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Preface   
 

 
The secret is out—there’s something special about Linux. The operating system that began life as a way for then-student Linus 
Torvalds to do his homework has evolved into a powerful force in the marketplace, literally earning money overnight. 

 
 
 

 

What is so special about Linux? And why should you, a programmer, care? You’ ll find the answers in the pages of this book. 
Linux is more than just a new operating system. It represents the very best of what developers all over the world over like to see. 
Its rich multitasking capabilities and powerful communication features enable you to write powerful and fast applications quickly. 
Linux supports literally dozens of languages, including C, C++, Perl, Java, LISP, Prolog, Scheme, Pascal, BASIC, two shell 
flavors, assembler, Ada, Smalltalk, and FORTRAN. The program-ming environment in Linux is first-rate; many tools have had a 
chance to be refined since before Linux even existed, thanks to its UNIX heritage. 

 

 
 

 

As Linux is a fairly new system, I discovered that there is a lack of information for the Linux programmer. That is where this book 
comes in. By reading this book, you not only get to learn what Linux is doing under the hood, but also how to take advantage of 
that knowledge in your own applications. Most of the extensive code examples in this book are complete programs, ready to run, 
and some of which are also available online. 

 

 
 
 Why You Need This Book   
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Part of the power of Linux is its versatility. For example, you can pick any of five different ways to communicate between 
programs. Or, you can pick from various different languages to implement your code. With this flexibility comes decisions. Don’ t 
get me wrong, I love choices—having many options when solving a problem makes it easier to solve. But you need information—
which communica-tion methods are right for you, for instance. There is little existing documentation that gives you a big picture 
like this. Furthermore, when you are ready to imple-ment your program, you need to know not only why to use a certain feature, 
but how to use it. Through the use of examples and commentary in this book, you will see the ideas and concepts put into action, 
and use the code as a basis for your own programs. 

 

 
 

 

Linux is also helping to break new ground in computing. It has one of the best shared library systems available anywhere, but 
again the system is new enough that barely any documentation exists for it at all. Before this book, programmers had to stumble 
their way through the system before being able to use shared libraries effectively. The Linux Programming Bible shows you 
exactly how shared libraries work and how you can use them. 

 

 
 

 
In addition to its use as a tutorial, the Linux Programming Bible can help you as a reference book as well. Because of its in-depth 
coverage of so many different aspects of Linux, you’re sure to find the information you need here. 

 
 
 

 
With the huge installed base of Linux, most rapid growth in the industry, and rich development environment, companies are 
realizing that they lose customers and money by not supporting Linux. It is my hope that this book will be able to help you develop 
programs on Linux, and I want to welcome you to the Linux revolution! 

 

 
Prerequisites   
 

 
Before you begin programming in Linux with this book as your guide, I need to make sure that you have a few things ready to go. 
Ideally, you should meet the following requirements before you start to work with this book: 

 
 
 

  
• 

 
You should have a working knowledge of a programming language, preferably C, C++, or Perl. This knowledge does not have 
to come from Linux. You will be introduced to Linux-specific features in C and C++ throughout this book. 

 
 
 
  •  You should have Linux installed on your computer.   
 

  
• 

 
You should have a basic understanding of how to get around in Linux: files, directories, and a few command-line basics. For 
the chapters on GUI program-ming (Chapters 24 and 25), you also should be able to navigate the X Window System interface. 

 
 
 

 
If you meet these three simple prerequisites, this book is for you. Anyone from someone just making the switch to Linux to someone 
that has been programming on Linux for years will benefit from the information presented in these pages.  

How This Book Is Organized   
 

 
You can read this book either as a reference or as a tutorial. If you want to read the book as a tutorial, you might find it most useful 
to read it in the order presented more or less. 

 
 
 

 
Because of the huge volume of information, I have split the book into seven main parts. Here is a summary of each of the seven 
parts and what you can find in each. 

 
 
 
 Par t I : Shell and Basic Tools   
 

 
The first part of the book introduces you to some basics that will form an undercur-rent through the entire remaining part of the 
book. In Chapter 1, for instance, you will learn about the design of the Linux development environment, as well as how to find 
reference material online and navigate through the different material available to you. 

 

 
 

 

The remaining chapters in Part I cover some other basics. Chapter 2 introduces shell programming. Many people like to use a good 
editor and development environment; Chapter 4 introduces you to Emacs, which is both. For parsing tasks, regular expressions can 
be found in many areas, and you will learn about them in Chapter 3. The first part concludes with Chapter 5, which takes a look at 
data files and scripts in Linux. 

 

 
 
 Par t I I : The C Environment   
 

 

The C environment in Linux is not only the largest, but also of the most immediate interest to programmers. Because Linux itself 
is written in C, you’ ll find that function calls in other languages, such as Perl, are implemented in terms of the underlying C 
version. The chapters in Part II cover C (and C++) programming, starting with the C compiler in Chapters 6 and 7, moving 
through memory management and libraries in Chapters 8 and 9, and ending with the debugger in Chapter 10. 

 

 
 
 Par t I I I : The L inux Model   
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Before we can talk about more advanced topics such as multitasking, you need to have some knowledge of what is going on inside 
Linux. That is the focus of this part of the book. In Chapter 11, you will learn how data is stored on Linux—a key to being able to 
take advantage of some of the more advanced features of the Linux file system. You’ ll also learn about the process model, which 
is an undercurrent of most of the rest of the topics that will be presented in Chapter 12. Chapters 13 through 15 finish up with 
discussions on signals, Linux I/O, and terminals. 

 

 
 
 Par t IV: Talking to the World   
 

 
Now we come to one of the most exciting aspects of Linux—talking to everyone. Linux literally makes this possible. Support for 
communication in Linux has been there since day one—not just an afterthought. You can see this for yourself in the rich array of 
communication tools that are available for your use. 

 

 
 

 

The discussion of communication begins with coverage of shared memory and semaphores in Chapter 16. Though other models, 
such as pipes, are now preferred over shared memory for some things for which it was once popular, still shared memory is a 
unique way of approaching communication. Some people, especially those doing real-time projects, find shared memory to be the 
fastest method of communication available. 

 

 
 

 

After shared memory, I turn to the more standardized methods of communication in Linux. These include pipes and FIFOs, which 
are discussed in Chapter 17. Chapters 18 and 19 are devoted to the topic of sockets, which are used for communication across the 
Internet. With the knowledge you get from this part of the book, you will be able to write your own Internet client or server 
software, and you will literally be able to talk to the world! 

 

 
 
 Par t V: The Glue-- Per l   
 

 

No book on Linux programming would be complete without devoting some space to Perl. Perl is a language that is rapidly gaining 
favor as one used for all the odd jobs that face a programmer. It is especially agile in bringing together data from many different 
sources, processing it, and generating output suitable for further analysis or import into other systems. With its integrated support 
for CGI, SQL databases, and powerful parsing capabilities, it’s a natural fit for Linux. 

 

 
 

 
Chapters 20 and 21 cover general Perl topics, introducing you to Perl and then teaching you how to use it to manipulate your data. 
Chapters 22 and 23 conclude with coverage of CGI programming with Perl, and SQL database access from Perl. 

 
 
 
 Par t VI : Graphical Inter faces With X   
 

 
The X Window System, the dominant GUI in Linux, is a powerful and exciting envi-ronment for writing GUI programs. In this 
section, you will learn two different ways of doing so: Perl/Tk and Gnome. Chapter 24 covers perl/TK and Chapter 25 covers 
Gnome. 

 

 
 
 Par t VI I : Putting I t All Together    
 

 

There are some concepts that I want to present to you that do not fit neatly into any other part because they are applicable to 
everything you have done. These topics are presented in Part VII. The part begins with Chapter 26, which covers CVS—a powerful 
tool for managing your projects and aiding collaboration on them. Chapter 27 covers security, which is one of the most important 
topics that any Linux programmer must face. Finally, you will learn about some ways to improve the performance of your code on 
Linux in Chapter 28.  

Par t I :  Shell and Basic Tools   
 
 Chapter  L ist   
 
  Chapter  1:  Introducing the L inux Programming Environment   
 
  Chapter  2:  Introducing Shell Programming   
 
  Chapter  3:  Working with Regular  Expressions   
 
  Chapter  4:  Introducing Emacs   
 
  Chapter  5:  Understanding L inux Data Files and Scr ipts  
Chapter  1: Introducing the L inux Programming Environment   
 
 Overview   
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Welcome to the Linux programming environment! This chapter introduces you to some of the basic concepts of programming in 
Linux—how Linux thinks about the world. These are concepts that you will read about in more detail later in the book. This chapter 
also shows you how to find help when you need it. You’ ll find information about online manual pages, info pages, Perl program 
documentation, and Internet resources here.  

Basic L inux Programming Concepts   
 

 
The programming environment in Linux is one that follows one of the design philosophies of Linux itself. That is, you are given 
many small components that you can assemble in any way you wish to solve your task. 

 
 
 

 
As an example, you have a C preprocessor, a linker, an assembler, and a compiler. If you want, you can call these all manually to 
build your program. Many people, however, prefer to just let the gcc front-end automatically handle those details. 

 
 
 

 
You may observe, as you start programming in Linux, that a number of the tools are command-line based. This is correct, but there 
is a reason for it: It is much easier to reuse and automate command line tools than GUI tools. In fact, there are several GUI 
environ-ments that provide you with a graphical interface to these command line tools. 

 

 
 

 
The C-development environment on Linux consists of the C-development tools (compiler, linker, etc.), an optional project 
management utility (make), an editor or IDE (Emacs), and analysis tools (gdb). People who work in large groups or require 
archiving may also use a source code control system (CVS). 

 

 
 

 

There are also a few other pieces of the puzzle. These are actually present on every platform, but you may not be aware of them. 
One is the C library. On Linux, the C library provides everything from basic string functions, such as strcpy(), to functions to 
access the system’s database of users. The C library system consists of both a library to be linked into your programs and a set of 
header files. 

 

 
 

 
Development with Perl is similar, although Perl programs require no compilation. Therefore, there is no compiler, and little need 
for a project management utility in Perl. 

 
 
 
 Next we will look at the Linux design and how it differs from Programming in the Windows 95 and 98 environments.  
Linux Design   
 

 
If you are new to the Linux platform, there are several important distinctions that I would like to mention in regard to its design. 
Some other operating systems, particularly other POSIX systems, might have many of these in common. However, if you are 
accustomed to programming in Windows 95 or 98 environments, you might find significant differences here: 

 

 
 

  
• 

 
Linux is multitasking. You can create multiple threads and processes at once. You can never assume that yours is the only 
instance of the program running; both the same user and other users may be running other copies of it. There-fore, you have to 
be careful to synchronize access in some situations. 

 

 
 

  
• 

 
Linux is a true multi-user system. This means that there are security measures involved to isolate one user’s files from another. 
Your programs will not be able to modify or replace any file on the system as they can on some other platforms, unless they 
are running as the superuser (root). 

 

 
 

  
• 

 
Linux has timesharing. Timesharing means that there can be several users logged in to the system at once, or that a single user 
may be logged in more than once. People may use technologies such as telnet or X to log on to the system remotely. Thus your 
programs need to be aware that they may be executed by several users simultaneously. 

 

 
 

 

For simple programs, these differences are irrelevant. If you are writing an editor, for instance, you most likely don’ t care about 
timesharing or multitasking, since the system is handling all these details for you. But what if you are working with a database or 
some other shared resource? In this case, you have to synchronize with other processes to make sure that no two processes try to 
write to the file or database at once. This might mean synchronizing with other copies of your own program or with other 
programs. 

 

 
 

 

Linux has a rich history. Linux is designed to work like UNIX, an operating system that’s been around since approximately 1970. 
Over the years, UNIX has evolved significantly. It turns out that one key aspect of the design on UNIX—giving the user small 
components and then assembling them as desired—is one of the most useful aspects of Linux. It underlies not just shell scripting, but 
also shared library systems and widget libraries for the X Window System.  

 Linux Documentation   
 

 
One of the most important things about being a programmer in any environment is to know where to turn when you need 
information. This book can be the first place to look for many questions. If you can’ t find the answer you need within these pages, 
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you can look in the array of online documentation that comes with any Linux system.  
 

 

Back in the early days of UNIX, the system shipped with volumes upon volumes of bound documentation—dry reference material, 
with few examples, filling up entire bookshelves. The modern descendents of these books are called manpages (short for “manual 
pages”  from the defunct paper editions). In this chapter, you’ ll learn about these and other forms of documentation on your Linux 
system. 

 

 
 

 

If you get stuck and need to ask someone for help, you can check out various Internet resources. Some common ones include 
Usenet newsgroups, Web sites, online chat areas, and more. The Internet is the primary vehicle for communication for 
development on Linux itself, and you can find archives of discussions on everything from kernel design to selections of standard 
pathnames, because most development work is done openly. 

 

 
 

 

In some cases, people use the phrase, “ the source is the documentation.”  Because Linux comes with complete source code, if you 
ever have a question that no docu-mentation can answer for you, you can go directly to the source code for the operating system to 
find out. While preparing material for this book, for instance, I referred to the source code many times to find out specific details of 
behavior in Linux.  

Manpages   
 

 

In Linux and UNIX systems, manpages are the mainstay of reference information. These pages are primarily reference material, 
and one manpage exists for virtually every shell command, system call, library function, configuration file, and daemon on the 
system. The entries in manpages often presuppose knowledge about the topic they’re documenting and contain few examples, so 
you’ ll need some other material—such as this book—to help you with the information that you won’ t find in the manpages. 

 

 
 
 Manpages in Linux are separated into eight sections, each with a specific general topic:   
 
  •  Section 1 covers shell commands and user-level programs.   
 
  •  Section 2 documents system calls.   
 
  •  Section 3 documents C and C++ library calls and macros.   
 
  •  Section 4 documents special files and devices that you might find as kernel modules, /dev entries, or /proc entries.   
 
  •  Section 5 documents the format of various files on the system; mostly configuration files.   
 
  •  Section 6 historically covers games, but these are increasingly covered under section 1.   
 
  •  Section 7 describes languages (such as SQL) or mini-languages.   
 
  •  Section 8 describes daemons or other sysadmin-only commands.   
 

 

To look up a manpage, use the command man topic, where topic is the name of the command, program, function, macro, or file 
about which you want information. For instance, to find information on ls, you can type man ls at the prompt. The man browser 
searches for ls in each section, beginning with section 1 and pro-gressing to section 8, and then displays the first page that it finds. 
In this case, there is only one entry in section 1. (Notice that page is somewhat misleading; the man page for ls is really four pages 
long!) 

 

 
 

 
In most situations, man invokes either more or less to display the page. You can press spacebar to advance a page, Enter to 
advance a line, b to go back a page, and / to search. When done, you can press q to quit. 

 
 
 
 The front page looks something like Figure 1-1.   
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 Figure 1-1:  Manual page of ls  
    
 

 

Sometimes, you’ ll find that a given entry may occur in multiple sections. For instance, the kill entry is both a command (in section 
1) and a system call (in section 2). If you are trying to find documentation on the system call, typing man kill will get you 
documentation on the shell command. What you need to do is explicitly specify the manual section by typing man section topic 
(e.g., man 2 kill). You’ ll be taken directly to the entry in that particular section of the manual. While you’re programming, you’ ll 
probably use entries in sections 2 and 3 the most. If you have a configured printer in Linux, you can also get a typeset hardcopy of 
any manpage on the system. To do so, you can use a command such as: 

 

 
 
 $ man -t 2 kill | lpr    
 

 
The -t instructs the system to generate PostScript output, which is then piped to the printer spooler. You can also omit the section 
number if it’ s unambiguous, as before with the ls example. 

 
 
 

 
If you are unsure of where the information about a particular topic is located, you can perform a keyword search with -k. Consider 
this example: 

 
 
 
 $ man -k syslog   
 syslog (2) - read and/or clear kernel message ring buffer; set console_loglevel   
 syslog (3)           - send messages to the system logger   
 Sys::Syslog (3pm)    - Perl interface to the UNIX syslog(3) calls   
 syslog (2)           - read and/or clear kernel message ring buffer; set console_loglevel   
 syslog (3)           - send messages to the system logger   
 syslog (3pm) [Sys::Syslog] - Perl interface to the UNIX syslog(3) calls   
 syslog-facility (8)  - Setup and remove LOCALx facility for sysklogd   
 syslog.conf (5)      - syslogd(8) configuration file   
 syslogd (8)          - Linux system logging utilities.   
 syslogd-listfiles (8) - list system logfiles   
 
 This causes the manual browser to display a list of all the manpages whose name or topic contains the string “syslog.”    
 

 
As with other Linux commands, the manpage browser comes with its own man-page, which you can view with by typing man 
man at the command prompt. It gives you a summary of the command-line arguments available for the browser. 

 
 
 

 
When referring to manpages, or even to specific functions, it is customary to include the section number. For instance, if I mention 
printf(3), this is a reference to the printf function, as documented in section 3 of the manual. Such usage is common not only in this 
book but in other literature, both online and off, as well.  

 Info Pages   
 

 

Although manpages are the backbone for reference information in Linux for some time, some information is being presented 
increasingly in GNU info format. GNU info is a hypertext format that is used to present information. It can be viewed in several 
viewers including a standalone viewer named info, a special mode in Emacs or XEmacs, a CGI script to present info pages as 
HTML, and various X-based interfaces. In this section, I’ ll discuss the standalone browser first, and then I will cover the mode as 
it is seen in XEmacs; these are the two most popular methods of reading info pages. 
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If you run info with no arguments, by default it displays a main menu of available topics, as shown in Figure 1-2. You can also 
invoke info on a particular manual; for instance, info libc displays the documentation for the C library. 

 
 
 

 

 

 

 
 
 Figure 1-2:  The info browser  

    
 

 
When an info page is displayed, you’ ll need to know how to navigate it. Table 1-1 lists the keys that you can use to navigate info 
pages. 

 
 
 
 Table 1-1:  Info Page Navigation Keys   
 
     
 
 Key   

 
Function   

 

 
     
 
 N   

 
Takes you to the next page in sequence after the present one, as displayed at the top of the screen.   

 

 
 P   

 
Takes you to the previous page in sequence after the present one, as displayed at the top of the screen.   

 

 
 U   

 
Takes you up one level in the page hierarchy, as displayed at the top of the screen.   

 

 
 Enter   

 
Displays whatever link is under the cursor at the time.   

 

 
 M   

 
Follows a link from a menu, and asks you which entry to use.   

 

 
 F   

 
Follows a standard cross-reference, which usually has “Note”  listed close to it.   

 

 
 L   

 
Displays the last page shown. This is similar to clicking a Back button in a web browser.   

 

 
 Spacebar   

 
Scroll forward by one page.   

 

 
 Backspace   

 
Scroll backward by one page.   

 

 
     
 

 
Navigation in the XEmacs version of the info browser is somewhat easier. You enter the info browser by pressing Ctrl+H, then i or 
by clicking the Info icon on the tool bar. XEmacs’s info browser is mouse-aware and presents an interface not unlike that of a web 
browser. Figure 1-3 shows the index page of XEmacs’s info browser. 
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 Figure 1-3:  Index page of XEmacs’s info browser  
    
 

 
You can use all of the same keystrokes in the XEmacs info browser as you can in the standalone version. To follow a link, simply 
middle-click it. 

 
 
 
  Tip  If your mouse has only two buttons, you may simulate a middle-click by pressing both buttons at once.  
Per l Documentation   
 

 
The documentation for Perl is unique among that on Linux in that Perl is the only language that provides its own documentation 
system. You may find some informa-tion through the regular manpages. The perl(1) manpage contains a listing of all the other 
Perl pages. Of these, perlfunc(1) will probably be of the most practical use. 

 

 
 

 

In addition to these pages, many Perl modules provide their own documentation in the form of a POD. You can view these 
modules’  manuals by typing per ldoc modulename, which displays them in a format similar to a manual page. Some Linux 
distributions pre-format module POD documentation into manual pages for you, so you can access it via the standard manual page 
interface as well. 

 

 
 

 
You can also look up information on a specific part of Perl. For example, you can type per ldoc -f split to find documentation on the 
built-in split function. You can also type per ldoc Data::Dumper  to find information on the module by that name.  

Program Documentation   
 

 

Many programs also come with text files or HTML files that describe their opera-tion. These files may contain anything from a 
few brief usage hints to a complete overview of the principles behind the algorithms used inside the program. For programs you 
install, these files are usually in the distribution source tarball. For distributions, you can generally find these files in 
/usr/doc/programname or /usr/share/doc/programname. Some distributions also include the program version in the doc path. You 
may sometimes need to use zless to view this documentation, especially if it’ s compressed. 

 

 
 

 
If applicable, you also might check to see if a webpage exists for your program, and if so, check it for the documentation. Some 
programmers prefer to keep some documentation there. 

 
 
 

 
Sometimes, this documentation might come in PostScript format, indicated by a .ps extension. To view such documents, you’ ll 
need, at minimum, the GhostScript interpreter or a PostScript printer. Many people prefer to use gv to display those files; it is a 
nice front-end to the GhostScript interpreter. 

 

 
 

 

I mentioned at the start of this chapter that you can sometimes treat source code as documentation. In such a case, you might want 
to look at the files and direc-tories inside /usr/include, which includes the prototypes and definitions of the functions and macros 
used in your C programs. Some other important directories in the area include /usr/include/sys, /usr/include/linux, and 
/usr/include/asm. 

 

 
 

 

You can also find source code for your programs. Exactly where this is stored depends on your distribution; some may have it on a 
separate CD with separate packages; others, with the same CD as the binaries. You might also check inside /usr/src to see if you 
can find source code there. In particular, this is a traditional place to put the sources to the Linux kernel, which can be a useful 
resource. 

 

 
 



 9 

 
One trick that is useful when you are trying to find a certain entry in either the header files or the kernel source is to change into 
either /usr/include or /usr/src/linux and issue a command line such as grep sigaction `find . -type f` that will search for the specified 
string in all files underneath the current directory.  

Internet Resources    
 

 

As you work with programming on Linux, you’ ll find a lot of resources are available on the Internet for your use. One of the most 
famous of these is the Linux Documen-tation Project (LDP), at http://www.linuxdoc.org/. The LDP contains a lot of 
documentation on Linux, most of which is geared at system administrators or end users instead of developers. However, several of 
their HOWTOs and mini-HOWTOs do contain information that useful to programmers. Some distributions also contain this 
information in either /usr/doc/HOWTO or /usr/share/doc/HOWTO. 

 

 
 

 
Several websites provide information on Linux and links to other information. Among the most well-known are http://linux.com/ 
and http://linuxlinks.com/. You also can use a search engine such as http://www.google.com/ to find information about Linux from 
the various corners of the Internet. 

 

 
 

 
Additionally, you can find a number of newsgroups in the comp hierarchy relating to UNIX and Linux programming. Here is a list 
of some of these newsgroups that are relevant to some of the topics covered in this book: 

 
 
 
  •  comp.os.linux.development.apps   
 
  •  comp.os.linux.development.system   
 
  •  comp.os.linux.x   
 
  •  comp.security.unix   
 
  •  comp.unix.internals   
 
  •  comp.unix.programmer   
 
  •  comp.unix.shell   
 
 If your news server carries it, you can find a number of newsgroups in the linux hierarchy that could be helpful as well.   
 

 

If you want to participate in real-time chat with other Linux programmers and users, point your IRC client (such as xchat or ircII if 
you’re using Linux) to the server irc.us.openprojects.net (for American servers; use irc.eu.openprojects.net for European servers, or 
irc.openprojects.net for a random server). Channels you may be interested in include #linpeople and #linuxhelp. There are also 
distribution-specific channels such as #debian and #redhat.  

Summary   
 
 In this chapter, you learned about the various sources of documentation in Linux. Specifically, you learned:   
 
  •  Linux is based on a system of using small components that can be assembled in different ways to solve a given problem.   
 
  •  Linux’s programming environment fits this model by giving you many tools that you can use to write programs.   
 

  
• 

 
Linux is multitasking, multi-user, and timesharing. Some programs may not care; other programs may take advantage of these 
specific features. 

 
 
 
  •  You can find reference information online on your Linux system.   
 
  •  Manpages contain reference information and are separated into eight sections.   
 
  •  A reference, such as printf(3), means to look up the printf function in section 3 of the manual.   
 
  •  GNU info documentation is a hypertext format. Many different viewers exist, including a mode for Emacs and XEmacs.   
 
  •  Perl contains its own set of manpages, as well as a perldoc tool for looking up information on Perl or its modules.   
 
  •  Many programs ship with some documentation files, which distributions often package and place in /usr/doc or /usr/share/doc.   
 
  •  Several resources are available on the Internet if you need additional information.  
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 Chapter  2:  Introducing Shell Programming   
 
 Overview   
 

 
Welcome to the exciting world of programming under Linux! Throughout this book, I’ ll cover topics that range from Perl to 
C++—languages you probably have heard of, if not used, even if your programming experience hasn’ t been under the Linux or 
UNIX platforms. However, a place to start is certainly with shell programming. 

 

 
 

 

Shell programming often can be the easiest way to accomplish some simple tasks, such as finding data, some simple data 
manipulations, file management, and so on. Furthermore, as you learn about programming with the shell, you also learn about 
many of the commands that are available in Linux. These commands can be used with equal ease at both the interactive command 
line and a shell script. 

 

 
 

 

In this chapter, you’ ll be introduced to Bash, the most popular shell in Linux. Then I discuss redirection and piping, two powerful 
ways to combine Linux utilities to achieve powerful solutions. Next, I’ ll cover variables, useful both for saving keystrokes and 
storing data for later usage, and functions, which enable you to combine commands in more powerful ways. Finally, I go into loops, 
conditionals, and shell utilities, which document ways to use flow control in your programs and other common utilities in your 
scripts.  

Quick Introduction to Bash   
 

 

When you log on to your Linux machine or open an xterm, chances are that your default shell is Bash. Bash is the GNU Project’s 
shell. The GNU Project is a part of the Free Software Foundation that is responsible for many of the programming tools you’ ll be 
using on Linux. If you have experience with other shells, you may be interested to know that Bash is a derivative of the Bourne 
shell but adds many features from Korn, and even a few from csh. If you are unsure whether or not your shell is Bash, you can 
type at the shell prompt: 

 

 
 
 $ echo $BASH_VERSION   
 2.02.1(1)-release   
 

 
If you get a version number displayed on your screen, such as 2.02.1(1)-release in this example, you know that you are running 
Bash. If instead you get an error message or no version number, you probably are running a different shell. To invoke Bash, you 
can generally type: 

 

 
 
 $ exec /bin/bash   
 

 

As you know by now, you can type commands at a Bash command line and the shell will execute them for you. This is only a 
small part of Bash’s functionality, however. In addition to this, Bash provides functionality for shell scripts. These scripts are, in 
their simplest form, just collections of commands that are run one after another—a way to automate repetitious tasks. However, 
the capabilities of scripts don’ t end there. Shell scripting is a simplistic programming language in itself, and combined with the 
shell utilities in Linux, can enable you to craft solutions to some problems in a remarkably short amount of time. 

 

 
 
 Creating a scr ipt   
 

 

This is a good time to learn how to create a shell script. The first step is to open a script file in your favorite editor. If you have 
experience with Linux, you already may have an editor with which you’re familiar; feel free to use it. If you’re new to Linux 
editors, you can try the Emacs editor; a little experience with it now could come in handy when you get to the Chapter 4, 
“ Introducing Emacs.”  

 

 
 
 Suppose you want to name your file myscript. To edit the file with Emacs, type this at the shell prompt:   
 
 $ emacs myscr ipt   
 

 
Depending on which version of Emacs you have, and whether or not you are running in X (the graphical interface system used in 
Linux), Emacs will either start in your terminal or bring up another window in X. Either way, you’re ready to begin typing in the 
script. Type the following: 

 

 
 
 #!/bin/bash   
       
 echo Hello!   
 echo This is my first script with Bash.   
 echo Press Enter to exit.   
 read   
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Now, you’re ready to save. To do this, press C-x C-s, that is, hold down the Ctrl key and press X, and then do the same for S. (You 
can actually hold down the Ctrl key and press the other two in that order.) Emacs will save the file. Now, exit Emacs with C-x C-c. 

 
 
 
 When you’re back at the prompt, you can now test your script:   
 
 $ source myscr ipt   
 Hello!   
 This is my first script with Bash.   
 Press Enter to exit.   
 

 
If all is well, the above should appear on your screen. After you press Enter, the script will exit. If you get an error message, 
double-check that you typed in the script exactly as shown here. 

 
 
 

 
Generally, you don’ t use the source command to execute a script but it can be useful in some situations. Usually, you will want to 
mark your script executable. This sets a flag telling the operating system that the script can be executed as a program. 

 
 
 
 If you don’ t mark it executable, but try to run it, you get the following error:   
 
 $ ./myscr ipt   
 bash: ./myscript: Permission denied   
 
 To mark the script executable, use the chmod command:   
 
 $ chmod a+x myscr ipt   
 
 Now, you can try executing the script:   
 
 $ ./myscr ipt   
 Hello!   
 This is my first script with Bash.   
 Press Enter to exit.   
 
 This time, the script works!   
 
 To summarize, here are the steps for creating a Bash script:   
 
  1. Load the file into your favorite editor.   
 
  2. Make sure that the first line of the script is: #!/bin/bash.   
 
  3. Save the script and exit the editor.   
 
  4. Mark the script executable with chmod a+x scriptname.   
 
  5. You can now run the script with ./scriptname.   
 

  

Tip 

 

When you want to run an executable or script stored in your current directory (as opposed to one that comes with the 
system), you will want to use ./ in front of the name. The reason is that the current directory (signified by the period) 
is generally not in the list of directories searched for when running a program (specified in the PATH variable). This 
is because explicitly including the current directory in PATH can be a security risk. Therefore, you need to specify 
the directory when running these programs. As a shortcut, you can simply use the period to specify the current 
directory instead of having to type out the entire path to the executable. 

 

 
 
 Bash star tup   
 

 

When a Bash session is invoked, the shell can execute a shell script for you automatically. Many programmers use these to set 
some options such as, what the shell prompt should be, how frequently new e-mail should be checked, or even how many 
programs should run when logging in. A whole system of scripts can be executed with Bash at startup. The primary one is named 
.profile. 

 

 
 
 If you create a shell script and save it with the name .profile, it will be executed every time you log in. Sometimes this script may  
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not be executed when you want it to, such as when you run Bash in an xterm. In that case, you can set a symbolic link to point 
.bashrc sto .profile with this command:  

 
 $ ln -s .profile .bashrc   
 
 Return values   
 

 

Whenever you run a command at the Bash command prompt or in a script, this program has a return value (also known as an exit 
code). Thus far, you probably have not had a need for examining this return value. However, many constructs in Bash take 
advantage of it. The return value is used in if statements, for instance, to determine whether a certain action should be taken. It can 
also be used to determine when to run other commands. 

 

 
 
 You may use echo $? to display the exit code from the last command to run. Table 2-1 shows how the codes can be interpreted.   
 
 Table 2-1:  Exit Codes and Their  Meanings   
 
     
 
 Exit Code   

 
Meaning   

 

 
     
 
 0   

 
The program terminated successfully.   

 

 
 1 – 127   

 
The program terminated with an error condition. Some programs assign a specific meaning to their 
return codes, so you may be able to find more information by looking up the specific return code in 
the documentation for the program. 

 

 

 

 
 128 or above   

 
The program was terminated by a signal. The exit code, minus 128, indicates the signal number that 
terminated the program. 

 
 

 

 
     
 

 
Let’s look at some examples. When a program finishes successfully, it should return a successful value (zero) to the shell as in the 
following example: 

 
 
 
 $ ls /proc   
 1      2      4     529   9222         ksyms       slabinfo   
 12011  2066   4685  544   976          loadavg     sound   
 13192  2067   4686  551   bus          locks       stat   
 1372   2108   4687  556   cmdline      meminfo     swaps   
 1452   2111   482   5812  cpuinfo      misc        sys   
 1453   2177   499   615   devices      modules     tty   
 15     2220   501   618   dma          mounts      uptime   
 1622   24293  506   640   filesystems  net         version   
 1623   25497  509   650   fs           parport   
 16231  25499  513   651   ide          partitions   
 16234  25561  517   652   interrupts   pci   
 16285  26000  518   653   ioports      rtc   
 17008  26004  519   817   kcore        scsi   
 17010  3      520   818   kmsg         self   
 $ echo $?   
 0   
 

 
In this example, you can see that ls performed its task normally; that is, it displayed a list of files as is customary. No errors 
occurred, so running echo $? caused a zero to be displayed, indicating successful execution. 

 
 
 

 
However, sometimes things can go wrong. For example, you might specify an invalid filename or directory after typing ls. When 
this happens, ls can’ t find the information to display, and thus returns an error code. Here’s an example of what happens when ls 
encounters an error. 

 

 
 
 $ ls /proc/some-nonexistant-filename   
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 ls: /proc/some-nonexistant-filename: No such file or directory   
 $ echo $?   
 1   
 

 
This time, the exit code was 1, indicating an error. At this point, your script might take some special action because of the 
problem. Depending on the script, this action might include aborting the script, calling some special subroutine to clean up after 
the error, displaying a special message, or even simply ignoring the error. 

 

 
 
 Simple command combinations   
 

 
When you want to run a series of commands, you give them to Bash one per line either at the prompt or in a script. As you get into 
more complex shell scripting, however, you’ ll find that more powerful ways of chaining commands together become useful. 

 
 
 
 Chaining with the Semicolon   
 

 
The simplest way to chain two commands together is with the semicolon. When you combine two commands with the semicolon, 
Bash acts as if you typed them at the prompt, or in a script, one per line. 

 
 
 
 As an example, first try two separate commands at the prompt:   
 
 $ ls /dev/hda*    
 /dev/hda    /dev/hda13  /dev/hda18  /dev/hda4  /dev/hda9   
 /dev/hda1   /dev/hda14  /dev/hda19  /dev/hda5   
 /dev/hda10  /dev/hda15  /dev/hda2   /dev/hda6   
 /dev/hda11  /dev/hda16  /dev/hda20  /dev/hda7   
 /dev/hda12  /dev/hda17  /dev/hda3   /dev/hda8   
 $ echo Done.   
 Done.   
 

 
As expected, Bash executes your first command, and then your second. If you know that you will want to execute the second right 
after the first, you can combine them with a semicolon as follows: 

 
 
 
 $ ls /dev/hda* ; echo Done.   
 /dev/hda    /dev/hda13  /dev/hda18  /dev/hda4  /dev/hda9   
 /dev/hda1   /dev/hda14  /dev/hda19  /dev/hda5   
 /dev/hda10  /dev/hda15  /dev/hda2   /dev/hda6   
 /dev/hda11  /dev/hda16  /dev/hda20  /dev/hda7   
 /dev/hda12  /dev/hda17  /dev/hda3   /dev/hda8   
 Done.   
 

 
When you press Enter to send the command to the shell, Bash runs both commands, one after the other, before returning to the 
prompt. 

 
 
 

 
More than two commands can also be used in this fashion. In fact, there is no fixed limit on the number of commands that can be 
chained together with the semicolon. You might choose to use three commands on one line, as in following example: 

 
 
 
 $ echo Star ting.; ls /dev/hda* ; echo Finishing.   
 Starting.   
 /dev/hda    /dev/hda13  /dev/hda18  /dev/hda4  /dev/hda9   
 /dev/hda1   /dev/hda14  /dev/hda19  /dev/hda5   
 /dev/hda10  /dev/hda15  /dev/hda2   /dev/hda6   
 /dev/hda11  /dev/hda16  /dev/hda20  /dev/hda7   
 /dev/hda12  /dev/hda17  /dev/hda3   /dev/hda8   
 Finishing.   
 
 As discussed earlier, Bash executes each command, one at a time.   
 
 Conditional Chaining   
 

 
Although combining commands with a semicolon can be useful at the shell prompt, it simply provides another option for 
something already present in the shell script language. There are more options for combining commands. The first one is a 
Boolean OR operation, which means that the second (and subsequent) command should be executed only if the prior one fails. If 
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you have multiple commands, the effect is to continue until one command succeeds or the end of the commands is reached.  
 

 
The second option is a Boolean AND operation, which means that the second (and subsequent) command should be executed only 
if the prior one is a success. In this case, the effect is to continue until one command fails or the end of the command is reached. 

 
 
 

 
You must use the double-pipe symbol to execute the Boolean OR. This command is frequently used to emit an error message 
when something fails, as in the following example: 

 
 
 
 $ ls -l /proc/foo || echo The ls failed.   
 ls: /proc/foo: No such file or directory   
 The ls failed.   
 $ echo $?   
 0   
 

 
In this case, the ls command returned an error. Therefore, Bash proceeds to the next command, the echo. Incidentally, this one 
returns true. The entire statement takes on the return value of the last command, so echo $? displays the return value from the 
previous echo command. 

 

 
 

 
Recall that the || will continue executing commands until one of them is successful. In the next example, the final command is not 
executed because of this behavior: 

 
 
 
 $ ls -l /proc/foo || echo The ls failed. || echo Bye   
 ls: /proc/foo: No such file or directory   
 The ls failed.   
 

 
This time, the ls returns failure, as before. The first echo invocation is then called to display its message. The echo command, of 
course, has no trouble doing that, so it returns a success code. Because success is reached, there is no need to execute the final 
echo command. 

 

 
 

 
If ls succeeds, none of the following commands are executed. In the following example, because ls is a success, it is the last 
command run: 

 
 
 
 $ ls -l /proc/tty || echo The ls failed. || echo Bye   
 total 0   
 dr-xr-xr-x   2 root     root           0 Jul 24 20:13 driver   
 -r--r--r--   1 root     root           0 Jul 24 20:13 drivers   
 dr-xr-xr-x   2 root     root           0 Jul 24 20:13 ldisc   
 -r--r--r--   1 root     root           0 Jul 24 20:13 ldiscs   
 

 
Essentially, Bash will continue executing commands with the OR operator, trying to find one that works, and when such a 
command is found, it doesn’ t execute any more commands until the next line. 

 
 
 
 In contrast, the AND operator will continue executing commands but will stop after one fails as in the following example:   
 
 $ ls -d /*  & &  ls -d /usr /*  & &  ls /usr /foo/*  & &  echo done   
 /bin    /etc     /initrd      /mnt   /tmp      /vmlinuz.old   
 /boot   /floppy  /lib         /proc  /usr   
 /cdrom  /ftp     /lost+found  /root  /var   
 /dev    /home    /mass1       /sbin  /vmlinuz   
 /usr/A3     /usr/games            /usr/local       /usr/share   
 /usr/X11R6  /usr/i486-linuxlibc1  /usr/lost+found  /usr/src   
 /usr/bin    /usr/include          /usr/man   
 /usr/dict   /usr/info             /usr/openwin   
 /usr/doc    /usr/lib              /usr/sbin   
 ls: /usr/foo/* : No such file or directory   
 

 
This time, the first two ls commands were a success. If you use the || operator, execution will stop after the first ls command 
returns a successful result. However, with the && operator, execution proceeds on to the third ls command. This one looks for a 
nonexistent file, and returns an error code. Because of that, the echo command is never executed. 

 

 
 

 
You might also consider combining the two operators. The rules for doing so can be a bit confusing at first, but a quick example 
shows the most popular usage for doing so: 
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 $ ls /proc/foo & &  echo I t Worked || echo Failure   
 ls: /proc/foo: No such file or directory   
 Failure   
 

 
In this example, you are executing a command (ls). If this command is successful, one action is taken; if it’s unsuccessful, another 
action is taken. 

 
 
 

 
To ensure that you get the expected results you should try using both operators with a valid ls command. In the following example, 
the ls is successful, so the first echo is executed; because it is successful, the second is skipped: 

 
 
 
 $ ls /proc & &  echo I t Worked || echo Failure   
 1    182  204  236  bus          kmsg        pci   
 103  185  205  237  cmdline      ksyms       scsi   
 105  192  206  238  cpuinfo      loadavg     self   
 113  195  207  239  devices      locks       slabinfo   
 118  196  208  240  dma          meminfo     stat   
 121  197  214  241  fb           misc        swaps   
 13   198  215  280  filesystems  modules     sys   
 144  199  216  281  fs           mounts      tty   
 149  2    217  3    ide          mtrr        uptime   
 162  200  218  4    interrupts   net         version   
 172  202  219  557  ioports      parport   
 176  203  226  apm  kcore        partitions   
 It Worked   
 
 Yes, the command did work as expected. However, you might note that the above command works exactly the same as:   
 
 $ if ls /proc; then echo I t Worked; else echo Failure; fi   
 1    182  204  236  bus          kmsg        pci   
 103  185  205  237  cmdline      ksyms       scsi   
 105  192  206  238  cpuinfo      loadavg     self   
 113  195  207  239  devices      locks       slabinfo   
 118  196  208  240  dma          meminfo     stat   
 121  197  214  241  fb           misc        swaps   
 13   198  215  280  filesystems  modules     sys   
 144  199  216  281  fs           mounts      tty   
 149  2    217  3    ide          mtrr        uptime   
 162  200  218  4    interrupts   net         version   
 172  202  219  563  ioports      parport   
 176  203  226  apm  kcore        partitions   
 It Worked   
 

 
Many programmers will readily identify this form as being more similar to other structured programming languages, and rightly 
so. Perl (and to a lesser extent, C) supports something resembling the syntax of the first form. 

 
 
 

  

Caution 

 

Although these two commands work the same in the preceding examples, they do not in some cases. In 
particular, if the first echo were replaced by a command that failed, both the echo and the final command would 
be executed. Therefore, in non-trivial situations, the if syntax is generally preferable because it avoids this 
problem. 

 

 
 

 
The following two commands are not identical. The first will proceed to announce failure; the second will remain quiet after 
displaying the output: 

 
 
 
 $ ls /proc & &  false || echo Failure   
 1    182  204  236  bus          kmsg        pci   
 103  185  205  237  cmdline      ksyms       scsi   
 105  192  206  238  cpuinfo      loadavg     self   
 113  195  207  239  devices      locks       slabinfo   
 118  196  208  240  dma          meminfo     stat   
 121  197  214  241  fb           misc        swaps   
 13   198  215  280  filesystems  modules     sys   
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 144  199  216  281  fs           mounts      tty   
 149  2    217  3    ide          mtrr        uptime   
 162  200  218  4    interrupts   net         version   
 172  202  219  564  ioports      parport   
 176  203  226  apm  kcore        partitions   
 Failure   
 $ if ls /proc; then false; else echo Failure; fi   
 1    182  204  236  bus          kmsg        pci   
 103  185  205  237  cmdline      ksyms       scsi   
 105  192  206  238  cpuinfo      loadavg     self   
 113  195  207  239  devices      locks       slabinfo   
 118  196  208  240  dma          meminfo     stat   
 121  197  214  241  fb           misc        swaps   
 13   198  215  280  filesystems  modules     sys   
 144  199  216  281  fs           mounts      tty   
 149  2    217  3    ide          mtrr        uptime   
 162  200  218  4    interrupts   net         version   
 172  202  219  565  ioports      parport   
 176  203  226  apm  kcore        partitions   
 

 

Both commands successfully executed ls. The first command then executed the false command, which is a simple program that 
always returns an unsuccessful return value. Instead of ending there, this command went on to display Failure even though the ls 
was a success. This behavior is probably a bug. The second command executed the same ls, and the same false command. 
However, it skips the echo if the ls is successful, regardless of the result of the false command. This is probably the desired 
behavior. 

 

 
 
 Wildcards   
 

 

Shell scripts frequently need to be capable of processing groups of files at once. Linux shells provide a capability of specifying 
multiple files at once by giving a particular pattern. These files that match the pattern are then specified as if they had been typed 
on the command line. Wildcards are the special characters used to form these patterns. The entire operation of specifying groups of 
files in this way is often referred to as globbing. 

 

 
 

 
Each wildcard has a special meaning; that is, it can represent certain characters. Table 2-2 lists the most common wildcards and 
explains their meaning and usage. 

 
 
 
 Table 2-2:  Common Wildcards   
 
     
 
 Character    

 
Meaning   

  
Example   

 

 
     
 
 *    

 
Matches zero or more characters.   

  
* .c matches the a.c, asdf. c, and even .c files.   

 

 
 ?   

 
Matches exactly one character.    

 
Letter9?.txt matches Letter90.txt, Letter95. txt, 
Letter9A.txt, and Letter9..txt, but not 
Letter95A.txt. 

 

 

 

 
 [...](character class)   

 
Matches exactly one character from the 
characters specified between the 
brackets. 

 

 

 

 
Letter9[A13].txt matches only Letter9A.txt, 
Letter91.txt, and Letter93.txt.  No other files 
match. 

 

 

 

 
 [...](character range)   

 
Matches exactly one character from the 
range(or ranges) of characters specified 
between the brackets. 

 

 

 

 
Letter9[a-c1-3].txt matches Letter9a.txt, 
Letter9b.txt, Letter9c.txt, Letter91.txt, 
Letter92.txt, and Letter93. txt.  No other files 
match. 

 

 

 

 

 
[^...](Negated character class 
or range) 

 
 

 
Matches exactly one character that does 
not occur in the specified ranges or 
characters listed. 

 

 

 

 
Letter9[^9a-c1-2].txt matches any files that 
would normally match the Letter9?. txt pattern 
except for the files Letter99.txt, Letter9a. txt, 
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Letter9b.txt, Letter9c. txt, Letter91.txt, and 
Letter92.txt.  

 
 { ..., ...}    

 
Alternation; matches exactly one of the 
given substrings. 

 
 

 
 
Letter{ 90,92,ABC} .txt matches only the files 
Letter90. txt, Letter92.txt, and LetterABC.txt. 

 
 

 

 
     
 
 Quoting and escaping   
 

 
In some situations, you may prefer to avoid having the shell interpret the wildcards, variables, or other special characters that may 
occur on your command lines. Bash provides you with ways to indicate that these items should not be treated as normal characters, 
without special meaning. 

 

 
 

 
There are two methods for doing this. The first method, quoting, enables you to enclose whatever items you want to be taken 
literally inside either single or double quotes. The second method, escaping, enables you to place a backslash immediately before 
the character that you wish to be taken literally. 

 

 
 

 

You use two characters for quoting: “  and ‘ . The double-quote character is a bit weaker than the single-quote character; the double-
quote permits some special characters to function as they normally do. The single quote is stronger and prevents nearly everything 
from functioning. Let’s examine a situation in which the single quote is more useful than the double quote, which is shown in the 
following example: 

 

 
 
 $ echo hi > “ Test File”    
 $ ls -l Test File   
 ls: Test: No such file or directory   
 ls: File: No such file or directory   
 $ ls -l “ Test File”    
 -rw-rw-r--   1 username username    3 Jul 23 09:08 Test File   
 $ rm “ Test File”    
 

 

The first line generates a file named Test File (note the space) and places the word “hi”  into it. The second line is an attempt to 
display information about the file. However, it doesn’ t work. In this situation, the space character is special! It acts as a separator 
between files, so Bash tells ls that it should act upon two separate files: Test and File. Obviously, this isn’ t quite going to work 
right. 

 

 
 

 
Next, the third command places the filename inside double quotes. This time, Bash does not split the name into two files, so ls 
looks for information on only one file. Similarly, with the rm command, the file must be placed in quotes in order for it to function 
properly. 

 

 
 

 
A key difference between “  and ‘  lies with variable interpolation, which will be discussed in the Variables section later in this 
chapter. The ‘  character prohibits variable interpolation, while the “  character does not. This means that the dollar sign is not safe 
inside strings quoted with the double quote. Here’s an example of that behavior: 

 

 
 
 $ echo “ Path: $PATH”    
 Path: /usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/games   
 $ echo ‘Path: $PATH’    
 Path: $PATH   
 

 
Because of this, many Bash programmers prefer to use single quotes for safety unless they have a specific reason to use double 
quotes. 

 
 
 

 
An alternative to quoting is escaping. Escaping can provide some benefits; when you use escaping for a particular character, you 
always know that it is effective. A problem occurs when a string being quoted must contain the quote character itself; in such a 
situation, escaping must be used. 

 

 
 

 
Escaping is done in Bash by inserting a backslash before the special character. You don’ t need to enclose the entire string in 
quotes. However, every special character must be escaped. Here is an example: 

 
 
 
 $ echo hello > “ Another  Test File”    
 $ ls -l Another  Test\ File   
 ls: Another: No such file or directory   
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 ls: Test File: No such file or directory   
 $ ls -l Another \ Test\ File   
 -rw-rw-r--   1 user user 6 Jul 23 09:25 Another Test File   
 $ rm Another \ Test\ File   
 

 
The first line uses quoting as before. In the second line, one of the space characters is escaped. Because of this, ls looks for two 
instead of three files; however, this is still not the desired behavior. When both spaces are escaped, the entire name is passed to ls 
intact just as with the quotes. Similarly, the filename is passed intact with rm. 

 

 
 

 
Unlike quotes, you should not escape things that are not special characters. Some sequences, such as \n, have special meanings and 
generate other characters in some situations. 

 
 
 

 
Sometimes you may need to combine escapes with quotes. A typical example occurs when the string that is quoted contains an 
example of the quote character itself. This situation can be extremely confusing at a shell prompt, so create the following script 
and name it quotetest.sh: 

 

 
 
 #!/bin/bash   
    
 echo ‘Mary said, “ I don’ t use DOS.” ’    
 
 After you have saved the file, you need to mark it executable, and then run it:   
 
 $ chmod a+x quotetest.sh   
 $ ./quotetest.sh   
 ./quotetest.sh: line 3: unexpected EOF while looking for matching `” ’    
 ./quotetest.sh: line 4: syntax error: unexpected end of file   
 

 
Bash obviously had some terrible trouble trying to deal with that statement. What happened is that the apostrophe in “don’ t”  was 
treated as the end of the quoted string. When Bash encountered the quote after the word DOS, it considered it to be the start of a 
new quoted string. However, this new string was never terminated. 

 

 
 

 

The solution to this mess is to use escaping. Should you stay with single quotes and escape the apostrophe, or should you use 
double quotes and escape them inside the string as necessary? Well, recall earlier that the single quotes are stronger than the 
double quotes. One of the things that this applies to is escaping; escaping the apostrophe isn’ t going to help. You can try this at the 
prompt: 

 

 
 
 $ echo ‘Test \’  Test2   
 Test \ Test2   
 

 
The backslash was taken literally, and did not cause Bash to actually print the embedded quote. The solution is to use double-quote 
characters. Modify the script so it looks like this: 

 
 
 
 #!/bin/bash   
    
 echo “Mary said, \” I don’ t use DOS.\” ”    
 
 This time, the string is set off by double quotes. When you try running that script, you finally get the desired result:   
 
 $ ./quotetest.sh   
 Mary said, “ I don’ t use DOS.”    
 

 

The script looks a bit complicated, but really it’ s not tricky once you understand what’s going on. Everything is as we’ve seen 
before, prior to the first backslash. The \”  sequence tells Bash to print a quote character rather than use that character to indicate 
the end of the string. Because the string is delimited by double quotes in this situation, the embedded apostrophe doesn’ t pose any 
challenge. Towards the end of the string, there is another \”  sequence. Once again, this informs Bash to print the character instead 
of interpreting it as the end of the string. Finally, the last character on the line is the character that closes the string. 

 

 
 
 Another option for all of this is to use escaping. You could use it like this:   
 
 $ echo Mary\ said,\ \” I\ don\’ t\ use\ DOS.\”    
 Mary said, “ I don’ t use DOS.”    
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This option is somewhat less intuitive; you must escape every space and quote character. However, the effect is the same as with 
the double quotes used above. 

 
 
 

 
You should be familiar with two more special cases. First, if you want to send a backslash itself to a program, you need to escape 
it. This is done as follows: 

 
 
 
 $ echo Good \\ Morning   
 Good \ Morning   
 $ echo Good \ Morning   
 Good  Morning   
 

 
Notice that the backslash didn’ t appear in the output from the second command. The reason is that Bash interpreted it as escaping 
the following space. In the first command, however, it did appear. 

 
 
 

 
One other reason you might want to use the backslash is to enable you to split long lines into pieces. If you choose to do that, the 
backslash must be the very last character on the line preceding the one with which it should be combined. Here’s an example 
script. 

 

 
 
 #!/bin/bash   
    
 ls -l /dev/hda1 /dev/hda2 /dev/hda3 \   
 /dev/hda4 /dev/hda5 /dev/hda6 \   
 /dev/hda7   
 

 
In this script, the long ls command line was split into three parts to make editing and manipulation easier. When the script is run, 
Bash will combine the three parts back into a single line before executing the command. 

 
 
 
 Comments   
 

 
You can insert comments into your Bash script. Like Perl, comments begin with a # symbol. Any text from that symbol until the 
end of the line is ignored by Bash. Here are some examples of using comments in a script. 

 
 
 
 #!/bin/bash   
 # This is a Bash script.   
    
 ls /proc             # Display a list of files in /proc   
 cat /proc/devices    # Display the devices on the system   
 cat /proc/interrupts # Display a list of IRQs   
 

 
Commenting is a very important part of writing programs. As you move into writing larger and larger ones, comments will play an 
increasingly important role in maintainability and documentation. This idea applies to shell scripts as well. 

 
 
 

  
Note 

 
The line beginning with #! at the start of each shell script has special meaning for the operating system. It indicates the 
name of the interpreter used to execute the script. However, because # is the Bash comment character, Bash ignores the 
line when the file is processed as a script. Therefore, it does not bother Bash when your script is executed.  

 
 
Redirection and Piping   
 

 
One of the most powerful features of the Linux shell is being able to combine programs in unique, arbitrary ways to form solutions 
to new problems. The primary ways of doing this are with redirection and piping. 

 
 
 

 
Redirection enables you to take that which would normally be displayed on the terminal and save it into a file. Also, input 
redirection enables you to substitute the contents of a file for what would normally be typed on the keyboard. 

 
 
 

 
Piping enables you to chain commands together, sending the output from one command into the input of the next. All the 
commands run simultaneously, processing the data at once, as parts of a pipe. 

 
 
 

 

These different capabilities are made possible by the Linux notion of the standard input and output for programs. By default, each 
program has three standard file handles: standard input, standard output, and standard error. Standard input is used for reading 
data, and reads data from the terminal’s keyboard by default. Standard output is used for displaying normal data, and is connected 
to the terminal’s screen by default. Standard error is used for displaying error messages, and is also connected to the terminal’s 

 



 20 

screen by default.  
 
 Table 2-3 contains a summary of these three Input/Output (I/O) channels.   
 
 Table 2-3:  Standard Input/Output Channels   
 
     
 
 Name   

 
Shor thand   

  
Number    

  
Purpose   

  
Default Connection   

 

 
     
 
 Standard Input   

 
Stdin   

  
0   

  
Reading input for a program   

  
The terminal’s keyboard   

 

 
 Standard Output   

 
stdout    

 
1    

 
Displaying normal output 
from a program 

 
 

 
 
The terminal’s display    

 
 Standard Error   

 
stderr    

 
2    

 
Displaying error messages 
or warnings of unusual 
situations 

 

 

 

 
The terminal’s display    

 
     
 
 Output redirection   
 

 
The most straightforward way to use redirection is to use output redirection. In its simplest form, the messages that normally go to 
the screen instead are placed into a file. 

 
 
 
 $ ls -l /dev/hda*    
 brw-rw----   1 root     disk       3,   0 Feb 22 21:41 /dev/hda   
 brw-rw----   1 root     disk       3,   1 Feb 22 21:41 /dev/hda1   
 brw-rw----   1 root     disk       3,  10 Feb 22 21:41 /dev/hda10   
 brw-rw----   1 root     disk       3,  11 Feb 22 21:41 /dev/hda11   
 brw-rw----   1 root     disk       3,  12 Feb 22 21:41 /dev/hda12   
 brw-rw----   1 root     disk       3,  13 Feb 22 21:41 /dev/hda13   
 brw-rw----   1 root     disk       3,  14 Feb 22 21:41 /dev/hda14   
 brw-rw----   1 root     disk       3,  15 Feb 22 21:41 /dev/hda15   
 brw-rw----   1 root     disk       3,  16 Feb 22 21:41 /dev/hda16   
 brw-rw----   1 root     disk       3,  17 Feb 22 21:41 /dev/hda17   
 brw-rw----   1 root     disk       3,  18 Feb 22 21:41 /dev/hda18   
 brw-rw----   1 root     disk       3,  19 Feb 22 21:41 /dev/hda19   
 brw-rw----   1 root     disk       3,   2 Feb 22 21:41 /dev/hda2   
 brw-rw----   1 root     disk       3,  20 Feb 22 21:41 /dev/hda20   
 brw-rw----   1 root     disk       3,   3 Feb 22 21:41 /dev/hda3   
 brw-rw----   1 root     disk       3,   4 Feb 22 21:41 /dev/hda4   
 brw-rw----   1 root     disk       3,   5 Feb 22 21:41 /dev/hda5   
 brw-rw----   1 root     disk       3,   6 Feb 22 21:41 /dev/hda6   
 brw-rw----   1 root     disk       3,   7 Feb 22 21:41 /dev/hda7   
 brw-rw----   1 root     disk       3,   8 Feb 22 21:41 /dev/hda8   
 brw-rw----   1 root     disk       3,   9 Feb 22 21:41 /dev/hda9   
 $ ls -l /dev/hda*  > listing   
 

 

The first ls command displays a long listing of the files in /dev beginning with hda. As is customary, this listing is displayed on the 
screen. The second command requests the same listing, this time redirecting the output into the file named listing. The greater-than 
symbol ( >) is the output redirection operator; it requests that the items that would normally go to standard output be sent to the 
specified file. To be specific, it is changing what standard output is connected to; normally, it’s connected to the terminal’s 
display. Here, standard output is connected to the file named listing. You can verify that this file actually contains the data that 
normally would have been sent to the screen by using the cat command: 

 

 
 
 $ cat listing   
 brw-rw----   1 root     disk       3,   0 Feb 22 21:41 /dev/hda   
 brw-rw----   1 root     disk       3,   1 Feb 22 21:41 /dev/hda1   
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 brw-rw----   1 root     disk       3,  10 Feb 22 21:41 /dev/hda10   
 brw-rw----   1 root     disk       3,  11 Feb 22 21:41 /dev/hda11   
 brw-rw----   1 root     disk       3,  12 Feb 22 21:41 /dev/hda12   
 brw-rw----   1 root     disk       3,  13 Feb 22 21:41 /dev/hda13   
 brw-rw----   1 root     disk       3,  14 Feb 22 21:41 /dev/hda14   
 brw-rw----   1 root     disk       3,  15 Feb 22 21:41 /dev/hda15   
 brw-rw----   1 root     disk       3,  16 Feb 22 21:41 /dev/hda16   
 brw-rw----   1 root     disk       3,  17 Feb 22 21:41 /dev/hda17   
 brw-rw----   1 root     disk       3,  18 Feb 22 21:41 /dev/hda18   
 brw-rw----   1 root     disk       3,  19 Feb 22 21:41 /dev/hda19   
 brw-rw----   1 root     disk       3,   2 Feb 22 21:41 /dev/hda2   
 brw-rw----   1 root     disk       3,  20 Feb 22 21:41 /dev/hda20   
 brw-rw----   1 root     disk       3,   3 Feb 22 21:41 /dev/hda3   
 brw-rw----   1 root     disk       3,   4 Feb 22 21:41 /dev/hda4   
 brw-rw----   1 root     disk       3,   5 Feb 22 21:41 /dev/hda5   
 brw-rw----   1 root     disk       3,   6 Feb 22 21:41 /dev/hda6   
 brw-rw----   1 root     disk       3,   7 Feb 22 21:41 /dev/hda7   
 brw-rw----   1 root     disk       3,   8 Feb 22 21:41 /dev/hda8   
 brw-rw----   1 root     disk       3,   9 Feb 22 21:41 /dev/hda9   
 

 
And, indeed, the contents is as expected. Now, let’s move on to something a bit stranger—standard error redirection. Notice that, 
in the preceding table, standard output and standard error are sent to your screen by default. However, when dealing with 
redirection, they are not treated the same: 

 

 
 
 $ ls -l /dev/hda*  /dev/nonexistant   
 ls: /dev/nonexistant: No such file or directory   
 brw-rw----   1 root     disk       3,   0 Feb 22 21:41 /dev/hda   
 brw-rw----   1 root     disk       3,   1 Feb 22 21:41 /dev/hda1   
 brw-rw----   1 root     disk       3,  10 Feb 22 21:41 /dev/hda10   
 brw-rw----   1 root     disk       3,  11 Feb 22 21:41 /dev/hda11   
 brw-rw----   1 root     disk       3,  12 Feb 22 21:41 /dev/hda12   
 brw-rw----   1 root     disk       3,  13 Feb 22 21:41 /dev/hda13   
 brw-rw----   1 root     disk       3,  14 Feb 22 21:41 /dev/hda14   
 brw-rw----   1 root     disk       3,  15 Feb 22 21:41 /dev/hda15   
 brw-rw----   1 root     disk       3,  16 Feb 22 21:41 /dev/hda16   
 brw-rw----   1 root     disk       3,  17 Feb 22 21:41 /dev/hda17   
 brw-rw----   1 root     disk       3,  18 Feb 22 21:41 /dev/hda18   
 brw-rw----   1 root     disk       3,  19 Feb 22 21:41 /dev/hda19   
 brw-rw----   1 root     disk       3,   2 Feb 22 21:41 /dev/hda2   
 brw-rw----   1 root     disk       3,  20 Feb 22 21:41 /dev/hda20   
 brw-rw----   1 root     disk       3,   3 Feb 22 21:41 /dev/hda3   
 brw-rw----   1 root     disk       3,   4 Feb 22 21:41 /dev/hda4   
 brw-rw----   1 root     disk       3,   5 Feb 22 21:41 /dev/hda5   
 brw-rw----   1 root     disk       3,   6 Feb 22 21:41 /dev/hda6   
 brw-rw----   1 root     disk       3,   7 Feb 22 21:41 /dev/hda7   
 brw-rw----   1 root     disk       3,   8 Feb 22 21:41 /dev/hda8   
 brw-rw----   1 root     disk       3,   9 Feb 22 21:41 /dev/hda9   
 $ ls -l /dev/hda*  /dev/nonexistant > listing   
 ls: /dev/nonexistant: No such file or directory   
 

 
Notice how everything except the error message was redirected this time. This is because ls sent the error message to standard 
error instead of standard output. The message is still displayed on the screen because you did not redirect standard error. 

 
 
 

 
Recall from Table 2-3 that standard output is file descriptor number 1 and standard error is number 2. With this knowledge, you 
can tell Bash what to do with each specific file descriptor. 

 
 
 
 $ ls -l /dev/hda*  /dev/foo > listing 2> listing.er r    
 $ cat listing.er r    
 ls: /dev/foo: No such file or directory   
 

 
In this example, the standard output is sent to the file listing. If you don’ t specify a particular file descriptor with the > operator, 
file descriptor 1 (standard output) is assumed. However, you also sent standard error (file descriptor 2) to the file listing.err. Now, 
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displaying listing.err shows the message that before managed to escape to the screen. If you were to run cat listing, you would see 
the same file listing as you have seen before.  

 

 
In this particular case, you ended up with separate files for standard output and standard error. Sometimes it’ s preferable to have 
both standard output and standard error sent to a single file. You can do this by redirecting standard output, and then telling Bash 
to send standard error to standard output. 

 

 
 
 $ ls -l /dev/hda*  /dev/foo > listing 2>& 1   
 $ cat listing   
 ls: /dev/foo: No such file or directory   
 brw-rw----   1 root     disk       3,   0 Feb 22 21:41 /dev/hda   
 brw-rw----   1 root     disk       3,   1 Feb 22 21:41 /dev/hda1   
 brw-rw----   1 root     disk       3,  10 Feb 22 21:41 /dev/hda10   
 brw-rw----   1 root     disk       3,  11 Feb 22 21:41 /dev/hda11   
 brw-rw----   1 root     disk       3,  12 Feb 22 21:41 /dev/hda12   
 brw-rw----   1 root     disk       3,  13 Feb 22 21:41 /dev/hda13   
 brw-rw----   1 root     disk       3,  14 Feb 22 21:41 /dev/hda14   
 brw-rw----   1 root     disk       3,  15 Feb 22 21:41 /dev/hda15   
 brw-rw----   1 root     disk       3,  16 Feb 22 21:41 /dev/hda16   
 brw-rw----   1 root     disk       3,  17 Feb 22 21:41 /dev/hda17   
 brw-rw----   1 root     disk       3,  18 Feb 22 21:41 /dev/hda18   
 brw-rw----   1 root     disk       3,  19 Feb 22 21:41 /dev/hda19   
 brw-rw----   1 root     disk       3,   2 Feb 22 21:41 /dev/hda2   
 brw-rw----   1 root     disk       3,  20 Feb 22 21:41 /dev/hda20   
 brw-rw----   1 root     disk       3,   3 Feb 22 21:41 /dev/hda3   
 brw-rw----   1 root     disk       3,   4 Feb 22 21:41 /dev/hda4   
 brw-rw----   1 root     disk       3,   5 Feb 22 21:41 /dev/hda5   
 brw-rw----   1 root     disk       3,   6 Feb 22 21:41 /dev/hda6   
 brw-rw----   1 root     disk       3,   7 Feb 22 21:41 /dev/hda7   
 brw-rw----   1 root     disk       3,   8 Feb 22 21:41 /dev/hda8   
 brw-rw----   1 root     disk       3,   9 Feb 22 21:41 /dev/hda9   
 

 
In this case, you capture the output from ls exactly as it appeared on the screen previously. The 2>&1 syntax tells Bash to send that 
which would normally go to file descriptor 2 (standard error) to file descriptor 1 (standard output). Because file descriptor 1 
already was redirected to a file, standard error will be sent to that file as well. 

 

 
 
 This operation is so common that Bash has a special shortcut for it. This command is the same as the one you just ran:   
 
 $ ls -l /dev/hda*  /dev/foo & > listing   
 
 That is, &> filename is equivalent to > filename 2>&1.   
 

 

All of the commands you have been dealing with are destructive to the output file. That is, if the output file (listing or listing.err in 
these examples) already exists, the existing contents will be erased and replaced by the new contents. That is the desired behavior 
but sometimes it is preferable to leave the existing contents intact and simply append data to the end of a file. Bash provides a 
special redirection operator that opens the files in append mode. That is, if there is data in the file, the new data that is entered will 
be added to the end of the file, after any data already there. 

 

 
 

 
The basic operator for an append is >. In many situations, you will find that shell scripts start with the > operator to ensure that any 
existing data in a file is cleared. Then, the > operator is used to add data after that. Of course, if your script is writing to a file that 
already exists and you want to preserve that data, you should not use the > operator: 

 

 
 
 $ ls -l /dev/hda1 > listing   
 $ ls -l /dev/hda[2-9] > listing   
 $ cat listing   
 brw-rw----   1 root     disk       3,   1 Jul  4  1998 /dev/hda1   
 brw-rw----   1 root     disk       3,   2 Jul  4  1998 /dev/hda2   
 brw-rw----   1 root     disk       3,   3 Jul  4  1998 /dev/hda3   
 brw-rw----   1 root     disk       3,   4 Jul  4  1998 /dev/hda4   
 brw-rw----   1 root     disk       3,   5 Jul  4  1998 /dev/hda5   
 brw-rw----   1 root     disk       3,   6 Jul  4  1998 /dev/hda6   
 brw-rw----   1 root     disk       3,   7 Jul  4  1998 /dev/hda7   
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 brw-rw----   1 root     disk       3,   8 Jul  4  1998 /dev/hda8   
 brw-rw----   1 root     disk       3,   9 Jul  4  1998 /dev/hda9   
 

 
In this example, you can tell what is going on. The first ls command wrote its one line of output to the file. Then, the second 
command wrote its eight lines of output to the same file, appending them after the first. Thus, the data from the second command 
is appended to the file that already existed. 

 

 
 

 
You can also use appending with redirection. For example, you can use 2>filename to send standard error to a file. You may also 
use a command such as this: 

 
 
 
 $ ls -l /dev/hda10 /dev/foo > listing 2>& 1   
 $ cat listing   
 brw-rw----   1 root     disk       3,   1 Jul  4  1998 /dev/hda1   
 brw-rw----   1 root     disk       3,   2 Jul  4  1998 /dev/hda2   
 brw-rw----   1 root     disk       3,   3 Jul  4  1998 /dev/hda3   
 brw-rw----   1 root     disk       3,   4 Jul  4  1998 /dev/hda4   
 brw-rw----   1 root     disk       3,   5 Jul  4  1998 /dev/hda5   
 brw-rw----   1 root     disk       3,   6 Jul  4  1998 /dev/hda6   
 brw-rw----   1 root     disk       3,   7 Jul  4  1998 /dev/hda7   
 brw-rw----   1 root     disk       3,   8 Jul  4  1998 /dev/hda8   
 brw-rw----   1 root     disk       3,   9 Jul  4  1998 /dev/hda9   
 ls: /dev/foo: No such file or directory   
 brw-rw----   1 root     disk       3,  10 Jul  4  1998 /dev/hda10   
 
 Thus, you may redirect both standard output and standard error to be appended to a file.   
 
 Input redirection   
 

 
So far, we have been dealing with the data that programs generate. You can also control the data that is fed into programs with 
Bash. Consider the simple program called rev. The task of rev is to take whatever you type at the keyboard, reverse it, and then 
display it on-screen. When you are done with rev, press Ctrl+D to exit. A sample session with rev might go like this: 

 

 
 
 $ rev   
 Hello.   
 .olleH   
 Linux is great!   
 !taerg si xuniL   
 1234 one two three four    
 ruof eerht owt eno 4321   
 Ctrl+D   
 

 
So, rev looks like a somewhat boring little program. After all, if you can type something forwards, you can probably type it 
backwards. 

 
 
 

 
But imagine that you have three megabytes of text that you need to reverse for some odd reason. Perhaps it would be easier to 
redirect the input for rev than to type it in. As an example, we’ ll look at the /proc/devices file. This file may be quite different on 
your system but should have essentially the same form. 

 

 
 
 $ cat /proc/devices   
 Character devices:   
   1 mem   
   2 pty   
   3 ttyp   
   4 ttyS   
   5 cua   
   6 lp   
   7 vcs   
 10 misc   
 14 sound   
 128 ptm   
 136 pts   
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 Block devices:   
   1 ramdisk   
   2 fd   
   3 ide0   
   8 sd   
 22 ide1   
 $ rev < /proc/devices   
 :secived retcarahC   
 mem 1     
 ytp 2     
 pytt 3     
 Sytt 4     
 auc 5     
 pl 6   
 scv 7     
 csim 01    
 dnuos 41   
    
 mtp 821stp 631   
    
 :secived kcolB   
 ksidmar 1     
 df 2     
 0edi 3     
 ds 8     
 1edi 22    
 

 
You may also note at this point that instead of running cat /proc/devices, you can use cat < /proc/devices. The cat program happens 
to accept filenames on its command line; not all do. 

 
 
 
 It is also possible to redirect the input and output from a program at the same time as in following example:   
 
 $ grep -v devices: < /proc/devices > file1   
 $ rev < file1 > file2   
 $ cat file2   
 mem 1     
 ytp 2     
 pytt 3     
 Sytt 4     
 auc 5     
 pl 6   
 scv 7     
 csim 01 dnuos 41   
       
 mtp 821stp 631   
       
 ksidmar 1     
 df 2     
 0edi 3     
 ds 8     
 1edi 22    
 

 

In this example, the grep -v statement removes two lines: those containing the word “devices:” . The result is then saved into a file. 
This file is sent through rev and saved in another file, which is finally displayed by cat. When you send data from one program to 
another like this, pipes are generally a better solution than redirection; they completely avoid the need to have temporary files to 
hold the output of one program before sending it to the input of the next. 

 

 
 
 Pipes   
 

 
Pipes enable you to take the output from one program and send it directly to the input of another. No temporary files are created 
with pipes. Rather, both programs are invoked and run at the same time. When the first generates some output, it is fed directly 
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into the second as input. No files are created by the process because the data is sent directly from one process to the next.  
 

 
Pipes are used with the vertical bar character (which may appear as either a broken or solid vertical bar on your keyboard). To redo 
the previous example with pipes, it would look like this: 

 
 
 
 $ grep -v devices: < /proc/devices | rev | cat   
 mem 1     
 ytp 2     
 pytt 3     
 Sytt 4     
 auc 5     
 pl 6   
 scv 7     
 csim 01    
 dnuos 41   
       
 mtp 821stp 631   
       
 ksidmar 1     
 df 2     
 0edi 3     
 ds 8     
 1edi 22    
 

 
Note that the call to cat is actually unnecessary; unless you redirect or pipe it away, the output from rev will go to standard output. 
Here are some more practical uses of piping: 

 
 
 
 $ ls /dev/hd*  | wc -l   
     168   
 

 
This command counts the number of files in /dev that begin with the letters hd. When ls is run in this fashion, it generates a list of 
the matching files, one per line. This is then fed to wc -l, which displays a count of the lines of output—168 in this case. Therefore, 
168 files match /dev/hd*. 

 

 
 
 You can also use this to replace text. In the following example, the device filename is capitalized:   
 
 $ ls -l /dev/hda*  | sed s/hda/HDA/   
 brwxrwx--x   1 root     disk       3,   0 Jul  4  1998 /dev/HDA   
 brw-rw----   1 root     disk       3,   1 Jul  4  1998 /dev/HDA1   
 brw-rw----   1 root     disk       3,  10 Jul  4  1998 /dev/HDA10   
 brw-rw----   1 root     disk       3,  11 Jul  4  1998 /dev/HDA11   
 brw-rw----   1 root     disk       3,  12 Jul  4  1998 /dev/HDA12   
 brw-rw----   1 root     disk       3,  13 Jul  4  1998 /dev/HDA13   
 brw-rw----   1 root     disk       3,  14 Jul  4  1998 /dev/HDA14   
 brw-rw----   1 root     disk       3,  15 Jul  4  1998 /dev/HDA15   
 brw-rw----   1 root     disk       3,  16 Jul  4  1998 /dev/HDA16   
 brw-rw----   1 root     disk       3,  17 Jul  4  1998 /dev/HDA17   
 brw-rw----   1 root     disk       3,  18 Jul  4  1998 /dev/HDA18   
 brw-rw----   1 root     disk       3,  19 Jul  4  1998 /dev/HDA19   
 brw-rw----   1 root     disk       3,   2 Jul  4  1998 /dev/HDA2   
 brw-rw----   1 root     disk       3,  20 Jul  4  1998 /dev/HDA20   
 brw-rw----   1 root     disk       3,   3 Jul  4  1998 /dev/HDA3   
 brw-rw----   1 root     disk       3,   4 Jul  4  1998 /dev/HDA4   
 brw-rw----   1 root     disk       3,   5 Jul  4  1998 /dev/HDA5   
 brw-rw----   1 root     disk       3,   6 Jul  4  1998 /dev/HDA6   
 brw-rw----   1 root     disk       3,   7 Jul  4  1998 /dev/HDA7   
 brw-rw----   1 root     disk       3,   8 Jul  4  1998 /dev/HDA8   
 brw-rw----   1 root     disk       3,   9 Jul  4  1998 /dev/HDA9   
 

 
The sed command here is used to match a particular pattern in text, and replace it with something else. In this case, hda is replaced 
with HDA. Much more powerful patterns are also possible with grep and sed by using regular expressions, which are discussed in 
detail in Chapter 3, “Working with Regular Expressions.”  As a quick introduction, the following command removes much of the 
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display:  
 
 $ ls -l /dev/hda*  | sed ‘s/^ .* ,[^A-Z]* //’    
 Jul  4  1998 /dev/hda   
 Jul  4  1998 /dev/hda1   
 Jul  4  1998 /dev/hda10   
 Jul  4  1998 /dev/hda11   
 Jul  4  1998 /dev/hda12   
 Jul  4  1998 /dev/hda13   
 Jul  4  1998 /dev/hda14   
 Jul  4  1998 /dev/hda15   
 Jul  4  1998 /dev/hda16   
 Jul  4  1998 /dev/hda17   
 Jul  4  1998 /dev/hda18   
 Jul  4  1998 /dev/hda19   
 Jul  4  1998 /dev/hda2   
 Jul  4  1998 /dev/hda20   
 Jul  4  1998 /dev/hda3   
 Jul  4  1998 /dev/hda4   
 Jul  4  1998 /dev/hda5   
 Jul  4  1998 /dev/hda6   
 Jul  4  1998 /dev/hda7   
 Jul  4  1998 /dev/hda8   
 Jul  4  1998 /dev/hda9   
 

 
In this particular case, sed was used to trim much of the output of ls -l, leaving only the date. Don’ t worry about the particular sed 
command for now; you’ ll understand how to use regular expressions when you read Chapter 3. 

 
 
 
 Here’s one more example of piping before moving on. This example takes four commands in a pipeline:   
 
 $ ls /dev/hda[1-9] | sed s./dev/.. | tac | rev   
 9adh   
 8adh   
 7adh   
 6adh   
 5adh   
 4adh   
 3adh   
 2adh   
 1adh   
 

 
Examining this command, first you see an ls command that displays the first nine hda files. Next, the leading /dev/ from each 
filename is stripped off by the sed command. Then, the lines (not their contents) are reversed by tac; that is, instead of going from 
1 to 9, the order of the lines now goes from 9 to 1. Finally, the rev command reverses the contents of each line. 

 

 
 
 Command substitution   
 

 
Another powerful feature of Bash is its capability of transforming the output from commands into arguments for others. One usage 
of this is to operate on a selected set of files. Consider this example: 

 
 
 
 $ less `grep -l L inux * .txt`   
 

 

The text between the backticks is treated as a command to execute. In this case, grep -l is used to display a list of all .txt files 
containing the word Linux. Because it occurs inside the backticks, each name is then converted to be an argument to less, which is 
used to display the files. You might prefer to use cat instead of less to generate a display of the contents of all the matching files 
combined. 

 

 
 

 
In Bash, you can also use a $(command) syntax to take the place of the `command` syntax. This method enables nesting; that is, 
you can use command substitution inside another command substitution. For instance, it might be used like this: 

 
 
 
 $ cat $(grep -l L inux $(find . -name “ * .txt” ))   
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In this case, the find program is used to find all of the .sh files in or beneath the current directory. Then, grep searches through 
them and generates a list as before, and finally, the content in all the files are displayed. 

 
 
 
 You’ ll learn more uses for loops when they are introduced later in this chapter, but for now, here’s an example:    
 
 for FILE in *.txt; do mv $FILE `echo $FILE | sed ‘s/txt$/html/’ `; done   
 
 In this case, for any files with an extension of .txt, this extension is changed to .html.  
Var iables   
 

 
Now that you have learned many of the basic elements of the Bash syntax, it’s time to move on to data storage. Of course, data can 
often be stored in files. However, this is inconvenient. Like any programming language you’ ll find on Linux, variables are 
necessary in order to accomplish more complex tasks. 

 

 
 
 Assigning values to a variable is quite simple. The following example stores the word listing in the variable FILENAME.   
 
 $ FILENAME=listing   
 

 
By convention, all caps are used for variable names, but this is not a requirement that is imposed on you by Bash. To access the 
contents of a variable, you simply add a dollar sign to the front of it. You can then use this virtually anywhere—on command lines, 
in strings, and even in the middle of some filenames. 

 

 
 
 $ FILENAME=listing   
 $ echo $FILENAME   
 listing   
 $ DEVICEDIR=/dev   
 $ ls $DEVICEDIR/hda*  > $FILENAME   
 $ cat $FILENAME   
 /dev/hda   
 /dev/hda1   
 /dev/hda10   
 /dev/hda11   
 /dev/hda12   
 /dev/hda13   
 /dev/hda14   
 /dev/hda15   
 /dev/hda16   
 /dev/hda17   
 /dev/hda18   
 /dev/hda19   
 /dev/hda2   
 /dev/hda20   
 /dev/hda3   
 /dev/hda4   
 /dev/hda5   
 /dev/hda6   
 /dev/hda7   
 /dev/hda8   
 /dev/hda9   
 $ rm $FILENAME   
 

 
In this example, the value listing is assigned to the variable FILENAME. Then, DEVICEDIR is set to hold the value /dev. Now, 
there is a command that says this: 

 
 
 
 ls $DEVICEDIR/hda* > $FILENAME   
 

 
When Bash encounters this line, it first replaces $DEVICEDIR with /dev and $FILENAME with listing. The command is then 
executed as is customary. 

 
 
 

 
If you ever wish to remove a variable, you can use the unset command. This command will delete the variable and the memory 
holding its contents. 
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 $ MYVAR=myvalue   
 $ echo $MYVAR   
 myvalue   
 $ unset MYVAR   
 $ echo $MYVAR   
 

 
Another interesting effect of variables is delayed expansion of wildcards. Consider the following example, which illustrates this 
behavior. 

 
 
 
 $ MYVAR=/dev/hda*    
 $ echo “ $MYVAR”    
 /dev/hda*   
 $ echo $MYVAR   

 
/dev/hda /dev/hda1 /dev/hda10 /dev/hda11 /dev/hda12 /dev/hda13 /dev/hda14 /dev/hda15 /dev/hda16 /dev/hda17 /dev/hda18 
/dev/hda19 /dev/hda2 /dev/hda20 /dev/hda3 /dev/hda4 /dev/hda5 /dev/hda6 /dev/hda7 /dev/hda8 /dev/hda9 

 
 
 

 

When you use a variable inside double quotes, as is done with the first echo command in this example, the variable is inserted 
verbatim; its contents are not examined further by the shell. However, when it is used outside of the quotes, the shell is free to 
examine its contents. In this case, the shell expands the wildcard to a file list. If you prefer to store the names in the variable right 
from the start, you can use command substitution to your advantage. For example: 

 

 
 
 $ MYVAR=`echo /dev/hda*`   
 $ echo “ $MYVAR”    

 

/dev/hda /dev/hda1 /dev/hda10 /dev/hda11 /dev/hda12 /dev/hda13 
/dev/hda14 /dev/hda15 /dev/hda16 /dev/hda17 /dev/hda18  
/dev/hda19 /dev/hda2 /dev/hda20 /dev/hda3 /dev/hda4 /dev/hda5  
/dev/hda6 /dev/hda7 /dev/hda8 /dev/hda9 

 

 
 $ echo $MYVAR   

 

/dev/hda /dev/hda1 /dev/hda10 /dev/hda11 /dev/hda12 /dev/hda13  
/dev/hda14 /dev/hda15 /dev/hda16 /dev/hda17 /dev/hda18 /dev/hda19  
/dev/hda2 /dev/hda20 /dev/hda3 /dev/hda4 /dev/hda5 /dev/hda6  
/dev/hda7 /dev/hda8 /dev/hda9 

 

 
 

 
This time, both expressions display the same text. This is because MYVAR held the list of filenames from the start. This behavior 
can be useful if, for instance, the set of files that might match a given pattern could change during the execution of a script. 

 
 
 
 Environment var iables   
 

 
There is a special type of variable known as an environment variable. These variables are special in two ways: 1) they can be 
passed to your script by other programs, and 2) any programs that are invoked from your script inherit the environment variables. 

 
 
 

 
Identifying an environment variable in Bash is not always easy. You can set a variable as is done normally. If you want it to be 
flagged as an environment variable, you then need to use the export command: 

 
 
 
 $ LESS=-i   
 $ expor t LESS   
 $ echo $LESS   
 -i   
 

 
In this example, you can tell that even after a variable has been exported, it can still be accessed as any other variable in Bash. The 
less file viewer will look for an environment variable named LESS. If it can find one, it will process the options contained in it. 
Here, the -i option tells less to treat all searches as case-insensitive ones. 

 

 
 

 
You can get a list of all variables in the current context, whether or not they are marked as environment variables, by running set. 
This list will contain a number of variables that you did not set explicitly. Some are set for you by Bash itself; others, by various 
initialization scripts. Your own list may differ significantly from the one shown here: 

 

 
 
 $ set   
 BASH=/bin/bash   
 BASH_VERSINFO=([0]=”2”  [1]=”02”  [2]=”1”  [3]=”1” [4]=” release”  [5]=”alpha-unknown   
 -linux-gnu”)   
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 BASH_VERSION=’2.02.1(1)-release’    
 BIBINPUTS=’~/bibtex’    
 CVSROOT=/home/username/cvsroot   
 DIRSTACK=()   
 DISPLAY=:0.0   
 EDITOR=/usr/bin/emacs   
 EUID=1000   
 GROUPS=()   
 HISTFILE=/home/username/.bash_history   
 HISTFILESIZE=500   
 HISTSIZE=500   
 HOME=/home/username   
 HOSTNAME=myhost   
 HOSTTYPE=alpha   
 LESS=-i   
 LOGNAME=username   
 MACHTYPE=alpha-unknown-linux-gnu   
 MAILCHECK=60   
 MINICOM=’-l -c on’    
 MPAGE=-bLetter   
 OPTERR=1   
 OPTIND=1   
 OSTYPE=linux-gnu   
 PAGER=less   

 
PATH=/home/username/bin:/usr/local/bin: 
/usr/bin:/bin:/usr/bin/X11:/usr/games: 

 
 
 PILOTRATE=115200   
 PIPESTATUS=([0]=”0” )   
 PPID=32533   
 PS1=’ \h \w\$ ‘    
 PS2=’> ‘    
 PS4=’+ ‘    
 PWD=/home/username   
 SHELL=/bin/bash   

 
SHELLOPTS=braceexpand:hashall:histexpand: 
monitor:history:interactive-comments: 

 
 
     emacs   
 SHLVL=1   
 TERM=xterm-debian   
 UID=1000   
 USER=username   
 WINDOWID=67108878   
 WMAKER_BIN_NAME=/usr/bin/X11/WindowMaker   
 WRASTER_COLOR_RESOLUTION0=4   
 _=cd   
 

 
This list can serve as an excellent reference as you read through the next section on special variables; it presents some examples of 
the contents of those variables. 

 
 
 
 Special var iables   
 

 

Bash defines numerous special variables. These variables are initialized to special values by Bash; the values can then be used in 
your script. Alternatively, some of them are set by you and cause Bash to act in special ways. Some of these variables do not 
necessarily have special meaning to Bash but rather to other programs on the system. Finally, some do not act as true variables at 
all, but they are still accessed with the traditional interface. Remember that to read the current value of any of these items, you 
need to use the dollar sign in front of them. This is true even for strange looking ones; for instance, echo $$ is valid to display the 
pid of the current shell. Table 2-4 lists these variables. 

 

 
 
 Table 2-4:  Bash Special Var iables   
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 Var iable Name   Pr imary Access Method   Descr iption   
 
     
 
 !   

 
Read    

 
Use this variable to get the Linux process ID of the 
most recent process set to background 

 
 

 

 
 @   

 
read   

 

 
Contains all parameters to the current context. When 
used in double quotes, evaluates to separate quoted 
values, one for each parameter passed to the current 
context. 

 

 

 

 
 #   

 
read    

 
Contains the number of parameters to the current 
context. 

 
 

 

 
 *    

 
read    

 
Contains all parameters to the current context. If used 
within double quotes, the result is a single parameter 
containing all passed parameters, separated by spaces. 

 

 

 

 
 $   

 
read    

 
Contains the Linux process ID of the current Bash 
process. 

 
 

 

 
 -   

 
read    

 
Contains a list of the current option flags (from the set 
command), one letter each, with no separation. 

 
 

 

 
 _   

 
read   

 

 
Contains the full path name of the current process 
during initialization. When looking for mail, contains 
the name of the current mail file. At all other times, 
contains the final argument to the previous command. 

 

 

 

 
 0   

 
read   

  
Holds the name of the current process or script.   

 

 
 From 1 to 9   

 
read    

 
Contains the first nine parameters to the current script 
or function. 

 
 

 

 
 BASH   

 
read   

  
Contains the full path name of the current shell.   

 

 
 BASH_VERSION   

 
read    

 
A printable string that contains the version number of 
your Bash version 

 
 

 

 
 BASH_VERSINFO   

 
read    

 
Contains an array of information about the current 
version of Bash. 

 
 

 

 
 DISPLAY   

 
write   

  
Contains the name of and display    

 

 
    

 
    

 
number on the machine on which X-based GUI clients 
should display their interfaces. 

 
 

 

 
 EUID   

 
read    

 
Contains the numeric effective user ID of the current 
shell process. 

 
 

 

 
 HISTCMD   

 
read    

 
Contains the numeric index of the current command in 
the command history. 

 
 

 

 
 HISTFILE   

 
write    

 
Contains the location of the file to hold the Bash 
history; defaults to $HOME/.bash_history. 

 
 

 

 
 HISTSIZE   

 
write   

  
Specifies the maximum size of the command history.   

 

 
 HOME   

 
read    

 
Contains the full path name of the home directory for 
the current user. 
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 HOSTNAME   read   Contains the short name of the current machine.   
 
 HOSTTYPE   

 
read    

 
Contains the short name of the current machine’s 
architecture. 

 
 

 

 
 IFS   

 
write    

 
Holds the value of the Internal Field Separator. This 
value is used for splitting up commands into their 
component parts. 

 

 

 

 
 LANG   

 
write    

 
Indicates the current (or preferred) locale to programs 
that support Linux internationalization. As such, it is 
frequently used as an environment variable. 

 

 

 

 

 
LD_LIBRARY_ 
PATH 

 
 

 
write    

 
Specifies additional (colon-separated) locations in 
which to search when loading the shared libraries for 
dynamically-linked executables. 

 

 

 

 
 LD_PRELOAD   

 
write   

 

 
Specifies a list (space-separated) of specific libraries to 
be loaded into dynamically linked programs before any 
others, including those specified by the program itself. 
For security reasons, this specification can be 
incompatible with setuid and setgid features 

 

 

 

 
 LINENO   

 
read    

 
When used within a shell or function, contains the 
offset in lines from the start of that shell or function. 

 
 

 

 
 MACHTYPE   

 
read    

 
Contains the GNU machine type identifier for this 
machine 

 
 

 

 
 MAIL   

 
write   

 

 
Informs you when new mail arrives in a UNIX mbox-
style mailbox. If you want Bash to automatically 
inform you, set this variable to point to the location of 
that mailbox. 

 

 

 

 
 MAILCHECK   

 
write    

 
Contains the interval, in seconds, which indicates how 
frequently the specified mailbox should be checked for 
new mail. 

 

 

 

 
 OLDPWD   

 
read   

  
Holds the name of the previous working directory.   

 

 
 OSTYPE   

 
read   

  
Holds the name of the current operating system.   

 

 
 PATH   

 
write   

 

 
This variable holds a colon-separated list of directories 
that should be searched for binaries when executing 
Linux programs. This is generally an environment 
variable. 

 

 

 

 
 PPID   

 
read   

  
The process ID of the current process’s parent process.   

 

 
 PS1   

 
write    

 
This variable holds a string describing how to generate 
the main prompt in Bash. 

 
 

 

 
 PWD   

 
read   

  
Contains the name of the current working directory.   

 

 
 RANDOM   

 
read   

 

 
Returns a different random value each time the 
contents of this variable is accessed. The exact range of 
the values returned is implementation- dependant, so its 
usefulness can be limited. 

 

 

 

 
 REPLY   

 
read    

 
Contains the value of the data read from standard input 
when accessed after the read command, unless a 
different variable is specified to read. 
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 SECONDS   

 
read    

 
Contains the number of seconds that elapsed since the 
current shell process was invoked. 

 
 

 

 
 SHELLOPTS   

 
read   

  
Contains a list of the current shell options.   

 

 
 UID   

 
read    

 
Contains the numeric real user ID of the owner of the 
current shell process.  

Functions   
 

 
In addition to creating separate scripts to perform repetitive tasks, you can use functions within scripts (or even at the command 
line) to minimize the need to retype code multiple times. You must define Bash functions before you can use them. 

 
 
 

 
These functions can take parameters just as shell scripts can. A key difference between the two is that the shell script generally 
requires the invocation of a separate process to handle the script. Thus, the script cannot modify variables in the current shell’s 
context. Furthermore, there is overhead with starting another shell process. 

 

 
 

 
On the other hand, sometimes it is good to have a script that cannot modify variables in the current shell. For instance, if the script 
is acting almost as a complete program with its own internal variables, it’s generally a good idea to keep it isolated from the 
current shell. 

 

 
 
 A function is defined in a script as follows:   
 
 function MyFunc {    
   command1   
   command2   
   command3   
 }    
 

 
You can use this function later as you would use any other command. You can also call it with arguments. The following examples 
are valid ways to call the function: 

 
 
 
 MyFunc   
 MyFunc * .c   
 MyFunc /dev/hda*   
 
 Let’s create a sample function and corresponding script. Type the following code into your favorite editor, and save it as func.sh:   
 
 #!/bin/bash   
       
 function CountMatches {    
   echo -n “Number of matches for $1: “    
   ls $1 2>/dev/null | wc -l   
 }    
       
 CountMatches /dev/hda*   
 CountMatches /proc/*   
 CountMatches /foo/*   
 

 
This particular script will execute, but it will not display the intended results—the number of files that match the given pattern. 
Mark the script executable and run it: 

 
 
 
 $ chmod a+x func.sh   
 $ ./func.sh   
 Number of matches for /dev/hda:       1   
 Number of matches for /proc/1:      11   
 Number of matches for /foo/*:       0   
 

 
Notice how the number of matches are not correct; you already know that there is more than one match for /dev/hda*. Also, the 
text reported by the function does not match the pattern sent to it. Further investigation reveals the reason: the text passed to the 
function is not quoted. Because the function looks at $1 (the first parameter) only, it should display one result. 
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 Why then the count of 11 for /proc/1? The reason is that /proc/1 is a directory. Try looking at it yourself at a prompt:   
 
 $ ls -l /proc/1   
 ls: /proc/1/exe: Permission denied   
 ls: /proc/1/root: Permission denied   
 ls: /proc/1/cwd: Permission denied   
 total 0   
 -r--r--r--   1 root     root            0 Jul 26 05:47 cmdline   
 lrwx------   1 root     root            0 Jul 26 05:47 cwd   
 -r--------   1 root     root            0 Jul 26 05:47 environ   
 lrwx------   1 root     root            0 Jul 26 05:47 exe   
 dr-x------   2 root     root            0 Jul 26 05:47 fd   
 pr--r--r--   1 root     root            0 Jul 26 05:47 maps   
 -rw-------   1 root     root            0 Jul 26 05:47 mem   
 lrwx------   1 root     root            0 Jul 26 05:47 root   
 -r--r--r--   1 root     root            0 Jul 26 05:47 stat   
 -r--r--r--   1 root     root            0 Jul 26 05:47 statm   
 -r--r--r--   1 root     root            0 Jul 26 05:47 status   
 

 
You can expect permission denied errors in this listing when running this particular command. In this listing, if ls is given the 
name of a directory, by default, it displays the contents of the directory instead of the directory itself. 

 
 
 

 
Now, perhaps you would like to fix the problems with the script. One way to go about that is to quote the pattern. Change your 
script so it matches the following code: 

 
 
 
 #!/bin/bash   
       
 function CountMatches {    
   echo -n “Number of matches for $1: “    
   ls $1 2>/dev/null | wc -l   
 }    
       
 CountMatches ‘ /dev/hda* ’    
 CountMatches ‘ /proc/* ’    
 CountMatches ‘ /foo/* ’    
 

 
Because the patterns are now quoted, they won’ t be expanded until asked for with $1 in the function itself. Try running this new 
script: 

 
 
 
 $ ./func.sh   
 Number of matches for /dev/hda*:      21   
 Number of matches for /proc/* :     724   
 Number of matches for /foo/*:       0   
 

 
The value for /dev/hda* now appears correct. However, there is still something strange going on with /proc/*. A quick 
examination shows that there are not really as many files in /proc as indicated: 

 
 
 
 $ ls /proc   
 1    173  196  233  bus          kmsg        pci   
 103  176  197  237  cmdline      ksyms       scsi   
 105  183  198  247  cpuinfo      loadavg     self   
 113  186  199  248  devices      locks       slabinfo   
 118  187  2    249  dma          meminfo     stat   
 121  188  205  250  fb           misc        swaps   
 13   189  206  251  filesystems  modules     sys   
 134  190  207  252  fs           mounts      tty   
 136  191  208  3    ide          mtrr        uptime   
 146  193  209  4    interrupts   net         version   
 156  194  210  400  ioports      parport   
 160  195  232  apm  kcore        partitions   
 
 If you run ls /proc/*, you will see the difference; when you use /proc/*, the shell explicitly mentions every entry in /proc, including  
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the directories. When a directory is explicitly given to ls, ls displays its contents. So, the result is that ls is displaying much more 
than is being asked for.  

 

 
To avoid this, use ls -d, which tells ls to display only the directory names. When you make this change, your func.sh should look 
like this: 

 
 
 
 #!/bin/bash   
       
 function CountMatches {    
   echo -n “Number of matches for $1: “    
   ls -d $1 2>/dev/null | wc -l   
 }    
 CountMatches ‘ /dev/hda* ’    
 CountMatches ‘ /proc/* ’    
 CountMatches ‘ /foo/* ’    
 
 Now, try running this modified script. This time, you should be getting correct results for each item as in the following example.   
 
 $ ./func.sh   
 Number of matches for /dev/hda*:      21   
 Number of matches for /proc/* :      84   
 Number of matches for /foo/*:       0   
 

 
The results are now correct. However, note that there is no way to determine that an error occurred with the /foo/* pattern. You 
can detect errors by making several modifications: 

 
 
 
 #!/bin/bash   
       
 function CountMatches {    
   MATCHES=`ls -d $1 2>/dev/null | wc -l`   
   echo “$MATCHES”   
   if [ $MATCHES != 0 ] ; then return 0 ; else return 1; fi   
 }    
       
 function DispMatches {    
   if MATCHES=`CountMatches “$1”` ; then   
     echo -n “Number of matches for $1: “    
     echo $MATCHES   
   else   
     echo “$1 is not a valid pattern.”    
   fi   
 }    
       
 DispMatches ‘ /dev/hda* ’    
 DispMatches ‘ /proc/* ’    
 DispMatches ‘ /foo/* ’    
 

 

There are several constructs in this script that you have not yet been introduced to. Several things about this new version of the 
script should be noted. First, the backtick operator is used twice to capture the output from a command: once in CountMatches to 
capture the output of wc -l, and once in DispMatches to actually capture the output of the CountMatches function. Also, the 
functionality to count the number of matches has been separated from the code to display this number in a pleasant way. The 
reason for this is that some other function or code in the script might want to get a count of the matches without actually getting a 
message to go along with it. With the separate functions, doing this becomes easy. Also, take special note of this line: 

 

 
 
   if MATCHES=`CountMatches “$1”` ; then   
 

 
There is a reason that $1 is enclosed in double quotes. If it were not in quotes, it would be expanded right there—in 
DispMatches—before being passed to CountMatches. If this premature evaluation would occur, the result would be the same as 
with the earlier bug; that is, CountMatches would generally report only one match. 

 

 
 
 Now, try running this script. Notice how it is able to detect the error with /foo/* this time:   
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 $ ./func.sh   
 Number of matches for /dev/hda*: 21   
 Number of matches for /proc/* : 86   
 /foo/* is not a valid pattern.   
 

 

Now that the script works, you may be wondering why things are done in certain ways. For instance, why bother with capturing 
the output from the CountMatches function when CountMatches could simply return the number of matches to the caller? The 
reason is that the return call can return only an exit code that is in the range of 0 to 255 in Bash. If a pattern matches more than 255 
files, this method yields incorrect results. 

 

 
 

 

What about using some global variable for holding the number of matches? Perhaps CountMatches could set this variable and 
DispMatches could read it. Although this option would work in this particular case, it is not a good idea in general. The reason is that 
things can become tricky if global variables are used for communication, especially in larger scripts or programs. You must always 
remember to retrieve the value from the variable immediately, or it may be clobbered. Furthermore, if you wish to write a recursive 
function for some reason, using globals for communication will probably not be an option.  

Conditionals and Loops   
 

 
There are many uses for various conditional expressions in Bash. A conditional is simply a language construct that enables your 
program to do one thing if a given expression is true, and a different thing if the expression is false. 

 
 
 

 
In Bash, you were introduced to a sort of lazy conditional: the && and || operators. Although these can result in conditional 
execution of commands, the operators in Bash specifically designed for the purpose are more powerful. 

 
 
 
 if   
 
 The cornerstone of the Bash conditionals is the if ... fi clause. The Bash documentation provides a formal definition of it:   
 
 if  list; then list; [ elif list; then list; ] ... [ else list; ] fi   
 
 This definition, unfortunately, makes the statement look more difficult than it really is. An if statement can be very simple:   
 
 $ if ls /foo; then echo Success.; else echo Failure.; fi   
 ls: /foo: No such file or directory   
 Failure.   
 

 

In this example, if the call to ls is a success, then one message is printed. Otherwise, a different message is displayed. This simple 
example shows all that there is to the basic usage of the if statement in Bash. Essentially, the return value of the test expression (ls 
/foo in this case) is checked. If it indicates a successful completion, then the “ then”  clause is executed. Otherwise, the optional 
“else”  clause is executed. 

 

 
 
 Using conditionals can get more complex if you need to nest your conditionals. Here’s one example script:   
 
 #!/bin/bash   
       
 if [ -x /bin/foo ]; then   
   echo “ /bin/foo exists and is executable. Exiting.”    
 elif [ -x /bin/bash ]; then   
   echo “ /bin/bash exists and is executable.  Exiting.”    
 elif [ -x /bin/sh ]; then   
   echo “ /bin/sh exists and is executable.  Exiting.”    
 else   
   echo “Found no executable program.”    
 fi   
 

 
In this script, the elif defines an “else if”  condition. That is, in this situation, Bash keeps trying each condition until it finds one that 
is true. If none of them are true, the final else clause is executed. Running this script produces the following output: 

 
 
 
 /bin/bash exists and is executable.  Exiting.   
 
 Testing with [ ... ]   
 
 In Bash, you typically need to test various items. In the previous example, the script tests to see whether certain files exist and are  
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executable. Sometimes, you may need to test for the existence of files. In other situations, you may want to compare two strings to 
see if they are equal.  

 

 
There are two equivalent ways to perform this testing. One is to put the test expression inside [  ] characters. The other is to use the 
test command. Both use the same syntax. As an illustration, the example in the previous section also works with test 

 
 
 
 #!/bin/bash   
       
 if test -x /bin/foo ; then   
   echo “ /bin/foo exists and is executable. Exiting.”    
 elif test -x /bin/bash ; then   
   echo “ /bin/bash exists and is executable.  Exiting.”    
 elif test -x /bin/sh ; then   
   echo “ /bin/sh exists and is executable.  Exiting.”    
 else   
   echo “Found no executable program.”    
 fi   
 

 
The syntax of test is simple; it takes some options indicating what it should check, and returns an exit code indicating whether or 
not the expression turns out to be true. 

 
 
 
 Table 2-5 shows the operators in test and [ ... ].   
 
 Table 2-5:  Test and [ ] Operators   
 
     
 
 Syntax   

 
Descr iption   

 

 
     
 
 ! expression   

 
Evaluates to true if the specified expression is false. This can be used to 
negate any of the other tests. 

 
 

 

 
 -b filename   

 
Evaluates to true if the specified filename is a block special device.   

 

 
 -c filename   

 
Evaluates to true if the specified filename is a character special device.   

 

 
 -d filename   

 
Evaluates to true if the specified filename is a directory   

 

 
 -e filename   

 
Evaluates to true if the specified filename exists, regardless of its type.   

 

 
 -f filename   

 
Evaluates to true if the specified filename is a normal file.   

 

 
 -g filename   

 
Evaluates to true if the specified filename has the setgid bit set.   

 

 
 -G filename   

 
Evaluates to true if the specified filename is owned by the same group as the 
effective GID of the current process. 

 
 

 

 
 -k filename   

 
Evaluates to true if the specified filename has the sticky bit set.   

 

 
 -L filename   

 
Evaluates to true if the specified filename is a symbolic link.   

 

 
 -n string   

 
Evaluates to true if the specified string has a nonzero length.   

 

 
 -O filename   

 
Evaluates to true if the specified filename is owned by the same person as 
the effective UID of the current process. 

 
 

 

 
 -p filename   

 
Evaluates to true if the specified filename is a FIFO (named pipe).   

 

 
 -r filename   

 
Evaluates to true if the current user’s permissions are sufficient to read data 
from the specified file. 
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 -S filename   

 
Evaluates to true if the specified filename corresponds to a UNIX domain 
socket. 

 
 

 

 
 -t [fd]   

 
Evaluates to true if the specified file descriptor corresponds to a real 
terminal. The default for fd is 1 – standard output. 

 
 

 

 
 -u filename   

 
Evaluates to true if the specified filename has the setuid bit set.   

 

 
 -w filename   

 
Evaluates to true if the current user’s permissions are sufficient to write data 
to the specified file. 

 
 

 

 
 -x filename   

 
Evaluates to true if the current user’s permissions are sufficient to execute 
the specified file. 

 
 

 

 
 -z string   

 
Evaluates to true if the specified string is zero-length.   

 

 
 Expression1 -a expression2   

 
Evaluates to true if both specified expressions are also true.   

 

 
 Expression1 -o expression2   

 
Evaluates to true if at least one specified expression is true; a binary or 
operation. 

 
 

 

 
 filename1 -ef filename2   

 
Evaluates to true if both specified file names correspond to the same inode 
number on the same device. 

 
 

 

 
 filename1 -nt filename2   

 
Evaluates to true if the first file’s last modified date is newer than that of the 
second. 

 
 

 

 
 filename1 -ot filename2   

 
Evaluates to true if the first file’s last modified date is older than that of the 
second. 

 
 

 

 
 number1 –eq number2   

 
Evaluates to true if number1 is numerically equal to number2.   

 

 
 number1 –ne number2   

 
Evaluates to true if number1 is numerically different (not equal) than 
number 2. 

 
 

 

 
 number1 –le number2   

 
Evaluates to true if number1 is numerically less than or equal to number2.   

 

 
 number1 –lt number2   

 
Evaluates to true if number1 is numerically strictly less than number2.   

 

 
 number1 –ge number2   

 
Evaluates to true if number1 is numerically greater than or equal to 
number2. 

 
 

 

 
 number1 –gt number2   

 
Evaluates to true if number1 is numerically strictly greater than number2.   

 

 
 String   

 
Evaluates to true if the specified string has a nonzero length.   

 

 
 string1 = string2   

 
Evaluates to true if both strings are equal.   

 

 
 string1 != string2   

 
Evaluates to true if the strings specified are not equal.   

 

 
     
 
 case   
 

 
The case command is used to select one option out of a list of alternatives based on the value of something. It can be thought of as 
a more elegant replacement for some long lists of if ... elif statements. The basic syntax as defined in the Bash documentation is: 

 
 
 
 case word in [ ( pattern [ | pattern ] ... ) list ;; ] ... esac   
 

 
This definition looks somewhat confusing. Instead of worrying about it, here’s an example script that you can type and save as 
case.sh: 
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 #!/bin/bash   
       
 echo -n “Enter your favorite Linux command: “    
       
 read   
       
 case “$REPLY” in   
   sed)   
     echo “sed is used for stream editing.”    
     echo “You can try this:  echo Hi | sed s/i/j/”    
   ;;   
       
   grep | egrep)   
     echo “grep and egrep are used for pattern matching.”    
     echo “You can also use regular expressions with egrep.”    
   ;;   
       
   bash)   
     echo “Bash is a popular shell under Linux.”    
   ;;   
       
   *awk)   
     echo “These tools are interpreters for the awk language.”    
   ;;   
       
   *)   
     echo “ I’m not familiar with the $REPLY command “    
     echo “but here’s what Bash knows about it: “    
     type $REPLY   
   ;;   
 esac   
 

 
This script begins by prompting the user for a favorite Linux command. This command is read and stored in REPLY. Then, 
depending on the command that is supplied, a special message is displayed. This is where the case comes in; it provides a set of 
patterns (that use the same rules as wildcards) for checking the data. 

 

 
 

 
For instance, if the supplied string matches sed, then the commands for sed (up until the double semicolon) are executed. If the 
string matches either grep or egrep, then those commands are executed. 

 
 
 

 
If the command matches the wildcard pattern *awk, then information about the awk interpreters is displayed. Finally, if nothing 
else matches, the * pattern is found. Because * matches anything, and occurs last, it effectively acts as a default case if nothing else 
matches. If this occurs, a message is displayed indicating that the script isn’ t familiar with the  

 

 
 
 particular command. It then uses a Bash built-in command, type, to get some information about it.   
 
 Try the script a few times to see how it works. Here are some sample sessions:   
 
 $ ./case.sh   
 Enter your favorite Linux command: gawk   
 These tools are interpreters for the awk language.   
 $ ./case.sh   
 Enter your favorite Linux command: egrep   
 grep and egrep are used for pattern matching.   
 You can also use regular expressions with egrep.   
 $ ./case.sh   
 Enter your favorite Linux command: less   
 I’m not familiar with the less command    
 but here’s what Bash knows about it:    
 less is /usr/bin/less   
 $ ./case.sh   
 Enter your favorite Linux command: nawk   
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 These tools are interpreters for the awk language.   
 

 
Apparently, the case statement worked as desired in this example. It enabled the script to identify particular input options, and to 
take appropriate action based on what was supplied. 

 
 
 
 while   
 

 
The first looping construct to examine in Bash is called while. Like its counterparts, which go by the same name in other 
languages, while will continue executing a piece of code until the exit condition turns false. In Bash, the syntax is defined as: 

 
 
 
 while list; do list; done   
 

 
A simple example is reading input and acting upon it. Here is a sample session. Like before, you can use Ctrl+D to indicate that 
you are done supplying input: 

 
 
 
 $ while read; do echo “ You typed: $REPLY” ; done   
 I ’m exper imenting with while!   
 You typed: I’m experimenting with while!   
 qwer ty         
 You typed: qwerty   
 Ctrl+D   
 
 You could also do something more complex with a while loop. Here is a script, based on the previous concept:   
 
 #!/bin/bash   
       
 echo “Type some text; press Ctrl+D when done.”    
       
 echo -n “Your input: “    
 while read; do   
   TEXT=`echo “$REPLY” | rev`   
   echo “Reversed, your message is: $TEXT”   
   echo -n “Your input: “    
 done   
 

 
The indentation used in this script is strictly optional. However, it is quite useful for larger scripts, as it makes the structure of the 
script visually discernible. Running this script produces the following: 

 
 
 
 $ ./while.sh   
 Type some text; press Ctrl+D when done.   
 Your input: Good morning!   
 Reversed, your message is: !gninrom dooG   
 Your input: Linux is great!   
 Reversed, your message is: !taerg si xuniL   
 Your input: While is interesting.   
 Reversed, your message is: .gnitseretni si elihW   
 Your input: Ctrl+D   
 

 
You might notice that when you exit this program, the prompt appears directly after the “Your input”  message instead of on its 
own line. This is because you used echo -n, which suppresses the automatic use of the newline character. The solution to the 
problem is to print a newline after exiting the loop. This simple script modification will make the script look like this: 

 

 
 
 #!/bin/bash   
       
 echo “Type some text; press Ctrl+D when done.”    
       
 echo -n “Your input: “    
 while read; do   
   TEXT=`echo “$REPLY” | rev`   
   echo “Reversed, your message is: $TEXT”   
   echo -n “Your input: “    
 done   



 40 

       
 echo   
 
 If you choose to run the script again, you will see that the prompt occurs at the normal position after exiting the script.   
 
 for    
 

 
The for syntax is used to iterate over a predetermined list of items, executing specific commands for each one. The Bash 
documentation defines the syntax as follows: 

 
 
 
 for name [ in word; ] do list ; done   
 

 
This is similar to the foreach syntax in some other languages. In Bash, the name refers to the name of a variable. For each item in 
the list, the specified variable will be set to hold that item. Then the given commands will be executed as illustrated by the 
following example: 

 

 
 
 #!/bin/bash   
       
 for FILENAME in /dev/hda*; do   
   echo “ I found the file $FILENAME”   
 done   
 

 
When Bash evaluates this statement, it first expands /dev/hda* to the list of matching files. Then, for each file, FILENAME is set 
to its name and the echo command is executed for the file. Running the script produces the following output: 

 
 
 
 $ ./for .sh   
 I found the file /dev/hda   
 I found the file /dev/hda1   
 I found the file /dev/hda10   
 I found the file /dev/hda11   
 I found the file /dev/hda12   
 I found the file /dev/hda13   
 I found the file /dev/hda14   
 I found the file /dev/hda15   
 I found the file /dev/hda16   
 I found the file /dev/hda17   
 I found the file /dev/hda18   
 I found the file /dev/hda19   
 I found the file /dev/hda2   
 I found the file /dev/hda20   
 I found the file /dev/hda3   
 I found the file /dev/hda4   
 I found the file /dev/hda5   
 I found the file /dev/hda6   
 I found the file /dev/hda7   
 I found the file /dev/hda8   
 I found the file /dev/hda9   
 
 You can also use for to iterate over lists of arbitrary items. You don’ t have to restrict yourself to using only filenames:   
 
 $ for  NAME in Jill Richard Sam Jane; do echo “ Hello, $NAME.” ; done   
 Hello, Jill.   
 Hello, Richard.   
 Hello, Sam.   
 Hello, Jane.   
 

 
You can also use the for command to perform several operations on a single set of files. See if you can determine what the 
following script does: 

 
 
 
 #!/bin/bash   
       
 for FILENAME in `grep -l Linux Report-199[7-9].txt`; do    
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   echo “Processing $FILENAME...”    
   a2ps -2 $FILENAME   
   mail -s “Contents of file $FILENAME” friend@example.com < $FILENAME   
   fax send 555-1234 $FILENAME   
 done   
 

 
This short shell script is quite powerful. First, it selects those text reports from 1997 to 1999 that contain the word Linux in them. 
Then, for all those files, it does the following: 

 
 
 
  •  Displays a message on the user’s screen indicating the current status of the script.   
 

  
• 

 
Processes the file with a2ps, which adds page borders, a filename, and reformats the text so that it prints on half as much 
paper. Then this file is sent to the printer. (Note that a2ps is an optional utility that you may have to install if it isn’ t available 
by default on your system.) 

 

 
 

  
• 

 
Sends an e-mail to friend@example.com, the body of which is the contents of the file. The subject of this message is set to 
“Contents of file,”  followed by the name of the file. 

 
 
 
  •  Sends a FAX of the document to somebody at 555-1234.   
 

 

So, by combining for with a few other shell constructs already covered, as well as a few basic Linux utilities, you have a solution for 
some specialized document processing. Other optimizations and enhancements are possible as well. For instance, if you have a more 
advanced FAX suite installed, the FAX could be queued for background delivery. Also, you could opt to rename or move the files 
after they have been dealt with. You could use the output of find to search documents that are deep in the directory tree. All of this 
can take place without any user interaction; it’s fully automated.  

Shell Utilities   
 

 

You will find a number of useful shell utilities that you can use in your scripts or while programming. All of these have manpages 
available on-line in your Linux system; to view the manpage, simply use man command, where command is the name of the 
program for which you are looking for information. Some of these are implemented as shell built-ins; that is, the shell handles the 
command for you, rather than a separate program to do so. 

 

 
 

 
Many of them read from standard input and write to standard output. This means that they are ideal for being combined with others 
in a pipeline. For instance, you could use: 

 
 
 
 cat somefile.txt | sort | uniq | tac   
 

 
This will read data from somefile.txt, sort it, remove the duplicates, and then invert the order of its lines. There are several other 
useful tools for the shell; they are summarized in Table 2-6. 

 
 
 
 Table 2-6:  Useful Tools for  Shell Scr ipts   
 
     
 
 Command   

 
Purpose   

 

 
     
 
 awk   

 
This is an interpreter for the awk programming language.   

 

 
 Bash   

 
Starts up another shell process beneath the current one.   

 

 
 cat [file ...]   

 
Reads from each specified file in order, displaying its entire contents to standard output. 
The effect of this is to concatenate the files together, hence the name. If no names are 
specified, cat copies from standard input to standard output. 

 

 

 

 
 exec command [arguments ....]   

 
Executes the specified program, with the given optional arguments. This program replaces 
the current shell. That is, the current shell ceases to exist once the program begins. When 
the program exits, you will probably be logged off or your xterm closed. 

 

 

 

 
 find   

 
Selects files based on a search through directories for files with matching name, 
modification dates, permissions, or other attributes. The manpage for find contains an 
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exhaustive description of its syntax.  
 
 grep / egrep   

 
Search inside of files for specific text or patterns. The egrep tool uses regular expressions 
for searches, and on Linux, grep can use regular expressions as well. 

 
 

 

 
 gunzip   

 
Sends uncompressed data to standard output when compressed data is piped to gunzip.   

 

 
 gzip   

 
Reads data on standard input, and writes a compressed version to standard output. This 
command can be used in a pipe. Normally, after the data is compressed, the pipeline ends; 
the data will be saved to a file. This program can also work on separate files. 

 

 

 

 
 perl   

 
Invokes the interpreter for the Perl programming language.   

 

 
 rev   

 
Copies from standard input to standard output, reversing the order of the characters in each 
line of the file. 

 
 

 

 
 sed   

 
Reads from standard input, makes some modifications to the data, and writes the result to 
standard output; that is it’ s a stream editor. Today, the most frequent use of sed is its pattern 
replacement operator, s///. 

 

 

 

 
 tac   

 
Copies from standard input to standard output, reversing the order in which the lines appear 
(but not the order of characters in those lines). 

 
 

 

 
 tee   

 
Reads from standard input, and copies the data to multiple sources. It can write the data to 
several files as well as to standard output, for instance. 

 
 

 

 
 tr   

 
Performs basic transformations on data. For instance, the command tr A-Z a-z will convert 
all capital letters to lowercase in its input. This command reads from standard input, makes 
the modifications, and writes the result to standard output. 

 

 

 

 
 sort   

 
Reads from standard input, sorts the lines in the file, and writes the ordered data to standard 
output. 

 
 

 

 
 uniq   

 
Removes duplicate lines from input. You usually have to send the input through sort before you 
can send it through uniq. The output from uniq is the same as the input, with duplicate lines 
removed.  

Summary   
 

 
In this chapter, you learned about shell scripting with Bash. Shell scripts can be created with any text editor and contain commands 
like those you could type at a shell prompt. 

 
 
 

  

• 

 

Executable Bash scripts should start with #!/bin/bash and must be marked executable with chmod a+x. Programs and 
commands indicate success or failure with a return value: 0 for success, or any nonzero value for failure. This value can be 
used with conditionals to determine what to do next. Wildcards are used to select a group of filenames based on a pattern. 
Quoting and escaping are used to prevent the normal interpretation of special characters in Bash. 

 

 
 

  

• 

 

There are three standard file descriptors for each Linux process: standard input, standard output, and standard error. Bash 
enables you to redirect any of those to or from a file. Furthermore, you can use a pipe to send the output from one program 
directly into the input of another. Another option is command substitution, which converts the output of one program into 
arguments for another. 

 

 
 

  

• 

 

Variables are used to store small amounts of data for later access. They can be set with the equals sign (=), or by Bash in a 
situation such as a for loop. The contents of variables are accessed with the dollar sign ($). Variables may be exported to the 
environment, which enables programs invoked by the shell to see their values. There are also many special variables, which 
enable your scripts to find out information about the shell and the machine it’ s running on, and to control some aspects of shell 
behavior. 

 

 
 

  
• 

 
Functions are used to store frequently used code in only one place. Unlike shell scripts, functions modify variables in the 
current shell, so they must be used with care. Functions, once defined, can behave like any other shell command when called. 

 
 
 

  
• 

 
Conditionals are used to make execution of some code dependent upon the success or failure of some earlier command or 
expression. Loops are used either to iterate over a list of items, or to continue executing a block of code until some condition 
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becomes false. The test, or [ ... ], operator can be used to perform some simple tests that are useful with conditionals and loops.  
 

  
• 

 
Linux comes with a rich variety of shell utilities that make excellent additions to your scripts. Many of these utilities are 
specifically designed for use in a pipeline, so they can be easily combined in powerful ways. Utilities exist to do everything from 
searching files, to finding files, and sorting them.  

Chapter  3: Working with Regular  Expressions   
 
 Overview   
 

 

Reading and processing data is one of the most frequent tasks that programmers face, and programming under Linux is no exception. 
Many Linux languages offer a standard-ized parsing mechanism known as regular expressions. In this chapter, you will learn all 
about this mechanism and how to use it. The chapter begins with an introduction to regular expressions. It continues with coverage of 
three major areas of regular expressions: character classes, quantifiers, and alternation and grouping. Finally, you will learn how to 
use regular expressions in various languages.  

 Introducing Regular  Expressions   
 

 
Many times, when writing programs, you need to parse data—separate input into its component bits. Sometimes, this pars-ing is 
easy—maybe your input data is separated by commas. Sometimes, the task is much more difficult, especially if your input is more 
free-form. You may even have to pick out the values you want from within free-form text. This type of task can be very tricky. 

 

 
 

 

No matter what language you use, even if you don’ t use regular expressions, your parsing algorithms, no doubt, will be focused 
around recognizing patterns. You might notice that certain text is always ignored, such as column headings. Or, the values that you 
want might be separated by commas. Maybe you notice that there is one record per line, or one record per page. All of these are 
patterns that you can use to pick out the pieces of useful data from your input. 

 

 
 

 
In some languages, such as C, you write code to explicitly search through your input. Even with functions such as strtok() and 
strsep(), this process can be difficult and bug-prone. 

 
 
 

 

Regular expressions provide an alternative to writing search algorithms. With regular expressions (also known as regexps), you 
define the pattern that you are looking for, and let the regular expression engine do the searching for you. The regular expression 
pattern that you give to the engine defines which parts of the text are interesting, and can return those bits only. Alternatively, it 
can return all text that matches your pattern—presumably for later processing or display. 

 

 
 

 
Regular expressions are not tied to any particular language, although Perl makes particularly heavy use of them. You can find 
regular expression support in grep (searches through files), sed (edits files based on regular expressions), several libraries for C, 
and several other languages and utilities as well. 

 

 
 

 
In this chapter, you will learn how to form basic regular expression patterns, how to fit regular expressions to patterns in data, and 
then more advanced regular expression syntax such as quantifiers, character classes, grouping, and alternation. Finally, you’ ll learn 
about some particular features or limitations of the regular expression support in some of the different languages that support them. 

 

 
 

 
To the greatest extent possible, the examples in this chapter are designed to work with regular expressions in any language that 
uses them. However, some languages have a more powerful implementation than others, and so some of these examples may only 
work in a language with such an implementation, such as Perl. 

 

 
 
 Patterns   
 

 
The first step to writing a useful regular expression is to figure out what sort of patterns are present in your data. In some 
situations, this is trivial. For instance, here are a few lines from the /etc/passwd file on my Linux machine: 

 
 
 
 root:x:0:0:root:/root:/bin/bash   
 daemon:x:1:1:daemon:/usr/sbin:/bin/sh   
 bin:x:2:2:bin:/bin:/bin/sh   
 sys:x:3:3:sys:/dev:/bin/sh   
 sync:x:4:100:sync:/bin:/bin/sync   
 games:x:5:100:games:/usr/games:/bin/sh   
 man:x:6:100:man:/var/catman:/bin/sh   
 lp:x:7:7:lp:/var/spool/lpd:/bin/sh   
 mail:x:8:8:mail:/var/spool/mail:/bin/sh   
 news:x:9:9:news:/var/spool/news:/bin/sh   
 uucp:x:10:10:uucp:/var/spool/uucp:/bin/sh   
 proxy:x:13:13:proxy:/bin:/bin/sh   
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 postgres:x:31:32:postgres:/var/postgres:/bin/sh   
 

 
From this example, you can already note several features about the data. For one, there is one record per line, and the fields in the 
record are separated by colons. With a bit more knowledge of the format, you know that there are fields for user-name, password, 
uid (numeric user ID), gid (numeric group ID), real name, home directory, and default shell. 

 

 
 

 
This is a format that is very easy to parse with a regular expression. Most languages are well suited towards regular expression 
parsing with the one record per line format. 

 
 
 

 
A format that is more difficult to parse is the output from an ls -l command. For instance, consider these lines from such a 
command: 

 
 
 
 drwxr-xr-x   3 root    root         1024 Feb  7 16:42 CORBA   
 -rw-r--r--   1 root    root         6350 Jun  9 16:01 Muttrc   
 -rw-r--r--   1 root    root         1646 Jan 11  1998 adduser.conf   
 drwxr-xr-x   2 root    root         1024 May 24 19:01 ae   
 -rw-r--r--   1 root    root          233 Oct 26  1998 aliases.safe   
 lrwxrwxrwx   1 root    root           27 Jul 12 07:23 localtime ->    
      /usr/share/zoneinfo/CST6CDT   
 drwxr-xr-x   5 root    root         1024 Jul 18 10:19 texmf   
 -rw-r--r--   1 root    root          373 Feb 16 11:03 updatedb.conf   
 -rw-r--r--   1 root    root          222 Sep 30  1998 upload.sites   
 drwxr-xr-x   4 uucp    uucp         1024 Apr 30 20:31 uucp   
 -rw-r--r--   1 root    root         4623 Feb 10 15:18 vnc.conf   
 -rw-r--r--   1 root    root         3293 Sep 28  1998 wgetrc   
 drwxr-xr-x   3 root    root         1024 Oct 30  1998 xemacs   
 -rw-r--r--   1 root    root           56 Feb 17 22:18 ytalkrc   
 

 

From this listing, you can tell that there is a pattern. Each line starts out with some permissions, a count of the hard links, the user 
and group that own the file, and its size. After that, there is a date. But this date is not always in the same format. Some-times, it 
lists the month, day, and time; other times, it lists the month, day, and year. After that, there’s a filename. But, if the file is a 
symbolic link, the name of the linked-to file will follow. 

 

 
 

 
So, even though the format is not hard to understand when you look at the display onscreen, it can be difficult to parse for a 
program. 

 
 
 
 Regular  expression syntax   
 

 

Table 3-1 summarizes the syntax in regular expressions. This table is designed to be your map through the vast terrain of regular 
expressions. You can use it to find the operator you need, to discover what an operator used by someone else does, or simply to 
browse and see what you can do with regular expressions. If you use regular expressions frequently in your programming, and you 
probably will if you do a lot of parsing, this table will no doubt become a valuable reference. 

 

 
 

  

Note 

 

Don’ t worry if you don’ t understand the meaning of most of the items here yet; they will be explained in detail in 
the remainder of this chapter. Some of these items apply only to certain languages, and some languages define 
more special operators than are listed here. Some of these differences will be highlighted at the end of the chapter, 
but if you are having difficulties with a given regular expression in a particular language, consult the 
documentation for that language. Of the items listed here, the most likely to cause trouble are the various 
backslash operators. 

 

 
 
 Table 3-1:  Regular  Expression Syntax Elements   
 
     
 
 Syntax   

 
Descr iption   

  
Example   

 

 
     
 
 \   

 
Escape operator; the next character (if special) has 
its literal meaning. Some languages may ascribe 
special meanings to sequences with normal 
characters, such as \n. 

 

 

 

 
Foo.* \.txt matches any string beginning 
with Foo and ending with .txt. 
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 \0xx   

 
Matches the octal character indicated by the xx 
digits. 

 
 

 

 
Bell\007Beep matches a string that 
begins with Bell, and then has the ASCII 
bell character, and ends with Beep. 

 

 

 

 
 \a   

 
Matches the ASCII bell character. This is the same 
as \x07 and\007. 

 
 

 

 
Bell\aBeep matches a string that begins 
with Bell, and then has the ASCII bell 
character, and ends with Beep. 

 

 

 

 
 \A   

 
Matches the beginning of the string. This is a Perl-
ism; it acts exactly like the caret character  (^) 
except it does not match multiple times when the m 
option is used. 

 

 

 

 
\AHello matches only a string whose 
first five letters are Hello. 

 
  

 
 \b   

 
Matches the boundary between two words. This 
does not actually match any particular character, 
but rather a specific location. 

 

 

 

 
1234\b.+9 matches 1234 2359 and 1234 
a9 but not 1234a9. 

 
 

 

 
 \B   

 
The opposite of \b, matches any location that is not 
a word boundary. 

 
 

 
 
1234\B.+9 matches 1234689 and 
1234asdf9 but not 1234 589. 

 
 

 

 
 \d   

 
Matches any digit character. The definition of this 
varies between implementation and locale, but you 
can generally consider it to be the same as [0-9]. 

 

 

 

 
Report\d+ matches Report12, 
Report1351134, and Report0, but not 
ReportA. 

 

 

 

 
 \D   

 
The opposite of \d, matches any character that is 
not a digit. and even Report___.txt. 

 
 

 
 
Report\D+ matches ReportA, 
ReportForBob, 

 
 

 

 
 \f   

 
Matches the ASCII form-feed character.    

 
Form\fFeed matches a string containing 
the words Form and Feed, separated only 
by the ASCII form-feed character. 

 

 

 

 
 \n   

 
Matches the ASCII newline character. With some 
implementations, this may match the carriage 
return character also. Some implementations strip 
off the final newline before passing the string to 
the regular expression parser, so if you are looking 
for the end of the line, you may want to use $ 
instead. 

 

 

 

 
ine1\nLine2 matches a Lstring 
containing two lines, with the first 
ending with Line1 and the second 
beginning with Line2. 

 

 
 

 
 \r   

 
Matches the ASCII carriage return character.    

 
Word1\rWord2 matches a string 
containing Word1 and Word2, separated 
only by the carriage return character. 

 

 

 

 
 \s   

 
Matches any white space character. The exact 
definition of this can vary potentially between 
locales, but generally include spaces, tabs, carriage 
returns, and linefeeds. 

 

 

 

 
Foo\s+Bar matches a string ontaining 
Foo and Bar, cseparated by at least one 
white space character. 

 

 

 

 
 \S   

 
The opposite of \s, matches any character that is 
not a white space character. 

 
  

 
Foo\S+Bar matches a string containing 
Foo and Bar, with at least one non-white 
space character between them. For 
instance, Foo1234Bar, Foo_Bar, 
FooqwertyBar, and FooBazBar 

 

 

 

 
 \t   

 
Matches the ASCII horizontal tab character.    

 
Tab\tHere matches text with an 
embedded horizontal tab character. 

 
 

 

 
 \w   

 
Matches a word character. This will vary between 
locales, as the alphabet in some areas includes 
characters not present in others. In English, this is 
generally the same as [0-9a-zA-Z_]. 

 

 

 

 
The pattern \w+ matches any word 
without embedded white space. 
Examples include  Linux4You, 
RegexpsAreFun, and so on. 
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 \W   

 
The opposite of \w, matches any character that 
would not be matched by \w. 

 
 

 

 
The pattern \W+ matches any string 
without word characters in it. Examples 
include !<>, \~`, and “ ;” . 

 

 

 

 
 \xyy   

 
Matches the character specified by the two-digit 
hexadecimal number yy. 

 
 

 
 
The pattern \x07 matches the ASCII bell 
character. 

 
 

 

 
 \Z   

 
This is a Perl-ism. This acts like $, but doesn’ t 
match multiple times when the m option is in 
effect. 

 

 

 

 
The pattern .*end\Z matches such strings 
as end, This Is The end, I’m at the 
string’s end, and so on. 

 

 

 

 
 .   

 
Matches any single character Depending on the 
implementa- tion and options given to the regular 
expression engine, this may or may not match a 
newline character.. 

 

 

 

 
Hello.txt matches Hello4txt, Helloqtxt, 
Hello!txt, and even Hello.txt. 

 
  

 
 [ ... ] (character class)   

 
Denotes a character class. This usage gives a 
listing of characters, any of which may be matched 
once. Ranges may also be specified. Negation may 
be specified by using a leading ^ after the opening 
bracket. 

 

 

 

 
Letter199[14-79] matches only 
Letter1991, Letter1994, Letter1995, 
Letter1996, Letter1997, and Letter1999. 
Letter199[^14-79] matches many items, 
such as Letter199Q, Letter1992, 
Letter199!, and many more. 

 

 

 

 
 [[:alnum:]]   

 
Matches alphabetic and numeric characters; the 
same as [[:alpha:][:digit:]] 

 
 

 

 
The pattern Word1[[:alnum:]]+Word2 
matches patterns such as 
Word1HelloWord2, 
Word1123456789Word2, and any others 
with at least one alphanumeric character 
between Word1 and Word2. 

 

 

 

 
 [[:alpha:]]   

 
Matches alphabetic characters. The definition of 
this may vary between locales, but in English, it 
generally means [A-Za-z]. 

 

 
 

 
The pattern Word1[[:alpha:]]Word2 
matches patterns such as 
Word1HelloWord2 and 
Word1GoodbyeWord2, and any others 
with at least one alphabetic character 
between the first and second words. 
Numeric characters do not match this 
pattern. 

 

 

 

 
 [[:blank:]]   

 
Matches horizontal white space characters. 
Currently, this matches only space and tab. 

 
  

 
The pattern Lots[[:blank: 
]]+Of[[:blank:]] Spaces matches patterns 
such as Lots Of Spaces, Lots    Of 
Spaces, and Lots Of    Spaces. 

 

 

 

 
 [[:cntrl:]]   

 
Matches the ASCII control characters, which are 
generally characters 1 through 31 in ASCII. 

 
 

 

 
The pattern Strange[[:cntrl:]]Characters 
matches two words separated by one 
control character. 

 

 

 

 
 [[:digit:]]   

 
Matches any numeric character. This is the same as 
writing [0-9]. 

 
 

 
 
Hi [[:digit:]]+ matches such strings as Hi 
123456789, Hi 12, and Hi 99. 

 
 

 

 
 [[:graph:]]   

 
Matches non-white space characters that are 
printable. This includes, for instance, alphabetic 
characters, numbers, and so on. 

 

 

 

 
The pattern To:[[:graph]] matches a 
string such as To:q, To:5, and so on. 

 
 

 

 
 [[:lower:]]   

 
Matches lower-case alphabetic characters. In 
English locales, this is the same as [a-z]. 

 
 

 

 
The pattern [[:lower:]] matches such 
strings as linuxprogrammingisfun, 
regularexpressionsareuseful, and so on. 

 

 

 

 
 [[:print:]]   

 
Matches printable characters. This is the opposite 
of[[:cntrl:]] 

 
 

 
 
[[:print:]]+ matches almost any string 
that contains plain text characters. 
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 [[:punct:]]   

 
Matches punctuation characters. This can vary 
significantly between locale, but for English 
locations, consider it to be essentially any 
nonalphanumeric keys in the main area of your 
keyboard. 

 

 

 

 
The pattern [[:punct:]] matches such 
characters as %, (, and $. 

 
  

 
 [[:space:]]   

 
Matches white space characters. These might 
include space, tab, carriage return, linefeed, form 
feed, vertical tab, and so on. 

 

 
 

 
Word1[[:space:]]+ Word2 matches two 
words separated by at least one white 
space character. They could perhaps be 
on different lines or even different pages, 
depending on your language and options. 

 

 

 

 
 [[:upper:]]   

 
Matches uppercase letters. The precise listing of 
the letters that match can vary between locale. 

 
  

 
The pattern [[:upper:]]+ matches any 
string consisting solely of uppercase 
characters. Examples include WOW, 
HELLO, LINUX, and GNU. 

 

 

 

 
 [[:xdigit:]]   

 
Matches characters that are valid hexadecimal 
digits. 

 
  

 
The pattern [[:xdigit:]] will match strings 
containing solely hexadecimal 
characters. Examples of these can 
include 01234ABCD, F00F, AA55, and 
FFEF. 

 

 

 

 
 { x}    

 
Matches the preceding character or operator 
exactly x times. 

 
 

 
 
Q{ 5}  matches only the string QQQQQ.    

 
 { x,}    

 
Matches the preceding character or operator at 
least x times. 

 
 

 
 
Q{ 5,}  matches strings such as QQQQQ, 
QQQQQQQ, and QQQQQQQQQQ. 

 
 

 

 
 { x,y}    

 
Matches the preceding character or operator no less 
than x times and no more than y times. 

 
 

 
 
Q{ 3,5}  matches only the strings QQQ, 
QQQQ, and QQQQQ. 

 
 

 

 
 |   

 
Denotes alternation in a pattern, used to specify 
multiple options for matches at a particular point. 
Unless used inside the grouping operator, ( ... ), the 
entire regular expression is split into pieces, any of 
which will be considered a successful match. 

 

 

 

 
Report.|Memo199. matches such strings 
as ReportA, Memo1999, Report2, and 
Memo199a. 

 

 
 

 
 ?   

 
Indicates that the preceding operator should match 
as few times as possible while still allowing the 
regular expression to find a match. This is valid in 
Perl only. 

 

  

 
The pattern .+?(Q+) ensures that the 
trailing Q characters in the string are 
returned. With this question-mark 
operator, a string such as LinuxQQQQ 
returns the QQQQ string. Without it, the 
same string returns only a single Q 
because the .+ before matches the 
remaining ones. 

 

 

 

 
 $   

 
Matches the end of the current line. This does not 
correspond directly to any particular character; it is 
simply used to match the end of the line. Language 
options and imple- mentation details may modify 
the notion of line. 

 

 

 

 
Linux.$ matches only the strings that end 
with the word Linux and then one other 
character. 

 

 
 

 
 ^   

 
Matches the beginning of the current line. This 
does not directly correspond to any particular 
character; it is simply used to match the beginning 
of a line. Language options and implementation 
details may modify the notion of line. 

 

 

 

 
^Hello matches only those lines whose 
first five characters spell Hello. 

 
  

 
 *    

 
Modifies the behavior of the immediate preceding 
character or operator to match 0 or more times. 

 
 

 
Document.*html matches any string 
beginning with Document and ending 
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(The standard behavior is to match exactly 1 time.)  with html, including such examples as 
Document. html, Document12.html, 
Document135html, and even 
Documenthtml.  

 
 ( ... )   

 
This operator serves two functions: 1) it acts as a 
grouping operator, restricting the boundaries of the 
alternation operator; and 2) it is used to denote 
interesting segments of the regular expression, 
which are then processed in an implementation-
specific way such as setting special variables or 
returning arrays. 

 

 

 

 
(Memo|Report)20.\.txt matches 
Memo201.txt, Report20a.txt, and 
Report209.txt. Furthermore, the 
matching text for the alternation (either 
Memo or Report) will be returned or 
assigned to a variable, depending on the 
language or implementation in use. 

 

 

 

 
 +   

 
Matches the immediate preceding character or 
operator 1 or more times. 

 
 

 
 
7+ matches strings such as 7, 77, 77777, 
and 7777777. 

 
 

 

 
     
 
 An introduction to egrep   
 

 

One of the most basic, and most useful, tools that you will find for doing simple pattern matching is grep. There is an extension to 
grep, named egrep that supports more powerful pattern matching like the regular expressions in other languages such as Perl. On 
many Linux systems, grep is actually the same as egrep. However, in order to maintain portability, it’s a good idea to get into the 
habit of using egrep when you want to use sophisticated regular expressions. 

 

 
 

 
The egrep tool is fundamentally simple. You give it a pattern (regexp) to look for and some data in which to look. It then displays 
all lines in the file that the pattern is capable of matching. For such a simple concept, it’s amazing the power that is behind egrep. 

 
 
 

 
As an example, I’ ll look at some ways to manipulate the /etc/passwd file. For this book, I have selected a few lines from a real 
passwd file that I can use as examples. If you want to follow along and get the same results, you should type the following data to 
your favorite editor: 

 

 
 
 root:x:0:0:root:/root:/bin/bash   
 daemon:x:1:1:daemon:/usr/sbin:/bin/sh   
 bin:x:2:2:bin:/bin:/bin/sh   
 sys:x:3:3:sys:/dev:/bin/sh   
 sync:x:4:100:sync:/bin:/bin/sync   
 games:x:5:100:games:/usr/games:/bin/csh   
 man:x:6:100:man:/var/catman:/bin/sh   
 lp:x:7:7:lp:/var/spool/lpd:/usr/bin/tcsh   
 www-data:x:33:33:www-data:/var/www:/bin/sh   
 pilot:x:1002:1002:Pilot Guy,,,:/home/pilot:/bin/bash   
 

 
You can save the file with the name passwd in your home directory, for example, and it will work fine for you with these 
examples. If you prefer to use your own passwd file, note that it may not have some of the particular situations that will arise in 
these examples. However, you can still try to follow along; however, cd to /etc first. 

 

 
 

 
Given the preceding snippet, some of these examples may seem a bit trivial. However, when you realize that some passwd files 
can contain thousands of entries, searching them like this is a powerful capability indeed. 

 
 
 

 
When you invoke egrep, it expects at least one parameter: the pattern to look for. If you run it like this, you will need to pipe the 
data into it, or redirect its standard input. Alternatively, you may specify one or more filenames on its command line, and it will 
read directly from those files. 

 

 
 

 
For the first egrep example, start by finding a way to get a list of all the people that use the csh shell. A first try might look like 
this: 

 
 
 
 $ egrep csh passwd   
 games:x:5:100:games:/usr/games:/bin/csh   
 lp:x:7:7:lp:/var/spool/lpd:/usr/bin/tcsh   
 
 Close, but not quite right. Notice how it found the string csh in the second displayed line, so it was displayed as well. You need to  
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find a way to narrow it down to find only the csh users. By using regular expressions, you can do that. The key is to match the 
string :/bin/csh when it occurs at the end of the line. For example:  

 
 $ egrep ‘ :/bin/csh$’  passwd   
 games:x:5:100:games:/usr/games:/bin/csh   
 

 

That’s better! I need to explain a few details about this example, though. First, note the usage of the dollar sign at the end of the 
pattern. If you look up that character in Table 3-1, you’ ll notice that it is used to match the end of the line. In this case, you need to 
be sure that the text being matched is at the end of the line. The colon before the pattern is not a special regular expression 
character; it simply matches the colon in the passwd file. If you didn’ t explicitly match the colon, then paths such as 
/usr/local/bin/csh could match as well. Finally, note that the pattern is in single quotes. This is because the dollar sign is also a 
shell special character. To prevent the shell from trying to interpret the dollar sign as a shell character, it’s a good idea to place any 
pattern containing such characters in single quotes. 

 

 
 
 An introduction to sed   
 

 

Sed is so named because it is a Stream Editor. That is, sed is used to perform automated edits on a data stream, and write the 
results to standard output. Sed is, actually, a simplistic programming language. In this chapter, I’ ll use only one or two of these 
features. The features I’ ll explore, however, do not require you to learn the programming language, and in fact, map directly into 
Perl statements. Therefore, you’ ll have some knowledge for dealing with Perl regular expressions later. 

 

 
 

 
Instead of giving sed a pattern, like you do with egrep, you give it a command. This command could be anything ranging from 
deleting a line to a search and replace request. I will use this search and replace feature, affectionately known to sed aficionados as 
s///. 

 

 
 
 The syntax of s/// is this:   
 
 s/search-pattern/replacement-pattern/[options]   
 
 For the time being, the options will not be important. Here’s a look at a simple example:   
 
 $ sed s/csh/CSH/ passwd   
 root:x:0:0:root:/root:/bin/bash   
 daemon:x:1:1:daemon:/usr/sbin:/bin/sh   
 bin:x:2:2:bin:/bin:/bin/sh   
 sys:x:3:3:sys:/dev:/bin/sh   
 sync:x:4:100:sync:/bin:/bin/sync   
 games:x:5:100:games:/usr/games:/bin/CSH   
 man:x:6:100:man:/var/catman:/bin/sh   
 lp:x:7:7:lp:/var/spool/lpd:/usr/bin/tCSH   
 www-data:x:33:33:www-data:/var/www:/bin/sh   
 pilot:x:1002:1002:Pilot Guy,,,:/home/pilot:/bin/bash   
 

 
This command went through the input, searching for the csh text on each input line. When the text was found, it was changed to 
CSH and then displayed. You can also do more interesting things. For instance, if you want to delete everything from the input 
except the shell, you can run this: 

 

 
 
 $ sed s/^ .* :// passwd   
 /bin/bash   
 /bin/sh   
 /bin/sh   
 /bin/sh   
 /bin/sync   
 /bin/csh   
 /bin/sh   
 /usr/bin/tcsh   
 /bin/sh   
 /bin/bash   
 

 
What happened here? Well, first, sed is given a pattern to match. In this case, that pattern indicated to start matching with the 
beginning of the line, and continue up until and including the last colon on the line. This leaves only the shell that is not matched. 
Then, sed is told to replace the matched portion with an empty string—which has the effect of deleting that part of the line. 
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You could achieve the opposite effect by matching only the text after the final colon. Because of this, you need to match all text 
that is not a colon and occurs only prior to the end of the line. Here’s one way to do that: 

 
 
 
 $ sed ‘s/[^ :]*$//’  passwd   
 root:x:0:0:root:/root:   
 daemon:x:1:1:daemon:/usr/sbin:   
 bin:x:2:2:bin:/bin:   
 sys:x:3:3:sys:/dev:   
 sync:x:4:100:sync:/bin:   
 games:x:5:100:games:/usr/games:   
 man:x:6:100:man:/var/catman:   
 lp:x:7:7:lp:/var/spool/lpd:   
 www-data:x:33:33:www-data:/var/www:   
 pilot:x:1002:1002:Pilot Guy,,,:/home/pilot:   
 

 
In this case, a particular feature of the character class is used to match everything except the colon. The asterisk indicates that this 
character class should match zero or more times, up until the end of the line. Then, the matched part is deleted. 

 
 
 
 Regular  expressions in Per l   
 

 

Perl is a full-fledged modern programming language. One of its most useful features is its integrated regular expression support, 
which is quite powerful. Perl’s regular expression support enables you to generate an array full of values based on picking apart 
data with a regular expression, all in one single command. This functionality, as well as many more advanced uses for it, makes a 
very powerful solution in Perl. 

 

 
 
     
 
Cross-Reference  
 
 Perl programming will be discussed in more detail in Chapter 20, “ Introducing Perl.”    
 
     
 

 
For now, I am going to introduce to you a Perl program that enables you to see how Perl evaluates your regular expressions. Don’ t 
worry if you don’ t understand the code in this program now; I’ ll analyze it (and make some improvements) later in Chapter 21, 
“Manipulating Data with Perl.”  Type the following text using your favorite editor, and save the result as pattest: 

 

 
 
 #!/usr/bin/perl   
       
 while (1) {    
   print “Enter pattern” ;   
   print “ , or . to re-use previous,”  if ($LASTREGEXP);   
   print “  or leave empty to exit:\n” ;   
   print “> “ ;   
   $REGEXP = <STDIN>;   
   chomp $REGEXP;   
   if ($REGEXP eq ‘ .’ ) {    
     $REGEXP = $LASTREGEXP;   
   }    
   exit (0) unless ($REGEXP);   
   print “Enter string to match” ;   
   print “  or . to re-use previous”  if ($LASTSTRING);   
   print “ :\n” ;   
   print “> “ ;   
   $STRING = <STDIN>;   
   chomp $STRING;   
   if ($STRING eq ‘ .’ ) {    
     $STRING = $LASTSTRING;   
   }    
       
   $LASTREGEXP = $REGEXP;   
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   $LASTSTRING = $STRING;   
       
   @MATCHES = $STRING =~ /$REGEXP/;   
   if ($#MATCHES > -1) {    
     print “Successful match!\n” ;   
     print “There were “  . ($#MATCHES) + 1 .    
 “  strings returned: \n” ;   
     $counter = 0;   
     foreach $MATCH (@MATCHES) {    
       $counter++;   
       print “String $counter: $MATCH\n” ;   
     }    
   }  else {    
     print “There was not a successful match.\n” ;   
   }    
   print “ \n\n” ;   
 }    
 
 Now, as with shell scripts, you need to mark the program executable. Do so by typing the following shell command:   
 
 $ chmod a+x pattest   
 
 Now, it’s time to give our pattern-testing program a try. Here’s a sample session with it:   
 
 $ ./pattest   
 Enter pattern or leave empty to exit:   
 > ^Linux Is.*Great$   
 Enter string to match:   
 > Linux IsGreat   
 Successful match!   
 There were 1 strings returned:   
 String 1: 1   
       
       
 Enter pattern, or . to re-use previous, or leave empty to exit:   
 > .   
 Enter string to match or . to re-use previous:   
 > Linux Is Really Great   
 Successful match!   
 There were 1 strings returned:   
 String 1: 1   
       
       
 Enter pattern, or . to re-use previous, or leave empty to exit:   
 > .   
 Enter string to match or . to re-use previous:   
 > Linux Is Really Great!   
 There was not a successful match.   
       
       
 Enter pattern, or . to re-use previous, or leave empty to exit:   
 >    
 

 
Here, I supplied one pattern for testing; as a shortcut, you can simply use a period in place of the pattern thereafter—this can really 
save some tedious typing. Then, I tried three strings with that pattern. Each time, pattest displayed a correct result; the third string 
will not match because of the trailing exclamation point; the pattern indicated that Great must be the last word on the line. 

 

 
 
 When you place items inside the grouping operator, Perl returns them in array form. Here is one example:   
 
 $ ./pattest   
 Enter pattern or leave empty to exit:   
 > ^Linux(.* )Great$   
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 Enter string to match:   
 > Linux Is Great         
 Successful match!   
 There were 1 strings returned:   
 String 1:  Is   
 

 
Because I placed the match inside of parentheses this time, the effect is that any text that I insert between the two words will be 
returned in array form. The pattest program then displays each item in the array, so you can see exactly what Perl is returning. 

 
 
 

 
You can use pattest to confirm the validity of the rest of the regular expression examples in this chapter. Better yet, you can use it to 
experiment with regular expressions on your own.  

Understanding Character  Classes   
 

 

Character classes are devices used in regular expressions for specifying which characters are acceptable at a particular point, or 
which are not. With character classes, you can specify characters individually or give a range of allowable characters. 
Furthermore, you can negate the meaning of your character class, indicating which characters are not acceptable instead of 
indicating which characters are acceptable. 

 

 
 

 
A simple usage might be to specify a range of allowable numbers. This might occur, for instance, when you are looking for data 
with a specific date. Here’s an example: 

 
 
 
 Letters from 199[0-246-9]   
 

 
This regular expression indicates that and of the characters between 0 and 2, 6, and 9, or the number 4 will be acceptable at that 
position. Thus, the strings that this regular expression will match include: 

 
 
 
 Letters from 1990   
 Letters from 1991   
 Letters from 1992   
 Letters from 1994   
 Letters from 1996   
 Letters from 1997   
 Letters from 1998   
 Letters from 1999   
 

 
This type of usage is fairly straightforward. You can, however, combine character classes to form new types of patterns. For 
instance, consider the following regular expression: 

 
 
 
 Letters from 19[89][2-5]   
 

 
With this pattern, any year whose third digit is an 8 or 9 and final digit falls between 2 and 5, inclusive, will be matched. Thus, 
these are the potential matches for the previous pattern: 

 
 
 
 Letters from 1982   
 Letters from 1983   
 Letters from 1984   
 Letters from 1985   
 Letters from 1992   
 Letters from 1993   
 Letters from 1994   
 Letters from 1995   
 

 
So, for each option in the first character class, each option in the second is valid. You can think of it in terms of the regular 
expression engine evaluating each option in the second for each option in the first, although generally this would not be the 
algorithm used internally by the engine. 

 

 
 

 
Another feature presented by the character class is negation. That is, you can specify which characters should not occur at a 
particular location. Negation is indicated by a leading caret (^) in the character class. Here’s an example: 

 
 
 
 Letters from 199[^0-246-9]   
 
 This particular regular expression matches so many strings that it’s not practical to list all of the possibilities here, but here are  
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some of the strings that match:  
 
 Letters from 1995   
 Letters from 199!   
 Letters from 199z   
 Letters from 199=   
 Letters from 1993   
 Letters from 199\   
 

 

So, you can see that everything except those particular characters listed are valid. This may not be the desired effect in this 
situation, but it can be helpful often with parsing. For instance, earlier I used such a syntax to match everything except for a colon. 
You can use that kind of syntax to your benefit, often combined with quanti-fiers. For instance, you may want to match a number 
of characters that are not spaces. You can simply use negation with a character class along with a quantifier indicating how many 
characters to match, as discussed in the next section. 

 

 
 

 
As a final note, if you want to include a dash (–) in your character class, you can make it either the first or the last character in the 
class. If you want to include the caret in your class, you can make it the last character in the class—or any position other than the 
first character. 

 

 
 
 For instance, the following character class allows both to match:   
 
 [A-Za-z^-]   
 
 If you try it out with pattest, you can see the result:   
 
 $ ./pattest   
 Enter pattern or leave empty to exit:   
 > [A-Za-z^-]   
 Enter string to match:   
 > A   
 Successful match!   
 There were 1 strings returned:   
 String 1: 1   
       
       
 Enter pattern, or . to re-use previous, or leave empty to exit:   
 > .   
 Enter string to match or . to re-use previous:   
 > -   
 Successful match!   
 There were 1 strings returned:   
 String 1: 1   
       
       
 Enter pattern, or . to re-use previous, or leave empty to exit:   
 > .   
 Enter string to match or . to re-use previous:   
 > ^    
 Successful match!   
 There were 1 strings returned:   
 String 1: 1   
       
       
 Enter pattern, or . to re-use previous, or leave empty to exit:   
 > .   
 Enter string to match or . to re-use previous:   
 > 5   
 There was not a successful match.    
       
       
 Enter pattern, or . to re-use previous, or leave empty to exit:   
 >     
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From these results, you can verify that indeed the dash and the caret are allowed to match this particular character class, and those 
characters not specified are correctly prevented from matching.  

Using Quantifiers   
 

 
When you are looking for data in a regular expression, you frequently need to specify how many times certain characters may 
appear. For instance, you might want to indicate that the pattern matcher should skip over any number of spaces when searching 
for data. 

 

 
 

 
Quantifiers provide a way to do this. They work by specifying how many times the immediately preceding character or operator is 
supposed to match. One of the most frequently used quantifiers is the asterisk (*). This indicates that the preced-ing item should 
match zero or more times. Here are some examples. 

 

 
 
 Hi*   
 

 
This regular expression matches strings such as Hi, H, Hii, Hiiiiiii, and so on. Notice that because the asterisk allows the i to match 
zero times, the H all by itself matches. 

 
 
 

 
Whereas this may be useful in some cases, quantifiers frequently are combined with other items to achieve more powerful results. 
For instance, the period means that the regular expression should match any single character at that position. So, adding an asterisk 
after it means that the regular expression matches any number of characters. As an example, consider this: 

 

 
 
 Linux Is.*Great   
 
 This regular expression will match many various strings. Some of them are:   
 
 Linux IsGreat   
 Linux Is Really Great   
 Linux Is123456789Great   
 
 Basically, this regular expression allows anything (including nothing) to be inserted between Is and Great.   
 

 

Sometimes, matching zero or more times is not appropriate. In many cases when parsing text files, you face a situation in which 
you know white space will separate different values, but you don’ t know how much white space there will be. In this case, you 
have to match at least one character of white space, so the asterisk isn’ t appropriate. Instead, you can use the plus character (+). 
For instance: 

 

 
 
 Linux Is.+Great   
 
 This regular expression will match the following:   
 
 Linux Is Really Great   
 Linux Is123456789Great   
 

 
And, of course, there are many other strings that can match. Note, though, that Linux IsGreat will no longer match this regular 
expression. The reason is that, unlike the asterisk, the plus character must have something in its place. 

 
 
 

 

Another example of quantifiers are the braces. These enable you to specify precisely how many times the preceding item can 
match. You can specify either one or two numbers inside the braces. If you specify one number only, then you ask that the 
previous item be matched exactly that many times. If you add a comma after that number, you ask that the previous item be 
matched no less than the number of times indicated. Finally, if you provide two numbers, you ask that the previous item be 
matched no less than the first number or no greater than the second. You may also want to note that the asterisk and the plus 
characters are equivalent to { 0,}  and { 1,} , respectively. 

 

 
 
 Here are some examples of the braces in action:   
 
 Report-.{ 3,} -finished   
 Report-.{ 3,9} -finished   
 Report-.{ 9} -finished   
 
 The first line of text there matches anything with at least three characters in the middle. Some matches include the following:   
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 Report-Nov-finished   
 Report-November-1999-finished   
 Report-+=?-finished   
 

 
The second line matches anything that has at least three characters but no more than nine in the center. The final line matches 
anything that has exactly nine characters in the center. 

 
 
 

 
Another powerful feature of quantifiers is that they can be combined with other operators to greatly extend their capabilities. For 
instance, you could use the following to pick apart a passwd file line in Perl: 

 
 
 
 ^([^:]*):([^:]*):([^:]*):([^:]*):([^:]*):([^:]*):([^:]*)$   
 

 

This looks like a strange, convoluted mess, but taken one piece at a time, it makes sense. First, be aware that the pattern needs to 
match the entire line, so the start-of-line (^) and end-of-line ($) operators are used. Next, you need to match seven different 
sections of data for which any character except the colon is valid. Some of these sections could be empty; for simplicity’ s sake, we 
assume that all of them could be here. So, to match everything except the colon, you use the character class [^:]. Then, to indicate 
that character class applies to zero or more charac-ters, the asterisk follows. These things are enclosed in parentheses, which 
indicate to Perl that they should be set in the resulting array. Finally, between each  

 

 
 

 
parenthesis group, there is a colon, which matches the separator. Let’s see if pattest is capable of correctly understanding this 
pattern: 

 
 
 
 $ ./pattest   
 Enter pattern or leave empty to exit:   
 > ^([^:]*):([^:]*):([^:]*):([^:]* ):([^:]*):([^:]*):([^:]*)$   
 Enter string to match:   
 > pilot:x:1002:1002:Pilot Guy,,,:/home/pilot:/bin/bash   
 Successful match!   
 There were 7 strings returned:   
 String 1: pilot   
 String 2: x   
 String 3: 1002   
 String 4: 1002   
 String 5: Pilot Guy,,,   
 String 6: /home/pilot   
 String 7: /bin/bash   
 

 
Indeed, the match was successful! Notice how each of the seven components of the string is separated into its own element in the 
array. 

 
 
 

  Note  
Perl also provides a split operator that can accomplish this same task with less effort. For details, see the Perl 
language notes later in this chapter. 

 
 
 

 
Now that you managed to dissect a passwd file line, I’ ll move on to something more complex: ls -l output. First, I’ ll analyze the 
output in terms of ls -l. For your convenience, here’s a reproduction of the data set that was printed from ls -l earlier in this 
chapter:  

 

 
 
 drwxr-xr-x   3 root     root         1024 Feb  7 16:42 CORBA   
 -rw-r--r--   1 root     root         6350 Jun  9 16:01 Muttrc   
 -rw-r--r--   1 root     root         1646 Jan 11  1998 adduser.conf   
 drwxr-xr-x   2 root     root         1024 May 24 19:01 ae   
 -rw-r--r--   1 root     root          233 Oct 26  1998 aliases.safe   
 lrwxrwxrwx   1 root     root           27 Jul 12 07:23 localtime -> /usr/share/z   
 drwxr-xr-x   5 root     root         1024 Jul 18 10:19 texmf   
 -rw-r--r--   1 root     root          373 Feb 16 11:03 updatedb.conf   
 -rw-r--r--   1 root     root          222 Sep 30  1998 upload.sites   
 drwxr-xr-x   4 uucp     uucp         1024 Apr 30 20:31 uucp   
 -rw-r--r--   1 root     root         4623 Feb 10 15:18 vnc.conf   
 -rw-r--r--   1 root     root         3293 Sep 28  1998 wgetrc   
 drwxr-xr-x   3 root     root         1024 Oct 30  1998 xemacs   
 -rw-r--r--   1 root     root           56 Feb 17 22:18 ytalkrc   
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Our analysis can begin with the basics. The file contains various columns, separated by white space—either spaces or tabs. In Perl, 
the \s operator repre-sents white space, so this is convenient. In other languages, you’ ll have to use a character class for that 
instead. Now then, looking at the first five fields on each line, you can tell that they come in a regular order: permissions, number 
of hard links, name of the user owning the file, name of the group owning the file, and the file size. The next part is trickier: the 
date. However, as long as you don’ t care about exactly what the date is, you will note that with either date format, there are three 
separate items. The line is then terminated by the filename—usually. If there’s a symbolic link, that accounts for one more 
element. 

 

 
 

 
Because it took a whole paragraph to describe the format, you might imagine that the corresponding regular expression would be 
somewhat complex. That is, in fact, correct. Here it is: 

 
 
 
 ^(\S+)\s+(\S+)\s+(\S+)\s+(\S+)\s+(\S+)\s+(\S+\s+\S+\s+\S+)   
 \s+([^>]+)( -> .+){ 0,1}$   
 

 
That’s a monster of a regular expression! Even though it appears as two lines here, it is all a single expression. I’ ll look through 
each part: 

 
 
 
  •  The leading ^ matches the start of the line.   
 

  

• 

 

Now, you need to match the mode and permissions area. You can do this by matching everything that is not white space. In 
Perl, there is a \S operator for this purpose. This is then enclosed in parentheses to indicate that it ought to be returned to Perl 
for later usage. After all of the permissions data is matched, you have to match the white space separating it from the next 
entry, which accounts for the \s+. In Perl, \s is used to match white space. 

 

 
 

  
• 

 
A similar (\S+)\s+ pattern is used to match the hard link count, and return the count (without the trailing white space) into an 
array. 

 
 
 
  •  The same (\S+)\s+ pattern is also used for the name of the owner, the group, and the file size.   
 

  
• 

 
When you arrive at the date, the following is used to match it: (\S+\s+\S+\s+\S+) This part of the expression matches three 
separate fields, separated by at least one character of white space. Because all of these are inside of parentheses, the three 
fields are returned into one position in the array. 

 

 
 
  •  Then, a \s+ matches the space between the date and the filename.   
 

  

• 

 

([^>]+) is the pattern that matches the filename. You may be wondering why I didn’ t simply use (.+) here instead of the 
character class. The reason is that the symbolic link is optional. Normally, regular expression operators are greedy; because the 
symbolic link is optional, the .+ would have slurped up all the remaining text (including any symbolic link, if any) up until the 
end of the line. By excluding the greater-than sign, through the use of the [^>] character class, you can force the engine to stop 
matching when it gets to that spot. Because text remains after it, the engine backtracks to the point where the optional 
symbolic link pattern can take effect. 

 

 
 

  
• 

 
The optional symbolic link is matched with ( -> .+){ 0,1} . Because the symbolic link is optional, the { 0,1}  quantifier follows 
the parentheses indicating this. Inside the parentheses, there is the simple matter of matching the -> symbol and any text that 
follows it. 

 

 
 
  •  Finally, a dollar sign concludes the line.   
 

 
Try some examples of this in the pattest program. That program shows you exactly what is returned into the array by the 
parentheses: 

 
 
 
 $ ./pattest   
 Enter pattern or leave empty to exit:   
 > ^(\S+)\s+(\S+)\s+(\S+)\s+(\S+)\s+(\S+)\s+(\S+\s+\S+\s+\S+)   
 \s+([^>]+)( -> .+){0,1}$      
 Enter string to match:   
 > drwxr-xr -x   3 root     root         1024 Feb  7 16:42 CORBA   
 Successful match!   
 There were 8 strings returned:   
 String 1: drwxr-xr-x   
 String 2: 3   
 String 3: root   
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 String 4: root   
 String 5: 1024   
 String 6: Feb  7 16:42   
 String 7: CORBA   
 String 8:    
 

 
The pattern worked! All of the components of the listing were separated into separate parts. For the next test, try a line with a date 
in the other format. 

 
 
 
 Enter pattern, or . to re-use previous, or leave empty to exit:   
 > .   
 Enter string to match or . to re-use previous:   
 > -rw-r--r --   1 root     root         3293 Sep 28  1998 wgetrc   
 Successful match!   
 There were 8 strings returned:   
 String 1: -rw-r--r--   
 String 2: 1   
 String 3: root   
 String 4: root   
 String 5: 3293   
 String 6: Sep 28  1998   
 String 7: wgetrc   
 String 8:    
 

 
Once again, everything parsed correctly. Notice how string 8 is always empty; this is where the symbolic link will go if it is 
present. Try a sample that has a symbolic link in it: 

 
 
 
 Enter pattern, or . to re-use previous, or leave empty to exit:   
 > .   
 Enter string to match or . to re-use previous:   
 > lrwxrwxrwx   1 root     root           27 Jul 12 07:23 localtime -> /usr /share/zoneinfo/CST6CDT   
 Successful match!   
 There were 8 strings returned:   
 String 1: lrwxrwxrwx   
 String 2: 1   
 String 3: root   
 String 4: root   
 String 5: 27   
 String 6: Jul 12 07:23   
 String 7: localtime   
 String 8:  -> /usr/share/zoneinfo/CST6CDT   
 

 

Success again! This time, the string 8 is filled in with the appropriate data from the symbolic link. Notice, though, that the -> 
symbol was included here. With the knowledge of regular expressions presented thus far, it’s nontrivial to rid yourself of it. 
However, one option you do have in these situations is to use alternation (discussed later in this chapter) and actually provide two 
separate options for evaluation in a single regular expression. 

 

 
 

 

From this experience, you can see how simply combining quantifiers with other syntactic elements can provide you with much 
power. You successfully parsed, with one regular expression, the text from a listing containing either nine or ten fields (depending on 
whether or not a symbolic link is present) and a total of four different variations. All of this was parsed with a piece of code that 
occupies slightly more than one line. Parsing the same text requires many more lines, and most likely even greater complexity, in a 
language that does not have a pattern-matching capability such as regular expressions.  

 Introducing Alternation and Grouping   
 

 

You have already seen how character classes work and how extremely powerful then can be. This is great for many types of 
matching. However, there is an addi-tional situation not covered well by character classes. If you have a set of different options for 
strings, instead of single characters, that you need matched, character classes do not really help you. This is where alternation 
comes in. With this capa-bility, you can specify several different options for a match. These options can be as long as you wish, 
and represent different options the engine can use when trying to find a match for your pattern. 

 

 
 

 
What’s more, though, is that these options can use all the standard regular expression operators you’ve already learned about. That 
is, you can effectively get a regular expression inside of a regular expression! 
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The most basic usage of alternation is to provide several separate complete regular expressions. This is done by using the pipe 
symbol, |, to separate the various options from each other. For instance: 

 
 
 
 Letters from 199[0-246-9]|Doc-.{ 3} -finished   
 
 This generates matches such as the following:   
 
 Letters from 1990   
 Doc-123-finished   
 Letters from 1992   
 Letters from 1994   
 Doc-GCC-finished   
 Letters from 1995   
 Letters from 1996   
 Letters from 1999   
 Doc-----finished   
 

 
Notice how extremely different these things are, and how you could match such drastically different strings with a single regular 
expression. If your data is highly variable, or if it arrives in an unknown order, you can use alternation to help sort it out. This 
particular usage of alternation is fairly straightforward. 

 

 
 

 

However, alternation is rarely used to split an entire regular expression into pieces. Rather, it is more commonly used to split up 
pieces inside of a larger expression. To do this, you have to define boundaries of what should be split. These are defined when you 
use grouping. Grouping separates part of the regular expression to which you want to apply alternation. You can think of it as a 
similar, but much more powerful, equivalent to Bash’s { ...}  operator. Here’s an example: 

 

 
 
 (Letter|Report)s (to|from) 199[0-246-9]   
 

 
This regular expression can match a total of 32 (2 letter or report times 2 to or from times 8 digits) different strings. Some of the 
matching ones include: 

 
 
 
 Letters from 1990   
 Reports from 1992   
 Letters to 1999   
 Reports to 1996   
 Letters from 1992   
 Reports from 1994   
 

 
This is a fairly basic usage of grouping compared to some of the more advanced things that are possible, when data arrives in 
different formats.  

Suppor ting Regular  Expressions in L inux   
 

 
Many different Linux languages have support for regular expressions. This wide support is part of their appeal. However, there are 
differences between the support in these various languages. Some add their own special extensions that they support. A few of 
these differences are noted here. 

 

 
 
 Per l   
 

 
Of late, Perl has been pushing the envelope with regular expressions, often intro-ducing new features before they appear in other 
regular expression systems. For details on Perl regular expressions, see the perlre(1) manpageper lre. Many of the Perl syntax 
options have been mentioned in this chapter, but there are some additional things to mention as well. 

 

 
 
 $1 Var iables   
 

 
Perl not only returns an array of matching values when you use the parentheses; it sets special variables as well. These variables 
have names such as $1, $2, $3, and so on, each corresponding to the appropriate match in the string. For instance, consider this 
code: 

 

 
 
 #!/usr/bin/perl   
       
 $val = <STDIN>;   
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 chomp $val;   
 @VALUES = $val =~ /^Perl is (\S+)\s(.+)$/;   
 print “Values, first: $VALUES[0]; second: $VALUES[1]\n” ;   
 print “Variables, first: $1; second: $2\n” ;   
 
 When run, it produces a result like this:   
 
 $ ./specialvar .pl   
 Per l is very nice!   
 Values, first: very; second: nice!   
 Variables, first: very; second: nice!   
 

 

So you can see that the variables and the array hold the same thing. There are some things to watch out for with the variables, 
however. The first is that they are overwritten automatically with the next regular expression. Because regular expressions are used 
quite frequently in many Perl programs, you may be in for a surprise if you try to access a variable, but it has been replaced with 
data from a different regular expression. The second is that, if you want to pass along a group of matches to somewhere else, an 
array is better for the task anyway. 

 

 
 

 
The array does have its downsides. For one, if you are simply looking for a quick match that you’ ll use immediately afterwards, 
it’s an extra hassle to create an array when $1 will do. There can also be a slight performance hit if you do this when the $1 
variables will be sufficient. 

 

 
 
 Regular  Expression Operators   
 

 
In Perl, there are two main regular expression operators: m// and s///. In this chapter, we have been using the m// operator. The 
leading m is implicit if it is not specified and you are using slashes to delimit the regular expression. The m// is the matching 
operator, and s/// is the replacement operator, which works like the one in sed. 

 

 
 

 
Each of these can take options, which are specified immediately following the closing slash. You may specify as many as you 
want; simply put the corresponding character after the slash with no spaces or other separation between them. Table 3-2 lists the 
options available to you in Perl. 

 

 
 
 Table 3-2:  Per l Regular  Expression Options   
 
     
 
 Option   

 
Behavior    

 

 
     
 
 C   

 
The current position within the search is no longer rewound when the g option is specified. Valid for m// only.   

 

 
 E   

 
Indicates to Perl that the replacement part of the operator should also be treated as a regular expression. Valid 
for s/// only. 

 
 

 

 
 G   

 
Causes Perl to use a global search (or replace for s///). Normally, only the first match is found. With this 
option, Perl continues searching the string for additional possible matches. 

 
 

 

 
 I   

 
Causes the regular expression to match strings without regard to case. That is, suspend the normal case-
sensitive behavior of regular expressions. 

 
 

 

 
 M   

 
Modifies the behavior of ^ and $ such that they match the beginning and end of lines inside the string, instead 
of the beginning and end of the entire string. 

 
 

 

 
 O   

 
Tells Perl that your regular expression should be compiled only one time. This is of primary concern within a 
loop. If your expression remains constant; that is, any interpolated variables do not change during the course of 
the loop, you can tell Perl to only compile the expression once. This gives your program a performance benefit. 

 

 

 

 
 S   

 
Causes the string to be treated as a single line. Operators such as . will now match the newline character.   

 

 
 X   

 
Allow comments and white space inside the regular expression; see the perlre manpage for more details.   
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In addition to these options, you have even more. You can use characters other than slashes for your regular expression delimiters. 
The valid ones are generally the punctuation keys on your keyboard. This is of primary importance when you want to use slashes 
in your pattern (and thus want to avoid having to escape them inside the pattern, which can make the pattern less readable). As an 
example, the following code snippets all match the same thing: 

 

 
 
 /usr\/local\/bin\/.* /   
 m/usr\/local\/bin\/.* /   
 m’usr/local/bin/.* ’    
 
 The split Operator    
 

 

One frequently occurring situation in data parsing is that you need to split data based upon a certain separator. This separator could 
be a single character, as in the colon for the passwd file. Or, it could be a longer string or pattern. With Perl’s split operator, you 
specify the pattern that is used to delimit the different parts. For the passwd file, for instance, this would simply be a colon. This 
pattern is not included in any of the resulting strings themselves; it’ s only used to determine where to break them apart. 

 

 
 

 
Recall the pattest program from earlier. With a few simple modifications, it can become a splittest program. Here is the code for 
splittest: 

 
 
 
 #!/usr/bin/perl   
       
 while (1) {    
   print “Enter split pattern” ;   
   print “ , or . to re-use previous,”  if ($LASTREGEXP);   
   print “  or leave empty to exit:\n” ;   
   print “> “ ;   
   $REGEXP = <STDIN>;   
   chomp $REGEXP;   
   if ($REGEXP eq ‘ .’ ) {    
     $REGEXP = $LASTREGEXP;   
   }    
   exit (0) unless ($REGEXP);   
   print “Enter string to match” ;   
   print “  or . to re-use previous”  if ($LASTSTRING);   
   print “ :\n” ;   
   print “> “ ;   
   $STRING = <STDIN>;   
   chomp $STRING;   
   if ($STRING eq ‘ .’ ) {    
     $STRING = $LASTSTRING;   
   }    
       
   $LASTREGEXP = $REGEXP;   
   $LASTSTRING = $STRING;   
       
   @MATCHES = split(/$REGEXP/, $STRING);   
   print “There were “  . ($#MATCHES + 1) . “  strings returned: \n” ;   
   $counter = 0;   
   foreach $MATCH (@MATCHES) {    
     $counter++;   
     print “String $counter: $MATCH\n” ;   
   }    
   print “ \n\n” ;   
 }    
 

 
You can test the split operator by using a simple regular expression suitable for splitting apart passwd file lines. Remember that the 
regular expression for the split operator is one that matches the delimiter: 

 
 
 
 $ ./splittest   
 Enter split pattern or leave empty to exit:   
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 > :   
 Enter string to match:   
 > pilot:x:1002:1002:Pilot Guy,,,:/home/pilot:/bin/bash   
 There were 7 strings returned:   
 String 1: pilot   
 String 2: x   
 String 3: 1002   
 String 4: 1002   
 String 5: Pilot Guy,,,   
 String 6: /home/pilot   
 String 7: /bin/bash   
 

 
In this case, a single-character regular expression is able to pick apart the passwd file entries—much simpler than the previous one. 
You can try it again on another line, just to make sure it isn’ t a fluke: 

 
 
 
 Enter split pattern, or . to re-use previous, or leave empty to exit:   
 > :   
 Enter string to match or . to re-use previous:   
 > www-data:x:33:33:www-data:/var /www:/bin/sh   
 There were 7 strings returned:   
 String 1: www-data   
 String 2: x   
 String 3: 33   
 String 4: 33   
 String 5: www-data   
 String 6: /var/www   
 String 7: /bin/sh   
 

 
Again, the match is successful. Now, try something more complicated. You can give pattest a regular expression to match, and 
then modify passwd file lines a bit to see what happens: 

 
 
 
 $ ./splittest   
 Enter split pattern or leave empty to exit:   
 > [:|]   
 Enter string to match:   
 > pilot:x:1002:1002|Pilot Guy|/home/pilot|/bin/bash   
 There were 7 strings returned:   
 String 1: pilot   
 String 2: x   
 String 3: 1002   
 String 4: 1002   
 String 5: Pilot Guy   
 String 6: /home/pilot   
 String 7: /bin/bash   
 

 
This time, Perl is told to match either the colon or the pipe as a separator. As you can see, when some of the colons are changed to 
pipe symbols in the passwd file line, Perl is still able to split the line apart. 

 
 
 
 sed and awk   
 

 

These two languages use essentially the same regular expression support, which is fairly standard regular expression syntax. Some 
important additions to these languages are the character class operators such as [[:alpha:]]. These are useful not only as shortcuts, 
but also because the notion of what constitutes an alpha-numeric character varies between locales. For instance, some languages 
contain characters with umlauts, while English does not. Using simply [A-Za-z] can mean that your programs will parse data 
incorrectly when used outside of English-speaking areas. 

 

 
 
 The info page for gawk (GNU awk) describes regular expressions as used in both sed and gawk.   
 
 C/C++   
 

 
Neither C nor C++ has built-in support for regular expressions. However, several libraries are available to add such support. One that 
is recommended these days is Philip Hazel’s Perl-Compatible Regular Expression (pcre) library. It comes with some distributions. If 
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yours doesn’ t have it, you may find it via anonymous FTP to cus.cam.ac.uk in the directory /pub/software/programs/pcre.  
Summary   
 
 This chapter discussed the usage of regular expressions. Specifically, you learned:   
 
  •  Parsing jobs find patterns in data.   
 
  •  Regular expressions are used to indicate what these patterns are.   
 
  •  Many different languages have regular expression support, and there are some differences between their implementations.   
 
  •  A tool called egrep enables you to search through a file for lines matching a certain regular expression.   
 
  •  The sed command enables you to use regular expressions to make modifications to data as it passes through.   
 
  •  Perl has support for regular expressions as an integral part of the language.   
 

  
• 

 
You use character classes to specify which characters can match at a given point. You also can negate them by using the ^ 
symbol. 

 
 
 

  
• 

 
Quantifiers are used to indicate how many times the preceding item can match. When combined with character classes, they 
form a powerful way of matching text. 

 
 
 

  
• 

 
Parentheses can be used both to indicate items to be returned (or placed in a variable) and to indicate grouping. When using 
grouping combined with alternation, you achieve the powerful capability of using a regular expression nested inside another. 

 
 
 
  •  Perl also provides a split command, which is useful when you break apart data that is separated by a certain pattern.   
 
  •  The sed and gawk systems add some unique options that act like a character class.   
 
  •  You can also find regular expression libraries for C.  
Chapter  4: Introducing Emacs   
 
 Overview   
 

 

As you program in Linux, no doubt you will run into the two editors that form the mainstay in the arsenal of Linux and UNIX 
programmers: vi and Emacs, and their derivatives. These two editors have been around for years and predate Linux itself. In this 
chapter, I cover the Emacs editor, which is an IDE (Integrated Development Environment) as well as an editor. You’ ll learn about the 
different flavors of Emacs, how to use the different modes in Emacs, the IDE features of Emacs, and getting help from Emacs.  

Emacs 101   
 

 

Emacs comes in several flavors. Your first task in using the system is going to be picking which flavor to use. The standard 
version is GNU Emacs from the FSF (Free Software Foundation). There are also several derivatives of GNU Emacs that you can 
use. Among them, the most popular is XEmacs. XEmacs is, in large part, compatible with GNU Emacs but adds a much better 
graphical interface to the system. Both XEmacs and GNU Emacs are powerful, full-featured editors with interfaces for both X and 
the console. You may use GNU Emacs instead of XEmacs for the examples in this chapter; the screenshots and the menus will 
look a bit different, but other than that, all will be the same. The two editors are sometimes collectively referred to as Emacsen. 

 

 
 

 
Figure 4-1 shows the startup screen of XEmacs. As soon as you press any key, you will be taken to the *scratch* buffer, which 
you can use as a temporary scratchpad. 
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 Figure 4-1:  The XEmacs startup screen  
    
 
 From here on, the screenshots and examples in this chapter will focus in XEmacs.   
 
 Emacs key notation   
 

 
The first thing you will learn about is the key notation in Emacs. The Emacs key sequence notation is used to specify keyboard 
combinations that are used to invoke commands. They are shown to you by the XEmacs menus, by online help, and by other 
documentation. For the purposes of consistency in this chapter, I will refer to key notation as is done in Emacs and XEmacs. 

 

 
 

 

Emacs and XEmacs were both designed to be completely operable without any sort of GUI or pointing device (such as a mouse). 
As such, you can operate the system completely by using the keyboard. Many programmers prefer to do this, even when running 
the system in a graphical environment, because it is faster than moving the hands from the keyboard to the mouse. Others prefer to 
use the mouse extensively. Either approach is possible; you’ ll learn which you prefer after working with the system for some time. 

 

 
 

 
Because of the tremendous number of features available in the XEmacs system, some have multi-key combinations to access. 
Even if you don’ t like to use these key combinations, you can still use the mouse; or completely reconfigure the keyboard in 
XEmacs. 

 

 
 
 The key notation used in Emacsen is as follows:   
 
  •  Keys that should be pressed simultaneously are separated by dashes.   
 
  •  Keys that should be pressed and then released in a series are separated by spaces.   
 
  •  C is used to represent the Control key.   
 

  
• 

 
M is used to represent the Meta key. On PC keyboards, this will be one of the Alt keys, or perhaps a Windows key, depending 
on how your distribution configures the keyboard. If you can’ t find the key, you can press and release Esc to function as the 
Meta key—in fact, in some terminal situations, this is the only way to do so. 

 

 
 
  •  RET is used to represent your Return or Enter key.   
 
 For instance, this is how you save the current file in Emacs:   
 
 C-x C-s   
 

 
Press Ctrl, and then press X. Do the same for S. Note that it is not necessary to release Ctrl between the two keys; you can simply 
hold it down. Some other applications might describe the same action as Ctrl+X+S. 

 
 
 
 Sometimes, you are asked to type a word. For instance, you might see the following:   
 
 M-x query-replace RET   
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 This means to press M-x (probably Alt+X, or Esc X), and then type the word query-replace, and then press Return (Enter).   
 

 
As an alternative to these key combinations, you can use the menus. For instance, you may navigate to the File menu and select 
Save. The XEmacs menus conveniently list the keyboard shortcuts, so you can pick them up as you go. 

 
 
 

 
Now I will show you how to load a file into XEmacs and edit it. I will use the second example file from Chapter 10, “Debugging 
with gdb;”  if you want to work with the same file on your system, you may find it printed at the end of Chapter 10. 

 
 
 

 

To load the file, you may use C-x C-f from the keyboard. You may also choose Open from the File menu. If you use the former, 
you will be given an area in which to type the filename at the bottom of your XEmacs window; this area is called the minibuffer. If 
you choose to use the menus, and are using X, you will be given a navigation box. You may type the filename or use the mouse to 
find one; highlight and middle-click on your choice. The file will now load into the editor. 

 

 
 

  Tip  
If your mouse has two buttons instead of three, you will not have a middle mouse button. In most cases, you can 
simulate the middle button by pressing the left and right buttons simultaneously. 

 
 
 
 At this point, you should be aware of the following important key combinations:   
 
  •  C-g is a cancel key, which generally exits any special mode you may be in or cancels any current command.   
 
  •  C-x C-c is used to exit Emacs.   
 

  
• 

 
C-h enters the help area. C-h i brings up the GNU info browser; C-h a brings up apropos, which you can use to search for 
information on a topic. 

 
 
 
  •  C-x C-f is used to load a new file into Emacs.   
 
  •  C-x C-s is used to save the current file.   
 
  •  C-x k is used to tell Emacs to close the current buffer.   
 
 Navigation   
 

 

When you run Emacs or XEmacs under X, many of the keys you may be accustomed to already will work. These include the 
arrow keys, Page Up, Page Down, Backspace, Home, End, Insert, Ctrl+Home, and Ctrl+End. Although this is great when you run 
Emacs or XEmacs under X, it is not so great when you run these editors in a terminal. Many terminal emulation programs do not 
have the correct implementation of these keys, or the keys are simply not defined for a given terminal. In those cases, you can use 
the following keys as a substitute: 

 

 
 
  •  M-< (same as Esc+Shift+comma) positions the cursor at the top of the document. C-Home may also do the same thing.   
 
  •  M-> positions the cursor at the bottom of the document. C-End may also do the same thing.   
 

  
• 

 
C-a positions the cursor at the start of the current line. You can think of this as going to the start of the line, just as the letter a 
is at the start of the alphabet. Home may also do the same thing for you. 

 
 
 
  •  C-e positions the cursor at the end of the current line. The End key may also do the same thing for you.   
 

 
Finally, you will often need to go to a specific line number within a file. To do this, press M-g, and then the number, and then 
RET. If you are using a very old version of Emacs, you may need to type M-x goto-line RET instead of M-g. 

 
 
 

  Tip  
You can ask Emacs to display the line number of your current line on the status bar. To enable this, type M-x line-
number-mode RET. 

 
 
 
 Searching   
 

 
Emacs has a unique interactive search feature. With this feature, the system starts the search immediately as you begin typing. You 
can see how each additional letter affects the result right as you type it; often, you don’ t even need to finish typing the search word 
or phrase you were looking for. 

 

 
 

 
To start a search, press C-s. You will be prompted for the search phrase. You may type it at this point. If you find your match, 
press Enter and you’ ll be returned to the document. If you want to search with the same term again, simply press C-s again; do not 

 



 65 

press Enter until you have completely finished your search. Figure 4-2 shows what your screen will look like when you are 
partially done typing in the search word, getinput.  

 

 

 

 

 
 
 Figure 4-2:  Search in progress  

    
 

 
You can also recall a previous search term by pressing C-s C-s when starting a new search. Just remember to press Enter when you 
have found the item you were looking for. 

 
 
 
 You may also press C-g to cancel a search; this returns your cursor to the location prior to beginning the search.   
 
 The Emacs region   
 

 

When you wish to perform a particular operation on a certain part of text in Emacs, you activate the region. You can do this by 
simply highlighting the block with the mouse. Alternatively, you may do the same with the keyboard after enabling the region. 
When using the keyboard, first move to one end of the region—either the start or the end—and then press C-@ (Ctrl+Shift+2). 
Now, position the cursor to the other end of the region. At this point, you are ready to do something with the region. 

 

 
 
 You could use it in a manner akin to the clipboard in other applications. Here are the commonly used commands for such a usage:   
 
  •  You can cut the text with C-w.   
 
  •  You can copy the text with M-w.   
 
  •  You can paste a copy of previously cut or copied text with C-y (the “y”  stands for “yank” ).   
 

 
You can use any of these commands either after highlighting text with the mouse or with the keyboard. There are many more 
commands that operate on a region. These commands can do things as varied as indenting the whole region, wrapping the text in 
it, or turning it into a large comment in your current programming language. 

 

 
 
 Buffers   
 

 

Emacs allows you to open many files at once. When you do this, you are working with several buffers in Emacs. A buffer in 
Emacs is simply an area that you use to edit files. When you open a file with C-x C-f, Emacs creates a buffer in which you edit the 
file. You can open other files in additional buffers with the same command. If you want, you can load up another file. Now, both 
files are present in your editor. 

 

 
 

 
There are several ways to switch between buffers in your current window. The first is to use the Buffers menu. The contents of that 
menu are set to include all the different buffers that are open at the moment. You can switch between them by selecting the buffer 
that you wish to edit. 

 

 
 

 

You can also switch buffers by using the keyboard. The command for this is C-x b. If you press RET at this point, you’ ll be 
switched immediately to the buffer that you were editing prior to this one. Otherwise, you may type the name of the buffer to 
which you will switch. Finally, you may simply press Tab to display a list of buffers available as shown in Figure 4-3. You may 
then type the name of the buffer you wish to use, or middle-click it. 
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 Figure 4-3:  Press Tab to see a list of available buffers  

    
 
 Windows   
 

 
Switching buffers is a powerful way to work with multiple files, but another powerful option is windows. These are separate areas 
on the screen. You can work on different sections of the same buffer in these separate windows, or you can work on separate 
buffers. The windows can be tiled horizontally or vertically. 

 

 
 

 
When you create or remove a window, the buffers being edited are not modified. When a window is closed, the buffer in which 
you are editing the file is not closed; you can still switch to all your buffers as described in the previous Buffers section. 

 
 
 

 
Table 4-1 lists the key commands that you can use to work with multiple windows. You can find equivalent options for most of 
these key commands under the File menu. 

 
 
 

 
When you first use a command such as C-x 2 to split a window, you may want to load separate files into each one. If you already 
have multiple buffers going, you may use C-x b or the Buffers menu in one. Alternatively,  

 
 
 
 you may open new files in each window. You can even have two windows working on different parts of the same file.   
 
 Table 4-1:  Window-Related Key Sequences   
 
     
 
 Key Command   

 
Function   

 

 
     
 
 C-x 0   

 
Deletes the current window. The buffer is unaffected. Note that this is the number zero.   

 

 
 C-x 1   

 
Deletes all windows except for the current one. The buffers are unaffected.   

 

 
 C-x 2   

 
Splits the current window into two separate ones, one on top of the other.   

 

 
 C-x 3   

 
Splits the current window into two separate ones, side-by-side.   

 

 
 C-x o   

 
Switches to the other window. You can also do this by clicking in it. Note that this is a letter O, not 
a number zero. 

 
 

 

 
     
 
 It’s even possible to split windows several ways as shown in Figure 4-4.   
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 Figure 4-4:  An example of split windows  
    
 

 
To create the display as shown in Figure 4-4, start by splitting the current screen with C-x 2. Then, select the top window and press 
C-x 3. Thus, you can split windows multiple times. 

 
 
 

 
When you’re done with windows, you can press C-x 0 and C-x 1 to get rid of them. Pressing C-x 0 removes only the current 
window; pressing C-x 1 removes all windows except the current one. 

 
 
 
 Frames   
 

 
When you are running Emacs in X, you have access to another powerful feature: separate frames. Frames act as windows, except 
they are created in a separate top-level window on your X display. Because of this, you cannot use frames in a terminal. 

 
 
 

 
A new frame is created with C-x 5 2 and the current frame is deleted with C-x 5 0. It is important to remember that even when you 
have several frames, they all belong to a single editor. Thus, you can switch between your various buffers in each of them. 

 
 
 
 Additionally, inside each separate frame, you can create multiple windows (as shown in Figure 4-5).   
 

 

 

 

 
 
 Figure 4-5:  An example of an additional window inside separate frames  

    
 

 
You can use your window manager’s standard controls for moving and resizing your frames because they act as normal X 
windows. 

 
 
 

 
Because all these frames correspond to a single Emacs process, when you exit Emacs with C-x C-c, all will be closed. The same 
applies to saving files; because the buffers are the same, but displayed in different frames, saving a buffer one place effects the 
buffer in every frame. 
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 Syntax and paren highlighting   
 

 

For this section, you might want to open up a C file for editing in XEmacs. Start the session by turning on syntax and paren 
highlighting. Go to the Options menu, select Syntax Highlighting, and then Colors. Go back to Options 

�
Syntax Highlighting and 

choose Most. From the Paren Highlighting menu in Options, select Expression. Notice how XEmacs has highlighted the syntax for 
you. Strings are green; C keywords are highlighted in yellow, comments are in red, variables and preprocessor directives are blue, 
and data types are purple. XEmacs understands the syntax of dozens of languages, including all of the ones covered here. To the 
greatest extent possible, XEmacs uses the same colors for syntax highlighting between all the different supported languages. If you 
now select Save Options from the Options menu, XEmacs automatically enables syntax highlighting for you each time you use it. 

 

 
 

 

Syntax highlighting is a tremendous benefit to programmers. Not only does it make your life easier by making it easier to read 
through code, but it can also help you write good code. Consider, for instance, if you mistakenly forget to close a string with a 
quotation mark. The code that you type after that will remain green, instead of its proper color. You can immediately notice that 
there was a problem while writing the code. 

 

 
 

 

Another powerful feature is the so-called paren highlighting. This feature highlights more than parentheses; it also works with 
braces, brackets, and other items that occur in pairs. As you write code, or even as you move through it, the system highlights the 
expression matched by your delimiters. This is great for ensuring that all your parentheses and braces are lined up properly—
failure to do this is a major cause of bugs and syntax errors later. 

 

 
 

 
Consider the example from this screenshot. XEmacs highlighted a portion of the code, starting at the opening brace that 
corresponds to the closing brace. 

 
 
 

 
Your entire expression is highlighted; you can see instantly which statements fall within the boundaries of the block. If you make a 
mistake and your delimiters no longer match properly, XEmacs can sometimes detect this even as you write code, and highlights 
the incorrect area in pink. 

 

 
Major  Modes   
 

 
In Emacs, whenever you edit a file, you do so in a particular mode. This mode enables Emacs to provide additional or specialized 
capabilities, depending on the specific type of file you are editing. Programmers appreciate capabilities such as syntax 
highlighting, commenting assistance, automatic indentation, controlled reindentation, and several other features. 

 

 
 
 C   
 

 
The C mode is one of the most well-known and full-featured modes in XEmacs. As you’ve already seen, it has syntax and paren 
highlighting features. However, the features go much farther than that. 

 
 
 
 Indentation   
 

 

One of the most powerful features in the C mode is the indentation support. This feature enables you to get proper indentation for 
your code, and also to re-indent code should the need arise. The primary key to do this is the Tab key. When you edit code in 
Emacs, the Tab key does not insert a tab character as it does in other editors. Instead, it automatically indents your current line to 
the proper position. As an example, consider what happens if the code is not properly indented, as shown in Figure 4-6. 
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 Figure 4-6:  An example of bad indentation  

    
 

 
If you want to fix this problem, you can move your cursor to each line and press Tab, once per line. You don’ t even have to put the 
cursor at the start of the line; anywhere on the line will do. In this case, it’s generally best to start with indenting from the top of 
the code sample as opposed to the end. This way, Emacs can learn the proper indentation from your code as an example. 

 

 
 

 
Another powerful feature enables you to define for XEmacs which style of indentation you prefer. This is used when the system 
does automatic indentation for you. The command to do this is M-x c-set-style RET or simply C-c. XEmacs prompts you for your 
selection. Select bsd for these examples. 

 

 
 

 
You can now re-indent the entire document according to the BSD style. To do this, highlight the entire document, and then run M-
x indent-region. You can also do this entirely from the keyboard by specifically using the following key sequence: 

 
 
 
 M-< C-@ M-> M-x indent-region RET   
 

 
Emacs then re-indents your file. In this case, the primary difference you’ ll notice is that more space is being used for indentation. 
However, even if you don’ t use indentation, the result will be the same; Emacs will indent the entire file as appropriate. 

 
 
 
 Comments   
 

 
One of the most important aspects of writing maintainable code is good documentation. You often do this in the form of 
comments. The C mode in Emacs contains a good deal of support for helping you write comments. 

 
 
 

 
One useful command is M-;—so named because the semicolon is the comment character in LISP, the language from which the 
internal programming language of Emacs is derived. 

 
 
 

 
When you press M-; the editor set up a comment, indented to the right. Now you can type your comment in the area as if you had 
set up your own. 

 
 
 

 
Emacs can do more than create placeholders for comments. It also can comment or uncomment large sections of code. Although 
this definitely is not good practice in production-quality code, you sometimes need to do this for debugging or tracking purposes 
while developing. 

 

 
 

 
If you highlight some text, you can see how this works. After highlighting the text, press C-c C-c or choose Comment Out Region 
from the C menu. 

 
 
 
 Figure 4-7 shows a screenshot of the result.   
 

 

 

 

 
 
 Figure 4-7:  An example of commented-out code  

    
 

 
Notice how Emacs automatically commented out the lines in the area. However, on line 12, there is an issue. A comment was 
already on that line, and C is not a language that permits embedded comments. So, at this point, compilation will fail because of 
the problem on line 12. 
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You also can remove the comments; highlight the same region and select Uncomment Region from the C menu. Emacs removes 
all the comments that it added. 

 
 
 
 Preprocessor  Expansion   
 

 
Emacs can run a portion of your code through the C preprocessor so that you can see the effect of macros, conditional compilation, 
and include statements on your code. For instance, consider the effect of the following screenshot: 

 
 
 
 To achieve this effect for yourself, follow these steps:   
 
  1. Type the code as you see it in the top window.   
 
  2. Highlight it as a region.   
 
  3.  Press C-c C-e to invoke the macro expansion. You also can select Macro Expand Region from the C menu to do this.   
 

 

Emacs then creates a second window and displays the result of the macro expansion there—you can see that the CALCULATE 
macro was expanded in this case. If you have any #include lines, and you expand that region, the entire included file will appear in 
the result. Therefore, you may wish to be cautious when expanding those lines, lest you have a huge amount of output to wade 
through to find something useful. 

 

 
 
 Auto State   
 

 
The C environment in Emacs also has more features to help speed the development process. When running in auto mode, the C 
environment automatically takes care of inserting new lines, dealing with indentation, and other related tasks while you type. In 
many cases, this means you don’ t need to press Enter while you are coding; the system takes care of that automatically. 

 

 
 

 
To engage auto mode, press C-c C-a or run M-x c-toggle-auto-state RET. As you type while in this mode, you’ ll notice that 
whenever you press the semicolon, the editor automatically positions your cursor on the next line, properly indented. Your code 
can end up looking exactly the same as if you had not used auto mode; it simply takes you fewer keystrokes to create. 

 

 
 

 
If at some time you wish to turn the auto mode off again, simply press C-c C-a or run M-x c-toggle-auto-state. The system will 
return to normal behavior. 

 
 
 
 Per l mode   
 

 

Emacs editors typically also have very strong support for Perl programming. The Perl mode found in modern flavors of Emacs is 
very powerful indeed. You should be aware that there are several different implementations of a Perl mode floating around, and 
several different versions of each of these. Therefore, you may have a different implementation than the one shown in this section. 
However, many things are quite similar between the different implementations of a Perl mode in Emacs in general. Current 
versions of Emacs generally come with a mode named CPerl, which is a powerful Perl mode with a number of advanced features. 

 

 
 

  

Note 

 

One of the challenges of writing an Emacs mode for Perl is that the Perl syntax can be difficult to parse because of 
its many features and different ways of doing things. You may find that, if you take frequent advantage of the 
more esoteric features of Perl, occasionally your syntax highlighting may be off; however, usually you won’ t see 
any problems other than those. 

 

 
 

 
Several modes in Emacs are based on the C mode; you’ ll find that the Perl mode is no exception. Many of the keystrokes for doing 
various commands related to comments and indentations are the same. For instance, to insert a comment to the right on the current 
line, C-; is still the correct key. 

 

 
 

 
There are some unique features of the CPerl mode in Emacs. One is that it can display the syntax for various functions directly 
within Emacs. To do this, move your cursor over the item on which you want help, and press C-c C-h v. The status line in Perl 
displays a syntax summary of the option. 

 

 
 

 
Some versions of the CPerl mode also have extra support for dealing with POD (Plain Old Documentation) documentation in your 
Perl files. You can investigate these options under the Perl menu. Some options under Perl docs in the menu include a way to view 
the result of the POD in the file being edited, and other options include rescanning for PODs and here-documents. 

 

 
 
 Other  modes   
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Emacs comes with editing modes for virtually every language you might work with. Some of the other modes that you may find 
useful in Linux include shell scripts, Makefiles, LISP, Prolog, LaTeX, plain text, and many more. Most of them try to use the same 
keystrokes that were popularized with the C or LISP modes. Therefore, you won’ t have to re-learn your commands when editing 
different types of files. 

 

 
 

 
Occasionally, Emacs may not be able to determine automatically which mode to use for a specific file. This could happen, for 
instance, when you edit a file with no extension. You can switch modes manually with a command such as M-x c-mode, but you 
can tell Emacs to use a different mode automatically. 

 

 
 

 
You can do this by adding a line near the top of your file to specify the mode. The following example has one in its second line. 
You will want to comment it out by using whatever syntax is appropriate for the language you’re editing. For instance, if you’re 
editing a Perl script, you might start it out like this: 

 

 
 
 #!/usr/bin/perl   
 # -* - Mode: Perl; -*-   
 
 When you load a file that contains this comment into your editor, Emacs automatically switches to the appropriate Perl mode.  
Emacs as an IDE   
 

 
Emacs is more than a basic programmer’s editor. The Emacs system includes support for integrated compilation and debugging of 
your programs. This support enables you to work with building, running, and debugging programs from numerous languages—all 
without leaving the Emacs environment. 

 

 
 

 

In Emacs, there is an emphasis on integrated. Other IDEs offer you an editor, an interface to a build system, and a debugger from a 
single interface. Compared to Emacs, these systems look positively outdated. Emacs offers those basic features. In addition, it 
enables you to run your programs within the system, and even multitask with them, to examine their output with features such as 
the built-in web browser to read your e-mail with one of the several built-in mail readers. With Emacs, you can also cut and paste 
directly with your code or debugger to telnet elsewhere, and even play some games after a long day of programming—all without 
ever leaving the Emacs environment. 

 

 
 

 
Every one of these features is completely customizable. Thanks to the ELISP programming language that is behind much of 
Emacs, if the built-in ways to exchange data between these different components aren’ t sufficient for you, you can script and 
automate the coordination completely to your every whim. 

 

 
 

 

So are all these things really useful for development? Absolutely; although perhaps we should exclude the games from this list. 
When you are sitting comfortably at your own Linux machine, you can run all the various separate programs in X that you want. 
You can have your own web browser, your own debugger, your own shell windows, and so on. However, you are not always so 
lucky. Many programmers need to work through a text-only terminal, where the integration in Emacs is very important. 

 

 
 

 

Even if you are working solely in X, the benefits of having components in Emacs fully integrated and scriptable can be a 
tremendous asset to your development process. For instance, you can press a single hotkey while reading your e-mail that can 
cause the contents of your message to be piped to your newly compiled program, and display the output in a web browser as 
HTML. 

 

 
 
 Compiling programs   
 

 
Emacs enables you to compile your software while in the Emacs environment. When you do this, the editor can tie together the 
output from the compilers with the code of your program. This means that you can jump instantly to the location of an error or 
warning by simply middle-clicking it. 

 

 
 

 
You can find such options under the Tools menu. When you select Compile from that menu, Emacs asks you for a compile 
command. If you have a Makefile, you can accept the default. Otherwise, you will want to supply the compilation command line 
appropriate for your program. 

 

 
 
 If your compilation has any errors or warnings, Emacs shows them in a separate window as shown in Figure 4-8.   
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 Figure 4-8:  Error Display in XEmacs  
    
 

 
Now, if you middle-click (or move the cursor to the location and press Enter) the error message, you will be taken to the location 
of the error in your source. In this case, the problem is simple: a capitalization error. Sometimes, your output may contain 
hundreds of warnings; being able to skip directly to each one can be a huge time saver. 

 

 
 

 
As you may have noticed, the default for the compile command is an invocation of make. Emacs is perfectly capable of working 
with make and dealing with multiple files; there is no need to worry about Emacs support for large projects. 

 
 
 
 Debugging   
 

 
Many integrated development environments provide a debugger. Although many provide a limited debugger, XEmacs provides a 
full-fledged interface to the powerful gdb debugger. 

 
 
 
     
 
Cross-Reference  
 
 For more details on using gdb, see Chapter 5, “Understanding Linux Data Files and Scripts.”    
 
     
 

 
When you use gdb in XEmacs, you get all the standard gdb features that you get when it is run any other way. However, some 
additional features are included as well, mostly by way of interface improvements. 

 
 
 

 
To start with, when you debug a program using gdb in XEmacs, you can watch your own code file as execution proceeds through 
the program. This option is much easier to use than the default gdb operation, which displays only the current instruction. 

 
 
 

 
Furthermore, because you can recompile directly from XEmacs, and the debugger runs with a buffer holding your source code, 
making modifications, recompiling, and rerunning in the debugger is a simple operation. 

 
 
 

 

To invoke the debugger inside Emacs, select gdb from the Tools menu. The system then prompts you for the name of the 
executable to debug. When you provide the name, gdb will be invoked. At first, you will see a screen that is essentially the same as 
the standard gdb screen. Go ahead and set a breakpoint at the program entry point and begin the program. After you do this, the 
screen is split as shown in Figure 4-9. 
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 Figure 4-9:  Debugging in XEmacs  
    
 

 
The editor now highlights your current point of execution in the source for your program. There is no longer any need for gdb to 
display the code because it is now available directly from your Emacs window; therefore, the code output is omitted in the gdb 
window. 

 

 
 

 

In the gdb window, you can use all of your traditional gdb commands; you don’ t need to learn any new commands when you use 
gdb in Emacs. For instance, if you decide to watch how variables change over time, you can use the display command in the gdb 
window exactly as you would in standard gdb. The lower window continues to trace through your code as it executes, regardless of 
the variables you are watching in the upper window. 

 

 
 

 
You also may use gdb with a corefile in Emacs. To do so, invoke it with M-x gdb-with-core. This time, Emacs prompts you for the 
program and the name of the core file. 

 
 
 
 Using tags   
 

 

Another powerful feature of Emacs is the capability of using tags. With these tags, the editor can identify which files belong to a 
single project. More importantly, the tags indicate exactly what is in each of these files. For instance, with C programs, the tags 
can indicate which file contains a given function. When editing your files, then, you can skip directly to any function—regardless 
of the file in which it is located. Moreover, you can apply various commands to the entire group of files instead of your current file 
only. For instance, a search operation could affect all files in the group. 

 

 
 

 
To provide you with this functionality, Emacs needs to analyze your files and store information about the tags to be used with 
them. Traditionally, you do this by using a file named TAGS. You generate this file by running the etags program at the command 
line, giving it the names of the files you wish to index. For instance: 

 

 
 
 $ etags * .c   
 
 The etags program analyzes your source code and produces a TAGS file for use inside Emacs.   
 

 

Now, you can use the Tags options in the Tools menu to navigate through your files. You might want to start with Find Tag (M-.) 
to see what happens. For example, type a function name. Emacs skips directly to the file containing that function, opening it if 
necessary, and positions your cursor on the line of its start. If the function appears in more than one file, you can continue to search 
for additional instances of it by using M- (that’s ESC+comma). 

 

 
 
 Shells in Emacs   
 

 

Emacs is much more than a run-of-the-mill editor. In fact, it is often billed as the editor that includes everything and the kitchen 
sink! One unique feature of Emacs is the capability of running a shell inside the editor—and using commands more reminiscent of 
a text editor to manipulate your command line. Some users absolutely love this feature; others really dislike it. You may or may 
not like to use it for yourself, but you can at least give it a try. 

 

 
 

 
You can fire up a shell by typing M-x shell RET. You will receive a screen that looks like an ordinary shell window, albeit with 
various Emacs decorations around it. But do not be fooled; this window is anything but ordinary. 
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Try typing a command such as an ls command. If you’re running in XEmacs and have color highlighting turned on, you’ ll notice 
immediately that your commands are highlighted for you. 

 
 
 

 

When you enter your ls command, you see a directory output as is usual. Now press the up arrow. Instead of accessing a command 
history, you are moving about within the shell area—both with the program output and with your commands. You can even edit 
this output from other programs on-screen. After doing that, you can use the output as a command, or even save the buffer 
containing your interactions to a disk file as a transcript of your session. 

 

 
 

 
Experiment a bit. For instance, after running an ls command, you can move the cursor back up to some output and press Enter. 
Emacs instantly copies the entire line of output underneath your cursor to the shell command prompt, as shown in Figure 4-10. 

 
 
 

 

 

 

 
 
 Figure 4-10:  Running a shell in Emacs  

    
 

 
At this point, if you press Enter, Emacs sends the command to the shell. Otherwise, you can make modifications to it before you 
send it to the shell and then press Enter. Either way, you have a new capability: directly moving the cursor through output and 
easily using it on the command line. 

 

 
 

 
Another interesting capability of the shell is that, in some situations, Emacs can become aware of your command history with the 
shell. This extends beyond the involvement of Emacs all the way to the shell itself as shown in Figure 4-11. 

 
 
 

 

 

 

 
 
 Figure 4-11:  Using the Shell with Emacs  

    
 

 
Even though most of the commands that Emacs lists are not issues from inside XEmacs but from a separate shell, they are still 
recognized by the editor. 
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Also note that certain functions in Emacs use the shell mode for interaction. The gdb interaction is one such situation. The features 
of the shell environment are thus available there as well. 

 
 
 

 
The shell environment does have some drawbacks. Because it takes control of the terminal under which the shell is running, full-
screen terminal-based programs such as Elm will not function properly. If you still need those features, you can use the term 
feature found in newer Emacsen. 

 

 
 
 The term mode   
 

 

Current versions of Emacs ship with a term mode. This is a full-fledged terminal emulator in which you can run any full-screen 
applications such as Elm, ircII, or various other applications that use the terminal. The advantages of running programs inside 
Emacs like this include the capability of running multiple commands at once, even with a single terminal. With the capability of 
opening several windows in your Emacs session, you can view multiple programs at once—without needing to resort to a 
graphical system such as X. 

 

 
 

 
This convenience comes as a cost, however. Because Emacs essentially must pass through commands verbatim and receive data in 
the same manner, you don’ t get the fancy editing support of the shell mode. Nevertheless, the term mode can be useful—especially 
if you are telnetting to other locations for instance. 

 

 
 

 

You may also wonder: if all the data must be passed through to the terminal verbatim, how can commands be executed in the 
parent Emacs system? You have two options: you can use a mouse if you’re running Emacs in X, or you can use the escape 
character. The escape character is C-c by default. When you press C-c, the characters you type after that are interpreted by Emacs 
instead of sent to the terminal. If you need to send ato the underlying terminal, you can press C-c twice. 

 

 
 

 
You invoke term mode by typing M-x term RET. After you type this, Emacs prompts you for the command to run—your shell by 
default. Accept the default and use your shell. In Figure 4-12, you can see the full-screen interface of Midnight Commander 
running inside your XEmacs session! 

 

 
 

 

 

 

 
 
 Figure 4-12:  Midnight Commander inside a term window  

    
 

 
You can run multiple programs with tiled windows, by starting up multiple instances of a term. It is generally best to split the 
windows first, and then invoke the term. 

 
 
 

 

There is a trick here. Normally, a second invocation of M-x term will re-open the first buffer. In order to prevent this, you need to 
rename the first buffer. To do this, you need to issue a command to Emacs; the escape character doesn’ t provide this by default, so 
you need to switch the terminal into line mode, issue the command, and then switch it back. You can do so with the following 
command: 

 

 
 
 C-c C-j M-x rename-uniquely RET C-c C-k   
 

 
Now, you get to invoke another terminal. Figure 4-13 shows XEmacs running with two terminal windows. The top window is 
actually running its own copy of XEmacs inside the parent copy of XEmacs; the bottom window is running the ircII chat program. 
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 Figure 4-13:  Two terms in XEmacs  
    
 

 
Using this windowing capability is not limited to the X interface. You can also do this when running Emacs in a simple terminal—
this is probably the most powerful application of the term because normally, you do not have windowing capabilities with a simple 
terminal. 

 

 
 
 Dired   
 

 
Thus far, you’ve seen that the IDE that is Emacs includes support for compiling, debugging, running, and multitasking with your 
programs. You also get support for managing your files through a mode called Dired. Dired can be used as a simple file picker, or 
as a file manager. It runs inside of Emacs, and thus is integrated completely with the system. 

 

 
 

 

You invoke Dired by specifying a directory instead of a filename when opening a file. For instance, you might specify C-c C-f /usr 
to open Dired on the /usr directory. When Dired starts, you get output resembling that from the ls -l command. From here, you can 
move the cursor to a line and press Enter to edit the file—or display the directory. As usual, if you are using the mouse, you may 
middle-click the appropriate area to do the same. 

 

 
 

 
The XEmacs menus for Dired are excellent because you have many options from the menus. The character commands for Dired 
can be difficult to remember, especially if you don’ t use them frequently, so consider the menus your friends. Figure 4-14 shows 
Dired operating on the /usr directory, with the Do menu pulled down. 

 

 
 

 

 

 

 
 
 Figure 4-14:  Dired working with /usr  

    
 
 w3   
 
 The built-in web browser available for Emacs is w3. This is a web browser that, when run under a system such as XEmacs,  
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features full support for graphics, tables, and several other modern niceties. Although you may find better rendering with a 
program such as Netscape, you’ ll probably find that it’s very convenient to have a browser integrated into Emacs. To invoke the 
w3 browser, run M-x w3 RET, or select it from the Apps menu in XEmacs.  

 

 

When it opens, you see an introduction screen such as that shown in Figure 4-15. The operation of this browser is similar to that of 
others with which you may be familiar; the button bar and the menu bar both are modified to have web-specific items in them. The 
primary difference to be aware of from the start is that the middle button is used to follow links instead of the left button as is 
customary with other browsers. 

 

 
 

 

 

 

 
 
 Figure 4-15:  w3 in action  

    
 
 Gnus   
 

 
Not satisfied with only being able to read mail, telnet, surf the web, write programs, run debuggers, and play Tetris from within an 
editor, the Emacs programmers set out to write Gnus—a mail and Usenet news reader written solely in ELISP and integrated into 
Emacs. 

 

 
 

 

Gnus is invoked by either running M-x gnus RET or by selecting the appropriate option from the Apps menu. The Gnus system 
presents, in traditional Emacs fashion, an integrated interface for reading mail and news, along with message filtering, pre- and 
post-processing, scoring, and many more options that can be applied to both. Again as with Emacs itself, Gnus is completely 
scriptable and, with ELISP, can be customized in virtually infinite ways. 

 

 
 

 
Gnus is configured through a .gnus file. This file defines where mail and news come from, how they are split, and also any 
additional customizations. For details on this file, you may consult the online info documentation for Gnus or the information on 
the website at www.gnus.org. 

 

 
 

 
Figure 4-16 shows a system that uses Gnus to read a multitude of e-mail. The listing on the screen is a summary of the folders on 
the system with the amount of mail in each. 
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 Figure 4-16:  Summary screen in Gnus  
    
 

 
For some users who are looking for a simpler but somewhat less powerful mail reader, the VM reader (also built into XEmacs) 
may prove a more viable option; it can also be found in the Apps menu. 

 
 
 
 Version control   
 

 
As I’ ll discuss in detail in Chapter 26, “Archiving and Collaboration with CVS,”  version control systems such as CVS (Concurrent 
Version System) can be extremely beneficial for the development process, especially if multiple users are involved. Emacs, of 
course, has (surprise) integrated support for CVS. The module that provides this support is called vc. 

 

 
 

  Note  
If the examples in this chapter do not work for you, you may need to load the vc module into Emacs manually. 
You can do that by running M-x load-library RET vc RET. 

 
 
 

 
The command of primary use is C-x v v, which checks in your current file to the repository. The system asks for a changelog 
entry, which you can supply. When you are finished with the change comments, press C-c C-c and the file will be checked in with 
your comments. 

 

 
 

 
The version control support in vc is not limited to CVS; it will also work with RCS. This can be convenient as you get a single 
interface to different version control systems available for Linux.  

Getting Help   
 

 
Emacs is a large and extremely versatile system. There is a large amount of documentation available with Emacs, and it comes in 
several forms. 

 
 
 

 

You can access all of the help in Emacs by using C-h. Ironically enough, the Backspace key on some keyboards and with some 
systems will transmit that keystroke as well. From the initial C-h keypress, you select a command that will select the particular 
type of help to display. If you press two question marks at this point, you receive a summary of all the C-h commands, as shown in 
Figure 4-17. 
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 Figure 4-17:  Summary of C-h commands  
    
 

 
Some of the most useful commands from this list include C-c, d, C-f, i, and t. Take a look by finding information about the 
command that opens files, C-x C-f. First thing you should do is find the appropriate function name. To do that, you use C-h c. The 
full key sequence is: 

 

 
 
 C-h c C-x C-f   
 
 The system responds with the name of the corresponding function. In this case, it displays:   
 
 C-x C-f runs the command find-file   
 

 
Armed with this information, you can go forth and look up more information about the specific function. You can use C-h d to 
bring up a summary of the command’s usage. Running C-h d find-file RET displays a summary of the command: 

 
 
 
 `find-file’  is an interactive compiled Lisp function   
   -- loaded from “ files.elc”    
 (find-file FILENAME &optional CODESYS)   
       
 Edit file FILENAME.   
 Switch to a buffer visiting file FILENAME,   
 creating one if none already exists.   
 Under XEmacs/Mule, optional second argument specifies the   
 coding system to use when decoding the file.  Interactively,   
 with a prefix argument, you will be prompted for the coding system.   
 

 
Thus, you get a basic summary. However, you may want to get some more detailed information about the command. In this case, 
you can try C-h C-f to bring up the info page for the specific command you are curious about. In this case, the system brings up a 
good deal of information about find-file, including an ELISP scripting example. 

 

 
 

 

Now, you can view the info documentation covering that specific command with C-h C-c. Info documentation is a hypertext 
documentation format used extensively by Emacsen and by various GNU software programs. Emacs contains an integrated 
browser for info documentation. You can invoke it on a specific part of the documentation with C-h C-c, or you can invoke it on 
the top of the Info tree with C-h i. Each documentation page in Info documents have specified ways of navigating. You can select 
options from a menu, navigate up, forwards, or back-wards by using buttons on the tollbar or by using links inside the document 
itself. 

 

 
 

 
When you first open the info browser, you see the master index. The actual contents varies depending on exactly which Linux 
distribution you have, which Emacs version you have, and what software you have.  

Summary   
 
 In this chapter, you were introduced to the Emacs text editing and development system. You learned that:   
 
  •  Emacs comes in different flavors, with different interfaces, but with much of the same technology under the hood.   
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  •  Emacs has its own special key notation for use in documentation and in scripts.   
 
  •  Emacs has basic editing features.   
 
  •  Emacs has different editing modes available, depending on the specific type of file you are working with.   
 
  •  These modes define features syntax highlighting, extra commands and keystrokes, and so on.   
 
  •  C and Perl modes are two examples of editing modes. Both provide a full suite of useful tools.   
 
  •  Emacs can also be used as an IDE.   
 
  •  Emacs is big on integration, with many components integrated into the system and written in ELISP.   
 
  •  You can perform tasks such as compilation, debugging, and running your software all from within Emacs.   
 
  •  The C-h keystroke is the first step towards finding help. Additional information can be found beneath that menu.  
Chapter  5: Understanding L inux Data Files and Scr ipts   
 
 Overview   
 

 

In this chapter, you’ ll learn about some of the system files on a Linux system. Although some of your programs may not need to 
deal with these files, others may need to know this information. For instance, you might want an e-mail program to be capable of 
finding out the real name that corresponds to a given username. A web server would want to be started at system boot time. An 
FTP server would want to be started when connections to the proper port arrive. 

 

 
 

 
If you are writing a program that needs to interact well with the system—particularly one that you distribute—you need to make sure 
you interact with system files properly. You must use proper locations for your configuration files, and read existing configuration 
files properly.  

General Concepts   
 

 

In Linux, most configuration information is stored in plain text files. Many programs have both system-wide and user-specific 
configuration systems. The system-wide configuration generally is stored in /etc or a subdirectory thereof. User-specific 
configuration information generally is stored in the user’s home directory, with a filename beginning with a period. The ls program 
avoids displaying such files, and wildcards avoid matching them by default. For instance, a shell might look first in /etc/profile and 
then augment (or override) those settings with a .profile file in the user’s home directory. 

 

 
 

 

With this approach, configuration files can be edited with any text editor; no special binary editor is required. Furthermore, each 
application is free to use a configuration file format that best suits its needs. For instance, the format necessary to describe printers 
is far different from that necessary to describe mail routing and rewriting tables. This approach works well for almost every part of 
the system. 

 

 
 

 

The downside is that this system can be somewhat inefficient. For instance, if a given file is accessed frequently, there can be a 
performance hit. For this reason, a few files such as the passwd file are stored in a database format, generated from the plain text 
version. Because most configuration files are processed infrequently and are small, this particular problem does not apply to a 
majority of programs. 

 

 
 

 
Because standard files are used to store configuration information, the existing Linux permissions mechanism is used to control 
who can read or write to the configuration of a given program. These permissions are used to prevent non-root users from writing 
to the configuration files in /etc and to prevent other users from modifying their own configuration files. 

 

 
 

 
You’ ll also find that Linux’s capability of mounting directories and files in any place in the file system hierarchy enables you to 
create a high level of organization and structure in the file system—a level unattainable by other operating systems that do not have 
such a system.  

File system Layout   
 

 
The file system layout in Linux can vary between distributions. Each distribution seeks to integrate hundreds or even thousands of 
packages and may settle on different standard locations for files. 

 
 
 

 
In an attempt to rectify these problems, programmers got together and created the Linux Filsystem Standard (FSSTND). Many 
Linux distributions settled on this standard. Because of the expanding nature of Linux, particularly the proliferation of the system 

 



 81 

on non-Intel platforms, a newer version called the Filesystem Hierarchy Standard (FHS) appeared. Distributions are moving in the 
direction of this new standard. Some names or locations are presently in a state of flux because of this change but the differences 
are not significant relative to the overall picture. For details on these standards, see the web site at http://www.pathname.com/fhs/.  

 
 /: The root of everything   
 

 
The root of the directory tree in Linux is /. This directory should contain either no files (only directories) or only very few files, 
such as a kernel image. The root directory is the first mounted by the kernel; it is, in fact, necessary to do so in order to boot the 
system. The scripts and programs contained in this file system are then responsible for starting up the remainder of the system. 

 

 
 
 Here’s a sample listing on one system, which should look similar to yours.   
 
 drwxr-xr-x   2 root     root         2048 Jul 20 15:18 bin   
 drwxr-xr-x   2 root     root         1024 Jun 25 23:10 boot   
 drwxrwxr-x   2 root     cdrom        1024 Jun  2 19:22 cdrom   
 drwxr-xr-x   3 root     root        19456 Aug  7 09:48 dev   
 drwxr-xr-x  67 root     root         5120 Aug  7 09:48 etc   
 drwxrwxr-x   2 root     floppy       1024 Jun  2 19:22 floppy   
 drwxr-xr-x   2 root     root         1024 Jun  2 18:43 ftp   
 drwxrwsr-x   7 root     staff        1024 Jul 20 15:28 home   
 drwxr-xr-x   2 root     root         1024 Jun  2 19:22 initrd   
 drwxr-xr-x   5 root     root         4096 Jul 20 15:17 lib   
 drwxr-xr-x   2 root     root        12288 Jun  2 13:33 lost+found   
 drwxr-xr-x   2 root     root         1024 Feb  1  1999 mnt   
 dr-xr-xr-x  58 root     root            0 Aug  7 04:48 proc   
 drwx------   6 root     root         1024 Jul 20 19:02 root   
 drwxr-xr-x   2 root     root         3072 Jul 20 15:20 sbin   
 drwxrwxrwt   3 root     root         2048 Aug  7 19:18 tmp   
 drwxr-xr-x  18 root     root         1024 Jul 20 15:21 usr   
 drwxr-xr-x  14 root     root         1024 Jul 20 15:15 var   
 

 
Each of these directories has specific purposes. Many users partition some directory trees for special use, in which case the 
rename() call cannot be used to move files from one tree to another. Table 5-1 lists the purposes of these directories. 

 
 
 
 Table 5-1:  Standard Director ies and Typical Functions   
 
     
 
 Directory   

 
Function   

 

 
     
 
 /bin   

 
Holds basic system binaries such as ls and cat. This directory must not be moved off the root partition.   

 

 
 /boot   

 
Contains files required to boot the system. Examples of files included here are the kernel image itself, a 
map file, and perhaps some data for the architecture-specific boot loader. This directory must not be 
moved off the root partition. 

 

 

 

 
 /cdrom   

 
Is a ready-made mount point for accessing CD-ROM disks. Some distributions instead place this in 
/mnt/cdrom. 

 
 

 

 
 /dev   

 
Holds the entries for the various devices present on a Linux system. This directory must be present on the 
root partition. 

 
 

 

 
 /etc   

 
Holds configuration files and initialization scripts for the system. This directory must be present on the 
root partition. 

 
 

 

 
 /home   

 
Typically holds home directories for each user, except root, with an account on the system. There is no 
reason that this must be the path; the path for each user’s home directory is specified in the passwd file 
entry. 

 

 

 

 
 /lib   

 
Contains the basic dynamic libraries necessary to run the programs required to start up and boot a basic  
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system. It should not be moved off the root partition.  
 
 /lost+found   

 
Is an entry found on every file system. This directory should not be deleted. If a file system ever develops 
a corruption, the file system repair tool (fsck) can sometimes place whatever data it can recover in this 
directory. 

 

 

 

 
 /mnt   

 
Is a directory created for you by many distributions. Some distributions include additional directories 
beneath it; others have the directory without any subdirectories. In either case, the directory (or tree) is 
there for you to mount things temporarily. You are, of course, not required to use it; it’ s there as a 
convenience. 

 

 

 

 
 /proc   

 
Is a virtual area. The files and directories in /proc are not real and do not exist on any disk on the system. 
Rather, they are generated by the system to communicate system information to (and from) various 
programs. For instance, the process display utility ps can use /proc to get information about the processes 
running on the system. Your programs can get all sorts of information about the system by examining the 
various files and information in this directory. 

 

 

 

 
 /root   

 
Is the home directory for the root user. It must always remain on the root partition.   

 

 
 /sbin   

 
Contains the programs and binaries necessary to boot the system. It must not be moved off the root 
partition. Unlike /bin, the files in /sbin are generally not designed to be run by ordinary users of the 
system. 

 

 

 

 
 /tmp   

 
Is the canonical repository for temporary files and data. Because of security concerns, it is advised that this 
directory not be used. It still may be used, but must be done with extreme care. 

 
 

 

 
 /usr   

 
Is the location for static files and data to be used by users in the normal course of running the system. This 
is often the largest, or nearly the largest, partition on a workstation. This tree should be considered read-
only except during program installation or removal. 

 

 

 

 
 /var   

 
Contains varying data. This could include cache data, persistent state information, or even a high-score file 
for games. 

 
 

 

 
     
 
 /dev: device files   
 

 
When hardware devices are accessed on Linux systems by application programs, they are accessed through a specific entry 
customarily located in the /dev tree. These files have tuned permissions carefully. For instance, the device files for fixed disks are 
kept carefully guarded; any unauthorized access could permit security breaches. 

 

 
 

 
There are a huge number of files in this directory; my systems have anywhere from 900 to 1200 files in this directory. Here is a 
summary of some of the files and their purposes: 

 
 
 
  •  The apm_bios file interacts with the Advanced Power Management system found in many laptops and even some desktops.   
 
  •  The audio files interact with the audio system—namely, digital waveform audio on a sound card.   
 
  •  The cdrom entry is a symbolic link to the device used for the CD-ROM on your machine.   
 
  •  The dsp entries also are used to interact with digital audio.   
 

  
• 

 
The fd entry is a symbolic link into the appropriate area in /proc corresponding to the file descriptors held by the current 
process. 

 
 
 
  •  The fd* devices (followed by at least one numeric digit) correspond to the floppy drives on the system.   
 

  
• 

 
The hd devices correspond to IDE devices on your system. There are additional devices that correspond to the multiple 
partitions that some devices have. 

 
 
 
  •  The initrd device holds the initial RAM disk for the system, and is used frequently on Linux boot floppies or rescue disks.   
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  •  The lp devices communicate with the computer’s parallel port.   
 
  •  The midi devices communicate with the sound card’s synthesizer.   
 
  •  The mixer device controls the amplitude of the various sound outputs from your sound card.   
 

  
• 

 
The null device accepts anything sent to it and simply discards it. Any attempt to read from this device yields an immediate 
end-of-file result with no data. 

 
 
 
  •  The psaux device communicates with the PS/2 mouse port on your system.   
 

  
• 

 
The pty devices are pseudo-terminals that you can use in your programs. For details on pseudo-terminals, see Chapter 15, 
“Looking at Terminals.”  

 
 
 

  
• 

 
The random and urandom devices give you a stream of random characters. Some C library calls may use these devices to give 
you random numbers when asked for. 

 
 
 
  •  The scd devices correspond to the SCSI CD-ROM devices that may be present on your system.   
 

  
• 

 
The sd devices correspond to the SCSI disks that may be present on your system. Like their IDE versions, there are 
corresponding device entries for devices that support partitions. 

 
 
 
  •  The tty device corresponds to the controlling terminal of the current process, regardless of which file that really is.   
 
  •  The tty*  devices, followed by numbers, correspond to the virtual consoles present on your system.   
 

  
• 

 
The ttyS* devices communicate with the serial ports on your system. Some older programs may use cua devices; these devices 
are deprecated. Only the ttyS devices should be used for serial communication. 

 
 
 

  
• 

 
The zero device, like the null device, accepts anything sent to it and discards it. When read from, the device gives you an 
endless stream of null characters. 

 
 
 

 
With a few exceptions, your programs rarely will interact directly with these files, but you will sometimes encounter them through 
library calls. 

 
 
 
 /etc: configuration and star tup files   
 

 
Virtually all of the system-wide configuration files on any given Linux system reside in the /etc directory. These files hold per-
application configuration information, system information such as which partitions are mounted in the file system, and 
initialization scripts. 

 

 
 

 

If your application is installed as part of the default installation of an operating system, most likely it places one or more 
configuration files under /etc—assuming configuration files are necessary. There is no set format for these files; you are free to use 
whatever format suits your application best. However, Linux administrators are accustomed to several “ familiar”  formats: the 
printcap format, a shell format (key/value pairs separated by an equals sign), a colon-separated data file (such as passwd), and a 
newer C-style format like that which is used in BIND 8. Unless there is a special reason not to use these forms, it is best to stick to 
them so that the administrator doesn’ t have to learn a new configuration file format. 

 

 
 

 

The other key feature of the files present in /etc is that the system startup files reside here. These files vary between distributions; 
consult your distribution’s documentation or the init(1) manpage for more details. In general, though, the initialization scripts 
reside in /etc/init.d or /etc/rc.d/init.d and are shell scripts. If your program is started at boot, it needs to register itself with the 
system’s startup system by providing a script that is placed in these locations, and setting some symbolic links. 

 

 
 
 /usr : standard system programs   
 

 
The /usr tree contains programs installed as part of the operating system for the general use by users on the system. Many system 
binaries reside in /usr/bin. Binaries for the X11 system typically are stored in /usr/X11R6/bin. Many system-shared libraries reside 
in /usr/lib, and X11 libraries in /usr/X11R6/lib/X11. 

 

 
 

 
Linux application developers should note the /usr/local directory, which stores applications not shipped with an operating system. 
This includes any application distributed by any third party. The /usr/local/bin,  

 
 
 



 84 

 /usr/local/lib, and other directories in the hierarchy are used by these applications.   
 

 
The /usr tree is considered one that can be mounted read-only except during software installation and deinstallation. Keep this in 
mind when you install your software; do not try to write anything here after the initial installation. 

 
 
 

 

Furthermore, the /usr/share hierarchy is becoming more prominent. This directory contains non-executable read-only data in the 
/usr hierarchy. Examples include documentation, manpages, and info documents. These files are platform-independent, so they are 
prime candidates for NFS mounting in some situations—even if the Linux systems in question are not using the same system 
architecture. 

 

 
 
 /var : var iable data   
 

 
Data that is variable—that is, changing—should be stored in /var. Typical examples of this sort of data include spool files, queue 
files, cache data, state information, and data files or databases storing varying information. 

 
 
 

 
Some prominent examples include /var/mail (or /var/spool/mail), which is the default primary mail repository for users of the system; 
/var/state/sendmail, which holds persistent state information for the sendmail server; and /var/cache/man, which holds preformatted 
manpages.  

passwd and shadow Files   
 

 
Two files in /etc are so important that they need some extra explanation. The /etc/passwd file holds information about each user 
account on the system. The format of the file is one record per line, with the fields separated by olons. The fields in the traditional 
passwd file format are: 

 

 
 
  •  Username on the system.   
 
  •  Hashed version of the login password. This may be set to a special value if shadow passwords are in use on the system.   
 
  •  Numeric UID for this account.   
 
  •  Numeric GID for the default group for this account.   
 
  •  GECOS field, typically containing a real name, phone number, address, or some other related personal information.   
 
  •  The full path to the home directory for the person.   
 
  •  The full path to the default shell for the person. This entry must be present in /etc/shells.   
 

 

Many of these fields are self-explanatory. However, the hashed password field deserves some additional attention. With a 
traditional passwd file, the value is generated by the C library’s crypt() call. This is a one-way hash algorithm, meaning that it is 
not possible to decrypt the password after it is encrypted. To authenticate users, the password supplied is encrypted, and if this 
encrypted result is the same as the one listed for the correct password, the supplied password is considered a match. 

 

 
 

 
Here are a few sample lines from a passwd file. Because the system from which this example comes is using shadow passwords, 
the real passwords are not shown in this file: 

 
 
 
 root:x:0:0:root:/root:/bin/bash   
 daemon:x:1:1:daemon:/usr/sbin:/bin/sh   
 bin:x:2:2:bin:/bin:/bin/sh   
 sys:x:3:3:sys:/dev:/bin/sh   
 sync:x:4:100:sync:/bin:/bin/sync   
 games:x:5:100:games:/usr/games:/bin/sh   
 man:x:6:100:man:/var/catman:/bin/sh   
 lp:x:7:7:lp:/var/spool/lpd:/bin/sh   
 alias:x:70:65534:qmail alias:/var/qmail/alias:/bin/sh   
 qmaild:x:71:65534:qmail daemon:/var/qmail:/bin/sh   
 qmails:x:72:70:qmail send:/var/qmail:/bin/sh   
 

 

This scheme is technically secure. However, there are problems with password compromises. The reason is that many users choose 
insecure passwords for their accounts, sometimes as insecure as their login name or a name from the GECOS field. Crackers have 
written tools to try various permutations of these words, adding some from a dictionary, and resulting in various guesses. With 
these sorts of tools, up to a third of the passwords on some systems are guessed. Keep in mind that this problem only applies to 
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passwords that are guessable.  
 

 
In an effort to prevent these tools from functioning, the encrypted passwords need to be hidden. The remainder of the account 
information still needs to be available to programs—everything from ls to e-mail tools need it. The solution is to move the 
password data into a separate file. This file has restricted read permissions, keeping crackers at bay. 

 

 
 

 

The problem remains—how are legitimate programs to be granted access to the data in that file? In many modern systems, the 
password is group-readable by a special system group. Programs needing to read it are setgid to that group, but good design 
dictates that they maintain this setgid permission only when actually needing to read from the file. Some older systems may have 
these programs setuid to root, which is somewhat more dangerous. 

 

 
 

 
The shadow file, which holds this data, is a superb place to introduce newer features into the authentication mechanism. Some of 
these features include password and account expiration information. The specification for the shadow file on Linux is: 

 
 
 
  •  The username of the account.   
 
  •  The hashed password for the account.   
 
  •  The date the password was last changed, recorded in days since January 1, 1970.   
 

  
• 

 
A count of the number of days before the password must be changed. If this value is zero, no password change is mandated by 
the system. 

 
 
 
  •  Number of days prior to password change that a warning should be given to the user whose account this belongs to.   
 

  
• 

 
The date the account should be disabled because of an expired password, measured in the number of days after password 
expiry that the password has not been changed. 

 
 
 
  •  The expiration date of the account, measured in the number of days since January 1, 1970.   
 
  •  A reserved, and currently unused, field.   
 
 Here are a few sample lines from this file; note that at least one account here (root’s) has an actual encrypted password listed:   
 
 root:TPwk6TEMDd3Ng:10618:0:99999:7:::   
 daemon:* :10529:0:99999:7:::   
 bin:*:10529:0:99999:7:::   
 sys:* :10529:0:99999:7:::   
 sync:* :10529:0:99999:7:::   
 games:* :10529:0:99999:7:::   
 man:*:10529:0:99999:7:::   
 lp:*:10529:0:99999:7:::   
 mail:* :10529:0:99999:7:::   
 news:* :10529:0:99999:7:::   
 uucp:* :10529:0:99999:7:::   
 proxy:*:10529:0:99999:7:::   
 majordom:*:10529:0:99999:7:::   
 
 Accessing account information from a shell   
 
 Several utilities are available on a Linux system for the purpose of modifying the passwd and/or shadow files.   
 

 

For system administrators, a key tool is adduser. This program adds a new account to the system. The syntax of the adduser 
command varies between distributions but takes at least a username as a command-line parameter. Some versions of adduser may 
then prompt you for additional information, or ask for it on the command line. Some systems also provide a deluser command that 
removes a user from the system. 

 

 
 

 
The vipw command is recommended for editing the passwd or shadow password files by hand. You should never edit these files 
by hand without using vipw. If you don’ t use vipw, you can corrupt the files unless your system is in single-user mode because 
other processes may try to write to the files at the same time you do. 

 

 
 
 When run without arguments, vipw loads the passwd file into your favorite editor for modifications. If you run vipw -s, the  
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shadow file opens for you to edit. Additionally, the vigr utility can do the same with the group file.  
 

 
The chfn and chsh utilities modify the “ finger name”  (GECOS field) and default shell of a given account, respectively. When run 
as root, they enable you to make these modifications for any account. When run as a regular user, that user is permitted to change 
the values on the user’s own account only. 

 

 
 

 

The passwd utility allows the same type of capability for the password of a given account. The root user can also modify the 
password expiration date, the account status, whether or not the account is considered locked, and so on. For more details on this 
utility, see the passwd(1) manpage; the capabilities vary from system to system and depend on whether or not shadow passwords 
are in use. 

 

 
 

 

Bash defines some variables that can provide some quick information about the user who is running a script. For instance, $UID 
expands to the numeric user ID of the person running the script; $HOME to that person’s home directory; and $USER to the text 
username of the person. Note that these variables should not be relied upon as absolutely secure, as they can be modified by the 
user. 

 

 
 
 Accessing account information from C   
 

 

C on Linux provides numerous functions for getting information about the current process and the passwd file. You should never 
read the file directly; always use the C functions. Some systems use a network system such as NIS to provide a shared passwd file 
across machines; simply reading the file does not provide correct results in these cases. Furthermore, the system can use a database 
version of these files to improve performance; the C functions utilize this but a manual search most likely does not. 

 

 
 

 
C provides several functions to get this data. One is getpwnam(), which returns a pointer to a static variable of type struct passwd. 
This structure is defined in pwd.h as follows: 

 
 
 
 struct passwd   
 {    
   char *pw_name;                /*  Username.  */   
   char *pw_passwd;              /*  Password.  * /   
   uid_t pw_uid;                 /*  User ID.  */   
   gid_t pw_gid;                 /*  Group ID.  */   
   char *pw_gecos;               /*  Real name.  */   
   char *pw_dir;                 /*  Home directory.  */   
   char *pw_shell;               /*  Shell program.  */   
 } ;   
 

 
The argument to getpwnam() is a string—the person’s username. The getpwnam() function will search for this username, returning 
the appropriate record if it is found. If not, NULL is returned. 

 
 
 
 The following C function returns a user’s home directory:   
 
 char * getuserhomedir(char *user)   
 {    
   static char homedir[_POSIX_PATH_MAX];   
   struct passwd *pws;   
       
   pws = getpwnam(user);   
   if (!pws)   
     return NULL;   
       
   strcpy(homedir, pws->pw_dir);   
   return homedir;   
 }    
 

 
This function simply asks getpwnam() for the information on the specified user, saves it off, and returns the value. You’ ll want to 
include string.h, pwd.h, and limits.h for this code. 

 
 
 
 You can perform a similar operation with a person’s numeric UID. The following code can do that for you:   
 
 char * gethomedir(int uidtofind)   
 {    
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   static char homedir[_POSIX_PATH_MAX];   
   struct passwd *pws;   
       
   pws = getpwuid(uidtofind);   
   if (!pws)   
     return NULL;   
       
   strcpy(homedir, pws->pw_dir);   
   return homedir;   
 }    
 

 

In this example, you can see that the only difference lies in the call to getpwuid() instead of getpwnam(). The getpwuid() call 
yields the same result as getpwnam(), except that instead of searching for a username, it searches for a numeric UID. When 
combined with the getuid() call, which returns the numeric uid of the owner of the current process, you can get information about 
the person running your program by using this code: 

 

 
 
 getpwuid(getuid())   
 

 
There is also a getpwent() function that enables you to step through the passwd file, reading in each line. If you are doing a search, 
you should use a different function if possible. Otherwise, if you need to look at each record, then this is the function you should 
use. When you’re done with getpwent(), you should call endpwent() to close out the file. The following code uses getpwent(): 

 

 
 
 /*  Finds the highest uid in passwd file and sets the nextuid global   
    variable to the next number. * /   
 void inituid(void)   
 {    
 struct passwd *entry;   
   uid_t nextuid = 0;                /*  uid_t is defined in sys/types.h */   
   printf(“Scanning for next available uid...\r” ); fflush(stdout);   
   while ((entry = getpwent()))   
     if ((entry->pw_uid > nextuid) &&   
         (entry->pw_uid < 32767))        /*  Compensate for broken systems * /   
          nextuid = entry->pw_uid;   
   endpwent();   
   nextuid++;   
   printf(“The next uid will be %d%-20c\n” , nextuid, ‘ .’ );   
 }    
 

 
In this example, you can see that getpwent() returns NULL when it encountered the end of the file. Therefore, using it in a while 
loop like this one is a common. 

 
 
 

 
These functions are also available in Perl, and they function in the same way. A crypt() function is also used for generating the 
string for the passwd file. This too is used in Perl; see the next example for a sample usage. 

 
 
 
 Accessing from Per l   
 

 
Perl provides access to the same functions as C for getting information from the passwd file. The examples in the C section above 
work almost the same way in Perl. In Perl, instead of returning a struct, the functions return an array with the elements in the order 
of the elements in the struct. 

 

 
 
 Both Perl and C also provide the crypt() function, and they work the same way. Take a look at this simple Perl script:   
 
 #!/usr/bin/perl   
       
 print “Enter a two-character salt: “ ;   
 chomp($salt = <STDIN>);   
 print “Enter the desired password: “ ;   
 chomp($plain = <STDIN>);   
 print “ \n\nThe crypt string is:      “  . crypt($plain, $salt) . “ \n\n” ;   
 
 The two-character salt is chosen randomly. You can run the program and watch the results:   
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 $ chmod a+x gencrypt.pl   
 $ ./gencrypt.pl   
 Enter a two-character salt: LI   
 Enter the desired password: Hey!   
       
       
 The crypt string is:      LIKJfmvCV1/QA   
       
 $ ./gencrypt.pl   
 Enter a two-character salt: NU   
 Enter the desired password: Hey!   
       
       
 The crypt string is:      NUH1u/l1m77j2   
       
 $ ./gencrypt.pl   
 Enter a two-character salt: LI   
 Enter the desired password: Hello!   
       
       
 The crypt string is:      LI86QkktO1hho   
       
 $ ./gencrypt.pl   
 Enter a two-character salt: LI   
 Enter the desired password: Hey!   
       
       
 The crypt string is:      LIKJfmvCV1/QA   
 
 In this example, you can see that:   
 
  •  Two different passwords hashed with the same salt produce different results.   
 
  •  The same password hashed with different salts produce different results.   
 
  •  A single password hashed with the same salt produces the same result.   
 

 
This last behavior is relied upon for password authentication in the system. When a user tries to log in, his or her password is run 
through crypt() using the same salt as before (notice that the salt forms the first two characters of the crypt() output). If the result 
matches the one on record, the password is considered a match.  

group File   
 

 
The group file defines the group on the system and which users are in them. This file is a simple colon-delimited format akin to the 
passwd file. The format of the group file is: 

 
 
 
  •  The name of the group.   
 
  •  A group password.   
 
  •  The numeric gid of the group.   
 

  
• 

 
The comma-separated listing of members of the group. This optional listing does not include users that list this group as their 
default. 

 
 
 

 
Your Linux distribution defines a number of groups that have predetermined functions on your systems. Some of these groups are 
intended for you to add users to; others, for specific programs on your system. If your application requires access to files by some 
users on the system, you (or the administrator) must add a custom entry to this group file. 

 

 
 
 Here are some sample lines from a group file:   
 
 root:x:0:   
 daemon:x:1:majordom   
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 bin:x:2:   
 sys:x:3:   
 adm:x:4:   
 tty:x:5:   
 disk:x:6:   
 lp:x:7:lp   
 mail:x:8:   
 news:x:9:   
 

 
Most of these group files simply define the name of a group. The daemon group, however, indicates that the majordom user is a 
member of the group. Because he or she is a member, that user can read any files that are group-readable by daemon, and can write to 
any files that are group-writable by daemon.  

init Files   
 

 
When the system boots, the /sbin/init program takes control of initializing the system and the user-land software. This task 
includes mounting and checking drives, initializing the network, and starting software and servers. The process of starting and 
stopping these servers is regulated by runlevels, the precise meaning of which can vary from distribution to distribution. 

 

 
 

 
The init scripts reside in either /etc/init.d or /etc/rc.d/init.d, depending on your distribution. The scripts are invoked by init and are 
shell scripts used to start up particular system services. 

 
 
 

 
The init scripts take a particular argument. The start and stop arguments are used by init itself. For the convenience of the system 
administrator, many distributions define additional arguments as well, such as restart or reload. The init scripts on your system 
vary from the mundane to the extraordinarily complex. 

 

 
 

 
You may want to examine some of the scripts in your system for ideas. Some distributions add commands or have typical ways of 
accomplishing things; again, consult your distribution’s documentation for specific details. 

 
 
 
 Listing 5-1 shows an example script from the Debian GNU/Linux operating system.   
 
  Note  Listing 5-1 is available online.   
 
 Listing 5-1:  Debian’s /etc/init.d/sendmail scr ipt   
 
 #!/bin/sh   
       
 # Start or stop sendmail   
 #   
 # Robert Leslie <rob@mars.org>   
 # Johnie Ingram <johnie@netgod.net>   
 # David Rocher <rocher@mail.dotcom.fr>   
 # Richard Nelson <cowboy@debain.org>   
       
 # How often to run the queue   
 Q=”10m”   
       
 PATH=/bin:/usr/bin:/sbin:/usr/sbin   
 DAEMON=/usr/sbin/sendmail   
 COMMAND=/usr/sbin/sendmail   
 PIDFILE=/var/run/sendmail.pid   
 NAME=sendmail   
 FLAGS=”defaults 50”    
       
 test -x $DAEMON -a -d /usr/doc/sendmail || exit 0   
       
 case “$1”  in   
     start)   
         ( cd /var/spool/mqueue && rm -f [lnx]f*  )   
         echo -n “Starting mail transport agent: sendmail”    
         start-stop-daemon --start --quiet --pidfile $PIDFILE  --exec $DAEMON --startas $COMMAND -- -bd -q”$Q”   
         echo “ .”    
     ;;   
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     stop)   
         echo -n “Stopping mail transport agent: sendmail”    
         start-stop-daemon --stop --quiet --pidfile $PIDFILE --exec $DAEMON   
         echo “ .”    
     ;;   
       
     restart)   
         $0 stop   
         sleep 2   
         $0 start   
     ;;   
        
     reload)   
         echo -n “Reloading sendmail configuration...”    
         start-stop-daemon --stop --signal 1 --quiet  \   
             --pidfile $PIDFILE --exec $DAEMON   
         echo “done.”    
     ;;   
       
     force-reload)   
         $0 reload   
     ;;   
       
     debug)   
         start-stop-daemon --stop --signal 10 --verbose  \   
             --pidfile $PIDFILE --exec $DAEMON   
     ;;   
       
     *)   
         echo “Usage: /etc/init.d/sendmail { start|stop|restart|reload|force-reload|debug} ”    
         exit 1   
     ;;   
 esac   
       
 exit 0   
 

 
In this script, you can see that the system implements the standard commands. The script is recording the PID of the process when 
it is started so the PID can be reused when shutting down to properly stop the server. 

 
 
 

 
When the init process starts, it must be told exactly what to do. It must know which runlevel to bring up, which terminals should 
have a getty process, and what to do when certain special events occur. This information is defined in inittab file. 

 
 
 

 
The format of the inittab file is a colon-delimited file akin to the passwd file. However, inittab doesn’ t have such rigid format 
controls and allows comments. Listing 5-2 shows a sample file that we can analyze. 

 
 
 
  Note  Listing 5-2 is available online.   
 
 Listing 5-2:  Sample /etc/inittab file   
 
 # /etc/inittab: init(8) configuration.   
 # $Id: inittab,v 1.8 1998/05/10 10:37:50 miquels Exp $   
       
 # The default runlevel.   
 id:2:initdefault:   
       
 # Boot-time system configuration/initialization script.   
 # This is run first except when booting in emergency (-b) mode.   
 si::sysinit:/etc/init.d/rcS   
       
 # What to do in single-user mode.   
 ~~:S:wait:/sbin/sulogin   
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 # /etc/init.d executes the S and K scripts upon change   
 # of runlevel.   
 #   
 # Runlevel 0 is halt.   
 # Runlevel 1 is single-user.   
 # Runlevels 2-5 are multi-user.   
 # Runlevel 6 is reboot.   
       
 l0:0:wait:/etc/init.d/rc 0   
 l1:1:wait:/etc/init.d/rc 1   
 l2:2:wait:/etc/init.d/rc 2   
 l3:3:wait:/etc/init.d/rc 3   
 l4:4:wait:/etc/init.d/rc 4   
 l5:5:wait:/etc/init.d/rc 5   
 l6:6:wait:/etc/init.d/rc 6   
 # Normally not reached, but fallthrough in case of emergency.   
 z6:6:respawn:/sbin/sulogin   
       
 # What to do when CTRL+ALT+DEL is pressed.   
 ca:12345:ctrlaltdel:/sbin/shutdown -t1 -a -r now   
       
 # Action on special keypress (ALT-UpArrow).   
 kb::kbrequest:/bin/echo “Keyboard Request--edit /etc/inittab to let this work.”    
       
 # What to do when the power fails/returns.   
 pf::powerwait:/etc/init.d/powerfail start   
 pn::powerfailnow:/etc/init.d/powerfail now   
 po::powerokwait:/etc/init.d/powerfail stop   
       
 # /sbin/getty invocations for the runlevels.   
 #   
 # The “ id”  field MUST be the same as the last   
 # characters of the device (after “ tty” ).   
 #   
 # Format:   
 #  <id>:<runlevels>:<action>:<process>   
 1:2345:respawn:/sbin/getty 38400 tty1   
 2:23:respawn:/sbin/getty 38400 tty2   
 3:23:respawn:/sbin/getty 38400 tty3   
 4:23:respawn:/sbin/getty 38400 tty4   
 5:23:respawn:/sbin/getty 38400 tty5   
 6:23:respawn:/sbin/getty 38400 tty6   
       
 # Example how to put a getty on a serial line (for a terminal)   
 #   
 #T0:23:respawn:/sbin/getty -L ttyS0 9600 vt100   
 #T1:23:respawn:/sbin/getty -L ttyS1 9600 vt100   
       
 # Example how to put a getty on a modem line.   
 #   
 #T3:23:respawn:/sbin/mgetty -x0 -s 57600 ttyS3   
 

 

Reading this file from the top to the bottom, the first noncomment line you see is the initdefault line. This line defines the runlevel 
that the system enters into by default during boot. The next line with content is the sysinit line. This is the script that is used to 
initialize vital parts of the system. Typical duties for the script include mounting file systems, checking filsystems, and configuring 
the networking support on your machine. 

 

 
 

 
The next line defines what program to use when the system is brought down into single-user mode. In this case, the sulogin 
program is run. This program requires the operator to enter the root password. Some older distributions do not have this; it is wise 
to add it in if multiple users have physical access to the console of your system. 
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Next, you see the definitions for the actions to take when being brought up into each specific runlevel. These scripts are 
responsible for making sure that the appropriate processes are running (or not running) for that particular runlevel. 

 
 
 

 
Following those lines, there are definitions of what occurs when special events occur. These events include a Ctrl+Alt+Delete 
request, a special keyboard request, and situations in which a UPS (Uninterruptible Power Supply) unit indicates when main power 
is lost—or restored. 

 

 
 

 

After these definitions, there are definitions of the terminals that are used on the system. Most Linux distributions default to starting 
up six virtual terminals. The getty program handles the initial login process; in this case, accepting username and password 
information. Finally, there are examples of how you can set up a serial terminal (as with a null-modem cable) and a dial-in modem 
terminal.  

Network Files   
 

 
Besides the configuration and initialization files on your system, you should be aware of a few others. These fall into the network 
file category, and are particularly relevant when you are writing network server programs. 

 
 
 
 DNS files   
 

 

The Domain Name System (DNS) is the distributed database responsible for converting from the domain names used by humans 
to access Internet servers and the numeric addresses used internally by the TCP/IP protocol. When your programs call functions 
that perform DNS lookups, such as gethostbyname(), the standard implementation of these functions causes the system 
configuration files to be consulted. 

 

 
 

 
The most well-known of these configuration files is resolv.conf (located in the /etc directory), which defines the location of your 
system’s DNS servers and how to query them. Its entries specify the IP addresses of the servers used by your system. It can also 
specify a domain search order for resolving names that are not fully qualified. 

 

 
 
 An example file might be:   
 
 nameserver 10.0.0.1   
 nameserver 127.0.0.1   
 nameserver 10.11.12.13   
 search example.com   
 

 
This states that the nameservers residing at 10.0.0.1, 127.0.0.1, and 10.11.12.13 should be queried, in that order, when the system 
needs to access a nameserver. Additionally, if a fully-qualified domain is not specified, the example.com domain will be implicitly 
searched for a match. 

 

 
 

 

Another relevant file is the /etc/hosts file, which holds local definitions of hostnames. The hosts defined in this file do not require a 
DNS lookup. Your own machine and localhost are always listed in here. Other machines that you may need to contact even in lieu 
of a working DNS system (such as NFS or NIS servers) should also be listed here. This way, your machine can continue to 
function even if the DNS server is down for some reason—an important step in network stability. 

 

 
 
 The /etc/nsswitch.conf file defines the order in which these files are checked. Here’s a sample file:   
 
 passwd:         compat   
 group:          compat   
 shadow:         compat   
       
 hosts:          files dns   
 networks:       files   
       
 protocols:      db files   
 services:       db files   
 ethers:         db files   
 rpc:            db files   
       
 netgroup:       nis   
 

 
In this way, the methods of accessing various types of information are clearly defined. For instance, to look up the IP address of a 
given host, first the file is checked and then, if no satisfactory result was obtained from the file, DNS is queried. This is defined on 
the hosts line in the file. 
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 Secur ity files   
 

 

Also important are the network security files on your system. The most prominent of these are the files for TCP wrappers that 
define which machines are allowed to connect and access a given service, and which are not. These capabilities are defined in two 
files: /etc/hosts.allow and /etc/hosts.deny. Documentation for these files can be found in the hosts_access(5) manpage. These files 
work together to specify which hosts may connnect to which services. If there is no line matching a given connection request, 
access is granted by default. If a line in hosts.deny matches a connection request, access is denied unless there is a line in 
hosts.allow that matches the same connection request. This TCP wrapper mechanism only controls who may connect to your 
servers, not what they may do when connected. 

 

 
 

 
Both files have the same syntax: a service name, a colon, and then a definition of which hosts may connect. Here’s a sample 
hosts.deny file to analyze: 

 
 
 
 # /etc/hosts.deny: list of hosts that are _not_ allowed to access the system.   
 #                  See hosts_access(5) and /usr/doc/net/portmapper.txt   
 #   
 # Example:    ALL: some.host.name, .some.domain   
 #             ALL EXCEPT in.fingerd: other.host.name   
 #   
 # The PARANOID wildcard matches any host whose name does not match its   
 # address.   
 # ALL: PARANOID   
 ALL: PARANOID, ALL@ALL EXCEPT .example.com, localhost   
 imapd: PARANOID, ALL@ALL   
       
 uucp: ALL@ALL   
 telnetd, telnet, ssh, rlogin, rexec, rsh: ALL@ALL   
 

 

In this file, access is denied by default to all users on all hosts (ALL@ALL) and to hosts that have suspicious DNS (PARANOID) 
to all services on the system. Note that you could use ALL instead of ALL@ALL; the latter simply does ident lookups where 
possible, and can log more information to your log files. Any hosts in the example.com domain, or the local machine, are 
exempted from this blanket deny rule already. 

 

 
 

 
Next, the imap service denies connects from everywhere, including the local machine. The same occurs with UUCP. Finally, 
several remote access services declare the same thing. 

 
 
 
 Recalling that a hosts.allow file takes precedence over a hosts.deny file, take a look at this hosts.allow file:   
 
 sendmail: ALL   
 in.talkd: ALL@ALL EXCEPT PARANOID   
 in.ntalkd: ALL@ALL EXCEPT PARANOID   
 cvs: ALL@ALL EXCEPT PARANOID   
 

 
According to this file, any machine is allowed to connect to the sendmail service on your local machine. Also, any machine with 
working DNS is permitted to connect to the talk and CVS services on your machine. These rules override the blanket deny in the 
hosts.deny file. 

 

 
 

 
At this point, it should be noted that not all services honor the hosts.deny and hosts.allow files. Web servers, for instance, typically 
do not because of speed considerations. However, because Web documents are essentially public anyway, there’s no particular 
need for this type of mechanism for Web servers. 

 

 
 

 
Most servers that are started from the inetd super-server use TCP wrappers. Several other programs link in the library; examples 
include sendmail and ssh. 

 
 
 
 Super-server  file   
 

 
One significant piece of the networking puzzle remains: inetd, the Internet super-server. This program listens for connections to 
some of the simpler services on the system. Some of these are handled internally by inetd; most are passed on to individual 
programs that handle them. These items are defined in /etc/inetd.conf. 

 

 
 
 This file defines services for which the super-server listens (the details are covered later in Chapter 18, “ Introducing TCP/IP  
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Sockets” ). Here are a few lines from a sample file:  
 
 discard         stream  tcp     nowait  root    internal   
 discard         dgram   udp     wait    root    internal   
 daytime         stream  tcp     nowait  root    internal   
 daytime         dgram   udp     wait    root    internal   
 time            stream  tcp     nowait  root    internal   
 time            dgram   udp     wait    root    internal   
       
 #:STANDARD: These are standard services.   
 telnet          stream  tcp     nowait  root    /usr/sbin/tcpd  /usr/sbin/in.telnetd   
 #<ftp-off>#ftp          stream  tcp     nowait  root    /usr/sbin/tcpd  /usr/sbin/in.ftpd   
 ftp             stream  tcp     nowait  root    /usr/sbin/tcpd  /usr/sbin/ftpd    
 

 
The non-internal services in this example each have /usr/sbin/tcpd in them. This is the call to the TCP wrappers. If the TCP wrappers 
confirm that the connection is to be accepted, then tcpd invokes the actual server process.  

Summary   
 

 
In this chapter, you learned about the various files and scripts that are part of the initialization and configuration of Linux and its 
components. Specifically, you learned: 

 
 
 

  
• 

 
Linux programs typically use plain text files for configuration. Many store the configuration files in the /etc directory and the 
per-user information in each user’s home directory. 

 
 
 

  

• 

 

Linux has a structured file system. The root file system holds files and directories necessary for the initial startup of the 
system. As part of this file system, /etc contains configuration and initialization files and /dev holds entries for system devices. 
The /usr tree has standard files for use during normal system operations. The /var tree contains data that may be variable. A 
virtual file system can be found in /proc, which provides information about the system. 

 

 
 
  •  The passwd file is used to store information about the users with accounts on the system.   
 

  
• 

 
Many modern distributions use a shadow password system, which stores the actual hashed password data in the /etc/shadow 
file, which is not readable by all users for security reasons. 

 
 
 
  •  The group file defines which groups are present on the system, and which users are members of them.   
 

  
• 

 
The init program is responsible for many aspects of system initialization. It uses initialization scripts from /etc/init.d or 
/etc/rc.d/init.d and has a configuration file in /etc/inittab. 

 
 
 

  
• 

 
The nameservers to use for DNS lookups are defined in /etc/resolv.conf and the order to use when performing lookups is 
defined in /etc/nsswitch.conf. 

 
 
 
  •  You may block access to certain services or hosts by using /etc/hosts.allow and /etc/hosts.deny.   
 

  
• 

 
The inetd.conf file is used to configure the inetd super-server, which listens for requests on the behalf of many smaller servers on 
the system.  
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 Overview   
 

 
As you work with your Linux development environment, much of your work will revolve around the centerpiece of the C 
development environment, gcc. gcc, short for the GNU C Compiler, is the standard C compiler on GNU/Linux systems. 

 
 
 

 

This chapter will introduce you to and get you up to speed with gcc. You’ ll first learn the basic usage of gcc to compile single-
module programs. Then, I will cover topics such as compiler warnings, debug symbols, and optimizations. In the next section, 
you’ ll learn about the big picture of the compilation process on Linux, including all of the tools and programs that gcc uses to 
generate your executables. 

 

 
 

 
After discussing what the tools are and what they do, you’ ll be introduced to the ways in which you work with larger (multi-module) 
projects. Finally, some more advanced gcc options, such as linking with libraries and compilation with pipes, are discussed.  

Compiling Programs with gcc   
 

 
Now, I’ ll go through some sample usage of gcc together. First, I present for you a sample program to try compiling with gcc. You 
can use your favorite editor to type it in. For the purposes of this example, save it as test1.c. Here’s the code: 

 
 
 
 #include <stdio.h>   
       
 void main(void) {    
   printf(“Hello World!\n” );   
 }    
 

 
This program looks—rightly so—fairly simple. Later, gcc will point out a few things that ought to be fixed, but for now, compile 
the program. To compile the program, type: 

 
 
 
 gcc test1.c   
 

  
Tip 

 
If you are using Emacs or XEmacs, you may press M-x and then type compile RET gcc test1.c RET to compile the 
program from within Emacs. Later, for simple programs such as this one, you can run them in an Emacs shell as 
well: M-x shell RET. 

 

 
 

 
Depending on your specific version of gcc, you may get a warning at this point. Ignore it for now; I’ ll talk about warnings later in 
the chapter. When gcc runs with the above usage, it generates a file named a.out that contains your program. You can run the 
program, as follows: 

 

 
 
 $ ./a.out   
 Hello World!   
 
 You’ve just compiled your first C program on Linux!   
 

 
That was fairly trivial. However, unless you like naming every one of your programs a.out, you’ ll enjoy using the –o option of gcc, 
which enables you to change the names of your program. To use this option, type the following command: 

 
 
 
 gcc –o test1 test1.c   
 

 
This is much better! You now have a file named test1 instead of a.out. As with the a.out program, you can run your newly named 
program: 

 
 
 
 $ ./test1   
 Hello World!   
 
 So, you can see that –o sets the output filename for gcc.   
 
 Warnings   
 

 
Now, on to another important topic: warnings. Warnings are controlled by the –W switch to gcc. You can enable all of the most 
common warnings with the –Wall command like so: 

 
 
 
 $ gcc –Wall –o test1 test1.c   
 test1.c:3: warning: return type of `main’  is not `int’    
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  Note  
If you use a different version of gcc than that used for this book’s examples, your warning messages may differ; 
this is normal. 

 
 
 

 
The gcc compiler smartly pointed out that my main() function isn’ t exactly standard—excellent. Notice that even though there was 
a warning, gcc still compiled your program; it only aborts compilation on errors. 

 
 
 
 Now, perhaps, someone decides to fix the program like so:   
 
 #include <stdio.h>   
       
 int main(void) {    
   printf(“Hello World!\n” );   
 }    
 
 Now, try to compile this:   
 
 $ gcc –Wall –o test1 test1.c   
 test1.c:5: warning: control reaches end of non-void function   
 

 
Another good catch on gcc’s part; because the main() function is declared to return an integer, and yet it doesn’ t, the return value is 
undefined. A proper fix here is fairly trivial. Change your test1.c to the following: 

 
 
 
 #include <stdio.h>   
 #include <stdlib.h>    /*  for EXIT_SUCCESS */   
       
 int main(void) {    
   printf(“Hello World!\n” );   
   return EXIT_SUCCESS;   
 }    
 
 Now try compiling this one. You will get no warnings!   
 

 

Another useful option is the –Werror switch, which causes gcc to treat all warnings as errors. This is particularly useful when 
using automated compilation, such as with the GNU make tool. When –Werror is used, gcc will not finish the compilation if any 
warning is detected.Therefore, you don’ t want to include this in release versions of software because other users’  compilers may 
generate warnings on different things. However, when working with large projects with which gcc or make may generate several 
thousand lines of output, having the compilation aborted in this manner can be beneficial. You can use –Werror as follows: 

 

 
 
 $ gcc –Wall –Werror  –o test1 test1.c   
 

 

While gcc’s warnings in this case were not really earth-shattering matters, you’ ll find that, as you write more complex programs, 
the -Wall switch can be an extremely valuable tool for tracking down and preventing bugs. I recommend that you use –Wall 
whenever you compile programs as a matter of habit; it’s hard to go wrong with something that can often catch errors before you 
realize they’re present! 

 

 
 
 Optimizations with gcc   
 

 

One of the most exciting features of modern C compilers is the optimizer. The optimizer is a part of the compiler that is capable of 
examining your code (or the assembler code generated by the compiler), identifying those areas that are suboptimal, and rewriting 
them using code that does the same thing in less space or with better performance. gcc is no exception; it has a powerful and 
highly configurable optimizer that can be applied to your programs. 

 

 
 
 Optimization Options   
 

 
In gcc, you can enable optimizations by using one of the -O options. You can specify several different levels of optimization for 
gcc. If you simply use -O, this is taken as level one (or -O1); -O is the same as -O1. In general, you can go up to level three (or-
O3). 

 

 
 
 So, to use basic optimizations, you might use a command line such as the following:   
 
 $ gcc -Wall -O1 -o myprogram myprogram.c   
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You can, of course, also use -O2, -O3, or -O in place of -O1 above on your command line. These options control how aggressive 
gcc’s optimizer is; the higher the number, the more aggressive gcc becomes with optimizations. More aggressive optimizations 
mean that your code runs faster. 

 

 
 
 Optimization Pitfalls   
 

 
Optimization sometimes means tremendous gains for your program’s performance. However, you should be aware of some 
potential pitfalls. 

 
 
 

 
First, the more aggressive gcc becomes with optimizations, the longer it takes your program to compile. Therefore, some prefer to 
compile without optimizations during day-to-day development, but enable optimizations when the time to release and finish the 
program nears. 

 

 
 

 
Second, some options—most notably, -O3—can increase the size of the generated program. Usually this difference is 
insignificant, but sometimes it can be important. If a program uses more RAM, then swapping may occur on the machines on 
which it runs, which can hurt performance more than the gain from the more efficient (but larger) code. 

 

 
 

 

Finally, as mentioned earlier, debugging can be difficult when optimization is enabled. Because the optimizer can eliminate code 
that does not have a use in the final program, or re-arrange some statements for better performance, tracing the execution of the 
program can be difficult at best. Therefore, I recommend that you avoid optimizations as much as possible when debugging your 
programs. 

 

 
 

 
Many people prefer to compile their programs with -O2 This option often provides the best compromise between optimization 
strength, compile time, and code size. 

 
 
 
 Optimizations: A Sample Session   
 

 

In this section, we will take a look at some sample code to demonstrate optimization. The following code is the sample code for 
the test2.c program. This code is written inefficiently on purpose; you’ ll see how dramatic a difference gcc’s optimizer can make 
with the execution time of the program. Note that the results you’ ll see here are more significant than those provided by the 
optimizer in a typical real-life situation, but nonetheless, you can sometimes see these results. 

 

 
 
 Here is the code for test2.c:   
 
 #include <stdio.h>   
       
 int main(void) {    
   int counter;   
   int ending;   
   int temp;   
   int five;   
   for (counter = 0; counter < 2 *  100000000 * 9 / 18 + 5131;   
        counter += (5 - 3) / 2) {    
      temp = counter / 15302;   
      ending = counter;   
      five = 5;   
   }    
   printf(“ five = %d; ending = %d\n” , five, ending);   
   return 0;   
 }    
 
 First, compile the program without optimizations, by typing the following:   
 
 $ gcc -Wall -o test2 test2.c   
 

 

Normally, you would run the program by simply using ./test2. However, this time, you need to get some statistics. In order for the 
information to be useful, you need to time the execution on a machine that is not doing anything else, although you can still get 
some useful information even from a loaded system. You can do this with the time command, which reports information on 
resource utilization of your program when it finishes. Here is the command: 

 

 
 
 $ time ./test2   
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 five = 5; ending = 100005130   
       
 real    0m15.146s   
 user    0m14.960s   
 sys     0m0.000s   
 

 
These results almost certainly will be different on your system unless you have the same speed machine as the one on which this 
program was run. If the program takes an extremely long time to run, you may want to change the 100000000 number in the code 
to something smaller. 

 

 
 

 
The time command is indicating that the program took a little more than 15 seconds to execute. Of this time, about 14.9 seconds 
were spent by the CPU with this program. If you are running the program on a heavily loaded machine, you might notice a larger 
difference between these two values.  

 

 
 
  Tip  You can see this for yourself by opening two windows or terminals, and starting the program simultaneously in each.   
 

 
Finally, the sys value indicates that a negligible amount of time is spent handling system calls, which is to be expected; almost all 
of the time in this program is for computation, and the only output occurs inside the printf() function. 

 
 
 
 Now, try gcc on the program again, this time with basic optimizations enabled:   
 
 $ gcc -Wall -O1 -o test2 test2.c   
 
 And examine the results of execution this time:   
 
 $ time ./test2   
 five = 5; ending = 100005130   
       
 real    0m2.220s   
 user    0m2.200s   
 sys     0m0.000s   
 

 
A significant improvement; the execution time went from 15 seconds to about 2 seconds. In other words, the program took about 7 
times longer to execute without optimizations as it takes now. 

 
 
 
 For comparison, one might want to use the -O2 level of optimization:   
 
 $ gcc -Wall -O2 -o test2 test2.c   
 $ time ./test2   
 five = 5; ending = 100005130   
       
 real    0m1.444s   
 user    0m1.420s   
 sys     0m0.000s   
 

 
In round numbers, the program takes only about 75 percent as long to run with -O2 as it did with -O1. This is not as large as the 
previous difference, but still significant. 

 
 
 
 You might also want to try with -O3:   
 
 $ gcc -Wall -O3 -o test2 test2.c   
 $ time ./test2   
 five = 5; ending = 100005130   
       
 real    0m1.421s   
 user    0m1.400s   
 sys     0m0.000s   
 

 
Here, there is still an improvement, but it’s smaller this time—only about two hundredths of a second. Still, the improvement may 
be meaningful. For instance, if your program performs computations that take hours to complete, that which is a small difference 
here may become a large difference later. 
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As I mentioned previously, this is a contrived example; the code in this program was designed specifically such that the optimizer 
has a lot of improvements to make. Although gcc’s optimizer is powerful, you can help by writing good code to start with. If you 
write code that is concise and has a good flow of logic, the optimizer may be able to do even more for you—or you may not even 
need optimizations at all. 

 

 
 
 If you analyze the code used in the preceding examples, you will see that there are many apparent problems. Here they are:   
 

  

• 

 

First, the ending value of the counter is calculated every time through the loop as 2 * 100000000 * 9 / 18 + 5131. If the code is 
modified such that it simply ends at 100005131, the computer no longer has to calculate the value each time through the loop. 
Note that in this case, the optimizer simply performs that calculation beforehand. If you, for instance, have a variable myvar 
and use 2 * myvar as the ending value, this has to be recalculated each time through the loop; the optimizer can’ t help in this 
case. You may want to use a temporary variable to hold the value instead. 

 

 
 

  
• 

 
The increment is defined as (5 - 3) / 2—that is, 1. Again, the computer has to make a calculation here, defining what the end 
value is. Simply using counter++ would save some time. 

 
 
 
  •  The temporary variable temp itself is never used; it is wasteful to assign something to it each time through the loop.   
 

  
• 

 
Even though the five variable is used, still it is inefficient to assign the same value to it each time through the loop. It’s better 
to do that only once, either before or after the loop. 

 
 
 

  
• 

 
The same concept applies with the ending variable. Because we know where the loop ends, it is possible to compute this as 
one less than the ending value—that is, 100005130. Therefore, assigning this every time through the loop is also unnecessary. 

 
 
 

  
• 

 
After you make the changes noted previously, the loop is empty; it only modifies counter. Because counter is used nowhere 
else, it can be removed as well. 

 
 
 
 Here’s a revised version of the code, which incorporates the changes previously mentioned:   
 
 #include <stdio.h>   
       
 int main(void) {    
   int ending = 100005130;   
   int five = 5;   
   printf(“ five = %d; ending = %d\n” , five, ending);   
   return 0;   
 }    
 
 Even before running the code, you can tell that it’ s more straightforward and easier to follow. Now, try compiling and running it:   
 
 $ gcc -Wall -o test2 test2.c   
 $ time ./test2   
 five = 5; ending = 100005130   
       
 real    0m0.004s   
 user    0m0.000s   
 sys     0m0.000s   
 
 That’s an incredible difference over even -O3. The original program took over 350 times longer, even with full optimizations.   
 

 
Thus, there are two important points here: one, that the gcc optimizer can dramatically improve the performance of programs; and 
two, that you often can do more to increase the program speed than the optimizer can, if you write good code. Yes, gcc is smart, 
but a good programmer can still be more effective with speed optimizations. 

 

 
 
 Generating debug symbols   
 

 
Another powerful feature of modern development systems is the availability of powerful debugging tools. These tools provide you, 
the programmer, with powerful ways to trace the execution of a program and to isolate problems. The GNU Debugger (gdb), is an 
example of such a tool.  Here, you will learn how to compile your programs such that gdb can work with them. 
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Cross-Reference  
 
 The GNU Debugger (gdb), is discussed in detail in Chapter 10, “Debugging with gdb.”    
 
     
 

 

Before you can use gdb properly with your programs, you need to compile them with debugging symbols. When you do this, gcc 
inserts extra information into the object files (.o) and executable files that it generates. This extra information enables gdb to 
determine the relationship between the compiled code and the lines in your source file. Without that information, gdb would not be 
able to determine which line of code your program is executing at any given time. 

 

 
 

 
These debug symbols are not compiled into your programs by default because of one important side effect: they increase the size 
of the executable, sometimes significantly. It is possible, however, to remove debug symbols from an already compiled program 
by using the strip(1) utility. This means that it’s not necessary to recompile your programs after you’re done debugging them. 

 

 
 

 

There is a caveat with the powerful debug symbols mechanism, though. The uses of these symbols can be incompatible with 
optimizations. Because gcc can sometimes modify the order in which instructions are performed to gain speed benefits, the flow of 
control used by the final program may differ from that which you wrote, which can make debugging confusing or even practically 
impossible. For this reason, it is best to avoid using the -O or optimization-enabling –f options when you intend to debug a given 
piece of code eventually. 

 

 
 

 
To generate debugging symbols, you use the –g option to gcc. In its basic form, it generates a default set of debugging options, 
which are usually sufficient. You might use a command such as: 

 
 
 
 $ gcc –g –Wall –o test1 test1.c   
 

 
You can also enable more debugging information, which can be useful in some cases. If you will be using the gdb debugger (or 
one of its derivatives) later, you will want to use a command like this: 

 
 
 
 $ gcc –ggdb3 –Wall –o test1 test1.c   
 

 

The gdb part of the preceding line instructs gcc to generate debugging symbols with the gdb extensions. The 3 means that it ought 
to use level-3 debugging information, the highest level possible. Thus, you get the maximum possible debugging information with 
–ggdb3. Level 3 adds information such as macro definitions to the debugging information, which can be valuable in certain 
situations. 

 

 
 
 We will look at an example of  using  debugging symbols to analyze a crash. Consider the following code:   
 
 #include <stdio.h>   
       
 int main(void) {    
   int input = 0;   
   printf(“Enter an integer: “ );   
   scanf(“%d” , input);   
   printf(“Twice the number you supplied is %d.\n” , 2 * input);   
   return 0;   
 }    
 

 
This simple program will crash with a core dump when run. For the sake of this example, assume that you don’ t know this 
beforehand. You might compile the program like this: 

 
 
 
 $ gcc -Wall -o crash crash.c   
 

 
Some newer versions of the compiler will issue a warning about line 6 in the preceding example, which is a hint of trouble yet to 
come.Ignore that for now and try running the program: 

 
 
 
 $ ./crash   
 Enter an integer: 5   
 Segmentation fault   
 
 What a surprise—the program crashed! The next step is to compile with debugging symbols:   
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 $ gcc -ggdb3 -Wall -o crash crash.c   
 
 Now, you need to enable core dumps. Under the Bash shell (the default with most Linux systems), you can do so by running:   
 
 $ ulimit -c unlimited   
 
 Next, run the program again:   
 
 $ ./crash   
 Enter an integer: 5   
 Segmentation fault (core dumped)   
 

 
Excellent—it crashed again! Yes, this may sound ironic, but notice that you now have a file named core. This file can unlock the 
secret of why the program crashed. 

 
 
 
 The next step is to load the program and core file into gdb for analysis:   
 
 $ gdb crash core   
 GNU gdb 4.18   
 Copyright 1998 Free Software Foundation, Inc.   
 GDB is free software, covered by the GNU General Public License, and you are   
 welcome to change it and/or distribute copies of it under certain conditions.   
 Type “show copying”  to see the conditions.   
 There is absolutely no warranty for GDB.  Type “show warranty”  for details.   
 This GDB was configured as “ i686-pc-linux-gnu” ...   
 Core was generated by `./crash’ .   
 Program terminated with signal 11, Segmentation fault.   
 Reading symbols from /lib/libc.so.6...done.   
 Reading symbols from /lib/ld-linux.so.2...done.   
 #0  0x400686fb in _IO_vfscanf () from /lib/libc.so.6   
 

 
The last several lines are the ones that are interesting. First, the fact that the program crashed because of a segmentation fault 
indicates that some memory issue was probably at hand. Then, the fact that the crash occurred in a function containing the word 
scanf (_IO_vscanf ()) is a hint. You can, however, get more detailed information: 

 

 
 
 (gdb) bt   
 #0  0x400686fb in _IO_vfscanf () from /lib/libc.so.6   
 #1  0x4006a048 in scanf () from /lib/libc.so.6   
 #2  0x8048448 in main () at crash.c:6   
 

 
Skipping past the first two lines, which occur inside of the C library, you see something that occurred on line 6 of crash.c. Now, 
one more check: 

 
 
 
 (gdb) frame 2   
 #2  0x8048448 in main () at crash.c:6   
 6         scanf(“%d” , input);   
 (gdb) pr int input   
 $1 = 0   
 

 
First, you switch to frame 2 (the value on the appropriate line of the bt output). Then, you ask gdb to display the value of the 
variable input just before the crash. It is still zero—the value 5 was not stored into it, confirming the suspicion that the call to the 
scanf() function caused the crash. 

 

 
 
 Now that the problem is isolated, you may exit gdb by typing the following:   
 
 (gdb) q   
 

 
Don’ t worry if you didn’ t understand all of the commands sent to gdb. These topics will be covered in more detail in Chapter 10, 
“Debugging with gdb.”  

 
 
 

 
Now that you know where the problem is, you can modify crash.c and insert an ampersand before input on line 6. Your program 
will now look like this: 
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 #include <stdio.h>   
       
 int main(void) {    
   int input = 0;   
   printf(“Enter an integer: “ );   
   scanf(“%d” , &input);   
   printf(“Twice the number you supplied is %d.\n” , 2 * input);   
   return 0;   
 }    
 
 Compiling and running this code results in a working program:   
 
 $ gcc -Wall -o crash crash.c   
 $ ./crash   
 Enter an integer: 5   
 Twice the number you supplied is 10.   
 

 
This gives you only a quick glance at gdb and what it can do when you add debugging symbols to your program. The debugger also 
can run through your program step by step, and can enable you to examine it while it is running instead of after it has crashed. All 
these details will be covered in Chapter 10.  

 Taking a Look at the Big Picture of gcc   
 

 

Thus far, you have learned how to use basic gcc options to generate a program, control optimization levels, enable debugging 
symbols, and so on. However, a lot of detail has been hidden from your view. This is done intentionally, so that using and learning 
the system is simplified. When you want to work with more advanced situations, though, it is important to understand the pieces of 
the puzzle and how they fit together. After you understand this, you can better understand various error or warning messages that 
might be produced at different times during the build process, or be able to control more precisely how your programs get 
compiled and linked. 

 

 
 

 

In traditional UNIX fashion, the build system contains a number of components that you can assemble together to form a 
comprehensive solution to a problem. Even though you may have not noticed, running gcc does much more than run the compiler. 
A compiler simply translates source code to assembly code. After that, an assembler must be run to generate object code. Finally, a 
linker must be run to bind the object code together with all the things necessary for it to run. 

 

 
 

 

As you have used it thus far, gcc has taken care of these extra details for you automatically. Even though you didn’ t explicitly 
request it, gcc has used several programs to generate your final output. I’m going to lead you through a small tour of the 
components, and, like a museum tour, I’ ll finish up with a look at the Linux developer’s gift shop, filled with useful knick-knacks 
and small tools. 

 

 
 
 The C compiler : gcc   
 

 
Thus far, this entire chapter covered gcc. At this point you should note that many of the programs discussed in the next section can 
be invoked by gcc, and in fact are invoked by gcc if you use it as the examples in this chapter have. Thus, gcc is more than a 
compiler; it’ s also a front-end that can be used to take care of the details of the build process for you. 

 

 
 
 The C++ compiler : g++   
 

 

The GNU C++ compiler, g++, performs the same function for C++ programs as gcc does for C programs. Strictly speaking, gcc 
can compile C++ code, as well, given the proper circumstances. However, the result will not always be correct without manually 
specifying additional options. Therefore, when compiling C++ programs, g++ is generally the proper route to take. The options 
accepted by g++ are the same as those accepted for gcc, so there is no need to relearn commands. 

 

 
 

 
When dealing with C++ code, you (generally) should give it a .C or .cxx extension (as opposed to .c) such that both the C++ 
compiler and other programmers can properly identify the code as C++ code. Then, you use g++ to compile in the same fashion as 
you would use gcc. For instance, consider this C++ program: 

 

 
 
 #include <iostream.h>   
       
 int main(void) {    
   int input;   
       



 103 

   cout << “Enter a number: “ ;   
   cin > input;   
   cout << “Twice the number you supplied is “  << 2 * input << endl;   
   return 0;   
 }    
 
 Assuming you save it as test3.C, you may compile this code by using the following command:   
 
 $ g++ -Wall -o test3 test3.C   
 
 Executing the program is done in the same fashion as with C programs:   
 
 $ ./test3   
 Enter a number: 21   
 Twice the number you supplied is 42   
 
 The C preprocessor : cpp   
 

 
The cpp (C Preprocessor) command is responsible for the evaluation of macros, conditional compilation, and other tasks that need 
to take place before the code is passed through the compiler properly. In general, any of the # syntax items, and the code that they 
act upon, is preprocessed by cpp. For instance, consider the following code snippet: 

 

 
 
 #define FOO (5 * 2)   
 printf(“%d\n” , FOO * 2);   /*  Display the number */   
 
 After running through cpp, the code will be modified to read:   
 
 printf(“%d\n” , (5 * 2) * 2);   
 

 
So, cpp removes comments, interprets macros, handles include files, handles #if and #ifdef statements, and almost anything else 
that starts with a # sign. The gcc compiler normally calls cpp automatically; you also can call it with gcc -E or by using cpp on the 
command line. 

 

 
 

  Note  
Some Linux distributions do not place cpp on your default path. You might need to find it for yourself if you get 
an error when you try to use it; look under /usr/lib/gcc-lib and its subdirectories. 

 
 
 

 
One interesting thing to note is that cpp is not restricted to use with C programs. Because cpp does not deal in any way with the 
code it generates, one can use it to generate non-C code. Some people use it to automate the generation of HTML code for web 
pages; others, to process configuration files for networked computers. 

 

 
 

  Tip  
If you want to try cpp in such a situation, you will probably want to use the -P option (which inhibits generation of 
line number information) on its command line, which prevents the output of line number information. 

 
 
 
 The GNU L inker : ld   
 

 

With virtually every program you write, there are multiple parts that have to be brought together to form the final executable. Even 
if your program contains only one module that you’ve written, as is the case with the samples encountered thus far, still you must 
use the linker (ld). Items such as the C library, program initialization code, and so on, must be included. Without the C library, for 
instance, you wouldn’ t have such library function calls as strcpy() or getpwnam() available. Without these calls, you lose the 
capability of doing even some simple tasks unless you write your own replacements. 

 

 
 

 
If larger programs are in your future, most likely you’ ll want to split them into separate modules. When this is done, the linker 
combines all the modules together, brings in the C library and startup code, and generates the finished product. Again, the linker 
plays a vital part in the generation of your executables. 

 

 
 

 
Normally, ld is invoked by the compiler to generate the final executable. You can use ld manually, however, if you want more 
fine-grained control over the linking process. 

 
 
 
 The GNU Assembler : as   
 

 
When gcc compiles your code, it generates assembly code. The job of as (GNU Assembler) is to take this assembly code and 
generate the object (binary) code that is used to form the .o files, libraries, or the final executable. The as program is rarely called 
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independently; rather, it is almost always invoked by gcc. However, if you have a desire to program with assembly language—
perhaps for fine-grained performance optimization or kernel modifications—you can invoke as manually also.  

 

 
Note that because assembly is a low-level type of code, it varies between different platforms, even with the same operating system. 
For instance, the assembly code used to perform computations on a 32-bit x86 platform can vary significantly from that used to do 
the same computations on a 64-bit Alpha platform. 

 

 
 
 The Archiver : ar    
 

 
To build static libraries, you need to use the ar (the archiver) program. This program is used for combining several small files into 
one large file. In the case of static libraries, this is precisely what must be done: you combine multiple .o files into a single .a file. 

 
 
 
 The Makefile Interpreter : make   
 

 

Large programs can often contain dozens or even hundreds of separate modules. If compiling the program meant manually 
invoking gcc for each of these modules, the build procedure would be long, tedious, and error-prone. You might have to remember 
exactly which files have been modified, which files might depend on code elsewhere, and the proper gcc options for each of these 
items. Hopefully, as you are thinking about how tedious it would be to invoke gcc several hundred times, you’re thinking, what a 
nightmare! Well, the make program is designed to automate this entire process. 

 

 
 

 

With make, a file called Makefile is created. This file describes how to build each component of the system by using a set of rules. 
These rules define the commands necessary to build a component (such as a call to gcc or ar) as well as dependencies. For 
instance, if you modify a header file that several C source files include, you will want to rebuild these files to use the modifications 
to the header file. However, to save time, you probably don’ t want to rebuild all the other modules. GNU make is capable of 
figuring out such situations based on the rules in the Makefile, and thus can compile only the minimum set of files necessary to 
bring the final product up-to-date relative to the source. 

 

 
 

 
Like cpp, make is not restricted to working only with C source code. Some use it to generate code for languages such as Pascal or 
Fortran, or even for other tasks such as automating web sites or the building of packages for a Linux distribution. 

 
 
 
 Unlike many of the programs covered to this point, make is not invoked by gcc. Rather, make invokes gcc.   
 
 The GNU Debugger : gdb   
 

 
While not strictly part of the build process, gdb (GNU debugger) most certainly is part of the development process. As previously 
discussed, with gdb, you can track down any bugs that may be present in your software. Features of gdb include postcrash 
analysis, step-by-step execution, conditional breakpoints, and other modern debugger features. 

 

 
 
 Library Dependency Display: ldd   
 

 
The ldd (Library Dependency Display) tool shows you which shared libraries a given executable (or library) requires in order to 
run. For a simple C program, the display often contains only two items: the C library, libc, and the dynamic loader, ld-linux. For 
instance: 

 

 
 
 $ ldd ./myprogram   
         libc.so.6 => /lib/libc.so.6 (0x40004000)   
         /lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x2aaaa000)   
 

 
For C++ programs, you’ ll often see these, plus the C++ library (something like libg++, libstdc++, libc++, libg++272, and so on, 
depending on your distribution, library, and compiler versions). Here is a simple example: 

 
 
 
 $ ldd ./test3   
         libstdc++-libc6.1-1.so.2 => /usr/lib/libstdc++-libc6.1-1.so.2 (0x40004000)   
         libm.so.6 => /lib/libm.so.6 (0x40049000)   
         libc.so.6 => /lib/libc.so.6 (0x40067000)   
         /lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x2aaaa000)   
 

 
This sample shows the usage of three libraries. The first line, mentioning libstdC++-libc6.1-1.so.2, indicates that the C++ library is 
linked into the program. The second line, with libm.so.6, tells you that the math library is used. The third line, libc.so.6, indicates 
that the standard C library is also used. The final line, /lib/ld-linux.so.2, is the standard inclusion of the dynamic loader. 

 

 
 
 For more complex programs, many libraries may be included:   



 105 

 
         libgnorba.so.27 => /usr/lib/libgnorba.so.27 (0x40004000)   
         libgnomeui.so.32 => /usr/lib/libgnomeui.so.32 (0x40010000)   
         libart_lgpl.so.2 => /usr/lib/libart_lgpl.so.2 (0x400cf000)   
         libgdk_imlib.so.1 => /usr/lib/libgdk_imlib.so.1 (0x400dd000)   
         libSM.so.6 => /usr/X11R6/lib/libSM.so.6 (0x4010b000)   
         libICE.so.6 => /usr/X11R6/lib/libICE.so.6 (0x40114000)   
         libgtk-1.2.so.0 => /usr/lib/libgtk-1.2.so.0 (0x4012b000)   
         libgdk-1.2.so.0 => /usr/lib/libgdk-1.2.so.0 (0x4024c000)   
         libgmodule-1.2.so.0 => /usr/lib/libgmodule-1.2.so.0 (0x40282000)   
         libXi.so.6 => /usr/X11R6/lib/libXi.so.6 (0x40285000)   
         libXext.so.6 => /usr/X11R6/lib/libXext.so.6 (0x4028d000)   
         libX11.so.6 => /usr/X11R6/lib/libX11.so.6 (0x40299000)   
         libgnome.so.32 => /usr/lib/libgnome.so.32 (0x4033f000)   
         libgnomesupport.so.0 => /usr/lib/libgnomesupport.so.0 (0x40353000)   
         libesd.so.0 => /usr/lib/libesd.so.0 (0x4035a000)   
         libaudiofile.so.0 => /usr/lib/libaudiofile.so.0 (0x40361000)   
         libm.so.6 => /lib/libm.so.6 (0x4036f000)   
         libdb.so.3 => /lib/libdb.so.3 (0x4038c000)   
         libglib-1.2.so.0 => /usr/lib/libglib-1.2.so.0 (0x403c8000)   
         libdl.so.2 => /lib/libdl.so.2 (0x403ea000)   
         libORBitCosNaming.so.0 => /usr/lib/libORBitCosNaming.so.0 (0x403ee000)   
         libORBit.so.0 => /usr/lib/libORBit.so.0 (0x403f6000)   
         libIIOP.so.0 => /usr/lib/libIIOP.so.0 (0x40434000)   
         libORBitutil.so.0 => /usr/lib/libORBitutil.so.0 (0x40444000)   
         libnsl.so.1 => /lib/libnsl.so.1 (0x40446000)   
         libgtkxmhtml.so.1 => /usr/lib/libgtkxmhtml.so.1 (0x4045c000)   
         libXpm.so.4 => /usr/X11R6/lib/libXpm.so.4 (0x404b9000)   
         libjpeg.so.62 => /usr/lib/libjpeg.so.62 (0x404c7000)   
         libpng.so.2 => /usr/lib/libpng.so.2 (0x404e7000)   
         libz.so.1 => /usr/lib/libz.so.1 (0x40513000)   
         libc.so.6 => /lib/libc.so.6 (0x40522000)   
         /lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x2aaaa000)   
 

 
This program is bringing along support for various graphics formats (libjpeg, libpng, libXpm, and so on), graphical interfaces, 
sound support, compression support, database support, and several other libraries. Linux makes it possible to easily utilize an 
existing codebase in your own programs. 

 

 
 
     
 
Cross-Reference  
 
 See Chapter 9, “Libraries and Linking,”  for details on building the libraries themselves.   
 
     
 
 The programmer ’s gift shop   
 

 
In addition to the programs discussed already, there are several other small, useful tools on your system that can be useful when 
building software. Many are part of the GNU binutils package (as are ld and as), but others are from separate packages. Here are 
some of the tools that can be helpful while you’re developing software: 

 

 
 

  
• 

 
The GNU profiler, gprof, is used to benchmark programs. Gprof has finer granularity than time; it can identify particular 
functions or sections of code that are bottlenecks. 

 
 
 

  
• 

 
The debug symbol stripper, strip, is used to remove debugging symbols from a program or object compiled with -g. You can 
use strip to do this instead of recompiling the program without the debugging information. 

 
 
 
  •  The strings program can look inside of binary files and display only the parts that contain plain text.   
 

  
• 

 
strace displays the system calls made by a program and the arguments to those calls. The functionality here can overlap 
somewhat with gdb, but you can get some other useful information from strace as well. A related program is ltrace, which 
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traces library calls.  
 

  
• 

 
The makedepend tool, although part of the X11 development suite, can nevertheless be used for many other types of programs. 
This tool analyzes the code and automatically produces the appropriate dependency lines in a Makefile, saving you from having 
to update them on a regular basis.  

Working with Large Projects   
 

 

The easiest way to deal with small blocks of C code is to place all the code into a single file and compile this file with gcc. 
However, when your code size starts to increase, this approach starts to get impractical. Finding the desired line of code within a 
file containing tens or hundreds of thousands of lines can be difficult. Editors start to become less efficient and more memory-
hungry as they must work with large files. Coordinating multiple people working on a development team is difficult when only 
one file needs to be edited. And recompiling a huge file after making a change to only one line of code is a waste of valuable time. 

 

 
 

 

C provides you with a powerful way to split up your work. By using separate C modules—or functions and data contained in 
separately compiled .c source files—you can separate your work into logical chunks. Furthermore, each of these chunks can be of 
a manageable size, making navigation within your program’s source simpler. When collaborating with members of a team, what 
would otherwise be a serious management problem is simplified; as long as team members work on only certain files, 
synchronizing changes between them becomes easier, especially when a tool such as CVS is used. 

 

 
 

 
There are benefits for the future as well; a good programmer always keeps future uses of code in mind. After the code is separated 
into modules, assembling these modules into a library can be easy. After being made into a library, use of the code in other 
projects is trivial as well. 

 

 
 

 

Having said all this, you should note that there could be some downsides to using modules. The use of global variables can be 
made more difficult, although many would (justly) argue that global variable usages ought to be minimized anyway. If modules 
are not split at logical places, the result can be more difficult to navigate than the original. However, as long as care is exercised, 
modules are not difficult. 

 

 
 

  
Note 

 
This book doesn’ t aim to teach you the intricacies of C; suffice it to say that you will need to use the extern 
keyword and probably manage a series of .h files for prototypes as well. Here, the aim is to cover those aspects of 
multiple modules specific to the build system in Linux. 

 

 
 

 

For the sake of discussion, I’ ll assume that you have three modules as part of your program: io.c, init.c, and compute.c. Most 
likely, your io.c module handles input and output from the program; init.c, the initialization for the program; and compute.c, 
whatever computation is necessary. The exact separation of capabilities is not relevant to gcc, but is indeed quite relevant to the 
programmer. 

 

 
 
 To compile the entire program the simplistic way, one could use this:   
 
 $ gcc -Wall -o myprogram io.c init.c compute.c   
 

 
When used like this, gcc compiles each .c file, and then links them all together to form the final product. For small projects, this 
approach is workable. However, you are still recompiling the entire program every time there is even a minor change, so there is 
not much advantage for compile time. 

 

 
 

 
The next step is to split the compilation into separate steps. To do this, use the -c option of gcc. The -c option tells gcc that you do 
not intend to generate the final executable immediately; rather, gcc simply generates an .o file. This .o file contains the compiled 
code from one .c file only; it is not executable by itself. So, first, you compile the .c files into .o files: 

 

 
 
 $ gcc -Wall -c -o io.o io.c   
 $ gcc -Wall -c -o init.o init.c   
 $ gcc -Wall -c -o compute.o compute.c   
 

 
Now there are three .o files that correspond to the three .c files. These are not executable alone; to generate the final executable, 
you run: 

 
 
 
 $ gcc -o myprogram io.o init.o compute.o   
 

  Note  
-Wall is not specified for the last command. This is because it would have no effect; this final gcc command is not 
compiling anything—it’s simply linking everything together to generate the final executable. 

 
 
 
 Consider a situation in which you may have modified one line in init.c. Rather than recompile compute.c and io.c as well, you  
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simply can recompile init.c and then relink:  
 
 $ gcc -Wall -c -o init.o init.c   
 $ gcc -o myprogram init.o io.o compute.o   
 

 
Some benefit becomes apparent now; only one file has to be recompiled. If your program contains hundreds of files, this 
advantage can be much more significant than with this particular example. The link process is fairly fast relative to the compilation 
step, so you come out ahead. 

 

 
 

 
You may be thinking at this point that it is tedious to use four commands to recompile the program instead of only one. Well, if so, 
you’re right. Makefiles, discussed in Chapter 7, “Managing Projects with GNU make,”  can be used to great advantage to automate 
this process. Here is a simple Makefile that builds this program: 

 

 
 
 OBJS = io.o init.o compute.o   
 EXECUTABLE = myprogram   
 CFLAGS = -Wall   
 CC = gcc   
       
 # End of configuration options   
       
 all: $(EXECUTABLE)   
       
 $(EXECUTABLE): $(OBJS)   
         $(CC) -o $(EXECUTABLE) $(OBJS)   
       
 %.o: %.c   
         $(CC) $(CFLAGS) -c -o $@ $<   
       
 clean:   
         -rm $(OBJS) $(EXECUTABLE) *~   
 

 
Don’ t worry about the syntax right now; I will cover this in Chapter 7, “Managing Projects with GNU make.”  There is one thing to 
note, though. When you look at the lines that are indented from the left, you must use the tab key to indent them. Do not use a 
series of spaces. 

 

 
 

 
You can modify this Makefile (note that it must be named Makefile to work by default) for your own purposes. Generally, you 
only need to modify the list of .o files in the first line and the executable name on the second line. 

 
 
 
 Give this Makefile a try. First, delete any existing .o files and your executable; you can also do this by running make clean.   
 
 Now, type make and press Enter. Watch what happens:   
 
 $ make   
 gcc -Wall -c -o io.o io.c   
 gcc -Wall -c -o init.o init.c   
 gcc -Wall -c -o compute.o compute.c   
 gcc -o myprogram io.o init.o compute.o   
 

 
The make program automatically ran all the commands that you manually ran earlier. Already some timesaving is apparent. Recall 
the earlier scenario of modifying init.c. Make a modification to that file now and type make again: 

 
 
 
 $ make   
 gcc -Wall -c -o init.o init.c   
 gcc -o myprogram io.o init.o compute.o   
 

 
The make program figured out that only one file was modified. So, it recompiled only that one file and then relinked the program. 
GNU make performed exactly the same actions that you did manually earlier; however, it determined the necessary actions and 
carried them out without any input from you, saving lots of time.  

Using Advanced gcc Options   
 

 
In addition to the gcc options that control basic file generation, there are also many other options that enable you to fine-tune gcc 
operations. For instance, you can control everything from where to include the files to the way in which the development tools are 
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invoked.  
 
 Specifying search paths   
 

 

When building a project, gcc has a default search path to use for things like include files and libraries. You will find that you will 
often need to add components to this path. For instance, if compiling a Tk program, you may need to add an entry to the search 
path so that gcc can find the header files for Tk that your program uses. Or, if programming for X, you may need to add an entry to 
the directory search path so that the linker can find the libraries necessary for your program. 

 

 
 

 
The options for adding an entry to the include file search path and the library search path, respectively, are -I and -L. Examples of 
each option are shown below. 

 
 
 

 
For instance, assume you have a program that wants to include a file named scsi.h. Your system may have this file under 
/usr/include/scsi, which is not on the default search path. Therefore, you might use: 

 
 
 
 gcc -Wall -I/usr/include/scsi -o myprogram myprogram.c   
 
 Doing so will enable the preprocessor to find the scsi.h file that your program wants.   
 

 
A similar concept applies to the search path for libraries. If your program needs to link to the X11 library, for instance, you may 
need to inform the linker of the location of this library. You can do so by using: 

 
 
 
 gcc -L/usr/X11R6/lib -Wall -o myprogram myprogram.c -lX11   
 
 Linking with librar ies   
 

 
When writing many programs, you will need to link with libraries. These libraries can be anything from ones that implement 
mathematical functions to ones that provide support for using a graphical interface in the X Window System. They can be either 
static or shared; gcc can work with both. 

 

 
 

 
The basic option to use to link in a library with your current program is -l (a lowercase L). This option should be specified at the 
final link stage of your compile only, which brings together all the .o files. If you are compiling directly from .c source file to a 
final executable, you should use -l on that gcc command line. 

 

 
 

 
For instance, if you want to use the math library, you would probably include math.h in your program. Then, when compiling, you 
would need to link in the math library, named simply m. Therefore, a command such as the following would be appropriate: 

 
 
 
 gcc -Wall -o mathprogram mathprogram.c -lm   
 

 
If you want to use the preceding Makefile example with a math program, you could modify it to include the math library in the 
final link stage, as follows: 

 
 
 
 OBJS = io.o init.o compute.o   
 EXECUTABLE = myprogram   
 CFLAGS = -Wall   
 CC = gcc   
       
 # End of configuration options   
       
 all: $(EXECUTABLE)   
       
 $(EXECUTABLE): $(OBJS)   
         $(CC) -o $(EXECUTABLE) $(OBJS) -lm   
       
 %.o: %.c   
         $(CC) $(CFLAGS) -c -o $@ $<   
       
 clean:   
         -rm $(OBJS) $(EXECUTABLE) *~   
 
 With this option, the final link command will be:   
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 gcc -o myprogram io.o init.o compute.o -lm   
 

 
If you later wish to use ldd on the generated executable, you will confirm that the math library (libm) has indeed been included. 
You can add any number of libraries to the gcc command line with –l, and they will all be linked in. 

 
 
 
 Speeding compilation with pipes   
 

 
The build process requires many steps—preprocessing, compilation, assembly, and linking to name a few. Normally, gcc handles 
many aspects of these tasks for you, automatically invoking programs as necessary. 

 
 
 

 
However, by default, this can be slow because there are many temporary files involved. For instance, gcc will create a temporary 
file holding the output of the preprocessor, another one with the output of the compiler, and perhaps a third with the output of the 
assembler. Reading and writing these files takes time. 

 

 
 

 
There is another way of communicating that can be more efficient: pipelines. With pipelines, several programs are invoked at 
once, with the output from one being sent directly to the input of another where possible. Temporary files are avoided with this 
scheme. 

 

 
 

 
SMP (multiprocessor) machines derive extra benefit from the pipelining system; one process can execute on one processor while 
another process runs on a separate processor, both simultaneously working on different parts of the build process. 

 
 
 

 

The potential downside to this approach is that more memory is required for the build. Because more processes can be stored in 
memory, and they must hold some data in RAM as well, the memory requirements increase. In most situations, this is not a 
problem given today’s machines, but it can be difficult—and thus can hurt performance—if you are using an older system or one 
with little memory to spare. 

 

 
 

 
The pipeline compilation process is specified by giving the -pipe option to gcc. After that, gcc takes care of setting up the 
appropriate pipes. A sample command line might be: 

 
 
 
 gcc -pipe -Wall -O3 -o test2 test2.c   
 

 
The difference in compilation time may not be noticeable on smaller projects. However, with larger projects, the difference can 
become quite significant. 

 
 
 
 Peeking at gcc with -v   
 

 
All of the interactions between the various build programs are normally hidden from view. Their details are generally unimportant 
and distracting. However, you can request the details to be shown as gcc runs; to do so, you use the -v option: 

 
 
 
 $ gcc -v -Wall -O3 -o test2 test2.c   
 
 When you run this command, gcc displays a lot of details about its build process. Following is the output with commentary:   
 
 Reading specs from /usr/lib/gcc-lib/i486-linux/egcs-2.91.66/specs   
 gcc version egcs-2.91.66 Debian GNU/Linux (egcs-1.1.2 release)   
 

 
Thus far, gcc is specifying its version number and where it retrieved some build information. If your display is different from this, 
the remaining part of the output may differ as well, possibly significantly. This is normal; do not worry if there is a difference. 

 
 
 

 

/usr/lib/gcc-lib/i486-linux/egcs-2.91.66/cpp -lang-c -v -undef -D__GNUC__=2 -D__GNUC_MINOR__=91 -D__ELF__ -Dunix -
Di386 -D__i386__ -Dlinux -D__ELF__ -D__unix__ -D__i386__ -D__i386__ -D__linux__ -D__unix -D__i386 -D__linux -
Asystem(posix) -D__OPTIMIZE__ -Wall -Asystem(unix) -Acpu(i386) -Amachine(i386) -Di386 -D__i386 -D__i386__ -Di486 -
D__i486 -D__i486__ test2.c /tmp/ccdiildO.i 

 

 
 

 
The preceding output shows where gcc invokes the C preprocessor, cpp. This is all a single command line, and quite a large one at 
that—be glad that gcc generates it automatically! Most of the options that you see are -D options, telling the preprocessor what 
symbols should be interpreted as predefined. 

 

 
 
 GNU CPP version egcs-2.91.66 Debian GNU/Linux (egcs-1.1.2 release) (i386 Linux/ELF)   
 
 Now, the output is coming from the preprocessor. Next, it identifies its version number and then gets down to business:   
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 #include “ ...”  search starts here:   
 #include <...> search starts here:   
 /usr/local/include   
 /usr/lib/gcc-lib/i486-linux/egcs-2.91.66/include   
 /usr/include   
 End of search list.   
 

 
The preprocessor displays the search path for header (include) files. It first displays any directories for files included with 
quotation marks, and then the path for those included with angle brackets. There are no additional messages from cpp; the next 
message is from gcc and indicates the execution of another program as follows: 

 

 
 
 /usr/lib/gcc-lib/i486-linux/egcs-2.91.66/cc1 /tmp/ccdiildO.i -quiet -dumpbase test2.c -O3 -Wall -version -o /tmp/ccmrFelv.s   
 

 
The cc1 program is the compiler proper; it actually does the grunt work of compiling. Notice that it reads a .i file generated by cpp 
and generates a .s file for the assembler. 

 
 
 

 
GNU C version egcs-2.91.66 Debian GNU/Linux (egcs-1.1.2 release) (i486-linux) compiled by GNU C version egcs-2.91.66 
Debian GNU/Linux (egcs-1.1.2 release). 

 
 
 
 cc1 identifies its version and then displays no additional messages as it proceeds.   
 
 as -V -Qy -o /tmp/cc5Ux7Gf.o /tmp/ccmrFelv.s   
 

 
The preceding shows how gcc invokes the assembler, telling it to generate an object file, and taking the assembler source file (.s) 
as input. 

 
 
 
 GNU assembler version 2.9.1 (i486-linux), using BFD version 2.9.1.0.25   
 
 Next, the assembler identifies its version and then proceeds with no additional output.   
 

 
/usr/lib/gcc-lib/i486-linux/egcs-2.91.66/collect2 -m elf_i386 -dynamic-linker /lib/ld-linux.so.2 -o test2 /usr/lib/crt1.o /usr/lib/crti.o 
/usr/lib/gcc-lib/i486-linux/egcs-2.91.66/crtbegin.o -L/usr/lib/gcc-lib/i486-linux/egcs-2.91.66 /tmp/cc5Ux7Gf.o -lgcc -lc -lgcc 
/usr/lib/gcc-lib/i486-linux/egcs-2.91.66/crtend.o /usr/lib/crtn.o 

 

 
 

 
This is the invocation of the linker, which performs the final stage in the build process. Notice some familiar names: ld-linux, the 
dynamic loader; and -lc, which includes the C library. There are also some unfamiliar names, such as crtbegin.o, which handle 
certain initializations for the program. 

 

 
 
 An interesting contrast occurs when you use -pipe for compiling programs:   
 
 $ gcc -pipe -v -Wall -O3 -o test2 test2.c   
 Reading specs from /usr/lib/gcc-lib/i486-linux/egcs-2.91.66/specs   
 gcc version egcs-2.91.66 Debian GNU/Linux (egcs-1.1.2 release)   
 
 Thus far, everything is as it was before. However, note the differencein the following example:   
 

 

/usr/lib/gcc-lib/i486-linux/egcs-2.91.66/cpp -lang-c -v -undef -D__GNUC__=2 -D__GNUC_MINOR__=91 -D__ELF__ -Dunix -
Di386 -D__i386__ -Dlinux -D__ELF__ -D__unix__ -D__i386__ -D__i386__ -D__linux__ -D__unix -D__i386 -D__linux -
Asystem(posix) -D__OPTIMIZE__ -Wall -Asystem(unix) -Acpu(i386) -Amachine(i386) -Di386 -D__i386 -D__i386__ -Di486 -
D__i486 -D__i486__ test2.c | 

 

 
 /usr/lib/gcc-lib/i486-linux/egcs-2.91.66/cc1 -quiet -dumpbase test2.c -O3 -Wall -version -o - |   
 as -V -Qy -o /tmp/cc3vU3lB.o -   
 

 
The components are invoked at once by gcc, and gcc sends the output from one program directly to the input of the next program. 
It invokes the preprocessor, sending its output to cc1, whose output goes to the assembler. Only the link step cannot be performed 
here, because it requires all files to be ready before linking. 

 

 
 
 Now, all these programs display their initialization messages:   
 
 GNU CPP version egcs-2.91.66 Debian GNU/Linux (egcs-1.1.2 release) (i386 Linux/ELF)   
 #include “ ...”  search starts here:   
 #include <...> search starts here:   



 111 

 /usr/local/include   
 /usr/lib/gcc-lib/i486-linux/egcs-2.91.66/include   
 /usr/include   
 End of search list.   

 
GNU C version egcs-2.91.66 Debian GNU/Linux (egcs-1.1.2 release) (i486-linux) compiled by GNU C version egcs-2.91.66 
Debian GNU/Linux (egcs-1.1.2 release). 

 
 
 GNU assembler version 2.9.1 (i486-linux), using BFD version 2.9.1.0.25   
 
 The compilation and assembly finishes, and execution now moves on to linking. This is the same as seen before:   
 

 
/usr/lib/gcc-lib/i486-linux/egcs-2.91.66/collect2 -m elf_i386 -dynamic-linker /lib/ld-linux.so.2 -o test2 /usr/lib/crt1.o /usr/lib/crti.o 
/usr/lib/gcc-lib/i486-linux/egcs-2.91.66/crtbegin.o -L/usr/lib/gcc-lib/i486-linux/egcs-2.91.66 /tmp/cc3vU3lB.o -lgcc -lc -lgcc 
/usr/lib/gcc-lib/i486-linux/egcs-2.91.66/crtend.o /usr/lib/crtn.o 

 

 
 
 Being pedantic with ANSI C   
 

 
When you write code that needs to be portable to nonLinux or nonUNIX platforms, you must adhere to the standards set down in 
the ANSI C specification. The gcc compiler and Linux environment both add numerous extensions to the language. By default, 
gcc also doesn’ t deal with a few undesirable aspects of ANSI C. 

 

 
 

 
You can tell gcc to disable its extensions to ANSI C. This can be useful if you want to check to see if your programs will compile 
on other platforms. Also, some programs written for pure ANSI C may not compile with the GNU extensions. 

 
 
 

 
You can use the -ansi option to enable this type of behavior when compiling your programs. For a step farther, there is the -
pedantic option. This one disables even more GNU extensions and additional features. Additionally, it generates all warnings that 
the ANSI C standard mandates, and programs that use nonstandard extensions won’ t compile. 

 

 
 

 

If you are writing software solely for Linux platforms, these options are not of interest. However, if your program will be running on 
other platforms (particularly non-UNIX platforms), they can be useful in your development process. Note, however, that some 
standard code may emit warnings in this situation, so its usefulness may not be as great as you might hope. Using these options does 
not guarantee that programs will compile elsewhere. They are merely useful guides.  

Summary   
 
 In this chapter, you learned how to use gcc and its companion programs. In particular, you learned:   
 
  •  The main program to compile your programs is called gcc.   
 
  •  You can invoke gcc with –W options to enable useful warnings.   
 

  
• 

 
You can enable various levels of optimizations with –O. These optimizations can improve the performance of your program, 
but writing good code can have an even greater effect. 

 
 
 

  
• 

 
You can enable the generation of debug symbols with –g or –ggdb3. These enable you to use gdb to track down problems in 
your code. 

 
 
 

  
• 

 
There are many tools that work along with gcc to perform such tasks as preprocessing your code, assembling it, and linking 
the code. Many of these tools are invoked automatically by gcc, but sometimes you may want to invoke them manually. 

 
 
 

  
• 

 
You can split your programs into modules to decrease recompilation time during development. The GNU make program can 
automate the build process, and is quite handy in these situations. 

 
 
 
  •  When you need to include or link with code not on the standard search paths, you can use –I and –L, respectively.   
 
  •  If you need to use some code from a library, you can do so with the –l option to gcc.   
 

  
• 

 
Specifying the –pipe option to gcc often can speed the compilation of your programs because temporary files are no longer 
necessary. 

 
 
 
  •  The –v option enables you to see details about what is going on under the hood of gcc.   
 
  •  The –ansi and –pedantic options turn on additional warnings and greater strictness when compiling your code.  
Chapter  7: Managing Projects with GNU Make   
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 Overview   
 

 
As your programs get larger, the process necessary to build them becomes more complex and time-consuming. The Linux 
environment provides a tool to help you with this process: GNU make. In this chapter, you’ ll learn how to use GNU make, what it 
can do, and how to apply it to your needs.  

Introducing GNU Make   
 

 
If you have ever seen the assembly line for any fairly complex product, such as a car, you know that the process of building that 
product is detailed, precise, and involved. Everything must be built properly, and all the parts must be linked together to form the 
final product. If something goes wrong, your car may end up looking more like the surplus materials from an old Pinto plant. 

 

 
 

 
In order to get your new car built properly, managers—both human and computerized—control the process in which it is built. 
Thus, an element of central control regulates the flow of materials from one area to the next. 

 
 
 

 

Although a problem with the build process in your program probably is not going to cause your next car to have a strange 
appearance, the same principles apply. With all but the smallest of projects, the build process involves executing dozens, hundreds, 
or even thousands of commands. If these were all executed manually, the build process would be so long and error-prone that it 
would be extremely difficult to compile and link your programs. 

 

 
 

 
Therefore, there is an automation system for the assembly line that is the build process for your code. You define the rules that 
govern how your code is built. The system then applies those rules to build your project. 

 
 
 

 

You define these rules in a file generally named Makefile. You then use a Makefile interpreter, such as GNU make that ships with 
Linux, to process it and build your project. This program invokes your compilers, linkers, assemblers, and other build programs as 
necessary to generate a final executable. After you type make on the command line, the system automatically examines your rules 
and the files present on the system and determines exactly what actions need to be taken to completely build your project. These 
actions could end up spanning thousands of commands, and could even involve parallel processing—a true extension of the 
assembly line metaphor into the Linux build process. 

 

 
 

 

While you are in the development process, you frequently need to make changes to only a few files in a project, rebuild the 
program, and then test them. When you use make for your project, the system automatically detects the changes, and then 
performs actions necessary to update the program with your changes. You don’ t explicitly tell make what changed; it detects the 
changes on its own, recompiles only that which is necessary, and re-links your program. 

 

 
 

 
In this section, you will learn how to write these Makefiles and how to use them. As you proceed, you’ ll even learn how to create 
intelligent Makefiles that can automatically detect many things about their environment so that you often don’ t need to tell them 
even the names of the files that comprise your program! 

 

 
 
 Pr inciples of Makefiles   
 

 
At a fundamental level, a Makefile is nothing more than a collection of rules. Each rule defines three things. The first is the file 
itself. This is the file that will be built when the rule is processed. 

 
 
 

 
The second is the process that you must go through to make files into the final product. For instance, when working with C 
programs, you must compile a C file (.c) into an object file (.o) first, and then link together all the .o files to generate the final 
executable. Your rules can define this process. 

 

 
 

 

The third item that you must define is the list of dependencies for each file. These dependencies must be created before you can 
process a file. For instance, a final executable depends on its .o files. These files, in turn, depend on .c files. In this way, even 
though you never specifically mention the process to go through from source to executable, the system is smart enough to figure it 
out. 

 

 
 

 

Dependencies aren’ t necessarily the files that are built. They can be other arbitrary files. For instance, a C program might list an 
include file as a dependency. This means that if the include file is updated, the C file will be recompiled to take into account the 
changes. The dependencies could refer to other rules. For instance, you may require that a configuration scan be performed before 
the compile begins. 

 

 
 
 A simple Makefile   
 

 
Consider a simple start to the world of make. In this example, we’ ll use the same situation as was featured in the end of Chapter 6, 
“Welcome to gcc.”  This code consists of three C source files and one header file.  
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 For compute.c, the source is:   
 
 extern int someglobal;   
       
 int computer(void) {    
 return 5 * someglobal;   
 }    
 
 For init.c, the source is:   
 
 #include <stdio.h>   
 #include “myprogram.h”    
       
 int someglobal = 11;   
       
 int main(void) {    
 foo();   
 return 0;   
 }    
 
 For io.c, the source is:   
 
 #include <stdio.h>   
 #include “myprogram.h”    
       
 int foo(void) {    
 printf(“The value is: %d.\n” , computer());   
 return 1;   
 }    
 
 For the header file, myprogram.h, the source is:   
 
 int computer(void);   
 int foo(void);   
 
 As you can see, this is not terribly complex code. In this chapter, I will focus on how the code is built rather than the code itself.   
 
 Next, I’ ll use a simple Makefile for this code. This Makefile is rather crude, and I’ ll improve it later in this chapter.   
 

  
Caution 

 
You must use the Tab key to indent the lines (as shown in the following example); spaces will not work in this 
situation. Make considers lines beginning with a tab to be parts of a single rule; lines that do not begin 
specifically with a tab are parsed differently. If you use spaces instead of a Tab, your Makefile will not work. 

 

 
 
 Here is the code for the Makefile:   
 
 # Lines starting with the pound sign are comments.   
 #   
       
 # “all”  is the default target. Simply make it point to   
 # myprogram.   
       
 all: myprogram   
       
 # Define the components of the program, and how to   
 # link them together.   
 # These components are defined as dependencies; that is,   
 # they must be made up-to-date before the .   
       
 myprogram: io.o init.o compute.o   
     gcc -o myprogram io.o init.o compute.o   
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 # Define the dependencies and compile information for the three C source   
 # code files.   
       
 compute.o: compute.c   
     gcc -Wall -c -o compute.o compute.c   
       
 init.o: init.c myprogram.h   
     gcc -Wall -c -o init.o init.c   
       
 io.o: io.c myprogram.h   
     gcc -Wall -c -o io.o io.c   
 

 
Now, you can compile your entire program with a single command at the prompt. The make program first looks for the name to 
the left of the colon, also called a target (in this example, the target is named all). In this case, all is set to depend on myprogram. 

 
 
 

 
In make, a dependency means that the item on the left of the colon must have been updated at the same time or more recently than 
each item on the right side. In this particular case, all is not the name of an existing file, so it will evaluate myprogram every time 
make is invoked. 

 

 
 

 
The myprogram target then indicates a dependency on three object files. This means that the object files must be up-to-date before 
you can run the commands necessary to build the final executable named myprogram. If any of these object files are newer than 
the final executable, the final executable is re-built; otherwise, there is no need to do so. 

 

 
 

 
Next, there is an entry for each of the object files. Each entry indicates the dependency on a C source file for the build process. 
That is, if the specific C source file is updated, the object file must be re-built. Some entries also indicate a header file; the same 
rule applies there. 

 

 
 
 The entire build process  is based on these rules. Now you can watch as make builds your program:   
 
 $ make   
 gcc -Wall -c -o io.o io.c   
 gcc -Wall -c -o init.o init.c   
 gcc -Wall -c -o compute.o compute.c   
 gcc -o myprogram io.o init.o compute.o   
 

 

The commands in the preceding example are executed in the correct order. First, the C source files are compiled into object files. 
Next, these object files are linked to form the final executable. This ordering is all possible because of the dependencies; the final 
executable requires that the object files be up-to-date. To make these files current, make must compile the C source code into 
object code. 

 

 
 

 
Watch what happens if you run make again. This time, because the progam already is compiled and no modifications are made, no 
compilation is necessary as shown in the following example: 

 
 
 
 $ make   
 make: Nothing to be done for `all’ .   
 

 

When run with already-built code as was done here, make checks to see if all the files are up-to-date. They are, so it exits without 
doing anything. You can see what happens when one file is modified. You can either load it into your favorite editor and re-save, 
or you can use the touch command, which updates its timestamp to the current time, effectively pretending to have updated the 
file. Watch what happens when you re-run make after doing this:  

 

 
 
 $ touch io.c   
 $ make   
 gcc -Wall -c -o io.o io.c   
 gcc -o myprogram io.o init.o compute.o   
 

 

This time, make evaluates the dependencies as before. When it reaches io.o, make notices that io.c is newer; io.o must be 
recompiled. Then, because io.o was recompiled, the program must be re-linked. Make automatically detects these conditions and 
takes the appropriate actions. Notice that make does not compile the files that have not changed—compute.c and init.c. This saves 
you time, because the code that does not need recompilation is left alone. 

 

 
 
 Smarter  Makefiles   
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In this Makefile, there is a lot of repetition. Two things that are repeated are the gcc command line options and the dependency 
rules for each particular C source file. 

 
 
 

 
To simplify the command line options, you can use variables in your Makefile. This not only reduces the typing (and possible 
errors) necessary to create your rules, but also enables you to change the rules throughout the entire file by modifying one or two 
lines. This can be a big win for large files. 

 

 
 

 
Setting variables in a Makefile is similar to doing the same in Bash; you use the equals sign (=) to separate the variable name, on 
the left, from the new value on the right. To access the contents of the variable later, the syntax is slightly different. With make, 
you use $(VARIABLE) to access the contents of the variable named VARIABLE. 

 

 
 
 The following revision of the Makefile incorporates these ideas:   
 
 # Lines starting with the pound sign are comments.   
 #   
       
 CC=gcc   
 CFLAGS=-Wall   
 COMPILE=$(CC) $(CFLAGS) -c   
       
 # “all”  is the default target. Simply make it point to myprogram.   
       
 all: myprogram   
       
 # Define the components of the program, and how to link them together.   
 # These components are defined as dependencies; that is, they must be   
 # made up-to-date before the code is linked.   
       
 myprogram: io.o init.o compute.o   
     $(CC) -o myprogram io.o init.o compute.o   
       
 # Define the dependencies and compile information for the three C source   
 # code files.   
       
 compute.o: compute.c   
     $(COMPILE) -o compute.o compute.c   
       
 init.o: init.c myprogram.h   
     $(COMPILE) -o init.o init.c   
       
 io.o: io.c myprogram.h   
     $(COMPILE) -c -o io.o io.c   
 

 
This revision eliminated the duplication of options such as -Wall on each line. If you want to add optimization to the options, you 
need to modify only one line—the CFLAGS one—to add the options. You don’ t need to modify each of the compilation lines. 

 
 
 

 
You might also notice that the COMPILE variable is set based on the contents of two others. There is no problem with using the 
contents of one variable (or even multiple variables) to set another. 

 
 
 

 

This solution has addressed one of the problems. However, there is still much more that you can do to improve this specific 
Makefile. For example, you can eliminate the separate listing for each C source file. You can do this by specifying a generic rule 
for all C source files. Here’s a revised version of the Makefile; note that the version in the following example is not completely 
correct yet: 

 

 
 
 # Lines starting with the pound sign are comments.   
 #   
       
 CC=gcc   
 CFLAGS=-Wall   
 COMPILE=$(CC) $(CFLAGS) -c   
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 # “all”  is the default target. Simply make it point to myprogram.   
       
 all: myprogram   
       
 # Define the components of the program, and how to link them together.   
 # These components are defined as dependencies; that is, they must be   
 # made up-to-date before the code is linked.   
       
 myprogram: io.o init.o compute.o   
     $(CC) -o myprogram io.o init.o compute.o   
       
 # Define the dependencies and compile information for the three C source   
 # code files.   
       
 %.o: %.c   
     $(COMPILE) -o $@ $<   
 

 

The last two lines in this Makefile are the interesting ones; they take the place of all the separate rules that were in the area earlier. 
Instead of several separate rules, there is a generic rule that indicates that any file ending with .o depends on a file with the same 
base name, but a .c extension. A rule for compiling these files is then defined. This rule looks much the same as the typical rules 
used earlier, but there are two unique characters at the end—the $@ and $< operators. 

 

 
 

 

The first operator, $@, is replaced by the name of the target; in this case, the object file. As usual, gcc is told which filename to 
use for writing its output, and that filename is indicated by $@. The other operator, $<, indicates the file that needs to be compiled; 
in this case, that file is a C source code file. This bit of information obviously needs to be passed along to gcc as well, and such is 
done. 

 

 
 

 
As I mentioned earlier, there is a small problem with the Makefile in the preceding example. Recall that two object files listed a C 
header file along with a source file in their dependency list. This particular Makefile omits that listing, and thus the dependency on 
the header file will not be recognized by make. 

 

 
 
 This can be fixed by manually declaring a special dependency for these particular files. Here is a fixed version of this Makefile:   
 
 # Lines starting with the pound sign are comments.   
 #   
       
 CC=gcc   
 CFLAGS=-Wall   
 COMPILE=$(CC) $(CFLAGS) -c   
       
 # “all”  is the default target. Simply make it point to myprogram.   
       
 all: myprogram   
       
 # Define the components of the program, and how to link them together.   
 # These components are defined as dependencies; that is, they must be   
 # made up-to-date before the code is linked.   
       
 myprogram: io.o init.o compute.o   
     $(CC) -o myprogram io.o init.o compute.o   
       
 # Define a special dependency on a header file.   
       
 init.o io.o: myprogram.h   
       
 # Specify that all .o files depend on .c files, and indicate how   
 # the .c files are converted (compiled) to the .o files.   
       
 %.o: %.c   
     $(COMPILE) -o $@ $<   
 
 The additional line that starts with init.o demonstrates several important points. First, multiple targets are listed on the left side of  
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the colon; this is indeed an acceptable syntax with make. Second, the line itself defines a dependency but defines no corresponding 
build rule. This also is acceptable; make realizes that the specified file must be re-built and uses the standard build rule for .o files 
as defined in the %.o line.  

 

 
At this point, the new Makefile has reached a point where it performs in exactly the same fashion as the first Makefile presented in 
this chapter, but with much less effort on your part. With a few more modifications, the Makefile will end up like the one 
demonstrated in Chapter 6, “Welcome to gcc.”  Here is that Makefile, with a few slight modifications: 

 

 
 
 # Lines starting with the pound sign are comments.   
 #   
 # These things are options that you might need   
 # to tweak.   
       
 OBJS = io.o init.o compute.o   
 EXECUTABLE = myprogram   
       
 # You can modify the below as well, but probably   
 # won’ t need to.   
       
 CC = gcc   
 CFLAGS = -Wall   
 COMPILE = $(CC) $(CFLAGS) -c   
       
 # “all”  is the default target. Simply make it point to myprogram.   
       
 all: $(EXECUTABLE)   
       
 # Define the components of the program, and how to link them together.   
 # These components are defined as dependencies; that is, they must be   
 # made up-to-date before the code is linked.   
       
 $(EXECUTABLE): $(OBJS)   
     $(CC) -o $(EXECUTABLE) $(OBJS)   
       
 # Add any special rules here.   
       
 io.o init.o: myprogram.h   
       
 # Specify that all .o files depend on .c files, and indicate how   
 # the .c files are converted (compiled) to the .o files.   
       
 %.o: %.c   
     $(COMPILE) -o $@ $<   
       
 clean:   
     -rm $(OBJS) $(EXECUTABLE) *~   
 

 
Let’s analyze this version of the Makefile from start to finish to see how it works. It starts out by declaring two variables that hold 
information about the components of the program, and then the name of the program itself. With these options, you can easily re-
use your Makefile with other projects; you may need to modify these first two lines only! 

 

 
 

 
The next three variables are ones you’ve seen before; they are exactly the same and have the same purpose in this Makefile. After 
those variables, you see the all target, which functions the same as it did before; the only difference here is that the executable 
name is defined by a variable instead of being hard-coded into the rule. 

 

 
 

 

Next, you see a line that begins with $(EXECUTABLE), which defines the rule for the final link step of the program. The 
difference here, though, is that many more things are used from variables. The executable’s name comes from a variable, showing 
that it is indeed acceptable to use a variable for the name on the left side of a colon. The dependencies are defined by $(OBJS), 
which expands to a list of the object files that was defined at the top of the file. Then the compilation step uses the name of the 
compiler as defined in the previous example, as well as the same variables for the executable name and object files. 

 

 
 
 Next, there is the special rule line covering the dependency on the header file. This is the same line that was used in previous  
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editions of the Makefile. Following that  is the generic compilation rule, which is again the same as the one used in previous 
Makefile versions.  

 

 

The Makefile ends with a clean target, which makes its first appearance in this version of the Makefile. The purpose of this target 
is to make a convenient way for you to remove compiled files, editor backup files, and other similar files that may have 
accumulated during the development process and return to a pristine source tree. This target has no dependencies, and no other 
targets depend on it. Therefore, there is no way that it can be automatically executed by make. 

 

 
 

  

Tip 

 

The only way to invoke the clean target is by giving an option to make on the command line, as demonstrated in the 
following example. The single line for the rule’s actions, shown above, begins with a dash. This has special meaning 
to make; it indicates that if the command that is present on that line fails, make should ignore the error and proceed 
with normal processing. Such an error might occur, for instance, if there were no files that rm needed to delete. The 
command line itself indicates that the object files, the executable file, and editor backup files (which typically have a 
trailing tilde) are supposed to be removed. 

 

 
 
 If you want to remove these files, you can invoke make with the clean target, as shown in the following example:   
 
 $ make clean   
 rm io.o init.o compute.o myprogram *~   
 rm: cannot remove `*~’ : No such file or directory   
 make: [clean] Error 1 (ignored)   
 

 
In this particular case, there were no editor backup files to remove, so rm complained about that pattern. However, because of the 
dash, make reports the error but ignores it. You can now test out the new Makefile on your newly cleaned directory if you wish: 

 
 
 
 $ make   
 gcc -Wall -c -o io.o io.c   
 gcc -Wall -c -o init.o init.c   
 gcc -Wall -c -o compute.o compute.c   
 gcc -o myprogram io.o init.o compute.o   
 

 
Now the program is recompiled with the new, smarter Makefile. This Makefile is much more versatile and effectively scales to larger 
projects. Furthermore, it can be re-used on additional projects with very few modifications.  

Using Intelligent Makefiles   
 

 

Thus far, you have seen ways to instruct make on how to build your program, what the dependencies for your program are, and 
similar tasks. GNU make has many more features, however. Rather than giving the information to make manually, you can create 
an intelligent Makefile that tells the system how to build your program and determine the relevant information automatically. 
These techniques traditionally are not covered in generic UNIX documentation because they are not portable to other UNIX 
systems; the extra features used in this section will only work with GNU make. Because Linux distributions use GNU make, you 
can use these features on any Linux platform safely. 

 

 
 

 
The goal of the intelligent Makefile is to minimize the amount of information that must be given to make  prior to building your 
program.  

 
 
 

 

A good place to start is with the list of object files in your program. Because most users have only one directory for a program, and 
one program per directory, it seems silly to have to manually specify a list of object files in the Makefile, especially if such a list 
can be determined based on the files in the current directory. The capability of automatically determining this tidbit of information 
eliminates the need to manually update the Makefile each time a new file is added to the program or an old file is removed. 
Furthermore, this enables the Makefile to be much more portable to other projects. 

 

 
 
 Two var iable types   
 

 

In GNU make, you can use two different types of variables. The first type is commonly used in Makefiles and has been used in the 
examples you have seen up to now. This kind of variable is re-evaluated each time it is used. That is, if it mentions other variables 
or functions, those references are not expanded immediately. Rather, they are expanded each time the variable is used. This can be 
advantageous. For instance, you can specify a variable that references another variable that does not yet exist at the time of the 
assignment to the first, because the inclusion of the second does not occur until the variable is actually expanded later on. 

 

 
 

 
However, this is not desirable for your purposes,. One reason is, the set of files that match a given wildcard can change each 
moment while the contents of the Makefile are executed. Another reason is, matching wildcards is a (relatively) slow operation; 
it’s best to perform wildcard matches once and re-use the results in the future. 
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GNU make has an alternative syntax assigning values to variables specifically geared towards your needs. Simply use := instead of 
= when assigning a value to a variable. For instance, if you take a line of code from the sample Makefile used in the previous 
section, you could say: 

 

 
 
 COMPILE := $(CC) $(CFLAGS) -c   
 

 
In that particular Makefile, there is no apparent difference. However, if you consider a situation in which the value of the CC 
variable might change after this line of code, there is a difference. When you use the normal syntax, the expansion of COMPILE 
changes as well. When you use this alternative syntax, the value of COMPILE is fixed until you explicitly change it. 

 

 
 
 Wildcards: problems and solutions   
 

 
Suppose you want to automatically obtain a list of all the object files in your current directory. This list could be used such that the 
developer does not have to list those files explicitly in a Makefile. 

 
 
 
 Your first inclination might be to use a simple wildcard, such as:   
 
 OBJS = *.o   
 

 
Several problems arise with this approach. For one, the wildcard is evaluated every time something makes reference to the 
variable. Because the set of object files in the directory obviously can change as components are compiled, this solution can lead to 
very strange—or even unpredictable—results. 

 

 
 

 
Additionally, this syntax works only if the project is already in a fully compiled state. Before a program is compiled, no object 
files are in the directory. Thus, the wildcard matches nothing and make thinks that you have a file named literally * .o that you wish 
to generate. This solution is obviously incorrect. 

 

 
 

 
Furthermore, there is, again, a performance issue where the wildcard has to be evaluated each time it is used, which is a slow 
operation. Therefore, it is preferable to evaluate the wildcard once only, if possible. 

 
 
 

 
Recalling the discussion of the two types of variables—CC and CFLAGS— you might decide to modify the code to use the  
alternative syntax instead. Your second attempt could be the following: 

 
 
 
 OBJS := *.o   
 
 Unfortunately, this is also incorrect. In this particular case, the effect is the same: OBJS is simply set to the string * .o.   
 

 
Consider a completely different approach: the wildcard function in make. This function causes make to expand a wildcard itself 
and use the result. Therefore, you could try the following: 

 
 
 
 OBJS = $(wildcard *.o)   
 

 
This time, OBJS will expand to the list of object files each time it is referenced. However, as discussed earlier, when you use 
normal syntax, there are problems both with a changing list of files and with performance. So, you should use the alternative 
syntax in this situation; that is: 

 

 
 
 OBJS := $(wildcard *.o)   
 

 

This time, the file list is expanded immediately, and OBJS contains a list of object files—but only if they are present when make is 
invoked. What you really need is a list of the C source files, and then a way to convert this list into a list of files of the same name, 
but with an .o extension. Cleverly, the make authors provided  a facility for doing this: the patsubst function. Your next step is to 
put it to use. You might use this first as follows: 

 

 
 
 TEMP := $(wildcard *.c)   
 OBJS := $(patsubst %.c,%.o,$(TEMP))   
 

 
This is the first syntax example thus far that produces a correct, desired result! Note that the previous example can be rewritten 
such that the usage of a temporary variable is unnecessary: 

 
 
 
 OBJS := $(patsubst %.c,%.o,$(wildcard *.c))   
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Now you have now reduced the number of lines in the Makefile that require customization to only two: the name of the executable 
and any special dependencies. Before proceeding to change the file in some more significant ways, here’s what it looks like with 
the wildcard change: 

 

 
 
 # Lines starting with the pound sign are comments.   
 #   
 # This is one of two options you might need to tweak.   
       
 EXECUTABLE = myprogram   
       
 # You can modify the below as well, but probably   
 # won’ t need to.   
       
 CC = gcc   
 CFLAGS = -Wall   
 COMPILE = $(CC) $(CFLAGS) -c   
 SRCS := $(wildcard *.c)   
 OBJS := $(patsubst %.c,%.o,$(SRCS))   
       
 # “all”  is the default target. Simply make it point to myprogram.   
       
 all: $(EXECUTABLE)   
       
 # Define the components of the program, and how to link them together.   
 # These components are defined as dependencies; that is, they must be   
 # made up-to-date before the code is linked.   
       
 $(EXECUTABLE): $(OBJS)   
     $(CC) -o $(EXECUTABLE) $(OBJS)   
       
 # Add any special rules here.   
       
 io.o init.o: myprogram.h   
       
 # Specify that all .o files depend on .c files, and indicate how   
 # the .c files are converted (compiled) to the .o files.   
       
 %.o: %.c   
     $(COMPILE) -o $@ $<   
       
 clean:   
     -rm $(OBJS) $(EXECUTABLE) *~   
       
 explain:   
     @echo “The following information represents your program:”    
     @echo “Final executable name: $(EXECUTABLE)”    
     @echo “Source files:     $(SRCS)”    
     @echo “Object files:     $(OBJS)”    
 

 
There’s a new target here: explain. This target displays the information that is detected (or, in the case of the executable, supplied) 
so that you can see what is going to be done. If you run make explain at the command line, you’ ll receive this output: 

 
 
 
 $ make explain   
 The following information represents your program:   
 Final executable name: myprogram   
 Source files:     compute.c init.c io.c   
 Object files:     compute.o init.o io.o   
 

  

Note 

 

I want to draw your attention to two things about explain. First, there is an at sign (@) at the start of each line. The 
reason for this is that, normally, make will display each command line prior to executing it. Thus, each line would 
be displayed twice, which is rather unsightly. The leading at sign suppresses this extra display. Second, all the 
output is in quotes. This is not strictly necessary in many cases, because echo displays all of its arguments. 
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However, because arguments are space-separated, the extra spaces in the last two lines would not be preserved, 
and their visual effect would be lost.  

 
 Dependency calculations   
 

 

Now that you have determined the names of all the source and object files in your project automatically, wouldn’ t it be nice to 
calculate all their dependencies automatically? This is, in fact, probably more of a benefit for the programmer than automatically 
figuring out the names of the object files. When dependencies are calculated manually, a programmer must update the Makefile 
every time it includes another custom file or removes an existing include statement. Calculating dependencies automatically can 
mean that the Makefile never needs to be updated, even when new modules are added to the code that have dependencies on new 
header files. 

 

 
 

 

Programmers have used many different algorithms over the years to generate these dependencies automatically. There are 
programs that actually modify the Makefile, such as makedepend. Some programmers prefer to generate a giant file containing all 
the dependencies. GNU make has some features that allow a third option: generating one file per source file, each containing 
dependency information. 

 

 
 

 

The basic idea is to go through and create a dependency file for each source file with the necessary information. Then, when you 
use make’s include directive, these files are read into and parsed as if they’re part of the main Makefile already. This approach is 
beneficial in several ways. First, because there is one dependency file per source file; you can declare a dependency of the 
dependency file on the source file, thus allowing the dependencies to be updated automatically when necessary. Second, because 
each source file has its dependencies in a separate file, you don’ t have to update the dependencies for everything when only one 
file is modified. Finally, you derive benefit from a feature of GNU make’s include directive. 

 

 
 

 
The dependency files are generated when you use the -M output from gcc. This option tells the compiler (more specifically, the 
pre-processor) to suppress the normal actions. Instead, it examines the source file and outputs an actual make rule indicating the 
dependencies for the given file. This is exactly what is needed here! 

 

 
 

 

The generated rule lists the .o file on the left, followed by the name of the C file and any header files that are included along the 
way. This is great, but to form a completely correct solution, you need to make the dependency file list all of these files as 
dependencies also. This way, if a given header file is modified (perhaps to include an additional header file itself), the 
dependencies are updated as well. Fortunately, a simple call to sed will deal with this. 

 

 
 

 

As a final word of introduction before presenting the updated Makefile, I want to discuss the include operator in GNU make. This 
operator was originally designed to pull information from other Makefiles into the current one, but GNU make has extended the 
operator such that it is useful for our purposes as well. Effectively, we will be pulling mini-Makefiles into the master one; each of 
these smaller files will contain two rules for dependencies. 

 

 
 

 
GNU make’s include operator has two useful features. The first is that it automatically rebuilds the files that are included, if 
necessary. If these files don’ t exist, or are out-of-date, GNU make looks for a rule to rebuild them in the current Makefile. If such a 
rule is found, the files are built using the rule. 

 

 
 

 
A second feature is that, if any of these files need to be re-built, make automatically resets itself, allowing all of these files to be 
loaded in their updated state. Traditional make utilities do not support this sort of reset, meaning that old dependencies may have 
been used even if newer ones were available. 

 

 
 
 Listing 7-1 shows a Makefile that automatically generates dependencies and incorporates all of the preceding information.    
 
  Note  Listing 7-1 is available online.   
 
 Listing 7-1: Makefile sample   
 
 # Lines starting with the pound sign are comments.   
 #   
 # This is one of two options you might need to tweak.   
       
 EXECUTABLE = myprogram   
       
 # You can modify the below as well, but probably   
 # won’ t need to.   
 #   
       



 122 

 # CC is for the name of the C compiler. CPPFLAGS denotes pre-processor   
 # flags, such as -I options. CFLAGS denotes flags for the C compiler.   
 # CXXFLAGS denotes flags for the C++ compiler. You may add additional   
 # settings here, such as PFLAGS, if you are using other languages such   
 # as Pascal.   
       
 CC = gcc   
 CPPFLAGS =   
 CFLAGS = -Wall -O2   
 CXXFLAGS = $(CFLAGS)   
 COMPILE = $(CC) $(CPPFLAGS) $(CFLAGS) -c   
       
 SRCS := $(wildcard *.c)   
 OBJS := $(patsubst %.c,%.o,$(SRCS))   
 DEPS := $(patsubst %.c,%.d,$(SRCS))   
       
 # “all”  is the default target. Simply make it point to myprogram.   
       
 all: $(EXECUTABLE)   
       
 # Define the components of the program, and how to link them together.   
 # These components are defined as dependencies; that is, they must be   
 # made up-to-date before the code is linked.   
       
 $(EXECUTABLE): $(DEPS) $(OBJS)   
     $(CC) -o $(EXECUTABLE) $(OBJS)   
       
 # Specify that the dependency files depend on the C source files.   
       
 %.d: %.c   
     $(CC) -M $(CPPFLAGS) $< > $@   
     $(CC) -M $(CPPFLAGS) $< | sed s/\\.o/.d/ > $@   
       
 # Specify that all .o files depend on .c files, and indicate how   
 # the .c files are converted (compiled) to the .o files.   
       
 %.o: %.c   
     $(COMPILE) -o $@ $<   
       
 clean:   
     -rm $(OBJS) $(EXECUTABLE) $(DEPS) *~   
       
 explain:   
     @echo “The following information represents your program:”    
     @echo “Final executable name: $(EXECUTABLE)”    
     @echo “Source files:     $(SRCS)”    
     @echo “Object files:     $(OBJS)”    
     @echo “Dependency files:   $(DEPS)”    
       
 depend: $(DEPS)   
     @echo “Dependencies are now up-to-date.”    
       
 -include $(DEPS)   
 

 

Having seen this new Makefile, I will review the changes that have been made in it. The first changes occur near the top where 
variables are declared. There is a greater degree of specialization now; there is a separate CPPFLAGS for pre-processor directives. 
This is necessary so that only those options can be passed to gcc when it calculates the dependencies; the others should not be 
passed along when dependencies are being calculated. Additionally, as you’ ll see shortly when I discuss implicit rules, there can 
be other benefits to splitting them up in such a way as well. 

 

 
 

 
Another new variable is DEPS, which is generated in a fashion similar to OBJS, except the dependency files will have a .d 
extension. So generating a list of dependency files can be done in the same way as generating the list of object files. 
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 Here’s an example of the next change that occurs with this rule:   
 
 $(EXECUTABLE): $(DEPS) $(OBJS)   
     $(CC) -o $(EXECUTABLE) $(OBJS)   
 

 
This time, the list of dependency files is also listed. Technically, this is not necessary because make implicitly evaluates those files 
whenever it starts, but listing them here can be a good reminder that the dependencies do need to be up-to-date when a program is 
compiled. 

 

 
 
 Next, there is a new rule that specifies how the dependencies should be calculated. This is a three-line rule:   
 
 %.d: %.c   
     $(CC) -M $(CPPFLAGS) $< > $@   
     $(CC) -M $(CPPFLAGS) $< | sed s/\\.o/.d/ > $@   
 

 

The first line specifies that, at a minimum, each dependency file depends on the corresponding C source file, and must be 
regenerated if that file is modified. The second and third lines list the specific commands used to build the dependency file. The 
first command simply invokes gcc, and dumps its output directly into the dependency file. The second command again invokes 
gcc, but this one changes the rule filename from .o to .d and then appends the result to the end of the file. This is done so that the 
dependency file can be re-built even if all that was modified was a header file included a few levels down, for instance. 

 

 
 
 The next modification is to the clean target, which lists the dependencies as additional generated files to remove when requested.    
 

  Note  
One interesting thing to note is that if make clean is run on an already-cleaned directory, the dependency files will 
be re-built and then promptly deleted: 

 
 
 
 $ make clean   
 gcc -M io.c > io.d   
 gcc -M io.c | sed s/\\.o/.d/ > io.d   
 gcc -M init.c > init.d   
 gcc -M init.c | sed s/\\.o/.d/ > init.d   
 gcc -M compute.c > compute.d   
 gcc -M compute.c | sed s/\\.o/.d/ > compute.d   
 rm compute.o init.o io.o myprogram compute.d init.d io.d *~   
 rm: cannot remove `compute.o’ : No such file or directory   
 rm: cannot remove `init.o’ : No such file or directory   
 rm: cannot remove `io.o’ : No such file or directory   
 rm: cannot remove `myprogram’ : No such file or directory   
 rm: cannot remove `*~’ : No such file or directory   
 make: [clean] Error 1 (ignored)   
 

 
The reason for this is that the include directive in the Makefile depends on the.d files implicitly. So, after they are built, the file can 
be processed normally. 

 
 
 

 
After the %.d rule, there is a modification to the explain target that simply displays an extra line of output indicating the names of 
the dependency files. Then, there is a new target named depend. This target is never invoked directly from another; like clean and 
explain, it must be invoked from the command line. The depend target is used to re-build the dependency files, if necessary. 

 

 
 

 
The final line of the file is the include directive. The leading dash means to suppress warnings of a file to be included doesn’ t exist; 
the file is generated automatically and then included anyway, so the warnings simply amount to junk on-screen. The files to 
include are those listed by the DEPS variable. 

 

 
 

 
Now that you’ve seen this Makefile, take a look at what it does with a few sample executions. Starting from a clean directory, you 
can see all the steps that are taken in order to build the program: 

 
 
 
 $ make   
 gcc -M io.c > io.d   
 gcc -M io.c | sed s/\\.o/.d/ > io.d   
 gcc -M init.c > init.d   
 gcc -M init.c | sed s/\\.o/.d/ > init.d   
 gcc -M compute.c > compute.d   
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 gcc -M compute.c | sed s/\\.o/.d/ > compute.d   
 gcc -Wall -O2 -c -o compute.o compute.c   
 gcc -Wall -O2 -c -o init.o init.c   
 gcc -Wall -O2 -c -o io.o io.c   
 gcc -o myprogram compute.o init.o io.o   
 
 You can see that it generated the dependency files, and then compiled the program. Here’s a look at one of those dependency files:   
 
 $ cat io.d   
 io.o: io.c /usr/include/stdio.h /usr/include/features.h \   
 /usr/include/sys/cdefs.h /usr/include/gnu/stubs.h \   
 /usr/lib/gcc-lib/i486-linux/egcs-2.91.66/include/stddef.h \   
 /usr/lib/gcc-lib/i486-linux/egcs-2.91.66/include/stdarg.h \   
 /usr/include/bits/types.h /usr/include/libio.h \   
 /usr/include/_G_config.h /usr/include/bits/stdio_lim.h    
 myprogram.h   
 io.d: io.c /usr/include/stdio.h /usr/include/features.h \   
 /usr/include/sys/cdefs.h /usr/include/gnu/stubs.h \   
 /usr/lib/gcc-lib/i486-linux/egcs-2.91.66/include/stddef.h \   
 /usr/lib/gcc-lib/i486-linux/egcs-2.91.66/include/stdarg.h \   
 /usr/include/bits/types.h /usr/include/libio.h \   
 /usr/include/_G_config.h /usr/include/bits/stdio_lim.h myprogram.h   
 

  
Note 

 
Your dependency file will probably be different from mine because different distributions or compiler versions 
use different header files and locations.  However, in all cases, you should note an inclusion of stdio.h and 
myprogram.h. 

 

 
 

 

You can see the two entries generated by the two separate invocations of gcc. The first declares the dependencies of the object file; 
the second, the same dependencies, but applied to the dependency file itself. Notice that both of them list much more than simply 
myprogram.h! Also, they are list all of the system header files that are included by the program—or by other system header files 
that the program includes. 

 

 
 
  Tip  You can suppress the inclusion of these system header files by using -MM instead of -M in the gcc invocation.    
 
 Now, confirm that nothing is recompiled when nothing needs to be. The make program should report that there is nothing to do:   
 
 $ make   
 make: Nothing to be done for `all’ .   
 
 Try modifying a file and see what happens now. In this example, touch will be used again:   
 
 $ touch compute.c   
 $ make   
 gcc -M compute.c > compute.d   
 gcc -M compute.c | sed s/\\.o/.d/ > compute.d   
 gcc -Wall -O2 -c -o compute.o compute.c   
 gcc -o myprogram compute.o init.o io.o   
 

 
This time, the system regenerated the dependency file for compute.c and then recompiled the file and rebuilt the final executable. 
This is essentially the same as had occurred before, with the exception that the dependency file is updated. 

 
 
 

 
Another test would be to modify the .h file and see of two out of the three files get recompiled and their dependency files 
regenerated: 

 
 
 
 $ touch myprogram.h   
 $ make   
 gcc -M io.c > io.d   
 gcc -M io.c | sed s/\\.o/.d/ > io.d   
 gcc -M init.c > init.d   
 gcc -M init.c | sed s/\\.o/.d/ > init.d   
 gcc -Wall -O2 -c -o init.o init.c   
 gcc -Wall -O2 -c -o io.o io.c   
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 gcc -o myprogram compute.o init.o io.o   
 
 The dependency files are updated, the source is recompiled, and the program is re-linked—everything worked perfectly.   
 

 
This sort of capability in the Makefile may seem like overkill for a project this small. However, when your projects start to contain 
dozens, hundreds, or even thousands of modules, maintaining a Makefile can become a big chore. Knowing these techniques 
enables you to re-use the Makefile in many other situations. 

 

 
 
 At this point, the Makefile already automatically:   
 
  •  Detects the names of all the C source files in the project.   
 
  •  Determines the names of all the appropriate object files, given the names of those C source files.   
 
  •  Determines the names of the dependency files, given the names of those source files.   
 
  •  Determines the dependencies for each source file and stores them in a file for re-use automatically.   
 
  •  Regenerates these dependencies automatically when necessary.   
 

 

That’s quite a bit of automation!  Yet, e more can be done. Notice  how the preceding rules apply to C source files only. Of course, 
the Makefile could be modified trivially so the rules apply to C++ source files only, or with a bit more effort, to Pascal source files 
only. Athough these modifications are not difficult, think about another alternative for a moment: wouldn’ t it be great if the system 
could take the appropriate action automatically based on the particular language in use? 

 

 
 

 
Of course! Now the question is, how can this be done? Several rules rely on files with names ending in .c. You can no longer rely 
on that sort of rule for other languages. 

 
 
 

 

I’ ll approach the answer in steps so you can see how the changes progress from one system to another. The first step that can be 
taken is to use one of make’s built-in implicit rules for compilation. Although we haven’ t used it thus far, GNU make comes with a 
number of rules that can be applied for compilation purposes. It knows how to compile programs written in C, C++, Pascal, Ada, 
and many other languages. Instead of manually defining rules for each of these, you simply can use the built-in ones. The info 
documentation for make describes each of these built-in rules. As an example, the built-in rule for compiling C programs is 
defined as: 

 

 
 
 $(CC) -c $(CPPFLAGS) $(CFLAGS)   
 

 

Now you can see one of the other benefits of arranging variables as they are in the example Makefile: they fit nicely with the 
implicit rules. So, what you actually can do is delete from the Makefile the rule for compiling the C program. A few variables are 
added or modified at the top of the Makefile as well. There is a more specific section for C++ compilation, and there is a separate 
LINKCC defined. This is the name of the compiler you should use for the final link step; it may be g++ if your program is 
predominantly C++-based or gcc if it’ s mostly C-based. It’s initially set to equal the C compiler. 

 

 
 
 Listing 7-2 shows what the Makefile looks like now.   
 
  Note  Listing 7-2 is available online.   
 
 Listing 7-2: Modified Makefile   
 
 # Lines starting with the pound sign are comments.   
 #   
 # This is one of two options you might need to tweak.   
       
 EXECUTABLE = myprogram   
       
 # You can modify the below as well, but probably   
 # won’ t need to.   
 #   
       
 # CC is for the name of the C compiler. CPPFLAGS denotes pre-processor   
 # flags, such as -I options. CFLAGS denotes flags for the C compiler.   
 # CXXFLAGS denotes flags for the C++ compiler. You may add additional   
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 # settings here, such as PFLAGS, if you are using other languages such   
 # as Pascal.   
       
 CPPFLAGS =   
 LINKCC = $(CC)   
       
 CC = gcc   
 CFLAGS = -Wall -O2   
       
 CXX = g++   
 CXXFLAGS = $(CFLAGS)   
       
       
 SRCS := $(wildcard *.c)   
 OBJS := $(patsubst %.c,%.o,$(SRCS))   
 DEPS := $(patsubst %.c,%.d,$(SRCS))   
       
 # “all”  is the default target. Simply make it point to myprogram.   
       
 all: $(EXECUTABLE)   
       
 # Define the components of the program, and how to link them together.   
 # These components are defined as dependencies; that is, they must be   
 # made up-to-date before the code is linked.   
       
 $(EXECUTABLE): $(DEPS) $(OBJS)   
         $(LINKCC) -o $(EXECUTABLE) $(OBJS)   
       
 # Specify that the dependency files depend on the C source files.   
       
 %.d: %.c   
         $(CC) -M $(CPPFLAGS) $< > $@   
         $(CC) -M $(CPPFLAGS) $< | sed s/\\.o/.d/ > $@   
       
 # Specify that all .o files depend on .c files, and indicate how   
 # the .c files are converted (compiled) to the .o files.   
       
 clean:   
         -rm $(OBJS) $(EXECUTABLE) $(DEPS) *~   
       
 explain:   
         @echo “The following information represents your program:”    
         @echo “Final executable name: $(EXECUTABLE)”    
         @echo “Source files:     $(SRCS)”    
         @echo “Object files:     $(OBJS)”    
         @echo “Dependency files:   $(DEPS)”    
       
 depend: $(DEPS)   
         @echo “Dependencies are now up-to-date.”    
       
 -include $(DEPS)   
 

 
Notice the absence of any rule explicitly stating how the C code is compiled. Thus far, the Makefile is capable of compiling C++ 
files but is not capable of identifying them yet because of the wildcard in use. 

 
 
 

 
The wildcard needs a bit more work before it can be used with these different languages. For your information, on Linux, C source 
files end with .c, and C++ files can end with either .cc or .C. This complicates life a bit, but not terribly. 

 
 
 
 The first thing you should do is re-work the wildcards. This is what they look like now:   
 
 SRCS := $(wildcard *.c) $(wildcard *.cc) $(wildcard *.C)   
 OBJS := $(patsubst %.c,%.o,$(wildcard *.c)) \   
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     $(patsubst %.cc,%.o,$(wildcard *.cc)) \   
     $(patsubst %.C,%.o,$(wildcard *.C))   
 DEPS := $(patsubst %.o,%.d,$(OBJS))   
 

 
As you can see, the source listing is simply the collection of files with all the different extensions. The object listing has to be more 
picky, because it has to convert each file type individually. The dependency then is rewritten in terms of the object list, so it 
doesn’ t have to do the same thing. 

 

 
 

 
Now,  you need a new dependency rule for the files with each new extension that specifies how to generate the dependency file. 
An example is: 

 
 
 
 %.d: %.C   
     $(CXX) -M $(CPPFLAGS) $< > $@   
     $(CXX) -M $(CPPFLAGS) $< | sed s/\\.o/.d/ > $@   
 

 
The same will need to occur for .cc files. now your Makefile is language-neutral, and it has support for both C and C++ files. With 
a few more additions, you could add many other languages as well. Listing 7-3 shows the finished Makefile. 

 
 
 
  Note  You can find the finished Makefile shown in Listing 7-3 online.   
 
 Listing 7-3: Finished multi-language Makefile   
 
 # Lines starting with the pound sign are comments.   
 #   
 # These are the two options that may need tweaking   
       
 EXECUTABLE = myprogram   
 LINKCC = $(CC)   
       
 # You can modify the below as well, but probably   
 # won’ t need to.   
 #   
       
 # CC is for the name of the C compiler. CPPFLAGS denotes pre-processor   
 # flags, such as -I options. CFLAGS denotes flags for the C compiler.   
 # CXXFLAGS denotes flags for the C++ compiler. You may add additional   
 # settings here, such as PFLAGS, if you are using other languages such   
 # as Pascal.   
       
 CPPFLAGS =   
       
 LDFLAGS =   
       
 CC = gcc   
 CFLAGS = -Wall -O2   
       
 CXX = g++   
 CXXFLAGS = $(CFLAGS)   
       
       
 SRCS := $(wildcard *.c) $(wildcard *.cc) $(wildcard *.C)   
 OBJS := $(patsubst %.c,%.o,$(wildcard *.c)) \   
     $(patsubst %.cc,%.o,$(wildcard *.cc)) \   
     $(patsubst %.C,%.o,$(wildcard *.C))   
 DEPS := $(patsubst %.o,%.d,$(OBJS))   
       
 # “all”  is the default target. Simply make it point to myprogram.   
       
 all: $(EXECUTABLE)   
       
 # Define the components of the program, and how to link them together.   
 # These components are defined as dependencies; that is, they must be   
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 # made up-to-date before the code is linked.   
       
 $(EXECUTABLE): $(DEPS) $(OBJS)   
     $(LINKCC) $(LDFLAGS) -o $(EXECUTABLE) $(OBJS)   
       
 # Specify that the dependency files depend on the C source files.   
       
 %.d: %.c   
     $(CC) -M $(CPPFLAGS) $< > $@   
     $(CC) -M $(CPPFLAGS) $< | sed s/\\.o/.d/ > $@   
       
 %.d: %.cc   
     $(CXX) -M $(CPPFLAGS) $< > $@   
     $(CXX) -M $(CPPFLAGS) $< | sed s/\\.o/.d/ > $@   
       
 %.d: %.C   
     $(CXX) -M $(CPPFLAGS) $< > $@   
     $(CXX) -M $(CPPFLAGS) $< | sed s/\\.o/.d/ > $@   
       
 # Specify that all .o files depend on .c files, and indicate how   
 # the .c files are converted (compiled) to the .o files.   
       
 clean:   
     -rm $(OBJS) $(EXECUTABLE) $(DEPS) *~   
       
 explain:   
     @echo “The following information represents your program:”    
     @echo “Final executable name: $(EXECUTABLE)”    
     @echo “Source files:     $(SRCS)”    
     @echo “Object files:     $(OBJS)”    
     @echo “Dependency files:   $(DEPS)”    
       
 depend: $(DEPS)   
     @echo “Dependencies are now up-to-date.”    
       
 -include $(DEPS)   
 

 
To see how your Makefile works, you can create a zero-byte C++ module. This will have no effect on the program but will go 
through the motions of compilation and linking. You can use the touch command to create this file, as shown in the following 
example. 

 

 
 
 $ touch foo.cc   
 $ make clean   
 rm compute.o init.o io.o foo.o myprogram compute.d init.d io.d foo.d *~   
 rm: cannot remove `compute.o’ : No such file or directory   
 rm: cannot remove `init.o’ : No such file or directory   
 rm: cannot remove `io.o’ : No such file or directory   
 rm: cannot remove `foo.o’ : No such file or directory   
 rm: cannot remove `myprogram’ : No such file or directory   
 rm: cannot remove `*~’ : No such file or directory   
 make: [clean] Error 1 (ignored)   
 

 
Depending on whether or not your system is already in the clean state, you may or may not get the same output from make clean. 
However, from this point on, you should get output much the same as is shown here: 

 
 
 
 $ make explain   
 g++ -M foo.cc > foo.d   
 g++ -M foo.cc | sed s/\\.o/.d/ > foo.d   
 gcc -M io.c > io.d   
 gcc -M io.c | sed s/\\.o/.d/ > io.d   
 gcc -M init.c > init.d   
 gcc -M init.c | sed s/\\.o/.d/ > init.d   
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 gcc -M compute.c > compute.d   
 gcc -M compute.c | sed s/\\.o/.d/ > compute.d   
 The following information represents your program:   
 Final executable name: myprogram   
 Source files:     compute.c init.c io.c foo.cc    
 Object files:     compute.o init.o io.o foo.o    
 Dependency files:   compute.d init.d io.d foo.d   
 

 
Notice how a different compiler was used to get the dependency information from the C++ module as was used for the C module. 
On the other hand, it properly identified object and dependency files with the single standard name, which is good.Now try 
building your project and see if it worked.  The build should look like the following example:  

 

 
 
 $ make   
 gcc -Wall -O2  -c compute.c -o compute.o   
 gcc -Wall -O2  -c init.c -o init.o   
 gcc -Wall -O2  -c io.c -o io.o   
 g++ -Wall -O2  -c foo.cc -o foo.o   
 gcc -o myprogram compute.o init.o io.o foo.o    
 

 
Everything was executed according to the plan. The C++ program was compiled with the separate compiler (according to a built-in 
rule), and the C program was compiled with the normal C compiler, again according to a built-in rule.  

Building Other  Files   
 

 

Besides programs built from code from C or C++, you can build files from other types of data. For instance, you could build a 
PostScript file containing the result of processing a LaTeX document. Or, you could build a manpage from the appropriate source 
code. Some people use make and a pattern language such as m4 to build websites. The make program is versatile enough to handle 
all of these tasks quite well. 

 

 
 

 
Consider a situation in which you might want to build a website with HTML files that were pre-processed. This pre-processor 
could be m4, some sort of specialized Web language, or even the C pre-processor. 

 
 
 

 
As a simple example of what can be done with this sort of system, you might have three files. This system builds upon the 
example in the previous section. One could be a standard inclusion item for your HTML—maybe a header or some macros. The 
first file contains some quick macros that can be used with all the pages; name it stdinc.hmac: 

 

 
 
 <!DOCTYPE HTLM PUBLIC “ -//W3C//DTD HTML 4.0 Transitional//EN”    
 “http://www.w3.org/TR/REC-html40/loose.dtd”>   
       
 #define _STDHEAD(a) <HEAD><TITLE>a</TITLE></HEAD>   
       
 #define _BODYHEAD <H1>myprogram sample information</H1> \   
     <P> \   
     This is some sample text for your program. \   
     This text appears on each generated HTML page that uses \   
     the bodyhead macro. \   
     <P>   
 
 The second file is the first one to generate some HTML, page1.mac:   
 
 #include “stdinc.hmac”    
 <HTML>   
 _STDHEAD(Sample Document Page 1)   
       
 <BODY>   
       
 _BODYHEAD   
       
 This is the first page.   
       
 /*  This text will never appear in the final document. * /   
       
 </BODY>   
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 </HTML>   
 
 And now, a third file to generate HTML,:   
 
 #include “stdinc.hmac”    
 <HTML>   
 _STDHEAD(Sample Document Page 2)   
       
 <BODY BGCOLOR=#5555FF>   
       
 _BODYHEAD   
       
 This is the second page.   
       
 /*  This text will never appear in the final document. * /   
       
 </BODY>   
       
       
 </HTML>   
 

 
To generate these files, some simple calls to cpp are needed. You can modify the Makefile from above so that it knows how to 
build all of these files—and even figures out dependencies. 

 
 
 

 
Listing 7-4 shows an updated version of the same intelligent Makefile that was used in Listing 7-3. This time, the Makefile knows 
how to generate HTML code from the .mac files. 

 
 
 
  Note  Listing 7-4 is available online.   
 
 Listing 7-4: Updated Makefile that generates HTML    
 
 # Lines starting with the pound sign are comments.   
 #   
 # These are the options that may need tweaking   
       
 EXECUTABLE = myprogram   
 LINKCC = $(CC)   
 OTHERS = page1.html page2.html   
 OTHERDEPS = page1.d page2.d   
       
 # You can modify the below as well, but probably   
 # won’ t need to.   
 #   
       
 # CC is for the name of the C compiler. CPPFLAGS denotes pre-processor   
 # flags, such as -I options. CFLAGS denotes flags for the C compiler.   
 # CXXFLAGS denotes flags for the C++ compiler. You may add additional   
 # settings here, such as PFLAGS, if you are using other languages such   
 # as Pascal.   
       
 CPPFLAGS =   
       
 LDFLAGS =   
       
 CC = gcc   
 CFLAGS = -Wall -O2   
       
 CXX = g++   
 CXXFLAGS = $(CFLAGS)   
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 SRCS := $(wildcard *.c) $(wildcard *.cc) $(wildcard *.C)   
 OBJS := $(patsubst %.c,%.o,$(wildcard *.c)) \   
     $(patsubst %.cc,%.o,$(wildcard *.cc)) \   
     $(patsubst %.C,%.o,$(wildcard *.C))   
 DEPS := $(patsubst %.o,%.d,$(OBJS)) $(OTHERDEPS)   
       
 # “all”  is the default target. Simply make it point to myprogram.   
       
 all: $(EXECUTABLE) $(OTHERS)   
       
 # Define the components of the program, and how to link them together.   
 # These components are defined as dependencies; that is, they must be   
 # made up-to-date before the code is linked.   
       
 $(EXECUTABLE): $(DEPS) $(OBJS)   
     $(LINKCC) $(LDFLAGS) -o $(EXECUTABLE) $(OBJS)   
       
 # Specify that the dependency files depend on the C source files.   
       
 %.d: %.c   
     $(CC) -M $(CPPFLAGS) $< > $@   
     $(CC) -M $(CPPFLAGS) $< | sed s/\\.o/.d/ > $@   
       
 %.d: %.cc   
     $(CXX) -M $(CPPFLAGS) $< > $@   
     $(CXX) -M $(CPPFLAGS) $< | sed s/\\.o/.d/ > $@   
       
 %.d: %.C   
     $(CXX) -M $(CPPFLAGS) $< > $@   
     $(CXX) -M $(CPPFLAGS) $< | sed s/\\.o/.d/ > $@   
       
 %.d: %.mac   
     cpp -M $< | sed s/\\.mac\\.o/.html/ > $@   
     cpp -M $< | sed s/\\.mac\\.o/.d/ > $@   
       
 %.html: %.mac   
     cpp -P < $< > $@   
       
 clean:   
     -rm $(OBJS) $(EXECUTABLE) $(DEPS) $(OTHERS) *~   
       
 explain:   
     @echo “The following information represents your program:”    
     @echo “Final executable name: $(EXECUTABLE)”    
     @echo “Other generated files: $(OTHERS)”    
     @echo “Source files:     $(SRCS)”    
     @echo “Object files:     $(OBJS)”    
     @echo “Dependency files:   $(DEPS)”    
       
 depend: $(DEPS)   
     @echo “Dependencies are now up-to-date.”    
       
 -include $(DEPS)   
 

 

Now I’ ll review the specific additions to the Makefile that generates these files. First, there are two new variables at the top: 
OTHERS and OTHERDEPS. The OTHERS variable is used to specify additional files that will be generated. The OTHERDEPS 
variable is used to specify additional dependency files. The reason for this is that there is not a generic rule to determine names of 
the dependency files given other files with arbitrary names and extensions. Furthermore, many types of files will not even have the 
capability of generating these dependencies automatically, or generating dependencies may not even make sense with some types 
of files. 
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Then, a few lines down, the DEPS variable is updated to include the OTHERDEPS in the list of dependency files. Below that, the 
all target is also updated to indicate that the additional files need to be compiled. 

 
 
 
 After that, nothing changes until the following lines:   
 
 %.d: %.mac   
     cpp -M $< | sed s/\\.mac\\.o/.html/ > $@   
     cpp -M $< | sed s/\\.mac\\.o/.d/ > $@   
 

 
Here, a dependency file is generated. We can use the same technique as for C and C++ programs neatly, but there is one twist. 
Because the cpp -M option assumes that the output is named .o, and it is named .html in this case, sed must be used to correct it. 
Now, you get results like this: 

 

 
 
 page1.html: page1.mac stdinc.hmac   
 page1.d: page1.mac stdinc.hmac   
 
 The final modifications include the rule for generating the HTML code, and additional listings of variables in clean and explain.   
 
 When you run make on a clean directory now, you get the following messages:   
 
 $ make   
 cpp -M page2.mac | sed s/\\.mac\\.o/.html/ > page2.d   
 cpp -M page2.mac | sed s/\\.mac\\.o/.d/ > page2.d   
 cpp -M page1.mac | sed s/\\.mac\\.o/.html/ > page1.d   
 cpp -M page1.mac | sed s/\\.mac\\.o/.d/ > page1.d   
 g++ -M foo.cc > foo.d   
 g++ -M foo.cc | sed s/\\.o/.d/ > foo.d   
 gcc -M io.c > io.d   
 gcc -M io.c | sed s/\\.o/.d/ > io.d   
 gcc -M init.c > init.d   
 gcc -M init.c | sed s/\\.o/.d/ > init.d   
 gcc -M compute.c > compute.d   
 gcc -M compute.c | sed s/\\.o/.d/ > compute.d   
 gcc -Wall -O2  -c compute.c -o compute.o   
 gcc -Wall -O2  -c init.c -o init.o   
 gcc -Wall -O2  -c io.c -o io.o   
 g++ -Wall -O2  -c foo.cc -o foo.o   
 gcc -o myprogram compute.o init.o io.o foo.o    
 cpp -P < page1.mac > page1.html   
 cpp -P < page2.mac > page2.html   
 

 

Now you can take a look at the generated HTML code. Notice how some elements of the code occur in both output files but are 
defined once only—in stdinc.hmac. Imagine the possibilities for a large website: the entire look and feel of the site could be 
modified by making a change to a single macro file and re-running make! Here is the result from processing these two HTML 
files: 

 

 
 
 $ cat page1.html   
 <!DOCTYPE HTLM PUBLIC “ -//W3C//DTD HTML 4.0 Transitional//EN”    
 “http://www.w3.org/TR/REC-html40/loose.dtd”>   
       
       
       
       
       
       
 <HTML>   
 <HEAD><TITLE> Sample Document Page 1 </TITLE></HEAD>    
       
 <BODY>   
       

 
<H1>myprogram sample information</H1> <P> This is some sample text for your program. This text appears on each generated 
HTML page that uses the bodyhead macro. <P>  
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 This is the first page.   
       
    
       
 </BODY>   
       
       
 </HTML>   
 $ cat page2.html   
 <!DOCTYPE HTLM PUBLIC “ -//W3C//DTD HTML 4.0 Transitional//EN”    
 “http://www.w3.org/TR/REC-html40/loose.dtd”>   
       
       
       
       
       
       
 <HTML>   
 <HEAD><TITLE> Sample Document Page 2 </TITLE></HEAD>    
       
 <BODY BGCOLOR=#5555FF>   
       

 
<H1>myprogram sample information</H1> <P> This is some sample text for your program. This text appears on each generated 
HTML page that uses the bodyhead macro. <P>  

 
 
       
 This is the second page.   
       
    
       
 </BODY>   
       
       
 </HTML>   
 

 

Notice several things about this output. First, there are several blank lines in the output at a location where there were no blank lines 
in the input. The stdinc.hmac file causes this. Everything from that file (such as the doctype tag at the start) is passed through 
literally, except the special declarations like macros. Thus, even blank lines in that file are passed through literally. For HTML files, 
this is not a problem; you can see that the page displays fine in any HTML browser. Notice, too, that the macro calls in the source 
files that were expanded; the title, for instance, was a parameter to a macro call.  

Using Recursive make   
 

 

When you are dealing with large projects, you may elect to separate the source into subdirectories based on the particular 
subsystems that are contained in those parts of the code. When you do this, you can have one large Makefile for the entire project. 
Alternatively, you may find it more useful to have a separate Makefile for each subsystem. This can make the build system more 
maintainable because the top-level Makefile does not have to contain the details for the entire program; these can be present solely 
in each individual directory. 

 

 
 

 
To assist with this sort of configuration, GNU make has several features to help. One is the MAKE variable, which can be used to 
invoke a recursive make, and pass along several relevant command-line options. You can use the -C option to tell make to enter a 
specific directory, where it will then process that directory’s Makefile. 

 

 
 

 
A recursive make descends into each subdirectory in your project building files. Each subdirectory may, in turn, have additional 
subdirectories that the build process needs to examine. By designing a recursive make, you end up traversing the entire tree of your 
project to build all the necessary files. 

 

 
 
 One way to do that is with this type of syntax:   
 
 targetname:   
    $(MAKE) -C directoryname   
 
 Note that targetname and directoryname must be different for this to work. Another option, especially useful if you have large  
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numbers of subdirectories, is to use a loop to enter each of them. This approach will be demonstrated in the example in Listing 7-5.  
 

 
Another important capability is the communication of variable settings between the master make and the others that it invokes. 
There are two main ways to do this. The first is to have a file that is included by all of the Makefiles. Another, usually superior, 
way is to export variables from the top-level make to its child processes. 

 

 
 

 
This is done with the same syntax that Bash uses to export variables to its sub-processes—the export keyword. You will want to 
export options such as the ones that C compiler used, the options passed to it, and the so on. Which files should be compiled will 
vary between the different directories and thus should not be passed along. 

 

 
 

 
Note that you can actually combine approaches. For instance, you might want to use include files to define make rules, and 
variable exports to pass along variable contents, using each for its particular strong points. 

 
 
 

 

Another question for you to consider is how to combine the items produced in the subdirectories into the main project. Depending 
on your specific needs, the subsystems could be completely separate executables, generating libraries, or simply part of your main 
executable. One popular option is to have a specific directory for the object files—a directory into which all object files are placed. 
A more modular option is to create a library; you’ ll learn about that option in Chapter 9, “Libraries and Linking.”  

 

 
 

 
Listing 7-5 shows a version of the intelligent Makefile developed before that will act as a top-level Makefile for a project 
containing two additional subsystems, input and format. 

 
 
 
  Note  Listing 7-5 is available online.   
 
 Listing 7-5: Top-level recursive Makefile   
 
 # Lines starting with the pound sign are comments.   
 #   
 # These are the options that may need tweaking   
       
 EXECUTABLE = myprogram   
 LINKCC = $(CC)   
 OTHEROBJS = input/test.o format/formattest.o   
 OTHERS = page1.html page2.html   
 OTHERDEPS = page1.d page2.d   
 DIRS = input format   
       
 # You can modify the below as well, but probably   
 # won’ t need to.   
 #   
       
 # CC is for the name of the C compiler. CPPFLAGS denotes pre-processor   
 # flags, such as -I options. CFLAGS denotes flags for the C compiler.   
 # CXXFLAGS denotes flags for the C++ compiler. You may add additional   
 # settings here, such as PFLAGS, if you are using other languages such   
 # as Pascal.   
       
 export CPPFLAGS =   
       
 export LDFLAGS =   
       
 export CC = gcc   
 export CFLAGS = -Wall -O2   
       
 export CXX = g++   
 export CXXFLAGS = $(CFLAGS)   
       
       
 SRCS := $(wildcard *.c) $(wildcard *.cc) $(wildcard *.C)   
 OBJS := $(patsubst %.c,%.o,$(wildcard *.c)) \   
     $(patsubst %.cc,%.o,$(wildcard *.cc)) \   
     $(patsubst %.C,%.o,$(wildcard *.C))   
 DEPS := $(patsubst %.o,%.d,$(OBJS)) $(OTHERDEPS)   
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 # “all”  is the default target. Simply make it point to myprogram.   
       
 all: $(EXECUTABLE) $(OTHERS)   
       
 subdirs:   
     @for dir in $(DIRS); do $(MAKE) -C $$dir; done   
       
 # Define the components of the program, and how to link them together.   
 # These components are defined as dependencies; that is, they must be   
 # made up-to-date before the code is linked.   
       
 $(EXECUTABLE): subdirs $(DEPS) $(OBJS)   
     $(LINKCC) $(LDFLAGS) -o $(EXECUTABLE) $(OBJS) $(OTHEROBJS)   
       
 # Specify that the dependency files depend on the C source files.   
       
 %.d: %.c   
     $(CC) -M $(CPPFLAGS) $< > $@   
     $(CC) -M $(CPPFLAGS) $< | sed s/\\.o/.d/ > $@   
       
 %.d: %.cc   
     $(CXX) -M $(CPPFLAGS) $< > $@   
     $(CXX) -M $(CPPFLAGS) $< | sed s/\\.o/.d/ > $@   
 %.d: %.C   
     $(CXX) -M $(CPPFLAGS) $< > $@   
     $(CXX) -M $(CPPFLAGS) $< | sed s/\\.o/.d/ > $@   
       
 %.d: %.mac   
     cpp -M $< | sed s/\\.mac\\.o/.html/ > $@   
     cpp -M $< | sed s/\\.mac\\.o/.d/ > $@   
       
 %.html: %.mac   
     cpp -P < $< > $@   
       
 clean:   
     -rm $(OBJS) $(EXECUTABLE) $(DEPS) $(OTHERS) *~   
     @for dir in $(DIRS); do $(MAKE) -C $$dir clean; done   
       
 explain:   
     @echo “The following information represents your program:”    
     @echo “Final executable name: $(EXECUTABLE)”    
     @echo “Other generated files: $(OTHERS)”    
     @echo “Source files:     $(SRCS)”    
     @echo “Object files:     $(OBJS)”    
     @echo “Dependency files:   $(DEPS)”    
     @echo “Subdirectories:    $(DIRS)”    
       
 depend: $(DEPS)   
     @for dir in $(DIRS); do $(MAKE) -C $$dir ; done   
     @echo “Dependencies are now up-to-date.”    
       
 -include $(DEPS)   
 

 

Several changes are made to this file from the previous version. First, note the addition of the OTHEROBJS variable; here, the 
additional generated object files are listed. Then, note how many of the variables are exported. These variables are not defined in 
the Makefiles in the subdirectories since their value gets passed along from this Makefile. Then, there is a new subdirs target. This 
target uses a for loop to ensure that the Makefile in each directory gets processed. The leading at sign (@) suppresses the normal 
output of this command, which can be a bit confusing if you are watching the output of make as it proceeds. 

 

 
 

 
Next, notice that the executable includes an additional dependency on the subdirs target. The remaining changes occur within the 
clean, explain, and depend targets, each of which is updated to list information about or process the subdirectories. 
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The Makefile for one of the subdirectories can look like the one shown in Listing 7-6. In this particular example, the file is used 
for both subdirectories because it detects what needs to be processed automatically. 

 
 
 
  Note  Listing 7-6 is available online.   
 
 Listing 7-6: Lower-level Makefile   
 
 #   
 # These are the options that may need tweaking   
       
 OTHERS =   
 OTHERDEPS =   
 DIRS =    
       
 # You can modify the below as well, but probably   
 # won’ t need to.   
 #   
       
 # CC is for the name of the C compiler. CPPFLAGS denotes pre-processor   
 # flags, such as -I options. CFLAGS denotes flags for the C compiler.   
 # CXXFLAGS denotes flags for the C++ compiler. You may add additional   
 # settings here, such as PFLAGS, if you are using other languages such   
 # as Pascal.   
       
 SRCS := $(wildcard *.c) $(wildcard *.cc) $(wildcard *.C)   
 OBJS := $(patsubst %.c,%.o,$(wildcard *.c)) \   
     $(patsubst %.cc,%.o,$(wildcard *.cc)) \   
     $(patsubst %.C,%.o,$(wildcard *.C))   
 DEPS := $(patsubst %.o,%.d,$(OBJS)) $(OTHERDEPS)   
       
 # “all”  is the default target. Simply make it point to myprogram.   
       
 all: $(OBJS) $(OTHERS) $(DIRS)   
       
 #$(DIRS):   
 #    $(MAKE) -C $<   
       
 # Define the components of the program, and how to link them together.   
 # These components are defined as dependencies; that is, they must be   
 # made up-to-date before the code is linked.   
       
 # Specify that the dependency files depend on the C source files.   
       
 %.d: %.c   
     $(CC) -M $(CPPFLAGS) $< > $@   
     $(CC) -M $(CPPFLAGS) $< | sed s/\\.o/.d/ > $@   
 %.d: %.cc   
     $(CXX) -M $(CPPFLAGS) $< > $@   
     $(CXX) -M $(CPPFLAGS) $< | sed s/\\.o/.d/ > $@   
       
 %.d: %.C   
     $(CXX) -M $(CPPFLAGS) $< > $@   
     $(CXX) -M $(CPPFLAGS) $< | sed s/\\.o/.d/ > $@   
       
 %.d: %.mac   
     cpp -M $< | sed s/\\.mac\\.o/.html/ > $@   
     cpp -M $< | sed s/\\.mac\\.o/.d/ > $@   
       
 %.html: %.mac   
     cpp -P < $< > $@   
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 clean:   
     -rm $(OBJS) $(EXECUTABLE) $(DEPS) $(OTHERS) *~   
        
       
 explain:   
     @echo “The following information represents your program:”    
     @echo “Other generated files: $(OTHERS)”    
     @echo “Source files:     $(SRCS)”    
     @echo “Object files:     $(OBJS)”    
     @echo “Dependency files:   $(DEPS)”    
       
 depend: $(DEPS)   
       
 -include $(DEPS)   
 

 
Note that this file is somewhat smaller than the top-level file. This file does not need to define compiler information, because that 
information is passed down by the top-level file. Also, this file generates no executable; it simply generates some object files that 
get linked in by the top-level file. 

 

 
 

 
The example files above use two new files for testing, input/test.cc and format/formattest.c.  You can create them by using mkdir 
and touch, like so: 

 
 
 
 $ mkdir  input format   
 $ touch input/test.cc   
 $ touch format/formattest.c   
 
 When you run make on this file, you get the following output:   
 
 $ make   
 cpp -M page2.mac | sed s/\\.mac\\.o/.html/ > page2.d   
 cpp -M page2.mac | sed s/\\.mac\\.o/.d/ > page2.d   
 cpp -M page1.mac | sed s/\\.mac\\.o/.html/ > page1.d   
 cpp -M page1.mac | sed s/\\.mac\\.o/.d/ > page1.d   
 g++ -M foo.cc > foo.d   
 g++ -M foo.cc | sed s/\\.o/.d/ > foo.d   
 gcc -M io.c > io.d   
 gcc -M io.c | sed s/\\.o/.d/ > io.d   
 gcc -M init.c > init.d   
 gcc -M init.c | sed s/\\.o/.d/ > init.d   
 gcc -M compute.c > compute.d   
 gcc -M compute.c | sed s/\\.o/.d/ > compute.d   
 make[1]: Entering directory `/home/username/t/my/input’    
 g++ -M test.cc > test.d   
 g++ -M test.cc | sed s/\\.o/.d/ > test.d   
 make[1]: Leaving directory `/home/username/t/my/input’    
 make[1]: Entering directory `/home/username/t/my/input’    
 g++ -Wall -O2  -c test.cc -o test.o   
 make[1]: Leaving directory `/home/username/t/my/input’    
 make[1]: Entering directory `/home/username/t/my/format’    
 gcc -M formattest.c > formattest.d   
 gcc -M formattest.c | sed s/\\.o/.d/ > formattest.d   
 make[1]: Leaving directory `/home/username/t/my/format’    
 make[1]: Entering directory `/home/username/t/my/format’    
 gcc -Wall -O2  -c formattest.c -o formattest.o   
 make[1]: Leaving directory `/home/username/t/my/format’    
 gcc -Wall -O2  -c compute.c -o compute.o   
 gcc -Wall -O2  -c init.c -o init.o   
 gcc -Wall -O2  -c io.c -o io.o   
 g++ -Wall -O2  -c foo.cc -o foo.o   
 gcc -o myprogram compute.o init.o io.o foo.o input/test.o format/formattest.o   
 cpp -P < page1.mac > page1.html   
 cpp -P < page2.mac > page2.html   
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In this example, make descends into the subdirectories, executes commands there, and then returns to the top level. In fact, this 
method of using recursion can be used to descend more than one level into subdirectories. Many large projects, such as the Linux 
kernel, use this method for building. 

 

 
 
 You also may notice that additional commands descend into the subdirectories as well. The clean target is one such example:   
 
 $ make clean   
 rm compute.o init.o io.o foo.o myprogram compute.d init.d io.d foo.d page1.d page2.d page1.html page2.html *~   
 rm: cannot remove `*~’ : No such file or directory   
 make: [clean] Error 1 (ignored)   
 make[1]: Entering directory `/home/username/t/my/input’    
 rm test.o  test.d  *~   
 rm: cannot remove `*~’ : No such file or directory   
 make[1]: [clean] Error 1 (ignored)   
 make[1]: Leaving directory `/home/username/t/my/input’    
 make[1]: Entering directory `/home/username/t/my/format’    
 rm formattest.o  formattest.d  *~   
 rm: cannot remove `*~’ : No such file or directory   
 make[1]: [clean] Error 1 (ignored)   
 make[1]: Leaving directory `/home/username/t/my/format’   
Summary   
 

 
In this chapter, you learned about automating the build process for your projects by using make. Specifically, the following points 
were covered: 

 
 
 

  
• 

 
Building complex projects manually could be time-consuming and error-prone.  The make program presents a way to 
automate the build process. 

 
 
 
  •  A Makefile contains the rules describing how a process is to be built.   
 

  
• 

 
Each rule describes three things: the file to be built, the files it requires before it can be built, and the commands necessary to 
build it. 

 
 
 
  •  Variables can be used in Makefiles to reduce the need for re-typing of information.   
 
  •  Variables can be either evaluated immediately, or on-the-fly whenever they are used.   
 

  
• 

 
Makefiles can be made more reusable by automatically determining things about their environment and the projects they are 
building. Wildcards are one way to do this. 

 
 
 

  
• 

 
Manually coding dependencies can be a difficult and time-consuming chore. You can automate this process as well by taking 
advantage of some features of the pre-processor and some unique syntax in your Makefile. 

 
 
 

  
• 

 
Make is not limited to dealing only with C or other programming languages. It can also build various other types of files, such 
as HTML. 

 
 
 
      
Chapter  8: Memory Management   
 
 Overview   
 

 

Managing memory is a fundamental concern to people programming in C. Because C operates on such a low level, you manage 
memory allocation and removal yourself; that is, the language does not implicitly do this for you. This level of control can mean a 
performance benefit for your applications. On the other hand, the number of options for managing memory can be daunting, and 
some algorithms can be complex. 

 

 
 

 
In this chapter, you will see how memory is allocated and managed in C programs under Linux. I’ ll also look at a topic that is of 
tremendous importance today—security. You’ ll see how easy it is to write programs with gaping security holes—and you’ ll how 
to write your own programs so that you can avoid these sorts of holes. 

 

 
 
 You’ ll also learn how some basic data structures, such as arrays and linked lists, can be applied in Linux programs.  
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Dynamic versus Static Memory   
 

 
When you are writing programs in C, there are two ways that you can ask for memory to use for your purposes. The first is static 
memory—memory that the system allocates for you implicitly. The second is dynamic memory—memory that you can allocate on 
request. Let’s take a detailed look at each type of memory. 

 

 
 
 Statically allocated memory   
 

 
This form of memory is allocated for you by the compiler. Although technically, the compiler may actually allocate and de-
allocate memory behind the scenes when variables go in and out of scope, this detail is hidden from you. 

 
 
 

 
The key to this type of memory is that it is always there whenever you are in the relevant area. For instance, an int declared at the 
top of main() is always there when you are in main(). 

 
 
 

 

Because this memory is always present, static allocation is the only way that you can use variables without manipulating pointers 
yourself. But the benefit goes deeper than alleviating worries about dereferencing pointers. When dealing with dynamic memory, 
you have to be extremely careful about how it is used. Because dynamic memory is, essentially, a big chunk of typeless RAM (the 
functions even return a pointer to void), you can access it easily as an integer and then a float—which is not the desired result; 
safeguards against accidentally doing this are looser. 

 

 
 

 
More important, when you use dynamic memory, you must remember to manually free the memory when you are finished with it. 
By contrast, you don’ t have to worry about any of these details when you use memory that is allocated statically. 

 
 
 

 
However, there are some significant drawbacks to using static memory as well. First, a statically allocated item created inside a 
function is not valid after the function exits, which is a big problem for functions that must return pointers to data such as strings. 
The following code will not necessarily produce the desired result: 

 

 
 
 char *addstr(char * inputstring) {    
   int counter;   
   char returnstring[80];   
       
   strcpy(returnstring, inputstring);   
   for (counter = 0; counter < strlen(returnstring); counter++) {    
     returnstring[counter] += 2;   
   }    
   return returnstring;   
 }    
 

 
The problem here is that you return a pointer when you return the returnstring item. However, because the memory that holds 
returnstring becomes deallocated after the return of the function, the results can be unpredictable and can even cause a crash. You 
can observe this behavior by putting the preceding code fragment into a complete program, as shown in this example: 

 

 
 
 #include <stdio.h>   
 #include <string.h>   
       
 char *addstr(char * inputstring);   
       
 int main(void) {    
   char *str1, *str2;   
      
   str1 = addstr(“Hello” );   
   str2 = addstr(“Goodbye”);   
      
   printf(“str1 = %s, str2 = %s\n” , str1, str2);   
   return 0;   
 }    
       
 char *addstr(char * inputstring) {    
   int counter;   
   char returnstring[80];   
      
   strcpy(returnstring, inputstring);   
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   for (counter = 0; counter < strlen(returnstring); counter++) {    
     returnstring[counter] += 2;   
   }    
       
   return returnstring;   
 }    
 

 
If you compile and run this program, you won’ t get the output that you might expect. In fact, some gcc versions warn you that an 
error will result if you return a pointer to memory that goes out of scope: 

 
 
 
 $ gcc -Wall -o ch8-1 ch8-1.c   
 ch8-1.c: In function `addstr’ :   
 ch8-1.c:25: warning: function returns address of local variable   
 $ ./ch8-1   
 str1 = , str2 =   
 

 
The preceding example demonstrates one reason to use a dynamically allocated string instead of a statically allocated one: you can 
return a pointer to such a string because it is not deallocated until you explicitly request it to be. 

 
 
 

 
There is yet another problem in the function. You absolutely must give the returned string a size in the declaration. Here, it is 
defined to have 80 characters. This may be enough to process a single word but it won’ t be enough to process 10,000 characters; 
attempting to do so would cause the program to crash. 

 

 
 

 
Your solution may be to declare returnstring to be 10,001 characters. There are two problems with this approach, however: First, if 
a string comes along that’s 10,100 characters, your program will still crash. Second, it’s wasteful to allocate 10,000 characters of 
space when you’re processing 20-character words. To solve these issues, you need dynamically allocated memory. 

 

 
 
 Dynamically allocated memory   
 

 
When you use dynamically allocated memory, you control all aspects of its allocation and removal. This means that you allocate 
the memory when you want it, in the size you want. Similarly, you remove it when you’re done with it. This may sound great at 
first, and it is for many reasons, but it’ s more complex than that. 

 

 
 

 

Properly managing dynamic memory can be a big challenge when you run large programs. Remembering to free memory when 
you are done with it can be difficult. If you fail to free memory when you are done with it, your program will silently eat more 
memory until it cannot either allocate any more or the system crashes because of lack of memory, depending on local security 
settings. This is obviously a bad thing. 

 

 
 

 

To allocate memory dynamically in C, you use the malloc() function, which is defined in stdlib.h. When you finish using memory, 
you need to use free() to get rid of it. The argument to malloc() indicates how many bytes of memory you want to allocate; you 
then get a pointer to that memory. If this pointer is NULL, it means there was an allocation problem and you should be prepared to 
handle this situation.  

 

 
 
  Note  In C++, you can (and generally should) use the new and delete operators to allocate and remove memory.   
 

 
Here is the sample program. This program will take your input, add 2 to each character (thus H becomes J), and display the result. 
It has been rewritten to use dynamic allocation: 

 
 
 
 #include <stdio.h>   
 #include <string.h>   
 #include <stdlib.h>   
       
 char *addstr(char * inputstring);   
       
 int main(void) {    
   char *str1, *str2;   
      
   str1 = addstr(“Hello” );   
   str2 = addstr(“Goodbye”);   
      
   printf(“str1 = %s, str2 = %s\n” , str1, str2);   
   free(str1);   
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   free(str2);   
   return 0;   
 }    
       
 char *addstr(char * inputstring) {    
   int counter;   
   char *returnstring;   
       
   returnstring = malloc(strlen(inputstring) + 1);   
   if (!returnstring) {    
     fprintf(stderr, “Error allocating memory; aborting!\n” );   
     exit(255);   
   }    
   strcpy(returnstring, inputstring);   
   for (counter = 0; counter < strlen(returnstring); counter++) {    
     returnstring[counter] += 2;   
   }    
       
   return returnstring;   
 }    
 
 When you try to compile and run this program, you no longer get warning messages and the output is as you would expect:   
 
 $ gcc -Wall -o ch8-1 ch8-1.c   
 $ ./ch8-1   
 str1 = Jgnnq, str2 = Iqqfd{ g   
 

 
The behavior in the function call allocates memory and then copies a string into it. Because there is such a frequent need to do this, 
there is even a function specialized for it—strdup(). You can simplify the program by modifying the function such that the 
program reads like this: 

 

 
 
 #include <stdio.h>   
 #include <string.h>   
 #include <stdlib.h>   
       
 char *addstr(char * inputstring);   
       
 int main(void) {    
   char *str1, *str2;   
      
   str1 = addstr(“Hello” );   
   str2 = addstr(“Goodbye”);   
      
   printf(“str1 = %s, str2 = %s\n” , str1, str2);   
   free(str1);   
   free(str2);   
   return 0;   
 }    
       
 char *addstr(char * inputstring) {    
   int counter;   
   char *returnstring;   
      
   returnstring = strdup(inputstring);   
      
   if (!returnstring) {    
     fprintf(stderr, “Error allocating memory; aborting!\n” );   
     exit(255);   
   }    
   for (counter = 0; counter < strlen(returnstring); counter++) {    
     returnstring[counter] += 2;   
   }    
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   return returnstring;   
 }    
 

 
Now that you have a working program, fairly simple in design, I’m going to complicate things a bit. Consider the following code, 
which has a memory problem: 

 
 
 
 #include <stdio.h>   
 #include <string.h>   
 #include <stdlib.h>   
       
 char *addstr(char * inputstring);   
       
 int main(void) {    
   char *str1, *str2;   
      
   str1 = addstr(“Hello” );   
   str2 = addstr(“Goodbye”);   
      
   printf(“str1 = %s, str2 = %s\n” , str1, str2);   
      
   str1 = addstr(“Hey!” );   
   printf(“str1 = %s\n” , str1);   
      
   free(str1);   
   free(str2);   
   return 0;   
 }    
    
 char *addstr(char * inputstring) {    
   int counter;   
   char *returnstring;   
      
   returnstring = strdup(inputstring);   
      
   if (!returnstring) {    
     fprintf(stderr, “Error allocating memory; aborting!\n” );   
     exit(255);   
   }    
   for (counter = 0; counter < strlen(returnstring); counter++) {    
     returnstring[counter] += 2;   
   }    
       
   return returnstring;   
 }    
 

 

If you compile and run the program, you’ ll see that it appears to run fine. But the program has what is called a memory leak—
there is memory allocated that is never freed. Furthermore, after the mistake is made in this program, the memory can never be 
freed again. The problem is that str1 is assigned a new value—pointing to a new chunk of dynamically allocated memory—before 
its previous contents are freed. This means that the pointer to the previous chunk is lost. That older area of memory remains 
allocated, and because the pointer to it is lost, it can never be freed again. This is one type of bug that can easily infest larger 
programs. 

 

 
 

 

Fortunately, clearing it up is not terribly difficult. You can do so by simply adding free(str1); before the new addstr() value is 
assigned to str1. In this case, the distinction is somewhat academic, because all memory is returned to the operating system when the 
program exits. However, you can see the problems that can creep up, especially for long-running programs such as servers. In fact, in 
the past, some well-known servers have actually restarted themselves periodically to avoid draining system resources because of 
memory leaks.  

Secur ity and Design Concerns   
 

 
Memory issues are frequently behind security problems in C or C++ code. One key problem is the memory leak, as discussed in 
the previous section. A heavily loaded server can see its resources eaten up by a program with bad memory leaks, which can result 
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in sluggish performance or even downtime. However, far more insidious problems that can affect your servers. These problems 
can lead to break-ins, denial of service (DoS) attacks, compromise of some system accounts, and unauthorized modification of 
data, to name a few.  

 

 

As I mentioned earlier in this chapter, if more than 80 characters are copied into an area that only has space for an 80-character 
string, the program will crash. This is generally true. However, if this extra data is carefully crafted, it is possible for a cracker to 
insert his or her code into your software. This is possible because string copy operations that take the program outside the string 
buffer’s boundaries actually can overwrite memory areas related to the code of your program. It takes a significant technical 
knowledge of the internal workings of the system and operating system to be able to manage such an attack, but with the 
proliferation of the Internet, such attackers are becoming more common. 

 

 
 

 

Therefore, it is vital that you always make sure that your buffers are sufficiently sized to hold the data placed in them. Remember, 
too, that even if you plan to deal with data that is only 80 characters long, and even if your program could not possibly have valid 
input longer than that, a cracker could still send your program longer input. Therefore, you must never assume that your input will 
be a reasonable length; you must always ensure either that it is or that you use dynamically allocated memory that has a sufficient 
size to accommodate your input. 

 

 
 

 
The importance of this cannot be overstated. Dozens of bugs in programs, accounting for hundreds or even thousands of security 
compromises, are attributed to this type of programming error. Also, this is not a problem unique to programming on Linux; it can 
occur on almost any platform running almost any operating system, including popular non-UNIX PC operating systems. 

 

 
 

 

Because the primary concern for these programs lies with servers, do not assume that you can ignore the problem for other types of 
software. This type of problem can cause security breaches for setuid or setgid programs just as easily (and perhaps even more so) 
as for network server software. To summarize, any software that runs with privileges different from the person using it, and 
accepts input from that person, could have a buffer overflow vulnerability. This includes a lot of software—web servers, file 
transfer servers, mail servers, mail readers, Usenet servers, and also many tools that are included with an operating system. 

 

 
 
 For your programs, there are two simple but extremely important options for dealing with these problems:   
 

  
• 

 
You can choose to use dynamically allocated memory whenever possible, such as the modification made to the sample code 
presented earlier in this chapter. 

 
 
 
  •  You can perform explicit bounds checking when reading or processing data, and to reject or truncate data that is too long.   
 

 
Sometimes, both methods are used. For instance, when arbitrary data is first read into a program, perhaps with fgets(), it may be 
read in 4K chunks. The data may then be collected and stored in a dynamically allocated area—perhaps a linked list—for later 
analysis. 

 

 
 

 
The first option has already been demonstrated in the previous section. Now, consider the second option, which uses buffers with a 
fixed size but are designed to prevent overflows. Here is a version of the code presented in the previous section, modified to work 
in this fashion: 

 

 
 
 #include <stdio.h>   
 #include <string.h>   
 #include <stdlib.h>   
       
 void addstr(char * inputstring);   
       
 int main(void) {    
      
   addstr(“Hello” );   
   addstr(“Goodbye”);   
      
   return 0;   
 }    
       
 void addstr(char * inputstring) {    
   int counter;   
   char printstring[5];   
      
   strncpy(printstring, inputstring, sizeof(printstring));   
   printstring[sizeof(printstring) - 1] = 0;   
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   for (counter = 0; counter < strlen(printstring); counter++) {    
     printstring[counter] += 2;   
   }    
       
   printf(“Result: %s\n” , printstring);   
 }    
 

 
In this example, a buffer with room for only five characters is allocated. Although this is, no doubt, smaller than you would 
allocate in most real-life situations, you can easily see the effect of the code in this situation. When you compile and run the code, 
it does the following: 

 

 
 
 $ gcc -Wall -o ch8-2 ch8-2.c   
 $ ./ch8-2   
 Result: Jgnn   
 Result: Iqqf   
 

 

The string is truncated by the strncpy() call in the function. The next line adds the trailing null character to mark the end of the 
string. The strncpy() function does not add this null character to the string that was truncated; you must add it yourself. Otherwise 
the resulting string will be essentially useless because it will not have an end that C/C++ can recognize, or it will end at an 
incorrect location. The space necessary for this character cuts one character off the maximum size of the string, which is why only 
four characters were displayed. 

 

 
 

 
This type of algorithm is useful if you know that your data always should be under a certain size, but want to guard against longer 
data, whether benign or malicious. As you can see, the longer items are modified; if you really expect to deal with data that size, this 
algorithm is not for you; you are better off with some type of dynamic structure.  

Advanced Pointers   
 

 
Pointers are the keys to many types of data structures in C. Without pointers, you cannot access dynamic memory features at all. 
They enable you to build complex in-memory systems, giving a great deal of flexibility to deal with data whose quantity—or even 
type—is unknown when the program is being written. 

 

 
 

 
They are also keys to string manipulation and data input and output in C. A thorough understanding of pointers can help you write 
better, more efficient programs. This section does not aim to teach you the basics of pointer usage in C. However, it will help you 
apply your existing skills to some more advanced—and in some cases, unique Linux—topics. 

 

 
 

 
Earlier, I mentioned a situation in which a given algorithm might not be sufficient. A linked list system can help here. When you 
are reading in data of an unknown size, you have to read it in chunks. This is because the functions that are used to read data must 
place the data in a certain size of memory area. In this case, you must devise a way to splice together this split data later. 

 

 
 

 
Listing 8-1 is a sample program that does that exactly. It uses fgets() to read the data in 9-byte chunks. The buffer size is 10 bytes, 
but recall that one byte is used for the terminating null character. 

 
 
 

 

Next, a simple linked list is used to store the data. This linked list has one special item: an integer named iscontinuing. If this 
variable has a true value, then it indicates that the current structure does not hold the end of the string; that will be contained in a 
future element in the linked list. This variable is used later when the data is recalled from memory so that the reading algorithm 
knows how to re-assemble the data. 

 

 
 

 
Because dynamic memory is used, this code can handle data as small as a few bytes or hundreds of megabytes of memory. Listing 
8-1 presents the code. 

 
 
 
  Note  Listing 8-1 is available online.   
 
 Listing 8-1: Dynamic allocation with linked list   
 
 #include <stdio.h>   
 #include <stdlib.h>   
 #include <string.h>   
       
 #define DATASIZE 10   
       
 typedef struct TAG_mydata {    
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   char thestring[DATASIZE];   
   int iscontinuing;   
   struct TAG_mydata *next;   
 }  mydata;   
       
 mydata *append(mydata *start, char * input);   
 void displaydata(mydata *start);   
 void freedata(mydata *start);   
       
 int main(void) {    
   char input[DATASIZE];   
   mydata *start = NULL;   
      
   printf(“Enter some data, and press Ctrl+D when done.\n” );   
      
   while (fgets(input, sizeof(input), stdin)) {    
     start = append(start, input);   
   }    
      
   displaydata(start);   
   freedata(start);   
   return 0;   
 }    
       
 mydata *append(mydata *start, char * input) {    
   mydata *cur = start, *prev = NULL, *new;   
      
   /*  Search through until reach the end of the link, then add a new element. * /   
      
   while (cur) {    
     prev = cur;   
     cur = cur->next;   
   }    
      
   /*  cur will be NULL now.  Back up one; prev is the last element. */   
      
   cur = prev;   
      
   /*  Allocate some new space. * /   
      
   new = malloc(sizeof(mydata));   
   if (!new) {    
     fprintf(stderr, “Couldn’ t allocate memory, terminating\n” );   
     exit(255);   
   }    
      
   if (cur) {    
     /*  If there’s already at least one element in the list, update its next   
        pointer. */   
     cur->next = new;   
   }  else {    
     /*  Otherwise, update start. * /   
     start = new;   
   }    
      
   /*  Now, just set it to cur to make manipulations easier. */   
      
   cur = new;   
      
   /*  Copy in the data. */   
      
   strcpy(cur->thestring, input);   



 146 

      
   /*  If the string ends with \n or \r, it ends the line and thus   
      the next struct does not continue. */   
      
   cur->iscontinuing = !(input[strlen(input)-1] == ‘ \n’  ||   
                   input[strlen(input)-1] == ‘ \r’ );   
   cur->next = NULL;   
      
   /*  Return start to the caller. * /   
      
   return start;   
 }    
       
 void displaydata(mydata *start) {    
   mydata *cur;   
   int linecounter = 0, structcounter = 0;   
   int newline = 1;   
      
   cur = start;   
   while (cur) {    
     if (newline) {    
       printf(“Line %d: “ , ++linecounter);   
     }    
     structcounter++;   
     printf(“%s” , cur->thestring);   
     newline = !cur->iscontinuing;   
     cur = cur->next;   
   }    
   printf(“This data contained %d lines and was stored in %d structs.\n” ,   
        linecounter, structcounter);   
 }    
       
 void freedata(mydata *start) {    
   mydata *cur, *next = NULL;   
      
   cur = start;   
   while (cur) {    
     next = cur->next;   
     free(cur);   
     cur = next;   
   }    
 }    
 

 

Before I continue, I want to call your attention to the strcpy() call in the append() function. Although I did not perform bounds 
checking here, the code is not insecure in this case. Bounds checking is not necessary at this location because fgets() guarantees 
that it will return no more than a 9-byte (plus 1 null byte) string. Nothing is added to that string, so I know that the string passed in 
to the append() function will be small enough to avoid causing a security hazard. 

 

 
 

 
Furthermore, it is easy to pass the entire group of data between functions. All that they need is a pointer to the start of the linked 
list, and everything will work well. 

 
 
 
 When you compile and run this program, you receive the following output:   
 
 $ gcc -Wall -o ch8-3 ch8-3.c   
 $  ./ch8-3    
 Enter some data, and press Ctrl+D when done.   
 Hi!   
 This is a really long line that will need to be split.   
 This is also a fair ly long line.   
 Here   
 are   
 several   
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 shor t   
 lines   
 for       
 testing.   
 Ctrl+D   
 Line 1: Hi!   
 Line 2: This is a really long line that will need to be split.   
 Line 3: This is also a fairly long line.   
 Line 4: Here   
 Line 5: are   
 Line 6: several   
 Line 7: short   
 Line 8: lines   
 Line 9: for   
 Line 10: testing.   
 This data contained 10 lines and was stored in 19 structs.   
 

 

Analyzing this output, you can see that even though the program could process the input in chunks of 10 bytes only, it is still able 
to re-assemble the data properly. Not only that, but it is able to process 10 lines of input; there is no particular limit. So, although it 
is safe to do this in this particular case, a modification elsewhere in the program could lead to future problems. Also, a truncation 
is not acceptable; we want to preserve the data. So I’ ll show you some alternatives. 

 

 
 

 

There are other, more sensible ways to store the data. With the examples that follow, you will gradually evolve the code until it 
reaches such a state. The first modification that you can make is a change to the structure’s definition. The structure carries space 
inside for the string. Make the structure carry a pointer to a dynamically allocated area of memory. This has the advantage that its 
contents can be arbitrarily large. Listing 8-2 shows a revision of the code with this modification. 

 

 
 
  Note  Listing 8-2 is available online.   
 
 Listing 8-2: Linked list with revised structure   
 
 #include <stdio.h>   
 #include <stdlib.h>   
 #include <string.h>   
       
 #define DATASIZE 10   
       
 typedef struct TAG_mydata {    
   char *thestring;   
   int iscontinuing;   
   struct TAG_mydata *next;   
 }  mydata;   
       
 mydata *append(mydata *start, char * input);   
 void displaydata(mydata *start);   
 void freedata(mydata *start);   
       
 int main(void) {    
   char input[DATASIZE];   
   mydata *start = NULL;   
      
   printf(“Enter some data, and press Ctrl+D when done.\n” );   
      
   while (fgets(input, sizeof(input), stdin)) {    
     start = append(start, input);   
   }    
      
   displaydata(start);   
   freedata(start);   
   return 0;   
 }    
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 mydata *append(mydata *start, char * input) {    
   mydata *cur = start, *prev = NULL, *new;   
      
   /*  Search through until reach the end of the link, then add a new element. * /   
      
   while (cur) {    
     prev = cur;   
     cur = cur->next;   
   }    
      
   /*  cur will be NULL now.  Back up one; prev is the last element. */   
      
   cur = prev;   
      
   /*  Allocate some new space. * /   
      
   new = malloc(sizeof(mydata));   
   if (!new) {    
     fprintf(stderr, “Couldn’ t allocate memory, terminating\n” );   
     exit(255);   
   }    
      
   if (cur) {    
     /*  If there’s already at least one element in the list, update its next   
        pointer. */   
     cur->next = new;   
   }  else {    
     /*  Otherwise, update start. * /   
     start = new;   
   }    
      
   /*  Now, just set it to cur to make manipulations easier. */   
      
   cur = new;   
      
   /*  Copy in the data. */   
      
   cur->thestring = strdup(input);   
   if (!cur->thestring) {    
     fprintf(stderr, “Couldn’ t allocate space for the string; exiting!\n” );   
     exit(255);   
   }    
      
   /*  If the string ends with \n or \r, it ends the line and thus   
      the next struct does not continue. */   
      
   cur->iscontinuing = !(input[strlen(input)-1] == ‘ \n’  ||   
                         input[strlen(input)-1] == ‘ \r’ );   
   cur->next = NULL;   
      
   /*  Return start to the caller. * /   
      
   return start;   
 }    
       
 void displaydata(mydata *start) {    
   mydata *cur;   
   int linecounter = 0, structcounter = 0;   
   int newline = 1;   
      
   cur = start;   
   while (cur) {    



 149 

     if (newline) {    
       printf(“Line %d: “ , ++linecounter);   
     }    
     structcounter++;   
     printf(“%s” , cur->thestring);   
     newline = !cur->iscontinuing;   
     cur = cur->next;   
   }    
   printf(“This data contained %d lines and was stored in %d structs.\n” ,   
          linecounter, structcounter);   
 }    
       
 void freedata(mydata *start) {    
   mydata *cur, *next = NULL;   
      
   cur = start;   
   while (cur) {    
     next = cur->next;   
     free(cur->thestring);   
     free(cur);   
     cur = next;   
   }    
 }    
 

 
The changes that had to be made here cause the memory to be allocated for thestring by a call to strdup(). The only other change 
necessary is that this memory now must be explicitly freed, so the changes were not extensive. 

 
 
 
 If you compile and run this code, you’ ll find that the output is identical to the output from the other version of the code:   
 
 $ gcc -Wall -o ch8-3 ch8-3.c   
 $ ./ch8-3    
 Enter  some data, and press Ctr l+D when done.   
 Hi!   
 This is a really long line that will need to be split.   
 This is also a fair ly long line.   
 Here   
 are   
 several   
 shor t   
 lines   
 for       
 testing.   
 Ctrl+D   
 Line 1: Hi!   
 Line 2: This is a really long line that will need to be split.   
 Line 3: This is also a fairly long line.   
 Line 4: Here   
 Line 5: are   
 Line 6: several   
 Line 7: short   
 Line 8: lines   
 Line 9: for     
 Line 10: testing.   
 This data contained 10 lines and was stored in 19 structs.   
 

 

From here, the evolution inevitably takes you to a situation in which it is no longer necessary to split lines between structures. This 
is because there is now the capability to store strings of any length in each structure, thanks to dynamic allocation of the memory 
for the string. Therefore, the data can be combined as it is being put into the linked list. Listing 8-3 shows a version of the code 
that does that exactly. 

 

 
 
  Note  Listing 8-3 is available online.   
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 Listing 8-3: Linked list with append at inser t time   
 
 #include <stdio.h>   
 #include <stdlib.h>   
 #include <string.h>   
       
 #define DATASIZE 10   
       
 typedef struct TAG_mydata {    
   char *thestring;   
   struct TAG_mydata *next;   
 }  mydata;   
       
 mydata *append(mydata *start, char * input, int newline);   
 void displaydata(mydata *start);   
 void freedata(mydata *start);   
       
 int main(void) {    
   char input[DATASIZE];   
   mydata *start = NULL;   
   int newline = 1;   
      
   printf(“Enter some data, and press Ctrl+D when done.\n” );   
      
   while (fgets(input, sizeof(input), stdin)) {    
     start = append(start, input, newline);   
     newline = (input[strlen(input)-1] == ‘ \n’  ||   
                input[strlen(input)-1] == ‘ \r’ );   
   }    
      
   displaydata(start);   
   freedata(start);   
   return 0;   
 }    
 mydata *append(mydata *start, char * input, int newline) {    
   mydata *cur = start, *prev = NULL, *new;   
      
   /*  Search through until reach the end of the link, then add a new   
      element if necessary. * /   
      
   while (cur) {    
     prev = cur;   
     cur = cur->next;   
   }    
      
   /*  cur will be NULL now.  Back up one; prev is the last element. */   
      
   cur = prev;   
      
   /*  Allocate some new space, if necessary. * /   
      
   if (newline || !cur) {    
     new = malloc(sizeof(mydata));   
     if (!new) {    
       fprintf(stderr, “Couldn’ t allocate memory, terminating\n” );   
       exit(255);   
     }    
      
     if (cur) {    
       /*  If there’s already at least one element in the list, update its next   
          pointer. */   
       cur->next = new;   
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     }  else {    
       /*  Otherwise, update start. * /   
       start = new;   
     }    
      
     /*  Now, just set it to cur to make manipulations easier. */   
      
     cur = new;   
     cur->thestring = NULL;   /*  Flag it for needing new allocation. */   
   }  /*  (newline || !cur) */   
      
   /*  Copy in the data. */   
      
   if (cur->thestring) {    
     cur->thestring = realloc(cur->thestring,   
                              strlen(cur->thestring) + strlen(input) + 1);   
     if (!cur->thestring) {    
       fprintf(stderr, “Error re-allocating memory, exiting!\n” );   
       exit(255);   
     }    
     strcat(cur->thestring, input);   
   }  else {    
     cur->thestring = strdup(input);   
     if (!cur->thestring) {    
       fprintf(stderr, “Couldn’ t allocate space for the string; exiting!\n” );   
       exit(255);   
     }    
   }    
      
   cur->next = NULL;   
      
   /*  Return start to the caller. * /   
      
   return start;   
 }    
       
 void displaydata(mydata *start) {    
   mydata *cur;   
   int linecounter = 0, structcounter = 0;   
      
   cur = start;   
   while (cur) {    
     printf(“Line %d: %s” , ++linecounter, cur->thestring);   
     structcounter++;   
     cur = cur->next;   
   }    
   printf(“This data contained %d lines and was stored in %d structs.\n” ,   
          linecounter, structcounter);   
 }    
       
 void freedata(mydata *start) {    
   mydata *cur, *next = NULL;   
      
   cur = start;   
   while (cur) {    
     next = cur->next;   
     free(cur->thestring);   
     free(cur);   
     cur = next;   
   }    
 }    
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You will notice several important things about this code. First of all, you are introduced to a new function: realloc(). This function 
takes an existing block of memory that is already dynamically allocated, allocates a new block of the specified size, initializes the 
new block to the contents of the old one to the extent possible, frees the old block, and returns a pointer to the new one. Internally, 
the implementation may be different if your platform allows it, so the pointer may not change necessarily. However, you can still 
think of it as taking the preceding steps, which are the ones you must take if you do the same thing with your own code. 

 

 
 

 
The code to generate the output is much simpler now. All it has to do is some simple counting and displaying now. There is no 
longer any need to merge strings together at that point, because they already are merged. 

 
 
 

 
This example probably did not introduce you to new syntax for pointers. Rather, it introduced you to new uses for the syntax you 
already know. In the next section, I will introduce you to a system that uses pointers to pointers to strings—and with good reason! 

 
 
 
 Parsing data   
 

 

When you need to separate data into separate pieces in C, things can start to get tricky. If you don’ t know the length of the input, 
or the number of elements that will be present, you inevitably need to use dynamically allocated memory. You need to either use a 
construct such as a linked list, described in the previous section, or an array of strings. In C, because a string is, itself, an array, and 
an array is simply a pointer, you end up with a pointer to the start of an array that contains pointers to the start of another array! 

 

 
 

 
Interestingly, you may have already encountered such a situation: the command-line arguments to your program, passed through 
argv, are passed in such a manner. Here, you’ ll learn how to create and populate such an item, based on parsing apart a command 
line. 

 

 
 

 

When you need to separate some data into parts, you normally use strtok(), which is defined in ANSI C. This function takes a 
string and a delimiter as its arguments. It then changes the delimiter to a NULL in the string, saves the location for the next 
invocation, and returns a pointer to the start of the first substring. The next time it is called, it returns a pointer to the start of the 
second substring, and so on until all pieces of the string have been parsed, at which time it returns NULL. 

 

 
 

 

Despite the warning in the manpage (which says “Never use this function!” ), strtok() is often the best way to pick apart data in C. 
However, there are some problems with it. First, it modifies your input string; this can be a bad thing if you want to be able to 
preserve the original string. Second, because it stores various pointers internally (by using static variables), you must not have a 
situation in which two parsing operations with strtok() could occur simultaneously. This means that you cannot use it in 
multithreaded applications. Also, if you use strtok() in main(), in some kind of loop, and inside this loop you call another function 
that also uses strtok(), things will get messed up because strtok() may think it’ s operating on the wrong string. 

 

 
 

 
Although I thoroughly warned you not to use this function, see what happens when you try it out! Following is a program that 
implements parsing with strtok(). More than that, it shows you how certain functions of a shell operate internally by setting up 
some simple redirection if necessary. You’ ll learn more about those functions in future chapters. 

 

 
 

 
This code is a fully functional, but rudimentary, shell (see Listing 8-4). Because of the size of the code, I present it here in its 
entire, final form instead of building up to the final version. Following the code, I describe it and highlight the role that pointers 
play in this system. 

 

 
 
  Note  Listing 8-4 is available online.   
 
 Listing 8-4: A rudimentary shell   
 
 #include <stdio.h>   
 #include <string.h>   
 #include <stdlib.h>   
 #include <unistd.h>   
 #include <pwd.h>   
 #include <fcntl.h>   
 #include <limits.h>   
 #include <signal.h>   
 #include <sys/types.h>   
 #include <sys/resource.h>   
 #include <sys/wait.h>   
       
 #define MAXINPUTLINE 10240   
 #define MAXARGS 1024   
 #define PARSE_NOPIPE -1        /*  Default is no pipe */   
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 #define PARSE_USEPIPE -2    /*  Using pipes, but FD not yet known * /   
       
 int background;   
 static int pipefd[2];   
       
 void parse_cmd(char *cmdpart);   
 void splitcmd(char *cmdpart, char *args[]);   
 char *expandtilde(char *str);   
 void freeargs(char *args[]);   
 void argsdelete(char *args[]);   
 char *parseredir(char oper, char *args[]);   
 int checkbackground(char *cmdline);   
 void stripcrlf(char * temp);   
 char *gethomedir(void);   
 char *getuserhomedir(char *user);   
 void signal_c_init(void);   
 void waitchildren(int signum);   
 void parse(char *cmdline);   
 void striptrailingchar(char *temp, char tc);   
       
 int main(void) {    
   char input[MAXINPUTLINE];   
      
   signal_c_init();   
       
   printf(“Welcome to the sample shell!  You may enter commands here, one\n” );   
   printf(“per line.  When you’re finished, press Ctrl+D on a line by\n” );   
   printf(“ itself.  I understand basic commands and arguments separated by\n” );   
   printf(“spaces, redirection with < and >, up to two commands joined\n” );   
   printf(“by a pipe, tilde expansion, and background commands with &.\n\n” );   
      
   printf(“ \n$ “);   
       
   while (fgets(input, sizeof(input), stdin)) {    
     stripcrlf(input);   
     parse(input);   
     printf(“ \n$ “);   
   }    
   return 0;   
 }    
       
 void parse(char *cmdline)   
 {    
   char *cmdpart[2];   
       
   pipefd[0] = PARSE_NOPIPE;    /*  Init: default is no pipe * /   
       
   background = checkbackground(cmdline);   
      
   /*  Separate into individual commands if there is a pipe symbol. */   
       
   if (strstr(cmdline, “ |” ))   
     pipefd[0] = PARSE_USEPIPE;   
      
   /*  Must do the strtok() stuff before calling parse_cmd because   
      strtok is used in parse_cmd or the functions parse_cmd calls. */   
       
   cmdpart[0] = strtok(cmdline, “ |” );   
   cmdpart[1] = strtok((char *)NULL, “ |” );   
   parse_cmd(cmdpart[0]);   
   if (cmdpart[1]) parse_cmd(cmdpart[1]);   
 }    
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 /*  parse_cmd will do what is necessary to separate out cmdpart and run   
    the specified command. */   
       
 void parse_cmd(char *cmdpart)   
 {    
   int setoutpipe = 0;        /*  TRUE if need to set up output pipe   
                    after forking */   
   int pid;            /*  Set to pid of child process */   
   int fd;            /*  fd to use for input redirection * /   
       
   char *args[MAXARGS + 5];   
   char *filename;            /*  Filename to use for I/O redirection */   
       
   splitcmd(cmdpart, args);   
       
   if (pipefd[0] == PARSE_USEPIPE) {    
     pipe(pipefd);   
     setoutpipe = 1;   
   }    
       
   pid = fork();   
   if (!pid) {             /*  child */   
     if (setoutpipe) {    
       dup2(pipefd[1], 1);    /*  connect stdout to pipe if necessary * /   
     }    
     if (!setoutpipe && (pipefd[0] > -1)) {    
       /*  Need to set up an input pipe. */   
       dup2(pipefd[0], 0);   
     }    
       
     filename = parseredir(‘<’ , args);   
       
     if (filename) {     /*  Input redirection */   
       fd = open(filename, O_RDONLY);   
       if (!fd) {    
        fprintf(stderr, “Couldn’ t redirect from %s” , filename);   
        exit(255);   
       }    
       dup2(fd, 0);   
     }    
       
     if ((filename = parseredir(‘>’ , args))) {  /*  Output redirection */   
       fd = open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);   
       if (!fd) {    
        fprintf(stderr, “Couldn’ t redirect to %s\n” , filename);   
        exit(255);   
       }    
       dup2(fd, 1);   
     }    
       
     if (!args[0]) {    
       fprintf(stderr, “No program name specified.\n” );         
       exit(255);   
     }    
        
     execvp(args[0], args);   
     /*  If failed, die. */   
     exit(255);   
   }  else {             /*  parent */   
     if ((!background) &&   
        (!setoutpipe))   
       waitpid(pid, (int *)NULL, 0);   
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     else   
       if (background)   
        fprintf(stderr, “BG process started: %d\n” , (int) pid);   
     if (pipefd[0] > -1) {     /*  Close the pipe if necessary. * /   
       if (setoutpipe)   
         close(pipefd[1]);   
       else                       
         close(pipefd[0]);   
     }                              
   }  /*  if (!pid) */   
   freeargs(args);   
 }  /*  parse_cmd()  */   
       
 /*  splitcmd() will split a string into its component parts.   
       
    Since splitcmd() uses strdup, freeargs() should be called on the   
    args array after it is not used anymore. */   
       
 void splitcmd(char *cmdpart, char *args[])   
 {    
   int counter = 0;   
   char *tempstr;   
       
   tempstr = strtok(cmdpart, “  “ );   
   args[0] = (char *)NULL;   
   while (tempstr && (counter < MAXARGS - 1)) {    
     args[counter] = strdup(expandtilde(tempstr));   
     args[counter + 1] = (char *)NULL;   
     counter++;   
     tempstr = strtok(NULL, “  “ );   
   }    
   if (tempstr) {          /*  Broke out of loop because of num of args * /   
     fprintf(stderr, “WARNING: argument limit reached, command may be truncated.\n” );   
   }    
 }    
       
       
 /*  expandtilde() will perform tilde expansion on str if necessary. * /   
       
 char *expandtilde(char *str)   
 {    
   static char retval[MAXINPUTLINE];   
   char tempstr[MAXINPUTLINE];   
   char *homedir;   
   char *tempptr;   
   int counter;   
      
       
   if (str[0] != ‘~’ ) return str;      /*  No tilde -- no expansion. */   
   strcpy(tempstr, (str + 1));          /*  Make a temporary copy of the string */   
   if ((tempstr[0] == ‘ /’ ) || (tempstr[0] == 0))   
     tempptr = (char *)NULL;   
   else {                   /*  Only parse up to a slash * /   
     /*  strtok() cannot be used here because it is being used in the function   
        that calls expandtilde().  Therefore, use a simple substitute. * /   
     if (strstr(tempstr, “ /” ))   
       *(strstr(tempstr, “ /” )) = 0;   
     tempptr = tempstr;   
   }    
      
   if ((!tempptr) || !tempptr[0]) {     /*  Get user’s own homedir */   
     homedir = gethomedir();   



 156 

   }  else {                   /*  Get specified user’s homedir */   
     homedir = getuserhomedir(tempptr);   
   }    
       
   /*  Now generate the output string in retval. */   
       
   strcpy(retval, homedir);          /*  Put the homedir in there * /   
       
   /*  Now take care of adding in the rest of the parameter */   
       
   counter = 1;   
   while ((str[counter]) && (str[counter] != ‘ /’ )) counter++;   
       
   strcat(retval, (str + counter));   
       
   return retval;   
 }    
      
 /*  freeargs will free up the memory that was dynamically allocated for the   
    array */   
        
 void freeargs(char *args[])   
 {    
   int counter = 0;   
       
   while (args[counter]) {    
     free(args[counter]);   
     counter++;   
   }    
 }    
       
 /*  Calculates number of arguments in args * /   
       
 void calcargc(char *args[], int *argc)   
 {    
   *argc = 0;   
   while (args[*argc]) {    
     (*argc)++;            /*  Increment while non-null * /   
   }    
   (*argc)--;            /*  Decrement after finding a null * /   
 }    
      
       
 /*  parseredir will see if it can find a redirection operator oper   
    in the array args[], and, if so, it will return the parameter (filename)   
    to that operator. */   
       
 char *parseredir(char oper, char *args[])   
 {    
   int counter;   
   int argc;   
   static char retval[MAXINPUTLINE];   
       
   calcargc(args, &argc);   
       
   for (counter = argc; counter >= 0; counter--) {    
     fflush(stderr);   
     if (args[counter][0] == oper) {    
       if (args[counter][1]) {     /*  Filename specified without a space */   
        strcpy(retval, args[counter] + 1);   
        argsdelete(args + counter);   
        return retval;   
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       }  else {             /*  Space seperates oper from filename * /   
        if (!args[counter+1]) {     /*  Missing filename * /   
          fprintf(stderr, “Error: operator %c without filename”, oper);   
          exit(255);   
        }    
        strcpy(retval, args[counter+1]);   
        argsdelete(args + counter + 1);   
        argsdelete(args + counter);   
        return retval;      
       }    
     }    
   }    
   return NULL;            /*  No match */   
 }    
       
 /*  Argsdelete will remove a string from the array */   
       
 void argsdelete(char *args[])   
 {    
   int counter = 0;   
   if (!args[counter]) return;    /*  Empty argument list: do nothing * /   
   free(args[counter]);   
   while (args[counter]) {    
     args[counter] = args[counter + 1];   
     counter++;   
   }    
 }    
       
 void stripcrlf(char * temp)   
 {    
   while (temp[0] &&   
         ((temp[strlen(temp)-1] == 13) || (temp[strlen(temp)-1] == 10))) {    
     temp[strlen(temp)-1] = 0;   
   }    
 }    
       
 char *gethomedir(void)   
 {    
   static char homedir[_POSIX_PATH_MAX * 2]; /*  Just to be safe. */   
   struct passwd *pws;   
       
   pws = getpwuid(getuid());   
   if (!pws) {    
     fprintf(stderr, “getpwuid() on %d failed” , (int) getuid());   
     exit(255);   
   }    
       
   strcpy(homedir, pws->pw_dir);   
   return homedir;   
 }    
       
 char *getuserhomedir(char *user)   
 {    
   static char homedir[_POSIX_PATH_MAX * 2]; /*  Just to be safe. */   
   struct passwd *pws;   
       
   pws = getpwnam(user);   
   if (!pws) {    
     fprintf(stderr, “getpwnam() on %s failed” , user);   
     exit(255);   
   }    
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   strcpy(homedir, pws->pw_dir);   
   return homedir;   
 }    
       
 void signal_c_init(void)   
 {    
   struct sigaction act;   
      
   sigemptyset(&act.sa_mask);   
   act.sa_flags = SA_RESTART;   
       
   act.sa_handler = (void *)waitchildren;   
   sigaction(SIGCHLD, &act, NULL);   
 }    
       
 void waitchildren(int signum)   
 {    
   while (wait3((int *)NULL,   
                WNOHANG,   
                (struct rusage *)NULL) > 0) { }    
 }    
       
 /*  Check to see whether or not we should run in background * /   
       
 int checkbackground(char *cmdline)   
 {    
   /*  First, strip off any trailing spaces (this has not yet been run   
      through strtok) * /   
       
   striptrailingchar(cmdline, ‘  ‘ );   
       
   /*  We are looking for an ampersand at the end of the command. */   
       
   if (cmdline[strlen(cmdline)-1] == ‘& ’) {    
     cmdline[strlen(cmdline)-1] = 0; /* Remove the ampersand from the command * /   
     return 1;            /*  Indicate that this is background mode * /   
   }    
   return 0;   
 }    
       
 void striptrailingchar(char *temp, char tc)   
 {    
   while (temp[0] && (temp[strlen(temp)-1] == tc)) {    
     temp[strlen(temp)-1] = 0;   
   }    
 }    
 
 Analyzing the code   
 

 
Now I’ ll go over some of the interesting parts of this program. For now, I’ ll skip over signals, duplicating file descriptors, and the 
like because those will be covered in more detail in later chapters such as Chapter 13, “Understanding Signals,”  and Chapter 14, 
“ Introducing the Linux I/O.”  

 

 
 

 
The program starts with a simple loop, asking for input. It first strips the trailing newline character off the input, and then sends it 
over to be parsed. Then, if there is a pipe symbol, the command line is split into two parts, each of which is processed individually. 

 
 
 

 
The function parse_cmd() does much of the processing. One of the first things it does is call splitcmd(), which uses strtok()—one 
particular interest here. Notice the definition of args: char *args[]. Recall that this is the same as both char args[][] and char 
**args—pointer to a pointer to a character. 

 

 
 

 
When strtok() is first called, it is passed a string and the separation token; in this case, a space. It returns a pointer to the first part 
of the string. Then, in the loop, the value returned goes through tilde expansion, is dynamically allocated, and then placed in the 

 



 159 

args array. Finally, strtok() is invoked again. In the second and subsequent invocations, the first parameter should be the null value.  
 

 
After this goes through, args is an array containing pointers to strings—strings that happen to be the individual arguments parsed 
from the command line. The end of this array is marked with a null value; otherwise, when reading the array, the software would 
not know that it has found the last pointer to a string. 

 

 
 

 
After splitcmd(), you see the expandtilde() function. As its name implies, this function is used to perform tilde expansion on the 
input. It is called once for each argument and does the following: 

 
 
 

  
1. 

 
Checks to see if the argument begins with a tilde (~) character. If not, additional processing is not necessary, and it is 
returned to the caller unmodified. Otherwise, a copy of the string, excluding the leading tilde (~) character, is made and 
placed in tempstr. 

 

 
 

  

2. 

 

Determines whether the tilde should expand to the home directory of the user running the shell, or if a different home 
directory was specified. If a slash follows the tilde, or nothing at all follows the tilde, the home directory of the user running 
the shell is used; otherwise, the specific username that is given is the one to use. The tempptr variable is set to the username 
that needs to be used, or NULL if that username is the person running the shell. 

 

 
 

  3.  
Fetches the appropriate home directory and places it in the homedir variable. This value is copied to the return value. A loop 
then skips past the username specification, if any, and then adds the remainder of the string to the return value. 

 
 
 

 

The freeargs() function simply steps through an array, freeing the memory pointed to by the pointers in the array. The calcargc() 
function uses a similar loop, but it is designed to figure out how many entries are in an array. Skipping down a bit, the argsdelete() 
function is another similar one. It removes a string from the middle of the array, and shifts all the remaining elements down so that 
there is no gap. The argsdelete() function does following to remove a string: 

 

 
 
  1.  Verifies that it is given a valid argument to delete; if not, it returns immediately.   
 
  2. Frees the memory used by that argument.   
 
  3.  Moves the remaining elements down the array in its loop.   
 

 
You use the stripcrlf() function to remove the end-of-line character or characters from a given string, if they are present. The loop 
is fairly straightforward. As long as the string is not zero-length, and there is an end-of-line character at the end of it, remove the 
last character of the string. The striptrailingchar() function is similar to this one. 

 

 
 

 

When you use this code, you should be aware that adequate bounds checking and error checking systems are not necessarily 
present. There are some cases where the return values of function calls are not checked but should be, and several cases where 
there are potential buffer overflows. Also, several errors are treated as fatal and simply cause the program to exit. If you are 
writing something for production use, you want to be less abrupt when an error is encountered, and more stringent with boundary 
checking. In order to keep the program as simple and small as possible, these things were not always included here. 

 

 
 

 
Now that you’ve seen the code and analyzed it, it’s time to compile and run the program to see if it really works. Notice how some 
commands do not generate an error, and how wildcards do not work. Listing 8-5 shows a sample session with this shell. 

 
 
 
  Note  You can find the sample shell session in Listing 8-5 online.   
 
 Listing 8-5: Example shell session   
 
 $ gcc -Wall -o  ch8-4 ch8-4.c   
 $ ./ch8-4    
 Welcome to the sample shell!  You may enter commands here, one   
 per line.  When you’re finished, press Ctrl+D on a line by   
 itself.  I understand basic commands and arguments separated by   
 spaces, redirection with < and >, up to two commands joined   
 by a pipe, tilde expansion, and background commands with &.   
       
       
 $ echo Hello!   
 Hello!   
       
 $ ls /proc   
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 1    2    224  240  295  321      cpuinfo      kmsg     partitions  version   
 13   200  226  241  296  344      devices      ksyms    pci   
 141  206  227  242  297  4        dma          loadavg  scsi   
 143  209  228  243  3    486      fb           locks    self   
 151  216  229  257  306  487      filesystems  meminfo  slabinfo   
 156  219  230  262  316  508      fs           misc     stat   
 159  220  231  263  317  510      ide          modules  swaps   
 179  221  232  266  318  apm      interrupts   mounts   sys   
 186  222  238  290  319  bus      ioports      mtrr     tty   
 196  223  239  294  320  cmdline  kcore        net      uptime   
       
 $ ls /dev/hda*    
 ls: /dev/hda*: No such file or directory   
       
 $ pwd   
 /home/jgoerzen/rec/private/t/cs697l_3   
       
 $ echo ~root   
 /root   
       
 $ cd ~root   
       
 $ pwd   
 /home/username   
       
 $ some_nonexistant_command   
       
 $ ls /proc | grep in   
 cmdline   
 cpuinfo   
 interrupts   
 meminfo   
 slabinfo   
       
 $ ls /proc | grep in > foo   
       
 $ rev < foo   
 enildmc   
 ofniupc   
 stpurretni   
 ofnimem   
 ofnibals   
       
 $ rm foo   
       
 $ echo “ Bye”      
 “Bye”    
       
 $ Ctrl+D   
 

 
You will notice a few things in this example. First, the asterisk was not expanded in the example because wildcards were not 
implemented. Second, there is no way to change directories because no shell internal commands such as cd were implemented. When 
a bad command is tried, there is simply no output because no error message is printed at that point; this can be confusing.  

Finding Problems   
 

 
Code problems relating to pointers often can be difficult to track down. If you attempt to dereference a null pointer, for instance, 
your program will crash and you probably can get good results from analyzing the core file with gdb as described in Chapter 10, 
“Debugging with gdb.”  However, few pointer problems are as easy to debug as this one. 

 

 
 

 
If you have a problem with a buffer overrun that causes the program to crash, sometimes the stack is so corrupted that the core file 
produced is not helpful in tracking down the problem; gdb may be unable to determine where the program crashed. In these 
situations, you often have to trace through the program with gdb until you have pinpointed the location of the problems. 
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If you are having trouble trying to use pointers that are already freed, or not allocated, one useful tip is to always set the pointer to 
NULL after it is freed or when it is first defined. This way, you can test for a null value in your code—or, you are guaranteed a 
crash if you try to dereference it, but this crash should not corrupt the stack, so gdb can easily pinpoint the location of the problem. 

 

 
 

 

Another common problem is memory leaks, which can be much more difficult to track down. These occur when memory is allocated, 
but not freed when it is no longer needed. Several additional tools can assist you with tracking down these problems. Among them is 
the FSF (Free Software Foundation) checker program, which may be found at http://www.gnu.org/software/checker/. However, 
because of the nature of the problem being traced, this program is not compatible with all Linux distributions and works with only 
one Linux architecture (i386).  

Summary   
 
 In this chapter, you learned about memory allocation in C under Linux. Specifically, the following topics were covered:   
 
  •  There are two ways to get memory in C: by static allocation, and by dynamic allocation.   
 

  
• 

 
Statically allocated memory is easy to work with because the system takes care of allocating and deallocating the memory 
implicitly. 

 
 
 

  
• 

 
Statically allocated memory is less flexible than dynamically allocated memory because you must know the size ahead of time, 
and you cannot change size during program execution. 

 
 
 

  
• 

 
Dynamic memory is allocated with a call to malloc() and deallocated with a call to free(). In C++, the new and delete 
keywords can be used for dynamic memory allocation and deallocation. 

 
 
 

  
• 

 
When you use any type of memory, but especially when you use statically allocated memory that is limited in size, it is 
extremely important that you do not allow data larger than the buffer size into the buffer. Failure to take note of this issue can 
lead to security compromises caused by buffer overruns. 

 

 
 

  
• 

 
Dynamically allocated memory can permit data structures that grow in memory at runtime. You studied examples of linked lists, 
which have no limits on either the amount of data or the number of elements that they can store. You also studied an array of 
pointers, which has no limit on the amount of data that it can store but does limit the number of elements.  

Chapter  9: L ibrar ies and L inking   
 
 Overview   
 

 
One of the most powerful concepts that we have with modern computer programming languages is the reuse of code. For instance, 
C gives us functions that enable us to use the same code in many different parts of the program. We also have macros that enable 
the same thing. You can even link together multiple modules so that you can separate your code and still be able to reuse it. 

 

 
 

 

With libraries on Linux, you can go a step farther. Libraries enable you to share code between programs, not just within them. 
Consider, for instance, a function such as strcat(). This function is used by potentially thousands of programs on your system. Rather 
than have a separate copy for each of them, you could put a copy of the function into a library that all these programs can use—and in 
fact, that is done on a Linux system. In this chapter, you will be introduced to the Linux library systems and shown how to use them.  

 Introduction to L ibrar ies   
 

 
Libraries in Linux come in two flavors: static and shared (or dynamic) libraries. The static libraries descend from long ago in the 
history of UNIX but still have a significant place in modern Linux systems. Dynamic libraries are relatively new additions to 
Linux and other UNIX operating systems, but they present several very useful features. 

 

 
 

 
The core impact of both these library technologies is that they affect the link process of your programs. When you compile a 
program, the linker (ld) is invoked to generate the final executable. It is responsible for taking code from all your different modules 
and merging it into a working program. 

 

 
 

 
Static libraries enter this process, at compile time. These libraries are simply packaged-up collections of object files that can be 
linked into your program. The code in the library is linked into the executable at compile time and always accompanies it. 

 
 
 

 

Dynamic libraries are an entirely different situation. With a dynamic library, all that is added at compile time is a mere hook, 
which says that when the program is run, it needs to bring in a dynamic library in order to work. Later, when the program is run, 
the dynamic library is loaded into memory and then the program is allowed to proceed. This method has several advantages and 
several disadvantages. Among its advantages are memory savings. Rather than requiring each program to have a copy of the 
library, a single copy is kept on the system. This means that only a single copy of the library needs to be in memory at any given 
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time, and dozens or even hundreds of programs can use that single copy in memory.  
 

 

Another advantage of using dynamic libraries is that you can upgrade them easily. Consider, for instance, a situation in which a 
library has a bug that causes programs to crash occasionally. If the library author releases a new version of the library to fix this 
problem, all that you have to do is compile the new library, install it, and restart your program if it’ s still running. There’s no need 
to make any modification to the programs that use the library. On the other hand, with static libraries, you have to recompile not 
only the library itself, but you also have to recompile each and every application that happens to use it. This can be troublesome, 
especially because it’s not possible to determine exactly which static libraries executables might use by simply looking at their 
binaries. 

 

 
 

 

One other unique feature of dynamic libraries is the capability of overriding the behavior of any dynamic library that you’re using. 
By exploiting this capability, you can, for instance, add features to printf() or more error-checking to unlink(). This is 
accomplished by preloading your own library in front of another, such as the system’s standard libc. You also might replace a 
different library completely. Users have done this to give dozens of programs in X a more up-to-date feel (xaw3d), or to replace 
authentication mechanisms. 

 

 
 

 
In addition to the capability of being linked in automatically when a program starts, your program can request that a given library 
be linked in dynamically—at run time. Several programs, such as Apache and Listar, exploit this capability to allow pluggable 
modules containing user-defined extensions to the program that are loadable and configurable entirely at run time. 

 

 
 

 

There are some downsides to dynamic libraries, however. First, a program not carrying all its pieces within its own executable can 
cause potential problems. On modern systems, this risk is usually negligible; however, certain system-recovery tools such as fsck that 
may run when no dynamic library files are available should not be compiled with shared libraries. Second, conflicts can arise when 
new versions of a library introduce changes incompatible with previous versions of the shared library. Modern Linux provides 
methods for dealing with and preventing these problems, but these mechanisms are in the hands of the library authors; if the authors 
make a mistake (and you do not have source!), you may be stuck with having to recompile your programs anyway. Finally, on 
register-deprived architectures such as the x86, there may be a performance hit by using dynamic libraries. This is because the 
optimizer has one less register to use for optimization purposes. This difference is almost always insignificant, but if your program is 
doing extensive processing inside of dynamic libraries, you might want to benchmark the dynamic library performance and compare 
it to that of static libraries.  

Building and Using Static L ibrar ies   
 

 
Creating a static library is fairly simple. Essentially, you use the ar program to combine a number of object (.o) files together into a 
single library, and then run ranlib to add some indexing information to that library. 

 
 
 

 
For these examples, I’ ll start with the safecalls library from Chapter 14, “ Introducing the Linux I/O.”  The code in that chapter is 
written so that you can use it as a separate module; here, you can use it as a library as well. 

 
 
 

 
To make things more interesting, I’ ll add a separate file, safecalls2.c that implements two more safe wrappers. Listing 9-1 shows 
the code for that file. 

 
 
 
  Note  Listing 9-1 is available online.   
 
 Listing 9-1: safecalls2.c   
 
 /*  John Goerzen   
       
    This module contains wrappers around a number of system calls and   
    library functions so that a default error behavior can be defined.   
       
 * /   
       
 #include <sys/types.h>   
 #include <unistd.h>   
 #include <stdio.h>   
 #include “safecalls.h”    
 #include “safecalls2.h”    
 #include “errno.h”    
       
 off_t safelseek(int fildes, off_t offset, int whence) {    
   off_t retval;   
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   retval = lseek(fildes, offset, whence);   
   if (retval == (off_t) -1)   
     HandleError(errno, “ lseek” , “ failed” );   
   return retval;   
 }    
       
 int safefseek(FILE *stream, long offset, int whence) {    
   int retval;   
       
   retval = fseek(stream, offset, whence);   
   if (retval == -1)   
     HandleError(errno, “ fseek” , “ failed” );   
   return retval;   
 }    
 
 It also has an accompanying .h file, safecalls2.h:   
 
 /*  John Goerzen   
 * /   
       
 #ifndef __SAFECALLS2_H__   
 #define __SAFECALLS2_H__   
       
 #include <stdio.h>        /*  required for FILE * stuff * /   
 #include <sys/types.h>   
 #include <signal.h>   
       
 off_t safelseek(int fildes, off_t offset, int whence);   
 int safefseek(FILE *stream, long offset, int whence);   
       
 #endif   
 

 
If you want to use this code in a separate program, you can do so without building a separate library. First, look at the standard 
usage of the code in a program. The following code purposely triggers an error. The error is trapped in safecalls2.c, which then 
must call a function in safecalls.c to handle it. Here’s the code: 

 

 
 
 #include <stdio.h>   
 #include <errno.h>   
       
 /*  The next four are for system-call I/O */   
       
 #include <unistd.h>   
 #include <sys/types.h>   
 #include <fcntl.h>   
 #include “safecalls.h”    
 #include “safecalls2.h”    
       
 int write_buffer(int fd, const void *buf, int count);   
       
 int main(void) {    
   int outfile;   
       
   /*  Open the file * /   
       
   outfile = safeopen2(“ test.dat” , O_RDWR | O_CREAT | O_TRUNC, 0640);   
       
   safelseek(1, 10000, SEEK_SET);   
   return 0;   
 }    
 
 To compile this, you must use a command line such as the following:   
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 $ gcc -Wall -o ch9-1 ch9-1.c safecalls.c safecalls2.c   
 
 Notice that you have to specify all three names on the command line. Now, run the program and observe the result:   
 
 $ ./ch9-1    
 ** *  Error in lseek: failed   
 ** *  Error cause: Illegal seek   
 

 
In this case, your “ library”  consists of two modules only and is not a serious inconvenience. However, some libraries include 
dozens or hundreds of modules, many megabytes in size. For the purposes of the examples in this chapter, however, I’ ll use these 
two files only. 

 

 
 

 
To create an archive, you need to use the ar command to generate it. To avoid confusion, I’ ll call the library safec. First you must 
compile to object code by running gcc -c: 

 
 
 
 $ gcc -c -Wall -o safecalls.o safecalls.c   
 $ gcc -c -Wall -o safecalls2.o safecalls2.c   
 
 Now, you’re ready to build the library file. Use the command to so:   
 
 $ ar  cr  libsafec.a safecalls.o safecalls2.o   
 

 
This convention dictates that the name of the library should be preceded by lib and suffixed with .a for static libraries. Before your 
library is ready to use, you have to add the index symbols: 

 
 
 
 $ ranlib libsafec.a   
 

 
Great! Now you can use your library. If you run your own system, you probably will copy it into /usr/local/lib at this point. 
Otherwise, you simply can leave it in your current directory. Here’s how you compile your program now: 

 
 
 
 $ gcc -L. -Wall -o ch9-1 ch9-1.c -lsafec   
 

 
The -L. option tells the linker to look in the current directory, indicated by the dot, for the library. Normally, it looks in the system 
library directories only. The -lsafec requests that the library be pulled in for linking. 

 
 
 
 Your program is now ready, linked against your static library! You can run it exactly as you ran the program previously.   
 
 Before moving on to dynamic libraries, here’s a simple Makefile that can be used to automate this process:   
 
 CFLAGS=-Wall -L.   
 CC=gcc   
 OBJS=ch9-1.o   
 LIBOBJS=safecalls.o safecalls2.o   
 AR=ar rc   
       
 all: ch9-1   
       
 ch9-1: $(OBJS) libsafec.a   
     $(CC) $(CFLAGS) -o $@ ch9-1.o -lsafec   
       
 libsafec.a: $(LIBOBJS)   
     $(AR) $@ $(LIBOBJS)   
     ranlib $@   
       
 %.o: %.c   
     $(CC) $(CFLAGS) -c -o $@ $<   
       
 clean:   
     -rm $(OBJS) $(LIBOBJS) libsafec.a ch9-1   
 

 
In this example, the executable (ch9-1) declares a dependency on the object files as well as the library. The library then declares a 
dependency on its object files. All of these object files are compiled. The library is built, and finally the executable is built with the 
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library linked in. If you’ve tried the example commands from earlier in this section, first run make clean so you can see the whole 
process and then observe the output:  

 
 $ make   
 gcc -Wall -L. -c -o ch9-1.o ch9-1.c   
 gcc -Wall -L. -c -o safecalls.o safecalls.c   
 gcc -Wall -L. -c -o safecalls2.o safecalls2.c   
 ar rc libsafec.a safecalls.o safecalls2.o   
 ranlib libsafec.a   
 gcc -Wall -L. -o ch9-1 ch9-1.o -lsafec   
 
 It’s exactly the same process as you went through in the preceding example, only it has been conveniently optimized for you.   
 

 
At this point, you have completely built and used your static library. Because the library is included in your executable, it’s included 
just as it would have been if you linked the program without using a library. There are no additional issues with using the static 
library.  

Building and Using Dynamic L ibrar ies   
 

 
Dynamic libraries are a much more powerful and versatile system than the static libraries I discussed in the previous section. This 
additional flexibility introduces some additional complexity, as you shall see in this section. 

 
 
 
 Here is a Makefile that you can use to build a program using a dynamic library, and its corresponding library:   
 
 CFLAGS=-Wall -L.   
 LIBCFLAGS=$(CFLAGS) -D_REENTRANT -fPIC   
 CC=gcc   
 OBJS=ch9-1.o      
 LIBOBJS=safecalls.o safecalls2.o   
 AR=ar rc   
 LIBRARY=libsafec.so.1.0.0   
 SONAME=libsafec.so.1   
       
 all: ch9-1   
       
 ch9-1: $(OBJS) $(LIBRARY)   
     $(CC) $(CFLAGS) -o $@ ch9-1.o -lsafec   
       
 $(LIBRARY): $(LIBOBJS)   
     $(CC) -shared -Wl,-soname,$(SONAME) -o $@ $(LIBOBJS) -lc   
     ln -sf $@ libsafec.so   
     ln -sf $@ $(SONAME)   
        
 ch9-1.o: ch9-1.c   
     $(CC) $(CFLAGS) -c -o $@ $<   
       
 %.o: %.c   
     $(CC) $(LIBCFLAGS) -c -o $@ $<   
       
 clean:   
     -rm $(OBJS) $(LIBOBJS) $(LIBRARY) libsafec.so $(SONAME) ch9-1   
 
 When you run this Makefile, you get the following output:   
 
 $ make   
 gcc -Wall -L. -c -o ch9-1.o ch9-1.c   
 gcc -Wall -L. -D_REENTRANT -fPIC -c -o safecalls.o safecalls.c   
 gcc -Wall -L. -D_REENTRANT -fPIC -c -o safecalls2.o safecalls2.c   
 gcc -shared -Wl,-soname,libsafec.so.1 -o libsafec.so.1.0.0 safecalls.o safecalls2.o -lc   
 ln -sf libsafec.so.1.0.0 libsafec.so   
 ln -sf libsafec.so.1.0.0 libsafec.so.1   
 gcc -Wall -L. -o ch9-1 ch9-1.o -lsafec   
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Now, I’ ll review exactly what is being done here. The Makefile begins by compiling the main C file. Next, it compiles the two 
modules for the library. Notice the special options on those command lines. The -D_REENTRANT causes the preprocessor 
symbol _REENTRANT to be defined, which activates special behavior in some macros. The -fPIC option enables generation of 
position-independent code. This is necessary because the libraries are loaded at run time, into a position in memory that is not 
known at compile time. If you fail to use these options, your library will not necessarily work properly. 

 

 
 

 

After these are compiled, the shared library is linked. The -shared option tells the compiler to generate shared library code. The -
Wl option causes the following options to be passed to the linker; in this case, the linker receives -soname libsafec.so.1. The -o 
option, as usual, specifies the output filename. It then specifies the two object files and explicitly requests that the C library be 
included. I’ ll talk about the intricacies of the soname in the next section. 

 

 
 

 
Next, two required symbolic links are created; these will also be specified in the next section. Finally, the executable is linked—
incidentally, using the same command as was used before. 

 
 
 
 To run this executable, you have two options:   
 
  •  You may copy the libsafec.so* files to a directory that is listed in /etc/ld.so.conf and then run the ldconfig utility as root; or   
 
  •  You may run export LD_LIBRARY_PATH=`pwd`, which adds your current directory to the library search path.   
 

 
These steps are necessary because dynamic libraries are loaded at run time instead of compile time. By default, your current 
directory is not included in the Run-Time Library (RTL) search path, so you have to specify it manually—exactly as you did with -
L. on the command line to gcc. Finally, try running it: 

 

 
 
 $ ./ch9-1   
 ** *  Error in lseek: failed   
 ** *  Error cause: Illegal seek   
 
 Success! Your program runs and obligingly issues its customary error message. You’ve built your first dynamic library!  
Using Advanced Dynamic L ibrary Features   
 

 
As I mentioned before, there’s a lot more to dynamic libraries than the benefits inherent in a smaller memory footprint, code 
sharing, and easier updates. In this section, I’ ll talk about the mechanisms that enable some of these benefits as well as some 
additional features of dynamic libraries that you can explore. 

 

 
 
 The ldd tool   
 

 

There is a wonderful tool on your system that examines information about shared libraries—ldd. The purpose of ldd is simple: it 
shows you which libraries your executable requires, and where the dynamic loader manages to find them on your system. Each 
executable on your system contains a list of the dynamic libraries that it requires to run. When the executable is invoked, the 
system is responsible for loading these libraries. The ldd tool shows you these details. Consider the following output: 

 

 
 
 $ ldd ./ch9-1   
         libsafec.so.1 => /home/jgoerzen/t/libsafec.so.1 (0x40013000)   
         libc.so.6 => /lib/libc.so.6 (0x4001d000)   
         /lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)   
 

 
This output indicates that the sample program requires three shared objects. The first is the shared library built here, libsafec.so.1. 
The run-time loader found it under the home directory. The second is the system standard C library, which was found under /lib. 
The final one is the dynamic loader itself; in this case, the absolute path must be embedded in the executable. 

 

 
 

 
The ldd tool can be an extremely useful for diagnostic purposes, to see just how your libraries are being loaded at run time. 
Additionally, it is useful for educational purposes to see what is going on behind the scenes of your application. 

 
 
 
 The soname   
 

 

One of the most important, and often confusing, aspects of shared libraries is the soname—short for shared object name. This is a 
name embedded in the control data for a shared library (.so) file. As I already mentioned, each of your programs contains a list of 
the libraries required. The contents of this list are a series of library sonames, which the dynamic loader must find—ldd shows you 
this process. 

 

 
 
 The key feature of the soname is that it indicates a certain measure of compatibility. When you upgrade libraries on your system,  
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and the new library has the same soname as the old, it is assumed that programs linked with the old library will still work fine with 
the newer one. This behavior makes possible the easy bug fixes and upgrades that you get with shared libraries in Linux.  

 

 

Similarly, if the soname in the new library is different, the assumption is that the two are not compatible. But do not fear—nothing 
can prevent you from having two copies of the same library on your system at once—one for programs linked against the older 
version, and another for programs linked against the newer version. It is because of this behavior that modern Linux distributions 
are so easily capable of running programs compiled against an old version of the C library despite drastic changes to it that would 
otherwise render the old programs inoperable. 

 

 
 

 
In the Makefile for the example in the “Building and Using Dynamic Libraries”  section, I explicitly declared the soname. 
Convention holds that when the major version number of a library changes, the upgrade is incompatible and the soname should 
thus be upgraded as well; however, when the minor version numbers change, a soname upgrade is thus unnecessary. 

 

 
 
 I maintain three files in the library location (typically /usr/lib) for each library. Here is how it was done with this library:   
 

  

• 

 

The main file containing the library’s code (libsafec.so.1.0.0 in this case) typically has the entire version number of the library. 
The other two files are symlinks to it. This behavior allows you to have multiple copies of a library with the same soname on 
the system and you can switch between them simply by adjusting two symlinks. Furthermore, it clarifies exactly what library 
is being invoked by the soname. 

 

 
 

  

• 

 

The second file has a name that corresponds to the soname of the library, which is a symlink to the main file. In this example, 
the file is libsafec.so.1. Because the soname does not change except for major changes that are not backwards-compatible, 
using a symlink here is great. This file must exist; it is the one that is used by the dynamic loader to load the library into your 
programs. 

 

 
 

  

• 

 

The third file is simply the name of the library, libsafec.so in this case. This file is used solely to compile (or link) programs 
and is not used by the dynamic loader in any way. This enables you to use syntax such as -lsafec to gcc; otherwise, you would 
have to reference the library by specific path and name. By permitting this compilation convenience, you enable programs to 
compile easily regardless of the underlying library. Furthermore, the compile/link process is not harmed because the linker 
extracts the soname from the library’s contents. 

 

 
 

 

Now, imagine that you made a major upgrade to the safec library and released safec version 2.0.0. The libsafec.so.1 and 
libsafec.so.1.0.0 files remain in place unmodified so that the programs already compiled and linked with them continue to run. The 
new libraries libsafec.so.2 and libsafec.so.2.0.0 are installed alongside them for the use of programs compiled and linked with the 
new library. Finally, the libsafec.so symbolic link is changed to point to the new version, so that newly compiled programs will use 
the new library instead of the old one. 

 

 
 

 

Hopefully, you can’ t help but marvel at the beauty and simplicity of this scheme. For years, one of the most prevalent problems for 
Windows operating systems has been issues with DLL (their shared library) versioning problems. One application may require one 
version, and another application may require an older, incompatible version, but the system doesn’ t provide a good, clean way for 
both applications to be happy. This means that it is literally impossible to have two programs executing simultaneously with two 
completely different versions of the libraries loaded (unless you resort to some more drastic steps). 

 

 
 

 
With Linux, each application specifically declares the version that it wants through the use of the soname. Library authors also can 
declare which versions are compatible with each other, by either retaining or changing the soname, so you end up with no dynamic 
library versioning conflicts. 

 

 
 

 

Thanks to this versatile shared library system, Linux programmers use them extensively. It’s not at all uncommon to find Linux 
installations containing hundreds, perhaps even thousands, of shared libraries. These libraries exist for doing everything from 
reading from JPEG files to processing ZIP archives. Most are used by dozens of programs on the system. This reduces 
development time for programmers, decreases resource utilization for you, and provides for an easier and less-intrusive upgrade 
path. 

 

 
 
 The dynamic loader    
 

 

The Linux dynamic loader (also known as the dynamic linker) is invoked automatically when your program is invoked. Its job is 
to ensure that all the libraries that your program needs are loaded into memory, in their proper version. The dynamic loader, named 
either ld.so or ld-linux.so, depending on your Linux libc version, must complete its job with little outside interaction. However, it 
does accept some configuration information in environment variables and in configuration files. 

 

 
 

 
The file /etc/ld.so.conf defines the locations of the standard system libraries. This is taken as a search path for the dynamic loader. 
For the changes there to take effect, you must run the ldconfig tool as root. This updates the /etc/ls.so.cache file, which is actually 

 



 168 

the one used internally by the loader.  
 
 You can use several environment variables to control the behavior of the dynamic loader (see Table 9-1).   
 
 Table 9-1:  Dynamic Loader  Environment Var iables   
 
     
 
 Var iable   

 
Purpose   

 

 
     
 
 LD_AOUT_LIBRARY_PATH   

 
The same function as LD_LIBRAY_PATH but for the deprecated a.out 
binary format. 

 
 

 

 
 LD_AOUT_PRELOAD   

 
The same function as LD_PRELOAD, but for the deprecated a.out binary 
format. 

 
 

 

 
 LD_KEEPDIR   

 
Applicable to a.out libraries only; causes the directory that may be specified 
with them to be ignored. 

 
 

 

 
 LD_LIBRARY_PATH   

 
Adds additional directories to the library search path. Its contents should be 
a colon-separated list of directories in the same fashion as the PATH 
variable for executables. This variable is ignored if you invoke a setuid or 
setgid program. 

 

 

 

 
 LD_NOWARN   

 
Applicable to a.out libraries only; causes warnings about changing version 
numbers to be suppressed. 

 
 

 

 
 LD_PRELOAD   

 
Causes additional user-defined libraries to be loaded before the others such 
that they have an opportunity to override or redefine the standard library 
behavior. Multiple entries can be separated by a space. For programs that 
are setuid or setgid, only libraries also marked as such will be preloaded. A 
systemwide version also can be specified in /etc/ld.so.perload, which is not 
subject to this restriction. 

 

 

 

 
     
 

 
Notice how several options relate to a.out. The a.out binary format was used before the current one (ELF). No current distribution 
uses a.out anymore, so these a.out options are intended for unique circumstances only. 

 
 
 
 Working with LD_PRELOAD   
 

 

One of the most unique features of the shared library system in Linux is the LD_PRELOAD item described in Table 9-1. This 
enables you to replace any function called in any library that the program uses with your own version. This kind of power is 
extremely wide-ranging and can be used for everything from adding new features to correcting bugs. Sometimes, it may be used to 
swap in an entirely different behavior for something—for instance, to use a different type of encryption for passwords in an 
authentication system. 

 

 
 

 
Listing 9-2 shows some code that intercepts the call to safelseek() in our wayward program and instead writes some data out to 
screen. 

 
 
 
  Note  Listing 9-2 is available online.   
 
 Listing 9-2: Sample Code for  LD_PRELOAD   
 
 #include <dlfcn.h>   
 #include <stdio.h>   
 #include <sys/types.h>   
 #include <unistd.h>   
       
 #include “safecalls.h”    
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 #include “safecalls2.h”    
       
 /*  Declare a wrapper around lseek. * /   
       
 off_t lseek(int fildes, off_t offset, int whence) {    
   /*  A pointer to the “real”  lseek function.  Static so it only   
      has to be filled in once.* /   
       
   static off_t (*funcptr)(int, off_t, int) = NULL;   
      
   if (!funcptr) {    
     funcptr = (off_t (*)(int, off_t, int)) dlsym(RTLD_NEXT, “ lseek”);   
   }    
       
   if (fildes == 1) {         /*  Error condition is occuring * /   
     fprintf(stderr, “Hey!  I’ ve trapped an attempt to lseek on fd 1.  I’m\n” );   
     fprintf(stderr, “ returning you a fake success indicator.\n” );   
     return offset;   
   }  else {             /*  Otherwise, pass it through. */   
     fprintf(stderr, “OK, passing your lseek through.\n” );   
     return (*funcptr)(fildes, offset, whence);   
   }    
 }    
       
 /*  And one around safeopen2, just for kicks. * /   
       
 int safeopen2(const char *pathname, int flags, mode_t mode) {    
   static int (* funcptr)(const char *, int, mode_t) = NULL;   
       
   if (!funcptr) {    
     funcptr = (int (*)(const char *, int, mode_t)) dlsym(RTLD_NEXT,   
                              “safeopen2” );   
   }    
       
   fprintf(stderr, “ I’m passing along a safeopen2() call now.\n” );   
   return (* funcptr)(pathname, flags, mode);   
 }    
 
 Name this code interceptor.c. Before demonstrating how it is used, I’ ll examine how it works.   
 

 

The code begins by declaring a function named lseek()—this will intercept calls to the standard function of that name. This new 
function must have the exact same prototype as the standard one, which it does. Inside the function, the first variable declaration is 
a rather odd-looking one. It is a pointer to a function of a type that returns off_t and takes an int, an off_t, and an int—a function of 
the lseek variety, in this case. In the function, the first thing to do is see if that variable is set yet. If not, you need to do so. 

 

 
 

 
This variable is used if you want to pass along the call to the wrapper function all the way to the standard one. If you simply want 
to intercept a function call with no intention of ever passing the call back to the standard one, you have no need for this sort of 
trickery. 

 

 
 

 
At this point, you need to know the address of the lseek() function in the standard libraries. The dlsym() function can tell you. The 
RTLD_NEXT argument tells dlsym() to look only in the libraries loaded after this one for the specified symbol. The function 
returns its address, which is stored away for later use. 

 

 
 

 
Next, the function checks to see if it received a request to lseek on the file descriptor 1—the error in the program. If so, it prints a 
warning message and then returns a code that indicates a successful seek—all without ever calling the real lseek() function or 
moving any file position indicator. 

 

 
 

 
If the file descriptor is not 1, the normal processing mode is assumed. The function calls the real lseek() (as stored in funcptr), 
passes along the arguments, and returns the result back to the caller. 

 
 
 

 
The wrapper around safeopen2() works in a similar way. It finds the address of the real function and saves it. Then it adds its own 
special behavior before passing all the necessary information on to the real function. 
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 Here is how you compile this library, assuming you named it interceptor.c:   
 
 $ gcc -shared -Wl,-soname,libinterceptor .so.0 -o libinterceptor .so.0.0.0 interceptor .c -ldl -lc   
 $ ln -s libinterceptor .so.0.0.0 libinterceptor .so.0   
 

 
The -ldl line in the preceding example brings in functions from the dl library, which happens to contain the implementation of 
dlsym that is necessary in this program. 

 
 
 

 
Now you’re ready to experiment. Remember that you must set LD_LIBRARY_PATH as described in the “Building and Using 
Dynamic Libraries”  section if you aren’ t copying libraries into your system directory. 

 
 
 
 $ expor t LD_PRELOAD=libinterceptor .so.0   
 $ ./ch9-1    
 I’m passing along a safeopen2() call now.   
 Hey!  I’ve trapped an attempt to lseek on fd 1.  I’m   
 returning you a fake success indicator.   
 
 Also take note of the new output from ldd:   
 
 $ ldd ./ch9-1   
         libinterceptor.so.0 => /home/jgoerzen/t/libinterceptor.so.0 (0x40014000)   
         libsafec.so.1 => /home/jgoerzen/t/libsafec.so.1 (0x40016000)   
         libc.so.6 => /lib/libc.so.6 (0x4001f000)   
         libdl.so.2 => /lib/libdl.so.2 (0x400fa000)   
         /lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)   
 

 
You can see the inclusion of the interceptor library even though this was not specified when the program was compiled. Moreover, 
the libdl library is included because libinterceptor requires it. Now, be sure that you unset LD_PRELOAD or else you will mess up 
other applications! 

 

 
 
 $ unset LD_PRELOAD   
 
 Using dlopen   
 

 

Another powerful library function that you can use is dlopen(). This function will open a new library and load it into memory. This 
function primarily is used to load in symbols from libraries whose names you do not know at compile time. For instance, the 
Apache web server uses this capability to load in modules at run time that provide certain extra capabilities. A configuration file 
controls the loading of these modules. This mechanism prevents the need to recompile every time a module should be added or 
deleted from the system. 

 

 
 

 

You can use dlopen() in your own programs as well. The dlopen() function is defined in dlfcn.h and is implemented in the dl 
library. It takes two parameters: a filename and a flag. The filename can be the soname of the library as we have been using thus 
far in our examples. The flag indicates whether or not the library’s dependencies should be evaluated immediately. If set to 
RTLD_NOW, they are evaluated immediately; otherwise, if set to RTLD_LAZY, they are evaluated when necessary. 
Additionally, you can specify RTLD_GLOBAL, which causes libraries that may be loaded later to have access to the symbols in 
this one. 

 

 
 

 
After the library is loaded, you can pass along the handle returned by dlopen() as the first parameter to dlsym() to retrieve the 
addresses of the symbols in the library. With this information, you can dereference the pointers to functions as we did in the in 
Listing 9-2 example and call the functions in the loaded library.  

Summary   
 
 In this chapter, you learned about static and dynamic libraries in Linux. Specifically, you learned:   
 
  •  You can use two different types of libraries in Linux: static and dynamic.   
 
  •  Static libraries are loaded into the executable when it is compiled. Dynamic libraries are loaded when the executable is run.   
 
  •  Dynamic libraries are more powerful but are also much more complex.   
 
  •  Static libraries are built by compiling code normally to object files, putting them in an ar archive, and then running ranlib.  
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They are linked in with the -l option on the command-line.  
 

  
• 

 
Dynamic libraries are built by compiling with -fPIC -D_REENTRANT. Then, the object files are linked together with gcc -
share and the soname specified with a command such as -Wl,-soname,libname-4. 

 
 
 

  
• 

 
The dynamic linker, ld-linux.so, can be controlled by several different environment variables and system-wide configuration 
files. 

 
 
 
  •  You can use LD_LIBRARY_PATH to add directories to the standard library search path.   
 
  •  The LD_PRELOAD option enables you to override functions in the standard libraries.  
Chapter  10: Debugging with gdb   
 
 Overview   
 

 

One of the most frequent tasks that any programmer must face, no matter how good, is the task of debugging. When your program 
compiles, it may not run properly. Perhaps it crashes completely. Or it simply might not perform some function correctly. Maybe 
its output is suspect, or it doesn’ t seem to prompt for the correct input. Whatever the case, tracking down these problems, 
especially with a large program, can be the most difficult part of the journey towards developing a correct fix. Here’s where gdb 
(the GNU debugger) enters the picture. This program is a debugger—a system that helps you find bugs in software. 

 

 
 

 

In this chapter, you will learn about using gdb to debug your C and C++ programs. Although gdb does have support for other 
compiled languages, these are by far the most common ones that it is used with. You’ ll learn about the basic features of gdb and how 
it can be used to step through your code as it runs. Then you’ ll learn some more advanced features for running programs, such as 
ways to display data, set breakpoints, or set watches. Finally, the chapter will explain how you can analyze a core dump to find out 
what caused a program to crash.  

The Need for  gdb   
 

 

The point of gdb is to help you out of a bind. Without such a tool, you are at a serious disadvantage. To track down some bugs, 
you may have to add voluminous statements to generate special output from your program. For some programs, such as network 
daemons, this isn’ t possible at all; they have to resort to other methods such as logging. Sometimes the very act of adding special 
code to help find a bug may effect the bug itself. And finally, you have no methods of performing post-mortem analysis of 
programs that have crashed and generated a core dump. 

 

 
 

 

With gdb, you get all of these features, and more. You can step through your code, line by line, as it executes. As you do this, you 
can see the logic flow, watch what happens to your variables and data, and see how various instructions effect the program. 
Another timesaving feature enables you to set breakpoints. These enable your program to execute normally until a certain 
condition is reached. This condition could be that a variable has taken on a certain value, or even that a certain place in the code 
has been reached. 

 

 
 

 

The gdb feature set includes other useful options. For one, gdb enables you to analyze a core file generated by a program that has 
crashed. By doing so, you can figure out what caused the crash, find out the last instruction called before the crash, examine all 
variables prior to the crash, and examine the stack (provided it was not damaged by the crash) prior to the point that the program 
exited. Another option is that gdb can attach itself to an already running process—a feature great for debugging network servers, 
programs that fork, or ones that need to run for some time prior to encountering a situation that triggers a bug. 

 

 
 

 
You can use gdb without modifying your code; simply ask gcc to generate some additional information, and you are ready to go. 
You simply load up your program inside gdb, and you can step through it. Alternatively, you can start with a core dump to see 
exactly what happened. 

 

 
 
 As an example, consider this code from Chapter 6, “Welcome to gcc” :   
 
 #include <stdio.h>   
       
 int main(void) {    
   int input = 0;   
   printf(“Enter an integer: “ );   
   scanf(“%d” , input);   
   printf(“Twice the number you supplied is %d.\n” , 2 * input);   
   return 0;   
 }    
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 When you run the program, you get:   
 
 $ ./crash   
 Enter an integer: 5   
 Segmentation fault   
 

 

This isn’ t particularly helpful. All that you know is that the program runs fine until it tries to read input. From these messages only, 
you don’ t know whether the program crashes at that point or later. With gdb, you can trace through your code as it executes, line by 
line, to watch what happens and to pinpoint the location of a problem. With the Linux core dump feature, you can also analyze the 
results from gdb after a program exits, even if it wasn’ t running under gdb when it crashes.  

Stepping Through Your  Code   
 

 
Using gdb to step through your code is one of the most commonly used features of the debugger. When you do this, you can get an 
inside look at how your program is functioning. You can see which commands it’ s executing, what the variables are, and many 
more details. 

 

 
 
 Debugging tutor ial   
 

 
Start with a simple program that doesn’ t have any bugs in it. This gives you a chance to see how to trace through your code. Then, 
you’ ll see how to apply this knowledge to tracking down bugs. 

 
 
 
 Here is the source code for the first example program:   
 
 #include <stdio.h>   
       
 int getinput(void);   
 void printmessage(int counter, int input);   
       
 int main(void) {    
   int counter;   
   int input;   
      
   for (counter = 0; counter < 200; counter++) {    
     input = getinput();   
     if (input == -1) exit(0);   
     printmessage(counter, input);   
   }    
   return 0;   
 }    
       
 int getinput(void) {    
   int input;   
      
   printf(“Enter an integer, or use -1 to exit: “ );   
   scanf(“%d” , &input);   
   return input;   
 }    
       
 void printmessage(int counter, int input) {    
   static int lastnum = 0;   
      
   counter++;   
       
   printf(“For number %d, you entered %d (%d more than last time)\n” ,   
          counter, input, input - lastnum);   
   lastnum = input;   
 }    
 

 

Before moving on to an example of this code, I want to highlight two things about it for those who are newer to the C language. 
First, notice how both the main() and printmessage() functions contain a variable named counter. Inside the printmessage() 
function, commands operate on the local counter variable—not the one from main(). This variable is initially set to hold the same 
value as the one in main(), however, because it is passed in during the function call. 
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The second thing to notice at this point is the static int declaration inside the printmessage() function. This indicates that, even 
when that variable falls out of scope when the function exits, its value should be preserved for the next invocation of the function. 

 
 
 

 
Having taken note of this, you should try to compile and run the program now. Recall from Chapter 6, “Welcome to gcc,”  that -
ggdb3 includes the maximum amount of debugging information in an executable, so you should compile with that option. For 
example: 

 

 
 
 $ gcc -ggdb3 -o ch10-1 ch10-1.c   
 $ ./ch10-1    
 Enter an integer, or use -1 to exit: 215   
 For number 1, you entered 215 (215 more than last time)   
 Enter an integer, or use -1 to exit: 300   
 For number 2, you entered 300 (85 more than last time)   
 Enter an integer, or use -1 to exit: 100   
 For number 3, you entered 100 (-200 more than last time)   
 Enter an integer, or use -1 to exit: 5   
 For number 4, you entered 5 (-95 more than last time)   
 Enter an integer, or use -1 to exit: -1   
 

 
From this output, you should have no trouble seeing that this program is a fairly straightforward one, and its actions are, likewise, 
straightforward. Now, take a look at it in the debugger. I’ ll show you some interaction with gdb in the following example and then 
explain what happened. 

 

 
 
 $ gdb ch10-1   
 GNU gdb 4.18   
 Copyright 1998 Free Software Foundation, Inc.   
 GDB is free software, covered by the GNU General Public License, and you are   
 welcome to change it and/or distribute copies of it under certain conditions.   
 Type “show copying”  to see the conditions.   
 There is absolutely no warranty for GDB.  Type “show warranty”  for details.   
 This GDB was configured as “alphaev56-unknown-linux-gnu” ...   
 (gdb)   
 

 
The first thing that occurs here is an invocation of gdb. The debugger loads, and comes up with the sample program ready to use. 
Although some output from gdb may be different from this example, you do not worry about this; the differences will be in areas 
that are not relevant to your purposes. 

 

 
 

 

The main interface to gdb is the (gdb) prompt. At this prompt, you enter your commands for gdb. The first thing you should do is 
set a breakpoint for the start of the main() function. A breakpoint indicates that gdb should stop executing a program at that point 
to give you a chance to step through it. Setting a breakpoint at main()enables you to start tracing execution at that point. So, go 
ahead and set the breakpoint as follows: 

 

 
 
 (gdb) break main   
 Breakpoint 1 at 0x1200004a8: file ch10-1.c, line 6.    
 
 The debugger confirms that the breakpoint is set, and shows you the location. Now it’s time run the program:   
 
 (gdb) run   
 Starting program: /home/jgoerzen/t/ch10-1    
 Breakpoint 1, main () at ch10-1.c:6   
 6       int main(void) {    
 

 
Your program begins executing, and then immediately hits the breakpoint for the main() function. The gdb debugger indicates that 
breakpoint 1 has been hit, and then displays the next line of code to be executed. 

 
 
 
 To step through your code, you normally start with the step command. This executes one line of code:   
 
 (gdb) step   
 main () at ch10-1.c:10   
 10        for (counter = 0; counter < 200; counter++) {    
 (gdb) s   
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 11          input = getinput();   
 (gdb) Enter   
 getinput () at ch10-1.c:18   
 18      int getinput(void) {    
 

 

The step command is used here to execute three lines of code. The first step executed line 6 of the program. Then, a gdb shortcut is 
used. With gdb, you can abbreviate commands in many cases. In this situation, the s is used as a shortcut for the step command. 
After stepping past line 10, the loop is entered. Stepping on line 11 causes execution to go into the getinput() function. Notice 
another shortcut here—simply pressing Enter causes the previous command (a step, in this case) to be executed again as follows: 

 

 
 
 (gdb) s   
 getinput () at ch10-1.c:21   
 21        printf(“Enter an integer, or use -1 to exit: “ );   
 (gdb) s   
 22        scanf(“%d” , &input);   
 (gdb) pr int input   
 $1 = 1439424   
 

 
You may be wondering why there is no output on-screen after stepping past line 21, which displays a prompt. The reason is the 
buffering used by printf() and the other similar functions. The prompt appears when scanf() is executed. 

 
 
 

 

Another new concept is demonstrated here: displaying values of variables. After stepping past line 21, I asked gdb to display the 
contents of the variable named input. Because this request occurs prior to reading in a value for that variable with scanf(), the 
content of the variable is essentially random. Now, step through the scanf(). Predicting the result, you should see the prompt from 
the earlier printf() displayed, and input read from the terminal. Take a look and see if that really happens: 

 

 
 
 (gdb) s   
 Enter an integer, or use -1 to exit: 150   
 23        return input;   
 

 
Indeed it does! The scanf() is executed, the prompt is displayed, and input is read from the terminal. The following example 
confirms that the value of the input variable has changed: 

 
 
 
 (gdb) pr int input   
 $2 = 150   
 

 
Because the program is ready to return a value, stepping at this point shortly goes back to the main() function as shown in the 
following example: 

 
 
 
 (gdb) s   
 24      }    
 (gdb) s   
 main () at ch10-1.c:12   
 12          if (input == -1) exit(0);   
 
 Now take a look at a new command: display:   
 
 (gdb) display counter    
 1: counter = 0   
 (gdb) display input   
 2: input = 150   
 (gdb) s   
 13          printmessage(counter, input);   
 2: input = 150   
 1: counter = 0   
 

 

At first glance, display appears to act the same as print acted before. However, there is a difference. When you use display, the 
values of those variables are shown each time the debugger stops the program pending your instructions. This means that when 
you step through a program, those values are displayed after each line of code. And in fact, you can see this. After stepping over 
line 12, gdb first displays the line of code that will be executed by the next command, and then the values of those two variables. 
Watch what happens when you step into the printmessage() function: 
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 (gdb) s   
 printmessage (counter=0, input=150) at ch10-1.c:26   
 26      void printmessage(int counter, int input) {    
 (gdb) s   
 printmessage (counter=0, input=150) at ch10-1.c:29   
 29        counter++;   
 (gdb) disp counter    
 3: counter = 0   
 

 

The debugger no longer is displaying the values of counter and input. Why? Well, the reason is that the counter and input variables 
that it displayed beforehand are now out of scope—they cannot be accessed from within printmessage(). This function does 
contain variables named counter and input, but these variables, although named the same, are actually different. The debugger is 
now asked to display counter: 

 

 
 
 (gdb) s   
 31        printf(“For number %d, you entered %d (%d more than last time)\n” ,   
 3: counter = 1   
 (gdb) s   
 For number 1, you entered 150 (150 more than last time)   
 33        lastnum = input;   
 3: counter = 1   
 (gdb) s   
 34      }    
 3: counter = 1   
 

 
While stepping through this code, you can watch as the value of counter is incremented. Then, line 31 displays the values of these 
two variables. The lasnum variable is set, and then the function is ready to return: 

 
 
 
 (gdb) s   
 main () at ch10-1.c:10   
 10        for (counter = 0; counter < 200; counter++) {    
 2: input = 150   
 1: counter = 0   
 

 
Notice how gdb is saying that counter is zero again. This is because the value of this counter variable in main() never changed; 
only the one in printmessage() was modified. Now step through an entire iteration of the loop so you can see it all together: 

 
 
 
 (gdb) s   
 11          input = getinput();   
 2: input = 150   
 1: counter = 1   
 (gdb) s   
 getinput () at ch10-1.c:18   
 18      int getinput(void) {    
 (gdb) s   
 getinput () at ch10-1.c:21   
 21        printf(“Enter an integer, or use -1 to exit: “ );   
 (gdb) s   
 22        scanf(“%d” , &input);   
 (gdb) s   
 Enter an integer, or use -1 to exit: 12   
 23        return input;   
 (gdb) s   
 24      }    
 (gdb) s   
 main () at ch10-1.c:12   
 12          if (input == -1) exit(0);   
 2: input = 12   
 1: counter = 1   
 (gdb) s   
 13          printmessage(counter, input);   
 2: input = 12   
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 1: counter = 1   
 (gdb) s   
 printmessage (counter=1, input=12) at ch10-1.c:26   
 26      void printmessage(int counter, int input) {    
 3: counter = 1   
 (gdb) s   
 printmessage (counter=1, input=12) at ch10-1.c:29   
 29        counter++;   
 3: counter = 1   
 (gdb) s   
 31        printf(“For number %d, you entered %d (%d more than last time)\n” ,   
 3: counter = 2   
 (gdb) s   
 For number 2, you entered 12 (-138 more than last time)   
 33        lastnum = input;   
 3: counter = 2   
 (gdb) s   
 34      }    
 3: counter = 2   
 (gdb) s   
 main () at ch10-1.c:10   
 10        for (counter = 0; counter < 200; counter++) {    
 2: input = 12   
 1: counter = 1   
 

 

That was a lot of work—and a lot of information. Note a few things, though. First, gdb remembers your display requests, and when 
it enters the printmessage() function, it again starts displaying the counter variable present in that scope. Second, many of these 
messages are repetitious. If you already know how your functions work, or that they work correctly, there is no need to step into 
them. 

 

 
 

 
To avoid stepping through functions that you don’ t need to review, gdb has a command called next. The next command acts like 
step, with the exception that it will not trace into your functions. Following is an example of a loop using next: 

 
 
 
 (gdb) next   
 11          input = getinput();   
 2: input = 12   
 1: counter = 2   
 (gdb) n   
 Enter an integer, or use -1 to exit: 10   
 12          if (input == -1) exit(0);   
 2: input = 10   
 1: counter = 2   
 (gdb) n   
 13          printmessage(counter, input);   
 2: input = 10   
 1: counter = 2   
 (gdb) n   
 For number 3, you entered 10 (-2 more than last time)   
 10        for (counter = 0; counter < 200; counter++) {    
 2: input = 10   
 1: counter = 2   
 

 
The difference here is quite significant! You are no longer forced to wade through functions that you may consider irrelevant. So, 
this can be a great time-saver if you know where your problems lie. Many users use both next and step while debugging their 
programs; doing so is perfectly fine. 

 

 
 
 Before proceeding to the next section, exit gdb as follows:   
 
 (gdb) quit   
 The program is running.  Exit anyway? (y or n) y   
 
 Debugging other  processes   
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Developers sometimes face the special need to debug processes that are already running. This might be the case when a process 
cannot be started from inside the debugger. For instance, the process may be started by the inetd super-server or at boot time. Or, 
perhaps the process needs to run for some time before you can look at it. Maybe a program that is inside a debugger doesn’ t know 
how to invoke the process. 

 

 
 

 
In any of these cases, attaching gdb to the process after it is started may be your best (or only) option for debugging. Your 
debugger provides you with two ways to do this. You can specify the numeric PID of the process on the gdb command line, or you 
can use the attach command while already in gdb. 

 

 
 

 
I will review this type of capability by using the example in Listing 10-1. You will need to open two X windows for this example, 
or use two different virtual consoles because you’ ll be interacting with two separate interfaces. In your first window, start up the 
program as you normally would:  

 

 
 
 $ ./ch10-2    
 Enter a string, or leave blank when done: Hi!   
 

 
Now, leave this program running. In a second window, the first thing you need to do is determine the process ID (PID) of the 
running process. You can do that with the following command: 

 
 
 
 $ ps ax | grep ch10-2 | grep -v grep   
   532 pts/1    S      0:00 ./ch10-2   
 

 
This command says to list all processes, search for lines that contain the text ch10-2, and eliminate the lines that contain the text 
grep. The far-left number is the process ID to use. Most likely, your number will be different than this one; substitute your number 
for mine in the following examples. 

 

 
 

 
With this piece of information, you are ready to invoke gdb on the already running process. You can do so by typing gdb ch10-2 
532 on the command line, as shown in the following example. Again, replace the number 532 with your particular PID value: 

 
 
 
 $ gdb ch10-2 532   
 GNU gdb 4.18   
 Copyright 1998 Free Software Foundation, Inc.   
 GDB is free software, covered by the GNU General Public License, and you are   
 welcome to change it and/or distribute copies of it under certain conditions.   
 Type “show copying”  to see the conditions.   
 There is absolutely no warranty for GDB.  Type “show warranty”  for details.   
 This GDB was configured as “ i686-pc-linux-gnu” ...   
       
 /home/jgoerzen/t/532: No such file or directory.   
 Attaching to program: /home/jgoerzen/t/ch10-2, process 532   
 Reading symbols from /lib/libc.so.6...done.   
 Reading symbols from /lib/ld-linux.so.2...done.   
 0x400b8884 in read () from /lib/libc.so.6   
 

 
In the preceding example, the line that begins with “Attaching to program” confirms that gdb managed to successfully attach itself 
to the program. 

 
 
 

 

At this point, the question to ask is—where in the program is the execution? The debugger tells you; the last line indicates that it’ s 
in a read() call. The program doesn’ t contain a read() call; in fact, this call occurs from within the C library, as the debugger 
indicates. It’s probably more useful to obtain a backtrace and find out where the execution is in your own code. I’ ll discuss the 
backtrace in the following example in more detail when you get a chance to analyze core dumps: 

 

 
 
 (gdb) bt   
 #0  0x400b8884 in read () from /lib/libc.so.6   
 #1  0x400ff66c in __DTOR_END__ () from /lib/libc.so.6   
 #2  0x4006bbb9 in _IO_new_file_underflow () from /lib/libc.so.6   
 #3  0x4006cd11 in _IO_default_uflow () from /lib/libc.so.6   
 #4  0x4006cc30 in __uflow () from /lib/libc.so.6   
 #5  0x40068fd5 in _IO_getline_info () from /lib/libc.so.6   
 #6  0x40068f86 in _IO_getline () from /lib/libc.so.6   
 #7  0x40068790 in fgets () from /lib/libc.so.6   
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 #8  0x80485d7 in getinput () at ch10-2.c:35   
 #9  0x8048537 in main () at ch10-2.c:19   
 

 
The first eight stack frames (numbered zero through seven) in this particular case occur inside the C library. Go ahead and step so 
that you can return to your own code: 

 
 
 

  

Note 

 

Your debugger may not show the frames from the C library (numbered zero through seven above), or it may show 
different frames depending on your library version. This variation is normal; if you do not have the debugging 
libraries installed (they are optional and may not be installed by default), you will not see these extra frames. 
Therefore, you will also not need to step until returning to your own code as shown in the example below. 

 

 
 
 (gdb) s   
 Single stepping until exit from function read,    
 which has no line number information.   
 

 

At this point, gdb appears to hang. It hasn’ t really, but I’ ll examine exactly what is going on beneath the hood. When you attach to 
the process, the process is inside the read() system call. This is not where you send a debugger when working on some ordinary 
code. Furthermore, several more stack frames occur inside the C library. Again, these are not areas that you will trace into—and, 
in fact, you can’ t trace into them unless you have special versions of the library. 

 

 
 

 
When you ask gdb to step while the process is deep within those frames, gdb simply executes the code until control returns to your 
software. This means that gdb executes code until the fgets() function returns. The gdb program is now waiting for the return from 
fgets(). The function will not return until you type something in the other window. Do so now: 

 

 
 
 Enter a string, or leave blank when done: Makefile   
 

 
At this point, you’ ll notice activity in your own gdb window. For now, keep pressing the S key until you get back to your own 
area. The output may be different on your system and you may need to press s a different number of times, but the idea is the 
same. Because gdb cannot trace the code in these areas, it simply executes it and lets you know when it changes stack frames: 

 

 
 
 0x4006c311 in _IO_file_read () from /lib/libc.so.6   
 (gdb) s   
 Single stepping until exit from function _IO_file_read,    
 which has no line number information.   
 0x4006bbb9 in _IO_new_file_underflow () from /lib/libc.so.6   
 (gdb) s   
 Single stepping until exit from function _IO_new_file_underflow,    
 which has no line number information.   
 0x4006cd11 in _IO_default_uflow () from /lib/libc.so.6   
 (gdb) s   
 Single stepping until exit from function _IO_default_uflow,    
 which has no line number information.   
 0x4006cc30 in __uflow () from /lib/libc.so.6   
 (gdb) s   
 Single stepping until exit from function __uflow,    
 which has no line number information.   
 0x40068fd5 in _IO_getline_info () from /lib/libc.so.6   
 (gdb) s   
 Single stepping until exit from function _IO_getline_info,    
 which has no line number information.   
 0x40068f86 in _IO_getline () from /lib/libc.so.6   
 (gdb) s   
 Single stepping until exit from function _IO_getline,    
 which has no line number information.   
 0x40068790 in fgets () from /lib/libc.so.6   
 (gdb) s    
 Single stepping until exit from function fgets,    
 which has no line number information.   
 getinput () at ch10-2.c:36   
 36        input[strlen(input)-1] = 0;   
 
 You have now returned to your own code. For future reference, you might note that you can set a temporary breakpoint with  
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tbreak (see the section on breakpoints later in this chapter) for line 36, and then use the continue command to proceed to this 
location.  

 

 
Now, you might notice that the program in the other window appears to be stalled. That is correct; the code there is executing only 
as you permit it. Go ahead and tell gdb to execute code until the return from the getinput() function: 

 
 
 
 (gdb) finish   
 Run till exit from #0  getinput () at ch10-2.c:36   
 0x8048537 in main () at ch10-2.c:19   
 19          svalues[counter] = getinput();   
 Value returned is $1 = (struct TAG_datastruct *) 0x8049b00   
 

 
The debugger enables the program to execute until the end of the getinput() function. For good measure, confirm that you can 
examine variables at this point: 

 
 
 
 (gdb) s   
 20          if (!svalues[counter]) break;   
 (gdb) print svalues[counter]->string   
 $2 = 0x8049b10 “Makefile”    
 
 The variable display is successful. Continue stepping through the code for a few instructions:   
 
 (gdb) s   
 21          maxval = counter;   
 (gdb) s   
 18        for (counter = 0; counter < 200; counter++) {    
 (gdb) s   
 19          svalues[counter] = getinput();   
 (gdb) s   
 getinput () at ch10-2.c:34   
 34        printf(“Enter a string, or leave blank when done: “);   
 (gdb) s   
 35        fgets(input, 79, stdin);   
 (gdb) s   
 

 
At this point, you have returned to the input area. As before, gdb is waiting for the code that reads your input to execute. Type 
something in the application window. In the following example, I typed gdb: 

 
 
 
 Enter a string, or leave blank when done: gdb   
 
 After doing so, gdb returns with a prompt. Now use continue to tell gdb to let the program finish executing:   
 
 36        input[strlen(input)-1] = 0;   
 (gdb) continue   
 Continuing.   
 
 The application window displays another prompt. Press Enter to leave it blank and enable the program to terminate:   
 
 Enter a string, or leave blank when done: Enter   
 This structure has a checksum of 798.  Its string is:   
 Makefile   
 
 The program exits and the shell prompt returns. Meanwhile, in gdb’s window, you see:   
 
 Program exited normally.   
 (gdb)    
 
 In other words, gdb confirms that the program successfully exited.  
Displaying Data   
 

 
In the previous section, I gave you a tour of using gdb to step through your programs, and I introduced you to many features of 
gdb. One of them is the capability of displaying data from your program. Here, you’ ll learn more details about these capabilities 
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and how to use them.  
 
 Using the pr int and display commands   
 

 
The two most commonly used commands for displaying data are print and display. These commands are more powerful than 
simple integer value displays. Listing 10-1 shows you a program that contains some more complex data structures. This program 
uses structures, arrays of pointers, and other more tricky data structures. 

 

 
 
  Note  Listing 10-1 is available online.   
 
 Listing 10-1: Example for  debugging: ch10-2.c   
 
 #include <stdio.h>   
 #include <stdlib.h>   
 #include <string.h>   
       
 typedef struct TAG_datastruct {    
   char *string;   
   int checksum;   
 }  datastruct;   
       
 datastruct *getinput(void);   
 void printmessage(datastruct * todisp);   
       
 int main(void) {    
   int counter;   
   int maxval = 0;   
   datastruct *svalues[200];   
      
   for (counter = 0; counter < 200; counter++) {    
     svalues[counter] = getinput();   
     if (!svalues[counter]) break;   
     maxval = counter;   
   }    
      
   printmessage(svalues[maxval / 2]);   
      
   return 0;   
 }    
       
 datastruct *getinput(void) {    
   char input[80];   
   datastruct * instruct;   
   int counter;   
      
   printf(“Enter a string, or leave blank when done: “);   
   fgets(input, 79, stdin);   
   input[strlen(input)-1] = 0;   
   if (strlen(input) == 0)   
     return NULL;   
   instruct = malloc(sizeof(datastruct));   
   instruct->string = strdup(input);   
   instruct->checksum = 0;   
   for (counter = 0; counter < strlen(instruct->string); counter++) {    
     instruct->checksum += instruct->string[counter];   
   }    
   return instruct;   
 }    
       
 void printmessage(datastruct * todisp) {    
   printf(“This structure has a checksum of %d.  Its string is:\n” ,   
          todisp->checksum);   
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   puts(todisp->string);   
 }    
 
 It’s would be useful to examine the normal output of this program before examining it with the debugger.   
 
 Here’s a sample execution:   
 
 $ ./ch10-2    
 Enter a string, or leave blank when done: Hello   
 Enter a string, or leave blank when done: This is the second line.   
 Enter a string, or leave blank when done: This is the third   
 Enter a string, or leave blank when done: gdb is interesting   
 Enter a string, or leave blank when done: Hmm...!   
 Enter a string, or leave blank when done: Enter   
 This structure has a checksum of 1584.  Its string is:   
 This is the third   
 

 

Examining the code, you can see that there is a datastruct in which data is stored. The main() function contains an array of pointers 
to such structs. Note that this array is not an array of structs itself; rather it is an array of pointers to structs. Thus, there is a loop 
that is used to populate this array with data. In this loop, the getinput() function is called. This function returns a pointer to a struct, 
which is then placed into the array. If the pointer is null, the loop exits before filling all 200 elements. Otherwise, the maxval 
variable is set to the current array index. Finally, an element near the middle of the populated array is selected for printing. The 
pointer is passed to printmessage(), which displays the information. After that, the program exits. 

 

 
 
 Here is an example of how gdb is capable of accessing the data in this program:   
 
 $ gcc -ggdb3 -Wall -o ch10-2 ch10-2.c   
 $ gdb ch10-2   
 GNU gdb 4.18   
 Copyright 1998 Free Software Foundation, Inc.   
 GDB is free software, covered by the GNU General Public License, and you are   
 welcome to change it and/or distribute copies of it under certain conditions.   
 Type “show copying”  to see the conditions.   
 There is absolutely no warranty for GDB.  Type “show warranty”  for details.   
 This GDB was configured as “alphaev56-unknown-linux-gnu” ...   
 (gdb) break main   
 Breakpoint 1 at 0x1200005b8: file ch10-2.c, line 15.   
 (gdb) run   
 Starting program: /home/jgoerzen/t/ch10-2    
       
 Breakpoint 1, main () at ch10-2.c:15   
 15        int maxval = 0;   
 

 
Thus far, this has been standard fare for starting a program in a debugger. Suppose you wish to examine the contents of the svalues 
array at this point. Your first inclination, no doubt, would be to use print svalues. Give it a try: 

 
 
 
 (gdb) print svalues   
 $2 = { 0x0, 0x0, 0x0, 0x0, 0x20000013490, 0x2000011dd90, 0x3e8, 0x3e8, 0x3e8,    
   0x3e8, 0x2000011dd88, 0x120000040, 0x0 <repeats 13 times>, 0x1, 0x0, 0x0,    
   0x0, 0x11ffff558, 0x0, 0x1, 0x0, 0x120000190, 0x0, 0x0, 0x0, 0x2000011e168,    
   0x2000033e1c0, 0x20000347290, 0x0, 0x2000011e168, 0x2000, 0x20000347290,    
   0x3e8, 0x0, 0x20000010210, 0x2000001ea00, 0x20000151b58, 0x20000343560,    
   0x2000033e1c0, 0x340, 0x0, 0x11ffff750, 0x0, 0x2000011e168,    
   0xffffffffffffffff, 0x20000347290, 0x2000014fa58, 0x20000341bd8,    
   0x200003474b8, 0x200003474a8, 0x200003476a8, 0x11ffff7a0, 0x20000010210,    
   0x2000001ea00, 0x20000150ac0, 0x200003428d0, 0x0, 0x2000011e168, 0x0,    
 

 
This sort of thing continues for several more pages. At this point the values are random memory contents, and mean essentially 
nothing. To confirm this, you can try dereferencing a pointer as follows: 

 
 
 
 (gdb) pr int svalues[0]->checksum   
 Cannot access memory at address 0x8.   
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If you attempt to access that value in your program at this point in its execution, it will segfault (crash because of a memory access 
problem). Step through the program a bit so that you can have some useful data to work with: 

 
 
 
 (gdb) s   
 18        for (counter = 0; counter < 200; counter++) {    
 (gdb) s   
 19          svalues[counter] = getinput();   
 (gdb) s   
 getinput () at ch10-2.c:29   
 29      datastruct *getinput(void) {    
 (gdb) s   
 getinput () at ch10-2.c:34   
 34        printf(“Enter a string, or leave blank when done: “);   
 (gdb) s   
 35        fgets(input, 79, stdin);   
 (gdb) s   
 Enter a string, or leave blank when done: Hello.   
 36        input[strlen(input)-1] = 0;   
 
 Take a look at the contents of the input string now:   
 
 (gdb) print input   

 
$3 = “Hello.\n\000_\003\000 \001” , ‘ \000’  <repeats 11 times>, 
“ \001\000\000\000\000\002\000\000Ø_\021\000\000\002\000\000\b\r\001\000\000\002\000\0000\r\000\000\000\002\000\000\002\000\000\000 
 

 

This may seem rather strange for output of a string that should contain only one word. There is a simple explanation, however. 
Recall that in C, strings are merely arrays. The data placed into the string overwrites the memory near the start only; it does not 
touch the remaining parts of the string. After the newline character (\n), a null character (\000) is inserted. The null character 
indicates the end of the string in C; this precise behavior is used by the following line to strip off the newline character: 

 

 
 
 (gdb) s   
 37        if (strlen(input) == 0)   
 (gdb) pr int input   

 
$4 = “Hello.\000\000_\003\000 \001” , ‘ \000’  <repeats 11 times>, 
“ \001\000\000\000\000\002\000\000Ø_\021\000\000\002\000\000\b\r\001\000\000\002\000\0000\r\000\000\000\002\000\000\002\000\000\000 
 

 
Notice that the \n is gone; it was replaced by \000. You also can use familiar constructs from the language being debugged to 
access arrays. For instance: 

 
 
 
 (gdb) pr int input[0]   
 $5 = 72 ‘H’    
 

 
This print command is used to display the single character (H) at the start of the string—the first element of the array. Step through 
the program a bit further: 

 
 
 
 (gdb) s   
 39        instruct = malloc(sizeof(datastruct));   
 (gdb) s   
 40        instruct->string = strdup(input);   
 (gdb) s   
 41        instruct->checksum = 0;   
 (gdb) s   
 42        for (counter = 0; counter < strlen(instruct->string); counter++) {    
 
 Now take a look at the contents of the instruct variable. Your first inkling might be to use the following:   
 
 (gdb) pr int instruct   
 $6 = (datastruct *) 0x120100f80   
 

 
This isn’ t particularly useful; because instruct is a pointer, gdb obligingly displays the data—its memory address. Perhaps it would 
be more useful to examine the data of the structure pointed to by the variable: 
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 (gdb) pr int * instruct   
 $7 = { string = 0x120100fa0 “Hello.” , checksum = 0}    
 

 
Yes, dereferencing the pointer produces useful results! The debugger obligingly displays the different items in the struct, and their 
contents. You also can use standard C syntax to drill deeper. For instance: 

 
 
 
 (gdb) pr int instruct->str ing[0]   
 $8 = 72 ‘H’    
 
 Continue stepping through the code:   
 
 (gdb) s   
 43          instruct->checksum += instruct->string[counter];   
 (gdb) s   
 42        for (counter = 0; counter < strlen(instruct->string); counter++) {    
 (gdb) s   
 43          instruct->checksum += instruct->string[counter];   
 

 
This loop is particularly uninteresting. Continue with the function until it exits by using the finish command in gdb. Here is the 
resulting output: 

 
 
 
 (gdb) finish   
 Run till exit from #0  getinput () at ch10-2.c:43   
 0x1200005d8 in main () at ch10-2.c:19   
 19          svalues[counter] = getinput();   
 Value returned is $9 = (datastruct *) 0x120100f80   
 
 Stepping now assigns the relevant value to the appropriate spot in the array of pointers. Take another look at the array:   
 
 (gdb) pr int svalues   
 $10 = {0x120100f80, 0x0, 0x0, 0x0, 0x20000013490, 0x2000011dd90, 0x3e8, 0x3e8,    
   0x3e8, 0x3e8, 0x2000011dd88, 0x120000040, 0x0 <repeats 13 times>, 0x1, 0x0,    
   0x0, 0x0, 0x11ffff558, 0x0, 0x1, 0x0, 0x120000190, 0x0, 0x0, 0x0,    
   0x2000011e168, 0x2000033e1c0, 0x20000347290, 0x0, 0x2000011e168, 0x2000,    
   0x20000347290, 0x3e8, 0x0, 0x20000010210, 0x2000001ea00, 0x20000151b58,    
   0x20000343560, 0x2000033e1c0, 0x340, 0x0, 0x11ffff750, 0x0, 0x2000011e168,    
 

 
Notice how the first value in this example, 0x120100f80, is identical to the value returned when you used the finish command. 
Good! 

 
 
 
 Examining memory   
 

 
While learning about print and display in the previous section, you saw many memory addresses. Although you can often 
dereference pointers to access them, sometimes you want to drill down to a lower level. To do this, gdb provides a command 
named x. The syntax of x is 

 

 
 
 x/format address   
 

 
where format specifies how many items should be displayed, followed by how the memory should be displayed. Following is an 
example from the already-running program: 

 
 
 
 (gdb) pr int *svalues[0]   
 $12 = { string = 0x120100fa0 “Hello.” , checksum = 546}    
 (gdb) x/2c 0x120100fa0   
 0x120100fa0:    72 ‘H’   101 ‘e’    
 

 
Here, determining the memory address is the first thing that is done. In this case, it is 0x120100fa0. The address will be different in 
your situation; simply use the address given to you in the examples. Then, gdb is asked to display two characters starting at that 
address, which it does. 

 

 
 
 (gdb) x/1s 0x120100fa0   
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 0x120100fa0:     “Hello.”    
 

 
In this example, gdb is asked to display one string from that location, which gives the entire word. The various formats supported 
by x are summarized in Table 10-1. Note that when using the numeric items, you can specify a size after the item. For instance, 
x/5xb will print the hexadecimal values of five bytes. 

 

 
 
 Table 10-1:  Gdb x Command Formats   
 
     
 
 Character    

 
Meaning   

 

 
     
 
 A   

 
Address (pointer)   

 

 
 B   

 
Displays the corresponding item by bytes   

 

 
 C   

 
Char   

 

 
 D   

 
Decimal   

 

 
 F   

 
Float   

 

 
 g   

 
Displays the corresponding item by giant words (8 bytes)   

 

 
 h   

 
Displays the corresponding item by half-words   

 

 
 o   

 
Octal   

 

 
 s   

 
String   

 

 
 t   

 
Binary (raw characters)   

 

 
 u   

 
Unsigned (decimal)   

 

 
 w   

 
Displays the correspinding item by words   

 

 
 x   

 
Hexadecimal   

 

 
     
 
 Using the pr intf command   
 

 
Another way to display data in gdb is by using its built-in printf command. Like the printf() function in C, this command accepts a 
format specifier and various arguments. Here’s an example of how the printf command is used: 

 
 
 
 (gdb) pr intf “ %2.2s” , (char  * )0x120100fa0   
 He(gdb)    
 

 
As you see, you also can access memory directly by using gdb’s printf command. Note, though, that the output was unfortunately 
not suffixed with a newline character, so the output and the prompt run together. Better add a newline character as you do in C, 
such as: 

 

 
 
 (gdb) pr intf” %2.2s\n” , (char * )0x120100fa0   
 He   
 
 Better! But printf is even more powerful than that. Consider this bit of code:   
 
 (gdb) pr intf “ %d\n” , 100 *  svalues[0]->checksum   
 54600   
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As you can see, you can evaluate simple expressions here. This is not limited to printf, but printf often proves to be an ideal place 
in which to use them.  

 
 
 
 Using the set command   
 

 

In addition to displaying variables, you can modify them. This can be useful if, for instance, you spot your program doing 
something wrong with variables, but wish to reset them to the correct value and continue tracing execution. Alternatively, you may 
purposely prefer to set variables to certain values to be able to determine whether or not your code is capable of dealing with them. 
Consider this example: 

 

 
 
 (gdb) pr int svalues[0]->checksum   
 $1 = 546   
 (gdb) set var iable svalues[0]->checksum = 2000   
 (gdb) pr int svalues[0]->checksum   
 $2 = 2000   
 
 You can see that gdb has modified the value of the variable. If you run the program, the variable will remain with the new value.  
Using Breakpoints and Watches   
 

 
Often when debugging a large program, you may have some idea of where to locate a problem. Stepping through the entire 
program, even skipping function calls, could be prohibitive. A better solution, then, is to use breakpoints or watches. 

 
 
 

 
These are used to interrupt execution of a program when a certain condition becomes true. This condition could be: that a variable 
is set to a certain value, that execution of the program reaches a certain point, or even that a certain arbitrary expression becomes 
true. 

 

 
 
 Setting breakpoints   
 

 
The simplest way to set breakpoints is with the break command. With this command, you simply specify a location in the code at 
which execution should be interrupted and control should be given to you and the debugger. For example: 

 
 
 
 $ gdb ch10-2   
 GNU gdb 4.18   
 Copyright 1998 Free Software Foundation, Inc.   
 GDB is free software, covered by the GNU General Public License, and you are   
 welcome to change it and/or distribute copies of it under certain conditions.   
 Type “show copying”  to see the conditions.   
 There is absolutely no warranty for GDB.  Type “show warranty”  for details.   
 This GDB was configured as “alphaev56-unknown-linux-gnu” ...   
 (gdb) break ch10-2.c:21   
 Breakpoint 1 at 0x12000061c: file ch10-2.c, line 21.   
 (gdb) break pr intmessage   
 Breakpoint 2 at 0x120000848: file ch10-2.c, line 48.   
 

 
In this example, two breakpoints are set—one on line 21 of the program and another on line 48. The debugger automatically finds 
the location of the start of the function in the second case. If you run the program now, it will execute until it gets to the 
breakpoint: 

 

 
 
 (gdb) run   
 Starting program: /home/jgoerzen/t/ch10-2    
 Enter a string, or leave blank when done: Hello!   
       
 Breakpoint 1, main () at ch10-2.c:21   
 21          maxval = counter;   
 

 

The program is invoked and proceeds to run until it encounters the first breakpoint. At this point, you are free to do whatever you 
need to do to continue debugging the program. Perhaps you will step through the code, or examine the contents of some variables. 
When you are done, you can issue a continue command, which causes execution to resume until a breakpoint is reached again or 
the program exits. 

 

 
 
 (gdb) s          
 18        for (counter = 0; counter < 200; counter++) {    
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 (gdb) s   
 19          svalues[counter] = getinput();   
 (gdb) continue   
 Continuing.   
 Enter a string, or leave blank when done: Hello!   
       
 Breakpoint 1, main () at ch10-2.c:21   
 21          maxval = counter;   
 (gdb) continue   
 Continuing.   
 Enter a string, or leave blank when done: Enter   
       
 Breakpoint 2, printmessage (todisp=0x100000002) at ch10-2.c:48   
 48      void printmessage(datastruct *todisp) {    
 

 
In this situation, gdb is asked to continue twice, and does so both times until another breakpoint is reached. If you continue a third 
time, gdb continues until the program exits: 

 
 
 
 (gdb) continue   
 Continuing.   
 This structure has a checksum of 533.  Its string is:   
 Hello!   
       
 Program exited normally.   
 

 
You can also set a conditional breakpoint, one that only triggers if some other condition is true. This can be particularly useful if a 
problem only occurs when certain values are set to variables, such as in the following example: 

 
 
 
 $ gdb ch10-2   
 GNU gdb 4.18   
 Copyright 1998 Free Software Foundation, Inc.   
 GDB is free software, covered by the GNU General Public License, and you are   
 welcome to change it and/or distribute copies of it under certain conditions.   
 Type “show copying”  to see the conditions.   
 There is absolutely no warranty for GDB.  Type “show warranty”  for details.   
 This GDB was configured as “alphaev56-unknown-linux-gnu” ...   
 (gdb) break 21   
 Breakpoint 1 at 0x12000061c: file ch10-2.c, line 21.   
 

 
Here, the program is loaded and a breakpoint is set for line 21. Now, you apply a condition to the breakpoint. Notice how gdb 
assigned a number to the breakpoint—it is breakpoint 1. To apply a condition to it, you specify which breakpoint, and then the 
expression that must be true in order for execution to be interrupted: 

 

 
 
 (gdb) condition 1 svalues[counter ]->checksum > 700   
 (gdb) run   
 Starting program: /home/jgoerzen/t/ch10-2    
 Enter a string, or leave blank when done: Hi   
 Enter a string, or leave blank when done: Hello   
 Enter a string, or leave blank when done: How are you?   
       
 Breakpoint 1, main () at ch10-2.c:21   
 21          maxval = counter;   
 

 
Now the program will continue running until the condition becomes true, as it will only when a sufficiently large string is 
encountered. After the expression becomes true, the breakpoint takes effect, and the execution is interrupted. 

 
 
 

 
The GNU debugger also provides a capability called temporary breakpoints. These are breakpoints that are hit only once. That is, 
as soon as the breakpoint is triggered, it is automatically deleted. Note that it is possible to assign a condition to a temporary 
breakpoint exactly as you can to a standard one. 

 

 
 

 
The command to set up a temporary breakpoint is tbreak, as shown in the following example. This output uses the code for ch10-
4.c, printed in the Core dump analysis section: 
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 $ gdb ch10-4   
 GNU gdb 4.18   
 Copyright 1998 Free Software Foundation, Inc.   
 GDB is free software, covered by the GNU General Public License, and you are   
 welcome to change it and/or distribute copies of it under certain conditions.   
 Type “show copying”  to see the conditions.   
 There is absolutely no warranty for GDB.  Type “show warranty”  for details.   
 This GDB was configured as “ i686-pc-linux-gnu” ...   
 (gdb) tbreak 43   
 Breakpoint 1 at 0x8048647: file ch10-4.c, line 43.   
 (gdb) run   
 Starting program: /home/jgoerzen/t/ch10-4    
 Enter a string, or leave blank when done: Hello!   
 getinput () at ch10-4.c:43   
 43          instruct->checksum += instruct->string[counter];   
 (gdb) continue   
 Continuing.   
 Enter a string, or leave blank when done: Hi!   
 Enter a string, or leave blank when done: Enter   
 

 
Notice how the breakpoint was triggered only once, even though the program passed through that section of code many more 
times. Interestingly enough, this tbreak command is the same as the following two commands: 

 
 
 
 break 43   
 enable delete 1   
 
 This requests that a breakpoint should be created, and that breakpoint 1 should be deleted after it is triggered.   
 
 Setting watches   
 

 

You can cause execution of a program to be aborted when a certain condition becomes true by using watches. You can set an 
arbitrary expression to be watched with the watch command. When this expression becomes true, the execution is immediately 
interrupted. That is, watches are not tied to interrupting execution at any particular point in the program; rather, they interrupt 
excecution whenever the expression turns true. 

 

 
 

 
Because watches are not tied to a specific part of code, and thus are evaluated at arbitrary times, if any of the variables used in the 
watch go out of scope, the watch expression no longer can be evaluated. Breakpoint conditionals do not have this particular 
problem because they are evaluated only at fixed placed in the code. 

 

 
 
 Here’s a quick look at some code you can use to examine watches, named ch10-3.c:   
 
 #include <stdio.h>   
       
 int main(void) {    
   int counter;   
   for (counter = 0; counter < 30; counter++) {    
     if (counter % 2 == 0) {    
       printf(“Counter: %d\n” , counter);   
     }    
   }    
 }    
 
 When run, the result is fairly simple:   
 
 $ gcc -ggdb3 -o ch10-3 ch10-3.c   
 $ ./ch10-3   
 Counter: 0   
 Counter: 2   
 Counter: 4   
 Counter: 6   
 Counter: 8   
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 Counter: 10   
 Counter: 12   
 Counter: 14   
 Counter: 16   
 Counter: 18   
 Counter: 20   
 Counter: 22   
 Counter: 24   
 Counter: 26   
 Counter: 28   
 

 
If you start this program inside gdb, you will have an opportunity to set a particular watchpoint to interrupt execution halfway 
through, for instance: 

 
 
 
 $ gdb ch10-3   
 GNU gdb 4.18   
 Copyright 1998 Free Software Foundation, Inc.   
 GDB is free software, covered by the GNU General Public License, and you are   
 welcome to change it and/or distribute copies of it under certain conditions.   
 Type “show copying”  to see the conditions.   
 There is absolutely no warranty for GDB.  Type “show warranty”  for details.   
 This GDB was configured as “alphaev56-unknown-linux-gnu” ...   
 
 So gdb is started in normal fashion. Observe what happens if a watch is set at this particular point:   
 
 (gdb) watch counter  > 15   
 No symbol “counter”  in current context.   
 

 
This is because execution has not reached the main() function yet, and as such, the counter variable is not in scope yet. Step 
through the code until it is. 

 
 
 
 (gdb) break main   
 Breakpoint 1 at 0x120000428: file ch10-3.c, line 3.   
 (gdb) run   
 Starting program: /home/jgoerzen/t/ch10-3    
       
 Breakpoint 1, main () at ch10-3.c:3   
 3       int main(void) {    
 (gdb) s   
 5         for (counter = 0; counter < 30; counter++) {    
 (gdb) s   
 6           if (counter % 2 == 0) {    
 
 Now that we are in scope of the relevant variable, try to set the watch again:   
 
 (gdb) watch counter  > 15   
 Hardware watchpoint 2: counter > 15   
 
 And try running the program:   
 
 (gdb) continue   
 Continuing.   
 #0  main () at ch10-3.c:6   
 6           if (counter % 2 == 0) {    
 Counter: 0   
 Counter: 2   
 Counter: 4   
 Counter: 6   
 Counter: 8   
 Counter: 10   
 Counter: 12   
 Counter: 14   
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 Hardware watchpoint 2: counter > 15   
       
 Old value = 0   
 New value = 1   
 0x8048418 in main () at ch10-3.c:5   
 5         for (counter = 0; counter < 30; counter++) {    
 

 
And so the execution of the program is interrupted by the specified watch expression. This expression is can be thought of as being 
continuously evaluated until its truth value changes. 

 
 
 
 Here’s a look at a situation in which a watch will not work. I’ ll refer to the ch10-2.c code again for this example:   
 
 $ gdb ch10-2   
 GNU gdb 4.18   
 Copyright 1998 Free Software Foundation, Inc.   
 GDB is free software, covered by the GNU General Public License, and you are   
 welcome to change it and/or distribute copies of it under certain conditions.   
 Type “show copying”  to see the conditions.   
 There is absolutely no warranty for GDB.  Type “show warranty”  for details.   
 This GDB was configured as “ i686-pc-linux-gnu” ...   
 (gdb) break getinput   
 Breakpoint 1 at 0x80485b9: file ch10-2.c, line 34.   
 (gdb) run   
 Starting program: /home/jgoerzen/t/ch10-2    
       
 Breakpoint 1, getinput () at ch10-2.c:34   
 34        printf(“Enter a string, or leave blank when done: “);   
 (gdb) s                
 35        fgets(input, 79, stdin);   
 (gdb) s   
 Enter a string, or leave blank when done: Hi   
 36        input[strlen(input)-1] = 0;   
 (gdb) s   
 37        if (strlen(input) == 0)   
 (gdb) s   
 39        instruct = malloc(sizeof(datastruct));   
 (gdb) s   
 40        instruct->string = strdup(input);   
 (gdb) s   
 41        instruct->checksum = 0;   
 (gdb) s   
 42        for (counter = 0; counter < strlen(instruct->string); counter++) {    
 (gdb) watch instruct->checksum > 750   
 Hardware watchpoint 2: instruct->checksum > 750   
 
 Now a watchpoint is set. However, see what happens when execution continues:   
 
 (gdb) continue   
 Continuing.   
 #0  getinput () at ch10-2.c:42   
 42        for (counter = 0; counter < strlen(instruct->string); counter++) {    
 Watchpoint 2 deleted because the program has left the block in   
 which its expression is valid.   
 0x8048537 in main () at ch10-2.c:19   
 19          svalues[counter] = getinput();   
 
 Immediately when the relevant variable goes out of scope, the watch expression cannot be evaluated, and gdb informs you of this.   
 
 Therefore, you can see that both breakpoints and watches have their uses, but neither is necessarily a solution for every problem.  
Core Dump Analysis   
 
 When your programs crash, you want to find out why. Sometimes, you can’ t run gdb on the program to trace its execution.  
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Perhaps the program is running on someone else’s computer, or it is timing-sensitive and manually stepping through it would 
cause unacceptable delays.  

 

 

So what can you do in a case like this? Well, you can, in many cases, determine the cause of a crash even after a program has 
ended. This capability comes thanks to Linux’s core dump facility. When your program crashes, Linux can create a core file from 
it. This file contains a copy of the process’s memory and other information about it. With this information, gdb can enable you to 
find out details about what the program was doing when it crashed. 

 

 
 

 
Before we begin analyzing core dumps, first you need to make sure that they are enabled on your account. Some distributions or 
system administrators may disable core dumps by default. You can enable them by running this command: 

 
 
 
 $ ulimit -c unlimited   
 

 
Having done that, you can work with these core files. Consider the code in Listing 10-2, which contains a small modification from 
the ch10-4.c code in use earlier. 

 
 
 
  Note  Listing 10-2 is available online.   
 
 Listing 10-2: Example with a bug   
 
 #include <stdio.h>   
 #include <stdlib.h>   
 #include <string.h>   
       
 typedef struct TAG_datastruct {    
   char *string;   
   int checksum;   
 }  datastruct;   
       
 datastruct *getinput(void);   
 void printmessage(datastruct * todisp);   
       
 int main(void) {    
   int counter;   
   int maxval = 0;   
   datastruct *svalues[200];   
      
   for (counter = 0; counter < 200; counter++) {    
     svalues[counter] = getinput();   
     if (!svalues[counter]) break;   
     maxval = counter;   
   }    
      
   printmessage(svalues[maxval * 2]);   
      
   return 0;   
 }    
       
 datastruct *getinput(void) {    
   char input[80];   
   datastruct * instruct;   
   int counter;   
      
   printf(“Enter a string, or leave blank when done: “);   
   fgets(input, 79, stdin);   
   input[strlen(input)-1] = 0;   
   if (strlen(input) == 0)   
     return NULL;   
   instruct = malloc(sizeof(datastruct));   
   instruct->string = strdup(input);   
   instruct->checksum = 0;   
   for (counter = 0; counter < strlen(instruct->string); counter++) {    
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     instruct->checksum += instruct->string[counter];   
   }    
   return instruct;   
 }    
       
 void printmessage(datastruct * todisp) {    
   printf(“This structure has a checksum of %d.  Its string is:\n” ,   
          todisp->checksum);   
   puts(todisp->string);   
 }    
 
 Now, compile and run the program. This time, when you run it, you won’ t be running it inside gdb; it will be running on its own:   
 
 $ gcc -ggdb3 -o ch10-4 ch10-4.c   
 $ ./ch10-4   
 Enter a string, or leave blank when done: Hi!   
 Enter a string, or leave blank when done: I  like L inux.   
 Enter a string, or leave blank when done: How are you today?   
 Enter a string, or leave blank when done: Enter   
 This structure has a checksum of -1541537728.  Its string is:   
 Segmentation fault (core dumped)   
 

 
Obviously, something is seriously wrong here. Because the printed checksum is incorrect, the program crashed. To see what 
happened, the first thing you should do is load the core file into gdb. You do this as follows: 

 
 
 
 $ gdb ch10-4 core   
 GNU gdb 4.18   
 Copyright 1998 Free Software Foundation, Inc.   
 GDB is free software, covered by the GNU General Public License, and you are   
 welcome to change it and/or distribute copies of it under certain conditions.   
 Type “show copying”  to see the conditions.   
 There is absolutely no warranty for GDB.  Type “show warranty”  for details.   
 This GDB was configured as “ i686-pc-linux-gnu” ...   
 Core was generated by `./ch10-4’ .   
 Program terminated with signal 11, Segmentation fault.   
 Reading symbols from /lib/libc.so.6...done.   
 Reading symbols from /lib/ld-linux.so.2...done.   
 #0  0x8048686 in printmessage (todisp=0x0) at ch10-4.c:49   
 49        printf(“This structure has a checksum of %d.  Its string is:\n” ,   
 

 
Already, you have some clues to determine the problem. The debugger notes that the program crashed from a segmentation fault, 
and that it can trace the problem to a call to printf(). This is already more information than you may sometimes have, but I’ ll go 
into more detail. 

 

 
 

 
From here, a good first step is to find out exactly where in the program the system was prior to the crash. You can do this by 
getting a stack backtrace using either the bt or info stack commands. The following example shows the output: 

 
 
 
 (gdb) bt   
 #0  0x8048686 in printmessage (todisp=0x0) at ch10-4.c:49   
 #1  0x804858e in main () at ch10-4.c:24   
 

 
Here, gdb is telling you what the last line to be executed in each function is. The interesting one is in frame zero (the frame 
numbers are on the left), on line 49. This is the line highlighted by gdb in the above example. 

 
 
 

 
Something else is interesting. Notice that it says todisp is zero when printmessage() was called. Because todisp is a pointer, it 
should never be zero. You can verify its state by using print: 

 
 
 
 (gdb) pr int todisp   
 $1 = (struct TAG_datastruct * ) 0x0   
 

 
So, now you have deduced that the problem is not with printmessage(), but rather with its invocation. To examine its call in 
main(), you need to change the active stack frame to frame 1, which is in main(): 
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 (gdb) frame 1   
 #1  0x804858e in main () at ch10-4.c:24   
 24        printmessage(svalues[maxval *  2]);   
 

 
Now in frame 1, you can examine the variables in main(). Here, you should look at several variables to ensure that they seem 
valid: 

 
 
 
 (gdb) print counter    
 $2 = 3   
 (gdb) print maxval   
 $3 = 2   
 (gdb) print svalues[1]   
 $4 = (struct TAG_datastruct * ) 0x8049b00   
 (gdb) print *svalues[1]   
 $5 = { string = 0x8049b10 “ I like Linux.” , checksum = 1132}    
 
 Thus far, everything is in order. Now look at the value that is being passed in to printmessage():   
 
 (gdb) pr int svalues[maxval *  2]   
 $6 = (struct TAG_datastruct * ) 0x0   
 
 There is a definite problem there! This time, take another look at svalues, dereferencing the pointer:   
 
 (gdb) pr int *svalues[maxval *  2]   
 Cannot access memory at address 0x0.   
 

 
Now you have pinpointed the problem. The expression svalues[maxval *  2] is looking outside the range of those items in svalues 
that already had pointers stored. 

 
 
 

 
Although this kind of analysis of core dumps can be extremely useful, it is not foolproof. If the stack was corrupted before the 
program completely crashed, you may not be able to get much useful data at all. In those cases, you are probably limited to tracing 
through the program. However, in many cases, core dump analysis can prove quite useful. 

 

 
 

 
Here’s a look at another program. This is the example from the printing and displaying data section in this chapter. Consider two 
separate invocations of the program: 

 
 
 
 $ ./ch10-2   
 Enter a string, or leave blank when done: Hello!   
 Enter a string, or leave blank when done: I enjoy Linux.   
 Enter a string, or leave blank when done: Gdb is interesting!   
 Enter a string, or leave blank when done: Enter   
 This structure has a checksum of 1260.  Its string is:   
 I enjoy Linux.   
 $ ./ch10-2    
 Enter a string, or leave blank when done: Enter   
 Segmentation fault (core dumped)   
 

 
The program crashed after the second invocation. You can load up gdb to find out what happened. After doing so, you can 
formulate a fix. Start by loading the program in gdb: 

 
 
 
 $ gdb ch10-2 core   
 GNU gdb 4.18   
 Copyright 1998 Free Software Foundation, Inc.   
 GDB is free software, covered by the GNU General Public License, and you are   
 welcome to change it and/or distribute copies of it under certain conditions.   
 Type “show copying”  to see the conditions.   
 There is absolutely no warranty for GDB.  Type “show warranty”  for details.   
 This GDB was configured as “ i686-pc-linux-gnu” ...   
 Core was generated by `./ch10-2’ .   
 Program terminated with signal 11, Segmentation fault.   
 Reading symbols from /lib/libc.so.6...done.   
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 Reading symbols from /lib/ld-linux.so.2...done.   
 #0  0x8048696 in printmessage (todisp=0x0) at ch10-2.c:49   
 49        printf(“This structure has a checksum of %d.  Its string is:\n” ,   
 

 
As before, start with a backtrace. Notice, though, where gdb says todisp=0x0; this is a clue that some invalid value got passed in to 
the printmessage() function: 

 
 
 
 (gdb) bt   
 #0  0x8048696 in printmessage (todisp=0x0) at ch10-2.c:49   
 #1  0x804859e in main () at ch10-2.c:24   
 
 Indeed, the suspicions are confirmed. Switch to frame number 1 and get some context:   
 
 (gdb) frame 1   
 #1  0x804859e in main () at ch10-2.c:24   
 24        printmessage(svalues[maxval / 2]);   
 (gdb) list   
 19          svalues[counter] = getinput();   
 20          if (!svalues[counter]) break;   
 21          maxval = counter;   
 22        }    
 23           
 24        printmessage(svalues[maxval / 2]);   
 25           
 26        return 0;   
 27      }    
 28   
 

 
The debugger obligingly displays a list of the code surrounding the call to printmessage(). At this point, take a look at the values of 
the variables involved in the call to that function: 

 
 
 
 (gdb) pr int maxval   
 $1 = 0   
 (gdb) pr int svalues[maxval / 2]   
 $2 = (struct TAG_datastruct * ) 0x0   
 

 

From this, you can see that maxval is set to zero, which is not incorrect. In fact, this can happen legitimately if the user supplies 
only one line of input; that intput will have an index of zero. However, the problem is that maxval also is set to zero if there is no 
input at all. Because of this, you can’ t test maxval to see whether or not a result should be displayed. One solution to this dilemma 
is to initialize maxval to -1. This will never be a value that you will see as an array index, so there is no chance of it being 
mistaken for a legitimate index into your array. With that in mind, you can test maxval to see whether or not you ought to print out 
some data. Listing 10-3 shows a version of the code with this fix. 

 

 
 
 Listing 10-3: Fixed example code   
 
 #include <stdio.h>   
 #include <stdlib.h>   
 #include <string.h>   
       
 /*  ch10-2.c: Fixed version of the code. */   
       
 typedef struct TAG_datastruct {    
   char *string;   
   int checksum;   
 }  datastruct;   
       
 datastruct *getinput(void);   
 void printmessage(datastruct * todisp);   
       
 int main(void) {    
   int counter;   
   int maxval = -1;   
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   datastruct *svalues[200];   
      
   for (counter = 0; counter < 200; counter++) {    
     svalues[counter] = getinput();   
     if (!svalues[counter]) break;   
     maxval = counter;   
   }    
       
   if (maxval > -1) {     
     printmessage(svalues[maxval / 2]);   
   }  else {    
     printf(“No input received; nothing to display.\n” );   
   }    
      
   return 0;   
 }    
       
 datastruct *getinput(void) {    
   char input[80];   
   datastruct * instruct;   
   int counter;   
      
   printf(“Enter a string, or leave blank when done: “);   
   fgets(input, 79, stdin);   
   input[strlen(input)-1] = 0;   
   if (strlen(input) == 0)   
     return NULL;   
   instruct = malloc(sizeof(datastruct));   
   instruct->string = strdup(input);   
   instruct->checksum = 0;   
   for (counter = 0; counter < strlen(instruct->string); counter++) {    
     instruct->checksum += instruct->string[counter];   
   }    
   return instruct;   
 }    
       
 void printmessage(datastruct * todisp) {    
   printf(“This structure has a checksum of %d.  Its string is:\n” ,   
          todisp->checksum);   
   puts(todisp->string);   
 }    
 
 If you run this code now, you’ ll notice no problems at all:   
 
 $ ./ch10-2   
 Enter a string, or leave blank when done: Hello!   
 Enter a string, or leave blank when done: I  enjoy L inux.   
 Enter a string, or leave blank when done: Gdb is interesting!   
 Enter a string, or leave blank when done: Enter   
 This structure has a checksum of 1260.  Its string is:   
 I enjoy Linux.   
 $ ./ch10-2   
 Enter a string, or leave blank when done: Enter   
 No input received; nothing to display.  
Command Summary   
 

 
The gdb debugger contains a large assortment of commands available for your use. You can find information about these 
commands while in gdb by using the help command. For your benefit, many of the most useful commands are listed in Table 10-2, 
along with their syntax and a description of their purpose and use. 

 

 
 
 Table 10-2:  gdb Debugger  Commands   
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 Command   

 
Arguments   

  
Descr iption   

 

 
     
 
 Attach   

 
Filename  
PID 

 
 

 
 
Attaches to the specified process or the specified file for debugging 
purposes 

 
 

 

 
 Awatch   

 
expression    

 
Interrupts your program whenever the given expression is 
accessed—that is, whenever it is either read from or written to. 

 
 

 

 
 break | hbreak   

 
Line-number  
 
Function-name 
*Address 

 

 

 

 
Causes program execution to be interrupted at the specified location, 
which may be a line number, a function name, or an address 
preceded by an asterisk. If the command specified is hbreak, then it 
requests hardware support for the breakpoint. This support is not 
necessarily available on all platforms. 

 

 

 

 
 Bt   

 
[full]   

 

 
Displays a listing of all stack frames active at the present time. If full 
is specified, local variables from each frame present are also 
displayed. You can interact with a given frame by using the frame 
command. 

 

 

 

 
 Call   

 
function   

 

 
Performs a call to the specified function in your program. The 
arguments should be the function name along with the parameters, if 
necessary, using the syntax of the language of the program being 
debugged. 

 

 

 

 
 catch catch   

 
[exception]    

 
Causes program execution to be interrupted when the named 
exception is caught, or when any exception is caught if the name is 
omitted. 

 

 

 

 
 catch exec   

 
    

 
Causes program execution to be interrupted when the program 
attempts to call a member of the exec series of functions. 

 
 

 

 
 catch exit   

 
    

 
Causes execution to be interrupted when a process is almost ready to 
exit. 

 
 

 

 
 catch fork   

 
   

  
Causes execution to be interrupted when there is a call to fork().   

 

 
 catch signal   

 
[name]    

 
Causes program execution to be interrupted when the specified 
signal name is received by the program. If no signal name is 
specified, it interrupts execution when any signal is received. 

 

 

 

 
 catch start   

 
    

 
Causes process execution to be interrupted when a new process is 
about to be created. 

 
 

 

 
 catch stop   

 
    

 
Causes the execution to be interrupted (as it were) just prior to the 
program’s termination. 

 
 

 

 
 catch throw   

 
[exception]    

 
Causes process execution to be interrupted when some code throws 
an exception. If a specific exception is named, it only has this effect 
when the thrown exception is the one being watched for. 

 

 

 

 
 catch vfork   

 
   

  
Interrupts the program’s execution when vfork() is called.   

 

 
 cd   

 
directory    

 
Changes the current working directory for both the debugger and the 
program being debugged to the indicated directory. 

 
 

 

 
 clear   

 
[Line-Number]  
 
[Function-Name] 

 
 

 
Removes the breakpoint from the specified location. If no location is 
specified, it removes any breakpoints set for the current line of the 
program’s execution. 
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[*Address]  
 
 commands   

 
[number]  
 
(see description) 

 

 

 

 
Lists gdb commands to be executed when the specified breakpoint is 
hit. If no breakpoint is specified, it applies to the most recently set 
breakpoint. See gdb’s help commands option for details on 
specifying the list of commands to gdb. 

 

 

 

 
 condition   

 
number expression   

 

 
Applies the specified expression as a condition to the breakpoint 
with the number specified. When this syntax is used, the breakpoint 
only causes execution interruption if the given expression evaluates 
to true when the breakpoint is encountered. 

 

 

 

 
 continue   

 
[count]   

 

 
Causes the program execution to continue until another event is 
encountered to interrupt such execution. If the optional count is 
specified, it causes the breakpoint (if any) that caused the last 
execution interruption to be ignored for the specified number of 
iterations over it. 

 

 

 

 
 delete breakpoints   

 
[number [number 
...]] 

 
 

 
 
Deletes the specified breakpoints, or all breakpoints if no breakpoint 
numbers are specified 

 
 

 

 

 
delete  
display 

 
 

 
[number [number 
...]] 

 
 

 
 
Deletes the specified display requests, or all such requests if no 
numbers are specified. 

 
 

 

 

 
delete  
tracepoints 

 
 

 
[number [number 
...]] 

 
 

 
 
Deletes the specified tracepoints, or all tracepoints if no numbers are 
specified. 

 
 

 

 
 detach   

 
    

 
Causes gdb to detach from a process, which proceeds to execute 
normally. If gdb is debugging a file, gdb proceeds to ignore the file. 

 
 

 

 
 directory   

 
directory    

 
Indicates that the specified directory should be added to the 
beginning of the search path used for locating files containing source 
code for the program being debugged. 

 

 

 

 

 
disable <breakpoints 
| display 
| tracepoints> 

 

 

 
[number [number 
...]] 

 
 

 

 
Prevents the specified item from being acted upon, or all items of the 
specified type if the number is omitted. 

 
 

 

 
 display   

 
expression    

 
Like print, but causes the expression to be displayed each time the 
execution stops and returns control to gdb. 

 
 

 

 
 enable   

 
[number [number ... 
]] 

 
 

 
 
Enables the specified breakpoints (after a prior disable command), 
or all breakpoints if no numbers are specified. 

 
 

 

 
 enable delete   

 
[number [number 
...]] 

 
 

 
 
Enables the specified breakpoint (or all breakpoints), but it will be 
deleted after the breakpoint is triggered once. 

 
 

 

 

 
enable <display | 
tracepoints> 

 
 

 
[number [number 
...]] 

 
 

 

 
Re-enables the specified display or tracepoint items, after a prior 
disable command. If no numbers are specified, all display or 
tracepoint items will be re-enabled. 

 

 

 

 
 enable once   

 
number [number ...]    

 
Enables specified breakpoint for one encounter. When the 
breakpoint is triggered, it becomes disabled again automatically. 

 
 

 

 
 finish   

 
    

 
Continues execution until a breakpoint is encountered or the current 
function returns to its caller. 

 
 

 

 
 frame   

 
number    

 
Selects the specified stack frame for examination or manipulation. 
See the bt command to find out the numbers available. 

 
 

 

 
 help   

 
[topic [topic...]]   

  
Displays help, optionally on a specific (specified) topic.   
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 info   name   Displays information about the debugger and the program being 
debugged. See help info inside gdb for a listing of the information 
that can be displayed. 

 

 
 
 list   

 
- 
 
[File:]Line- Number 
 
[File:]Function- 
Name 
 
*Address 

 

 

 

 
Displays specified lines of source code. With no arguments, it 
displays at least ten lines after the most recently displayed source 
code line. With a single dash, it displays ten lines prior to the 
preceeding display. With one argument, specifying a line number, 
function name, or address, it begins display at that location and 
continues for approximately ten lines. Two arguments, each of those 
types, indicate start and end ranges; the output could span more than 
ten lines in this case. Either the line number or the function can be 
preceeded by a filename and a colon. 

 

 

 

 
 next   

 
[count]   

 

 
Causes the program to step through a line (as with the step 
command). However, unlike step, called functions are executed 
without being traced into. The optional argument is a repeat count 
and defaults to one. 

 

 

 

 
 print   

 
expression    

 
Displays the result from evaluating the specified expression. A 
typical usage is to display the contents of variables. 

 
 

 

 
 printf   

 
format, [expression 
[.expression]] 

 
 

 

 
Displays information using the syntax of printf() in C. The 
arguments are the format string and then any necessary arguments, 
separated by commas. 

 

 

 

 
 ptype   

 
type   

  
Displays the type of the indicated element.   

 

 
 pwd   

 
    

 
Displays the current working directory of your process being 
debugged, which is also the current working directory of gdb. 

 
 

 

 
 quit   

 
   

  
Exits the gdb debugger.   

 

 
 run   

 
[command-line 
arguments] 

 
  

 
Starts executing the program to be debugged. If any arguments are 
specified, they are passed to the program as command-line 
arguments. The run command understands wildcards and I/O 
redirection, but not piping. 

 

 

 

 
 set   

 
variable-name value    

 
Sets the specified internal gdb variable to the indicated value. For a 
list of the variables that can be set, use help set in gdb. 

 
 

 

 
 set variable   

 
variable-name value   

  
Sets the specified program variable to the indicated value.   

 

 
 show   

 
name    

 
Displays the item requested by the argument. For a complete list, use 
help show in gdb. 

 
 

 

 
 until   

 
[File:]Linux- 
Number] 
 
[[File:] Function-
Name]  
 
[*Address] 

 

 

 

 
Continues execution until the program reaches a source line greater 
than the current one. If a location is specified (using the same syntax 
as break), execution continues until that location is reached. 

 

  

 
 x   

 
/CountType [Size] 
Address 

 
  

 
Displays a dump of memory at the specified address, showing a 
certain number of elements of the specified type. For details, type 
help x from inside gdb or see the Examining Memory section in this 
chapter. 

 

 

 

 
 xbreak   

 
Function-name 
 
*Address 

 

 

 

 
Sets a breakpoint to trigger on exit from the function with the 
specified name or address. 
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In this chapter, you were introduced to many gdb commands. There remain yet more commands that you can use while debugging 
your programs. If you require more details about these commands, you may consult the documentation internal to gdb (with the help 
command) or the info documentation provided with gdb.  

Summary   
 
 In this chapter, you learned how to use gdb to find bugs in your code. Specifically, you learned:   
 
  •  Tracking down bugs in code can be difficult. The GNU Debugger, gdb, is a tool that you can use to make the task much easier.   
 

  
• 

 
You can use gdb as a tool to step through your code, often line-by-line. When you invoke gdb, you simply tell it the name of 
the program to be debugged, and it will load it into the debugger. 

 
 
 

  
• 

 
You can use the break command to set a breakpoint, which is a location at which the debugger interrupts program execution so 
you may inspect the program. One thing to do when debugging from the start of the progam is to set a breakpoint at the main() 
function, with the command break main. 

 

 
 
  •  You also can use tbreak to set a temporary breakpoint, one that is deleted automatically after it has been triggered once.   
 

  
• 

 
You can examine the contents of your variables by using the print command. The display command is similar, although 
display asks the debugger to display the result of the expression each time execution is interrupted instead of once only. 

 
 
 

  
• 

 
The step and next commands enable you review your code one line at a time. They differ in that the next command executes 
your functions without stepping into them. 

 
 
 

  
• 

 
You use the bt command to obtain a stack backtrace. This is particularly useful when working with core dumps or attaching to 
an already-running process. 

 
 
 

  
• 

 
You can set watches with the watch command. Watchpoints interrupt execution when the value of an expression changes. 
Beware of scope issues, though. 

 
 
 

  
• 

 
You use the continue command to ask the program to resume execution after it was interrupted, perhaps by a breakpoint or a 
watchpoint. 

 
 
 

  
• 

 
Linux can dump useful information about a crash to a file called core when a program crashes. The debugger can use this file 
to help you piece together why the program crashed. 

 
 
 

  
• 

 
In addition to the commands discussed in this chapter, gdb has a wide array of commands that you can use. Many are highlighted 
in Table 10-2. Also, you can get information on gdb from its help command.  
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Par t I I I :  The L inux Model   
 
 Chapter  L ist   
 
  Chapter  11:  Files, Director ies, and Devices   
 
  Chapter  12:  Processes in L inux   
 
  Chapter  13:  Understanding Signals   
 
  Chapter  14:  Introducing the L inux I /O System   
 
  Chapter  15:  Looking at Terminals   
 
      
Chapter  11: Files, Director ies, and Devices   
 
 Overview   
 

 
Linux provides a powerful concept of access to data, one that is probably not new to you but has some new twists. In Linux, access 
to virtually any aspect of the system, ranging everywhere from on-disk files to scanners, is accomplished through the file and 
directory structure. The idea is to make it possible for you to access as much as possible through a single, unified interface. 

 

 
 

 

In this chapter, you’ ll first find out how Linux manages your files so that you can understand what information is available and how 
to ask for it. After that, you will learn about the different input/output systems available on Linux, the similarities and differences 
between them, and when to use each. Finally, you will learn about “special”  files—things that may look like a file but really represent 
something entirely different.  

The Nature of Files   
 

 

The Linux operating system organizes your data into a system of files and directories. This system is, at the highest level, much the 
same as that used in other operating systems, even though Linux has its own terminology (for instance, “directories”  in Linux 
mean the same thing as “ folders”  in Windows). If you have used other UNIX systems, you may already be familiar with the 
terminology used with Linux as it is essentially the same as that used for other UNIX operating systems. As with any modern 
operating system, your programs can open, read from, write to, close, and modify files. By using the appropriate system calls, you 
can do the same for directories. 

 

 
 

 
What about the devices on your Linux system, though? How could a program communicate with a scanner to bring in images? 
How would a sound editor play your files on your sound card? How does a disk partitioning utility talk to your hard drive? 

 
 
 

 
The answer to all of these questions lies in the special files in your Linux file system. With Linux, you can use a single set of 
system calls, and thus a single interface, for basic file access, scanner access, hard drive access, Internet communication, 
communication with pipes and FIFOs, printer access, and many more functions. 

 

 
 

 
Fundamentally, three items relate to the treatment of files in Linux. These are the directory structure, the inode, and the file’s data 
itself. 

 
 
 

 
The directory structure exists for each directory on the system. This structure contains a list of the entries in the directory. Each 
entry contains a name and an inode number. The name enables access from programs, and the inode number provides a reference 
to information about the file itself. 

 

 
 

 

The inode holds information about the file. It does not hold the file’s name or directory location, given that these details are part of 
the directory structure. Rather, the inode holds information such as the permissions of the file, the owner of the file, the file size, 
the last modified time for the file, the number of hard links to the file, quota information about the file, special flags relating to the 
file, and many other details. Because Linux permits hard links to files, which essentially allow multiple filenames to refer to a 
single block of data on disk, putting the filename in the inode just doesn’ t make sense, because multiple filenames may reference 
the same inode. 

 

 
 

 
The third area, the file’s data, is in a location (or locations) specified in the inode. Some file system entries, such as FIFOs and 
device special files, do not have a data area on the disk. Both files and directories do have data areas. 

 
 
 

 
Your programs can get information from the directory structure by using the opendir() functions. The stat() system call is used to 
get information from an inode. The file’s data can be accessed through normal file operation functions such as fgets() and open(). 
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Finally, if you are dealing with a symbolic link, readlink() can give you the location it points to.  
 
 stat() and lstat()   
 

 

The stat() and lstat() functions provide the primary interface to the information stored in the inode information for a file. They fill a 
structure of type struct stat with information. The fields of this structure are defined in the stat(2) manpage. If you include 
sys/stat.h, you also get access to macros used for interpreting that data. The program in Listing 11-1 displays all data provided by 
these functions. 

 

 
 

 
The difference between the two functions is that lstat() will not follow a symbolic link, instead returning information about the link 
itself. The stat() function, on the other hand, will trace symbolic links until the end of the chain, as most functions do. The code in 
Listing 11-1 uses both functions. 

 

 
 
  Note  Listing 11-1 is available online.   
 
 Listing 11-1: Demonstration of stat() and lstat(): ch11-1.c   
 
 #include <stdio.h>   
 #include <sys/stat.h>   
 #include <unistd.h>   
 #include <errno.h>   
 #include <stdarg.h>   
 #include <time.h>   
 #include <limits.h>   
       
 void printinfo(const struct stat sbuf, const char *name);   
 void pline(const char *desc, const char * fmt, ...);   
 void pbool(const char *desc, int cond);   
 char *myctime(const time_t * timep);   
       
 int main(int argc, char *argv[]) {    
   struct stat sbuf;   
    
   if (argc != 2) {    
     printf(“Syntax: %s filename\n” , argv[0]);   
     return(1);   
   }    
       
   /*  First, look at the file.  If it’ s a link, gives information about   
      the link. * /   
       
   printf(“ Information for file %s:\n\n” , argv[1]);   
   if (lstat(argv[1], &sbuf) == -1) {    
     perror(“ lstat failed” );   
     return(2);   
   }    
       
   printinfo(sbuf, argv[1]);   
       
   if (S_ISLNK(sbuf.st_mode)) {    
     printf(“ \n-----------------------------------\n” );   
     printf(“ Information for file pointed to by link\n\n” );   
       
     if (stat(argv[1], &sbuf) == -1) {    
       perror(“stat on link failed” );   
       return(3);   
     }    
       
     printinfo(sbuf, “ ” );   
   }    
 
   return 0;   
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 }    
       
 void printinfo(const struct stat sbuf, const char *name) {    
   pline(“Device” , “%d” , sbuf.st_dev);   
   pline(“ Inode” , “%d” , sbuf.st_ino);   
   pline(“Number of hard links” , “%d” , sbuf.st_nlink);   
   pbool(“Symbolic link” , S_ISLNK(sbuf.st_mode));   
   if (S_ISLNK(sbuf.st_mode)) {    
     char linkname[PATH_MAX * 2];   
     int length;   
       
     length = readlink(name, linkname, sizeof(linkname) - 1);   
     if (length == -1) {    
       perror(“readlink failed” );   
     }    
       
     linkname[length] = 0;   
     pline(“Link destination” , linkname);   
   }    
       
   pbool(“Regular file” , S_ISREG(sbuf.st_mode));   
   pbool(“Directory” , S_ISDIR(sbuf.st_mode));   
   pbool(“Character device” , S_ISCHR(sbuf.st_mode));   
   pbool(“Block device” , S_ISBLK(sbuf.st_mode));   
   pbool(“FIFO”, S_ISFIFO(sbuf.st_mode));   
   pbool(“Socket” , S_ISSOCK(sbuf.st_mode));   
       
   printf(“ \n” );   
       
   pline(“Device type” , “%d” , sbuf.st_rdev);   
   pline(“File size” , “%d” , sbuf.st_size);   
   pline(“Preferred block size” , “%d” , sbuf.st_blksize);   
   pline(“Length in blocks” , “%d” , sbuf.st_blocks);   
   pline(“Last access” , “%s” , myctime(&sbuf.st_atime));   
   pline(“Last modification” , “%s” , myctime(&sbuf.st_mtime));   
   pline(“Last change” , “%s” , myctime(&sbuf.st_ctime));   
    
   printf(“ \n” );   
       
   pline(“Owner uid” , “%d” , sbuf.st_uid);   
   pline(“Group gid” , “%d” , sbuf.st_gid);   
   pline(“Permissions” , “0%o” , sbuf.st_mode &   
        (S_ISUID | S_ISGID | S_ISVTX | S_IRWXU | S_IRWXG | S_IRWXO));   
   pbool(“setuid” , sbuf.st_mode & S_ISUID);   
   pbool(“setgid” , sbuf.st_mode & S_ISGID);   
   pbool(“sticky bit” , sbuf.st_mode & S_ISVTX);   
   pbool(“User     read permission” , sbuf.st_mode & S_IRUSR);   
   pbool(“User    write permission” , sbuf.st_mode & S_IWUSR);   
   pbool(“User  execute permission” , sbuf.st_mode & S_IXUSR);   
   pbool(“Group    read permission” , sbuf.st_mode & S_IRGRP);   
   pbool(“Group   write permission” , sbuf.st_mode & S_IWGRP);   
   pbool(“Group execute permission” , sbuf.st_mode & S_IXGRP);   
   pbool(“Other    read permission” , sbuf.st_mode & S_IROTH);   
   pbool(“Other   write permission” , sbuf.st_mode & S_IWOTH);   
   pbool(“Other execute permission” , sbuf.st_mode & S_IXOTH);   
       
 }    
       
 void pline(const char *desc, const char * fmt, ...) {    
   va_list ap;   
       
   va_start(ap, fmt);   
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   printf(“%30s: “ , desc);   
   vprintf(fmt, ap);   
   printf(“ \n” );   
 }    
       
 void pbool(const char *desc, int cond) {    
   pline(desc, cond ? “Yes”  : “No”);   
 }    
       
 char *myctime(const time_t * timep) {    
   char *retval;   
       
   retval = ctime(timep);   
       
   retval[strlen(retval) - 1] = 0; /*  strip off trailing \n * /   
   return (retval + 4);             /*  strip off leading day of week * /   
 }    
 

 
Before you run this code, I’d like to make some observations about the code itself. First, the pline() function uses the variable 
argument list support in C, which is why it looks somewhat strange if you haven’ t used that support before. Also, perror() is 
simply a function that displays the supplied error text and then the reason for the error. 

 

 
 
     
 
Cross-Reference  
 
 You can find details about the pline() function in Chapter 14, “ Introducing the Linux I/O.”    
 
     
 

 
When the program begins, it first runs lstat() on the supplied file. If this call to lstat() is successful, the information for that file is 
printed. If the supplied filename was a symbolic link, the program runs stat()on it and then displays the information for the file 
pointed to by the link. 

 

 
 

 

The printinfo() function is responsible for displaying the information retrieved from the stat() or lstat() call. It starts by printing out 
some numbers. Then, if the file is a symbolic link, readlink() is run on it to get the destination of the link, which is then displayed. 
Then, parts of the st_mode field in the structure are displayed. This field is a big bitfield, meaning that you can use binary AND 
operations to isolate individual parts. The S_IS* macros are effectively isolating parts, and this is done manually later on. The 
stat(2) manpage indicates the actual values of each of these, but you are encouraged to use the macros whenever possible to ensure 
future compatibility and portability. 

 

 
 

 

After displaying the times, owner, and group, the code again displays information gathered from st_mode. You can see it pick out 
a permission number in the same format that you can supply to chmod. Then, it isolates each individual permission bit and 
displays it for you. For instance, the value sbuf.st_mode & S_IRUSR will evaluate to true if the user read permission bit is set, or 
false if it is not. From the code example, you can see exactly how to find out all of this information for your own programs. 

 

 
 

 
Let’s take a look at some examples of the type of data that the program can generate. First, here’s the result when looking at a 
plain file from /etc: 

 
 
 
 $ ./ch11-1 /etc/expor ts   
 Information for file /etc/exports:   
       
                         Device: 770   
                          Inode: 36378   
           Number of hard links: 1   
                  Symbolic link: No   
                   Regular file: Yes   
                      Directory: No   
               Character device: No   
                   Block device: No   
                           FIFO: No   
                         Socket: No   
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                    Device type: 0   
                      File size: 115   
           Preferred block size: 4096   
               Length in blocks: 2   
                    Last access: Jun  3 13:31:41 1999   
              Last modification: Oct  4 22:34:01 1998   
                    Last change: Jun  2 19:27:17 1999   
       
                      Owner uid: 0   
                      Group gid: 0   
                    Permissions: 0644   
                         setuid: No   
                         setgid: No   
                     sticky bit: No   
       User     read permission: Yes   
       User    write permission: Yes   
       User  execute permission: No   
       Group    read permission: Yes   
       Group   write permission: No   
       Group execute permission: No   
       Other    read permission: Yes   
       Other   write permission: No   
       Other execute permission: No   
 

 

From this output, you can observe many interesting things about the file system. First, you get the device number. This is not often 
useful in user-mode programs, but one potential use is to determine whether two files are on the same file system. This can be 
useful because certain operations, such as moving files with rename() or setting a hard link, only work if both files are on the same 
file system. Comparing these values from two different files can tell you whether you’re dealing with a single file system. 

 

 
 

 

Next, you get the inode number, which is of little immediate use but can be useful if you are looking at the file system at a low 
level. Then, you get the hard link count. In Linux, each directory entry that references this file is considered to be a hard link. 
Therefore, for a normal file, this value is typically 1. For directories, the value will always be at least 2. The reason is that each 
directory contains an entry named ., which is a hard link to itself, as well as an entry named .., which is a hard link to its parent. 
Therefore, because of the link to itself, each directory will have a hard link count of at least 2. If the directory has any 
subdirectories, the count will be greater because of the links to the parent in each subdirectory. 

 

 
 

 
The remaining lines in the first section indicate what type of file you are dealing with. In this case, it’s a regular file, so that is the 
only bit turned on. 

 
 
 

 

The next section displays some information about the file that you might sometimes get from ls. You get the file’s size and dates. 
The ls program uses the last modification value as its default date to display. The last change value refers to the date of the last 
modification to the inode itself (for instance, a change in ownership of the file). The last access corresponds to the last read from 
the file. 

 

 
 

 

The preferred block size has no implications for many programs. For regular file systems, though, it can be useful. This indicates 
that the system likes to perform input or output from the file in chunks of data of this size. Usually, your data will be of arbitrary 
size, and you will just ignore this value. However, consider a case in which you are copying data from one file to another file—
perhaps 200 megabytes of data. The operation is simple: read some data, write it out, and repeat until you have read and written all 
of the data. But how big of a buffer do you use? That is, how much data should you read and write with each call? Well, this value 
is telling you the answer—you should use a 4096-byte buffer, or perhaps some multiple of that value. 

 

 
 

 

The last block of text is for the permission settings on the file. The uid and gid values come from separate entries; all the other 
ones come from st_mode. The predefined macros for analyzing these entries are used here; you can conveniently test for read, 
write, and execute permissions for each of the three categories (user, group, and other). Also, there are macros to test for setuid, 
setgid, and the sticky bit. 

 

 
 

 
Now let’s take a look at an example that demonstrates both symbolic links and a block device. Listing 11-2 shows /dev/cdrom, 
which, on my system, is a symbolic link to /dev/hdc. 

 
 
 
  Note  Listing 11-2 is available online.   
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 Listing 11-2: Sample execution of ch11-1   
 
 $ ./ch11-1 /dev/cdrom   
 Information for file /dev/cdrom:   
       
                         Device: 770   
                          Inode: 53538   
           Number of hard links: 1   
                  Symbolic link: Yes   
               Link destination: hdc   
                   Regular file: No   
                      Directory: No   
               Character device: No   
                   Block device: No   
                           FIFO: No   
                         Socket: No   
       
                    Device type: 0   
                      File size: 3   
           Preferred block size: 4096   
               Length in blocks: 0   
                    Last access: Sep  4 07:25:24 1999   
              Last modification: Sep  4 07:25:24 1999   
                    Last change: Sep  4 07:25:24 1999   
       
                      Owner uid: 0   
                      Group gid: 0   
                    Permissions: 0777   
                         setuid: No   
                         setgid: No   
                     sticky bit: No   
       User     read permission: Yes   
       User    write permission: Yes   
       User  execute permission: Yes   
       Group    read permission: Yes   
       Group   write permission: Yes   
       Group execute permission: Yes   
       Other    read permission: Yes   
       Other   write permission: Yes   
       Other execute permission: Yes   
       
 -----------------------------------   
 Information for file pointed to by link   
       
                         Device: 770   
                          Inode: 52555   
           Number of hard links: 1   
                  Symbolic link: No   
                   Regular file: No   
                      Directory: No   
               Character device: No   
                   Block device: Yes   
                           FIFO: No   
                         Socket: No   
       
                    Device type: 5632   
                      File size: 0   
           Preferred block size: 4096   
               Length in blocks: 0   
                    Last access: Jun  2 13:38:47 1999   
              Last modification: Feb 22 21:42:19 1999   
                    Last change: Jun 18 12:09:31 1999   
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                      Owner uid: 0   
                      Group gid: 29   
                    Permissions: 0771   
                         setuid: No   
                         setgid: No   
                     sticky bit: No   
       User     read permission: Yes   
       User    write permission: Yes   
       User  execute permission: Yes   
       Group    read permission: Yes   
       Group   write permission: Yes   
       Group execute permission: Yes   
 
       Other    read permission: No   
       Other   write permission: No   
       Other execute permission: Yes   
 

 
Listing 11-2 shows several things. First of all, you see how the symbolic link is handled. The lstat() call provides information in 
st_mode that indicates that the file is a link, and then readlink() indicates its destination. 

 
 
 

  

Note 

 

However, note that the code does not run stat() on the information returned by readlink(). There are several 
reasons for that. First, note that the link did not have an absolute path in it. This is perfectly valid, and the 
operating system has no problem with this syntax. However, if you were to manually use this value, you would 
have to ensure that you either took care of the directory issue yourself or changed into the directory of the link 
before working with it. By using the first file, you avoid the problem. Furthermore, you can have multiple levels 
of symbolic links on a Linux system. The stat() call will go through all of them and display the results of the final 
destination. 

 

 
 

 

The final file, /dev/hdc in Listing 11-2, is a block special device file. This means that it corresponds to a special driver in the 
kernel, and accessing it means that you are accessing a particular device directly. In this case, it is an IDE device, but it could also 
correspond to a tape drive, SCSI port, scanner, or other such device. A block device is one whose communication is done in blocks 
of data, usually of a fixed size. For instance, a tape drive might require that all communication is done in chunks that are 1 kilobyte 
in size. A hard drive might require 512-byte blocks. The following code shows an example of the information that is given for a 
special file such as /dev/ttyS0: 

 

 
 
 $ ./ch11-1 /dev/ttyS0   
 Information for file /dev/ttyS0:   
       
                         Device: 770   
                          Inode: 53353   
           Number of hard links: 1   
                  Symbolic link: No   
                   Regular file: No   
                      Directory: No   
               Character device: Yes   
                   Block device: No   
                           FIFO: No   
                         Socket: No   
       
                    Device type: 1088   
                      File size: 0   
           Preferred block size: 4096   
               Length in blocks: 0   
                    Last access: Aug 15 14:03:27 1999   
              Last modification: Aug 15 14:06:24 1999   
                    Last change: Aug 15 14:06:27 1999   
       
                      Owner uid: 0   
                      Group gid: 20   
                    Permissions: 0660   
                         setuid: No   
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                         setgid: No   
                     sticky bit: No   
       User     read permission: Yes   
       User    write permission: Yes   
       User  execute permission: No   
       Group    read permission: Yes   
       Group   write permission: Yes   
       Group execute permission: No   
       Other    read permission: No   
       Other   write permission: No   
       Other execute permission: No   
 

 
The preceding output is an example of a character device, /dev/ttyS0—the first serial communications port on your system. Aside 
from the special appearance in the first section, this may appear to be a zero-byte file. However, reading from or writing to it will 
actually cause you to read from or write to your computer’s serial port! 

 

 
 
 The following program output presents the results of displaying the information about a directory:   
 
 $ ./ch11-1 /usr   
 Information for file /usr:   
       
                         Device: 773   
                          Inode: 2   
           Number of hard links: 17   
                  Symbolic link: No   
                   Regular file: No   
                      Directory: Yes   
               Character device: No   
                   Block device: No   
                           FIFO: No   
                         Socket: No   
       
                    Device type: 0   
                      File size: 1024   
           Preferred block size: 4096   
               Length in blocks: 2   
                    Last access: Jun  3 07:29:42 1999   
              Last modification: Aug 12 21:03:47 1999   
                    Last change: Aug 12 21:03:47 1999   
       
                      Owner uid: 0   
                      Group gid: 0   
                    Permissions: 0755   
                         setuid: No   
                         setgid: No   
                     sticky bit: No   
       User     read permission: Yes   
       User    write permission: Yes   
       User  execute permission: Yes   
       Group    read permission: Yes   
       Group   write permission: No   
       Group execute permission: Yes   
       Other    read permission: Yes   
       Other   write permission: No   
       Other execute permission: Yes   
 

 

The preceding output highlights an important facet of file system storage on Linux: a directory has an inode just like any other file. 
It also has data, just like any other file. The difference lies in the mode flag that tells the operating system that it is dealing with a 
directory (with specially formatted directory information) instead of just a normal file. The directory contents are written 
automatically by the operating system when the directory’s contents are modified—for instance, when files are created or deleted. 
It is not possible to manually modify a directory. However, one common requirement for programs is to be able to read 
information about a directory, which is described in the following section. 
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 opendir (), readdir (), and fr iends   
 

 

In order to read the contents of a directory, you need to open a directory handle. This is done by calling opendir() with the name of 
the directory you wish to examine. After calling this function, you can use many others to examine the directory. Chief among 
them is readdir(), which lets you retrieve directory entries one at a time. You can also use telldir(), which gives you a position in 
the directory. A companion to telldir() one is seekdir(), which lets you reposition inside the directory. The rewinddir() function 
returns to the beginning of the directory, and closedir() closes your directory handle. Finally, scandir() iterates over the directory 
structure, running one of your functions on each entry, much like standard file I/O calls. 

 

 
 

 
The following program enables you to go through a directory and display a listing similar to ls. This program is written in Perl, 
which offers the same functions for these things as C, with syntax that is quite similar. Its name is ch11-2.pl: 

 
 
 
 #!/usr/bin/perl -w   
       
 # Perl’s unless is an inverse if.  That is, unless(a) is the same as   
 # if (!(a)).   
       
 unless ($ARGV[0]) {    
   die “Must specify a directory.”    
 }    
       
 # -d is a Perl shorthand.  It does a stat() on the passed filename, and   
 # then looks at the mode.  If the filename is a directory, it returns true;   
 # if not, it returns false.   
       
 unless (-d $ARGV[0]) {    
   die “The filename supplied was not a directory.”    
 }    
       
 # This is the same as DIRHANDLE = opendir(“ filename”) in C.   
 # In C, you can use DIR *DIRHANDLE; to declare the variable.   
       
 opendir(DIRHANDLE, $ARGV[0]) or die “Couldn’ t open directory: $!” ;   
       
 # In C, readdir() returns a pointer to struct dirent, whose members are   
 # defined in readdir(3).  In Perl, returns one file in scalar context,   
 # or all remaining filenames in list context.   
       
 while ($filename = readdir(DIRHANDLE)) {    
   print “$filename\n” ;   
 }    
       
 closedir(DIRHANDLE);   
 
 To make this program executable, you need to use chmod. Go ahead and do that now, and then run it:   
 
 $ chmod a+x ch11-2.pl   
 $ ./ch11-2.pl /usr    
 .   
 ..   
 lost+found   
 bin   
 sbin   
 lib   
 doc   
 man   
 share   
 dict   
 games   
 include   
 info   
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 src   
 X11R6   
 local   
 openwin   
 i486-linuxlibc1   
 

 
There you have it—a basic usage of readdir(). The program was able to present you with a listing similar to ls of all files in the 
directory. Let’s take it a step farther and get a recursive listing of the directory. This means that a directory, and all its 
subdirectories, should be listed. Here’s the code for such a program: 

 

 
 
 #!/usr/bin/perl -w   
       
 # Perl’s unless is an inverse if.  That is, unless(a) is the same as   
 # if (!(a)).   
       
 unless ($ARGV[0]) {    
   die “Must specify a directory.”    
 }    
       
 # -d is a Perl shorthand.  It does a stat() on the passed filename, and   
 # then looks at the mode.  If the filename is a directory, it returns true;   
 # if not, it returns false.   
       
 unless (-d $ARGV[0]) {    
   die “The filename supplied was not a directory.”    
 }    
       
 dircontents($ARGV[0], 1);   
       
 sub dircontents{    
   my ($startname, $level) = @_;   
   my $filename;   
   local *DH;                # Ensure that the handle is locally-scoped   
       
 # This is the same as DH = opendir(“ filename”) in C.   
 # In C, you can use DIR *DH; to declare the variable.   
       
   unless(opendir(DH, $startname)) {    
     warn “Couldn’ t open directory $startname: $!” ;   
     return undef;   
   }    
       
   # In C, readdir() returns a pointer to struct dirent, whose members are   
   # defined in readdir(3).  In Perl, returns one file in scalar context,   
   # or all remaining filenames in list context.   
       
   while ($filename = readdir(DH)) {    
     print(‘  ‘  x (3 * ($level - 1)), “$filename\n” );   
     if ($filename ne ‘ .’  &&   
         $filename ne ‘ ..’  &&   
         ! -l “$startname/$filename” &&   
         -d “$startname/$filename”) {    
       dircontents(“$startname/$filename”, $level + 1);   
     }    
   }    
       
   closedir(DH);   
 }    
 

 
There are several important things to note about this code. First, you need to determine whether or not each file is a directory; you 
also need to see whether or not it should be descended into. At first, you might think that a simple call to -d is sufficient (or a call 
to stat() in C). However, this is not the case. The reason? Every directory has . and .. entries. If you continuously scan those, you’ ll 
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get in an endless loop, scanning the same directory over and over. Therefore, those special entries are excluded. Then, there is a 
problem with symbolic links. Recall that -d is equivalent to doing a stat() call, which follows links. If there is a symbolic link that 
points to ., for instance, then the same problem will arise as before: an endless loop. So, if the file is not a special one 
corresponding to the current directory or its parent, is not a symbolic link, and is a directory, then it is descended. Also, the 
previous fatal error of being unable to open a directory is transformed into a mere warning—if there is a problem, such as 
permission denied, somewhere along the tree, it’ s better to just ignore that part of the tree than to completely exit the program. 
This is what is done in the dircontents subroutine in the previous code, although this example also issues a warning.  

 

 

Also notice that the program adds $startname to the start of the filename whenever checking or descending into a directory. The 
reason is that the filename is always relative. So, for instance, if the person running the program is in a home directory and 
requests information about /usr, and the program encounters a directory named bin, it needs to ask for /usr/bin, not just bin—which 
would produce the bin directory in the user’s home directory. 

 

 
 

 
Running this revised version on /usr produces over 65,000 lines of output on my laptop; enough to fill over 900 pages with 
filenames. Listing 11-3 shows the revised version on a smaller directory area: /etc/X11. 

 
 
 
  Note  Listing 11-3 is available online.   
 
 Listing 11-3: Example processing /etc/X11   
 
 $ ./ch11-2.pl /etc/X11   
 .   
 ..   
 Xsession.options   
 Xresources   
    .   
    ..   
    xbase-clients   
 
    xterm   
    xterm~   
    xfree86-common   
    tetex-base   
 window-managers   
 fvwm   
    .   
    ..   
    system.warnings   
    update.warn   
    pre.hook   
    default-style.hook   
    system.fvwm2rc   
    init.hook   
    restart.hook   
    init-restart.hook   
    main-menu-pre.hook   
    main-menu.hook   
    menudefs.hook   
    post.hook   
 xinit   
    .   
    ..   
    xinitrc   
 wm-common   
    .   
    ..   
 xview   
    .   
    ..   
    textswrc   
    ttyswrc   
    text_extras_menu   
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 XF86Config   
 WindowMaker   
    .   
    ..   
    background.menu   
    menu.prehook   
    menu   
    menu.ca   
    menu.cz   
    menu.da   
    menu.de   
    menu.el   
    menu.es   
    menu.fi   
    menu.fr   
    menu.gl   
    menu.he   
    menu.hr   
    menu.hu   
    menu.it   
    menu.ja   
    menu.ko   
    menu.nl   
    menu.no   
    menu.pt   
    menu.ru   
    menu.se   
    menu.sl   
    menu.tr   
    menu.zh_CN   
    menu.zh_TW.Big5   
    plmenu   
    plmenu.dk   
    plmenu.fr   
    plmenu.hr   
    plmenu.zh_CN   
    wmmacros   
    menu.posthook   
    menu.hook   
    plmenu.da   
    plmenu.it   
    appearance.menu   
 Xsession   
 fonts   
    .   
    ..   
    100dpi   
       .   
       ..   
       xfonts-100dpi.alias   
    misc   
       .   
       ..   
       xfonts-base.alias   
       xfonts-jmk.alias   
    75dpi   
       .   
       ..   
       xfonts-75dpi.alias   
    Speedo   
       .   
       ..   
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       xfonts-scalable.scale   
    Type1   
       .   
       ..   
       xfonts-scalable.scale   
 xserver   
    .   
    ..   
    SecurityPolicy   
 XF86Config~   
 Xmodmap   
 Xserver   
 afterstep   
    .   
    ..   
    menudefs.hook   
 Xserver~   
 Xloadimage   
 window-managers~   
 

 
Listing 11-3 demonstrates how the program is able to descend into directories. Thanks to the level information passed along, it’s also 
possible to indent the contents of a directory to make a visually appealing output format.  

I /O Methods   
 

 

When you are performing input or output with files on a Linux system, there are two basic ways to do it in C: stream-based I/O or 
system call I/O. C++ also has a more object-oriented stream system, which is similar in basic purpose to the stream-based I/O in C. 
The stream-based I/O is actually implemented in the C library as a layer around the system call functions. The stream I/O adds 
additional features, such as formatted output, input parsing, and buffering to increase performance. 

 

 
 

 
However, for some tasks, you need to use system call I/O. For instance, if you are writing a network server, you need to use the 
system calls to at least establish your connection. Moreover, you often need to do the same when you need to work with select() or 
other advanced I/O tasks—generally, ones that deal with things other than files. 

 

 
 

 
How can you tell the difference? As a general rule, the stream functions have names beginning with an f, whereas the system call 
versions do not. For instance, you have fopen, fread, fwrite, and fclose as opposed to open, read, write, and close. Also, the stream 
functions deal with a FILE *  handle, whereas the system call versions deal with an integer file descriptor. 

 

 
 

 
As a note, this difference is only relevant for C and similar languages. Most languages do not provide two separate systems for 
doing I/O as is done with C. 

 
 
 
 Stream I /O   
 

 
This is the typical I/O system as you have learned with C in general. Stream-based I/O gives you access to the library’s extra 
functions for formatting output, such as fprintf(), and parsing input, such as fscanf(). Here’s a sample program: 

 
 
 
 #include <stdio.h>   
 #include <errno.h>   
       
 #define ITERATIONS 9000000   
       
 int main(void) {    
   int number;   
   char writestring[100];   
   int counter;   
   int size;   
   FILE *output;   
       
   printf(“Please enter a number: “ );   
   scanf(“%d” , &number);   
    
   number /= 2;   
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   printf(“Writing %d copies of %d to a file.\n” , ITERATIONS, number);   
   output = fopen(“ testfile” , “wb”);   
   if (!output) {    
     perror(“Can’ t open output file” );   
     exit(255);   
   }    
    
   sprintf(writestring, “%d” , number);   
   size = strlen(writestring);   
    
   for (counter = 0; counter < ITERATIONS; counter++) {    
     fwrite(writestring, size, 1, output);   
   }    
    
   fclose(output);   
   return 0;   
 }    
 

 

The stream I/O functions automatically create the output file if it doesn’ t exist. In this case, fopen() automatically creates the file if 
it does already exist. Then, several copies of a number are written out to the file. Note that no error-checking is done on the writes 
or the close, which is not something that you should let slip by in production code. When I time this execution, the program takes 
about seven seconds to run—this result will be important later when looking at system call I/O. 

 

 
 

 
One feature of stream I/O is that I/O is buffered—that is, the system call to actually carry out the operation isn’ t issued until a 
certain amount of data has been queued up, or a newline character is encountered. Because a system call can be expensive in terms 
of performance, this behavior can really help to speed up your program. 

 

 
 

 
However, it can also introduce some problems. You may want to make sure that your data is written out immediately. Or, if you 
need to mix system-call I/O with stream I/O in your program, you need to make sure that both are always written out immediately, 
or else the output may be mixed up. 

 

 
 

 
A function to use to do that is called fflush(). This function takes as a parameter a specific file handle, and it will completely carry 
out any pending I/O for your file handle. A flush is implicitly carried out for you whenever you try to read input, or when you 
write out a newline character. 

 

 
 
 System call I /O   
 

 
When you need to interact with the I/O subsystem on a lower level, you will need to use system call I/O. Usually, you will not 
need to do this when dealing with files or general I/O. However, when dealing with network sockets, devices, pipes, FIFOs, or 
other special types of communication, system call I/O may be the only reasonable way to work. 

 

 
 
 Here is a version of the previous program, rewritten to use system call I/O for actually writing out to a file:   
 
 #include <stdio.h>   
 #include <errno.h>   
 #include <sys/types.h>   
 #include <sys/stat.h>   
 #include <fcntl.h>   
 #include <unistd.h>   
       
 #define ITERATIONS 9000000   
       
 int main(void) {    
   int number;   
   char writestring[100];   
   int counter;   
   int size;   
   int output;   
       
   printf(“Please enter a number: “ );   
   scanf(“%d” , &number);   
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   number /= 2;   
    
   printf(“Writing %d copies of %d to a file.\n” , ITERATIONS, number);   
   output = open(“ testfile” , O_CREAT | O_TRUNC);   
   if (!output) {    
     perror(“Can’ t open output file” );   
     exit(255);   
   }    
    
   sprintf(writestring, “%d” , number);   
   size = strlen(writestring);   
    
   for (counter = 0; counter < ITERATIONS; counter++) {    
     write(output, writestring, size);   
   }    
    
   close(output);   
   return 0;   
 }    
 

  
Note 

 
Notice that the parts of the program that interact with the user are still written to use stream I/O. Using stream I/O 
for these tasks is much easier because you get the convenience of using calls such as printf() to format your 
output. 

 

 
 

 

The code looks quite similar to that which used stream I/O. A file is opened, data is written to it in a loop, and then the file is 
closed. The difference is that this example uses the system call I/O functions instead of the stream I/O functions. For a simple 
program like this, there is really no reason to go this route, but you can see that the basic idea is the same, even if the functions are 
different. 

 

 
 

 
Because there is no buffering before making a system call when you use this type of I/O, the performance of this program is quite 
a bit worse. In fact, it takes almost three times as long to run with system call I/O as it does with stream I/O. The lesson: stream 
I/O gives you performance benefits in many cases, if it is versatile enough for your needs. 

 

 
 

 

On another note, some of these functions do not guarantee that they will write out all the data you requested at once, even if there 
is no error. You will generally not see this behavior when dealing with files, but it can become more common when dealing with a 
network, as the operating system is forced to split the data into blocks for transmission. Here’s a function that you can use in your 
programs to ensure that all the data is written properly: 

 

 
 
 /*    
     This function writes certain number of bytes from “buf”  to a file   
     or socket descriptor specified by “ fd” . The number of bytes is   
     specified by “count” . “ fd”  SHOULD BE A DESCRIPTOR FOR A FILE,   
     OR A PIPE OR TCP SOCKET. It returns the number of bytes written   
     or -1 on error.   
 * /   
       
 int write_buffer(int fd, char *buf, int count)   
 {    
     char *pts = buf;   
     int  status = 0, n;   
       
     if (count < 0) return (-1);   
       
     while (status != count) {    
         n = write(fd, pts+status, count-status);   
         if (n < 0) return (n);   
         status += n;   
     }    
     return (status);   
 }    
 
 Along the same lines, the functions do not guarantee that they will read as much information as you have asked for either.  
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Therefore, if you know in advance that you are expecting information of a fixed size, you may find it useful to have a function to 
read data until that size is reached. Here is such a function that you can use:  

 
 /*    
     This function reads certain number of bytes from a file or socket   
     descriptor specified by “ fd”  to “buf” . The number of bytes is   
     specified by “count” . “ fd”  SHOULD BE A DESCRIPTOR FOR A FILE,   
     OR A PIPE OR TCP SOCKET. It returns number of bytes read   
     or (<0) on error.   
 * /   
       
 int read_buffer(int fd, char *buf, int count)   
 {    
     char *pts = buf;   
     int  status = 0, n;   
       
     if (count < 0) return (-1);   
       
     while (status != count) {    
         n = read(fd, pts+status, count-status);   
         if (n < 0) return n;   
         status += n;   
     }    
     return (status);   
 }    
 

 
If you use this function, take care to make sure that your buffer is at least count characters long. If you don’ t, your program could 
crash.  

Special Files   
 

 
You have seen how to interact with standard files already. However, some entities on your Linux system appear to be files but are 
not really files at all. These are sometimes called “special”  files. 

 
 
 

 
Special files can be of many different types. Often, they correspond to actual devices on the system, as is the case with many of the 
files in /dev. When you read from or write to one of these files, you are actually communicating with some device that is attached 
to your system! So, you can, for instance, communicate with the first serial port by opening /dev/ttyS0. 

 

 
 

 
Other special files can be FIFOs (also known as named pipes). These are used to communicate between two processes on the 
system. When you open one of these files, you will actually be exchanging data with another process on the same system. 

 
 
 
     
 
Cross-Reference  
 
 You can find more details about FIFO files in Chapter 17, “Using Pipes and FIFOs.”    
 
     
 

 
Finally, there is the /proc file system. This area contains information about your system, which devices are connected to it, and which 
processes are running on the system. Many programs, such as ps, get the information they need to run from /proc.  

Summary   
 
 In this chapter, you learned about how files are dealt with internally in Linux. Specifically, you learned:   
 
  •  The file system consists of one inode per file.   
 
  •  Directory information is stored on the file system as a directory special file.   
 
  •  You can access information from the inode with stat() and lstat().   
 
  •  You can read the destination of a symbolic link with readlink().   
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  •  Directory information can be found with opendir() and its relatives.   
 
  •  Many different types of entries are present on a Linux file system, such as files, directories, devices, FIFOs, and sockets.   
 
  •  C provides two types of I/O for your use: system call I/O and stream I/O.  
Chapter  12: Processes in L inux   
 
 Overview   
 

 

One of the most important ideas about the Linux environment is that of the process. In this chapter, I’ ll show you what processes are 
all about. After that, I’ ll discuss some basics of dealing with processes in Linux, how to manage these processes, and how to get 
information back from them. This chapter concludes with an overview of synchronization issues and security issues relating to 
processes.  

Understanding the Process Model   
 

 
The process model in Linux undercuts everything that your program does, from loading it into memory, to running it, and to 
handling its exit. Moreover, processes manage multiple programs, enable these programs to run at once, and much more. 

 
 
 

 

Before examining processes, it may be useful to look at an analogy. Imagine a warehouse full of boxes—each box representing a 
process. The contents of each box are prevented from mixing with the contents of another box. A box may contain many pages of 
paper—as a process might contain many pages of memory. The boxes probably are marked with labels on the outside, identifying 
who the box belongs to and what is in it. Similarly, processes have infor-mation that identify the user that owns the process and the 
program that’s running in the process. 

 

 
 

 
Finally, somebody manages the entire operation. In the physical world, if you’re in a military situation or perhaps a certain chicken 
restaurant chain, this person is called a colonel. In Linux, the part of the system that manages the processes is likewise the kernel.  

 Introducing Process Basics   
 

 
In this section, I’ ll discuss the big picture of processes. There are a few exceptions to some of the rules in this section, such as if 
you’re using shared memory or threading, but the principles discussed in this section still hold unless you knowingly make some 
changes. 

 

 
 

 
Every program running on your system is running in its own process. In fact, every copy of every program running has its own 
process. That is, if you start up an editor twice, without closing the first invocation before starting the second, you’ ll have two 
processes running that editor. 

 

 
 
 A process has the following attributes associated with it:   
 
  •  PID (Process ID)   
 
  •  Memory area   
 
  •  File descriptors   
 
  •  Security information   
 
  •  Environment   
 
  •  Signal handling   
 
  •  Resource scheduling   
 
  •  Synchronization   
 
  •  State   
 

 
Each process has a unique numeric process ID, better known as the PID. Each PID occurs only once on the system at any given 
moment, but if your system remains online for long enough, they are reused eventually. The PID is the primary way of identifying 
a particular process. 

 

 
 

 
Each process also has a memory area associated with it. This area holds the code for the program that is running in that process. It 
also holds the data (variables) for that particular program. Any change that you make in the variables or memory of one process is 
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restricted to that process. The operating system prevents these changes from affecting other processes, which is a major source of 
Linux’s stability relative to some other operating systems. One errant process can crash itself but the rest of the system will 
continue unharmed.  

 

 

Processes also have file descriptors associated with them. You were introduced already to the three default file descriptors: 
standard input, standard output, and standard error. These file descriptors are opened by default for your program in most 
situations. Any other file descriptors that you might open (for instance, if you open a file) or any changes that you make to the 
default ones take effect in your process only. No other processes on the system are directly effected. Of course, if other processes 
are reading the data you are writing, there is an effect; however, the file descriptors of one process are not modified by a change in 
another. 

 

 
 

 
Some security information is associated with processes as well. At a minimum, processes record the user and the group of the 
person that owns the process, which, generally, is the person that started it. As you’ ll see later, there can be much more security 
information to deal with in some special situations. 

 

 
 

 
There is an environment that goes with each process. This environment holds things such as environment variables and the 
command line used to invoke the program that is running in the process. 

 
 
 

 
A process can send and receive signals, and act based on them. These enable standard execution to be interrupted to carry out a 
special task. Signal reception is based on security of the process. 

 
 
 
     
 
Cross-Reference  
 
 For more details, see the discussion of signals in Chapter 13, “Understanding Signals.”    
 
     
 

 

A process is also the unit for scheduling system resources for access. For instance, if 20 programs are running on a system with a 
single CPU, the Linux kernel alter-nates between each of them, giving them each a small amount of time to run, and then rapidly 
switching to the next. Thus, each process gets a small time slice, but because it gets these frequently, it seems as if the system is 
actually managing to run all 20 processes simultaneously. In systems with more than one CPU, the kernel decides which process 
should run on which CPU, and manages multitasking issues between them. A process can have certain values, such as a priority 
level, that modify how much time a process gets from the CPU or how big its time slice is. The security settings of the process 
govern access to the priority level. 

 

 
 

 
Synchronization with other programs is also done on a per-process level. Processes may request and check for locks on certain 
files to ensure that only one process is modifying the file at any given time. Processes also may use shared memory or semaphores 
to communicate with and synchronize between each other. I’ ll discuss some synchronization issues in this chapter. 

 

 
 
     
 
Cross-Reference  
 

 
Chapter 14, “ Introducing the Linux I/O,”  covers file locking in more detail and Chapter 16, “  Shared Memory and Semaphores,”  
covers shared memory/semaphores in more detail. 

 
 
 
     
 

 
Finally, each process has a state. It may be running, waiting to be scheduled for running, or sleeping—that is, not processing anything 
because it’s waiting for an event to occur, such as user input or the release of a lock.  

Star ting and Stopping Processes   
 

 
When you want to create a new process in Linux, the basic call to do this is fork(). This is, incidentally, one of the few calls in 
Linux that are able to return twice; you’ ll see why next. 

 
 
 

 

When you fork a process, the system creates another process running the same program as the current process. In fact, the newly 
created process, called the child process, has all the data, connections, and so on as the parent process and execution continues at 
the same place. The single difference between the two is the return value from the fork() system call, which returns the PID of the 
child to the parent and a value of 0 to the child. Therefore, common practice is to examine the return value of the call in both 
processes, and do different things based on it. 
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 Basic forking   
 

 
I’ ll start out with a basic program. The following code will simply fork a process and each of these processes will print a message, 
and then exit: 

 
 
 
 #include <stdio.h>   
 #include <unistd.h>   
 #include <sys/types.h>   
       
 int main(void) {    
   pid_t pid;   
      
   pid = fork();   
      
   if (pid == 0) {    
     printf(“Hello from the child process!\n” );   
   }  else if (pid != -1) {    
     printf(“Hello from the parent.  I’ ve forked process %d.\n” , pid);   
   }  else {    
     printf(“There was an error with forking.\n” );   
   }    
 }    
 

 
This code will fork. If the return value is 0, it means that the current process is the child from the fork. If the value is not -1, it 
means that the fork was successful and the return value indicates the PID of the new process. On the other hand, if the value is -1, 
then the fork failed. 

 

 
 

 
When you run this program, you will get two messages—one from the parent and one from the child. Because these are separate 
processes, these messages appear in essentially a random order. If you run the program several times, you’ ll get the messages in 
both orders. For instance, here are sample executions from my system: 

 

 
 
 $ ./ch12-1    
 Hello from the parent.  I’ve forked process 458.   
 Hello from the child process!   
 $ ./ch12-1    
 Hello from the child process!   
 Hello from the parent.  I’ve forked process 460.   
 

 
The reason for getting two messages is that the two separate processes can have their CPU time scheduled in any order, because 
they really are running as separate programs now. 

 
 
 
 Executing other  programs   
 

 
Besides forking, you’ ll often have a need to invoke other programs. This is done with the exec family of functions. When you run 
exec, your process’s current image is replaced with that of the new program. That is, if your call to an exec function is successful, 
the call will never return—a different program will run in its place in your process. 

 

 
 

 
Sometimes this may be what you want. Sometimes you may prefer both processes to continue executing. Or, you may prefer the 
parent to wait until the child is finished executing—the behavior of, for instance, the Linux shell. 

 
 
 
 An Example of exec()   
 
 I’ ll start with an example of a program in which the program in the process is completely replaced by the child:   
 
 #include <stdio.h>   
 #include <unistd.h>   
       
 int main(void) {    
       
   printf(“Hello, this is a sample program.\n” );   
   execlp(“ ls” , “ ls” , “ /proc” , NULL);   
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   printf(“This code is running after the exec call.\n” );   
   printf(“You should never see this message unless exec failed.\n” );   
   return 0;   
 }    
 

 

This is a fairly simple program. It starts out by displaying a message on the screen. Then, it calls one of the exec family of 
functions. The l in the name means to use an argument list passed to it, and the p means to search the path. The first argument is 
the name of the program to run. The remaining arguments are passed to it as argv. Recall that argv[0] is conventionally the name 
of the program, so the program name is duplicated. The next argument contains a directory list. The final argument, a null pointer, 
tells the system that it reached the end of the argument list, and must be present. 

 

 
 

 
Unless the exec call fails, you will never see the remaining information because the code for this program will be replaced 
completely by that for the program being executed. To that end, try running it to verify the result: 

 
 
 
 $ ./ch12-2    
 Hello, this is a sample program.   
 1    198  250  267  323  347  4        filesystems  meminfo     slabinfo   
 114  2    255  268  324  348  404      fs           misc        stat   
 116  200  259  272  325  349  5        ide          modules     swaps   
 124  201  260  277  328  350  apm      interrupts   mounts      sys   
 129  204  261  285  329  354  bus      ioports      mtrr        tty   
 132  208  262  286  333  357  cmdline  kcore        net         uptime   
 14   209  263  290  343  360  cpuinfo  kmsg         partitions  version   
 143  241  264  3    344  391  devices  ksyms        pci   
 152  243  265  317  345  392  dma      loadavg      scsi   
 160  247  266  322  346  396  fb       locks        self   
 

 
Indeed you can see that the program image in memory is replaced by the program image of ls. None of the messages at the end of 
the original program are displayed. 

 
 
 
 Details of exec()   
 
 The system provides you with many options for executing new programs. The manpages list the following options for syntax:   
 
 int execl(const char * file, const char *arg, ...);   
 int execlp(const char * file, const char *arg, ...);   
 int  execle(const char * file, const char *arg , ..., char *const envp[]);   
 int execv(const char * file, char *const argv[]);   
 int execvp(const char * file, char *const argv[]);   
 int execve(const char * file, char *const argv[], char *const envp[]);   
 

 

These calls are all prototyped in unistd.h. Each of these commands begins with the name of the program to execute. The ones 
containing a p—execlp() and execvp()—will search the PATH for the file if it cannot be located immediately. With all other 
functions, this should be the full path to the file. Relative paths are permissible, but with all of these functions, you should use an 
absolute path whenever possible for security reasons. 

 

 
 

 
The three ll functions—execl(), execlp(), and execle()—take a list of the arguments for the program on the command line. After 
the last argument, you must specify the special value NULL. For instance, you might use the following to invoke ls: 

 
 
 
 execl(“ /bin/ls” , “ /bin/ls” , “ -l” , “ /etc” , NULL);   
 

 
This is the same as running the shell command ls -l /etc. Notice that, for this and all the functions, the first (zeroth, to the executed 
process) argument should be the name of the program. This is usually the same as the specified filename. 

 
 
 

 
The vv functions—execv(), execvp(), and execve()—use a pointer to an array of strings for the argument list. This is the same 
format as is passed in to your program in argv in main(). The last item must be NULL. Here is how you might write the same 
command in the previous example with execv(): 

 

 
 
 char *arguments[4];   
       
 arguments[0] = “ /bin/ls” ;   
 arguments[1] = “ -l” ;   
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 arguments[2] = “ /etc” ;   
 arguments[3] = NULL;   
      
 execv(“ /bin/ls” , arguments);   
 

 
This type of syntax is particularly useful when you do not know in advance how many arguments you will need to pass to the new 
program. You can build up your array on the fly, and then use it for the arguments. 

 
 
 

 

The e functions—execle() and execve()—enable you to customize the specific environment variables received by your child 
process. These functions are not usually used, which enables the new process to inherit the same environment that the current one 
has. However, if you specify the environment, it should be in a pointer to an array of pointers to strings, exactly like the 
arguments. This array also must be terminated by NULL. 

 

 
 

 

When an exec...() call succeeds, the new program inherits none of the code or data from your current program. Signals and signal 
handlers are cleared. However, the security information and the PID of the process are retained. This includes the uid of the owner 
of the process, although setuid or setgid may change this behavior. Furthermore, file descriptors remain open for the new program 
to use. 

 

 
 
 Waiting for  processes   
 

 

You must consider several very important things when you are dealing with multiple processes. One of them is to clean up after a 
child process exits. In the example of forking thus far in this chapter, this was not done because the parent exited almost 
immediately and thus the init process inherited the problem and took care of it. However, if both processes need to hang around for 
awhile, you need to take care of these issues yourself. 

 

 
 

 

The problem is this: when a process exits, its entry in the process table does not completely go away. This is because the operating 
system is waiting for a parent process to fetch some information about why the child process exited. This could include a return 
value, a signal, or something else along those lines. A process whose program terminated but still remains because its information 
was not yet collected is dubbed a zombie process. Here’s a quick example of this type of process: 

 

 
 
 #include <stdio.h>   
 #include <unistd.h>   
 #include <sys/types.h>   
       
 int main(void) {    
   pid_t pid;   
      
   pid = fork();   
      
   if (pid == 0) {    
     printf(“Hello from the child process!\n” );   
     printf(“The child is exiting now.\n” );   
   }  else if (pid != -1) {    
     printf(“Hello from the parent, pid %d.\n” , getpid());   
     printf(“The parent has forked process %d.\n” , pid);   
     sleep(60);   
     printf(“The parent is exiting now.\n” );   
   }  else {    
     printf(“There was an error with forking.\n” );   
   }    
 }    
 

 
There is now a sleep call in the parent to delay its exit for a minute so you can examine the state of the system’s process table in 
another window. When you run the program, you will see this: 

 
 
 
 $ ./ch12-3    
 Hello from the parent, pid 448.   
 Hello from the child process!   
 The child is exiting now.   
 The parent has forked process 449.   
 
 Now, in a separate window or terminal, take the process ID of the child. In this case, it is 449. Find its entry with a command like  
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this:  
 
 $ ps aux | grep 449 | grep -v grep   
 jgoerzen   449  0.0  0.0     0    0 pts/0    Z    08:18   0:00 [ch12-3 <defunct>]   
 

 
You should observe two things here. First, note that the state of the process is indicated as Z—that is, a zombie process. As another 
reminder to you, ps also indicates that the process is defunct, meaning the same thing. 

 
 
 

 
To clear out this defunct process, you need to wait on it, even if you don’ t care about its exit information. You can use a family of 
wait calls, some of which I’ ll go over in this section. 

 
 
 
 Family of wait Calls   
 

 
First, let’s look at an example. Listing 12-1 is an example of a modified version of a previous program that waits for the child to 
exit. 

 
 
 
  Note  Listing 12-1 is available online.   
 
 Listing 12-1: First wait() example   
 
 #include <stdio.h>   
 #include <unistd.h>   
 #include <stdarg.h>   
 #include <time.h>   
 #include <sys/types.h>   
 #include <sys/wait.h>   
       
 int tprintf(const char * fmt, ...);   
       
 int main(void) {    
   pid_t pid;   
      
   pid = fork();   
      
   if (pid == 0) {    
     tprintf(“Hello from the child process!\n” );   
     tprintf(“The child is exiting now.\n” );   
   }  else if (pid != -1) {    
     tprintf(“Hello from the parent, pid %d.\n” , getpid());   
     tprintf(“The parent has forked process %d.\n” , pid);   
     waitpid(pid, NULL, 0);   
     tprintf(“The child has stopped.  Sleeping for 60 seconds.\n” );   
     sleep(60);   
     tprintf(“The parent is exiting now.\n” );   
   }  else {    
     tprintf(“There was an error with forking.\n” );   
   }    
   return 0;   
 }    
       
 int tprintf(const char * fmt, ...) {    
   va_list args;   
   struct tm * tstruct;   
   time_t tsec;   
      
   tsec = time(NULL);   
   tstruct = localtime(&tsec);   
      
   printf(“%02d:%02d:%02d %5d| “ ,   
          tstruct->tm_hour,   
          tstruct->tm_min,   
          tstruct->tm_sec,   
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          getpid());   
           
   va_start(args, fmt);   
   return vprintf(fmt, args);   
 }    
 

 
This code introduces a new function, tprintf(), which will be useful in the examples in the rest of this chapter. It presents an 
interface similar to that of printf() to the caller but internally it prints out the current time and the current PID before displaying the 
message. In this way, you can track the progress through the program in time. 

 

 
 

 
The body of the code has a new call, one to waitpid(). This causes the execution of the parent to be put on hold until the forked 
child process has exited. When the child process exits, the parent gathers up its exit information and then continues to execute. 
Here is the output you’ ll get from running this program: 

 

 
 

  Note  
Some things may appear in a different order, depending on whether the parent or the child will be capable of 
displaying its output first. 

 
 
 
 $ ./ch12-4    
 14:58:27   358| Hello from the parent, pid 358.   
 14:58:27   359| Hello from the child process!   
 14:58:27   358| The parent has forked process 359.   
 14:58:27   359| The child is exiting now.   
 14:58:27   358| The child has stopped.  Sleeping for 60 seconds.   
 14:59:27   358| The parent is exiting now.   
 

 
If you use a ps command, as in the preceding example, while the parent is sleeping, you would see that there is no longer any 
zombie process waiting to be collected. Rather, waitpid() call picks up the information and allows it to be removed from the 
process table. 

 

 
 

 

If you plan to fork many processes, it would be easier on you if you don’ t have to specifically wait for each one, assuming your 
parent is supposed to continue executing. Therefore, you can have a signal handler that automatically waits for any child process 
when it exits, meaning that you don’ t have to explicitly code any such wait yourself. Listing 12-2 shows a modification of the code 
from Listing 12-1 to do exactly that. 

 

 
 
     
 
Cross-Reference  
 
 For more details on signals and signal handlers, see Chapter 13, “Understanding Signals.”    
 
     
 
  Note  Listing 12-2 is available online.   
 
 Listing 12-2: Signal handler  for  waiting   
 
 #include <stdio.h>   
 #include <unistd.h>   
 #include <stdarg.h>   
 #include <time.h>   
 #include <sys/types.h>   
 #include <sys/wait.h>   
 #include <signal.h>   
       
 int tprintf(const char * fmt, ...);   
 void realsleep(int seconds);   
 void waitchildren(int signum);   
       
 int main(void) {    
   pid_t pid;   
      
   pid = fork();   
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   if (pid == 0) {    
     tprintf(“Hello from the child process!\n” );   
     tprintf(“The child is sleeping for 15 seconds.\n” );   
     realsleep(15);   
     tprintf(“The child is exiting now.\n” );   
   }  else if (pid != -1) {    
     /*  Set up the signal handler. */   
     signal(SIGCHLD, (void *)waitchildren);   
       
     tprintf(“Hello from the parent, pid %d.\n” , getpid());   
     tprintf(“The parent has forked process %d.\n” , pid);   
     tprintf(“The parent is sleeping for 30 seconds.\n” );   
     realsleep(30);   
     tprintf(“The parent is exiting now.\n” );   
   }  else {    
     tprintf(“There was an error with forking.\n” );   
   }    
   return 0;   
 }    
       
 int tprintf(const char * fmt, ...) {    
   va_list args;   
   struct tm * tstruct;   
   time_t tsec;   
      
   tsec = time(NULL);   
   tstruct = localtime(&tsec);   
      
   printf(“%02d:%02d:%02d %5d| “ ,   
          tstruct->tm_hour,   
          tstruct->tm_min,   
          tstruct->tm_sec,   
          getpid());   
           
   va_start(args, fmt);   
   return vprintf(fmt, args);   
 }    
       
 void waitchildren(int signum) {    
   pid_t pid;   
       
   while ((pid = waitpid(-1, NULL, WNOHANG)) > 0) {    
     tprintf(“Caught the exit of child process %d.\n” , pid);   
   }    
 }    
       
 void realsleep(int seconds) {    
   while (seconds) {    
     seconds = sleep(seconds);   
     if (seconds) {    
       tprintf(“Restarting interrupted sleep for %d more seconds.\n” , seconds);   
     }    
   }    
 }    
 

 
There are several implementation details to go over here. First of all, notice that the sleep() call can return before its time is up if a 
signal arrives that is not ignored by your code. Therefore, you have to watch for this. If this occurs, sleep() will return the number 
of seconds remaining, so a simple wrapper around it will take care of this problem. 

 

 
 

 
Then, take note of the signal() call in the parent area. This indicates that whenever the parent process receives SIGCHLD, the 
waitchildren() function is invoked. That function is an interesting one, even though it has only two lines of code. 
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Its first line sets up a loop. As long as waitpid() continues finding child processes that have exited, the loop continues executing. 
For each process, a message is displayed. In your programs, you probably will eliminate the message and thus have an empty loop 
body. The -1 value is used for the PID in the call to waitpid() so that any child process will be found; inside the signal handler, you 
don’ t necessarily know exactly which process exited or even which processes are your children. The signal handler doesn’ t care 
about the exit status of the child, so it passes NULL for that value. Finally, it uses WNOHANG. This way, after all exited child 
processes are waited upon, it returns a different code that breaks the loop, instead of simply blocking execution of the parent until 
another process decides to exit. 

 

 
 
 Details of wait   
 

 
There are a number of variants of the wait functions in Linux, just as there are a number of variants of the exec calls. Each call has 
its own special features and syntax. The various wait functions are declared as follows: 

 
 
 
 pid_t wait(int *status)   
 pid_t waitpid(pid_t pid, int *status, int options);   
 pid_t wait3(int *status, int options, struct rusage *rusage);   
 pid_t wait4(pid_t pid, int *status, int options,   
             struct rusage *rusage);   
 

 

The first two calls require the inclusion of sys/types.h and sys/wait.h, and the last two require those as well as sys/resource.h. Each 
of these functions returns the PID of the process that exited, 0 if they were told to be non-blocking and no matching process was 
found, and -1 if there was an error. By default, these func-tions block the caller until there is a matching child that has exited and 
has not been waited upon yet. This means that execution of the parent process will be suspended until the child process exits. Of 
course, if there are child processes that have already exited (which would make them zombies), the wait functions can return right 
away with information from one of them, without blocking execution in the parent. 

 

 
 

 
If the status parameter is NULL, it is ignored. Otherwise, information is stored there. Linux defines a number of macros, shown in 
Table 12-1, that can be used with an integer holding the status result to determine what exactly happened. These macros are called, 
for instance, as WIFEXITED(status). 

 

 
 
  Note  Note that the macros take the integer as the parameter, not a pointer to it as does the function.   
 
 Table 12-1:  Macros Used with Integers   
 
     
 
 Macro   

 
Meaning   

 

 
     
 
 WEXITSTATUS   

 
Returns the exit code that the child process returned, perhaps through a call to exit(). Note that 
the value from this macro is not usable unless WIFEXITED is true. 

 
 

 

 
 WIFEXITED   

 
Returns true if the child process in question exited normally.   

 

 
 WIFSIGNALED   

 
Returns a true value if the child process exited because of a signal. If the child process caught the 
signal and then exited by calling something like exit(), this will not be true. 

 
 

 

 
 WIFSTOPPED   

 
Returns a true value if the WUNTRACED value is specified in the options parameter to waitpid() 
and the process in question causes waitpit() to return because of that. 

 
 

 

 
 WSTOPSIG   

 
Gets the signal that stops the process in question, if WIFSTOPPED is true.   

 

 
 WTERMSIG   

 
Gets the signal that terminates the process in question, if WIFSIGNALED is true.   

 

 
     
 

 

Several of these functions take a parameter named options. It is formed by using a bitwise or (with the | operator) of various 
macros. If you wish to use none of these special options, simply use a value of 0. Linux defines two options, WNOHANG and 
WUNTRACED. WNOHANG means that the call should be non-blocking. That is, it should return immediately even if no child 
exited instead of holding up execution of the parent until a child does exit. WUNTRACED returns information about child 
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processes that are stopped, whereas normally these would be ignored.  
 

 

For waitpid(), the pid option can have some special meanings as well. If its value is -1, then waitpid() waits for any child process. 
If the value is greater than 0, then it waits for the process with that particular PID. Values of 0 or strictly less than -1 refer to 
process groups, which are used for sending signals and terminal control and are generally used only in special-purpose applications 
such as shells. 

 

 
 

 

The wait3() and wait4() calls are used if you need to get process accounting information from the child. If the rusage parameter is 
NULL, this extra information is ignored; otherwise, it is stored into the structure pointed to. This sort of account-ing information is 
rarely needed by the parent; you can find the definition of the rusage structure in /usr/include/sys/resource.h or 
/usr/include/bits/resource.h. 

 

 
 
 Combining forces   
 

 
You may have noticed that the shell on Linux exhibits behavior that I haven’ t quite covered. When you run a program in the shell, 
the shell is dormant while the program executes, and then it returns back to life exactly where you left off, and with the same PID 
to boot. 

 

 
 

 

This cannot be done solely with calls to exec functions; those would replace the shell completely. It also can’ t be done with a 
fork() call and then an exec, because the shell would continue executing while the called program executes simultane-ously! The 
solution is to have your program fork, then have the parent wait on the exit of the child. Meanwhile, the child should call exec to 
load up the new program. Listing 12-3 shows an example of this technique. 

 

 
 
  Note  Listing 12-3 is available online.   
 
 Listing 12-3: Forking with exec and wait   
 
 #include <stdio.h>   
 #include <unistd.h>   
 #include <stdarg.h>   
 #include <time.h>   
 #include <sys/types.h>   
 #include <sys/wait.h>   
 #include <unistd.h>   
 #include <stdlib.h>   
       
 int tprintf(const char * fmt, ...);   
 void waitchildren(int signum);   
       
 int main(void) {    
   pid_t pid;   
      
   pid = fork();   
      
   if (pid == 0) {    
     tprintf(“Hello from the child process!\n” );   
     setenv(“PS1” , “CHILD \\$ “ , 1);   
     tprintf(“ I’m calling exec.\n” );   
     execl(“ /bin/sh” , “ /bin/sh” , NULL);   
     tprintf(“You should never see this because the child is already gone.\n” );   
   }  else if (pid != -1) {    
       
     tprintf(“Hello from the parent, pid %d.\n” , getpid());   
     tprintf(“The parent has forked process %d.\n” , pid);   
     tprintf(“The parent is waiting for the child to exit.\n” );   
     waitpid(pid, NULL, 0);   
     tprintf(“The child has exited.\n” );   
     tprintf(“The parent is exiting.\n” );   
   }  else {    
     tprintf(“There was an error with forking.\n” );   
   }    
   return 0;   
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 }    
       
 int tprintf(const char * fmt, ...) {    
   va_list args;   
   struct tm * tstruct;   
   time_t tsec;   
      
   tsec = time(NULL);   
   tstruct = localtime(&tsec);   
      
   printf(“%02d:%02d:%02d %5d| “ ,   
        tstruct->tm_hour,   
        tstruct->tm_min,   
        tstruct->tm_sec,   
        getpid());   
           
   va_start(args, fmt);   
   return vprintf(fmt, args);   
 }    
 

 
This code invokes the shell. Before it does, it sets the PS1 environment variable. If your shell is Bash, this will change the prompt 
for the child. Here is a sample interaction with the program. 

 
 
 
  Note  In Bash, the symbol $$ refers to the PID of the current process.   
 
 $ ./ch12-6    
 16:40:25   482| Hello from the parent, pid 482.   
 16:40:25   483| Hello from the child process!   
 16:40:25   483| I’m calling exec.   
 16:40:25   482| The parent has forked process 483.   
 16:40:25   482| The parent is waiting for the child to exit.   
 CHILD $ echo Hi, I am PID $$   
 Hi, I am PID 483   
 CHILD $ ls -d /proc/i*   
 /proc/ide  /proc/interrupts  /proc/ioports   
 CHILD $ exit   
 16:41:31   482| The child has exited.   
 16:41:31   482| The parent is exiting.   
 

 
As you can see from the output, the parent is blocked while the child is executing—precisely the desired behavior. As soon as the 
child exits, the parent continues along on its way.  

Using Return Codes   
 

 
In the previous section where I covered wait functions, there is information on a few macros that deal with the return code of a 
child process. This is the value that is returned from the argument to exit() or returned from an instance of return while in main(). 

 
 
 

 

Generally, Linux programs are expected to return 0 for success and some value greater than 0 on failure. Many programs, 
particularly shell scripts and utilities, use these numbers for information. For instance, the make utility checks the return code of all 
the programs it invokes, and if there is a failure, it will normally halt the make so that the problem can be corrected. Shell scripts 
can use if and operators, such as &&, to change their behavior depending on whether or not a given command succeeded or failed. 

 

 
 

 

The exit code makes more sense for some programs than for others. For instance, if the ls program is given a name of a single 
directory to list, and that directory does not exist, clearly an error occurs and it is the duty of ls to report the error and return an 
appropriate exit code. On the other hand, if your application is a GUI one, you might inform the user of the error and then continue 
executing, rather than exit immediately with an error code. 

 

 
 

 
Returning exit codes is simple, as you’ve seen; you simply have your program pass a nonzero value to a call to exit(). Catching the 
codes is not hard either. Listing 12-4 shows a version of the previous program that displays some information about the cause for 
termination of the executed program. 

 

 
 
  Note  Listing 12-4 is available online.   
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 Listing 12-4: Reading return codes   
 
 #include <stdio.h>   
 #include <unistd.h>   
 #include <stdarg.h>   
 #include <time.h>   
 #include <sys/types.h>   
 #include <sys/wait.h>   
 #include <unistd.h>   
 #include <stdlib.h>   
       
 int tprintf(const char * fmt, ...);   
 void waitchildren(int signum);   
 int main(void) {    
   pid_t pid;   
   int status;   
      
   pid = fork();   
      
   if (pid == 0) {    
     tprintf(“Hello from the child process!\n” );   
     setenv(“PS1” , “CHILD \\$ “ , 1);   
     tprintf(“ I’m calling exec.\n” );   
     execl(“ /bin/sh” , “ /bin/sh” , NULL);   
     tprintf(“You should never see this because the child is already gone.\n” );   
   }  else if (pid != -1) {    
       
     tprintf(“Hello from the parent, pid %d.\n” , getpid());   
     tprintf(“The parent has forked process %d.\n” , pid);   
     tprintf(“The parent is waiting for the child to exit.\n” );   
     waitpid(pid, &status, 0);   
     tprintf(“The child has exited.\n” );   
     if (WIFEXITED(status)) {    
       tprintf(“The child exited normally with code %d.\n” ,   
           WEXITSTATUS(status));   
     }    
     if (WIFSIGNALED(status)) {    
       tprintf(“The child exited because of signal %d.\n” ,   
           WTERMSIG(status));   
     }    
     tprintf(“The parent is exiting.\n” );   
   }  else {    
     tprintf(“There was an error with forking.\n” );   
   }    
   return 0;   
 }    
       
 int tprintf(const char * fmt, ...) {    
   va_list args;   
   struct tm * tstruct;   
   time_t tsec;   
      
   tsec = time(NULL);   
   tstruct = localtime(&tsec);   
      
   printf(“%02d:%02d:%02d %5d| “ ,   
        tstruct->tm_hour,   
        tstruct->tm_min,   
        tstruct->tm_sec,   
        getpid());   
           
   va_start(args, fmt);   



 227 

   return vprintf(fmt, args);   
 }    
 

 
This program uses several of the macros documented earlier to figure out why the child exited, and then to figure out more 
information about its exit. I will use a few sample invocations of the program so that you can see what it manages to do. Here is 
the output from the first example: 

 

 
 
 $ ./ch12-7   
 18:32:14   523| Hello from the parent, pid 523.   
 18:32:14   524| Hello from the child process!   
 18:32:14   524| I’m calling exec.   
 18:32:14   523| The parent has forked process 524.   
 18:32:14   523| The parent is waiting for the child to exit.   
 CHILD $ exit   
 exit   
 18:32:18   523| The child has exited.   
 18:32:18   523| The child exited normally with code 0.   
 18:32:18   523| The parent is exiting.   
 

 
In this case, the child process, which is the shell, exited normally—returning code zero to the parent. Next you can see that other 
codes can get passed along. When you specify a number as a parameter to exit on the command line, this number is returned as the 
shell’ s exit status. In the following example, you can see how the parent process detected the new exit code: 

 

 
 
 $ ./ch12-7   
 18:33:30   525| Hello from the parent, pid 525.   
 18:33:30   526| Hello from the child process!   
 18:33:30   526| I’m calling exec.   
 18:33:30   525| The parent has forked process 526.   
 18:33:30   525| The parent is waiting for the child to exit.   
 CHILD $ exit 5   
 exit   
 18:33:32   525| The child has exited.   
 18:33:32   525| The child exited normally with code 5.   
 18:33:32   525| The parent is exiting.   
 

 
As you can see, the parent capable of detecting that a different code was returned this time. Finally, here’s an example of 
termination by signal: 

 
 
 
 $ ./ch12-7   
 18:34:35   527| Hello from the parent, pid 527.   
 18:34:35   528| Hello from the child process!   
 18:34:35   528| I’m calling exec.   
 18:34:35   527| The parent has forked process 528.   
 18:34:35   527| The parent is waiting for the child to exit.   
 CHILD $ echo My pid is $$   
 My pid is 528   
 CHILD $ kill 528   
 CHILD $ kill -9 528   
 18:34:44   527| The child has exited.   
 18:34:44   527| The child exited because of signal 9.   
 18:34:44   527| The parent is exiting.   
 

 

In this example, the child process first displays its PID. Then, it sends itself SIGTERM. However, the shell either has a handler for or 
is set to ignore SIGTERM, so nothing happens. Then the process is sent SIGKILL (number 9). This signal cannot be caught, and so 
the process inevitably dies. The parent detects that the child exited because of a signal and displays the signal number that caused the 
exit.  

Synchronizing Actions   
 

 

Sometimes it is necessary for two or more processes to be capable of synchronizing their actions with each other. Perhaps they 
both need to write to a file, but only one should ever be writing to the file at any given moment to avoid potential corrup-tion. Or, 
maybe a parent process needs to wait until a child process accomplishes a given task before continuing. There are many different 
ways of synchronizing actions. You might use file locking (described in Chapter 14), signals (Chapter 13), semaphores (Chapter 
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16), a pipe or FIFO (Chapter 17), or sockets (Chapters 18 and 19). Some of these actions, such as file locking and semaphores, are 
designed specifically for synchronization uses. The remaining items are general-purpose communication tools that you also can 
use for the specific purpose of inter-process synchronization.  

 

 
For instance, you might have a process fork off a child to handle a specific task so that both can continue operating separately from 
each other. The child might exit later when it’ s done, which automatically sends a catchable SIGCHLD signal to the parent. 

 
 
 

 
You must deal with several issues relative to synchronization that span any particular method used to implement it. This is a 
somewhat tricky topic and it helps to be familiar with the issues surrounding it. 

 
 
 

 

Synchronization issues are often among the most difficult to track down when bugs crop up. A given program may operate 
perfectly for tens of thousands of execu-tions, and then suddenly its own data files get corrupted, and you have to figure out why. 
If the program is one that can ever be run with two processes at once, you have to be aware of synchronization issues. Any 
program such as a CGI automati-cally has to deal with these issues, as do most network server applications. 

 

 
 
 Atomic versus non-atomic operations   
 

 

Sometimes you perform a task that either needs to be completed entirely or fail entirely without the possibility of any other process 
to run a similar instruction at the same time. For instance, if you want to append data to the end of a file, you need to seek to the 
end and then perform a write. If two processes are appending data to the end of a file, though, what happens is the second process 
writes data between the time the first does a seek and does a write. 

 

 
 

 
This happens because the seek/write operation is not atomic. If that operation were atomic, then both seek and the write would take 
place before any other process is allowed to write data to the file (or at least to the end of it). Linux provides a way to do this. It’s 
called the append mode, in which any write is preceded automatically by an atomic seek to the end of the file. 

 

 
 
     
 
Cross-Reference  
 
 The append mode is discussed in Chapter 14, “ Introducing the Linux I/O System.”    
 
     
 

 

Here’s another example. Consider a case in which you have software that generates serial numbers for a product. You want to 
assign these numbers sequentially, so you have a small file that simply holds the next number to use. When you need a new serial 
number, you open up the file, read its contents, seek back to the start, and write out a value one larger than the current one. 
However, being a successful company, you have several people assigning these numbers all at once. What happens if one process 
reads the value, but another reads the same value before the first has had a chance to increment it? The result is that two products 
receive the same serial number, which is clearly a bad situation. 

 

 
 

 
The answer to this problem is that the entire operation of reading the number, seeking back to the start of the file, and writing the 
result needs to be atomic; no other instances of the application should be able to interact with the file while you are. Linux 
provides a capability called file locking that enables you to deal with such a situation. 

 

 
 
     
 
Cross-Reference  
 
 Chapter 14, “ Introducing the Linux I/O System,”  covers the file locking capability.   
 
     
 
 Deadlock   
 

 
Consider the following situation. There are two files, A and B, that your process needs to access. It needs to do things to both of 
them without interference, so it requests a lock on file A, and when this lock is granted, it requests a lock on file B. 

 
 
 

 

A separate process has the same requirements, but it requests a lock on file B and then a lock on file A. There is a potential for 
deadlock in this situation. Consider what would happen if the first process receives its lock on file A, and then the second process 
receives its lock on file B. In such a case, the first process will try to lock file B while the second process tries to lock file A. 
Neither process will be able to ever move forward because of this situation. Both processes will be completely locked until one of 
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them is killed.  
 

 

This problem is dubbed deadlock, and it occurs when synchronization attempts to go haywire, causing two or more processes to be 
stalled, each waiting for the other to do something. Like other synchronization problems, this one can be difficult to diagnose. 
Fortunately, though, you can attach gdb to an already-running, hung process and figure out where it is encountering trouble. If it’ s 
inside a call to a synchronization function such as flock(), you can bet that you have a deadlock problem. 

 

 
 

 

You can take some steps to prevent deadlock from occurring. For one, try to avoid locking multiple resources at once. This is one 
of the most common causes of deadlock. If you absolutely must do this, take care to always lock them in the same order. Failing to 
do so is an invitation for deadlock to occur, which is not good. When you release resources, release them in an order opposite from 
which you requested them. 

 

 
 
 Race conditions   
 

 

The examples of synchronization problems—the incrementing counter problem, deadlock, the append problem, and so on—are all 
instances of a more general class of problem called the race condition. A race condition occurs any time you have an operation 
whose outcome depends solely on the order in which processes at a critical part of code are scheduled for execution by the kernel. 
That is, two processes race to complete something. 

 

 
 

  

Note 

 

Race conditions can also occur with situations other than two processes competing for a resource. You could also 
have this occur within one process, such as with callback functions in Perl/Tk, or due to a logic error in a single 
process. However, the most widely encountered problem deals with multiple processes racing for access to a 
single resource. 

 

 
 

 

Now I will examine the examples earlier in this section. The incrementing counter problem is an example of a race condition. If 
the first process is capable of completing its increment and writing the result back out before the second process reads anything 
then everything will be fine. On the other hand, if the second process reads its value before the first has a chance to finish, the data 
becomes corrupted. 

 

 
 

 
In addition to some of the races highlighted above, other race conditions exist that are commonly encountered in Linux systems. 
One of them is the so-called /tmp race, which is a serious security problem in many shell scripts. 

 
 
 

 

On Linux systems, the /tmp directory is a place for storing temporary files. Typi-cally, it is cleaned out when the system boots, or 
it is cleaned periodically by a cron job. The /tmp directory is used as scratch space for all sorts of different programs that need a 
space to shove data temporarily. The /tmp is a world-writable directory, which means that it allows any user with an account on 
the system to place files or directories there. 

 

 
 

 
So far, this is fine. However, any user with an account on the system also can place symbolic links there. This is fine as well, 
unless users become malicious about it. 

 
 
 

 

Suppose the system administrator of a Linux system routinely runs a program that writes data out to a file named /tmp/mydata. If 
one of the users with an account on the system notices this, the user maliciously might create a symbolic link named /tmp/mydata 
pointing to the file /etc/passwd. The next time the system admini-strator runs the program, it will open up /etc/mydata for writing. 
However, being a symbolic link, it will open up /etc/passwd, truncate the file, and replace it with the temporary data! This will 
mean that nobody, including the sytem adminstrator, will be able to log on to the system—a major problem! Note that the same is 
applicable to other users on the system. An attacker might create a symbolic link to, for instance, somebody’s mail inbox, 
destroying its entire contents of a program running as the other user tried to open the symbolic link for writing. 

 

 
 

 

Some users thought of this problem, and decided that they would try to thwart the potential attacker by checking to see if the file 
/tmp/mydata exists before opening it, perhaps by attempting to stat it. Perhaps this might work, but not always. If an attacker 
manages to create the file between the time the program checked for its existence and the time the program opened it, the same 
vulnerability exists. Attackers have been able to do this too. 

 

 
 
     
 
Cross-Reference  
 
 For more details about stat(), see Chapter 11, “Files, Directories, and Devices.”    
 
     
 
 So you must defeat this type of attack. One way is to use mkdir() to create a directory in /tmp. With mkdir(), you can specify the  
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permissions on the directory, which are set in an atomic fashion when the directory is created, so you can prevent anyone else from 
creating files in it. When you’ re done, simply remove the directory and continue on your way.  

 

 
Another way is to avoid the use of /tmp altogether. Perhaps you can store your files in the home directory of a calling user, or you 
might be able to redesign your pro-gram to avoid the need for temporary files altogether. There are other solutions that can provide 
you with an atomic operation, but these are some of the easiest to understand and implement. 

 

 
 
 Spinning and busy waiting   
 

 
Spinning is not solely a synchronization issue but frequently is enountered as such. A program is said to be spinning if it is running 
through a loop without apparently making progress. A specific example of this is the busy wait, in which a program continually 
runs through a loop waiting for a certain event to occur. 

 

 
 

 
For example, on some old PCs, one reads input from the keyboard by repeatedly polling the keyboard to see if there is any data 
there to read. This is, of course, possible on Linux by using non-blocking reads. However, doing so is a very bad idea; you eat up 
lots of CPU resources that could otherwise go to other processes, and makes yourself out to be a resource hog. 

 

 
 

 

Linux provides the programmer with many capabilities specifically designed to help avoid the need to busy wait. Among your 
alternatives to busy waits are setting signal handlers to invoke when a certain event occurs, using the select() call for multiplexing 
across I/O channels, and simply having better algorithm design. Some users might insert a command like sleep(1) each time through 
the loop, claiming that it is no longer busy waiting. In reality, it still is busy waiting, except less CPU resources are consumed 
because the program does not consume resources while sleeping.  

Understanding Secur ity   
 

 
One of the most confusing aspects of the process model on Linux is that of security. I’ ll start by covering the basics and then I’ ll 
go into more detail about the process security model. 

 
 
 
 Basics   
 

 
In its most simple (and most common) case, each Linux process essentially holds two values: a uid and a gid. These values are 
used by the Linux kernel to determine what the process can do, and in some cases, what can be done to the process. 

 
 
 

 

As an example, if you try to open a file, your process’s uid is compared with the uid of the file owner. If they are the same, you 
can open the file. If not, you need some additional permissions, such as group or world permission, to be able to open the file. 
Similarly, if you want to send a signal to a process, the recipient process must have the same uid as the sending process. In this 
way, the system prevents people from causing unwanted effects in each other’s processes. 

 

 
 

 
When you log in to a Linux system, your uid and gid values are set (by the login program, typically) and then the shell’ s process is 
invoked. Because the uid and gid are values that are passed along through both fork() and exec(), any programs that you start 
inherit these same values. 

 

 
 
 Internals   
 

 
The system described previously sounds pretty simple, and it is. Most programs live out their lives with a single uid and gid value 
only. However, there are really eight such values, plus another, somewhat of a maverick one, as you’ ll see next. Table 12-2 lists 
the eight values associated with a process. 

 

 
 
 Table 12-2:  Per-Process Secur ity Attr ibutes   
 
     
 
 Attr ibute   

 
Meaning   

  
Functions   

 

 
     
 
 real user ID   

 
The uid of the person that invoked this 
process. 

 
 

 
 
getuid(), setuid(), setruid(), setreuid()    

 
 effective user ID   

 
The user ID under which the process is 
currently running, for the purpose of 
evaluating permissions. 

 

 

 

 
geteuid(), setuid(), seteuid(),setreuid()    
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 filesystem user ID   The user ID that is used solely for 
evaluating permissions of file system 
access. In almost all cases, this is 
identical to the effective user ID. 

 

 

setfsuid() sets this value specifically. It is 
also implicitly set by any call changing 
the effective uid, such as 
setuid(),seteuid(), and setreuid(). 

 

 
 
 Saved user ID   

 
The original effective user ID of the 
process that is set when the program 
running in the process is first invoked. 

 

 

 

 
setuid(), but only if the process’s 
effective uid is that of the superuser. 

 
 

 

 
 real group ID   

 
The uid of the primary group of the 
user that invoked this process. 

 
 

 
 
getgid(), setgid(), setrgid(),setregid()    

 
 effective group ID   

 
The primary group ID under which the 
process is currently running. 

 
 

 
 
getegid(), setgid(), setegid(),setregid()    

 
 filesystem group ID   

 
The primary group ID under which file 
system accesses are authenticated 
against. In almost all circumstances, 
this is identical to the effective user ID. 

 

 

 

 
setfsgid() sets this value specifically. 
Also, it is set implicitly by any call 
changing the effective gid, such as 
setgid(), setegid(), and setregid(). 

 

 

 

 
 saved group ID   

 
The original effective group ID of the 
process that is set when the program 
running in the 

 

 

 

 
setgid(), but only if the process’s 
effective uid is the superuser. process is 
first invoked. 

 

 

 

 
     
 

 

Don’ t worry about the specific meanings of all these attributes right now; I’ ll go into these later when I discuss the Linux setuid() 
and setgid() mechanism. What you can learn from this table is that the process security model in Linux is much more complex than 
a single uid and a single gid. Each process may have these eight different values. One may indicate, for instance, a certain uid to be 
used for file system access. Other activities, such as sending and receiving signals, may be authenticated based on a different uid. 
There are many different functions that you can use to change these values, each having some fairly complex invocation rules. 

 

 
 

 

In Table 12-2, note that the filesystem user ID and filesystem group ID values are features unique to Linux. Other operating 
systems do not necessarily have those features, so their use is discouraged unless you specifically must modify the file system uid 
without modifying the effective uid, which is an extremely rare requirement. Furthermore, Linux implements these functions 
according to the POSIX saved IDs specification; other, particularly older, operating systems may not have as many features or 
behave in the same manner as Linux in this regard. Therefore, if you need to port code using setuid or setgid features to or from 
Linux, make certain that you check the documentation on both platforms to ensure that your actions have the desired effect. 

 

 
 

 
When a normal process is invoked, all four of the user ID values and all four of the group ID values are set to a single value: the 
uid of the process and the gid of the process, respectively. A great majority of programs on your system act in this fashion. 

 
 
 

 
However, some programs have more complex requirements. When such a program is started, the real uid and real gid of the 
process are saved. The remaining three fields for both the gid and the uid are set to the new values. After this is done, it is possible 
to switch back and forth between permission sets. 

 

 
 

 

Besides these eight values, there is a ninth attribute to be considered as well: the supplementary group list. This is a list of 
additional groups, beyond the user’s login group, to which the user is considered a member, as defined in /etc/group. The contents 
of this list can only be changed by a process whose effective uid is that of the superuser (0), and even then, changing the value of 
this list (except in some cases to completely zero it out) is not recommended. You get the contents of the list by using getgroups() 
and it can be set with setgroups() or initgroups(). Because this list does not change across setuid or setgid changes, it can be 
ignored for the remainder of the discussion on setuid and setgid, and their roles in the Linux security model. 

 

 
 
 setuid and setgid   
 

 
Most programs on Linux are content with working under the permissions of the user that runs them. However, there are some 
situations in which other permis-sions are necessary. 

 
 
 

 
Consider, for example, a game that maintains a high-scores file. You do not want people to be capable of arbitrarily editing the 
file, because doing so gives them the opportunity to cheat and record whatever scores they like. So you need to restrict permissions 
on the file such that normal accounts don’ t have write access to it. 
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But what about the game program itself? It needs to have write access, but it doesn’ t have such access because it’s running under 
the permissions of the user running it. To get around this problem, you can make the game setuid. This means that, when the game 
starts, it will run under the permissions of some other user, and it will be capable of freely flipping between the two permission 
sets while running. In other words, this enables the game to run as the normal user for most of its life, but flip to the special uid 
when it needs to write to the file. 

 

 
 

 

To make a program setuid, you turn on the setuid bit of its file in the file system, and chown the file to the user that it should be 
setuid to. Similarly, to make a program setgid, you turn on the setgid bit of its file in the file system, and chgrp the file to the group 
that it should be setgid to. When such a program is invoked, the saved ID, effective ID, and file system ID are all set to the new 
value; only the real ID indicates the original person who runs it. 

 

 
 

 
Depending on your perspective, the setuid/setgid mechanism could be the single greatest mistake in the entire 30-year history of 
UNIX, or a feature that permits modern applications to function. Most people take a more moderate approach and view 
setuid/setgid as a necessary evil that should be avoided whenever possible, but one that does have a certain place on the system. 

 

 
 
 setuid- and setgid-Related Functions   
 

 

I’m going to give you a summary of all the different functions that effect the process’s permission settings on a Linux system so 
that you can better understand what the examples are doing. After that, there is an extremely important discussion on the security 
implications of using these functions, and tips to avoid problems. The setuid/setgid feature of Linux is one of the most frequent 
sources of security bugs, especially when combined with other problems such as buffer overflows, so extreme caution must be 
exercised when writing setuid/setgid software. 

 

 
 

 

Table 12-3 lists all the setuid- and setgid-related functions in Linux. The Modifies column indicates what values the function can 
modify. The May Change To column indicates the possible values that may be used when changed. Note that if the effective uid is 
0, for the superuser, any of these values may be changed to anything. The Returns column indicates the value returned by the 
function, and the Notes column indicates special notes about a function. 

 

 
 
 These functions require the inclusion of unistd.h and sys/types.h. They are prototyped as follows:   
 
 uid_t getuid(void);   
 gid_t getgid(void);   
 int   setuid(uid_t uid);   
 int   setgid(gid_t gid);   
 uid_t geteuid(void);   
 gid_t getegid(void);   
 int   seteuid(uid_t euid);   
 int   setegid(gid_t egid);   
 int   setreuid(uid_t ruid, uid_t euid);   
 int   setregid(gid_t rgid, gid_t egid);   
 int   setfsuid(uid_t fsuid);   
 int   setfsgid(uid_t fsgid);   
 
 Table 12-3  Process setuid/setgid Functions   
 
     
 
 Function   

 
Modifies   

  
May Change To   

  
Returns   

  
Notes   

 

 
     
 
 getuid   

 
n/a   

  
n/a   

  
Real uid.   

  
   

 

 
 getgid   

 
n/a   

  
n/a   

  
Real gid.   

  
   

 

 
 setuid   

 
Real uid (if run by 
superuser), 
effective uid, file 
system uid, saved 
uid (if and only if 
run by the 
superuser). 

 

 

 

 
Real uid, effective uid, 
saved uid. 

 
 

 

 
0 on success, -1 on 
failure. 

 
 

 

 
Behaves as 
seteuid() unless 
running as 
superuser. 
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 setgid   

 
Real gid, effective 
gid, file system 
gid, saved gid(if 
and only if run by 
the superuser). 

 

 

 

 
Real gid, effective gid, 
saved gid. 

 
  

 
0 on success, -1 on 
failure. 

 
  

 
Behaves as 
setegid() unless 
running as 
superuser. 

 

 

 

 
 geteuid   

 
n/a    

 
n/a    

 
The current effective 
uid of the process. 

 
 

 
 
    

 
 getegid   

 
n/a    

 
n/a    

 
The current effective 
gid of the process. 

 
 

 
 
    

 
 seteuid   

 
Effective uid, file 
system uid. 

 
 

 
 
Real uid, effective uid, 
saved uid. 

 
 

 
 
0 on success, -1 on 
failure. 

 
 

 
 
    

 
 setegid   

 
Effective gid, file 
system gid. 

 
 

 
 
Real gid, effective uid, 
saved gid. 

 
 

 
 
0 on success, -1 on 
failure. 

 
 

 
 
    

 
 setreuid   

 
Real uid, effective 
uid, file system 
uid. 

 

 

 

 
Real uid, effective uid, 
saved uid. 

 
 

 

 
0 on success, -1 on 
failure. 

 
 

 

 
Some Linux 
documentation 
incorrectly states 
that this function 
is capable of 
modifying the 
saved uid. The file 
system uid is set 
to the new 
effective uid. 

 

 

 

 
 setregid   

 
Real gid, effective 
gid, file system 
gid. 

 

 

 

 
Real gid, effective gid, 
saved gid. 

 
 

 

 
0 on success, -1 on 
failure. 

 
 

 

 
Some Linux 
documentation 
incorrectly states 
that this function 
is capable of 
modifying the 
saved gid. The file 
system gid is set 
to the new 
effective gid. 

 

 

 

 
 setfsuid   

 
File system uid.   

 

 
Effective uid, real uid, 
saved uid, file system 
uid. 

 

 

 

 
Previous file system 
uid value on success, 
current file system uid 
value on failure. 

 

 

 

 
Should be avoided 
except in extreme 
situations. 

 

 

 

 
 setfsgid   

 
File system gid.   

 

 
Effective gid, real gid, 
saved gid, file system 
gid. 

 

 

 

 
Previous file system 
gid value on success, 
current file system gid 
value on failure. 

 

 

 

 
Should be avoided 
except in extreme 
situations. 

 

 

 

 
     
 
 Use of setuid- and setgid-Related Functions   
 

 
Now that you’ve seen what the various functions are, here is an example of how to use them. Listing 12-5 demonstrates how to 
open a file normally only openable by root. To do this, the program must run setuid to root, as I will explain later. 

 
 
 
  Note  Listing 12-5 is available online.   
 
 Listing 12-5: Sample setuid program   
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 #include <stdio.h>   
 #include <unistd.h>   
 #include <stdarg.h>   
 #include <time.h>   
 #include <sys/types.h>   
 #include <sys/stat.h>   
 #include <fcntl.h>   
 #include <unistd.h>   
 #include <stdlib.h>   
 #include <errno.h>   
       
 int tprintf(const char * fmt, ...);   
 void enhancedperms(void);   
 void normalperms(void);   
 void tryopen(void);   
       
 int ruid, euid;   
       
 int main(void) {    
       
   /*  FIRST THING: save of uid values and IMMEDIATELY ditch extra permissions.   
    * /   
       
   ruid = getuid();   
   euid = geteuid();   
   normalperms();   
       
   /*  If the two values were equal, the program wasn’ t set setuid in the   
      filesystem (or was just run by root in the first place).  * /   
       
   if (ruid == euid) {    
     tprintf(“Warning: This program wasn’ t marked setuid in the filesystem\n”);   
     tprintf(“or you are running the program as root.\n” );   
   }    
       
   tryopen();   
   enhancedperms();   
   tryopen();   
   normalperms();   
      
   tprintf(“Exiting now.\n” );   
   return 0;   
 }    
       
 int tprintf(const char * fmt, ...) {    
   va_list args;   
   struct tm * tstruct;   
   time_t tsec;   
      
   tsec = time(NULL);   
   tstruct = localtime(&tsec);   
      
   printf(“%02d:%02d:%02d %5d| “ ,   
          tstruct->tm_hour,   
          tstruct->tm_min,   
          tstruct->tm_sec,   
          geteuid());   
           
   va_start(args, fmt);   
   return vprintf(fmt, args);   
 }    
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 void enhancedperms(void) {    
   if (seteuid(euid) == -1) {    
     tprintf(“Failed to switch to enhanced permissions: %s\n” ,   
         sys_errlist[errno]);   
     exit(255);   
   }  else {    
     tprintf(“Switched to enhanced permissions.\n” );   
   }    
 }    
       
 void normalperms(void) {    
   if (seteuid(ruid) == -1) {    
     tprintf(“Failed to switch to normal permissions: %s\n” ,   
         sys_errlist[errno]);   
     exit(255);   
   }  else {    
     tprintf(“Switched to normal permissions.\n” );   
   }    
 }    
       
 void tryopen(void) {    
   char *filename = “ /etc/shadow”;   
   int result;   
       
   result = open(filename, O_RDONLY);   
   if (result == -1) {    
     tprintf(“Open failed: %s\n” , sys_errlist[errno]);   
   }  else {    
     tprintf(“Open was successful.\n” );   
     close(result);   
   }    
 }    
 

 

This program is designed to show you how setuid can effect the program. When the program begins, it runs with the enhanced (0) 
effective uid. The first thing it does is it saves off the real and effective uids, and then it immediately gets rid of the enhanced uid. 
Notice that throughout the program, it uses the extra permissions as little as possible, immediately reverting to the real uid when 
done. 

 

 
 

 
The program tries to open the /etc/shadow file, which should exist on most Linux systems. Only root should be capable of opening 
this file; its permissions prevents other users from being capable of doing so. Compile and test this program first without marking 
it setuid in the file system: 

 

 
 
 $ gcc -Wall -o ch12-8 ch12-8.c   
 $ ./ch12-8   
 09:26:47  1000| Switched to normal permissions.   
 09:26:47  1000| Warning: This program wasn’ t marked setuid in the filesystem.   
 09:26:47  1000| Open failed: Permission denied   
 09:26:47  1000| Switched to enhanced permissions.   
 09:26:47  1000| Open failed: Permission denied   
 09:26:47  1000| Switched to normal permissions.   
 09:26:47  1000| Exiting now.   
 

 

Notice that this program displays its effective uid at the start of each line instead of displaying its process ID. My personal uid is 
1000; yours may be different. Recall that programs that are not marked setuid have all four uid values set to the same thing. So 
when this program thinks it’ s switching to the ehnahced permissions (based on the saved effective uid), really it is not making any 
change at all. Therefore, both open attempts fail. 

 

 
 
 To mark the program setuid to root, you need to log in as or su to root. Here’s how you might do that:   
 
 $ su   
 Password: Your Password   
 # chown root ch12-8   
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 # chmod u+s ch12-8   
 # exit   
 
 Now, back at your normal account, try running the program again. Notice the difference in the results this time:   
 
 $ ./ch12-8   
 09:30:25  1000| Switched to normal permissions.   
 09:30:25  1000| Open failed: Permission denied   
 09:30:25     0| Switched to enhanced permissions.   
 09:30:25     0| Open was successful.   
 09:30:25  1000| Switched to normal permissions.   
 09:30:25  1000| Exiting now.   
 

 
This time, the program’s effective uid did change when it called seteuid(). More-over, the call to open() successfully managed to 
open the file for reading because the program was running as root at the time. Notice how the same call failed between the time the 
program gave up its extra permissions and it reclaimed them. 

 

 
 

 
If you glance at Table 12-3, you’ ll notice that, if your effective uid is 0, the setuid() function can be used to change the effective, 
real, and saved uids. You can do this to remove any possibility of your process regaining the enhanced (or any other) permissions 
permanently. If you are not running with an effective uid of 0, you cannot possibly ditch these permissions permanently. 

 

 
 

 
Listing 12-6 shows a modification of the code to demonstrate that. Notice that the program dies when it tries to regain root 
permissions after they were permanently revoked. 

 
 
 
  Note  Listing 12-6 is available online.   
 
 Listing 12-6: Revoking permissions   
 
 #include <stdio.h>   
 #include <unistd.h>   
 #include <stdarg.h>   
 #include <time.h>   
 #include <sys/types.h>   
 #include <sys/stat.h>   
 #include <fcntl.h>   
 #include <unistd.h>   
 #include <stdlib.h>   
 #include <errno.h>   
       
 int tprintf(const char * fmt, ...);   
 void enhancedperms(void);   
 void normalperms(void);   
 void permnormalperms(void);   
 void tryopen(void);   
       
 int ruid, euid;   
       
 int main(void) {    
       
   /*  FIRST THING: save of uid values and IMMEDIATELY ditch extra permissions.   
    * /   
       
   ruid = getuid();   
   euid = geteuid();   
   normalperms();   
       
   /*  If the two values were equal, the program wasn’ t set setuid in the   
      filesystem.  */   
       
   if (ruid == euid) {    
     tprintf(“Warning: This program wasn’ t marked setuid in the filesystem.\n” );   
   }    
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   tryopen();   
       
   /*  Try to open with enhanced permissions. * /   
       
   enhancedperms();   
   tryopen();   
       
   /*  Print out the info while using enhanced permissions. */   
   tprintf(“Real uid = %d, effective uid = %d\n” , getuid(), geteuid());   
      
   /*  Permanently switch to normal permissions and display the information. */   
   permnormalperms();   
   tprintf(“Real uid = %d, effective uid = %d\n” , getuid(), geteuid());   
       
   tprintf(“Now, I’ ll try to go back to enhanced permissions.\n” );   
   enhancedperms();   
   tryopen();   
   normalperms();   
      
   tprintf(“Exiting now.\n” );   
   return 0;   
 }    
       
 int tprintf(const char * fmt, ...) {    
   va_list args;   
   struct tm * tstruct;   
   time_t tsec;   
 
      
   tsec = time(NULL);   
   tstruct = localtime(&tsec);   
      
   printf(“%02d:%02d:%02d %5d| “ ,   
        tstruct->tm_hour,   
        tstruct->tm_min,   
        tstruct->tm_sec,   
        geteuid());   
           
   va_start(args, fmt);   
   return vprintf(fmt, args);   
 }    
       
 void enhancedperms(void) {    
   if (seteuid(euid) == -1) {    
     tprintf(“Failed to switch to enhanced permissions: %s\n” ,   
         sys_errlist[errno]);   
     exit(255);   
   }  else {    
     tprintf(“Switched to enhanced permissions.\n” );   
   }    
 }    
       
 void normalperms(void) {    
   if (seteuid(ruid) == -1) {    
     tprintf(“Failed to switch to normal permissions: %s\n” ,   
         sys_errlist[errno]);   
     exit(255);   
   }  else {    
     tprintf(“Switched to normal permissions.\n” );   
   }    
 }    
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 void tryopen(void) {    
   char *filename = “ /etc/shadow”;   
   int result;   
       
   result = open(filename, O_RDONLY);   
   if (result == -1) {    
     tprintf(“Open failed: %s\n” , sys_errlist[errno]);   
   }  else {    
     tprintf(“Open was successful.\n” );   
     close(result);   
   }    
 }    
       
 void permnormalperms(void) {    
   if (setuid(ruid) == 01) {    
     tprintf(“Failed to permanently switch to normal permissions: %s\n” ,   
         sys_errlist[errno]);   
     exit(255);   
   }  else {    
     tprintf(“Permanently switched to normal permissions.\n” );   
   }    
 }    
 

 

Like the previous program (see Listing 12-5), when this program starts, it automati-cally has the enhanced permissions because it 
is marked setuid in the file system. Like the previous one, it removes these permissions as soon as possible. It tries to open the file, 
and then attains the enhanced permissions and tries to open the file a second time. This program then permanently removes the 
enhanced permissions from its process. As an exercise, it tries to recapture those permissions, but this will fail and the program 
will exit. 

 

 
 
 Here is what the execution of the program looks like if properly marked setuid:   
 
 $ ./ch12-9    
 10:12:21  1000| Switched to normal permissions.   
 10:12:21  1000| Open failed: Permission denied   
 10:12:21     0| Switched to enhanced permissions.   
 10:12:21     0| Open was successful.   
 10:12:21     0| Real uid = 1000, effective uid = 0   
 10:12:21  1000| Permanently switched to normal permissions.   
 10:12:21  1000| Real uid = 1000, effective uid = 1000   
 10:12:21  1000| Now, I’ ll try to go back to enhanced permissions.   
 10:12:21  1000| Failed to switch to enhanced permissions: Operation not permitted   
 

 
As before, if you run the program without marking it setuid, all of these requests will succeed but will have no effect. Here is the 
output of such an execution: 

 
 
 
 $ ./ch12-9    
 10:12:01  1000| Switched to normal permissions.   
 10:12:01  1000| Warning: This program wasn’ t marked setuid in the filesystem.   
 10:12:01  1000| Open failed: Permission denied   
 10:12:01  1000| Switched to enhanced permissions.   
 10:12:01  1000| Open failed: Permission denied   
 10:12:01  1000| Real uid = 1000, effective uid = 1000   
 10:12:01  1000| Permanently switched to normal permissions.   
 10:12:01  1000| Real uid = 1000, effective uid = 1000   
 10:12:01  1000| Now, I’ ll try to go back to enhanced permissions.   
 10:12:01  1000| Switched to enhanced permissions.   
 10:12:01  1000| Open failed: Permission denied   
 10:12:01  1000| Switched to normal permissions.   
 10:12:01  1000| Exiting now.   
 
 setuid/setgid side effects   
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Because these systems introduce extra capability for programs to access files, some other subsystems are affected if you choose to 
make your program setuid or setgid. Generally, this takes the form of disabling a certain behavior for security reasons. 

 
 
 
 Behavior  Across exec()   
 

 
When you want to execute another program, you need to be aware of what happens. Not all of this is documented in manpages for 
the exec functions, so there is a chance that the behavior may change eventually. 

 
 
 

 
When you call exec on a program, it copies the real and effective uid and gid values from the existing process first. Then, it checks 
for setuid or setgid bits and makes changes to effective permissions as warranted. Finally, it copies the effective uid and effective 
gid to the saved uid and saved gid, respectively. 

 

 
 

 

This means that the permissions for the executed program depend on exactly how the permissions in your program were set prior 
to the call. If the effective uid (or gid) is the same as the real uid (or gid) in your program, meaning that presumably you either 
permanently or temporarily removed the enhanced permissions, the called program will have no access at all to enhanced 
permissions. 

 

 
 

 
On the other hand, if your effective uid (or gid) is set to an enhanced value at the time you call exec, the called program will have 
this as its effective uid and saved uid—essentially behaving as if it were setuid, even if it is not. 

 
 
 

 
Therefore, it is highly recommended that you drop additional permissions by calling seteuid() prior to executing another program. 
Additionally, you can find some more security warnings about exec() in the next section. 

 
 
 
 Impact on ld-linux.so   
 
 This effects you only if you are manipulating shared libraries.   
 
     
 
Cross-Reference  
 
 See Chapter 9, “Libraries and Linking,”  for more details on shared libraries.   
 
     
 

 
The Linux dynamic loader disables certain behavior if it is being called to link a setuid or setgid program. It ignores the 
LD_PRELOAD environment variable. If it does not, this would enable the user to override library calls with others that potentially 
could run with the extended permissions of the setuid program, which would be a big security risk. 

 

 
 

 
The loader also ignores the LD_LIBRARY_PATH and LD_AOUT_LIBRARY_PATH environment variables for a similar reason. 
In this case, users could provide trojan libraries that would pretend to be real ones but could abuse the extra permissions of a setuid 
program. 

 

 
 
 Impact on fork()   
 

 

When you call fork(), all of the uid and gid information is copied to the child process. Therefore, immediately after the fork, the 
permission information is identical between the parent and child process. If your child (or, for that matter, the parent) process is 
doing something for which it does not need the extra permissions, you should remove (permanently, if possible) these permissions 
from the process. 

 

 
 
 Staying secure with setuid/setgid   
 

 
In addition to introducing some powerful capabilities, setuid and setgid also intro-duce an amazing potential for problems. In 
addition to the security ideas presented here that are specifically applicable to the setuid and setgid programs, there are other 
security principles that you should also be familiar with and apply. 

 

 
 
     
 
Cross-Reference  
 
 The other security principles that you should apply are mentioned in Chapter 27, “Understanding Security and Code.”  The  
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security issues that relate to the buffer overflow problem are of particular importance.  
 
     
 

 
Most of these tips operate on the principle of least permission. This means that your software should always be written such that, 
at any given moment, it has the least possible permissions required to accomplish a given task. 

 
 
 
 Don’ t setuid to root   
 

 
One of the most dangerous things you possibly could do is make a program setuid to root. Sometimes, there is no way around it 
and the program must be setuid to root. However, if at all possible, avoid this. 

 
 
 

 
Consider the example of the game program that needs to write out its score file. Instead of making the program setuid to root, a 
wise programmer instead creates a special user on the system and makes the program setuid to that user. That way, if there is a 
flaw in the game’s code or a security violation occurs, the potential harm is far less. 

 

 
 
 Another option is to create a group for the program to use and make it setgid to that group.   
 
 Remove Extra Permissions Immediately   
 

 
Immediately after you save away the necessary information, you should ditch the extra permissions. Later on in your program, you 
should reclaim them only when doing so is necessary for proper operation of the program. Furthermore, you should remove the 
extra permissions permanently if possible, and as soon as possible. 

 

 
 

 
Doing so can help prevent damage that may occur from a bug in your program or a security breach involving your program. Even 
if you are certain that your program is secure and bug-free, it doesn’ t hurt to be cautious just in case you may have overlooked 
something. 

 

 
 
 Never  Use execlp() or  execvp()   
 

 

If you run a program that is setuid, you should absolutely never use these func-tions. The reason is that they rely on the PATH that 
is passed in to you by the user running the program. Consider what might happen if you run execlp() on ls, but the PATH starts 
with an entry pointing to that user’s home directory. If you run the program with full permissions, all that the user has to do is 
place a custom ls binary somewhere on the PATH before the system’s copy of ls, and instantly the user can get custom code to run 
with extra permissions. 

 

 
 

 
Because of this problem, you should always use absolute pathnames when you want to use exec for something new from a setuid 
program. The only time that you should consider execlp() is if you completely drop your enhanced permissions, either temporarily 
or permanently. Even so, as a precaution, you should avoid it if possible. 

 

 
 
 Never  Invoke a Shell or  Use System()   
 

 

Another thing that you should avoid is executing a shell. Shells grab many things from the environment, and if they are passed 
material from the user, it is possible to convince them to do undesired things with their extended permissions. For instance, a 
historic way to exploit this would be to embed something such as, ; rm -rf /etc in input (such as a filename) to a setuid program. If 
the program uses a shell or calls system() for it, the shell will see the semicolon, treat it as a command separator, and then proceed 
to delete all of the /etc directory if the program is run setuid to root. 

 

 
 

 

Because the system() library call is implemented in terms of a call to the shell, you should avoid it as well. Along the same lines, 
you should double-check any input that you send to an executed program while it is setuid. Your checks should make sure that 
only sensible and expected types of input are passed through. If you are using Perl, its taint-checking features will help identify 
these problems for you. Additionally, if you are using Perl, you should avoid the backtick and glob items because both of them are 
also implemented in terms of the shell. 

 

 
 
 Close File Descr iptors   
 

 

This one is a simple but important tip. If you have a program that is setuid, and the program used this to its advantage to open a file 
to which it would otherwise not have had access (or had less access), these extra permissions stay with that file descriptor even if 
you subsequently relinquish your enhanced permissions. There-fore, you should always close such file descriptors as soon as 
possible. In no case should you exec another program without first closing any such file descriptors in your own program because 
your own file descriptors and their permissions are passed on to the executed program. Imagine, for instance, a program that reads 
/etc/shadow and then executes another program. If the first program does not close the file descriptor for /etc/shadow, the second 
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can read the contents of that file even if it is not invoked with any other special permissions.  
 
 Beware of the umask   
 

 

Although your programs should be specifying explicitly good and secure permissions when files or directories are created via calls 
to open() or mkdir(), sometimes they aren’ t. When you run setuid, you may prefer to create files that the normal user invoking 
your program cannot read from or write to. However, if you are a bit sloppy and the original invoker is tries to obtain access to 
these files, the original user’s umask may be set such that your program creates the file with incorrect permissions while setuid. A 
quick fix is to manually issue a call such as umask(022) to reset it to a more normal value. 

 

 
 
 Watch for  Deadly Signals   
 

 

As you’ ll learn in the Sending Signals section of Chapter 13, “Understanding Signals,”  your process can only receive signals from 
another process whose effective uid is the same as yours, or from the superuser. However, when you are running a program that is 
setuid, your effective uid may change from moment to moment as execution progresses. Signals can be sent that may make your 
program dump core or die in some cases, and you should be extremely cautious with them. 

 

 
 

 
Note that this is the original impetus for the creation of the file system uid and gid on Linux. The Linux NFS server wanted to 
setuid to a less privileged uid than it would normally use (root). However, when it did that, it could become vulnerable to signals 
sent to it by the owner of such an account. Therefore, it simply sets the file system uid to avoid this problem. 

 

 
 
 Heed General Secur ity Pr inciples   
 

 
Earlier in this chapter, I touched on the /tmp race problem. Be careful about this in your own programs if they are setuid. Also, 
take note of all the security issues mentioned in Chapter 27, “Understanding Security and Code” ; they become even more 
important in a program that is setuid or setgid. 

 

 
 
 Avoid setuid/setgid Entirely   
 

 

Another way to help ensure the security of your programs is to avoid the usage of setuid or setgid code entirely. Some alternatives 
that may work for you might be implementing a client/server pair. The server could run with the necessary permissions from the 
start, and the client could run without setuid, asking the server for the specific information that it needs. Although this is not 
always a viable alternative, it can be for some tasks. You have a large number of options to choose among. 

 

 
 
     
 
Cross-Reference  
 
 See Chapters 17 through 19 for details on some of the options.   
 
     
 

 
Some would argue that avoiding setuid/setgid entirely is your best option. It may well turn out to be, but there can still be cases when 
setuid/setgid permissions are practically unavoidable.  

Summary   
 
 In this chapter, you learned about the Linux process model. Specifically, you learned:   
 
  •  Each process is its own separate space, providing only certain well-defined ways to communicate with other processes.   
 

  
• 

 
Because each process has its own memory area, one errant process cannot cause another one to crash as well; the worst it can 
do is cause itself to terminate. 

 
 
 

  
• 

 
Each process is associated with information, such as its environment, file descriptors, scheduling information, and security 
information. 

 
 
 

  
• 

 
To create a new process, you use fork(). This call creates a copy of the existing process, and both processes then continue to 
execute simultaneously. 

 
 
 

  
• 

 
To run another program, you use exec(). This call replaces the program running in the current process with a different 
program; your current program ceases to exist unless the call fails for some reason. 
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• 

 
Processes leave around certain information after they terminate. If you don’ t clean it up, it can use up valuable space in the 
process table. 

 
 
 

  
• 

 
You can wait either until a process exits or clean up the information from an already exited process by using one of the wait() 
family of functions. 

 
 
 
  •  If you want your process to continue when starting a new one, you should fork and then execute the new program.   
 
  •  You can find out why a process exited by examining the status information from one of the wait() functions.   
 
  •  Synchronization between processes is a tricky but important topic.   
 
  •  An atomic operation cannot be interrupted by another similar operation.   
 
  •  Deadlock occurs when two or more processes are waiting for each other to release some resource.   
 
  •  Race conditions occur when random flukes of scheduling influence whether or not your code will work.   
 
  •  Busy waiting occurs when your program continuously polls for an event to occur instead of waiting to be told of it.   
 
  •  Each process has a set of eight ID values plus a list of groups.   
 
  •  You can manipulate these values and groups in setuid or setgid programs, but doing so can be dangerous.  
Chapter  13: Understanding Signals   
 
 Overview   
 

 

Signals are a way of informing a process that an event has occurred. In this chapter, you will learn about the mechanics of signals. 
Then, you’ ll learn about signal handlers, which are used to allow the execution of your program to be diverted to a special function 
when a signal is received. After that, you will find out how to transmit signals, the interaction between signals and system calls, and 
some potential pitfalls that may arise from the use of signals.  

The Use of Signals   
 

 
Linux offers you many different ways to enable processes to communicate between each other. Processes might use an Internet 
socket to communicate with a process on a computer in a different country. Or, they might use a pipe to communicate with a 
process on the same computer. 

 

 
 

 

Signals are also a form of communication, but they are designed to solve a different problem. Rather than sending data from place 
to place, a signal is sent to a process to inform it that a certain event occurred. For instance, if I am running a program and press 
Ctrl+C, the process receives SIGINT—the interrupt signal. By default, this causes the process to terminate. However, if the 
process is something like an editor, I might want something else to occur. So, I can have the process catch the SIGINT signal and 
do something specific when it occurs. That is, no matter where in the code the program is, when it receives SIGINT, it will 
immediately execute the handler for it. In the case of an editor, the handler might save the user’s file and then exit. Or, it might ask 
for confirmation to exit. Finally, it may just ignore SIGINT altogether. 

 

 
 

 

Signals can be useful in other ways as well. Suppose that you are doing some complex calculations, perhaps in a tight loop, that 
take several hours to complete. Every 30 seconds, you’d like to inform the operator of the status of the program. You don’ t update 
it every time through the loop, because this would significantly slow down the program. However, without signals, you have to 
poll the system time every time through the loop. Although faster than doing I/O (input or output) every time, it is still a 
performance burden. 

 

 
 

 

Rather than polling the system, you can ask the operating system to send you a signal 30 seconds in the future. You then continue 
with your calculations, never needing to bother to check the time. After 30 seconds, the operating system sends your process a 
signal. This causes your program to jump to the signal handler, which might print out the status information and ask for another 
signal to be sent 30 seconds later. 

 

 
 

 
As another example, if you are communicating with another process with something like a pipe, and that process suddenly exits, 
your process will be sent a SIGPIPE signal informing you of this. If one of your process’s child processes exits, you’ ll receive a 
SIGCHLD signal, possibly an indication that you should wait on the child process. 
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Cross-Reference  
 
 Chapter 12, “Processes in Linux,”  cover waiting on the child process.  
Signal Handlers   
 

 
Normally, when your process receives a signal, the system will take action on it. This could mean just ignoring the signal, or it 
could mean terminating your process. If you want something else to occur, you can register a handler for any particular signal. 

 
 
 

 
When your process receives a signal, if you have a handler set for that signal, the handler function is called immediately. This 
occurs regardless of where the execution point is in your code; when your program receives a signal, it is sent to the handler 
immediately. 

 

 
 

 
When you register a signal handler, you use the signal(2) call. There are two signals you cannot catch: SIGSTOP and SIGKILL. 
All others can have handlers registered for them. 

 
 
 

 
Two special signal handlers are also available: SIG_IGN, which ignores the signal completely; and SIG_DFL, which restores the 
system default behavior when a given signal is received. 

 
 
 
 Basic handlers   
 
 Here’s an example of a program that sets a handler for SIGTERM rather than let the program die when that signal is received:   
 
 #include <stdio.h>   
 #include <signal.h>   
 #include <stdarg.h>   
 #include <time.h>   
 #include <unistd.h>   
 #include <sys/types.h>   
       
 int tprintf(const char * fmt, ...);   
 void sighandler(int signum);   
       
 int main(void) {    
 char buffer[200];   
       
   if (signal(SIGTERM, &sighandler) == SIG_ERR) {    
     tprintf(“Couldn’ t register signal handler.\n” );   
   }    
       
   while (1) {    
     fgets(buffer, sizeof(buffer), stdin);   
     tprintf(“ Input: %s” , buffer);   
   }    
   return 0;   
 }    
       
 int tprintf(const char * fmt, ...) {    
   va_list args;   
   struct tm * tstruct;   
   time_t tsec;   
    
   tsec = time(NULL);   
   tstruct = localtime(&tsec);   
    
   printf(“%02d:%02d:%02d %5d| “ ,   
          tstruct->tm_hour,   
          tstruct->tm_min,   
          tstruct->tm_sec,   
          getpid());   
        
   va_start(args, fmt);   
   return vprintf(fmt, args);   



 244 

 }    
       
 void sighandler(int signum) {    
   tprintf(“Caught signal SIGTERM.\n” );   
 }    
 

 

As you run this program, it will simply echo back your input to you. Now, in a separate window, use kill pid to send it a 
SIGTERM signal. Each line of output conveniently contains the pid for your use. Instead of terminating on the spot, it prints out a 
message and continues. After printing the message, the code resumes whatever it was doing before (in this case, probably waiting 
for input). You can exit the program by using Ctrl+C. Here’s some sample output: 

 

 
 
 $ ./ch13-1   
 Hi!   
 20:19:02   764| Input: Hi!   
 I ’ ll send you a signal now.   
 20:19:10   764| Input: I’ ll send you a signal now.   
 20:19:13   764| Caught signal SIGTERM.   
 You got it!   
 20:19:48   764| Input: You got it!   
 

 
You can also have multiple signals delivered to a single handler. Moreover, you can also have multiple handlers in your program. 
Listing 13-1 shows a program that uses both of these methods. 

 
 
 
  Note  Listing 13-1 is available online.   
 
 Listing 13-1: A Multi-signal handler    
 
 #include <stdio.h>   
 #include <signal.h>   
 #include <string.h>   
 #include <stdarg.h>   
 #include <time.h>   
 #include <unistd.h>   
 #include <sys/types.h>   
       
 int tprintf(const char * fmt, ...);   
 void sighandler(int signum);   
 void continuehandler(int signum);   
 char buffer[200];   
       
 int main(void) {    
       
   /*  Initialize buffer in case someone interrupts the program before   
      assigning anything to it. * /   
       
   strcpy(buffer, “None\n” );   
       
   if (signal(SIGTERM, &sighandler) == SIG_ERR) {    
     tprintf(“Couldn’ t register signal handler for SIGTERM.\n” );   
   }    
       
   if (signal(SIGINT, &sighandler) == SIG_ERR) {    
     tprintf(“Couldn’ t register signal handler for SIGINT.\n” );   
   }    
       
   if (signal(SIGCONT, &continuehandler)  == SIG_ERR) {    
     tprintf(“Couldn’ t register signal handler for SIGCONT.\n” );   
   }    
       
   while (1) {    
     fgets(buffer, sizeof(buffer), stdin);   
     tprintf(“ Input: %s” , buffer);   
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   }    
   return 0;   
 }    
       
 int tprintf(const char * fmt, ...) {    
   va_list args;   
   struct tm * tstruct;   
   time_t tsec;   
    
   tsec = time(NULL);   
   tstruct = localtime(&tsec);   
    
   printf(“%02d:%02d:%02d %5d| “ ,   
          tstruct->tm_hour,   
          tstruct->tm_min,   
          tstruct->tm_sec,   
          getpid());   
        
   va_start(args, fmt);   
   return vprintf(fmt, args);   
 }    
       
 void sighandler(int signum) {    
   tprintf(“Caught signal %d.\n” , signum);   
 }    
       
 void continuehandler(int signum) {    
   tprintf(“Continuing.\n” );   
   tprintf(“Your last input was: %s” , buffer);   
 }    
 

 
This time, the program catches two more signals. SIGTERM and SIGINT will both be handled by the sighandler() function. 
SIGCONT will be handled by the continuehandler() function. Give this program a try to see how it works: 

 
 
 
 $ ./ch13-2   
 Hello.   
 10:12:49   443| Input: Hello.   
 This is another  test.   
 10:12:52   443| Input: This is another test.   
 Ctrl+C   
 10:12:53   443| Caught signal 2.   
 

 
Notice that Ctrl+C will no longer exit the program. You can also go into another window and send it SIGTERM by running kill 
pid, where pid is the process ID of the sample program, (443) in this example. When you do so, the process will show: 

 
 
 
 10:14:55   443| Caught signal 15.   
 
 Next, you can try suspending the process with Ctrl+Z:   
 
 This is some more input.   
 10:15:30   443| Input: This is some more input.   
 Ctrl+Z   
 [1]+  Stopped                 ./ch13-2   
 $ ls -d /proc/i*    
 /proc/ide  /proc/interrupts  /proc/ioports   
 $ fg   
 ./ch13-2   
 10:15:44   443| Continuing.   
 10:15:44   443| Your last input was: This is some more input.   
 

 
So, you can cause the program to stop (which sends it an uncatchable SIGSTOP signal). Then, you might do something else, such 
as run ls. When you’re ready to continue again, the program receives SIGCONT. When it does, the handler conveniently shows 
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you your last input to help you remember where you left off. Other programs might redraw the screen or take other actions to 
restore context, if necessary.  

 

 
Notice that even if the program is stopped, it can still receive signals queued for examination upon continuing as shown in this 
example (watch what happens when the program returns): 

 
 
 
 Here is some more input.   
 10:24:01   443| Input: Here is some more input.   
       
 [1]+  Stopped                 ./ch13-2   
 $ kill 443   
 $ kill -INT 443   
 $ fg   
 ./ch13-2   
 10:24:15   443| Continuing.   
 10:24:15   443| Your last input was: Here is some more input.   
 10:24:15   443| Caught signal 15.   
 10:24:15   443| Caught signal 2.   
 

 
Because this program catches the standard signals used to kill it, it’ s a bit harder to convince to terminate. You’ ll need to send it 
SIGKILL (number 9), which is uncatchable. In this example, you can use kill -9 443 to achieve the desired result. 

 
 
 
 Blocking signals   
 

 
Sometimes you may prefer to delay the delivery of signals to your program. Instead of having them be totally ignored or having 
them interrupt your flow of execution by calling a handler, you may want the signal to be blocked for the moment but still 
delivered later. You might be executing some timing-critical piece of code, or the signal may cause confusion for the user. 

 

 
 

 
In our particular case, consider the situation in which SIGTERM is received in the middle of entering a string. The program will 
display a message immediately, and the screen will display a confusing message. Rather than doing this, it would be better to 
notify the user of the signal reception later, after each line of input. 

 

 
 
 Listing 13-2 shows a program that will do just that for two out of the three signals that the program catches.   
 
  Note  Listing 13-2 is available online.   
 
 Listing 13-2: Blocking signals   
 
 #include <stdio.h>   
 #include <signal.h>   
 #include <stdarg.h>   
 #include <time.h>   
 #include <string.h>   
 #include <unistd.h>   
 #include <sys/types.h>   
       
 int tprintf(const char * fmt, ...);   
 void sighandler(int signum);   
 void continuehandler(int signum);   
 char buffer[200];   
       
 int main(void) {    
       
   sigset_t blockset;   
       
   /*  Initialize buffer in case someone interrupts the program before   
      assigning anything to it. * /   
       
   strcpy(buffer, “None\n” );   
   if (signal(SIGTERM, &sighandler) == SIG_ERR) {    
     tprintf(“Couldn’ t register signal handler for SIGTERM.\n” );   
   }    
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   if (signal(SIGINT, &sighandler) == SIG_ERR) {    
     tprintf(“Couldn’ t register signal handler for SIGINT.\n” );   
   }    
       
   if (signal(SIGCONT, &continuehandler)  == SIG_ERR) {    
     tprintf(“Couldn’ t register signal handler for SIGCONT.\n” );   
   }    
       
   sigemptyset(&blockset);   
   sigaddset(&blockset, SIGTERM);   
   sigaddset(&blockset, SIGINT);   
       
   while (1) {    
     sigprocmask(SIG_BLOCK, &blockset, NULL);   
     fgets(buffer, sizeof(buffer), stdin);   
     tprintf(“ Input: %s” , buffer);   
     sigprocmask(SIG_UNBLOCK, &blockset, NULL);   
   }    
   return 0;   
 }    
       
 int tprintf(const char * fmt, ...) {    
   va_list args;   
   struct tm * tstruct;   
   time_t tsec;   
    
   tsec = time(NULL);   
   tstruct = localtime(&tsec);   
    
   printf(“%02d:%02d:%02d %5d| “ ,   
          tstruct->tm_hour,   
          tstruct->tm_min,   
          tstruct->tm_sec,   
          getpid());   
        
   va_start(args, fmt);   
   return vprintf(fmt, args);   
 }    
       
 void sighandler(int signum) {    
   tprintf(“Caught signal %d.\n” , signum);   
 }    
       
 void continuehandler(int signum) {    
   tprintf(“Continuing.\n” );   
   tprintf(“Your last input was: %s” , buffer);   
 }    
 

 

Let’s look at how this code works its magic. First, we declare a variable of type sigset_t. This is the generic signal set type that 
holds a set of signals. Down below, it is initialized to be the empty set. Then, two signals, those we will eventually want to block, 
are added to the set by the calls to sigaddset(). In order to actually block the signals, the sigprocmask() function is called with a 
SIG_BLOCK parameter. After this call, the input is read and printed. Then, sigprocmask() is called again, but this time with a 
SIG_UNBLOCK parameter. If any signals were pending but not delivered due to the previous block, they will all be delivered and 
handled before sigprocmask() returns to the caller. Therefore, any pending signals are handled at this time. 

 

 
 

 
Note that you can also use SIG_SETMASK for sigprocmask(). The other two options (SIG_BLOCK and SIG_UNBLOCK)add or 
subtract entries from the process’s signal mask; this one sets it to an absolute value. Therefore, the first call, to block some signals, 
could be the same. The one to remove blocking could use SIG_SETMASK with an empty set to achieve the same effect. 

 

 
 

 
When the loop resets to the top, the relevant signals are once again blocked before input is read. In this way, the signals are always 
blocked while input is being read from the terminal but are allowed to be delivered once for each time through the loop. 
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Before looking at a sample session of code, you should be aware of a special case when Ctrl+C is pressed to send SIGINT or 
Ctrl+Z is pressed to send SIGSTOP. You already know that the terminal, by default, sends input to the programs in line-sized 
chunks. Internally, the terminal driver keeps a buffer of input before delivering it to the program, so that the terminal driver can 
handle backspace correction and the like. Pressing Ctrl+C or Ctrl+Z will erase the contents of the buffer, so when you press one of 
these keys, even though the screen may not reflect it, the buffer is being erased. You’ ll be able to see that behavior in the following 
example: 

 

 
 
 $ ./ch13-1   
 This is a normal line of input.   
 14:57:15   676| Input: This is a normal line of input.   
 I  am sending SIGINT here Ctrl+C in the middle of this line.   
 14:57:35   676| Input:  in the middle of this line.   
 14:57:35   676| Caught signal 2.   
 Now I  will send SIGSTOP at the end of this line Ctrl+Z   
 [1]+  Stopped                 ./ch13-3   
 $ fg   
 ./ch13-3   
 14:58:04   676| Continuing.   
 14:58:04   676| Your last input was:  in the middle of this line.   
 and now I ’ ll type another  line.   
 14:58:10   676| Input: and now I’ ll type another line.   
 

 
Now watch what happens when you send SIGTERM from another window. Nothing. However, after you type another line of 
input, the program indicates that it received SIGTERM: 

 
 
 
 Here is some more input.   
 14:59:44   676| Input: Here is some more input.   
 14:59:44   676| Caught signal 15.   
 

 
You can also check to see what signals are pending (waiting for delivery due to being blocked) without causing the signals to 
actually be delivered. Listing 13-3 demonstrates one way to do that, as an add-on to the application. 

 
 
 
  Note  Listing 13-3 is available online.   
 
 Listing 13-3: Pending signals   
 
 #include <stdio.h>   
 #include <signal.h>   
 #include <stdarg.h>   
 #include <time.h>   
 #include <string.h>   
 #include <unistd.h>   
 #include <sys/types.h>   
       
 int tprintf(const char * fmt, ...);   
 void sighandler(int signum);   
 void continuehandler(int signum);   
 char buffer[200];   
       
 int main(void) {    
       
   sigset_t blockset, pending;   
   int pendingcount;   
       
   /*  Initialize buffer in case someone interrupts the program before   
      assigning anything to it. * /   
       
   strcpy(buffer, “None\n” );   
       
   if (signal(SIGTERM, &sighandler) == SIG_ERR) {    
     tprintf(“Couldn’ t register signal handler for SIGTERM.\n” );   
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   }    
       
   if (signal(SIGINT, &sighandler) == SIG_ERR) {    
     tprintf(“Couldn’ t register signal handler for SIGINT.\n” );   
   }    
       
   if (signal(SIGCONT, &continuehandler)  == SIG_ERR) {    
     tprintf(“Couldn’ t register signal handler for SIGCONT.\n” );   
   }    
       
   sigemptyset(&blockset);   
   sigaddset(&blockset, SIGTERM);   
   sigaddset(&blockset, SIGINT);   
       
   while (1) {    
     sigprocmask(SIG_BLOCK, &blockset, NULL);   
     fgets(buffer, sizeof(buffer), stdin);   
     tprintf(“ Input: %s” , buffer);   
       
     /*  Process pending signals. * /   
       
     sigpending(&pending);   
     pendingcount = 0;   
     if (sigismember(&pending, SIGINT)) pendingcount++;   
     if (sigismember(&pending, SIGTERM)) pendingcount++;   
     if (pendingcount) {    
       tprintf(“There are %d signals pending.\n” , pendingcount);   
     }    
       
     /*  Deliver them. * /   
       
     sigprocmask(SIG_UNBLOCK, &blockset, NULL);   
   }    
   return 0;   
 }    
       
 int tprintf(const char * fmt, ...) {    
 
   va_list args;   
   struct tm * tstruct;   
   time_t tsec;   
    
   tsec = time(NULL);   
   tstruct = localtime(&tsec);   
    
   printf(“%02d:%02d:%02d %5d| “ ,   
          tstruct->tm_hour,   
          tstruct->tm_min,   
          tstruct->tm_sec,   
          getpid());   
        
   va_start(args, fmt);   
   return vprintf(fmt, args);   
 }    
 void sighandler(int signum) {    
   tprintf(“Caught signal %d.\n” , signum);   
 }    
       
 void continuehandler(int signum) {    
   tprintf(“Continuing.\n” );   
   tprintf(“Your last input was: %s” , buffer);   
 }    
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The sigpending() function fills in a signal set just like one that was manually created earlier. You can then use sigismember() to 
test to see whether a particular entry in the signal is set. This information is checked to see if any signals were pending. In our 
situation, the algorithm presented is sufficient. Note, though, that there is a race condition in the code. If a new signal arrives that 
is blocked between the time that sigpending() is run and the time that the print statement is run, the displayed count can be 
incorrect. The handlers will still be run when they are unblocked, even if the program displays the incorrect output. 

 

 
 
 Advanced handlers   
 

 
Linux provides another way to define handlers: sigaction(). This function enables you to be more precise about what happens 
when a given signal is received. The sigaction() function is defined as follows: 

 
 
 
 int sigaction(int signum,  const  struct  sigaction  *act, struct sigaction *oldact);   
 

 
To use this function, you pass it a signal number, a pointer to a signal action structure, and a pointer to a structure to fill in with the 
old information, which may be NULL if you don’ t care about the old information. 

 
 
 
 The structure has the following definition:   
 
 struct sigaction {    
   void (*sa_handler)(int);   
   void (*sa_sigaction)(int, siginfo_t *, void *);   
   sigset_t sa_mask;   
   int sa_flags;   
 }    
 

 
You can specify a standard signal handler as with signal() in the sa_handler field. Alternatively, if you specify SA_SIGINFO in 
the sa_flags area, you may specify a handler in sa_sigaction instead. This handler is passed more information about the signal 
received, as you will learn later in this section. 

 

 
 

 

The sa_mask field is a signal set indicating which signals should be automatically blocked when the signal handler for this signal 
is executing. These are automatically unblocked when the signal handler returns. By default, the signal for this handler is 
automatically included, but this default behavior can be suppressed by specifying SA_NODEFER or SA_NOMASK in the 
sa_flags area. 

 

 
 

 
You may use a value of 0 for sa_flags to use all the default options. If you prefer to set flags, the value can be attained by taking 
the bitwise OR of the available flags shown in Table 13-1. 

 
 
 
 Table 13-1:  Flag and Their  Meanings   
 
     
 
 Flag   

 
Meaning   

 

 
     
 
 SA_NOCLDSTOP   

 
Indicates that, if the specified signal is SIGCHLD, the signal should only be delivered when a 
child process is terminated, not when one stops. 

 
 

 

 
 SA_NODEFER   

 
Suppresses automatic blocking of the signal handler’s own signal while the signal handler is 
executing. 

 
 

 

 
 SA_NOMASK   

 
Same as SA_NODEFER.   

 

 
 SA_ONESHOT   

 
After the specified signal handler has been called once, the signal handler is automatically 
restored to SIG_DFL. 

 
 

 

 
 SA_RESETHAND   

 
Same as SA_ONESHOT.   

 

 
 SA_RESTART   

 
Enables automatic restart of the system calls that would not normally automatically restart after 
receiving this signal. 
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 SA_SIGINFO   Specifies that you will specify the signal handler with sa_sigaction instead of sa_handler.   
 
     
 

 
You also need to be aware of the second and third parameters to the signal handler specified with sa_sigaction. Of them, siginfo_t 
is a structure, which is defined as follows: 

 
 
 
 siginfo_t {    
   int      si_signo;  /* Signal number * /   
   int      si_errno;  /* An errno value * /   
   int      si_code;   /*  Signal code */   
   pid_t    si_pid;    /*  Sending process ID */   
   uid_t    si_uid;    /*  Real user ID of sending process * /   
   int      si_status; /* Exit value or signal * /   
   clock_t  si_utime;  /* User time consumed */   
   clock_t  si_stime;  /* System time consumed * /   
   sigval_t si_value;  /*  Signal value * /   
   int      si_int;    /*  POSIX.1b signal * /   
   void *   si_ptr;    /*  POSIX.1b signal */   
   void *   si_addr;   /*  Memory location that caused fault * /   
   int      si_band;   /*  Band event */   
   int      si_fd;     /*  File descriptor */   
 }    
 

 
Not all of these members will be set for every signal or for every method of sending a signal. For instance, si_addr only makes 
sense for signals such as SIGSEGV and SIGBUS that indicate a problem at a specific address. The possible values for si_code are 
defined in Table 13-2. 

 

 
 
 Table 13-2:  Possible Values for  si_code   
 
     
 
 Code   

 
Meaning   

  
Valid For    

 

 
     
 
 BUS_ADRALN   

 
An address alignment problem has occurred.   

  
SIGBUS only   

 

 
 BUS_ADRERR   

 
There was an access attempt to a machine address that does not exist.   

  
SIGBUS only   

 

 
 BUS_OBJERR   

 
An error specific for this particular object occurred.   

  
SIGBUG only   

 

 
 CLD_CONTINUED   

 
A child process, currently stopped, has received SIGCONT.   

  
SIGCHLD only   

 

 
 CLD_DUMPED   

 
A child process terminated with an error that generally causes a core 
dump. 

 
 

 
 
SIGCHLD only    

 
 CLD_EXITED   

 
A child process has exited.   

  
SIGCHLD only   

 

 
 CLD_KILLED   

 
A child process has been killed.   

  
SIGCHLD only   

 

 
 CLD_STOPPED   

 
A child process has been stopped by SIGSTOP or similar.   

  
SIGCHLD only   

 

 
 CLD_TRAPPED   

 
A child being traced has encountered a trap.   

  
SIGCHLD only   

 

 
 FPE_FLTDIV   

 
There was an attempt to perform a floating-point divide by zero.   

  
SIGFPE only   

 

 
 FPE_FLTINV   

 
An invalid floating-point operation was attempted.   

  
SIGFPE only   

 

 
 FPE_FLTOVF   

 
A floating-point overflow condition has been detected.   

  
SIGFPE only   

 

 
 FPE_FLTRES   

 
The floating-point operation result may be rounded.   

  
SIGFPE only   
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 FPE_FLTSUB   

 
An out-of-range floating-point subscript was used.   

  
SIGFPE only   

 

 
 FPE_FLTUND   

 
A floating-point underflow condition has been detected.   

  
SIGFPE only   

 

 
 FPE_INTDIV   

 
There was an attempt to perform an integer divide by zero.   

  
SIGFPE only   

 

 
 FPE_INTOVF   

 
An integer overflow condition has been detected.   

  
SIGFPE only   

 

 
 ILL_BADSTK   

 
A stack error has occurred.   

  
SIGILL only   

 

 
 ILL_COPROC   

 
An illegal coprocessor operation was attempted.   

  
SIGILL only   

 

 
 ILL_ILLADR   

 
An illegal addressing mode error occurred.   

  
SIGILL only   

 

 
 ILL_ILLOPC   

 
An illegal opcode error occurred.   

  
SIGILL only   

 

 
 ILL_ILLOPN   

 
An illegal operand error occurred.   

  
SIGILL only   

 

 
 ILL_ILLTRP   

 
An illegal trap error occurred.   

  
SIGILL only   

 

 
 ILL_PRVOPC   

 
An illegal attempt to use a privileged opcode occurred.   

  
SIGILL only   

 

 
 ILL_PRVREG   

 
An illegal attempt to access a privileged register occurred.   

  
SIGILL only   

 

 
 POLL_ERR   

 
An error has occurred with one of the watched descriptors.   

  
SIGPOLL only   

 

 
 POLL_HUP   

 
The remote end of one of the watched descriptors has been closed.   

  
SIGPOLL only   

 

 
 POLL_IN   

 
Data is available for reading on one of the watched descriptors.   

  
SIGPOLL only   

 

 
 POLL_MSG   

 
It is now possible to read a message from one of the watched 
descriptors. 

 
 

 
 
SIGPOLL only    

 
 POLL_OUT   

 
It is now possible to write data to one of the watched descriptors.   

  
SIGPOLL only   

 

 
 POLL_PRI   

 
It is now possible to read high-priority input data from one of the 
watched descriptors. 

 
 

 
 
SIGPOLL only    

 
 SEGV_ACCERR   

 
An access error has occurred due to lack of permission to access the 
requested address. 

 
 

 
 
SIGSEGV only    

 
 SEGV_MAPERR   

 
A mapping error has occurred.   

  
SIGSEGV only   

 

 
 SI_ASYNCIO   

 
Asynchronous (non-blocking) I/O has finished.   

  
All signals   

 

 
 SI_KERNEL   

 
The kernel generated this signal.   

  
All signals   

 

 
 SI_MESGQ   

 
Message queue state changed.   

  
All signals   

 

 
 SI_QUEUE   

 
The signal came from sigqueue.   

  
All signals   

 

 
 SI_TIMER   

 
A timer expired, causing the signal to be sent.   

  
All signals   

 

 
 SI_USER   

 
Signal was user-generated by this or another process. See “Signal 
Sending”  later in this chapter. 

 
 

 
 
All signals    

 
 TRAP_BRKPT   

 
A process breakpoint has been reached.   

  
SIGTRAP only   

 

 
 TRAP_TRACE   

 
A process trace condition has occurred.   

  
SIGTRAP only   
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Considering this additional information that can be delivered to the application, let’s rewrite it to take advantage of it. Listing 13-4 
presents a new version that uses sigaction to catch its signals. 

 
 
 
  Note  Listing 13-4 is available online.   
 
 Listing 13-4: Example with sigaction   
 
 #include <stdio.h>   
 #include <signal.h>   
 #include <stdarg.h>   
 #include <time.h>   
 #include <unistd.h>   
 #include <string.h>   
 #include <sys/types.h>   
       
 #if defined(__linux__) && !defined(SI_KERNEL)   
 #define SI_KERNEL 0x80   
 #endif   
       
       
 int tprintf(const char * fmt, ...);   
 void sighandler(int signum, siginfo_t * info, void *extra);   
 void continuehandler(int signum, siginfo_t * info, void *extra);   
 char buffer[200];   
       
 int main(void) {    
   struct sigaction act;   
   sigset_t blockset, pending;   
   int pendingcount;   
       
   /*  Initialize buffer in case someone interrupts the program before   
      assigning anything to it. * /   
       
   strcpy(buffer, “None\n” );   
       
   /*  Set some values to apply to all the signals. */   
       
   sigemptyset(&blockset);   
   act.sa_mask = blockset;   
   act.sa_flags = SA_SIGINFO;   
       
   /*  Two signals use the same handler. */   
   act.sa_sigaction = &sighandler;   
   if (sigaction(SIGTERM, &act, NULL) == -1) {    
     tprintf(“Couldn’ t register signal handler for SIGTERM.\n” );   
   }    
   if (sigaction(SIGINT, &act, NULL) == -1) {    
     tprintf(“Couldn’ t register signal handler for SIGINT.\n” );   
   }    
       
   /*  A different handler for the third. */   
   act.sa_sigaction = &continuehandler;   
   if (sigaction(SIGCONT, &act, NULL) == -1) {    
     tprintf(“Couldn’ t register signal handler for SIGCONT.\n” );   
   }    
       
   /*  blockset is still the empty set. */   
       
   sigaddset(&blockset, SIGTERM);   
   sigaddset(&blockset, SIGINT);   
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   while (1) {    
     sigprocmask(SIG_BLOCK, &blockset, NULL);   
     fgets(buffer, sizeof(buffer), stdin);   
     tprintf(“ Input: %s” , buffer);   
       
     /*  Process pending signals. * /   
       
     sigpending(&pending);   
     pendingcount = 0;   
     if (sigismember(&pending, SIGINT)) pendingcount++;   
     if (sigismember(&pending, SIGTERM)) pendingcount++;   
     if (pendingcount) {    
       tprintf(“There are %d signals pending.\n” , pendingcount);   
     }    
       
     /*  Deliver them. * /   
       
     sigprocmask(SIG_UNBLOCK, &blockset, NULL);   
   }    
   return 0;   
 }    
       
 int tprintf(const char * fmt, ...) {    
   va_list args;   
   struct tm * tstruct;   
   time_t tsec;   
       
   tsec = time(NULL);   
   tstruct = localtime(&tsec);   
       
   printf(“%02d:%02d:%02d %5d| “ ,   
          tstruct->tm_hour,   
          tstruct->tm_min,   
          tstruct->tm_sec,   
          getpid());   
       
   va_start(args, fmt);   
   return vprintf(fmt, args);   
 }    
 void sighandler(int signum, siginfo_t * info, void *extra) {    
   tprintf(“Caught signal %d from “, signum);   
   switch (info->si_code) {    
     case SI_USER: printf(“a user process\n” );   
                   break;   
     case SI_KERNEL: printf(“ the kernel\n” );   
                     break;   
     default: printf(“something strange\n” );   
   }    
 }    
       
 void continuehandler(int signum, siginfo_t * info, void *extra) {    
   tprintf(“Continuing.\n” );   
   tprintf(“Your last input was: %s” , buffer);   
 }    
 

 
The structure of this program is fundamentally the same as of the other signal-using programs I have discussed so far. It registers a 
signal handler for three signals, handles blocks, and the like. However, it uses the advanced sa_sigaction feature of sigaction().  

Signal Sending   
 

 
To send a signal is fairly easy. You need to know two pieces of information: which signal to send, and what process to send it to. 
You can find a list of the available signals in the signal(7) manpage. You may only send signals to processes that you own, or if 
you are running as root, you may send signals to any process. You can also request a signal to be sent to yourself at a certain point 
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in the future. Let’s first look at the basics.  
 

 
You can send a signal to yourself by calling raise(). It takes a single parameter, the signal number to send. Listing 13-5 shows an 
example that causes the program to terminate by SIGKILL when the user types in exit as the input. 

 
 
 
  Note  Listing 13-5 is available online.   
 
 Listing 13-5: Example of sending a signal   
 
 #include <stdio.h>   
 #include <signal.h>   
 #include <stdarg.h>   
 #include <time.h>   
 #include <string.h>   
 #include <unistd.h>   
 #include <sys/types.h>   
 #include <string.h>   
       
 int tprintf(const char * fmt, ...);   
 void sighandler(int signum);   
 void continuehandler(int signum);   
 char buffer[200];   
       
 int main(void) {    
       
   sigset_t blockset, pending;   
   int pendingcount;   
       
   /*  Initialize buffer in case someone interrupts the program before   
      assigning anything to it. * /   
       
   strcpy(buffer, “None\n” );   
       
   if (signal(SIGTERM, &sighandler) == SIG_ERR) {    
     tprintf(“Couldn’ t register signal handler for SIGTERM.\n” );   
   }    
       
   if (signal(SIGINT, &sighandler) == SIG_ERR) {    
     tprintf(“Couldn’ t register signal handler for SIGINT.\n” );   
   }    
       
   if (signal(SIGCONT, &continuehandler)  == SIG_ERR) {    
     tprintf(“Couldn’ t register signal handler for SIGCONT.\n” );   
   }    
       
   sigemptyset(&blockset);   
   sigaddset(&blockset, SIGTERM);   
   sigaddset(&blockset, SIGINT);   
       
   while (1) {    
     sigprocmask(SIG_BLOCK, &blockset, NULL);   
     fgets(buffer, sizeof(buffer), stdin);   
     tprintf(“ Input: %s” , buffer);   
       
     /*  Process pending signals. * /   
       
     sigpending(&pending);   
     pendingcount = 0;   
     if (sigismember(&pending, SIGINT)) pendingcount++;   
     if (sigismember(&pending, SIGTERM)) pendingcount++;   
     if (pendingcount) {    
       tprintf(“There are %d signals pending.\n” , pendingcount);   
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     }    
     /*  Deliver them. * /   
       
     sigprocmask(SIG_UNBLOCK, &blockset, NULL);   
       
     /*  Exit if requested. */   
       
     if (strcmp(buffer, “exit\n” ) == 0) {    
       raise(SIGKILL);   
     }    
   }    
   return 0;   
 }    
       
 int tprintf(const char * fmt, ...) {    
   va_list args;   
   struct tm * tstruct;   
   time_t tsec;   
    
   tsec = time(NULL);   
   tstruct = localtime(&tsec);   
    
   printf(“%02d:%02d:%02d %5d| “ ,   
          tstruct->tm_hour,   
          tstruct->tm_min,   
          tstruct->tm_sec,   
          getpid());   
        
   va_start(args, fmt);   
   return vprintf(fmt, args);   
 }    
       
 void sighandler(int signum) {    
   tprintf(“Caught signal %d.\n” , signum);   
 }    
       
 void continuehandler(int signum) {    
   tprintf(“Continuing.\n” );   
   tprintf(“Your last input was: %s” , buffer);   
 }    
 

 
When the program runs, and you type in exit, the program will send itself a SIGKILL signal, which will cause it to exit. Of course, 
in this case, you could just as easily call exit(), but sometimes you need to send yourself another signal—for instance, to invoke an 
alarm handler before an alarm is due. 

 

 
 

 
You can also send a signal to another process. The function to do this is kill(2). This function takes two parameters: the pid of the 
process to send the signal to, and the signal to send. 

 
 
 

 

These two functions are fairly self-explanatory and uninteresting. More interesting is the alarm(2) function, which arranges for 
your process to receive a signal at a specified point of time in the future. The single argument to alarm() is the number of seconds 
in the future at which the SIGALRM signal should be sent to your process. Whenever you call alarm(), any previously requested 
alarms (but not pending blocked SIGALRM signals!) are canceled, and the time remaining on one of these previous requests is 
returned. Listing 13-6 shows a version of the program that will automatically exit after thirty seconds of inactivity. 

 

 
 
  Note  Listing 13-6 is available online.   
 
 Listing 13-6: Example with inactivity timeout   
 
 #include <stdio.h>   
 #include <signal.h>   
 #include <stdarg.h>   
 #include <time.h>   
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 #include <string.h>   
 #include <unistd.h>   
 #include <sys/types.h>   
 #include <string.h>   
       
 int tprintf(const char * fmt, ...);   
 void sighandler(int signum);   
 void continuehandler(int signum);   
 void alarmhandler(int signum);   
 char buffer[200];   
       
 int main(void) {    
       
   sigset_t blockset, pending;   
   int pendingcount;   
       
   /*  Initialize buffer in case someone interrupts the program before   
      assigning anything to it. * /   
       
   strcpy(buffer, “None\n” );   
       
   if (signal(SIGTERM, &sighandler) == SIG_ERR) {    
     tprintf(“Couldn’ t register signal handler for SIGTERM.\n” );   
   }    
   if (signal(SIGINT, &sighandler) == SIG_ERR) {    
     tprintf(“Couldn’ t register signal handler for SIGINT.\n” );   
   }    
       
   if (signal(SIGCONT, &continuehandler)  == SIG_ERR) {    
     tprintf(“Couldn’ t register signal handler for SIGCONT.\n” );   
   }    
       
   if (signal(SIGALRM, &alarmhandler) == SIG_ERR) {    
     tprintf(“Couldn’ t register signal handler for SIGALRM.\n” );   
   }    
       
   sigemptyset(&blockset);   
   sigaddset(&blockset, SIGTERM);   
   sigaddset(&blockset, SIGINT);   
       
   while (1) {    
     sigprocmask(SIG_BLOCK, &blockset, NULL);   
     alarm(30);   
     fgets(buffer, sizeof(buffer), stdin);   
     tprintf(“ Input: %s” , buffer);   
       
     /*  Process pending signals. * /   
       
     sigpending(&pending);   
     pendingcount = 0;   
     if (sigismember(&pending, SIGINT)) pendingcount++;   
     if (sigismember(&pending, SIGTERM)) pendingcount++;   
     if (pendingcount) {    
       tprintf(“There are %d signals pending.\n” , pendingcount);   
     }    
       
     /*  Deliver them. * /   
       
     sigprocmask(SIG_UNBLOCK, &blockset, NULL);   
       
     /*  Exit if requested. */   
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     if (strcmp(buffer, “exit\n” ) == 0) {    
       raise(SIGKILL);   
     }    
   }    
   return 0;   
 }    
       
 int tprintf(const char * fmt, ...) {    
   va_list args;   
   struct tm * tstruct;   
   time_t tsec;   
    
   tsec = time(NULL);   
   tstruct = localtime(&tsec);   
    
   printf(“%02d:%02d:%02d %5d| “ ,   
          tstruct->tm_hour,   
          tstruct->tm_min,   
          tstruct->tm_sec,   
          getpid());   
        
   va_start(args, fmt);   
   return vprintf(fmt, args);   
 }    
       
 void sighandler(int signum) {    
   tprintf(“Caught signal %d.\n” , signum);   
 }    
       
 void continuehandler(int signum) {    
   tprintf(“Continuing.\n” );   
   tprintf(“Your last input was: %s” , buffer);   
 }    
       
 void alarmhandler(int signum) {    
   tprintf(“No activity for 30 seconds, exiting.\n” );   
   exit(0);   
 }    
 

 
The program requests an alarm for 30 seconds in the future immediately before reading a line of input. Each time a line is read, the 
alarm is reset immediately prior. You can now see the effects by running the program: 

 
 
 
 $ ./ch13-7   
 Hello.   
 18:44:51  1100| Input: Hello.   
 This is a test.   
 18:44:56  1100| Input: This is a test.   
 I ’ ll now wait for  30 seconds.   
 18:44:59  1100| Input: I’ ll now wait for 30 seconds.   
 18:45:29  1100| No activity for 30 seconds, exiting.   
 $   
 

 
This is one of several options for requesting a signal in the future. You can also use the setitimer() function, which gives you more 
control and precision. It is defined as follows, with the header in sys/time.h: 

 
 
 
 int setitimer(int which, const  struct  itimerval  *value, struct itimerval *ovalue);   
 
 The which parameter can take three options:   
 

  1.  
The first is ITIMER_REAL, which causes your timer to count time according to system clock. It will send the SIGALRM 
signal when the time has expired, just as the alarm() function will, so you cannot really use the two of these together. 
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  2.  
The second option is ITIMER_PROF, which counts time whenever your program is executing. The SIGPROF signal is sent 
when it has expired. 

 
 
 

  3.  
The final option is ITIMER_VIRTUAL, which tracks time only when the process is executing in user mode. When it expires, 
SIGVTALRM is sent. 

 
 
 
 The itimerval structure is defined as follows:   
 
 struct itimerval {    
   struct timeval it_interval; /*  next value */   
   struct timeval it_value;    /*  current value * /   
 } ;   
 

 
The it_value field specifies the amount of time until the next triggering of the alarm. If it is zero, the alarm is disabled. The 
it_interval field specifies a value to which the alarm should be reset to after each time it is triggered; if it is zero, the alarm will 
only be triggered once. The structure that it uses is defined as: 

 

 
 
 struct timeval {    
   long tv_sec;                /*  seconds */   
   long tv_usec;               /*  microseconds */   
 } ;   
 

 
So you can see that you get more precision with this function than alarm(), although keep in mind that the time required to set the 
alarm, that to deliver the signal, and the time taken up by other processes on the system may affect the accuracy of the signal. 

 
 
 
 So, you might be able to rewrite your program to use this type of timer as shown in Listing 13-7.   
 
  Note  Listing 13-7 is available online.   
 
 Listing 13-7: Example using setitimer()   
 
 #include <stdio.h>   
 #include <signal.h>   
 #include <stdarg.h>   
 #include <time.h>   
 #include <string.h>   
 #include <sys/time.h>   
 #include <unistd.h>   
 #include <sys/types.h>   
 #include <string.h>   
       
 int tprintf(const char * fmt, ...);   
 void sighandler(int signum);   
 void continuehandler(int signum);   
 void alarmhandler(int signum);   
 char buffer[200];   
       
 int main(void) {    
       
   struct itimerval itimer;   
   sigset_t blockset, pending;   
   int pendingcount;   
       
   /*  Initialize buffer in case someone interrupts the program before   
      assigning anything to it. * /   
       
   strcpy(buffer, “None\n” );   
       
   if (signal(SIGTERM, &sighandler) == SIG_ERR) {    
     tprintf(“Couldn’ t register signal handler for SIGTERM.\n” );   
   }    
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   if (signal(SIGINT, &sighandler) == SIG_ERR) {    
     tprintf(“Couldn’ t register signal handler for SIGINT.\n” );   
   }    
       
   if (signal(SIGCONT, &continuehandler)  == SIG_ERR) {    
     tprintf(“Couldn’ t register signal handler for SIGCONT.\n” );   
   }    
       
   if (signal(SIGALRM, &alarmhandler) == SIG_ERR) {    
     tprintf(“Couldn’ t register signal handler for SIGALRM.\n” );   
   }    
       
   sigemptyset(&blockset);   
   sigaddset(&blockset, SIGTERM);   
   sigaddset(&blockset, SIGINT);   
       
   itimer.it_interval.tv_usec = 0;   
   itimer.it_interval.tv_sec = 0;   
       
   itimer.it_value.tv_usec = 0;   
   itimer.it_value.tv_sec = 30;   
       
   while (1) {    
     sigprocmask(SIG_BLOCK, &blockset, NULL);   
     setitimer(ITIMER_REAL, &itimer, NULL);   
     fgets(buffer, sizeof(buffer), stdin);   
     tprintf(“ Input: %s” , buffer);   
     /*  Process pending signals. * /   
       
     sigpending(&pending);   
     pendingcount = 0;   
     if (sigismember(&pending, SIGINT)) pendingcount++;   
     if (sigismember(&pending, SIGTERM)) pendingcount++;   
     if (pendingcount) {    
       tprintf(“There are %d signals pending.\n” , pendingcount);   
     }    
       
     /*  Deliver them. * /   
       
     sigprocmask(SIG_UNBLOCK, &blockset, NULL);   
       
     /*  Exit if requested. */   
       
     if (strcmp(buffer, “exit\n” ) == 0) {    
       raise(SIGKILL);   
     }    
   }    
   return 0;   
 }    
       
 int tprintf(const char * fmt, ...) {    
   va_list args;   
   struct tm * tstruct;   
   time_t tsec;   
    
   tsec = time(NULL);   
   tstruct = localtime(&tsec);   
    
   printf(“%02d:%02d:%02d %5d| “ ,   
          tstruct->tm_hour,   
          tstruct->tm_min,   
          tstruct->tm_sec,   
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          getpid());   
        
   va_start(args, fmt);   
   return vprintf(fmt, args);   
 }    
       
 void sighandler(int signum) {    
   tprintf(“Caught signal %d.\n” , signum);   
 }    
       
 void continuehandler(int signum) {    
   tprintf(“Continuing.\n” );   
   tprintf(“Your last input was: %s” , buffer);   
 }    
       
 void alarmhandler(int signum) {    
   tprintf(“No activity for 30 seconds, exiting.\n” );   
   exit(0);   
 }    
Signals and System Calls   
 

 

When you decide to register a signal handler for some signals, the semantics of some system calls can be modified. The system 
calls that can block “ forever”—(those that can read from the network or a terminal, and those that wait for other events) are 
included. Normally, they are not affected by signals. However, if you register a handler, the operating system can assume that you 
want the system call interrupted when a signal arrives. When this occurs, the system call will exit with a failure code and set errno 
to EINTR. 

 

 
 

 
Sometimes this can be a desired behavior, but sometimes you may prefer to inhibit this behavior. You can do so by setting the 
SA_RESTART flag on the signal when its handler is registered with sigaction(). 

 
 
 

  

Caution 

 

If you don’ t set this flag, your code may incorrectly interpret a signal as a failure in a system call. Worse, if 
you’re assuming that a system call will succeed (reading from the terminal, for instance) and instead it fails, 
data corruption in your program can occur. Therefore, if you’re using these signals, you need to be aware of the 
potential consequences. 

 

 

  
 

 
For these reasons, many users prefer to use sigaction() in programs such that the semantics of signal delivery can be 
more tightly controlled.  

Dangers of Signal Handlers   
 
 In addition to the potential problems with system calls, you may encounter other dangers in using signal handlers.   
 

 

First, it is possible for a new signal to arrive while your program is already executing a signal handler. In this case, the existing 
signal handler’s execution is interrupted, and it is called a second time. After the second execution finishes, the first resumes, and 
when it finishes, the program begins executing again. Keep this in mind especially if you are using static variables; you should 
take advantage of sigaction’s capability to automatically block signals while in a handler in this situation. 

 

 
 

 
Another potential concern arises when you use the fork() or exec() functions. Keep in mind that when you use the fork() function, 
signal handlers and masks are propagated to the child process, but pending signals are not. When you execute a new program, all 
the signals are reset to SIG_DFL. 

 

 
 

 
It is possible to prevent the default behavior, such as an exit, for some signals. However, this can have unfortunate side-effects. 
Users may be confused when they can’ t kill a process. The process may be ignoring signals that are warning it of an impending 
system shutdown, and thus may be avoiding a chance to save data before a crash. 

 

 
 

 
You can also use the longjmp() and siglongjmp() functions to jump out of a signal handler. While this is possible, this is not 
necessarily a good idea. If you try to use one of these functions to escape from SIGABORT, your program will exit anyway.  

Summary   
 
 In this chapter, you learned about the following aspects of signals:   
 
  •  Signals are sent to a process when a certain event occurs.   
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  •  A process may catch a signal and direct it to a special signal handler that takes some action when it is received.   
 

  
• 

 
You can use signal() to register a handler for a signal, restore the default behavior, or tell the operating system to ignore the 
signal. 

 
 
 
  •  You can find a list of available signals on your machine by running kill –l. You can also find a list in signal(7).   
 

  
• 

 
If you use sigaction(), you can more tightly control the delivery of signals and let your handlers receive more detailed 
information about the signals they are called upon to process. 

 
 
 
  •  A signal can be delivered to your own process by using raise() or to other processes by using kill().   
 
  •  You can use alarm() and setitimer() to request signals be automatically delivered to your process at some time in the future.  
Chapter  14: Introducing the L inux I /O System   
 
 Overview   
 

 

In this chapter, you’ ll be introduced to the I/O and communication subsystems on Linux. You’ ll find that, in Linux, you’ ll use many 
of the items documented here to do everything from reading from files and terminals to communicating over the Internet with a 
computer in a different country. Linux tries to present you with a unified interface to the I/O system wherever possible. Therefore, 
not only can a single set of code read from a disk file as easily as it can read from a network connection, but also you can access 
things such as hardware devices and system ports with the same interface.  

 Library versus System Call   
 

 
In Linux, you will frequently encounter two different ways of handling input and output (I/O) on the system. The first involves 
directly using system calls. These calls include such items as open(), read(), write(), and socket(). The second involves using the 
ANSI C library calls such as fopen(), fread(), fwrite(), and fprintf(). 

 

 
 

 
The difference between these two ways of I/O handling goes deeper than simply having a different name. The C library calls, 
commonly known as the stream I/O calls, are actually wrappers around the system calls. Therefore, they technically don’ t add any 
features to your program that you could not write yourself. 

 

 
 

 

However, stream I/O calls provide a number of conveniences that are extremely beneficial to your programs. For one, they 
automatically buffer output, minimizing the need to call the system calls and improving performance. Second, you have 
convenience functions such as fprintf() that enable you to format output and write it out all at once. Finally, they take care of some 
details of system calls for you, such as handling system calls that have been interrupted by a signal. 

 

 
 
     
 
Cross-Reference  
 
 See Chapter 13, “Understanding Signals,”  for details on system calls.   
 
     
 

 

Although these features are great for many programs, they can be a hindrance for others. For example, the stream I/O functions do 
not have some features necessary for communicating over a network. Moreover, the buffering tends to make network 
communication difficult because it can interfere with the protocol being used. Sometimes you may need more control than they 
give you, and thus you may need to use the system calls directly. 

 

 
 

 

Considering these different sets of requirements, people often prefer to use stream I/O for terminal and file interaction, and system 
call I/O for network and pipe use. It is easy to use both methods in a single program, as long as you use only one method for any 
given file descriptor. In fact, you can use both methods for a single file descriptor as well, but such usage requires extreme care 
and can be difficult. 

 

 
 

 
You can mix and match between the two features—the fileno() function gives you the file descriptor for a stream and the fdopen() 
function opens a stream based on an already open file descriptor. Note, though, that it is generally unwise to use both methods 
simultaneously. 

 

 
 

 
In this chapter, I’ ll use both methods. I’ ll start by showing you programs that do the same thing written using each method to give 
you a basis for comparison. 
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 Stream I /O   
 

 
Stream I/O is the method taught in many C textbooks and classes because it is a portable way to do I/O. System call I/O may not 
necessarily be portable to non-Linux or non-UNIX platforms, especially if it contains more advanced system call I/O features. 

 
 
 

 
One of the features of stream I/O is its built-in buffering, which can be a performance win for your applications. However, be 
aware that data that you write with one of these functions is not written out immediately. If you are writing out information such as 
status messages, network communication, or the like, you can use the fflush() call to flush it all out immediately. 

 

 
 

 
Here is a fairly basic program that uses stream I/O functions; notice that this program does no error-checking at all (which is a 
problem that I’ ll address shortly): 

 
 
 
 #include <stdio.h>   
 #include <string.h>   
 #include <stdlib.h>   
       
 void stripcrlf(char * temp);   
       
 int main(void) {    
   FILE *outfile;   
   char input[80];   
       
   printf(“Select output filename: “);   
   fgets(input, sizeof(input), stdin);   
   stripcrlf(input);   
      
   outfile = fopen(input, “w”);   
       
   printf(“Please enter some numbers.  Use -1 when you want to exit.\n” );   
      
   do {    
     fgets(input, sizeof(input), stdin);   
     fwrite(input, strlen(input), 1, outfile);   
     stripcrlf(input);   
     fprintf(outfile, “New: %d\n” ,   
         atoi(input) * 5 + (20 * 100) - 12);   
   }  while (atoi(input) != -1);   
   fclose(outfile);   
   return 0;   
 }    
       
 void stripcrlf(char * temp)   
 {    
   while (strlen(temp) && temp[0] &&    
         ((temp[strlen(temp)-1] == 13) || (temp[strlen(temp)-1] == 10))) {    
     temp[strlen(temp)-1] = 0;   
   }    
 }    
 

 
This program reads in a filename and opens it up for writing. Then it enters a loop, reading some numbers. It writes out the 
number, and then a new number is generated based on the existing one to the file. The program continues doing so until -1 is 
supplied, at which time it writes it out, closes the output file, and exits. 

 

 
 

 
Next, I’ ll add some error-checking to the program. As it is, the program would never know if the data it’s trying to write out 
simply disappears into the ether. To make sure that the I/O calls are successful, the program needs to check the return values for 
them. Listing 14-1 shows the revised program, which has these checks. 

 

 
 
  Note  Listing 14-1 is available online.   
 
 Listing 14-1: Revised program to check return values of I /O   
 
 #include <stdio.h>   
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 #include <string.h>   
 #include <stdlib.h>   
 #include <errno.h>   
       
 void stripcrlf(char * temp);   
       
 int main(void) {    
   FILE *outfile;   
   char input[80];   
       
   printf(“Select output filename: “);   
   fgets(input, sizeof(input), stdin);   
   stripcrlf(input);   
      
   outfile = fopen(input, “w”);   
   if (!outfile) {    
     printf(“Error opening output file: %s\n” ,   
        sys_errlist[errno]);   
     exit(255);   
   }    
       
   printf(“Please enter some numbers.  Use -1 when you want to exit.\n” );   
      
   do {    
     fgets(input, sizeof(input), stdin);   
     if (fwrite(input, strlen(input), 1, outfile) != 1) {    
       printf(“Error writing: %s\n” ,   
          sys_errlist[errno]);   
       exit(255);   
     }    
     stripcrlf(input);   
     if (fprintf(outfile, “New: %d\n” ,   
         atoi(input) * 5 + (20 * 100) - 12) < 1) {    
       printf(“Error writing: %s\n” ,   
          sys_errlist[errno]);   
       exit(255);   
     }    
   }  while (atoi(input) != -1);   
   fclose(outfile);   
   return 0;   
 }    
       
 void stripcrlf(char * temp)   
 {    
   while (strlen(temp) && temp[0] &&    
         ((temp[strlen(temp)-1] == 13) || (temp[strlen(temp)-1] == 10))) {    
     temp[strlen(temp)-1] = 0;   
   }    
 }    
 

 

This time, the program checks more return codes. It still does not check fgets(), printf(), and fclose(). Also, the error-checking for 
fprintf() is imperfect; because I don’ t know an exact count of the amount of data it will be writing, I can’ t specifically check its 
return value for matching that count. The following section presents an alternative approach that uses system call I/O instead of 
stream I/O. 

 

 
 
 System call I /O   
 

 

The same task can be accomplished by using system call I/O instead of stream I/O. Listing 14-2 presents a modified version of the 
previous program using system call I/O for the output to a file and stream I/O for reading and writing from the terminal. This is a 
model that is not infrequently encountered; especially when stream I/O is used for reading from the terminal and system call I/O 
for interaction with a network connection. 
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  Note  Listing 14-2 is available online.   
 
 Listing 14-2: Example with stream I /O   
 
 #include <stdio.h>   
 #include <string.h>   
 #include <stdlib.h>   
 #include <errno.h>   
       
 /*  The next four are for system call I/O * /   
       
 #include <unistd.h>   
 #include <sys/types.h>   
 #include <sys/stat.h>   
 #include <fcntl.h>   
       
 void stripcrlf(char * temp);   
 int write_buffer(int fd, const void *buf, int count);   
       
 int main(void) {    
   int outfile;   
   char input[80];   
   char buffer[80];   
       
   printf(“Select output filename: “);   
   fgets(input, sizeof(input), stdin);   
   stripcrlf(input);   
       
   outfile = open(input, O_WRONLY | O_CREAT | O_TRUNC, 0640);   
      
   if (outfile == -1) {    
     printf(“Error opening output file: %s\n” ,   
        sys_errlist[errno]);   
     exit(255);   
   }    
       
   printf(“Please enter some numbers.  Use -1 when you want to exit.\n” );   
      
   do {    
     fgets(input, sizeof(input), stdin);   
     if (write_buffer(outfile, input, strlen(input)) < 0) {    
       printf(“Error writing: %s\n” ,   
          sys_errlist[errno]);   
       exit(255);   
     }    
     stripcrlf(input);   
       
     sprintf(buffer, “New: %d\n” ,   
         atoi(input) * 5 + (20 * 100) - 12);   
       
     if (write_buffer(outfile, buffer, strlen(buffer)) < 0) {    
       printf(“Error writing: %s\n” ,   
          sys_errlist[errno]);   
       exit(255);   
     }    
   }  while (atoi(input) != -1);   
   close(outfile);   
   return 0;   
 }    
       
 void stripcrlf(char * temp) {    
   while (strlen(temp) && temp[0] &&    
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      ((temp[strlen(temp)-1] == 13) || (temp[strlen(temp)-1] == 10))) {    
     temp[strlen(temp)-1] = 0;   
   }    
 }    
       
 /*     
    This function writes certain number bytes from “buf”  to a file    
    or socket descriptor specified by “ fd” . The number of bytes is    
    specified by “count” . It returns the number of bytes written,   
    or <0 on error.   
 * /   
       
 int write_buffer(int fd, const void *buf, int count)   
 {    
   const void *pts = buf;   
   int  status = 0, n;   
       
   if (count < 0) return (-1);   
       
   while (status != count) {    
     n = write(fd, pts+status, count-status);    
     if (n < 0) return (n);   
     status += n;   
   }    
   return (status);   
 }    
 

 
Now I’ ll review the changes. First, outfile is replaced with an integer file descriptor instead of a FILE *. Second, the opening of 
the output file is different. Although the call is more involved, it does give much more flexibility, and an opportunity to assign 
permissions automatically as it is opened (that is the function of the last argument). 

 

 
 
 You can call open() two ways; it is defined like this:   
 
 int open(const char *pathname, int flags);   
 int open(const char *pathname, int flags, mode_t mode);   
 

 

In general, when you are using the O_CREAT flag, you should take care to specify a mode. In all other situations, specifying it is 
unnecessary and the specification will be ignored if present. Table 14-1 lists the valid values for flags. Note that you must specify 
exactly one of O_RDONLY, O_WRONLY, or O_RDWR. The remaining flags are optional and can be or’d with one of the above 
three flags to generate the final value. 

 

 
 
 Table 14-1:  Flag Values   
 
     
 
 Flag   

 
Meaning   

 

 
     
 
 O_APPEND   

 
Causes all writes to take place after a seek to the end of the file, which takes place atomically with 
the actual write. This behavior is not guaranteed across network file systems. 

 
 

 

 
 O_CREAT   

 
Creates the requested file with the specified mode (with umask applied) if it does not already exist.   

 

 
 O_EXCL   

 
Causes open to fail if the file already exists when used with O_CREAT. This behavior is not 
guaranteed across network file systems, however. 

 
 

 

 
 O_NDELAY   

 
Same as O_NONBLOCK.   

 

 
 O_NOCTTY   

 
Prevents a terminal special device from automatically becoming your process’s controlling terminal 
if you try to open it. 
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 O_NOFOLLOW   Mandates that the final name in the supplied filename not be a symbolic link.   
 
 O_NONBLOCK   

 
Indicates that the file should be opened with non-blocking semantics on later I/O calls dealing with 
this descriptor. 

 
 

 

 
 O_RDONLY   

 
Opens the file for reading only.   

 

 
 O_RDWR   

 
Opens the file for reading and writing.   

 

 
 O_SYNC   

 
Forces an immediate commit to the physical device when writing data to this descriptor.   

 

 
 O_TRUNC   

 
Causes the file’s existing contents to be deleted on open, if the file exists.   

 

 
 O_WRONLY   

 
Opens the file for writing only.   

 

 
     
 

 
Next, notice the call to write_buffer(). Instead of simply calling write(), the program instead calls this special function, which I’ ll 
go over next. Also notice that I use sprintf() to generate the output string. For the ultimate in speed, I might write my own integer-
to-string conversion routine to add on later, but for this program, this sprintf() call will be fine. 

 

 
 

 
Now take a look at the write_buffer() function. This function is necessary because write() does not guarantee that it will write out 
all that you request at once. It may write out half of it, or as little as one byte. It does guarantee that it will write at least one byte 
before returning unless there is an error. 

 

 
 

 

Therefore, you need to restart the write() call if some bytes remain unwritten. That way, you are guaranteed that, if write_buffer() 
returns with no error code, then the write is a success. This function begins by validating its input. It then proceeds to enter a loop. 
In the status variable, it keeps a count of how many bytes were written thus far; this is of course initialized to 0. After each write, 
the value of n is examined. If it indicates an error, the error code is returned. Otherwise, it is a count of bytes written, which is 
added to the value in status. If status still is not up to size, it continues writing until it is. 

 

 
 

 
Now, how about using system call I/O for the terminal interaction as well? Using it to write out to the terminal is trivial; using it to 
read is a bit more difficult. Before you begin, you need to know three standard values—file descriptor 0 corresponds to standard 
input, 1 to standard output, and 2 to standard error. I’ ll use the first two values in the program shown in Listing 14-3. 

 

 
 
  Note  Listing 14-3 is available online.   
 
 Listing 14-3: System call I /O for  terminal interaction   
 
 #include <stdio.h>   
 #include <string.h>   
 #include <stdlib.h>   
 #include <errno.h>   
       
 /*  The next four are for system call I/O * /   
       
 #include <unistd.h>   
 #include <sys/types.h>   
 #include <sys/stat.h>   
 #include <fcntl.h>   
       
 void stripcrlf(char * temp);   
 int write_buffer(int fd, const void *buf, int count);   
 int read_buffer(int fd, void *buf, int count);   
 int readnlstring(int socket, char *buf, int maxlen);   
 int readdelimstring(int socket, char *buf, int maxlen, char delim);   
 void exiterror(char *message, int errnum);   
       
 const char *MESSAGE_filename = “Select output filename: “ ;   
 const char *MESSAGE_numbers =    
 “Please enter some numbers.  Use -1 when you want to exit.\n” ;   
 int main(void) {    
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   int outfile;   
   char input[80];   
   char buffer[80];   
       
   /*  Write the prompt for filename and read in the filename. * /   
       
   write_buffer(1, MESSAGE_filename, strlen(MESSAGE_filename));   
   readnlstring(0, input, sizeof(input));   
       
   /*  Open the file * /   
       
   outfile = open(input, O_WRONLY | O_CREAT | O_TRUNC, 0640);   
      
   if (outfile == -1) {    
     exiterror(“Error opening output file: “ , errno);   
   }    
       
   /*  Write the basic instructions. */   
       
   write_buffer(1, MESSAGE_numbers, strlen(MESSAGE_numbers));   
      
   do {    
     /*  Read a line of input, * /   
     readnlstring(0, input, sizeof(input));   
       
     /*  Write it out with trailing newline. */   
     if (write_buffer(outfile, input, strlen(input)) < 0) {    
       exiterror(“Error writing: “ , errno);   
     }    
     if (write_buffer(outfile, “ \n” , 1) < 0) {    
       exiterror(“Error writing: “ , errno);   
     }    
       
     sprintf(buffer, “New: %d\n” ,   
         atoi(input) * 5 + (20 * 100) - 12);   
     if (write_buffer(outfile, buffer, strlen(buffer)) < 0) {    
       exiterror(“Error writing: “ , errno);   
     }    
   }  while (atoi(input) != -1);   
   close(outfile);   
   return 0;   
 }    
       
 void stripcrlf(char * temp) {    
   while (strlen(temp) && temp[0] &&    
      ((temp[strlen(temp)-1] == 13) || (temp[strlen(temp)-1] == 10))) {    
     temp[strlen(temp)-1] = 0;   
   }    
 }    
       
 /*     
    This function writes certain number bytes from “buf”  to a file    
    or socket descriptor specified by “ fd” . The number of bytes is    
    specified by “count” . It returns the number of bytes written,   
    or <0 on error.   
 * /   
       
 int write_buffer(int fd, const void *buf, int count) {    
   const void *pts = buf;   
   int  status = 0, n;   
      
   if (count < 0) return (-1);   
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   while (status != count) {    
     n = write(fd, pts+status, count-status);    
     if (n < 0) return (n);   
     status += n;   
   }     
   return (status);   
 }     
       
 int read_buffer(int fd, void *buf, int count) {    
   void *pts = buf;   
   int  status = 0, n;   
      
   if (count < 0) return (-1);   
      
   while (status != count) {    
     n = read(fd, pts+status, count-status);    
     if (n < 1) return n;   
     status += n;   
   }    
   return (status);   
 }    
       
 int readnlstring(int socket, char *buf, int maxlen) {    
   return readdelimstring(socket, buf, maxlen, ‘ \n’ );   
 }    
       
 int readdelimstring(int socket, char *buf, int maxlen, char delim) {    
   int status;   
   int count = 0;   
   while (count < maxlen - 1) {    
     if ((status = read_buffer(socket, buf+count, 1)) < 1) {    
       printf(“Error reading.\n” );   
       return -1;   
     }    
     if (buf[count] == delim) {           /*  Found the delimiter * /   
       buf[count] = 0;   
       return 0;   
     }    
     count++;   
   }    
   buf[count] = 0;   
   return 0;   
 }    
       
 void exiterror(char *message, int errnum) {    
   write_buffer(1, message, strlen(message));   
   write_buffer(1, sys_errlist[errnum], strlen(sys_errlist[errnum]));   
   write_buffer(1, “ \n” , 1);   
   exit(255);   
 }    
 

 

The code for this program sure has become larger! I’ ll go over the pieces here. The main() function is fairly similar to its previous 
state. A few common messages are given now in constants so that taking their length becomes easier for use with write_buffer().A 
readnlstring() function that reads a single line (terminated by the newline character) using system call I/O is the rough equivalent 
of fgets() in the stream I/O world. 

 

 
 

 
Displaying the error message on exit is now more complex, so that task now has its own function, exiterror(). The only remaining 
function from the standard I/O library now is sprintf(), and it doesn’ t perform any I/O directly. 

 
 
 

 
The new read_buffer() function performs the same function as the write_buffer() does, so make sure that a certain number of bytes 
are read in before returning to its caller. Then there is the readdelimstring() function, for which readnlstring() is a simple wrapper. 



 270 

The purpose of readdelimstring() is to be capable of reading in data separated by a specific delimiter—in this case, a newline 
character. The readdelimstring() function reads in the string, chops off the delimiter, and saves the result. This function is not terribly 
efficient as is but making it more efficient would require a much more complex algorithm, and it is plenty fast for our purposes here. 
The key to the inefficiency is that it reads data in chunks of one byte at a time.  

Error  Conditions   
 

 

One of the most important aspects of dealing with input and output in any program is the proper detection and handling of errors. 
Although your program may encounter no error at all for almost 100 percent of the time that it runs, the occasion on which 
something does go wrong is often the most likely to cause data corruption and problems in your program. The cause for a failure 
could be something such as a user entering a wrong filename, a disk filling up, a network link going down, or even a bug in 
another program that you’re piping data to. 

 

 
 

 

The first step toward preventing data loss from I/O errors is to take proper steps to identify these error conditions when they occur. 
For instance, you need to properly check the return values of calls to open() to make sure that the files really are open as you 
requested. You should check the return values of calls to write() to make sure that a disk did not fill up while you were writing 
your data out. You should check the return value of close() to be sure that all the data is capable of being physically written to disk 
without any physical media problem. 

 

 
 

 

Many programmers ignore the return values of close(), intentionally or unintentionally. Especially prevalent is a tendency to not 
check the return value of calls to fclose() or close()—notice that the examples in this chapter represent a somewhat typical 
approach to error-checking: input from the terminal or output to it is not really checked. One can often assume that the terminal is 
functional if the program is executing; however, programs that may have information piped to or from them cannot make this 
assumption. 

 

 
 

 

Another concern is the actual data coming in. Even if you check to make sure that reads are successful, you may not check to 
ensure that the data read is as you expect it to be. For instance, in the program in Listing 14-3, the input was not checked to ensure 
it was actually a number—or even that it was not a blank line. In this particular program, that won’ t cause any serious harm 
because it’s simply for demonstration purposes—the result in the output file really doesn’ t matter. However, sometimes this can be 
a big issue. For instance, if you are expecting a first and a last name on a line, and get only a first name, a sorting function may fail 
because there is no value for the last name. 

 

 
 
 Using a wrapper  library   
 

 

As you saw in Listing 14-3, checking for errors after every call can be tedious—and, at a certain point, so annoying that some 
developers opt to forsake proper error-checking during development. To help make error-checking easier for programs, I wrote a 
module that consists of some functions that wrap around the actual calls. These functions automatically check for problems, and if 
one is detected, an appropriate error is printed automatically. The functions in the wrapper can also exit the program automatically, 
or raise a signal that can be caught. It will write to stderr by default, but this can be changed to a different file handle to enable it to 
write to a log file, or to a pipe that is connected to another process that does the actual logging, for instance: 

 

 
 
 The code for this module comes in two files: a header file and a C source file. Here is the header file, safecalls.h.:   
       
 #ifndef __SAFECALLS_H__   
 #define __SAFECALLS_H__   
       
 #include <stdio.h>        /*  required for FILE * stuff * /   
 #include <sys/stat.h>        /*  required for struct stat stuff * /   
 #include <sys/types.h>   
 #include <signal.h>   
 #include <unistd.h>   
       
 #ifndef __SAFECALLS__C__   
 FILE *SafeLibErrorDest   
 #endif   
       
 char *safestrdup(const char *s);   
 char *safestrncpy(char *dest, const char *src, size_t n);   
 char *safestrcat(char *dest, const char *src, size_t n);   
 int safekill(pid_t pid, int sig);   
 char *safegetenv(const char *name);   
 int safechdir(const char *path);   
 int safemkdir(const char *path, mode_t mode);   
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 int safestat(const char * file_name, struct stat *buf);   
 int safeopen(const char *pathname, int flags);   
 int safeopen2(const char *pathname, int flags, mode_t mode);   
 int safepipe(int filedes[2]);   
 int safedup2(int oldfd, int newfd);   
 int safeexecvp(const char * file, char *const argv[]);   
 int saferead(int fd, void *buf, size_t count);   
 int safewrite(int fd, const char *buf, size_t count);   
 int safeclose(int fd);   
 FILE *safefopen(char *path, char *mode);   
 size_t safefread(void *ptr, size_t size, size_t nmemb, FILE *stream);   
 char *safefgets(char *s, int size, FILE *stream);   
 size_t safefwrite(void *ptr, size_t size, size_t nmemb, FILE *stream);   
 int safefclose(FILE *stream);   
 int safefflush(FILE *stream);   
 void *safemalloc(size_t size);   
 void HandleError(int ecode, const char *const caller,   
          const char * fmt, ...);   
       
       
 #endif   
 
 Listing 14-4 shows the C source file, safecalls.c.   
 
  Note  Listing 14-4 is available online.   
 
 Listing 14-4: safecalls.c, a wrapper    
 
 /*  This module contains wrappers around a number of system calls and   
    library functions so that a default error behavior can be defined.   
       
 * /   
       
 #include <stdio.h>   
 #include <stdlib.h>   
 #include <string.h>   
 #include <sys/types.h>   
 #include <sys/stat.h>   
 #include <fcntl.h>   
 #include <unistd.h>   
 #include <malloc.h>   
 #include <signal.h>   
 #include <errno.h>   
 #include <stdarg.h>   
       
 #define __SAFECALLS_C__   
 #include “safecalls.h”    
       
 /*  The first two are automatically set by HandleError.  The third you can   
    set to be the file handle to which error messages are written.  If   
    NULL, is taken to be stderr. * /   
       
 const char *SafeLibErrorLoc;   
 int SafeLibErrno = 0;   
 FILE *SafeLibErrorDest = NULL;   
       
 char *safestrdup(const char *s)   
 {    
   char *retval;   
       
   retval = strdup(s);   
   if (!retval)   
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     HandleError(0, “strdup” , “dup %s failed” , s);   
   return retval;   
 }    
       
 char *safestrncpy(char *dest, const char *src, size_t n)   
 {    
   if (strlen(src) >= n)   
     HandleError(0, “strncpy” , “Attempt to copy string \”%s\” \n”    
                    “ to buffer %d bytes long” , src, (int) n);   
   return strncpy(dest, src, n);   
 }    
       
 char *safestrcat(char *dest, const char *src, size_t n)   
 {    
   if ((strlen(src) + strlen(dest)) >= n)   
     HandleError(0, “strcat” , “Attempt to strcat too big a string” );   
   return strncat(dest, src, n - 1);   
 }    
       
       
 int safekill(pid_t pid, int sig)   
 {    
   int retval;   
       
   retval = kill(pid, sig);   
   if (retval == -1)   
     HandleError(errno, “kill” , “kill (pid %d, sig %d) failed” , (int) pid, sig);   
   return retval;   
 }    
       
       
 char *safegetenv(const char *name)   
 {    
   char *retval;   
       
   retval = getenv(name);   
   if (!retval)   
     HandleError(errno, “getenv” , “getenv on %s failed” , name);   
   return retval;   
 }    
       
 int safechdir(const char *path)   
 {    
   int retval;   
   retval = chdir(path);   
   if (retval == -1)   
     HandleError(errno, “chdir” , “chdir to %s failed” , path);   
   return retval;   
 }    
       
 int safemkdir(const char *path, mode_t mode)   
 {    
   int retval;   
       
   retval = mkdir(path, mode);   
   if (retval == -1)   
     HandleError(errno, “mkdir” , “mkdir %s failed” , path);   
   return retval;   
 }    
       
 int safestat(const char * file_name, struct stat *buf)   
 {    
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 int retval;   
   retval = stat(file_name, buf);   
   if (retval == -1)   
     HandleError(errno, “stat” , “Couldn’ t stat %s” , file_name);   
   return retval;   
 }      
       
 int safeopen(const char *pathname, int flags)   
 {    
 int retval;   
   if ((retval = open(pathname, flags)) == -1) {    
     HandleError(errno, “open” , “open %s failed” , pathname);   
   }    
   return retval;   
 }    
       
 int safeopen2(const char *pathname, int flags, mode_t mode)   
 {    
   int retval;   
       
   retval = open(pathname, flags, mode);   
   if (retval == -1)   
     HandleError(errno, “open2” , “Open %s failed” , pathname);   
   return retval;   
 }    
       
 int safepipe(int filedes[2])   
 {    
   int retval;   
       
   retval = pipe(filedes);   
   if (retval == -1)   
     HandleError(errno, “pipe” , “ failed” );   
   return retval;   
 }    
       
 int safedup2(int oldfd, int newfd)   
 {    
   int retval;   
       
   retval = dup2(oldfd, newfd);   
   if (retval == -1)   
     HandleError(errno, “dup2” , “ failed” );    
   return retval;   
 }    
       
 int safeexecvp(const char * file, char *const argv[])   
 {    
   int retval;   
       
   retval = execvp(file, argv);   
   if (retval == -1)   
     HandleError(errno, “execvp” , “execvp %s failed” , file);   
   return retval;   
 }    
       
 int saferead(int fd, void *buf, size_t count)   
 {    
   int retval;   
       
   retval = read(fd, buf, count);   
   if (retval == -1)   
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     HandleError(errno, “ read” ,   
         “ read %d bytes from fd %d failed” , (int) count, fd);   
   return retval;   
 }    
       
 int safewrite(int fd, const char *buf, size_t count)   
 {    
   int retval;   
       
   retval = write(fd, buf, count);   
   if (retval == -1)   
     HandleError(errno, “write” ,   
         “write %d bytes to fd %d failed” , (int) count, fd);   
   return retval;   
 }    
       
 int safeclose(int fd)   
 {    
   int retval;   
   retval = close(fd);   
       
   if (fd == -1) {    
     HandleError(errno, “close” , “Possible serious problem: close failed” );   
   }    
   return retval;   
 }    
       
 FILE *safefopen(char *path, char *mode)   
 {    
   FILE *retval;   
       
   retval = fopen(path, mode);   
   if (!retval)   
     HandleError(errno, “ fopen” , “ fopen %s failed” , path);   
   return retval;   
 }    
       
 size_t safefread(void *ptr, size_t size, size_t nmemb, FILE *stream)   
 {    
   size_t retval;   
       
   retval = fread(ptr, size, nmemb, stream);   
   if (ferror(stream))   
     HandleError(errno, “ fread” , “ failed” );   
   return retval;   
 }    
       
 char *safefgets(char *s, int size, FILE *stream) {    
   char *retval;   
       
   retval = fgets(s, size, stream);   
   if (!retval)    
     HandleError(errno, “ fgets” , “ failed” );   
   return retval;   
 }    
       
 size_t safefwrite(void *ptr, size_t size, size_t nmemb, FILE *stream)   
 {    
   size_t retval;   
       
   retval = fread(ptr, size, nmemb, stream);   
   if (ferror(stream))   
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     HandleError(errno, “ fwrite” , “ failed” );   
   return retval;   
 }    
       
 int safefclose(FILE *stream)   
 {    
   int retval;   
       
   retval = fclose(stream);   
   if (retval != 0)   
     HandleError(errno, “ fclose” , “Possibly serious error: fclose failed” );   
   return retval;   
 }    
       
 int safefflush(FILE *stream)   
 {    
   int retval;   
       
   retval = fflush(stream);   
   if (retval != 0)   
     HandleError(errno, “ fflush” , “ fflush failed” );   
   return retval;   
 }    
       
 void *safemalloc(size_t size)   
 {    
   void *retval;   
       
   retval = malloc(size);   
   if (!retval)   
     HandleError(0, “malloc” , “malloc failed” );   
   return retval;   
 }    
       
 void HandleError(int ecode, const char *const caller,   
          const char * fmt, ...) {    
       
   va_list fmtargs;   
   struct sigaction sastruct;   
   FILE *of = (SafeLibErrorDest) ? SafeLibErrorDest : stderr;   
       
   /*  Safe these into global variables for any possible signal handler. */   
       
   SafeLibErrorLoc = caller;   
   SafeLibErrno = ecode;   
       
   /*  Print the error message(s) * /   
       
   va_start(fmtargs, fmt);   
       
   fprintf(of, “ * **  Error in %s: “ , caller);   
   vfprintf(of, fmt, fmtargs);   
   va_end(fmtargs);   
   fprintf(of, “ \n” );   
   if (ecode) {    
     fprintf(of, “ ** *  Error cause: %s\n” , strerror(ecode));   
   }    
       
   /*  Exit if no signal handler.  Otherwise, raise a signal. * /   
   sigaction(SIGUSR1, NULL, &sastruct);   
   if (sastruct.sa_handler != SIG_DFL) {    
     raise(SIGUSR1);   
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   }  else {    
     exit(254);   
   }    
 }    
 

 
I’ ll examine how this code works. A function is created in the safecalls.c file for each function that should be wrapped. This 
function calls the real one, passing along the appropriate arguments. It checks to see if there is any error. If so, it calls HandleError, 
passing along errno (if applicable; 0 otherwise) and a printf-style format string. 

 

 
 

 
HandleError, then, receives this information. It uses C’s variable argument support to be able to pass the format string and any 
other items to vfprintf(). HandleError saves the first two arguments in global variables—this way, if you have a signal handler, you 
can examine those variables for a hint as to what is going on—or perhaps to decide how to handle the situation. 

 

 
 

 
Then, HandleError prints out the error messages. If no signal handler is registered for SIGUSR1 (or more precisely, the handler is 
not the default; SIG_IGN still causes it to raise the signal), the HandleError function simply terminates the program. Otherwise, it 
will raise that signal and then return. 

 

 
 

  
Note 

 
What is being done is a simplistic form of exception handling. If you are using a language that already has 
exception handling capabilities, such as C++ or Perl, you can avoid the mess of using a signal handler and simply 
throw an exception. 

 

 
 

 
If you want to add more functions to this program, doing so is not hard; you simply can add a function in the safecalls.c file, 
following the form used by the others. When you’ve done that, add the prototype to the safecalls.h file and you’re ready! 

 
 
 

 
All of these functions are completely interoperable and interchangeable with their standard counterparts. You can use the normal 
ones when you want to omit error-checking or prefer to handle the error-checking yourself. 

 
 
 
 Using a wrapper  library with your  own program   
 

 

To use this wrapper system with your own programs, you simply need to include the header file in your program and use the 
equivalent safe version of the system calls. If you want to customize the error behavior, you can register a signal handler for 
SIGUSR1. Listing 14-5 shows a modified version of the previous example program, designed to work with these safecalls.c 
functions. 

 

 
 
  Note  Listing 14-5 is available online.   
 
 Listing 14-5: Sample usage of safecalls.c   
 
 #include <stdio.h>   
 #include <string.h>   
 #include <stdlib.h>   
 #include <errno.h>   
       
 /*  The next four are for system call I/O * /   
       
 #include <unistd.h>   
 #include <sys/types.h>   
 #include <sys/stat.h>   
 #include <fcntl.h>   
 #include “safecalls.h”    
       
 void stripcrlf(char * temp);   
 int write_buffer(int fd, const void *buf, int count);   
 int read_buffer(int fd, void *buf, int count);   
 int readnlstring(int socket, char *buf, int maxlen);   
 int readdelimstring(int socket, char *buf, int maxlen, char delim);   
 void exiterror(char *message, int errnum);   
       
 const char *MESSAGE_filename = “Select output filename: “ ;   
 const char *MESSAGE_numbers = “Please enter some numbers.  Use -1 when you want to exit.\n” ;   
       
 int main(void) {    
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   int outfile;   
   char input[80];   
   char buffer[80];   
       
   /*  Write the prompt for filename and read in the filename. * /   
       
   write_buffer(1, MESSAGE_filename, strlen(MESSAGE_filename));   
   readnlstring(0, input, sizeof(input));   
       
   /*  Open the file * /   
       
   outfile = safeopen2(input, O_WRONLY | O_CREAT | O_TRUNC, 0640);   
 /*  Write the basic instructions. */   
       
   write_buffer(1, MESSAGE_numbers, strlen(MESSAGE_numbers));   
   do {    
     /*  Read a line of input, * /   
     readnlstring(0, input, sizeof(input));   
       
     /*  Write it out with trailing newline. */   
     write_buffer(outfile, input, strlen(input));   
     write_buffer(outfile, “ \n” , 1);   
       
     sprintf(buffer, “New: %d\n” ,   
         atoi(input) * 5 + (20 * 100) - 12);   
       
     write_buffer(outfile, buffer, strlen(buffer));   
   }  while (atoi(input) != -1);   
   safeclose(outfile);   
   return 0;   
 }    
       
 void stripcrlf(char * temp) {    
   while (strlen(temp) && temp[0] &&    
      ((temp[strlen(temp)-1] == 13) || (temp[strlen(temp)-1] == 10))) {    
     temp[strlen(temp)-1] = 0;   
   }    
 }    
       
 /*     
    This function writes certain number bytes from “buf”  to a file    
    or socket descriptor specified by “ fd” . The number of bytes is    
    specified by “count” . It returns the number of bytes written,   
    or <0 on error.   
 * /   
       
 int write_buffer(int fd, const void *buf, int count) {    
   const void *pts = buf;   
   int  status = 0, n;   
      
   if (count < 0) return (-1);   
      
   while (status != count) {    
     n = safewrite(fd, pts+status, count-status);    
     if (n < 0) return (n);   
     status += n;   
   }    
   return (status);   
 }    
       
 int read_buffer(int fd, void *buf, int count) {    
   void *pts = buf;   
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   int  status = 0, n;   
       
   if (count < 0) return (-1);   
      
   while (status != count) {    
     n = saferead(fd, pts+status, count-status);    
     if (n < 1) return n;   
     status += n;   
   }    
   return (status);   
 }    
       
 int readnlstring(int socket, char *buf, int maxlen) {    
   return readdelimstring(socket, buf, maxlen, ‘ \n’ );   
 }    
       
 int readdelimstring(int socket, char *buf, int maxlen, char delim) {    
   int status;   
   int count = 0;   
       
   while (count < maxlen - 1) {    
     if ((status = read_buffer(socket, buf+count, 1)) < 1) {    
       printf(“Error reading.\n” );   
       return -1;   
     }    
     if (buf[count] == delim) {           /*  Found the delimeter */   
       buf[count] = 0;   
       return 0;   
     }    
     count++;   
   }    
   buf[count] = 0;   
   return 0;   
 }    
       
 void exiterror(char *message, int errnum) {    
   write_buffer(1, message, strlen(message));   
   write_buffer(1, sys_errlist[errnum], strlen(sys_errlist[errnum]));   
   write_buffer(1, “ \n” , 1);   
   exit(255);   
 }    
 
 To compile this program, you’ ll need to run:   
 
 $ gcc -Wall -o ch14-05 ch14-05.c safecalls.c   
 
 Now watch what happens when you run it and try, for instance, to give it a bad filename:   
 
 $ ./ch14-05   
 Select output filename: /tmp/no/such/file/exists   
 ** *  Error in open2: Open /tmp/no/such/file/exists failed   
 ** *  Error cause: No such file or directory   
 

 
So, you didn’ t have to make any test at all in the main program for this error; it was caught, dealt with, and caused the program to 
exit. This simplifies your task significantly!  

Advanced I /O   
 

 
You should be familiar with several more advanced concepts as I proceed into more detailed descriptions of the I/O system on 
Linux. 
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Cross-Reference  
 

 
To make the most of this section, you should review the material presented in Chapter 11, “Files, Directories, and 
Devices.”  

 
 
 
     
 
 Sparse files   
 

 
An interesting thing occurs when you attempt to seek past the end of a file in Linux. If you do this, you cause the file to grow. If 
you then write data at this new location, you leave a hole between the end of the previous data and the start of the new data. 

 
 
 

 
What goes into that hole then? The answer is: nothing. You might have a 10-byte write, seek 10MB into it, and write another 10 
bytes. The file will show up as being over 10MB but really uses only 1 or 2KB of disk space because of the hole. 

 
 
 

 
When you try to read into this hole, the operating system generates a stream of NULL characters for you. It looks as if there is 
really data there (albeit a large chunk of NULLs), but there really isn’ t. 

 
 
 

 
Sparse files may occur more frequently with certain file types. Examples might include core dumps, some types of binaries, some 
types of libraries, and so on. Particularly, this is likely to happen to files that are intended to be memory-mapped as executable. 

 
 
 
 Listing 14-6 shows a quick program that creates such a sparse file.   
 
  Note  Listing 14-6 is available online.   
 
 Listing 14-6: Creating a sparse file   
 
 #include <stdio.h>   
 #include <string.h>   
 #include <stdlib.h>   
 #include <errno.h>   
       
 /*  The next four are for system call I/O * /   
       
 #include <unistd.h>   
 #include <sys/types.h>   
 #include <sys/stat.h>   
 #include <fcntl.h>   
 #include “safecalls.h”    
       
 int write_buffer(int fd, const void *buf, int count);   
       
 int main(void) {    
   int outfile;   
       
   /*  Open the file * /   
       
   outfile = safeopen2(“ test.dat” , O_WRONLY | O_CREAT | O_TRUNC, 0640);   
       
   write_buffer(outfile, “Hi” , 2);   
   lseek(outfile, 10485760, SEEK_SET);   
   write_buffer(outfile, “Hi” , 2);   
       
   safeclose(outfile);   
   return 0;   
 }    
       
 /*     
    This function writes a certain number of bytes from “buf”  to a file    
    or socket descriptor specified by “ fd” . The number of bytes is    
    specified by “count” . It returns the number of bytes written,   
    or <0 on error.   
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 * /   
       
 int write_buffer(int fd, const void *buf, int count) {    
   const void *pts = buf;   
   int  status = 0, n;   
      
   if (count < 0) return (-1);   
      
   while (status != count) {    
     n = safewrite(fd, pts+status, count-status);    
     if (n < 0) return (n);   
     status += n;   
   }     
   return (status);   
 }     
 
 To compile this program, you might want to use a command such as:   
 
 $ gcc –Wall –o ch14-6 ch14-6.c safecalls.c   
 

 
You need to specifically mention safecalls.c on your call to gcc. If you don’ t, the code for the wrapper will not be included and the 
program will fail to link. 

 
 
 

 
This program writes out Hi, seeks 10MB into the file, and writes out the same string again. After you run it, you get the following 
file: 

 
 
 
 $ ls -l test.dat   
 -rw-r-----   1 jgoerzen jgoerzen 10485762 Oct 12 05:47 test.dat   
 
 This is normal. But check the actual disk space usage:   
 
 $ ls -s test.dat   
    4 test.dat   
 
 This file used only four blocks (each block is 1K by default on Linux)! Therefore you can see that the file is indeed sparse.   
 
 Non-blocking I /O   
 

 
Normally, when you perform I/O, the function you call waits before returning until the data has been read or entered into the 
buffer for writing. This often means that you must wait on a device or person before the operating will return. This waiting can 
sometimes take a long time—even days, if a person gets up and leaves the terminal. 

 

 
 

 
Occasionally, you may want to perform an operation such as, “give me some data if there is any that’s ready.”  You can achieve 
this by using non-blocking I/O. With non-blocking I/O, the function calls return immediately, whether or not they actually 
performed the requested action. 

 

 
 

 
Non-blocking I/O is available only with system call I/O. You can enable it by specifying O_NONBLOCK in the flags to the open 
call. After this, when you call an I/O function that would normally block, you will receive an error value from your call. The 
global variable errno will be set to EAGAIN because the operation cannot yet be completed. 

 

 
 

 
You can use this type of support to work with a queuing mechanism, when you are working with many file descriptors, and so on. 
However, for many of these tasks, you should probably use select() or poll() instead for modern applications. 

 
 
 
 These settings are separate from the blocking/non-blocking options for file locking, although they serve the same basic purpose.  
Memory-Mapped I /O   
 

 
One of the most fascinating capabilities of Linux is memory-mapped I/O. This feature enables you to literally map a file into a 
memory region. When you access that memory, as with a standard pointer, the appropriate operation is performed automatically on 
the underlying file. 

 

 
 

 
There are two main reasons that you might prefer to use memory-mapped I/O instead of standard system call or stream I/O. The 
first involves speed. If you are reading data in bulk, you will find that using memory-mapped I/O is faster. The reason is that this 
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prevents the system from having to perform additional memory copies of data from kernel to user space, as is necessary when 
using more conventional functions.  

 

 
The other reason is that you may prefer to have an interface to the file of this type. This sort of interface lends itself to certain types 
of features. For instance, you can pass around pointers into the file, which act like normal memory to functions but really are 
referencing the data on-disk. 

 

 
 

 

There are some disadvantages to using this method. For one, when you map a part of the file into memory, you must define a 
specific size ahead of time. This size cannot shrink or expand. Therefore, adding data to files can be tricky when you use this type 
of method to do it. Also, you can only memory-map regular files and other seekable things like them. You cannot memory-map a 
socket, a pipe, or anything of that sort because they are inherently unseekable. 

 

 
 

 
To write out to a file, you must first generate it. You can do so quickly by generating a sparse file as was done in Listing 14-6. 
Listing 14-7 shows a program that uses memory-mapped I/O to write data into a file. 

 
 
 
  Note  Listing 14-7 is available online.   
 
 Listing 14-7: Example of memory-mapped I /O   
 
 #include <stdio.h>   
 #include <string.h>   
 #include <stdlib.h>   
 #include <errno.h>   
 #include <sys/mman.h>   
       
 /*  The next four are for system call I/O * /   
 #include <unistd.h>   
 #include <sys/types.h>   
 #include <sys/stat.h>   
       
 #include <fcntl.h>   
 #include “safecalls.h”    
       
 int write_buffer(int fd, const void *buf, int count);   
       
 int main(void) {    
   int outfile;   
   char *mapped;   
   char *ptr;   
       
   /*  Open the file * /   
       
   outfile = safeopen2(“ test.dat” , O_RDWR | O_CREAT | O_TRUNC, 0640);   
       
   lseek(outfile, 1000, SEEK_SET);   
   safewrite(outfile, “ \0” , 1);   
   mapped = mmap(NULL, 1000, PROT_READ | PROT_WRITE, MAP_SHARED,    
         outfile, 0);   
   if (!mapped) {    
     printf(“mmap failed.\n” );   
   }    
       
   ptr = mapped;   
   printf(“Please enter a number: \n” );   
   fgets(mapped, 80, stdin);   
       
   ptr += strlen(mapped);   
   sprintf(ptr, “Your number times two is: %d\n” ,   
       atoi(mapped) * 2);   
   printf(“Your number times two is: %d\n” ,   
      atoi(mapped) * 2);   
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   msync(mapped, 1000, MS_SYNC);   
   munmap(mapped, 1000);   
       
   safeclose(outfile);   
   return 0;   
 }    
       
 /*     
    This function writes certain number bytes from “buf”  to a file    
    or socket descriptor specified by “ fd” . The number of bytes is    
    specified by “count” . It returns the number of bytes written,   
    or <0 on error.   
 * /   
       
 int write_buffer(int fd, const void *buf, int count) {    
   const void *pts = buf;   
   int  status = 0, n;   
      
   if (count < 0) return (-1);   
       
   while (status != count) {    
     n = safewrite(fd, pts+status, count-status);    
     if (n < 0) return (n);   
     status += n;   
   }     
   return (status);   
 }     
 

 

I’ ll go over the code for this program. This program uses the safecalls library, so you will need to specify it on your gcc command 
as you did for the code in Listing 14-6. This program begins normally enough by opening up a file for output. It seeks 1000 bytes 
into it, and writes out a single byte—a quick-and-easy way to make the file look like it’ s 1000 bytes long for mmap(). Then, there 
is the call to mmap(). The first argument is a suggested location for the memory block. There is no guarantee that mmap() will use 
that location, and so it is usually set to NULL. The second argument is the number of bytes from the file that should be mapped 
into your process’s address space. The third argument specifies the permissions for this area in memory. The options and their 
meanings are in the following table: 

 

 
 
     
 
 Option   

 
Meaning   

 

 
     
 
 PROT_EXEC   

 
The information in the memory area contains machine code and may be executed. This is very rarely 
seen in user-mode applications. 

 
 

 

 
 PROT_NONE   

 
No type of access is permitted.   

 

 
 PROT_READ   

 
Read access to the mapped area is permitted.   

 

 
 PROT_WRITE   

 
Write access to the mapped area is permitted.   

 

 
     
 

 
The fourth argument defines the flags for the memory map. Three such flags are available. At least one of MAP_SHARED or 
MAP_PRIVATE must be specified; the MAP_FIXED flag is optional and may be specified in combination with either of the 
others. The flags and their meanings are in the following table: 

 

 
 
     
 
 Flag   

 
Meaning   
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 MAP_FIXED   

 
Causes mmap() to return with an error if it is unable to use the suggestion for the memory location of 
the mapped area. 

 
 

 

 
 MAP_PRIVATE   

 
Any modifications made to the mapped area will not be written back to the disk file.   

 

 
 MAP_SHARED   

 
If writing is permitted, changes to the mapped area in memory will be reflected by the appropriate 
change to the file. 

 
 

 

 
     
 

 

The fifth argument to mmap() describes the file descriptor whose contents should be mapped into memory. In the example in 
Listing 14-7, that file descriptor is the one corresponding to the test file. The sixth argument indicates the offset into that file at 
which the mapped region begins. In this case, the mapped region starts at the very beginning of the file. However, if you prefer to 
map only data later on in the file instead, you may use this option to specify where to start. 

 

 
 

 

Now that the memory is mapped, you can use the variable named mapped to access it. This variable is a pointer to the start of the 
memory-mapped region. You can thus access the file directly by accessing this variable. Notice how the call to fgets() uses this 
variable as the name of its buffer. This means that as soon as the data is read from the keyboard, it’s already on its way out for 
being written to the file, simply by virtue of the fact that it was placed directly into the mapped area of memory. 

 

 
 

 

Then there’s a helper variable, ptr, which advances past the point of the initial read so that it’s easy to keep track of where more 
data should be placed. After that, sprintf() is called to write the data out to the file. This may seem odd, but remember that writing 
the data out to the area that ptr is pointing to effectively writes it out to the file! For convenience, there’s also a call to printf() that 
enables you to see exactly what was written out. 

 

 
 

 

After the program is done writing, it needs to do three things: synchronize the mmapped area, unmap it, and close the file. The 
synchronization step is necessary because, like with system call I/O, mmap does not always write data out to disk automatically. 
However, unlike the system call I/O, calling munmap() (the rough equivalent of close) does not cause the pending data to be 
flushed to disk. Therefore, you must do that manually to ensure that everything gets written. 

 

 
 

 
To do this, you simply call msync, passing it the pointer to the start of the mapped region, the length, and some flags. You should 
set exactly one of MS_ASYNC or MS_SYNC; the remaining one is optional. The following table lists the flags and their 
meanings: 

 

 
 
     
 
 Flag   

 
Meaning   

 

 
     
 
 MS_ASYNC   

 
Causes the synchronization to be performed asynchronously. That is, the write is set to occur 
but msync() may return to its caller before the write is complete. 

 
 

 

 
 MS_SYNC   

 
Forces the write to be performed synchronously. The msync() function will not return until the 
write is complete. 

 
 

 

 
 MS_INVALIDATE   

 
Tells the system to inform any process that has mapped this region of the file that the data in the 
file has changed, forcing a reload of fresh data into the buffers for these other mappings. 

 
 

 

 
     
 

 
Finally, after synchronizing the memory, the memory is unmapped with a call to munmap(). Again, this takes two arguments: the 
pointer to the start of the mapped region and its length. After you call munmap(), that region may no longer be accessible and 
definitely will not be tied to the contents of the file.  

select() and poll()   
 

 

Thus far in our programming examples, you’ve only encountered a need to read from or write to a single file descriptor or stream 
at a time. For most programs, this is how their lifespan is spent—reading some data, processing it, writing back out the result. 
However, some programs—particularly network applications—often need to monitor more than one file descriptor at a time. For 
instance, a network client for an interactive chat needs to be capable of monitoring both the user’s keyboard for input to send to the 
remote user and the network for data to be displayed locally. 
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With the mechanisms we have studied thus far, there is no good way to do this. You might elect to use non-blocking I/O and poll 
each file descriptor. However, this gets you into trouble with busy waiting. So, perhaps you decide to insert a sleep() call. If you do 
this, you are still busy waiting, but its effects are diminished. However, this also adversely affects performance, possibly even to 
such a degree that the program is no longer usable for interactive chat. 

 

 
 

 

You might consider something along the lines of using blocking I/O for local input and non-blocking I/O for network input, 
effectively polling the network for information every time the local user types a message. This is essentially the approach used by 
a number of the more simplistic network clients out there, such as the one for FTP. However, for interactive chat, this is not 
exactly a good idea—it causes unacceptable delays when trying to carry on a conversation. 

 

 
 
 The select() function   
 

 

What you need is a function that keeps an eye on a set of file descriptors for you and blocks until something occurs with at least 
one of them. Well, Linux provides exactly such a function for your use: select().You give the select() function three sets of file 
descriptors to watch. When something relevant to your process occurs on one of the watched descriptors, the call returns and you 
are told which file descriptor (or descriptors) are ready for action from you. 

 

 
 

 
This interface means an excellent solution to the problem mentioned previously. You no longer have to worry about how you will 
possibly get data in from both of the descriptors because the operating system automatically handles those details and informs you 
only when at least one of them is ready to give you some information. 

 

 
 
 Listing 14-8 shows the code for a program that demonstrates the usage of the select() call.   
 
  Note  Listing 4-8 is availablkloe online.   
 
 Listing 14-8: Example of select()   
 
 /*    
   Chapter 14 example program 8   
       
   Here we demonstrate the use of select().   
       
 * /   
       
 #include <stdio.h>   
 #include <stdlib.h>   
 #include <time.h>   
 #include “safecalls.h”    
       
 int write_buffer(int fd, const void *buf, int count);   
       
 int pipes[2];            /*  [0] for reading, [1] for writing */   
       
 int child(void);   
 
 int parent(void);   
    
 int main(void) {    
   pid_t pid;   
   safepipe(pipes);   
      
   pid = fork();   
       
   if (pid == 0)   
     return child();   
       
   if (pid > 0)   
     return parent();   
       
   return 255;   
 }    
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 /*  The thild process will just send some random data over to the parent   
    every 10 seconds. */   
       
 int child(void) {    
   char buffer[80];   
       
   close(pipes[0]);        /*  Get rid of unneeded pipe */   
   srand(time(NULL));   
       
   do {    
     sleep(10);   
     sprintf(buffer, “Message %d\n” , rand());   
   }  while (write_buffer(pipes[1], buffer, strlen(buffer)) != -1);   
       
   return 0;   
 }    
       
 int parent(void) {    
   char buffer[100];   
   fd_set readfds;   
       
   close(pipes[1]);        /*  Get rid of unneeded pipe */   
   printf(“You may enter some data.  I’ ll read it and data from the\n” );   
   printf(“other process and display each.\n\n” );   
      
   while(1) {    
     FD_ZERO(&readfds);   
     FD_SET(0, &readfds);           /*  standard input */   
     FD_SET(pipes[0], &readfds);    /*  child process */   
        
     select(pipes[0] + 1, &readfds, NULL, NULL, NULL);   
        
     if (FD_ISSET(0, &readfds)) {    
       buffer[saferead(0, buffer, sizeof(buffer) -1)] = 0;   
       printf(“You typed: %s\n” , buffer);   
     }    
       
     if (FD_ISSET(pipes[0], &readfds)) {    
       buffer[saferead(pipes[0], buffer, sizeof(buffer) -1)] = 0;   
       printf(“Child sent: %s\n” , buffer);   
     }    
   }    
 }    
       
 /*     
    This function writes certain number bytes from “buf”  to a file    
    or socket descriptor specified by “ fd” . The number of bytes is    
    specified by “count” . It returns the number of bytes written,   
    or <0 on error.   
 * /   
       
 int write_buffer(int fd, const void *buf, int count) {    
   const void *pts = buf;   
   int  status = 0, n;   
      
   if (count < 0) return (-1);   
      
   while (status != count) {    
     n = safewrite(fd, pts+status, count-status);    
     if (n < 0) return (n);   
     status += n;   
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   }     
   return (status);   
 }     
 
 To compile this program, you may use a command like this:   
 
 $ gcc –Wall –o ch14-8 ch14-8.c safecalls.c   
 

 
This program is divided into two separate parts: the parent and the child. The program forks near the beginning, but only after first 
establishing a pipe. 

 
 
 

  
Note 

 
Pipes are covered in detail in Chapter 17, “Using Pipes and FIFOs.”  For the moment, though, all that you need to 
know is that a pipe is a method of communicating from one process to another—when one process writes to a 
pipe, the other process can read the data from it. 

 

 
 

 
The child process does nothing but put data in the pipe. Every 10 seconds, the child process puts data into the pipe consisting of 
some text and a randomly generated numeric message. 

 
 
 

 

The parent is somewhat more complex. It begins by displaying some brief help text to the screen. Then, it enters its main loop. The 
select() call operates on sets of file descriptors, which are defined in fd_set variables. There are several macros to use to 
manipulate these sets. FD_ZERO clears all descriptors, FD_CLR clears one specific descriptor, FD_SET adds one descriptor, and 
FD_ISSET tests whether the given descriptor is set in the set. After running select(), the input sets themselves are modified. In this 
case, I just rebuild them every time through the loop. If you have more than two descriptors to watch, you may prefer to make a 
copy of the sets and then simply restore from the copy for each call to select(). 

 

 
 

 

The arguments for select() start with the number of the highest descriptor in any set, plus 1. After that, there is a pointer to the set 
of descriptors to watch for reading, a pointer to the set to watch for writing, and a pointer to the set to watch for errors. Finally, 
there is a pointer to a struct timeval indicating the maximum time to wait for an event to occur. Because we don’ t have a time limit 
and don’ t care about the writing or error conditions, those three parameters are left to NULL. Because standard input is 0, the other 
file descriptor must be higher, so one plus standard input’s number is the value for the first parameter. 

 

 
 

 

After the call to select() returns, you know that data is ready to be received on at least one, and perhaps both, of the descriptors 
being watched. The set of descriptors is tested to see exactly which one has received data. For each particular option, if it has 
received some data, this data is read in. Notice that I don’ t use read_buffer() here. The reason is that a hit from select indicates that 
there is some data waiting—in this case, probably not enough to fill up the entire buffer. Therefore, simply using a standalone 
read() call (or a saferead(), which does the same thing) is best. It probably will not fill the buffer—but this way, the program does 
not block waiting for data to arrive on this single descriptor. 

 

 
 

 
Because this method is used, you need to be aware that the strings read in from read() are not null-terminated. Therefore, you need 
to do that yourself. Conveniently, the return value from read() indicates the number of bytes read, so it makes a nice index into the 
string for the purposes of appending a trailing null character. 

 

 
 

 

Before giving this program a try, I want to give you one final caution. The terminal driver does not deliver data to programs as you 
type them; rather, it waits until you press Enter and then delivers your entire line all at once. Therefore, if input arrives from the 
child process while you are in the middle of a line on the parent, the results can be visually confusing as your input line will be 
interrupted on-screen but not interrupted with its input. By using a system such as ncurses, you can partition off the screen to avoid 
this problem, but that would unnecessarily complicate this particular program. 

 

 
 
 Here is some sample output:   
 
 $ ./ch14-08   
 You may enter some data.  I’ ll read it and data from the   
 other process and display each.   
       
 Hello!   
 You typed: Hello!   
       
 This is some sample input.   
 You typed: This is some sample input.   
       
 Child sent: Message 591369805   
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 I t looks like the client is working.   
 You typed: It looks like the client is working.   
       
 Child sent: Message 133889111   
       
 Bye.   
 You typed: Bye.   
       
 Ctrl-C   
 

 
You can see that the program was indeed capable of receiving and immediately processing messages from both the keyboard and 
the other process. 

 
 
 
 The poll() function   
 

 
In addition to using select(), you can use the poll() call. It does the same sort of thing—it waits for activity on a specified set of file 
descriptors. However, its semantics may make it easier to work with in some situations. Listing 14-9 shows a rewrite of this code 
to use poll() instead of select(). 

 

 
 
  Note  Listing 14-9 is available online.   
 
 Listing 14-9: Example of poll()   
 
 /*    
   Chapter 14 example program 9   
       
   Here we demonstrate the use of poll().   
       
 * /   
       
 #include <stdio.h>   
 #include <stdlib.h>   
 #include <time.h>   
 #include <sys/poll.h>   
 #include “safecalls.h”    
       
 int write_buffer(int fd, const void *buf, int count);   
       
 int pipes[2];            /*  [0] for reading, [1] for writing */   
       
 int child(void);   
 int parent(void);   
       
 int main(void) {    
   int pid;   
   safepipe(pipes);   
      
   pid = fork();   
       
   if (pid == 0)   
     return child();   
       
   if (pid > 0)   
     return parent();   
       
   return 255;   
 }    
       
 /*  The thild process will just send some random data over to the parent   
    every 10 seconds. */   
       
 int child(void) {    
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   char buffer[80];   
       
   close(pipes[0]);        /*  Get rid of unneeded pipe */   
   srand(time(NULL));   
       
   do {    
     sleep(10);   
     sprintf(buffer, “Message %d\n” , rand());   
   }  while (write_buffer(pipes[1], buffer, strlen(buffer)) != -1);   
       
   return 0;   
 }    
       
 int parent(void) {    
   char buffer[100];   
   struct pollfd pfds[2];   
       
   close(pipes[1]);        /*  Get rid of unneeded pipe */   
   printf(“You may enter some data.  I’ ll read it and data from the\n” );   
   printf(“other process and display each.\n\n” );   
       
   pfds[0].fd = 0;   
   pfds[0].events = POLLIN;   
   pfds[1].fd = pipes[0];   
   pfds[1].events = POLLIN;   
      
   while(1) {    
     poll(pfds, 2, 0);   
        
     if (pfds[0].revents && POLLIN) {    
       buffer[saferead(0, buffer, sizeof(buffer) -1)] = 0;   
       printf(“You typed: %s\n” , buffer);   
     }    
       
     if (pfds[1].revents && POLLIN) {    
       buffer[saferead(pipes[0], buffer, sizeof(buffer) -1)] = 0;   
       printf(“Child sent: %s\n” , buffer);   
     }    
   }    
 }    
       
 /*     
    This function writes certain number bytes from “buf”  to a file    
    or socket descriptor specified by “ fd” . The number of bytes is    
    specified by “count” . It returns the number of bytes written,   
    or <0 on error.   
 * /   
       
 int write_buffer(int fd, const void *buf, int count) {    
   const void *pts = buf;   
   int  status = 0, n;   
      
   if (count < 0) return (-1);   
      
   while (status != count) {    
     n = safewrite(fd, pts+status, count-status);    
     if (n < 0) return (n);   
     status += n;   
   }     
   return (status);   
 }     
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There are no changes to the child implementation for this program, but there are some changes to the main loop of the parent 
process. The poll() function takes an array of structures, which are defined as follows: 

 
 
 
 struct pollfd {    
   int fd;           /*  file descriptor; -1 to ignore */   
   short events;     /*  requested events * /   
   short revents;    /*  returned events * /   
 } ;   
 

 
Each entry specifies the file descriptor. In the events field, you specify which events you want to trigger. When one gets triggered, 
the function returns and fills out the revents field showing which one (or which ones) triggered. Table 14-2 lists and describes the 
various events. 

 

 
 
 Table 14-2:  Events for  poll()   
 
     
 
 Event   

 
Meaning   

  
Valid For    

 

 
     
 
 POLLERR   

 
An error occurred on this file descriptor.   

  
revents only   

 

 
 POLLHUP   

 
A hangup condition occurred.   

  
revents only   

 

 
 POLLIN   

 
You can read data on this file descriptor.   

  
events and revents   

 

 
 POLLNVAL   

 
The specified file descriptor is not valid.   

  
revents only   

 

 
 POLLOUT   

 
You can write data now on this file descriptor.   

  
events and revents   

 

 
 POLLPRI   

 
There is high-priority data to read.   

  
events and revents   

 

 
 POLLRDBAND   

 
Data from a non-normal band can be read.   

  
events and revents   

 

 
 POLLRDNNORM   

 
Normal-priority data can be read.   

  
events and revents   

 

 
 POLLWRBAND   

 
You can write data to a nonzero band.   

  
events and revents   

 

 
 POLLWRNORM   

 
Same as POLLOUT.   

  
events and revents   

 

 
     
 

 
The second parameter to poll() is a count of the number of structures in the array; in the example in Listing 14-9, that number is 2. 
The final value is a timeout, measured in milliseconds. The 0 value disables the timeout, so that is what is used. 

 
 
 

 
After poll() returns, the remaining logic is the same as that for select: find out which descriptors have some action pending and 
work with it. In this case, that means checking to see whether POLLIN is set on each of the descriptors. If it is, go ahead and read 
the data in as before. 

 

 
 

 
This example is a fairly simple one. However, bear in mind that for things such as network servers, select() and poll() give you a 
great deal of flexibility and room to expand your server. These can be an alternative to multi-process servers, which sometimes can 
consume more resources than a single-process multiplexing server that uses select() or poll().  

Advisory Locking   
 

 
One of the most common problems on a multitasking operating system such as Linux is synchronization between two processes. A 
specific instance of these problems is synchronizing access to files. On a system where you easily might have a dozen copies of a 
program running at once, if they all want to write to a single file, the potential for corruption to that file is significant. 

 

 
 

 
There needs to be some way for processes to coordinate their accesses to files. This method needs to work not only for different 
instances of a single program but between different programs as well. 
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The answer on Linux is called advisory file locking. This means that programs call a function provided by the operating system to 
coordinate their accesses. It is called advisory because programs that are not aware of or do not take into account the file locks will 
not be prevented from accessing the file; systems that prevent access from any process at all implement mandatory locking. Either 
method works and each has its own unique advantages and disadvantages. Linux now has experimental optional mandatory 
locking, but the advisory locking is far more prevalent and is more portable to other UNIX operating systems as well. 

 

 
 

 
You can use many different functions for locking in Linux and UNIX systems—flock(), fcntl(), and lockf() are among them. In 
this section, I’ ll describe flock(). In Linux, these are all interfaces around the same underlying code, so there is not a large amount 
of difference, save some feature difference between them. 

 

 
 

 

When you want to lock a file with flock, you have a choice of two different lock types: a shared lock and an exclusive lock. With a 
shared lock, multiple processes can have a shared lock on a file. If you request an exclusive lock, no other process may have a lock 
on the file at all. Therefore, with these semantics, you typically use a shared lock for systems that are reading or an exclusive lock 
for systems that are writing. This is because simply reading from a file does not conflict with other processes that are doing the 
same. However, there are problems when two processes try to write at once, or when a process tries to read from a section that 
another process is writing to—the reading process may get the old data, the new data, or a combination of both. 

 

 
 

 
Listing 14-10 presents a sample program that demonstrates file locking. You can start this program up multiple times to see what it 
does. 

 
 
 
  Note  Listing 14-10 is available online.   
 
 Listing 14-10: Example of locking   
 
 #include <stdio.h>   
 #include <sys/file.h>   
 #include <sys/types.h>   
 #include <sys/stat.h>   
 #include <fcntl.h>   
       
 #include “safecalls.h”    
       
 void display(int fd);   
 void add(int fd);   
 int flockwrapper(int fd, int operation);   
 int write_buffer(int fd, const void *buf, int count);   
 int read_buffer(int fd, void *buf, int count);   
       
 int main(void) {    
   int input;   
   int fd;   
       
   fd = safeopen2(“ch14-10.dat” , O_CREAT | O_RDWR, 0640);   
       
   printf(“Select: \n” );   
   printf(“1. Display file\n” );   
   printf(“2. Add to file\n” );   
   printf(“ \nYour selection: “ );   
   scanf(“%d” , &input);   
       
   switch (input) {    
     case 1: display(fd);   
             break;   
     case 2: add(fd);   
             break;   
     default:  printf(“ Invalid selection.  Exiting.\n” );   
   }    
   return 0;   
 }    
       
 /*  Display the files.  Request a lock such that processes writing won’ t   
    be able to do that while I’m reading.  */   
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 void display(int fd) {    
   int data;   
       
   flockwrapper(fd, LOCK_SH);   
   while (read_buffer(fd, &data, sizeof(int)) > 0) {    
     printf(“Data: %d\n” , data);   
   }    
   close(fd);   
 }    
       
 /*  Add new entries.  Request a lock to block everything else. */   
 void add(int fd) {    
   int data;   
       
   flockwrapper(fd, LOCK_EX);   
   lseek(fd, 0, SEEK_END);   
       
   do {    
     printf(“Enter a number (-1 when done): “ );   
     scanf(“%d” , &data);   
     write_buffer(fd, &data, sizeof(int));   
   }  while (data != -1);   
   close(fd);   
 }    
       
 int flockwrapper(int fd, int operation) {    
   printf(“Obtaining %s lock on fd %d\n” ,   
      (operation & LOCK_SH) ? “shared”  : “exclusive” ,   
      fd);   
   if (flock(fd, operation | LOCK_NB) != -1) return 0;   
   printf(“Another process has a lock; please wait until it is released.\n” );   
   return flock(fd, operation);   
 }    
       
 /*     
    This function writes certain number bytes from “buf”  to a file    
    or socket descriptor specified by “ fd” . The number of bytes is    
    specified by “count” . It returns the number of bytes written,   
    or <0 on error.   
 * /   
       
 int write_buffer(int fd, const void *buf, int count) {    
   const void *pts = buf;   
   int  status = 0, n;   
      
   if (count < 0) return (-1);   
      
   while (status != count) {    
     n = safewrite(fd, pts+status, count-status);    
     if (n < 0) return (n);   
     status += n;   
   }     
   return (status);   
 }     
       
 int read_buffer(int fd, void *buf, int count) {    
   void *pts = buf;   
   int  status = 0, n;   
       
   if (count < 0) return (-1);   
   while (status != count) {    
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     n = saferead(fd, pts+status, count-status);   
     if (n < 1) return n;   
     status += n;   
   }    
   return (status);   
 }    
 

 

This program can do two things: display the contents of a file and add data to it. I use the appropriate type of file locking to 
demonstrate how to do so. When displaying data, the program requests a shared lock. This shared lock enables other processes to 
read the data at the same time. Because an exclusive lock is used for writing when adding to the file, no other processes are 
allowed access. 

 

 
 

 

There is a wrapper around flock() that exploits the non-blocking option. It uses this wrapper so that it can display a message if 
there is going to be a delay, so that the user knows what is going on. The LOCK_NB option indicates a non-blocking lock. One 
other option that has not been used is LOCK_UN, which releases a lock. Note that closing a file or exiting the process 
automatically releases a lock. 

 

 
 
 Try running this program in a window. You can compile and start it up like this:   
 
 $ gcc –Wall –o ch14-10 ch14-10.c safecalls.c   
 $ ./ch14-10   
 Select:    
 1. Display file   
 2. Add to file   
       
 Your selection: 2   
 Obtaining shared lock on fd 3   
 Enter a number (-1 when done): 1   
 Enter a number (-1 when done): 2   
 Enter a number (-1 when done): 3   
 

 
Now, without exiting the program in Listing 14-10, fire up another copy in another window or terminal. Take a look and see what 
happens when you try to read: 

 
 
 
 $ ./ch14-10   
 Select:    
 1. Display file   
 2. Add to file   
       
 Your selection: 1   
 Obtaining shared lock on fd 3   
 Another process has a lock; please wait until it is released.   
 
 If you open up yet a third process for the purpose of writing, you’ ll get something similar:   
 
 $ ./ch14-10   
 Select:    
 1. Display file   
 2. Add to file   
       
 Your selection: 2   
 Obtaining shared lock on fd 3   
 Another process has a lock; please wait until it is released.   
 

 
Now, if you go back to the first process and type -1 to cause it to exit, you’ ll see that one of the other processes will obtain a lock. 
If the second one gets the lock first, it displays the file and exits immediately, and then the third gets the lock for writing. 
Otherwise, the third asks you for data, and when it is done, the second process displays the file. 

 

 
 

 
Beware of deadlock problems when using file locking. Some programs may lock many files at once. A general hint is to always lock 
files in the same order, and release locks in the opposite order in which you acquired them.  

Summary   
 



 293 

 In this chapter, you learned about input and output (I/O) on Linux. Specifically, you learned:   
 
  •  Two different types of basic I/O in Linux are library (stream) I/O and system call I/O.   
 
  •  Stream I/O is buffered automatically before the system call level and operates with FILE *  variables.   
 

  
• 

 
System call I/O is a more low-level interface, and often requires more coding on your part to achieve the same as stream I/O. 
However, many functions possible with system call I/O are not available with stream I/O. 

 
 
 

  
• 

 
Handling of error conditions in your programs is one of the most important things you can do to ensure data integrity in your 
software. 

 
 
 
  •  One way to handle errors conveniently is to use wrappers around functions that might fail.   
 
  •  You can create sparse files, or files with holes in them, by seeking past the end of a file and writing data there.   
 

  
• 

 
You can use non-blocking I/O when you prefer to have a function return immediately, whether it has executed your request or 
not. 

 
 
 
  •  Memory-mapped I/O enables you to access files as you would normally access memory.   
 

  
• 

 
The select() and poll() functions enable your program to request that the system watch several descriptors for activity and 
inform you when a request event occurs on at least one of them. 

 
 
 
  •  You can use advisory locking to coordinate access to files to prevent data corruption.  
Chapter  15: Looking at Terminals   
 
 Overview   
 

 
This chapter covers the aspect of Linux that deals with terminals. This is a very large system, dealing with many different types of 
devices and requirements. It encompasses the xterm emulator for X, hardware terminals, modems, kernel terminal drivers, terminal 
emulation, pseudo-terminals, and more. 

 

 
 

 

The modern Linux approach to terminals derives from that in the early versions of UNIX. Back in the early days of UNIX, one 
might frequently use a console connected via a serial connec-tion (possibly even a modem) to communicate with the system, run 
programs, and the like. Therefore, the system needs to keep track of some basic attributes of the line, such as the signaling rate 
(expressed in bps), some link characteristics, and the like. 

 

 
 

 

As more vendors released terminals, each invented their own command set for their terminals. This command set enables the 
terminals to understand commands from applications requesting them to erase some text, reposition the cursor on the screen, 
display bold or inverse video, and so on. Linux needs a way to be able to generalize terminal access; writing several thousand 
different applications, one for each terminal type, is simply not practical. Therefore, Linux uses a capa-bilities database known as 
terminfo for storing what each terminal is capable of and how to invoke the features on it. For programmers, a library such as 
ncurses handles the details of working with the terminfo database; all you have to do is issue library calls to perform actions. 

 

 
 

 

Applications also need some preprocessing to be done by the kernel on their behalf. For instance, consider how much work it 
would be if you had to manually process backspace charac-ters each time you tried to read input from the terminal. To solve this 
problem, the UNIX and Linux systems include, by default, some simple line-editing support in the terminal drivers in the kernel. 
This enables the user to type in input line by line, taking advantage of the Backspace key to make corrections, and then feed the 
result to you when a complete line of input is ready. Some programs, however, need this behavior to be turned off. For instance, an 
editor can’ t wait until Enter is pressed to handle three presses of the up arrow; it should handle this immediately. Similarly, a 
Backspace key may have more significance in an editor than in traditional line-editing mode. It may be able, for instance, to delete 
an entire block if one is selected. 

 

 
 

 
Another concern is: what happens when someone presses one of the “special keys”? The answer is that the terminal driver must 
intercept the keystroke, parse the input, and send an appropriate signal to the process if necessary. 

 
 
 

 

In your user programs, you need to be able to understand different terminal signals for particular events. For instance, different 
terminals send a different code for the left arrow press. Your programs may need to be able to interpret these keypresses and, if so, 
you’ ll need to know how to deal with the input. Fortunately, ncurses and the terminfo system come to your rescue yet again, as 
they also describe the information that the terminal itself sends. 
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In some cases, you may want to be able to provide the terminal driver features for devices that are not really a terminal. For instance, 
a person telnetting into your system will want to be able to use terminal driver features such as line editing with the Backspace key 
while logged in. These features, however, are provided in the kernel terminal driver and require a terminal device on which to 
operate. This is where pseudo-terminals come in. They provide a way for programs to pretend to be a real terminal and thus play 
nicely with the system.  

Terminal Attr ibutes   
 

 
With all this power and diversity, it should come as no surprise that manipulating terminals can be a complex process. The primary 
way to do this is through tcgetarttr() and tcsetattr(). Dozens of flags are available; in fact, the manpage spends seven whole pages 
summarizing the available flags and control items. 

 

 
 
 Both tcgetattr() and tcsetattr() use a struct termios. This structure is defined as follows:   
 
 struct termios {    
   tcflag_t c_iflag;      /*  input modes */   
   tcflag_t c_oflag;      /*  output modes */   
   tcflag_t c_cflag;      /*  control modes */   
   tcflag_t c_lflag;      /*  local modes */   
   cc_t c_cc[NCCS];       /*  control chars */   
 } ;   
 

 
The traditional way to set terminal attributes in this way is to first call tcgetattr() to populate this structure, make necessary 
changes, and then call tcsetattr() to put the new items into effect. Listing 15-1 shows an example that puts the terminal into raw 
mode, and then reads one character at a time. 

 

 
 
  Note  Listing 15-1 is available online.   
 
 Listing 15-1: Sample of raw mode, ch15-1.c   
 
 #include <termios.h>   
 #include <unistd.h>   
 #include <stdio.h>   
       
 int main(void) {    
   int input;   
       
   struct termios save, current;   
       
   tcgetattr(0, &save);   
   current = save;   
    
   current.c_lflag &= ~ICANON;   
   current.c_lflag &= ~ECHO;   
       
   current.c_cc[VMIN] = 1;   
   current.c_cc[VTIME] = 0;   
       
   tcsetattr(0, TCSANOW, &current);   
       
   printf(“Enter some text, Q to stop.\n” );   
   while ((input = getc(stdin)) != ‘Q’) {    
     printf(“You typed: %c\n” , input);   
   }    
       
   tcsetattr(0, TCSANOW, &save);   
       
   printf(“Terminal values back to default.\n” );   
   printf(“Try some text again, Q to stop.\n” );   
   while ((input = getc(stdin)) != ‘Q’) {    
     printf(“You typed: %c\n” , input);   
   }    
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   return 0;   
       
 }    
 

 
Run this program and note the result. If you type Hello (not shown in the following program run because it doesn’ t echo the first 
time), it will display the message immediately as you press the keys. The second instance of the loop will wait until the entire line 
has been input before processing any of it. Here’s the output: 

 

 
 
 $ ./ch15-1   
 Enter some text, Q to stop.   
 You typed: H   
 You typed: e   
 You typed: l   
 You typed: l   
 You typed: o   
 You typed: !   
 Terminal values back to default.   
 Try some text again, Q to stop.   
 Hi!   
 You typed: H   
 You typed: i   
 You typed: !   
 You typed:   
       
 ByeQ   
 You typed: B   
 You typed: y   
 You typed: e   
 

 
It is extremely important that you always reset your terminal to the default state upon exit. If you don’ t, the user’s shell and future 
programs may be confused and display improperly. This is the reason for saving the terminal state information at the beginning 
and restoring it later. 

 

 
 

 

The terminal attributes are separated into four categories: input, output, control, and local attributes. In this program, only the local 
attributes are considered relevant, although any of the others could have been modified as well. The &= syntax means to perform a 
bitwise AND on the variable and the rvalue (the value to the right of the equals sign), and to assign the result back to the variable. 
In this case, we are wanting to shut off a bit, so the bitwise AND is used to remove a single bit from the bitmask. If you wanted to 
add on some bits, you could use |= NAME to do that (no leading ~ this time). 

 

 
 

 
This bitwise AND syntax is used to remove two bits: echo and canonical. Turning off canonical mode turns off the standard line 
editing. This step is necessary if your program is to be able to read one line at a time from the terminal. Echo is turned off as well 
because having the output appear would only lead to confusion, and the input is displayed soon enough anyway. 

 

 
 

 

That brings us to the termios structure member c_cc. This is used to control how data is sent to the calling program. When there is 
no longer a line break to fall back upon, how does the terminal driver know when to send data to the process? Because reading 
from the input a character at a time can (and frequently is) inefficient in most cases, you can set this variable to a minimum value 
and/or time after which data is returned. For instance, you could cause it to return whatever data is still pending after 10 seconds 
waiting. Or, as in this case, you can ask it to return after a certain number of characters have been read. 

 

 
 

 

Attributes are available for control for virtually every aspect of the terminal driver. These include speed, flow control, byte size, 
handling of lowercase characters (some extremely old terminals did not support lowercase letters), control charac-ters (you can 
prevent Ctrl+C from having any effect or remap it to a different character), and many other attributes. However, as most programs 
that are interested in these attributes also present a full-screen terminal interface, such attributes are usually modified through the 
interface of a system such as ncurses. 

 

 
 

 
Many of the more intricate details of tcsetattr() and tccgetattr() are automatically handled for your convenience and sanity by libraries 
such as ncurses. However, if you don’ t quite need the power and size of ncurses, you can use these functions to control the terminal 
as well.  

Pseudo-terminals   
 

 
Sometimes it is necessary for a program to interject itself in the line of communi-cation between a program and its final output 
device. This could be the case, for instance, for a telnet daemon—instead of writing data to a terminal, the program will need to 
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send data across a network. The UNIX program script, which makes a log of your actions, acts in the same fashion as well.  
 

 

You can’ t simply use pipes, because pipes lack functions that programs need, and they are not bidirectional. A program needs to 
be able to find out information about its environment—its window size, its terminal emulation, and so on—that are not available 
with a pipe. This is where the pseudo-terminals enter the picture. These devices look and act like real terminals, but in reality, they 
are not. 

 

 
 

 

In this chapter, I am going to present you with a custom version of the “script”  program. This program will create a pseudo-
terminal, fork, and exec your shell. On the parent side, the program will need to pass standard input on to the client and pass 
standard output on to both the screen and a file. This is done by forking again, to create one handler for each direction. Thus, the 
entire system will make up three processes. Listing 15-2 shows the source code. 

 

 
 
  Note  Listing 15-2 is available online.   
 
 Listing 15-2: Example scr ipt replacement   
 
 #include <pty.h>   
 #include <stdio.h>   
 #include <sys/types.h>   
 #include <sys/stat.h>   
 #include <fcntl.h>   
 #include <unistd.h>   
 #include <errno.h>   
 #include <sys/ioctl.h>   
 #include “safecalls.h”    
       
 int masterfd, output, execpid, childpid;   
 struct termios origsettings;   
       
       
 void slave(void);   
 void master(void);   
 void master_frompty(void);   
 void master_topty(void);   
 int write_buffer(int fd, const void *buf, int count);   
 void catchchildren(int signum);   
       
       
 int main(void) {    
   struct winsize size;   
       
   tcgetattr(0, &origsettings);   
   ioctl(0, TIOCGWINSZ, (void *) &size);   
       
   output = safeopen2(“mytypescript” , O_CREAT | O_WRONLY | O_TRUNC, 0600);   
    
   execpid = forkpty(&masterfd, NULL, &origsettings, &size);   
       
   switch (execpid) {    
     case 0: slave(); break;   
     case -1: HandleError(errno, “ forkpty” , “ failure” ); break;   
     default: master(); break;   
   }    
   return 0;   
 }    
       
 /*  Here is the process to handle the slave side.  The slave PTY has   
    already been set to be the controlling terminal, so all that’s left   
    to do is exec. */   
       
 void slave(void) {    
   printf(“Starting process, use exit to return...\n” );   
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   if (execl(“ /bin/sh” , “ /bin/sh” , NULL) == -1) {    
     HandleError(errno, “execl” , “ failure to exec /bin/sh” );   
   }    
 }    
       
 /*  Master needs to set it up to copy in two directions: from stdin to   
    the pty and from the pty to stdout and the file. * /   
       
 void master(void) {    
   childpid = fork();   
   if (childpid == -1) {    
     HandleError(errno, “ fork” , “ failed to fork second child” );   
     return;   
   }    
       
   if (childpid == 0) {    
     master_frompty();   
     return;   
   }    
       
   /*  Set up signal handlers to exit and kill off other process if any   
      one of the other processes dies. */   
    
   signal(SIGCHLD, &catchchildren);   
       
   master_topty();   
 }    
       
 void master_frompty(void) {    
   char buffer[2000];   
   ssize_t size;   
       
   while ((size = read(masterfd, buffer, sizeof(buffer))) > 0) {    
     write_buffer(output, buffer, size);   
     write_buffer(1, buffer, size);   
   }    
 }    
       
 void master_topty(void) {    
   char buffer[2000];   
   ssize_t size;   
   struct termios newt;   
       
   newt.c_iflag &= ~(ICRNL | INPCK | ISTRIP | IXON | BRKINT | IXOFF | IXANY |   
                     INLCR | IGNBRK);   
   newt.c_oflag &= ~OPOST;   
   newt.c_lflag &= ~(ECHO | ICANON | NOFLSH | ISIG | IEXTEN);   
   newt.c_cflag |= CS8;   
   newt.c_cflag &= ~CSIZE;   
       
   newt.c_cc[VMIN] = 1;   
   newt.c_cc[VTIME] = 0;   
       
   tcsetattr(0, TCSANOW, &newt);   
       
   while ((size = read(0, buffer, sizeof(buffer))) > 0) {    
     write_buffer(masterfd, buffer, size);   
   }    
 }    
       
 int write_buffer(int fd, const void *buf, int count) {    
   const void *pts = buf;   
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   int  status = 0, n;   
    
   if (count < 0) return (-1);   
    
   while (status != count) {    
     n = safewrite(fd, pts+status, count-status);   
     if (n < 0) return (n);   
     status += n;   
   }    
   return (status);   
 }    
       
 void catchchildren(int signum) {    
   kill(execpid, SIGTERM);   
   kill(childpid, SIGTERM);   
   tcsetattr(0, TCSANOW, &origsettings);   
   printf(“Process exited; back to normal!\n” );   
   exit(0);   
 }    
 
 To compile this program, you will need to use a command like the following:   
 
 $ gcc –Wall –o myscr ipt myscr ipt.c –lutil   
 

 
You need to link in the util library because it is where forkpty() is defined. Other than that, there is nothing special that needs to be 
done to compile this program. 

 
 
 

 

Let’s go over the code for this program. It begins by grabbing the terminal settings for this terminal and its window size with calls 
to tcgetattr() and ioctl(). These settings are to be used for two purposes. First, for the new process created in forkpty(), the terminal 
(the pty slave) will be initialized with these settings. The forkpty() call will automatically handle this task based on the pointers to 
origsettings and size that are passed in. Then, in master_topty() (described in the following text), the parent process’s terminal will 
have to be modified, and it will need to be reset to its original value upon exit. 

 

 
 

 
After grabbing the settings, the output file is opened with a call to safeopen2(). After that, the ptys are created and the process 
forks all at once by calling forkpty(). For this to work, two ptys are created. One is the master, which the master processes monitor. 
The other is the slave pty, which is hooked up to the slave process. 

 

 
 

 
If the process is the slave, the slave() function is invoked. This function prints out a message and then execs the shell. That is the 
end of our code for the slave. 

 
 
 

 

If the process is the master, it forks again. This is done to create one process to handle communication in each direction. That is, 
there will be one process to handle copying from the input to the terminal and another to handle copying from the terminal to the 
output file and the screen. The child process of this fork invokes the master_frompty() function. The parent process registers a 
signal handler for SIGCHLD events. This is to clean up after exited processes as covered in Chapter 13, “Understanding Signals.”  
Then, the parent process invokes master_topty(). 

 

 
 

 
The master_frompty() function copies data from the pty to two destinations: the output file and the screen. The screen is 
represented by standard output, which is file descriptor number 1. Therefore, it uses two write_buffer() calls for each read: one to 
write to the file and one to write to standard output. 

 

 
 

 

The master_topty() cal needs to do some terminal initialization before it is ready to handle data. It needs to set the terminal to a mode 
such that it gets data in as raw a form as possible. The reason is that some programs in the slave (for instance, a text editor) may 
require this. Since the slave has its own terminal, with its own driver, it will do its own line buffering, so there is no need for the 
master to continue to do so. After setting these attributes, it enters a loop to copy the data from standard input (file descriptor 0) to the 
slave’s terminal.  

Ncurses   
 

 
The name ncurses stands for new curses, meaning that is a new, improved, and completely compatible reimplementation of the 
standard curses library. The ncurses program enables full-screen I/O with your programs. 

 
 
 

 
The idea is that you can create full-screen applications, such as editors, dialog utilities, and the like, by using ncurses. You may 
also want to investigate Perl/Tk or Gnome as you make your decisions for an interface for your program. There are some 
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impressive advantages for using ncurses, though.  
 

 

Chief among these advantages is speed. The simple truth is that no GUI interface can ever even come close to the speed of a full-
screen ncurses-based one. The reason is that a text-mode interface requires far less data to generate the image. Whereas an X 
interface requires fonts, cursors, and bitmaps, and it sends many graphics commands down the wire, an ncurses interface requires 
none of that; it is simply text with a few commands to relocate or change a bit of the attribute information. This becomes 
extremely important when running applications remotely over the Internet. X does support remote execution of applications; 
however, most Internet links today are not sufficiently fast and latency-free to run most X applications at a satisfactory speed. 

 

 
 

 
One advantage over command-line interfaces is that an ncurses interface can enable the user to fill out forms, browse the Web, and 
the like—all without requiring a graphical interface. 

 
 
 

 
The ncurses approach has some downsides too, however. For one, many users tend to use terminal emulators with imperfect or 
downright broken terminal emulation, as is the case, for instance, with the standard telnet program that ships with Windows. These 
users may get confused when their own terminal emulators do not make sense of the data being sent. 

 

 
 

 
Also, the GUI is able to display more data and in a more powerful way. Graphics, icons, buttons, and the like all provide assistance 
when your application is inherently graphical. For instance, if you had to write a paint program, you would probably prefer to 
work in a GUI environment than with ncurses. 

 

 
 

 

Several Linux vendors have embraced or will shortly embrace installation and configuration tools based on ncurses or one of its 
derivatives. This can only be good; often, the initial installation phase is working from a single floppy disk, and space is so tight 
that there is no way that X would fit onto that disk. However, a simple, easy-to-understand interface is also of paramount 
importance (beginning users are the ones that need this more than anyone) at install time. Confuse people, and your product fails. 

 

 
 

 

I’ ll show you modified versions of two programs that I wrote some years ago. Both use ncurses; the first is written in C, and the 
second is written in Perl. From the first example, you’ ll be able to see just how much more professional your interface can look if 
you cleared the screen and did not require an Enter keypress for menu selections. The second example, in Perl, uses the Perlmenu 
package and the Curses binding for Perl (both available from CPAN and http://www.perl.com/CPAN-local/modules/). 

 

 
 

  

Tip 

 

Some Linux distributions may come with both Perl’s Curses package and the Perlmenu system available for install. 
If you are using such a distribution, you may want to install that version instead of the one from CPAN, as your 
distribution’s software will usually be easier to install. In Debian GNU/Linux, the relevant packages are named 
libncurses-perl and perlmenu. 

 

 
 

 

The first application presented below illustrates basic interaction with curses. It was written way back when I was first learning 
about writing sort algorithms; I’ve stripped out all but three from the code. The basic idea is that you run the genrandom program 
(which it also builds) to create a file full of random integers. Then, you load that file into this program, which gives you an 
interface to select a sort algorithm, a function to verify that everything was properly sorted, and so on. 

 

 
 

 
This program comes in three pieces: a simple Makefile, the main code, and a program to generate a file with many random 
integers in it. First, here’s the Makefile: 

 
 
 
 CC=gcc   
 CFLAGS := -Wall -O3   
 LINK := $(CC)   
 EXECS = genrandom ch15-2   
       
 all: $(PROGRAM)   
     @if [ “x$(PROGRAM)”  = “x”  ]; then \   
         for PNAME in $(EXECS); do $(MAKE) PROGRAM=$$PNAME; done; \   
     fi   
        
 $(PROGRAM): $(PROGRAM).o   
     $(LINK) -o $@ $< -lncurses   
       
 $(PROGRAM).o: $(PROGRAM).c   
     $(CC) $(CFLAGS) -c -o $@ $<   
       
 clean:   
     -rm $(EXECS) *.o *~   
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 Next, the file to generate random numbers, genrandom.c:   
 
 /*      
    genrandom will create a text file with the following specifications:   
     *  The first line will contain the number of integers   
     *  Each following line will contain a randomly generated integer,   
       up to the number of integers specified on the first line   
 * /   
       
 #include <stdio.h>   
 #include <sys/time.h>   
 #include <limits.h>   
 #include <stdlib.h>   
       
 int main(int argc, char *argv[])   
 {    
 unsigned long num, counter;   
 FILE *outfile;   
 int seed;   
   if (argc < 2) {    
     printf(“Syntax: genrandom filename\n” );   
     printf(“ It will write the numbers to the filename passed, and the\n” );   
     printf(“ line will contain the number of integers written.\n” );   
     exit(255);   
   }    
   printf(“Enter number of lines to create: “ );   
   scanf(“%lu” , &num);   
   outfile = fopen(argv[1], “wt” );   
   if (!outfile) exit(255);   
   fprintf(outfile, “%lu\n” , num);   
   seed = (int)(time(NULL) / (ULONG_MAX / INT_MAX));   
   printf(“Using seed %d\n” , seed);   
   srandom(seed);   
   for (counter = 1; counter <= num; counter++) {    
     fprintf(outfile, “%d\n” , (int)(random() / (LONG_MAX / INT_MAX)));   
     if (!(counter % 10000))        /*  printf is S L O W when dealing   
                            with thousands of calls * /   
       printf(“Wrote %lu of %lu numbers, %d%%\r” , counter, num, (int)(100 * counter / num));   
   }    
   fclose(outfile);   
   printf(“ \n” );                /*  Add terminating newline */   
   return 0;   
 }    
 
 Note that the preceding program does not actually use curses. Listing 15-3 shows the code that does.   
 
  Note  Listing 15-3 is available online.   
 
 Listing 15-3: Example usage of curses   
 
 /*  Include some standard stuff... * /   
       
 #include <stdio.h>   
 #include <string.h>   
 #include <sys/time.h>   
 #include <malloc.h>   
 #include <limits.h>   
 #include <stdlib.h>   
 #include <memory.h>   
 #include <signal.h>   
       
 /*  Curses is used for interactive operation */   
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 #include <curses.h>   
       
 /*  Standard macros */   
       
 #ifndef TRUE   
 #define TRUE 1   
 #endif   
       
 #ifndef FALSE   
 #define FALSE 0   
 #endif   
       
 #ifndef NULL   
 #define NULL 0   
 #endif   
       
 /*  Type used for the array * /   
       
 typedef int typearray;   
       
 /*  Defines for type of array in memory */   
 #define ARRAYTYPE_NONE 0   
 #define ARRAYTYPE_UNSORTED 1   
 #define ARRAYTYPE_SORTED 2   
       
 /*  Defines for type of sort */   
 #define INSERTIONSORT 1   
 #define MERGESORT 2   
 #define HEAPSORT 3   
       
 /*  Some global information * /   
       
 int isinteratvive = TRUE;               /*  True if running interactively * /   
 typearray* globalarray = NULL;          /*  Main array, used for sorting * /   
 unsigned long arraysize = 0;            /*  Size of main array....This is   
                                            stored in a very big number so   
                                            that very large arrays can be   
                                            accommodated. */   
 time_t start = 0;                       /*  Start time, in seconds * /   
 int is_firstline_size = TRUE;           /*  True if the first line of file   
                                            is number of elements in the   
                                            file */   
 int arraytype = ARRAYTYPE_NONE;         /*  Type of array in memory * /   
 char defoutput[80];                     /*  Default output file/viewer */   
 char definput[80];                      /*  Default input file * /   
 int sorttype = HEAPSORT;   
       
 /*  Function prototypes */   
 void mainmenu(void);   
 void readitin(void);   
 void reset(void);   
 void toggleint(int * togglevar, int min, int max);   
 void runsort(void);   
      void insertionsort(void);   
      void mergesort(unsigned long first, unsigned long last);   
      void heapsort(void);   
 void writeoutput(void);   
      void changeviewer(void);   
 void checkvalidity(void);   
 void setinputfile(void);   
 void mergesort_merge(unsigned long first, unsigned long last);   
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 void heapsort_buildheap(unsigned long heapsize);   
 void heapsort_heapify(unsigned long node);   
 void heapsort_heapsort(unsigned long node);   
 void heapsort_swap(unsigned long index1, unsigned long index2);   
       
 int main(void) {    
    
   /*  Curses may cause program to die with SIGSEGV or other signal if the   
      TERM variable is incorrectly set.  This is due to a bug in some versions   
      of curses.  The above message will appear only for an instant if   
      curses works correctly because the screen will be cleared with a curses   
      call. * /   
    
   initscr(); cbreak(); clear(); refresh();      /*  Set up curses */   
   printw(“ \n Notes on operation:\n” );   
   printw(“  * If you are using a file in which the first line denotes the\n” );   
   printw(“    number of elements in the file, and thus should *not* be\n” );   
   printw(“    included in any sort, you will need to select option 3 before\n” );   
   printw(“    doing anything else.\n\n” );   
   printw(“  * Put license/copyright thing here perhaps.\n\n” );   
   printw(“Press any key to continue.” );   
   refresh();   
   getch();   
   clear();   
                      /*  Do some initialization * /   
   strcpy(defoutput, “ |less” );   
   strcpy(definput, “ INPUTINT.TXT”);   
   sigblock(sigmask(SIGPIPE));    /*  Ignore the SIGPIPE signal --   
                                     Otherwise program would terminate   
                                     if user ends the viewer before   
                                     all data had been sent through   
                                     the pipe */   
    
    
   mainmenu();   
   endwin();                      /*  End curses */   
   if (globalarray) free(globalarray);  /*  If the array is still allocated,   
                                           free it. * /   
       
   return 0;   
 }    
       
 void mainmenu(void)   
 {    
 int selection = 0;   
 int maxy, maxx;   
       
   getmaxyx(stdscr, maxy, maxx);    
   do {    
     clear();   
     move(maxy - 1, 0);   
     attron(A_REVERSE);   
     printw(“   Sometimes a status bar goes here.  “ );   
     attroff(A_REVERSE);   
     move(0, 0);   
     printw(“Main Menu\n” );   
     printw(“0. Exit program\n”);   
     switch (arraytype) {    
       case ARRAYTYPE_NONE:   
         printw(“Cannot sort [no data in memory]\n” );   
         break;   
       case ARRAYTYPE_UNSORTED:   
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         printw(“Sort the array\n” );   
         break;   
       case ARRAYTYPE_SORTED:   
         printw(“No sort necessary [data loaded and sorted]\n” );   
         break;   
     }    
     switch (arraytype) {    
       case ARRAYTYPE_NONE: printw(“    Cannot sort (no data loaded into memory)\n” ); break;   
       case ARRAYTYPE_UNSORTED: printw(“2. Sort the array\n” ); break;   
       case ARRAYTYPE_SORTED: printw(“    No sort necessary (data already sorted)\n” ); break;   
     }    
     printw(“3. Toggle method of determining size of array to hold data\n” );   
     printw(“    Current: “ );   
     if (is_firstline_size)   
       printw(“ [First line of input denotes size of data]\n” );   
     else   
       printw(“ [Count lines in file before sorting]\n” );   
     if (arraytype)   
       printw(“4. View or output sorted data\n” );   
     else   
       printw(“    There must be data in memory before it can be viewed.\n” );   
     printw(“5. Change output file or viewer [%s]\n” , defoutput);   
     if (arraytype == ARRAYTYPE_SORTED)   
       printw(“6. Check validity of sorted array\n” );   
     else   
       printw(“    Array not yet sorted; validity test unavailable.\n” );   
     printw(“7. Set type of sort: “ );   
     switch (sorttype) {    
       case INSERTIONSORT: printw(“ [insertion sort]\n” ); break;   
       case MERGESORT: printw(“ [merge sort]\n” ); break;   
       case HEAPSORT: printw(“ [heap sort]\n” ); break;   
     }    
     printw(“8. Set input filename [%s]\n” , definput);   
     refresh();   
     noecho();                       /*  Turn off echo */   
     selection = getch();   
     echo();   
     switch (selection) {    
       case ‘1’ :                       /*  Load data into memory * /   
                 if (arraytype) reset();           /*  Reset if data in memory * /   
                 readitin();   
                 arraytype = ARRAYTYPE_UNSORTED;   
                 break;   
       case ‘2’ : if (arraytype == ARRAYTYPE_UNSORTED) runsort(); break;   
       case ‘3’ : toggleint(&is_firstline_size, 0, 1); break;   
       case ‘4’ : if (arraytype) writeoutput(); break;   
       case ‘5’ : changeviewer(); break;   
       case ‘6’ : if (arraytype == ARRAYTYPE_SORTED) checkvalidity(); break;   
       case ‘7’ : toggleint(&sorttype, INSERTIONSORT, HEAPSORT); break;   
       case ‘8’ : setinputfile(); break;   
     }    
                     /*  Other cases either exit program   
                        or are ignored * /   
   }  while (selection != ‘0’ );   
 }    
       
 void readitin(void)   
 {    
 unsigned long counter;   
 FILE * infile;   
 int tempbuffer, fscanfresult;   
   arraysize = 0;   
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   clear();   
   infile = fopen(definput, “ rt” );   
   if (!infile) {    
     printw(“Error opening input file %s.  Data not read.\n” , definput);   
     printw(“Press any key...” );   
     refresh();   
     getch();   
     return;   
   }    
   printw(“Reading data...\n” ); refresh();   
   if (!is_firstline_size) {    
     printw(“Counting lines:\n” );   
     infile = fopen(definput, “ rt” );   
     while (!feof(infile)) {    
       if ((!feof(infile)) && (fscanf(infile, “%d” , &tempbuffer))) arraysize++;   
       if (!(arraysize % 10000)) {   /*  It goes faster if screen not updated   
                                       for every single line...here it is updated   
                                       every 10000 lines */   
         printw(“Got %lu lines\r” , arraysize);   
         refresh();   
       }    
     }    
     arraysize--;                   /*  The above code, using fscanf, always   
                                       will yield one greater than the actual   
                                       size due to a quirk in fscanf.  Here   
                                       this is compensated for. * /   
       
     rewind(infile);                /*  Reset to the beginning */   
     clearerr(infile);   
   }  else                           /*  First line denotes size */   
     if (!fscanf(infile, “%lu” , &arraysize)) arraysize = 0;   
   if (arraysize)   
     printw(“There are %lu integers in the data file.\n” , arraysize);   
   else {    
     printw(“Empty or corrupted data file, read failed.\n” );   
     printw(“Press any key...\n” );   
     refresh();   
     getch();   
     fclose(infile);   
     return;   
   }    
   refresh();   
   /*  Now allocate the array in dynamic memory * /   
   globalarray = calloc(arraysize, sizeof(typearray));   
   if (!globalarray) {    
     printw(“Could not allocate memory.  Press any key to continue.\n” );   
     refresh();   
     getch();   
     fclose(infile);   
     return;   
   }    
       
   for (counter = 0; counter < arraysize; counter++) {    
     if (!(counter % 10000)) {    
       printw(“Read %lu of %lu elements, %d percent done\r” ,   
               counter, arraysize, (int)(100 * counter / arraysize));   
       refresh();   
     }    
     do   
       fscanfresult = fscanf(infile, “%d” , globalarray + counter);   
     while (!fscanfresult && !feof(infile));   
     if (feof(infile)) {    
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       printw(“Unexpected end of file, read aborted.  Memory freed.\n” );   
       printw(“Counter = %d\n” , counter);   
       printw(“Press any key.\n” );   
       refresh();   
       free(globalarray);   
       globalarray = NULL;   
       getch();   
       return;   
     }    
   }    
    
   arraytype = ARRAYTYPE_UNSORTED;   
 }    
       
 void reset(void)               /*  Reset state of program */   
 {    
   if (globalarray) {    
     free(globalarray);   
     globalarray = NULL;   
   }    
   arraytype = ARRAYTYPE_NONE;   
   arraysize = 0;   
 }    
       
 void toggleint(int * togglevar, int min, int max)   
 {    
   if (++*togglevar > max) *togglevar = min;   
 }    
       
       
 void runsort(void)   
 {    
   clear();   
   start = time(NULL);   
   printw(“Running sort: “ );   
   switch (sorttype) {    
     case INSERTIONSORT: printw(“ insertion sort....\n” ); refresh();   
                         insertionsort(); break;   
     case MERGESORT: printw(“merge sort...\n” ); refresh();   
                     mergesort(0, arraysize-1); break;   
     case HEAPSORT: printw(“heap sort...\n” ); refresh(); heapsort(); break;   
   }    
   arraytype = ARRAYTYPE_SORTED;   
   printw(“Elapsed time was: %lu seconds\n” , time(NULL) - start);   
   printw(“Please note: Other processes on a multi-tasking operating system\n”);   
   printw(“may have an effect on the amount of time a given sort takes.\n” );   
   printw(“ \nPress any key to continue.” );   
   refresh();   
   getch();   
 }    
       
 void insertionsort(void)   
 {    
 register unsigned long x, y;   
 int temp_holder;   
       
   for (x = 1; x < arraysize; x++) {    
     temp_holder = *(globalarray + x);   
     y = x;   
     while (y > 0 && temp_holder < *(globalarray + y - 1)) {    
       *(globalarray + y) = *(globalarray + y - 1);   
       y--;   
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     }    
     *(globalarray + y) = temp_holder;   
   }    
 }    
       
 void mergesort(unsigned long first, unsigned long last)   
 {    
     /*  the 1 is added to the value because, for instance, if you   
        have an array with 2 elements, first is 0, last is 1,   
        then last - first = 1, but space is really needed for 2.   
     * /   
 unsigned long mid;   
   if (first < last) {          /*  If they’re the same, don’ t bother * /   
     mid = (first + last) / 2;   
     mergesort(first, mid);   
     mergesort(mid+1, last);   
     mergesort_merge(first, last);   
   }    
 }    
       
 void mergesort_merge(unsigned long first, unsigned long last)   
 {    
 typearray *temparray = calloc(last - first + 1, sizeof(typearray));   
 unsigned long mid = (first + last) / 2;   
 unsigned long position = 0, left = first, right = mid + 1;   
       
   if (!temparray) {    
     printw(“FATAL ERROR IN mergesort(): COULD NOT ALLOCATE ENOUGH MEMORY\n”);   
     printw(“FOR TEMPORARY ARRAY.  ABORTING.\n” );   
     refresh();   
     exit(255);   
   }    
    
   while ((left <= mid) && (right <= last))    /*  Run the loop as long   
                                                  as both left and right   
                                                  portions of the array   
                                                  contain data * /   
     if (*(globalarray + left) < *(globalarray + right))   
       *(temparray + position++) = *(globalarray + left++);   
     else   
       *(temparray + position++) = *(globalarray + right++);   
         
   /*  Now copy any remaining elements into temparray * /   
    
   /*  Because of the “&&”  above, only one of the below will execute. * /   
    
   while (left <= mid)   
     *(temparray + position++) = *(globalarray + left++);   
   while (right <= last)   
     *(temparray + position++) = *(globalarray + right++);   
    
   /*  Now copy temparray back into globalarray */   
    
   memcpy(globalarray + first, temparray,   
          (last - first + 1) * sizeof(typearray));   
            
   /*  And free the memory used by temparray */   
    
   free(temparray);   
       
 }    
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 /*  Variables for heapsort funtions */   
       
 unsigned long heapsize;   
       
 void heapsort(void)   
 {    
   heapsize = arraysize;           /*  Initialize it * /   
   printw(“heapsort: building the heap\n” );   
   refresh();   
   heapsort_buildheap(heapsize);   
   printw(“heapsort: sorting the heap\n” );   
   refresh();   
   heapsort_heapsort(heapsize);   
 }    
       
 void heapsort_buildheap(unsigned long heapsize)   
 {    
 unsigned long node;   
       
   /*  Because an unsigned item is used here, the heapify function has to   
      be called once later....because node should never go below 0 */   
       
   for (node = heapsize / 2; node > 0; node--)   
     heapsort_heapify(node);   
   heapsort_heapify(0);   
 }    
 void heapsort_heapify (unsigned long node)   
 {    
 unsigned long left = (node + 1) * 2 - 1,   
               right = (node + 1) * 2,   
               largest;     /*  Index of largest * /   
       
   if ((left < heapsize) &&   
       (*(globalarray + left) > *(globalarray + node)))   
     largest = left;   
   else   
     largest = node;   
       
   if ((right < heapsize) &&   
       (*(globalarray + right) > *(globalarray + largest)))   
     largest = right;   
    
   if (largest != node) {    
     heapsort_swap(node, largest);   
     heapsort_heapify(largest);   
   }    
    
 }    
       
       
 void heapsort_heapsort(unsigned long node)   
 {    
       
 unsigned long i;   
       
   for (i = node - 1; i >= 1; --i) {    
     heapsort_swap(0, i);   
     --heapsize;   
     heapsort_heapify(0);   
   }    
 }    
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 void heapsort_swap(unsigned long index1, unsigned long index2)   
 {    
 typearray tempholder;   
   tempholder = *(globalarray + index1);   
   *(globalarray + index1) = *(globalarray + index2);   
   *(globalarray + index2) = tempholder;   
 }    
       
 void writeoutput(void)   
 {    
 FILE *outfile;   
 int ispipe = FALSE;   
 unsigned long counter;   
   if (defoutput[0] != ‘ |’ )   
     outfile = fopen(defoutput, “wt” );   
   else {    
     clear(); refresh();        /*  Clear the screen before piping */   
     outfile = popen(defoutput + 1, “w”);   
     ispipe = TRUE;   
   }    
   if (!outfile) {    
     printw(“Error opening output file!  Press any key to continue...\n” );   
     refresh();   
     getch();   
     return;   
   }    
   for (counter = 0; counter < arraysize; counter++) {    
     if (fprintf(outfile, “%d\n” , * (globalarray + counter)) == EOF) {    
       clear();   
       if (ispipe) {             /*  Viewer/program exited early * /   
         printw(“Pipe closed before all data could be sent.\n” );   
         pclose(outfile);   
       }  else {                  /*  Some sort of disk error */   
         printw(“Error writing data to file!\n” );   
         fclose(outfile);   
       }    
       printw(“Press any key.\n” );   
       refresh();   
       getch();   
       return;   
     }    
   }    
   if (ispipe) pclose(outfile);   
     else fclose(outfile);   
   clear();   
   printw(“Write/view successful.\n” );   
   printw(“Press any key...\n” );   
   refresh();   
   getch();   
 }    
       
 void changeviewer(void)   
 {    
   clear();   
   printw(“Here you can set the file to write output to, or a viewer to use.\n” );   
   printw(“To write the output to a file, just enter the filename.  To pipe\n” );   
   printw(“ the output to a program, use the pipe character (|) followed by\n” );   
   printw(“ the command line to use to invoke the program.  For instance, to\n” );   
   printw(“use the less file viewer, type in \” |less\”  (w/o the quotes).\n” );   
   printw(“Enter your selection: “ );   
   refresh();   
   nocbreak();              /*  Re-enables things like backspace! */   
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   getstr(defoutput);   
   cbreak();                /*  Back to “raw”  mode for curses * /   
 }    
       
 void checkvalidity(void)   
 {    
 unsigned long counter;   
 int last = INT_MIN;        /*  Init to lowest possible value */   
   clear();   
   printw(“Performing check on sorted data to ensure it is correctly sorted.\n” );   
   for (counter = 0; counter < arraysize; counter++) {    
     if (*(globalarray + counter) < last)   
       printw(“ Item %lu (%d) less than item %lu (%d)\n” ,   
              counter, *(globalarray + counter),   
              counter - 1, *(globalarray + counter - 1));   
     else   
       if (counter % 10000 == 0) {    
         printw(“ Item %lu OK\r” , counter);   
         refresh();   
       }    
     last = *(globalarray + counter);        /*  Reset it for next time */   
   }    
   printw(“Scan finished.  Problems in sorted data, if any, are shown above.\n” );   
   printw(“ If no problems are shown above, sorted data has been sorted\n” );   
   printw(“correctly.\n\n” );   
   printw(“Press any key to continue.\n” );   
   refresh();   
   getch();   
 }    
       
 void setinputfile(void)   
 {    
   clear();   
   printw(“ Input filename: “);   
   refresh();   
   nocbreak(); getstr(definput); cbreak();   
 }    
 

 

Because this is a large and somewhat complex system, I’d like to lead you through what it looks like to the user before you take a 
look at its internals. First, you’ ll want to use genrandom to get some random numbers. It will ask you how many to make; the 
answer depends on your system. On my 366MHz laptop, one million lines sort in about eight seconds; the same number of lines 
sort in under one second on a 600MHz Alpha machine. You may prefer to use fewer lines if you have a slower machine or more if 
you have a faster machine. I ran it like this: 

 

 
 
 $ ./genrandom data.txt   
 Enter number of lines to create: 1000000   
 Wrote 1000000 of 1000000 numbers, 100%   
 

 
Next, fire up the main program by running the program in Listing 15-3. After the intro screen, you’ ll get a main screen. Press 8 to 
pick the filename and enter data.txt. Then, your screen will look like this: 

 
 
 
 Main Menu   
 0. Exit program   
 1. Load data into memory [no data in memory]   
    Cannot sort (no data loaded into memory)   
 3. Toggle method of determining size of array to hold data   
    Current: [First line of input denotes size of data]   
    There must be data in memory before it can be viewed.   
 5. Change output file or viewer [|less]   
    Array not yet sorted; validity test unavailable.   
 7. Set type of sort: [heap sort]   
 8. Set input filename [data.txt]   
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   Sometimes a status bar goes here.    
 

 
The program offers you options that can be toggled. You can put number 1, then number 2 to watch as it uses a progress indicator 
in curses. Let’s take a look at how it works, with an eye toward the interaction with ncurses. 

 
 
 
 Its interaction with the ncurses system begins with this line of code:   
 
   initscr(); cbreak(); clear(); refresh();      /*  Set up curses */   
 

 
This code accomplishes four things. First, the curses system is initialized, which must be done before you can use it for anything 
else. Second, the program disables the line buffer with the call to cbreak(). The effect is the same as the calls to tcsetattr() in 
Listing 15-2. Next, it clears the screen. Finally, it calls refresh(). 

 

 
 

 

With ncurses, before any changes take effect, you must call refresh(). This may seem like a pain, but in reality it is an advantage, 
because it gives ncurses a chance to optimize for your terminal. For instance, if your program moves the cursor first to line 5, then 
to line 18, line 6, line 9, and line 7 in that order, this is a lot of moving. The program could reorder it to go to the line 18, then to 
line 5, and just print the remaining ones in order with no explicit repositioning required. It also lets you draw things on the screen 
without letting the user know that you’ve already started to draw them. 

 

 
 

 

Next, you see a series of printw() calls. These are the curses equivalent of printf() for the standard output. Again remember that 
they do not take effect until another call to refresh(). In curses, you may create mini-windows inside your screen, each with its own 
virtual coordinate system; wprintw() will let you target an arbitrary window. The default window is stdscr, and it’s all that’s used 
in this program. 

 

 
 

 
The program then calls getch(). Because the terminal is in cbreak() mode, the effect is that pressing any key on the keyboard 
causes the program to go to the next menu immediately. 

 
 
 

 
It then calls mainmenu() to display the menu, and then—quite important—calls endwin() to reset the terminal to its natural state 
and clean up after ncurses. Never exit a program without calling that function! 

 
 
 

 

Inside mainmenu() itself, the first thing you see is a call to getmaxyx, a macro. It will give you the dimensions of the terminal 
window in which it is running, independent of any particular virtual window. These values are saved. Then, the main menu loop is 
entered. First, it clears the screen. Then it moves the cursor to the very last line on the screen at the left edge. It turns on reverse 
video, prints a message, and then turns reverse video back off. After doing that, it returns to the upper-left corner and proceeds to 
display the main menu. 

 

 
 

 
Then, it turns off echo before reading the selection (it could be unsightly other-wise), reads the input, and then reenables echo 
because it may be needed later for reading data from the user. 

 
 
 

 

Notice that in changeviewer(), the program calls nocbreak(). If it didn’ t do this, you wouldn’ t be able to see your text as you type 
it! It then calls getstr(), which is actually insecure because it does not have a maximum size limitation; getnstr() is better. However, 
because this program is not running setuid or setgid, it is not of concern in this particular situation. After reading the input, it 
returns to cbreak mode. 

 

 
 

 
Notice the calls to attron() and attroff(). These calls cause a specified terminal attribute to be enabled or disabled. You can use 
attron() and attroff() to set these things one at a time. Or you can use attrset() to set them all at once; just use a bitwise OR to 
combine the values. Table 15-1 lists the possible values for this option. 

 

 
 
 Table 15-1:  Attr ibutes for  ncurses   
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 Name   

 
Meaning   

 

 
     
 
 A_ALTCHARSET   

 
Specifies a terminal’s alternate character set.   

 

 
 A_BLINK   

 
Specifies blinking mode. Not all terminals support a blink; some will use a separate color to 
indicate blinking. 

 
 

 

 
 A_BOLD   

 
Specifies bold text mode.   

 

 
 A_DIM   

 
Causes the text to be dim.   

 

 
 A_INVIS   

 
Specifies invisible mode.   

 

 
 A_NORMAL   

 
Special item that resets everything to normal mode. Generally only used with attrset().   

 

 
 A_PROTECT   

 
Specifies protected mode.   

 

 
 A_REVERSE   

 
Specifies inverse video mode.   

 

 
 A_STANDOUT   

 
Specifies highlighting, the exact method of which is terminal dependent. This often means bold, 
or a combination of bold and underlining. 

 
 

 

 
 A_UNDERLINE   

 
Specifies underline mode. Some terminals cannot display underline and may instead use a 
separate color or bold to indicate it. 

 
 

 

 
 COLOR_PAIR(x)   

 
Uses specified color; see the discussion on color later in this section.   

 

 
     
 

 

Many terminals support these attributes. On the other hand, many more modern terminals are geared more toward color. For 
instance, the Linux text console by default supports color but not underline mode. The xterm terminal in Linux’s X graphical 
interface supports both. The ncurses library does include support for color on the terminal. Listing 15-4 features a sample program 
that demonstrates this support. 

 

 
 
  Note  Listing 15-4 is available online.   
 
 Listing 15-4: Example of color  with ncurses   
 
 #include <curses.h>   
       
 void doexit(int exitcode);   
       
 int main(void) {    
   initscr(); cbreak(); noecho();   
   start_color();   
   clear();   
   if (!has_colors()) {    
     printw(“ I’m sorry, but your terminal does not allow color changes.\n” );   
     doexit(255);   
   }    
       
   init_pair(1, COLOR_RED, COLOR_BLACK);   
   attrset(COLOR_PAIR(1));   
   printw(“Here’s something in a nice red.  Maybe useful for a warning\n” );   
   printw(“message.\n\n” );   
   attrset(COLOR_PAIR(1) | A_BOLD);   
   printw(“Notice how you can get bright colors by adding the A_BOLD\n”);   
   printw(“attribute.\n\n” );   
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   init_pair(2, COLOR_WHITE, COLOR_BLUE);   
   attrset(COLOR_PAIR(2));   
   printw(“Here’s white on blue.\n” );   
   attrset(COLOR_PAIR(2) | A_BOLD);   
   printw(“And this is a lighter white on blue.\n\n” );   
       
   init_pair(3, COLOR_YELLOW, COLOR_BLACK);   
   attrset(COLOR_PAIR(3));   
   printw(“Notice that the \”dark\”  yellow appears brown on some terminals.\n” );   
   attrset(COLOR_PAIR(3) | A_BOLD);   
   printw(“But it becomes yellow when the bright version is used.\n\n” );   
   attrset(COLOR_PAIR(0));   
   printw(“Press any key to watch what happens when a pair is redefined.\n” );   
   refresh();   
   getch();   
   init_pair(1, COLOR_GREEN, COLOR_BLACK);   
   attrset(COLOR_PAIR(1));   
   printw(“Notice the existing text printed to the screen with this\n” );   
   printw(“pair is not modified, but this new text has the new color.\n” );   
    
   attrset(A_NORMAL);   
   printw(“You can use A_NORMAL or COLOR_PAIR(0) to return to\n” );   
   printw(“ the terminal’s default color.\n\n” );   
   doexit(0);   
   return 0;            /*  to suppress warning * /   
 }    
       
 void doexit(int exitcode) {    
   printw(“Press any key to exit.\n” );   
   refresh();   
   cbreak();   
   noecho();   
   getch();   
   endwin();   
   exit(exitcode);   
 }    
 

 
To compile this code, you may use gcc as normal, with one exception: you will need to add –lncurses to the end of your 
commmand line. This flag will tell the compiler to link with the ncurses library. 

 
 
 

 
The idea here is that, first, color support must be initialized. Then, you should test to see if your terminal supports color. If not, 
usually you would resort to using more conventional attributes such as bold and underline. Because this program is speci-fically 
about color, exit if the terminal doesn’ t support it. 

 

 
 

 
Then, to use color, you first need to initialize a color pair. Each pair consists of two attributes: a foreground color and a 
background color. To actually use the pair, you use its number as an argument to COLOR_PAIR(x) inside of one of the attribute-
setting functions such as attrset(). 

 

 
 

 
Switching gears a bit, here is a program that uses Perlmenu. Perlmenu is a library layered on top of the Curses library for Perl, 
which is simply a Perl binding for the familiar C library. As such, you can use Curses and Perlmenu commands in a program that 
uses Perlmenu. And, if you’re curious about how Perlmenu draws its items, you can simply look at its source code. 

 

 
 

 

The program here is a scaled-down version of a quick application to help track grades on assignments. It uses Perlmenu to achieve 
a pleasant interface, with scrolling, highlighting, and so on—more full-featured than the sample C program in Listing 15-4. This is 
largely because Perlmenu can handle all of these details automatically, freeing the programmer to concentrate on higher levels of 
interface and program design. 

 

 
 
 This program consists of one main Perl script and several sample data files that you can play with. Listing 15-5 shows the script.   
 
 Listing 15-5: Using curses in Per l   
 
 #!/usr/bin/perl   
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 $HEADER = ‘Chapter 15 Example 5’ ;   
       
 BEGIN {  $Curses::OldCurses = 1; }    
 use Curses;   
 use perlmenu;   
       
 &menu_prefs(0, 0, 0, “ ” , “n” , 0, 1);   
       
 $window = &initscr();   
 &menu_curses_application($window);   
       
 # A few subs to automate curses access   
       
 sub cprintw {    
     printw @_;   
     refresh;   
 }    
       
 # Main program starts here   
       
 &scrheader;   
       
 cprintw “Loading data, please wait...” ;   
 &loaddata;   
 cprintw “ \nDone.\n” ;   
       
 &mainmenu;   
 endwin();   
       
 sub scrheader {    
     clear; refresh;   
     attron(A_BOLD);   
     cprintw “$HEADER\n\n” ;   
     attroff(A_BOLD);   
     refresh;   
 }    
       
 sub loaddata {    
     cprintw “students...” ;   
     &loaddata_students;   
     cprintw “grades...” ;   
     &loaddata_grades;   
     cprintw “assignments...” ;   
     &loaddata_assignments;   
     cprintw “categories...” ;   
     &loaddata_categories;   
 }    
       
 sub loaddata_students {    
     open SFILE, “<students”  or die “Couldn’ t open students file” ;   
     foreach (<SFILE>) {    
        chomp;   
        ($id, $name) = /(.+?)[\s;:]+(.*)/;   
        $students{ $id}  = $name;   
     }    
 }    
       
 sub loaddata_grades {    
     open GFILE, “<grades”  or return;   
     foreach (<GFILE>) {    
         chomp;   
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         ($id, $name) = /(.+?)[\s;:]+(.*)/;   
         $grades{ $id}  = $name;   
     }    
 }    
       
 sub loaddata_categories {    
     $catnum = 0;   
     open CFILE, “<categories”  or die “Couldn’ t open categories file” ;   
       
     foreach (<CFILE>) {    
         chomp;   
         ($catnam, $pcat) = /(.+?)[;:](.+)/;   
         $catlist[$catnum] = $catnam;   
         $catprint{ $catnam}  = $pcat;   
         $catnum++;   
     }    
 }    
       
 sub loaddata_assignments {    
     $anum = 0;   
     open AFILE, “<assignments”  or die “Couldn’ t open assignments file” ;   
     foreach (<AFILE>) {    
         chomp;   
         ($c, $a, $p) = /(.+?)[\s;:](.+?)[;:]+(.*)/;   
         $categories[$anum] = $c;   
         $assignments[$anum] = $a;   
         $possible[$anum] = $p;   
         $anum++;   
     }    
 }    
       
 sub mainmenu {    
     while (1) {    
         &menu_init(1, “Main Menu” , 0, “$HEADER”, “Press q to quit” );   
         &menu_quit_routine(“endwin” );   
         &menu_item(“Add grades” , “add”);   
         &menu_item(“View/Modify grades” , “view”);   
         &menu_item(“Generate report” , “ report” );   
         $choice = &menu_display(“” );   
       
         SWITCH: {    
            if ($choice eq “add”) {    
                &assignmenu(1);   
                last SWITCH;   
         }    
         if ($choice eq “view”) {    
                &usermenu(1);   
                last SWITCH;   
         }    
         if ($choice eq “report” ) {    
                &scrheader;   
                cprintw(“Report generator not in this sample.\n\n” );   
                cprintw “Press Enter to continue.\n” ;   
                <STDIN>;   
                last SWITCH;   
         }    
       }    
     }    
 }    
       
       
 # argument:   
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 #    1 if should call usermenu; 0 otherwise.   
       
 sub assignmenu{    
     my $adefault = 0;   
 while (1) {    
     if ($_[0] == 0) {    
        &parsegrades;         # Make sure grades for menu are current   
     }    
     &menu_init(1, “Select assignment” , 0,   
          ($_[0]) ? “(Add Grades)”  :   
                    “User: $students{ $curstudent}  ($curstudent)” );   
     for ($i = 0; $i < $anum; $i++) {    
        if ($_[0]) {           # Selecting before user   
            &menu_item(sprintf(“%-35s %-3s possible” ,   
                              $assignments[$i],   
                              $possible[$i]), $i);   
        }  else {                  # Selecting AFTER user   
            &menu_item(sprintf(“%-35s %-3s of %-3s” ,   
                              $assignments[$i],   
                              $curgrades[$i],   
                              $possible[$i]), $i);   
        }    
     }    
     my $topline = 0;   
     if ($adefault > 0) {    
         $topline = 1;   
         $adefault--;   
     }    
     $curassign = &menu_display(“” , $topline, $adefault);   
     if ($curassign eq “%UP%”) {  return; }    
     $adefault = $curassign + 1;   
     if ($adefault >= ($anum)) {  $adefault = 0; }    
       
     if ($_[0]) {    
         &usermenu(0);   
     }  else {    
         &parsegrades;   
         &setgrade;   
     }    
 }                 # while (1)   
 }    
       
 # argument:   
 #    a. 1 if should call assignmenu; 0 otherwise.   
       
 sub usermenu {    
     my $udefault = 0;   
     my $z = 0;   
     while (1) {      
         &menu_init(1, “Select a user” , 0,   
                    (! $_[0]) ? “Assignment: $assignments[$curassign]”    
                              : “ (View/Modify)” );   
         $z = 0;   
         foreach (sort keys %students) {    
            if ($_[0] == 0) {    
                $curstudent = $_;   
                &parsegrades;   
                $_ = $curstudent;   
                &menu_item(sprintf(“%-15s %-30s %-3s of %-3s” ,   
                                   $_,   
                                   $students{ $_} ,   
                                   $curgrades[$curassign],   
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                                   $possible[$curassign]), “$_:$z” );   
            }  else {    
                &menu_item(sprintf(“%-15s %s” ,$_,$students{ $_} ), “$_:$z” );   
            }    
            $z++;   
         }    
         my $topline = 0;   
         if ($udefault > 0) {    
             $topline = 1;   
             $udefault--;   
         }    
         $curstudent = &menu_display(“” , $topline, $udefault);   
         if ($curstudent eq “%UP%”) {    
             return;   
         }    
       
         ($curstudent, $udefault) = $curstudent =~ /(.+?):(.+)/;   
       
         # Find the proper setting for udefault   
       
         $udefault++;          # Add 1   
         if ($udefault >= (scalar(keys %students))) {    
             $udefault = 0;   
         }    
       
         &parsegrades;   
         if ($_[0]) {    
              &assignmenu(0);   
         }  else {    
              &setgrade;   
         }    
     }    
 }    
       
 # Sets the grade   
       
 sub setgrade {    
     &scrheader;   
       
     cprintw(“ Id: $curstudent\n” );   
     cprintw(“Student: $students{ $curstudent} \n” );   
     cprintw(“Assignment: $curassign, $assignments[$curassign];$possible[$curassign] possible\n\n” );   
     cprintw(“Current grade: $curgrades[$curassign]\n” );   
     cprintw(“New grade: “ );   
       
     my $foo;   
     getstr($foo);   
     $curgrades[$curassign] = $foo;   
     chomp $curgrades[$curassign];   
     &setgrades;   
     &writegrades;   
 }    
       
 # Generate a curgrades array with this student’s current grades   
       
 sub parsegrades {    
     @curgrades = $grades{ $curstudent}  =~ m/(\d*),/g;   
 }    
       
 # Convert the curgrades array back to the comma-delimited format   
       
 sub setgrades {    
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     $grade = “” ;   
       
     for ($i = 0; $i < $anum; $i++) {    
         $grade .= “$curgrades[$i],” ;   
     }    
       
     $grades{ $curstudent}  = $grade;   
 }    
       
 # Write the grades file   
       
 sub writegrades {    
     open GFILE, “>grades”  or die “Couldn’ t write to grades file” ;   
     foreach (sort keys %students) {    
          print(GFILE sprintf(“%-8s %s\n” , $_, $grades{ $_} ));   
     }    
     close GFILE;   
 }    
 
 Here is the first sample data file, named assignments:   
 
 Computers:Slide-Rule in C:30   
 Computers:Coffee Pot Robot:30   
 Computers:Language Assimilator in Perl:50   
 Physics:Electricity and Water:30   
 Physics:Magnetic Fields, Floppies, and Refrigerators:50   
 Linux:Benchmark System:30   
 Linux:AI Assignment Grader:200   
 
 Here is the second sample data file, named categories:   
 
 Computers   
 Physics   
 Linux   
 
 And this is the final one, students:   
 
 1003    Herman Hollerith   
 2001    Dave   
 1002    Blaise Pascal   
 3141    Isaac Newton   
 1970    Ken Thompson   
 9876    Niklaus Wirth   
 2023    Linus Torvalds   
 

 

When you run the program, you get a main menu with three items: add grades, view/modify grades, and generate a report. If you 
pick Add Grades, by using the arrow keys to move the highlight, you then get a menu listing the different assign-ments on the 
system, along with the number of possible points on each. Pick one of these and you see a list of students. Select one and you can 
assign the grade immediately to that person. 

 

 
 

 
The program’s interface details are all handled by Perlmenu; all that it has to do is tell Perlmenu what the menus are and what goes 
in them, and Perlmenu then will draw the menus with Curses. 

 
 
 

 

This is convenient for several reasons. First, it frees you from having to deal with the low-level details of having to worry about 
exactly where to position the cursor, how to draw the menus, and the like. Second, you can actually look at the code for Perlmenu to 
find out how it works relative to the curses library—this can be useful if you want to write your own programs in curses. Finally, you 
can extend Perlmenu (perhaps by adding color support) so that, though its basic framework is still available to help you, it can draw 
things in a different way.  

 Summary   
 
 In this chapter, we discussed terminal interaction. Specifically, the following were covered:   
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  •  Terminals can be real hardware devices or virtual terminals. They are referenced by entries in /dev.   
 
  •  Terminals have attributes governing their modes, which specify things such as the state of echo and line buffering.   
 

  
• 

 
Pseudo-terminals let you set up a program to process that data going to and from a given terminal. They do so by pretending to 
be a real terminal. 

 
 
 
  •  To present full-screen interfaces, you use the curses/ncurses library.   
 
  •  This library includes support for things such as cursor relocation, colors, attribute settings, and windowing.   
 
  •  In Perl, you also have the option of using the Perlmenu library, which handles the lower-level ncurses interactions for you.  
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 Chapter  16: Shared Memory and Semaphores   
 
 Overview   
 

 

Linux provides several different ways for you to communicate between the processes on your system. One of these ways is shared 
memory, which I’ ll cover in this chapter. I’ ll show you where shared memory is useful and in what situations you might want to use 
another technique. Then, I’ ll talk about the synchronization issues that arise with shared memory, and how to use semaphores to deal 
with them. I’ ll close with some sample programs that actually use shared memory and semaphores to communicate.  

Uses of Shared Memory   
 

 

Shared memory is generally regarded as the lowest level of communication possible between two processes on a Linux system. 
Shared memory allows two or more processes to share a block of memory. Normally, in Linux, each process has its own data area, 
completely separate from all others on the system. However, this shared memory support allows processes to request from the 
system a region of memory that they all have access to. 

 

 
 

 

Raw shared memory would theoretically be the fastest way of communicating between two processes. The first can simply read 
data in and place it directly into shared memory; the second can then read the data directly from the shared memory segment. 
What’s more, a given shared memory segment can be used by more than two processes, enabling a sort of “broadcast”  of data to 
many processes on the system. In practice, things are rarely that simple; synchronization issues are extremely important when 
dealing with shared memory. 

 

 
 

 

Even with just this one simple example, synchronization plays a part. First, there has to be some way for the second process to 
know when the first is done placing data into the shared memory segment. Your solution might be to have a byte somewhere that 
is set to 1 when there’s data to be picked up. This means that the client must busy-wait until that byte changes—a very poor 
solution. Then there are issues about how the first process knows when the second has picked up the data, such that more can be 
inserted into the area. 

 

 
 

 
To handle these synchronization issues, most users rely on semaphores, which were introduced to work with just these sorts of 
situations. Semaphores enable you to implement a sort of locking for arbitrary events. They’re not tied to files, or even to memory; 
they can be used for any purpose. 

 

 
 

 

Shared memory and semaphores are both a part of the SYSV IPC (System V interprocess communication) subsystem. For this 
reason, you’ ll see that the process of requesting them, some details of usage, and the process of releasing them when done are similar. 
You may be interested to note that SYSV IPC also includes a third facility, message queues. However, these are outdated and rarely 
used anymore because of the more modern, flexible, and faster options available with things such as pipes and FIFOs.  

Synchronization with Semaphores   
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Before you can even start to do anything useful with shared memory, you need to be able to properly synchronize your accesses to 
it. This is where semaphores enter the scene. Semaphores are a shared resource that enables you to synchronize access to any 
resource, not just shared memory. However, semaphores are most commonly used alongside applications that use shared memory. 

 

 
 
 I’ ll start with the code in Listing 16-1. This code has some problems that I’ ll clean up as I go along.   
 
  Note  Listing 16-1 is available online.   
 
 Listing 16-1: First semaphore example   
 
 #include <stdio.h>   
 #include <sys/types.h>   
 #include <sys/ipc.h>   
 #include <sys/sem.h>   
 #include <sys/shm.h>   
 #include <stdlib.h>   
 #include <errno.h>   
 #include <string.h>   
       
 int semheld = 0;   
       
 void release(int id);   
 void request(int id);   
       
 /*  The union for semctl may or may not be defined for us.  This code, defined   
    in Linux’s semctl() manpage, is the proper way to attain it if necessary. * /   
       
 #if defined(__GNU_LIBRARY__) && !defined(_SEM_SEMUN_UNDEFINED)   
 /*  union semun is defined by including <sys/sem.h> * /   
 #else   
 /*  according to X/OPEN we have to define it ourselves * /   
 union semun {    
   int val;                    /*  value for SETVAL */   
   struct semid_ds *buf;       /*  buffer for IPC_STAT, IPC_SET */   
   unsigned short int *array;  /*  array for GETALL, SETALL * /   
   struct seminfo *__buf;      /*  buffer for IPC_INFO */   
 } ;   
 #endif   
       
       
 int main(int argc, char *argv[]) {    
   int id;   
   union semun sunion;   
       
   /*  No arguments: “server” . * /   
   if (argc < 2) {    
     /*  Request a semaphore. * /   
     id = semget(IPC_PRIVATE, 1, SHM_R | SHM_W);   
       
     /*  Initialize its resource count to 1. */   
       
     sunion.val = 1;   
     semctl(id, 0, SETVAL, sunion);   
   }  else {    
     /*  Open up the existing one. */   
     id = atoi(argv[1]);   
     printf(“Using existing semaphore %d.\n” , id);   
   }    
       
   if (id == -1) {    
     printf(“Semaphore request failed: %s.\n” , strerror(errno));   
     return 0;   
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   }    
       
   printf(“Successfully allocated semaphore id %d\n” , id);   
    
   while (1) {    
     int selection;   
     printf(“ \nStatus: %d resources held by this process.\n” , semheld);   
     printf(“Menu:\n” );   
     printf(“1. Release a resource\n” );   
     printf(“2. Request a resource\n” );   
     printf(“3. Exit this process\n” );   
     printf(“Your choice: “ );   
       
     scanf(“%d” , &selection);   
       
     switch(selection) {    
       case 1: release(id); break;   
       case 2: request(id); break;   
       case 3: exit(0); break;   
     }    
   }    
       
   return 0;   
 }    
       
 void release(int id) {    
   struct sembuf sb;   
       
   if (semheld < 1) {    
     printf(“ I don’ t have any resources; nothing to release.\n” );   
     return;   
   }    
       
   sb.sem_num = 0;   
   sb.sem_op = 1;   
   sb.sem_flg = 0;   
    
   semop(id, &sb, 1);   
   semheld--;   
       
   printf(“Resource released.\n” );   
 }    
       
 void request(int id) {    
   struct sembuf sb;   
       
   if (semheld > 0) {    
     printf(“ I already hold the resource; not requesting another one.\n” );   
     return;   
   }    
       
   sb.sem_num = 0;   
   sb.sem_op = -1;   
   sb.sem_flg = 0;   
       
   printf(“Requesting resource...” );   
   fflush(stdout);   
       
   semop(id, &sb, 1);   
   semheld++;   
       
   printf(“  done.\n” );   
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 }    
 
 To compile this program, you may use a command such as this:   
 
 $ gcc –Wall –o ch16-1 ch16-1.c   
 

 
Let’s take a look at how this program works, and then watch it in action. The program begins in main(). There are two ways to 
start it: one is without any command-line parameters. In this case, it creates a new semaphore in the system and displays its ID. 
The second is by specifying the ID of the semaphore already created by the first process. 

 

 
 

  
Note 

 
The semaphore ID is unique on the entire system; if the ID is valid in one process, it will work in any other 
process as well, assuming that these other processes have permission to access that semaphore. Contrast this with 
the behavior of the file descriptor, whose number is specific to a given process and means nothing anywhere else. 

 

 
 

 

The semaphore is created by calling semget(). The arguments to this function are a key, the number of semaphores, and flags. The 
key is used if you are attempting to locate an already created semaphore but don’ t know its ID. Hopefully your program and 
another will have agreed beforehand on a unique ID. However, this method is not recommended because there is nothing to 
guarantee that the key really was generated by your program. Therefore, usually IPC_PRIVATE is used here. This causes the OS 
to ignore the key and create a new semaphore for you. It is then your job to communicate the ID to the other process. You might 
do this by forking after you create it, by writing it to a file or pipe, or through some other means. 

 

 
 

 
The second argument to semget() is an entry for the number of semaphores to create. It is possible to use multiple semaphores; this 
is sometimes necessary if multiple resources or operations need to be synchronized at once; it is more convenient to use multiple 
semaphore under the same ID because you can request certain operations to be atomic. 

 

 
 

 
Finally, there are the flags. Valid flags include IPC_CREAT and IPC_EXCL, which function as O_CREAT and O_EXCL do for 
open(2). Additionally, you can specify permissions SHM_R or SHM_W for user read and write permissions, (SHM_R > 3) or 
(SHM_W > 3) for group read and write permissions, and (SHM_R > 6) or (SHM_W > 6) for world read and write permissions. 

 

 
 

 

Next we need to initialize the semaphore. Basically, semaphores are initialized to the number of units of the resource that are 
available. In most cases, this will be 1, but it could be a value larger than that. When a process wants to obtain a lock, it 
decrements this value by 1. If the value is already 0, the process is blocked until some other process releases a lock and the value is 
incremented. So, we first have to set our semaphore to 1. 

 

 
 

 
This is done by calling semctl(). This is a generic control function used mainly to set up or inquire about a given semaphore. It is 
not a general-use function for your program to use when the semaphore is being manipulated; rather, it should be used only when 
the semaphores are being initially configured. 

 

 
 

 

One of the arguments is a union. This is an interesting situation because originally the standard was that the OS would not declare 
the union but that you had to do so yourself. However, some people decided that it would be easier to have the OS declare it as is 
done with virtually everything else on the system. This caused errors compiling programs that assumed the definition did not 
already exist, so it was removed. This is the reason for the strange-looking compiler code; it checks to see whether or not the 
semaphore is defined, and if it is not, it defines it here. 

 

 
 

 
The first argument to semctl() is the ID of the semaphore on which you want to operate. The second argument indicates which 
semaphore in the set to use. Because this example program has only one such semaphore, the number 0 (corresponding to the first 
one) is used. The third argument is a command. Its possible values are summarized in Table 16-1. 

 

 
 
 Table 16-1:  Options for  semctl()   
 
     
 
 Command   

 
Meaning   

 

 
     
 
 GETALL   

 
Places the values for each semaphore in the set into an array specified by arg.array.   

 

 
 GETNCNT   

 
Returns the number of processes waiting on a lock for the given semaphore.   

 

 
 GETPID   

 
Returns the PID of the process that last completed an operation with semop() on the given 
semaphore. 
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 GETVAL   

 
Returns the value of the specified semaphore.   

 

 
 GETZCNT   

 
Returns the number of processes waiting for the semaphore’s value to be 0.   

 

 
 IPC_RMID   

 
Causes the semaphore to be removed immediately.   

 

 
 IPC_SET   

 
Sets some internal values of the semaphore as indicated by the struct semid_ds that arg.buf points to.   

 

 
 IPC_STAT   

 
Gets status information and puts it into the structure whose address is indicated at arg.buf.   

 

 
 SETALL   

 
Sets the values for all the semaphore in the set, using those specified in arg.array.   

 

 
 SETVAL   

 
Sets the value for the one specific semaphore indicated.   

 

 
     
 
 In the event that the ID number was passed on the command line, the process simply needs to read that in and use it.   
 

 

Then, the program enters the main menu. Normally, the program would lock the resource before using it and unlock it afterward; 
here, however, you’ ll notice that because no actual resource is locked, the program keeps track of its own use of the semaphore. In 
this way, it can prevent potential strangeness if the user might, for instance, try to decrement the semaphore from a process that 
does not have a lock on the semaphore. 

 

 
 

 

The real fun occurs in request() and release(). Let’s look at the request() function (at the end of the program) first. It begins by 
checking how many semaphores are held already; if any are, it displays an error and returns. Otherwise, request() fills the members 
of the sembuff structure indicating what they will do. It says that the semaphore should be decremented. Because it is at a 
maximum of 1, this will indicate to future processes that the resource is in use, and they’ ll have to wait for it to become available. 

 

 
 
 The request() function executes this action by filling out the structure and calling semop(). The structure is defined as:   
 
 struct sembuf {    
   short sem_num;  /*  semaphore number: 0 = first */   
   short sem_op;   /*  semaphore operation */   
   short sem_flg;  /*  operation flags * /   
 }    
 

 

Here, the semaphore number indicates which semaphore to operate upon within the semaphore set. The operation indicates what 
should be done to it. A positive number indicates that value should be added, indicating a release of resources. A negative number 
subtracts that value from the semaphore, indicating a consumption of resources. Two flags are available for sem_flg: SEM_UNDO 
and IPC_NOWAIT. If SEM_UNDO is specified, and if the process exits without releasing consumed resources, these resources 
will be freed by the operating system. If IPC_NOWAIT is specified, the call will be nonblocking. 

 

 
 

 
You can pass an array of such structures to the semop() function. If you do so, the last argument should be a count of the number 
of structures in your array; otherwise, you can leave it at 1 for a single modification. 

 
 
 

 
Unless IPC_NOWAIT is indicated, the call will block until all requested operations can be performed. In the request function, a 
message is printed and then flushed so that it appears immediately. The semop() function is invoked, the internal count is 
incremented, and it returns. 

 

 
 

 
The release() function does just about the same thing: it releases the resource by calling semop(), except this time it uses a positive 
number in sb.sem_op. 

 
 
 

 
Notice that there is no attempt to release resources or delete the semaphore as the program exits. Unlike such things as file 
descriptors and file locks, semaphores and shared memory neither release resources nor delete themselves when a process exits. 
I’ ll remedy that in a future version of this code. 

 

 
 
 Let’s look at some sample output. You will need two terminals available. On the first terminal, run this program:   
 
 $ ./ch16-1   
 Successfully allocated semaphore id 770   
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 Status: 0 resources held by this process.   
 Menu:   
 1. Release a resource   
 2. Request a resource   
 3. Exit this process   
 Your choice: 2   
 Requesting resource... done.   
       
 Status: 1 resources held by this process.   
 Menu:   
 1. Release a resource   
 2. Request a resource   
 3. Exit this process   
 Your choice: 2   
 I already hold the resource; not requesting another one.   
       
 Status: 1 resources held by this process.   
 Menu:   
 1. Release a resource   
 2. Request a resource   
 3. Exit this process   
 Your choice:   
 

 
You have requested a resource in this process, and you have confirmed that the process will detect an attempt to request two 
resources. Note the semaphore ID printed out at the top; in this example, it’ s 770. Now, start up a second process, passing that 
number on the command line: 

 

 
 
 $ ./ch16-1 770   
 Using existing semaphore 770.   
 Successfully allocated semaphore id 770   
       
 Status: 0 resources held by this process.   
 Menu:   
 1. Release a resource   
 2. Request a resource   
 3. Exit this process   
 Your choice: 2   
 Requesting resource...   
 

 

The process is now blocked until the other process releases the resource. In the other window, press 1 to release a resource. The 
first window will show no resources held; the second will show 1 held. In the first, go ahead and request a resource again. Now the 
first window will block. In the second process, press 3 to exit. Notice that the lock in the first process is not released; the program 
does not automatically release resources upon exit. There is now no way to recover from this problem; you’ ll have to press Ctrl+C 
to terminate the first process. 

 

 
 

 
This is not the only problem. The other is that the semaphore resource still exists in the computer, taking up memory. Try running 
this at the prompt: 

 
 
 
 $ ipcs   
       
 ------ Shared Memory Segments --------   
 key       shmid     owner     perms     bytes     nattch    status        
       
 ------ Semaphore Arrays --------   
 key       semid     owner     perms     nsems     status        
 0x00000000 770       jgoerzen  600       1           
       
 ------ Message Queues --------   
 key       msqid     owner     perms     used-bytes  messages      
 
 Even though both processes have exited, the resource remains. You’ ll have to manually remove it:   
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 $ ipcrm sem 770   
 resource deleted   
 
 Now, let’s fix some of the problems in the program so that it is more robust. Listing 16-2 presents a new version of the code.   
 
  Note  Listing 16-2 is available online.   
 
 Listing 16-2: Revised semaphore example   
 
 #include <stdio.h>   
 #include <sys/types.h>   
 #include <sys/ipc.h>   
 #include <sys/sem.h>   
 #include <sys/shm.h>   
 #include <stdlib.h>   
 #include <errno.h>   
 #include <string.h>   
 #include <signal.h>   
       
 int semheld = 0;   
 int master = 0;   
 int id = 0;   
       
 void release(int id);   
 void request(int id);   
 void delete(void);   
       
 /*  The union for semctl may or may not be defined for us.  This code, defined   
    in Linux’s semctl() manpage, is the proper way to attain it if necessary. * /   
       
 #if defined(__GNU_LIBRARY__) && !defined(_SEM_SEMUN_UNDEFINED)   
 /*  union semun is defined by including <sys/sem.h> * /   
 #else   
 /*  according to X/OPEN we have to define it ourselves * /   
 union semun {    
   int val;                    /*  value for SETVAL */   
   struct semid_ds *buf;       /*  buffer for IPC_STAT, IPC_SET */   
   unsigned short int *array;  /*  array for GETALL, SETALL * /   
   struct seminfo *__buf;      /*  buffer for IPC_INFO */   
 } ;   
 #endif   
       
       
 int main(int argc, char *argv[]) {    
   union semun sunion;   
       
   /*  No arguments: “server” . * /   
   if (argc < 2) {    
     /*  Request a semaphore. * /   
     id = semget(IPC_PRIVATE, 1, SHM_R | SHM_W);   
       
     if (id != -1) {    
       /*  Delete the semaphore when exiting. */   
       atexit(&delete);   
       
       /*  Initialize its resource count to 1. */   
         
       sunion.val = 1;   
       if (semctl(id, 0, SETVAL, sunion) == -1) {    
         printf (“semctl failed: %s\n” , strerror(errno));   
         exit(255);   
       }    
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     }    
     master = 1;   
   }  else {    
     /*  Open up the existing one. */   
     id = atoi(argv[1]);   
     printf(“Using existing semaphore %d.\n” , id);   
   }    
       
   if (id == -1) {    
     printf(“Semaphore request failed: %s.\n” , strerror(errno));   
     return 0;   
   }    
       
       
   printf(“Successfully allocated semaphore id %d\n” , id);   
    
   while (1) {    
     int selection;   
     printf(“ \nStatus: %d resources held by this process.\n” , semheld);   
     printf(“Menu:\n” );   
     printf(“1. Release a resource\n” );   
     printf(“2. Request a resource\n” );   
     printf(“3. Exit this process\n” );   
     printf(“Your choice: “ );   
       
     scanf(“%d” , &selection);   
       
     switch(selection) {    
       case 1: release(id); break;   
       case 2: request(id); break;   
       case 3: exit(0); break;   
     }    
   }    
       
   return 0;   
 }    
 void release(int id) {    
   struct sembuf sb;   
       
   if (semheld < 1) {    
     printf(“ I don’ t have any resources; nothing to release.\n” );   
     return;   
   }    
       
   sb.sem_num = 0;   
   sb.sem_op = 1;   
   sb.sem_flg = SEM_UNDO;   
    
   if (semop(id, &sb, 1) == -1) {    
     printf(“semop release error: %s\n” , strerror(errno));   
     exit(255);   
   }    
   semheld--;   
       
   printf(“Resource released.\n” );   
 }    
       
 void request(int id) {    
   struct sembuf sb;   
       
   if (semheld > 0) {    
     printf(“ I already hold the resource; not requesting another one.\n” );   
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     return;   
   }    
       
   sb.sem_num = 0;   
   sb.sem_op = -1;   
   sb.sem_flg = SEM_UNDO;   
       
   printf(“Requesting resource...” );   
   fflush(stdout);   
       
   if (semop(id, &sb, 1) == -1) {    
     printf(“semop release error: %s\n” , strerror(errno));   
     exit(255);   
   }    
   semheld++;   
       
   printf(“  done.\n” );   
 }    
       
 void delete(void) {    
   printf(“Master exiting; deleting semaphore.\n” );   
   if (semctl(id, 0, IPC_RMID, 0) == -1) {    
     printf(“Error releasing semaphore.\n” );   
   }    
 }    
 

 
This code is improved in several ways. For one, there is now error handling to make sure that the return values of functions are 
appropriate. Without error handling, the processes might think that they have a lock on a resource even if they do not because of an 
error. 

 

 
 

 
Also, an atexit() handler has been registered. In this example, the “master”  will delete the semaphore when it is finished with it. 
For a more complex use of semaphores, stay tuned; the shared memory applications that follow make more demanding use of 
them. 

 

 
 

  Tip  
Although the atexit() handler is called for normal termination, it is not called when there is a Ctrl+C event. You might want 
to add a signal handler for that situation. For more details on signal handlers, see Chapter 13, “Understanding Signals.”   

Communicating with Shared Memory   
 

 
Shared memory is literally a block of memory accessible to multiple processes. In this section, I’ ll build up a small client/server 
application that uses shared memory to pass messages between two such processes. 

 
 
 

 
Shared memory requires a synchronization method in order to be useful. For this purpose, semaphores are almost always selected. 
Therefore, we can begin to implement a program by extending the previous example. 

 
 
 

 
The program here, at the moment, works with only two processes. Later, it will be updated to work with any number of processes. 
The idea is that the client reads some input from a user and sends the data to the server; the server then prints it out. 

 
 
 
 You might initially think of using an algorithm like this for the server:   
 
     locksem(semid, 0);   
     printf(“Message received: %s\n” , buffer);   
     unlocksem(semid, 0);   
 
 And something like this for the client:   
 
     locksem(semid, 0);   
     fgets(buffer, sizeof(buffer), stdin);   
     unlocksem(semid, 0);   
 

 
In these examples, locksem() locks the semaphore and unlocksem() unlocks it. However, there is a serious problem with these 
functions. Consider the server side first. What if, between the time the server unlocks and the time it relocks the semaphore, the 
client has not been scheduled for execution? The server will print the message twice. This is not desirable at all. The same could 

 



 327 

happen on the client side: it could ask for the message twice.  
 

 
In order to solve the problem, you need two semaphores: one for reading and one for writing. Listing 16-3 shows just such a 
system. 

 
 
 
  Note  Listing 16-3 is available online.   
 
 Listing 16-3: Shared memory example   
 
 #include <stdio.h>   
 #include <sys/types.h>   
 #include <sys/ipc.h>   
 #include <sys/sem.h>   
 #include <sys/shm.h>   
 #include <stdlib.h>   
 #include <errno.h>   
 #include <string.h>   
 #include <signal.h>   
 #include “safecalls.h”    
       
 /*  The union for semctl may or may not be defined for us.  This code, defined   
    in Linux’s semctl() manpage, is the proper way to attain it if necessary. * /   
       
 #if defined(__GNU_LIBRARY__) && !defined(_SEM_SEMUN_UNDEFINED)   
 /*  union semun is defined by including <sys/sem.h> * /   
 #else   
 /*  according to X/OPEN we have to define it ourselves * /   
 union semun {    
   int val;                    /*  value for SETVAL */   
   struct semid_ds *buf;       /*  buffer for IPC_STAT, IPC_SET */   
   unsigned short int *array;  /*  array for GETALL, SETALL * /   
   struct seminfo *__buf;      /*  buffer for IPC_INFO */   
 } ;   
 #endif   
       
 #define SHMDATASIZE 1000   
 #define BUFFERSIZE (SHMDATASIZE - sizeof(int))   
       
 #define SN_EMPTY 0   
 #define SN_FULL  1   
       
 int DeleteSemid = 0;   
       
 void server(void);   
 void client(int shmid);   
 void delete(void);   
 void sigdelete(int signum);   
 void locksem(int semid, int semnum);   
 void unlocksem(int semid, int semnum);   
 void waitzero(int semid, int semnum);   
 void clientwrite(int shmid, int semid, char *buffer);   
       
 int safesemget(key_t key, int nsems, int semflg);   
 int safesemctl(int semid, int semnum, int cmd, union semun arg);   
 int safesemop(int semid, struct sembuf *sops, unsigned nsops);   
 int safeshmget(key_t key, int size, int shmflg);   
 void *safeshmat(int shmid, const void *shmaddr, int shmflg);   
 int safeshmctl(int shmid, int cmd, struct shmid_ds *buf);   
       
       
 int main(int argc, char *argv[]) {    
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   /*  No arguments: “server” . * /   
   if (argc < 2) {    
     server();   
   }  else {    
     client(atoi(argv[1]));   
   }    
   return 0;   
 }    
       
 void server(void) {    
   union semun sunion;   
   int semid, shmid;   
   void *shmdata;   
   char *buffer;   
       
   /*  First thing: generate the semaphore. */   
       
   semid = safesemget(IPC_PRIVATE, 2, SHM_R | SHM_W);   
       
   DeleteSemid = semid;   
       
   /*  Delete the semaphore when exiting. */   
   atexit(&delete);   
   signal(SIGINT, &sigdelete);   
       
   /*  Initially empty should be available and full should not be. */   
    
   sunion.val = 1;   
   safesemctl(semid, SN_EMPTY, SETVAL, sunion);   
   sunion.val = 0;   
   safesemctl(semid, SN_FULL, SETVAL, sunion);   
       
   /*  Now allocate a shared memory segment. * /   
       
   shmid = safeshmget(IPC_PRIVATE, SHMDATASIZE, IPC_CREAT | SHM_R | SHM_W);   
    
   /*  Map it into memory. * /   
   shmdata = safeshmat(shmid, 0, 0);   
       
   /*  Mark it to automatically delete when the last holding process exits. */   
       
   safeshmctl(shmid, IPC_RMID, NULL);   
       
   /*  Write the semaphore id to its beginning. */   
   *(int *)shmdata = semid;   
       
   buffer = shmdata + sizeof(int);   
       
   printf(“Server is running with SHM id **  %d ** \n” ,   
          shmid);   
       
   /** * ** * ** * ** * ** * ** * ** * ** ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** *    
    MAIN SERVER LOOP   
    ** ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * /   
       
   while (1) {    
     printf(“Waiting until full...” );   
     fflush(stdout);   
     locksem(semid, SN_FULL);   
     printf(“  done.\n” );   
       
     printf(“Message received: %s\n” , buffer);   
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     unlocksem(semid, SN_EMPTY);   
   }    
 }    
       
 void client(int shmid) {    
   int semid;   
   void *shmdata;   
   char *buffer;   
   shmdata = safeshmat(shmid, 0, 0);   
    
   semid = *(int *)shmdata;   
   buffer = shmdata + sizeof(int);   
       
   printf(“Client operational: shm id is %d, sem id is %d\n” ,   
          shmid,   
          semid);   
       
   while (1) {    
     char input[3];   
       
     printf(“ \n\nMenu\n1. Send a message\n” );   
     printf(“2. Exit\n” );   
       
     fgets(input, sizeof(input), stdin);   
       
     switch(input[0]) {    
       case ‘1’ : clientwrite(shmid, semid, buffer); break;   
       case ‘2’ : exit(0); break;   
     }    
   }    
    
 }    
       
       
 void delete(void) {    
   printf(“ \nMaster exiting; deleting semaphore %d.\n” , DeleteSemid);   
   if (semctl(DeleteSemid, 0, IPC_RMID, 0) == -1) {    
     printf(“Error releasing semaphore.\n” );   
   }    
 }    
       
 void sigdelete(int signum) {    
   /*  Calling exit will conveniently trigger the normal   
      delete item. * /   
       
   exit(0);   
 }    
       
 void locksem(int semid, int semnum) {    
   struct sembuf sb;   
       
   sb.sem_num = semnum;   
   sb.sem_op = -1;   
   sb.sem_flg = SEM_UNDO;   
       
   safesemop(semid, &sb, 1);   
 }    
       
 void unlocksem(int semid, int semnum) {    
   struct sembuf sb;   
       
   sb.sem_num = semnum;   
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   sb.sem_op = 1;   
   sb.sem_flg = SEM_UNDO;   
       
   safesemop(semid, &sb, 1);   
 }    
       
 void waitzero(int semid, int semnum) {    
   struct sembuf sb;   
       
   sb.sem_num = semnum;   
   sb.sem_op = 0;   
   sb.sem_flg = 0;           /*  No modification so no need to undo */   
   safesemop(semid, &sb, 1);   
 }    
       
 void clientwrite(int shmid, int semid, char *buffer) {    
   printf(“Waiting until empty...” );   
   fflush(stdout);   
   locksem(semid, SN_EMPTY);   
   printf(“  done.\n” );   
       
   printf(“Enter message: “);   
   fgets(buffer, BUFFERSIZE, stdin);   
   unlocksem(semid, SN_FULL);   
 }    
       
 int safesemget(key_t key, int nsems, int semflg) {    
   int retval;   
       
   retval = semget(key, nsems, semflg);   
   if (retval == -1)   
     HandleError(errno, “semget” , “key %d, nsems %d failed” , key, nsems);   
   return retval;   
 }    
    
 int safesemctl(int semid, int semnum, int cmd, union semun arg) {    
   int retval;   
       
   retval = semctl(semid, semnum, cmd, arg);   
   if (retval == -1)   
     HandleError(errno, “semctl” , “semid %d, semnum %d, cmd %d failed” ,   
                 semid, semnum, cmd);   
   return retval;   
 }    
       
 int safesemop(int semid, struct sembuf *sops, unsigned nsops) {    
   int retval;   
       
   retval = semop(semid, sops, nsops);   
   if (retval == -1)   
     HandleError(errno, “semop” , “semid %d (%d operations) failed” ,   
                 semid, nsops);   
   return retval;   
 }    
       
 int safeshmget(key_t key, int size, int shmflg) {    
   int retval;   
       
   retval = shmget(key, size, shmflg);   
   if (retval == -1)   
     HandleError(errno, “shmget” , “key %d, size %d failed” , key, size);   
   return retval;   
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 }    
       
 void *safeshmat(int shmid, const void *shmaddr, int shmflg) {    
   void *retval;   
       
   retval = shmat(shmid, shmaddr, shmflg);   
   if (retval == (void *) -1)   
     HandleError(errno, “shmat” , “shmid %d failed” , shmid);   
   return retval;   
 }    
       
 int safeshmctl(int shmid, int cmd, struct shmid_ds *buf) {    
   int retval;   
       
   retval = shmctl(shmid, cmd, buf);   
   if (retval == -1)   
     HandleError(errno, “shmctl” , “shmid %d, cmd %d failed” ,   
                 shmid, cmd);   
   return retval;   
 }    
 

 
There are many things to go over about this code. This time, I want you to see how it works before using it. Before continuing, you 
need the safecalls.c file from Chapter 14, “ Introducing the Linux I/O.”  This program actually uses only its HandleError function, 
so if you don’ t want to type or download it all, you can make do with just that. 

 

 
 
 Then, compile this program like this:   
 
 $ gcc -Wall -o ch16-3 ch16-3.c safecalls.c   
 
 After this, you are ready to start up a server process. Here’s what you need to type at the prompt:   
 
 $ ./ch16-3   
 Server is running with SHM id **  126724 **   
 Waiting until full...   
 
 The server will continue running until you press Ctrl+C; it will not want any more input from you now.   
 

 
Next, you can start up a client process. To do so, give it the SHM ID that the server printed out on its command line. For instance, 
in this example, I’d type: 

 
 
 
 $ ./ch16-4 126724   
 Client operational: shm id is 126724, sem id is 3330   
       
       
 Menu   
 1. Send a message   
 2. Exit   
 

 
The client looks up the shared memory segment, reads the semaphore ID, and then presents you with the main menu. Pick option 1 
to send a message: 

 
 
 
 1   
 Waiting until empty... done.   
 Enter message: Hello, this is a test!   
       
       
 Menu   
 1. Send a message   
 2. Exit   
 
 The client sent the message. On the server side, you’ ll see this response:   
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 Waiting until full... done.   
 Message received: Hello, this is a test!   
       
 Waiting until full...   
 

 
This occurs each time you send it a message. Now, you can go ahead and exit the client and press Ctrl+C to exit the server, or 
experiment a bit more if you wish. When you exit the server, it automatically deletes its semaphore as before. 

 
 
 

 
Now let’s take a look at the code and find out what makes this program tick. We begin by declaring two constants: SN_EMPTY 
and SN_FULL. These are used to access particular semaphores inside the semaphore set. This time, instead of only one semaphore 
in the set, there are two. Next are prototypes for many different functions in the program. 

 

 
 

 
As you arrive at main(), things are fairly simple: main() either calls the server function or passes along the integer conversion of 
the argument to the client function. After doing that, it returns a success code to its caller. 

 
 
 

 
The first thing the server() function does is create a new semaphore. This is done exactly as was done before. The ID is saved in 
DeleteSemid, and atexit() is called. This time, because pressing Ctrl+C exits the server, a signal handler is registered as well. This 
deletes the semaphore when the program exits by SIGINT. 

 

 
 

 
Next, the two semaphores in the semaphore set are initialized. The first, SN_EMPTY, is initialized to 1. The SN_FULL semaphore 
is initialized to zero, meaning that a process must explicitly unlock it before another one can get a lock in it. 

 
 
 

 

Now the shared memory segment is allocated. The SHMDATASIZE value was defined at the top of the program to be 1000 bytes. 
It is created, and an ID is returned. In order to actually access the shared memory, it has to be mapped into memory—the job of 
shmat(). This function takes an ID, a recommended address, and flags. The last two parameters are rarely used; this program just 
sets them to zero. 

 

 
 

 
Because shared memory has a concept of being attached, the kernel can keep a usage counter. Unlike semaphores, you can request 
that shared memory be automatically deleted when the last process using it terminates. That is what is done with the call to 
safeshmctl(). 

 

 
 

 

At this point, there was a decision. The server could have printed out the IDs for both the semaphore and the shared memory for 
the client to use. Instead, we are a bit sneaky about it: only the ID for the shared memory is printed; the ID for the semaphore is 
written into the shared memory itself. Because this value never changes, and the server is guaranteed to write to it before clients do 
(clients don’ t even know the ID of the shared memory yet), there’s no need to worry about locking it. I cast the void * variable 
shmdata to an int * variable, dereference it, and assign the semaphore ID to it. Then, the variable buffer (which will be used for the 
rest of the program) is initialized to point to the shared memory area, just past this semaphore ID. The server prints out the shared 
memory ID and then enters its main loop. 

 

 
 

 
The server waits until the client signals that the buffer is full (by unlocking the SN_FULL semaphore). When that is done, the 
server gets the lock, displays the message, and then unlocks the SN_EMPTY semaphore for the client. 

 
 
 

 
You may want to think of the locking and unlocking as wait and signal operations, respectively. When you lock a semaphore, you 
are waiting until it is available. In this program, when you unlock it, you are signaling the other process that it has become 
available. 

 

 
 

 
Now you arrive at the client() function. It gets the shared memory ID passed in from main(). The client() function first reads the 
semaphore ID and then sets buffer—similar to what was done in the server() function. Then, it enters its main loop. It offers to 
read from the terminal or exit. If you choose to read, it calls clientwrite(); otherwise, it exits. 

 

 
 

 

The delete() and sigdelete() functions are already fairly familiar or trivial enough; we’ ll skip them. The locksem() and unlocksem() 
functions are the equivalents of the request() and return() functions in the earlier example. The waitzero() function is not used by 
this program but is included for completeness if you want to use this code somewhere else. Its purpose is to block until the 
semaphore’s value is zero (that is, until someone has obtained a lock on it) but not modify the semaphore itself. 

 

 
 

 
After these functions, you find the implementation of clientwrite(). It’s quite similar to the server() function. It waits until it can 
lock SN_EMPTY, reads the message from the keyboard, and then unlocks SN_FULL. Notice that for performance reasons you 
would normally move the fgets() call before the locksem() call, but it is here for demonstration purposes, as I’ ll explain shortly. 

 

 
 

 
After these functions, you see the implementations of the safe wrappers around calls, which are used for error detection. These are 
written in the same fashion as those described in Chapter 14. 
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Now you have seen this program, but it is not very robust. It supports only one client and one server. Let’s rewrite it so that this 
restriction is removed. We’ ll rename what is now the client to the “producer”  and what is now the server to the “consumer.”  Many 
computer science textbooks address the producer/consumer problem, of which this is an instance. 

 

 
 

 

Consider the benefits of the code in Listing 16-4. You can write a system that institutes a job processing system. Any number of 
processes may queue jobs. Servers to process them may enter or leave the system at any time. You can even implement a queue 
simply by modifying Listing 16-4 to have a larger buffer and handle a situation of adding new entries at an offset into the shared 
memory (which is not terribly difficult). 

 

 
 
  Note  Listing 16-4 is available online.   
 
 Listing 16-4: Revised shared memory example   
 
 #include <stdio.h>   
 #include <sys/types.h>   
 #include <sys/ipc.h>   
 #include <sys/sem.h>   
 #include <sys/shm.h>   
 #include <stdlib.h>   
 #include <errno.h>   
 #include <string.h>   
 #include <signal.h>   
 #include “safecalls.h”    
       
 /*  The union for semctl may or may not be defined for us.  This code, defined   
    in Linux’s semctl() manpage, is the proper way to attain it if necessary. * /   
       
 #if defined(__GNU_LIBRARY__) && !defined(_SEM_SEMUN_UNDEFINED)   
 /*  union semun is defined by including <sys/sem.h> * /   
 #else   
 /*  according to X/OPEN we have to define it ourselves * /   
 union semun {    
   int val;                    /*  value for SETVAL */   
   struct semid_ds *buf;       /*  buffer for IPC_STAT, IPC_SET */   
   unsigned short int *array;  /*  array for GETALL, SETALL * /   
   struct seminfo *__buf;      /*  buffer for IPC_INFO */   
 } ;   
 #endif   
       
 #define SHMDATASIZE 1000   
 #define BUFFERSIZE (SHMDATASIZE - sizeof(int))   
       
 #define SN_EMPTY 0   
 #define SN_FULL  1   
 #define SN_LOCK  2   
       
 int DeleteSemid = 0;   
       
 void consumer(int shmid);   
 void producer(int shmid);   
 int masterinit(void);   
 char *standardinit(int shmid, int *semid);   
 void delete(void);   
 void sigdelete(int signum);   
 void locksem(int semid, int semnum);   
 void unlocksem(int semid, int semnum);   
 void waitzero(int semid, int semnum);   
 void producerwrite(int shmid, int semid, char *buffer);   
       
 int safesemget(key_t key, int nsems, int semflg);   
 int safesemctl(int semid, int semnum, int cmd, union semun arg);   
 int safesemop(int semid, struct sembuf *sops, unsigned nsops);   
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 int safeshmget(key_t key, int size, int shmflg);   
 void *safeshmat(int shmid, const void *shmaddr, int shmflg);   
 int safeshmctl(int shmid, int cmd, struct shmid_ds *buf);   
       
       
 int main(int argc, char *argv[]) {    
 char selection[3];   
 int shmid;   
   /*  No arguments: “master */   
   if (argc < 2) {    
     shmid = masterinit();   
   }  else {    
     shmid = atoi(argv[1]);   
   }    
       
   printf(“Shall I be a [C]onsumer or a [P]roducer process? “);   
   fgets(selection, sizeof(selection), stdin);   
    
   switch(selection[0]) {    
     case ‘p’ :   
     case ‘P’ : producer(shmid); break;   
     case ‘c’ :   
     case ‘C’ : consumer(shmid); break;   
     default:  printf(“ Invalid choice; exiting.\n” );   
   }    
   return 0;   
 }    
 void consumer(int shmid) {    
   int semid;   
   char *buffer;   
       
   buffer = standardinit(shmid, &semid);   
       
   printf(“Consumer operational: shm id is %d, sem id is %d\n” ,   
          shmid,   
          semid);   
       
   while (1) {    
     printf(“Waiting until full... “ );   
     fflush(stdout);   
     locksem(semid, SN_FULL);   
     printf(“done; “ );   
       
     printf(“waiting for lock... “ );   
     fflush(stdout);   
     locksem(semid, SN_LOCK);   
     printf(“done.\n” );   
       
     printf(“Message received: %s\n” , buffer);   
     unlocksem(semid, SN_LOCK);   
     unlocksem(semid, SN_EMPTY);   
   }    
 }    
       
 void producer(int shmid) {    
   int semid;   
   char *buffer;   
       
   buffer = standardinit(shmid, &semid);   
       
   printf(“Producer operational: shm id is %d, sem id is %d\n” ,   
          shmid,   
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          semid);   
       
   while (1) {    
     char input[3];   
       
     printf(“ \n\nMenu\n1. Send a message\n” );   
     printf(“2. Exit\n” );   
       
     fgets(input, sizeof(input), stdin);   
       
     switch(input[0]) {    
       case ‘1’ : producerwrite(shmid, semid, buffer); break;   
       case ‘2’ : exit(0); break;   
     }    
   }    
 }    
 char *standardinit(int shmid, int *semid) {    
   void *shmdata;   
   char *buffer;   
       
   shmdata = safeshmat(shmid, 0, 0);   
    
   *semid = *(int * )shmdata;   
   buffer = shmdata + sizeof(int);   
       
   return buffer;   
 }    
       
 int masterinit(void) {    
   union semun sunion;   
   int semid, shmid;   
   void *shmdata;   
       
   /*  First thing: generate the semaphore. */   
       
   semid = safesemget(IPC_PRIVATE, 3, SHM_R | SHM_W);   
       
   DeleteSemid = semid;   
       
   /*  Delete the semaphore when exiting. */   
   atexit(&delete);   
   signal(SIGINT, &sigdelete);   
       
   /*  Initially empty should be available and full should not be.   
      The lock will also be available initially. */   
    
   sunion.val = 1;   
   safesemctl(semid, SN_EMPTY, SETVAL, sunion);   
   safesemctl(semid, SN_LOCK, SETVAL, sunion);   
   sunion.val = 0;   
   safesemctl(semid, SN_FULL, SETVAL, sunion);   
       
   /*  Now allocate a shared memory segment. * /   
       
   shmid = safeshmget(IPC_PRIVATE, SHMDATASIZE, IPC_CREAT | SHM_R | SHM_W);   
    
   /*  Map it into memory. * /   
       
   shmdata = safeshmat(shmid, 0, 0);   
       
   /*  Mark it to delete automatically when the last holding process exits. */   
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   safeshmctl(shmid, IPC_RMID, NULL);   
   /*  Write the semaphore id to its beginning. */   
   *(int *)shmdata = semid;   
       
   printf(“  ***  The system is running with SHM id %d \n” ,    
          shmid);   
       
   return shmid;   
 }    
       
       
 void delete(void) {    
   printf(“ \nMaster exiting; deleting semaphore %d.\n” , DeleteSemid);   
   if (semctl(DeleteSemid, 0, IPC_RMID, 0) == -1) {    
     printf(“Error releasing semaphore.\n” );   
   }    
 }    
       
 void sigdelete(int signum) {    
   /*  Calling exit will conveniently trigger the normal   
      delete item. * /   
       
   exit(0);   
 }    
       
 void locksem(int semid, int semnum) {    
   struct sembuf sb;   
       
   sb.sem_num = semnum;   
   sb.sem_op = -1;   
   sb.sem_flg = SEM_UNDO;   
       
   safesemop(semid, &sb, 1);   
 }    
       
 void unlocksem(int semid, int semnum) {    
   struct sembuf sb;   
       
   sb.sem_num = semnum;   
   sb.sem_op = 1;   
   sb.sem_flg = SEM_UNDO;   
       
   safesemop(semid, &sb, 1);   
 }    
       
 void waitzero(int semid, int semnum) {    
   struct sembuf sb;   
       
   sb.sem_num = semnum;   
   sb.sem_op = 0;   
   sb.sem_flg = 0;         /*  No modification so no need to undo */   
    
   safesemop(semid, &sb, 1);   
 }    
       
 void producerwrite(int shmid, int semid, char *buffer) {    
   printf(“Waiting until empty... “ );   
   fflush(stdout);   
   locksem(semid, SN_EMPTY);   
       
   printf(“done; waiting for lock...\n” );   
   fflush(stdout);   
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   locksem(semid, SN_LOCK);   
    
       
   printf(“Enter message: “);   
   fgets(buffer, BUFFERSIZE, stdin);   
       
   unlocksem(semid, SN_LOCK);   
   unlocksem(semid, SN_FULL);   
 }    
       
 int safesemget(key_t key, int nsems, int semflg) {    
   int retval;   
       
   retval = semget(key, nsems, semflg);   
   if (retval == -1)   
     HandleError(errno, “semget” , “key %d, nsems %d failed” , key, nsems);   
   return retval;   
 }    
    
 int safesemctl(int semid, int semnum, int cmd, union semun arg) {    
   int retval;   
       
   retval = semctl(semid, semnum, cmd, arg);   
   if (retval == -1)   
     HandleError(errno, “semctl” , “semid %d, semnum %d, cmd %d failed” ,   
                 semid, semnum, cmd);   
   return retval;   
 }    
       
 int safesemop(int semid, struct sembuf *sops, unsigned nsops) {    
   int retval;   
       
   retval = semop(semid, sops, nsops);   
   if (retval == -1)   
     HandleError(errno, “semop” , “semid %d (%d operations) failed” ,   
                 semid, nsops);   
   return retval;   
 }    
 int safeshmget(key_t key, int size, int shmflg) {    
   int retval;   
       
   retval = shmget(key, size, shmflg);   
   if (retval == -1)   
     HandleError(errno, “shmget” , “key %d, size %d failed” , key, size);   
   return retval;   
 }    
       
 void *safeshmat(int shmid, const void *shmaddr, int shmflg) {    
   void *retval;   
       
   retval = shmat(shmid, shmaddr, shmflg);   
   if (retval == (void *) -1)   
     HandleError(errno, “shmat” , “shmid %d failed” , shmid);   
   return retval;   
 }    
       
 int safeshmctl(int shmid, int cmd, struct shmid_ds *buf) {    
   int retval;   
       
   retval = shmctl(shmid, cmd, buf);   
   if (retval == -1)   
     HandleError(errno, “shmctl” , “shmid %d, cmd %d failed” ,   
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                 shmid, cmd);   
   return retval;   
 }    
 

 

The code is now complete! You simply start up one process, which allocates the shared memory and semaphore. Then, you can start 
up as many other processes as you wish, of either type, and add them into the system simply by passing them the shared memory ID. 
To really see how things work, you need to start up at least two producers and two consumers. There is a lot of internal reshuffling of 
code to make things a bit better suited to the producer/consumer model. There is a new semaphore, SN_LOCK. Using this semaphore 
makes the program a full-fledged producer/consumer solution. Although this current scheme does not require that, it is there as an 
example for you should you have a system that would benefit from buffers.  

Summary   
 
 In this chapter, you learned about shared memory and semaphores. Specifically, you learned:   
 
  •  Shared memory can be very fast, but access can be complicated due to synchronization requirements.   
 

  
• 

 
Both shared memory and semaphores are examples of parts of the SYSV IPC (System V interprocess communication) system, 
and so they are created in similar ways. 

 
 
 

  
• 

 
Semaphores are used to provide resource synchronization. Resources are said to be available if the semaphore is positive, or 
unavailable if it is zero. 

 
 
 

  
• 

 
Semaphores cannot be automatically deleted when the program exits, so you should use atexit() or signal handlers to make 
sure that they are deleted. 

 
 
 
  •  You can use SEM_UNDO to cause the resources requested by a process to be released, but the semaphore itself will not be.   
 
  •  Each semaphore allocated actually contains a customizable amount of semaphores under a single ID.   
 
  •  Shared memory is usually implemented with semaphores as the synchronization method.   
 
  •  When you have a shared memory ID, you must attach it to your process with shmat().  
Chapter  17: Using Pipes and FIFOs   
 
 Overview   
 

 

As I continue our discussion of communication on Linux, I now turn away from shared memory and toward file descriptor–based 
communication. Pipes are provided for your use for setting up lines of communication between two processes on your local 
machine. Instead of using open(2) to create a pipe, you use pipe(2). After that, however, you use standard system calls such as 
read(2) and write(2), just as you would with a more “normal”  file descriptor. 

 

 
 
     
 
Cross-Reference  
 

 
For more information on using system-call input and output, please see the information in Chapter 14, “ Introducing the 
Linux I/O.”  

 
 
 
     
 

 
Pipes are intended solely for communication between two processes. When you create a pipe, you actually get two file 
descriptors—one for reading and one for writing. Any data that is written to the write side of the descriptor can later be read back 
from the read side. 

 

 
 

 

Compared with the shared memory and semaphore system, pipes are a far easier method to use for communication between 
processes. Pipes can be a bit slower, and unlike shared memory, you cannot use a single pipe for more than two processes. Instead 
you might have to use a solution such as setting up a line of pipes (a pipeline) to shuttle data from one process to the next, which 
will certainly be slower. On the other hand, because pipes are used as standard file descriptors, they are the method of choice for 
communication between two processes that use file descriptor I/O already. For instance, this is the type of device that the shell 
imple-ments to handle pipelines created with | in the shell, because any terminal I/O is ultimately implemented in terms of file 
descriptors. 
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Another advantage is that pipes function much like their more complex big brother, the TCP/IP socket suite. You can start out with 
using communication only locally, and then later graduate to using TCP/IP sockets to permit communication on the Internet. Some 
parts of your code will have to be modified—especially the initialization code—but as long as you are doing basic reads and writes 
on file descriptors, the bulk of your code should still be operational even with this completely different method of communication. 
Most communication in Linux, in fact, occurs with the file descriptor model; this chapter and the two chapters following it focus 
entirely on communication with this model, and pipes are a fitting introduction to it. 

 

 
 

 
A FIFO is a particular type of pipe that has a presence in the file system. It is used to allow processes to establish a connection with 
each other without requiring them to have previously forked, a limitation of standard pipes which you shall see in the text that 
follows.  

 Setting Up Pipes   
 

 

To create a pipe, you must first simply call pipe(2). The function will create the file descriptor pair and place them in a two-
element array for your use. After this, you need to cause communication to occur between processes. The standard approach is to 
call pipe(2), obtain your descriptors, and then use the fork() system call. Each end will close one of the descriptors. For instance, if 
the child process will do the writing and the parent the reading, the child process should close the reading end of the pipe and the 
parent should close the writing end. 

 

 
 

 
Listing 17-1 shows a sample program to create a pipe and then communicate over it. Notice how it must fork and then the two 
processes use the pipe file descriptors that were opened before the fork. 

 
 
 
  Note  Listing 17-1 is available online.   
 
 Listing 17-1: Pipe example   
 
 #include <stdio.h>   
 #include <unistd.h>   
 #include <errno.h>   
 #include <stdarg.h>   
 #include <time.h>   
       
 #include “safecalls.h”    
 #define FD_READ 0   
 #define FD_WRITE 1   
       
 void parent(int pipefds[2]);   
 void child(int pipefds[2]);   
 int write_buffer(int fd, const void *buf, int count);   
 int read_buffer(int fd, void *buf, int count);   
 int readnlstring(int socket, char *buf, int maxlen);   
 int readdelimstring(int socket, char *buf, int maxlen, char delim);   
 int tprintf(const char * fmt, ...);   
 pid_t safefork(void);   
       
 int main(void) {    
   int pipefds[2];   
       
   safepipe(pipefds);   
   if (safefork())   
     parent(pipefds);   
   else   
     child(pipefds);   
    
   return 0;   
 }    
       
 void parent(int pipefds[2]) {    
   char buffer[100];   
   /*  First, close the descriptors that the parent doesn’ t need.   
      Since the parent will not be reading from the terminal -- only   
      the child will -- close off standard input as well. * /   
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   close(pipefds[FD_WRITE]);   
   close(0);   
       
   tprintf(“The parent is ready.\n” );   
       
   /*  Now wait for data, and display it. * /   
       
   while (readnlstring(pipefds[FD_READ], buffer, sizeof(buffer)) >= 0) {    
     tprintf(“Received message: %s\n” , buffer);   
   }    
   tprintf(“No more data; parent exiting.\n” );   
   safeclose(pipefds[FD_READ]);   
 }    
       
 void child(int pipefds[2]) {    
   char buffer[100];   
       
   /*  First, close the descriptor that the child doesn’ t need. */   
       
   close(pipefds[FD_READ]);   
    
   tprintf(“The child is ready.\n” );   
    
   tprintf(“Enter message (Ctrl+D to exit): “ );   
   while (fgets(buffer, sizeof(buffer), stdin) != NULL) {    
     tprintf(“Transmitting message: %s\n” , buffer);   
     write_buffer(pipefds[FD_WRITE], buffer, strlen(buffer));   
     tprintf(“Enter message (Ctrl+D to exit): “ );   
   }    
   tprintf(“Client exiting.\n” );   
   safeclose(pipefds[FD_WRITE]);   
 }    
       
 /*    
    This function writes a certain number of bytes from “buf”  to a file   
    or socket descriptor specified by “ fd” . The number of bytes is   
    specified by “count” . It returns the number of bytes written,   
    or <0 on error.   
 * /   
       
 int write_buffer(int fd, const void *buf, int count) {    
   const void *pts = buf;   
   int  status = 0, n;   
    
   if (count < 0) return (-1);   
    
   while (status != count) {    
     n = safewrite(fd, pts+status, count-status);   
     if (n < 0) return (n);   
     status += n;   
   }    
   return (status);   
 }    
       
 int read_buffer(int fd, void *buf, int count) {    
   void *pts = buf;   
   int  status = 0, n;   
    
   if (count < 0) return (-1);   
    
   while (status != count) {    
     n = saferead(fd, pts+status, count-status);   



 341 

     if (n < 1) return n;   
     status += n;   
   }    
   return (status);   
 }    
       
 int readnlstring(int socket, char *buf, int maxlen) {    
   return readdelimstring(socket, buf, maxlen, ‘ \n’ );   
 }    
       
 int readdelimstring(int socket, char *buf, int maxlen, char delim) {    
   int status;   
   int count = 0;   
       
   while (count < maxlen - 1) {    
     if ((status = read_buffer(socket, buf+count, 1)) < 1) {    
       printf(“Error reading: EOF in readdelimstring()\n” );   
       return -1;   
     }    
     if (buf[count] == delim) {           /*  Found the delimiter * /   
       buf[count] = 0;   
       return 0;   
     }    
     count++;   
   }    
   buf[count] = 0;   
   return 0;   
 }    
       
 int tprintf(const char * fmt, ...) {    
   va_list args;   
   struct tm * tstruct;   
   time_t tsec;   
    
   tsec = time(NULL);   
   tstruct = localtime(&tsec);   
    
   printf(“%02d:%02d:%02d %5d| “ ,   
          tstruct->tm_hour,   
          tstruct->tm_min,   
          tstruct->tm_sec,   
          getpid());   
            
   va_start(args, fmt);   
   return vprintf(fmt, args);   
 }    
       
 pid_t safefork(void) {    
   pid_t retval;   
       
   retval = fork();   
   if (retval == -1)   
     HandleError(errno, “ fork” , “ failed” );   
   return retval;   
 }    
 

 
To compile this program, you’ ll need the safecalls.c and safecalls.h files from Chapter 14, “ Introducing the Linux I/O.”  Then run 
gcc with the arguments shown to compile: 

 
 
 
 $ gcc -Wall -o ch70-1 ch17-1.c safecalls.c    
 
 The program begins by defining some macros for the read and write sides of the descriptors to make things easier to remember  
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later. Then, inside main(), the pipe is created, and the results are stored in pipefds(). After doing that, the program forks, each side 
going to its respective function.  

 

 
In the parent() function, the write descriptor is closed. Because the child will be the only one reading from standard input, it closes 
the read descriptor on its end. Then, the parent reads strings from the input descriptor of the pipe and displays them. Finally, it will 
close its end of the pipe and exit. 

 

 
 

 
The child similarly closes the reading end of the pipe, which it will not be using. Then it enters a loop reading data from the 
keyboard. After reading each line of input, it prints a message, writes it to the pipe, and repeats the loop. 

 
 
 

 

Note that because both processes are writing to the same terminal, some strange-ness is bound to occur unless they carefully 
synchronize their actions. One way to address this problem is to use a semaphore for locking display to the screen. Another way is 
to open a second pipeline for the server to communicate an acknowledgment of receipt to the client. The client can wait for this 
message to arrive before displaying its output. 

 

 
 

 
The program in Listing 17-1 will successfully communicate with the server. However, because we do not synchronize the result 
from the server (pipes are one way) and both processes are sharing a single terminal, the result can be a bit confusing. Let’s take a 
look at the output anyway: 

 

 
 
 $ ./ch17-1   
 13:51:31   337| The parent is ready.   
 13:51:31   338| The child is ready.   
 13:51:31   338| Enter message (Ctrl+D to exit): Hello!   
 13:51:34   338| Transmitting message: Hello!   
       
 13:51:34   338| Enter message (Ctrl+D to exit): 13:51:34   337| Received message: Hello!   
 This is another  message   
 13:51:41   338| Transmitting message: This is another message   
       
 13:51:41   338| Enter message (Ctrl+D to exit): 13:51:41   337| Received message: This is another message   
 Ctr l+D   
 13:51:55   338| Client exiting.   
 Error reading: EOF in readdelimstring()   
 13:51:55   337| No more data; parent exiting.   
 

 
Situations such as this are rare where both processes are writing to the same terminal. In this case, you can solve the problem 
simply by eliminating some of the prompting on the client side. 

 
 
 

 

There’s another problem: the server is getting an error condition when it tries to read at the end. Specifically, what’s happening is 
it has detected that the other end has closed the pipe, and thus that there is no more data to read. This is not really an error, just an 
event, but the function is expecting to be able to read until a newline. One solution here is to change the protocol a bit such that the 
client informs the server when it is exiting. Another option is to modify the function that is generating the error message so that it 
remains silent when an end-of-file condition occurs. 

 

 
 
 Listing 17-2 shows a rewritten version of the program in Listing 17-1 that takes these things into consideration.   
 
  Note  Listing 17-2 is available online.   
 
 Listing 17-2: Revised pipe example   
 
 #include <stdio.h>   
 #include <unistd.h>   
 #include <errno.h>   
 #include <stdarg.h>   
 #include <time.h>   
       
 #include “safecalls.h”    
       
 #define FD_READ 0   
 #define FD_WRITE 1   
       
 void parent(int pipefds[2]);   
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 void child(int pipefds[2]);   
 int write_buffer(int fd, const void *buf, int count);   
 int read_buffer(int fd, void *buf, int count);   
 int readnlstring(int socket, char *buf, int maxlen);   
 int readdelimstring(int socket, char *buf, int maxlen, char delim);   
 int tprintf(const char * fmt, ...);   
 pid_t safefork(void);   
       
 int main(void) {    
   int pipefds[2];   
       
   safepipe(pipefds);   
   if (safefork())   
     parent(pipefds);   
   else   
     child(pipefds);   
    
   return 0;   
 }    
       
 void parent(int pipefds[2]) {    
   char buffer[100];   
   /*  First, close the descriptors that the parent doesn’ t need.   
      Since the parent will not be reading from the terminal -- only   
      the child will -- close off standard input as well. * /   
       
   close(pipefds[FD_WRITE]);   
   close(0);   
       
   tprintf(“The parent is ready.\n” );   
       
   /*  Now wait for data, and display it. * /   
       
   while (read_buffer(pipefds[FD_READ], buffer, 1) > 0) {    
     if (buffer[0] == ‘E’) {    
       tprintf(“Received exit code from child.\n” );   
       break;   
     }    
     if (buffer[0] == ‘M’) {    
       readnlstring(pipefds[FD_READ], buffer, sizeof(buffer));   
       tprintf(“Received message: %s\n” , buffer);   
     }  else {    
       tprintf(“Received unknown action code.\n” );   
     }    
   }    
   tprintf(“Parent exiting.\n” );   
   safeclose(pipefds[FD_READ]);   
 }    
 void child(int pipefds[2]) {    
   char buffer[100];   
       
   /*  First, close the descriptor that the child doesn’ t need. */   
       
   close(pipefds[FD_READ]);   
    
   tprintf(“The child is ready.  Enter messages, or Ctrl+D when done.\n” );   
    
   while (fgets(buffer, sizeof(buffer), stdin) != NULL) {    
     /*  Send a message code and then the message. * /   
     write_buffer(pipefds[FD_WRITE], “M” , 1);   
     write_buffer(pipefds[FD_WRITE], buffer, strlen(buffer));   
   }    
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   write_buffer(pipefds[FD_WRITE], “E” , 1);   
   tprintf(“Client exiting.\n” );   
   safeclose(pipefds[FD_WRITE]);   
 }    
       
 /*    
    This function writes certain number bytes from “buf”  to a file   
    or socket descriptor specified by “ fd” . The number of bytes is   
    specified by “count” . It returns the number of bytes written,   
    or <0 on error.   
 * /   
       
 int write_buffer(int fd, const void *buf, int count) {    
   const void *pts = buf;   
   int  status = 0, n;   
    
   if (count < 0) return (-1);   
    
   while (status != count) {    
     n = safewrite(fd, pts+status, count-status);   
     if (n < 0) return (n);   
     status += n;   
   }    
   return (status);   
 }    
       
 int read_buffer(int fd, void *buf, int count) {    
   void *pts = buf;   
   int  status = 0, n;   
    
   if (count < 0) return (-1);   
    
   while (status != count) {    
     n = saferead(fd, pts+status, count-status);   
     if (n < 1) return n;   
     status += n;   
   }    
   return (status);   
 }    
       
 int readnlstring(int socket, char *buf, int maxlen) {    
   return readdelimstring(socket, buf, maxlen, ‘ \n’ );   
 }    
       
 int readdelimstring(int socket, char *buf, int maxlen, char delim) {    
   int status;   
   int count = 0;   
       
   while (count < maxlen - 1) {    
     if ((status = read_buffer(socket, buf+count, 1)) < 1) {    
       printf(“Error reading: EOF in readdelimstring()\n” );   
       return -1;   
     }    
     if (buf[count] == delim) {           /*  Found the delimiter * /   
       buf[count] = 0;   
       return 0;   
     }    
     count++;   
   }    
   buf[count] = 0;   
   return 0;   
 }    
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 int tprintf(const char * fmt, ...) {    
   va_list args;   
   struct tm * tstruct;   
   time_t tsec;   
    
   tsec = time(NULL);   
   tstruct = localtime(&tsec);   
    
   printf(“%02d:%02d:%02d %5d| “ ,   
          tstruct->tm_hour,   
          tstruct->tm_min,   
          tstruct->tm_sec,   
          getpid());   
            
   va_start(args, fmt);   
   return vprintf(fmt, args);   
 }    
       
 pid_t safefork(void) {    
   pid_t retval;   
       
   retval = fork();   
   if (retval == -1)   
     HandleError(errno, “ fork” , “ failed” );   
   return retval;   
 }    
 

 
This time, before the child sends anything to the parent, it sends a one-character code indicating what’s going on. This code will be 
M (to indicate a message follows) or E (to indicate that the client is exiting). The parent receives this code, and if it is an E, it 
won’ t even try to read a message; it will break out of its loop immediately. 

 

 
 
 Watch what happens when this version of the program is run:   
 
 $ ./ch17-2   
 15:46:50   786| The parent is ready.   
 15:46:50   787| The child is ready.  Enter messages, or Ctrl+D when done.   
 Hello!   
 15:46:52   786| Received message: Hello!   
 This is another  test.   
 15:46:56   786| Received message: This is another test.   
 Ctrl+D   
 15:46:58   787| Client exiting.   
 15:46:58   786| Received exit code from child.   
 15:46:58   786| Parent exiting.  
Implementing Redirection   
 

 

Sometimes it would be nice for your program to invoke another one, but instead of having the output of this other program go to 
the terminal, have it go to your program for additional processing. Or, you might prefer to be able to supply custom input to one of 
these other programs such that they read their input from your program instead of from the keyboard. You can do this by using the 
fork() and exec() calls; first, however, you need to change the child process. 

 

 
 

 

The system provides a function called dup2() that allows you to copy a file descriptor to another number. Because, for instance, 
standard output is always number 1, if you copy your pipe file descriptor over the terminal file descriptor that normally resides at 
position 1, any output from the child process will go to the parent instead. Listing 17-3 shows a program that does just such a 
thing. 

 

 
 
  Note  Listing 17-3 is available online.   
 
 Listing 17-3: Using redirection   
 
 #include <stdio.h>   
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 #include <unistd.h>   
 #include <errno.h>   
 #include <stdarg.h>   
 #include <time.h>   
       
 #include “safecalls.h”    
       
 #define FD_READ 0   
 #define FD_WRITE 1   
       
 void parent(int pipefds[2]);   
 void child(int pipefds[2]);   
 int write_buffer(int fd, const void *buf, int count);   
 int read_buffer(int fd, void *buf, int count);   
 int readnlstring(int socket, char *buf, int maxlen);   
 int readdelimstring(int socket, char *buf, int maxlen, char delim);   
 int tprintf(const char * fmt, ...);   
 pid_t safefork(void);   
       
 int main(void) {    
   int pipefds[2];   
       
   safepipe(pipefds);   
   if (safefork())   
     parent(pipefds);   
   else   
     child(pipefds);   
    
   return 0;   
 }    
       
 void parent(int pipefds[2]) {    
   char buffer[100];   
   /*  First, close the descriptors that the parent doesn’ t need.   
      Since the parent will not be reading from the terminal -- only   
      the child will -- close off standard input as well. * /   
       
   close(pipefds[FD_WRITE]);   
   close(0);   
       
   tprintf(“The parent is ready.\n” );   
       
   /*  Now wait for data, and display it. * /   
       
   while (readnlstring(pipefds[FD_READ], buffer, sizeof(buffer)) >= 0) {    
     tprintf(“Received message: %s\n” , buffer);   
   }    
   tprintf(“No more data; parent exiting.\n” );   
   safeclose(pipefds[FD_READ]);   
 }    
       
 void child(int pipefds[2]) {    
   /*  First, close the descriptor that the child doesn’ t need. */   
       
   close(pipefds[FD_READ]);   
    
   tprintf(“The child is ready.\n” );   
   safedup2(pipefds[FD_WRITE], 1);   
   execlp(“ ls” , “ ls” , “ /proc/self” , NULL);   
   tprintf(“Exec failed, exiting\n” );   
 }    
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 /*    
    This function writes a certain number of bytes from “buf”  to a file   
    or socket descriptor specified by “ fd” . The number of bytes is   
    specified by “count” . It returns the number of bytes written,   
    or <0 on error.   
 * /   
       
 int write_buffer(int fd, const void *buf, int count) {    
   const void *pts = buf;   
   int  status = 0, n;   
    
   if (count < 0) return (-1);   
    
   while (status != count) {    
     n = safewrite(fd, pts+status, count-status);   
     if (n < 0) return (n);   
     status += n;   
   }    
   return (status);   
 }    
 int read_buffer(int fd, void *buf, int count) {    
   void *pts = buf;   
   int  status = 0, n;   
    
   if (count < 0) return (-1);   
    
   while (status != count) {    
     n = saferead(fd, pts+status, count-status);   
     if (n < 1) return n;   
     status += n;   
   }    
   return (status);   
 }    
       
 int readnlstring(int socket, char *buf, int maxlen) {    
   return readdelimstring(socket, buf, maxlen, ‘ \n’ );   
 }    
       
 int readdelimstring(int socket, char *buf, int maxlen, char delim) {    
   int status;   
   int count = 0;   
       
   while (count < maxlen - 1) {    
     if ((status = read_buffer(socket, buf+count, 1)) < 1) {    
       return -1;   
     }    
     if (buf[count] == delim) {           /*  Found the delimiter * /   
       buf[count] = 0;   
       return 0;   
     }    
     count++;   
   }    
   buf[count] = 0;   
   return 0;   
 }    
       
 int tprintf(const char * fmt, ...) {    
   va_list args;   
   struct tm * tstruct;   
   time_t tsec;   
    
   tsec = time(NULL);   
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   tstruct = localtime(&tsec);   
    
   printf(“%02d:%02d:%02d %5d| “ ,   
          tstruct->tm_hour,   
          tstruct->tm_min,   
          tstruct->tm_sec,   
          getpid());   
            
   va_start(args, fmt);   
   return vprintf(fmt, args);   
 }    
       
 pid_t safefork(void) {    
   pid_t retval;   
       
   retval = fork();   
   if (retval == -1)   
     HandleError(errno, “ fork” , “ failed” );   
   return retval;   
 }    
 

 
This program is similar to the first example. The extra error message has been removed from the function now, however, given 
that we no longer have control over the protocol because another application is generating the data being sent to the parent. 

 
 
 

 
The parent receives the output of the ls command over the pipe and displays this output with its own additional messages before 
each line. Thus, you’ ll get output that looks something like this: 

 
 
 
 $ ./ch17-3   
 15:57:33   838| The parent is ready.   
 15:57:33   839| The child is ready.   
 15:57:33   838| Received message: cmdline   
 15:57:33   838| Received message: cwd   
 15:57:33   838| Received message: environ   
 15:57:33   838| Received message: exe   
 15:57:33   838| Received message: fd   
 15:57:33   838| Received message: maps   
 15:57:33   838| Received message: mem   
 15:57:33   838| Received message: root   
 15:57:33   838| Received message: stat   
 15:57:33   838| Received message: statm   
 15:57:33   838| Received message: status   
 15:57:33   838| No more data; parent exiting.   
 

 

If you would prefer instead to send data as input to the child, you need only keep the writer open on the parent and the read descriptor 
open on the child, and use the dup2() call on that descriptor to descriptor number 0 on the child. Note also that the stream I/O system 
provides a function named popen() that performs a similar task but uses system() and stream I/O for its communication. This may be 
appropriate in some cases, but not necessarily in all situations.  

Addressing Communication Issues   
 

 

As you have seen, pipes are not bi-directional; that is, data can flow through pipes in only one direction. This could be fine in 
many cases. However, sometimes you might prefer to have bi-directional communication between processes. In these situations, 
you have two options. One is to open two sets of file descriptors (for a total of four) between the parent and the child: one set for 
communication in one direction and another for communication in the other direction. Another option is to use a different type of 
communication that works bidirectionally, such as a socket. I discuss sockets in Chapters 18 and 19. 

 

 
 

 

Some people may try to use pipes for communication within a single process. This is almost always a bad idea and can result in 
deadlock. The reason is that a write to a pipe will not necessarily return until there is a corresponding read from the other end. 
However, your process cannot do so because it is still trying to write. A better solution might be to simply use an internal buffer 
for storage of the data that you need to pass along. 

 

 
 

 
Another problem is that there is no way, with a standard pipe, to be able to open it save by a single process before a fork. This means 
that arbitrary processes cannot connect to it later, which is no doubt a bad thing. In order to address this issue, you’d use FIFOs.  
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Using FIFOs   
 

 

FIFO stands for “ first in, first out”—the first data to be written to the FIFO is the first to be read out later. A FIFO (also known as 
named pipe) is a special kind of pipe; it has an entry in the file system. This entry is created with the mkfifo(3) library call or the 
mkfifo(1) shell command. After it has been created, any process with proper permissions can open it. Reads from the resulting file 
descriptor will read data from whatever program connected to write to it. No data is actually stored on the disk for this type of 
entry; it is solely there as a way for two programs to rendezvous without one having to have forked off the second. 

 

 
 

 
After your programs are done using the FIFO, you will need to remove it. The FIFO is not automatically removed from the file 
system by the system. You can use the standard unlink() call to remove the FIFO. 

 
 
 

 
Listing 17-4 shows a rewrite of the program in Listing 17-2 to use a FIFO. If started without command-line parameters, it will 
create a FIFO and then read from it. Otherwise, it will hook up to the existing FIFO whose location is specified on the command 
line and write to it. 

 

 
 
  Note  Listing 17-4 is available online.   
 
 Listing 17-4: Sample usage of FIFOs   
 
 #include <stdio.h>   
 #include <unistd.h>   
 #include <errno.h>   
 #include <stdarg.h>   
 #include <time.h>   
 #include <sys/types.h>   
 #include <sys/stat.h>   
 #include <fcntl.h>   
       
 #include “safecalls.h”    
       
 void parent(char *argv[]);   
 void child(char *argv[]);   
 int write_buffer(int fd, const void *buf, int count);   
 int read_buffer(int fd, void *buf, int count);   
 int readnlstring(int socket, char *buf, int maxlen);   
 int readdelimstring(int socket, char *buf, int maxlen, char delim);   
 int tprintf(const char * fmt, ...);   
 pid_t safefork(void);   
       
 int main(int argc, char *argv[]) {    
       
   if (argc < 2)   
     parent(argv);   
   else   
     child(argv);   
       
   return 0;   
 }    
       
       
 void parent(char *argv[]) {    
   char buffer[100];   
   int fd;   
   /*  Close standard input.  Don’ t need it. * /   
       
   close(0);   
       
   /*  Create the FIFO and open it. * /   
       
   if (mkfifo(“ch17-fifo” , 0600) == -1)   
     HandleError(errno, “mkfifo” , “ failed to create ch17-fifo” );   
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   tprintf(“The server is listening on ch17-fifo.\n” );   
       
   /*  This will block until someone else connects to write. */   
       
   fd = safeopen(“ch17-fifo” , O_RDONLY);   
    
   tprintf(“Client has connected.\n” );   
       
   /*  Now wait for data, and display it. * /   
       
   while (readnlstring(fd, buffer, sizeof(buffer)) >= 0) {    
     tprintf(“Received message: %s\n” , buffer);   
   }    
   tprintf(“No more data; parent exiting.\n” );   
   safeclose(fd);   
    
   /*  Delete the FIFO. */   
       
   unlink(“ch17-fifo” );   
 }    
       
 void child(char *argv[]) {    
   int fd;   
   char buffer[100];   
       
   fd = safeopen(argv[1], O_WRONLY);   
    
   tprintf(“The client is ready.  Enter messages, or Ctrl+D when done.\n” );   
    
   while (fgets(buffer, sizeof(buffer), stdin) != NULL) {    
     write_buffer(fd, buffer, strlen(buffer));   
   }    
   tprintf(“Client exiting.\n” );   
   safeclose(fd);   
       
 }    
       
 /*    
    This function writes a certain number of bytes from “buf”  to a file   
    or socket descriptor specified by “ fd” . The number of bytes is   
    specified by “count” . It returns the number of bytes written,   
    or <0 on error.   
 * /   
       
 int write_buffer(int fd, const void *buf, int count) {    
   const void *pts = buf;   
   int  status = 0, n;   
    
   if (count < 0) return (-1);   
    
   while (status != count) {    
     n = safewrite(fd, pts+status, count-status);   
     if (n < 0) return (n);   
     status += n;   
   }    
   return (status);   
 }    
       
 int read_buffer(int fd, void *buf, int count) {    
   void *pts = buf;   
   int  status = 0, n;   
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   if (count < 0) return (-1);   
    
   while (status != count) {    
     n = saferead(fd, pts+status, count-status);   
     if (n < 1) return n;   
     status += n;   
   }    
   return (status);   
 }    
       
 int readnlstring(int socket, char *buf, int maxlen) {    
   return readdelimstring(socket, buf, maxlen, ‘ \n’ );   
 }    
       
 int readdelimstring(int socket, char *buf, int maxlen, char delim) {    
   int status;   
   int count = 0;   
       
   while (count < maxlen - 1) {    
     if ((status = read_buffer(socket, buf+count, 1)) < 1) {    
       return -1;   
     }    
     if (buf[count] == delim) {           /*  Found the delimiter * /   
       buf[count] = 0;   
       return 0;   
     }    
     count++;   
   }    
   buf[count] = 0;   
   return 0;   
 }    
       
 int tprintf(const char * fmt, ...) {    
   va_list args;   
   struct tm * tstruct;   
   time_t tsec;   
    
   tsec = time(NULL);   
   tstruct = localtime(&tsec);   
    
   printf(“%02d:%02d:%02d %5d| “ ,   
          tstruct->tm_hour,   
          tstruct->tm_min,   
          tstruct->tm_sec,   
          getpid());   
            
   va_start(args, fmt);   
   return vprintf(fmt, args);   
 }    
       
 pid_t safefork(void) {    
   pid_t retval;   
       
   retval = fork();   
   if (retval == -1)   
     HandleError(errno, “ fork” , “ failed” );   
   return retval;   
 }    
 
 Here is a sample result from running this code. First the parent side:   
 
 $ ./ch17-4   
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 17:29:54  1035| The server is listening on ch17-fifo.   
 17:29:58  1035| Client has connected.   
 17:30:05  1035| Received message: Hello, this is a message.   
 17:30:07  1035| Received message: Here’s another one.   
 17:30:11  1035| Received message: I’m done sending messages now.   
 17:30:11  1035| No more data; parent exiting.   
 
 And now from the client side:   
 
 $ ./ch17-4 ch17-fifo   
 17:29:58  1036| The client is ready.  Enter messages, or Ctrl+D when done.   
 Hello, this is a message.   
 Here’s another  one.   
 I ’m done sending messages now.   
 Ctrl+D   
 17:30:11  1036| Client exiting.  
 Summary   
 
 In this chapter, you learned about using pipes and FIFOs to communicate between processes. The following topics were discussed:   
 

  
• 

 
A pipe is a unidirectional interprocess communication mechanism that uses file descriptors and standard system-call I/O to do 
most functions. 

 
 
 

  
• 

 
A FIFO is a named pipe; that is, it has an entry in the file system although no data is stored in the file system to accompany a 
named pipe. 

 
 
 
  •  To use a pipe, you get an array of two file descriptors, then fork.   
 

  
• 

 
You can use dup2(2) to copy a pipe’s descriptor in place of standard input, output, or error to redirect the input or output of 
another program before using exec() to start it. 

 
 
 
  •  To use a FIFO, one process needs to run mkfifo(). Then, both processes need to open it; one for reading and one for writing.   
 
  •  The FIFO entry in the file system does not disappear by itself; you have to unlink it when you’re done with it.  
Chapter  18: Internet Sockets   
 
 Overview   
 

 
In Chapter 17, you learned about pipes as a method for communicating between processes residing on a single machine. In this 
chapter, I’ ll introduce you to TCP sockets, which are used to communicate with processes that may reside on different machines. 

 
 
 

 

This capability gives you an amazingly powerful tool. You can now exchange data with processes on other machines, letting you 
accomplish tasks such as distributed or parallel processing and true client/server applications. Moreover, you can set up 
information servers, such as Web servers, by using these calls. The networking that Linux uses natively for LAN purposes is the 
same as the networking used by the Internet, unlike some other operating systems. You have a complete, full-featured suite of 
tools for handling Internet communications in Linux. 

 

 
 

 
Along with all this power, though, comes a significant amount of added complexity. Dealing with a network introduces a significant 
number of variables and wildcards that are not present when you are communicating solely with another process on your local 
machine. In order to deal with these situations, you will have to go to some extra effort to ensure the correctness of your program.  

An Introduction to TCP/IP   
 

 

In order to have a clear understanding of how your programs work, and why the system calls behave as they do, you need to 
understand a few details about the underlying communication mechanism, the problems the designers of TCP faced, and how they 
resolved them. Although it’ s technically possible to write a program without this understanding, you’ ll most likely write far better 
code if you know a bit about the inner workings of the system. 

 

 
 
 The problems   
 

 
As networks have evolved, the need has arisen for a way to organize communication across them. Because Internet 
communication may pass through many different connections and routers, the communication method must be robust enough to 
detect failures. Because a single wire may hold communication between multiple processes on a computer, or even multiple 
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computers, there has to be a way to share the wire with different computers and processes while still ensuring that data sent to or 
from one particular process is kept separate from data from all the others. The systems need to be sure not to send data faster than 
the recipient can process it. For communication to be reliable, there needs to be a way to confirm that the remote machine has 
received a given transmission.  

 

 
Another problem is with the network itself. The protocol has to deal with network failures in a proper way, without causing data 
loss. This can be very tricky because the very nature of a network failure means a communication loss occurs, in which the remote 
end cannot necessarily be told to clean up after a problem. 

 

 
 

 
The protocol has to be able to deal with situations that arise without interrupting the network communication, if possible. For 
instance, if a network connection is overloaded (more data is being sent than it can accommodate), it will have to drop some data. 
A good protocol should be resilient in the face of this; it should detect the loss and resend the lost data. 

 

 
 
 The solutions   
 

 
In order to provide a communication method to address these issues, designers crafted a layered stack of protocols based upon IP, 
the Internet Protocol. As a developer, you are most interested in TCP, the Transmission Control Protocol, which is used for most 
Internet communication. 

 

 
 

 

TCP is a packet protocol. This means that when you send data from your program, no matter how large it is, it is separated into 
small packets for transport. These packets typically are no larger than one or two kilobytes. Each packet is stamped with some 
control information: which computer sent the packet, which port sent the packet (more on ports is in the Addressing section 
below), which computer the packet is going to, and which port the packet is going to. There is also some extra control information, 
a sequence number, and a checksum, which is used to ensure that the data in the packet has not been corrupted. 

 

 
 

 
The sequence number is important because sometimes packets may be delivered out of order. Most programs are extremely 
sensitive to order of data and could not deal with this sort of problem. Therefore, TCP will automatically encode an order number, 
and the receiving computer will automatically reassemble the packets in the correct order and discard duplicates. 

 

 
 

 
Additionally, this packet mechanism permits multiplexing of the network connection—that is, a single connection can be shared 
between multiple processes. This is possible because each packet sent is identified with the sending and receiving information. 

 
 
 

 

When a system receives an intact TCP packet, it sends back an acknowledgment to the sender. The sender will continue trying to 
send packets until it receives such an acknowledgment. This behavior means that communication can get through (albeit slowly) 
even if some packet loss occurs, as may be the case with an overloaded network connection. Additionally, it allows the sender to 
pace itself such that it does not transmit data at a speed faster than the recipient can process it, in that the sender can refrain from 
sending new data until receipt of most of the older data has been acknowledged. 

 

 
 

 
Moreover, because the packets are stamped with the sender’s address, if there is a network error along the way, the sender can 
sometimes be informed about it and return an error to the application. Of course, things do not always happen this way (sometimes 
the error communication can’ t reach your program due to this very failure). 

 

 
 

 
Finally, in order to establish communication, the two processes must first agree to communicate with each other; otherwise, there’s 
no point in sending data across the network. With TCP, this is done with the so-called three-way handshake. 

 
 
 

 
Let’s look at an analogy to help you understand the issues: a chess game played by mail. When you start, you need to confirm that 
you will be playing the game, and figure out such issues as who will take the first move. For the sake of this discussion, let’s 
assume that it normally takes about a day for your letters to be delivered and perhaps two weeks to contemplate each move. 

 

 
 

 

You might take the first move, and send off a letter to your friend with the move. Knowing the postal service, you never trust the 
letter to get there; it could get lost, misdirected, crushed, folded, spindled, or mutilated—you just never know. Because your friend 
may take some time before sending you the next move, you need to confirm the receipt of the one you sent. Therefore, your friend 
will mail you back an acknowledgment confirming receipt of the information you sent. If you don’ t receive this acknowledgment 
in the expected timeframe (perhaps two days), you can resend the information, thinking that the postal service has lost your letter. 

 

 
 

 

There is another possibility: the postal service may have lost the acknowledgment. If this is the case, you need to make sure to 
number your moves, because your friend may receive two copies of this one. You don’ t want someone else to mistake the 
information as your next move, so you agree on a system of numbering. If either of you receives more than one copy of a single 
item, you send an acknowledgment for each but only read the first. That way, in case the acknowledgment was lost, your friend 
knows you received the information, but you will not process (read) it twice. 

 

 
 
 There’s another thing to consider: what if you’re a much better chess player than your friend? Well, you might anticipate your  
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opponent’s moves, and decide to go ahead and send along your moves before even hearing what the other moves are. For chess, 
this is a bit of a stretch of the analogy, but please bear with me anyway. So you might write five letters, and want to send them all 
to your opponent—properly numbered, of course. But your opponent’s mailbox can only hold three letters, and if the postal 
service tries to jam more letters in the mailbox, you can be sure that some will be lost or arrive in an unreadable state.  

 

 
Your solution is to use flow control—wait for acknowledgments for previous information before sending new information. In this 
case, you could send at most three letters ahead of the recipient, based on the arrival of the acknowledgments. This three-letter 
limit is known as a sliding window; that is, at any given time, there may be a window of three packets in transit. 

 

 
 

 
Notice also how the postal service implements something analogous to multiplexing: the resources of the mail delivery trucks are 
shared between all the packets being transferred. In the same way, the resources of the network are shared between all the packets 
being electronically transferred. 

 

 
 

 

Just as the postal service can accidentally drop your letter out the back of a truck or spill coffee all over it, so too an electronic 
network can drop your packets or corrupt them. The communication method that you may use with a chess game is not unlike that 
used with TCP. Because TCP guarantees that your data will arrive intact and in the proper order unless a catastrophic failure 
prevents it, it is termed a reliable protocol. With TCP, data gets through correctly or not at all. 

 

 
 
 A note about jargon   
 

 

Because communication across a network can be complex, you should grow familiar with some jargon specific to this system. 
First, when we say server in relation to TCP/IP networking, we usually refer to a server process, although sometimes this could 
mean the actual computer that runs that process. TCP/IP lends itself to a client/server programming model, but aside from the 
initial connection, there is nothing that requires this method be used. 

 

 
 

 
A similar situation is true for the client: the word could apply to the client machine, but more often, to the client process. Again, this 
distinction may or may not be relevant after the initial connection has been established.  

Unique Challenges of TCP/IP   
 

 

You have already been introduced to some of the challenges facing people who use a distributed network for communication. The 
deceptively simple problem that the network does not always deliver data reliably means some rather complex interactions occur 
with your programs. You have to be able to deal with long delays as TCP resends packets that may have been dropped. You have 
to deal with network outages that could interrupt communication between your program and the remote. You have to deal with a 
situation in which the remote process or computer may crash. 

 

 
 

 
As an example, let’s consider a simple problem. Programs on various computers need to get a unique identifier from a central 
location. Identifiers must not be used twice, and they must all be used in sequence (there should be no gaps). They may be used to 
generate unique customer IDs or something similar. 

 

 
 

 

So, you decide to write a server that takes a request for an ID and gives out the next available item. Normally, this is easy. The 
server gives out an ID, and then the client machines will use it for whatever purpose is necessary. However, what happens if a 
network failure occurs as this is going on? The server has no way of knowing whether or not the client actually received the ID—a 
lack of an acknowledgment could be because the network went down before the ID was received by the client or because it went 
down after it was received by the client but before the acknowledgment was transmitted. There is no easy solution to this problem; 
the server is left in an unfortunate situation of not knowing what to do with a given ID. 

 

 
 

 
Although there are ways that you can reduce the problem, a better option may be to just prevent it from occurring in the first place. 
Perhaps you should make the server both generate and process the ID, meaning that a network failure would not prevent a generated 
ID from being used.  

Protocols   
 

 

When you send data from computer to computer with TCP/IP, you have to send it in such a way that the computer on the remote 
end understands what you’re trying to communicate. For instance, if you are writing a networked chess game, you need to have an 
agreed-upon way of encoding the chess moves into a form that can be communicated between the two machines, and decoding the 
data from the network such that the program can process it. 

 

 
 

 

In a stacked system such as TCP/IP, there are already other protocols at work that you don’ t even have to worry about. There are 
signaling protocols that define the voltages, signaling speeds, and the like used by the physical medium such as Ethernet or a 
modem. There is the TCP/IP suite, itself a collection of protocols built upon an existing physical protocol set. All of these exist to 
support your own application with its own protocol. 

 

 
 
 The protocol that’s right for you can vary depending on what your program does and what sort of data it needs to communicate.  
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Although TCP, at its lower level, splits your data stream into packets, you are never told and have no control over where this 
occurs, in that the packets are reassembled for you. When you read data from the network, you have no inherent indication of 
when the sending computer is finished sending a block of data. Contrast this with reading from a terminal, which (by default) 
returns data to your program one line at a time. Reading the same line, say a 70-character line, from the network may result in a 
chunk of 2 bytes, one of 60 bytes, and then one of 8 bytes—there is no way to know beforehand. Therefore, you must develop a 
way of communicating between your two processes such that they each know when they’ve received a full block of data.  

 

 

There are many different ways to do this. One of the most common is to send a fixed-length size indicator before sending the data 
itself. This size indicator is then read in its entirety by the recipient. The recipient then reads data in the amount indicated from the 
network, thus ensuring that it gets the entire communication and nothing more. Using this method has the advantage that it is fairly 
simple to code on both ends, which can be a big plus. A disadvantage is that it generally prevents users from being able to connect 
directly to your server and type commands to it, which can be useful for debugging. 

 

 
 

 

Another common method is to use a certain end-of-request marker. Many protocols used on the Internet, such as SMTP for mail 
and HTTP for Web traffic, use this method and use the carriage return or linefeed (something like \n) as their end-of-request 
marker. From the perspective of the program sending the data, this is an extremely simple way to go. However, for the recipient, 
the task is a bit more difficult. The input must be processed, scanned for this marker. Some programs simply read from the 
network one byte at a time when using this type of protocol. Although this leads to easy coding, it is quite slow, and a more 
complex buffering system often has to be worked out. Additionally, there is another potential problem: what if the request itself 
needs to contain the marker character? In some cases, this will never occur. However, it’s quite possible in some other cases. In 
these situations, you actually have to encode the usage of the character in the data, and decode this usage on the recipient side. 
Therefore, if you are transmitting binary data across the network, you cannot use the marker character method unless you perform 
what could be costly processing on both ends to encode the data. 

 

 
 

 

Another option is only useful in some situations, such as a chess game. If your requests are always the same size, then you can 
simply have each side read data in blocks of that size. In chess, you always have a source square and a destination square for your 
move—so you could simply always send data in this certain size. The program on the other end would know about it and would 
read data in chunks of that fixed size. 

 

 
 

 

The issue of identifying the start and end of a request or response is only part of the issue of communication, but it is frequently the 
most tricky. Another issue is that of sending binary data. Sometimes you may prefer to, for instance, send an integer in binary form 
instead of using something like sprintf() to convert it to text and then parse it back to binary on the remote. Doing so is faster and 
easier, although it again does make it difficult to talk to the server manually. There is a trick, though: different platforms use different 
internal representations for binary data such as integers. To overcome this problem, designers have devised a network byte order for 
these things, which is a standard representation for the data over the network. The data is converted into the network byte order, sent 
across the network, and converted to the appropriate local representation on the other end. The functions to do that include htonl() 
and htons() for converting from host to network order, and ntohl() and ntohs() for converting from network to host order.  

Addressing   
 

 

One issue that you never had to worry about when dealing with pipes is addressing. You never needed to worry about it because 
the issue simply did not exist—you were always talking to the local machine, so there was no need to find out the location of a 
remote one. Furthermore, because you would get the descriptors and then fork, there was no need to be able to locate a particular 
process on a machine. 

 

 
 

 

With the Internet, this is somewhat more difficult. You have several issues to contend with. First of all, you have to be able to 
identify the remote machine. Internally, the Internet Protocol uses a 32-bit number (up to 15 characters long in dotted-quad form) 
that uniquely identifies each host on the Internet. In the not-so-distant future, 64-bit addresses will be used, which will provide four 
billion times more addresses (for a total address space of roughly 18 quintillion or 1.8 * 10 ^ 19 unique addresses). Although 
machines like to deal with numeric addresses, us humans are quite different. It’s much easier for us to remember a name than a 12-
digit number. Moreover, it is useful to structure addressing hierarchically for larger organizations, just as snail mail addressing is 
hierarchical (country, state, city, city region, street, building number, and sometimes even the unit inside that building). To achieve 
this hierarchical arrangement, there is a distributed database for resolving names into numeric addresses, collectively known as the 
Domain Name System (RFC 1591). To access the Domain Name System (DNS), you can use the library call gethostbyname(). 
You typically use this call to do things such as resolve www.idgbooks.com into an address such as 38.170.216.15.  

 

 
 

 

This is only half of the puzzle. The second part is identifying the proper process with which to communicate on the remote (server) 
machine, after you have identified the remote machine. Consider the fact that there could easily be dozens of processes on the 
remote waiting for connections. One could be an HTTP (Web) server, another could be FTP, and a third could be a telnet server. If 
you want to connect to the Web server, you surely don’ t want to communicate with the FTP or telnet server instead. Moreover, on 
your own machine, you may have several copies of a Web browser that you want to run at once. You need the results from Web 
servers to be directed to the proper process locally. In other words, you need to be able to uniquely identify processes on each end 
of the communication. 
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However, the next question becomes: how can you do this? You might first think that you could use process IDs; just direct a 
packet to a specific machine and process. Unfortunately, there are several problems. First, if you’re connecting to a server, how do 
you know what process ID it has? PIDs are assigned in such a way that the server is never guaranteed to have the same PID. 
Besides, some programs need to open up multiple connections. Web browsers, for instance, do this so that they can download 
multiple graphics at once while loading a page. If you refer to an endpoint of communication by just a machine name and process 
ID, you lose the ability to separate out the data for the two different connections within the same process. This is obviously 
unacceptable. 

 

 
 

 

To solve this problem, designers came up with the notion of ports. A port is simple. For a client process, when it opens up a 
connection to a server, the system will allocate it the next available port (there are thousands possible). The client doesn’ t care 
which port it gets; it just needs one. This is a unique identifier corresponding to a single endpoint of communication. When packets 
arrive from the server, they are sent to that port on the client’s machine. The kernel knows which process is using that port, and 
more important, which socket is using it, and sends the data to the proper place. 

 

 
 

 
On the server, the situation is somewhat different. The port can’ t be picked entirely randomly; there has to be a way for the client 
to identify the server for connection. The typical method for this is to agree on a particular port beforehand. The server will begin 
listening on this port, and the client will connect to that port on the server. 

 

 
 

 
There is a system allowing symbolic names for these predefined port names—also known as services—permitting them to be 
looked up instead of hard-coded into a program. This is similar in concept, albeit much less sophisticated, to the Domain Name 
System. To perform a symbolic lookup, you typically use the getservbyname() library call. 

 

 
 

 

There is one additional twist to the issue of ports. Linux enforces a rule that only the root user is able to open a socket with a port 
number less than 1024. This prevents applications from hijacking system services and masquerading as a legitimate server. Unless 
your program will be running as root and specifically needs this protection, your server should use a port number greater than 1024. 
You might want to also consult your /etc/services file to make sure you are not choosing a number that is already taken by a well-
known service. On the client side, you’ ll randomly be assigned a number greater than 1024 if not running as root, so there is nothing 
to worry about there.  

Client-Side Connections   
 

 

In this section, I’m going to provide for you what is probably the smallest and most simple program. If you really stretch the 
definition, you could even call this a Web browser. The program connects to a Web server, requests a single document, and 
displays the result. Listing 18-1 shows a copy of the source code to this sample program. Note that the greater part of the code is 
used to establish a connection instead of actually do the communication. When you run the program, you’ ll need to give it two 
arguments: a server name and a port name or number. I’ ll show you an example of running it after presenting the code. 

 

 
 
  Note  Listing 18-1 is available online.   
 
 Listing 18-1: Sample web client   
 
 #include <string.h>   
 #include <sys/types.h>   
 #include <sys/socket.h>   
 #include <netdb.h>   
 #include <errno.h>   
 #include <arpa/inet.h>   
 #include “safecalls.h”    
       
 #define PROTOCOL “ tcp”    
 #define REQUEST “GET / HTTP/1.0\n\n”    
       
 int write_buffer(int fd, const void *buf, int count);   
       
 int main(int argc, char *argv[]) {    
   int sockid;   
   struct servent *serviceaddr;   
   struct hostent *hostaddr;   
   struct protoent *protocol;   
   struct sockaddr_in socketaddr;   
   char buffer[1024];   
   int count;   
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   /** * ** * **  Step 1: resolve names and generate the socket structure. */   
   /*  First, initialize the socketaddr. */   
   bzero((char *) &socketaddr, sizeof(socketaddr));   
   socketaddr.sin_family = AF_INET;   
       
   /*  Resolve the service name. * /   
       
   serviceaddr = getservbyname(argv[2], PROTOCOL);   
   if (!serviceaddr) {    
     HandleError(0, “getservbyname”, “service resolution failed” );   
   }    
   socketaddr.sin_port = serviceaddr->s_port;   
       
   /*  Resolve the host name. */   
       
   hostaddr = gethostbyname(argv[1]);   
   if (!hostaddr) {    
     HandleError(0, “gethostbyname”, “host resolution failed” );   
   }    
       
   memcpy(&socketaddr.sin_addr, hostaddr->h_addr, hostaddr->h_length);   
       
   /*  Resolve the protocol name. */   
       
   protocol = getprotobyname(PROTOCOL);   
   if (!protocol) {    
     HandleError(0, “getprotobyname”, “protocol resolution failed” );   
   }    
   /*  Note: using SOCK_STREAM below since this is only TCP. */   
       
   /** * ** * ** *  Step 2: Create the socket for this end. * /   
       
   sockid = socket(PF_INET, SOCK_STREAM, protocol->p_proto);   
   if (sockid < 0) {    
     HandleError(errno, “socket” , “couldn’ t create socket” );   
   }    
       
   /** * ** * ** *  Step 3: Connect the socket to the server.  (Almost done!) */   
       
   if (connect(sockid, &socketaddr, sizeof(socketaddr)) < 0) {    
     HandleError(errno, “connect” , “connect call failed” );   
   }    
       
   /** * ** * ** * ** * ** * ** * ** * ** ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * /   
       
   /*  The channel for communication to the server has now been established.   
      Now, request the document at the server root. * /   
       
   write_buffer(sockid, REQUEST, strlen(REQUEST));   
       
   /*  Request has been sent.  Read the result. * /   
       
   while ((count = saferead(sockid, buffer, sizeof(buffer) - 1))) {    
     write_buffer(1, buffer, count);   
   }    
       
   return 0;   
 }    
       
 int write_buffer(int fd, const void *buf, int count) {    
   const void *pts = buf;   
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   int  status = 0, n;   
    
   if (count < 0) return (-1);   
    
   while (status != count) {    
     n = safewrite(fd, pts+status, count-status);   
     if (n < 0) return (n);   
     status += n;   
   }    
   return (status);   
 }    
 

 

Let’s step through this code and watch what it does. The first step is the biggest—it is responsible for gathering information and 
using it to fill out the sockaddr_in structure. First, it initializes the structure to all nulls and sets the protocol family to indicate the 
Internet protocol. Next, it resolves the service name. After that, it queries the DNS for the host name. This action is a little strange 
in that the result needs to be copied into the structure by using memcpy(); the reason is that the types are incompatible for a direct 
assignment. Finally, the protocol entry is found. 

 

 
 

 
With step 2, a socket is created. The socket is a special-purpose file descriptor. Each side uses a socket for communication. This 
call does not actually connect it to the remote; rather, it creates an entry for the socket in the system. Finally, with step 3, the 
socket is actually connected. At this point, the TCP handshake occurs and the two machines begin talking to each other. 

 

 
 

 

After the socket has been created, you can refer to it as with any other file descriptor. You’ ll note that, unlike pipes, the socket is 
bidirectional—it is both written to and read from. A request is sent, which will obtain the top page from a Web server. After 
sending the request, the program enters a loop reading data until the Web server closes the connection. The data read is simply 
printed out to the screen. 

 

 
 

 
To compile the program, you’ ll need the safecalls.c and safecalls.h files from Chapter 14, “ Introducing the Linux I/O.”  You can 
then compile with a command like this: 

 
 
 
 $ gcc -Wall -o ch18-1 ch18-1.c safecalls.c   
 

 
When you run the program, it expects two parameters: the name of a server and the name of a protocol. For the protocol, you 
should use HTTP, as it’s designed to communicate with a Web server. Here’s an example of running the program: 

 
 
 
 $ ./ch18-1 www.apache.org http   
 HTTP/1.1 200 OK   
 Date: Thu, 28 Oct 1999 03:31:07 GMT   
 Server: Apache/1.3.10-dev (Unix) ApacheJServ/1.0 PHP/3.0.6   
 Content-Location: index.html   
 Vary: negotiate   
 TCN: choice   
 Last-Modified: Tue, 05 Oct 1999 16:43:47 GMT   
 Connection: close   
 Content-Type: text/html   
       
 <!DOCTYPE HTML PUBLIC “ -//W3C//DTD HTML 3.2 Final//EN”>   
 <HTML>   
 <HEAD>   
   <TITLE>Apache Project Development Site</TITLE>   
 </HEAD>   
 

 
To be sure, there is actually far more output than this; you can see for yourself that the entire HTML source for this front page is 
returned. You can also experiment with trying other servers, although you should be aware that you’ ll only be able to request the root 
page, because the program isn’ t sophisticated enough to request other pages.  

Server-Side Connections   
 

 

Setting up a connection for a server is a bit more complex than doing the same for a client. In order to form a server, you actually 
need to use two file descriptors. The first is designed solely to listen for connections. After a connection is received, a second is 
created to deal with the communication. As you’ ll see in a bit, this mechanism is necessary to support a server that can handle 
multiple connections. Listing 18-2 presents the source code for a first attempt at a server. 
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  Note  Listing 18-2 is available online.   
 
 Listing 18-2: Sample server    
 
 #include <string.h>   
 #include <sys/types.h>   
 #include <sys/socket.h>   
 #include <netdb.h>   
 #include <errno.h>   
 #include <arpa/inet.h>   
 #include “safecalls.h”    
       
 #define PROTOCOL “ tcp”    
 #define SERVICE 7797   
 #define WELCOME “You have connected to the counting server.  Welcome!\n”    
       
 int write_buffer(int fd, const void *buf, int count);   
 int readnlstring(int socket, char *buf, int maxlen);   
 int read_buffer(int fd, void *buf, int count);   
 int readdelimstring(int socket, char *buf, int maxlen, char delim);   
       
 int main(void) {    
   int listensock, workersock;   
   struct protoent *protocol;   
   struct sockaddr_in socketaddr;   
   char buffer[1024];   
   char size[100];   
   int addrlen;   
   int trueval = 1;   
    
   /** * ** * **  Step 1:  generate the socket structure and resolve names. */   
       
   bzero((char *) &socketaddr, sizeof(socketaddr));   
   socketaddr.sin_family = AF_INET;   
   socketaddr.sin_addr.s_addr = INADDR_ANY;   
   socketaddr.sin_port = htons(SERVICE);   
    
       
   /*  Resolve the protocol name. */   
       
   protocol = getprotobyname(PROTOCOL);   
   if (!protocol) {    
     HandleError(0, “getprotobyname”, “protocol resolution failed” );   
   }    
   /*  Note: using SOCK_STREAM below since this is only TCP. */   
       
   /** * ** * ** *  Step 2: Create the master socket */   
       
   listensock = socket(PF_INET, SOCK_STREAM, protocol->p_proto);   
   if (listensock < 0) {    
     HandleError(errno, “socket” , “couldn’ t create socket” );   
   /** * ** * ** *  Step 3: Bind it to a port. */   
       
   if (bind(listensock, &socketaddr, sizeof(socketaddr)) < 0) {    
     HandleError(errno, “bind” , “couldn’ t bind to port %d” , SERVICE);   
   }    
       
   /*  Let others connect to it immediately upon exit. * /   
       
   setsockopt(listensock, SOL_SOCKET, SO_REUSEADDR, &trueval, sizeof(trueval));   
       
   /** * ** * ** *  Step 4: Listen for connections. */   
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   if (listen(listensock, 0) < 0) {    
     HandleError(errno, “ listen” , “couldn’ t listen on port %d” , SERVICE);   
   }    
       
   printf(“Listening for a connection...\n” );   
       
   /** * ** * ** *  Step 5: Accept a connection from the client. */   
       
   workersock = accept(listensock, &socketaddr, &addrlen);   
   if (workersock < 0) {    
     HandleError(errno, “accept” , “couldn’ t open worker socket” );   
   }    
       
   /** * ** * ** *  Ready to communicate! * /   
       
   printf(“Received connection from a client at “ );   
   printf(“%s port %d\n” , inet_ntoa(socketaddr.sin_addr),   
          ntohs(socketaddr.sin_port));   
       
   write_buffer(workersock, WELCOME, strlen(WELCOME));   
       
   while(readnlstring(workersock, buffer, sizeof(buffer)) >= 0) {    
     sprintf(size, “Size: %d\n” , strlen(buffer) - 1);   
     write_buffer(workersock, size, strlen(size));   
     if (strncmp(buffer, “exit” , 4) == 0) break;   
   }    
       
   printf(“Shutting down.\n” );   
       
   safeclose(workersock);   
   safeclose(listensock);   
    
   return 0;   
 }    
       
 int write_buffer(int fd, const void *buf, int count) {    
   const void *pts = buf;   
   int  status = 0, n;   
    
   if (count < 0) return (-1);   
    
   while (status != count) {    
     n = safewrite(fd, pts+status, count-status);   
     if (n < 0) return (n);   
     status += n;   
   }    
   return (status);   
 }    
       
 int read_buffer(int fd, void *buf, int count) {    
   void *pts = buf;   
   int  status = 0, n;   
    
   if (count < 0) return (-1);   
    
   while (status != count) {    
     n = saferead(fd, pts+status, count-status);   
     if (n < 1) return n;   
     status += n;   
   }    
   return (status);   



 361 

 }    
       
       
 int readnlstring(int socket, char *buf, int maxlen) {    
   return readdelimstring(socket, buf, maxlen, ‘ \n’ );   
 }    
       
 int readdelimstring(int socket, char *buf, int maxlen, char delim) {    
   int status;   
   int count = 0;   
       
   while (count < maxlen - 1) {    
     if ((status = read_buffer(socket, buf+count, 1)) < 1) {    
       return -1;   
     }    
     if (buf[count] == delim) {           /*  Found the delimiter * /   
       buf[count] = 0;   
       return 0;   
     }    
     count++;   
   }    
   buf[count] = 0;   
   return 0;   
 }    
 

 
There is a five-step connection process in this situation. The first step initializes the socket address structure. In this case, we know 
the port number (defined as 7797) ahead of time, so there is no need to do a lookup on that. The protocol is still looked up, but 
notice that there is no need to look up a host—that’s because the clients look up the server, not the other way around. 

 

 
 

 
With step 2, you create the master, or listening, socket. As with the client, the socket can’ t actually do anything until it is 
connected to something useful. Therefore, we need a few more steps to get everything into gear. 

 
 
 

 

In step 3, the socket is bound to a port on the server machine. This registers the socket as using that port with the operating system; 
it is the step immediately prior to a listen. After that, as a convenience, the SO_REUSEADDR option is set. Normally, when your 
program exits, the system may prevent another program from binding to the same port for a few seconds; if you’re going to be 
experimenting with this program, it’s useful to inhibit that behavior so you can restart the server immediately. In step 4, the system 
is told to listen for connections. 

 

 
 

 

Beginning with step 5, these actions can be repeated for every server in the system. Many servers will handle multiple requests and 
might fork after the call to accept. Some might instead loop, resetting themselves and then using accept() to get new connections. 
The accept() call will wait until a client connection request is received. When such a request is received, it returns a new file 
descriptor—a worker socket—through which all the communication to the client must take place. Additionally, if its second 
parameter is not NULL, it will fill out details about this connection in the sockaddr_in structure pointed to by the argument. These 
details are printed out in the code. 

 

 
 

 
The communication itself is fairly straightforward; the program reads a string terminated by a newline character and sends a string 
containing the size back to the client. It does this until the client closes the connection (causing readnlstring() to return a value less 
than 1) or until the supplied string begins with “exit.”   

 

 
 

 

Now, let’s try this program out. First, start the server. Then, you can use telnet to connect to it. If you are not live on a network, 
you can use telnet localhost 7797 to connect from your own machine. If you are, you can use any machine on your network (or the 
entire Internet if you are properly connected to it) to connect to your new server; simply substitute the server’s host name for 
localhost in the example. Here is a sample interaction from the client side: 

 

 
 
 $ telnet localhost 7797   
 Trying 127.0.0.1...   
 Connected to localhost.   
 Escape character is ‘^]’ .   
 You have connected to the counting server.  Welcome!   
 Hello!   
 Size: 6   
 This is a test of the new server .   
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 Size: 33   
 1   
 Size: 1   
 2   
 Size: 1   
 9   
 Size: 1   
 10   
 Size: 2   
 bye   
 Size: 3   
 exit   
 Size: 4   
 Connection closed by foreign host.   
 

 
The server worked! It accepted the connection, handled the data, and sent the result back to the client. In the window running the 
server process, you’ ll see something like this: 

 
 
 
 $ ./ch18-2   
 Listening for a connection...   
 Received connection from a client at 127.0.0.1 port 1399   
 Shutting down.   
 

 
The server listened for a connection, informed you when it received one, and then shut down when requested. Notice that every 
time you connect, a different port number will be reported. This is because the port number for the client is assigned by the 
operating system as mentioned before. 

 

 
 

 

This server works, but it has some limitations. For one, it can handle only one client at a time. This is not really acceptable. 
Imagine a Web server that could handle only one client at a time--if there were a large file that took 20 minutes to download, no 
pages would be served until it was completely transferred! In almost every case, you want your server to be able to handle multiple 
requests at once. A second problem is that the server would exit after handling only one request. Again, this is no doubt not what 
you really want; a server that only handles one request is most often not very useful. 

 

 
 

 
One solution to these problems is to have the server fork off when it gets a connection request from a child. Listing 18-3 shows a 
version of the code that does just that. 

 
 
 
  Note  Listing 18-3 is available online.   
 
 Listing 18-3: Sample server  code that forks   
 
 #include <string.h>   
 #include <sys/types.h>   
 #include <sys/socket.h>   
 #include <sys/resource.h>   
 #include <sys/wait.h>   
 #include <netdb.h>   
 #include <errno.h>   
 #include <arpa/inet.h>   
 #include <signal.h>   
 #include “safecalls.h”    
       
 #define PROTOCOL “ tcp”    
 #define SERVICE 7797   
 #define WELCOME “You have connected to the counting server.  Welcome!\n”    
       
 int write_buffer(int fd, const void *buf, int count);   
 int readnlstring(int socket, char *buf, int maxlen);   
 int read_buffer(int fd, void *buf, int count);   
 int readdelimstring(int socket, char *buf, int maxlen, char delim);   
 void waitchildren(int signum);   
 pid_t safefork(void);   
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 static int connectioncount = 0;   
       
 int main(void) {    
   int listensock, workersock;   
   struct protoent *protocol;   
   struct sockaddr_in socketaddr;   
   char buffer[1024];   
   char size[100];   
   int addrlen;   
   int trueval = 1;   
   struct sigaction act;   
 /*  Initialize the signal handler. */   
       
   sigemptyset(&act.sa_mask);   
   act.sa_flags = SA_RESTART;   
   act.sa_handler = (void *)waitchildren;   
   sigaction(SIGCHLD, &act, NULL);   
    
   /** * ** * **  Step 1:  generate the socket structure and resolve names. */   
       
   bzero((char *) &socketaddr, sizeof(socketaddr));   
   socketaddr.sin_family = AF_INET;   
   socketaddr.sin_addr.s_addr = INADDR_ANY;   
   socketaddr.sin_port = htons(SERVICE);   
    
       
   /*  Resolve the protocol name. */   
       
   protocol = getprotobyname(PROTOCOL);   
   if (!protocol) {    
     HandleError(0, “getprotobyname”, “protocol resolution failed” );   
   }    
   /*  Note: using SOCK_STREAM below since this is only TCP. */   
       
   /** * ** * ** *  Step 2: Create the master socket */   
       
   listensock = socket(PF_INET, SOCK_STREAM, protocol->p_proto);   
   if (listensock < 0) {    
     HandleError(errno, “socket” , “couldn’ t create socket” );   
   }    
       
   /** * ** * ** *  Step 3: Bind it to a port. */   
       
   if (bind(listensock, &socketaddr, sizeof(socketaddr)) < 0) {    
     HandleError(errno, “bind” , “couldn’ t bind to port %d” , SERVICE);   
   }    
       
   /*  Let others connect to it immediately upon exit. * /   
       
   setsockopt(listensock, SOL_SOCKET, SO_REUSEADDR, &trueval, sizeof(trueval));   
       
   /** * ** * ** *  Step 4: Listen for connections. */   
       
   if (listen(listensock, 0) < 0) {    
     HandleError(errno, “ listen” , “couldn’ t listen on port %d” , SERVICE);   
   }    
       
   printf(“The server is active.  You may terminate it with Ctrl-C.\n” );   
       
       
   while (1) {    
     workersock = accept(listensock, &socketaddr, &addrlen);   
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     if (workersock < 0) {    
       HandleError(errno, “accept” , “couldn’ t open worker socket” );   
     }    
       
     connectioncount++;   
       
     if (safefork()) {              /*  parent process */   
       safeclose(workersock);      /*  don’ t need this socket for the parent */   
       printf(“Received connection from a client at “ );   
       printf(“%s port %d\n” , inet_ntoa(socketaddr.sin_addr),   
              ntohs(socketaddr.sin_port));   
       printf(“There are %d clients active.\n” , connectioncount);   
     }  else {                      /*  child process */   
       safeclose(listensock);   
       write_buffer(workersock, WELCOME, strlen(WELCOME));   
         
       while(readnlstring(workersock, buffer, sizeof(buffer)) >= 0) {    
         sprintf (size, “Size: %d\n” , strlen(buffer) - 1);   
         write_buffer(workersock, size, strlen(size));   
         if (strncmp(buffer, “exit” , 4) == 0) break;   
       }    
       
       safeclose(workersock);   
       exit(0);   
     }    
   }    
         
   printf(“Shutting down.\n” );   
       
   safeclose(listensock);   
    
   return 0;   
 }    
       
 int write_buffer(int fd, const void *buf, int count) {    
   const void *pts = buf;   
   int  status = 0, n;   
    
   if (count < 0) return (-1);   
    
   while (status != count) {    
     n = safewrite(fd, pts+status, count-status);   
     if (n < 0) return (n);   
     status += n;   
   }    
   return (status);   
 }    
       
 int read_buffer(int fd, void *buf, int count) {    
   void *pts = buf;   
   int  status = 0, n;   
    
   if (count < 0) return (-1);   
    
   while (status != count) {    
     n = saferead(fd, pts+status, count-status);   
     if (n < 1) return n;   
     status += n;   
   }    
   return (status);   
 }    
       



 365 

       
 int readnlstring(int socket, char *buf, int maxlen) {    
   return readdelimstring(socket, buf, maxlen, ‘ \n’ );   
 }    
       
 int readdelimstring(int socket, char *buf, int maxlen, char delim) {    
   int status;   
   int count = 0;   
       
   while (count < maxlen - 1) {    
     if ((status = read_buffer(socket, buf+count, 1)) < 1) {    
       return -1;   
     }    
     if (buf[count] == delim) {           /*  Found the delimiter * /   
       buf[count] = 0;   
       return 0;   
     }    
     count++;   
   }    
   buf[count] = 0;   
   return 0;   
 }    
       
 void waitchildren(int signum) {    
   while (wait3((int *)NULL,   
                WNOHANG,   
                (struct rusage *)NULL) > 0) {    
     connectioncount--;   
     printf(“A client disconnected.\n” );   
     printf(“There are %d clients active.\n” , connectioncount);   
   }    
 }    
       
 pid_t safefork(void) {    
   int retval;   
       
   retval = fork();   
       
   if (retval == -1) {    
     HandleError(errno, “ fork” , “ fork failed” );   
   }    
   return retval;   
 }    
 

 

This program simply continues accepting connections as long as it continues to run. When a connection comes in, the program forks 
a copy of itself to process the connection and immediately goes back to accepting new connections. In this way, each connection can 
be processed in its own process, without blocking other connections from coming in and being processed. Altogether, this is a big 
win for the server.  

A Network L ibrary   
 

 

As you write network programs, you’ ll find that you are repeating many tasks over and over. A library of networking calls can 
help you write programs faster, to be able to reuse more code, and to reduce bugs that may be introduced by reimplementing code. 
Here is the code for the library. Some functions in it have not yet been discussed; they’ ll be covered in the next chapter. After 
presenting the code for the library, I’ ll explain a few details to you and demonstrate a rewrite of an earlier program in this chapter 
using the new library. 

 

 
 
 First, look at Listing 18-4, the header file, networkinglib.h.   
 
  Note  Listing 18-4 is available online.   
 
 Listing 18-4: Network library header : networkinglib.h   
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 /*  Don’ t include this file twice... * /   
 #ifndef __NETWORKINGLIB_H__   
 #define __NETWORKINGLIB_H__   
       
 #include <sys/types.h>   
 #include <sys/socket.h>   
 #include <netinet/in.h>   
 #include <netdb.h>   
 #include <arpa/inet.h>   
 #include <string.h>   
 #include <fcntl.h>   
 #include <stdio.h>   
 #include <malloc.h>   
 #include <errno.h>           /*  errno global variable */   
 #include “safecalls.h”    
       
 #ifndef  INADDR_NONE   
 #define  INADDR_NONE 0xffffffff   
 #endif   
       
 #ifndef COPY_BUFSIZE   
 #define COPY_BUFSIZE 10*1024       /*  Buffer size for copies is 10K */   
 #endif   
       
 /*  Basic reading and writing * /   
 int read_buffer(int fd, char *buf, int count);   
 int write_buffer(int fd, char *buf, int count);   
       
 /*  String/delimited reading and writing * /   
       
 int writestring(int sockid, char *str);   
 int readstring(int sockid, char *buf, int maxlen);   
 int readnlstring(int sockid, char *buf, int maxlen);   
 int readdelimstring(int sockid, char *buf, int maxlen, char delim);   
       
 /*  Integer reading and writing * /   
       
 int read_netulong(int fd, uint32_t *value);   
 int write_netulong(int fd, const unsigned long int value);   
       
 /*  Data copy */   
       
 int copy(int in, int out, unsigned long maxbytes);   
       
 /*  Reverse DNS lookups and friends */   
       
 char *getmyfqdn(void);   
 char *getfqdn(const char *host);   
       
 /*  Network initialization * /   
       
 void socketaddr_init(struct sockaddr_in *socketaddr);   
 int socketaddr_service(struct sockaddr_in *socketaddr,   
                const char *service, const char *proto);   
 int socketaddr_host(struct sockaddr_in *socketaddr,   
                const char *host);   
 int resolveproto(const char *proto);   
 int prototype(const char *proto);   
 int clientconnect(const char *host, const char *port, const char *proto);   
 int serverinit(const char *port, const char *proto);   
       
 /*  Miscellaneous * /   
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 void stripcrlf(char * temp);   
       
 #endif   
 
 And now, Listing 18-5 shows the code itself, networkinglib.c.   
 
  Note  Listing 18-5 is available online.   
 
 Listing 18-5: Net work library: networkinglib.c   
 
 /*    
 Library for:   
 *  general networking   
 *  sockets, pipes, etc.   
 *  unbuffered I/O   
 *  other items relating to the above   
       
 by John Goerzen, Linux Programming Bible   
 * /   
       
 #include <ctype.h>   
 #include <stdlib.h>   
 #include “networkinglib.h”    
       
 static int checkstring(const char *string);   
       
 /*  checkstring() is a private function used only by this library.  It checks   
     the passed string.  It returns false if there are no nonnumeric   
     characters  in the string, or true if there are such characters. */   
       
 static int checkstring(const char *string) {    
 int counter;   
   for (counter = 0; counter < strlen(string); counter++)   
     if (!(isdigit(string[counter])))   
       return 1;   
   return 0;   
 }    
       
 /*  Send a string, including terminating null.  readdelimstring() could be   
    perfect for reading it on the other end.  And in fact, readstring()   
    uses just that. * /   
       
 int writestring(int sockid, char *str) {    
   return write_buffer(sockid, str, strlen(str) + 1);   
 }    
       
 /*  Reads a string from the network, terminated by a null. * /   
       
 int readstring(int sockid, char *buf, int maxlen) {    
   return readdelimstring(sockid, buf, maxlen, 0);   
 }    
       
 /*  Reads a string terminated by a newline * /   
       
 int readnlstring(int sockid, char *buf, int maxlen) {    
   return readdelimstring(sockid, buf, maxlen, ‘ \n’ );   
 }    
       
 /*  Reads a string with an arbitrary ending delimiter. */   
       
 int readdelimstring(int sockid, char *buf, int maxlen, char delim) {    
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   int count = 0, status;   
       
   while (count <= maxlen) {    
     status = saferead(sockid, buf+count, 1);   
     if (status < 0) return status;   
     if (status < 1) {    
       HandleError(0, “ readdelimstring” , “unexpected EOF from socket” );   
       return status;   
     }    
     if (buf[count] == delim) {             /*  Found the delimiter */   
       buf[count] = 0;   
       return 0;   
     }    
     count++;   
   }    
   return 0;   
 }    
       
 /*  Copies data from the in to the out file descriptor.  If numsize   
    is nonzero, specifies the maximum number of bytes to copy.  If   
    it is 0, data will continue being copied until in returns EOF. */   
       
 int copy(int in, int out, unsigned long maxbytes) {    
   char buffer[COPY_BUFSIZE];   
   int indata, remaining;   
       
   remaining = maxbytes;   
       
   while (remaining || !maxbytes) {    
     indata = saferead(in, buffer,   
              (!remaining || COPY_BUFSIZE < remaining) ? COPY_BUFSIZE   
               : remaining);   
     if (indata < 1) return indata;   
     write_buffer(out, buffer, indata);   
     if (maxbytes) remaining -= indata;   
   }    
   return (0);   
 }    
       
       
 /*    
    This function will write a certain number of bytes from the buffer   
    to the descriptor fd.  The number of bytes written are returned.   
    This function will not return until all data is written or an error   
    occurs.   
 * /   
       
 int write_buffer(int fd, char *buf, int count) {    
   int  status = 0, result;   
       
   if (count < 0) return (-1);   
    
   while (status != count) {    
     result = safewrite(fd, buf + status, count - status);   
     if (result < 0) return result;   
     status += result;   
   }    
   return (status);   
 }    
       
 /*    
    This function will read a number of bytes from the descriptor fd.  The   
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    number of bytes read are returned.  In the event of an error, the   
    error handler is returned.  In the event of an EOF at the first read   
    attempt, 0 is returned.  In the event of an EOF after some data has   
    been received, the count of the already-received data is returned.   
 * /   
       
 int read_buffer(int fd, char *buf, int count) {    
   char *pts = buf;   
   int  status = 0, n;   
       
   if (count < 0) return (-1);   
       
   while (status != count) {    
     n = saferead(fd, pts+status, count-status);   
     if (n < 0) return n;   
     if (n == 0) return status;   
     status += n;   
   }    
   return (status);   
 }    
       
 /*  Reads a uint32 from the network in network byte order.   
       
    A note on the implementation: because some architectures cannot   
    write to the memory of the integer except all at once, a character   
    buffer is used that is then copied into place all at once. */   
       
 int read_netulong(int fd, uint32_t *value) {    
   char buffer[sizeof(uint32_t)];   
   int status;   
       
   status = read_buffer(fd, buffer, sizeof(uint32_t));   
   if (status != sizeof(uint32_t)) {    
     HandleError(0, “ read_netulong” , “unexpected EOF”);   
     return -1;   
   }    
   bcopy(buffer, (char *)value, sizeof(uint32_t));   
   *value = ntohl(*value);   
   return (0);   
 }    
       
 /*  Write an unsigned long in network byte order */   
       
 int write_netulong(int fd, const unsigned long int value) {    
   char buffer[sizeof(uint32_t)];   
   uint32_t temp;   
   int status;   
       
    temp = htonl(value);   
    bcopy((char *)&temp, buffer, sizeof(temp));   
    status = write_buffer(fd, buffer, sizeof(temp));   
    if (status != sizeof(temp)) return -1;   
    return (0);   
 }    
       
 /*  Returns the fully qualified domain name of the current host. */   
 char *getmyfqdn(void) {    
   char hostname[200];   
   gethostname(hostname, sizeof(hostname));   
   return getfqdn(hostname);   
 }    
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 /*  Returns the fully qualified domain name of an arbitrary host. */   
 char *getfqdn(const char *host) {    
   struct hostent *hp;   
   static char fqdn[200];   
    
   hp = gethostbyname(host);   
   if (!hp)   
     return (char *)NULL;   
   safestrncpy(fqdn, (hp->h_aliases[0]) ? hp->h_aliases[0] : hp->h_name,   
               sizeof(fqdn));   
   return fqdn;   
 }    
       
 void socketaddr_init(struct sockaddr_in *socketaddr) {    
   bzero((char *) socketaddr, sizeof(*socketaddr));   
   socketaddr->sin_family = AF_INET;   
 }    
       
 int socketaddr_service(struct sockaddr_in *socketaddr,   
                        const char *service, const char *proto) {    
   struct servent *serviceaddr;   
   /*  Need to allow numeric as well as textual data. */   
       
   /*  0: pass right through. */   
       
   if (strcmp(service, “0” ) == 0)   
     socketaddr->sin_port = 0;   
   else {                            /*  nonzero port */   
     serviceaddr = getservbyname(service, proto);   
     if (serviceaddr) {    
       socketaddr->sin_port = serviceaddr->s_port;   
     }  else {                       /*  name did not resolve, try number * /   
       if (checkstring(service)) {  /*  and it’s a text name, fail. * /   
         HandleError(0, “socketaddr_service” , “no lookup for %s/%s” ,   
                     service, proto);   
         return -1;   
       }    
       if ((socketaddr->sin_port = htons((u_short)atoi(service))) == 0) {    
         HandleError(0, “socketaddr_service” , “numeric conversion failed” );   
         return -1;   
       }    
     }    
   }    
       
   return 0;   
 }    
       
 int socketaddr_host(struct sockaddr_in *socketaddr,   
                     const char *host) {    
   struct hostent *hostaddr;   
   hostaddr = gethostbyname(host);   
   if (!hostaddr) {    
     HandleError(0, “socketaddr_host” , “gethostbyname failed for %s” , host);   
     return -1;   
   }    
       
   memcpy(&socketaddr->sin_addr, hostaddr->h_addr, hostaddr->h_length);   
   return 0;   
 }    
       
 int resolveproto(const char *proto) {    
   struct protoent *protocol;   
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   protocol = getprotobyname(proto);   
   if (!protocol) {    
     HandleError(0, “ resolveproto” , “getprotobyname failed for %s” , proto);   
     return -1;   
   }    
       
   return protocol->p_proto;   
 }    
 int prototype(const char *proto) {    
   if (strcmp(proto, “ tcp” ) == 0) return SOCK_STREAM;   
   if (strcmp(proto, “udp”) == 0) return SOCK_DGRAM;   
   return -1;   
 }    
       
 int clientconnect(const char *host, const char *port, const char *proto) {    
   struct sockaddr_in socketaddr;   
   int sockid;   
    
   socketaddr_init(&socketaddr);   
   socketaddr_service(&socketaddr, port, proto);   
   socketaddr_host(&socketaddr, host);   
       
   sockid = socket(PF_INET, prototype(proto), resolveproto(proto));   
   if (sockid < 0) {    
     HandleError(errno, “clientconnect” , “socket failed” );   
     return -1;   
   }    
       
   if (connect(sockid, &socketaddr, sizeof(socketaddr)) < 0) {    
     HandleError(errno, “clientconnect” , “connect failed” );   
     return -1;   
   }    
       
   return sockid;   
 }    
       
 int serverinit(const char *port, const char *proto) {    
   struct sockaddr_in socketaddr;   
   int mastersock;   
   int trueval = 1;   
   socketaddr_init(&socketaddr);   
   socketaddr.sin_addr.s_addr = INADDR_ANY;   
   socketaddr_service(&socketaddr, port, proto);   
    
   mastersock = socket(PF_INET, prototype(proto), resolveproto(proto));   
   if (mastersock < 0) {    
     HandleError(errno, “serverinit” , “couldn’ t create socket” );   
     return -1;   
   }    
       
   if (bind(mastersock, &socketaddr, sizeof(socketaddr)) < 0) {    
     HandleError(errno, “serverinit” , “bind to port %d failed” ,   
                 socketaddr.sin_port);   
     return -1;   
   }    
       
   setsockopt(mastersock, SOL_SOCKET, SO_REUSEADDR, &trueval, sizeof(trueval));   
   if (prototype(proto) == SOCK_STREAM) {    
     if (listen(mastersock, 5) < 0) {    
       HandleError(errno, “serverinit” , “ listen on port %d failed” ,   
                   socketaddr.sin_port);   
       return -1;   
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     }    
   }    
       
   return mastersock;   
 }    
       
 /*  Removes CR and LF from the end of a string. */   
 void stripcrlf(char * temp)   
 {    
   while (strlen(temp) &&   
          ((temp[strlen(temp)-1] == 13) || (temp[strlen(temp)-1] == 10))) {    
     temp[strlen(temp)-1] = 0;   
   }    
 }    
 

 
You’ ll find that this code is mostly the same as the code you have already seen. There are some modifications to allow it to work 
in more situations, such as when HandleError() does not cause program termination. The service resolving routine will now allow 
you to specify numeric port names, so you can, for instance, substitute 80 for HTTP for a Web server. 

 

 
 

 
Included below are rewrites of the first and third examples from this chapter, now designed to use the library. Notice how easy 
establishing a network connection suddenly becomes, and how easy communication can be as well. Here is a rewrite of the simple 
client: 

 

 
 
 #include <string.h>   
 #include <sys/types.h>   
 #include <sys/socket.h>   
 #include <netdb.h>   
 #include <errno.h>   
 #include <arpa/inet.h>   
 #include “safecalls.h”    
 #include “networkinglib.h”    
       
 #define PROTOCOL “ tcp”    
 #define REQUEST “GET / HTTP/1.0\n\n”    
       
 int main(int argc, char *argv[]) {    
   int sockid;   
       
   sockid = clientconnect(argv[1], argv[2], “ tcp” );   
       
   /*  The channel for communication to the server has now been established.   
      Now, request the document at the server root. * /   
       
   write_buffer(sockid, REQUEST, strlen(REQUEST));   
       
   /*  Request has been sent.  Read the result. * /   
       
   copy(sockid, 1, 0);   
       
   return 0;   
 }    
 

 
The program is now far shorter and a lot easier to understand. Because all of the work is shoved off to the network library, you can 
make the program work with a lot less code used itself. To compile, you can use: 

 
 
 
 $ gcc –Wall –o newclient newclient.c networkinglib.c   
 

 
The server program gets a benefit as well, although because it is a bit more complex, the difference is not quite as apparent—
however, it still sheds almost 100 lines as shown in Listing 18-6. 

 
 
 
  Note  Listing 18-6 is available online.   
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 Listing 18-6: Revised network library code   
 
 #include <string.h>   
 #include <sys/types.h>   
 #include <sys/socket.h>   
 #include <sys/resource.h>   
 #include <sys/wait.h>   
 #include <errno.h>   
 #include “safecalls.h”    
 #include “networkinglib.h”    
       
 #define PROTOCOL “ tcp”    
 #define SERVICE “7797”    
 #define WELCOME “You have connected to the counting server.  Welcome!\n”    
       
 void waitchildren(int signum);   
 pid_t safefork(void);   
       
 static int connectioncount = 0;   
 int main(void) {    
   int mastersock, workersock;   
   struct sigaction act;   
   struct sockaddr_in socketaddr;   
   int addrlen;   
   char buffer[1024];   
   char size[100];   
       
   /*  Initialize the signal handler. */   
       
   sigemptyset(&act.sa_mask);   
   act.sa_flags = SA_RESTART;   
   act.sa_handler = (void *)waitchildren;   
   sigaction(SIGCHLD, &act, NULL);   
    
   mastersock = serverinit(SERVICE, PROTOCOL);   
   printf(“The server is active.  You may terminate it with Ctrl-C.\n” );   
       
   while (1) {    
     workersock = accept(mastersock, &socketaddr, &addrlen);   
     if (workersock < 0) {    
       HandleError(errno, “accept” , “couldn’ t open worker socket” );   
     }    
       
     connectioncount++;   
       
     if (safefork ()) {                /*  parent process */   
       safeclose(workersock);         /*  don’ t need this socket for the parent * /   
       printf(“Received connection from a client at “ );   
       printf(“%s port %d\n” , inet_ntoa(socketaddr.sin_addr),   
              ntohs(socketaddr.sin_port));   
       printf(“There are %d clients active.\n” , connectioncount);   
     }  else {                          /*  child process */   
       safeclose(mastersock);   
       write_buffer(workersock, WELCOME, strlen(WELCOME));   
         
       while(readnlstring(workersock, buffer, sizeof(buffer)) >= 0) {    
         sprintf(size, “Size: %d\n” , strlen(buffer) - 1);   
         write_buffer(workersock, size, strlen(size));   
         if (strncmp(buffer, “exit” , 4) == 0) break;   
       }    
       
       safeclose(workersock);   
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       exit(0);   
     }    
   }    
         
   printf(“Shutting down.\n” );   
       
   safeclose(mastersock);   
    
   return 0;   
 }    
       
 void waitchildren(int signum) {    
   while (wait3((int *)NULL,   
                WNOHANG,   
                (struct rusage *)NULL) > 0) {    
     connectioncount--;   
     printf(“A client disconnected.\n” );   
     printf(“There are %d clients active.\n” , connectioncount);   
   }    
 }    
       
 pid_t safefork(void) {    
   int retval;   
   retval = fork();   
       
   if (retval == -1) {    
     HandleError(errno, “ fork” , “ fork failed” );   
   }    
   return retval;   
 }    
Summary   
 
 In this chapter, you were introduced to communication via TCP/IP. Specifically, I covered these points:   
 
  •  TCP/IP allows you to communicate between different machines instead of just different processes on a single machine.   
 
  •  TCP/IP uses a packet transmission method that allows multiplexing and resilience in the face of some packet loss.   
 
  •  One challenge that faces you as a programmer is identifying endpoints of requests (addressing).   
 
  •  Each endpoint of a TCP connection is identified by an IP address and a port number.   
 
  •  The Domain Name System (DNS) is used to convert host names into IP addresses.   
 

  
• 

 
Connecting from a client involves looking up the service, looking up the server’s IP address, initializing a few other details, 
and then connecting the socket to the server. 

 
 
 

  
• 

 
Connecting from a server involves looking up the service, initializing a few details, binding to a port, listening on that port, 
and accepting connections. A server will use at least two sockets: one for listening for new connections and one for actually 
interacting with clients. 

 

 
 
  •  A library of network routines is often helpful to streamline the design of your programs.  
 Chapter  19: Advanced TCP/IP Sockets   
 
 Overview   
 

 
In Chapter 18, you learned about the basics of writing programs that interact with each other over a network. In this chapter, you will 
learn about two more advanced topics that relate to networking. The first introduces you to a new way to write your server: 
multiplexing with select() or poll(). The second new topic introduces the connectionless User Datagram Protocol (UDP).  

Server  Design and Multiplexing   
 
 In the example of a server in the Chapter 18, the server forks off a new copy of itself to deal with every client connection. This is  
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often an algorithm that works well. However, there are times when a more sophisticated variant of it would work better or when a 
different algorithm entirely would be better.  

 

 

There are several potential problems that you might encounter with the algorithm used in the server in Chapter 18. First, it is 
vulnerable to a denial of service attack; an attacker could strike up a huge number of connections, causing the server to fork until 
all the system memory is exhausted. This problem is easily addressed by refusing to fork if the connec-tion count exceeds a certain 
value; the connections could be refused at that point. Another problem is that, for large and complex servers, forking can be an 
expensive operation. Finally, if your server has light computation or large amounts of data, you may be able to attain better 
performance by switching between requests inside your server instead of asking the operating system to do task switching for you. 

 

 
 

 

This last option is often implemented in terms of a polling mechanism based upon select() or poll(). Sometimes, this can be a great 
opportunity. For instance, the Boa Web server has proved itself to be faster than forking Web servers in many situations due to its 
tight internal mechanism wrapped around select(). However, this mechanism is not always appropriate. For one thing, the 
requirements for buffering can be extremely complex. Because you must never attempt to read more data than is immediately 
available, you need to have a buffer area set aside for each file descrip-tor that you’ ll potentially read from, into which you can 
store partial results. Not only that, but sometimes bits of the next request may come along with the end of the current one—or even 
several more. Therefore, dealing with a single-process multiplexing server like this is no easy task. 

 

 
 

 

Steps can be taken to shore up servers that use the forking model. For one thing, you might consider preforking—that is, forking 
off some processes at the begin-ning of the server’s life span and simply having them continue running. They won’ t exit after a 
connection has been serviced; they’ ll just wait for more to arrive. This saves on the overhead of forking new processes, but you 
still have the overhead of task switching. 

 

 
 

 
What follows is an example of the server from Chapter 18, “ Internet Sockets,”  rewritten to use select() instead of forking. First, 
Listing 19-1 shows the code for a new buffering library, queue.c. 

 
 
 
  Note  Listing 19-1 is available online.   
 
 Listing 19-1: Server  with select() multiplexing, queue.c   
 
 #include <string.h>   
 #include <stdlib.h>   
 #include “safecalls.h”    
 #include “queue.h”    
       
 static struct qtype *qstart = NULL;   
 static struct qtype *qend = NULL;   
       
 #ifndef TRUE   
 #define TRUE 1   
 #endif   
       
 #ifndef FALSE   
 #define FALSE 0   
 #endif   
       
 /*  enq() is the heart of the queue system.  It accepts a pointer to a string   
 that contains null-terminated raw data that arrived over the network   
 connection.  It splits the data up into individual commands, and queues them.   
 * /   
       
 int addtoqueue(int id, char *data) {    
   struct qtype * item;   
   int iscompleted = 0;   
   char *substring = data, *endloc = data;   
   char *newdata = NULL;               /*  To hold new data */   
       
   while ((endloc = strstr(substring, “ \n” ))) {    
     /*  While there are still newlines to process... * /   
     iscompleted = 1;   
     *(endloc) = 0;   
     item = findincomplete(id);   
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     if (item->data) {    
       /*  We are finishing data for this item. */   
       newdata = safemalloc(strlen(item->data) + strlen(substring) + 2);   
       if (!newdata) return 0;   
       strcpy(newdata, item->data);   
       strcat(newdata, substring);   
       free(item->data);   
       item->data = newdata;   
     }  else {    
       item->data = safestrdup(substring);   
       if (! item->data) return 0;   
     }    
     item->iscomplete = TRUE;   
     substring = (char *)(endloc + 1);   
   }    
       
   /*  At this point:   
      - substring could point to a null character, if we just finished   
        a terminating newline and are at the end of the string   
      - substring could point to a valid part of the data.  In this case,   
        there is partial data remaining. * /   
    
   if (*substring) {         /*  More data. */   
     item = findincomplete(id);   
         
     /*  Same code as above.... almost! */   
        
     if (item->data) {    
       /*  We are finishing data for this item. */   
       newdata = safemalloc(strlen(item->data) + strlen(substring) + 2);   
       if (!newdata) return 0;   
       strcpy(newdata, item->data);   
       strcat(newdata, substring);   
       free(item->data);   
       item->data = newdata;   
     }  else {    
       item->data = safemalloc(strlen(substring) + 2);   
       if (!item->data) return 0;   
       strcpy(item->data, substring);   
     }    
         
     item->iscomplete = FALSE;   
   }    
         
   return TRUE;   
 }    
       
 struct qtype *deqany(void) {    
   struct qtype * item = qstart;   
    
   while (item) {    
     if (item->iscomplete)   
       return deqptr(item);        /*  deqptr() just returns item */   
     item = item->next;   
   }    
   return (struct qtype *)NULL;   
 }    
       
 struct qtype *deqid(int id) {    
   struct qtype * item = qstart;   
       
   while (item) {    
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     if ((item->id == id) && (item->iscomplete))   
       return deqptr(item);   
     item = item->next;   
   }    
   return (struct qtype *)NULL;   
 }    
       
 struct qtype *deqptr(struct qtype *pointer) {    
       
   struct qtype *previtem = qstart;   
   if (!qstart) return (struct qtype *)NULL;  /* empty queue! * /   
   if (qstart == pointer) {     /*  first item in queue */   
     qstart = pointer->next;   
     if (qend == pointer)    /*  only item in queue * /   
       qend = qstart;   
   }  else while ((previtem) && (previtem->next != pointer))   
     previtem = previtem->next;   
   if (!previtem) return previtem;   
    
   /*  OK, now...previtem is the item immediately preceding the one do be   
      dequeued. */   
        
   previtem->next = pointer->next;   
   if (qend == pointer) qend = previtem;   
    
   return pointer;   
 }    
       
 int deleteallid(int id) {    
       
   struct qtype * item = qstart, *next;   
   while (item) {    
     next = item->next;           /*  Must save it because item may be deleted! */   
     if (item->id == id)   
       if (!deleteitem(item)) return FALSE;   
     item = next;   
   }    
   return TRUE;   
 }    
       
 int deleteitem(struct qtype * item) {    
   /*  Dequeue */   
    
   if (!deqptr(item)) return FALSE;   
    
   /*  De-allocate memory. */   
   if (item->data) free(item->data);   
   free(item);   
    
   return TRUE;   
 }    
       
 struct qtype * findincomplete(int id) {    
       
   struct qtype * item = qstart;   
   while (item) {    
     if ((item->id == id) && (!(item->iscomplete))) return item;   
     item = item->next;   
   }    
   /*  Not found; create a new one for ‘em. * /   
    
   item = createitem();   
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   item->id = id;   
   return item;   
 }    
       
 struct qtype *createitem(void) {    
    
   struct qtype* item;   
   item = allocq();   
   if (!item) return item;            /*  error condition */   
    
   /*  Insert into the queue. * /   
    
   if (!qend) {                        /*  Queue is empty * /   
     qstart = qend = item;   
   }  else {    
     qend->next = item;   
     qend = item;   
   }    
    
   /*  Set up reasonable defaults. */   
    
   item->next = (struct qtype *)NULL;   
   item->data = (char *)NULL;   
   item->iscomplete = FALSE;   
   item->id = 0;   
    
   return item;   
 }    
    
 struct qtype *allocq(void) {    
   return (struct qtype *)malloc(sizeof(struct qtype));   
 }    
 
 You’ ll also need its header file, queue.h, which appears in Listing 19-2.   
 
  Note  Listing 19-2 is available online.   
 
 Listing 19-2: Header  file queue.h   
 
 /*    
    header file for queue implementations   
    * /   
      
 #ifndef __QUEUE_H__   
 #define __QUEUE_H__   
 struct qtype {                  /*  Each entry in queue will be of this type */   
   char *data;   
   int iscomplete;              /*  TRUE if it is a complete line   
                                   no entry will ever have more than one line   
                                * /   
   struct qtype *next;          /*  Pointer to next entry   
                                   the queue is implemented as a linked list */   
   int id;                      /*  Unique ID (socket number works here) */   
 }  ;   
       
 /*** * ** * ** * **  FUNCTIONS ******** * ** * /   
       
 /*  Add data to the queue. */   
 int addtoqueue(int id, char *data);   
                
 /*  Will dequeue and return the first completed item in the queue.   
    NULL is returned if there are no completed items in the queue.   
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    Data is NOT de-allocated. */   
 struct qtype *deqany(void);   
       
 /*  Will dequeue and return the first item matching the given id.  NULL is   
    returned if no *completed* items match the given id. */   
 struct qtype *deqid(int id);   
       
 /*  Will dequeue the item pointed to.  Used internally by queue.c.  Returns   
    pointer. Memory not freed. * /   
 struct qtype *deqptr(struct qtype *pointer);   
       
 /*  Will DELETE all items associated with the given id.  Will also de-allocate   
    memory, etc. * /   
 int deleteallid(int id);   
       
 /*  Will DELETE only the item pointed to.  Will free memory. * /   
 int deleteitem(struct qtype * item);   
       
 /*  Will find any incomplete one matching the given id.   
    If there are no matching items, will return a pointer to a new queue   
    entry to be filled in. * /   
 struct qtype * findincomplete(int id);   
       
 /*  Will return a pointer to a new, empty queue entry that is already   
    properly linked into the chain. */   
 struct qtype *createitem(void);   
       
 struct qtype *allocq(void);   
       
 #endif                /*  __QUEUE_H__ */   
 
 Listing 19-3 shows the program that uses this buffering library.   
 
  Note  Listing 19-3 is available online.   
 
 Listing 19-3: Main server  code, ch19-1.c   
 
 #include <string.h>   
 #include <sys/types.h>   
 #include <sys/socket.h>   
 #include <sys/resource.h>   
 #include <sys/wait.h>   
 #include <errno.h>   
 #include “safecalls.h”    
 #include “networkinglib.h”    
 #include “queue.h”    
       
 #define PROTOCOL “ tcp”    
 #define SERVICE “7797”    
 #define WELCOME “You have connected to the counting server.  Welcome!\n”    
       
 int main(void) {    
   int mastersock, workersock;   
   char buffer[1024];   
   char sizebuf[100];   
   int nfds = getdtablesize();   
   struct qtype * item;   
       
   fd_set orig_fdset, fdset;   
   int counter, size;   
       
   mastersock = serverinit(SERVICE, PROTOCOL);   
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   printf(“The server is active.  You may terminate it with Ctrl-C.\n” );   
       
   FD_ZERO(&orig_fdset);   
   FD_SET(mastersock, &orig_fdset);   
       
   while (1) {    
     /*  Restore watch set as appropriate. */   
     bcopy(&orig_fdset, & fdset, sizeof(orig_fdset));   
       
     select(nfds, &fdset, (fd_set *)0, (fd_set *)0,   
              (struct timeval *)0);   
     if (FD_ISSET(mastersock, &fdset)) {    
       /*  New connection! * /   
       printf(“Received connection from a client.\n” );   
       workersock = accept(mastersock, NULL, NULL);   
       FD_SET(workersock, &orig_fdset);   
       write_buffer(workersock, WELCOME, strlen(WELCOME));   
     }    
       
     /*  Data on existing connection.  Add to the queue. */   
       
     for (counter = 0; counter < nfds; counter++) {    
       if ((counter != mastersock) && FD_ISSET(counter, & fdset)) {    
           size = saferead(counter, buffer, sizeof(buffer) -1);   
           buffer[size] = 0;         /*  add trailing null * /   
           addtoqueue(counter, buffer);   
       }    
     }    
       
     /*  Process items in the queue. */   
       
     while ((item = deqany())) {    
       sprintf(sizebuf, “Size: %d\n” , strlen(item->data) - 1);   
       write_buffer(item->id, sizebuf, strlen(sizebuf));   
       if (strncmp(buffer, “exit” , 4) == 0) {    
           safeclose(item->id);   
           FD_CLR(item->id, &orig_fdset);   
       }    
       deleteitem(item);   
     }    
   }    
   safeclose(mastersock);   
 }    
 
 To compile this, you’ ll need to use a command like this:   
 
 $ gcc -Wall -o ch19-1 ch19-1.c queue.c safecalls.c networkinglib.c   
 

 

This program is based upon select; for more details on it, see Chapter 14, “ Introduc-ing the Linux I/O.”  The basic idea is simple: 
read from whatever socket is ready to be read from, shove the items on the queue, and process whichever ones are ready. 
However, for simplicity’s sake, this program is really more simply done than it could be. For one thing, it doesn’ t detect when the 
client has disconnected without using exit(). Also, it should be using a queueing system for writing data as well; the write_buffer() 
calls are definitely a potential bottleneck if the network cannot transmit the data as fast as the program can write it. 

 

 
 

 

It’s not altogether uncommon to need to do multiplexing from the client side as well. Most frequently, this need arises when dealing 
with both network input and keyboard input. For instance, an IRC client needs to be able to read from both whenever there is data 
ready; blocking on either one could cause some problems. Therefore, you can use select() or poll() to simply watch both the socket 
and standard input. With this mechanism, and a bit of the same queuing as used in the preceding program (Listings 19-1 through 19-
3), you can achieve a higher quality of user interaction in your client-side programs.  

User Datagram Protocol   
  



 381 

Like TCP, the User Datagram Protocol (UDP) is based on the Internet Protocol (IP). However, there are significant differences between 
UDP and TCP. UDP is an unreliable protocol; that is, packets may be lost, delivered out of order, delivered twice, and so on. With UDP, 
you are expected to take care of these things for yourself. The benefit to UDP is that, especially for one-time communication over 
networks that are generally reliable, overhead is lower (sometimes significantly so) compared to TCP due to the relaxing of 
requirements to keep the data intact.   
   
 UDP does guarantee that, if a packet gets through to your application, the data in that packet is correct, so you do not need to do your 
own error detection. You can use connect() just as with TCP to connect to a remote host. However, unlike with TCP, you can use a 
single socket to communicate with multiple remotes with UDP; simply reconnect to a different one or use the UDP-specific sendmsg() 
function.   
  
UDP implementations in the kernel perform no buffering; if your program is using buffers that are not large enough to accommodate the 
input, for instance, the input will simply be dropped. You are solely responsible for splitting your communica-tions into packets before 
sending them out the door and onto the wire, rather than relying on the underlying protocol to do this for you.  
  
Summary   
   
 In this chapter, you read about some more advanced networking concepts:   
  •  The algorithm that causes a server to fork a new copy of itself for each client connection has some problems and is not always the 
best option.   
  •  You can avoid forking entirely by writing a single-process multiplexing server using select() or poll().   
  •  If you go this route, you introduce some complex buffering issues that you have to take care of. The example program here 
demonstrates how to take care of the most important of them, but you may often need to buffer output as well.   
  •  Multiplexing can also be useful for a client that needs to read from both the network and the keyboard.   
  •  UDP offers an alternative to TCP for programs needing high speed but that can withstand some packet loss.  
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Par t V:  The Glue: Per l   
 
 Chapter  L ist   
 
  Chapter  20:  Introducing Per l   
 
  Chapter  21:  Manipulating Data with Per l   
 
  Chapter  22:  CGI Programming   
 
  Chapter  23:  SQL Databases with DBI    
 
      
Chapter  20: Introducing Per l   
 
 Overview   
 

 

A book on Linux programming cannot be complete without a look at Perl. Perl has, in recent years, become the language of choice 
for many scripting and data processing tasks. In this chapter, you will be introduced to Perl. The chapter begins by explaining the 
design behind Perl—what problems it is used to solve, and how it can work with the system. In the First Steps section, I’ ll present 
some sample Perl code and explain how it works. After that, I will cover four different aspects of Perl: data structures, subroutines, 
flow control, and object-oriented programming.  

Per l Design Philosophy   
 

 

Perl is one of the most fascinating languages available for Linux today. It is often described as a “glue language”—that is, Perl is 
very good at communicating with all sorts of other systems and languages and is frequently used to automate communication 
between them. For instance, Perl can talk both to Web servers using CGI and to SQL database servers using DBI. Not surprisingly, 
Perl is a frequently used language for making databases available on the Web. 

 

 
 

 

Perl draws its syntax from many sources. You’ ll find that the basic syntax resembles C to a large degree—semicolons end 
statements, braces delimit blocks, and so on. However, added on to this C-based syntax is a large assortment of features from 
various other languages such as sed, awk, grep, various shells, and even C++. Add into this melting pot of languages additional 
features unique to Perl, such as transparent database tie-ins, built-in associative arrays (hashes), enhanced regular expressions, and 
the like, and you get an amazingly versatile and powerful language. 

 

 
 

 

The overall philosophy of this design is “don’ t constrain the programmer.”  You get a tremendous amount of freedom in Perl. The 
documentation that accompanies it, for instance, demonstrates three completely different ways of implementing a case statement in 
Perl. When you are parsing data, you can just as easily parse one line at a time, or ask Perl to slurp the entire file into memory and 
then parse the result. You can use variable interpolation (as with a shell) to generate strings, or you can use sprintf() as in C to do 
that—or you can use both. And these are but a few examples of the flexibility of Perl. 

 

 
 

 
Perl’s quoting is another example of flexibility. As when shell programming, you have different quotes depending on what you 
want to be interpolated, but you also have ways to automatically parse strings as certain types of quoted material, split them up, 
and assign them to arrays. 

 

 
 

 
Perl’s object-oriented features are a fairly new addition to the language. They’re not as mature as the object-oriented features in a 
language such as Java, notably missing data hiding and powerful inheritance features. Nevertheless, Perl approaches OOP (Object-
Oriented Programming) in a completely unique way, as you will see in the OOP Features section at the end of this chapter. 

 

 
 

 

Perl modules can plug into the interpreter at run time and can be written either in Perl or in another language such as C. Therefore, 
you can extend Perl with anything that you can write in Perl as well as anything you can write in another language such as C or 
C++. Developers have used this module capability to write a large number of modules that you can plug in to your Perl system. To 
name just a few examples, Perl includes modules or integrated support for HTML parsing, XML parsing, compression, graphical 
user interfaces, SQL database communication, date/time manipulation, socket-level I/O, MIME, synchronization with PalmPilot 
devices, sound, database usage, serialization and deserialization of arbitrary objects, embedded Perl inside other programs such as 
Web servers, communication with servers such as FTP and SMTP, and many more programming needs. Therefore, not only is Perl 
a powerful glue language, but it also is a powerful automation language. 

 

 
 

 
All of this power and flexibility does come at a price: it can be somewhat difficult to learn the language or to read others’  code 
until you’ve been using Perl a lot. 

 
 
 
     



 383 

 
Cross-Reference  
 

 
For more details, see Programming Perl, second edition; Linux(r) Programming (IDG Books Worldwide, ISBN 1-55828-
507-5); and Discover Perl 5 (IDG Books Worldwide, ISBN 0-7645-3076-3). 

 
 
 
     
 
 Var iables   
 

 
In Perl, “normal”  (scalar) variables that hold a single value are named, and they are always accessed with a leading dollar sign. For 
instance, the following is a bit of Perl: 

 
 
 
 $x = 5;   
 $y = $x *  2;   
 
 This code causes the scalar variable x to be assigned the value 5. It also causes the scalar y to be assigned twice the value of x.   
 
  Note  Notice the dollar signs are used every time the scalar variable is accessed.   
 
 As in the shell, variables in Perl can be interpolated into strings. For instance, you can use the following:   
 
 print “The value of y is $y.\n” ;   
 printf “ I can also display it with printf: %d\n” , $y;   
 

 

In Perl, whether the internal value of a scalar is a string or a numeric value is not relevant. If it’ s a string and you attempt to 
perform an arithmetic operation on it, it will be converted to a numeric value as necessary. Similarly, if you need a string 
representation of a value, it will be converted to a string as appropriate. All of this takes place behind the scenes, which is very 
handy for reading in and parsing data. There is no need to specifically convert the data read in from a keyboard or file into an 
integer or floating-point format; Perl automatically does it for you when necessary.  Here is a sample of this conversion: 

 

 
 
 $x = “5” ;   
 $y = $x *  2;   
 

 
The previous code is still quite valid and will produce the same result as the preceding example. The string containing the digit 5 is 
simply converted into a number when necessary. 

 
 
 

 
There are actually four types of variables in Perl: scalars, lists (or arrays), hashes (or associative arrays), and subroutines. Besides 
strings and numbers as described in the preceding paragraphs, a scalar in Perl can also hold a reference, which is similar in concept 
to a pointer in C. Each type of variable has its own unique prefix character, as shown in Table 20-1. 

 

 
 
 Table 20-1:  Var iables and Prefix Characters   
 
     
 
 Var iable Type   

 
Prefix   

 

 
     
 
 scalar   

 
$   

 

 
 list   

 
@   

 

 
 subroutine   

 
&   

 

 
 hash   

 
%   

 

 
     
 
 These namespaces are kept separate. That is, $x is not the same as @x.   
 
  Tip  This can be the source of some confusion with Perl. To make things simpler, generally it is best to keep the names  
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unique.  
 
 Arrays   
 

 
Perl arrays are quite powerful. They automatically shrink or expand as data is added to or removed from them, so there is no need 
to predefine the size of your arrays. Setting one up can be as simple as: 

 
 
 
 @myarray = (‘Hi, this is the first element’ , ‘ second’ ,   
             ‘ third’ , ‘ last’ );   
 

 
You can pass around the entire array to functions (called subroutines in Perl) by calling it @myarray. You can also access 
individual elements of the array, using an index starting with 0. For instance: 

 
 
 
 print $myarray[0];   
 

 

This will display Hi, this is the first element on your screen. Notice that you use a dollar sign ($) instead of the at sign (@) when 
you are accessing just one element of the array instead of the array in aggregate. The reason is that the dollar sign is always used 
when accessing a scalar value, and each individual element of an array is a scalar. Note also that $myarray[0] and $myarray refer 
to two entirely different variables: The first indicates the first element in the array named @myarray. The second indicates the 
contents of the scalar named $myarray. 

 

 
 
 Hashes   
 

 
Like arrays, hashes are used to store separate pieces of data in one place. However, this is really where the similarity ends. 
Whereas an array is indexed by a numeric value, a hash is indexed by a key. This key is something that you can pick. It can be any 
word, a phrase, whatever—just so long as it’ s unique within a given hash. 

 

 
 

 
If you are used to programming in C, think of a Perl hash as somewhat of a dynamic structure, one to which you can add and 
remove variables at will. You can set up a hash by assigning all the values at once, as shown in the following examples: 

 
 
 
 %myhash = (‘color’  => ‘purple’ , ‘ size’  => ‘ large’ ,   
            ‘ location’  => ‘Alaska’);   
       
 %myhash2 = (red => 0xff0000,   
             green => 0x00ff00,   
             blue => 0x0000ff);   
 %myhash3 = (‘city’ , ‘Seattle’ , ‘weather’ , ‘wet’ ,   
             ‘cars’ , 2);   
 

 
This sets up three separate hashes. As you might have deduced from this example, Perl’s syntax for creating hashes is fairly 
flexible. In the first one, we see that the attribute color is set to purple, size to large, and location to Alaska. In the second one, the 
key red is set to have the value 0xff0000, and so on. In the final one, the key city is set to be Seattle, weather to wet, and so forth. 

 

 
 

 

The => operator provides you with some useful shortcuts. For one, you are able to omit the quotes on the key (the value to the left 
of the operator) if you prefer. This is done with the %myhash2 example above. Also, it provides a nice visual indication of the 
mapping from a key to a value. Note that the reason that the values to the right of the operator are not quoted in the second 
example is because they’re numeric instead of string data, not due to any special feature of this operator. 

 

 
 

 
The third example shows that you can use a simple list of elements to set up a hash. The elements are taken as a key followed by a 
value, for as many elements as are present. This could make an interesting way for you to create a hash based on the contents of an 
array. 

 

 
 
 Now that your hash is set up, you’ ll want to access its data. You can do that as shown in these examples:   
 
 print $myhash2{ ‘ red’} ;   
 print $myhash3{ city} ;   
 $myhash1{ size}  = ‘microscopic’ ;   
 $somekey = ‘gray’ ;   
 $myhash2{ $somekey}  = 0xa5a5a5;   
 

 
So, you can see that you access the individual elements by using the curly brace syntax. As before, you can omit the quotes on the 
key name if it consists solely of regular characters. You can also use a variable for the key name (or the data for that matter). You 
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can also assign to individual elements using this syntax, and in fact, you could build your entire hash this way if you prefer.  
 

  
Note 

 
An array stores its elements in a set order. A hash is unordered; generally, it is used by accessing specific keys directly. 
You can request all its elements, but there is no guarantee that you’ ll get them back in the same order that you put them 
in. In fact, you probably won’ t.  

First Steps   
 

 
Now that we’ve talked about a few Perl basics, it’ s time to start into some Perl programs. First, any Perl program needs to begin 
with a line indicating the location of the Perl interpreter, as with shell scripts. This line is generally the following (it may vary 
slightly if your system has the Perl interpreter in a different location): 

 

 
 
 #!/usr/bin/perl   
 

 
Note that this is the same situation as you have with executable shell scripts. Additionally, though, many users prefer to enable 
warnings in Perl, similar to warnings from gcc. This can be done by extending the first line: 

 
 
 
 #!/usr/bin/perl -w   
 

 
Now, when you create a Perl script, you need to mark it executable. Like shell scripts, you use chmod to do that. You can use the 
following command to do so: 

 
 
 
 chmod a+x myscript.pl   
 

  Tip  
If you don’ t want to go to the effort to make your script executable, you can also invoke a program on the command 
line. For instance, you may use perl myscript.pl to invoke this program. 

 
 
 
 Now let’s try a simple program:   
 
 #!/usr/bin/perl -w   
       
 print “Please type something: “ ;   
 $input = <STDIN>;   
 chomp $input;   
 print “You typed: ‘$input’ \n” ;   
 

 

Analyzing the code, it starts out with a standard invocation of Perl. It then proceeds to read a line of input from standard input, the 
terminal. When used in a scalar context, <STDIN> reads and returns one line of input. Here, that line is placed in the $input 
variable. The next line of code, calling chomp, removes the newline character that is at the end of the input string. Then, the 
program prints out a string with the result, and then exits. 

 

 
 

 

In the paragraph above, I mentioned scalar context. Perl has a system whereby functions can determine what type of data the caller 
expects them to return. In this case, when the caller expects a single item (a scalar) to be returned, <STDIN> returns a single line.  
If you used it in a situation where the caller wanted an array, for instance @AllLines = <STDIN>, the <STDIN> operator would 
return an array containing all lines in the file. It returns one line per array element. You can then see that the operator behaves 
differently in scalar and in array context. 

 

 
 

 
You can read in a large amount of data at once. For instance, you can use <STDIN> in an array context to do that.  Here is an 
example:: 

 
 
 
 #!/usr/bin/perl -w   
       
 @input = <STDIN>;   
       
 $counter = 0;   
       
 foreach $key (sort @input) {    
   chomp $key;   
   $counter++;   
   print “Line $counter: \”$key\” \n” ;   
 }    
 
 This code reads input until end-of-file is reached, storing it all in the array @input. A counter is initialized to zero. The code then  
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initializes a counter to zero, which it uses later to count the number of lines. The foreach foreach loop executes once for each item 
in the @input array.  

 
  Note  Note that the sort function sorts @input.   
 

 
Each pass through the loop, the $key scalar variable holds the current element in the @input array. The chomp function removes 
the trailing newline character (to avoid extra blank lines in our output) and the counter is incremented. The print statement prints 
out the current line number and the text of the line. Here’s an example of running this code: 

 

 
 
 $ chmod a+X ch20-1.pl   
 $ ./ch20-1.pl   
 good   
 morning   
 this   
 is   
 a   
 test   
 of   
 some   
 per l   
 sor ting   
 code.   
 Ctrl+D   
 Line 1: “a”    
 Line 2: “code.”    
 Line 3: “good”    
 Line 4: “ is”    
 Line 5: “morning”    
 Line 6: “of”    
 Line 7: “perl”    
 Line 8: “some”    
 Line 9: “sorting”    
 Line 10: “ test”    
 Line 11: “ this”    
 
 The program worked as expected. It read some input into an array and displayed that array, sorted, with line numbers.   
 

 
As described in Chapter 3, “Working with Regular Expressions,”  Perl has extensive support for regular expressions. Here is a 
sample use of them: 

 
 
 
 #!/usr/bin/perl -w   
       
 while ($inputline = readinput()) {    
   ($key, $value) = $inputline =~ /^([^=]+)=(.+)$/;   
   if ($key && $value) {    
     $hash{ $key}  = $value;   
   }  else {    
     print “Bad input, try again.\n” ;   
   }    
 }    
       
 foreach $key (sort keys %hash) {    
   print “$key is set to the value $hash{ $key} \n” ;   
 }    
       
 sub readinput {    
   print “Enter a key=value pair, or type END when done: “ ;   
   $input = <STDIN>;   
   return undef unless $input;   
   chomp $input;   
       
   return undef if $input =~ /^END$/i;   
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   return $input;   
 }    
 

 

Let’s go over this code. First, there is a main loop. It calls the readinput subroutine. That subroutine prompts the user to enter some 
data—a key and a value separated by an equal sign—and then checks to see if it is time to exit. If the input line is empty, or it 
matches the word “end,”  this is the end of the input. When this is the case, undef is returned to the caller, indicating that the 
function has nothing to return. This is similar to NULL in C in some situations. 

 

 
 
 Notice the shortcut notation in Perl:   
 
 return undef unless $input;   
 
 is the same as:   
 
 unless ($input) {    
   return undef;   
 }    
 

 
Note that, unlike C, Perl requires braces with the preceding syntax even if they enclose only one statement. The preceding shortcut 
is also the same as: 

 
 
 
 if (!$input) {    
   return undef;   
 }    
 

 
Also, when you simply evaluate a string like this, not even comparing it to anything, the result will be false if the scalar holds 
undef or a zero-length string, or true otherwise. Therefore, it is a great way to check if valid input is still forthcoming. 

 
 
 
 Let’s look at another spot of code in that function before returning to the main program. You see the following:   
 
   return undef if $input =~ /^END$/i;   
 
 Rewriting this code results in the following code:   
 
 if ($input =~ /^END$/i) {    
   return undef;   
 }    
 

 
Now, let’s look at it. This is a regular expression match. The =~ sign says that the pattern on the right should be applied to the 
scalar on the left. So, you get a true result if the input matches the word end, in a case-insensitive fashion (because of the trailing i 
flag) or a false result otherwise. 

 

 
 
 Back in the main program, there is a similar use:   
 
   ($key, $value) = $inputline =~ /^([^=]+)=(.+)$/;   
 

 
In this case, the return value feature of parentheses in a regular expression is exploited. The first string to be returned would be any 
text up until the first equal sign in the string, and the second string is all text after that equal sign. This pattern is applied to 
$inputline. The regular expression matching operator returns a list corresponding to each element on the right. 

 

 
 

 

In Perl, a list can actually be an lvalue—that is, appear on the left side of an assignment operator. Each item from the right will be 
placed into the corresponding location on the left. Therefore, $key holds the value from the first parenthesis match, and $value the 
text from the second. Then, there is another if test performed. If either or both of these strings are not matched, the corresponding 
variable will be set to undef. This indicates that the regular expression did not properly match and that the input was corrupt. The 
code detects this and issues a warning message if that occurs, or stuffs the data into the hash otherwise. 

 

 
 
 Then, you see this code:   
 
 foreach $key (sort keys %hash) {    
 
 which can be rewritten in a more C-like form as:   
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 foreach $key (sort(keys(%hash))) {    
 

 
As you might guess, the keys item returns an array of all the keys in the hash, in no particular order. This list is then sorted before 
it is passed along for use in the foreach loop. 

 
 
 
 Let’s give the program a whirl:   
 
 $ chmod a+x ch20-2.pl   
 $ ./ch20-2.pl   
 Enter a key=value pair, or type END when done: Hi!   
 Bad input, try again.   
 Enter a key=value pair, or type END when done: greeting=Hi!   
 Enter a key=value pair, or type END when done: os=L inux   
 Enter a key=value pair, or type END when done: equal sign==   
 Enter a key=value pair, or type END when done: language=per l   
 Enter a key=value pair, or type END when done: color=magenta   
 Enter a key=value pair, or type END when done: some long key=some long value   
 Enter a key=value pair, or type END when done: end   
 color is set to the value magenta   
 equal sign is set to the value =   
 greeting is set to the value Hi!   
 language is set to the value perl   
 os is set to the value Linux   
 some long key is set to the value some long value   
 

 
From this example, you can see that the key for a hash may be several words long, as is the case for the key named equal sign here. 
Additionally, the data can have any value, and the input error-detection code does work. Perl also allows you to open and work 
with arbitrary files. Here is an example of doing so: 

 

 
 
 #!/usr/bin/perl –w   
       
 print “Enter a filename: “ ;   
 $filename = <STDIN>;   
 chomp $filename;   
       
 open OUTFILE, “>$filename” or   
   die “Couldn’ t open output file: $!” ;   
       
 print “Enter a number: “ ;   
 $number = <STDIN>;   
 print OUTFILE $number * 3, “ \n” ;   
       
 close OUTFILE;   
 

 

This code first prompts the user for a filename, reads it, and strips off the trailing newline. Then, it tries to open the file named for 
writing. The > sign in open means to open the file for writing; if it is omitted, the file is opened for reading only. You can also use 
the > sign to open a file for appending. The OUTFILE file handle is set up for this file. If the open call fails, it returns an error 
condition. When it does this, the or operator steps in and the die command is run. This command displays an error message and 
then causes the program to terminate. The error message to be displayed in this case contains $!, which holds the error result from 
the last failed operation—like errno in C. 

 

 
 

 
After opening the file, the user is prompted for a number, which is read and then written. Note that in this case, there is no chomp 
on the input. The reason is that the input will be converted to a number anyway (because it is multiplied by three), so there is no 
need to explicitly remove the trailing newline character. 

 

 
 

 
Also note that there is no comma after the filehandle name in the print call. This is different from the syntax in C, and from the syntax 
of many other things in Perl. The code will not work if you insert a comma at that place.  

Data Structures   
 

 
Earlier in this chapter, you were introduced to some of the different types of variables that are to be found in Perl. Here, we’ ll go 
into more detail on each of them, but I’ ll first introduce you to references in Perl. 
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 References   
 

 
Perl does not have direct hardware-level pointer support as is present in C. However, it does have references, which perform 
essentially the same function—with some added flexibility as well. 

 
 
 

 
In Perl, the operator to create a reference is the backslash (\). This is roughly the same as the address-of (&) operator in C. The 
dereferencing operator is the dollar sign. You can create a reference to any type of variable, and even a few other types of entities 
as well. Let’s examine a few examples of using references: 

 

 
 
 @array = (1, 1, 2, 3, 5, 8);   
 $arrayref = \@array;   
       
 foreach $key (@$arrayref) {    
   print “$key\n” ;   
 }    
 

 
In this code snippet, an array is created. We then create a reference to it and save the reference in a variable. Inside the foreach 
statement, the dereferenced value is used. Notice that the at sign is still used even when dealing with a reference—this is because 
you are still dealing with a list value after dereferencing it. 

 

 
 
 You can also create similar things with hashes:   
 
 %hash = (key1 => 1, key2 => 2, key3 => 3);   
 $hashref = \%hash;   
       
 foreach $key (sort keys %$hashref) {    
   print “$key = $$hashref{ $key} \n” ;   
 }    
 

 
Note the double dollar sign. This is used because one dollar sign causes the dereference of the reference. The other indicates that a 
scalar value is being accessed, as usual with a hash. Perl defines a shortcut for this situation, similar to the C -> operator: 

 
 
 
 #!/usr/bin/perl -w   
       
 %hash = (key1 => 1, key2 => 2, key3 => 3);   
 $hashref = \%hash;   
       
 foreach $key (sort keys %$hashref) {    
   print “$key = $hashref->{ $key} \n” ;   
 }    
 

 
The so-called arrow operator (->) indicates that the preceding item is to be dereferenced. This trick actually applies to arrays as 
well, but it is used more frequently with hashes. 

 
 
 

 

So, where are these references useful? Well, there are numerous situations. Sometimes, you may want to pass along a large data 
structure—say an array or hash—to functions. As I will explain shortly, references are often much better for passing these types 
than passing the data by value. Perl’s object-oriented features are almost always used with references, another important use for 
references. 

 

 
 

 

In C, dealing with pointers can be tricky. You have to worry about allocating and freeing memory, keeping track of sizes of 
allocated memory, and the like. References in Perl have no such problem. Perl automatically allocates memory for you when you 
need it, and automatically frees memory when there are no variables or references pointing to it anymore. This mechanism, called 
a garbage collector, makes life with Perl references a lot easier than with C. 

 

 
 
 Anonymous references   
 

 
You can also create references to so-called anonymous data—that is, data that has never before been assigned to a variable. As 
usual, Perl gives you several ways to do so, and I’ ll highlight the easiest and most frequently used ones here. Here is a script that 
demonstrates all of these uses: 

 

 
 
 #!/usr/bin/perl -w   
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 $scalarref = \”Hi” ;   
 $arrayref = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12];   
 $hashref = { key1 => 1, key2 => 2, key3 => 3} ;   
       
 print “$$scalarref\n” ;   
       
 foreach $key (@$arrayref) {    
   print “Array: $key\n” ;   
 }    
       
 foreach $key (sort keys %$hashref) {    
   print “Hash: $key = $hashref->{ $key} \n” ;   
 }    
 

 
Creating a reference to an anonymous scalar is trivial: simply use a backslash before the scalar’s value. To create a reference to an 
anonymous array, you simply use brackets instead of parentheses to build the array. Note that \(1, 2, 3) is not the same as [1, 2, 3]; 
the former is in fact treated as (\1, \2, \3)—an array of three references, instead a reference to an array with three elements. 

 

 
 

 
Likewise, to create an anonymous hash, you use braces instead of the normal parenthesis syntax. By using this syntax, you can 
create references to arrays and hashes from scratch—without ever needing to have an actual variable hold the data. 

 
 
 
 When you run the preceding code, you get the following output:   
 
 Hi   
 Array: 1   
 Array: 2   
 Array: 3   
 Array: 4   
 Array: 5   
 Array: 6   
 Array: 7   
 Array: 8   
 Array: 9   
 Array: 10   
 Array: 11   
 Array: 12   
 Hash: key1 = 1   
 Hash: key2 = 2   
 Hash: key3 = 3   
 
 So everything did work as expected.   
 
 Symbolic references   
 

 
In addition to the standard reference behavior described previously, Perl also provides another capability for references: symbolic 
references, somewhat analogous to symbolic links in the Linux file system. 

 
 
 

 
This capability allows you to actually dereference a string. The string is taken to be the name of a variable or subroutine, which is 
then referred to as appropriate. This can be a great way to eliminate ugly case statements based on input if you are expecting 
certain values to arrive; simply dereference a string as a symbolic reference and use that! 

 

 
 
 $foo = 2;   
 $name = “ foo” ;   
 $foo += 3;   
       
 print “$$name\n” ;   
 

 
In this particular example, using a symbolic reference was not an advantage. However, it could have been had you read $name 
from the keyboard. In general, you should not use symbolic references unless you are in a situation in which standard references 
will not work. 
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 Arrays   
 

 
In the previous section, you were briefly introduced to arrays. Now, we’ ll go into more detail, describing some features and quirks 
of Perl arrays, and then showing an example of arrays in action. 

 
 
 

 

First, we need to cover an important concept: how do you combine two arrays? Well, it turns out that in Perl, this is as simple as 
(@arr1, @arr2)—the result will be an array consisting of all elements from the first array, followed by all elements from the 
second. Note that the preceding syntax does not return an array containing two embedded arrays as it might in some other 
languages. To do that, you need to use array references. Note that this behavior makes it absolutely necessary to use references if 
you want to pass more than one array to a subroutine. 

 

 
 

 

Another feature is the capability to find out how many elements are in your array. To do this, you use $#arr1, for instance. Perl 
actually returns the index of the last element in the array, and because it starts counting at zero, you just need to add 1 to the result 
to get a count of the number of elements present. Note that if you are using an array reference, you would use a syntax such as 
$#$arrayref—just think of the $# as replacing the @ in this situation. 

 

 
 

  

Note 

 

Perl actually provides a variable named $[ that can be used to change the index of the first element in an array 
(and the first character in a substring). It is rarely used because it is a very easy way to cause confusion and thus is 
highly discouraged, but if you use it, you will have to modify your length calculations appropriately because your 
indexing will not start at zero. 

 

 
 

 

Now, on to arrays of arrays—also known as multidimensional arrays. These are supported in Perl, but with a twist: you use 
operators that deal with references to arrays. The bracket syntax still makes it look like you’re dealing with traditional 
multidimensional arrays and, in fact, you can treat them either in that way or as arrays of references. Here is a program that 
creates, and then displays, such an array: 

 

 
 
 #!/usr/bin/perl -w   
       
 $arrayref = [1, 3, [500, 600, 700], 8, 9, [1000, 1100, [2000, 2100] ], 10];   
       
 printit($arrayref, 0);   
       
 sub printit {    
   my ($ref, $count) = @_;   
   my $key;   
   my $counter = 0;   
   foreach $key (@$ref) {    
     print “  “  x ($count *  3);   
     if (ref $key) {    
       printf “%3d: nested array:\n” , $counter;   
       printit($key, $count + 1);   
     }  else {    
       printf “%3d: %d\n” , $counter, $key;   
     }    
     $counter++;   
   }    
 }    
       
 print “ \n\$arrayref->[5][2][0] = $arrayref->[5][2][0]\n” ;   
 

 
This code begins by setting up a reference to an array. This array contains not only some typical elements, but also references to 
additional arrays. These can be accessed as if they are multidimensional arrays. Then, the code invokes the printit() function. 

 
 
 

 
This subroutine takes two parameters: a reference to an array and a count of how far indented each line should be. We’ ll go into 
more detail on these items in the section on subroutines, later in this chapter. 

 
 
 

 

The function iterates over the list by using foreach—as you have seen several times already. For each element, it starts by printing 
out an appropriate amount of space. The x operator means to copy the string on the left for the number of repetitions indicated by 
the expression on the right. Next, the program tests the key value to see if it is a reference. If it is a reference, the program is 
dealing with a nested array (in this situation; it could also be a reference to an embedded hash, scalar, or whatever if you are 
working with a different program). In this case, the subroutine displays a message and then calls itself to process the nested array. 
If the key value is not a nested array, its value is simply displayed. Finally, the element counter is incremented. 
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At the very end of the program, there is a print statement, displaying a single value from the array. It illustrates how you can access 
a single nested value and, in fact, shows that the syntax is quite like that of languages such as C. Here you can see the complete 
output from this program: 

 

 
 
 $ ./ch20-5.pl   
   0: 1   
   1: 3   
   2: nested array:   
      0: 500   
      1: 600   
      2: 700   
   3: 8   
   4: 9   
   5: nested array:   
      0: 1000   
      1: 1100   
      2: nested array:   
         0: 2000   
         1: 2100   
   6: 10   
       
 $arrayref->[5][2][0] = 2000   
 

 

In Chapter 11, “Files, Directories, and Devices,”  a similar recursive algorithm was used to display a directory listing. It did its job, 
but there could be a problem—if you need to access the listing in your program, particularly if you need to do so more than once, 
the Chapter 11 code had no way to save the results. Let’s now rewrite that code to use nested arrays—and use the printing code 
from right here to display the result. Listing 20-1 shows an example of code that uses arrays to hold the data. 

 

 
 
  Note  Listing 20-1 is available online.   
 
 Listing 20-1: Example of nested ar rays   
 
 #!/usr/bin/perl -w   
       
 # Perl’s unless is an inverse if.  That is, unless(a) is the same as   
 # if (!(a)).   
       
 unless ($ARGV[0]) {    
   die “Must specify a directory.”    
 }    
       
 # -d is a Perl shorthand.  It does a stat() on the passed filename, and   
 # then looks at the mode.  If the filename is a directory, it returns true;   
 # if not, it returns false.   
       
 unless (-d $ARGV[0]) {    
   die “The filename supplied was not a directory.”    
 }    
       
 my $dirs = dircontents($ARGV[0]);   
 printit($dirs, 0);   
       
 sub dircontents{    
   my $startname = shift @_;   
   my $filename;   
   my $retval = [];          # Initialize with an empty array reference   
   local *DH;                # Ensure that the handle is locally scoped   
       
 # This is the same as DH = opendir(“ filename”) in C.   
 # In C, you can use DIR *DH; to declare the variable.   
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   unless(opendir(DH, $startname)) {    
     warn “Couldn’ t open directory $startname: $!” ;   
     return undef;   
   }    
       
   # In C, readdir() returns a pointer to struct dirent, whose members are   
   # defined in readdir(3).  In Perl, returns one file in scalar context,   
   # or all remaining filenames in list context.   
       
   while ($filename = readdir(DH)) {    
     if ($filename ne ‘ .’  &&   
         $filename ne ‘ ..’  &&   
         ! -l “$startname/$filename” &&   
         -d “$startname/$filename”) {    
       push(@$retval, dircontents(“$startname/$filename”));   
     }  else {    
       push(@$retval, $filename);   
     }    
   }    
       
   closedir(DH);   
   return $retval;   
 }    
       
 sub printit {    
   my ($ref, $count) = @_;   
   my $key;   
   my $counter = 0;   
       
   foreach $key (@$ref) {    
     print “  “  x ($count *  3);   
     if (ref $key) {    
       printf “%3d: subdirectory\n” , $counter;   
       printit($key, $count + 1);   
     }  else {    
       printf “%3d: %s\n” , $counter, $key;   
     }    
     $counter++;   
   }    
 }    
 

 
The code in Listing 20-1 is quite similar to both the code from Chapter 11 and the earlier example (ch20-5.pl). This time, however, 
the filenames are pushed onto the array instead of being displayed. First, let’s look at this line, which is used if the file being 
examined is not a directory: 

 

 
 
       push(@$retval, $filename);   
 

 
This causes the current filename to be placed at the end of the array. Notice that the push operator expects an array, and not a 
reference to one, as its first argument. Also, you can pass more than one value to push at once—even another array—and all those 
values will be added to the end of your current array. 

 

 
 
 Now let’s take a look at the command used when the system is processing a file that is a directory. That code is:   
 
       push(@$retval, dircontents(“$startname/$filename”));   
 

 
This calls the function itself on the subdirectory. The call returns a reference to an array, which is then pushed onto the end of the 
current array—just as needed to form an array of the same type as used previously. 

 
 
 

 
However, there is a problem: the filename information for this directory is lost—it is never placed onto the array. In the next 
section, we’ ll go over nested hashes, which present a solution for this problem. Let’s take a look at the output, which will 
demonstrate the problem: 
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 $ ./ch20-6.pl /etc/modutils   
   0: .   
   1: ..   
   2: aliases   
   3: paths   
   4: subdirectory   
      0: .   
      1: ..   
      2: i386   
      3: m68k.amiga   
      4: m68k.atari   
      5: m68k.generic   
      6: m68k.mac   
      7: alpha   
   5: pcmcia   
   6: setserial   
 
 Nested hashes   
 

 
Now that you’ve seen the possibilities of references, and nested arrays, it’s time to move on to another topic: nested hashes. As 
you saw in the commentary about Listing 20-1, there was a problem with the array. We really want to store at least two pieces of 
data for each file. You could use a separate array for the second piece of data, but that gets clumsy.  

 

 
 

 
Furthermore, to find a given file, you have to manually search the array. With a nested hash, you can traverse the hash just as you 
traverse a directory tree! We’ ll first look at a simple port of the existing code to use a hash, and then take a look at adding some 
more features to it that are made possible by hashes. Listing 20-2 shows code that uses hashes to store the data. 

 

 
 
  Note  Listing 20-2 is available online.   
 
 Listing 20-2: Example of hashes   
 
 #!/usr/bin/perl -w   
       
 # Perl’s unless is an inverse if.  That is, unless(a) is the same as   
 # if (!(a)).   
       
 unless ($ARGV[0]) {    
   die “Must specify a directory.”    
 }    
       
 # -d is a Perl shorthand.  It does a stat() on the passed filename, and   
 # then looks at the mode.  If the filename is a directory, it returns true;   
 # if not, it returns false.   
       
 unless (-d $ARGV[0]) {    
   die “The filename supplied was not a directory.”    
 }    
       
 my $dirs = dircontents($ARGV[0]);   
 printit($dirs, 0);   
       
 sub dircontents{    
   my $startname = shift @_;   
   my $filename;   
   my $retval = { } ;          # Initialize with an empty hash reference   
   local *DH;                # Ensure that the handle is locally-scoped   
       
 # This is the same as DH = opendir(“ filename”) in C.   
 # In C, you can use DIR *DH; to declare the variable.   
       
   unless(opendir(DH, $startname)) {    
     warn “Couldn’ t open directory $startname: $!” ;   
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     return undef;   
   }    
       
   # In C, readdir() returns a pointer to struct dirent, whose members are   
   # defined in readdir(3).  In Perl, returns one file in scalar context,   
   # or all remaining filenames in list context.   
   while ($filename = readdir(DH)) {    
     if ($filename ne ‘ .’  &&   
     $filename ne ‘ ..’  &&   
     ! -l “$startname/$filename” &&   
     -d “$startname/$filename”) {    
       $retval->{ $filename}  = dircontents(“$startname/$filename”);   
     }  else {    
       $retval->{ $filename}  = 1;   
     }    
   }    
       
   closedir(DH);   
   return $retval;   
 }    
       
 sub printit {    
   my ($ref, $count) = @_;   
   my $key;   
   my $counter = 0;   
       
   foreach $key (sort keys %$ref) {    
     print “  “  x ($count *  3);   
     if (ref $ref->{ $key} ) {    
       printf “%3d: subdirectory %s\n” , $counter, $key;   
       printit($ref->{ $key} , $count + 1);   
     }  else {    
       printf “%3d: %s\n” , $counter, $key;     
     }    
     $counter++;   
   }    
 }    
 

 
Not much has changed in this code. Instead of pushing strings onto an array, we now insert strings into a hash. You can traverse 
this hash by path; for instance, if you started at root, you could use $ref->{ etc} ->{ X11} ->{ xdm} ->{ Xstartup}  to get to the entry 
for /etc/X11/xdm/Xstartup—nested, similar to the filesystem. 

 

 
 

 

Notice that if it is not dealing with a directory, the program really has no meaningful value to insert, so it simply inserts the value 
1. You could, however, be storing much more information. Consider the following example: instead of simply having each hash 
entry point to either a subdirectory hash or a useless value, why not have each hash entry point to another hash holding some 
useful information? Perhaps this would be some information such as the file’s size, modification date, and so on. Then, if the 
particular file in question is a directory, an extra field in the hash can indicate that. Note that what we are building here is 
essentially a file object—and you’ ll see another rewrite of this code to use it as such later on in this chapter. For now, though, we’ ll 
proceed without adding object-oriented features to the program. Listing 20-3 shows the code for the added features. 

 

 
 
  Note  Listing 20-3 is available online.   
 
 Listing 20-3: Revised hash example   
 
 #!/usr/bin/perl -w   
       
 # Perl’s unless is an inverse if.  That is, unless(a) is the same as   
 # if (!(a)).   
       
 unless ($ARGV[0]) {    
   die “Must specify a directory.”    
 }    
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 # -d is a Perl shorthand.  It does a stat() on the passed filename, and   
 # then looks at the mode.  If the filename is a directory, it returns true;   
 # if not, it returns false.   
       
 unless (-d $ARGV[0]) {    
   die “The filename supplied was not a directory.”    
 }    
       
 my $dirs = dircontents($ARGV[0]);   
 printit($dirs, 0);   
       
 sub dircontents{    
   my $startname = shift @_;   
   my $filename;   
   my $retval = { } ;          # Initialize with an empty hash reference   
   local *DH;                # Ensure that the handle is locally scoped   
       
 # This is the same as DH = opendir(“ filename”) in C.   
 # In C, you can use DIR *DH; to declare the variable.   
       
   unless(opendir(DH, $startname)) {    
     warn “Couldn’ t open directory $startname: $!” ;   
     return undef;   
   }    
       
   # In C, readdir() returns a pointer to struct dirent, whose members are   
   # defined in readdir(3).  In Perl, returns one file in scalar context,   
   # or all remaining filenames in list context.   
       
   while ($filename = readdir(DH)) {    
     $retval->{ $filename}  = {  name => $filename,   
                              size => -s “$startname/$filename”,   
                              age => -M “$startname/$filename”} ;   
     if ($filename ne ‘ .’  &&   
         $filename ne ‘ ..’  &&   
         ! -l “$startname/$filename” &&   
         -d “$startname/$filename”) {    
       $retval->{ $filename} ->{ subdir}  = dircontents(“$startname/$filename”);   
     }    
   }    
       
   closedir(DH);   
   return $retval;   
 }    
       
 sub printit {    
   my ($ref, $count) = @_;   
   my $key;   
   my $counter = 0;   
       
   foreach $key (sort keys %$ref) {    
     print “  “  x ($count *  3);   
     if (exists($ref->{ $key} ->{ subdir} )) {    
       printf “%3d: subdirectory %s (%d bytes)\n” , $counter, $key,   
              $ref->{ $key} ->{ size} ;   
       printit($ref->{ $key} ->{ subdir} , $count + 1);   
     }  else {    
       printf “%3d: %s (%d bytes)\n” , $counter, $key, $ref->{ $key} ->{ size} ;     
     }    
     $counter++;   
   }    
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 }    
 Now things start to get interesting!  At the heart of it all is this:   
     $retval->{ $filename}  = {  name => $filename,   
                              size => -s “$startname/$filename”,   
                              age => -M “$startname/$filename”} ;   
 

 

This code creates a reference to an anonymous hash. This hash contains the file’s name (so you don’ t have to pass along the hash 
key separately), its size, and its age. Then, if there is a subdirectory, an additional item named subdir is added to the hash, the 
value of which is a reference to a hash for that subdirectory. Thus, to get to the information for the same /etc/X11/xdm/Xstartup 
file as described earlier, you’d now need to use $ref->{ etc} ->{ subdir} ->{ X11} ->{ subdir} ->{ xdm} ->{ subdir} ->{ Xstartup} . This is 
clearly more typing; on the other hand, you now have more useful information in the hash. When the information is being printed 
out, it too has to trace through this additional level to get to some information; however, that information was not available at all 
before. Here is the output of running this revised code: 

 

 
 
 $ ./ch20-8.pl /etc/modutils   
   0: . (1024 bytes)   
   1: .. (6144 bytes)   
   2: aliases (1259 bytes)   
   3: subdirectory arch (1024 bytes)   
      0: . (1024 bytes)   
      1: .. (1024 bytes)   
      2: alpha (35 bytes)   
      3: i386 (35 bytes)   
      4: m68k.amiga (623 bytes)   
      5: m68k.atari (624 bytes)   
      6: m68k.generic (251 bytes)   
      7: m68k.mac (277 bytes)   
   4: paths (1161 bytes)   
   5: pcmcia (37 bytes)   
   6: setserial (487 bytes)  
Subroutines and Scope   
 

 
Like C, Perl offers functions. In Perl, they are called subroutines—you’ve already seen examples of them in this chapter. Let’s 
dive in and take a look at the details. 

 
 
 

 
Perl subroutines can be called with a syntax similar to the syntax for internal functions, but there are a few extra twists that you 
haven’ t seen yet. Here are examples of calling a subroutine named mysub: 

 
 
 
 mysub();   
 mysub(1, 2, 3);   
 mysub(“abcde” , “xyz” );   
 &mysub;   
 

 
The first example invokes the subroutine without passing any arguments. The second passes it three integers, and the third passes 
it two strings. The final example invokes it with the use of the older ampersand notation. This notation is rarely needed today, but 
may still be used. 

 

 
 

 
If your subroutines take parameters, these parameters are passed in using the @_ array. Generally the first thing you will want to 
do is save the contents of that array for later use. If you are expecting only one argument, a typical way to do that is: 

 
 
 
 my $arg = shift @_;   
 

 
This removes the argument from the front of the array and returns it, for assignment to your variable. If you are expecting multiple 
arguments, you might do this: 

 
 
 
 my ($scalar1, $scalar2, $scalar3, @remainder) = @_;   
 

 
This code will take the first three arguments and place them into the corresponding scalar variable. Any remaining arguments 
(perhaps from an array) will be placed into the array. These variables can then be used later. 

 
 
 

 
Notice the my keyword that occurs here. This is a scoping operator. This operator indicates that the variables being created should 
exist in the namespace of only the current subroutine—which is a very good thing. Otherwise, your subroutines may inadvertently 
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overwrite variables used by the main program, or even by other invocations of your own subroutine! Because the function used in 
the earlier example program was recursive, this was a requirement; otherwise, the variables would definitely get overwritten.  

 

 
Whenever you use any variable in a subroutine, whether or not it was passed in, you should declare it my unless there is a strong 
reason not to. In fact, it’s not a bad idea to do that in all your code; getting into the habit can be good, and you can help isolate 
variables between different modules. 

 

 
 

 
Subroutines in Perl return values just as they do in C. If no explicit return statement is present, the return value of a subroutine is 
simply the return value of the last statement run. 

 
 
 

 
Calling a subroutine in Perl 5 is done just as it is in C, with parenthesis. You might occasionally see code that uses the & sign to 
call subroutines. This is mostly—but not always—a holdover from days of earlier Perl versions. 

 
 
 

 
One interesting thing that you can do with subroutines is create references to them—for instance, $ref = \&sub. Moreover, you can 
even use an anonymous subroutine, as demonstrated in this example: 

 
 
 
 #!/usr/bin/perl -w   
       
 my $subref = sub {    
   my $arg = shift @_;   
   print “Hello, I am an anonymous sub ($arg)!\n”    
 } ;   
       
 &$subref(“really” );   
 

 
Here, you set up a reference to an anonymous subroutine. This subroutine takes a single argument and prints out a message with 
that argument embedded in it. The reference is then dereferenced and the value displayed. This is one case where the ampersand 
(&) is required—this code will not work without it. 

 

 
 

 

You are now able to pass along arbitrary code as parameters to functions, with interesting results. Perl/Tk makes extensive use of 
this feature. In our previous code examples, for instance, you might pass along a custom subroutine for printing out the 
information for any given file, so that you can use a single function to walk through the list and prepare for printing, but with a 
custom output format. 

 

 
 
     
 
Cross-Reference  
 
 Chapter 24, “GUIs with Perl/TK,”  covers Perl/TK.   
 
     
 

 

There is another note about subroutines with which you should be aware. In Chapter 8, “Memory Management,”  I warned you never 
to return a pointer to a local variable in C. You do not have this problem with Perl; you may freely return references to local 
variables. The reason is that even though the local variable may disappear from the namespace after the subroutine exits, if there is 
something pointing to it, its data will not. This is due to Perl’s garbage collection mechanism, which will ensure that nothing is 
removed until it is no longer being used. Therefore, you do not have to worry about variables going out of scope after they (or rather, 
pointers to them) have been indicated for being returned to the caller.  

Flow Control   
 

 

Like C, Perl provides a variety of methods for various loops and conditionals. Many of them function in a manner similar to their 
C equivalents. For instance, the if operator in Perl works in almost the same way—the difference is that Perl requires braces 
around the action, whereas C makes them optional. Perl’s version, though, has another syntax, as demonstrated in the following 
line of code: 

 

 
 
 print “Hi\n”  if ($shouldprint);   
 

 
In this example, if the conditional is true, the print statement is executed; otherwise, it is skipped. Perl also provides an unless 
statement, which is essentially an if but with an implied not. You can use it just as the if statement with both syntax varieties, as 
shown in this example:  

 

 
 
 print “Hi\n”  unless ($skipPrint);   
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 This would display the message unless the variable is true, presumably asking for the message to be skipped.   
 

 
You have already seen examples of Perl’s foreach statement. This takes a variable and a list of items. The variable is set to the 
value of each item in the list, in order, and the supplied code is executed once per item. As an example, it was used earlier in this 
chapter in this context: 

 

 
 
 foreach $key (sort keys %$hashref) {    
   print “Hash: $key = $hashref->{ $key} \n” ;   
 }    
 
 This caused Perl to set $key to each key in the hash, one key at a time, and to execute the print command for each such key.   
 
 Perl also supports a C-style for loop, which looks almost identical to the C version. Here’s a quick example of one such loop:   
 
 for ($a = 0; $a < 200; $a++) {    
   print “$a\n” ;   
 }    
 

 

Perl doesn’ t have a built-in case statement but does offer several alternatives from which to choose. One of the more popular ones 
involves using a particular feature of the for statement to temporarily set Perl’s default variable, $_, to the variable you’ re tying to 
match—great for regular expressions. Unlike in C, the example that follows doesn’ t require just numbers to match, it can use any 
arbitrary expression to obtain a match: 

 

 
 
 SWITCH: for ($foo) {    
   /abc/         && do {  print “alpha\n” ; last; } ;   
   /xyz/         && do {  print “ending\n” ; last; } ;   
   $foo == 2          && do {  print “second\n” ; last; } ;   
   die “Couldn’ t match input to switch.” ;   
 }    
 

 
Because the = = operator requires two arguments, you can’ t omit $foo there, but you can omit $foo with the regular expressions with 
this syntax. The die call at the end is the default, which is called if nothing matches. This can, of course, be omitted if you prefer.  

OOP Features   
 

 
One interesting addition to Perl is support for object-oriented programming (OOP). This support is implemented in a unique way 
and is built atop Perl modules. 

 
 
 

 
Perl modules are used for more than just OOP; they make it easy to add new functionality to Perl programs by bringing in third-
party modules (libraries). The Comprehensive Perl Archive Network, CPAN, has a repository of modules available online. You 
can see it at http://www.perl.com/CPAN-local/. In this book, in fact, we use some modules from CPAN in later chapters. 

 

 
 
     
 
Cross-Reference  
 

 
In Chapter 22, “CGI Programming,”  I use CGI.pm. Chapter 23, “SQL Databases with DBI,”  I use the DBI module, and, in 
Chapter 24, “GUIs with Perl/Tk,”  I use the Tk module. There are thousands more available for your use as well. 

 
 
 
     
 

 

Each object in Perl, with its corresponding classes, is defined in a Perl module file. This means that they live in a separate 
namespace from the main program and thus don’ t have (direct) access to your program’s main variables. Making such access more 
difficult is a good thing, though—it helps to encourage writing reusable objects that do not depend on certain things being present 
in the main program for their functionality. 

 

 
 

 
An object is created by using the bless operator; bless is given a reference and a class name. Typically, a Perl module that 
implements an object will define a new subroutine that will create such a reference, bless it, and return it to the caller. Perl also 
defines new syntaxes that can be used for calling methods for the object. 

 

 
 

 
If you call a generic method, you can use a syntax such as Classname->new() or new Classname() to call a generic subroutine from 
the class. When you use this syntax, Perl automatically passes the name of the object to the subroutine as its first argument. After 
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you have an object, you should use, for example, $object->display() to invoke methods. When an object is called this way, Perl 
automatically passes the reference to the object as the first parameter to any subroutine.  

 

 
As an example of object-oriented programming, I’ ll take the example of a directory traversal program from earlier and 
reimplement it with objects. This example will require two files. The first is ch20-10.pl, included in Listing 20-4. 

 
 
 
  Note  Listing 20-4 is available online.   
 
 Listing 20-4: Example code: ch20-10.pl   
 
 #!/usr/bin/perl -w   
       
 require FileObject;   
       
 # Perl’s unless is an inverse if.  That is, unless(a) is the same as   
 # if (!(a)).   
       
 unless ($ARGV[0]) {    
   die “Must specify a directory.”    
 }    
       
 # -d is a Perl shorthand.  It does a stat() on the passed filename, and   
 # then looks at the mode.  If the filename is a directory, it returns true;   
 # if not, it returns false.   
       
 unless (-d $ARGV[0]) {    
   die “The filename supplied was not a directory.”    
 }    
 my $dirs = dircontents($ARGV[0]);   
 printit($dirs, 0);   
       
 sub dircontents{    
   my $startname = shift @_;   
   my $filename;   
   my $retval = { } ;          # Initialize with an empty hash reference   
   local *DH;                # Ensure that the handle is locally scoped   
       
 # This is the same as DH = opendir(“ filename”) in C.   
 # In C, you can use DIR *DH; to declare the variable.   
       
   unless(opendir(DH, $startname)) {    
     warn “Couldn’ t open directory $startname: $!” ;   
     return undef;   
   }    
       
   # In C, readdir() returns a pointer to struct dirent, whose members are   
   # defined in readdir(3).  In Perl, returns one file in scalar context,   
   # or all remaining filenames in list context.   
       
   while ($filename = readdir(DH)) {    
     my $object = new FileObject($startname);   
     $object->populate($filename);   
     if ($object->{ isdir} ) {    
       $object->setsubdir(dircontents(“$startname/$filename”));   
     }    
     $retval->{ $filename}  = $object;   
   }    
       
   closedir(DH);   
   return $retval;   
 }    
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 sub printit {    
   my ($ref, $count) = @_;   
   my $key;   
       
   foreach $key (sort keys %$ref) {    
     $ref->{ $key} ->display($count);   
     if ($ref->{ $key} ->{ isdir} ) {    
       printit($ref->{ $key} ->{ subdir} , $count + 1)   
     }    
   }    
 }    
 

 
The second required file is FileObject.pm (see Listing 20-5). Note that this second file does not need to be marked executable nor 
does it need the bangpath on the first line. This is because it is not called directly; rather, it is loaded by Perl after parsing the 
require statement in file ch20-10.pl. 

 

 
 
  Note  Listing 20-5 is available online.   
 
 Listing 20-5: Example code: FileObject.pm   
 
 package FileObject;   
       
 sub new {    
   my ($class, $startfile, $filename) = @_;   
   my $self = { startfile => $startfile} ;   
   bless($self, $class);   
   if ($filename) {    
     $self->populate($filename);   
   }    
       
   return $self;   
 }    
       
 sub populate {    
   my ($self, $filename) = @_;   
       
   $self->{ size}  = -s $self->{ startfile}  . “ /$filename”;   
   $self->{ age}  = -M “$self->{ startfile} /$filename”;   
   $self->{ name}  = $filename;   
   if ($filename ne ‘ .’  &&   
       $filename ne ‘ ..’  &&   
       ! -l “$self->{ startfile} /$filename” &&   
       -d “$self->{ startfile} /$filename”) {    
     $self->{ isdir}  = 1;   
   }  else {    
     $self->{ isdir}  = 0;   
   }    
 }    
       
 sub setsubdir {    
   my ($self, $subdir) = @_;   
    
   unless ($self->{ isdir} ) {    
     die “Attempt to set subdirectory on non-directory!” ;   
   }    
    
   $self->{ subdir}  = $subdir;   
 }    
 sub display {    
   my ($self, $level) = @_;   
   $level = 0 unless $level;   
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   print “  “  x (3 * $level);   
   printf “%s%s (%d bytes)\n” ,   
          ($self->{ isdir}  ? “directory “  : “ ” ),   
          $self->{ name} ,   
          $self->{ size} ;   
 }    
       
 1;   
 

 

Now that you have both parts of the code, let’s go over them and examine what it is that they do. The main part, ch20-10.pl, first 
says require FileObject. This causes Perl to load in the FileObject.pm file as a separate package. Inside dircontents, there is a loop 
as before that runs readdir. This time, however, the first thing that’s done inside the loop is to generate a new object, passing along 
the startname (which is the path of the object that it needs to use for stat). Then, it calls $object->populate($filename), which tells 
the object to set all of its internal data structures based on the passed name—that is, get its size, age, and the like and take note of 
them. If the object is a directory, its contents are set as such; otherwise, the object is fine as is. Finally, the object is added to the 
main hash. Note how much cleaner this has made the while loop—the object essentially knows how to find out details about itself, 
so there is no need to do that in the main loop! 

 

 
 

 
Likewise, the subroutine to display the objects is similarly compacted to just four lines of actual code. The key is that it calls the 
object’s display method, which does the grunt work of displaying the object to the screen. 

 
 
 

 

In FileObject.pm, the first thing that the code does is declare itself to be a Perl package named FileObject. It then defines its 
methods. The first method, new, starts by generating an anonymous hash and saving it into $self. It takes note of the passed 
starting position as the initial entry in that hash. Then it blesses $self, using the implicitly passed class name. If a filename was 
passed in as well, it goes ahead and calls the populate method; otherwise, that is left to the caller to do later. Finally, it returns the 
newly created object to the caller. 

 

 
 

 

The populate subroutine is used to find out information about the object. As with all the remaining subroutines in this file, $self is 
passed automatically by Perl as the first parameter. The subroutine fills out various fields in its object. The setsubdir function 
performs a similar duty, although note that it has a consistency check. If someone tries to set a subdirectory on an object that is not 
a directory, an error is emitted. 

 

 
 

 
Next, the display subroutine displays the object on the screen. This is fairly straightforward, using code similar to that used in 
earlier versions of the code. 

 
 
 

 

Finally, you see the two characters at the end of the file: 1;. They are there because Perl wants to know if your module loaded 
properly. If your module has not, Perl will abort compilation of your program. If it has loaded properly, Perl continues with its 
normal execution. This value is simply the last value evaluated by the module. Because this module has no initialization code that 
could possibly fail, it simply says 1 so that Perl gets a true value from it. 

 

 
 

 
Let’s run this final version of the code over /etc/X11 so that you can see that it does indeed work to traverse several directories 
deep (see Listing 20-6). 

 
 
 
  Note  Listing 20-6 is available online.   
 
 Listing 20-6: Sample output   
 
 $ chmod a+x ch20-10.pl   
 $ ./ch20-10.pl /etc/X11   
 . (1024 bytes)   
 .. (6144 bytes)   
 directory WindowMaker (2048 bytes)   
    . (2048 bytes)   
    .. (1024 bytes)   
    appearance.menu (553 bytes)   
    background.menu (1170 bytes)   
    menu (8164 bytes)   
    menu.ca (10101 bytes)   
    menu.cz (4189 bytes)   
    menu.da (9164 bytes)   
    menu.de (4126 bytes)   
    menu.el (8731 bytes)   
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    menu.es (4331 bytes)   
    menu.fi (7204 bytes)   
    menu.fr (9238 bytes)   
    menu.gl (3799 bytes)   
    menu.he (6958 bytes)   
    menu.hook (29056 bytes)   
    menu.hr (7312 bytes)   
    menu.hu (7925 bytes)   
    menu.it (4048 bytes)   
    menu.ja (7570 bytes)   
    menu.ko (8423 bytes)   
    menu.nl (3223 bytes)   
    menu.no (7008 bytes)   
    menu.posthook (0 bytes)   
    menu.prehook (0 bytes)   
    menu.pt (7812 bytes)   
    menu.ru (4548 bytes)   
    menu.se (7561 bytes)   
    menu.sl (7645 bytes)   
    menu.tr (6512 bytes)   
    menu.zh_CN (7233 bytes)   
    menu.zh_TW.Big5 (7361 bytes)   
    plmenu (4461 bytes)   
    plmenu.da (9069 bytes)   
    plmenu.dk (11409 bytes)   
    plmenu.fr (4830 bytes)   
    plmenu.hr (5694 bytes)   
    plmenu.it (4684 bytes)   
    plmenu.zh_CN (3376 bytes)   
    wmmacros (2397 bytes)   
 XF86Config (20488 bytes)   
 Xloadimage (842 bytes)   
 Xmodmap (547 bytes)   
 directory Xresources (1024 bytes)   
    . (1024 bytes)   
    .. (1024 bytes)   
    tetex-base (126 bytes)   
    xbase-clients (36 bytes)   
    xfree86-common (349 bytes)   
    xterm (895 bytes)   
 Xserver (249 bytes)   
 Xsession (3672 bytes)   
 Xsession.options (235 bytes)   
 directory afterstep (1024 bytes)   
    . (1024 bytes)   
    .. (1024 bytes)   
    menudefs.hook (36511 bytes)   
 directory fonts (1024 bytes)   
    . (1024 bytes)   
    .. (1024 bytes)   
    directory 100dpi (1024 bytes)   
       . (1024 bytes)   
       .. (1024 bytes)   
       xfonts-100dpi.alias (3154 bytes)   
    directory 75dpi (1024 bytes)   
       . (1024 bytes)   
       .. (1024 bytes)   
       xfonts-75dpi.alias (3066 bytes)   
    directory Speedo (1024 bytes)   
       . (1024 bytes)   
       .. (1024 bytes)   
       xfonts-scalable.scale (564 bytes)   
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    directory Type1 (1024 bytes)   
       . (1024 bytes)   
       .. (1024 bytes)   
       xfonts-scalable.scale (1075 bytes)   
    directory misc (1024 bytes)   
       . (1024 bytes)   
       .. (1024 bytes)   
       xfonts-base.alias (9940 bytes)   
       xfonts-jmk.alias (5424 bytes)   
 directory fvwm (1024 bytes)   
    . (1024 bytes)   
    .. (1024 bytes)   
    default-style.hook (309 bytes)   
    init-restart.hook (357 bytes)   
    init.hook (409 bytes)   
    main-menu-pre.hook (259 bytes)   
    main-menu.hook (385 bytes)   
    menudefs.hook (36642 bytes)   
    post.hook (121 bytes)   
    pre.hook (253 bytes)   
    restart.hook (97 bytes)   
    system.fvwm2rc (15195 bytes)   
    system.warnings (3462 bytes)   
    update.warn (199 bytes)   
 window-managers (338 bytes)   
 directory wm-common (1024 bytes)   
    . (1024 bytes)   
    .. (1024 bytes)   
 directory xinit (1024 bytes)   
    . (1024 bytes)   
    .. (1024 bytes)   
    xinitrc (188 bytes)   
 directory xserver (1024 bytes)   
    . (1024 bytes)   
    .. (1024 bytes)   
    SecurityPolicy (2929 bytes)   
 directory xview (1024 bytes)   
    . (1024 bytes)   
    .. (1024 bytes)   
    text_extras_menu (703 bytes)   
    textswrc (2409 bytes)   
    ttyswrc (444 bytes)  
Summary   
 
 In this chapter, you received a quick introduction to the Perl programming language. Specifically, you learned:   
 
  •  Perl is a “glue language,”  doing a good job of tying together data coming from many different sources.   
 

  
• 

 
Perl’s syntax largely resembles that of C but also includes numerous features from shell, awk, sed, grep, and various other 
UNIX tools or languages. 

 
 
 
  •  Perl supports four main types of variables: scalars, lists, hashes, and subroutines.   
 
  •  References are available, which are similar in concept to pointers in C.   
 
  •  All memory allocation and deallocation in Perl is done automatically.   
 
  •  By using references, you can build complex data structures such as nested arrays or nested hashes.   
 
  •  The my operator is important to enforce local scoping rules in subroutines.   
 
  •  Perl features object-oriented functionality as an addition to its package system.  
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Chapter  21: Manipulating Data with Per l   
 
 Overview   
 

 
Now that you have learned some basics of Perl, it’s time to address an area that is one of Perl’s greatest strengths: its data 
manipulation support. In this chapter, you will learn how to get data into your Perl programs, process the data once you have it, 
implement some persistent storage mechanisms, and generate output from your programs.  

Reading Data   
 

 
Perl provides you with several different ways to get data into your program. Because many Perl programs are written to read data 
from line-oriented files such as text files, it’ s no surprise that Perl has operators designed for just such uses. 

 
 
 

 

The main such operator is the angle-bracket operator, which reads line-oriented data from a machine. When used in a scalar 
context, it returns one line of input. When used in a list context, it continues reading data into memory until EOF (end of file) is 
reached, and it returns a list whose elements are the lines in the file. Like some similar functions in C, this operator does not strip 
off the trailing newline; Perl’s chomp function is great for this. 

 

 
 

 
You can also use this operator in a loop. The following code is an illustration of a very common usage of the angle-bracket 
operator in a loop: 

 
 
 
 #!/usr/bin/perl -w   
       
 my $counter = 1;   
 while (my $line = <STDIN>) {    
   chomp $line;   
   print “Line $counter: $line\n” ;   
   $counter++;   
 }    
 

 
As long as the <STDIN> continues to return data, the while loop will continue to run. The newline is removed by chomp, the line 
is printed, and you get output. For instance: 

 
 
 
 $ ls /etc/X11 | ./ch21-1.pl   
 Line 1: WindowMaker   
 Line 2: XF86Config   
 Line 3: Xloadimage   
 Line 4: Xmodmap   
 Line 5: Xresources   
 Line 6: Xserver   
 Line 7: Xsession   
 Line 8: Xsession.options   
 Line 9: afterstep   
 Line 10: fonts   
 Line 11: fvwm   
 Line 12: window-managers   
 Line 13: wm-common   
 Line 14: xinit   
 Line 15: xserver   
 Line 16: xview   
 
 You can also open arbitrary files for reading. For instance, here’s a simple program to count the number of lines in a file:   
 
 #!/usr/bin/perl -w   
       
 print “Enter a filename: “ ;   
 chomp ($filename = <STDIN>);   
       
 open INFILE, $filename or   
   die “Couldn’ t open file $filename: $!\n” ;   
       
 $counter = 0;   
       



 406 

 while (<INFILE>) {    
   $counter++;   
 }    
       
 print “Lines: $counter\n” ;   
 
 This program prompts for a filename. Note the shortcut on line 4—the input is chomped while it is being read in.   
 

 

Some programs, especially programs like CGI programs, and some utility scripts, need to read data from the process’s 
environment variables. This can be done by accessing the special %ENV hash. The keys of this hash are the environment variable 
names, and their values are, of course, the contents of the variables themselves. For instance, $ENV{ PATH}  corresponds to the 
system’s current search path for your process. You can both read from and write to these items just as you would any other hash. 

 

 
 

 
You can also read arguments passed on the command line. Perl has an @ARGV array that functions in a manner similar to argv in 
C. However, Perl does not include the name of the script in the array. Furthermore, there is no argc; you can access that 
information with $#ARGV. 

 

 
 

 
As a special feature, you can have your program read through lines of any files specified on the command line, one after another. 
Perl will automatically open them and feed them to your program. And if one of the items on the line is a single dash, Perl will 
read standard input at that point—essentially mimicking the behavior of cat: 

 

 
 
 #!/usr/bin/perl -w   
       
 $counter = 0;   
       
 while (<>) {    
   $counter++;   
 }    
       
 print “Lines: $counter\n” ;   
 
 You can run this program, for instance, like this:   
 
 $ ./ch21-2.pl /etc/passwd /etc/group /etc/X11/XF86Config   
 Lines: 700   
 

  

Tip 

 

Notice the <> operator in the example Perl program immediately above. This operator reads input a line at a time, just like 
<STDIN> did. However, the difference is that <> will read input from each file specified on the command line for the 
program. In this case, it read input from /etc/passwd, /etc/group, and /etc/X11/XF86Config before finally returning an end 
of file indication. If no files are specified on the command like, <> reverts to <STDIN>.  

Parsing and Processing Data   
 

 

One of the most powerful features of Perl is its capability to easily pick apart data and process it. In Chapter 3, “Working with 
Regular Expressions,”  you learned about the power of regular expressions. Perl integrates regular expressions into the language, 
and they form an important part of it. You can use them for string comparisons—but comparisons much more powerful than 
simply determining whether two strings are equal. With regular expressions, you get to indicate precisely how nearly equal strings 
have to be to be considered a match. Furthermore, these regular expressions can be engineered by your own software on the fly—
that is, any string can be a regular expression. 

 

 
 
 In Chapter 3, I introduced a pattern testing program named pattest. Here is its code:   
 
 #!/usr/bin/perl   
       
 while (1) {    
   print “Enter pattern” ;   
   print “ , or . to re-use previous,”  if ($LASTREGEXP);   
   print “  or leave empty to exit:\n” ;   
   print “> “ ;   
   $REGEXP = <STDIN>;   
   chomp $REGEXP;   
   if ($REGEXP eq ‘ .’ ) {    
     $REGEXP = $LASTREGEXP;   
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   }    
   exit (0) unless ($REGEXP);   
   print “Enter string to match” ;   
   print “  or . to re-use previous”  if ($LASTSTRING);   
   print “ :\n” ;   
   print “> “ ;   
   $STRING = <STDIN>;   
   chomp $STRING;   
   if ($STRING eq ‘ .’ ) {    
     $STRING = $LASTSTRING;   
   }    
       
   $LASTREGEXP = $REGEXP;   
   $LASTSTRING = $STRING;   
       
   @MATCHES = $STRING =~ /$REGEXP/;   
   if ($#MATCHES > -1) {    
     print “Successful match!\n” ;   
     print “There were “  . ($#MATCHES + 1) . “  strings returned: \n” ;   
     $counter = 0;   
     foreach $MATCH (@MATCHES) {    
       $counter++;   
       print “String $counter: $MATCH\n” ;   
     }    
   }  else {    
     print “There was not a successful match.\n” ;   
   }    
   print “ \n\n” ;   
 }    
 

 

Let’s take a look at this code. First, the program starts with while(1)—this means that the loop will continue forever—although 
there is an exit condition (exit (0) unless ($REGEXP);)in it. Then, the user is prompted for a pattern. If the data entered is simply a 
period, then the program uses the previously entered value. If the regular expression supplied is empty, the program exits. The 
program similarly prompts for a string to match, and again, it can reuse the last one if desired. Then, we come to this line: 

 

 
 
 @MATCHES = $STRING =~ /$REGEXP/;   
 

 
This code causes the regular expression to be applied to the input string. If any items were returned, they are placed into that array, 
which is then displayed. Then, the cycle repeats. 

 
 
 

 
You can make this a more useful program by being able to pipe data to it—perhaps in a fashion similar to grep (see Chapter 4); but 
this way, you get Perl’s regular expression support instead of grep’s. Here’s a revised version of the code: 

 
 
 
 #!/usr/bin/perl -w   
       
 $pattern = shift @ARGV;   
       
 while ($string = <>) {    
   chomp $string;   
   @matches = $string =~ /$pattern/;   
       
   if ($#matches > -1) {    
     print “Match: (“ ;   
     print join(‘ , ‘ , @matches);   
     print “ )\n” ;   
   }    
 }    
 

 
This code is indeed much shorter, but it may be more useful than the other. Consider, for instance, using it to isolate a permission 
string and file size from an ls listing: 

 
 
 
 $ ls -l /etc/X11 | ./pattest ‘ ^ (\S+)\s+\d+\s+\D+\s+(\d+)’    
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 Match: (drwxr-xr-x, 2048)   
 Match: (-rw-r--r--, 20488)   
 Match: (-rw-r--r--, 842)   
 Match: (-rw-r--r--, 547)   
 Match: (drwxr-xr-x, 1024)   
 Match: (-rw-r--r--, 249)   
 Match: (-rwxr-xr-x, 3672)   
 Match: (-rw-r--r--, 235)   
 Match: (drwxr-xr-x, 1024)   
 Match: (drwxr-xr-x, 1024)   
 Match: (drwxr-xr-x, 1024)   
 Match: (-rw-r--r--, 338)   
 Match: (drwxr-xr-x, 1024)   
 Match: (drwxr-xr-x, 1024)   
 Match: (drwxr-xr-x, 1024)   
 Match: (drwxr-xr-x, 1024)   
 
 Using split   
 

 

Another use for parsing is to split apart a string based on a certain delimiter. This function is more or less the inverse of the regular 
expression match. Instead of specifying the text to match, you specify a regular expression indicating the text not to match. When 
you are parsing data that has a fixed separator, split is ideal. Examples include the passwd file (a colon separator), English text (a 
space separator between words), comma-delimited files, and even some forms of column-based output. Here is a rewrite of pattest 
that uses split: 

 

 
 
 #!/usr/bin/perl -w   
       
 $pattern = shift @ARGV;   
       
 while ($string = <>) {    
   chomp $string;   
   @matches = split(/$pattern/, $string);   
       
   if ($#matches > -1) {    
     print “Match: (“ ;   
     print join(‘ , ‘ , @matches);   
     print “ )\n” ;   
   }    
 }    
 

 
You can take a look at how this code works by again working with a directory listing, using it (recall that because the space is a 
shell metacharacter, it needs to be quoted on the command line): 

 
 
 
 $ ls -l /etc/X11 | ./splittest ‘  ‘    
 Match: (total, 41)   
 Match: (drwxr-xr-x, , , 2, root, , , , , root, , , , , , , , , 2048, Sep, 11, 10:40, WindowMaker)   
 Match: (-rw-r--r--, , , 1, root, , , , , root, , , , , , , , 20488, Jul, 20, 15:26, XF86Config)   
 Match: (-rw-r--r--, , , 1, root, , , , , root, , , , , , , , , , 842, Apr, , 5, , 1998, Xloadimage)   
 Match: (-rw-r--r--, , , 1, root, , , , , root, , , , , , , , , , 547, May, 27, 07:40, Xmodmap)   
 Match: (drwxr-xr-x, , , 2, root, , , , , root, , , , , , , , , 1024, Sep, 15, 16:05, Xresources)   
 

 
This type of output continues on. What is happening is that each space is matched separately. You can achieve a more useful result 
by using a regular expression that matches one or more spaces. Here’s a revised version of the preceding code: 

 
 
 
 $ ls -l /etc/X11 | ./splittest ‘  +’    
 Match: (total, 41)   
 Match: (drwxr-xr-x, 2, root, root, 2048, Sep, 11, 10:40, WindowMaker)   
 Match: (-rw-r--r--, 1, root, root, 20488, Jul, 20, 15:26, XF86Config)   
 Match: (-rw-r--r--, 1, root, root, 842, Apr, 5, 1998, Xloadimage)   
 Match: (-rw-r--r--, 1, root, root, 547, May, 27, 07:40, Xmodmap)   
 Match: (drwxr-xr-x, 2, root, root, 1024, Sep, 15, 16:05, Xresources)   
 Match: (-rw-r--r--, 1, root, root, 249, Jun, 2, 20:36, Xserver)   
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 Match: (-rwxr-xr-x, 1, root, root, 3672, Aug, 26, 21:50, Xsession)   
 Match: (-rw-r--r--, 1, root, root, 235, May, 27, 07:52, Xsession.options)   
 Match: (drwxr-xr-x, 2, root, root, 1024, Sep, 11, 10:40, afterstep)   
 Match: (drwxr-xr-x, 7, root, root, 1024, Jun, 2, 19:34, fonts)   
 Match: (drwxr-xr-x, 2, root, root, 1024, Sep, 11, 10:40, fvwm)   
 Match: (-rw-r--r--, 1, root, root, 338, Aug, 31, 19:30, window-managers)   
 Match: (drwxr-xr-x, 2, root, root, 1024, May, 13, 19:42, wm-common)   
 Match: (drwxr-xr-x, 2, root, root, 1024, Aug, 31, 19:40, xinit)   
 Match: (drwxr-xr-x, 2, root, root, 1024, Aug, 31, 19:41, xserver)   
 Match: (drwxr-xr-x, 2, root, root, 1024, Jun, 18, 12:08, xview)   
 
 Using grep   
 

 

Another useful function in Perl is named grep. Its function is similar to the well-known command by that name: to check each 
element in an array for a match on a certain pattern, and return a list of corresponding elements. You can easily rewrite the 
preceding code to use grep—in fact, you can write your own simple version of the grep command in Perl in just a very few lines of 
code: 

 

 
 
 #!/usr/bin/perl -w   
       
 $pattern = shift @ARGV;   
       
 foreach $match (grep(/$pattern/, <>)) {    
   print $match;   
 }    
 

 
This short bit of code does what hundreds or even thousands of lines would do in other languages—thanks to Perl’s built-in regular 
expression support. Take a look at the results: 

 
 
 
 $ ls -l /etc/X11 | ./mygrep X   
 -rw-r--r--   1 root     root        20488 Jul 20 15:26 XF86Config   
 -rw-r--r--   1 root     root          842 Apr  5  1998 Xloadimage   
 -rw-r--r--   1 root     root          547 May 27 07:40 Xmodmap   
 drwxr-xr-x   2 root     root         1024 Sep 15 16:05 Xresources   
 -rw-r--r--   1 root     root          249 Jun  2 20:36 Xserver   
 -rwxr-xr-x   1 root     root         3672 Aug 26 21:50 Xsession   
 -rw-r--r--   1 root     root          235 May 27 07:52 Xsession.options   
 

 
This code behaves almost exactly like the grep command! Notice that you can also rewrite it with a little bit more effort by 
implementing the functionality of Perl’s grep function yourself. Here’s a version of the program that does the same as the 
preceding version, but without using grep: 

 

 
 
 #!/usr/bin/perl -w   
       
 $pattern = shift @ARGV;   
       
 foreach $match (<>) {    
   print $match if $match =~ /$pattern/;   
 }    
 
 Running this program gives the same results as before, as you can see here:   
 
 $ ls -l /etc/X11 | ./mygrep X   
 -rw-r--r--   1 root     root        20488 Jul 20 15:26 XF86Config   
 -rw-r--r--   1 root     root          842 Apr  5  1998 Xloadimage   
 -rw-r--r--   1 root     root          547 May 27 07:40 Xmodmap   
 drwxr-xr-x   2 root     root         1024 Sep 15 16:05 Xresources   
 -rw-r--r--   1 root     root          249 Jun  2 20:36 Xserver   
 -rwxr-xr-x   1 root     root         3672 Aug 26 21:50 Xsession   
 -rw-r--r--   1 root     root          235 May 27 07:52 Xsession.options  
Stor ing Data   
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Another common concern when writing programs is how to use persistent storage for data. With small, simple programs, simply 
writing data out to a text file and reading it back in the next time the program runs may be sufficient. However, consider a situation 
in which you have ten thousand—or ten million—records. This process may not be a practical solution in that case. Or consider a 
case in which you have nested arrays or hashes as described in Chapter 20, “ Introducing Perl.”  In this situation, a flat text file may 
require a complex format and some significant work to recreate the structures in memory when reading it back in. 

 

 
 

 

Perl provides features for both of these problems, and more. For the problem of storing large amounts of data, Perl enables you to 
transparently tie structures such as hashes to an on-disk database. This means that any access to those structures actually takes 
place from disk, freeing you from the constraints of available memory and enabling you to obtain a convenient persistent storage 
method at the same time. 

 

 
 

 
For the problem of storing complex structures, Perl provides the Data Dumper, which can take any Perl structure and generate a 
string representation of it. This string representation is actually valid Perl, so your Perl program can read it back in later and (with 
a few exceptions) recreate the in-memory contents exactly as they were before writing the data out—automatically. 

 

 
 

 

You can even combine these two methods and store output from the Data Dumper in a database. Additionally, Perl is capable of 
communicating with numerous SQL database servers if your data storage needs require something more robust. This topic will be 
discussed in Chapter 23, “SQL Databases with DBI” ; for now, we’ ll concentrate on the simpler ways to store data. Although both 
methods involve a database, the two are significantly different. The database type being described in this chapter is useful if you 
have simple key/value pairs that need to be stored, as with a hash. A SQL database could be more useful if your data is more 
complex or if you need data analysis or query tools in the database engine. 

 

 
 
 Using databases   
 

 

Perl provides you with a wonderful capability to extend your programs to provide fast, persistent storage for data structures such as 
hashes—with almost no changes to your code. This is accomplished by using Perl’s tie operator. After you use tie, operations such 
as reading or writing from your hash actually take place from an on-disk database. Because the database is on the disk instead of in 
memory, the data can be reloaded into your program later. Not only that, but because the data is on disk, you can potentially deal 
with much more data than would fit into memory. 

 

 
 

  

Note 

 

Perl provides tie-ins to several different database engines. In this chapter, I’ ll use the Berkeley db system for the 
examples. This is standard on many current Linux distributions, but if you are running a custom version of Perl or 
an older distribution, you may not have this. Therefore, you may need to replace every occurrence of DB_File 
with SDBM_File. Also, be aware that sdbm has a 1K per-record size limit, whereas the Berkeley db system does 
not. 

 

 
 

 

Of course, these features can come at a price: disk access can be significantly slower than memory access, although operating 
system caching often helps. Also, certain things cannot be stored in a database—at least not if you expect them to be able to be 
reloaded later. These include items such as references or object associations. So, these databases are best suited to storing scalar 
data. 

 

 
 

 
As a demonstration of how to modify a program to store its data in a database, let’s take a program from an earlier chapter and 
modify it for use with a database (see Listing 21-1). The first version will simply add a database tie-in, but it will have a few 
problems. We’ ll analyze the problems and then fix the code to work better. 

 

 
 
 Listing 21-1: Example of tie   
 
 #!/usr/bin/perl -w   
       
 use DB_File;   
       
 my %dirs = ();   
 tie(%dirs, “DB_File” , “Dirs.hash”) or die “Couldn’ t tie: $!\n” ;   
       
 # Perl’s unless is an inverse if.  That is, unless(a) is the same as   
 # if (!(a)).   
       
 unless ($ARGV[0]) {    
   print “Displaying saved data:\n” ;   
   printit(\%dirs, 0);   
   exit 0;   
 }    
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 # -d is a Perl shorthand.  It does a stat() on the passed filename and   
 # then looks at the mode.  If the filename is a directory, it returns true;   
 # if not, it returns false.   
       
 unless (-d $ARGV[0]) {    
   die “The filename supplied was not a directory.”    
 }    
       
 dircontents($ARGV[0], \%dirs);   
 printit(\%dirs, 0);   
       
 untie(%dirs);   
       
 sub dircontents{    
   my ($startname, $retval) = @_;   
   my $filename;   
   $retval = { }  unless ($retval);   
   local *DH;                # Ensure that the handle is locally scoped   
       
 # This is the same as DH = opendir(“ filename”) in C.   
 # In C, you can use DIR *DH; to declare the variable.   
       
   unless(opendir(DH, $startname)) {    
     warn “Couldn’ t open directory $startname: $!” ;   
     return undef;   
   }    
       
   # In C, readdir() returns a pointer to struct dirent, whose members are   
   # defined in readdir(3).  In Perl, returns one file in scalar context,   
   # or all remaining filenames in list context.   
       
   while ($filename = readdir(DH)) {    
     if ($filename ne ‘ .’  &&   
        $filename ne ‘ ..’  &&   
        ! -l “$startname/$filename” &&   
        -d “$startname/$filename”) {    
       $retval->{ $filename}  = dircontents(“$startname/$filename”);   
     }  else {    
       $retval->{ $filename}  = 1;   
     }    
   }    
       
   closedir(DH);   
   return $retval;   
 }    
       
 sub printit {    
   my ($ref, $count) = @_;   
   my $key;   
   my $counter = 0;   
       
   foreach $key (sort keys %$ref) {    
     print “  “  x ($count *  3);   
     if (ref $ref->{ $key} ) {    
       printf “%3d: subdirectory %s\n” , $counter, $key;   
       printit($ref->{ $key} , $count + 1);   
     }  else {    
       printf “%3d: %s\n” , $counter, $key;     
     }    
     $counter++;   
   }    
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 }    
 

 

This program was modified very little to use a tied hash. One change actually ties the hash to the database, and a corresponding 
change allows the subroutine to directly work on this hash. It is, of course, possible to assign to the entire hash at once, but by 
working on individual hash elements, its existing contents are not replaced unless you’re using a duplicate key. Therefore, it’s 
possible to store multiple directory trees in the database at once. However, these modifications are not quite sufficient, as you can 
see from running the program: 

 

 
 
 $ ./ch21-2.pl  /etc/X11   
   0: .   
   1: ..   
   2: WindowMaker   
   3: XF86Config   
   4: Xloadimage   
   5: Xmodmap   
   6: Xresources   
   7: Xserver   
   8: Xsession   
   9: Xsession.options   
 10: afterstep   
 11: fonts   
 12: fvwm   
 13: window-managers   
 14: wm-common   
 15: xinit   
 16: xserver   
 17: xview   
 
 The problem here is that the program no longer recognizes directories as such. The reason is that the following test fails:   
 
     if (ref $ref->{ $key} ) {    
 

 

Interestingly, if you comment out the line that ties the database to the hash, the program works fine. The reason is that the hash can 
no longer store a real reference if tied to a database because the database doesn’ t support this. Instead, the reference is converted 
into a string (containing essentially some useless numbers) for storage into the databases. Thus, when the subroutine tries to check 
if the value stored in the database is a reference, it gets a negative result. Note that you can display the saved contents of the 
database by running this program with no arguments—the program indicates that it’s displaying the saved data and then proceeds 
to give you output exactly like normal. 

 

 
 

 
In order to fix this problem, you need to modify the code such that it doesn’ t need to store references in the main hash. This means 
that you can’ t store things recursively any longer—perhaps you just need to take a different approach. Listing 21-2 shows a 
version of the code that stores data without using nested hashes, thus avoiding that problem. 

 

 
 
 Listing 21-2: Revised tie example   
 
 #!/usr/bin/perl -w   
       
 use DB_File;   
       
 my %dirs = ();   
       
 tie(%dirs, “DB_File” , “Dirs.hash”) or die “Couldn’ t tie: $!\n” ;   
       
 # Perl’s unless is an inverse if.  That is, unless(a) is the same as   
 # if (!(a)).   
       
 unless ($ARGV[0]) {    
   print “Displaying saved data:\n” ;   
   printit(\%dirs, 0);   
   exit 0;   
 }    
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 # -d is a Perl shorthand.  It does a stat() on the passed filename and   
 # then looks at the mode.  If the filename is a directory, it returns true;   
 # if not, it returns false.   
       
 unless (-d $ARGV[0]) {    
   die “The filename supplied was not a directory.”    
 }    
       
 dircontents($ARGV[0], \%dirs);   
 printit(\%dirs, 0);   
       
 untie(%dirs);   
       
 sub dircontents{    
   my ($startname, $retval) = @_;   
   my $filename;   
   $retval = { }  unless ($retval);   
   local *DH;                # Ensure that the handle is locally scoped   
       
 # This is the same as DH = opendir(“ filename”) in C.   
 # In C, you can use DIR *DH; to declare the variable.   
       
   unless(opendir(DH, $startname)) {    
     warn “Couldn’ t open directory $startname: $!” ;   
     return undef;   
   }    
       
   # In C, readdir() returns a pointer to struct dirent, whose members are   
   # defined in readdir(3).  In Perl, returns one file in scalar context,   
   # or all remaining filenames in list context.   
       
   while ($filename = readdir(DH)) {    
     if ($filename ne ‘ .’  &&   
       $filename ne ‘ ..’  &&   
       ! -l “$startname/$filename” &&   
       -d “$startname/$filename” ) {    
       dircontents(“$startname/$filename”, $retval);   
     }  else {    
       $retval->{ “$startname/$filename”}  = -s “$startname/$filename” ;   
     }    
   }    
       
   closedir(DH);   
   return %$retval;   
 }    
       
 sub printit {    
   my ($ref, $count) = @_;   
   my $key;   
   my $counter = 0;   
       
   foreach $key (sort keys %$ref) {    
     print “  “  x ($count *  3);   
       printf “%3d: %s (%d bytes)\n” , $counter, $key, $ref->{ $key} ;     
     $counter++;   
   }    
 }    
 

 

This time, instead of hashes being nested for directories, entire pathnames are stored as the keys for the hash. Now there’s no need 
to have nested hashes, and the subroutine to print the results could actually be modified to parse the pathnames to determine 
indentation if desired. To take a look at the results, first you need to remove the existing Dirs.hash file so that data from a previous 
version of the program does not creep into this one. Then, try the program: 
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 $ rm Dirs.hash   
 $ ./ch21-3.pl /etc/X11   
   0: /etc/X11/. (1024 bytes)   
   1: /etc/X11/.. (6144 bytes)   
   2: /etc/X11/WindowMaker/. (2048 bytes)   
   3: /etc/X11/WindowMaker/.. (1024 bytes)   
   4: /etc/X11/WindowMaker/appearance.menu (553 bytes)   
   5: /etc/X11/WindowMaker/background.menu (1170 bytes)   
   6: /etc/X11/WindowMaker/menu (8164 bytes)   
   7: /etc/X11/WindowMaker/menu.ca (10101 bytes)   
   8: /etc/X11/WindowMaker/menu.cz (4189 bytes)   
   9: /etc/X11/WindowMaker/menu.da (9164 bytes)   
 10: /etc/X11/WindowMaker/menu.de (4126 bytes)   
 11: /etc/X11/WindowMaker/menu.el (8731 bytes)   
 

 

The output actually continues for many more lines on my system but is truncated here; you can see that directories are properly 
being traversed. However, there is a downside. Recall that the system was able to store not only size but also information such as 
age in a nested hash. Not only that, but it could also store an object there. Well, this sort of thing is now impossible because you 
can only store a string in the hash. 

 

 
 

 

However, there is a solution—have a subroutine that generates a string representation of the data, and another that converts the 
string back to a hash. Doing this is sometimes referred to as serialization of data. Serialization can be annoying, but if you use 
something like Perl’s object-oriented features, it can be implemented in a fashion that is not terribly cumbersome. Listing 21-3 
shows a version of the FileObject code that adds support for serialization. 

 

 
 
 Listing 21-3: FileObject.pm: an object with ser ialization   
 
 package FileObject;   
       
 # Can be invoked with:   
 #   startfile   
 #   startfile, filename   
 #   serialform   
       
 sub new {    
   my ($class, $startfile, $filename) = @_;   
   my $self = { startfile => $startfile} ;   
   bless($self, $class);   
       
   if ($startfile =~ m’^///’ ) {    
     $self->deserialize($startfile);   
   }  elsif ($filename) {    
     $self->populate($filename);   
   }    
       
   return $self;   
 }    
       
 sub populate {    
   my ($self, $filename) = @_;   
       
   $self->{ size}  = -s $self->{ startfile}  . “ /$filename”;   
   $self->{ age}  = -M “$self->{ startfile} /$filename”;   
   $self->{ name}  = $filename;   
   if ($filename ne ‘ .’  &&   
       $filename ne ‘ ..’  &&   
       ! -l “$self->{ startfile} /$filename” &&   
       -d “$self->{ startfile} /$filename”) {    
     $self->{ isdir}  = 1;   
   }  else {    
     $self->{ isdir}  = 0;   
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   }    
 }    
       
 sub deserialize {    
   my ($self, $serialform) = @_;   
       
   $serialform =~ s’^///’ ’ ;   
 ($self->{ startfile} ,   
    $self->{ size} ,   
    $self->{ age} ,   
    $self->{ name} ,   
    $self->{ isdir} ) = split(‘ \|’ , $serialform);   
 }    
       
 sub serialize {    
   my $self = shift @_;   
    
   return “ ///”  . join(‘ |’ , $self->{ startfile} ,   
                            $self->{ size} ,   
                            $self->{ age} ,   
                            $self->{ name} ,   
                            $self->{ isdir} );   
 }    
       
 sub setsubdir {    
   my ($self, $subdir) = @_;   
    
   unless ($self->{ isdir} ) {    
     die “Attempt to set subdirectory on non-directory!” ;   
   }    
    
   $self->{ subdir}  = $subdir;   
 }    
       
 sub display {    
   my ($self, $level) = @_;   
   $level = 0 unless $level;   
       
   print “  “  x (3 * $level);   
   printf “%s%s (%d bytes)\n” ,   
          ($self->{ isdir}  ? “directory “  : “ ” ),   
          “$self->{ startfile} /$self->{ name} ” ,   
          $self->{ size} ;   
 }    
       
 1;   
 
 Listing 21-4 is the Perl program to accompany the previous code. It has been modified to use serialization as well.   
 
 Listing 21-4: Example usage of FileObject   
 
 #!/usr/bin/perl -w   
       
 use DB_File;   
 require FileObject;   
       
 my %dirs = ();   
       
 tie(%dirs, “DB_File” , “Dirs.hash”) or die “Couldn’ t tie: $!\n” ;   
       
 # Perl’s unless is an inverse if.  That is, unless(a) is the same as   
 # if (!(a)).   
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 unless ($ARGV[0]) {    
   print “Displaying saved data:\n” ;   
   printit(\%dirs, 0);   
   exit 0;   
 }    
       
 # -d is a Perl shorthand.  It does a stat() on the passed filename and   
 # then looks at the mode.  If the filename is a directory, it returns true;   
 # if not, it returns false.   
       
 unless (-d $ARGV[0]) {    
   die “The filename supplied was not a directory.”    
 }    
       
 dircontents($ARGV[0], \%dirs);   
 printit(\%dirs, 0);   
       
 untie(%dirs);   
       
 sub dircontents{    
   my ($startname, $retval) = @_;   
   my $filename;   
   $retval = { }  unless ($retval);   
   local *DH;                # Ensure that the handle is locally scoped   
       
 # This is the same as DH = opendir(“ filename”) in C.   
 # In C, you can use DIR *DH; to declare the variable.   
       
   unless(opendir(DH, $startname)) {    
     warn “Couldn’ t open directory $startname: $!” ;   
     return undef;   
   }    
       
   # In C, readdir() returns a pointer to struct dirent, whose members are   
   # defined in readdir(3).  In Perl, returns one file in scalar context,   
   # or all remaining filenames in list context.   
   while ($filename = readdir(DH)) {    
     my $object = new FileObject($startname);   
     $object->populate($filename);   
     if ($object->{ isdir} ) {    
       dircontents(“$startname/$filename”, $retval);   
     }    
     $retval->{ “$startname/$filename”}  = $object->serialize();   
   }    
       
   closedir(DH);   
   return %$retval;   
 }    
       
 sub printit {    
   my ($ref, $count) = @_;   
   my $key;   
   my $counter = 0;   
       
   foreach $key (sort keys %$ref) {    
     my $object = new FileObject($ref->{ $key} );   
     $object->display($count);   
   }    
 }    
 
 Examining the code, you can see that FileObject.pm contains some new code. There is a subroutine called serialize that generates a  
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simple string based on the contents of the object. As a special identifier, it starts this string out with three slashes so that it is easily 
distinguishable from others. Then it joins together various data from the object, separated by the pipe symbol.  

 

  

Note 

 

The pipe symbol, and even the three leading slashes, are valid characters in the file system, so this code can fail if 
files containing such codes are encountered. Solutions to this problem could be a further encoding of the strings 
(perhaps in a hexadecimal notation), selection of alternative characters, or encoding length information and then 
the strings themselves. 

 

 
 

 

An accompanying deserialize function does the opposite—it first strips off the leading slashes and then splits the input into the 
original parts. The new function has been modified as well with a handy shortcut: if it is called with a serialized version of the 
object (which it can detect from the leading slashes), it initializes the object to its deserialized form. Thus, the printit function in 
the main program can simply create an object for each entry in the database and ask the object to display itself. 

 

 
 

 
Note that the subdir information is not stored in the serialized string. The reason is that this information is simply a reference, and 
as you know, references cannot be stored in a database. However, because the object is not being used in a nested fashion in this 
program anyway, that limitation is not a problem. 

 

 
 

 
If you want to try out this program, go ahead and do so. As usual, first remove the Dirs.hash file. Then try the program. Here is an 
example of the results after a second execution of the program, where it is called to display the data it saved the first time: 

 
 
 
 $ ./ch21-4.pl   
 Displaying saved data:   
 /etc/X11/. (1024 bytes)   
 /etc/X11/.. (6144 bytes)   
 directory /etc/X11/WindowMaker (2048 bytes)   
 /etc/X11/WindowMaker/. (2048 bytes)   
 /etc/X11/WindowMaker/.. (1024 bytes)   
 /etc/X11/WindowMaker/appearance.menu (553 bytes)   
 /etc/X11/WindowMaker/background.menu (1170 bytes)   
 /etc/X11/WindowMaker/menu (8164 bytes)   
 /etc/X11/WindowMaker/menu.ca (10101 bytes)   
 /etc/X11/WindowMaker/menu.cz (4189 bytes)   
 

 
Again, this output continues for over a hundred additional lines, but you can see the point. The data, including full filename and 
size, has been saved in the database and can be recalled without having to traverse the directory tree again. 

 
 
 
 Using the Data Dumper    
 

 

You saw earlier in this chapter all the hoops that were necessary to be able to store complex data structures in a database. Perl 
offers a way to ease those problems, though: the Data Dumper, known in Perl as Data::Dumper. This piece of code takes 
something—almost anything—and effectively serializes the entire object. What’s more impressive, though, is that the serial 
representation of the object is actually executable Perl code. Thus, to load in such a serialized version and recreate the original, all 
you have to do is run eval over it. Thus, this type of code may be ideal for the dilemma of nested hashes as you have already seen. 

 

 
 

 

However, there are some downsides as compared to the database format. First, the Data Dumper does not provide a tie interface, 
so this sort of access can not happen automatically. Second, the Data Dumper is not well-suited to dealing with large amounts of 
data, because it must store everything in memory (and even two copies in memory, for a brief time). Thus, it cannot really be used 
as a way of manipulating large amounts of data by using a hard drive. If you want to serialize data in a security-conscious 
environment, for instance as a network server, you will not want to use the Data Dumper, because restoring the data allows people 
to run arbitrary Perl code in the input, a security hazard. Finally, Data Dumper can be somewhat slow compared to a database. So 
it’s mostly useful for saving data between program executions—perhaps as a Save operation in your program. 

 

 
 

 
That said, usage of the Data Dumper is extremely easy; serializing even a large and complex data structure (such as one that 
contains objects) or nested hashes  is not difficult. Listing 21-5 shows a revised Perl program. It also requires a FileObject.pm file; 
either the final version from Chapter 20 or the version presented in the previous section here will work fine. 

 

 
 
 Listing 21-5: Using the Data Dumper    
 
 #!/usr/bin/perl -w   
       
 use Data::Dumper;   
 require FileObject;   
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 # Perl’s unless is an inverse if.  That is, unless(a) is the same as   
 # if (!(a)).   
       
 unless ($ARGV[0]) {    
   my $datastr;   
   my $dirs;   
       
   print “No argument found, displaying information from Dirs.dump!\n” ;   
       
   open DUMPFILE, “Dirs.dump”  or die “Couldn’ t read from Dirs.dump: $!\n” ;   
   $datastr = join(‘ ’ , <DUMPFILE>);   
   eval $datastr;   
   printit($dirs, 0);   
   exit 0;   
 }    
       
 # -d is a Perl shorthand.  It does a stat() on the passed filename and   
 # then looks at the mode.  If the filename is a directory, it returns true;   
 # if not, it returns false.   
       
 unless (-d $ARGV[0]) {    
   die “The filename supplied was not a directory.”    
 }    
       
 my $dirs = dircontents($ARGV[0]);   
 open DUMPFILE, “>Dirs.dump”  or die “Couldn’ t open Dirs.dump: $!\n” ;   
 my $dump = new Data::Dumper([$dirs], [‘dirs’ ]);   
 $dump->Indent(1);   
 print DUMPFILE $dump->Dump;   
       
 sub dircontents{    
   my $startname = shift @_;   
   my $filename;   
   my $retval = { } ;          # Initialize with an empty hash reference   
   local *DH;                # Ensure that the handle is locally scoped   
       
 # This is the same as DH = opendir(“ filename”) in C.   
 # In C, you can use DIR *DH; to declare the variable.   
       
   unless(opendir(DH, $startname)) {    
     warn “Couldn’ t open directory $startname: $!” ;   
     return undef;   
   }    
       
   # In C, readdir() returns a pointer to struct dirent, whose members are   
   # defined in readdir(3).  In Perl, returns one file in scalar context,   
   # or all remaining filenames in list context.   
       
   while ($filename = readdir(DH)) {    
     my $object = new FileObject($startname);   
     $object->populate($filename);   
     if ($object->{ isdir} ) {    
       $object->setsubdir(dircontents(“$startname/$filename”));   
     }    
     $retval->{ $filename}  = $object;   
   }    
       
   closedir(DH);   
   return $retval;   
 }    
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 sub printit {    
   my ($ref, $count) = @_;   
   my $key;   
       
   foreach $key (sort keys %$ref) {    
     $ref->{ $key} ->display($count);   
     if ($ref->{ $key} ->{ isdir} ) {    
       printit($ref->{ $key} ->{ subdir} , $count + 1)   
     }    
   }    
 }    
 

 

Looking at the code, take note of a new use statement at the top that brings in the Data Dumper. Instead of aborting when no 
argument is passed, the program then instead loads the saved data and displays it. To do that, the program first opens Dirs.dump 
for reading. The file is then read in and stored in $datastr. The join call here simply joins together all the strings in the array that 
represents the whole file that the angle-bracket operator returns. The eval function is invoked, which actually parses the input 
string as Perl code—inside this code, the $dirs variable is set. The information is then printed out and the program exits. 

 

 
 

 

If an argument was present, the reference to a hash ($dirs) is built exactly as before. Then the output dump file is opened for 
writing. A new object is created. The parameters to new are a reference to an array containing all the items to dump and a second 
reference to an array containing their names; this second reference to an array is optional. Because only one thing is being dumped, 
it ($dirs) is passed as the sole element in the first array and its name as the sole element in the second. After that, the output 
indentation style is set, and then the data is dumped. Note that nothing is even displayed in this situation; the only way to get a 
display from this code is to run it with no arguments, forcing it to load its data from the saved file. Try running it the first time: 

 

 
 
 $ ./ch21-5.pl /etc/X11   
 

 
The program traverses the specified directory and saves its results. If you’re curious, you can actually look at these results—
they’re plain ASCII. Here are the first few lines from that file on my system; these lines may be different on yours: 

 
 
 
 $dirs = {    
   ‘ fvwm’ => bless( {    
     ‘subdir’  => {    
       ‘default-style.hook’  => bless( {    
         ‘name’ => ‘default-style.hook’ ,   
         ‘ isdir’  => ‘0’ ,   
         ‘size’  => 309,   
         ‘age’  => ‘109.185381944444’ ,   
         ‘startfile’  => ‘ /etc/X11/fvwm’    
       } , ‘FileObject’  ),   
       ‘ init.hook’  => bless( {    
         ‘name’ => ‘ init.hook’ ,   
         ‘ isdir’  => ‘0’ ,   
         ‘size’  => 409,   
         ‘age’  => ‘109.185381944444’ ,   
         ‘startfile’  => ‘ /etc/X11/fvwm’    
       } , ‘FileObject’  ),   
 

 
Note that the system completely understood the nested object, even taking care to bless the objects as they are recreated. 
Everything was preserved, down to the last detail. You can check on the results of reading the data back in: 

 
 
 
 $ ./ch21-5.pl   
 No argument found, displaying information from Dirs.dump!   
 /etc/X11/. (1024 bytes)   
 /etc/X11/.. (6144 bytes)   
 directory /etc/X11/WindowMaker (2048 bytes)   
    /etc/X11/WindowMaker/. (2048 bytes)   
    /etc/X11/WindowMaker/.. (1024 bytes)   
    /etc/X11/WindowMaker/appearance.menu (553 bytes)   
    /etc/X11/WindowMaker/background.menu (1170 bytes)   
    /etc/X11/WindowMaker/menu (8164 bytes)   
    /etc/X11/WindowMaker/menu.ca (10101 bytes)   
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    /etc/X11/WindowMaker/menu.cz (4189 bytes)   
    /etc/X11/WindowMaker/menu.da (9164 bytes)   
 

 
This information once again continues for over one hundred lines. You can see from here that the data was read back in properly. 
It was able to be printed out with absolutely no modification to that code whatsoever—something that took more work with the 
database. 

 

 
 

 
The Data Dumper really is that simple to use. In most cases, it is able to make a perfect representation of your information in a 
string, which can be restored by simply running eval on the string. 

 
 
 
 Data Dumper  options   
 

 
In the sample code in Listing 21-5, there was a line that told the Data Dumper how to indent its output. There are several options 
available to you in this fashion. These are set with the syntax $obj->Item(newvalue)—although some of them make the new value 
optional. Table 21-1 lists the options that you may set for Data Dumper. 

 

 
 
 Table 21-1:  Data: Dumper  Options   
 
     
 
 Option   

 
Meaning   

 

 
     
 
 Bless   

 
If for some reason you prefer to use a function other than bless when restoring objects, you can pass its 
name as a string to this configuration option. 

 
 

 

 
 Deepcopy   

 
When using objects containing references, it’s possible to have more than one reference pointing to the 
same data. With this option, the dumped data will try to minimize this behavior. Usually, you prefer the 
dumped data to be as much like the original as possible, so the default is 0, but you can set it to 1 to enable 
this other behavior. 

 

 

 

 
 Freezer   

 
If you want something special to be done to your objects before they are dumped, you can use this option 
to indicate a particular method name. If you specify a method with Freezer, that method will be run 
immediately before the Data Dumper dumps the object in question. See also the Toaster option. 

 

 

 

 
 Indent   

 
Determines how the output from the Dumper will be indented. The options are 0, 1, 2, and 3.Option 0 
causes there to be no indentation. In fact, there will be no white space at all—everything will be on one 
single line.  

 

 
Option 1 causes the indentation to be similar to ($level * 2)—that is, the indentation value for each level is 
constant. This is often useful if option 2 produces output that is too wide to conveniently work with.  

 

 
Option 2 (the default) indents each line such that it lines up with various items on the preceding line. This 
has the effect of generally indenting things more, but for objects without much nested data, it can be more 
readable than option 1.  

 

 
Option 3 adds comments to the output indicating the index of each value in an array. Other than that, it is 
like option 2. 

 
 

 

 
 Names   

 
Replaces Data Dumper’s list of the names of the objects to dump. If no value is specified, it simply returns 
the existing settings. 

 
 

 

 
 Pad   

 
Causes each line to begin with the specified string. The default is to use no pad.   

 

 
 Purity   

 
Setting this value to 1, instead of the default of 0, causes the Data Dumper to go to more effort to recreate 
various sets of references. Option 0 is sufficient for most situations, but if you have a complex network of 
references, you may need to try option 1. 

 

 

 

 
 Quotekeys   

 
When this option is set to 1, keys for a hash are always enclosed in single quotes. When it is set to 0, keys 
are not quoted unless necessary. The default is 1. 
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 Terse   When set to 1, causes the Data Dumper to generate output that may be more easily parsable by hand, but 
may not necessarily form legal Perl code. The default is 0. 

 
 

 
 Toaster   

 
Like the Freezer option, except the specified method is called immediately after the data is restored. As a 
special additional requirement, this method must also return $self. 

 
 

 

 
 Useqq   

 
When set to 1, causes Data Dumper to use double quotes instead of single quotes for strings. The Data 
Dumper will escape any characters necessary for this usage. This option is not yet available in all 
implementations and may slow down both the dump and the restore process. 

 

 

 

 
 Values   

 
Replaces the Data Dumper’s list of the objects to dump. If no value is specified, it simply returns the 
existing settings. 

 
 

 

 
 Varname   

 
Changes the standard variable name used for generating names for variables whose names have not been 
passed to the Data Dumper. The default is VAR.  

Output and Special Concerns   
 

 
You have already seen many scripts that generate output in one form or another. Some may simply display messages on the 
screen; others save data into files. Here, we’ ll go into some more detail on these items and on dealing with files themselves. 

 
 
 
 Basic output   
 

 
The most basic way to generate output in Perl is to use print to display data on standard output, the terminal. Because Perl provides 
you with variable interpolation (the capability to put the contents of a variable directly inside a string), this is often all that is 
necessary. There is frequently no need to use something as complex as C’s printf() in Perl. 

 

 
 

 
Using print is simple. It takes one or more strings as arguments and displays them to standard output, one after another. Perl’s print 
does not automatically add a newline at the end of the text; you need to use \n in your string to do that. 

 
 
 

 
For more rigorous printing needs, Perl has printf. This function works the same as its C counterpart—it takes a format string and 
then zero or more additional items, depending on the format string. Perl supports most all the syntax of the C version, except for 
the asterisk operator, which is unnecessary in Perl due to string interpolation. 

 

 
 
 Output to files or  commands   
 

 
In order to write data to arbitrary files, you first need to open the files as in C. With Perl, you use the open command. Its first 
argument is a file handle that should be created for the file, and the second argument is a string indicating the access type and the 
filename. For instance, to open a file for writing, you could use: 

 

 
 
 open(FILEHANDLE, “>filename”);   
 
 There are also other options that you can use. For instance, you can open a file in append mode by using a syntax like this:   
 
 open(FILEHANDLE, “>filename”);   
 
 Options for  open   
 

 
You can even send output to, or read input from, arbitrary commands. Table 21-2 presents a list of the most common options that 
you can pass to Perl’s open. 

 
 
 
 Table 21-2:  Options for  open   
 
     
 
 Option   

 
Location   

  
Meaning   

 

 
     
 
 <   

 
start   

  
Opens the file for reading. If omitted, this is the default behavior.   

 

 
 >   

 
start    

 
Opens the file for writing. If the file already exists, its contents will be erased. If the file 
does not already exist, it will be created. 
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 >   

 
start    

 
Opens the file for writing in append mode. All data will be added to the end of the file. 
If the file does not already exist, it will be created. 

 
 

 

 
 +<   

 
start   

  
Opens the file for both reading and writing.   

 

 
 +>   

 
start    

 
Also opens the file for both reading and writing, but will destroy any data already in the 
file. Therefore, +< is generally preferable. 

 
 

 

 
 |   

 
start    

 
Opens a pipe to the program specified after the pipe character. Data written to the file 
handle will be sent directly to the program. 

 
 

 

 
 |   

 
end    

 
Opens a pipe from the program specified before the pipe character. Reads on the file 
handle will read data directly from the program. 

 
 

 

 
     
 

 
Once you have opened a file handle, you can use standard functions like print and printf to write to it. Simply specify the file 
handle on the line for those functions. Note, however, that you should not put a comma after the file handle. As an example, all of 
these forms are valid ways to do this: 

 

 
 
 print FILEHANDLE “Hi” , “  there\n” ;   
 print(FILEHANDLE “Good” , “  morning\n” );   
 print FILEHANDLE (“How”, “  are you?\n” );   
 printf FILEHANDLE “%s\n” , “Hello” ;   
 
 Passing file handles   
 

 
File handles are somewhat unique in Perl, as they do not behave like regular variables. However, they still do have an entry in the 
Perl namespace, so they can be passed—but with a unique syntax. To pass a file handle, you can use the \*FILEHANDLE syntax. 
To deal with the file handle in the function, then, you just use the variable that you stored the passed value in. Here is an example: 

 

 
 
 #!/usr/bin/perl -w   
       
 open HANDLE, “>blah.txt”  or die “Couldn’ t open file: $!” ;   
       
 printit(\*HANDLE);   
       
 sub printit {    
   my $fh = shift @_;   
       
   print $fh “Hi!\n” ;   
 }    
 

 
The system was able to write out to that file handle successfully. Inside the printit subroutine, you can use $fh just as you would 
have used HANDLE in the main program. You can also pass the file handle from printit to another subroutine; simply pass $fh to 
it. 

 

 
 

 
It’s also possible to read from a file handle passed in such a manner. The following program, for instance, tells a subroutine to read 
from standard input: 

 
 
 
 #!/usr/bin/perl -w   
       
 readit(\*STDIN);   
       
 sub readit {    
   my $fh = shift @_;   
   my $text;   
       
   while ($text = <$fh>) {    
     print “You typed: $text” ;   
   }    
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 }    
 
 Scoping file handles   
 

 
Another problem that could arise is that you need file handles to be valid only in a particular subroutine—normally, they are global 
to each package in your program. We needed this sort of functionality, for instance, with the recursive function in the example 
program. Whenever a subroutine opens a file for its own private use, it really ought to keep the file handle private. 

 

 
 

 
You keep the handle private by declaring the typeglob for the file handle local; my will not work for this particular situation. For 
example: 

 
 
 
 local *FILEHANDLE;   
       
 open(FILEHANDLE, “>file.txt” );   
 
     
 
Cross-Reference  
 
 For more information on my, see the Subroutines and Scope section in Chapter 20, “ Introducing Perl.”    
 
     
 

 
This code snippet will force the handle named FILEHANDLE to be valid only in the current subroutine (or ones that it calls). It will 
not be visible once the subroutine returns, or if a called subroutine also declares a local item named FILEHANDLE.  

Summary   
 
 In this chapter, you learned about dealing with data in Perl. Specifically, you learned:   
 

  
• 

 
You can use the angle-bracket operator with a file handle to read lines from the file. For instance, <STDIN> will read lines 
from standard input. 

 
 
 
  •  The %ENV hash contains the process’s environment variables.   
 
  •  Basic regular expression operators, split, and grep can all be used to find or parse data.   
 
  •  You can store information in a local database by tying a hash to the database.   
 
  •  Thus tying a hash enables you to both have persistent storage and use data greater than will fit into memory at once.   
 
  •  Databases can only store scalar information, so nested structures cannot be stored in them.   
 

  
• 

 
The Data Dumper can dump a perfect representation of nearly all data structures, but it is slower than databases and loads all 
the data into memory at once. 

 
 
 
  •  You can use basic functions like print and printf to write data out to files.   
 
  •  To pass a file handle, use \*FILEHANDLE.   
 
  •  To make a file handle created in a subroutine local, use local *FILEHANDLE before opening it.  
Chapter  22: CGI Programming   
 
 Overview   
 

 

Today, the World Wide Web has become an increasingly important part of the Internet, responsible for everything from providing 
documentation to taking online orders for products. Originally, the Web was made up of static data—that is, files on disk. However, 
as technology evolved, newer ways of getting information to the web browser were developed. This chapter deals with a way of 
generating information on-the-fly to present to the browser. This information may be calculated based on information the browser 
sent to the server before, such as the results of a search request. Or it may be customized in some way for a particular user. Maybe it 
is used to display a screen that always has a summary of special sales for today. It might be used to generate content based on a 
database—perhaps a current temperature or weather forcast, or inventory information for a product.  

CGI and the Web   
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As far as web browsers are concerned, this sort of dynamically generated content is no different from any other. It’s still made up 
of HTML code, and is sent to the browser in exactly the same way. The difference, then, is on the server side. Instead of simply 
sending a file that contains HTML to the browser, the server invokes a program. This program then generates the HTML that is 
sent to the browser. 

 

 
 

 

Sometimes certain things need to be communicated between the server and the program that runs. This might include the data 
supplied in an input form, the IP address of the remote host, and so on. This is where the Common Gateway Interface (CGI) comes 
in: it defines how these data is passed between the server and the program, and lets you use the same program with many different 
servers—or a program written in any number of different languages with your servers. 

 

 
 

 
You can, of course, write a program in any language that manually parses the information passed to you with CGI. However, Perl 
offers you several CGI libraries that do these tasks for you, thus freeing you up to concentrate on the things that are specific to 
your CGI scripts. 

 

 
 

 
Several different CGI libraries are available with Perl. In this chapter, I will use CGI.pm, which actually ships with some current 
Perl distributions. This is a full-featured and robust library that is used by many people for their scripts. 

 
 
 

  

Note 

 

In order to run the CGI examples in this chapter on your own machine, you’ ll need a working web server and a 
CGI directory within that server that is capable of running your scripts. The exact way of configuring this varies 
depending on the web server you’re running; consult your server documentation for details. Unlike the other Perl 
scripts we’ve dealt with thus far, CGI scripts are executed by the web server, not directly by you. You simply need 
to move them in place, mark them executable, and then pull up the URL that corresponds to your script by using a 
web browser. 

 

 
 

 
While there is no requirement that CGI scripts receive data from a user, a common use for CGI scripts is to receive input from a 
web-based form and generate the appropriate result. This could mean saving the data in a file, e-mailing it to someone, or simply 
displaying requested information back to the browser. 

 

 
 

 
Your forms will ask for information from the reader, and will pass the results in to your CGI script. Your script can then retrieve the 
information from the CGI object and use it to generate a reply.  

Writing CGI Scr ipts   
 

 
It’s time to begin writing some CGI scripts. I’ ll start with a fairly basic one that simply displays a greeting—a classical “Hello 
World”  example: 

 
 
 
 #!/usr/bin/perl -Tw   
       
 $| = 1;   
       
 use CGI qw(:standard);   
 print header;   
       
 print start_html(‘Hello World!’ );   
 print “Hello, World!<P>” ;   
 print “Greetings from process $$\n” ;   
       
 print end_html;   
 

 

When you look at this Perl code, you’ ll notice the first line already contains something new: -T. This option enables Perl’s taint 
mode. In this mode, any data that comes from an unsecure source—as input in a CGI script, from an environment variable, from a 
file, and so on—is not allowed to be used in an insecure area until is has been validated by your program. Taint checking is a great 
way to make sure that your scripts are as secure as possible. 

 

 
 

  
Tip 

 
You may have noticed a new syntax in the above example: qw(:standard). The qw operator is Perl’s quote-by-word 
operator. That means that you can specify several items inside the parentheses, separated by a space. Perl will 
convert these items into the elements of an array. This handy shortcut is frequently used with CGI.pm. 

 

 
 

 
Then, by setting $|, you disable the output caching in the Perl I/O routines. For a script such as this, this is not really necessary. 
However, if your scripts take a little while to run (for instance, when displaying search results), it’s useful to give users partial 
information as soon as possible. 
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Next there is a line that brings in the CGI library and various standard variables and functions such as header and start_html. The 
HTTP header is printed next, followed by the HTML header, and a message. Then, there is a message containing the process ID to 
display—just so you can see that the content is dynamic. Each time you reload the page, this value changes. 

 

 
 
 Finally, the HTML closing tags are printed, and then the script exits. The following is the code that it generates:   
 
 <!DOCTYPE HTML PUBLIC “ -//IETF//DTD HTML//EN”>   
 <HTML><HEAD><TITLE>Hello World!</TITLE>   
 </HEAD><BODY>Hello, World!<P>Greetings from process 1331   
 </BODY></HTML>   
 

 
The first two lines, and up until the start of the message, are generated by start_html. The last line is generated by the last line in 
the program. When viewed in a web browser, it appears as follows: 

 
 
 
 Hello, World!   
       
 Greetings from process 1331   
 
 With a few modifications, you can make this program interactive. Here’s a modified version:   
 
 #!/usr/bin/perl -Tw   
       
 $| = 1;   
       
 use CGI qw(:standard);   
       
 my $q = new CGI;   
       
 print header;   
 print start_html(‘Hello World!’ );   
       
 if ($q->param(‘message’)) {    
   print “Hello, World!<P>” ;   
   print “Greetings from process $$\n<P>\n” ;   
   print “Your message was:\n<FONT COLOR=blue>” ;   
   print $q->param(‘message’);   
   print “</FONT>\n” ;   
 }  else {     
   print <<’EOF’;   
   Please enter a message:<P>   
   <FORM METHOD=POST>   
   <input type=” text”  name=”message”  size=30>   
   <BR>   
   <input type=”submit”  name=”submit”  value=”Go”>   
   </FORM>   
 EOF   
 }    
       
       
 print end_html;   
 

 

This time, when you first invoke the CGI script, it displays a form asking for a message. It does this because there was no item 
named message passed in to the CGI the first time that you run it. However, when you fill out that field on the form and click Go, 
the text that you type is sent along as the message value, which can be accessed with $q->param(‘message’) in this case. 
Therefore, the logic is fairly straightforward—if there is a message, display it; if not, ask for it. Note that the initial form contains 
nothing dynamic; that is, you could embed it in a standard HTML file if you prefer. 

 

 
 

 
To go a bit farther, make the code such that the user can switch between the entry and the display screens at will, and that the CGI 
program can keep track of some data while this is being done: 

 
 
 
 #!/usr/bin/perl -Tw   
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 $| = 1;   
       
 use CGI qw(:standard);   
       
 my $q = new CGI;   
       
 print header;   
 print start_html(‘Hello World!’ );   
       
 my $count = $q->param(‘count’ ) ? $q->param(‘count’ ) : 1;   
       
 if ($q->param(‘mode’) eq ‘display’ ) {    
   print “Hello, World!<P>” ;   
   print “Greetings from process $$\n<P>\n” ;   
   print “Message number $count:\n<FONT COLOR=blue>” ;   
   print $q->param(‘message’);   
   print “</FONT>\n<P>\n” ;   
   print <<”EOF”;   
   <FORM METHOD=POST>   
 EOF   
   print ‘<input type=”hidden”  name=”count”  value=” ’ ;   
   print $count + 1;   
   print ‘ “>’ ;   
   print <<”EOF”;   
       
   <input type=”submit”  name=”submit”  value=”Enter another message”>   
   </FORM>   
 EOF   
 }  else {     
   print <<”EOF”;   
   Please enter message number $count:<P>   
   <FORM METHOD=POST>   
   <input type=” text”  name=”message”  size=30>   
   <input type=”hidden”  name=”count”  value=”$count”>   
   <input type=”hidden”  name=”mode”  value=”display”>   
   <BR>   
   <input type=”submit”  name=”submit”  value=”Go”>   
   </FORM>   
 EOF   
 }    
       
       
 print end_html;   
 

 

This time, there are two screens, both with dynamic content, and both with forms. Several things are tracked between the screens. 
The first is a message count. If the CGI is invoked with no count, the variable $count is set to 1; otherwise, it’s set to the value that 
was passed in. Then, if no mode parameter was passed to the CGI, it displays a default screen, which is the message inputthat 
occurs after the else. Note that, in addition to having an input field for the text, there are two hidden fields as well. These enable 
the form to pass along data to the CGI when the form is submitted without the user having to supply it. Thus, we pass along the 
count automatically—there’s no need for the user to have to worry about it. Also, we pass along a mode value that tells the script 
that it should go into a display mode instead of asking for a message. 

 

 
 

 
When the script is run with a mode parameter set to display, it displays a standard Hello World message. But after that, it generates 
another form. This form has no opportunity for input; it just contains a hidden field. This field contains the value of count, plus 
one. This way, when the user clicks the submit button, the count will be incremented for the next message. 

 

 
 

 

To make it easier for the user, it might be nice to be able to suggest the last message as a default for the text input area the next 
time it’s displayed. It’s possible to do that with the existing framework, but it can get a bit ugly to have to do all of this manually. 
Fortunately, the CGI library provides a nice way to build forms automatically. What’s more, the form elements automatically set 
their defaults to the current value, instantly making the form friendly for users. Here’s a version of the code that does essentially 
the same as the preceding example, but has been rewritten to use the CGI libraries form functions (from here on, I’ ll use these 
functions in code in this chapter): 
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 #!/usr/bin/perl -Tw   
       
 $| = 1;   
       
 use CGI qw(:standard);   
       
 my $q = new CGI;   
       
 print header;   
 print start_html(‘Hello World!’ );   
       
 my $count = $q->param(‘count’ ) ? $q->param(‘count’ ) : 1;   
       
 if ($q->param(‘mode’) eq ‘display’ ) {    
   print “Hello, World!<P>” ;   
   print “Greetings from process $$\n<P>\n” ;   
   print “Message number $count:\n<FONT COLOR=blue>” ;   
   print $q->param(‘message’);   
   print “</FONT>\n<P>\n” ;   
   print $q->startform(-method => ‘POST’);   
   print $q->hidden(-name => ‘count’ , -default => $count + 1,   
                    -override => 1), “ \n” ;   
   print $q->hidden(-name => ‘message’), “ \n” ;   
   print $q->submit(‘submit’ , ‘Enter another message’), “ \n” ;   
   print $q->endform;   
 }  else {     
   print “Please enter message number $count:<P>\n” ;   
   print $q->startform(-method => ‘POST’);   
   print $q->textfield(-name => ‘message’ , -size => 30), “ \n” ;   
   print $q->hidden(-name => ‘count’ , -value => $count), “ \n” ;   
   print $q->hidden(-name => ‘mode’ , -value => ‘display’ ), “ \n<BR>\n” ;  
   print $q->submit(‘submit’ , ‘Go’), “ \n” ;   
   print $q->endform;   
 }    
       
       
 print end_html;   
 

 

Notice how much cleaner this code is. Not only is it shorter than the previous version, but it does more. Let’s take a look at how 
the code is working. As before, I’ ll begin the analysis with the default screen, the code for which occurs after the else statement. 
The familiar prompt asks for a message. Then, there is the start of a form. The first item in the form is a text entry field of size 
30—the same as was used before. Because the CGI library uses defaults, if there is a value for message passed in to the script, it 
automatically sets the default here. Next, the count value is placed in a hidden field. The default mechanism would work here, too, 
except on the first time—you have to pass in the value there because no previous value for count was passed in. Then there is a 
hidden field for the mode setting, a submit button, and the end of the form. 

 

 
 

 

Looking at the code for the display screen, again there is the familiar code displaying the message in blue. Then there is the form, 
which starts out with a hidden field for the count. This time, the default has to be set explicitly. What’s more, because we are 
changing the value of this item, you need to tell the CGI library to override the normal default; otherwise, the normal default takes 
precedence over the one in your script. Following that, there is another hidden field with the message. This is so that the entry 
screen has something to show for the default. Notice once again that you don’ t have to say explicitly what the field’s contents are 
because the CGI library automatically sets the default based on what was passed in to the script. Finally, there is a submit button 
and the end of the form. 

 

 
 

 
Many CGI scripts run in a sequential mode order. That is, they display a page of information, and then successive ordered pages 
based on the input that went before. This is common in online ordering and payment systems, database interfaces, and so on. 
Listing 22-1 extends the simple message-display program to run in this sort of system. 

 

 
 
  Note  Listing 22-1 is available online.   
 
 Listing 22-1: CGI scr ipt with multiple pages   



 428 

 
 #!/usr/bin/perl -Tw   
       
 # Turn off output buffering.   
       
 $| = 1;   
       
 # Bring in the CGI library.   
       
 use CGI qw(:standard);   
       
 # Create a new CGI object.   
 my $q = new CGI;   
       
 # Print the HTTP header.   
       
 print header;   
       
 # Select a default mode.   
 my $mode = “mode_”  . ($q->param(‘mode’) || ‘ start’ );   
       
 # Eliminate something invalid.   
       
 unless ($mode =~ /^mode_[a-zA-Z]+$/) {    
   $mode = ‘mode_error’ ;   
 }    
       
 # Call the subroutine that handles that mode.   
       
 &$mode();   
       
 # End the HTML.   
       
 print end_html;   
       
 ### program exits here ###   
       
 sub mode_start {    
   print start_html(‘Welcome to Message Displayer’ );   
   print <<’EOF’;   
 Welcome to the Message Displayer!  Through this program, you will get   
 to compose a message and select how it will be displayed on-screen.   
 <P>   
 EOF   
   print ContinueButton(‘EnterMessage’);   
 }    
       
 sub mode_EnterMessage {    
   print start_html(‘Message Displayer: Enter Message’);   
   print <<’EOF’;   
 Now is the time to enter the message to display.  You will have   
 options to configure it later.   
 <P>   
 EOF   
       
   # Generate a form to use to enter the message.   
       
   print $q->startform(-method => ‘POST’);   
   print “Your message:\n<BR>\n” ;   
   print $q->textarea(-name => ‘message’ ,   
                      -rows => 10,   
                      -columns => 40);   
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   print “<BR>” ;   
   print ContinueButton(‘SelectColor’ , 1);   
   print $q->endform;   
 }    
       
 sub mode_SelectColor {    
   # If there was no message, jump back to that mode.   
   unless ($q->param(‘message’)) {    
     return mode_EnterMessage();   
   }    
       
   # Now start this one.   
       
   # Here are the colors for the list.   
       
   my @colors = (‘ red’ , ‘green’ , ‘blue’ , ‘ yellow’ , ‘black’ , ‘white’ ,   
                 ‘orange’ , ‘pink’ , ‘#FFFFFF’, ‘#AC0000’ , ‘#FF00FF’);   
       
   # Start the HTML and display the existing message.   
       
   print start_html(‘Message Displayer: Select Color’ );   
   print <<”EOF”;   
 You now need to select the color for your message.  Your message is:   
 <HR>   
 EOF   
   print $q->param(‘message’);   
   print “<HR>\n” ;   
       
   # Start the form.   
       
   print $q->startform(-method => ‘POST’);   
       
   # Display the list.   
   print $q->scrolling_list(-name => ‘color’ ,   
                           -values => \@colors,   
                           -size => 4,   
                           -default => ‘blue’);   
   print “<P>\n” ;   
       
   # Display the button to use to continue to the next step.   
   print ContinueButton(‘SelectFont’ , 1);   
   print $q->endform;   
 }    
       
 sub mode_SelectFont {    
   # If no message or color, jump back a level.   
   # This is for error-checking.   
   unless ($q->param(‘message’) && $q->param(‘color’ )) {    
     return mode_SelectColor();   
   }    
       
   # Now start this one.   
   print <<EOF;   
 Now that you have selected your message and its color, you get to select some   
 attributes for it.  You may select none, all, or any number in between.   
 <P>   
 Attributes:   
 <BR>   
 EOF   
   print $q->startform(-method => ‘POST’);   
   print $q->checkbox_group(-name => ‘ font’ ,   
                            -values => [‘bold’ , ‘ italic’ , ‘underline’ ,   
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                                        ‘ large’ , ‘ small’ ],   
                            -linebreak => ‘ true’);   
   print ContinueButton(‘Confirm’ , 1);   
   print $q->endform;   
 }    
       
 sub mode_Confirm {    
   # If no message or color, jump back a level.   
   unless ($q->param(‘message’) && $q->param(‘color’ )) {    
     return mode_SelectColor();   
   }    
       
   # Now start this one.   
       
   print <<”EOF”;   
 Here is the data you have submitted for processing.  If you believe this is   
 correct, click Continue to view your message.   
 <P>   
 <TABLE WIDTH=”100%” BORDER>   
 EOF   
   print “<TR><TD><B>Message</B><TD>”, $q->param(‘message’), “ \n” ;   
   print “<TR><TD><B>Color</B><TD>”, $q->param(‘color’ ), “ \n” ;   
   print “<TR><TD><B>Attributes</B><TD>”;   
   if ($q->param(‘ font’ )) {    
     print join(‘ , ‘ , $q->param(‘ font’ ));   
   }  else {    
     print “None” ;   
   }    
   print “ \n</TABLE>\n” ;   
        
       
   print ContinueButton(‘ finish’ );   
 }    
       
 sub mode_finish {    
   # If no message or color, jump back a level.   
   unless ($q->param(‘message’) && $q->param(‘color’ )) {    
     return mode_SelectColor();   
   }    
       
   # Now start this one.   
       
   my @closetags;   
       
   print <<’EOF’;   
 Here is your message:   
 <HR>   
 EOF   
   print ‘<font color=” ’ , $q->param(‘color’ ), ‘ “>’ ;   
   unshift @closetags, ‘</FONT>’;   
       
   InsertAttr(‘bold’ , ‘<B>’ , ‘</B>’ , \@closetags);   
   InsertAttr(‘ italic’ , ‘<I>’ , ‘</I>’ , \@closetags);   
   InsertAttr(‘underline’ , ‘<U>’ , ‘</U>’ , \@closetags);   
   InsertAttr(‘ large’ , ‘<FONT SIZE=”+2”>’ , ‘</FONT>’, \@closetags);   
   InsertAttr(‘small’ , ‘<FONT SIZE=” -2”>’ , ‘</FONT>’, \@closetags);   
   print $q->param(‘message’);   
       
   # Display the closing tags.   
   print join(‘ ’ , @closetags);   
       
   print “ \n<HR>\nThanks for using Message Displayer!\n” ;   
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 }    
       
 sub InsertAttr {    
   my ($val, $start, $end, $arr) = @_;   
       
   # unshift is used instead of push below because we want the values   
   # to be inserted at the start of the array since they have to be   
   # displayed in the inverse order that the were added.   
       
   if (isinarr($val, $q->param(‘ font’ ))) {    
     print $start;   
     unshift @$arr, $end;   
   }    
 }    
    
 sub mode_error {    
   print start_html(‘Error’ );   
       
   print “ I’m sorry, there was an error.  Please use your browser’s back\n” ;   
   print “button and retry the operation.\n” ;   
 }    
       
 # This sub displays the button that takes the user to the next mode.   
       
 sub ContinueButton {    
   my ($mode, $suppressform) = @_;   
   my $retval = “” ;   
   unless ($suppressform) {    
     $retval = $q->startform(-method => ‘POST’) . “ \n” ;   
   }    
       
   # Copy everything except the mode.   
   $retval .= CopyParams(‘mode’) . “ \n” ;   
   # Insert the item for this mode.   
   $retval .= $q->hidden(-name => ‘mode’ , -value => $mode,   
                         -override => 1) . “ \n” ;   
   $retval .= $q->submit(‘submit’ , ‘Continue’) . “ \n” ;   
   unless ($suppressform) {    
     $retval .= $q->endform . “ \n” ;   
   }    
   return $retval;   
 }    
      
 # This is used to generate hidden fields to pass along the current values   
 # to the next invocation.  The parameters are an array of values to *not*   
 # pass along.   
       
 sub CopyParams {    
   my @keysToIgnore = @_;   
   unshift @keysToIgnore, ‘submit’ ;   
   my $retval = “” ;   
   my $parameter;   
       
   foreach $parameter ($q->param) {    
     if (!isinarr($parameter, @keysToIgnore)) {    
       $retval .= $q->hidden(-name => $parameter,   
                             -value => [$q->param($parameter)],   
                             -override => 1) . “ \n” ;   
     }    
   }    
      
   return $retval;   
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 }    
       
 # Returns true if the search term is found as an element in the array, or   
 # false if not.   
       
 sub isinarr {    
   my ($search, @array) = @_;   
   my $thisvalue;   
       
   foreach $thisvalue (@array) {    
     return 1 if ($thisvalue eq $search);   
   }    
   return 0;   
 }    
 
 This program may seem complex, but if you analyze it in small chunks, perhaps it can be demystified a bit.   
 

 
The program starts in a fairly standard way, by bringing in the CGI library, printing a header, and so on. These three commands do 
that: 

 
 
 
 use CGI qw(:standard);   
 my $q = new CGI;   
 print header;   
 

 

Then it generates a string that is used to select which subroutine to use. This is done by generating a string that is used as a soft 
reference, and then invoking it as a subroutine with that name. So, there is one subroutine for each mode in the program. After the 
specified subroutine runs, the HTML footer is printed and the program exits.  Here is the code that sets the $mode variable and 
calls the indicated subroutine: 

 

 
 
 my $mode = “mode_”  . ($q->param(‘mode’) || ‘ start’ );   
 unless ($mode =~ /^mode_[a-zA-Z]+$/) {    
   $mode = ‘mode_error’ ;   
 }    
 &$mode();   
 

 
The first mode is named start, and is set as the default if no mode is specified, as may be the case if the CGI script were just 
starting. It displays a short welcome message and a continue button. This button takes the person to the next mode. 

 
 
 

 
This next mode, EnterMessage, asks the user to supply a message. When Continue is pressed, the script is invoked again, with the 
mode parameter indicating to go into the color selection area.  Here’s the code for the form generated in the EnterMessage mode: 

 
 
 
 print $q->startform(-method => ‘POST’);   
   print “Your message:\n<BR>\n” ;   
   print $q->textarea(-name => ‘message’ ,   
                      -rows => 10,   
                      -columns => 40);   
   print “<BR>” ;   
   print ContinueButton(‘SelectColor’ , 1);   
   print $q->endform;   
 

 
The same framework is used for picking colors, selecting fonts, and confirming the input. That is, there is a prompt for data and a 
confirmation button that takes the user to the next mode in sequence. Then, the final message is displayed. 

 
 
 

 
The ContinueButton subroutine is responsible for generating the HTML for the Continue button. It can either generate the entire 
form or live within another form. This program uses it within another form in all but the very first screen. It adds a hidden value 
for the next mode, and then copies the hidden values for anything passed into this invocation of the script. 

 

 
 

 

The CopyParams subroutine is responsible for doing this copying. Its parameters are the list of parameters to not copy, possibly 
because they will be overridden by something else. Take special note of the way the hidden field is created here. The value that it 
is set to is passed in as a reference to an anonymous array, whose elements are returned by $q->param. The reason for this is that 
sometimes, there may be multiple values for a single parameter. For instance, the attribute selection screen may return values of 
font set to both bold and italic. If only one of these is passed through, the remainder of the information is lost. By using this syntax, 
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all the values are preserved for the next invocation of the script.  
 

 
Finally, the isinarr subroutine determines whether a given element is in an array. This is a useful all-around function that you’ ll 
probably find a use for even in non-CGI programs. Here’s its source code: 

 
 
 
 sub isinarr {    
   my ($search, @array) = @_;   
   my $thisvalue;   
       
   foreach $thisvalue (@array) {    
     return 1 if ($thisvalue eq $search);   
   }    
   return 0;   
 }    
 

 
Perl’s CGI library is quite extensive; its manual page, which is mostly reference material, goes on for over 50 pages. For more 
information about various other features, such as other form elements, or the arguments to use with them, please consult the CGI 
manpage on your Linux system, or use perldoc CGI.  

Dealing with Connectionless Issues   
 

 

One of the problems facing programmers of CGI scripts is that the communication between the web browser and the web server is 
essentially connectionless. That is, the browser requests some information, receives a response, and then disconnects. No 
connection is maintained between the two. Moreover, a CGI script starts, executes, and finishes once for each connection. So, any 
variables you set in your script, of course, will not be set the next time the script is run. 

 

 
 

 
Many scripts need a way to carry information along from one page to another. The example in the previous section needed this to 
carry the message from the first to the last screen. Other common needs are with online ordering systems, to keep track of a 
shopping cart contents or payment information; or search engines, to keep track of the query through multiple result pages. 

 

 
 

 

One way of doing this is to pass around all the information in hidden form fields. This method is simple and easy to implement. 
However, it has some downsides. If the data being saved is large, you can annoy your users by making them re-upload it for each 
click they make. Not only that, but if you want to pass around this data outside a form (such as with a standard link), it is 
somewhat difficult. 

 

 
 

 

One solution to this problem is to generate a unique identification number or string at the first page. Only this identification 
information is passed along in the form from screen to screen; the submitted data are stored on the server, presumably in a 
database. This eliminates the problem with large data but instantly requires more server resources and a more complex script. It is 
possible to use this with both standard links and forms, because the data for the standard link is fairly simple. However, you have 
to remember to pass it along with each link. 

 

 
 

 

Another option is to store this identification information or various other small items in a cookie. An advantage here is that you do 
not have to worry about passing the information from screen to screen because the user’s browser does this for you. However, 
beware! Cookies are inherently unreliable and there’s little you can do about that because they’re outside of your control. Many 
proxy servers intercept cookies and block them from being set. Current browsers have options to disable cookie support, and some 
current browsers don’ t have cookie support at all. Therefore, although cookies are quite useful in theory, in practice, their 
usefulness is somewhat limited. 

 

 
 

 
One approach is to use cookies if available and fall back on hidden form fields if necessary. This enables you to use the elegance 
of cookies if possible, and to still present a useful interface if they’re not available. 

 
 
 

 

Some people choose to use cookies solely for noncritical functions. For instance, visitors to a site may be capable of selecting the 
background color for the site, and this selection could be saved in their browsers as a cookie for any CGI script on the site to 
follow. Although this may be a nice feature, it’ s certainly not critical, and the added effort to implement it without cookies may not 
be worth it. 

 

 
 

 
When passing along any but the most trivial of information from one connection to the next, the second and third methods here 
require some type of database storage on the server. In these situations, you may want to look at a Perl tied database if your server 
is small. Beware, though, that you need to lock your database file lest it be corrupted by two CGIs writing to it at once! 

 

 
 
     
 
Cross-Reference  
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See Chapter 14, “ Introducing the Linux I/O,”  for more details on file locking. Perl implements flock with the same syntax 
as the C call, so you should find locking in Perl easy to use after using it in C. 

 
 
 
     
 

 
For more serious needs, or servers that are under a higher load, a full-fledged SQL database is probably called for. Some sites 
already have such a database in place, such as Oracle. If you do not, don’ t worry; several Open Source database servers are 
available for free and have relatively easy installation procedures. 

 

 
 
     
 
Cross-Reference  
 
 See Chapter 23, “SQL Databases with DBI,”  for more details on using SQL databases within Perl.  
Solving Per formance Issues   
 

 

As I’ve already mentioned, the CGI script is started fresh for each request that comes in. This is fine for CGI scripts that are not 
used frequently (many times per minute). However, on a highly loaded server, this can significantly bog down the processor. This 
effect only becomes worse if there is a SQL database backend for your script, because establishing a connection to one of these 
databases typically can take a little bit of time. 

 

 
 

 
One solution is to use Apache’s mod_perl support. This module actually embeds a Perl interpreter inside the web server itself. This 
means that your scripts can be loaded, compiled, and initialized once but yet still serve all the connection requests to them. This 
can be a major performance win for heavily loaded sites. 

 

 
 

 

However, it also means that your scripts must be written in a much more careful way. Variables left around, files left open, and so 
on, are not disposed of automatically when a page is sent because your script really doesn’ t exit in those cases. Therefore, although 
it’s possible to have code that works both with and without the mod_perl environment, it can be a bit tricky. For more details, visit 
http://perl.apache.org/. 

 

 
 

 

There are other options. One is to use a small C program as the CGI. This C program might open a socket to the real Perl script, pass 
it the information, and pass the response back to the browser. In this situation, there is still a fork and an exec, but the small C 
program will have a much lower startup time. A final option is to use FastCGI support, which implements an idea similar to the 
above.  

Summary   
 
 In this chapter, you learned about writing CGI scripts for dynamic web page creation. Specifically, you learned:   
 
  •  CGI scripts offer you a way to become more interactive with visitors to your web site.   
 
  •  Although CGI programs can be written in any language, Perl’s CGI library makes an easy and powerful way to do so.   
 
  •  Your scripts can receive input from the user by using forms.   
 
  •  State information can be passed to your script by using hidden form fields.   
 
  •  Other solutions, such as SQL databases and cookies, also can be helpful in preserving state information.   
 
  •  An embedded Perl interpreter in your web server can provide a boost for performance.  
Chapter  23: SQL Databases with DBI    
 
 Overview   
 

 
As a glue language, one of the most crucial features of Perl lies in Perl’s ability to access data stored in databases. Since more and 
more data is stored in ever-growing databases, it’s essential that Perl provides the glue to get at your data. Perl does this through a 
series of add-on modules, designed to access. 

 

 
 

 

This chapter covers the DBI, or database interface, series of Perl modules, modules that provide the glue to talk to many different 
databases such as Oracle or Informix. DBI goes further, though, in providing a consistent interface to access all these disparate 
systems. That makes your job a lot easier and really helps when you need to convert data from one database to another, for 
example. 
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The DBI module itself provides the consistent interface. Then, to access a particular database, such as Oracle, you make use of a 
special database driver, or DBD module, DBD::Oracle in this case.  

Introducing Databases   
 

 

As discussed in Chapter 21, “Manipulating Data with Perl,”  data storage is often one of the trickiest parts of writing a large 
application. Perl provides tie-ins to some simple databases, but often this is simply not sufficient. Your application may need 
something more powerful. Perhaps the database needs to reside on a computer separate from your application. Or perhaps you 
need to be able to have many different processes—or even computers—access the data in the database at once. You may need to 
work with certain subsets of the data, or to be able to retrieve information using more than one key. Finally, maybe you need a 
relational database so that you can join together information from multiple tables into a single coherent result. 

 

 
 

 

SQL databases provide you with these capabilities. SQL, short for Structured Query Language, is itself only a query language, but 
it forms a standard front end to many heavy-duty databases such as Oracle, mySQL, PostgreSQL, and Informix. Each database 
manufacturer starts with SQL as a base and then adds on some unique features. Thus, SQL is similar but not identical across 
different databases. 

 

 
 

 
More important, though, are several other ideas inherent in modern SQL databases. First, there is a separation between your 
process and the database server. This means that the server can just as easily be running on your own machine as it can be running 
on a machine down the hall or across the country. These database servers can be accessed across the network. 

 

 
 

 
Another important feature is that the database servers themselves can do some basic data analysis for you, thanks to the power of 
SQL. The server evaluates your SQL requests and sends the result back to you. 

 
 
 

 
There are several different ways to access these SQL databases in Perl. One way is to use vendor-specific libraries. However, these 
are implemented differently for each vendor, meaning that a change to a different SQL database server later could be extremely 
difficult due to a change in the underlying API. 

 

 
 

 
There is a better way, though. You can use the database interface, or DBI, module. DBI provides a universal front end for SQL 
databases. It uses a driver architecture such that each different database type supported in Perl has its own database driver, or 
DBD. 

 

 
 

 

Your applications are written using routines from DBI. DBI then converts these to appropriate lower-level calls to a database 
library through the use of a DBD. This driver or library encodes the request for transmission to the database server. The server, 
which may or may not be on your own computer, handles the request and sends the result back. The DBD parses the result, and 
your application fetches it through DBI routines. Thus, even though the communications protocol and library may be significantly 
different for each database, you can use almost identical calls for them in Perl. 

 

 
 

 

To be able to run the examples in this chapter, you’ ll need three pieces of software: the DBI library, a SQL database supported by 
DBI, and the DBD for your chosen database. Debian GNU/Linux ships with all of these; other distributions may or may not have 
all of those pieces. If you need the DBI or DBD software, you can download it from 
http://www.symbolstone.org/technology/perl/DBI/index.html. In this chapter, I’ ll be using the PostgreSQL RDBMS for the 
examples. This is a Free SQL database that runs well on Linux. If you do not have it already, you may find it at 
http://www.postgresql.org/. 

 

 
 

  Tip  
If you need help with installing DBI, you may consult the README file that comes with the DBI package. The DBI 
site also contains some documentation on the topic. 

 
 
 

  
Note 

 
Other SQL databases supported by DBI, such as mySQL or Oracle, will work fine as well, although some 
examples may have to be modified slightly to work with them, especially with the connect calls and certain data 
types. 

 

 
 

 
I’ ll assume before proceeding that you have installed all of the software previously described already and have it in a working 
condition. These examples are written with version 1.12 of DBI; if you have an older version and encounter difficulties, consider 
upgrading your DBI (and perhaps DBD as well) to the latest version.  

First Steps with DBI    
 

 

When you work with DBI, the general order of code is as follows. You will first connect to the database server, possibly passing 
along some authentication information. This will give you a database handle. Then you’ ll generate queries and use DBI’s prepare 
method to ready them for query. After doing this, you’ ll receive a statement handle, which can be used to fetch the results of that 
one particular query. When you have all the results, you’ ll be finished with the statement handle. You may prepare and retrieve 
many more items during your program’s lifetime. When your program is finished, you’ ll disconnect from the database and exit. 
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Listing 23-1 shows one program that reads SQL commands from the operator, sends these commands to the database, and returns 
the result. Note that this code is actually a bit more complex than most that you’ ll deal with because it doesn’ t know in advance 
what will be returned. However, you’ ll be able to use this program throughout the rest of the chapter to send commands directly to 
the SQL server without having to write a separate program to send each one. 

 

 
 

  Note  
Most databases include such a tool already; however, their interfaces vary significantly. For instance, PostgreSQL 
includes psql, and Oracle includes sqlplus. 

 
 
 
  Note  Listing 23-1 is available online.   
 
 Listing 23-1: Using the DBI module   
 
 #!/usr/bin/perl -w   
       
 use DBI;                # DBI library   
 use DBD::Pg;            # Postgres driver   
       
 my $DBUSER = $ENV{ USER} ;   
 my $DBNAME = $DBUSER;   
 # Connect to the database.   
       
 my $dbh = DBI->connect(“dbi:Pg:dbname=$DBNAME”, “ ” , “ ” ) or die   
   “Couldn’ t connect to database: “  . DBI::errstr;   
       
 # Loop to read from terminal.   
       
 my $input;   
 my $querystr = ‘ ’ ;   
 printmessage();   
       
 while ($input = <STDIN>) {    
   chomp $input;                # Strip off trailing CR   
   $input =~ s/\s+$//g;         # Strip off other trailing whitespace   
   if ($input =~ /;$/) {         # If ends with a semicolon...   
     $input =~ s/;$//;          # Strip off the semicolon   
     $querystr .= $input;       # Append to the query string   
     runquery($querystr);       # Run the query   
     $querystr = ‘ ’ ;            # Reset querystring for next iteration   
     printmessage();            # Print instructions   
   }  else {    
     $querystr .= “$input “ ;    # Append to query string   
   }    
 }    
       
 $dbh->disconnect;   
       
 sub printmessage {    
   print <<EOF;   
       
 Enter your query here.  After each query, enter a semicolon at the end of the   
 last line or on a line by itself.  When you’re finished with the program,   
 press Ctrl+D.   
       
 EOF   
 }    
       
 sub runquery {    
   my $querystr = shift @_;   
   my $rowcount;   
       
   print “ \n” ;   
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   my $sth = $dbh->prepare($querystr);   
   unless ($sth) {    
     print “Prepare FAILED: “  . $dbh->errstr . “ \n” ;   
     return;   
   }    
       
   my $executeresult = $sth->execute();   
   if (!$executeresult) {    
     print “Execute FAILED: “  . $dbh->errstr . “ \n” ;   
     return;   
   }    
       
   $executeresult = “unknown”  if ($executeresult == -1);   
       
   print “SUCCESS.\n” ;   
       
   # If this was a query, display the results.   
       
   if ($sth->{ NUM_OF_FIELDS} ) {    
     print “Columns: “ ;   
     print join(‘ , ‘ , @{ $sth->{ NAME} } ), “ \n” ;   
     $rowcount = $sth->dump_results();   
   }    
       
   print “Number of rows returned or modified: “ ,   
          ($rowcount) ? $rowcount : $executeresult, “ \n” ;   
 }    
 

 

Let’s go through this code and analyze what it does. It begins by bringing in the DBI library and the DBD for PostgreSQL. Then, it 
sets some defaults for the database name for the server, and a username if this would be used. After doing this, it connects to the 
database server. If the connection fails, it prints out an error message indicating the reason for the failure. Next, it defines a few 
variables, prints out a help message, and then enters a loop. 

 

 
 

 

In this loop, the code continues reading from standard input until EOF is reached. For each line, the trailing carriage return 
character is stripped off. Then, any trailing white space is stripped off—this makes it easier to look for a semicolon at the end. 
After stripping off this white space, the program checks to see if the line ends with a semicolon. If so, the semicolon is stripped, 
the result is appended to the query string, and the runquery subroutine is called. After it returns, the query string is reset, the help is 
displayed again, and the loop restarts. If there was no trailing semicolon, the input is simply appended to the query string, followed 
by a space (for white space for separation from this line and the next). 

 

 
 

 
After all the input is through, the program disconnects from the database server and exits. The printmessage subroutine is 
uninteresting; it simply displays a message. The runquery subroutine is the heart of the program. It handles most of the interaction 
with the database server. 

 

 
 

 
It begins by taking a query string as a parameter and printing out a blank line to visually separate the results from the query. Then 
you come to this line: 

 
 
 
   my $sth = $dbh->prepare($querystr);   
 

 

Thus begins the query within the database engine. Depending on the database, the query may be checked for syntax now, or later. 
If there is a problem, an error value is returned, and the unless check following the call to prepare will print out the error and exit 
the subroutine. Otherwise, a statement handle is returned and stored in $sth. Whereas the database handle, $dbh, corresponds to all 
communication with a particular database, a statement handle corresponds to all interaction with one particular query of the 
database. From here on, only the statement handle will be used in this particular subroutine. 

 

 
 

 
After preparing the statement handle, we execute it. This causes the query or request passed in to the function to be taken care of in 
the database itself. Again, there is a possibility of failure here. If the syntax is bad, some databases will abort at this point. If this 
happens, an error message is displayed and the subroutine returns. 

 

 
 

 
Otherwise, if the request affected an unknown number of rows, this is noted. This could be the case, for instance, during a create 
table request. Regardless of the type of request, a message indicating a successful execution is displayed. 
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Next, the code needs to branch depending on what type of a query it was. In broad terms, there are two types of queries in SQL: 
select and nonselect queries. The former return data; the latter may make modifications but do not return any data from the database 
itself. If the query was a select one, there will be at least one field (or column) in the result set. Therefore, you can use $sth-
>{ NUM_OF_FIELDS}  to determine whether or not the query returned data. If it did, the code prints out a list of the columns, 
followed by the data itself. Otherwise, the code simply skips to displaying how many rows were affected by the request.  

Using SQL    
 

 
Now that we covered getting started with the DBI series of modules, the next step is to go through some of the basic requests you 
can make from your Perl scripts. These requests include creating new tables in the database, inserting data into tables, reading data 
from the database, deleting items and updating records. 

 

 
 

 

Note that this section is not intended to be a thorough introduction to SQL. SQL is a very powerful and versatile language; it can 
be used to perform sophisticated data analysis and pull together data from many different sources. The following examples will go 
over some of the capabilities of SQL, but you should consult a good SQL reference or tutorial if you wish to learn the full scope of 
the language. 

 

 
 

  

Note 

 

SQL is not really designed for interactive use as we are doing in this chapter; however, this can be a useful 
learning tool. SQL is designed such that you will write front ends to the database, tailored for your specific needs. 
These are the things that you will learn how to do in this section. I’ ll show you several things here, interjecting my 
comments between the items of information. Note also that SQL is case insensitive everywhere except inside 
string literals. Many users, however, prefer to give SQL keywords in all caps to distinguish them from 
surrounding text, and I use that convention here. 

 

 
 

 
To help get a better handle on SQL itself, we’ ll use the ch23-1.pl example program provided previously. With this program, you 
enter in SQL commands directly, allowing you to concentrate on the SQL commands themselves and not worry about the 
underlying Perl code. 

 

 
 
 Creating a table   
 

 
All data stored in a SQL database must be placed inside a table. SQL data is typed; that is, you must declare what kind of data will 
occur in each field ahead of time. The following table is created to have two fields, an integer field and a text field: 

 
 
 
 $ ./ch23-1.pl   
       
 Enter your query here.  After each query, enter a semicolon at the end of the   
 last line or on a line by itself.  When you’re finished with the program,   
 press Ctrl+D.   
       
 CREATE TABLE mytable (   
   number  int,   
   str ing text   
 );   
       
 SUCCESS.   
 Number of rows returned or modified: unknown   
 
 Now let’s add some data. From here on, even though the program displays the help text, I’ ll omit it in the following section.   
 
 Inser ting data   
 
 The following examples show how to insert new records into the database, in this case into the new table we just created.   
 
 INSERT INTO mytable VALUES (5, ‘qwer ty’ );   
       
 SUCCESS.   
 Number of rows returned or modified: 1   
       
 INSERT INTO mytable VALUES (5, ‘Hello’ );   
       
 SUCCESS.   
 Number of rows returned or modified: 1   
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 INSERT INTO mytable VALUES (10);   
       
 SUCCESS.   
 Number of rows returned or modified: 1   
       
 INSERT INTO mytable (str ing, number) VALUES (‘Goodbye’ , 25);   
       
 SUCCESS.   
 Number of rows returned or modified: 1   
       
 INSERT INTO mytable VALUES (5, ‘Hello’ );   
       
 SUCCESS.   
 Number of rows returned or modified: 1   
 

 
These examples inserted five new records into the table. Note that the third query did not specify a string. This is permissible; 
values in the database can be empty (or NULL in SQL terms) unless this is specifically banned in the table definition. Before we 
fetch some of the data back, let’s examine some things that could cause errors: 

 

 
 
 INSERT INTO mytable VALUES (5, Hello);   
       
       
 DBD::Pg::st execute failed: ERROR:  Attribute hello not found   
 Execute FAILED: ERROR:  Attribute hello not found   
       
 INSERT INTO someother table VALUES (5, ‘Hello’ );   
       
 DBD::Pg::st execute failed: ERROR:  someothertable: Table does not exist.   
 Execute FAILED: ERROR:  someothertable: Table does not exist.   
       
 INSERT INTO mytable VALUES (‘Hello’ , ‘Goodbye’ );   
       
 DBD::Pg::st execute failed: ERROR:  pg_atoi: error in “Hello” : can’ t parse “Hello”    
 Execute FAILED: ERROR:  pg_atoi: error in “Hello” : can’ t parse “Hello”    
 

 

The first query failed because the string was not quoted. The second failed because it tried to insert data into a table that had not 
previously been created. The third failed because it tried to insert a string into an integer field. Note that two error messages are 
printed for each problem: one generated by DBI and one generated by this code. You can disable the duplicate DBI error message 
by using $dbh->{ PrintError}  = 0. 

 

 
 
 Reading data   
 

 
Now that there is some data in the database, let’s read it back. Here are some queries to do just that. In the following examples, the 
SQL SELECT query allows you to retrieve data from the database. 

 
 
 
 SELECT *  FROM mytable;   
       
 SUCCESS.   
 Columns: number, string   
 ‘5’ , ‘qwerty’    
 ‘5’ , ‘Hello’    
 ‘10’ , undef   
 ‘25’ , ‘Goodbye’    
 ‘5’ , ‘Hello’    
 5 rows   
 Number of rows returned or modified: 5   
 

 
This is a basic query. The asterisk tells the database server to select all fields (also known as columns) from the table. These are 
returned in arbitrary order. Note that the entry that had a NULL string shows up as undef in the previous example. 

 
 
 
 The next example shows how to ask for only a particular column, instead of all of the columns, as shown here:   
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 SELECT number  FROM mytable;   
       
 SUCCESS.   
 Columns: number   
 ‘5’    
 ‘5’    
 ‘10’    
 ‘25’    
 ‘5’    
 5 rows   
 Number of rows returned or modified: 5   
       
 SELECT str ing, number  from mytable;   
       
 SUCCESS.   
 Columns: string, number   
 ‘qwerty’ , ‘5’    
 ‘Hello’ , ‘5’    
 undef, ‘10’    
 ‘Goodbye’ , ‘25’    
 ‘Hello’ , ‘5’    
 5 rows   
 Number of rows returned or modified: 5   
 

 
The previous two queries specifically request certain columns to be returned. The first requests only the number column be 
returned, and the second requests them both, but in a nonstandard order. 

 
 
 

 
Now we can select certain columns, and re-arrange the order of the output. The next step is to select only those records that meet a 
certain criteria, such as the value in a particular column being larger than a certain amount. For example: 

 
 
 
 SELECT *  FROM mytable WHERE number  > 5;   
       
 SUCCESS.   
 Columns: number, string   
 ‘10’ , undef   
 ‘25’ , ‘Goodbye’    
 2 rows   
 Number of rows returned or modified: 2   
 

 
The previous query asks for both columns, but only those rows whose number value is greater than 5. In this table, two rows match 
that criterion, and they are returned: 

 
 
 
 You can use SQL to help sort the output as well, as shown in this example:   
 
 SELECT *  FROM mytable ORDER BY number  DESC;   
       
 SUCCESS.   
 Columns: number, string   
 ‘25’ , ‘Goodbye’    
 ‘10’ , undef   
 ‘5’ , ‘qwerty’    
 ‘5’ , ‘Hello’    
 ‘5’ , ‘Hello’    
 5 rows   
 Number of rows returned or modified: 5   
 

 
This query returns all the data but requests that it be sorted in descending order by number. If you omit DESC, the results would be 
sorted in traditional ascending order.  

 
 
 
 You can go further and use SQL to calculate statistics on the data in the database, as shown in this example:   
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 SELECT MAX(number), AVG(number), SUM(number ) FROM mytable;   
       
 SUCCESS.   
 Columns: max, avg, sum   
 ‘25’ , ‘10’ , ‘50’    
 1 rows   
 Number of rows returned or modified: 1   
 

 
Here you glimpse three basic statistical functions in SQL. The first returns the maximum value of the given column in the 
database; the second, the mean average; and the third, the sum of all values in that column. Notice that even though this operates 
on all five rows of the database, there is only one row of return information. 

 

 
 
 You can also get a count of the number of records:   
 
 SELECT COUNT(* ) FROM mytable;   
       
 SUCCESS.   
 Columns: count   
 ‘5’    
 1 rows   
 Number of rows returned or modified: 1   
 

 
Here, you see a way to find out how many rows are in the table; simply request a count of them. Again, only one row of 
information is returned. 

 
 
 
 You can combine the SQL count function with other criteria for a more complicated query. For example:   
 
 SELECT number , COUNT(* )   
   FROM mytable   
   GROUP BY number    
   ORDER BY number ;   
       
 SUCCESS.   
 Columns: number, count   
 ‘5’ , ‘3’    
 ‘10’ , ‘1’    
 ‘25’ , ‘1’    
 3 rows   
 Number of rows returned or modified: 3   
 

 

Here is a more tricky example. This one uses grouping to restrict what is returned. What is happening here is that the results are 
grouped by number. Therefore, there is one output row for each unique value held in the column named number occurring in the 
input. Then, when the data is output, we apply the count and see that there are three rows in the input with a number of 5, and one 
each with a number of 10 and 25. 

 

 
 
 Updating tables   
 

 
You can update the data stored in your tables after it has been placed there. To do this, you use the SQL update command. Here 
are some examples of this command: 

 
 
 
 UPDATE mytable SET str ing = ‘Hi’  WHERE number  = 10;   
       
 SUCCESS.   
 Number of rows returned or modified: 1   
       
 UPDATE mytable SET str ing = ‘Five’  WHERE number  = 5;   
       
 SUCCESS.   
 Number of rows returned or modified: 3   
 
 The first query fills in the missing text value. The second causes every row whose number value is 5 to have a string value of Five.  
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Here are the results from these modifications:  
 
 select *  from mytable;   
       
 SUCCESS.   
 Columns: number, string   
 ‘25’ , ‘Goodbye’    
 ‘10’ , ‘Hi’    
 ‘5’ , ‘Five’    
 ‘5’ , ‘Five’    
 ‘5’ , ‘Five’    
 5 rows   
 Number of rows returned or modified: 5   
 

 
You can see that the database carried out the actions you requested. Note that it is extremely important to remember the WHERE 
clause. If it is left off, every row in the table will be updated. For some databases, this could mean messing up millions of records 
of data! Here is an example of that: 

 

 
 
 UPDATE mytable SET str ing = ‘Good Morning’ ;   
       
 SUCCESS.   
 Number of rows returned or modified: 5   
       
 SELECT *  FROM mytable;   
       
 SUCCESS.   
 Columns: number, string   
 ‘25’ , ‘Good Morning’    
 ‘10’ , ‘Good Morning’    
 ‘5’ , ‘Good Morning’    
 ‘5’ , ‘Good Morning’    
 ‘5’ , ‘Good Morning’    
 5 rows   
 Number of rows returned or modified: 5   
 
 Deleting information   
 

 
You can also remove rows of information from a table. To remove data, you’ ll use a syntax similar to that for the update 
command: 

 
 
 
 DELETE FROM mytable WHERE number  = 5;   
       
 SUCCESS.   
 Number of rows returned or modified: 3   
       
 SELECT *  FROM mytable;   
       
 SUCCESS.   
 Columns: number, string   
 ‘25’ , ‘Good Morning’    
 ‘10’ , ‘Good Morning’    
 2 rows   
 Number of rows returned or modified: 2   
 

 
The database has thus removed three rows from the table, leaving only 2. Note again that you need to be sure to include the 
WHERE clause, or else every row in the table will be deleted! 

 
 
 
 The following example shows what happens when you delete everything:   
 
 DELETE FROM mytable;   
       
 SUCCESS.   
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 Number of rows returned or modified: 2   
       
 SELECT *  FROM mytable;   
       
 SUCCESS.   
 Columns: number, string   
       
 0 rows   
 Number of rows returned or modified: 0E0   
 

 
The preceding command removed all rows from the table. The select query was successful but returned an empty result set. You 
can also completely remove a table. This will have the effect of deleting everything in it as well. For example: 

 
 
 
 DROP TABLE mytable;   
       
 SUCCESS.   
 Number of rows returned or modified: unknown   
       
 SELECT *  FROM mytable;   
       
 DBD::Pg::st execute failed: ERROR:  mytable: Table does not exist.   
 Execute FAILED: ERROR:  mytable: Table does not exist.   
 
 Joining tables   
 

 
One of the most powerful features of SQL, and one that makes it relational, lies in its capabilities to join together data from 
different tables. To present this information, you’ ll need to create two tables and add in some data for them. Here are the queries to 
issue. You can type these in to the same ch23-1.pl example program that you’ve been using thus far: 

 

 
 
 CREATE TABLE states (   
   abbrev char(2) NOT NULL PRIMARY KEY,   
   name text NOT NULL   
 );   
      
 INSERT INTO states VALUES (‘AK’ , ‘Alaska’);   
 INSERT INTO states VALUES (‘AL’ , ‘Alabama’);   
 INSERT INTO states VALUES (‘KY’ , ‘Kentucky’);   
 INSERT INTO states VALUES (‘KS’ , ‘Kansas’);   
 INSERT INTO states VALUES (‘OK’, ‘Oklahoma’);   
 INSERT INTO states VALUES (‘TX’ , ‘Texas’);   
 INSERT INTO states VALUES (‘NY’ , ‘New York’ );   
       
 CREATE TABLE addresses (   
   name text NOT NULL,   
   address1 text NOT NULL,   
   address2 text,   
   city text NOT NULL,   
   state char(2) NOT NULL,   
   zip char(10) NOT NULL   
 );   
       
 INSERT INTO addresses VALUES (   
   ‘Joe Brown’ ,   
   ‘1234 S. AnyStreet’ ,   
   ‘Apartment 12’ ,   
   ‘Oklahoma City’ ,   
   ‘OK’ ,   
   ‘12345-6789’);   
       
 INSERT INTO addresses VALUES (   
   ‘Jane Smith’ ,   
   ‘9876 W. Somewhere Street’ ,   
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   NULL,   
   ‘Buffalo’ ,   
   ‘NY’ ,   
   ‘98765’);   
 

 

There are several new concepts introduced here. The first is the NOT NULL specification. This means that, when data is being 
inserted into a table, the database will refuse to insert any request that leaves the given field empty. This specification is used to 
ensure data consistency. Another new concept is the PRIMARY KEY specification. When you specify this, two things happen. 
First, the database requires that all data entered must have a unique value for that field; no two rows in the table may have the 
same value there. Second, this specification enables certain optimizations within the query engine to make possible faster replies. 

 

 
 
 After you have completed the preceding items, your tables should look like this:   
 
 SELECT *  FROM states;   
       
 SUCCESS.   
 Columns: abbrev, name   
 ‘AK’ , ‘Alaska’    
 ‘AL’ , ‘Alabama’   
 ‘KY’ , ‘Kentucky’    
 ‘KS’ , ‘Kansas’    
 ‘OK’ , ‘Oklahoma’   
 ‘TX’ , ‘Texas’    
 ‘NY’ , ‘New York’    
 7 rows   
 Number of rows returned or modified: 7   
       
 SELECT *  FROM addresses;   
       
 SUCCESS.   
 Columns: name, address1, address2, city, state, zip   
 ‘Joe Brown’ , ‘1234 S. AnyStreet’ , ‘Apartment 12’ , ‘Oklahoma City’ , ‘OK’ , ‘12345-6789’   
 ‘Jane Smith’ , ‘9876 W. Somewhere Street’ , undef, ‘Buffalo’ , ‘NY’ , ‘98765     ‘    
 2 rows   
 Number of rows returned or modified: 2   
 
 You can do a basic lookup on the states of residence of each person here. You might use a query like this:   
 
 SELECT name, state FROM addresses;   
       
 SUCCESS.   
 Columns: name, state   
 ‘Joe Brown’ , ‘OK’    
 ‘Jane Smith’ , ‘NY’    
 2 rows   
 Number of rows returned or modified: 2   
 

 
But what if you want the full state name? Well, you conveniently have those (well, seven of them anyway) in another table. What 
you need to do is join the data from these two tables together. Here’s how you might do that: 

 
 
 
 SELECT addresses.name, states.name   
   FROM addresses, states   
   WHERE addresses.state = states.abbrev;   
       
 SUCCESS.   
 Columns: name, name   
 ‘Joe Brown’ , ‘Oklahoma’   
 ‘Jane Smith’ , ‘New York’    
 2 rows   
 Number of rows returned or modified: 2   
 
 Great! You’ve just brought together data from two tables!   
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 Before continuing, clean up these two tables:   
 
 DROP TABLE addresses;   
       
 SUCCESS.   
 Number of rows returned or modified: unknown   
       
 DROP TABLE states;   
       
 SUCCESS.   
 Number of rows returned or modified: unknown   
 
 When done, press Ctrl+D to exit the program.  
Using Databases in Applications   
 

 
In this section, I’ ll show you how to use Perl code to automate communication with a database. I’ ll start with a program that 
creates two tables and populates one of them. Then, I’ ll add an address book application, written in CGI, with a DBI back end to 
store the data. 

 

 
 
 DBI with the command line   
 

 
Listing 23-2 presents a simple program that reads information in from the keyboard and inserts it into a database. This application 
could also be used to receive data piped in from a different program. 

 
 
 
  Note  Listing 23-2 is available online.   
 
 Listing 23-2: Inser ting information into a database   
 
 #!/usr/bin/perl -w   
       
 use DBI;                # DBI library   
 use DBD::Pg;            # Postgres driver   
       
 my $DBUSER = $ENV{ USER} ;   
 my $DBNAME = $DBUSER;   
       
 # Connect to the database.   
       
 my $dbh = DBI->connect(“dbi:Pg:dbname=$DBNAME”, “ ” , “ ” ) or die   
   “Couldn’ t connect to database: “  . DBI::errstr;   
       
 $dbh->{ PrintError}  = 0;   
       
 CheckOrCreateTable(“states” ,   
                    “CREATE TABLE states (   
                     abbrev char(2) NOT NULL PRIMARY KEY,   
                     fullname text NOT NULL)” );   
 CheckOrCreateTable(“addresses” ,   
                    “CREATE TABLE addresses (   
                     id varchar(40) NOT NULL PRIMARY KEY,   
                     name text NOT NULL,   
                     address1 text NOT NULL,   
                     address2 text,   
                     city varchar(30) NOT NULL,   
                     state char(2) NOT NULL,   
                     zip varchar(10) NOT NULL)” );   
       
 my ($input, $abbrev, $full);   
       
 print “Enter states, one per line, with the abbreviation followed by\n” ;   
 print “ the full name.  Press Ctrl+D when done.\n\n” ;   
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 while ($input = <STDIN>) {    
   chomp $input;   
       
   my ($abbrev, $full) = $input =~ /^(\w\w)\s+(.+)$/;   
   $abbrev = uc $abbrev;   
       
   InsertState($abbrev, $full);   
 }    
       
 sub CheckOrCreateTable {    
   my ($table, $querystr) = @_;   
       
   if ($dbh->do(“SELECT * FROM $table WHERE 1 = 0”)) {    
     print “Table $table already exists; not recreating.\n” ;   
   }  else {    
     print “Creating table $table\n” ;   
     $dbh->do($querystr) or die   
       “Couldn’ t create table: “  . $dbh->errstr;   
   }    
 }    
       
 sub InsertState {    
   my ($abbrev, $fullname) = @_;   
       
   print “ Inserting: $abbrev => $fullname\n” ;   
       
   my $result = $dbh->do(“ INSERT INTO states (abbrev, fullname)   
                         VALUES (‘$abbrev’ , ‘$fullname’)” );   
    
   unless ($result) {    
     warn “ Insert failed: “  . $dbh->errstr;   
   }    
 }    
 

 
Listing 23-2 is a program that will do two simple things. First, it will create tables if necessary. Second, it will read data from the 
keyboard and insert it into a table. 

 
 
 

 
When the program starts, it first connects to the database and turns off the error display. Then it checks for the existence of two 
tables and creates them if necessary. In the loop, it reads states and descriptions from the user. It makes sure that the abbreviation 
is listed in uppercase and inserts these values into the database. 

 

 
 

 

The CheckOrCreateTable subroutine uses a new command: $dbh->do. This can be used as a shortcut for the normal prepare and 
execute sequence if you are not expecting any data to be returned. Then it runs a select that will never return any data (1 will never 
equal 0). If the statement succeeds, the table is already present and no additional action is necessary. Otherwise, the table is 
missing and it is created. 

 

 
 

 
The InsertState subroutine simply displays a message and then sends an INSERT query to the database. This can help save you 
typing or enable you to pipe data into the program without having to know what the tables are or how to insert the data. Here is a 
sample run of the program: 

 

 
 
 $ ./ch23-2.pl   
 Creating table states   
 Creating table addresses   
 Enter states, one per line, with the abbreviation followed by   
 the full name.  Press Ctrl+D when done.   
       
 NY New York   
 Inserting: NY => New York   
 CA California   
 Inserting: CA => California   
 TX Texas   
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 Inserting: TX => Texas   
 NV Nevada   
 Inserting: NV => Nevada   
 SD South Dakota   
 Inserting: SD => South Dakota   
 NC Nor th Carolina   
 Inserting: NC => North Carolina   
 MD Maryland   
 Inserting: MD => Maryland   
 ME Maine   
 Inserting: ME => Maine   
 FL Flor ida     
 Inserting: FL => Florida   
 Ctrl+D   
 
 For every state you supplied, the program inserted a line in the database.   
 

  
Note 

 
Some database servers may cause this program to display diagnostic messages while it runs. For instance, some 
PostgreSQL servers may display messages about creating an implicit index. These messages are harmless and are 
for your information only; the program will detect if there was a problem with the database. 

 

 
 

 
Try running the program again. You can add some more information. Also note that it will detect that the tables already exist and 
not try to recreate them: 

 
 
 
 $ ./ch23-2.pl   
 Table states already exists; not recreating.   
 Table addresses already exists; not recreating.   
 Enter states, one per line, with the abbreviation followed by   
 the full name.  Press Ctrl+D when done.   
       
 UT Utah   
 Inserting: UT => Utah   
 CA California   
 Inserting: CA => California   
 Insert failed: ERROR:  Cannot insert a duplicate key into a unique index   
 Ctrl+D   
 

 
Notice that because the abbreviation for the state was declared a primary key, the database has prevented you from inserting a 
duplicate record for California. If you want, you can now examine the contents of the table with the query tool from earlier in this 
chapter. 

 

 
 
 Use the ch23-1.pl example program and enter in the following query:   
 
 SELECT *  FROM states;   
       
 SUCCESS.   
 Columns: abbrev, fullname   
 ‘NY’ , ‘New York’    
 ‘CA’ , ‘California’    
 ‘TX’ , ‘Texas’    
 ‘NV’ , ‘Nevada’    
 ‘SD’ , ‘South Dakota’    
 ‘NC’, ‘North Carolina’    
 ‘MD’, ‘Maryland’    
 ‘ME’, ‘Maine’    
 ‘FL’ , ‘Florida’    
 ‘UT’ , ‘Utah’    
 10 rows   
 Number of rows returned or modified: 10   
 

 
If you want, you can go ahead and add entries for the remaining states, or you can just leave it at this. You’ ll need this table, with 
at least these 10 states, for the following examples. 
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 DBI with CGI    
 

 

One of the most popular uses of the DBI software is to store data for interactive Web sites. Because most SQL database servers 
have some built-in locking support, and this does not require locking the entire database, multiple processes can get along better. 
Additionally, the more powerful query capabilities and larger scalability of SQL databases over the DBM databases means that 
these are most often used when a large amount of data is in question. Here, I present a simple application: an address book. This 
address book contains no security; you might want to add on a separate table containing accounts and passwords and authenticate 
users that way. For now, though, we’ ll concentrate on the basics. Listing 23-3 shows the complete code for this application. I’ ll go 
through it in detail and demonstrate how it works. Before trying it out, you’ ll need to have created the two tables as specified 
previously. 

 

 
 
  Note  Listing 23-3 is available online.   
 
 Listing 23-3: The address book application   
 
 #!/usr/bin/perl -Tw   
       
 # Turn off output buffering.   
       
 $| = 1;   
       
 # Bring in the CGI library.   
       
 use CGI qw(:standard);   
       
 # Display errors if possible.   
       
 use CGI::Carp qw(fatalsToBrowser);   
       
 # Bring in databases and connect.   
       
 use DBI;   
 use DBD::Pg;   
       
 my $DBUSER = ‘ jgoerzen’ ;   
 my $DBNAME = $DBUSER;   
       
 $dbh = DBI->connect(“dbi:Pg:dbname=$DBNAME”, $DBUSER, “” ) or die   
   “Couldn’ t connect to database: “  . DBI::errstr;   
 $dbh->{ PrintError}  = 0;        # Don’ t print errors.   
 $dbh->{ RaiseError}  = 1;        # Die on errors, and display to browser.   
       
 # Create a new CGI object.   
       
 my $q = new CGI;   
 my $NAME = $q->url(-relative => 1);   
       
 # Print the HTTP header.   
       
 print header;   
       
 # Select a default mode.   
       
 my $mode = “mode_”  . ($q->param(‘mode’) || ‘ start’ );   
       
 # Eliminate something invalid.   
       
 unless ($mode =~ /^mode_[a-zA-Z]+$/) {    
   $mode = ‘mode_error’ ;   
 }    
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 # Call the subroutine that handles that mode.   
       
 &$mode();   
       
 # End the HTML.   
       
 print end_html;   
 $dbh->disconnect;   
       
 ### program exits here ###   
       
 sub mode_start {    
   print start_html(‘Welcome to Address Book’);   
       
   # Display introductory text.   
   print “Welcome to the address book!  With this application, you can\n” ;   
   print “add entries to the address book and look up other entries.\n” ;   
   print “There are currently <B>” ;   
       
   # Find out the number of items in the database.   
   # This is transformed to SELECT COUNT(*) FROM addresses   
   print simplequeryval(‘COUNT (*)’ , ‘addresses’);   
       
   print “</B> addresses in the database.\n<P>\n” ;   
   print “Please select an action:” ;   
    
   # Display the menu.   
       
   print $q->startform(-method => ‘POST’);   
   print $q->radio_group(-name => ‘mode’ ,   
             -values => [‘search’ , ‘add’ , ‘browse’ , ‘modify’ ],   
             -default => ‘search’ ,   
             -linebreak => 1,   
             -labels => { ‘search’  => ‘Search For Entries’ ,   
                 ‘add’  => ‘Add a new entry’ ,   
                 ‘browse’  => ‘Browse all entries’ ,   
                 ‘modify’  => ‘Modify or delete an entry’ }    
             );   
   print $q->submit(‘submit’ , ‘Go’);   
   print $q->endform;   
 }    
       
 ## This subroutine displays a list of all the entries in the database.   
       
 sub mode_browse {    
   my $thisentry;   
   print start_html(‘Address Book: Browse’);   
       
   print “Here are all the entries in the address book.  You may\n” ;   
   print “ read them here and go back to the <A HREF=\”$NAME”;   
   print “ \”>main menu</A> when done.\n<P><HR>\n” ;   
       
   # Generate the query and perpare it.   
    
   my $sth = $dbh->prepare(“SELECT id, name, address1, address2, city,   
                            fullname, zip FROM addresses, states   
                            WHERE addresses.state = states.abbrev   
                            ORDER BY name”);   
    
   $sth->execute();   
       
   # Fetch each row and display it.  Add a line after each one.   
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   while ($thisentry = $sth->fetchrow_arrayref) {    
     print EntryHTML($thisentry, 1);   
     print “<HR>\n” ;   
   }    
       
   # Close the statement handle.   
       
   $sth->finish();   
       
   # Add a link back to the main menu.   
    
   print “<A HREF=\”$NAME\”>Back to main menu</A>\n” ;   
 }    
       
 # This subroutine is responsible for adding information into the database.   
       
 sub mode_add {    
   # Implement this a unique way.  Add some dummy information to the   
   # database and then re-call this in terms of a modify!  This saves   
   # coding effort, since essentially it’s the same task anyway.   
       
   my $id = GenerateID();   
       
   $dbh->do(“ INSERT INTO addresses VALUES (‘$id’ ,   
             ‘Put New Name Here’ ,   
             ‘Address line 1’ ,   
             NULL,   
             ‘New City’ ,   
             ‘NY’ ,   
             ‘00000’)” );   
       
   # Shove the id into the CGI object.   
       
   $q->param(-name => ‘ id’ , -value => $id);   
    
   # Now go over to modify.   
       
   return mode_modify();   
 }    
       
 # Handle the modifications to data.  Need to have an id; if none given,   
 # ask for one.   
       
 sub mode_modify {    
   my $id = $q->param(‘ id’ );   
   my $entry;   
       
   print $q->start_html(‘Address Book: Modify’ );   
       
   # If there wasn’ t an id passed along....   
       
   unless ($id) {    
     print “Please enter the id of the record you want to modify.  If you\n” ;   
     print “do not know the id, you should use one of the options from\n” ;   
     print “ the <A HREF=\”$NAME\”>main menu</A> to retrieve records and\n” ;   
     print “click on modify from there.\n<P>\n” ;   
     print $q->startform(-method => ‘POST’);   
     print $q->textfield(-name => ‘ id’ ,   
             -size => 40,   
             -maxlength => 40);   
     print $q->hidden(-name => ‘mode’ , -value => ‘modify’ );   
     print $q->submit(‘submit’ , ‘Go’);   
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     print $q->endform;   
     return;   
   }    
   # Load it up from the database.  This time, use the 2-character   
   # state abbreviation instead of the expanded state name.   
       
   @entry = queryrow(“SELECT * FROM addresses WHERE id = ‘$id’ ” );   
      
   print “Here is your chance to make changes.  If you prefer to cancel\n” ;   
   print “ the operation, just <A HREF=\”$NAME\”>return to the main menu</A>.\n” ;   
   print “<P><HR>\n” ;   
       
   # Display the original record for reference.   
       
   print “Original record, id <TT>$id</TT>:<P>\n” ;   
   print EntryHTML(\@entry, 0);   
   print “<HR>New value: <P>\n” ;   
       
   # Display the form for the new record.   
   print $q->startform(-method => ‘POST’);   
   print EntryHTML(\@entry, 0, 1);   
   print $q->hidden(-name => ‘mode’ , -value => ‘modifySave’ , -override => 1);   
   print $q->hidden(-name => ‘ id’ , -value => $id, -override => 1);   
   print “<HR>”;   
   print $q->submit(‘submit’ , ‘Change to above values’);   
   print “<BR>\n” ;   
   print $q->submit(‘delete’ , ‘Delete the above record’);   
   print $q->endform;   
 }    
      
       
 # This is called after somebody clicks a Submit button on the modify screen.   
 # Its responsibility is to issue either an update or a delete as appropriate.   
       
 sub mode_modifySave {    
   print $q->start_html(‘Address Book: Saved Changes’);   
   my $id = $q->param(‘ id’ );   
       
   if ($q->param(‘delete’ )) {    
     $dbh->do(“DELETE FROM addresses WHERE id = ‘$id’ ” );   
     print “The requested record, with id of <TT>$id</TT>, has been\n” ;   
     print “deleted.\n” ;   
   }  else {    
     my $queryval = ‘ ’ ;   
     my $key;   
     my $first = 1;   
       
     # Generate the query.   
       
     $queryval .= “UPDATE addresses set “ ;   
       
     foreach $key (‘name’, ‘address1’ , ‘city’ , ‘state’ , ‘zip’ ) {    
       unless ($first) {    
     $queryval .= “ , “ ;   
       }    
       $first = 0;   
       $queryval .= “ \n $key = “  . $dbh->quote($q->param($key));   
     }    
       
     if ($q->param(‘address2’)) {    
       $queryval .= “ , \n address2 = “  . $dbh->quote($q->param(‘address2’));   
     }  else {    
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       $queryval .= “ , \n address2 = NULL” ;   
     }    
       
     $queryval .= “ \n WHERE id = ‘$id’ ” ;   
     $dbh->do($queryval);   
     print “The requested change has been made.  The query used was:<P>\n” ;   
     print “<PRE>\n” ;   
     print $q->escapeHTML($queryval);   
     print “</PRE>\n” ;   
   }    
   print “<HR>”;   
   print “Now go <A HREF=\”$NAME\”>back to the main menu</A>.” ;   
 }    
       
 # This subroutine is used to implement a database search.   
       
 sub mode_search {    
   print start_html(“Address Book: Search”);   
   my $search = $q->param(‘search’);   
       
   unless ($search) {    
     print “You can search through the database of addresses using this\n” ;   
     print “screen.  Type your text below.  I’ ll search in all the fields\n” ;   
     print “of the database and return any that contain a portion of the\n” ;   
     print “ text.  For states, you may use either the 2-letter abbreviation\n” ;   
     print “or the full name.  These searches are case-sensitive.\n<P>\n” ;   
     print “Search text:<BR>\n” ;   
     print $q->startform;   
     print $q->textfield(-name => ‘search’ ,   
             -size => 40);   
     print $q->hidden(-name => ‘mode’ , -value => ‘search’ , -override => 1);   
     print $q->submit(‘submit’ , ‘Search’);   
     print $q->endform;   
     return;   
   }    
       
   print “<H1>Search Results</H1>\n” ;   
   print “Here are the results for the search for: \n” ;   
       
   print $q->escapeHTML($search), “ \n<P><HR>\n” ;   
       
   my $querystr = ‘ ’ ;   
   my $first = 1;   
   my $key;   
   my $thisentry;   
       
   $querystr .= “SELECT id, name, address1, address2, city, fullname, zip\n” ;   
   $querystr .= “FROM addresses, states\n” ;   
   $querystr .= “WHERE addresses.state = states.abbrev AND (\n” ;   
   foreach $key (‘name’, ‘address1’ , ‘address2’ , ‘city’ ,   
         ‘state’ , ‘ fullname’, ‘zip’ ) {    
     unless ($first) {    
       $querystr .= “  OR\n” ;   
     }    
     $first = 0;   
     $querystr .= “   $key LIKE “  . $dbh->quote(‘%’ . $search . ‘%’) . “  “ ;   
   }    
       
   $querystr .= “ \n)\nORDER BY name” ;   
   $sth = $dbh->prepare($querystr);   
   $sth->execute();   
   while ($thisentry = $sth->fetchrow_arrayref) {    
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     print EntryHTML($thisentry, 1);   
     print “<HR>\n” ;   
   }    
    
   $sth->finish;   
       
    
   print “My query was:<BR>\n” ;   
   print “<PRE>\n” ;   
   print $q->escapeHTML($querystr);   
   print “</PRE>\n” ;   
   print “<HR>Now go back to the <A HREF=\”$NAME\”>main menu</A>.” ;   
 }    
    
       
 sub mode_error {    
   print start_html(‘Error’ );   
       
   print “ I’m sorry, there was an error.  Please use your browser’s back\n” ;   
   print “button and retry the operation.\n” ;   
 }    
       
 # This subroutine displays HTML of a given entry.  Only the first argument   
 # is required.  The arguments are:   
 #   
 # $entry, a reference to an array that DBI might return   
 #   
 # $editlink, set to true if there should be a link to the modify page   
 # for this entry.   
 #   
 # $textfields, set to true if the result should be text entry fields   
 # instead of normal text, such as might be used for modification.   
 #   
 # The return value is a string to send to the Web browser.   
       
 sub EntryHTML {    
   my ($entry, $editlink, $textfields) = @_;   
   my $retval = ‘ ’ ;   
       
   # Print out the start of the table.   
   $retval = “<TABLE><TR><TD><B>Name</B></TD>\n” ;   
       
   # Name   
   $retval .= “<TD>” ;   
   if ($textfields) {    
     $retval .= $q->textfield(-name => ‘name’,   
             -default => $entry->[1],   
             -override => 1,   
             -size => 40);   
   }  else {    
     $retval .= $entry->[1];   
   }    
       
   # If there’s supposed to be an edit link, show it.   
   if ($editlink) {    
     # Decrease font size.  Add a bracket.  Start the URL.   
     $retval .= “  <FONT SIZE=-1>[<A HREF=\”$NAME?mode=modify&id=” ;   
       
     # Insert a URL-escaped version of the id.   
     $retval .= $q->escape($entry->[0]);   
       
     # Close it out.   
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     $retval .= “ \”>modify</A>]</FONT>” ;   
   }    
       
   # Print the rest.   
   $retval .= “</TD></TR>\n” ;   
   $retval .= “<TR><TD><B>Address</B></TD><TD>”;   
       
   if ($textfields) {    
     $retval .= $q->textfield(-name => ‘address1’ ,   
             -default => $entry->[2],   
                -override => 1,   
                 -size => 40);   
   }  else {    
     $retval .= $entry->[2];   
   }    
   if ($textfields) {    
     $retval .= “<BR>\n” ;   
     my $newval = ‘ ’ ;   
       
     if ($entry->[3]) {    
       $newval = $entry->[3];   
     }    
       
     $retval .= $q->textfield(-name => ‘address2’ ,   
                  -default => $newval,   
                 -override => 1,   
                 -size => 40);   
   }  elsif ($entry->[3]) {    
     # If it’s a two-line address, combine them with a <BR>.   
     $retval .= “<BR>$entry->[3]” ;   
   }    
   $retval .= “</TD></TR>\n” ;   
   $retval .= “<TR><TD><B>City, State, Zip</B></TD><TD>”;   
   if ($textfields) {    
     $retval .= $q->textfield(-name => ‘city’ ,   
                 -default => $entry->[4],   
                 -override => 1,   
                 -size => 20);   
     $retval .= “ , “ ;   
     my @states = queryarr(“SELECT abbrev FROM states ORDER BY abbrev” );   
     $retval .= $q->popup_menu(‘state’ ,   
                   \@states,   
                   $entry->[5]);   
     $retval .= “  “ ;   
     $retval .= $q->textfield(-name => ‘zip’ ,   
                 -default => $entry->[6],   
                 -override => 1,   
                 -size => 10);   
   }  else {    
     $retval .= “$entry->[4], $entry->[5] $entry->[6]” ;   
   }    
   $retval .= “</TD></TR></TABLE>\n” ;   
   return $retval;   
 }    
       
 # This subroutine is used to generate a unique ID.  It does this by   
 # getting the current time and tacking the current process ID onto   
 # its end, which should be unique.  Note that many databases have a   
 # much better way of doing this built in.  PostgreSQL, for instance,   
 # has a sequence that you can use.  Others have a “serial”  designation   
 # for fields.  If your database has that, you should use it, but beware   
 # that it is not completely portable.  I chose this because it is   
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 # portable.  $$ is the pid of the current process.   
       
 sub GenerateID {    
   return time() . “ ;$$” ;   
 }    
       
 ####################################################################   
 # Here are some database query functions.  They are around to   
 # make your life easier.  You can use them in your own programs, too;   
 # just copy them out of here.   
 ####################################################################   
       
 # simplequeryval... a wrapper around queryval   
       
 sub simplequeryval {    
   my ($colret, $table, $collookfor, $colmatch) = @_;   
   my $querystr;   
       
   $querystr = “SELECT $colret FROM $table” ;   
   if ($colmatch) {    
     $querystr .= “  WHERE $collookfor = $colmatch” ;   
   }    
       
   return queryval($querystr);   
 }    
       
 # Takes a query and returns the single value from the single column   
 # that the query resulted in.  Useful for things like getting COUNT(*).   
       
 sub queryval {    
   my ($query) = @_;   
   my @retval = queryarr($query);   
   return $retval[0];   
 }    
       
 # Takes a query and returns an array of all values in the single   
 # column that the query returns.   
       
 sub queryarr {    
   my ($query) = @_;   
       
   return querycolarr(0, $query);   
 }    
       
 # Takes a query for a select and returns an array of   
 # all the values in the indicated column.   
       
 sub querycolarr {    
   my ($column, $query) = @_;   
   my @retval = ();   
       
   my $sth = $dbh->prepare($query);   
   unless ($sth) {    
     return @retval;   
   }    
    
   unless ($sth->execute) {    
     return @retval;   
   }    
       
   my $result = $sth->fetch;   
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   while (defined($result)) {    
     push @retval, $result->[$column];   
     $result = $sth->fetch;   
   }    
       
   $sth->finish;   
       
   return @retval;   
 }    
       
 # queryrow takes an arbitrary query and returns the returned row.   
       
 sub queryrow {    
   my ($query) = @_;   
   my @retval = ();   
   my $sth = $dbh->prepare($query);   
   $sth->execute;   
   @retval = $sth->fetchrow;   
       
   $sth->finish;   
   return @retval;   
 }    
 

 
This program is quite a large one! It presents a more simplified CGI interface than the one in Chapter 22, but nevertheless, it is 
fairly large. I tried to add comments in the code to help you out, and we’ ll go over some issues here as well. Don’ t let the size 
overwhelm you; take it in small chunks, and you’ ll see how everything fits together. 

 

 
 

 
Note that because most CGI programs run with the permissions of the Web server, it’s not possible to auto-detect the database 
username by looking at the environment anymore. Therefore, before this will work for you, you’ ll need to change this line: 

 
 
 
 my $DBUSER = ‘ jgoerzen’ ;   
 
 Just replace my username with yours and everything will work fine.   
 
 Initialization   
 

 
This program in Listing 23-3 begins its life in a manner quite similar to many others that you’ve seen. It imports the CGI library. 
The next statement is interesting. It captures error-handling calls, such as die and warn, and instead of emitting an error to standard 
error (which would probably go into the server’s error log), it emits the error to the user’s browser. 

 

 
 

 

After taking care of handling errors, the program imports the database libraries as before. There are a few other interesting things 
to note here. The PrintError option is turned off; there’s no need to simply display an error message. However, RaiseError is 
turned on. This causes DBI to generate a fatal error (with die) whenever there is a problem. By turning this on, I no longer have to 
explicitly check for error conditions all over in my code, because with this CGI script, there’s no need to be able to recover 
gracefully from such a condition. 

 

 
 
 A new CGI object is allocated, and it is interrogated to find out the name of the script. This is used for building up URLs later.   
 
 In the next sections, I discuss the major subroutines in the Listing 23-3 source file.   
 
 mode_star t   
 

 

When somebody starts the script, it enters this routine by default. The program displays some introductory information, explaining 
that this is indeed an address book. Then it wants to tell the user how many entries are in the book. To do this, it needs to get a 
count of the entries in the addresses table from the database. No problem! Thanks to a helper function, this is done inline without 
having the mess with statement handles right here. 

 

 
 

 
After finishing the introductory text, a menu is displayed. Just to be different, it’ s made up of radio buttons and a Submit button. 
The user selects the operation to perform from the radio button and then clicks the Submit button. 

 
 
 
 mode_browse   
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The mode_browse function is the first function in the script that does some more deep-down work with the database. It begins by 
displaying some usual text. Then it proceeds to prepare a query. This query fetches the data from the addresses table and then joins 
that with the full state name from the states table. Finally, it orders the result by the name of the person. 

 

 
 

 

The execute function is called, and then the results are returned. I use the fetchrow_arrayref here, just because it’s a little bit faster. 
This isn’ t terribly performance-critical code, but I want to show you how it’s done. For each record in the database, we get a 
reference to an array containing its fields. The fields in the array are given in the order they were requested in the select. This 
reference is passed on to EntryHTML for display. After that, a horizontal rule is printed to separate the records from each other. 
Finally, when all the rows have been retrieved, the statement handle is closed and the function finishes. 

 

 
 
 mode_add   
 

 

When the user selects the option to add a new record, mode_add is invoked. Its job is to insert a new record into the database and 
let the user fill it out. But this code is sneaky about it. It inserts a new record into the database but then calls the modify function to 
let the user fill it out. This saves some recoding. So, the first thing to do is to nab a unique ID. For this, the GenerateID function is 
called. Next, a query consisting of an insert is executed. After the query is executed, the code shoves an ID parameter into the CGI 
object and then calls modify. 

 

 
 
 mode_modify   
 

 
Like the other functions, mode_modify starts out by displaying some basic information. If no ID was passed in, it generates a form 
for the user to enter one. If an ID was received, the fun begins. 

 
 
 

 
First, the program needs to retrieve the entry that the ID refers to. It does this by calling queryrow. It then displays the original 
record, and then a new record. Finally, it generates two Submit buttons: one to delete the record and one to save the changes. In 
either case, the modifySave function will be called next time to commit the changes to the database. 

 

 
 
 mode_modifySave   
 

 

The mode_modifySave function is invoked after somebody works at the modify screen. If the user clicked the Delete button, the 
function goes to the database and deletes the requested data. On the other hand, if the user clicked on the Modify button, the 
function needs to issue an update query. It uses a loop to generate parts of the string for each key except for address2. This one is 
handled specially; the database value is set to NULL if the form field was empty. 

 

 
 

 

Notice the usage of $dbh->quote. When you work with strings in SQL, you enclose them in single quotes. However, if you have a 
string with an embedded quote character, you have to escape the quote by doubling that character. You have to be careful to 
always watch out for quotes in the data  so that no mistake could result from someone trying to use an apostrophe in the input, for 
example. If you were really concerned about security, you’d do the same with the $id variable, or else check it for valid characters 
ahead of time. You’ ll find that the quoting mechanism is used many times throughout the program in Listing 23-3 as well. 

 

 
 

 
The query is changed if necessary, and to help you see what’s going on, the final query is printed out to the Web browser. Finally, 
the program prints out a link to return to the main menu. 

 
 
 
 mode_search   
 

 

The search function begins in a manner similar to the modify one. If no search term was specified yet, the function asks for one 
after displaying some help. If a search term has been specified, again a query is built up and send to the database. This query 
introduces a new operator: LIKE. When you use this instead of equals, it permits the use of wildcards. In this case, the percent sign 
is used, which means in SQL what the asterisk does in the UNIX shell. So, each field is searched using the percent signs to see if it 
contains the string anywhere. 

 

 
 

 
As with the browse function, a simple loop processes the results from the query. After the loop finishes, the query is printed out for 
your benefit. 

 
 
 
 EntryHTML    
 

 
The EntryHTML function is called by several others to generate an HTML rendering of the address of a given person. The 
function has several options; it can generate either a plain text rendering or a rendering that provides text fields for input. Much of 
the function is simply the selection between the various output options for displaying information and tables. 

 

 
 
 Query Functions   
 



 458 

 

The Listing 23-3 program ends with a number of small query functions. These are utility functions designed to help you deal with 
requests for certain types of frequently used small groups of data. For instance, the simplequeryval function is provided to let you 
quickly receive a single value from a database, without having to go to the effort to prepare, execute, fetch, and finish with a 
statement handle. This can be quite a useful utility. 

 

 
 
 Examples   
 

 
So that you can put together all the pieces, I want to show you two examples of the queries the program generates. Here is what the 
code generates when you make a modification: 

 
 
 
 UPDATE addresses set   
 name = ‘John Doe’ ,   
 address1 = ‘12345 S. Someone’ ’s Ave.’ ,   
 city = ‘Somewhere’ ,   
 state = ‘SD’,   
 zip = ‘10101’ ,   
 address2 = ‘Suite 9876’    
 WHERE id = ‘939072323;2624’    
 

 
Notice the quoting that occurred for address1; the apostrophe was doubled to prevent problems. When the data is read back later, it 
will appear normal. Here’s an example of the query generated for a search: 

 
 
 
 SELECT id, name, address1, address2, city, fullname, zip   
 FROM addresses, states   
 WHERE addresses.state = states.abbrev AND (   
   name LIKE ‘%Pierre%’  OR   
   address1 LIKE ‘%Pierre%’  OR   
   address2 LIKE ‘%Pierre%’  OR   
   city LIKE ‘%Pierre%’  OR   
   state LIKE ‘%Pierre%’  OR   
   fullname LIKE ‘%Pierre%’  OR   
   zip LIKE ‘%Pierre%’   
 )   
 ORDER BY name  
Summary   
 
 In this chapter, you learned about communicating with SQL databases by using DBI. Specifically, you learned:   
 
  •  DBI is a way to communicate with a SQL database in a mostly database-independent fashion.   
 
  •  SQL is a powerful query language used by databases that communicate with DBI.   
 
  •  Data in SQL is stored in tables and is organized into rows and columns.   
 
  •  Entries can be empty unless NOT NULL is specified.   
 
  •  Specifying PRIMARY KEY forces uniqueness for that particular column.   
 
  •  DBI is useful in many different types of applications and can be used in both command-line and Web-based applications.   
 
  •  It’s important to remember to quote input for the server.  
Par t VI :  Graphical Inter faces with X   
 
 Chapter  L ist   
 
  Chapter  24:  GUIs with Per l/Tk   
 
  Chapter  25:  
Chapter  24: GUIs with Per l/Tk   
 
 Overview   
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One of the most persistent trends over the past decade is that of the graphical user interface (GUI) becoming popular in the 
computing marketplace. There is a reason for this. With a graphical interface, you can present information and interact with the 
user in more ways than you can with a text interface. This is because you can use the likes of arbitrary pictures, different forms of 
input (mouse), and multiple panes (windows) on the user’s screen. By making clever use of these features, such as realistic icons, 
intuitive menus, and online help, you can make your program easier to learn—and sometimes easier to use as well. 

 

 
 

 

In this chapter, you will learn about GUI programming with Perl/Tk. I’ ll start with an introduction to GUI programming, which will 
help you decide whether or not a GUI is appropriate for your application. After that, you’ ll learn about event-based programming, 
which is a different way about learning about keystrokes and mouse movements, and X clients. The next three sections will take you 
on a tour of Perl/Tk, where you will learn about different widgets in Perl/Tk and how to use them. The chapter concludes with a look 
at geometry managers, which are used to lay out widgets in your windows, special concerns of Perl/Tk, and the SpecTcl interface 
design tool.  

GUI Programming in L inux   
 

 

In the introduction to this chapter, I mentioned a number of benefits that you can derive from using a graphical interface. However, 
along with all these benefits, there are also downsides. GUI programming is much more complex than programming for a plain-
text interface. GUI programs require more CPU power and carry a larger memory burden. They require more bandwidth and so 
cannot be efficiently run remotely except on fast links. Poorly designed GUI s can be more difficult to use than a corresponding 
text interface.  Finally, GUI programs are generally hard to automate, especially the kind of data transfer that you are used to 
accomplishing with piping on the Linux command line. 

 

 
 

 

In a nutshell, you need to evaluate whether a GUI is right for your program. A GUI can be especially useful if you are putting an 
interface on a program for people that need to have the least possible learning time, similarity with an existing sutie of GUI tools, 
and have little experience with a text interface.  On the other hand, a GUI can be slower, larger, difficult to write, and hard to 
automate. 

 

 
 
 Basics of the X Window System   
 

 
When you are writing a GUI under the Linux operating system, you are almost always writing a GUI that runs under the X 
Window System. If you are coming from a different GUI environment, such as Microsoft Windows, you will need to understand 
that although the X environment may look similar to Windows on the surface, underneath the system is quite different. 

 

 
 

 

X is separated into two parts: the clients and the server. Generally, you have one X server running on each machine. The server is 
responsible for interacting directly with the hardware, displaying images on the monitor, reading input from a keyboard or mouse, 
and the like. This functionality is separate from the applications that run with X; the X server solely manages clients and server 
resources (such as the display). It does not provide any applications of its own. 

 

 
 

 

Clients are the applications in the system. A client may be a word processor, an editor, a spreadsheet, a game, or any other 
program that you want to run in a graphical environment. There are also special clients that can run on your system. One such 
client is the window manager, which is responsible for managing the placement and decoration of the top-level windows on your 
system. A window manager can do things like create a title bar for windows, enable you to drag windows to new locations, 
minimize windows, and the like. 

 

 
 

 

It’s easy to get confused with the prevailing terminology. The X server is called a “server”  because it manages access to shared 
resources, just like any other server on your system. In this case, the shared resources are your display, mouse, keyboard, and any 
other input devices that you might have. The different applications on your system need access to these things, and the server 
manages this access on behalf of the clients. From a technical perspective, the X server listens for connections on a predefined port 
just as other servers do, and clients connect to that port just as with other servers. 

 

 
 
 Location independence   
 

 

Due to the separation of the client from the server in X, there are some fascinating possibilities that do not exist in other graphical 
environments. Chief among them is that it makes no difference to the X server whether or not a client is running on your own 
machine. To X, it is just as natural to have a client running on a machine down the hall but interacting with you on your own 
screen as it is to have the client running on your own machine. In fact, some users have clients running on a dozen different 
computers—perhaps spanning two or three continents—displaying on their X screens seamlessly integrated with applications 
running on the local machine. The clients, then, can connect over a LAN, over the Internet, or to the server running on the local 
machine. 

 

 
 

 
Everything is dealt with in a location-independent basis. The “clipboard”  in X, for instance, can hold data from any client and can 
be pasted into any client, regardless of location. 
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When you start up a client, it needs to know which server to connect to. This is generally specified by setting the DISPLAY 
environment variable. This variable is set for you by default when you start X; if you want to change it, you can do so. The X(1x) 
manpage contains information on the format of this variable as well as access control to prevent unwanted clients from connecting to 
your server.  

Anatomy of a Client   
 

 
When you are writing an application to run in the GUI X environment, you are writing an X client. You almost never need to 
modify the X server. It is bundled with the operating system and presumed already functional by the time any clients enter the 
picture. 

 

 
 
 Xlib   
 

 

Like many things in Linux, X clients may have several layers of libraries. The lowest layer, known as Xlib, handles the actual 
communication between the client and the server. That is, Xlib is responsible for encoding requests to and decoding responses 
from the form suitable for transport across a network—or across the local machine. Xlib works on a very low level with the X 
protocol, providing an interface essentially to the protocol itself. Although it is technically possible to write an X client without 
using Xlib, few if any programmers do so today. 

 

 
 
 Widget sets   
 

 

Because Xlib works on such a low level with the X protocol, most programmers (except widget set authors) prefer to use a widget 
set for their programs. This is because it is almost always easier and faster to think of the display in terms of buttons, menus, and 
pictures instead of manually painting the pixels and lines that form the buttons, manually displaying the menus and handling 
mouse input for them, and so forth. Many different widget sets are available from which a programmer may choose. Examples of 
widget sets include the Athena Widgets (Xaw), Tk, Gnome/GTK, Qt, wxWindows, and many others. In this chapter, I’ ll be using 
the Tk widget set, as implemented in Perl. 

 

 
 

 

Each widget set has its own way of interacting with the programmer. Some may be tied to features found in specific languages; for 
instance, Qt is based on an object-oriented metaphor. Others may provide a more low-level approach, such as the Athena Widgets 
do. Not only that, but each widget set is responsible for rendering its own objects to the display. For instance, a scroll bar widget 
from the Athena Widget set looks and acts differently than one from the Tk widget set. 

 

 
 

 
The Tk widget set is a modern, full-functioning widget set with sporting interface elements with 3D bevels. It borrows some look 
and feel from both UNIX and Windows environments, and it adds in its own unique ideas, to get a widget set that should feel quite 
natural to many people. Some of its own unique features include tear-off menus and tight integration with Perl. 

 

 
 
 Hierarchical windows   
 

 

In Tk, a “window” is much more than you might be traditionally accustomed to considering a window. A window in Tk is 
everything from your application’s window on the desktop to a button, a text entry box, a menu, or a group of similar items. Thus, 
windows in Tk are nested—arranged hierarchically. This corresponds to how items appear on-screen. For instance, a button might 
appear inside a configuration panel, which is inside a tabbed notebook, itself inside a top-level dialog box, which happens to be a 
child of the application’s main window. The window hierarchy in Tk will reflect this ordering. When you are done with the dialog 
box, for instance, it is destroyed, and all the windows inside it are automatically destroyed as well. 

 

 
 
 Configuration   
 

 

Because the nature of the programs in X is to use a hierarchy to the programs’  advantage, configuration is hierarchical as well. 
This gives the user much more control over the applications than in Microsoft graphical environments. For instance, from the 
single X configuration system (X resources), one can configure not only the default background color of all windows on the 
system, but also the default color of one particular application—or even one particular dialog box in an application. You can go so 
far as to individually tweak each button in an application. 

 

 
 

 
This is all thanks to the X resources system, which allows users to configure things at as high or as low a level as they like. You 
can configure the color of all buttons on the system, all buttons in an application, all buttons in a single dialog box, or one button 
in particular—just to pick an example. 

 

 
 
 In general, defaults can be set by an application or by the system administrator and selectively overridden by each individual user.  
Event-Based Programming   
 

 
With a traditional model, when you need to get input from the user, you prompt for it. You may display a menu of options, or 
some other similar interface. But the point is that in each case, you first display a menu or prompt, then read input from that menu 
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or prompt only, and then act upon that input.  
 

 
With a GUI, there are often dozens, or even hundreds, of possible options. The user may pop up a dialog box and then proceed to 
bring up a second dialog box. Each of these boxes may contain buttons, text fields, and the like. Simply displaying information and 
waiting for a response turns out not to be so simple in this case. 

 

 
 

 
The answer to this is event-based programming. With this type of programming, you simply declare how things are to be drawn. 
Then, you indicate what is to be done when a certain event occurs. For instance, when the user clicks an OK button, you might 
want to call a subroutine to save the file. When the user clicks a Help button, you would want to bring up some online help. 

 

 
 

 
With this model, after you initialize your program, your own code is finished executing; there is nothing for it to do until some sort 
of event occurs. When an event happens for which you were listening, the Tk system invokes the code that you had bound to that 
event. Frequently this code is a subroutine. 

 

 
 

 
Having your own code invoked from somewhere else like this is termed a callback. The flow of control passes out of your own 
code until some particular event brings it back into your code. You handle the event and then control passes back to Tk again. 

 
 
 

 
Thus, after initializing all your applications, you call the Tk MainLoop function. This function handles all the events for your 
program, makes necessary screen updates, and invokes callbacks as appropriate.  

First Steps   
 
 For a first program, I’ ll show you how to pop up a simple window on the screen:   
 
 #!/usr/bin/perl -w   
       
 use Tk;   
       
 my $window = new MainWindow;   
 $window->title(‘Hi!’ );   
 $window->Label(-text => “Hello from Perl/Tk!” )->pack;   
 $window->Button(-text => “Exit” ,   
                 -command => \&exitbutton)->pack;   
 MainLoop;   
       
 sub exitbutton {    
   exit(0);   
 }    
 

  

Note 

 

To use this code, you will need the Perl::Tk library. Many distributions may include it on the CD or network site. 
If yours does not, you may find it at http://www.perl.com/CPAN-local/modules/by-module/Tk/. As of the date this 
text is written, the latest version there is named Tk800.015.tar.gz. Installation instructions accompany the 
distribution in the README file. 

 

 
 

 

Going over the code, you can see that the script begins as any other Perl script does, with a call to the Perl interpreter. After that, 
the Tk routines are brought in by the use command. Next, the program creates a new top-level main window for the application. 
The title of this window is set and appears in the window manager. Then a Label widget is created. This widget gets placed in the 
main window because of how it is called: $window->Label. The text for the label is set using the normal syntax for Perl hashes. 
Finally, the label is packed. This means that it is actually set to appear on-screen by calling the Tk packer to fix its position. Unless 
you pack something with Tk, it won’ t actually appear. 

 

 
 

 
After the label, a button is created. This time, it has specific text, just like the label. However, it also involves a callback. Note that 
you can simply pass a reference to a subroutine for the callback command. When the user clicks the Exit button, that subroutine 
will be called, which happens to cause the program to terminate. 

 

 
 

 
Figure 24-1 shows how this program looks on-screen. Note that your screen may look different if you are using a different window 
manager (the below screenshot was made with Afterstep) or have different color preferences. 
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 Figure 24-1:  Perl/Tk Hello World  
    
 

 
You can also create multiple top-level windows on the screen. Here’s a modification to the program earlier in this chapter that 
does just that: 

 
 
 
 #!/usr/bin/perl -w   
       
 use Tk;   
 use strict;   
       
 my $window = new MainWindow();   
 $window->title(‘Hi!’ );   
 $window->Label(-text => “Hello from Perl/Tk!” )->pack;   
 $window->Button(-text => “Exit” ,   
                 -command => \&exitsub)->pack;   
 MainLoop;   
       
 sub exitsub {    
   my $w = $window->Toplevel();   
   $w->title(‘Goodbye’);   
   $w->Label(-text => ‘You are now leaving the demonstration program.’ )->pack;   
   $w->Button(-text => “OK”, -command => sub {  $w->destroy;   
                                               $window->destroy; } )->pack;   
 }    
 

 
This time, the first part of the program looks quite similar to the other program. However, notice the difference in the subroutine 
called when someone clicks the button. 

 
 
 

 

This time, that subroutine creates a new top-level window. Thus, there will be two windows on-screen from this program when the 
Exit button is clicked. Some text is inserted by using a label, and a button is created. Notice that the callback for this button is not a 
call to a standard subroutine. Rather, it is a reference to an anonymous subroutine created in place! This anonymous subroutine 
destroys both windows. When all the windows are destroyed, the MainLoop returns, and the program exits. You don’ t have to 
explicitly call exit(0) in this case because the MainLoop automatically terminates when all the windows have been destroyed.  

Object Attr ibutes   
 

 
Each object in your program has certain attributes, including color, the events that it is listening for, font information, and even the 
text or information that it is displaying. Listing 24-1 shows a program that enables you to manipulate those attributes.  

 
 
 
  Note  Listing 24-1 is available online.   
 
 Listing 24-1: Sample program: a color  picker    
 
 #!/usr/bin/perl -w   
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 use Tk;   
       
 # Create a hash to hold information about the three different color areas.   
       
 my %areas = (‘ red’  => ‘ ’ , ‘green’  => ‘ ’ , ‘blue’  => ‘ ’ );   
       
 # Create the main window.   
       
 my $window = new MainWindow();   
       
 $window->title(‘Color Picker’ );     # Give it a title.   
       
 # Create the top label text.   
       
 $window->Label(-text => “You may select your colors here.” )   
        ->pack(-side => ‘ top’);   
       
 # Create each area, pack it, and store it into the hash.   
       
 foreach my $name (‘ red’ , ‘green’ , ‘blue’) {    
   $areas->{ $name}  = ColorArea($name, $window->Frame);   
   $areas->{ $name} ->{ frame} ->pack(-fill => ‘x’ );   
 }    
       
 # Create the label for the bottom of the window.   
       
 my $colorlabel =   
   $window->Label(-text => ‘ foo’)->pack(-side => ‘ top’ , -fill => ‘both’ );   
       
 # And update it.   
       
 UpdateColorLabel();   
       
 # Process events.   
       
 MainLoop;   
       
 # This is a subroutine to create an area in the window for each   
 # particular color.  Its arguments are a color name and a frame.   
 # The subroutine will create all its widgets inside that frame,   
 # and return a reference to a hash with information about the   
 # color.   
       
 sub ColorArea {    
   my ($name, $frame) = @_;   
       
   # Initialize the hash with some useful information.   
   my $retval = { ‘ frame’  => $frame, ‘value’  => 128, name => $name} ;   
       
   # Create a label with the color name.   
   $frame->Label(-text => $name)->pack(-side => ‘ left’ );   
       
   # Create a horizontal scroll bar.  When the bar is moved, call   
   # the scrollit subroutine.   
   my $s = $frame->Scrollbar(-orient => ‘horiz’ ,   
                             -command => sub {  scrollit($retval, @_) } )   
     ->pack(-side => ‘ left’ , -fill => ‘x’ , -expand => 1);   
       
   # Create an entry box.  It displays the variable, and will   
   # automatically update it when modified.   
   $retval->{ entry}  = $frame->Entry(-width => 3,   
                                    -textvariable => \$retval->{ value} )   
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     ->pack(-side => ‘ right’ );   
       
   # When the Return key is pressed, update everything based on the   
   # keypress.   
   $retval->{ entry} ->bind(‘<Return>’ , sub {  setit($retval) }  );   
       
   # Save off the scrollbar into the hash.   
   $retval->{ scrollbar}  = $s;   
       
   # Update things now.   
   setit($retval);   
       
   return $retval;   
 }    
       
 # This subroutine is used to handle a scroll request.   
       
 sub scrollit {    
   my ($hash, $cmd, $arg, $arg2) = @_;   
   my $var = \$hash->{ value} ;   
    
   if ($cmd eq ‘moveto’ ) {       # Move to a specific location.   
     $$var = $arg * 255;   
   }  elsif ($cmd eq ‘scroll’  && $arg2 eq ‘units’ ) {    
     $$var += $arg;             # User clicked on arrow, move by 1.   
   }  elsif ($cmd eq ‘scroll’  && $arg2 eq ‘pages’) {    
     $$var += 10 * $arg;        # User clicked on bar area, move by 10.   
   }    
   setit($hash);   
 }    
       
 # Set scrollbars and everything as appropriate.  Takes a hash as an   
 # argument, processes its value, and sets things up.   
       
 sub setit {    
   my $hash = shift @_;   
   my $value = \$hash->{ value} ;   
   # Do some sanity checks.  Strip off a fractional part, make sure   
   # between 0 and 255.   
       
   $$value = int $$value;   
   $$value = 255 if ($$value > 255);   
   $$value = 0 if ($$value < 0);   
       
   # Update the scroll bar.  Note the scrollbar needs its values in   
   # fractions.   
       
   $hash->{ scrollbar} ->set($$value / 255, $$value / 255);   
   UpdateColorLabel();   
 }    
       
 # Update the color label at the bottom of the screen.  Show the color   
 # string, suitable for use in HTML and X, and set the background   
 # to that color.   
       
 sub UpdateColorLabel {    
   return unless ($areas->{ red}  &&   
                  $areas->{ green}  &&   
                  $areas->{ blue} );   
       
   my $colorstring = sprintf(‘#%02x%02x%02x’ ,   
                             $areas->{ red} ->{ value} ,   
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                             $areas->{ green} ->{ value} ,   
                             $areas->{ blue} ->{ value} );   
   $colorlabel->configure(-background => $colorstring,   
                          -text => $colorstring);   
 }    
 

 

Before analyzing this code, please take a moment to run it and see what it does. You’ ll get a screen containing three scroll bars, 
three text entry boxes, and two labels. The top label has some information, and the bottom label changes as you move the scroll 
bars. You can also type a number between 0 and 255 into the text entry boxes, and after pressing Enter, the appropriate boxes on 
the screen will update (see Figure 24-2). 

 

 
 

 

 

 

 
 
 Figure 24-2:  First color selection program  
    
 

 
Now let’s go over the code and see how it accomplishes this. The program starts by creating a window and giving it a title, as 
usual. It proceeds to create a label and pack it. It then executes a loop that creates entries in the areas hash for each of the three 
colors. Finally, it creates a label for the bottom of the window and updates it. 

 

 
 

 

That is all of the main program. The subroutines, though, hold many of the secrets to this program. First, there is the ColorArea 
subroutine, which creates the label, scrollbar, and text entry box for each color. It begins by initializing a hash and inserting a 
label. It then creates a scroll bar, oriented horizontally. When the user interacts with this scroll bar, the scrollit subroutine is called. 
The scroll bar is packed, set to expand to fill the available area. 

 

 
 

 
Then an entry box is created. Its width attribute is set to three characters. It operates upon the variable stored in $retval->{ value} , 
to which it takes a reference. Whenever that value is modified, the entry box is automatically updated, and vice-versa. 

 
 
 

 
After creation of the entry box, a binding for it is created. When the user presses Enter while the focus is in the entry box, the setit 
subroutine will be called. This will then update the scroll bars and color label. 

 
 
 
 Finally, the hash is touched up and setit is called to make sure that the area is properly displayed.   
 

 

The scrollit subroutine is called from Tk whenever the scroll bar moves. It takes a command and one or two arguments. If the 
command is moveto, the argument is a fraction indicating where along the bar the item should be moved to. If the command is 
scroll, the item is adjusted by either 1 or 10 units, depending upon how the user clicked the bar. Finally, setit is called to ensure 
everything is up to date. 

 

 
 

 
The setit subroutine does many important things. First, it ensures that the value being used is valid. Then, it calls the scrollbar’s set 
method to update the position. It finishes by calling UpdateColorLabel to set up the label area at the bottom of the window. 

 
 
 

 

UpdateColorLabel begins by ensuring that all three colors have been set up. Because it could be called before they are all ready, it 
should not do anything in those cases. If they are all set up, it generates a string. Then, it calls configure on the label to modify its 
attributes. These modifications do take effect immediately, so the color of the label, and the content of its text, are changed right 
away. 

 

 
 
 Each widget in Tk has many different attributes that can be set, either at creation time or later by using the configure call. The  
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manpages for the widget, such as Tk::Label contain details. Also take a look at the Tk::options manpage.  
 

 
You’ ll note that the program has a few flaws; for instance, the color items don’ t line up nicely and there is no Exit button. These will 
be fixed as you go along in this chapter.  

Special Objects   
 

 
Besides those that you have already dealt with, there are a number of additional objects that you might want to work with. I’ ll 
cover some of them here, and I’ ll modify the code for the existing program to use them. 

 
 
 
 Frames   
 

 

A frame is an object that is simply designed to hold other objects. Its main purpose is to organize the packing of certain objects 
into subgroups, but it can also be used to visually set off one thing from the next. The example program used one frame for each 
color group. This allows the items inside the frame to be packed, and then the collection of items to be packed as one within the 
larger window. This behavior can simplify packing and eliminate some needs to use other packers. 

 

 
 
 Menus   
 

 
Almost every GUI program will have a menu. Perl/Tk provides you with an extremely powerful menu interface. You can create 
menus just about anywhere, not just along the top bar as is common. Your menus can invoke commands, provide options, and 
include submenus. 

 

 
 
 Listing 24-2 shows a version of the existing software, with an addition of a menu bar and a few features to support it.   
 
  Note  Listing 24-2 is available online.   
 
 Listing 24-2: Example with a menu bar    
 
 #!/usr/bin/perl -w   
       
 use Tk;   
       
 # Create a hash to hold information about the three different color areas.   
       
 my %areas = (‘ red’  => ‘ ’ , ‘green’  => ‘ ’ , ‘blue’  => ‘ ’ );   
       
 my $dtextfg = ‘#000000’ ;   
       
 # Create the main window.   
       
 my $window = new MainWindow();   
       
 $window->title(‘Color Picker’ );    # Give it a title.   
       
 # Call the subroutine to create the menus.   
       
 CreateMenus($window);   
       
 # Create the top label text.   
       
 $window->Label(-text => “You may select your colors here.” )   
        ->pack(-side => ‘ top’);   
       
 # Create each area, pack it, and store it into the hash.   
       
 foreach my $name (‘ red’ , ‘green’ , ‘blue’) {    
   $areas->{ $name}  = ColorArea($name, $window->Frame);   
   $areas->{ $name} ->{ frame} ->pack(-fill => ‘x’ );   
 }    
       
 # Create the label for the bottom of the window.   
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 my $colorlabel =   
   $window->Label(-text => ‘ foo’)->pack(-side => ‘ top’ , -fill => ‘both’ );   
       
 # And update it.   
       
 UpdateColorLabel();   
 # Process events.   
       
 MainLoop;   
       
 # This is a subroutine to create an area in the window for each   
 # particular color.  Its arguments are a color name and a frame.   
 # The subroutine will create all its widgets inside that frame,   
 # and return a reference to a hash with information about the   
 # color.   
       
 sub ColorArea {    
   my ($name, $frame) = @_;   
       
   # Initialize the hash with some useful information.   
   my $retval = { ‘ frame’  => $frame, ‘value’  => 128, name => $name} ;   
       
   # Create a label with the color name.   
   $frame->Label(-text => $name)->pack(-side => ‘ left’ );   
       
   # Create a horizontal scroll bar.  When the bar is moved, call   
   # the scrollit subroutine.   
   my $s = $frame->Scrollbar(-orient => ‘horiz’ ,   
                             -command => sub {  scrollit($retval, @_) } )   
     ->pack(-side => ‘ left’ , -fill => ‘x’ , -expand => 1);   
       
   # Create an entry box.  It displays the variable, and will   
   # automatically update it when modified.   
   $retval->{ entry}  = $frame->Entry(-width => 3,   
                                    -textvariable => \$retval->{ value} )   
     ->pack(-side => ‘ right’ );   
       
   # When the Return key is pressed, update everything based on the   
   # keypress.   
   $retval->{ entry} ->bind(‘<Return>’ , sub {  setit($retval) }  );   
       
   # Save off the scrollbar into the hash.   
   $retval->{ scrollbar}  = $s;   
       
   # Update things now.   
   setit($retval);   
       
   return $retval;   
 }    
       
 # This subroutine is used to handle a scroll request.   
       
 sub scrollit {    
   my ($hash, $cmd, $arg, $arg2) = @_;   
   my $var = \$hash->{ value} ;   
       
   if ($cmd eq ‘moveto’ ) {       # Move to a specific location.   
     $$var = $arg * 255;   
   }  elsif ($cmd eq ‘scroll’  && $arg2 eq ‘units’ ) {    
     $$var += $arg;             # User clicked on arrow, move by 1.   
   }  elsif ($cmd eq ‘scroll’  && $arg2 eq ‘pages’) {    
     $$var += 10 * $arg;        # User clicked on bar area, move by 10.   
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   }    
   setit($hash);   
 }    
       
 # Set scrollbars and everything as appropriate.  Takes a hash as an   
 # argument, processes its value, and sets things up.   
       
 sub setit {    
   my $hash = shift @_;   
   my $value = \$hash->{ value} ;   
       
   # Do some sanity checks.  Strip off a fractional part, make sure   
   # between 0 and 255.   
       
   $$value = int $$value;   
   $$value = 255 if ($$value > 255);   
   $$value = 0 if ($$value < 0);   
       
   # Update the scroll bar.  Note the scrollbar needs its values in   
   # fractions.   
       
   $hash->{ scrollbar} ->set($$value / 255, $$value / 255);   
   UpdateColorLabel();   
 }    
       
 # Update the color label at the bottom of the screen.  Show the color   
 # string, suitable for use in HTML and X, and set the background   
 # to that color.   
       
 sub UpdateColorLabel {    
   return unless ($areas->{ red}  &&   
                  $areas->{ green}  &&   
                  $areas->{ blue} );   
       
   my $colorstring = sprintf(‘#%02x%02x%02x’ ,   
                             $areas->{ red} ->{ value} ,   
                             $areas->{ green} ->{ value} ,   
                             $areas->{ blue} ->{ value} );   
   my $fg = $dtextfg;   
       
   if ($fg eq ‘ inverse’) {    
     $fg = sprintf(‘#%02x%02x%02x’ ,   
                   $areas->{ red} ->{ value}  ^ 0xFF,   
                   $areas->{ green} ->{ value}  ^ 0xFF,   
                   $areas->{ blue} ->{ value}  ^ 0xFF);   
   }    
   $colorlabel->configure(-background => $colorstring,   
                          -text => $colorstring,   
                          -foreground => $fg);   
 }    
    
 sub CreateMenus {    
   my $w = shift @_;   
       
   my $f = $w->Frame(-relief => ‘groove’ ,   
                     -borderwidth => 2)   
             ->pack(-expand => 0, -fill => ‘both’ );   
       
   ##################################################   
   # Program menu   
    
   my $m = $f->Menubutton(text => ‘Program’,   
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                          -underline => 0)   
     ->pack(side => ‘ left’ , padx => 2);   
    
   $m->command(-label => ‘Exit’ ,   
               -underline => 1,   
               -command => sub {  $w->destroy}    
               );   
       
   ##################################################   
   # Options menu   
       
   $m = $f->Menubutton(text => ‘Options’ , -underline => 0)   
          ->pack(side => ‘ left’ , -padx => 2);   
       
   my $m2 = $m->cascade(-label => ‘Demo Text Foreground’ , -underline => 1);   
   $m2->radiobutton(-label => “Black” ,   
                    -variable => \$dtextfg,   
                    -value => ‘#000000’ ,   
                    -command => \&UpdateColorLabel);   
   $m2->radiobutton(-label => “White” ,   
                    -variable => \$dtextfg,   
                    -value => ‘#FFFFFF’,   
                    -command => \&UpdateColorLabel);   
   $m2->radiobutton(-label => “ Inverse” ,   
                    -variable => \$dtextfg,   
                    -value => ‘ inverse’ ,   
                    -command => \&UpdateColorLabel);   
 }    
 

 

One problem with the previous version of the code is that the text in the label box would become hard to read if the color being 
showed there was dark. This is because the text was black. However, one would have the same problem if the white color were 
selected; bright colors would have a problem. So, a menu is provided that offers a radio button selection of black, white, or inverse 
color text. Just to demonstrate cascading menus, and perhaps to leave some room for future expansion, this is a cascading menu 
beneath the Options menu. 

 

 
 

 

To create the menu bar, you must first create a frame. This frame is set to occupy all available horizontal space such that it spans 
the entire top of the application. Note that you could just as easily make the menu vertical along the left or right side of the box, at 
the bottom of the box, or wherever you prefer. You can also make the Menubutton widgets as pop-ups from anywhere in your 
application. You are not required to use a set menu bar or location as with some other GUI environments. However, unless you 
have a special reason to deviate from the common approach, it’s good to give your users what they expect. The so-called 
“principle of least surprise”  often works in your favor with GUIs. 

 

 
 

 
Note that the frame is given two attributes. The first sets the border (relief) to a groove, that visually sets the menu bar apart from 
the rest of the window. The second defines the width of this border. 

 
 
 

 
Next, the menu buttons are defined with Menubutton widgets. These are the entry points into a menu hierarchy. Each top-level 
item in the menu bar is a menu button. The first is the Program menu. It contains a single command entry, which exits the 
program. 

 

 
 

 
The second is the Options menu. Its single entry is a cascade, meaning a nested menu. Then, into the cascaded menu, the three 
radio buttons are added. Each specifies the text to show on-screen, the variable to modify, the value to store in that variable. 
Furthermore, they specify a command to run when that variable’s contents are modified. 

 

 
 

 
When you run the program, note the dashed lines in the menus. Click on one of those lines and a menu tears itself off, forming a 
separate window. Figures 24-3 and 24-4 illustrate this modified program. Figure 24-3 shows the start of the program. Figure 24-4 
shows a torn-off menu. 
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 Figure 24-3:  Color selector with menu bar  

    
 

 

 

 

 
 
 Figure 24-4:  Torn-off menu bar for color selector  

    
 
 Text and canvas   
 

 
These are two widgets that enable you to place other things inside. The text widget, for instance, is designed for presentation of 
text and enables you to place various items of text information, plus special capabilities like hotspots and other embedded widgets. 
It is frequently used to make things like a dialog box scrollable. 

 

 
 
 A canvas is similar in concept to a text widget but is designed to work with graphical objects such as lines, painting, and filling.  
Geometry Managers   
 

 
You may have noticed that some things in our sample program weren’ t exactly well lined up. For instance, it would be nicer to 
have all the scrollbars lined up and the same size. What we really need is a different way of arranging items in the window. The 
standard packer works fine for many things, but here, the grid geometry manager may work better. 

 

 
 

 
Listing 24-3 shows is a version of the program that uses the grid geometry manager to place the items in the color area. Notice that 
the main window still uses the packer, but a frame within it uses the grid. You are free to use the frame to achieve such separation, 
which is indeed one of its most powerful uses. 

 

 
 
  Note  Listing 24-3 is available online.   
 
 Listing 24-3: Sample with gr id manager    
 
 #!/usr/bin/perl -w   
       
 use Tk;   
       
 # Create a hash to hold information about the three different color areas.   
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 my %areas = (‘ red’  => ‘ ’ , ‘green’  => ‘ ’ , ‘blue’  => ‘ ’ );   
       
 my $dtextfg = ‘#000000’ ;   
       
 # Create the main window.   
       
 my $window = new MainWindow();   
       
 $window->title(‘Color Picker’ );       # Give it a title.   
       
 # Call the subroutine to create the menus.   
 CreateMenus($window);   
       
 # Create the top label text.   
       
 $window->Label(-text => “You may select your colors here.” )   
        ->pack(-side => ‘ top’);   
       
 # Create each area, pack it, and store it into the hash.   
       
 my $colorframe = $window->Frame->pack(-fill => ‘x’ );   
 my $row = 0;   
       
 foreach my $name (‘ red’ , ‘green’ , ‘blue’) {    
   $areas->{ $name}  = ColorArea($name, $colorframe, $row++);   
 }    
       
 # Create the label for the bottom of the window.   
       
 my $colorlabel =   
   $window->Label(-text => ‘ foo’)->pack(-side => ‘ top’ , -fill => ‘both’ );   
       
 # And update it.   
       
 UpdateColorLabel();   
       
 # Process events.   
       
 MainLoop;   
       
 # This is a subroutine to create an area in the window for each   
 # particular color.  Its arguments are a color name and a frame.   
 # The subroutine will create all its widgets inside that frame,   
 # and return a reference to a hash with information about the   
 # color.   
       
 sub ColorArea {    
   my ($name, $frame, $row) = @_;   
   my $col = 0;   
       
   # Initialize the hash with some useful information.   
   my $retval = { ‘ frame’  => $frame, ‘value’  => 128, name => $name} ;   
       
   $frame->gridColumnconfigure(1, -minsize => 300);   
       
   # Create a label with the color name.   
   $frame->Label(-text => $name)->grid(-row => $row,   
                                       -col => $col++,   
                                       -sticky => ‘nesw’);   
       
   # Create a horizontal scroll bar.  When the bar is moved, call   
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   # the scrollit subroutine.   
   my $s = $frame->Scrollbar(-orient => ‘horiz’ ,   
                             -command => sub {  scrollit($retval, @_) } )   
     ->grid(-row => $row, -col => $col++, -sticky => ‘nesw’);   
       
   # Create an entry box.  It displays the variable, and will   
   # automatically update it when modified.   
   $retval->{ entry}  = $frame->Entry(-width => 3,   
                                    -textvariable => \$retval->{ value} )   
     ->grid(-row => $row, -col => $col++, -sticky => ‘nesw’);   
       
   # When the Return key is pressed, update everything based on the   
   # keypress.   
   $retval->{ entry} ->bind(‘<Return>’ , sub {  setit($retval) }  );   
       
   # Save off the scrollbar into the hash.   
   $retval->{ scrollbar}  = $s;   
       
   # Update things now.   
   setit($retval);   
       
   return $retval;   
 }    
       
 # This subroutine is used to handle a scroll request.   
       
 sub scrollit {    
   my ($hash, $cmd, $arg, $arg2) = @_;   
   my $var = \$hash->{ value} ;   
    
   if ($cmd eq ‘moveto’ ) {            # Move to a specific location.   
     $$var = $arg * 255;   
   }  elsif ($cmd eq ‘scroll’  && $arg2 eq ‘units’ ) {    
     $$var += $arg;                  # User clicked on arrow, move by 1.   
   }  elsif ($cmd eq ‘scroll’  && $arg2 eq ‘pages’) {    
     $$var += 10 * $arg;             # User clicked on bar area, move by 10.   
   }    
   setit($hash);   
 }    
       
 # Set scrollbars and everything as appropriate.  Takes a hash as an   
 # argument, processes its value, and sets things up.   
       
 sub setit {    
   my $hash = shift @_;   
   my $value = \$hash->{ value} ;   
       
   # Do some sanity checks.  Strip off a fractional part, make sure   
   # between 0 and 255.   
   $$value = int $$value;   
   $$value = 255 if ($$value > 255);   
   $$value = 0 if ($$value < 0);   
       
   # Update the scroll bar.  Note the scrollbar needs its values in   
   # fractions.   
       
   $hash->{ scrollbar} ->set($$value / 255, $$value / 255);   
   UpdateColorLabel();   
 }    
       
 # Update the color label at the bottom of the screen.  Show the color   
 # string, suitable for use in HTML and X, and set the background   
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 # to that color.   
       
 sub UpdateColorLabel {    
   return unless ($areas->{ red}  &&   
                  $areas->{ green}  &&   
                  $areas->{ blue} );   
       
   my $colorstring = sprintf(‘#%02x%02x%02x’ ,   
                             $areas->{ red} ->{ value} ,   
                             $areas->{ green} ->{ value} ,   
                             $areas->{ blue} ->{ value} );   
   my $fg = $dtextfg;   
       
   if ($fg eq ‘ inverse’) {    
     $fg = sprintf(‘#%02x%02x%02x’ ,   
                   $areas->{ red} ->{ value}  ^ 0xFF,   
                   $areas->{ green} ->{ value}  ^ 0xFF,   
                   $areas->{ blue} ->{ value}  ^ 0xFF);   
   }    
       
   $colorlabel->configure(-background => $colorstring,   
                          -text => $colorstring,   
                          -foreground => $fg);   
 }    
    
 sub CreateMenus {    
   my $w = shift @_;   
       
   my $f = $w->Frame(-relief => ‘groove’ ,   
                     -borderwidth => 2)   
             ->pack(-expand => 0, -fill => ‘both’ );   
       
   ##################################################   
   # Program menu   
       
   my $m = $f->Menubutton(text => ‘Program’,   
                          -underline => 0)   
     ->pack(side => ‘ left’ , padx => 2);   
    
   $m->command(-label => ‘Exit’ ,   
               -underline => 1,   
               -command => sub {  $w->destroy}    
               );   
       
   ##################################################   
   # Options menu   
       
   $m = $f->Menubutton(text => ‘Options’ , -underline => 0)   
          ->pack(side => ‘ left’ , -padx => 2);   
       
   my $m2 = $m->cascade(-label => ‘Demo Text Foreground’ , -underline => 1);   
   $m2->radiobutton(-label => “Black” ,   
                   -variable => \$dtextfg,   
                   -value => ‘#000000’ ,   
                   -command => \&UpdateColorLabel);   
   $m2->radiobutton(-label => “White” ,   
                    -variable => \$dtextfg,   
                    -value => ‘#FFFFFF’,   
                    -command => \&UpdateColorLabel);   
   $m2->radiobutton(-label => “ Inverse” ,   
                    -variable => \$dtextfg,   
                    -value => ‘ inverse’ ,   
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                    -command => \&UpdateColorLabel);   
 }    
 

 
When you run this code, you’ ll notice that things are aligned much better. In fact, the program finally starts to look nice and sharp. 
Figure 24-5 shows the program in action after the change to the grid geometry manager. 

 
 
 

 

 

 

 
 
 Figure 24-5:  Sample with grid manager  
Special Concerns   
 

 

Perl/Tk programs do have some unique concerns that do not necessarily affect non-GUI programs. One of them is that calling 
fork() from inside such a program can be somewhat tricky. After you fork, you need to be sure that only one process will continue 
on with the GUI interface. Both cannot, although it is possible for one to open a separate X connection. In general, if at all 
possible, you should fork before doing any interaction with Tk. 

 

 
 

 

Another concern lies with updating the interface. The only time that Tk can read input from the user or can update the on-screen 
elements is when it is in MainLoop. This has not posed any problems thus far. However, if you have a task that takes a long time, 
which can generally be defined as more than one tenth of a second, you need to ensure that this does not block Tk updates from 
taking place. 

 

 
 

 
One way to do this is to explicitly call Tk’s update subroutine, which is documented in the Tk::Widget(3pm) manpage. If you call 
this in the middle of your lengthy computation, you will allow all outstanding items to be processed. 

 
 
 

 
Another option is to fork before initializing any Tk items. You can then set up a pipe or some other communication device between a 
process that does computation and one that handles the interface. This will probably be the best-performing option but will also be 
more complex to implement.  

SpecTcl/SpecPer l   
 

 
So far, interfaces to programs have been designed manually. There is also a program called SpecTcl that will enable you to lay out 
your interfaces from a graphical interface. This program does not necessarily ship with distributions; you can download it for free 
at http://www.scriptics.com/products/spectcl/. 

 

 
 

 
When you invoke SpecTcl, you are first presented with a box asking about the language. Pick Perl. Then you get an empty screen 
as shown in Figure 24-6. 
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 Figure 24-6:  SpecTcl designer  

    
 

 
After this, you simply drag items onto the grid. You can add your own columns or work with the ones there already. By simply 
dragging a few things onto the screen, you can create something that looks like Figure 24-7. 

 
 
 

 

 

 

 
 
 Figure 24-7:  SpecTcl working on a program  

    
 

 
Now, to generate the Perl code, select Build from the Commands menu. SpecTcl may ask you to save your interface; go ahead and 
do so. Now examine the Perl code. The result looks similar to Listing 24-4. 

 
 
 
 Listing 24-4: Sample SpecTcl output   
 
 # interface generated by SpecTcl (Perl enabled) version 1.1   
 # from /home/jgoerzen/t/SpecTcl1.1/bin/testinterface.ui   
 # For use with Tk400.202, using the gridbag geometry manager   
       
 sub testinterface_ui {    
      my($root) = @_;   
       
      # widget creation   
       
      my($label_1) = $root->Label (   
           -text => ‘Color:’ ,   
         );   
      my($entry_1) = $root->Entry (   
      );   
      my($label_2) = $root->Label (   
           -text => ‘Font:’ ,   
      );   
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      my($entry_2) = $root->Entry (   
      );   
       
      # Geometry management   
       
      $label_1->grid(   
          -in => $root,   
          -column => ‘1’ ,   
          -row => ‘1’    
      );   
      $entry_1->grid(   
          -in => $root,   
          -column => ‘2’ ,   
          -row => ‘1’    
      );   
      $label_2->grid(   
          -in => $root,   
          -column => ‘1’ ,   
          -row => ‘2’    
      );   
      $entry_2->grid(    
          -in => $root,   
          -column => ‘2’ ,   
          -row => ‘2’    
      );   
       
      # Resize behavior management   
       
      # container $root (rows)   
      $root->gridRowconfigure(1, -weight  => 0, -minsize  => 30);   
      $root->gridRowconfigure(2, -weight  => 0, -minsize  => 30);   
       
      # container $root (columns)   
      $root->gridColumnconfigure(1, -weight => 0, -minsize => 30);   
      $root->gridColumnconfigure(2, -weight => 0, -minsize => 30);   
       
      # additional interface code   
      # end additional interface code   
       
 }    
 

 
Notice that this code, although slightly more verbose and a bit less readable than the code generated before, is nonetheless quite 
readable and useful. You can build a good interface quickly using it.  

Summary   
 
 In this chapter, you learned about writing graphical programs with Perl/Tk. Specifically, the following material was covered:   
 
  •  Graphical user interfaces (GUIs) can be great tools to minimize learning curves and present things in new ways.   
 
  •  However, GUIs are more complex to write and more resource-intensive to run.   
 
  •  X has several layers for graphical programs, which may span multiple machines.   
 

  
• 

 
Perl/Tk uses event-based programs, which deliver events to you instead of requiring you to specifically check for individual 
events. 

 
 
 
  •  Objects in Perl/Tk are arranged hierarchically and have individual attributes.   
 
  •  Frames can be used to organize some widgets separately from others.   
 
  •  Several different geometry managers are available for your use.   
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  •  You can also use SpecTcl to create Perl/Tk dialog boxes and simple interfaces.  
Chapter  25: Building GUIs with Gnome   
 
 Overview   
 

 

One of the largest and most famous programming projects in recent years has been Gnome, the GNU Network Object Model 
Environment. Gnome is designed to create a complete environment: both a programming environment for developers and a 
consistent application environment for users. By providing a powerful, stable, and versatile environment, the idea is that 
programmers can develop applications quicker (because the system provides more functionality in its libraries) and users can have 
a less steep learning curve because all the Gnome applications will have similar interfaces. In addition to these features, Gnome 
supports drag-and-drop, inter-application communication, object embedding, session management, and many more features. 

 

 
 

 
All of the Gnome features are based entirely on Free Software, as is Perl/Tk, which means that you can use it in your programs 
without having to worry about paying any license fees. For more details on Gnome, visit http://www.gnome.org. 

 
 
 

 
Whereas Gnome has bindings for several different languages, including Perl, Gnome’s primary language—and the one in which it is 
most mature—is C. Therefore, I’ ll use C as the programming language for Gnome in this chapter.  

Gnome Components   
 

 
Gnome is a framework for providing common services for applications relating to a GUI. These may not necessarily be strictly 
GUI items; for instance, there are configuration file parsers, command-line argument handlers, HTML parsers, and so on. 

 
 
 

 
You’ ll find that many of the lower-level GUI interactions are done by using GTK, which is the toolkit library upon which Gnome 
is built. The purpose of GTK (the Gimp Toolkit) is roughly analogous to that of Tk in the Perl/Tk system discussed in Chapter 24: 
it creates windows, handles events, and so on. 

 

 
 

 
GTK uses a library called the GDK (for the Drawing Kit) to handle the interactions with X. All these libraries, in turn, use glib for 
some basic features for portability. 

 
 
 

 
The GTK/GDK libraries are based upon lower-level X libraries. To help you make sense of all of this, Gnome provides some scripts 
to help. Many Gnome applications elect to use GNU autoconf and automake; for details on those tools, see the info documentation 
for them on your system.  

First Steps   
 

 
Listing 25-1 shows a Gnome program that displays the same type of interface as the Tk program in Chapter 24, “GUIs with 
Perl/Tk.”  Because the build for Gnome applications can be tricky, I’ ve included the following Makefile that you can use to build 
the programs in this chapter: 

 

 
 
 CC=gcc   
 CFLAGS := -Wall $(shell gnome-config --cflags gnomeui)   
 LINK := $(CC) $(shell gnome-config --libs gnomeui)   
       
 all: $(PROGRAM)   
     @if [ “x$(PROGRAM)”  = “x”  ]; then \   
         echo “To compile, use make PROGRAM=name” ;\   
         echo “Where name is the executable; eg ch25-1”  ;\   
         /bin/false ;\   
     fi   
        
 $(PROGRAM): $(PROGRAM).o   
     $(LINK) -o $@ $<   
       
 $(PROGRAM).o: $(PROGRAM).c   
     $(CC) $(CFLAGS) -c -o $@ $<   
       
 clean:   
     -rm $(PROGRAM) $(PROGRAM).o   
 

 
To use the Makefile in the preceding example to compile your code, you use make PROGRAM=ch25-1 for instance, to compile 
ch25-1.c into the ch25-1 executable. 

 
 
 
  Note  Listing 25-1 is available online.   



 478 

 
 Listing 25-1: Simple Gnome example: ch25-1.c   
 
 #include <gnome.h>   
       
 void exitbutton(void);   
       
 int main(int argc, char *argv[]) {    
   GtkWidget *window, * frame, *pack, * label, *button;   
      
   gnome_init(“ch25-1” , “1.0” , argc, argv);   
       
   /*  Create the window. */   
   window = gnome_app_new(“ch25-1” , “Hi!” );   
   frame = gtk_frame_new(NULL);   
   gnome_app_set_contents(GNOME_APP(window), frame);   
       
   /*  Create the widget packer. * /   
       
   pack = gtk_packer_new();   
   gtk_container_add(GTK_CONTAINER(frame), pack);   
      
   /*  The main label. * /   
       
   label = gtk_label_new(“Hello from Gnome!” );   
   gtk_packer_add_defaults(GTK_PACKER(pack), label, GTK_SIDE_TOP,   
               GTK_ANCHOR_CENTER,   
               0);   
       
   /*  The button. */   
       
   button = gtk_button_new_with_label(“Exit” );   
   gtk_signal_connect(GTK_OBJECT(button), “clicked” ,   
                GTK_SIGNAL_FUNC(exitbutton), NULL);   
   gtk_packer_add_defaults(GTK_PACKER(pack), button, GTK_SIDE_TOP,   
               GTK_ANCHOR_CENTER, 0);   
       
   gtk_widget_show_all(window);   
    
   gtk_main();   
       
   return 0;   
 }    
       
 void exitbutton(void) {    
   gtk_main_quit();   
 }    
 

 
Here’s a look at how this application works. It’s essentially the same as the first Perl/Tk program but because of Gnome, it all 
looks a bit more complex. You begin by initializing the application; the arguments to gnome_init() include an application name, a 
version, and the argument count and argument list passed in to main(). 

 

 
 

 
Next, you create the main window (like MainWindow in Tk). You first call gnome_app_new(); again, the first parameter is the 
application name. The second parameter is the default window title. Inside the application, you need to create a contents frame, 
which the next two lines do. 

 

 
 

 
Now, use the widget packer. I select the packer packer, which is essentially a port of the default packer from Tk. A new packer is 
created, and it is added as a sub-widget of the frame. Next, a label widget is created, and packed. Notice the similarity in the 
arguments to the packer to those for the one in Tk. 

 

 
 

 
A button is created with an Exit label. After that, I’ ll install an event handler—confusingly named signal (which has nothing to do 
with Linux signals). This causes the Exit button function to be called when someone clicks that button, in a manner similar to the 
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command binding in Tk. The button is connected, the widgets are displayed, and the main event loop is invoked.  
 

 
Overall, the structure of this program is indeed quite similar to the Tk version, although Tk takes care of more of the details 
automatically (see Figure 25-1). 

 
 
 

 

 

 

 
 
 Figure 25-1:  The sample Gnome application is running in the center of the screen.  

    
 

 
As with X and Tk, Gnome apps have widgets that are in essence windows, although Gnome doesn’ t necessarily call them that. In 
the next section, I’ ll introduce a new top-level window. 

 
 
 

  
Note 

 
The examples in this chapter were written and tested with Gnome libraries version 1.0.54. Gnome can sometimes 
change rapidly; if your system does not have libraries of at least that version and you are experiencing trouble with any 
example, you probably need to update your Gnome system to a newer version.  

Drawing Windows   
 

 
In Perl/Tk, you saw how you can create new top-level windows with the widget library. You can extend this program two ways: 
first, so that you can create a new top-level window, and second, so that the program recognizes the window manager close event. 
Listing 25-2 shows the required code. 

 

 
 
  Note  Listing 25-2 is available online.   
 
 Listing 25-2: Recognizing a close event: ch25-2.c   
 
 #include <gnome.h>   
       
 void exitbutton(void);   
       
 int main(int argc, char *argv[]) {    
   GtkWidget *window, * frame, *pack, * label, *button;   
      
   gnome_init(“ch25-1” , “1.0” , argc, argv);   
       
   /*  Create the window. */   
   window = gnome_app_new(“ch25-2” , “Hi!” );   
   frame = gtk_frame_new(NULL);   
   gnome_app_set_contents(GNOME_APP(window), frame);   
       
   /*  Create the widget packer. * /   
       
   pack = gtk_packer_new();   
   gtk_container_add(GTK_CONTAINER(frame), pack);   
      
   /*  The main label. * /   
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   label = gtk_label_new(“Hello from Gnome!” );   
   gtk_packer_add_defaults(GTK_PACKER(pack), label, GTK_SIDE_TOP,   
                           GTK_ANCHOR_CENTER,   
                           0);   
   /*  The button. */   
       
   button = gtk_button_new_with_label(“Exit” );   
   gtk_signal_connect(GTK_OBJECT(button), “clicked” ,   
                      GTK_SIGNAL_FUNC(exitbutton), NULL);   
   gtk_packer_add_defaults(GTK_PACKER(pack), button, GTK_SIDE_TOP,   
                           GTK_ANCHOR_CENTER, 0);   
       
   gtk_signal_connect(GTK_OBJECT(window), “delete_event” ,   
                      GTK_SIGNAL_FUNC(exitbutton), NULL);   
       
   gtk_widget_show_all(window);   
    
   gtk_main();   
       
   return 0;   
 }    
         
 void exitbutton(void) {    
   static int displayed = 0;   
   GtkWidget *appwindow, * top, *button, *blabel, * frame;   
       
   if (displayed) return;    /*  Don’ t display twice. * /   
     displayed++;   
       
   appwindow = gnome_app_new(“ch25-2” , “Goodbye”);   
   frame = gtk_frame_new(NULL);   
   gnome_app_set_contents(GNOME_APP(appwindow), frame);   
   top = gtk_packer_new();   
   gtk_container_add(GTK_CONTAINER(frame), top);   
       
   /*  Now the label. */   
       
   gtk_packer_add_defaults(GTK_PACKER(top),   
               gtk_label_new(“You are now leaving the”    
                             “demonstration program.” ),   
               GTK_SIDE_TOP, GTK_ANCHOR_CENTER, 0);   
       
   /*  And the button.  Pack the label explicitly though. */   
       
   gtk_packer_add_defaults(GTK_PACKER(top),   
                           button = gtk_button_new(),   
                           GTK_SIDE_TOP, GTK_ANCHOR_CENTER, 0);   
       
   blabel = gtk_label_new(“OK”);   
   gtk_container_add(GTK_CONTAINER(button), blabel);   
       
   gtk_signal_connect(GTK_OBJECT(button), “clicked” ,   
                      GTK_SIGNAL_FUNC(gtk_main_quit), NULL);   
   gtk_signal_connect(GTK_OBJECT(appwindow), “delete_event” ,   
                      GTK_SIGNAL_FUNC(gtk_main_quit), NULL);   
       
   gtk_widget_show_all(appwindow);   
 }    
 

 
The changes made to the code in Listing 25-2 include the handling of the delete_event that occurs when someone clicks the Close 
button in the window manager for the application. In the exitbutton() function, you see a more concise method of packing some 
things; for instance, there is no separate variable for the main label, more analogous to the Perl/Tk version (see Figure 25-2). 
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 Figure 25-2:  You can see the two windows from ch25-2.c in this screenshot.  

    
 

 
I’ ll move on to a version that implements the color picker. Because GTK already comes with a color picker widget, that saves a lot 
of effort. In fact, its predefined color picker is quite a bit nicer than the one that was built from scratch in the sample Perl/Tk 
program. Listing 25-3 presents an example program that uses the GTK color selector. 

 

 
 
  Note  Listing 25-3 is available online.   
 
 Listing 25-3: Example with GTK color  selector , ch25-3.c   
 
 #include <gnome.h>   
       
 void exitbutton(void);   
       
 GnomeUIInfo FileMenu[] = {    
   GNOMEUIINFO_MENU_EXIT_ITEM(exitbutton, NULL),   
   GNOMEUIINFO_END   
 } ;   
       
 GnomeUIInfo MainMenu[] = {    
   GNOMEUIINFO_MENU_FILE_TREE(FileMenu),   
   GNOMEUIINFO_END   
 } ;   
       
       
 int main(int argc, char *argv[]) {    
   GtkWidget *window, * frame;   
      
   gnome_init(“ch25-3” , “1.0” , argc, argv);   
       
   /*  Create the window. */   
   window = gnome_app_new(“ch25-1” , “Hi!” );   
   gnome_app_create_menus_with_data(GNOME_APP(window), MainMenu, window);   
   frame = gtk_frame_new(NULL);   
   gnome_app_set_contents(GNOME_APP(window), frame);   
       
   gtk_container_add(GTK_CONTAINER(frame), gtk_color_selection_new());   
       
      
   gtk_widget_show_all(window);   
    
   gtk_main();   
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   return 0;   
 }    
         
 void exitbutton(void) {    
   static int displayed = 0;   
   GtkWidget *appwindow, * top, *button, *blabel, * frame;   
       
   if (displayed) return;    /*  Don’ t display twice. * /   
   displayed++;   
       
   appwindow = gnome_app_new(“ch25-3” , “Goodbye”);   
   frame = gtk_frame_new(NULL);   
   gnome_app_set_contents(GNOME_APP(appwindow), frame);   
   top = gtk_packer_new();   
   gtk_container_add(GTK_CONTAINER(frame), top);   
       
   /*  Now the label. */   
       
   gtk_packer_add_defaults(GTK_PACKER(top),   
                           gtk_label_new(“You are now leaving the”    
                                         “demonstration program.” ),   
                           GTK_SIDE_TOP, GTK_ANCHOR_CENTER, 0);   
       
   /*  And the button.  Pack the label explicitly though. */   
       
   gtk_packer_add_defaults(GTK_PACKER(top),   
                           button = gtk_button_new(),   
                           GTK_SIDE_TOP, GTK_ANCHOR_CENTER, 0);   
       
   blabel = gtk_label_new(“OK”);   
   gtk_container_add(GTK_CONTAINER(button), blabel);   
       
   gtk_signal_connect(GTK_OBJECT(button), “clicked” ,   
                      GTK_SIGNAL_FUNC(gtk_main_quit), NULL);   
   gtk_signal_connect(GTK_OBJECT(appwindow), “delete_event” ,   
                      GTK_SIGNAL_FUNC(gtk_main_quit), NULL);   
       
   gtk_widget_show_all(appwindow);   
 }    
 

 
This program uses the GtkColorSelect() widget as well as a menu with some generic menu entries that GTK provides for use here. 
Figure 25-3 shows this code in action, with a tearoff of the File menu.  

Miscellaneous Gnome Notes   
 

 

Gnome is a large and rapidly evolving system consisting of tens of thousands of lines of source code. Its documentation is 
currently rather sparse; with Gnome, one of the best things you can do is learn by example from any of the hundreds of existing 
Gnome applications. Because the source code is available for so many Linux programs, you can look at the sources for these 
programs or for Gnome itself to see how it works. 

 

 
 

 
The header files for Gnome and GTK also are useful for you to learn about Gnome’s functions and the structure of its macros. 
Another resource is the (current prerelease) Glade interface designer, which is used to help you design the GUI for your 
program—which happens to be the part that Gnome is primarily involved in. 

 

 
 

 
You can learn about Gnome and the current status of the various libraries, widgets, and code that are commonly used with it by 
looking at the Gnome homepage at http://www.gnome.org. 
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 Figure 25-3:  Here you can see the color selector as well as a torn-off menu.  
Summary   
 
 In this chapter, I introduced you to Gnome. Specifically, I discussed:   
 
  •  Gnome includes a widget set (GTK) and an object environment for your programs.   
 
  •  GTK and Tk have many similarities because both are primarily designed for X.   
 
  •  Because building Gnome programs is complex, programmers almost always use a Makefile or an autoconf system.   
 
  •  Gnome uses widget packers as does Tk; the examples in this chapter used the Packer geometry manager.   
 
  •  Gnome and GTK have many features ready for your use, such as color pickers and menu options.   
 

  
• 

 
Gnome’s documentation is sparse, but examining code and the information at the Gnome website is a good way to learn about 
the system.  

Par t VI I :  Putting I t All Together    
 
 Chapter  L iat   
 
  Chapter  26:  Archiving and Collaboration with CVS   
 
  Chapter  27:  Understanding Secur ity and Code   
 
  Chapter  28:  Optimizing Per formance   
 
  Glossary     
Chapter  26: Archiving and Collaboration with CVS   
 
 Overview   
 

 

You may sometimes find that there is a need to keep historical versions of your software around, or to coordinate development 
between multiple programmers. CVS (Concurrent Versions System) is designed to address both needs. In this chapter, you will learn 
the basics of CVS, how to configure CVS, daily usage of the software, managing tags and branches, using CVS on a network, and 
some special hints for CVS usage.  

Introducing CVS   
 

 

As software projects get larger, managing them can become more difficult. Teams of developers need to be coordinated, and each 
one might need to keep a personal copy of the files in a project for development work. Changes need to be synchronized so that 
one developer’s work doesn’ t overwrite another’s. When a release is imminent, the code may fork; some developers might be 
working on perfecting the release, and others on adding new features for the next release. However, eventually you might want to 
merge some changes from the release fork back into the development fork. 

 

 
 
 Another problem is with historical access. Sometimes, you might notice a bug that was introduced somewhere along the line, and  
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you may need to go back weeks, months, or even years to find pristine code without the bug. This can often be difficult, involving 
painstaking and time-consuming restore off of magnetic tape backups. Sometimes it may be even impossible.  

 

 

On top of all of this, add problems that can occur when developers work on their own machines and must somehow communicate 
changes over the network. Problems also can occur when users want to disconnect from the network for a time to work on code, 
and then commit changes when they return—for instance, to work on a laptop while on a trip. The changes may conflict with 
others, and nobody may ever know. 

 

 
 

 

Enter CVS, the Concurrent Versions System. CVS is designed to address all these problems. The basic idea around CVS is that 
whenever a developer makes changes to the source, these changes should be checked in to the CVS repository. This repository 
holds the master copy of the code, and deltas (or diffs) representing historic information back to when the file was first created. 
The repository can be on a networked computer somewhere; it doesn’ t have to be local. 

 

 
 

 
CVS enables you to keep your own development tree up-to-date with the repository. You do this by committing your changes to 
the repository and updating your own tree from the repository. If there is ever a conflict, CVS provides conflict resolution tools to 
help migrate changes in. 

 

 
 

 
CVS also supports branches, enabling the code to be forked. Moreover, it also has support to merge these branches back together 
at a later date, again with conflict resolution tools. It has support to enable you to fetch a source tree suitable for product release 
with a single command, and to enable you to check out as much or as little of the code as you want. 

 

 
 

 
With CVS, you can receive the current version of code, or any version committed in the entire history of the code. You can 
identify these versions on a file-by-file basis. You can retrieve diffs (a report summarizing the differences between two files) 
between any two versions of code, both on a file-by-file basis and on an aggregate entire-tree basis. In short, CVS is your friend! 

 

 
 

 

Even if you are not working in a large development team, CVS has benefits. Although the conflict resolution probably will not 
benefit you if you are programming by yourself, the history features certainly can. If you want to make some experimental changes 
to the code, make a branch. If the changes don’ t work out, you can simply forget about the branch and go back to the main code—
but the branch is still there for you to look at later to see exactly what went wrong. Or, if the changes work, you can merge the 
branch back into the main branch. 

 

 
 

 
CVS stores all of this data in a compact, yet efficient, manner. It does not keep an entire copy of each version of the file. Rather, it 
simply records the changes that occurred between each version. This enables CVS to compute, and give you, any arbitrary version 
of the file—or to easily compare any two versions. It also saves tremendously on disk space. 

 

 
 

 
To use CVS, you’ ll need a few pieces of software. First, you’ ll need RCS (Revision Control System), upon which CVS is based. 
Most distributions should come with this already; if yours does not, you can download it from ftp.gnu.org in the directory 
/pub/gnu; the filename will be something like rcs-5.7.tar.gz. 

 

 
 

 
After you get RCS, you’ ll need CVS. Again, most Linux distributions should ship with it. If yours does not, you may download it 
yourself at http://www.cyclic.com/. Both RCS and CVS are licensed under the GNU General Public License. 

 
 
 

 
If you intend to use the optional network transport, you may need some additional software. CVS can use rsh or its built-in server, 
cvs-pserver. However, something like ssh may be more secure, depending on your network and needs. This optional software is 
not required to get a basic CVS installation functional, but can be nice if you want to use CVS’s network features. 

 

 
 

 

The first thing that you have to do when you set up CVS is to establish a repository, which I’ ll cover in the next section. The 
repository holds the data from the CVS program itself, which consists of your files, their source code, and entire history. When you 
commit changes, the repository is updated, and when you check out code, it comes from the repository. CVS fetches the files for you 
and creates them in your directory where you can work with them privately. When you want to put your changes into the repository, 
you issue a commit request, which merges in your changes in.  

Setting Up a Repository   
 

 
Before you can use CVS, you must set up your repository. For now, I’ ll assume that you are the only one accessing it; I’ ll cover 
multiple users later. 

 
 
 

 
Before you invoke CVS for the first time, you need to set up your environment. This means simply setting the CVSROOT 
variable. Assuming that you’ ll create a directory in your home directory named cvsroot, you can set the variable as follows: 

 
 
 
 $ expor t CVSROOT=$HOME/cvsroot   
 
 You’ ll probably want to add this to your .profile file such that it will be set automatically whenever you log in.    
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  Tip  
If you are using csh instead of sh or Bash, you can use setenv CVSROOT=$HOME/cvsroot instead of the export 
command above, and add it to your .cshrc instead of your .profile. 

 
 
 
 Next, create the directory:   
 
 $ mkdir  cvsroot   
 
 You’ ll also want it to be protected from outside readers. You can accomplish this with the chmod command:   
 
 $ chmod 700 cvsroot   
 
 Now you must initialize the CVS repository. Do that with a quick CVS command:   
 
 $ cvs init   
 

 
CVS calls an editor on a regular basis for you to enter logs and so on. If you don’ t have a default editor set, this probably will call 
either vi or ae. You can change the default by setting the EDITOR environment variable, as follows: 

 
 
 
 $ expor t EDITOR=emacs   
 
 As before, you might want to put this into your .profile file. That way, it is set automatically for future uses.   
 
 That’s it! Your repository is now ready for use. Pretty easy!   
Using CVS Daily   
 

 
Now that you have created a repository, you’re ready to use it. The first thing to do is to import a directory tree. This is done, 
naturally enough, with the cvs import command. 

 
 
 

 
Suppose I have a directory with some various files. It doesn’ t matter what files, as long as they’re something like source code. 
CVS can deal with almost any type of file, including binary files if so configured, but for now I’ ll focus on source files. 

 
 
 

 
Here is my directory’s contents. I copied a few examples of source code from earlier chapters in this book into the directory for 
example purposes: 

 
 
 
 $ ls -l   
 total 18   
 -rw-rw-r--   1 jgoerzen jgoerzen      637 Oct  5 10:22 ch10-1.c   
 -rw-rw-r--   1 jgoerzen jgoerzen     1141 Oct  5 10:22 ch10-2.c   
 -rw-rw-r--   1 jgoerzen jgoerzen      191 Oct  5 10:22 ch10-3.c   
 -rw-rw-r--   1 jgoerzen jgoerzen     1141 Oct  5 10:22 ch10-4.c   
 -rw-rw-r--   1 jgoerzen jgoerzen     3533 Oct  5 10:22 ch11-1.c   
 -rwxrwxr-x   1 jgoerzen jgoerzen     1276 Oct  5 10:22 ch11-2.pl   
 -rw-rw-r--   1 jgoerzen jgoerzen      639 Oct  5 10:22 ch11-3.c   
 -rw-rw-r--   1 jgoerzen jgoerzen      728 Oct  5 10:22 ch11-4.c   
 -rw-rw-r--   1 jgoerzen jgoerzen      318 Oct  5 10:22 ch12-1.c   
 -rw-rw-r--   1 jgoerzen jgoerzen      283 Oct  5 10:22 ch12-2.c   
 -rw-rw-r--   1 jgoerzen jgoerzen      464 Oct  5 10:22 ch12-3.c   
 -rw-rw-r--   1 jgoerzen jgoerzen     1013 Oct  5 10:22 ch12-4.c   
 

 

Now it’s time to import these into the CVS repository. The command is cvs import and it takes three arguments. The first is the 
path that the files should be placed under in the CVS repository. The second is a vendor tag, which can be used for branching the 
code at the point of import. The final is a release tag, which can be used to simply check out files at this version. For our purposes, 
these final options probably don’ t matter. Here’s a command I’m using: 

 

 
 
 $ cvs impor t example ORIGINAL START   
 

 
When you run that command, CVS brings up an editor for you to make a log entry. I made an entry simply saying Initial impor t. 
Save this file and then CVS will proceed. 

 
 
 
 N example/ch10-1.c   
 N example/ch10-2.c   
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 N example/ch10-3.c   
 N example/ch10-4.c   
 N example/ch11-1.c   
 N example/ch11-2.pl   
 N example/ch11-3.c   
 N example/ch11-4.c   
 N example/ch12-1.c   
 N example/ch12-2.c   
 N example/ch12-3.c   
 N example/ch12-4.c   
       
 No conflicts created by this import   
 

 
CVS informs you that all those files are new to the archive (N). Now you can check out the repository. Move the existing directory 
out of the way or change into some other path and run: 

 
 
 
 $ cvs checkout example   
 cvs checkout: Updating example   
 U example/ch10-1.c   
 U example/ch10-2.c   
 U example/ch10-3.c   
 U example/ch10-4.c   
 U example/ch11-1.c   
 U example/ch11-2.pl   
 U example/ch11-3.c   
 U example/ch11-4.c   
 U example/ch12-1.c   
 U example/ch12-2.c   
 U example/ch12-3.c   
 U example/ch12-4.c   
 

 

CVS pulls the files down from the repository and populates your local directory with them. This is where you can now do your 
development work. First, type cd example to move into the example directory. Now, I’ ll step through the process as you modify a 
file. I’ ll make a small change to the ch12-4.c file to illustrate the process. I simply added a comment at the top of the file and saved 
the code. To make the change back into the repository, you simply run cvs commit. As before, it will ask you for a log entry. Save 
the log entry and exit your editor. You can then see something like this on your terminal: 

 

 
 
 $ cvs commit   
 cvs commit: Examining .   
 Checking in ch12-4.c;   
 /home/jgoerzen/cvsroot/example/ch12-4.c,v  <--  ch12-4.c   
 new revision: 1.2; previous revision: 1.1   
 done   
 
 CVS has checked in your changes to the repository. If you’re curious, you can look at the logs for the file as follows:   
 
 $ cvs log ch12-4.c   
       
 RCS file: /home/jgoerzen/cvsroot/example/ch12-4.c,v   
 Working file: ch12-4.c   
 head: 1.2   
 branch:   
 locks: strict   
 access list:   
 symbolic names:   
         START: 1.1.1.1   
         ORIGINAL: 1.1.1   
 keyword substitution: kv   
 total revisions: 3;     selected revisions: 3   
 description:   
 ----------------------------   
 revision 1.2   
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 date: 1999/10/05 15:39:01;  author: jgoerzen;  state: Exp;  lines: +2 -0   
 Added a comment at the top  of the file.   
 ----------------------------   
 revision 1.1   
 date: 1999/10/05 15:34:00;  author: jgoerzen;  state: Exp;   
 branches:  1.1.1;   
 Initial revision   
 ----------------------------   
 revision 1.1.1.1   
 date: 1999/10/05 15:34:00;  author: jgoerzen;  state: Exp;  lines: +0 -0   
 Initial import.   
 =============================================================================   
 

 
The output shows you the different versions, when they were created, who made changes, and what changed between them 
according to the developer. You can also compare the file in your current directory to any particular version in the repository. For 
instance, I could run this command: 

 

 
 
 $ cvs diff -r  1.1 -d -u ch12-4.c   
 Index: ch12-4.c   
 ===================================================================   
 RCS file: /home/jgoerzen/cvsroot/example/ch12-4.c,v   
 retrieving revision 1.1   
 retrieving revision 1.2   
 diff -d -u -r1.1 -r1.2   
 --- ch12-4.c    1999/10/05 15:34:00     1.1   
 +++ ch12-4.c    1999/10/05 15:39:01     1.2   
 @@ -1,3 +1,5 @@   
 +/* This is the fourth program in Chapter 12. */   
 +   
 #include <stdio.h>   
 #include <unistd.h>   
 #include <stdarg.h>   
 

 

In this case, I asked CVS to compare the contents of the file ch12-4.c in the current directory to version 1.1 (-r 1.1) of the file in 
the repository. The result shows that I added two lines at the very top of the file, one with a comment, and one blank line. The -d -u 
are arguments to the diff program that CVS calls, which asks for a thorough comparison with the unified diff (a variant of a 
standard diff that is easier to read) output format. 

 

 
 

 
Another thing that you can do is a cvs update operation. This brings in changes that others might have made such that your local 
directory is up-to-date with respect to the repository. Here’s a sample invocation: 

 
 
 
 $ cvs update   
 cvs update: Updating .   
 U ch11-2.pl   
 

 
This shows that the local directory had one file that was out-of-date (ch11-2.pl), and that this file was brought up-to-date. If there 
were conflicts—for instance, if you had modified the file and someone else had committed a change before you could—CVS will 
inform you of this and show you what is in conflict. 

 

 
 

 
You also can add new files to your existing directory. For instance, if I want to add a file named demo.pl to this directory, first I 
need to copy it into my local directory. Then, I’d run this: 

 
 
 
 $ cvs add demo.pl   
 cvs add: scheduling file `demo.pl’  for addition   
 cvs add: use ‘cvs commit’  to add this file permanently   
 $ cvs commit   
 cvs commit: Examining .   
 RCS file: /home/jgoerzen/cvsroot/example/demo.pl,v   
 done   
 Checking in demo.pl;   
 /home/jgoerzen/cvsroot/example/demo.pl,v  <--  demo.pl   
 initial revision: 1.1   
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 done   
 

 
If I later decide to delete this file, the procedure is similar. First, I delete the file from my own directory. Then, I use cvs remove to 
mark it as removed from the repository: 

 
 
 
 $ rm demo.pl   
 $ cvs remove demo.pl   
 cvs remove: scheduling `demo.pl’  for removal   
 cvs remove: use ‘cvs commit’  to remove this file permanently   
 $ cvs commit   
 cvs commit: Examining .   
 Removing demo.pl;   
 /home/jgoerzen/cvsroot/example/demo.pl,v  <--  demo.pl   
 new revision: delete; previous revision: 1.1   
 done   
 

  
Note 

 
You can still retrieve the historical versions of a file from the repository even after it has been removed; CVS never 
destroys historical information. If you want to rename a file, simply copy it to the new file name, add that file, remove 
the old one, and commit the changes.  

Using Tags and Branches   
 

 
As you may have noticed, each file in CVS has its own version number. This number is separate from any other files in the 
repository. 

 
 
 

 
Sometimes, it is useful to refer to a certain version of the files in aggregate. For instance, you might want to refer to the state of the 
files with version 2.0 beta of a product that was released. If you know the precise date of that release, you can get the files that 
way, but there’s an easier way—tags. 

 

 
 
 Tags   
 

 
You can use tags to mark your files. They serve as a sort of checkpoint, enabling you to later refer to the state of files at that point 
by a single symbolic name. To assign a tag, simply use a command like this: 

 
 
 
 $ cvs tag RELEASE_2_0_BETA   
 cvs tag: Tagging .   
 T ch10-1.c   
 T ch10-2.c   
 T ch10-3.c   
 T ch10-4.c   
 T ch11-1.c   
 T ch11-2.pl   
 T ch11-3.c   
 T ch11-4.c   
 T ch12-1.c   
 T ch12-2.c   
 T ch12-3.c   
 T ch12-4.c   
 

 
Later, if you ever want to retrieve the code as it was when your 2.0 beta release occurred, you can simply use cvs checkout -r 
RELEASE_2_0_BETA. Moreover, you can use this symbolic tag anywhere else you might use -r to specify a particular revision—
with a diff or a log command, for instance. 

 

 
 
 You can view the tags for any particular file in the cvs log screen. For instance, after tagging my files, I can see this:   
 
 $ cvs log ch12-4.c   
       
 RCS file: /home/jgoerzen/cvsroot/example/ch12-4.c,v   
 Working file: ch12-4.c   
 head: 1.2   
 branch:   
 locks: strict   
 access list:   
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 symbolic names:   
         RELEASE_2_0_BETA: 1.2   
         START: 1.1.1.1   
         ORIGINAL: 1.1.1   
 keyword substitution: kv   
 total revisions: 3;     selected revisions: 3   
 description:   
 

 
After this, the log screen continues to list the changes committed to this file. In the preceding sample output, you can see there are 
three tags—one created now and two created by cvs import. 

 
 
 
 Branches   
 

 

Branches in CVS are a way for you to fork your code such that development can continue without touching the master tree. This 
has advantages, for instance, if you want to do an experimental rewrite of the code. Branches enable you to do this without 
modifying the main branch of code. This way, others can continue working on the existing code without any interference from a 
rewrite. Also, if the rewrite doesn’ t work out, the branch simply can be ignored and development can proceed as usual with the 
main branch. 

 

 
 
 To create a branch, you use the same tag command as earlier, but add a -b option to it, like so:   
 
 $ cvs tag -b DEVEL_BRANCH   
 cvs tag: Tagging .   
 T ch10-1.c   
 T ch10-2.c   
 T ch10-3.c   
 T ch10-4.c   
 T ch11-1.c   
 T ch11-2.pl   
 T ch11-3.c   
 T ch11-4.c   
 T ch12-1.c   
 T ch12-2.c   
 T ch12-3.c   
 T ch12-4.c   
 

 
Now, you can check out code in this branch. Note that your existing directory will not be using this branch; the tag command 
effects only the repository: 

 
 
 
 $ cvs co -r  DEVEL_BRANCH example   
 cvs checkout: Updating example   
 U example/ch10-1.c   
 U example/ch10-2.c   
 U example/ch10-3.c   
 U example/ch10-4.c   
 U example/ch11-1.c   
 U example/ch11-2.pl   
 U example/ch11-3.c   
 U example/ch11-4.c   
 U example/ch12-1.c   
 U example/ch12-2.c   
 U example/ch12-3.c   
 U example/ch12-4.c   
 

 
Now that you have checked out the branch, you can make changes to it without affecting the main branch. In this example, I’ve 
modified a file, and I’ ll check in the changes as follows: 

 
 
 
 $ cvs commit   
 cvs commit: Examining .   
 Checking in ch12-4.c;   
 /home/jgoerzen/cvsroot/example/ch12-4.c,v  <--  ch12-4.c   
 new revision: 1.2.2.1; previous revision: 1.2   
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 done   
 

 
With CVS, every number in an odd position is a branch number and every number in an even position is a file version number. 
Therefore, in version 1.2, the first digit is a branch number (1), and the second is a file version number. By checking something in 
on the branch, it creates verison 1.2.2.1. That is, version 1 under the branch. 

 

 
 

 
If you later want to merge the branch’s changes back into the main tree, first check out the main branch (use cvs checkout with no 
options). Then use the -j option to merge in the changes: 

 
 
 
 $ cvs update -jDEVEL_BRANCH   
 cvs update: Updating .   
 RCS file: /home/jgoerzen/cvsroot/example/ch12-4.c,v   
 retrieving revision 1.2   
 retrieving revision 1.2.2.1   
 Merging differences between 1.2 and 1.2.2.1 into ch12-4.c   
 

 
The update command retrieves the differences from the branch and adds them to the files in your current directory. Now, you need 
to commit the changes to the repository so that the branch’s changes become effective in the main tree: 

 
 
 
 $ cvs commit   
 cvs commit: Examining .   
 Checking in ch12-4.c;   
 /home/jgoerzen/cvsroot/example/ch12-4.c,v  <--  ch12-4.c   
 new revision: 1.3; previous revision: 1.2   
 done   
 

 
You’ve just reintegrated the branch onto the main development branch. Note, though, the development can still continue separately 
on these two branches. At some later date, you may want to integrate them again.  

Accessing the Network   
 

 

Another feature of CVS is that it can enable remote access to the repository. This means that each developer can work on a 
separate machine, but they all can commit and fetch their code from a single central repository. CVS handles the network details 
completely and transparently; after it is configured, it behaves exactly as if the repository were local. You don’ t need to manually 
transfer files from one computer to another; CVS automatically takes care of whatever data transfers are necessary. 

 

 
 

 

CVS can be set up in a number of different ways to allow network access. One method is to use a program such as rsh or ssh, or 
any other program that presents an rsh-like interface. The rsh option may be appropriate for small isolated lans, but because of the 
design of rsh, it can be a security hazard. Another option is an encrypting program such as ssh. This is advantageous because not 
only does it use a secure public key authentication system, but it also encrypts the data while in transit, meaning that it could be a 
good security win if the CVS server is on a remote machine somewhere that is accessed via the Internet. 

 

 
 

 
Another option is to use CVS’s built-in pserver. This has the advantage in that the people using it do not need to have standard 
Linux accounts on the CVS server. The disadvantage is that the pserver does not use a very robust security system and does not 
encrypt data. 

 

 
 

 
I’ ll explain in this section how to use ssh for your networking as it generally proves to be the most secure option. If you opt to use 
rsh instead, the configuration is quite similar; the difference is that you must set up a .rhosts file on the server to permit 
connections from the client without having to provide a password. 

 

 
 
 Setting up the server    
 

 
Before anyone can access the repository, you’ ll need to create a directory for it, as you did for the standalone installation you 
learned about earlier, and temporarily set your CVSROOT environment variable (on the server) to this directory. 

 
 
 

 
You need to be a bit pickier about file permissions on the server. The recommended way to deal with this issue is to create a Linux 
group in /etc/group and place each person authorized to access the CVS repository into that group. Then, change the group on the 
directory and modify its permissions like so: 

 

 
 
 $ chgrp cvsgroup cvsroot   
 $ chmod 2770 cvsroot   
 
 The chmod command makes the directory group-readable and writable. It also sets the setgid bit in the directory itself, which  
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means that any file placed into the directory has the same group as the directory itself, which can be used to help prevent problems 
later on.  

 
 Now, run cvs init on the server to set up the repository.   
 
 Generating ssh keys   
 

 
I’ ll assume that your system administrator has already installed the ssh software on the client and the server. The first thing that 
you need to do is generate a public/private key pair. You do this by running ssh-keygen, like so: 

 
 
 
 $ ssh-keygen   
 Initializing random number generator...   
 Generating p:  ................................++ (distance 1224)   
 Generating q:  .............++ (distance 202)   
 Computing the keys...   
 Testing the keys...   
 Key generation complete.   
 Enter file in which to save the key (/home/jgoerzen/.ssh/identity): Enter   
 Enter passphrase: Enter   
 Enter the same passphrase again: Enter   
 Your identification has been saved in /home/jgoerzen/.ssh/identity.   
 

 

You’ ll be asked three questions: where to save the key, what passphrase to use, and a confirmation of the passphrase. Leave the 
answers to all of those blank and just press Enter. Then, you need to copy your ~/.ssh/identity.pub file over to the 
~/.ssh/authorized_keys file on the server. You can use a progam such as FTP to do this, or even scp. Make sure that the ~/.ssh 
directory exists on the server. You can then copy the file over with a command like this: 

 

 
 

  

Caution 

 

Leaving the password blank will be OK if you are using this key only for the purposes of CVS. However, be 
aware that if, for any reason, your account on the client machine is cracked, an attacker may be able to get to 
your account on the server as well. CVS pserver uses a similar mechanism to avoid having to type in the 
password each time. If you prefer, you may set a password instead of leaving it blank; however, if you do, you 
may find CVS operations annoying since you will have to supply the password for each one. 

 

 
 
 $ scp ~/.ssh/identity.pub server :~/.ssh/author ized_keys   
 jgoerzen@server’s password: Password   
 identity.pub              |          0 KB |   0.3 kB/s | ETA: 00:00:00 | 100%   
 

 
You’ ll be prompted for your password for the server; enter it, and the file will be copied over. You can check to make sure that the 
procedure worked by running ssh server; you should be logged on to the server without requiring a password. 

 
 
 
 Your  environment   
 
 Next, you need to set up your environment. This time, you’ ll need two environment variables. The form is like this:   
 
 export CVSROOT=”:ext:user@server:/var/repository/path”    
 export CVS_RSH=”ssh”    
 

 

On the first line, replace user with your username; server with the name of the server, and /var/repository/path with the actual path to 
the repository on the server. After this is set (again, you’ ll probably want to place it into your .profile file), you are ready to use CVS! 
Interaction with the system is exactly the same as it would have been before, except this time, the repository is being automatically 
accessed via the network.  

 Tips and Tr icks   
 

 
Besides the basics that you’ve learned thus far in this chapter, there are some various tips and tricks that you can use with CVS to 
make things run just that much smoother. I’ ll go over several of them here; you should be able to use these tips with almost any 
project. 

 

 
 
 Keywords   
 

 
One of the most unique features of CVS is that it can insert data into your text. It does this when you embed certain special 
keywords in your source. With these keywords, you automatically can have CVS put information such as file version directly into 
your source code. This way, when your code is used outside of CVS—on a printout, or maybe somebody has a copy of your 
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product—you can quickly identify exactly which version of the code you are dealing with.  
 
 Table 26-1 shows a list of the available keywords.   
 
 Table 26-1:  Embedded Keywords   
 
     
 
 Keyword   

 
Meaning   

 

 
     
 
 $Author$   

 
Inserts the Linux username of the person that most recently updated the file.   

 

 
 $Date$   

 
Inserts the date, in UTC (Coordinated Universal Time, sometimes also called GMT), of the most 
recent update to the file. 

 
 

 

 
 $Header$   

 
Inserts the path to the file in the CVS repository, the version number of this file, the date in UTC of 
the last update, the Linux username of the person to make the most recent update, and the state of the 
file. 

 

 

 

 
 $Id$   

 
The most commonly used form. It is the same as $Header$ but omits the full path to the file in the 
CVS repository, showing the filename only. $Id$ is great because it gives you lots of information in a 
concise fashion. 

 

 

 

 
 $Name$   

 
The name of the tag or branch under which this file was committed.   

 

 
 $Log$   

 
Includes a log message from the most recent commit. This keyword can cause trouble in some 
situations, so it is best to avoid it. 

 
 

 

 
 $RCSfile$   

 
The name of the file in the CVS repository.   

 

 
 $Revision$   

 
The revision number of this file.   

 

 
 $Source$   

 
The full path name of the file in the CVS repository.   

 

 
 $State$   

 
The state of the current file.   

 

 
     
 
 Here is a short bit of sample code (notice that this code includes $Id$ twice; once in the comment at the top and once in its body):   
 
 /*  example.c   
    $Id$   
 * /   
       
 #include <stdio.h>   
       
 int main(void) {    
   printf(“This is example.c $Id$\n” );      
   printf(“Hello, world!\n” );   
 }    
 

 
After adding this code to the repository and committing the change, take another look at it. You’ ll see that CVS updated it 
automatically: 

 
 
 
 /*  example.c   
    $Id: example.c,v 1.1 1999/10/05 17:35:24 jgoerzen Exp $   
 * /   
       
 #include <stdio.h>   
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 int main(void) {    
   printf(“This is example.c $Id: example.c,v 1.1 1999/10/05 17:35:24 jgoerzen Exp $\n” );   
   printf(“Hello, world!\n” );   
 }    
 

 
This program thus automatically prints out its version number each time it is run. With this mechanism, you can tell what version 
of a program somebody has even if they don’ t have the source! The output of this program, then, is: 

 
 
 
 This is example.c $Id: example.c,v 1.1 1999/10/05 17:35:24 jgoerzen Exp $   
 Hello, world!   
 

 
In this case, you may prefer to use just $Revision$ or $Date$. That way, the end user doesn’ t have to sift through information that 
doesn’ t matter to anyone but your own developers, such as the last person to commit a change to the source. 

 
 
 
 Binary files   
 

 

It is possible to track changes of binary files in CVS as well. However, special care needs to be taken. This is because CVS can do 
two things that could mess with binary files. First, it performs the keyword substitution as documented earlier. This is great for 
source files but could end up corrupting binary files. Second, CVS sometimes performs conversions for line endings when dealing 
with files, to help files work best in your environment. This, of course, can corrupt binaries. 

 

 
 

 
To inhibit this behavior, CVS provides a special parameter, -kb. You must specify -kb when adding a binary file to the repository. 
When you do this, CVS no longer does anything that could, in any way, modify the contents of the file. 

 
 
 
 For instance, to add a copy of the ls binary to my reposotiry, I’d use this command:   
 
 $ cvs add -kb ls   
 

 
After the initial add, you can deal with a file as you normally would with no special need to add -kb; CVS records that this is 
necessary and automatically uses it on your binary files after they have been added. 

 
 
 
 Using subdirector ies   
 

 
CVS has support for dealing with subdirectories in your code and repository. To add a new subdirectory beneath some existing 
code, simply use mkdir to create it locally, then use cvs add to add the directory. The directory will be added immediately and you 
can begin populating it with files. 

 

 
 

 
The first parameter to the cvs import command can also be a directory tree. In this manner, you can import new code several levels 
deep in the repository. 

 
 
 

 
Although it is not recommended, you can make directories manually in the repository by simply going to its directory and using 
mkdir. This can be a quick way to set up an infrastructure if you expect your reposotiry to be a large one. 

 
 
 
 The CVSROOT files   
 

 
CVS provides some special configuration files that can customize various behaviors of CVS. To access these files, run this 
command: 

 
 
 
 $ cvs checkout CVSROOT   
 cvs checkout: Updating CVSROOT   
 U CVSROOT/checkoutlist   
 U CVSROOT/commitinfo   
 U CVSROOT/config   
 U CVSROOT/cvswrappers   
 U CVSROOT/editinfo   
 U CVSROOT/loginfo   
 U CVSROOT/modules   
 U CVSROOT/notify   
 U CVSROOT/rcsinfo   
 U CVSROOT/taginfo   
 U CVSROOT/verifymsg   
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You can find a detailed description of each of these files in the cvs(5) manpage. Most of these files are rarely used in CVS 
installations, but one that often can come in handy is modules, which I’ ll discuss here. 

 
 
 

 

This file has many powerful options, but the basic purpose of the file is to make it easier to navigate files in large repositories. For 
instance, if you have a directory in your repository named projects/clients/acme/jet/engine, it is cumbersome for developers to 
have to use a command such as cvs checkout projects/clients/acme/jet/engine to work on the code. It is even more annoying to 
have to change into several levels of directories to do so. 

 

 
 

 
The modules file enables you to define names for these directories so that you can access them more easily. For instance, you 
might place the following line into your modules file: 

 
 
 
 jetengine             projects/clients/acme/jet/engine   
 

 
This mechanism enables you to maintain your organization of the repository while at the same time making access to it convenient 
for your developers. Now, to access the code, one can simply run cvs checkout jetengine without having to specify the large path. 

 
 
 

 
After you make a change to modules, or any other file in the CVSROOT area, you need to commit your changes. As soon as your 
changes are committed, they take effect.  

Summary   
 
 In this chapter, you learned about the Concurrent Version System (CVS). Specifically, you learned:   
 
  •  Problems can arise when multiple developers need to work on a single piece of code.   
 
  •  The capability of accessing historic versions of your code can often be a valuable asset.   
 
  •  CVS helps you manage access to your code.   
 
  •  CVS archives every historical version of each file, which can be retrieved at any time.   
 
  •  You need to create and initialize a repository and set an environment variable to set up CVS.   
 

  
• 

 
You check out a copy of the files from the repository, work on them in a local directory, and then commit the changes back 
when working with CVS. 

 
 
 
  •  You can create branches in CVS with cvs tag -b, which allow development to be forked.   
 

  
• 

 
CVS works over the network with tools such as rsh, ssh, or CVS’s own server. Of these, ssh is recommended because it is the 
most secure. 

 
 
 
  •  You need to take special care when dealing with binary files in CVS.   
 
  •  CVS can work with subdirectories, which can be added with cvs add or cvcs import.  
Chapter  27: Understanding Secur ity and Code   
 
 Overview   
 

 
Many types of programs need to be secure. Network servers, setuid applications, e-commerce tools, and many other categories of 
software are security-critical. In this chapter, you will learn why this topic is such an important one. Then, you will be introduced 
to the big picture of the Linux security mechanisms. Finally, guidelines for writing secure code will be presented. 

 

 
The Impor tance of Good Code   
 

 

In our modern lives, the importance of computers in our lives can be daunting. Microchips in digital alarm clocks wake us up in 
the morning. Water for drinking or showers is brought to us by a system of pipelines, managed by computers. Electricity is sent via 
a computer-managed grid system. Cars regulate fuel injection by computer. Computers can be found all over in a modern 
workplace, on every desk in some locations. The nation’s banks, securities exchange systems, and trade systems are all 
computerized. Distribution of food is controlled by computers. Airplanes are designed with the assistance of computers, and some 
can not fly without the onboard computer. Emergency systems, such as 911 systems in many areas, rely on computers to provide 
vital services. Even hospitals use computers in a lot of equipment. 

 

 
 

 
With such a staggering reliance on computers, one thing should be clear: bugs in code could cost a company millions of dollars 
and could even result in loss of life. Even if your code is not being used for life-saving systems such as 911 service, still, having 
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bad code—for instance, allowing a security breach—can cost your company millions of dollars in damages, lost sales, and 
downtime. Companies large and small have been bitten by software bugs, which have indeed caused millions of dollars in losses 
for a single glitch.  

 

 
Writing bug-free code is only half the battle, however. Writing maintainable code is important as well. If code is hard to follow, 
others that need to work with it may have difficulty following your code. Furthermore, with large projects, you can find yourself 
having trouble following your own code, especially if you haven’ t worked with parts of it for some time.  

Linux Secur ity Overview   
 

 
Thus far, you have read about the various components of the Linux security system, but they have not been presented all together 
as a big picture. Here, all the pieces of the puzzle are put together for you so you can see how they work. 

 
 
 

 
The security system contains two parts: authentication and access control. The former is responsible for ensuring that a user 
requesting access to the system is really the user with the account, and the latter is responsible for controlling which resources each 
account has access to, and what sort of access is permitted. 

 

 
 

 
The cornerstone of both systems is the user account system. Each user that will need specific access to a Linux machine is given 
an account on that machine. This account contains a username and password for authentication. Each user also belongs to one or 
more groups, which are discussed in the next section, “Authentication.”   

 

 
 
 Authentication   
 

 
When a user first attempts to access the machine, whether this access is by sitting at the console, logging in via telnet, or accessing 
files via FTP, the user must first log in—that is, authenticate the account to the system. This is done by providing the username 
and password. If both are correct, the system grants the user access to the system. 

 

 
 

 
This data is defined in the /etc/passwd file, and possibly the /etc/shadow file. These files contain the username, a numeric uid for 
the account, an encrypted password, a default group, and various other bits of information such as a real name and home directory. 

 
 
 
 Your program can, and indeed must, access these files through calls such as getpwnam(), getpwuid(), getgrnam(), and the like.   
 

  
Note 

 
Systems such as NIS (also known as yp) and Kerberos can mean that authentication information is not stored in 
/etc/passwd. This is one reason that it is important to always use the library calls rather than manipulating the file 
directly. 

 

 
 

 

If a user is properly authenticated, access is granted and the group list is set. The group list indicates which groups a given account 
is a member of. This information becomes important when dealing with group permissions. Each group can have a list of 
members, which can be numerous. You can grant certain access to members of that group in aggregate form by simply granting 
group access to that particular group. For instance, if you have a team of Web site designers, you can make them all members of a 
certain group, cause the files they create to become part of that group, and set the file permissions such that anyone in that group 
can modify them. Thus, each user can still use an individual account and yet be able to work on all the files for the department. 

 

 
 
 Access control   
 

 

At this point, access control takes over. The system needs to define which resources each account has access to, and what sort of 
access is permitted. For instance, on most systems, access to home directories should be restricted to one’s own home directory; 
users should not be able to modify files in the home directories of other users on the system. As another example, somebody 
should not be able to read e-mail sent to another user; you should only be able to read your own e-mail. 

 

 
 

 
Therefore, there is a permissions system in Linux that governs these types of issues. Because many of the system’s functions are 
accessed through the file system, a logical place to start is to place permissions information in the file system data itself. 

 
 
 
 File System Permissions   
 

 
Each inode on your file system contains three pieces of information relating to access control: the uid of the user that owns the file, 
the gid of the group that owns the file, and the file’s access permissions. Note that when I say “ file,”  I refer to any entry in the file 
system, which can include devices, FIFOs, and directories. 

 

 
 
     
 
Cross-Reference  
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 For more details on the inode system, see Chapter 11, “Files, Directories, and Devices.”    
 
     
 

 
The uid refers to the numeric uid of the account that owns the file. The person using this account should have full control over the 
file, being able to change its permissions, modify it, read from it, and so on. 

 
 
 

 
The gid refers to the group id of the group that owns the file. The exact permissions for the group are defined by the access 
permissions. Note that, although members of the designated group can be granted modify, read, and execute access, they cannot be 
granted permission to modify the file’s own security settings. 

 

 
 

 
The final piece of security data in the inode is the access control data. This defines what sort of access is permitted for each of 
three categories: the owner of the file, users in the designated group, and everyone else. For more details, see the chmod(2) and 
chmod(3) manpages. 

 

 
 
 Process Permissions   
 

 

Each process on the system has some security data that is brought with it. The most prominent of these are the uid and gid of the 
process. When you first log into the system, your first process (typically a shell) is set to those permissions. Any other processes 
that you start (except for the setuid or setgid programs, described later in this chapter) have the same uid and gid. This uid and gid 
information is then compared to the requirements in the file system to determine whether or not any particular access request 
should be allowed. Strictly speaking, with most situations, process permissions do not themselves regulate access to resources but 
rather are used together with other permissions mechanisms to work with access. 

 

 
 

 
There are some exceptions to that rule, however. For instance, you cannot sent a KILL signal to a process that you do not own—
that is, with a uid different than the one in your own process. Furthermore, the root user (uid 0) is allowed to do many things that 
ordinary users can’ t; that is, processes with a uid of 0 have these extra permissions. 

 

 
 

 
As a special additional note to this system, there is the setuid/setgid system. This is somewhat of a hybrid between the file system 
and the process permission system and is used to give processes different uid or gid values than they would normally be entitled to. 
This mechanism is a complex one, with many details to concern yourself with. 

 

 
 
     
 
Cross-Reference  
 
 For information on setuid and setgid programs, see Chapter 12, “Processes in Linux.”   
Secur ity Guidelines   
 

 

Among all the concerns surrounding writing good code, security necessarily comes in at the top. Any program that deals with 
anyone or anything that is not completely trusted to always do exactly as told or behave exactly as expected must be prepared to 
deal with these things. Security problems can come from people actively trying to penetrate your security, or from things as simple 
as someone providing unexpected input to a program or running the wrong command. Security issues can also arise from receiving 
unexpected input from other programs, or encountering unexpected interaction issues with other systems. 

 

 
 

 

Consider, for instance, a company selling goods on the Internet. This company will have a Web site, maintain customer 
information, and probably have customer credit card information on hand as well. If the security of this system is broken, 
thousands of people could suffer from credit card fraud. The company with the security breach could suffer a serious public 
relations nightmare. 

 

 
 

 
Even if you do not do business on the Internet, you can be vulnerable simply by virtue of having an Internet connection; people 
might still find a way to penetrate your systems. Worse, too much access to systems can mean that people—even with legitimate 
access—can cause trouble, either accidentally or purposely. 

 

 
 
 Secur ity pr inciples   
 

 
When either writing your own code in a security-conscious environment, or when maintaining systems in such a setting, there are 
several guidelines to keep in mind. Following these guidelines can help to reduce the potential for security breaches. 

 
 
 
 Grant As L ittle Access As Possible   
 
 One principle is that your programs should not only grant as little access as possible, but they should also require as little access as  
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possible. By using the security mechanisms built into the Linux operating system, you can stop many security problems dead in 
their tracks.  

 

 
Let’s consider one quick example. On many Linux systems, incoming mail is stored in the /var/spool/mail directory, which has a 
file for the inbox of each user on the system. In certain situations, when working with mail, a mail reader may need to create an 
account in that directory. 

 

 
 

 

How would you go about allowing that? Well, one option is to make the directory world-writable, enabling anyone to create 
whatever files desired in the directory. This is a bad idea; somebody may be able to create a file corresponding to the mailbox of a 
user that has not yet received any mail, and thus forge an e-mail. Or, a user could simply store data there until the file system is 
full, preventing any new mail from entering the system. So granting less access would be a good idea. 

 

 
 

 
To do that, you need to use either setuid or setgid, because only certain programs should have access to that area. Your first 
thought might be to make mail readers setuid to root. This, however, is not a good idea. If a mail reader has a security problem, 
then the entire system can become compromised. 

 

 
 

 
A better idea would be to make the directory group-writable and then make mail readers setgid to that particular group. This way, 
even if a security flaw is discovered in a mail reader somewhere down the line, the damage will be limited to only the files that the 
particular group has access to. 

 

 
 
 Networks Are Insecure   
 

 
With the rise of the Internet and LAN systems, finding a computer that is not networked in some fashion is becoming increasingly 
difficult. With this networking comes a new class of security problems. 

 
 
 

 

A prime concern is that data traveling across a network is not encrypted. This means that any traffic on your local Ethernet can be 
intercepted and read by others with computers on the same segment, without your knowledge. Furthermore, traffic going across 
the Internet can be intercepted at computers at either end of the communication, or at numerous routers in between. Additionally, it 
is sometimes possible for an attacker to insert data into the stream; for instance, one might add a phantom rm -rf ~ command to a 
telnet session. 

 

 
 

 
A second class of problems arises when it is necessary to allow or deny access to a particular service according to the machine 
from which the request comes. This is often used to allow, for instance, only users in certain departments or on an internal network 
to access resources, to control which computers are trusted to NFS-mount directories, and the like. 

 

 
 

 

However, verifying that a given computer really is the machine it claims to be can be difficult. It is trivial to unplug an Ethernet 
link from a server and hook it up to a laptop configured with the same IP address; one might be able to gain root access to NFS 
mounts or intercept passwords from clients attempting to connect to server services. For Ethernet, you might try to thwart such an 
attempt by relying on certain MAC addresses; however, many Ethernet cards today can be configured with arbitrary MAC 
addresses. 

 

 
 

 
One solution to these problems that you might consider is encryption and public-key authentication, which will be discussed later 
in this chapter. 

 
 
 
 Beware of Timing Issues   
 

 

Sometimes, programs expect that things will occur in a certain amount of time. For instance, many programs expect DNS queries 
to typically finish within a matter of seconds, and they generally do. Programs may expect a response within a certain amount of 
time from another process. They may even expect a certain delay from another process or from the user. Finally, they may expect 
that two programs of the same type will never be run concurrently. 

 

 
 

 

All of these are general programming problems, but they apply to security as well. Consider, for instance, the action of editing 
some system configuration file—say, /etc/passwd. If you have several administrators working on a single Linux box, there is a 
possibility that two or more of them will want to edit the file at the same time. Doing so can be disastrous; text editors typically 
used to edit these files do not have any kind of synchronization built in to prevent problems. Furthermore, even just editing the file 
with a text editor can be dangerous; users can change information with tools such as passwd and chfn, and you can overwrite their 
changes by manually editing the file if they are unlucky enough to make the change while you have the file open. 

 

 
 

 

The solution to a situation like this is file locking, which you can access on Linux with either flock() or fcntl(). When you use file 
locking, you can indicate to other processes that you are busy with the file and that they should not access the file until you are 
done. In this particular case, Linux provides tools such as vipw and vigr for editing these files, with file locking in place. The other 
tools mentioned earlier in this chapter use file locking as well, so there is a safe way to edit your configuration files. 
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Cross-Reference  
 
 For more details on file locking, please see Chapter 14, “ Introducing the Linux I/O System.”    
 
     
 
 Denial-of-Service (DoS) Attacks   
 

 
One type of security issue is the denial-of-service (DoS) attack. This attack does not result in a direct compromise of data but 
rather makes this data unavailable to users, typically by crashing a machine or server process. Even though no (or little) data is lost 
or stolen with this kind of attack, it can still be devastating. 

 

 
 

 

A DoS attack can occur in many different ways. A bug in an operating system or program might make it vulnerable to this type of 
attack, but not to a security breach. An attacker can simply flood a network connection with useless data, rendering it essentially 
inoperable. Many requests could be made to a particular type of server, causing the load on the machine to skyrocket. Or requests 
could be very large, eating up available memory or disk space on the server and eventually causing it to crash. 

 

 
 

 
Two types of attacks are mentioned here: program bugs causing crashes, and resource starvation. Resource starvation occurs when 
the server is prevented from having access to the resources it needs, and thus is unable to deliver appropriate results to the client. 

 
 
 

 

You need to take steps to avoid both types of problems. Of particular note at this point is the resource starvation issue. You need to 
make sure, especially when using dynamic memory in C or a language such as Perl that uses it implicitly, that you do not simply 
read an unlimited amount of data from a network or client. If you do, you can read so much data that you eat up all available 
memory on the system, which can cause both your program and even the entire system to crash. 

 

 
 
 Trust As L ittle As Possible   
 

 
This is a big one that can almost be thought of as encompassing all the other rules. As an example, we talked about buffer 
overflow attacks in Chapter 8. These security holes almost always arise because programmers automatically assume—or trust—
that the input data will be less than a certain size. You should not implicitly trust input data like that. 

 

 
 

 

Another example lies with CGI programs, as discussed in Chapter 22, “CGI Programming.”  Sometimes, the user provides a 
filename for the script. This file may then be displayed back to the user. Because CGI scripts generally run with special 
permissions (those of the Web server), they can be especially vulnerable to attack. Consider, for instance, a CGI script that does 
not check on the data input. It may expect the user to give a filename such as foobar.txt. What if the user instead requests 
/etc/passwd? Well, if you don’ t check the input data, your program will be dishing out copies of the passwd file to anyone on the 
Internet! You might try to always append a certain path to the input; for instance, foobar.txt becomes /var/lib/cgi-data/foobar.txt. 
Well, all someone has to do is request the file ../../../etc/passwd, and once again, they get a copy of the passwd file. So you see, you 
must not trust that the user will not specify a different directory; you need to validate the input before using it. 

 

 
 

 

Still another example has affected the products from several of the world’s largest computer companies. Several of their operating 
systems have made assumptions about the data arriving from the network: that the packets will be well-formed and valid, for 
instance. Crackers, though, managed to generate packets that were invalid. However, the operating system did not check for 
validity and happily processed the packet. The result: it was possible to crash any machine with an Internet connection running the 
bad code from anywhere on the Internet, by anyone. Trusting incoming packets to be well-formed was a serious mistake in this 
situation. 

 

 
 
 Common problems   
 

 
In addition to the preceding general principles, there are some common problems to be aware of. Some of these are not tied to any 
specific operating system; others occur specifically in Linux or UNIX settings. 

 
 
 
 Race Conditions   
 

 
A race condition is one of the most common problems in software. Even worse, it is one of the most difficult to track down (it 
often appears to cause random problems) and can still lead to serious security problems. 

 
 
 

 
A race condition is a particular type of timing issue. It occurs when multiple processes need to work with a single set of data or 
files, and the result depends on which process finishes first. Recall that in a multitasking system such as Linux, you are never 
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guaranteed that no other process is also running while yours is, and thus you must keep in mind that files can be manipulated, even 
between two lines of source in your program.  

 

 
One example of a race condition is actually the problem with editing configuration files mentioned previously. Another prominent 
problem in Linux is the /tmp race. 

 
 
 

 
Many programs scripts store temporary files in /tmp. This has been a quick way to store data for short periods of time. However, a 
serious race condition is involved with this or any other world-writable directory. 

 
 
 

 

Because anyone can place files, directories, and symlinks in /tmp, there can be a problem. Consider, for instance, if a random user 
on the system knows that the administrator frequently runs a program that creates a file in /tmp. This random user notices the files 
are all the same, or of a similar pattern. So, the user goes into /tmp and creates a symlink, named as a temporary file, to 
/etc/passwd. The next time the administrator runs the tool, the contents of /etc/passwd are overwritten by temporary file output, 
meaning that nobody can log into accounts! 

 

 
 

 
This attack is not limited to attacking the root user. It can be directed at any user on the system that uses programs or scripts that 
create files in a world-writable directory. 

 
 
 

 
Let’s look at some possible ways to prevent the problem. You might think of checking for the existence of a file or link before 
creating one. This does not prevent the problem; it just makes it a bit more difficult to exploit. Remember that, due to multitasking, 
an attacker can create a file in the directory between the time you check for its existence and the time you try to open it! 

 

 
 

 
Therefore, you need to look at other solutions. One of the easiest is to create a temporary directory inside the current user’s home 
directory. This will bypass the issue altogether, because a user’s home directory should not be world-writable. You can place 
whatever files you want in there; just be sure to clean them up when your program exits, or you’ ll have a lot of upset users. 

 

 
 

 
Another option is to create a directory in /tmp and place files in there. Take care to specify the permissions for the directory when 
creating it, and to check that it was successfully created. 

 
 
 
 Buffer  Overflows in C   
 

 
Buffer overflows typically happen when more data than expected is given to a program, thus overflowing the memory previously 
allocated for space. A skilled cracker can exploit the problem to crash the system, or worse, to breach system security. 

 
 
 

 

You can beat the problem several ways. First, you can use dynamic memory, which can shrink or grow in proportion to the data 
read in—but watch out for resource starvation, described later. Another option is to carefully limit the size of all data when using 
statically allocated memory. Both of these options, along with more details on the problem, are described in Chapter 8, “Memory 
Management.”  

 

 
 
 Metacharacters in the Shell   
 

 

Many programs are either written in a shell scripting language itself or call shell programs or scripts, passing along input data as 
command line arguments. However, there can be a problem. For instance, if you pass along arbitrary input, an attacker could play 
a trick such as embedding a semicolon in the input. After the semicolon, an arbitrary command—perhaps an rm command to 
remove files, or a command to display password files—could be run. This is bad news for you, because it effectively gives even a 
remote user of your programs such as CGI scripts full control as if local. 

 

 
 

 
Note that the semicolon is not the only potentially harmful character; there are several others, including leading dashes (which can 
cause the following data to be interpreted as command line options), embedded newline characters, and several more. The best 
way to prevent this attack is to accept only a limited range of characters: generally, alphanumeric data, the period, and underscore. 

 

 
 
 Writing secure code   
 

 
Now that you’ve learned about a number of the security problems that you might face as a programmer, let’s explore some 
pointers to help you write secure code. Some of these have broader implications than just security issues, but all can have a 
significant impact on your program’s security. 

 

 
 
 Check Return Values   
 

 
Failing to check return values is one of the most common mistakes, and it has implications outside the security realm as well. 
Many functions, particularly those that do input, output, or memory manipulation, return a result code indicating the success or 
failure of an operation. This result code is often ignored, but you fail to check it at your own peril. 
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The most basic situation is this: when an operation fails, the program or user that requested the operation should not think that it 
succeeded. This means that an appropriate error code must be returned or error message displayed, depending on the situation. As 
an example, consider a program that copies files. This program will need to check to ensure that each read was executed 
successfully. Furthermore, each write will need to be checked as well to make sure that the disk is not full, preventing the copy. 
Moreover, the close of the output file will need to be checked too—sometimes, writing is delayed until that point, and you need to 
check that result to be safe. 

 

 
 

 
Sometimes, something worse can happen. Consider a program that creates a directory and then changes into it. If this program 
doesn’ t check the return values from either of those calls, if the create directory operation fails, it will end up manipulating files in 
the wrong area. This can be particularly disastrous if the program wants to clean up after itself with a command such as rm * ! 

 

 
 

 
A security breach or DoS attack can even result. Consider a program that uses fopen() to open a file, but does not check that the 
open succeeded. The first time the program tries to write to the file, it will crash with a segmentation violation due to a bad pointer. 
All an attacker has to do is coerce a failure in the fopen() call, and the server goes down. 

 

 
 
 Dynamically Allocated Memory Helps   
 
 Many buffer overflow attacks can be thwarted by writing your program using dynamically allocated memory.   
 

  Note  
In Perl, all strings implicitly shrink and grow; they are implemented dynamically internally, but you don’ t need to 
worry about the details. Therefore, Perl code is generally considered immune to buffer overflow attacks. 

 
 
 

 
This is a great way to enable your program to read and process data of arbitrary size. Using statically allocated memory means that 
you must constantly worry about sizes, whereas dynamically allocated memory can be allocated with the proper size 
automatically. 

 

 
 

 

However, consider the caveats. You can make a resource starvation attack easier, in both C and Perl, if you read in data of 
unlimited length and allocate memory for it. Also, for C programmers, lots of use of dynamic memory can lead to memory leaks 
unless you are careful. Frequent memory leaks can also turn into a resource starvation issue. Most would agree that running out of 
memory is not as bad as having a full-fledged security compromise (which could let an attacker crash your box anyway), but still it 
is something to be aware of. Refer to Chapter 8, “Memory Management,”  for more details. 

 

 
 
 Exercise Extreme Caution with setuid or  setgid   
 

 

This is perhaps the most dangerous situation you can be placed in. You are essentially granting users additional privileges while 
they run your program. You need to be particularly careful to observe warnings about race conditions and buffer overflows in this 
situation. Not only that, but you also need to be aware of your program’s interactions with others. You need to consider whether 
you will be able to delete more files than normal, what user ID any programs that your programs execute will run under, what 
effect libraries will have on your program, and all the other concerns pointed out in this chapter. 

 

 
 

 
You can try to help out the situation by dropping special privileges as soon as possible; that is, revert to the permissions of the user 
than invoked the program. Then, you can switch back to special permissions later if you need to. Also, you may want to 
permanently get rid of the special permissions once you’re done with them. 

 

 
 

 
Many people justifiably prefer to avoid setuid or setgid programs whenever possible; this is good advice. See if there are other 
alternatives available; could you use a domain socket or FIFO to communicate between privileged and unprivileged parts of code? 
If so, that may be a preferable way to go. 

 

 
 
 Use File Locking   
 

 

You have already seen examples of the problems caused by race conditions and synchronization issues. A great way to avoid these 
problems is to make frequent use of file locking. This way, you can prevent a situation in which two programs might be 
manipulating a single piece of data at one time—a situation that can lead to data corruption without even requiring a cracker trying 
to cause it! 

 

 
 
 Use Encryption   
 

 
When you need to transmit data over the network that should not be intercepted, you ought to use encryption. One popular way to 
do that is to use SSL; on Linux, the SSLeay library (available at http://www.ssleay.org/ssleay) is commonly used to do this. By 
using encryption, you can thwart would-be snoopers, giving them no useful data. 
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Furthermore, encryption makes it extremely difficult, or even impossible, for an attacker to insert unwanted data into a connection. 
Thus, by encrypting your network traffic, you obtain many advantages. 

 
 
 

 

The disadvantage of this is that encryption can use CPU time, and for a heavily loaded server, this usage could add up. However, 
in many cases, this downside is negligible and will never be noticed. Another potential disadvantage is that laws regarding 
encryption can be tricky; for instance, US law prohibits export of some encryption technologies, and some other countries ban the 
usage of them altogether. 

 

 
 
 Use Public-Key Authentication   
 

 

Another feature of the SSL system is its support for public-key authentication. By using these features, you can ensure that the 
remote machine really is the one that it claims to be. There is no need to rely on inherently unreliable indicators such as IP address 
or MAC address; if the remote machine is able to present the proper credentials, access can be granted; otherwise, access can be 
denied. This type of system can also be used to authenticate individual users of programs, as is done by systems such as ssh (see 
http://www.openssh.org/). 

 

 
 
 Track Secur ity Forums   
 

 
Keeping up to date with security issues can be key to preventing them. When you hear about problems in other people’s code, or a 
new problem (such as the /tmp race issue), you can examine your own code for the problems and hopefully release a fix before 
anyone else even realizes you were vulnerable. 

 

 
 

 

One of the most widely known and most respected security forums in the UNIX/Linux community is the Bugtraq mailing list. This 
is an open discussion list with subscribers numbering in the tens of thousands, including some of the world’s most prominent 
Internet, UNIX, and Linux security experts. You can find various introductory information in the Forums area of 
http://www.securityfocus.com/ and detailed information at http://www.securityfocus.com/forums/bugtraq/faq.html. 

 

 
 
 Some good newsgroups to watch include comp.os.security and comp.security.unix, as well as groups in comp.os.linux.*.   
 

 
Also, track the releases from your own distribution. Check your distribution’s home page for information, or take a look at 
http://www.linuxlinks.com/Security/ for links to many good Linux-related security sites.  

Summary   
 

 
In this chapter, you learned about the importance of security to your code, some security concepts, and how to apply these to your 
own software. Specifically, the following was covered: 

 
 
 
  •  Good code is a worthwhile long-term goal.   
 
  •  The Linux security model consists of two parts: authentication and access control.   
 
  •  Your code should be written such that as little access is granted (or requested) as possible.   
 

  
• 

 
Networks are fundamentally insecure; they can permit snooping, have trouble verifying that a computer is the one it claims to 
be, and be vulnerable to data insertion attacks. 

 
 
 
  •  You can address these problems with encryption and public key authentication.   
 
  •  Timing issues, such as race conditions, can pose a serious, but difficult to track down, security risk.   
 
  •  Denial-of-service (DoS) attacks can exploit bugs or use resource starvation in order to crash or impair your servers.   
 
  •  Misplaced trust in insecure systems or users can create problems for your code.   
 

  
• 

 
Buffer overflows are a common and serious security risk for some types of C programs. Using dynamically allocated memory 
can help with these problems. 

 
 
 
  •  File locking can be used to reduce concurrency (timing) problems.   
 
  •  The setuid and setgid features can be dangerous and should be avoided if possible.  
Chapter  28: Optimizing Per formance   
 
 Overview   
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You’d be hard-pressed to find a programmer that does not want to make programs run faster, regardless of platform. Linux 
programmers are no exception; some take an almost fanatical approach to the job of optimizing their code for performance. Many 
of the example programs you’ve seen in this book are of the run once variety; there isn’ t a need to worry about performance 
because the impact of even a severe performance problem probably can be measured only in milliseconds at worst. However, if 
your program is parsing ten million log entries, or must handle 200 website hits per second, tables quickly turn. Something that 
wastes 5 milliseconds with a single execution ends up wasting 13 hours of CPU time when it is run 10 million times. This is no 
figure to scoff at, certainly. Even if we assume only 20 website hits per second, a value not too unheard-of in today’s world, that 5 
millisecond performance problem can end up wasting 2 hours of CPU time each day. You literally can be talking about the 
difference between code that is capable of keeping up with the demands put up to it and code that cannot. 

 

 
 

 

As hardware becomes faster, cheaper, and more plentiful, some argue that performance optimization is less critical—particularly 
people that try to enforce deadlines on software development. Not so. Even today’s most advanced hardware, combined with the 
latest in compiler optimization technology cannot come even close to the performance benefits that can be attained by fixing some 
small problems—or even going with an entirely different and much faster design. 

 

 
 

 
In this chapter, I’ ll discuss some things that can cause serious performance problems, how to choose an appropriate design for some 
various software from a performance standpoint, what calls are expensive and what calls are relatively quick, and how to replace 
some expensive calls with some quicker ones.  

Pr inciples for  Faster  Code   
 

 
There are several ideas that you can apply to your programs to make them perform better. These ideas are not a magic solution for 
every performance problem, but if you keep them in mind while writing and revising your code, you will usually end up with 
better and faster programs. 

 

 
 
 Three measurements   
 

 

When we talk about performance, there are several different things to consider. One is the absolute amount of time it takes the 
software to complete a given task. For instance, even if a webserver keeps up perfectly well with client requests, there can be a 15-
second delay before the server begins to send pages to the client each time. In such a situation, the server is failing to perform 
adequately in terms of the amount of absolute time it requires to get things done. Its CPU utilization and I/O usage may be 
minimal, but somewhere it’ s still failing. 

 

 
 

 

Another consideration is the amount of CPU time that a program requires. This is a measure of the time that the computer’s 
processor spends executing code on your program’s behalf. Note that this is often less, usually significantly so, than the program’s 
run time. Many programs tend to spend most of their time waiting for something to happen—input to arrive, output to be written to 
disk, and so on. While it is waiting, the CPU can be servicing other requests, and so the program is not using CPU time. However, 
some programs, particularly those performing analysis or complex calculations, may be primarily CPU-bound programs. For these, 
a savings in the amount of CPU time required may result in a substantial savings in absolute time. It is important to note that the 
run time of a piece of code may be microseconds or all the way up to months. However, this time has no effect on other processes 
on the system. On the other hand, if your program uses a lot of CPU time, this can slow down all the processes on the system. This 
effect is even worse if your program tends to run multiple copies of at once. 

 

 
 

 
One can further separate the CPU time into system and user time. The system time is the amount of CPU time used on your behalf 
by the kernel. This could accrue by calling functions such as open() and fork(). The user time is the amount of CPU time used by 
your program. This might be used by arithmetic, string manipulation, and so on. 

 

 
 

 

A third consideration for performance is the time spent doing I/O. Traditionally, this has been one of the slowest parts of many 
programs, and remains so today. However, it’s difficult to get an accurate measure of this value. This is because caching and 
asynchronous updates enable modern operating systems such as Linux, to defer some I/O operations to a time when the system is 
less busy and the their impact poses less of a performance penalty on the running processes. Some programs, such as network 
servers, spend most of their lives handling I/O; others spend comparitively little time with I/O tasks. Therefore, optimization of I/O 
can be critical with some projects and completely unimportant with others. 

 

 
 
 Loops   
 

 
One of the most frequent causes of problems with performance occurs inside loops. Loops magnify the effects of otherwise minor 
performance problems because the code may be executed anywhere from dozens to millions of times inside the loop. Therefore, 
there is a big payoff for optimization of code that is executed inside a loop. 

 

 
 

 
One of the simplest and yet most effective things you can do is move code outside the loop that doesn’ t need to be executed every 
time through the loop. For instance, recall this code from Chapter 6: 
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 #include <stdio.h>   
       
 int main(void) {    
   int counter;   
   int ending;   
   int temp;   
   int five;   
   for (counter = 0; counter < 2 *  100000000 * 9 / 18 + 5131;   
        counter += (5 - 3) / 2) {    
      temp = counter / 15302;   
      ending = counter;   
      five = 5;   
   }    
   printf(“ five = %d; ending = %d\n” , five, ending);   
   return 0;   
 }    
 

 

Several things here could be moved outside the loop. For one, the variable five is never changed; you could set it before or after 
the loop. The ending condition of the loop is calculated every time through. A faster approach would be to store that value in a 
variable and simply compare counter to that variable each time through. Not only that, but the increment value is also computed 
each time through the loop. This, too, could be calculated beforehand. 

 

 
 

 
The ending variable could be calculated only once, after the loop is through, by simply looking at the value of counter at that point. 
Finally, the assignment to the variable five is dead code; nothing except the final printf() ever uses that variable, so that assignment 
could be removed entirely if you would just print the number 5. 

 

 
 
 In Perl, I frequently see programmers use code such as the following:   
 
 while ($string = <BIGFILE>) {    
   chomp $string;   
   # some processing here, perhaps   
   print “ Input: $string\n” ;   
 }    
 

 
Several things are wrong here. If you’re going to print out a newline after $string anyway, why bother stripping it off in the first 
place? Second, to make things faster, you should avoid interpolation when practical. So, a faster version may be like this: 

 
 
 
 while ($string = <BIGFILE) {    
   # some processing here, perhaps   
   print “ Input: “ , $string;   
 }    
 

 

Of course, whether or not you really need to be concerned about this depends on the kind of usage your program will get. Many 
programmers use code similar to the first example in programs that are designed for interactive use and may read only three lines 
from the user. There’s no real harm there. However, if the code is going to be running millions of times, you can run into some 
difficulties. 

 

 
 

 

Another thing you can do is use the /o option with regular expressions in Perl that occur inside a loop. This means that Perl will 
compile the regular expression only once, instead of every time it is used. This can result in a substantial speed improvement. The 
only downside is that if you build your regular expression pattern by using variables or interpolation, Perl will not notice if it 
changed while you are in the loop, and it will continue using the original value. Still, you’ ll find that few regular expressions 
change while inside a loop, so this is a tip that can frequently be a performance booster. 

 

 
 
 Help the optimizer    
 

 
Modern compilers such as gcc have optimizers that can aggressively optimize the code that they generate. However, they can do 
only so much. There are things that you can do to help the optimizers with their task. 

 
 
 

 
One thing you can do is use the const keyword for any variable that is not supposed to change throughout its lifetime. Not only is 
this a valuable safeguard for you, but it also enables the compiler to make assumptions about the variable that may speed up code 
involving it. 
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If you have a small function that is called frequently, you can declare it inline. This means that the compiler will insert the actual 
code for the function in the caller if possible, rather than inserting a jump to the function’s address as might normally be used. By 
doing this, the control flow of the program is not interrupted, enabling modern pipelining CPUs to predict future instructions to 
execute more effectively. Furthermore, it can mean a few less instructions to execute because of the lack of overhead for pushing 
information on to the stack, making the actual call, handling the return value, and so on. 

 

 
 
 Avoid floating-point numbers   
 

 

Floating-point data types, such as float and double take more time to calculate than do their integer counterparts. Therefore, unless 
you really need the extra attributes of floating-point numbers, you should try to avoid them. This is especially true on the i386 
architecture, where the floating-point unit is rather slow, and some machines in that architecture line have no floating-point units at 
all. 

 

 
 

 

A common usage for floating-point numbers is dealing with dollar values. Programmers often reason that because there’s a 
decimal sign in the input, there must be a decimal sign in the computer storage of that input as well. Not true! Some clever 
programmers use integers to store these values. They simply might multiply the dollar values by 100 and then add the cents value 
after that. To go back to a human representation, the reverse operation is done—the cents are subtracted and the number is divided 
by 100. 

 

 
 
 Sometimes, floating-point numbers cannot be avoided. But when they can, it’s a good idea to do so.   
 
 Recode time-cr itcal code blocks   
 

 
If you have the expertise to do so, another route you can take is to rewrite sections of your code that are causing delays in a more 
low-level language. For instance, a Perl programmer might rewrite part of a program’s core logic in C to speed performance by 
leveraging a compiled and preoptimized language. Similarly, a C program might use assembler to do the same thing. 

 

 
 

 
This is not always an option, and in the case of assembler coding, can be a serious detriment to the portability and future usability 
of the code. However, manually writing algorithms in assembler is the ultimate control you can have over how the CPU executes 
your algorithm and gives you the opportunity to write the most efficient algorithms possible. 

 

 
 
 Increase block size   
 

 

Many operations are done on blocks of data. Some of the most common are reading and writing of binary data. One easy way that 
you can speed up your programs is to increase the buffer size in your program. This enables you to transfer more data at once. By 
doing so, you decrease the frequency with which you must call one of the I/O functions, which is very good as these calls can be 
time-consuming.  

Expensive versus Inexpensive Operations   
 

 

Often, I might refer to a given operation as expensive. Relatively speaking, this means that it requires a lot of time to complete, a 
lot of I/O activity, or a lot of some other type of resource. When you optimize your code, you want to get rid of the expensive 
operations and replace them with the inexpensive ones. Linux gives you a lot of flexibility; there are often multiple ways to 
accomplish something. Sometimes it’ s simple to decide which method to use. Other times, whether a given operation is more or 
less expensive than another may depend on exactly how it is being used in your code. 

 

 
 
 System calls   
 

 
System calls in general are fairly expensive operations. These include anything that requires a switch into kernel mode. This 
category is large and essentially includes everything in section 2 of the manpages and some things in section 3 as well. 

 
 
 

 
Therefore, it’s a good idea to minimize usage of system calls where possible. Several of the following topics relate to that, but 
even for those not explicitly mentioned, be aware of the performance implications. 

 
 
 
 fork   
 

 

The fork() call is often necessary and indeed quite useful. By itself, forking is not slow, but if you use it frequently, it can add up. 
Consider, for instance, a web server that might fork for each new connect. If it’s getting hit dozens of times per second, this can 
really add up to a lot of forking going on. This is one reason that single-process web servers such as Boa, that use select() for 
multiplexing, can outperform multi-process servers. 

 

 
 
 Apache takes an interesting approach to the problem. It forks a number of server processes when it first starts. These processes  
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continue running, and do not exit. When connection requests come in, they are sent to one of the processes. If it’ s out of processes, 
a new one will be forked, but it will not exit after it has serviced its request; it will wait for more requests.  

 
 exec   
 

 
Another system call that is quite often used is exec. This one is almost always used immediately after a fork, so the above 
information applies here as well. This call can be quite expensive, as the new program will have to do initialization such as loading 
libraries and so on. 

 

 
 
 system   
 

 
This call is essentially a fork, exec, and wait all rolled into one. However, it’s somewhat worse than that because it invokes a shell 
to run the specified command. Invoking a shell is very expensive; its initialization may consist of several million instructions as it 
loads various profiles and initialization scripts. Therefore, frequently using sytem is a bad idea. 

 

 
 
 I once saw a network server that ran code like this very frequently:   
 
 system(“ ls /etc” );   
 

 
This is an incredible waste of resources. The program has to fork and execute the shell. The shell must initialize, and then the shell 
forks and executes ls. Although this may be acceptable for a quick program that runs only occasionally, it is certainly sub-optimal 
for a network server. 

 

 
 

 
A far better option is to use opendir() and readdir() to read the directory yourself. This requires only a little bit more code on your 
part but will execute far faster. Keep in mind that this is what ls is doing anyway.  

Compiler  Optimizations   
 

 
After you have done what you can to optimize your own code, the compiler can be helpful with optimizations as well. As you 
already saw in Chapter 6, “Welcome to gcc,”  these can have a significant impact on the performance of your code. 

 
 
 

 
Most programmers prefer to develop code with optimizations turned off because they can interfere with the debugging process. 
When the program is prepared for release, usually it is compiled with optimizations of level -O2 or -O3. 

 
 
 

 
The optimizer on modern compilers can sometimes help out with some mistakes that you might make. For instance, in some 
programs, it can detect that there are things calculated inside a loop that could be calculated outside the loop for speed benefits. 

 
 
 

 
Not only that, but the optimizers often can simplify arithmetic expressions. For instance, the arithmetic done in these programs 
involves a lot of constants. The compiler can evaluate as much as possible at compile time to reduce the impact of it at execution 
time. 

 

 
 

 
The compiler also can do many optimizations on the generated assembly code. These optimizations are enabled by -O2, although a 
few might only be enabled by -O3. Exactly what these optimizations do depends on your platform. For instance, Linux on the 64-bit 
Alpha would have significantly different optimizations than Linux on a Pentium machine.  

Using gprof   
 

 
One tool that you can use to analyze your program’s execution is the GNU profiler, gprof. This program shows you where your 
program is spending most of its time, how frequently various parts of your code are executed, and where your program is spending 
most of its time. 

 

 
 
 Listing 28-1 shows a sample program that I’ ll use for the profiling.   
 

  Note  
This program specifically is designed to be slow. If it takes too long on your system, you can modify getmaxval() 
to return something smaller. 

 
 
 
  Note  Listing 28-1 is available online.   
 
 Listing 28-1: Example for  profiling   
 
 #include <stdio.h>   
 #include <stdlib.h>   
 #include <time.h>   
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 int getmaxval(void);   
 int getincrement(void);   
 void dosomething(int *data);   
       
 int main(void) {    
   int counter;   
   int data = 1;   
       
   srand(time(NULL));   
      
   for (counter = 0; counter < getmaxval(); counter += getincrement()) {    
     dosomething(&data);   
   }    
   printf(“Data = %d, counter = %d\n” , data, counter);   
   return 0;   
 }    
       
 int getmaxval(void) {    
   int bignumber = 1000000;   
   return bignumber * 1500 / 2 + 1500 * 5 - 2100 / 2 * 10 / 2;   
 }    
       
 int getincrement(void) {    
   int randval = rand();   
       
   return randval / 15000000  - 1000 / 12 / 5 / 2;   
      
 }    
       
 void dosomething(int *data) {    
   int randval = rand();   
   data += rand() * 9105 / 100000;   
 }    
 
 To be capable of using this with the profiler, you need to compile with a special command-line option. Here’s a way to compile:   
 
 $ gcc  -a -g -pg -o ch28-1 ch28-1.c   
 
 The -pg option enables the basic profiling support in gcc. The -a option enables a more detailed (annotated) output.   
 
 Now run the program as normal:    
 
 $ ./ch28-1   
 Data = 1, counter = 750002258   
 

 
Note that your program will run somewhat slower when profiling is enabled because it is spending time collecting data as well as 
running normally. The profiling support in the program creates a file named gmon.out in your current directory. This file is later 
used by gprof to analyze your code, and contains information derived from analyzing your program while it runs. 

 

 
 

 
Now run gprof to get the output. This will be voluminous, so it’s a good idea to redirect it to a file so you can use less or a similar 
file viewer, or print it out: 

 
 
 
 $ gprof ch28-1 gmon.out > profile.txt   
 

 
Listing 28-2 shows the output from gprof from profiling this program. I’ ll include the output here, and then I’ ll analyze it and 
come to some conclusions about the program. 

 
 
 
  Note  Listing 28-2 is available online.   
 
 Listing 28-2: Sample gprof output   
 
 Flat profile:   
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 Each sample counts as 0.01 seconds.   
   %   cumulative   self              self     total   
 time   seconds   seconds    calls  ps/call  ps/call  name   
 38.82      3.89     3.89 11883133 327354.75 327354.75  dosomething   
 27.35      6.63     2.74 11883133 230578.92 230578.92  getincrement   
 18.46      8.48     1.85 11883134 155682.84 155682.84  getmaxval   
 15.37     10.02     1.54                             main   
       
 %         the percentage of the total running time of the   
 time       program used by this function.   
       
 cumulative a running sum of the number of seconds accounted   
 seconds   for by this function and those listed above it.   
       
 self      the number of seconds accounted for by this   
 seconds    function alone.  This is the major sort for this   
            listing.   
       
 calls      the number of times this function was invoked, if   
            this function is profiled, else blank.   
    
 self      the average number of milliseconds spent in this   
 ms/call    function per call, if this function is profiled,   
            else blank.   
       
 total     the average number of milliseconds spent in this   
 ms/call    function and its descendents per call, if this    
            function is profiled, else blank.   
       
 name       the name of the function.  This is the minor sort   
            for this listing. The index shows the location of   
            the function in the gprof listing. If the index is   
            in parentheses it shows where it would appear in   
            the gprof listing if it were to be printed.   
              Call graph (explanation follows)   
       
       
 granularity: each sample hit covers 4 byte(s) for 0.10% of 10.02 seconds   
       
 index % time    self  children    called     name   
                                                  <spontaneous>   
 [1]    100.0    1.54    8.48                 main [1]   
                 3.89    0.00 11883133/11883133     dosomething [2]   
                 2.74    0.00 11883133/11883133     getincrement [3]   
                 1.85    0.00 11883134/11883134     getmaxval [4]   
 -----------------------------------------------   
                 3.89    0.00 11883133/11883133     main [1]   
 [2]     38.8    3.89    0.00 11883133         dosomething [2]   
 -----------------------------------------------   
                 2.74    0.00 11883133/11883133     main [1]   
 [3]     27.3    2.74    0.00 11883133         getincrement [3]   
 -----------------------------------------------   
                 1.85    0.00 11883134/11883134     main [1]   
 [4]     18.5    1.85    0.00 11883134         getmaxval [4]   
 -----------------------------------------------   
       
 This table describes the call tree of the program, and was sorted by   
 the total amount of time spent in each function and its children.   
       
 Each entry in this table consists of several lines.  The line with the   
 index number at the left hand margin lists the current function.   
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 The lines above it list the functions that called this function,   
 and the lines below it list the functions this one called.   
 This line lists:   
      index      A unique number given to each element of the table.   
                 Index numbers are sorted numerically.   
                 The index number is printed next to every function name so   
                 it is easier to look up where the function in the table.   
       
      % time     This is the percentage of the ‘ total’  time that was spent   
                 in this function and its children.  Note that due to   
                 different viewpoints, functions excluded by options, etc,   
                 these numbers will NOT add up to 100%.   
       
      self       This is the total amount of time spent in this function.   
       
      children   This is the total amount of time propagated into this   
                 function by its children.   
       
      called     This is the number of times the function was called.   
                 If the function called itself recursively, the number   
                 only includes nonrecursive calls, and is followed by   
                 a ‘+’  and the number of recursive calls.   
       
      name       The name of the current function.  The index number is   
                 printed after it.  If the function is a member of a   
                 cycle, the cycle number is printed between the   
                 function’s name and the index number.   
       
 For the function’s parents, the fields have the following meanings:   
       
      self       This is the amount of time that was propagated directly   
                 from the function into this parent.   
       
      children   This is the amount of time that was propagated from   
                 the function’s children into this parent.   
       
      called     This is the number of times this parent called the   
                 function ‘ /’  the total number of times the function   
                 was called.  Recursive calls to the function are not   
                 included in the number after the ‘ /’ .   
       
      name       This is the name of the parent.  The parent’s index   
                 number is printed after it.  If the parent is a   
                 member of a cycle, the cycle number is printed between   
                 the name and the index number.   
 If the parents of the function cannot be determined, the word   
 ‘<spontaneous>’  is printed in the `name’ field, and all the other   
 fields are blank.   
       
 For the function’s children, the fields have the following meanings:   
       
      self       This is the amount of time that was propagated directly   
                 from the child into the function.   
       
      children   This is the amount of time that was propagated from the   
                 child’s children to the function.   
       
      called     This is the number of times the function called   
                 this child ‘ /’  the total number of times the child   
                 was called.  Recursive calls by the child are not   
                 listed in the number after the ‘ /’ .   
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      name       This is the name of the child.  The child’s index   
                 number is printed after it.  If the child is a   
                 member of a cycle, the cycle number is printed   
                 between the name and the index number.   
       
 If there are any cycles (circles) in the call graph, there is an   
 entry for the cycle as a whole.  This entry shows who called the   
 cycle (as parents) and the members of the cycle (as children.)   
 The ‘+’  recursive calls entry shows the number of function calls that   
 were internal to the cycle, and the calls entry for each member shows,   
 for that member, how many times it was called from other members of   
 the cycle.   
       
       
 Index by function name   
       
    [2] dosomething             [4] getmaxval   
    [3] getincrement            [1] main   
 
 I’ ll analyze the results. The information is split up into two separate sections: the flat profile and the call graph.   
 

 
The flat profile shows how much time was spent in each function. From the information presented, you can see that the 
dosomething() function was the most time-consuming, using almost 40 percent of the time of the program. Following that are the 
remaining functions in the program. You can also see that each of these three functions was called nearly 12 million times. 

 

 
 

 

Next you see the call graph. The purpose of this is to show you how much time was spent in each function and any function that it 
calls. The call graph is separated into sections, one for each function in your program. The specific function being described in 
each function is denoted by the bracketed number on the left (for example, [1]). Above this number line, you see a summary of the 
functions that called this one. For instance, here is one such summary: 

 

 
 
 index % time    self  children    called     name   
                                                  <spontaneous>   
 [1]    100.0    1.54    8.48                 main [1]   
                 3.89    0.00 11883133/11883133     dosomething [2]   
                 2.74    0.00 11883133/11883133     getincrement [3]   
                 1.85    0.00 11883134/11883134     getmaxval [4]   
 

 

For each line, the values include the amount of time spent in the primary function when it was called by the given function. In the 
second through fourth entries in the call graph (you see the first one above), you can see that they were all called from main. After 
the primary line, you can see a summary of each function it called, along with an indication of how much time was spent in those 
functions when called from the primary one for each section. 

 

 
 

 
If this report does not provide fine enough granularity for you, you can instruct gprof to operate in line-by-line mode, where the 
basic unit of analysis is the source code line instead of the function. This is invoked with -l. In the following example, I also turned 
on -b, which causes gprof to omit the explanatory text from its result: 

 

 
 
 $ gprof -b -l ch28-1 gmon.out > profile2.txt   
 
 Listing 28-3 shows the profile that results from this command.   
 
  Note  Listing 28-3 is available online.   
 
 Listing 28-3: Gprof example with line granular ity   
 
 Flat profile:   
       
 Each sample counts as 0.01 seconds.   
   %   cumulative   self              self     total   
 time   seconds   seconds    calls  ps/call  ps/call  name   
 25.50      2.56     2.56                             dosomething (ch28-1.c:36)   
 10.38      3.60     1.04                             getincrement (ch28-1.c:28)   
   9.68      4.57     0.97                             getincrement (ch28-1.c:30)   
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   9.58      5.53     0.96                             getmaxval (ch28-1.c:24)   
   9.33      6.46     0.94                             dosomething (ch28-1.c:35)   
   7.83      7.25     0.79                             main (ch28-1.c:15)   
   5.69      7.82     0.57 11883133 47967.15 47967.15  getincrement (ch28-1.c:27)   
   5.49      8.37     0.55 11883134 46284.09 46284.09  getmaxval (ch28-1.c:22)   
   3.89      8.76     0.39                             main (ch28-1.c:16)   
   3.39      9.10     0.34                             main (ch28-1.c:15)   
   2.40      9.34     0.24                             getmaxval (ch28-1.c:23)   
   2.30      9.56     0.23 11883133 19355.17 19355.17  dosomething (ch28-1.c:34)   
   1.70      9.73     0.17                             dosomething (ch28-1.c:37)   
   1.60      9.89     0.16                             getincrement (ch28-1.c:32)   
   1.00      9.99     0.10                             getmaxval (ch28-1.c:25)   
   0.25     10.02     0.03                             main (ch28-1.c:18)   
       
                         Call graph   
       
       
 granularity: each sample hit covers 4 byte(s) for 0.10% of 10.02 seconds   
       
 index % time    self  children    called     name   
                 0.57    0.00 11883133/11883133     main (ch28-1.c:15) [2]   
 [9]      5.7    0.57    0.00 11883133         getincrement (ch28-1.c:27) [9]   
 -----------------------------------------------   
                 0.55    0.00 11883134/11883134     main (ch28-1.c:15) [7]   
 [10]     5.5    0.55    0.00 11883134         getmaxval (ch28-1.c:22) [10]   
 -----------------------------------------------   
                 0.23    0.00 11883133/11883133     main (ch28-1.c:16) [8]   
 [12]     2.3    0.23    0.00 11883133         dosomething (ch28-1.c:34) [12]   
 -----------------------------------------------   
       
 Index by function name   
       
   [12] dosomething (ch28-1.c:34) [4] getincrement (ch28-1.c:30) [7] main (ch28-1.c:15)   
    [6] dosomething (ch28-1.c:35) [14] getincrement (ch28-1.c:32) [8] main (ch28-1.c:16)   
    [1] dosomething (ch28-1.c:36) [10] getmaxval (ch28-1.c:22) [2] main (ch28-1.c:15)   
   [13] dosomething (ch28-1.c:37) [11] getmaxval (ch28-1.c:23) [16] main (ch28-1.c:18)   
    [9] getincrement (ch28-1.c:27) [5] getmaxval (ch28-1.c:24)   
    [3] getincrement (ch28-1.c:28) [15] getmaxval (ch28-1.c:25)   
 

 
From this report, you can find that fully one quarter of the program’s execution time was spent on line 36 of the code, inside the 
dosomething() function. This is not terribly surprising, as this line of code gets information from the random-numbr generator (a 
fairly expensive operation) and then performs arithmetic on it. 

 

 
 

 
A second in line is line 28, another call to rand(), followed by line 30, which does a lot of math in that result. Coming in close on 
the heels of those are lines 24, which again do some calculations, and 35—another call to rand(). 

 
 
 
 Another report that is available is the annotated source listing. Here’s a way to get output from it:   
 
 $ gprof -x -l -A ch28-1 gmon.out > profile3.txt   
 

 
The -A option requests annotated mode; -l requests line-by-line mode, and -x requests that the program annotate as many lines as 
possible. Listing 28-4 shows the output from this command. 

 
 
 
  Note  Listing 28-4 is available online.   
 
 Listing 28-4: Output from gprof –A –l -x   
 
 ** *  File /home/jgoerzen/t/ch28-1.c:   
                 #include <stdio.h>   
                 #include <stdlib.h>   
                 #include <time.h>   
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                 int getmaxval(void);   
                 int getincrement(void);   
                 void dosomething(int *data);   
                    
        ##### -> int main(void) {    
                   int counter;   
        ##### ->   int data = 1;   
                    
        ##### ->   srand(time(NULL));   
                      
        ##### ->   for (counter = 0; counter < getmaxval(); counter += getincrement()) {    
        ##### ->     dosomething(&data);   
                   }    
        ##### ->   printf(“Data = %d, counter = %d\n” , data, counter);   
        ##### ->   return 0;   
        ##### -> }    
                    
     11883134 -> int getmaxval(void) {    
     11883134 ->   int bignumber = 1000000;   
     11883134 ->   return bignumber *  1500 / 2 + 1500 * 5 - 2100 / 2 * 10 / 2;   
     11883134 -> }    
                    
     11883133 -> int getincrement(void) {    
     11883133 ->   int randval = rand();   
     11883133 ->   return randval / 15000000  - 1000 / 12 / 5 / 2;   
                      
     11883133 -> }    
                    
     11883133 -> void dosomething(int *data) {    
     11883133 ->   int randval = rand();   
     11883133 ->   data += rand() * 9105 / 100000;   
     11883133 -> }    
       
       
 Top 10 Lines:   
       
      Line      Count   
       
        22   11883134   
        27   11883133   
        34   11883133   
       
 Execution Summary:   
       
        20   Executable lines in this file   
        20   Lines executed   
    100.00   Percent of the file executed   
       
 35649400   Total number of line executions   
 1782470.00   Average executions per line   
 

 
The idea is that you can see, for each line of code, exactly how many times it is executed. This program executes all the functions 
on a fairly constant basis, so they are each executed approximately the same number of times, as gprof shows you. 

 
 
 

 

The profiler is telling us here that the calls to rand() and the lengthy arithmetic were the most processor intensive. Because they 
were all occuring inside a loop, this is not surprising. If these can be eliminated, or at least reduced, then the speed of the program 
should be improved significantly. As an example, perhaps it would be sufficient to calculate a random number once before 
entering the loop, and then use it where required. Also note that line 35 (int randval = rand()) is a senseless call to rand(); that 
value is never used. Not only that, but also these arithmetic operations could be simplified beforehand rather than doing so each 
time through the loop. 

 

 
 
 After you have made changes to your code, you will want to re-test the program to ensure that the changes really did improve 
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performance. If not, then perhaps the change you made was not any faster, or even a bit slower. Also, when comparing profiling 
output from gprof before and after making changes, keep in mind that if you replace, for instance, one line of code with ten new lines, 
you need to compare those ten lines all together to the one original line.  

Summary   
 
 In this chapter, you learned about optimizing your code for speed. Specifically, you learned:   
 
  •  Performance optimization becomes increasingly important when a given piece of code is executed more frequently.   
 
  •  You can differentiate between elapsed time, CPU time, and I/O time when analyzing the performance of your programs.   
 
  •  Loops are a primary cause of problems, as they tend to magnify the problems of any code running inside them.   
 
  •  You can boost performance by helping the optimizer, taking care to use keywords such as const when possible.   
 
  •  System calls are notoriously expensive and their use should be minimized.   
 
  •  You can use gprof, the GNU profiler, to find out which sections of your code are causing the largest delays.  
Glossary   
 
 Overview   
 

 
advisory locking A type of locking that requires each participating program to be aware of the need for locking and participate in 
the locking mechanism. Advisory locking is the standard way of implementing locking in Linux. See also locking. 

 
 
 

 
append mode A mode of writing to files in which the operating system atomically seeks the end of the file and performs the write 
for each actual attempt to write data to the file. This mode is generally invoked when the file is opened with fopen() or open(). See 
also atomic operation. 

 

 
 

 
assembler  A program that translates low-level commands that correspond to CPU instructions into binary machine language. 
Often invoked by a compiler. 

 
 
 

 
asynchronous I /O A type of I/O in which the requested operation may or may not be done before a call returns. Asynchronous I/O 
allows your program to continue processing data and lets the operating system fulfill the requests in the background whenever it is 
most convenient. Asynchronous I/O is also known in some situations as non-blocking I/O. 

 

 
 

 
atomic operation An operation that is guaranteed to complete its task fully before being interrupted by another similar operation 
or returning. 

 
 
 

 
blocking I /O A characteristic of an operation that causes the execution of the program to be put on hold until a certain event 
occurs. For instance, the read() call will, by default, block until it has data to return to the process. 

 
 
 
 Bourne shell The traditional default shell on UNIX systems. On Linux systems, Bash is the typical implementation of it.   
 

 
Bash (the Bourne-again shell) An enhanced version of the Bourne shell that adds many new features and some features from tcsh 
and ksh. 

 
 
 

 
bounds checking A feature of a compiler or a language. It generates an error if boundaries for types are exceeded. For instance, if 
you have an array with 5 elements and you try to read element 10, this would trigger an error if bounds-checking is used. C and 
C++ do not generally have this feature. 

 

 
 

 
buffer  Any area used for temporary storage of data while or before it can be processed. In C, a buffer might also refer to any 
character array (string). 

 
 
 

 
buffer  overrun The condition in which more data is placed into a buffer than the size of the buffer allows. This is typically a 
problem for C or C++ programs, and often results from reading in too much data or copying too much data into a buffer. 

 
 
 
 cc The canonical name for the C compiler on a UNIX system. On Linux, this refers to the gcc compiler.   
 

 
CGI The Common Gateway Interface, a system of passing data to and from a program or script. CGI programs are used to read 
input from and generate on-the-fly pages for Web sites. 
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 chgrp The name of both a system call and a shell command that is used to change the group owner of a file or directory in Linux.   
 
 chown The name of both a system call and a shell command used to change the owner of a file or directory in Linux.   
 

 
compiler  A program that is used to transform input in a high-level language to assembler code or machine code. In Linux, a 
typical use is to transform C, C++, Pascal, or Fortran code to Assembler code. The standard C compiler is gcc, and the C++ 
compiler is g++. 

 

 
 
 cpp The C Pre-Processor, part of the C compiler package.   
 
 cross-compiler  A compiler that runs on one architecture, but generates assembly or machine code for another architecture.   
 

 
CVS The Concurrent Versions System, an application designed to help programmers track changes between versions, manage 
branches in code, and archive previous work. See Chapter 26 for details on CVS. 

 
 
 
 DBI The Perl Database Interface, a standardized library for communicating with various SQL servers.   
 

 
deadlock A condition that occurs when two or more processes are each waiting on the others to release a given resource. This is a 
potential problem with locking or other methods used to avoid race conditions. 

 
 
 
 debugger  A program that assists you with finding known or potential bugs in your code.   
 

 
dereference (a pointer ) Accessing the memory pointed to by a pointer instead of the pointer itself. In C and C++, the dereference 
operator is *. 

 
 
 

 

device special file A specific type of special file that corresponds to a hardware device. Device special files come in two versions: 
block devices and character devices. Block devices are used to interface with devices that handle data by the block, such as hard 
drives, tape drives, CD-ROM devices, scanners, and the like. Character devices are used to interface with peripherals that handle 
data one character at a time, such as terminals, printers, serial ports, and mice. 

 

 
 
 dynamic library A library that is designed to be loaded at run time instead of at link time.   
 

 
dynamic linker  The program that takes care of resolving dynamic library dependencies at run time. On Linux systems, the 
dynamic linker is ld.so. 

 
 
 
 dump A shorthand version of core dump. This is also the name of a backup program.   
 

 
dynamically allocated memory This is memory that is explicitly allocated and freed by a program. In C, this allocation is 
typically performed with malloc() and the memory is later deallocated with free().  Unlike statically allocated memory, the size of 
the memory block to be allocated does not have to be known at compile time, but the memory must be managed manually. 

 

 
 
 ELF The Executable and Linking Format, a way of storing data in executables and handling dynamically linked libraries.   
 

 
end-of-file This is the condition that occurs when the position within a file is at the end. Also could refer to the error code returned 
by I/O functions when a program attempts to read past the end of a file. In terms of non-file I/O, it can also mean that there is no 
more data to read (which is the case if the other end of a socket closed the connection, for instance). 

 

 
 
 EOF Acronym for end-of-file.   
 

 
exclusive lock With respect to file locking with a function such as flock(), indicates a type of locking in which only a single 
process may have a lock on a file at any given time. See the discussion under shared lock for details. 

 
 
 
 FIFO (First In, First Out) A named pipe. That is, a pipe with a name in the file system.   
 
 file locking A particular type of locking applied to files on the system, commonly implemented as advisory locking.   
 
 gcc The GNU C Compiler, the standard C compiler in Linux.   
 
 g++ The GNU C++ compiler, the standard C++ compiler in Linux.   
 
 gas The GNU Assembler.   
 



 514 

 gdb The GNU Debugger, a powerful debugger available for your use.   
 

 

GECOS field The part of the system’s account database (often in /etc/passwd) that contains the real name of a particular user. 
Today, the GECOS field may also contain information such as office number, telephone numbers, and the like. The acronym’s 
meaning is no longer relevant, but refers to the General Electric Comprehensive Operating System that early UNIX versions 
sometimes needed to interface with. 

 

 
 

 
gid The numeric group id of a particular group. This is often, but not always, defined in /etc/group and used for security in places 
such as the file system and processes. See also uid. 

 
 
 
 globbing Using shell wildcards (such as the asterisk, question mark, brackets, and so on) to select a group of files or directories.   
 
 gprof The GNU profiler, used to analyze the performance of your programs.   
 
 GUI A Graphical User Interface. On Linux, a GUI is typically implemented using X.   
 

 
hard link A type of link that is implemented by having two or more directory entries point to the same inode (and thus the same 
data) on-disk. See also symbolic link, link. 

 
 
 

 
home directory The place reserved for each user on the system to store his or her own files. Each user’s default home directory is 
specified in the system’s accounts database, typically /etc/passwd. 

 
 
 

 
ident A protocol defined in RFC 1413 to be used to identify the owner of the process on the remote end of a TCP/IP socket 
connection. The ident protocol is not guaranteed to be correct, and as such, should be treated as advisory information only in many 
situations. 

 

 
 

 
inode A data structure holding data corresponding to the physical storage of a file’s data. Much of the inode’s information can be 
retrieved by calling stat. 

 
 
 

 
IPC Inter-Process Communication, theoretically covering any method of communication between processes including network 
communication. However, it is generally used to refer specifically to what is known as System V IPC—that is, shared memory, 
semaphores, and (deprecated) message queues. 

 

 
 
 IP Internet Protocol, the base of other protocols such as TCP and UDP.   
 
 ld The standard linker for Linux.   
 
 library A collection of functions and symbols, typically related to a specific purpose. Libraries may be either static or dynamic.   
 

 

link With respect to file systems, a link refers to either of two methods (symbolic link and hard link) of making a single piece of 
data accessible by two or more filenames in the file system. With respect to program compilation, it indicates the action of 
combining multiple object files together to generate a final executable or of loading dynamic libraries into memory at runtime. See 
also symbolic link, hard link, linker. 

 

 
 

 
linker  A program that links together various object files, libraries, and initialization code to generate a final executable. See also 
dynamic linker. 

 
 
 

 
locking A method of ensuring that only one process will have access to a given resource at a time, or that multiple processes share 
the resource in ways such that they do not conflict with each other. In Linux, this usually refers to advisory file system locking, 
meaning that it is a way of ensuring that participating processes do not step on each others toes when accessing files. 

 

 
 

 
lvalue Any entity (such as a variable) to which a value can be assigned. In languages such as C, the value must occur in the left 
side of the equals sign. Perl, for instance, has lvalues such as scalars, arrays, and hashes. The lvalues in C include types such as 
characters, doubles, integers, and other data types. See also rvalue. 

 

 
 
 make A rule-based tool to build projects automatically.   
 
 Makefile A file holding the rules for make.   
 

 
manpage Short for manual page; refers to the online documentation for a particular function call, program, or command. For 
details on manpages and accessing them, please see Chapter 1. 

 
 
 



 515 

 memory leak The condition resulting when memory is allocated but never freed.   
 

 
minibuffer  In Emacs and XEmacs, the small buffer at the bottom of the screen. The minibuffer is used to answer prompts, such as 
what file to load, or to type M-x commands. 

 
 
 

 
multiplexing Generically, any method of using a single communication channel for handling multiple separate pieces of data. In 
Linux programming, this generally refers to a single-process TCP/IP server. Such a process will handle multiple clients all in a 
single process, and use a call such as select() or poll() to manage them. 

 

 
 

 
nesting Using one object to contain other objects of the same type. Or, more generally, any situation in which you might find an 
object or operator inside the scope of another of the same type. As an example, you might have nested arrays in Perl or nested 
conditionals in Bash. 

 

 
 
 non-blocking I /O The opposite of blocking I/O, and a synonym of asynchronous I/O.   
 
 object file A file holding compiled binary code that has not yet been linked. On Linux, these files have a .o extension.   
 

 
OOP Object-Oriented Programming, a method of programming in which encapsulation and abstraction are key elements of 
design. 

 
 
 

 
optimizer  An algorithm that is applied to generate more efficient or smaller output code. Many compilers and interpreters have 
optimizers. In C, the gcc compiler has an optimizer that may be controlled with -O. 

 
 
 

 
Per l An interpreted programming language known for its strong data-processing capabilities. Depending upon whom you ask, Perl 
stands for either the Practical Extraction and Report Language or the Pathologically Eclectic Rubbish Lister. 

 
 
 

 
pipe A unidirectional communication device that uses a set of two file descriptors. Typically used to communicate between two 
processes on a local machine. 

 
 
 

 
pointer  A special type of variable in C or C++ that holds the address of another variable. The variable pointed to is usually the one 
that the program is actually interested in, but may have to use pointers to access it. 

 
 
 

 
por t With TCP/IP programming, a unique identifier for the endpoint of a communications channel on a machine. The port is used 
by the kernel on the receiving end of communication to determine to which process the data should be sent. Server processes 
typically use a well-known pre-arranged port number; clients generally have a random number assigned by the operating system. 

 

 
 

 
process A given instance of a program executing on a system. Processes are generally isolated from each other save for a few 
select methods of communication. 

 
 
 
 profiler  A software analysis tool designed to help you spot performance-critical or slow portions of your code.   
 

 
pseudo-terminal A virtual terminal used to simulate a real one in order to allow a process to intercept or manipulate the data 
between the real terminal and the processes running with it. 

 
 
 

 

race condition The situation in which two or more processes may attempt to access a single resource at once, the result of which 
may be loss of data or unpredictable results, depending on which process wins the race and gets its execution time slice first. This 
typically is a problem with file system access, and file locking is a typical remedy. Another case might be shared memory, with 
which semaphores are often used. 

 

 
 

 
recursion An algorithm implemented in terms of itself. For instance, a recursive function might call itself to process data in finer 
detail. An example might be a function that traverses a directory tree, calling itself for each subdirectory encountered. 

 
 
 

 
recursive make Using recursion in a Makefile to build components of a program. Usually used to build components residing in 
subdirectories. 

 
 
 

 
regular  expression (regexp) A pattern designed to be applied to data to determine whether or not it matches, or to pick out pieces 
of data. 

 
 
 

 
reliable protocol A protocol that guarantees that all data sent is delivered intact, without changes, and in the order sent. In other 
words, if the data gets through at all (if there are no network failures preventing it), the data is guaranteed to be correct. 

 
 
 
 rvalue Any entity in a language that generates a value that can be assigned to a variable. In a language such as C, when using the =  
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operator, an rvalue must occur on the right side of it. See also lvalue.  
 
 scr ipt A short program written in an interpreted language such as Bash or Perl.   
 
 segfault Shorthand for segmentation fault. See also segmentation violation.   
 
 segmentation fault Another name for segmentation violation.   
 

 

segmentation violation A fatal error that occurs when a program tries to access memory that it is not permitted to access. In 
virtually all cases, this error occurs when the program in question has a bug relating to pointers. It may be caused by any number 
of things. A few possibilities are accessing an array past its end, dereferencing a null pointer, attempting to access memory that has 
been freed, attempting to access memory not yet allocated, attempting to write to pages that are read-only, attempting to free 
memory that has not been previously allocated, and many other possibilities. Note that some of these actions do not guarantee a 
segmentation violation error; this is just one possible outcome. A segmentation violation is accompanied by the delivery of signal 
13 to the offending process. 

 

 
 

 
semaphore A method of IPC used to synchronize access to arbitrary resources. Semaphores are typically used to provide locking 
for shared memory transactions. 

 
 
 

 
ser ialization The process of converting an in-memory data structure into flat data that can be stored on disk or transmitted across 
the network. The goal of serialization is to create a representation of the data structure that can be later used to recreate the 
original. 

 

 
 

 
setgid proper ty Indicates that, in contrast to standard practice, a given program takes on group permissions different from those of 
the person running it. See also setuid property. 

 
 
 

 
setgid bit The actual bit in the file system permissions area that indicates that a program is to be treated as setgid. The group of the 
file indicates the group that it is to be set to. 

 
 
 
 setgid() call A call used to change permissions in an already-running program.   
 

 
setuid proper ty Indicates that, in contrast to standard practice, a given program takes on user permissions different from those of 
the person running it. A program is said to be setuid only if the setuid bit is set for it. This mechanism is usually used to give the 
program more permissions that it would normally have, and should be treated with extreme care. 

 

 
 

 
setuid bit The actual bit in the file system permissions area that indicates that a program is to be treated as setuid. The user of the 
file indicates the user that it is to be set to. 

 
 
 
 setuid() call A call used to change user permissions in an already running program.   
 

 
shared lock With respect to file locking with a function such as flock(), indicates that more than one process may hold a shared 
lock at any given time. See also exclusive lock.  Shared locks are frequently used for reading from files, and exclusive locks for 
writing. This way, many processes can read at once, but if writes occur, only the writing process may hold a lock. 

 

 
 
 shared memory A method of IPC that allows multiple processes to write to a single block of memory.    
 

 
shell A command interpreter used to provide a command-line interface to the system.  Shells are also used to run shell scripts, or 
collections of shell commands in a single file. 

 
 
 
 signal A message sent to a process, either by the operating system or another process, indicating that a certain event has occurred.   
 
 signal handler  A function registered by a process to handle a certain signal or set of signals.   
 

 

sliding window An algorithm used in communication channels requiring acknowledgment of successful receipt of data. A sliding 
window allows the transmitter to send data before acknowledgments of the previous packet are received, but places a limit on how 
far ahead of the acknowledgments the transmission may be. This type of algorithm improves speed without sacrificing reliability. 
For details, see Chapter 18. 

 

 
 

 
socket One end of a bidirectional network communication connection. On Linux, sockets act as file descriptors for the purpose of 
many I/O system calls. 

 
 
 
 special file Any entry in the file system that does not correspond to a standard file on disk. These entries could be things such as  



 517 

devices (see device special file), FIFOs, symbolic links, or perhaps even directories.  
 
 spinlock A condition resulting from a bug in a program in which the program is spinning, or in an infinite loop.   
 
 SQL Structured Query Language, a language used for manipulating databases running under a variety of servers.   
 

 

stack In general, and LIFO (Last In, First Out) data structure. More specifically, a stack is used to hold information about function 
calls. In C and C++, a frame is added to the stack for each call to a function. The frame holds the caller (used when returning from 
the function), local variables, and perhaps other state information. The compiler automatically frees the frame when it is no longer 
needed. A debugger such as gdb will allow you to inspect the contents of the stack for a running program. 

 

 
 

 
stat call A system call used to find out information about a particular entry (file, directory, anything with an inode) in the file 
system. Given a filename, the call provides information such as size, creation date, modification date, inode number, permissions, 
and more. 

 

 
 

 
statically allocated memory Memory that is allocated and deallocated automatically by the C or C++ compiler.  Normally, this 
memory is used as global variables or as local variables in functions.  See also dynamically allocated memory. 

 
 
 
 symbolic link A “soft”  link in the file system, implemented as a special file that points to another.  See also hard link,link.   
 
 symlink Shorthand for symbolic link.   
 

 
TCP Transmission Control Protocol, a reliable protocol used for bidirectional communication on the Internet. TCP is based upon 
IP. 

 
 
 

 
terminal 1. A device used to display textual data. This could be your own console, an xterm, or some other device. 2. A device 
entry in the /dev directory corresponding to a communication channel to a real or virtual terminal. 

 
 
 

 
/tmp race A specific instance of a race condition that occurs when programs attempt to create or write to files in /tmp without 
taking security issues into account. 

 
 
 
 UDP User Datagram Protocol, an unreliable protocol used for sending small messages across a network. UDP is based upon IP.   
 

 
uid A numeric value used to identify a particular user (mnemonic: user id). Each account on the system has a unique uid, which is 
often (but not always) specified in /etc/passwd. The uid is used by the security mechanisms in Linux in places such as the file 
system and processes. 

 

 
 

 
umask A bitmask specifying the default permissions for a newly-created file. The value of the umask is specified with the 
standard octal notation as used with calls like chown() and chgrp(). However, this mask has an inverted sense; that is, it indicates 
what permissions not to give files. 

 

 
 

 
unlink In simple terms, a request to delete a file or a special file from the file system. More precisely, unlink() deletes one of the 
hard links to a given inode, and will only delete the actual data on-disk if the link being deleted is the last one for that data on the 
file system. 

 

 
 

 
X Also known as X11 or the X Window System; X is a protocol used for exchanging information used to present a graphical user 
interface.  

 
 


