pack(-side => ‘top’, -fill => ‘both’);

# And update it.
UpdateColorLabel();
# Process events.
MainL oop;

# Thisis asubroutine to create an areain the window for each

# particular color. Its arguments are a color name and a frame.

# The subroutine will create all its widgets inside that frame,

# and return areference to a hash with information about the
# color.

sub ColorArea {
my ($name, $frame) = @ _;

# Initialize the hash with some useful information.
my $retval = {‘frame’ => $frame, ‘value' => 128, name => $name} ;

# Create alabel with the color name.
$frame->L abel (-text => $name)->pack(-side => ‘left’);

# Create a horizontal scroll bar. When the bar is moved, call
# the scrollit subroutine.
my $s = $frame->Scrollbar(-orient => ‘horiz’,
-command => sub { scrollit($retval, @ ) })
->pack(-side => ‘left’, fill =>*x’, -expand => 1);

# Create an entry box. It displaysthe variable, and will

# automatically update it when modified.

$retval->{entry} = $frame->Entry(-width => 3,
-textvariable => \$retval->{ value} )

463



->pack(-side => ‘right’);

# When the Return key is pressed, update everything based on the

# keypress.
$retval->{ entry} ->bind(‘ <Return>’, sub { setit($retval) } );

# Save off the scrollbar into the hash.
$retval->{ scrollbar} = $s;

# Update things now.
setit($retval);

return $retval;
}

# This subroutine is used to handle a scroll request.

sub scrollit {
my ($hash, $cmd, $arg, $arg2) = @ _;
my $var = \$hash->{value};

if (5cmd eq ‘moveto’) {  # Move to a specific location.
$Pvar = $arg * 255;
} elsif ($cmd eq ‘scroll’ & & $arg2 eq ‘units') {
$Pvar += $arg; # User clicked on arrow, move by 1.
} elsif ($cmd eq ‘scroll’ & & $arg2 eq ‘pages’) {
$$var += 10 * Jarg; # User clicked on bar area, move by 10.

}
setit($hash);
}

# Set scrollbars and everything as appropriate. Takes a hash asan
# argument, processes its val ue, and sets things up.

sub setit {
my $hash = shift @_;
my $value = \$hash->{ value} ;
# Do some sanity checks. Strip off afractional part, make sure
# between 0 and 255.

$$value = int $$value;
$dvalue = 255 if ($$value > 255);
$$value = 0 if ($$value < 0);

# Update the scroll bar. Note the scrollbar needsits valuesin
# fractions.

$hash->{ scrollbar} ->set($$value / 255, $$value / 255);
UpdateColorLabel ();
}

# Update the color label at the bottom of the screen. Show the color
# string, suitable for usein HTML and X, and set the background
#to that color.

sub UpdateColorLabel {
return unless ($areas->{ red} &&
$areas->{ green} & &
Sareas->{ blue});

my $colorstring = sprintf(‘ #%602x%02x%02x’
$areas->{ red} ->{ value},

464



$areas->{ green}->{ value},
$areas->{ blue} ->{ value} );
$col orlabel ->configure(-background => $colorstring,
-text => $colorstring);

Before analyzing this code, please take a moment to run it and see what it does. Y ou'll get a screen containing three scroll bars,
three text entry boxes, and two labels. The top label has some information, and the bottom label changes as you move the scroll
bars. Y ou can also type a number between 0 and 255 into the text entry boxes, and after pressing Enter, the appropriate boxes on
the screen will update (see Figure 24-2).

OM Eaiarricler EEE

Figure 24-2: First color selection program

Now let’s go over the code and see how it accomplishes this. The program starts by creating a window and giving it atitle, as
usual. It proceedsto create alabel and pack it. It then executes aloop that creates entries in the areas hash for each of the three
colors. Finaly, it creates alabel for the bottom of the window and updates it.

That isall of the main program. The subroutines, though, hold many of the secrets to this program. First, there is the ColorArea
subroutine, which creates the |abel, scrollbar, and text entry box for each color. It begins by initializing a hash and inserting a
label. It then creates a scroll bar, oriented horizontally. When the user interacts with this scroll bar, the scrollit subroutine is called.
The scroll bar is packed, set to expand to fill the available area.

Then an entry box is created. Its width attribute is set to three characters. It operates upon the variable stored in $retval->{ value},
to which it takes a reference. Whenever that value is modified, the entry box is automatically updated, and vice-versa.

After creation of the entry box, abinding for it is created. When the user presses Enter while the focusisin the entry box, the setit
subroutine will be called. Thiswill then update the scroll bars and color label.

Finally, the hash is touched up and setit is called to make sure that the areais properly displayed.

The scrollit subroutine is called from Tk whenever the scroll bar moves. It takes a command and one or two arguments. If the
command is moveto, the argument is a fraction indicating where along the bar the item should be moved to. If the command is
scroll, theitem is adjusted by either 1 or 10 units, depending upon how the user clicked the bar. Finally, setit is called to ensure
everything is up to date.

The setit subroutine does many important things. First, it ensures that the value being used isvalid. Then, it callsthe scrollbar’s set
method to update the position. It finishes by calling UpdateColorLabel to set up the label area at the bottom of the window.

UpdateColorL abel begins by ensuring that all three colors have been set up. Because it could be called before they are all ready, it
should not do anything in those cases. If they are all set up, it generates a string. Then, it calls configure on the label to modify its
attributes. These modifications do take effect immediately, so the color of the label, and the content of its text, are changed right
away.

Each widget in Tk has many different attributes that can be set, either at creation time or later by using the configure call. The

465



manpages for the widget, such as Tk::Label contain details. Also take alook at the Tk::options manpage.
You'll note that the program has a few flaws; for instance, the color items don’t line up nicely and there is no Exit button. These will
be fixed as you go along in this chapter.

Special Objects

Besides those that you have already dealt with, there are a number of additional objects that you might want to work with. 1l
cover some of them here, and I'll modify the code for the existing program to use them.

Frames
A frame is an object that is simply designed to hold other objects. Its main purpose is to organize the packing of certain objects
into subgroups, but it can also be used to visually set off one thing from the next. The example program used one frame for each
color group. This allows the items inside the frame to be packed, and then the collection of items to be packed as one within the
larger window. This behavior can simplify packing and eliminate some needs to use other packers.

Menus
Almost every GUI program will have a menu. Perl/Tk provides you with an extremely powerful menu interface. Y ou can create
menus just about anywhere, not just along the top bar asis common. Y our menus can invoke commands, provide options, and
include submenus.
Listing 24-2 shows a version of the existing software, with an addition of a menu bar and a few features to support it.
Note Listing 24-2 isavailable online.
Listing 24-2: Example with a menu bar
#/usr/bin/perl -w
use Tk;
# Create a hash to hold information about the three different color areas.
my %areas = (‘red’ => "', ‘green’ => "', ‘blue’ =>"");
my $dtextfg = ‘#000000’;
# Create the main window.
my $window = new MainWindow();
$window->title(* Color Picker'); # Giveit atitle.
# Call the subroutine to create the menus.
CreateM enus($window);

# Create the top label text.

$window->L abel (-text => “Y ou may select your colors here.”)
->pack(-side => ‘top’);

# Create each area, pack it, and store it into the hash.
foreach my $name (‘red’, ‘green’, ‘blue’) {
$areas->{ $name} = ColorArea($name, $window->Frame);

$areas->{ $name} ->{ frame} ->pack(-fill => ‘x’);

}

# Create the label for the bottom of the window.

466



my $colorlabel =

$window->Label (-text => ‘foo’)->pack(-side => ‘top’, -fill => ‘both’);

# And update it.

UpdateColorLabel();
# Process events.

MainLoop;

# Thisis asubroutine to create an areain the window for each
# particular color. Itsarguments are a color name and a frame.
# The subroutine will create al its widgets inside that frame,
# and return a reference to a hash with information about the

# color.

sub ColorArea{
my ($name, $frame) = @ _;

# Initialize the hash with some useful information.
my $retval = {‘frame’ => $frame, ‘value' => 128, name => $name};

# Create alabel with the color name.
$frame->L abel (-text => $name)->pack(-side => ‘left’);

# Create a horizontal scroll bar. When the bar is moved, call
# the scrollit subroutine.
my $s = $frame->Scrollbar(-orient => ‘horiz’,
-command => sub { scrollit($retval, @ ) })
->pack(-side => ‘left’, -fill => *x’, -expand => 1);

# Create an entry box. It displaysthe variable, and will
# automatically update it when modified.
$retval->{entry} = $frame->Entry(-width => 3,
-textvariable => \$retval->{ value} )
->pack(-side => ‘right’);

# When the Return key is pressed, update everything based on the

# keypress.
$retval->{ entry} ->bind(‘ <Return>’, sub { setit($retval) } );

# Save off the scrollbar into the hash.
$retval->{ scrollbar} = $s;

# Update things now.
setit($retval);

return $retval;
}

# This subroutine is used to handle a scroll request.

sub scrollit {
my ($hash, $cmd, $arg, $arg2) = @ _;
my $var = \$hash->{ value};

if (Jcmd eq ‘moveto’) {  # Move to a specific location.
$Pvar = $arg * 255;
} elsif ($cmd eq ‘scroll’ & & $arg2 eq ‘units') {
$Pvar += $arg; # User clicked on arrow, move by 1.
} elsif ($cmd eq ‘scroll’ & & $arg2 eq ‘pages’) {
$$var += 10 * Jarg; # User clicked on bar area, move by 10.

467



}
setit($hash);
}

# Set scrollbars and everything as appropriate. Takes a hash asan
# argument, processes its value, and sets things up.

sub setit {
my $hash = shift @_;
my $value = \$hash->{ value} ;

# Do some sanity checks. Strip off afractional part, make sure
# between 0 and 255.

$$value = int $Svalue;
$dvalue = 255 if ($$value > 255);
$$value = 0 if ($$value < 0);

# Update the scroll bar. Note the scrollbar needs its valuesin
# fractions.

S$hash->{ scrollbar} ->set($$value / 255, $$value / 255);
UpdateColorLabel();

}

# Update the color label at the bottom of the screen. Show the color

# string, suitable for usein HTML and X, and set the background
#to that color.

sub UpdateColorLabel {
return unless ($areas->{red} & &
Sareas->{ green} &&
Sareas->{ blue});

my $colorstring = sprintf(‘ #%602x%02x%02x’
$areas->{ red} ->{ value},
$areas->{ green}->{ value},
$areas->{ blue} ->{ value} );
my $fg = $dtextfg;

if ($fgeq‘inverse’) {
$fg = sprintf(‘ #9602x%02x%02X’,
$areas->{ red}->{value} " OxFF,
$areas->{ green} ->{ value} " OXFF,
$areas->{ blue} ->{ value} ~ OXFF);

$col orlabel ->configure(-background => $colorstring,
-text => $colorstring,
-foreground => $fg);
}

sub CreateMenus {
my $w = shift @ ;

my $f = $w->Frame(-relief => ‘groove’,
-borderwidth => 2)
->pack(-expand => 0, -fill => ‘both’);

# Program menu

my $m = $f->Menubutton(text => ‘ Progran’,

468



-underline => 0)
->pack(side => ‘left’, padx => 2);

$m->command(-label => ‘Exit’,
-underline => 1,

-command => sub { $w->destroy}

);

# Options menu

$m = $f->Menubutton(text => ‘Options', -underline => Q)
->pack(side => ‘left’, -padx => 2);

my $m2 = $m->cascade(-label => ‘Demo Text Foreground’, -underline => 1);

$m2->radiobutton(-label => “Black”,

-variable => \$dtextfg,

-value => ‘#000000’,

-command =>\& UpdateColorL abel);
$m2->radiobutton(-label => “White”,

-variable => \$dtextfg,

-value => ‘#FFFFFF’,

-command =>\& UpdateColorL abel);
$m2->radiobutton(-label => “Inverse”,

-variable => \$dtextfg,

-value=> ‘inverse’,

-command =>\& UpdateColorL abel);

One problem with the previous version of the code isthat the text in the label box would become hard to read if the color being
showed there was dark. This is because the text was black. However, one would have the same problem if the white color were
selected; bright colors would have a problem. So, a menu is provided that offers a radio button selection of black, white, or inverse
color text. Just to demonstrate cascading menus, and perhaps to leave some room for future expansion, thisis a cascading menu
beneath the Options menu.

To create the menu bar, you must first create aframe. Thisframeis set to occupy al available horizontal space such that it spans
the entire top of the application. Note that you could just as easily make the menu vertical along the left or right side of the box, at
the bottom of the box, or wherever you prefer. Y ou can aso make the Menubutton widgets as pop-ups from anywhere in your
application. Y ou are not required to use a set menu bar or location as with some other GUI environments. However, unless you
have a special reason to deviate from the common approach, it’s good to give your users what they expect. The so-called
“principle of least surprise” often works in your favor with GUIs.

Note that the frame is given two attributes. The first sets the border (relief) to a groove, that visually sets the menu bar apart from
the rest of the window. The second defines the width of this border.

Next, the menu buttons are defined with Menubutton widgets. These are the entry points into a menu hierarchy. Each top-level
item in the menu bar is a menu button. The first is the Program menu. It contains a single command entry, which exits the
program.

The second is the Options menu. Its single entry is a cascade, meaning a nested menu. Then, into the cascaded menu, the three
radio buttons are added. Each specifies the text to show on-screen, the variable to modify, the value to store in that variable.
Furthermore, they specify a command to run when that variable's contents are modified.

When you run the program, note the dashed linesin the menus. Click on one of those lines and a menu tears itself off, forming a

separate window. Figures 24-3 and 24-4 illustrate this modified program. Figure 24-3 shows the start of the program. Figure 24-4
shows atorn-off menu.

469



(e e = ]

Figure 24-3: Color selector with menu bar

Figure 24-4: Torn-off menu bar for color selector

Text and canvas

These are two widgets that enable you to place other thingsinside. The text widget, for instance, is designed for presentation of
text and enables you to place various items of text information, plus special capabilities like hotspots and other embedded widgets.
It isfrequently used to make things like a dialog box scrollable.

A canvasissimilar in concept to atext widget but is designed to work with graphical objects such aslines, painting, and filling.
Geometry Managers

Y ou may have noticed that some thingsin our sample program weren’t exactly well lined up. For instance, it would be nicer to
have all the scrollbars lined up and the same size. What we really need is a different way of arranging itemsin the window. The
standard packer works fine for many things, but here, the grid geometry manager may work better.
Listing 24-3 shows is a version of the program that uses the grid geometry manager to place the itemsin the color area. Notice that
the main window still uses the packer, but a frame within it usesthe grid. Y ou are free to use the frame to achieve such separation,
which isindeed one of its most powerful uses.
Note Listing 24-3 isavailable online.
Listing 24-3: Samplewith grid manager
#/usr/bin/perl -w

use Tk;

# Create a hash to hold information about the three different color areas.
470



my %areas = (‘red’ => "', ‘green’ => "', ‘blue’ =>"");
my $dtextfg = #000000';

# Create the main window.

my $window = new MainWindow();
$window->title(* Color Picker');  # Giveit atitle.

# Cadll the subroutine to create the menus.
CreateM enus($window);

# Create the top label text.

$window->L abel (-text => “Y ou may select your colors here.”)
->pack(-side => ‘top’);

# Create each area, pack it, and store it into the hash.

my $colorframe = $window->Frame->pack(-fill =>‘x’);
my $row = 0;

foreach my $name (‘red’, ‘green’, ‘blue’) {
$areas->{ $name} = ColorArea($name, $colorframe, $row++);

}

# Create the label for the bottom of the window.

my $colorlabel =
$window->L abel (-text => ‘foo’)->pack(-side => ‘top’, -fill => ‘both’);

# And update it.
UpdateColorLabel();
# Process events.
MainLoop;

# Thisis a subroutine to create an areain the window for each

# particular color. Itsarguments are a color name and a frame.

# The subroutine will create al its widgets inside that frame,

# and return a reference to a hash with information about the
# color.

sub ColorArea{
my ($name, $frame, $row) = @_;
my $col = 0;

# Initialize the hash with some useful information.
my $retval = {‘frame’ => $frame, ‘value' => 128, name => $name};

$frame->gridColumnconfigure(1, -minsize => 300);

# Create alabel with the color name.

$frame->L abel (-text => $name)->grid(-row => $row,
-col => $col ++,
-sticky => ‘nesw’);

# Create a horizontal scroll bar. When the bar is moved, call
471



# the scrollit subroutine.
my $s = $frame->Scrollbar(-orient => ‘horiz’,
-command => sub { scrollit($retval, @ ) })
->grid(-row => $row, -col => $col++, -sticky => ‘nesw’);

# Create an entry box. It displaysthe variable, and will
# automatically update it when modified.
$retval->{ entry} = $frame->Entry(-width => 3,
-textvariable => \$retval->{ value} )
->grid(-row => $row, -col => $col++, -sticky => ‘nesw’);

# When the Return key is pressed, update everything based on the

# keypress.
$retval->{ entry} ->bind(‘ <Return>', sub { setit($retval) } );

# Save off the scrollbar into the hash.
$retval->{scrollbar} = $s;

# Update things now.
setit($retval);

return $retval;
}

# This subroutineis used to handle a scroll request.

sub scrollit {
my ($hash, $cmd, $arg, $arg2) = @ _;
my $var = \$hash->{value};

if ($cmd eq ‘moveto’) { # Move to a specific location.
$$var = $arg * 255;
} elsif ($cmd eq ‘scroll’ & & $arg2 eq ‘units') {

$Pvar += $arg; # User clicked on arrow, move by 1.
} elsif ($cmd eq ‘scroll’ & & $arg2 eq ‘pages’) {

$Pvar += 10 * $arg; # User clicked on bar area, move by 10.
}
setit($hash);

}

# Set scrollbars and everything as appropriate. Takes a hash asan
# argument, processes its value, and sets things up.

sub setit {
my $hash = shift @ ;
my $value = \$hash->{ value} ;

# Do some sanity checks. Strip off afractional part, make sure
# between 0 and 255.
$Svalue = int $$value;
$Pvalue = 255 if ($$value > 255);
$Svalue =0 if ($$value < 0);

# Update the scroll bar. Note the scrollbar needs its valuesin
# fractions.

$hash->{ scrollbar} ->set($$value / 255, $$value / 255);
UpdateColorLabel ();
}

# Update the color label at the bottom of the screen. Show the color
# string, suitable for usein HTML and X, and set the background

472



# to that color.

sub UpdateColorLabel {
return unless ($areas->{red} & &
Sareas->{ green} &&
$areas->{ blue});

my $colorstring = sprintf(‘ #9%602x%02x%02x’,
$areas->{ red} ->{ value},
$areas->{ green}->{ value},
$areas->{ blue} ->{ value} );

my $fg = $dtextfg;

if ($fgeq‘inverse’) {
$fg = sprintf(‘ #9602x%602x%02x",
$areas->{ red}->{value} " OxFF,
$areas->{ green} ->{ value} " OxFF,
$areas->{ blue} ->{ value} ~ OxFF);

}

$colorlabel ->configure(-background => $colorstring,
-text => $colorstring,
-foreground => $fg);

}

sub CreateMenus {
my $w = shift @ ;

my $f = $w->Frame(-relief => ‘groove’,
-borderwidth => 2)
->pack(-expand => 0, -fill => ‘both’);

# Program menu

my $m = $f->Menubutton(text => ‘ Progran’,
-underline => 0)
->pack(side => ‘left’, padx => 2);

$m->command(-label => ‘Exit’,
-underline => 1,
-command => sub { $w->destroy}

);

# Options menu

$m = $f->Menubutton(text => ‘Options', -underline => 0)
->pack(side => ‘left’, -padx => 2);

my $m2 = $m->cascade(-label => ‘Demo Text Foreground’, -underline => 1);
$m2->radiobutton(-label => “Black”,
-variable => \$dtextfg,
-value => ‘#000000’,
-command =>\& UpdateColorLabel);
$m2->radiobutton(-label => “White”,
-variable => \$dtextfg,
-value => ‘#FFFFFF’,
-command =>\& UpdateColorL abel);
$m2->radiobutton(-label => “Inverse”,
-variable => \$dtextfg,
-value=> ‘inverse’,

473



-command =>\& UpdateColorL abel);

When you run this code, you’ll notice that things are aligned much better. In fact, the program finally starts to look nice and sharp.
Figure 24-5 shows the program in action after the change to the grid geometry manager.

Calre Picker @RS

Bregw Ly
\oas ey Dt puar Cosry han.

Figure 24-5: Sample with grid manager
Special Concerns

Perl/Tk programs do have some unique concerns that do not necessarily affect non-GUI programs. One of themisthat calling
fork() from inside such a program can be somewhat tricky. After you fork, you need to be sure that only one process will continue
on with the GUI interface. Both cannot, although it is possible for one to open a separate X connection. In general, if at all
possible, you should fork before doing any interaction with Tk.

Another concern lies with updating the interface. The only time that Tk can read input from the user or can update the on-screen
eementsiswhenitisin MainLoop. This has not posed any problems thus far. However, if you have atask that takes along time,
which can generally be defined as more than one tenth of a second, you need to ensure that this does not block Tk updates from
taking place.

One way to do thisisto explicitly call Tk’s update subroutine, which is documented in the Tk::Widget(3pm) manpage. If you call
thisin the middle of your lengthy computation, you will alow all outstanding items to be processed.

Another option isto fork before initializing any Tk items. Y ou can then set up a pipe or some other communication device between a
process that does computation and one that handles the interface. Thiswill probably be the best-performing option but will also be
more complex to implement.

SpecT cl/SpecPer|

So far, interfaces to programs have been designed manually. There is also a program called SpecTcl that will enable you to lay out
your interfaces from a graphical interface. This program does not necessarily ship with distributions; you can download it for free
at http://www.scriptics.com/products/spectcl/.

When you invoke SpecTcl, you are first presented with a box asking about the language. Pick Perl. Then you get an empty screen
as shown in Figure 24-6.

474



Epre Tl el enakled| 10 S anilikd FEEE

i {8

|
i

e
.
o
=

an

L
LE1S
13 ._ [
L
o=
i J

Figure 24-6: SpecTcl designer

After this, you simply drag items onto the grid. Y ou can add your own columns or work with the ones there already. By simply
dragging a few things onto the screen, you can create something that looks like Figure 24-7.

L | P T P T e o — )

Figure 24-7: SpecTcl working on a program

Now, to generate the Perl code, select Build from the Commands menu. SpecTcl may ask you to save your interface; go ahead and
do so. Now examine the Perl code. The result looks similar to Listing 24-4.

Listing 24-4: Sample SpecTcl output

# interface generated by SpecTcl (Perl enabled) version 1.1

# from /home/jgoerzen/t/ SpecT cl 1. 1/bin/testinterface. ui

# For use with Tk400.202, using the gridbag geometry manager

sub testinterface ui {
my($root) = @ ;

# widget creation
my($label_1) = $root->Label (
-text => ‘Color:’,
);
my($entry_1) = $root->Entry (
my($label_2) = $root->Label (
-text => ‘Font:’,
);

475



my($entry_2) = $root->Entry (

# Geometry management

$label 1->grid(
-in=> $root,
-column=>"1",
-row =>‘1’

);

$entry_1->grid(
-in=> $root,
-column=>‘2",
-row=>"‘1

);

$label 2->grid(
-in=> $root,
-column=>"‘1",
-row => ‘2’

);

$entry 2->grid(
-in=> $root,
-column=>‘2",
-row => ‘2’

);

# Resize behavior management
# container $root (rows)
$root->gridRowconfigure(1, -weight => 0, -minsize => 30);
$root->gridRowconfigure(2, -weight => 0, -minsize => 30);
# container $root (columns)
$root->gridColumnconfigure(1, -weight => 0, -minsize => 30);
$root->gridColumnconfigure(2, -weight => 0, -minsize => 30);

# additional interface code
# end additional interface code

Notice that this code, although slightly more verbose and a bit less readable than the code generated before, is nonetheless quite
readable and useful. Y ou can build a good interface quickly using it.
Summary
In this chapter, you learned about writing graphical programs with Perl/Tk. Specifically, the following material was covered:
» Graphical user interfaces (GUISs) can be great tools to minimize learning curves and present thingsin new ways.
» However, GUIs are more complex to write and more resource-intensive to run.

» X has several layersfor graphical programs, which may span multiple machines.

*  Perl/Tk uses event-based programs, which deliver eventsto you instead of requiring you to specifically check for individual
events.

» Objectsin Perl/Tk are arranged hierarchically and have individual attributes.
» Frames can be used to organize some widgets separately from others.

» Several different geometry managers are available for your use.

476



* You can also use SpecTcl to create Perl/Tk dialog boxes and simple interfaces.
Chapter 25: Building GUIswith Ghome

Overview

One of the largest and most famous programming projects in recent years has been Gnome, the GNU Network Object Model
Environment. Gnome is designed to create a complete environment: both a programming environment for developers and a
consistent application environment for users. By providing a powerful, stable, and versatile environment, the idea is that
programmers can devel op applications quicker (because the system provides more functionality in its libraries) and users can have
aless steep learning curve because all the Gnome applications will have similar interfaces. In addition to these features, Gnome
supports drag-and-drop, inter-application communication, object embedding, session management, and many more features.

All of the Ghome features are based entirely on Free Software, asis Perl/Tk, which means that you can use it in your programs
without having to worry about paying any license fees. For more details on Gnome, visit http://www.gnome.org.

Whereas Gnome has bindings for several different languages, including Perl, Ghome's primary language—and the one in which it is
most mature—is C. Therefore, I’ll use C as the programming language for Ghome in this chapter.
Gnome Components

Gnomeis aframework for providing common services for applications relating to a GUI. These may not necessarily be strictly
GUI items; for instance, there are configuration file parsers, command-line argument handlers, HTML parsers, and so on.

You'll find that many of the lower-level GUI interactions are done by using GTK, which is the toolkit library upon which Gnhome
isbuilt. The purpose of GTK (the Gimp Toolkit) is roughly analogous to that of Tk in the Perl/Tk system discussed in Chapter 24:
it creates windows, handles events, and so on.

GTK usesalibrary called the GDK (for the Drawing Kit) to handle the interactions with X. All these libraries, in turn, use glib for
some basic features for portability.

The GTK/GDK libraries are based upon lower-level X libraries. To help you make sense of al of this, Gnome provides some scripts
to help. Many Gnome applications elect to use GNU autoconf and automake; for details on those tools, see the info documentation
for them on your system.

First Steps

Listing 25-1 shows a Gnome program that displays the same type of interface as the Tk program in Chapter 24, “GUIs with
Perl/Tk.” Because the build for Ghome applications can be tricky, I’ ve included the following Makefile that you can use to build
the programs in this chapter:

CC=gcc
CFLAGS := -Wall $(shell gnome-config --cflags gnomeui)
LINK :=$(CC) $(shell gnome-config --libs gnomeui)

al: $(PROGRAM)
@if [ “x$(PROGRAM)" =“x" ]; then\
echo “To compile, use make PROGRAM=name” ;\
echo “Where name is the executable; eg ch25-1" ;)\
/binffalse ;\
fi

$(PROGRAM): $(PROGRAM).0
$(LINK) -0 $@ $<

$(PROGRAM).0: $(PROGRAM).c
$(CC) $(CFLAGS) -¢ -0 $@ $<

clean:
-rm $(PROGRAM) $(PROGRAM).0

To use the Makefile in the preceding example to compile your code, you use make PROGRAM=ch25-1 for instance, to compile
ch25-1.c into the ch25-1 executable.

Note Listing 25-1 isavailable online.
477



Listing 25-1: Simple Gnome example: ch25-1.c

#include <gnome.h>

void exitbutton(void);

int main(int argc, char *argv(]) {

}

GtkWidget *window, *frame, * pack, *label, *button;
gnome_init(*ch25-1", “1.0", argc, argv);
/* Create the window. */
window = gnome_app_new("ch25-1", “Hi!");
frame = gtk_frame_new(NULL);
gnome_app_set_contents(tGNOME_APP(window), frame);
[* Create the widget packer. */

pack = gtk_packer new();
otk_container_add(GTK_CONTAINER(frame), pack);

/* The main label. */
label = gtk label _new(“Hello from Gnome!”);
gtk_packer_add defaults(GTK_PACKER(pack), label, GTK_SIDE_TOP,
GTK_ANCHOR_CENTER,
0);
/* The button. */
button = gtk_button_new_with_label (“Exit”);
gtk _signal_connect(GTK_OBJECT (button), “clicked”,
GTK_SIGNAL_FUNC(exitbutton), NULL);
otk_packer_add defaults(GTK_PACKER(pack), button, GTK_SIDE_TOP,
GTK_ANCHOR_CENTER, 0);
gtk_widget_show_all(window);
gtk_main();

return O;

void exitbutton(void) {

otk_main_quit();

Here'salook at how this application works. It's essentially the same as the first Perl/Tk program but because of Gnome, it all
looks a bit more complex. Y ou begin by initializing the application; the arguments to gnome_init() include an application name, a
version, and the argument count and argument list passed in to main().

Next, you create the main window (like MainWindow in Tk). You first call gnome_app_new(); again, the first parameter isthe
application name. The second parameter isthe default window title. Inside the application, you need to create a contents frame,
which the next two lines do.

Now, use the widget packer. | select the packer packer, which is essentially a port of the default packer from Tk. A new packer is
created, and it is added as a sub-widget of the frame. Next, alabel widget is created, and packed. Notice the similarity in the
arguments to the packer to those for the onein Tk.

A button is created with an Exit label. After that, I'll install an event handler—confusingly named signal (which has nothing to do
with Linux signals). This causes the Exit button function to be called when someone clicks that button, in a manner similar to the

478



command binding in Tk. The button is connected, the widgets are displayed, and the main event loop is invoked.

Overadl, the structure of this program isindeed quite similar to the Tk version, although Tk takes care of more of the details
automatically (see Figure 25-1).

Figure 25-1: The sample Gnome application is running in the center of the screen.

Aswith X and Tk, Ghome apps have widgets that are in essence windows, although Gnome doesn’t necessarily call them that. In
the next section, I'll introduce a new top-level window.

Note Theexamplesin this chapter were written and tested with Gnome libraries version 1.0.54. Gnome can sometimes
change rapidly; if your system does not have libraries of at |east that version and you are experiencing trouble with any
example, you probably need to update your Gnome system to a newer version.

Drawing Windows

In Perl/Tk, you saw how you can create new top-level windows with the widget library. Y ou can extend this program two ways:
first, so that you can create a new top-level window, and second, so that the program recognizes the window manager close event.

Listing 25-2 shows the required code.
Note Listing 25-2 is available online.
Listing 25-2: Recognizing a close event: ch25-2.c
#include <gnome.h>
void exitbutton(void);

int main(int arge, char *argv[]) {
GtkWidget *window, *frame, *pack, *label, *button;

gnome_init(“ch25-1", “1.0”, argc, argv);

/* Create the window. */

window = gnome_app_new(“ch25-2", “Hi!");

frame = gtk_frame_new(NULL);
gnome_app_set_contents(GNOME_APP(window), frame);
[* Create the widget packer. */

pack = gtk_packer new();
otk_container_add(GTK_CONTAINER(frame), pack);

/* The main label. */

479



label = gtk_label_new(*Hello from Gnome!”);

gtk_packer_add_defaults(GTK_PACKER(pack), label, GTK_SIDE_TOP,
GTK_ANCHOR_CENTER,
0);
/* The button. */

button = gtk_button_new_with_label (“Exit”);
gtk_signal_connect(GTK_OBJECT (button), “clicked”,
GTK_SIGNAL_FUNC(exitbutton), NULL);
otk_packer_add defaults(GTK_PACKER(pack), button, GTK_SIDE_TOP,
GTK_ANCHOR_CENTER, 0);

otk_signa_connect(GTK_OBJECT (window), “delete event”,
GTK_SIGNAL_FUNC(exitbutton), NULL):

otk_widget_show_all(window);
gtk_main();

return O;

}

void exitbutton(void) {
static int displayed = 0;
GtkWidget * appwindow, *top, *button, *blabel, *frame;

if (displayed) return; /* Don't display twice. */
displayed++;

appwindow = gnome_app_new(“ch25-2", “Goodbye");
frame = gtk_frame_new(NULL);
gnome_app_set_contents(GNOME_APP(appwindow), frame);
top = gtk_packer_new();
otk_container_add(GTK_CONTAINER(frame), top);

/* Now the label. */

otk_packer add defaults(GTK_PACKER(top),
gtk _label _new(“Y ou are now leaving the’
“demonstration program.”),
GTK_SIDE_TOP, GTK_ANCHOR_CENTER, 0);

/* And the button. Pack the label explicitly though. */

otk_packer add defaults(GTK_PACKER(top),
button = gtk_button_new(),
GTK_SIDE_TOP, GTK_ANCHOR_CENTER, 0);

blabel = gtk_label_new(*OK");
otk_container_add(GTK_CONTAINER(button), blabel);

gtk_signal_connect(GTK_OBJECT (button), “clicked”,
GTK_SIGNAL_FUNC(gtk_main_quit), NULL);

otk_signal_connect(GTK_OBJECT (appwindow), “delete_event”,
GTK_SIGNAL_FUNC(gtk_main_quit), NULL);

gtk_widget_show_all(appwindow);
}

The changes made to the code in Listing 25-2 include the handling of the delete_event that occurs when someone clicks the Close
button in the window manager for the application. In the exitbutton() function, you see a more concise method of packing some
things; for instance, there is no separate variable for the main label, more analogous to the Perl/Tk version (see Figure 25-2).

480



[10h) [E=M oY

P T Wi
il

Figure 25-2: Y ou can see the two windows from ch25-2.c in this screenshot.

I'll move on to aversion that implements the color picker. Because GTK already comes with a color picker widget, that saves alot
of effort. In fact, its predefined color picker is quite a bit nicer than the one that was built from scratch in the sample Perl/Tk
program. Listing 25-3 presents an example program that uses the GTK color selector.
Note Listing 25-3 isavailable online.
Listing 25-3: Example with GTK color selector, ch25-3.c
#include <gnome.h>

void exitbutton(void);

GnomeUlInfo FileMenu[] ={
GNOMEUIINFO_MENU_EXIT_ITEM(exitbutton, NULL),
GNOMEUIINFO_END

};
GnomeUlInfo MainMenu[] = {

GNOMEUIINFO_MENU_FILE_TREE(FileMenu),
GNOMEUIINFO_END

} il
int main(int argc, char *argv[]) {
GtkWidget *window, *frame;
gnome_init(*ch25-3", “1.0”, argc, argv);
/* Create the window. */
window = gnome_app_new(“ch25-1", “Hi!");
gnome_app_create_menus_with_data(GNOME_APP(window), MainMenu, window);
frame = gtk_frame_new(NULL);

gnome_app_set_contents(GNOME_APP(window), frame);

otk_container_add(GTK_CONTAINER(frame), gtk_color_selection_new());

otk_widget_show_all(window);

gtk_main();

481



return O;
}

void exitbutton(void) {
dtatic int displayed = 0;
GtkWidget * appwindow, *top, *button, *blabel, *frame;

if (displayed) return; /* Don't display twice. */
displayed++;

appwindow = gnome_app_new(*ch25-3", “Goodbye”);
frame = gtk_frame_new(NULL);
gnome_app_set_contents(GNOME_APP(appwindow), frame);
top = gtk_packer_new();
otk_container_add(GTK_CONTAINER(frame), top);

/* Now the label. */

otk_packer add defaults(GTK_PACKER(top),
otk _label _new(*Y ou are now leaving the”
“demonstration program.”),
GTK_SIDE_TOP, GTK_ANCHOR_CENTER, 0);

/* And the button. Pack the label explicitly though. */

otk_packer add defaults(GTK_PACKER(top),
button = gtk _button_new(),
GTK_SIDE_TOP, GTK_ANCHOR_CENTER, 0);

blabel = gtk_label_new(* OK");
otk_container_add(GTK_CONTAINER(button), blabel);

gtk _signal_connect(GTK_OBJECT (button), “clicked”,
GTK_SIGNAL_FUNC(gtk_main_quit), NULL);

gtk _signal_connect(GTK_OBJECT (appwindow), “delete_event”,
GTK_SIGNAL_FUNC(gtk_main_quit), NULL);

gtk_widget_show_all(appwindow);
}

This program uses the GtkColorSelect() widget as well as a menu with some generic menu entries that GTK provides for use here.
Figure 25-3 shows this code in action, with atearoff of the File menu.
M iscellaneous Gnome Notes

Gnhomeisalarge and rapidly evolving system consisting of tens of thousands of lines of source code. Its documentation is
currently rather sparse; with Gnome, one of the best things you can do islearn by example from any of the hundreds of existing
Gnhome applications. Because the source code is available for so many Linux programs, you can look at the sources for these
programs or for Gnome itself to see how it works.

The header filesfor Gnome and GTK also are useful for you to learn about Gnome' s functions and the structure of its macros.
Another resourceis the (current prerelease) Glade interface designer, which is used to help you design the GUI for your
program—which happens to be the part that Ghome is primarily involved in.

Y ou can learn about Ghome and the current status of the various libraries, widgets, and code that are commonly used with it by
looking at the Ghome homepage at http://www.gnome.org.

482



HEEEE

Figure 25-3: Here you can see the color selector as well as a torn-off menu.
Summary

In this chapter, | introduced you to Ghome. Specifically, | discussed:
» Gnomeincludes awidget set (GTK) and an object environment for your programs.
» GTK and Tk have many similarities because both are primarily designed for X.
» Because building Gnome programs is complex, programmers almost always use a Makefile or an autoconf system.
* Gnome uses widget packers as does Tk; the examplesin this chapter used the Packer geometry manager.
e Gnhomeand GTK have many features ready for your use, such as color pickers and menu options.
e Gnome'sdocumentation is sparse, but examining code and the information at the Gnome website is a good way to learn about
the system.
Part VII: Putting It All Together

Chapter Liat

Chapter 26: Archiving and Collabor ation with CVS

Chapter 27: Understanding Security and Code

Chapter 28: Optimizing Perfor mance

Glossary
Chapter 26: Archiving and Collaboration with CVS

Overview

Y ou may sometimes find that there is a need to keep historical versions of your software around, or to coordinate devel opment
between multiple programmers. CV'S (Concurrent VVersions System) is designed to address both needs. In this chapter, you will learn
the basics of CV'S, how to configure CV'S, daily usage of the software, managing tags and branches, using CV'S on a network, and
some special hintsfor CV'S usage.

Introducing CVS

As software projects get larger, managing them can become more difficult. Teams of developers need to be coordinated, and each
one might need to keep a personal copy of the filesin a project for development work. Changes need to be synchronized so that
one developer’ s work doesn’t overwrite another’s. When arelease isimminent, the code may fork; some developers might be
working on perfecting the release, and others on adding new features for the next release. However, eventually you might want to
merge some changes from the release fork back into the development fork.

Another problem is with historical access. Sometimes, you might notice a bug that was introduced somewhere along the line, and

483



you may need to go back weeks, months, or even yearsto find pristine code without the bug. This can often be difficult, involving
painstaking and time-consuming restore off of magnetic tape backups. Sometimes it may be even impossible.

On top of al of this, add problems that can occur when devel opers work on their own machines and must somehow communicate
changes over the network. Problems also can occur when users want to disconnect from the network for atime to work on code,
and then commit changes when they return—for instance, to work on alaptop while on atrip. The changes may conflict with
others, and nobody may ever know.

Enter CVS, the Concurrent Versions System. CVSis designed to address all these problems. The basic idea around CV S isthat
whenever a developer makes changes to the source, these changes should be checked in to the CV S repository. This repository
holds the master copy of the code, and deltas (or diffs) representing historic information back to when the file wasfirst created.
The repository can be on a networked computer somewhere; it doesn’t have to be local.

CV S enables you to keep your own devel opment tree up-to-date with the repository. Y ou do this by committing your changes to
the repository and updating your own tree from the repository. If there is ever a conflict, CV S provides conflict resolution tools to
help migrate changesin.

CV S also supports branches, enabling the code to be forked. Moreover, it also has support to merge these branches back together
at alater date, again with conflict resolution tools. It has support to enable you to fetch a source tree suitable for product release
with a single command, and to enable you to check out as much or aslittle of the code as you want.

With CV'S, you can receive the current version of code, or any version committed in the entire history of the code. Y ou can
identify these versions on afile-by-file basis. Y ou can retrieve diffs (a report summarizing the differences between two files)
between any two versions of code, both on afile-by-file basis and on an aggregate entire-tree basis. In short, CVSis your friend!

Even if you are not working in alarge development team, CV S has benefits. Although the conflict resolution probably will not
benefit you if you are programming by yourself, the history features certainly can. If you want to make some experimental changes
to the code, make a branch. If the changes don’t work out, you can simply forget about the branch and go back to the main code—
but the branch is still there for you to look at later to see exactly what went wrong. Or, if the changes work, you can merge the
branch back into the main branch.

CVS stores al of this datain a compact, yet efficient, manner. It does not keep an entire copy of each version of the file. Rather, it
simply records the changes that occurred between each version. This enables CV S to compute, and give you, any arbitrary version
of the file—or to easily compare any two versions. It also saves tremendously on disk space.

Touse CVS, you'll need afew pieces of software. First, you'll need RCS (Revision Control System), upon which CVSis based.
Most distributions should come with this already; if yours does not, you can download it from ftp.gnu.org in the directory
/pub/gnu; the filename will be something like rcs-5.7.tar.gz.

After you get RCS, you'll need CVS. Again, most Linux distributions should ship with it. If yours does not, you may download it
yourself at http://www.cyclic.com/. Both RCS and CV S are licensed under the GNU General Public License.

If you intend to use the optional network transport, you may need some additional software. CV S can use rsh or its built-in server,
cvs-pserver. However, something like ssh may be more secure, depending on your network and needs. This optional software is
not required to get abasic CV Sinstallation functional, but can be nice if you want to use CVS's network features.

Thefirst thing that you have to do when you set up CV Sisto establish arepository, which I'll cover in the next section. The
repository holds the data from the CV'S program itself, which consists of your files, their source code, and entire history. When you
commit changes, the repository is updated, and when you check out code, it comes from the repository. CV S fetches the files for you
and creates them in your directory where you can work with them privately. When you want to put your changes into the repository,
you issue a commit request, which mergesin your changesin.

Setting Up a Repository

Before you can use CV'S, you must set up your repository. For now, I'll assume that you are the only one accessing it; I'll cover
multiple users later.

Before you invoke CV S for the first time, you need to set up your environment. This means simply setting the CV SROOT
variable. Assuming that you'll create adirectory in your home directory named cvsroot, you can set the variable as follows:

$ export CVSROOT=$HOM E/cvsr oot

You'll probably want to add this to your .profile file such that it will be set automatically whenever you log in.
484



Tip If you are using csh instead of sh or Bash, you can use setenv CV SROOT=$HOM E/cvsroot instead of the export
command above, and add it to your .cshrc instead of your .profile.

Next, create the directory:
$ mkdir cvsroot
You'll also want it to be protected from outside readers. Y ou can accomplish this with the chmod command:
$ chmod 700 cvsr oot
Now you must initialize the CV S repository. Do that with aquick CV'S command:
$cvsinit

CV S calls an editor on aregular basis for you to enter logs and so on. If you don’'t have a default editor set, this probably will cal
either vi or ae. Y ou can change the default by setting the EDITOR environment variable, as follows:

$ export EDITOR=emacs
As before, you might want to put thisinto your .profile file. That way, it is set automatically for future uses.

That'sit! Your repository is now ready for use. Pretty easy!
Using CVS Daily

Now that you have created arepository, you're ready to use it. Thefirst thing to do isto import a directory tree. Thisis done,
naturally enough, with the cvs import command.

Suppose | have adirectory with some various files. It doesn’t matter what files, aslong as they’ re something like source code.
CVS can deal with almost any type of file, including binary files if so configured, but for now I'll focus on sourcefiles.

Here is my directory’s contents. | copied afew examples of source code from earlier chaptersin this book into the directory for
exampl e purposes.

$ls-l

total 18
-rw-rw-r-- 1jgoerzenjgoerzen 637 Oct 5 10:22 ch10-1.c
-rw-rw-r-- 1jgoerzenjgoerzen 1141 Oct 510:22 ch10-2.c
-rw-rw-r-- 1jgoerzenjgoerzen 191 Oct 510:22 ch10-3.c
-rw-rw-r-- 1jgoerzenjgoerzen 1141 Oct 510:22 ch10-4.c
-rw-rw-r-- 1jgoerzenjgoerzen 3533 Oct 510:22 chll-1.c

-rWXrwxr-X 1 jgoerzen jgoerzen

1276 Oct 510:22 ch11-2.pl

-rw-rw-r-- 1jgoerzenjgoerzen 639 Oct 5 10:22 ch11-3.c
-rw-rw-r-- 1jgoerzenjgoerzen 728 Oct 5 10:22 chll-4.c
-rw-rw-r-- 1jgoerzenjgoerzen 318 Oct 5 10:22 chl2-1.c
-rw-rw-r-- 1jgoerzenjgoerzen 283 Oct 5 10:22 chl2-2.c
-rw-rw-r-- 1jgoerzenjgoerzen 464 Oct 5 10:22 ch12-3.c
-rw-rw-r-- 1jgoerzenjgoerzen 1013 Oct 5 10:22 ch12-4.c

Now it’s time to import these into the CV S repository. The command is cvs import and it takes three arguments. The first isthe
path that the files should be placed under in the CV S repository. The second is avendor tag, which can be used for branching the
code at the point of import. The final is arelease tag, which can be used to simply check out files at this version. For our purposes,
these final options probably don’t matter. Here's a command I’ m using:

$ cvsimport example ORIGINAL START

When you run that command, CV S brings up an editor for you to make alog entry. | made an entry simply saying Initial import.
Save thisfile and then CV S will proceed.

N example/ch10-1.c
N example/ch10-2.c

485



N example/ch10-3.c
N example/ch10-4.c
N example/chll-1.c
N example/ch11-2.pl
N example/ch11-3.c
N example/ch11-4.c
N example/ch12-1.c
N example/ch12-2.c
N example/ch12-3.c
N example/ch12-4.c

No conflicts created by thisimport

CVSinforms you that all those files are new to the archive (N). Now you can check out the repository. Move the existing directory
out of the way or change into some other path and run:

$ cvs checkout example
cvs checkout: Updating example
U example/ch10-1.c

U example/ch10-2.c

U example/ch10-3.c

U example/ch10-4.c

U example/chl1-1.c

U example/ch11-2.pl

U example/ch11-3.c

U example/chl1-4.c

U example/ch12-1.c

U example/ch12-2.c

U example/ch12-3.c

U example/ch12-4.c

CVS pullsthe files down from the repository and populates your local directory with them. This is where you can now do your
development work. First, type cd example to move into the example directory. Now, 1'll step through the process as you modify a
file. I'll make asmall change to the ch12-4.c file to illustrate the process. | simply added a comment at the top of the file and saved
the code. To make the change back into the repository, you simply run cvs commit. As before, it will ask you for alog entry. Save
the log entry and exit your editor. Y ou can then see something like this on your terminal:

$ cvs commit

cvs commit: Examining .

Checking in ch12-4.c;
/home/jgoerzen/cvsroot/example/ch12-4.c,v <-- chl2-4.c
new revision: 1.2; previous revision: 1.1

done

CV S has checked in your changes to the repository. If you're curious, you can look at the logs for the file as follows:
$cvslog chl2-4.c

RCSfile: /homeljgoerzen/cvsroot/example/ch12-4.c,v
Working file: chl2-4.c
head: 1.2
branch:
locks: strict
accesslist:
symbolic names:;
START: 1.1.1.1
ORIGINAL: 1.1.1
keyword substitution: kv
total revisions: 3;  selected revisions. 3
description:

revison 1.2

486



date: 1999/10/05 15:39:01; author: jgoerzen; state: Exp; lines: +2 -0

Added a comment at thetop of the file.

revision 1.1

date: 1999/10/05 15:34:00; author: jgoerzen; state: Exp;
branches. 1.1.1;

Initial revision

revison1.1.1.1

date: 1999/10/05 15:34.00; author: jgoerzen; state: Exp; lines: +0 -0

Initial import.

The output shows you the different versions, when they were created, who made changes, and what changed between them

according to the developer. Y ou can also compare the file in your current directory to any particular version in the repository. For

instance, | could run this command:

$ cvsdiff -r 1.1 -d -u ch12-4.c
Index: chl12-4.c

RCSfile: /home/jgoerzen/cvsroot/example/ch12-4.c,v
retrieving revision 1.1

retrieving revision 1.2

diff -d-u-r1.1-r1.2

---chl2-4.c 1999/10/05 15:34:00 1.1

+++ chl2-4.c 1999/10/05 15:39:01 1.2
@@-1,3+15 @@

+/* Thisisthe fourth program in Chapter 12. */
+
#include <stdio.h>
#include <unistd.h>
#include <stdarg.h>

In this case, | asked CV Sto compare the contents of the file ch12-4.c in the current directory to version 1.1 (-r 1.1) of thefilein

the repository. The result shows that | added two lines at the very top of the file, one with a comment, and one blank line. The -d -u

are arguments to the diff program that CV'S calls, which asks for a thorough comparison with the unified diff (a variant of a

standard diff that is easier to read) output format.

Another thing that you can do is a cvs update operation. This brings in changes that others might have made such that your local
directory is up-to-date with respect to the repository. Here' s a sample invocation:

$ cvsupdate
cvs update: Updating .
U ch11-2.pl

This shows that the local directory had one file that was out-of-date (ch11-2.pl), and that this file was brought up-to-date. If there
were conflicts—for instance, if you had modified the file and someone el se had committed a change before you could—CV S will

inform you of this and show you what isin conflict.

Y ou also can add new filesto your existing directory. For instance, if | want to add a file named demo.pl to this directory, first |

need to copy it into my local directory. Then, I'd run this:

$ cvsadd demo.pl

cvs add: scheduling file *demo.pl’ for addition

cvs add: use ‘cvs commit’ to add this file permanently
$ cvs commit

cvs commit: Examining .

RCS file: /home/jgoerzen/cvsroot/example/demo.pl,v
done

Checking in demo.pl;
/home/jgoerzen/cvsroot/example/demo.pl,v <-- demo.pl
initial revision: 1.1

487



done

If | later decide to delete thisfile, the procedure is similar. First, | delete the file from my own directory. Then, | use cvs remove to
mark it as removed from the repository:

$rm demo.pl
$ cvsremove demo.pl
cvs remove: scheduling “demo.pl’ for removal
cvsremove: use ‘cvs commit’ to remove this file permanently
$ cvs commit
cvs commit: Examining .
Removing demo.pl;
/home/jgoerzen/cvsroot/example/demo.pl,v <-- demo.pl
new revision: delete; previous revision: 1.1
done

Note You can still retrieve the historical versions of afile from the repository even after it has been removed; CVS never
destroys historical information. If you want to rename afile, ssmply copy it to the new file name, add that file, remove
the old one, and commit the changes.

Using Tags and Branches

As you may have noticed, each filein CV'S hasits own version number. This number is separate from any other filesin the
repository.

Sometimes, it is useful to refer to a certain version of the filesin aggregate. For instance, you might want to refer to the state of the
files with version 2.0 beta of a product that was released. If you know the precise date of that release, you can get the files that
way, but there' s an easier way—tags.

Tags

Y ou can use tags to mark your files. They serve as a sort of checkpoint, enabling you to later refer to the state of files at that point
by a single symbolic name. To assign atag, simply use acommand like this:

$cvstag RELEASE 2 0 BETA
cvstag: Tagging .
T chl0-1.c

T ch10-2.c

T ch10-3.c

T ch10-4.c

T chll-1.c

T chl1-2.pl

T ch11-3.c

T chll-4.c

T chl2-1.c

T chl2-2.c

T chl2-3.c

T chl2-4.c

Later, if you ever want to retrieve the code as it was when your 2.0 beta release occurred, you can simply use cvs checkout -r
RELEASE 2 0 BETA. Moreover, you can use this symbolic tag anywhere el se you might use -r to specify a particular revison—
with adiff or alog command, for instance.

Y ou can view the tags for any particular filein the cvslog screen. For instance, after tagging my files, | can seethis:
$cvslogchl2-4.c

RCSfile: /homeljgoerzen/cvsroot/example/ch12-4.c,v
Working file: ch12-4.c
head: 1.2
branch:
locks: strict
accesslist:

488



symbolic names:
RELEASE 2 0 BETA: 1.2
START: 1.1.1.1
ORIGINAL: 1.1.1

keyword substitution: kv

total revisions: 3;  selected revisions: 3

description:

After this, the log screen continues to list the changes committed to this file. In the preceding sample output, you can see there are

three tags—one created now and two created by cvsimport.
Branches

Branchesin CVS are away for you to fork your code such that development can continue without touching the master tree. This
has advantages, for instance, if you want to do an experimental rewrite of the code. Branches enable you to do this without
modifying the main branch of code. Thisway, others can continue working on the existing code without any interference from a
rewrite. Also, if the rewrite doesn’t work out, the branch simply can be ignored and development can proceed as usual with the
main branch.

To create a branch, you use the same tag command as earlier, but add a-b option to it, like so:

$cvstag-b DEVEL _BRANCH
cvstag: Tagging .
T chl0-1.c

T ch10-2.c

T ch10-3.c

T ch10-4.c

T chll-1.c

T ch11-2.pl

T ch11-3.c

T chll-4.c

T chl2-1.c

T chl2-2.c

T chl2-3.c

T chl2-4.c

Now, you can check out code in this branch. Note that your existing directory will not be using this branch; the tag command
effects only the repository:

$cvsco-r DEVEL_BRANCH example
cvs checkout: Updating example
U example/ch10-1.c

U example/ch10-2.c

U example/ch10-3.c

U example/ch10-4.c

U example/chl1-1.c

U example/ch11-2.pl

U example/ch11-3.c

U example/chl1-4.c

U example/ch12-1.c

U example/ch12-2.c

U example/ch12-3.c

U example/ch12-4.c

Now that you have checked out the branch, you can make changes to it without affecting the main branch. In this example, I've
modified afile, and I'll check in the changes as follows:

$ cvs commit

cvs commit: Examining .

Checking in chl12-4.c;
/home/jgoerzen/cvsroot/example/ch12-4.c,v <-- chl2-4.c
new revision: 1.2.2.1; previousrevision: 1.2

489



done

With CV'S, every number in an odd position is a branch number and every number in an even position is a file version number.
Therefore, in version 1.2, the first digit is a branch number (1), and the second is afile version number. By checking something in
on the branch, it creates verison 1.2.2.1. That is, version 1 under the branch.

If you later want to merge the branch’ s changes back into the main tree, first check out the main branch (use cvs checkout with no
options). Then use the -j option to merge in the changes:

$ cvsupdate -jDEVEL_BRANCH
cvs update: Updating .

RCSfile: /homeljgoerzen/cvsroot/example/ch12-4.c,v
retrieving revision 1.2

retrieving revision 1.2.2.1

Merging differences between 1.2 and 1.2.2.1 into ch12-4.c

The update command retrieves the differences from the branch and adds them to the filesin your current directory. Now, you need
to commit the changes to the repository so that the branch’s changes become effective in the main tree:

$ cvs commit

cvs commit: Examining .

Checking in chl12-4.c;
/home/jgoerzen/cvsroot/example/ch12-4.c,v <-- chl2-4.c
new revision: 1.3; previous revision: 1.2

done

You'vejust reintegrated the branch onto the main development branch. Note, though, the development can still continue separately
on these two branches. At some later date, you may want to integrate them again.
Accessing the Network

Another feature of CVSisthat it can enable remote accessto the repository. This means that each developer can work on a
separate machine, but they all can commit and fetch their code from a single central repository. CV S handles the network details
completely and transparently; after it is configured, it behaves exactly asif the repository were local. Y ou don’t need to manually
transfer files from one computer to another; CV S automatically takes care of whatever data transfers are necessary.

CV S can be set up in anumber of different ways to allow network access. One method is to use a program such as rsh or ssh, or
any other program that presents an rsh-like interface. The rsh option may be appropriate for small isolated lans, but because of the
design of rsh, it can be a security hazard. Another option is an encrypting program such as ssh. Thisis advantageous because not
only does it use a secure public key authentication system, but it also encrypts the data while in transit, meaning that it could be a
good security win if the CV S server is on aremote machine somewhere that is accessed via the Internet.

Another option isto use CVS' s built-in pserver. This has the advantage in that the people using it do not need to have standard
Linux accounts on the CV S server. The disadvantage is that the pserver does not use a very robust security system and does not
encrypt data.

I'll explain in this section how to use ssh for your networking as it generally provesto be the most secure option. If you opt to use

rshinstead, the configuration is quite similar; the difference is that you must set up a .rhosts file on the server to permit
connections from the client without having to provide a password.

Setting up the server

Before anyone can access the repository, you'll need to create a directory for it, as you did for the standalone installation you
learned about earlier, and temporarily set your CVSROOT environment variable (on the server) to this directory.

Y ou need to be a bit pickier about file permissions on the server. The recommended way to deal with thisissue isto create a Linux
group in /etc/group and place each person authorized to access the CV S repository into that group. Then, change the group on the
directory and modify its permissions like so:

$ chgrp cvsgroup cvsroot
$ chmod 2770 cvsroot

The chmod command makes the directory group-readable and writable. It also sets the setgid bit in the directory itself, which
490



means that any file placed into the directory has the same group as the directory itself, which can be used to help prevent problems
later on.

Now, run cvsinit on the server to set up the repository.
Generating ssh keys

I’ll assume that your system administrator has already installed the ssh software on the client and the server. The first thing that
you need to do is generate a public/private key pair. Y ou do this by running ssh-keygen, like so:

$ ssh-keygen

Initializing random number generator...

Generating P: ..ocveeveeerenenennees ++ (distance 1224)
Generating q: .....c.c..... ++ (distance 202)

Computing the keys...

Testing the keys...
Key generation complete.
Enter file in which to save the key (/fhome/jgoerzen/.ssh/identity): Enter
Enter passphrase: Enter
Enter the same passphrase again: Enter
Y our identification has been saved in /home/jgoerzen/.ssh/identity.

You'll be asked three questions: where to save the key, what passphrase to use, and a confirmation of the passphrase. Leave the
answersto all of those blank and just press Enter. Then, you need to copy your ~/.ssh/identity.pub file over to the
~/.ssh/authorized keysfile on the server. Y ou can use a progam such as FTP to do this, or even scp. Make sure that the ~/.ssh
directory exists on the server. Y ou can then copy the file over with a command like this:

Caution Leaving the password blank will be OK if you are using this key only for the purposes of CVS. However, be
awarethat if, for any reason, your account on the client machineis cracked, an attacker may be able to get to
your account on the server as well. CVS pserver uses a similar mechanism to avoid having to typein the
password each time. If you prefer, you may set a password instead of leaving it blank; however, if you do, you
may find CV S operations annoying since you will have to supply the password for each one.

$ scp ~/.sshfidentity.pub server:~/.ssh/authorized keys
jgoerzen@server’s password: Password
identity.pub [ O0KB | 0.3kB/s|ETA: 00:00:00 | 100%

You'll be prompted for your password for the server; enter it, and the file will be copied over. Y ou can check to make sure that the
procedure worked by running ssh server; you should be logged on to the server without requiring a password.

Your environment

Next, you need to set up your environment. Thistime, you'll need two environment variables. The formislike this:

export CVSROOT=":ext:user @server:/var/repository/path”
export CVS RSH="ssh"

On thefirst line, replace user with your username; server with the name of the server, and /var/repository/path with the actual path to
the repository on the server. After thisis set (again, you'll probably want to placeit into your .profilefile), you are ready to use CV S|
Interaction with the system is exactly the same asit would have been before, except thistime, the repository is being automatically
accessed via the network.

Tipsand Tricks

Besides the basics that you' ve learned thus far in this chapter, there are some various tips and tricks that you can use with CVSto
make things run just that much smoother. I’ll go over several of them here; you should be able to use these tips with almost any

project.
Keywords

One of the most unique features of CV Sisthat it can insert datainto your text. It does this when you embed certain special
keywords in your source. With these keywords, you automatically can have CV'S put information such asfile version directly into
your source code. Thisway, when your code is used outside of CV S—on a printout, or maybe somebody has a copy of your

491



product—you can quickly identify exactly which version of the code you are dealing with.

Table 26-1 shows alist of the available keywords.

Table 26-1: Embedded K eywords

Keyword

$Author$

$Date$

$Header$

$1d$

$Name$

$Log$

$RCSfile$
$Revision$
$Source$

$State$
I

M eaning

Inserts the Linux username of the person that most recently updated the file.

Inserts the date, in UTC (Coordinated Universal Time, sometimes also called GMT), of the most
recent update to thefile.

Inserts the path to the file in the CV S repository, the version number of thisfile, the datein UTC of
the last update, the Linux username of the person to make the most recent update, and the state of the
file.

The most commonly used form. It is the same as $Header$ but omits the full path to the file in the
CV S repository, showing the filename only. $Id$ is great because it gives you lots of information in a
concise fashion.

The name of the tag or branch under which this file was committed.

Includes a log message from the most recent commit. This keyword can cause trouble in some
Situations, so it is best to avoid it.

The name of thefilein the CV S repository.
The revision number of thisfile.
The full path name of thefile in the CV S repository.

The state of the current file.

Here is a short bit of sample code (notice that this code includes $Id$ twice; once in the comment at the top and oncein its body):

/* example.c
$ld$
*/

#include <stdio.h>

int main(void) {

printf(“Thisis example.c $Id$\n”);

printf(“Hello, world!\n™);

}

After adding this code to the repository and committing the change, take another look at it. You'll see that CV S updated it

automatically:

[* example.c

$ld: example.c,v 1.1 1999/10/05 17:35:24 jgoerzen Exp $

*/

#include <stdio.h>

492



int main(void) {
printf(“Thisis example.c $Id: example.c,v 1.1 1999/10/05 17:35:24 jgoerzen Exp $\n”");
printf(“Hello, world'\n");

}

This program thus automatically prints out its version number each time it is run. With this mechanism, you can tell what version
of a program somebody has even if they don’t have the source! The output of this program, then, is:

Thisis example.c $Id: example.c,v 1.1 1999/10/05 17:35:24 jgoerzen Exp $
Hello, world!

In this case, you may prefer to use just $Revision$ or $Date$. That way, the end user doesn’t have to sift through information that
doesn’'t matter to anyone but your own developers, such as the last person to commit a change to the source.

Binary files

It is possible to track changes of binary filesin CVS as well. However, special care needs to be taken. Thisis because CVS can do
two things that could mess with binary files. First, it performs the keyword substitution as documented earlier. Thisis great for
source files but could end up corrupting binary files. Second, CV S sometimes performs conversions for line endings when dealing
with files, to help files work best in your environment. This, of course, can corrupt binaries.

Toinhibit this behavior, CV'S provides a special parameter, -kb. Y ou must specify -kb when adding a binary file to the repository.
When you do this, CV'S no longer does anything that could, in any way, modify the contents of the file.

For instance, to add a copy of the Is binary to my reposotiry, I'd use this command:
$cvsadd -kb Is

After theinitial add, you can deal with afile as you normally would with no special need to add -kb; CV Srecords that thisis
necessary and automatically usesit on your binary files after they have been added.

Using subdirectories

CV S has support for dealing with subdirectoriesin your code and repository. To add a new subdirectory beneath some existing
code, simply use mkdir to create it locally, then use cvs add to add the directory. The directory will be added immediately and you
can begin populating it with files.

The first parameter to the cvsimport command can also be adirectory tree. In this manner, you can import new code several levels
deep in the repository.

Although it is not recommended, you can make directories manually in the repository by simply going to its directory and using
mkdir. This can be a quick way to set up an infrastructure if you expect your reposotiry to be alarge one.

The CVSROOT files

CVS provides some special configuration files that can customize various behaviors of CVS. To access these files, run this
command:

$ cvs checkout CVSROOT
cvs checkout: Updating CV SROOT
U CVSROQOT/checkoutlist
U CVSROOT/commitinfo
U CVSROQT/config

U CVSROOT/cvswrappers
U CVSROOQT/editinfo

U CVSROOT/loginfo

U CVSROOT/modules

U CVSROOT/notify

U CVSROQOT/rcsinfo

U CVSROOQOT/taginfo

U CVSROOT /verifymsg

493



Y ou can find a detailed description of each of these filesin the cvs(5) manpage. Most of these files are rarely used in CVS
installations, but one that often can come in handy is modules, which I'll discuss here.

Thisfile has many powerful options, but the basic purpose of the fileisto make it easier to navigate filesin large repositories. For
instance, if you have a directory in your repository named projects/clients/acme/jet/engine, it is cumbersome for developers to
have to use a command such as cvs checkout projects/clients/acmel/jet/engine to work on the code. It is even more annoying to
have to change into several levels of directoriesto do so.

The modules file enables you to define names for these directories so that you can access them more easily. For instance, you
might place the following line into your modules file:

jetengine projects/clients/acme/jet/engine

This mechanism enables you to maintain your organization of the repository while at the same time making accessto it convenient
for your developers. Now, to access the code, one can simply run cvs checkout jetengine without having to specify the large path.

After you make a change to modules, or any other file in the CVSROOT area, you need to commit your changes. As soon as your
changes are committed, they take effect.
Summary

In this chapter, you learned about the Concurrent Version System (CVS). Specifically, you learned:

 Problems can arise when multiple developers need to work on a single piece of code.

» The capability of accessing historic versions of your code can often be a valuable asset.

» CV S helps you manage access to your code.
e CVSarchives every historical version of each file, which can beretrieved at any time.

* You need to create and initialize a repository and set an environment variable to set up CVS.

« You check out acopy of the files from the repository, work on themin alocal directory, and then commit the changes back
when working with CVS.

* You can create branchesin CV S with cvs tag -b, which alow development to be forked.

« CVSworks over the network with tools such as rsh, ssh, or CVS's own server. Of these, ssh is recommended because it is the
most secure.

* You need to take special care when dealing with binary filesin CV'S.

* CVS can work with subdirectories, which can be added with cvs add or cvesimport.
Chapter 27: Under standing Security and Code

Overview

Many types of programs need to be secure. Network servers, setuid applications, e-commerce tools, and many other categories of
software are security-critical. In this chapter, you will learn why this topic is such an important one. Then, you will be introduced
to the big picture of the Linux security mechanisms. Finally, guidelines for writing secure code will be presented.

The Importance of Good Code

In our modern lives, the importance of computersin our lives can be daunting. Microchipsin digital alarm clocks wake us up in
the morning. Water for drinking or showersis brought to us by a system of pipelines, managed by computers. Electricity is sent via
a computer-managed grid system. Cars regulate fuel injection by computer. Computers can be found all over in a modern
workplace, on every desk in some locations. The nation’s banks, securities exchange systems, and trade systems are all
computerized. Distribution of food is controlled by computers. Airplanes are designed with the assistance of computers, and some
can not fly without the onboard computer. Emergency systems, such as 911 systems in many areas, rely on computersto provide
vital services. Even hospitals use computersin alot of equipment.

With such a staggering reliance on computers, one thing should be clear: bugsin code could cost a company millions of dollars
and could even result in loss of life. Even if your code is not being used for life-saving systems such as 911 service, still, having

494



bad code—for instance, allowing a security breach—can cost your company millions of dollarsin damages, lost sales, and
downtime. Companies large and small have been bitten by software bugs, which have indeed caused millions of dollarsin losses
for asingle glitch.

Writing bug-free code is only half the battle, however. Writing maintainable code isimportant as well. If code is hard to follow,
othersthat need to work with it may have difficulty following your code. Furthermore, with large projects, you can find yourself
having trouble following your own code, especialy if you haven't worked with parts of it for some time.

Linux Security Overview

Thusfar, you have read about the various components of the Linux security system, but they have not been presented all together
asabig picture. Here, all the pieces of the puzzle are put together for you so you can see how they work.

The security system contains two parts. authentication and access control. The former is responsible for ensuring that a user
reguesting access to the system is really the user with the account, and the latter is responsible for controlling which resources each
account has accessto, and what sort of accessis permitted.

The cornerstone of both systemsis the user account system. Each user that will need specific accessto aLinux machineis given
an account on that machine. This account contains a username and password for authentication. Each user also belongs to one or
more groups, which are discussed in the next section, “ Authentication.”

Authentication

When a user first attempts to access the machine, whether this access is by sitting at the console, logging in viatelnet, or accessing
filesvia FTP, the user must first log in—that is, authenticate the account to the system. Thisis done by providing the username
and password. If both are correct, the system grants the user access to the system.

Thisdatais defined in the /etc/passwd file, and possibly the /etc/shadow file. These files contain the username, a numeric uid for
the account, an encrypted password, a default group, and various other bits of information such as areal name and home directory.

Y our program can, and indeed must, access these files through calls such as getpwnam(), getpwuid(), getgrnam(), and the like.

Note Systems such as NIS (also known as yp) and Kerberos can mean that authentication information is not stored in
/etc/passwd. Thisisone reason that it isimportant to always use the library calls rather than manipulating the file
directly.

If auser is properly authenticated, accessis granted and the group list is set. The group list indicates which groups a given account
isamember of. Thisinformation becomes important when dealing with group permissions. Each group can have alist of
members, which can be numerous. Y ou can grant certain access to members of that group in aggregate form by simply granting
group access to that particular group. For instance, if you have ateam of Web site designers, you can make them all members of a
certain group, cause the files they create to become part of that group, and set the file permissions such that anyone in that group
can modify them. Thus, each user can still use an individual account and yet be able to work on all the files for the department.

Access control

At this point, access control takes over. The system needs to define which resources each account has access to, and what sort of
access is permitted. For instance, on most systems, access to home directories should be restricted to one's own home directory;
users should not be able to modify filesin the home directories of other users on the system. As another example, somebody
should not be able to read e-mail sent to another user; you should only be able to read your own e-mail.

Therefore, there is a permissions system in Linux that governs these types of issues. Because many of the system’s functions are
accessed through the file system, alogical place to start isto place permissionsinformation in the file system data itself.

File System Per missions
Each inode on your file system contains three pieces of information relating to access control: the uid of the user that ownsthefile,

the gid of the group that ownsthe file, and the file's access permissions. Note that when | say “file,” | refer to any entry in the file
system, which can include devices, FIFOs, and directories.

Cross-Reference

495



For more details on the inode system, see Chapter 11, “Files, Directories, and Devices.”

The uid refersto the numeric uid of the account that owns the file. The person using this account should have full control over the
file, being able to change its permissions, modify it, read from it, and so on.

The gid refersto the group id of the group that owns the file. The exact permissions for the group are defined by the access
permissions. Note that, although members of the designated group can be granted modify, read, and execute access, they cannot be
granted permission to modify the file's own security settings.

Thefinal piece of security datain the inode is the access control data. This defines what sort of access is permitted for each of
three categories: the owner of thefile, usersin the designated group, and everyone else. For more details, see the chmod(2) and
chmod(3) manpages.

Process Per missions

Each process on the system has some security data that is brought with it. The most prominent of these are the uid and gid of the
process. When you first log into the system, your first process (typically a shell) is set to those permissions. Any other processes
that you start (except for the setuid or setgid programs, described later in this chapter) have the same uid and gid. Thisuid and gid
information is then compared to the requirements in the file system to determine whether or not any particular access request
should be allowed. Strictly speaking, with most situations, process permissions do not themselves regul ate access to resources but
rather are used together with other permissions mechanisms to work with access.

There are some exceptionsto that rule, however. For instance, you cannot sent aKILL signal to a process that you do not own—
that is, with a uid different than the one in your own process. Furthermore, the root user (uid 0) is alowed to do many things that
ordinary users can't; that is, processes with a uid of 0 have these extra permissions.

Asaspecial additional note to this system, there is the setuid/setgid system. Thisis somewhat of a hybrid between the file system

and the process permission system and is used to give processes different uid or gid values than they would normally be entitled to.
This mechanism is a complex one, with many details to concern yourself with.

Cross-Reference

For information on setuid and setgid programs, see Chapter 12, “Processesin Linux.”
Security Guidelines

Among all the concerns surrounding writing good code, security necessarily comesin at the top. Any program that deals with
anyone or anything that is not completely trusted to always do exactly astold or behave exactly as expected must be prepared to
deal with these things. Security problems can come from people actively trying to penetrate your security, or from things as simple
as someone providing unexpected input to a program or running the wrong command. Security issues can also arise from receiving
unexpected input from other programs, or encountering unexpected interaction issues with other systems.

Consider, for instance, a company selling goods on the Internet. This company will have a Web site, maintain customer
information, and probably have customer credit card information on hand as well. If the security of this system is broken,
thousands of people could suffer from credit card fraud. The company with the security breach could suffer a serious public
relations nightmare.

Even if you do not do business on the Internet, you can be vulnerable simply by virtue of having an Internet connection; people

might till find away to penetrate your systems. Worse, too much access to systems can mean that people—even with legitimate
access—can cause trouble, either accidentally or purposely.

Security principles

When either writing your own code in a security-conscious environment, or when maintaining systemsin such a setting, there are
several guidelines to keep in mind. Following these guidelines can help to reduce the potential for security breaches.

Grant AsLittle Access As Possible

One principleisthat your programs should not only grant as little access as possible, but they should also require as little access as

496



possible. By using the security mechanisms built into the Linux operating system, you can stop many security problems dead in
their tracks.

Let’s consider one quick example. On many Linux systems, incoming mail is stored in the /var/spool/mail directory, which has a
file for the inbox of each user on the system. In certain situations, when working with mail, amail reader may need to create an
account in that directory.

How would you go about allowing that? Well, one option is to make the directory world-writable, enabling anyone to create
whatever files desired in the directory. Thisis abad idea; somebody may be able to create afile corresponding to the mailbox of a
user that has not yet received any mail, and thus forge an e-mail. Or, a user could simply store data there until the file systemis
full, preventing any new mail from entering the system. So granting less access would be a good idea.

To do that, you need to use either setuid or setgid, because only certain programs should have access to that area. Your first
thought might be to make mail readers setuid to root. This, however, is not agood idea. If amail reader has a security problem,
then the entire system can become compromised.

A better idea would be to make the directory group-writable and then make mail readers setgid to that particular group. This way,
even if asecurity flaw is discovered in a mail reader somewhere down the line, the damage will be limited to only the files that the
particular group has access to.

Networks Are Insecure

With the rise of the Internet and LAN systems, finding a computer that is not networked in some fashion is becoming increasingly
difficult. With this networking comes a new class of security problems.

A prime concern is that data traveling across a network is not encrypted. This means that any traffic on your local Ethernet can be
intercepted and read by others with computers on the same segment, without your knowledge. Furthermore, traffic going across
the Internet can be intercepted at computers at either end of the communication, or at numerous routers in between. Additionally, it
is sometimes possible for an attacker to insert data into the stream; for instance, one might add a phantom rm -rf ~ command to a
telnet session.

A second class of problems arises when it is necessary to allow or deny access to a particular service according to the machine
from which the request comes. Thisis often used to alow, for instance, only usersin certain departments or on an internal network
to access resources, to control which computers are trusted to NFS-mount directories, and the like.

However, verifying that a given computer really isthe machine it claims to be can be difficult. It istrivial to unplug an Ethernet
link from a server and hook it up to alaptop configured with the same | P address; one might be able to gain root accessto NFS
mounts or intercept passwords from clients attempting to connect to server services. For Ethernet, you might try to thwart such an
attempt by relying on certain MAC addresses; however, many Ethernet cards today can be configured with arbitrary MAC
addresses.

One solution to these problems that you might consider is encryption and public-key authentication, which will be discussed later
in this chapter.

Bewar e of Timing | ssues

Sometimes, programs expect that things will occur in a certain amount of time. For instance, many programs expect DNS queries
to typically finish within a matter of seconds, and they generally do. Programs may expect a response within a certain amount of
time from another process. They may even expect a certain delay from another process or from the user. Finaly, they may expect
that two programs of the same type will never be run concurrently.

All of these are general programming problems, but they apply to security as well. Consider, for instance, the action of editing
some system configuration file—say, /etc/passwd. If you have several administrators working on asingle Linux box, thereisa
possibility that two or more of them will want to edit the file at the same time. Doing so can be disastrous; text editors typically
used to edit these files do not have any kind of synchronization built in to prevent problems. Furthermore, even just editing the file
with atext editor can be dangerous; users can change information with tools such as passwd and chfn, and you can overwrite their
changes by manually editing thefile if they are unlucky enough to make the change while you have the file open.

The solution to a situation like thisisfile locking, which you can access on Linux with either flock() or fentl(). When you usefile
locking, you can indicate to other processes that you are busy with the file and that they should not access the file until you are
done. In this particular case, Linux provides tools such as vipw and vigr for editing these files, with file locking in place. The other
tools mentioned earlier in this chapter use file locking as well, so there is a safe way to edit your configuration files.

497



Cross-Reference

For more details on file locking, please see Chapter 14, “Introducing the Linux 1/0 System.”

Denial-of-Service (DoS) Attacks

One type of security issue is the denial-of-service (DoS) attack. This attack does not result in a direct compromise of data but
rather makes this data unavailable to users, typically by crashing a machine or server process. Even though no (or little) datais lost
or stolen with thiskind of attack, it can still be devastating.

A DoS attack can occur in many different ways. A bug in an operating system or program might make it vulnerable to this type of
attack, but not to a security breach. An attacker can simply flood a network connection with useless data, rendering it essentially
inoperable. Many requests could be made to a particular type of server, causing the load on the machine to skyrocket. Or requests
could be very large, eating up available memory or disk space on the server and eventually causing it to crash.

Two types of attacks are mentioned here: program bugs causing crashes, and resource starvation. Resource starvation occurs when
the server is prevented from having access to the resources it needs, and thus is unable to deliver appropriate results to the client.

Y ou need to take steps to avoid both types of problems. Of particular note at this point is the resource starvation issue. Y ou need to
make sure, especially when using dynamic memory in C or alanguage such as Per| that uses it implicitly, that you do not simply
read an unlimited amount of data from a network or client. If you do, you can read so much data that you eat up al available
memory on the system, which can cause both your program and even the entire system to crash.

Trust AsLittle AsPossible

Thisisabig one that can almost be thought of as encompassing all the other rules. As an example, we talked about buffer
overflow attacksin Chapter 8. These security holes almost always arise because programmers automatically assume—or trust—
that the input data will be less than a certain size. Y ou should not implicitly trust input data like that.

Another example lies with CGI programs, as discussed in Chapter 22, “CGI Programming.” Sometimes, the user provides a
filename for the script. This file may then be displayed back to the user. Because CGI scripts generally run with special
permissions (those of the Web server), they can be especially vulnerable to attack. Consider, for instance, a CGl script that does
not check on the datainput. It may expect the user to give afilename such as foobar.txt. What if the user instead requests
letc/passwd? Well, if you don’'t check the input data, your program will be dishing out copies of the passwd file to anyone on the
Internet! Y ou might try to always append a certain path to the input; for instance, foobar.txt becomes /var/lib/cgi-data/foobar.txt.
Well, all someone hasto do is request the file ../../../etc/passwd, and once again, they get a copy of the passwd file. So you see, you
must not trust that the user will not specify a different directory; you need to validate the input before using it.

Still another example has affected the products from several of the world’ s largest computer companies. Several of their operating
systems have made assumptions about the data arriving from the network: that the packets will be well-formed and valid, for
instance. Crackers, though, managed to generate packets that were invalid. However, the operating system did not check for
validity and happily processed the packet. The result: it was possible to crash any machine with an Internet connection running the
bad code from anywhere on the Internet, by anyone. Trusting incoming packets to be well-formed was a serious mistake in this
situation.

Common problems

In addition to the preceding general principles, there are some common problems to be aware of. Some of these are not tied to any
specific operating system; others occur specifically in Linux or UNIX settings.

Race Conditions

A race condition is one of the most common problemsin software. Even worse, it is one of the most difficult to track down (it
often appears to cause random problems) and can till lead to serious security problems.

A race condition is a particular type of timing issue. It occurs when multiple processes need to work with a single set of data or
files, and the result depends on which process finishes first. Recall that in a multitasking system such as Linux, you are never

498



guaranteed that no other processis also running while yoursis, and thus you must keep in mind that files can be manipulated, even
between two lines of source in your program.

One example of arace condition is actually the problem with editing configuration files mentioned previously. Another prominent
problem in Linux isthe /tmp race.

Many programs scripts store temporary filesin /tmp. This has been a quick way to store data for short periods of time. However, a
serious race condition is involved with this or any other world-writable directory.

Because anyone can place files, directories, and symlinksin /tmp, there can be a problem. Consider, for instance, if arandom user
on the system knows that the administrator frequently runs a program that creates afile in /tmp. This random user notices the files
are all the same, or of asimilar pattern. So, the user goes into /tmp and creates a symlink, named as a temporary file, to
[etc/passwd. The next time the administrator runs the tool, the contents of /etc/passwd are overwritten by temporary file output,
meaning that nobody can log into accounts!

This attack is not limited to attacking the root user. It can be directed at any user on the system that uses programs or scripts that
create filesin aworld-writable directory.

Let’slook at some possible ways to prevent the problem. Y ou might think of checking for the existence of afile or link before
creating one. This does not prevent the problem; it just makesit a bit more difficult to exploit. Remember that, due to multitasking,
an attacker can create afile in the directory between the time you check for its existence and the time you try to open it!

Therefore, you need to look at other solutions. One of the easiest isto create atemporary directory inside the current user’s home
directory. Thiswill bypass the issue altogether, because a user’s home directory should not be world-writable. Y ou can place
whatever files you want in there; just be sure to clean them up when your program exits, or you'll have alot of upset users.

Another option isto create adirectory in /tmp and place files in there. Take care to specify the permissions for the directory when
creating it, and to check that it was successfully created.

Buffer Overflowsin C

Buffer overflows typically happen when more data than expected is given to a program, thus overflowing the memory previously
alocated for space. A skilled cracker can exploit the problem to crash the system, or worse, to breach system security.

Y ou can beat the problem severa ways. First, you can use dynamic memory, which can shrink or grow in proportion to the data
read in—but watch out for resource starvation, described later. Another optionisto carefully limit the size of all data when using
statically allocated memory. Both of these options, along with more details on the problem, are described in Chapter 8, “Memory

Management.”

M etachar actersin the Shell

Many programs are either written in a shell scripting language itself or call shell programs or scripts, passing along input data as
command line arguments. However, there can be a problem. For instance, if you pass along arbitrary input, an attacker could play
atrick such as embedding a semicolon in the input. After the semicolon, an arbitrary command—perhaps an rm command to
remove files, or acommand to display password files—could be run. Thisis bad news for you, because it effectively gives even a
remote user of your programs such as CGI scripts full control asif local.

Note that the semicolon is not the only potentially harmful character; there are several others, including leading dashes (which can
cause the following data to be interpreted as command line options), embedded newline characters, and several more. The best
way to prevent this attack is to accept only alimited range of characters: generally, alphanumeric data, the period, and underscore.

Writing secure code

Now that you’ ve learned about a number of the security problems that you might face as a programmer, let’s explore some
pointersto help you write secure code. Some of these have broader implications than just security issues, but all can have a
significant impact on your program’s security.

Check Return Values
Failing to check return values is one of the most common mistakes, and it has implications outside the security realm as well.

Many functions, particularly those that do input, output, or memory manipulation, return a result code indicating the success or
failure of an operation. This result code is often ignored, but you fail to check it at your own peril.

499



The most basic situation is this: when an operation fails, the program or user that requested the operation should not think that it
succeeded. This means that an appropriate error code must be returned or error message displayed, depending on the situation. As
an example, consider a program that copiesfiles. This program will need to check to ensure that each read was executed
successfully. Furthermore, each write will need to be checked as well to make sure that the disk is not full, preventing the copy.
Moreover, the close of the output file will need to be checked too—sometimes, writing is delayed until that point, and you need to
check that result to be safe.

Sometimes, something worse can happen. Consider a program that creates a directory and then changesinto it. If this program
doesn’t check the return values from either of those calls, if the create directory operation fails, it will end up manipulating filesin
the wrong area. This can be particularly disastrous if the program wants to clean up after itself with acommand such asrm *!

A security breach or DoS attack can even result. Consider a program that uses fopen() to open afile, but does not check that the
open succeeded. The first time the program tries to write to the file, it will crash with a segmentation violation due to a bad pointer.
All an attacker hasto do is coerce afailure in the fopen() call, and the server goes down.

Dynamically Allocated M emory Helps
Many buffer overflow attacks can be thwarted by writing your program using dynamically allocated memory.

Note InPerl, all stringsimplicitly shrink and grow; they are implemented dynamically internally, but you don’t need to
worry about the details. Therefore, Perl code is generally considered immune to buffer overflow attacks.

Thisisagreat way to enable your program to read and process data of arbitrary size. Using statically allocated memory means that
you must constantly worry about sizes, whereas dynamically allocated memory can be allocated with the proper size
automatically.

However, consider the caveats. Y ou can make aresource starvation attack easier, in both C and Perl, if you read in data of
unlimited length and allocate memory for it. Also, for C programmers, lots of use of dynamic memory can lead to memory leaks
unless you are careful. Frequent memory leaks can also turn into aresource starvation issue. Most would agree that running out of
memory is not as bad as having a full-fledged security compromise (which could let an attacker crash your box anyway), but still it
is something to be aware of. Refer to Chapter 8, “Memory Management,” for more details.

Exer cise Extreme Caution with setuid or setgid

Thisis perhaps the most dangerous situation you can be placed in. You are essentially granting users additional privileges while
they run your program. Y ou need to be particularly careful to observe warnings about race conditions and buffer overflowsin this
situation. Not only that, but you also need to be aware of your program’s interactions with others. Y ou need to consider whether
you will be able to delete more files than normal, what user 1D any programs that your programs execute will run under, what
effect libraries will have on your program, and all the other concerns pointed out in this chapter.

Y ou can try to help out the situation by dropping special privileges as soon as possible; that is, revert to the permissions of the user
than invoked the program. Then, you can switch back to special permissions later if you need to. Also, you may want to
permanently get rid of the special permissions once you' re done with them.

Many people justifiably prefer to avoid setuid or setgid programs whenever possible; thisis good advice. Seeif there are other
alternatives available; could you use a domain socket or FIFO to communicate between privileged and unprivileged parts of code?
If s0, that may be a preferable way to go.

Use File Locking

Y ou have already seen examples of the problems caused by race conditions and synchronization issues. A great way to avoid these
problemsisto make frequent use of file locking. This way, you can prevent a situation in which two programs might be

manipulating a single piece of data at one time—a situation that can lead to data corruption without even requiring a cracker trying
to causeit!

Use Encryption
When you need to transmit data over the network that should not be intercepted, you ought to use encryption. One popular way to

do that isto use SSL; on Linux, the SSLeay library (available at http://www.ssleay.org/ssleay) is commonly used to do this. By
using encryption, you can thwart would-be snoopers, giving them no useful data.

500



Furthermore, encryption makes it extremely difficult, or even impossible, for an attacker to insert unwanted data into a connection.
Thus, by encrypting your network traffic, you obtain many advantages.

The disadvantage of thisisthat encryption can use CPU time, and for a heavily loaded server, this usage could add up. However,
in many cases, thisdownside is negligible and will never be noticed. Another potential disadvantage is that laws regarding
encryption can be tricky; for instance, US law prohibits export of some encryption technologies, and some other countries ban the
usage of them altogether.

Use Public-K ey Authentication

Another feature of the SSL system isits support for public-key authentication. By using these features, you can ensure that the
remote machinereally isthe one that it claimsto be. Thereis no need to rely on inherently unreliable indicators such as | P address
or MAC address; if the remote machine is able to present the proper credentials, access can be granted; otherwise, access can be
denied. Thistype of system can also be used to authenticate individual users of programs, as is done by systems such as ssh (see
http://www.openssh.org/).

Track Security Forums

Keeping up to date with security issues can be key to preventing them. When you hear about problems in other peopl€e’s code, or a
new problem (such as the /tmp race issue), you can examine your own code for the problems and hopefully release a fix before
anyone else even realizes you were vulnerable.

One of the most widely known and most respected security forumsin the UNIX/Linux community is the Bugtrag mailing list. This
is an open discussion list with subscribers numbering in the tens of thousands, including some of the world’s most prominent
Internet, UNIX, and Linux security experts. You can find various introductory information in the Forums area of
http://www.securityfocus.com/ and detailed information at http://www.securityfocus.com/forums/bugtrag/fag.html.

Some good newsgroups to watch include comp.os.security and comp.security.unix, as well as groups in comp.os.linux.*.

Also, track the releases from your own distribution. Check your distribution’s home page for information, or take alook at
http://www.linuxlinks.com/Security/ for links to many good Linux-related security sites.
Summary

In this chapter, you learned about the importance of security to your code, some security concepts, and how to apply these to your
own software. Specifically, the following was covered:

* Good code is a worthwhile long-term goal.
» TheLinux security model consists of two parts: authentication and access control.
» Your code should be written such that aslittle accessis granted (or requested) as possible.

* Networks are fundamentally insecure; they can permit snooping, have trouble verifying that a computer isthe one it claimsto
be, and be vulnerable to data insertion attacks.

» You can address these problems with encryption and public key authentication.

< Timing issues, such as race conditions, can pose a serious, but difficult to track down, security risk.

» Denial-of-service (DoS) attacks can exploit bugs or use resource starvation in order to crash or impair your servers.
» Misplaced trust in insecure systems or users can create problems for your code.

« Buffer overflows are acommon and serious security risk for some types of C programs. Using dynamically allocated memory
can help with these problems.

« Filelocking can be used to reduce concurrency (timing) problems.

« The setuid and setgid features can be dangerous and should be avoided if possible.
Chapter 28: Optimizing Perfor mance

Overview

501



Y ou'd be hard-pressed to find a programmer that does not want to make programs run faster, regardless of platform. Linux
programmers are no exception; some take an almost fanatical approach to the job of optimizing their code for performance. Many
of the example programs you'’ ve seen in this book are of the run once variety; thereisn't a need to worry about performance
because the impact of even a severe performance problem probably can be measured only in milliseconds at worst. However, if
your program is parsing ten million log entries, or must handle 200 website hits per second, tables quickly turn. Something that
wastes 5 milliseconds with a single execution ends up wasting 13 hours of CPU time when it is run 10 million times. Thisisno
figure to scoff at, certainly. Even if we assume only 20 website hits per second, a value not too unheard-of in today’ s world, that 5
millisecond performance problem can end up wasting 2 hours of CPU time each day. Y ou literally can be talking about the
difference between code that is capable of keeping up with the demands put up to it and code that cannot.

As hardware becomes faster, cheaper, and more plentiful, some argue that performance optimization is less critical—particularly
people that try to enforce deadlines on software development. Not so. Even today’ s most advanced hardware, combined with the
latest in compiler optimization technology cannot come even close to the performance benefits that can be attained by fixing some
small problems—or even going with an entirely different and much faster design.

In this chapter, I’ll discuss some things that can cause serious performance problems, how to choose an appropriate design for some
various software from a performance standpoint, what calls are expensive and what calls are relatively quick, and how to replace
some expensive calls with some quicker ones.

Principlesfor Faster Code

There are several ideas that you can apply to your programs to make them perform better. These ideas are not a magic solution for
every performance problem, but if you keep them in mind while writing and revising your code, you will usually end up with
better and faster programs.

Three measurements

When we talk about performance, there are several different thingsto consider. One is the absolute amount of time it takes the
software to complete a given task. For instance, even if awebserver keeps up perfectly well with client requests, there can be a 15-
second delay before the server begins to send pages to the client each time. In such a situation, the server isfailing to perform
adequately in terms of the amount of absolute time it requires to get things done. I1ts CPU utilization and 1/O usage may be
minimal, but somewhereit’s till failing.

Another consideration is the amount of CPU time that a program requires. Thisis a measure of the time that the computer’s
processor spends executing code on your program’s behalf. Note that thisis often less, usually significantly so, than the program’s
run time. Many programs tend to spend most of their time waiting for something to happen—input to arrive, output to be written to
disk, and so on. While it is waiting, the CPU can be servicing other requests, and so the program is not using CPU time. However,
some programs, particularly those performing analysis or complex calculations, may be primarily CPU-bound programs. For these,
a savings in the amount of CPU time required may result in a substantial savings in absolute time. It isimportant to note that the
run time of a piece of code may be microseconds or all the way up to months. However, this time has no effect on other processes
on the system. On the other hand, if your program uses alot of CPU time, this can slow down all the processes on the system. This
effect is even worse if your program tends to run multiple copies of at once.

One can further separate the CPU time into system and user time. The system time is the amount of CPU time used on your behalf
by the kernel. This could accrue by calling functions such as open() and fork(). The user timeis the amount of CPU time used by
your program. This might be used by arithmetic, string manipulation, and so on.

A third consideration for performance is the time spent doing 1/0O. Traditionally, this has been one of the slowest parts of many
programs, and remains so today. However, it’s difficult to get an accurate measure of this value. Thisis because caching and
asynchronous updates enable modern operating systems such as Linux, to defer some 1/O operations to a time when the system is
less busy and the their impact poses less of a performance penalty on the running processes. Some programs, such as network
servers, spend most of their lives handling 1/0O; others spend comparitively little time with 1/0 tasks. Therefore, optimization of 1/0O
can be critical with some projects and completely unimportant with others.

L oops
One of the most frequent causes of problems with performance occursinside loops. Loops magnify the effects of otherwise minor
performance problems because the code may be executed anywhere from dozens to millions of timesinside the loop. Therefore,

there is abig payoff for optimization of code that is executed inside aloop.

One of the simplest and yet most effective things you can do is move code outside the loop that doesn’t need to be executed every
time through the loop. For instance, recall this code from Chapter 6:

502



#include <stdio.h>

int main(void) {
int counter;
int ending;
int temp;
int five;
for (counter = 0; counter < 2* 100000000 * 9/ 18 + 5131,
counter += (5-3)/2) {
temp = counter / 15302;
ending = counter;
five=5;
}
printf(“five = %d; ending = %d\n”, five, ending);
return O,

}

Several things here could be moved outside the loop. For one, the variable five is never changed; you could set it before or after
the loop. The ending condition of the loop is calculated every time through. A faster approach would be to store that valuein a
variable and simply compare counter to that variable each time through. Not only that, but the increment value is also computed
each time through the loop. This, too, could be cal culated beforehand.

The ending variable could be calculated only once, after the loop is through, by simply looking at the value of counter at that point.
Finally, the assignment to the variable five is dead code; nothing except the final printf() ever uses that variable, so that assignment
could be removed entirely if you would just print the number 5.

In Perl, | frequently see programmers use code such as the following:

while ($string = <BIGFILE>) {
chomp $string;
# some processing here, perhaps
print “Input: $string\n”;

}

Several things are wrong here. If you' re going to print out a newline after $string anyway, why bother stripping it off in the first
place? Second, to make things faster, you should avoid interpolation when practical. So, afaster version may be like this:

while ($string = <BIGFILE) {
# some processing here, perhaps
print “Input: “, $string;

}

Of course, whether or not you really need to be concerned about this depends on the kind of usage your program will get. Many
programmers use code similar to the first example in programs that are designed for interactive use and may read only three lines
from the user. There’ s no real harm there. However, if the code is going to be running millions of times, you can run into some
difficulties.

Another thing you can do is use the /o option with regular expressionsin Perl that occur inside a loop. This means that Perl will
compile the regular expression only once, instead of every timeit is used. This can result in a substantial speed improvement. The
only downside isthat if you build your regular expression pattern by using variables or interpolation, Perl will not notice if it
changed while you are in the loop, and it will continue using the original value. Still, you'll find that few regular expressions
change while inside aloop, so thisisatip that can frequently be a performance booster.

Help the optimizer

Modern compilers such as gcc have optimizers that can aggressively optimize the code that they generate. However, they can do
only so much. There are things that you can do to help the optimizers with their task.

One thing you can do is use the const keyword for any variable that is not supposed to change throughout its lifetime. Not only is
this a valuable safeguard for you, but it also enables the compiler to make assumptions about the variable that may speed up code
involving it.

503



If you have asmall function that is called frequently, you can declare it inline. This means that the compiler will insert the actual
code for the function in the caller if possible, rather than inserting ajump to the function’s address as might normally be used. By
doing this, the control flow of the program is not interrupted, enabling modern pipelining CPUs to predict future instructions to
execute more effectively. Furthermore, it can mean afew less instructions to execute because of the lack of overhead for pushing
information on to the stack, making the actual call, handling the return value, and so on.

Avoid floating-point numbers

Floating-point data types, such as float and double take more time to calculate than do their integer counterparts. Therefore, unless
you really need the extra attributes of floating-point numbers, you should try to avoid them. Thisis especially true on the i386
architecture, where the floating-point unit is rather slow, and some machinesin that architecture line have no floating-point units at
all.

A common usage for floating-point numbersis dealing with dollar values. Programmers often reason that because there's a
decimal sign in the input, there must be a decimal sign in the computer storage of that input as well. Not true! Some clever
programmers use integers to store these values. They simply might multiply the dollar values by 100 and then add the cents value
after that. To go back to a human representation, the reverse operation is done—the cents are subtracted and the number is divided
by 100.

Sometimes, floating-point numbers cannot be avoided. But when they can, it's a good ideato do so.
Recode time-critcal code blocks

If you have the expertise to do so, another route you can take isto rewrite sections of your code that are causing delaysin amore
low-level language. For instance, a Perl programmer might rewrite part of a program’s core logic in C to speed performance by
leveraging a compiled and preoptimized language. Similarly, a C program might use assembler to do the same thing.

Thisis not always an option, and in the case of assembler coding, can be a serious detriment to the portability and future usability
of the code. However, manually writing algorithms in assembler is the ultimate control you can have over how the CPU executes
your algorithm and gives you the opportunity to write the most efficient algorithms possible.

Increase block size

Many operations are done on blocks of data. Some of the most common are reading and writing of binary data. One easy way that
you can speed up your programsis to increase the buffer size in your program. This enables you to transfer more data at once. By
doing so, you decrease the frequency with which you must call one of the I/O functions, which is very good as these calls can be
time-consuming.

Expensive ver sus | nexpensive Oper ations

Often, | might refer to a given operation as expensive. Relatively speaking, this means that it requires alot of time to complete, a
lot of /O activity, or alot of some other type of resource. When you optimize your code, you want to get rid of the expensive
operations and replace them with the inexpensive ones. Linux gives you alot of flexibility; there are often multiple waysto
accomplish something. Sometimes it’ s simple to decide which method to use. Other times, whether a given operation is more or
less expensive than another may depend on exactly how it is being used in your code.

System calls

System callsin general are fairly expensive operations. These include anything that requires a switch into kernel mode. This
category islarge and essentially includes everything in section 2 of the manpages and some thingsin section 3 as well.

Therefore, it's a good ideato minimize usage of system calls where possible. Several of the following topicsrelate to that, but
even for those not explicitly mentioned, be aware of the performance implications.

fork

The fork() call is often necessary and indeed quite useful. By itself, forking is not slow, but if you useit frequently, it can add up.
Consider, for instance, aweb server that might fork for each new connect. If it's getting hit dozens of times per second, this can
really add up to alot of forking going on. Thisis one reason that single-process web servers such as Boa, that use select() for
multiplexing, can outperform multi-process servers.

Apache takes an interesting approach to the problem. It forks a number of server processes when it first starts. These processes

504



continue running, and do not exit. When connection requests come in, they are sent to one of the processes. If it's out of processes,
anew one will be forked, but it will not exit after it has serviced its request; it will wait for more requests.

exec
Another system call that is quite often used is exec. This one is almost always used immediately after afork, so the above
information applies here as well. This call can be quite expensive, as the new program will have to do initialization such as loading
libraries and so on.

system
Thiscall isessentially afork, exec, and wait al rolled into one. However, it's somewhat worse than that because it invokes a shell
to run the specified command. Invoking a shell is very expensive; itsinitialization may consist of several million instructions as it
loads various profiles and initialization scripts. Therefore, frequently using sytem is a bad idea.

| once saw a network server that ran code like this very frequently:

system(“Is/etc”);
Thisisan incredible waste of resources. The program has to fork and execute the shell. The shell must initialize, and then the shell
forks and executes Is. Although this may be acceptable for a quick program that runs only occasionally, it is certainly sub-optimal
for anetwork server.
A far better option isto use opendir() and readdir() to read the directory yourself. This requires only alittle bit more code on your
part but will execute far faster. Keep in mind that thisis what Isis doing anyway.

Compiler Optimizations

After you have done what you can to optimize your own code, the compiler can be helpful with optimizations as well. Asyou
already saw in Chapter 6, “Welcome to gcc,” these can have a significant impact on the performance of your code.

Most programmers prefer to devel op code with optimizations turned off because they can interfere with the debugging process.
When the program is prepared for release, usually it is compiled with optimizations of level -O2 or -O3.

The optimizer on modern compilers can sometimes help out with some mistakes that you might make. For instance, in some
programs, it can detect that there are things calculated inside aloop that could be calculated outside the loop for speed benefits.

Not only that, but the optimizers often can simplify arithmetic expressions. For instance, the arithmetic done in these programs
involves alot of constants. The compiler can evaluate as much as possible at compile time to reduce the impact of it at execution
time.

The compiler also can do many optimizations on the generated assembly code. These optimizations are enabled by -O2, although a
few might only be enabled by -O3. Exactly what these optimizations do depends on your platform. For instance, Linux on the 64-bit

Alphawould have significantly different optimizations than Linux on a Pentium machine.
Using gpr of

One tool that you can use to analyze your program'’s execution isthe GNU profiler, gprof. This program shows you where your
program is spending most of its time, how frequently various parts of your code are executed, and where your program is spending
most of itstime.

Listing 28-1 shows a sample program that I'll use for the profiling.

Note Thisprogram specifically is designed to be slow. If it takestoo long on your system, you can modify getmaxval()
to return something smaller.

Note Listing 28-1 isavailable online.
Listing 28-1: Examplefor profiling
#include <stdio.h>

#include <stdlib.h>
#include <time.h>

505



int getmaxval (void);
int getincrement(void);
void dosomething(int *data);

int main(void) {
int counter;
int data=1;

srand(time(NULL));

for (counter = O; counter < getmaxval(); counter += getincrement()) {
dosomething(& data);

}
printf(“ Data = %d, counter = %d\n”, data, counter);

return O;

}

int getmaxval (void) {

int bignumber = 1000000;

return bignumber * 1500/ 2 + 1500 * 5-2100/2* 10/ 2;
}

int getincrement(void) {
int randval = rand();

return randval / 15000000 - 1000/12/5/ 2;

}

void dosomething(int *data) {
int randval = rand();
data += rand() * 9105 / 100000;
}

To be capable of using this with the profiler, you need to compile with a special command-line option. Here's a way to compile:

$gcc -a-g-pg-och28-1ch28-1.c

The -pg option enables the basic profiling support in gcc. The -a option enables a more detailed (annotated) output.

Now run the program as normal:

$ ./ch28-1
Data= 1, counter = 750002258

Note that your program will run somewhat slower when profiling is enabled because it is spending time collecting data as well as
running normally. The profiling support in the program creates a file named gmon.out in your current directory. Thisfileislater
used by gprof to analyze your code, and contains information derived from analyzing your program while it runs.

Now run gprof to get the output. This will be voluminous, so it’'s agood ideato redirect it to afile so you can use less or asimilar

file viewer, or print it out:

$ gprof ch28-1 gmon.out > profile.txt

Listing 28-2 shows the output from gprof from profiling this program. 1’1l include the output here, and then I’ll analyze it and

come to some conclusions about the program.
Note Listing 28-2 isavailable online.
Listing 28-2: Sample gprof output
Flat profile:
506



Each sample counts as 0.01 seconds.

% cumulative self self  total
time seconds seconds calls ps/call ps/call name

38.82 3.89 3.8911883133327354.75 327354.75 dosomething
27.35 6.63 2.7411883133230578.92 230578.92 getincrement
18.46 8.48 1.8511883134 155682.84 155682.84 getmaxval
1537 10.02 154 main

% the percentage of the total running time of the
time  program used by this function.

cumulative a running sum of the number of seconds accounted
seconds for by this function and those listed above it.

self  the number of seconds accounted for by this
seconds function alone. Thisisthe major sort for this
listing.

cdls thenumber of timesthis function was invoked, if
thisfunction is profiled, else blank.

self  the average number of milliseconds spent in this
mg/call  function per call, if thisfunction is profiled,
else blank.

total  the average number of milliseconds spent in this
mg/call  function and its descendents per call, if this
function is profiled, else blank.

name  the name of the function. Thisisthe minor sort
for thislisting. The index shows the location of
the function in the gprof listing. If the index is
in parentheses it shows where it would appear in
the gprof listing if it were to be printed.
Call graph (explanation follows)

granularity: each sample hit covers 4 byte(s) for 0.10% of 10.02 seconds

index % time self children called name
<spontaneous>
[1] 1000 154 8.48 main [1]
3.89 0.0011883133/11883133 dosomething [2]
2.74 0.0011883133/11883133 getincrement [3]
1.85 0.0011883134/11883134 getmaxval [4]

3.89 0.0011883133/11883133 main[1]
[2] 388 3.89 0.0011883133 dosomething [2]

2.74 0.0011883133/11883133 main [1]
[3] 27.3 274 00011883133  getincrement [3]

1.85 0.00 11883134/11883134 main [1]
[4] 185 185 00011883134  getmaxval [4]

This table describes the call tree of the program, and was sorted by
the total amount of time spent in each function and its children.

Each entry in this table consists of severa lines. The line with the
index number at the left hand margin lists the current function.

507



The lines above it list the functions that called this function,
and the lines below it list the functions this one called.
Thislinelists:
index A unigue number given to each element of the table.
Index numbers are sorted numerically.
The index number is printed next to every function name so
it iseasier to look up where the function in the table.

%time Thisisthe percentage of the ‘total’ time that was spent
inthis function and its children. Note that due to
different viewpoints, functions excluded by options, etc,
these numbers will NOT add up to 100%.

self  Thisisthetotal amount of time spent in this function.

children Thisisthetotal amount of time propagated into this
function by its children.

caled Thisisthe number of timesthe function was called.
If the function called itself recursively, the number
only includes nonrecursive calls, and is followed by
a‘+ and the number of recursive calls.

name  The name of the current function. The index number is
printed after it. If the function is a member of a
cycle, the cycle number is printed between the
function’s name and the index number.

For the function’s parents, the fields have the following meanings:

self  Thisisthe amount of time that was propagated directly
from the function into this parent.

children Thisisthe amount of time that was propagated from
the function’s children into this parent.

caled Thisisthe number of timesthis parent called the
function ‘/’ the total number of times the function
was called. Recursive calls to the function are not
included in the number after the '/’.

name  Thisisthe name of the parent. The parent’sindex
number is printed after it. If the parentisa
member of acycle, the cycle number is printed between
the name and the index number.
If the parents of the function cannot be determined, the word
‘<spontaneous>’ is printed in the “name’ field, and all the other
fields are blank.

For the function’s children, the fields have the following meanings:

self  Thisisthe amount of time that was propagated directly
from the child into the function.

children Thisisthe amount of time that was propagated from the
child’ s children to the function.

called Thisisthe number of timesthe function called
thischild ‘/' the total number of times the child
was called. Recursive calls by the child are not
listed in the number after the ‘/’.

508



name  Thisisthe name of the child. The child’'sindex
number is printed after it. If thechildisa
member of acycle, the cycle number is printed
between the name and the index number.

If there are any cycles (circles) in the call graph, thereisan

entry for the cycle asawhole. This entry shows who called the

cycle (as parents) and the members of the cycle (as children.)

The '+’ recursive calls entry shows the number of function calls that
were internal to the cycle, and the calls entry for each member shows,

for that member, how many timesit was called from other members of
the cycle.

Index by function name

[2] dosomething [4] getmaxval
[3] getincrement [1] main

I’ll analyze the results. The information is split up into two separate sections: the flat profile and the call graph.

The flat profile shows how much time was spent in each function. From the information presented, you can see that the
dosomething() function was the most time-consuming, using almost 40 percent of the time of the program. Following that are the
remaining functions in the program. Y ou can also see that each of these three functions was called nearly 12 million times.

Next you see the call graph. The purpose of thisisto show you how much time was spent in each function and any function that it
calls. The call graph is separated into sections, one for each function in your program. The specific function being described in

each function is denoted by the bracketed number on the left (for example, [1]). Above this number line, you see a summary of the
functions that called this one. For instance, here is one such summary:

index % time self children called name

<spontaneous>
[1] 1000 154 8.48 main [1]
3.89 0.0011883133/11883133 dosomething [2]
2.74 0.0011883133/11883133 getincrement [3]
1.85 0.0011883134/11883134 getmaxval [4]

For each line, the values include the amount of time spent in the primary function when it was called by the given function. In the
second through fourth entriesin the call graph (you see the first one above), you can see that they were all called from main. After

the primary line, you can see a summary of each function it called, along with an indication of how much time was spent in those
functions when called from the primary one for each section.

If this report does not provide fine enough granularity for you, you can instruct gprof to operate in line-by-line mode, where the
basic unit of analysisisthe source code line instead of the function. Thisisinvoked with -I. In the following example, | aso turned
on -b, which causes gprof to omit the explanatory text from its result:

$ gprof -b -l ch28-1 gmon.out > profile2.txt

Listing 28-3 shows the profile that results from this command.

Note Listing 28-3 isavailable online.

Listing 28-3: Gprof example with line granularity

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self  total

time seconds seconds calls ps/call ps/call name

2550 256 256 dosomething (ch28-1.c:36)
1038 360 104 getincrement (ch28-1.c:28)
9.68 457 0.97 getincrement (ch28-1.c¢:30)

509



958 553 0.9 getmaxval (ch28-1.c:24)

933 646 094 dosomething (ch28-1.c:35)

783 725 0.79 main (ch28-1.c:15)

569 7.82 0.57 11883133 47967.15 47967.15 getincrement (ch28-1.¢:27)
549 837 0.5511883134 46284.09 46284.09 getmaxval (ch28-1.c:22)

389 87 0.39 main (ch28-1.c:16)
339 910 034 main (ch28-1.c:15)
240 934 024 getmaxval (ch28-1.c:23)
230 956 0.231188313319355.17 19355.17 dosomething (ch28-1.c:34)
170 973 017 dosomething (ch28-1.¢:37)
160 989 0.16 getincrement (ch28-1.¢:32)
100 999 0.10 getmaxval (ch28-1.c:25)
025 10.02 0.03 main (ch28-1.c:18)
Call graph

granularity: each sample hit covers 4 byte(s) for 0.10% of 10.02 seconds

index % time self children called name
0.57 0.0011883133/11883133 main (ch28-1.c:15) [2]
[9] 5.7 0.57 0.0011883133 getincrement (ch28-1.c:27) [9]

0.55 0.0011883134/11883134 main (ch28-1.c:15) [7]
[10] 55 0.55 0.0011883134 getmaxval (ch28-1.c:22) [10]

0.23 0.0011883133/11883133 main (ch28-1.c:16) [§]
[12] 23 023 00011883133  dosomething (ch28-1.c:34) [12]

Index by function name

[12] dosomething (ch28-1.c:34) [4] getincrement (ch28-1.¢:30) [7] main (ch28-1.c:15)
[6] dosomething (ch28-1.¢:35) [14] getincrement (ch28-1.¢:32) [8] main (ch28-1.c¢:16)
[1] dosomething (ch28-1.c:36) [10] getmaxval (ch28-1.c:22) [2] main (ch28-1.c:15)
[13] dosomething (ch28-1.¢:37) [11] getmaxval (ch28-1.c:23) [16] main (ch28-1.c:18)
[9] getincrement (ch28-1.c:27) [5] getmaxval (ch28-1.c:24)

[3] getincrement (ch28-1.¢:28) [15] getmaxval (ch28-1.c¢:25)

From this report, you can find that fully one quarter of the program’ s execution time was spent on line 36 of the code, inside the
dosomething() function. Thisis not terribly surprising, as thisline of code gets information from the random-numbr generator (a
fairly expensive operation) and then performs arithmetic on it.

A second in lineisline 28, another call to rand(), followed by line 30, which does alot of math in that result. Coming in close on
the heels of those are lines 24, which again do some calculations, and 35—another call to rand().

Another report that is available is the annotated source listing. Here's away to get output fromiit:
$ gprof -x -l -A ch28-1 gmon.out > profile3.txt

The -A option requests annotated mode; -| requests line-by-line mode, and -x requests that the program annotate as many lines as
possible. Listing 28-4 shows the output from this command.

Note Listing 28-4 is available online.
Listing 28-4: Output from gprof —A - -x
*** Fjle /home/jgoerzen/t/ch28-1.c:

#include <stdio.h>

#include <stdlib.h>
#include <time.h>

510



int getmaxval (void);
int getincrement(void);
void dosomething(int *data);

H#HHHE -> int main(void) {
int counter;
H#HHHH# ->  int data= 1;

HiHHHE ->  srand(time(NULL));

#iHHH ->  for (counter = O; counter < getmaxval(); counter += getincrement()) {
#HAHE ->  dosomething(& data);
}
#iH#HAE ->  printf(“ Data = %d, counter = %d\n”, data, counter);
HHHHE -> return O;
HHHHH > )

11883134 -> int getmaxval (void) {

11883134 -> int bignumber = 1000000;

11883134 -> return bignumber * 1500/ 2 + 1500 * 5-2100/2* 10/ 2;
11883134 ->}

11883133 -> int getincrement(void) {
11883133 -> int randval = rand();
11883133 -> return randval / 15000000 - 1000/12/5/2;

11883133 ->}

11883133 -> void dosomething(int *data) {
11883133 -> int randval = rand();

11883133 -> data += rand() * 9105/ 100000;
11883133 -> }

Top 10 Lines:

Line  Count

22 11883134
27 11883133
34 11883133

Execution Summary:
20 Executablelinesin thisfile
20 Linesexecuted

100.00 Percent of the file executed

35649400 Tota number of line executions
1782470.00 Average executions per line

Theideaisthat you can see, for each line of code, exactly how many timesit is executed. This program executes all the functions

on afairly constant basis, so they are each executed approximately the same number of times, as gprof shows you.

The profiler istelling us here that the calls to rand() and the lengthy arithmetic were the most processor intensive. Because they

were al occuring inside aloop, thisis not surprising. If these can be eliminated, or at least reduced, then the speed of the program

should be improved significantly. As an example, perhaps it would be sufficient to calculate arandom number once before
entering the loop, and then use it where required. Also note that line 35 (int randval = rand()) is a senseless call to rand(); that
valueis never used. Not only that, but also these arithmetic operations could be simplified beforehand rather than doing so each

time through the loop.

After you have made changes to your code, you will want to re-test the program to ensure that the changes really did improve

511



performance. If not, then perhaps the change you made was not any faster, or even a bit slower. Also, when comparing profiling
output from gprof before and after making changes, keep in mind that if you replace, for instance, one line of code with ten new lines,
you need to compare those ten lines all together to the one original line.
Summary

In this chapter, you learned about optimizing your code for speed. Specifically, you learned:

» Performance optimization becomes increasingly important when a given piece of code is executed more frequently.

* You can differentiate between elapsed time, CPU time, and 1/0 time when analyzing the performance of your programs.

e Loopsareaprimary cause of problems, asthey tend to magnify the problems of any code running inside them.

» You can boost performance by helping the optimizer, taking care to use keywords such as const when possible.

» System calls are notoriously expensive and their use should be minimized.

* You can use gprof, the GNU profiler, to find out which sections of your code are causing the largest delays.
Glossary

Overview

advisory locking A type of locking that requires each participating program to be aware of the need for locking and participate in
the locking mechanism. Advisory locking is the standard way of implementing locking in Linux. See also locking.

append mode A mode of writing to filesin which the operating system atomically seeks the end of the file and performs the write
for each actual attempt to write data to the file. This mode is generally invoked when the file is opened with fopen() or open(). See

also atomic operation.

assembler A program that trandates low-level commands that correspond to CPU instructions into binary machine language.
Often invoked by a compiler.

asynchronous I/O A type of I/O in which the requested operation may or may not be done before a call returns. Asynchronous 1/0
allows your program to continue processing data and lets the operating system fulfill the requests in the background whenever it is
most convenient. Asynchronous /O is aso known in some situations as non-blocking |/0O.

atomic operation An operation that is guaranteed to complete its task fully before being interrupted by another similar operation
or returning.

blocking I/O A characteristic of an operation that causes the execution of the program to be put on hold until a certain event
occurs. For instance, the read() call will, by default, block until it has data to return to the process.

Bourne shell The traditional default shell on UNIX systems. On Linux systems, Bash isthe typical implementation of it.

Bash (the Bourne-again shell) An enhanced version of the Bourne shell that adds many new features and some features from tcsh
and ksh.

bounds checking A feature of acompiler or alanguage. It generates an error if boundaries for types are exceeded. For instance, if
you have an array with 5 elements and you try to read element 10, this would trigger an error if bounds-checking is used. C and
C++ do not generally have this feature.

buffer Any area used for temporary storage of data while or before it can be processed. In C, a buffer might also refer to any
character array (string).

buffer overrun The condition in which more data is placed into a buffer than the size of the buffer allows. Thisistypically a
problem for C or C++ programs, and often results from reading in too much data or copying too much data into a buffer.

cc The canonical name for the C compiler on a UNIX system. On Linux, this refers to the gcc compiler.

CGI The Common Gateway Interface, a system of passing datato and from a program or script. CGl programs are used to read
input from and generate on-the-fly pages for Web sites.

512



chgrp The name of both a system call and a shell command that is used to change the group owner of afile or directory in Linux.
chown The name of both a system call and a shell command used to change the owner of afile or directory in Linux.
compiler A program that is used to transform input in a high-level language to assembler code or machine code. In Linux, a
typical useisto transform C, C++, Pascal, or Fortran code to Assembler code. The standard C compiler is gcc, and the C++
compiler isg++.

cpp The C Pre-Processor, part of the C compiler package.

cross-compiler A compiler that runs on one architecture, but generates assembly or machine code for another architecture.

CV S The Concurrent Versions System, an application designed to help programmers track changes between versions, manage
branches in code, and archive previous work. See Chapter 26 for details on CV'S.

DBI The Perl Database Interface, a standardized library for communicating with various SQL servers.

deadlock A condition that occurs when two or more processes are each waiting on the others to release a given resource. Thisisa
potential problem with locking or other methods used to avoid race conditions.

debugger A program that assists you with finding known or potential bugsin your code.

der eference (a pointer) Accessing the memory pointed to by a pointer instead of the pointer itself. In C and C++, the dereference
operator is*.

device special file A specific type of special file that corresponds to a hardware device. Device special files come in two versions:
block devices and character devices. Block devices are used to interface with devices that handle data by the block, such as hard
drives, tape drives, CD-ROM devices, scanners, and the like. Character devices are used to interface with peripherals that handle
data one character at atime, such asterminals, printers, serial ports, and mice.
dynamic library A library that is designed to be loaded at run time instead of at link time.

dynamic linker The program that takes care of resolving dynamic library dependencies at run time. On Linux systems, the
dynamic linker is|d.so.

dump A shorthand version of core dump. Thisis also the name of a backup program.
dynamically allocated memory Thisis memory that is explicitly allocated and freed by a program. In C, thisallocation is
typically performed with malloc() and the memory islater deallocated with free(). Unlike statically allocated memory, the size of
the memory block to be allocated does not have to be known at compile time, but the memory must be managed manually.
ELF The Executable and Linking Format, a way of storing datain executables and handling dynamically linked libraries.
end-of-file Thisis the condition that occurs when the position within afileis at the end. Also could refer to the error code returned
by 1/0 functions when a program attempts to read past the end of afile. In terms of non-file 1/0O, it can also mean that there is no
more datato read (which isthe case if the other end of a socket closed the connection, for instance).

EOF Acronym for end-of-file.

exclusive lock With respect to file locking with afunction such as flock(), indicates a type of locking in which only asingle
process may have alock on afile at any given time. See the discussion under shared lock for details.

FIFO (First In, First Out) A named pipe. That is, a pipe with a name in the file system.

filelocking A particular type of locking applied to files on the system, commonly implemented as advisory locking.
gcc The GNU C Compiler, the standard C compiler in Linux.
g++ The GNU C++ compiler, the standard C++ compiler in Linux.

gas The GNU Assembler.

513



gdb The GNU Debugger, a powerful debugger available for your use.
GECOSfield The part of the system’ s account database (often in /etc/passwd) that contains the real name of a particular user.
Today, the GECOS field may also contain information such as office number, telephone numbers, and the like. The acronym’s
meaning is no longer relevant, but refersto the General Electric Comprehensive Operating System that early UNIX versions
sometimes needed to interface with.

gid The numeric group id of a particular group. This is often, but not always, defined in /etc/group and used for security in places
such asthe file system and processes. See also uid.

globbing Using shell wildcards (such as the asterisk, question mark, brackets, and so on) to select a group of files or directories.
gprof The GNU profiler, used to analyze the performance of your programs.
GUI A Graphical User Interface. On Linux, a GUI istypically implemented using X.

hard link A type of link that isimplemented by having two or more directory entries point to the same inode (and thus the same
data) on-disk. See also symbolic link, link.

home directory The place reserved for each user on the system to store his or her own files. Each user’ s default home directory is
specified in the system’ s accounts database, typically /etc/passwd.

ident A protocol defined in RFC 1413 to be used to identify the owner of the process on the remote end of a TCP/IP socket
connection. The ident protocol is not guaranteed to be correct, and as such, should be treated as advisory information only in many
situations.

inode A data structure holding data corresponding to the physical storage of afile's data. Much of the inode’ s information can be
retrieved by calling stat.

I PC Inter-Process Communication, theoretically covering any method of communication between processes including network
communication. However, it is generally used to refer specifically to what is known as System V IPC—that is, shared memory,
semaphores, and (deprecated) message queues.
I P Internet Protocol, the base of other protocols such as TCP and UDP.

Id The standard linker for Linux.
library A collection of functions and symbols, typically related to a specific purpose. Libraries may be either static or dynamic.
link With respect to file systems, alink refersto either of two methods (symbolic link and hard link) of making a single piece of
data accessible by two or more filenames in the file system. With respect to program compilation, it indicates the action of

combining multiple object files together to generate afinal executable or of loading dynamic libraries into memory at runtime. See
also symboalic link, hard link, linker.

linker A program that links together various object files, libraries, and initialization code to generate afinal executable. See also
dynamic linker.

locking A method of ensuring that only one process will have access to a given resource at atime, or that multiple processes share
the resource in ways such that they do not conflict with each other. In Linux, this usually refersto advisory file system locking,
meaning that it isaway of ensuring that participating processes do not step on each others toes when accessing files.
Ivalue Any entity (such as avariable) to which avalue can be assigned. In languages such as C, the value must occur in the left
side of the equals sign. Perl, for instance, has Ivalues such as scalars, arrays, and hashes. The lvaluesin C include types such as
characters, doubles, integers, and other data types. See also rvalue.

make A rule-based tool to build projects automatically.

M akefile A file holding the rules for make.

manpage Short for manual page; refers to the online documentation for a particular function call, program, or command. For
details on manpages and accessing them, please see Chapter 1.

514



memory leak The condition resulting when memory is allocated but never freed.

minibuffer In Emacs and XEmacs, the small buffer at the bottom of the screen. The minibuffer is used to answer prompts, such as
what file to load, or to type M-x commands.

multiplexing Generically, any method of using a single communication channel for handling multiple separate pieces of data. In
Linux programming, this generally refers to a single-process TCP/IP server. Such a process will handle multiple clientsall ina
single process, and use a call such as select() or poll() to manage them.

nesting Using one object to contain other objects of the same type. Or, more generally, any situation in which you might find an
object or operator inside the scope of another of the same type. As an example, you might have nested arrays in Perl or nested
conditionalsin Bash.

non-blocking I/0O The opposite of blocking I/O, and a synonym of asynchronous 1/O.

object file A file holding compiled binary code that has not yet been linked. On Linux, these files have a .o extension.

OOP Object-Oriented Programming, a method of programming in which encapsulation and abstraction are key elements of
design.

optimizer An algorithm that is applied to generate more efficient or smaller output code. Many compilers and interpreters have
optimizers. In C, the gcc compiler has an optimizer that may be controlled with -O.

Perl An interpreted programming language known for its strong data-processing capabilities. Depending upon whom you ask, Perl
stands for either the Practical Extraction and Report Language or the Pathologically Eclectic Rubbish Lister.

pipe A unidirectional communication device that uses a set of two file descriptors. Typically used to communicate between two
processes on alocal machine.

pointer A special type of variablein C or C++ that holds the address of another variable. The variable pointed to is usually the one
that the program is actually interested in, but may have to use pointersto accessit.

port With TCP/IP programming, a unique identifier for the endpoint of a communications channel on a machine. The port is used
by the kernel on the receiving end of communication to determine to which process the data should be sent. Server processes
typically use a well-known pre-arranged port number; clients generally have a random number assigned by the operating system.

process A given instance of a program executing on a system. Processes are generally isolated from each other save for afew
select methods of communication.

profiler A software analysistool designed to help you spot performance-critical or slow portions of your code.

pseudo-terminal A virtual terminal used to simulate areal onein order to allow a process to intercept or manipulate the data
between the real terminal and the processes running with it.

race condition The situation in which two or more processes may attempt to access a single resource at once, the result of which
may be loss of data or unpredictable results, depending on which process wins the race and gets its execution time slice first. This
typically is aproblem with file system access, and file locking is atypical remedy. Another case might be shared memory, with
which semaphores are often used.

recursion An algorithm implemented in terms of itself. For instance, a recursive function might call itself to process datain finer
detail. An example might be a function that traverses a directory tree, calling itself for each subdirectory encountered.

recur sive make Using recursion in a Makefile to build components of a program. Usually used to build componentsresiding in
subdirectories.

regular expression (regexp) A pattern designed to be applied to data to determine whether or not it matches, or to pick out pieces
of data.

reliable protocol A protocol that guarantees that all data sent is delivered intact, without changes, and in the order sent. In other
words, if the data gets through at all (if there are no network failures preventing it), the data is guaranteed to be correct.

rvalue Any entity in alanguage that generates a value that can be assigned to avariable. In alanguage such as C, when using the =

515



operator, an rvalue must occur on the right side of it. See also Ivalue.
script A short program written in an interpreted language such as Bash or Perl.

segfault Shorthand for segmentation fault. See also segmentation violation.

segmentation fault Another name for segmentation violation.

segmentation violation A fatal error that occurs when a program tries to access memory that it is not permitted to access. In
virtually all cases, this error occurs when the program in question has a bug relating to pointers. It may be caused by any number
of things. A few possibilities are accessing an array past its end, dereferencing a null pointer, attempting to access memory that has
been freed, attempting to access memory not yet allocated, attempting to write to pages that are read-only, attempting to free
memory that has not been previoudly allocated, and many other possibilities. Note that some of these actions do not guarantee a
segmentation violation error; thisisjust one possible outcome. A segmentation violation is accompanied by the delivery of signal
13 to the offending process.

semaphore A method of 1PC used to synchronize access to arbitrary resources. Semaphores are typically used to provide locking
for shared memory transactions.

serialization The process of converting an in-memory data structure into flat data that can be stored on disk or transmitted across
the network. The goal of serialization is to create a representation of the data structure that can be later used to recreate the
original.

setgid property Indicates that, in contrast to standard practice, a given program takes on group permissions different from those of
the person running it. See also setuid property.

setgid bit The actual bit in the file system permissions area that indicates that a program isto be treated as setgid. The group of the
file indicates the group that it isto be set to.

setgid() call A call used to change permissions in an already-running program.
setuid property Indicatesthat, in contrast to standard practice, a given program takes on user permissions different from those of
the person running it. A program is said to be setuid only if the setuid bit is set for it. This mechanism is usually used to give the

program more permissions that it would normally have, and should be treated with extreme care.

setuid bit The actual bit in the file system permissions area that indicates that a program is to be treated as setuid. The user of the
file indicates the user that it isto be set to.

setuid() call A call used to change user permissionsin an aready running program.
shared lock With respect to file locking with afunction such as flock(), indicates that more than one process may hold a shared
lock at any given time. See also exclusive lock. Shared locks are frequently used for reading from files, and exclusive locks for
writing. Thisway, many processes can read at once, but if writes occur, only the writing process may hold alock.

shared memory A method of IPC that allows multiple processes to write to asingle block of memory.

shell A command interpreter used to provide acommand-line interface to the system. Shells are also used to run shell scripts, or
collections of shell commands in asinglefile.

signal A message sent to a process, either by the operating system or another process, indicating that a certain event has occurred.
signal handler A function registered by a processto handle a certain signal or set of signals.

dliding window An agorithm used in communication channels requiring acknowledgment of successful receipt of data. A sliding

window allows the transmitter to send data before acknowledgments of the previous packet are received, but places alimit on how

far ahead of the acknowledgments the transmission may be. This type of algorithm improves speed without sacrificing reliability.

For details, see Chapter 18.

socket One end of abidirectional network communication connection. On Linux, sockets act as file descriptors for the purpose of
many /O system calls.

special file Any entry in the file system that does not correspond to a standard file on disk. These entries could be things such as

516



devices (see device specia file), FIFOs, symbolic links, or perhaps even directories.
spinlock A condition resulting from a bug in a program in which the program is spinning, or in an infinite loop.
SQL Structured Query Language, alanguage used for manipulating databases running under a variety of servers.

stack In general, and LIFO (Last In, First Out) data structure. More specifically, a stack is used to hold information about function
cals. In C and C++, aframe is added to the stack for each call to afunction. The frame holds the caller (used when returning from
the function), local variables, and perhaps other state information. The compiler automatically frees the frame when it is no longer
needed. A debugger such as gdb will allow you to inspect the contents of the stack for a running program.

stat call A system call used to find out information about a particular entry (file, directory, anything with aninode) in the file
system. Given afilename, the call providesinformation such as size, creation date, modification date, inode number, permissions,
and more.

statically allocated memory Memory that is allocated and deallocated automatically by the C or C++ compiler. Normally, this
memory is used as global variables or aslocal variablesin functions. See also dynamically allocated memory.

symbolic link A “soft” link in the file system, implemented as a special file that points to another. See also hard link,link.

symlink Shorthand for symbolic link.

TCP Transmission Control Protocol, areliable protocol used for bidirectional communication on the Internet. TCP is based upon
IP.

terminal 1. A device used to display textual data. This could be your own console, an xterm, or some other device. 2. A device
entry in the /dev directory corresponding to a communication channel to areal or virtual terminal.

/tmp race A specific instance of arace condition that occurs when programs attempt to create or write to filesin /tmp without
taking security issues into account.

UDP User Datagram Protocol, an unreliable protocol used for sending small messages across a network. UDP is based upon IP.

uid A numeric value used to identify a particular user (mnemonic: user id). Each account on the system has a unique uid, whichis
often (but not always) specified in /etc/passwd. The uid is used by the security mechanismsin Linux in places such asthe file
system and processes.

umask A bitmask specifying the default permissions for a newly-created file. The value of the umask is specified with the
standard octal notation as used with calls like chown() and chgrp(). However, this mask has an inverted sense; that is, it indicates
what permissions not to give files.

unlink In simple terms, arequest to delete afile or a special file from the file system. More precisely, unlink() deletes one of the
hard linksto a given inode, and will only delete the actual data on-disk if the link being deleted is the last one for that data on the
file system.

X Also known as X 11 or the X Window System; X is a protocol used for exchanging information used to present a graphical user
interface.

517



