THE ARTOF
LINUX KERNEL
DESIGN

% - 2 R

) lllustrating the Operating

N\ System Design Principle |
and Implementation ,Mi

Yang Lixiang ¢ Liang Wenfeng 7
Chen Dazhao ° Liu Tianhou, 4

Wu Ruobing ® Song Qi ® Feng Ke CRC.Press
Translator: Zhu Tingshao 4 i

y

THE ARTOF
LINUX KERNEL
DESIGN

lllustrating the Operating
System Design Principle
and Implementation

This page intentionally left blank

THE ARTOF
LINUX KERNEL
DESIGN

Illustrating the Operating
System Design Principle
and Implementation

Yang Lixiang ¢ Liang Wenfeng
Chen Dazhao e Liu Tianhou,
Wu Ruobing ¢ Song Qi ¢ Feng Ke

Taylor & Francis Group, an informa business

CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2014 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20140224

International Standard Book Number-13: 978-1-4665-1804-9 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but
the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to
trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained.
If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical,
or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without
written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright
Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a
variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to
infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Contents

Preface

Author

I. From Power-Up to the Main Function

1.1

1.2

1.3

Loading BIOS, Constructing Interrupt Vector Table, and Activating

Interrupt Service Routines in the RealMode.
1.1.1 Procedure for Starting BIOS oo il

1.1.2 BIOS Loads the Interrupt Vector Table and Interrupt Service

Routinesinto Memory............ ...
Loading the OS Kernel and Preparing for the Protected Mode
1.2.1 Loading Bootsect.coiuiitiiii i
1.2.2 Loading the Second Part of Code— —Setup................
1.2.3 Load the System Moduleot
Transfer to 32-Bit Mode and Prepare for the Main Function...........
1.3.1 Disable Interrupts and Move System to 0x00000

1.3.2 Set the Interrupt Descriptor Table and Global Descriptor

Table.
1.33 Open A20 and Achieve 32-Bit Addressing..................

Xi

Xiii

1.3.4 Prepare for the Implementation of head.s in the

Protected Mode i il 21
1.3.5 CPU Starts to Executehead.s 23
14 SUMMATIY ..o 43
. Device Initialization and Process 0 Activation 45
2.1 SetRootDevice2and Hard Disk................ oot 46
2.2 Set Up Physical Memory Layout, Buffer Memory, Ramdisk, and
Main MemOTYo 46
2.3 Ramdisk Setup and Initialization i 49
2.4 Initialization of the Memory Management Structure mem_map 52
2.5 Binding the Interrupt Service Routine 53
2.6 Initialize the Request Structure of the Block Device 58
2.7 Binding with the Interrupt Service Routine of Peripherals and
Establishing the Human-Computer Interaction Interface................ 61
2.7.1 Setthe Serial Porto i 61
2.7.2 Setthe Display.coouiiuiiii e 62
2.7.3 Setthe Keyboard........... ..o, 62
2.8 TimeSettingo 66
2.9 Initialize Process 0.ttt 67
29.1 Initialization of Process 0o, 71
2.9.2 Set the Timer Interrupto.eiiuiiiiiiiiiinn., 73
293 Set the Entrance of System Call, 74
2.10 Initialize the Buffer Management Structure 75
2.11 [Initializethe Hard Disk...........o i i 78
2.12 Initialize the Floppy Disk 80
2.13 EnabletheInterrupt...........ooiuiiiiiiii e 80
2.14 Process 0 Moves from Privilege Level 0 to 3 and Becomes a
Real Processt 81
. Creation and Execution of Process | 85
3.1 Creation of Process 1....... ..ottt 85
3.1.1 Preparation for Creating Process 1 85
3.12 Apply for an Idle Position and a Process Number for Process 1...91
3.1.3 Call Copy_process() ... ovvvenueenneei e 92
3.14 Set the Page Management of Process 1 98
3.1.4.1 Set the Code Segment and Data Segment in the
Linear Address Space of Process 1.................. 99
3.14.2 Create the First Page Table for Process 1 and
Set the Corresponding Page Directory Entry. 101
3.1.5 Process 1 Shares Files of Process 0........................... 103
3.1.6 Set the Table Item in the GDT of Process 1 104
3.1.7 Process 1 Is in Ready State to Complete the Creation of
Process 1...o i 105

vi

Contents

3.2 Kernel Schedules a Process for the First Time. 109
33 TurntoProcessltoExecute......... ...t iiiiinnnna... 113
3.3.1 Preparing to Install the Hard Disk File System by Process 1... .. 115
3.3.1.1 Process 1 Sethd_infoof Hard Disk. 115
33.1.2 Read the Hard Disk Boot Blocks to the Buffer....... 116
3.3.1.3 Bind the Buffer Block with Request................ 125
33.14 Readthe HardDisk 129
3.3.1.5 Wait for Hard Disk Reading Data, Process
Scheduling, and Switch to Process 0 to Execute 134
3.3.1.6 Hard Disk Interruption Occurs during the
Execution of Process 0..............ccoviiinnn... 137
3.3.1.7 After Reading the Disk, Switch Process
Scheduling to Process 1.......................... 143
3.3.2 Process 1 Formats the Ramdisk and Replaces the Root Device
astheRamdisk. oo 146
3.33 Process 1 Loads the Root File System into the Root Device. 149
3.3.3.1 Copying the Super Block of the Root Device to the
super block([8]. ... 152
3.3.3.2 Mount the i node of the Root Device to the Root
Device Super Block in super_block[8].............. 157
3.3.33 Associate the Root File System with Process 1.... ... 160
4. Creation and Execution of Process 2 165
4.1 Open the Terminal Device File and Copy the File Handle 165
4.1.1 Open the Standard Input Device File 165
4.1.1.1 File_table[0] is Mounted to Filp[0] in Process 1 165
4112 Determine the Starting Point of Absolute Path...... 167
4.1.1.3 Acquiring theinodeof Dev...................... 172
4114 Determine the i node of Dev as the Topmost
inode 175
4.1.1.5 Acquire theinode of thettyOFile................. 177
4.1.1.6 Determine tty0 as the Character Device File........ 180
4.1.1.7 Setfile_table[0]ccovviiiiiiiiiin... 181
412 Open the Standard Output and Standard Error Output
Device File e 182
4.2 Fork Process 2 and Switch to Process 2to Execute...................... 187
43 Loadthe Shell Program...........o ... 198
4.3.1 Close the Standard Input File and Open thercFile 198
432 DetecttheShell File 201
4321 Detect the Attribute of theinode 201
4322 Test File Header’s Attributes...................... 202
433 Prepare to Execute the Shell Program........................ 206
433.1 Load Parameters and Environment Variables. 206
4.3.3.2 Adjust the Management Structure of Process 2. 210
4333 Adjust EIP and ESP to Execute Shell............... 212
Contents vii

434 Execute the Shell Program. 214
43.4.1 Execute the First Page Program Loading by

theShell i 214
4342 Map the Physical Address and Linear Address of

the Loading Page................. ...t 218
44 The System GetstotheIdleState.......... ..., 219
4.4.1 Create the Update Process.covueiiiiiiiniininenn.. 219
442 Switch to the Shell Process.t 220
443 Reconstruction of the Shell, 228
. File Operation 231
5.1 Installthe File System, 231
5.1.1 Get the Super Block of Peripherals.................. 232
5.1.2 Confirm the Mount Point of the Root File System 234
5.1.3 Mount the Super Block with the Root File System 235
52 OpeningaFile....... ... 236
52.1 Mount *Filp[20] in the User Process to File_table[64] 238
5.2.2 GettheFile’sinode.......... o il 239
5.2.2.1 Get the i node of the Directory File................ 239
5.2.22 Get theinode of the Target File................... 248
52.3 Bind File i node with File_table[64].......................... 249
53 ReadingaPFile 250
5.3.1 Locate the Position of the Data Block in the Peripherals........ 250
5.3.2 Data Block Is Read into the Buffer Block 254
5.3.3 Copy Data from the Buffer into the Process Memory. 255
54 CreatingaNewFile 256
5.4.1 SearchingaFile....... i, 256
5.4.2 CreateaNewinodeforaFile................ 258
543 Createa New ContentItem............. oot 260
55 WritingaFile. 265
5.5.1 Locate the Position of the File to Be WrittenIn................ 265
5.5.2 Apply for aBuffer Block. 267

5.5.3 Copy Specified Data from the Process Memory to the
BufferBlock o 268

5.5.4 Two Ways to Synchronize Data from the Buffer to the
Hard Disk.o 269
56 ModifyingaFile........ i 272
5.6.1 Reposition the Current Operation Pointer of the File........... 273
5.6.2 Modifying Files........... ..o i 273
57 ClosingaFile....... ... i 275
5.7.1 Disconnecting Filp and File_table[64] in the Current Process. 275
5.7.2 Releasing the Files’inode, 277
58 DeletingaFile... 277
5.8.1 Checking the Deleting Conditions of Files.................... 278
5.8.2 Specific Deleting Work. il 279

viii

Contents

6. The User Process and Memory Management 283

6.1 Linear Address Protectioncooiiiiiiiiiiiiiniiian.. 284
6.1.1 Patterns of the Process Linear Address Space 284

6.1.2 Segment Base Addresses, Segment Limit, GDT, LDT, and
Privilege Levelo 284
6.2 Paging............ 287
6.2.1 Linear Address to Physical Address.......................... 287
6.2.2 Process Execution Paging oL 289
6.2.3 Process SharingthePage.......... ...t 295
6.2.4 Kernel Paging.t 299
6.3 Complete Process of User Process from Creation to Exit 302
6.3.1 Create Processstrl......... ..., 302
6.3.2 Preparation to Load strl......... ..., 315
6.3.3 Running and Loading of Process strl 320
6.3.4 Exiting of Process strl..........coouiiiiniiniinennnenn.. 325
6.4 Multiple User Processes Run Concurrently............................ 331
6.4.1 Process Scheduling......... ... 331
6.4.2 Page Protectiono i i 336
7. Buffer and Multiprocess File 343
7.1 Functionof Buffer........ i 343
7.2 Structureof Buffer 345
7.3 The Function of b_dev, b_blocknr, and Request........................ 346

7.3.1 Ensure the Correctness of the Data Interaction between

Processesand Buffer Block il 346
7.3.2 Let the Data Stay in the Buffer as Long as Possible 353
7.4 Function of Uptodateand Dirt..........t 359
7.4.1 Function of b_uptodate 359
7.4.2 Functionoftheb_dirt ... o ... 365
7.4.3 Function of the i_update, i_dirt,ands_dirt................... 368
7.5 Function of the Count, Lock, Wait, Request 370
7.5.1 Function of b_count.ouiiinienne .. 370
7.5.2 Function of i_countc.uuuneee e 372
7.5.3 Function of b_lockand *b_wait.......... 375
7.5.4 Function of i_lock, i_wait, s_lock, and *s_wait................ 378
7.5.5 Functionof Requestt 381
7.6 Example 1: Process Waiting Queue of Buffer Block 383
7.7 Overall Look at the Buffer Block and the Request Item.................. 408
7.8 Example 2: Comprehensive Examples of Multiprocess Operating File. 411
8. Inter-Process Communication 431
8.1 PipeMechanisSm........ ..ot e 431
8.1.1 The Creation Processof the Pipe 433
8.1.2 Operation of Pipe 439

Contents

8.2 Signal Mechanism i 454
8.2.1 UseofSignal........ ... 458
8.2.2 The Influence of Signal on the Process Execution State 469
8.3 SUMMATY ... 479
. Operating System’s Design Guidelines 481
9.1 Run a Simple Program to See What the Operating System Has Done 481
9.2 Thoughts on the Design of the Operating System:
Master—Slave Mechanismoiiiiiii ... 486
9.2.1 Process and Its Creation Mechanism in the
Master-Slave Mechanism oL 486
9.2.1.1 Program Boundary and Process................... 486
9.2.1.2 Process Creation..................oooiiiats 487
9.2.2 How Does the Designing of Operating System Display the
Master-Slave Mechanism? 487
9.2.2.1 Master—-Slave Mechanism That the Operating
System Reflects in Process Scheduling 487
9.2.2.2 Master—-Slave Mechanism That the Operating
System Adopts in Memory Management 488
9.2.2.3 Master-Slave Mechanism Is Reflected by
OSFileSystem.covviiiiiiiiiiiiinnen.. 489
9.3 Three Key Techniques in Realizing the Master-Slave Mechanism 490
9.3.1 Protectionand Pagingol 490
9.3.2 Privilege Levelo i 493
9.33 Interrupt. 494
9.4 Decisive Factor in Establishing the Master-Slave Mechanism:
The Initiativeo 497
9.5 Relationship between Software and Hardware 498
9.5.1 Nonuser Process: Process 0, Process 1, Shell Process 498
9.5.2 Storageof Fileand Data................. oa.e. 499
9.5.2.1 Memory, Hard Disk, Buffer: Computing Storage,
Storing Storage, Transition State Storage 500
9.5.2.2 Guiding Ideology of Designing Buffer 502
9.5.2.3 Use the File System to Implement Interprocess
Communication: Pipeo L 505
9.6 Parent and Child Processes Sharing Page.............................. 505
9.7 Operating System’s Global Interrupt and the Process’s Local Interrupt:
Signal 506
0.8 SUMMATY ...ttt e 507
Conclusion 507

Contents

Preface

During the past several years, we have worked very hard to develop a new operating sys-
tem that could resist any intrusion attacks of illegal program from outside. We have estab-
lished two testing sites to welcome all hackers around the world to give it a try. People can
access the following website for intrusion testing:

ftp://203.198.128.163 or ftp://114.242.35.6

During the process of developing the new operating system, we realized that the
importance of understanding the operating system as a whole is much greater than just
focusing on details. The easiest way to understand the operating system is to look into a
simple operating system instead of any modern complicated ones nowadays. It is the main
reason that we have chosen Linux 0.11 (less than 20,000 lines of source code). After 20
years of development, compared with Linux 0.11, Linux has become very huge, complex,
and difficult to learn. But the design concept and main structure have no fundamental
changes. Learning Linux 0.11 still has important practical significances.

We have not only analyzed the detail of source code and the execution sequence of
the operating system but also focused on the “jobs” the operating system has done, espe-
cially the relationship among them, their means, the reason that they are executed, and
the design ideas that are hidden behind them. All of these have been analyzed in detail
and in depth.

The book is divided into three sections to explain the Linux operating system: the
first part (Chapters 1 to 4) analyzes the processes from booting the operating system to
the operating system that has been initialized and enters into the idle state; the second

Xi

part (Chapters 5 to 8) describes the actual operation process and status of the operating
system and the user process during the execution of the user program after the idle state;
the third part (Chapter 9) describes the entire Linux operating system design guidelines,
from microscopic detail up to macroscopic architecture.

In the first section, we explain the powering up and booting BIOS in great detail, the
BIOS loading the operating system, the initialization of the host, opening protected mode
and paging, calling main function, creating process 0, process 1, process 2, and shell pro-
cess, and the interactions with peripheral through the file system.

In the second part, we provided some simple but classical application programs and
explained the mount file system in detail, file operations, user process and memory man-
agement, multiple processes operating files, and IPC among user processes with the back-
ground of the implementation of these procedures.

We try to integrate the principle of the operating system into the explanations of the
actual operation process of a real operating system. We hope that after reading, the read-
ers may find that the operating system is not a pure theory, or “the liberal arts” concept of
computer theory, but systematic and has real, concrete, and actual code and case. Theory
and practice are closely combined with each other.

The third section elaborates the “master-and-slave mechanisms” and three key tech-
nologies to achieve the mechanisms: protection and paging, privilege level, and inter-
ruption. It also analyzes the decisive factor to ensure master-and-slave mechanism—the
initiative, furthermore, detailed explains the buffer, shared pages, signals, and pipeline
design guidelines. We try to explain the operating system design guidelines from the per-
spective of the operating system designers. By using the system ideology, we hope to help
readers understand and navigate the operating system itself and the design ideas hidden
behind.

This book was translated by Dr. Tingshao Zhu, the professor of the Institute of
Psychology, Chinese Academy of Sciences. Without his wisdom and hard work, it would
have been impossible to bring this book to English readers.

I also want to thank Wen Lifang, who is the vice president of Huazhang Press, China
Machine Press, and Yang Fuchuan, the deputy editor of Huazhang Press. They gave a full
range of support to the Chinese version of the book. I especially thank Mr. He Ruijun,
CRC Press, who handled the publishing to the English version and gave us great help. I
would also like to thank Kari Budyk, CRC Press, and the help of Mr. Zhang Guogiang and
Miss Yang Jin.

Yang Lixiang
University of Chinese Academy of Sciences

Xii

Preface

Author

Lixiang Yang is an associate professor of the University of Chinese Academy of Sciences.
His research interests include operating systems, compilers, and programming language.
Recently, he and his team successfully developed a new operating system that aims to
fundamentally solve the problem concerning the intrusion of illegal programs into com-
puters. They set up two websites for hackers to perform the intrusion attack test. These
addresses are ftp://203.198.128.163/ and ftp://114.242.35.6/. Furthermore, the contents in
the ftp address, even the address itself will be changed based on the research and develop-
ing of our operating system.

xiii

This page intentionally left blank

From Power-Up to
the Main Function

There are three steps from power-up to the main function, and they are designated to load
the operating system (OS) from a boot disk and prepare for the main function. The first
step is to load the BIOS (Basic Input/Output System), build the interrupt vector table, and
start interrupt service routines in real address mode. The second step is to load the OS pro-
gram from the boot disk into the memory using the interrupt service routines. The third
step is to complete any other preparation to run the 32-bit main function. This chapter
describes how these three steps work in the computer.

Tip:

The real address mode is designed to be compatible with Intel 80286 and 80x86.
It has a 20-bit memory address space (2?° = 1,048,576, which is 1 MB memory to
the maximum). It can directly access BIOS and peripheral devices, but it does
not provide any hardware support for paging and real-time multitasking. From
80286, the 80x86 central processing unit (CPU) is powered on from the real
address mode; earlier CPUs (e.g., 8086) have only one mode of operation, which
is similar to the real address mode.

Il |.I Loading BIOS, Constructing Interrupt Vector
Table, and Activating Interrupt Service Routines
in the Real Mode

As we know, we need to install an OS to operate a computer; otherwise, the computer is
useless. People just press the power button to boot up the computer, but they mostly know
very little about how the OS interacts with the hardware. Here, we will look into the whole
process of running an OS in great detail.

It is impossible to operate a computer without any software. However, at the moment
of power-up, the computer’s memory (i.e., random access memory [RAM]) is empty, and
the OS is on the floppy disk. Since the CPU can only run programs in memory, it cannot
run an OS from a floppy disk directly. To run an OS, it should be loaded into the memory
from a floppy disk first.

Tip:

RAM: The common memory of personal computers is a kind of RAM. After
power-up, it can be read and written directly. But if powered off, the data will be
lost.

The question is if the RAM is empty, who would load the OS?
The answer is BIOS.

[.I1.I Procedure for Starting BIOS

Before describing how BIOS loads the OS into memory, we should know the procedure
for starting BIOS. As we know, to execute a program, we should double click it or enter
the command in a command line interface, in case it actually runs on an existing OS.
However, at the moment of powering up, no program is in the memory, not even the OS.
Given that BIOS cannot be executed manually, who executes it then?

It is OxFFFFO!!!

From the perspective of the system, it is quite clear that we cannot start BIOS by any
software, but by hardware instead.

An Intel 80x86 series CPU can be worked in 16-bit real address mode and 32-bit
protected mode. For the purpose of compatibility, the 80x86 CPU is in real address mode
after power-up. The most important thing here is that the CPU forces CS to 0xFFFF and
IP to 0x0000; hence, the address of CS:IP is 0xFFFFO, as depicted in Figure 1.1, in which
we could find that 0xFFFFO is actually the address of BIOS.

Tip:

IP/EIP: instruction pointer. In the CPU, IP stores the offset of instructions to
be executed in the code segment. Working with CS, they make up the memory
address of the instruction to be executed. IP is the offset in the real address mode,
and EIP is the offset in the protected mode.

I. From Power-Up to the Main Function

0x00000 —————— Real mode memory address —————OxFFFFF

[@ BIOS Boot block l

.....

0xFE000 OxFFFFF

@ OxFFFFO
CS:0xF000
Power on IP:0x FFFO
OxFFFFO
CPU

Figure 1.1 The BIOS state in the memory after power-up.
Tip:

CS: code segment register. In the CPU, it points to the code segment to be executed.

Attention: This action is completed by hardware completely! If there is nothing at
0xFFFFO, the computer crashes. Otherwise, the system will start and run on.

The entry address of the BIOS is 0xFFFF0! That is, the first instruction of BIOS is at
this location.

I.1.2 BIOS Loads the Interrupt Vector Table and
Interrupt Service Routines into Memory

BIOS is not very big. But to understand it thoroughly, you must be familiar with computer
architecture, which is obviously beyond the topic of this book. Since we only focus on the
OS here, we only explain the BIOS code that is directly related to the OS.

The BIOS code is stored in a small ROM (read-only memory) chip on the mother-
board. Typically, different motherboards have different BIOS, but they follow a similar
procedure. To make it easy to walk through, we choose BIOS, which is only 8 KB. The
address is 0OXFE000-0xFFFFF, as shown in Figure 1.1. The CS:IP points to 0xFFFF0, where
BIOS starts. While starting BIOS, some information is printed on the screen, such as
graphics, memory, and so on. During this period, the interrupt vectors table and interrupt
service routines are built and executed, which are very important to boot the OS.

Tip:

ROM: it is usually made by flash memory now. Although flash memory chips can
be written under specific conditions, when used by BIOS, it serves as ROM. ROM is
able to keep information even if powered off, which is quite similar to the hard disk.

I.I Loading BIOS, Constructing Interrupt Vector Table, and Activating Interrupt Service Routines in the Real Mode

0x00000 OxFFFFF

1 ROM BIOS and VGA

nterrupt vector table " ﬁBIOS Data Interrupt service routine
EOANTTI “e., e ST
0x00000 0x003FF 0x00400 O0x004FF O0xO0EO05B OxOFFFE

Figure 1.2 Loading the interrupt vector table and interrupt service routine.

The BIOS puts the interrupt vector table at the beginning of the memory, which is
1 KB (0x00000-0x003FF). The BIOS data area is next to it, 256 B (0x00400-0x004FF),
and then the interrupt service routine (8 KB), 56 KB, comes after it (0xOE05B). Figure 1.2
shows the exact locations.

Tip:

Note that 0x00100 is 256 bytes and 0x00400 is 4 X 256 bytes = 1024 bytes, or
1 KB. Since it is from 0x00000, the high section of the 1 KB is not 0x00400 but
0x00400-1 instead, which is 0x003FF.

The interrupt vector table has 256 interrupt vectors and 4 bytes for each vector, includ-
ing 2 bytes for CS and 2 bytes for IP. Each interrupt vector points to a particular interrupt
service routine.

We will explain in detail how to use these interrupt service routines to load OS kernel
into the memory.

Tip:

INT: interrupt. As its name suggests, INT refers to an interrupt of an ongoing
process. An external event interrupts the program that is being executed, to run
a specific procedure to handle this event. After the INT procedure is done, the
interrupted program will continue. Interrupts are quite similar to the function
callin C.

Interrupt means a lot to the OS; we will discuss it further later on.

IB 1.2 Loading the OS Kernel and Preparing for the
Protected Mode

From now on, the computer will perform the actual boot operation, loading the OS from
the floppy disk to the memory. For Linux 0.11, it tries to load three parts of the OS kernel
into the memory step by step. First, BIOS INT 0x 19h loads the first sector Bootsect into
the memory. Then, Bootsect loads the second and the third parts into the memory, which
are 4 sectors and 240 sectors, respectively.

I. From Power-Up to the Main Function

[.2.]1 Loading Bootsect

According to our experience, if you press the Del key immediately after power-up, the
computer will display a BIOS screen, which allows you to change the configuration of the
boot device. Nowadays, we usually set the hard disk as a boot disk. For Linux 0.11, which
was released in 1991, the boot device is a floppy disk. But it does not matter, since booting
from either a floppy disk or a hard disk is almost the same.

After running BIOS, the computer finishes self-check (these operations have no direct
relationship with starting the OS; thus, we just ignore them). By BIOS, the CPU receives
INT 19h and then looks up the INT 19h interrupted vector. We can find the exact location
of the INT 19h interrupt vector in Figure 1.3, which is next to 0x00000.

CS:IP points to 0xOE6F2, which is the entry address of the interrupt service program
of INT 19h, as shown in Figure 1.3. This interrupt program is designed to load the first
sector (512 B) into the memory, regardless of the version of Linux. No matter what the
Linux kernel is, the BIOS program just loads the first sector into the memory, nothing else.

Tip:

The interrupt vector table is an important part of the real address mode interrupt
mechanism, as it stores the memory address of the interrupt service routine.

Interrupt service routines are indexed by the interrupt vector table that
responds to the interrupt, and these routines are special codes with a designated
purpose.

According to the “stiff” rule, the interrupt service routine of INT 0x 1%h loads the
contents of floppy disk No. 0, track 0 of 1 sector into memory at 0x07C00. We can identify
the exact location of the first sector on the left in Figure 1.4.

This sector is the boot part of Linux 0.11, that is, the Bootsect, which loads other parts
of the OS into the memory. After the first sector loaded, Linux 0.11 is about to be ready to
serve as an OS.

This action is very important, since the computer and the OS are linked together from
now on. The first sector is bootsect.s (later referred to as Bootsect), which is written in

0x00000 OxFFFFF

...........

.
.
tea,

..,

..,

0x00000 0x003FF 0x00400 0x004FF O0xOEP5B 0xOFFFE
_ OXOE6F2
0x19 interrupt Start to load service program

Figure 1.3 Run int 0x 1h.

1.2 Loading the OS Kernel and Preparing for the Protected Mode

0x00000 OxFFFFF

B ROM BIOS and VGA

0x07C00
Side 0 track 0 sector 1
(Built by bootsect.s)
1
Read the floppy
disk data...

Figure 1.4 Load the program from the first sector to the memory.

assembly language. It is the first system code that was loaded into the memory, although
only for booting.

At this stage, Bootsect has been loaded from a floppy disk into the memory, and it
then loads the second and third sectors into the memory consequently.

Comment

Note: All BIOSs are stored in the ROM on the mainboard, and they are quite different.
The main reason for this is the mainboard; OS has nothing to do with it.

Theoretically, one can install any suitable OS, either Windows or Linux on a com-
puter. It is obvious that each OS has its own boot scheme. The BIOS and the OS are quite
different. In order to work together smoothly, they must establish a coordination mecha-
nism to communicate and cooperate.

It is possible to set up a coordination mechanism with an existing OS. The difficulty
is in setting up coordination mechanisms compatible with any future OS. The proposed
approaches are “two side conventions” and “orientation recognition.”

To the OS (Linux 0.11), “conventions” means that the OS designers have to put the
starting program in the boot sector (0 side 0, track 1 in the floppy disk sectors); the remain-
ing program can be loaded into memory in order.

To the BIOS, “conventions” means loading the boot sector into 0x07C00, regardless
of what this sector really does. If there is an error, it only reports the mistake and does
nothing.

The coordination mechanism must be useful, simple, and effective. As long as the
manufacturers of the BIOS and OS follow the same mechanisms, they can build systems
with their own features.

I. From Power-Up to the Main Function

[.2.2 Loading the Second Part of Code— —Setup

1. Bootsect memory planning

Now, BIOS has loaded Bootsect into the memory. Then, it loads the second and
third sectors into the memory. But first of all, the Bootsect would do some memory
planning.

In general, we use a high-level language, such as C, to write programs and run
these programs on an OS. We just write the code and do not care about its loca-
tion in the memory. It is because the OS and the compiler have done a great deal
of ensuring that it works correctly. Since we are now focusing on the OS itself, we
have to better understand the memory arrangement to ensure that no matter how
the OS runs, there are no collisions between code and code, between data and data,
and between code and data. To do so, we would like to discuss the memory plan-
ning of the OS.

In the real address mode, the maximum memory is 1 MB. To arrange the mem-
ory, Bootsect has the following code first:

SETUPLEN = 4

BOOTSEG = 0x07c0

INITSEG = 0x9000

SETUPSEG = 0x9020

SYSSEG = 0x1000

ENDSEG = SYSSEG + SYSSIZE

! nr of setup-sectors

! original address of boot-sector

! we move boot here - out of the way
! setup starts here

! system loaded at 0x10000 (65536) .

! where to stop loading

The code is to set the location of the following variables: the number of setup
program sectors (SETUPLEN), the address of the setup (SETUPSEG), the address

0x00000 SETUPSEG=0x9020 OxFFFFF

ROM BIOS and VGA

ENDSEG=SYSSEG+SYSSIZE

SYSSEG=0x1000

BOOTSEG=0X07C0 INITSEG=0x9000

ROOT_DEV=0x306

Set the boot file system as the
first sector of the second disk

Figure 1.5 Memory arrangement in the real mode.

1.2 Loading the OS Kernel and Preparing for the Protected Mode

of Bootsect (BOOTSEG), the new address of Bootsect (INITSEG), the address of
the kernel (SYSSEG), the end address of the kernel (SYSEND), and the number of
the root file system device (ROOT_DEV). These are shown in Figure 1.5. These
addresses are used to make sure that the code and data could be loaded into the cor-
rect place. We will find the benefit of memory planning in the following sections.
From now on, we should keep in mind that OS memory planning is very impor-
tant. With this concept, let us continue to talk about the execution of Bootsect.

2. Copy the Bootsect

Bootsect copies itself (total 512 B) from 0x07C00 to 0x90000, as shown in Figure 1.6.
The operation code is as follows:

mov ax, #BOOTSEG
mov ds, ax

mov ax, #INITSEG
mov es,ax

mov cx, #256

sub si,si

sub di,di

rep

movw

Please note that DS (0x07CO0) and SI (0x0000) constitute the source address
0x07C00; ES and DI constitute the target address 0x90000 (see Figure 1.6), and the
line mov CX,#256 provides a “word” number (a word is 2 bytes); 256 words is just
512 bytes, which is the byte number of the first sector.

Also, from the code, we can see that the BOOTSEG and INITSEG mentioned
in Figure 1.5 start to work. Note that CS points to 0x07C0 now, which is the address
of the original Bootsect.

0x00000 INITSEG=0x9000 OxFFFFF

ROM BIOS and VGA

//bootsect program

movw

P —» jmpi go,INITSEG
‘ 1P g0: MoV ax,cs
0x07C00 mov ds,ax

BOOTSEG=0x07C0

Figure 1.6 Bootsect copies itself.

I. From Power-Up to the Main Function

Comment

Because of the “two side conventions” and “orientation recognition,” Bootsect is
“forced” to load into 0x07C00. Now, it moves itself to 0x90000, which means that the
OS starts to arrange memory to meet its own requirements.

After being copied to the new address, Bootsect executes the following:

rep

movw

jmpi go, INITSEG
go: mov ax,cs

mov ds,ax

We already know in Figure 1.6 that the original value of CS is 0x07C0; after exe-
cuting these codes, CS becomes 0x9000 (INITSEG), and IP is the offset from 0x9000
to “go:mov AX,CS 0x9000.” In other words, CS:IP now points to “go:mov AX,CS.” We
can learn it clearly from Figure 1.7.

The previous 0x07C00 was built by “two side conventions” and “orientation rec-
ognition.” From now on, the OS becomes independent of BIOS, and it can put its own
code anywhere.

Comment

jmpi go, INITSEG
go: mov ax,cs

These two lines of codes are very tricky. After Bootsect copies itself, the contents in
0x07C00 and 0x90000 are the same. Please note that before “jmpi go, INITSEG,” CS is
0x07C0. After that, CS becomes 0x9000. Then, it executes the next line, “mov ax,cs.” It
is a good way to “jump and continue performing the same codes.”

0x00000 INITSEG=0x9000 OxFFFFF

ROM BIOS and VGA

/1 bootsect program

movw
jmpi go,INITSEG

IP —»|go: MmOV ax,cs 1P CS : IP
moyv ds,ax 0x90000

0x9000: [gcﬂ

BOOTSEG=0x07C0

Figure 1.7 Jump to “go” and continue.

1.2 Loading the OS Kernel and Preparing for the Protected Mode

After Bootsect copied itself to a new place, and continued to execute, the segment was
changed, and then other segments changed accordingly, including DS, ES, SS, and SP. Let
us look into the following lines:

go: mov ax,cs
mov ds, ax
mov es,ax
! put stack at 0x9ff00.
mov ss,ax
mov sp, #0xFF00 ! arbitrary value >>512

! load the setup-sectors directly after the bootblock.
! Note that ‘es’ is already set up.

The above lines are to set the data segment registers (DS), additional segment registers
(ES), and stack base address registers (SS) into the same value as the code segment register
(CS) and set SP to point 0xFF00, as shown in Figure 1.8.

Now, let us focus on the register settings that relate to stack operation. SS and SP con-
stitute the location of stack data in the memory. Setting the value of these two registers is
the foundation of stack operations (e.g., push and pop).

Now, we switch to Bootsect. Before setting SS and SP, there is no stack; after that, the
stack is available for operation. It is great significance to set SS and SP, which means that
OS could execute more complex instructions then.

Each stack operation has a direction, and the direction of push is depicted in Figure
1.8. Note: that is the direction from high to low address.

Tip:

DS/ES/FS/GS/SS: data segment registers in CPU. SS points to the stack segment,
which is managed by the stack mechanism.
SP: stack pointer, points to the current top of the stack segment.

Now, the first operation of Bootsect has arranged the memory and copied itself from
0x07C00 to 0x90000.

0x00000 OxFFFFF

SETUPSEG=0x9020 Stack (the enlarged direction
of the stack)

ROM BIOS and VGA

0X9EF00
X Isp [<=F=oxEFo0

P
DS
ES
SS

INITSEG=0x9000

0x9000

Figure 1.8 Set the value of the segment register.

I. From Power-Up to the Main Function

3. Load the Setup program into memory

Next, Bootsect will execute the second step, to load the setup program into the
memory.

Loading the setup program relies on the INT 0x 13h interrupt vector, which
refers to the interrupt service routine in BIOS. Figure 1.9 shows the location of the
INT 0x 13h interrupt vector and the entry address of the service routine.

The loading service handler pointed by the INT 0x 1%h interrupt vector is
executed by BIOS, while the INT 0x 13h interrupt service program is executed by
Bootsect, which is part of the OS.

The INT 0x 1%h interrupt service routine loads the first sector of the floppy disk
to 0x7C00, while INT 0x 13h loads the sector to the specific location of memory.
Actually, it can load the sector to any designated location.

According to this feature of the service routine, it passes the sector and mem-
ory position to the service routine when calling INT 0x 13h.

//code path:boot/bootsect.s
Load_setup:
Mov dx, #0x0000
Mov cx, #0x0002
Mov bx, #0x0200
Mov ax, #0x0200+SETUPLEN
Int 0x13
Jnc load_setup
Ok_load_setup:

0x00000 OxFFFFF

| Interrupt vector table -
ce

0x00000 0x003FF 0x00400 0x004FF OxOE(Q5B OxOFFFE
0xOE6FE
0x13h Interrupt Disk service program

Figure 1.9 Call INT 0x 13h interrupt.

1.2 Loading the OS Kernel and Preparing for the Protected Mode

0x00000 SETUPSEG=0x9020 OxFFFFF

ROM BIOS and VGA

0x07C00

0 DISK 0 Track 2~5sector
(generated by setup.s)

|

Read floopy
data...

INITSEG=0x9000

Figure 1.10 Load the setup program.

We can see from the four mov operators that the system passes parameters to the
BIOS interrupt service routine by using several general-purpose registers. This is com-
monly used by the assembly program, which differs from C.

After passing the parameters, BIOS executes INT 0x13, to fire 0x13 interrupt and
look up the interrupt service routine in the interrupt vector table. Then, it loads setup.s
to SETUPSEG. According to Figure 1.5, Bootsect starts from 0x90000 with a size of 512
bytes. Obviously, 0x90200 is next to the end of Bootsect; thus, they combine each other.
Figure 1.10 indicates the locations of sectors, the number of sectors, address, and length,
which will be loaded from the floppy disk.

Now, the OS has loaded five sectors from the floppy disk. Setup begins to work after
the execution of Bootsect.

The address of SS:PP is 0x9FF00. There is abundant space between 0x90200 and the
setup program. The system has enough space to execute any operation (e.g., push) after
loading setup. During startup, the data pushed are countable, and we will find out that the
OS designer has calculated the space precisely.

[.2.3 Load the System Module

The second part of codes has loaded into the memory, followed by the third part. We call
the INT 0x 13h interrupt to load the code, as shown in Figure 1.11.

Next, Bootsect will load the system module into the memory. There is no signifi-
cant difference between this procedure and previous ones. The only difference is that the
number of sectors is 240, which is 60 times greater than previous ones and a bit time-
consuming. In order to prohibit any improper operation by the user while waiting, Linux
printed out a message, “Loading system...,” to indicate that the computer is still working.
Since the main function of the OS has not started, it is much more difficult than C to do
s0, as all should be done by the assembly code. From an architectural perspective, the
monitor is also a peripheral device, and it can be operated by calling BIOS interrupt. But

I. From Power-Up to the Main Function

0x00000 OxFFFFF

0x00000 0x003FF 0x00400 0x004FF OxOEP5B OxOFFFE

O0xOE6FE
Disk service program

0x13 Interrupt

Figure 1.11 Call INT 0x 13h interrupt.

since they are not particularly helpful for us to understand the OS, we will not discuss
this further. We should know that Bootsect loads 240 sectors of the system module into
the memory after INT 0x 13h. The main function is done by loading the 240 sectors into
SYSSEG(0X10000). Figure 1.12 shows the memory space that is occupied by the system
module.

Because reading a floppy disk is very time-consuming, it is necessary to monitor the
whole process and check the results. Reading consists of many steps, and it can be done by
0x13h interrupt service in the end.

Now, the OS has been loaded into the memory as a whole. Bootsect has almost done
all its work except inspecting the root device number, as shown in Figure 1.13.

After inspecting, the root device number is saved in root_dev, which is part of system
data.

0x00000 OxFFFFF

0 Disk 0 Track 6 Sector almost 240 sectors
SYSSEG=0x10000 (Kernel program)

Read floppy
data...

Figure 1.12 Load the system module.

1.2 Loading the OS Kernel and Preparing for the Protected Mode

0x00000 OxFFFFF

ROOT DEV=07

Root_dev already set
(ROOT_DEV=0) Sector number

15 18

ROOT_DEV=0x0208 ROOT_DEV=0x021C
(dev/at0(2,8)) (/dev/PS0(2,28))

0-A DRIVER
1-B DRIVER
Root_dev =2 2-C DRIVER
Minor_dev = type*4+nr 3-D DRIVER

PN
2012MB) 7(1.44 MB)

Figure 1.13 Confirm the root device number.

Tip:

Root Device: Linux 0.11 used the file system management which was used by Minix,
which requires that the system must have a root file system. Linux 0.11 does not
provide tools to build a file system on a device, so it creates a file system and then
loads to the machine using tools like FDISK and Format. Linux 0.11 has a system
kernel image and root file system.

Here, the file system does not refer to the traditional file system in the OS but the
device, for example, a formatted floppy disk.

Now, Bootsect has done all its tasks.

The execution of “jmpi 0, SETUPSEG” will jump to 0x90200, which is the location of
setup, while CS:IP points to the first instruction of setup. It means that the setup program
will do the work after Bootsect. Figure 1.14 describes the initial state right after jumping
to the setup program.

//code path:boot/bootsect.s
Jmpi 0, SETUPSEG

Setup begins to work. The first task is to extract the system data by calling the inter-
rupt service. It will also get the hard disk parameter table 1 and hard disk parameter table
2 from the memory, which is pointed by the 0x41 and 0x46 vectors, and then save them in
0x9000:0x0080 and 0x9000:0x0090.

I. From Power-Up to the Main Function

0x00000 Stack (the enlarged direction OxFFFFF

.. of the stack)
h B ROM BIOS and VGA

0X9FF00
X @ 0xFF00

SETUPSEG=0x9020

CS: 1P
INITSET=0x9000

0x9020:0

Figure 1.14 Setup begins to execute.

The system data are loaded into 0x90000-0x901FC. Figure 1.15 shows its content and

position precisely, and they play an important role in the main function.

//code path:boot/setup.s
Mov ax, #INITSEG
Mov ds, ax
Mov ah, #0x03
Xor bh, bh
Int 0x10
Mov [0], dx
! Get memory size (extended mem, KB)
Mov ah, #0x88
Int 0x15
Mov [2], ax

0x00000 Stack OXFFFFE

ROM BIOS and VGA

INITSEG=0x9000

Memory | Length Name Description

[0x90000 2 cursor column(0x00-left) row (0x00-right)
0x90002 2 extend memory | extend memory array from 1MB position
0x90004 2 display page display the current page

0x901FF 0x90006 1 display mode
0x90007 1 character column
0x90000 | 0x901FD 0x90008 5 7

0x9000A 1 display memory | memory (0x00-64k,0x01-128,0x02-192k,0x03=256k)
0x9000B 1 display state 0x00-color I/0O=0x3dX; 0x01-monochrome,]/O=3bx
0x9000C 2 parameter display card characteristic parameters
s cursor position
0x90080 16 disk parameter | The first disk’s parameter
0x90090 16 disk parameter | The second disk’s parameter

—[0x901EC 2 root_dev The device number of root file system

Figure 1.15 Load the machine system data.

1.2 Loading the OS Kernel and Preparing for the Protected Mode

Mov cx, #ox10
Mov ax, #0x00
Rep

stosb

The system data extracted by BIOS will cover part of Bootsect, and some data cannot
be covered since they are still being used.

Review

The system data takes up memory space from 0x90000 to 0x901FD, which is 510 bytes
in total. The Bootsect only has 2 bytes left. The OS is strict to using memory, and it
uses memory according to its need. The loaded data just take up one sector, and the
size of Bootsect is also one sector. The released memory will be used by other routines
immediately. After Bootsect has completed its task, the setup puts its data to cover the
exact space, and the efficiency of memory usage is very high.

Now, the core part of the OS has been loaded completely. Then, the system will trans-
fer from the real address mode to the protected mode.

|.3 Transfer to 32-bit Mode and Prepare for the
Main Function

The OS will then run in the 32-bit protected mode, in which it completes much recon-
struction and continues to prepare for executing the main processes. In this section, the
OS executes many operations, including enabling the 32-bit addressing control, opening
the protected mode, establishing the interrupt response mechanism, conducting issues
about the protected mode, building a memory paging mechanism, and preparing for the
main function.

[.3.1 Disable Interrupts and Move System to 0x00000

As shown in Figure 1.16, the preparation will disable the interrupts. It means that no mat-
ter what happens, the system will not respond until the interrupt service in the protected
mode is enabled. The interrupt service is no longer the service provided by BIOS but by
the OS.

//code path:boot/setup.s
cli

Tip:

EFLAGS is stored in the CPU, including state flags, control flags, and system
flags.

I. From Power-Up to the Main Function

1
V|V

1 A[VIR|oIN| O |OID}I)T|S|Z|0|Al|P]-|C
0[01010/010101010105 X} LicvlF|O P (F[F| el E[F|O[F[[e[*[E

EFLAGS ||

0

Figure 1.16 Disable interrupt.
Review

The operation of cli and sti frequently appears in the OS. It is easy to find that cli and
sti always emerge on the two sides of the operation process in order to disable inter-
rupt during a process. Then, the system will enter the protect mode, and the interrupt
vector table in the protect mode takes over the IDT in the real mode.

Next, setup completes a very important operation: copying the core program from
the 0x10000 to the 0x00000 position (Figure 1.17).

//code path:boot/setup.s
Do_move:

Mov es, ax

Add ax, #0x1000
Cmp ax, #0x9000
Jz end_move

Mov ds, ax

Sub di, di

Sub si, si

Mov cx, #0x8000
Rep

Movsw

Jmp do_move

If we look into the content of Figure 1.2, 0x00000 originally stores the interrupt vector
table and BIOS data. Copying will cover the interrupt vector table and BIOS data com-
pletely. The OS will not have the ability to deal with the interrupt, and this is the real
meaning of disabling interrupt.

Tip:

There are several benefits to doing this:

1. Covering BIOS interrupt vector table means disabling the interrupt service
provided by BIOS in the real address mode.

2. Collecting the memory space that is used by the program.

3. Putting the core modules at the beginning and at the most advantageous
position of physical memory.

1.3 Transfer to 32-bit Mode and Prepare for the Main Function

0x00000 OxFFFFF

isable
Kernel ROM BIOS and VGA

! SYSSEG=0x1000

OXOOOOOE ‘ OxFFFFF

F——iCopy

jsable
St R OMBIOS and VGA

ES DS
*DS and ES coordinate for the completion of the copy operation of kernel

Figure 1.17 Copy the system module to the beginning of memory.

After the system module is copied to 0x00000, this operation covers the interrupt vec-
tor table of BIOS, that is, the abolition of the 16-bit interrupt mechanism. The OS cannot
run without interruption, since the peripheral devices, system calls, and process sched-
uling depends on the interrupt. Linux is a 32-bit OS; thus, the 16-bit interrupt mechanism
is obviously not appropriate, which is the main reason for the abolition of the 16-bit inter-
rupt mechanism. Hence, it makes use of the 32-bit interrupt mechanism instead.

[.3.2 Set the Interrupt Descriptor Table and Global Descriptor Table

The setup routine continues to prepare for the protected mode and set the initial value of
IDTR and GDTR.

Tip:

GDT: It is the only array that stores segment register values in the system and
cooperates with the program during the protected mode. It also plays an impor-
tant role while switching OSs. It can be regarded as the total list of all processes,
storing every task LDT (local descriptor table) address and TSS (task structure
segment) address to complete segment addressing, site protection, and recovery.

GDTR: GDT can be stored at any position in the memory. A program needs
the entrance of GDT when using the segment descriptor through the segment
register. It can use the LGDT (load GDT) operator to load the GDT base address
into GDTR after the initialization of GDT.

IDT: The entrance of all interrupt services in the protected mode.

IDTR: The IDT register stores the beginning address of IDT.

//code path:boot/setup.s
Lidt idt 48
Lgdt gdt_48

Gdt :

.word 0, 0, 0, O

.word O0x07FF

.word 0x0000

.word 0x9A00

.word 0x00CO

.word 0x07FF

I. From Power-Up to the Main Function

.word 0x0000
.word 0x9200
.word 0x00CO

Igt_48
.word 0
.word 0, O
Gdt_48
.word 0X800

.word 512+gdt, 0x9

Tip:

The 32-bit interrupt mechanism differs from the 16-bit interrupt mechanism in
principle. The most significant difference is that the 16-bit interrupt mechanism
uses the interrupt vector table, while the 32-bit interrupt mechanism uses the
interrupt descriptor table. The beginning position of the interrupt vector table
is 0x00000 and fixed all the time, while the beginning position of the interrupt
descriptor table is not fixed, and it can be changed accordingly.

The GDT table is a data structure that manages the segment descriptor in the
protected mode. It is important to the OS and for process scheduling.

Now, the kernel does not really run, and there is no process either. Thus,
the first item of the GDT table is empty, the second is the kernel code segment
descriptor, the third is the kernel data segment descriptor, while others are null.

Although the IDT table has been set, it is empty because of the cli.

The whole procedure of creating the two tables can be divided into two steps:

1. The two tables and the data have been hard-coded when implementing the
kernel.
2. IDTR and GDTR tables.

The data are set and compiled in the kernel code and load into the memory

while running. The register is operated by the lidt and lgdt operator in the pro-
gram, as shown in Figure 1.18.

0x00000 SETUPSEG=0x9020 OxFFFFF

D'\sab\e
interrupt

Kernel ROM BIOS and VGA

INITSEG=0x9000 -

47 oxo0000 1 0 IDTR “..;..-"00C0 9200
(o] o [o] |'~.‘ 0000 07FF

Base address Limit 00C0 9A00

. {0000 O7FF

| | *. [0000 0000

47 0x00200+ 12 9GDTR 2 citoooo 0000

[0x9]512+GDT[0x800]
Base address Limit

Figure 1.18 Set GDTR and IDTR.

1.3 Transfer to 32-bit Mode and Prepare for the Main Function

There are two methods to put data in memory:

1. Allocate a memory district and initialize it by the data.
2. The code generates data, such as push into the stack.

[.3.3 Open A20 and Achieve 32-bit Addressing

The next action is to open A20 (Figure 1.19).

Opening A20 means that the CPU can be 32-bit addressing, and the maximum
addressable space is 4 GB.

Linux can only support 16 MB of physical memory, but the linear address space is
already 4 GB.

//code path:boot/setup.s
Call empty 8042

Mov al, #0xD1

Oout #0x64, al

Call empty 8042

Mov al, #OxDF

Oout #0x60, al

Call empty 8042

Tip:
A CPU has 1 MB space ranging from 0 to 0xftftf and needs 20 address lines in the

real mode. A CPU will use the 32-bit address in the real mode.

Addressing in memory after opening A20

0x00000 OxFFFFF

ko

0x00000 OxFFFEFFFF

OxFFFFF

Addressing in physical memory after opening A20

0x00000 OxFFFFF

_-i

E 5

0x00000 OxFFFFF

e N T

Figure 1.19 Open A20.

OxFFFFFF

20

I. From Power-Up to the Main Function

In the real address mode, if the program address is more than 0xFFFFF, the CPU
will roll back to the beginning of the memory for addressing. For example, every seg-
ment register cannot exceed 0xFFFF, the same as IP. They both can address to 0x10FFFE
at the most, which means that the program can address more than 0xFFFFF in the real
address mode. Because of this, enabling the A20 address line means disabling the “roll-
back” addressing mechanism of the CPU in the real mode.

I.3.4 Prepare for the Implementation of head.s in the Protected Mode

To establish the interrupt mechanism, setup.s will have to reprogram the PIC 8259A
(Figure 1.20).

Tip:

8259A: 8259A is a chip designed for 8085A and 8086/8088 to control interrupt. One

piece of 8259A can manage eight priority interrupt levels. 8259A can cascade to a sys-

tem that can manage up to 64 priority interrupt levels in the case of no circuit adding.
Codes as follows:

mov $0x11, %al # initialization sequence (ICW1)
#ICW4needed (1) , CASCADEmode, Level-triggered

out %al, $0x20 # send it to 8259A-1

.word 0x00eb, 0x00eb # jmp S+2, jmp S+2

out %al, SOxA0 # and to 8259A-2

.word 0x00eb, 0x00eb

IRQ NO. Application
ssscesr— JRQO 0x20 (32) | 8253 clock interrupt
IRQ1L 0x21 (33) | Keyboard interrupt
IRQ2 0x22 (34) | Connect subsidiary chip
IRQ3 | 0x23 (35) | Serial port 2 In the protected mode,

IRQ4 0x24 (36) | Serial port 1 g .

1IRQ5 0x25 (37) | Parallel port 2 int 0x00—int ‘OXIF are

IRQ6 | 0x26(38) | Floppy disk driver reserved for internal

%gg; gxgg 8{9)2 llzar«’lillél Porlt lk i interrupt and exceptional
X eal time clock interrupt .

TRQ9 | 0x29 (41) | Reserved interrupt by Intel,

IRQI0 | Ox2a (42) | Reserved thus, IRQ must be reset.

IRQ11 | 0x2b (43) | Reserved(Network API)

IRQ12 | 0x2c (44) | PS/2 mouse interrupt

IRQ13 | 0x2d (45) | Math coprocessor

sewvssEvEIEEsOIPEIIs NI YR IR TIETREETIRTRTUT O LS RS

IRQ14 | Ox2e (46) | Disk interrupt 0x00 —
ool IRQ15 | 0x2f (47) Reserved
8259A 8259A OxIF
t..—IRQO 0x00 — —IRQO 0x20
IRQ1 0x01 IRQ1 0x21
: IRQ14 0xOE IRQ14 0x2E
seeeee-LIRQ15 O0XOF — — IRQ15 0x2F —
Interrupt request Interrupt No. Interrupt request Interrupt No.
Before resetting After resetting

Figure 1.20 Resetting 8259A.

1.3 Transfer to 32-bit Mode and Prepare for the Main Function

mov $0x20, %al # start of hardware int’s (0x20) (ICW2)

out %al, $0x21 # from 0x20-0x27

.word 0x00eb, 0x00eb

mov $0x28, %al # start of hardware int’s 2 (0x28)
out %al, SOxAl # from 0x28-0x2F

.word 0x00eb, 0x00eb # IR 7654 3210

mov $0x04, %al # 8259-1 is master (0000 0100)— \
out %al, $0x21 # |
.word 0x00eb, 0x00eb # INT /
mov $0x02, %al # 8259-2 is slave(010— > 2)

out %al, SOxAl

.word 0x00eb, 0x00eb

mov $0x01, %al # 8086 mode for both

out %al, sS0x21

.word 0x00eb, 0x00eb

out %al, SOxAl

.word 0x00eb, 0x00eb

mov SOXFF, %al # mask off all interrupts for now
out %al, sS0x21

.word 0x00eb, 0x00eb

out %al, SOxAl

In the protected mode, INT 0x00-int Ox1F is reserved for internal and exception
interrupt by Intel. If we do not reprogram 8259A, INT 0x00-int 0x1F will be overlapped.
For example, IRQO (timer interrupt) is the eighth interrupt (INT 0x08), but this interrupt
is reserved as “Double Fault” in the protected mode. Hence, we must reprogram 8259A to
respond to IQROx00-1QX0x0F; in other words, IQROx00-IQROx0F corresponds with INT
0x20-int 0x2F in the protected mode (Figure 1.21).

Setup.s enables the CPU in the protected mode by the first two lines as follows, setting
the PE bit of the CRO Register.

//code path:boot/setup.s

mov ax,#0x0001 ! protected mode (PE) bit
Imsw ax ! This is it! !

jmpi 0,8 ! jmp offset 0 of segment 8 (cs) !

Tip:

CRO Register: No. 0 32-bit control register is used to store systemic control flags.
No. 0 bit is PE (protected mode enable) flag. If set, the CPU will work in the pro-
tected mode; otherwise, in the real mode.

31 0

ot 1| CRO register

[

PE=1
CPU enters into protected mode

Figure 1.21 Open the protected mode.

22

I. From Power-Up to the Main Function

0x00000 OxFFFFFF

0x9000:0 OXFEEFE Sebie

head.s setup.s

]
 0x00000000 0x9020:0 10x9020:7FF
| (The start address of head.s in kernel) |

I

Start executing by jmp from the setup to the entry of head

Figure 1.22 Jump from setup.s to head.s.

The key character of the CPU in the protected mode is that it executes a program
according to GDT.

Note that the value of GDT in Figure 1.18 is the default setting. The way from setup.s
to head.s is described in Figure 1.22.

In this code, “0” is offset address and “8” is segment selector, which is used to select
GDT (global descriptor table), the No. of GDT, and the descriptor privilege level. Here, “8”
should be “1000” in binary. To understand this code, we should refer to Figure 1.23 and
know that every bit of “1000” has a designated purpose.

The last two bits of “1000” means kernel privilege level, in which “11” means user
privilege level. No. 3 bit of “1000” means selecting GDT; accordingly, “1” means LDT.
No. 4 bit of “1000” means No. 1 of GDT. We know that the CPU executes the program
where the segment base address is 0x00000000 and the offset address is 0, which is the
starting location of head.s, and which means the CPU will execute head.s.

Setup.s finishes here, and the following preparation will be done by head.s.

[.3.5 CPU Starts to Execute head.s

Before introducing head.s, let us look into the whole process from Bootsect to main.

Before executing main, the CPU must execute three routines: bootsect.s, setup.s, and
head.s.

First, bootsect.s is loaded to 0x07C00, which will then be copied to 0x90000. Second,
setup.s is loaded to 0x90200. They both are loaded and executed, respectively, but head.s
is different.

The main process is described as follows. First, head.s should be compiled into object
code and then linked into the system module. That means that the system module has
both kernel program and head.s. It is important that head.s is loaded before the kernel.
The size of head.s is 25 KB + 184 B in memory. As mentioned above, setup.s copies the
system module to 0x00000; because head.s is loaded in front of the kernel in the system
module, 0x00000 is the start address of head.s as shown in Figure 1.24.

In addition to the preparation for main, head.s manages the layout of the kernel pro-
gram in memory and the normal operation of kernel program by creating the kernel pag-
ing system in the memory space of head.s. That means that head.s creates the page table
directory, page table, buffer, GDT, and IDT at 0x00000 in memory where head.s will be
covered.

1.3 Transfer to 32-bit Mode and Prepare for the Main Function

23

Before opening protected mode

0x00000 OXFFFFF
isable
B
)
. Segment descriptor »
.)
L 1 . 6|3 Segment base addressl\5 (\) ,
‘ 48 bits [16 bits| CS ,
00C0 9200 . :
Table 0000 07FF . ,
limit | 00CO 9A00 . ’
1| 0000 07FF) :
0000 0000 . 47 5.0 :
0| 0000 0000 B GDT base address| Limit .
T 16 bits| GDTR
gdt . .
.)
: CPU »
__________________________)
After opening protected mode
0x00000 OXFFFFFFFF

OxFFFFF
_—34

le————————————— Code segment limit: 8 MB

0x7FFFFF

Table

[limit

00C0 9200
0000 O7FF

Segment descriptor

\3 Segment base address 1\5 (|)
[48 bits [16 bits] CS

NO.3-15 bits

4'7GDT base addresg5Limit0
16 bits] GDTR

CPU

Segment

Privilege level:

base address: Kernel privilege
0x00000000 level

Code segment

[pppp— l
00000000]1100j0000 11 101000000000 00000000 00000000 [00000111 11111111]

Segment limit: 0x007FF*4K v 8M

No. 1 item in GDT

Figure 1.23 Addressing in different modes.

24

I. From Power-Up to the Main Function

‘ System |
Head Main...
25KB+184B

0x00000 0x064B8

Figure 1.24 The address of the system in memory.

The main procedure of head.s has been described briefly, and we will look into head.s
in detail below.
Before introducing head.s, let us take a look at a marknumber: _pg_dir.

//code path:boot/head.s
_pg dir:

startup_ 32:

movl $0x10, %eax

mov%ax, $ds

mov%ax, $es

mov%ax, %$fs

mov%ax, $gs

_pg_dir is used to mark the starting address of the kernel after the kernel paging
system has been established. The starting address is 0x00000. Head.s will create the page
table directory here to prepare for the kernel paging system, as described in Figure 1.25.

Now, head.s starts working. In the real address mode, CS is the segment base address
but the segment selector in the protected mode. jmpi 0,8 attaches CS to No. 1 item of GDT,
which means the code segment base address is 0x00000000.

From now on, DS, ES, FS, and GS will work in the protected mode (Figure 1.26).

After executing, the values of DS, ES, FS, and GS are all 0x10 (in binary, “00010000”).
The last two bits of “00010000” means kernel privilege level; accordingly, “11” means
user privilege level. The No. 3 bit of “00010000” means selecting GDT; accordingly, “1”
means LDT. The No. 4 and No. 5 bit of “00010000” mean selecting the No. 2 item of GDT,
that is, the third item of GDT. DS, ES, FS, and GS all use the same global descriptor. It
should be noted that the segment limit is 0x07ff, which means that the limit of the seg-
ment is 8M.

Specific settings are similar to Figure 1.23. They both refer to GDT. In movl $0x10,%eax,
0x10 is the offset value in GDT, which means the CPU uses the No. 2 item of GDT to set
the segment, and it is the kernel data segment descriptor.

SS is changed to stack segment selector now, SP becomes 32-bit esp, as the following
describes.

Lss _stack_start, $esp

0x00000 OxFFFFFF

SETUPSEG =0X9020 ~ OXEFEFE | -
15
k — ‘i —‘Y‘f“z““t

0x0000 — 0x4FFF, 20K
Page directory will be here

Figure 1.25 Prepare for the kernel paging system.

1.3 Transfer to 32-bit Mode and Prepare for the Main Function

25

Kernel

Figure 1.26 Set DS, ES, FS, and GS.

Inkernel/sched.c, stack_start = {&user_stack[PAGE_SIZE>>2],0x10}; this code makes
SP point to the last position of the user_stack data structure. This structure is defined in
kernel/sched.c as the following:

long user_stack [PAGE SIZE>>2]
We find that the start address of this structure is 0x1E25C.

Tip:

Load segment instruction: the function of this instruction is to load a “low word”
in the memory to the 16-bit segment specified by this instruction and then load a

26 I. From Power-Up to the Main Function

“high word” to the corresponding segment (DS, ES, FS, or GS). The form of this
instruction looks like the following:

LDS/LES/LFS/LGS/LSS Reg, Mem

LDS (load data segment register) and LES (load extra segment register) are subsistent
in an 8086 CPU, but LFS, LGS, or LSS does not appear until 80386. If Reg is a 16-bit regis-
ter, Mem must be a 32-bit pointer. If Reg is a 32-bit register, Mem must be a 48-bit pointer;
the low 32 bits are loaded to the 32-bit register, while the high 16 bits are loaded to the
segment register in this instruction.

The CPU sets SS with the value 0x10, which is the same value as the four-segment
register selector mentioned above. Thus, for SS, the segment base address is 0x000000, and
the segment limit is 8M in kernel privilege level.

Please note that the segment base address in the real mode is very different from that
in the protected mode. In the protected mode, the segment base address is generated by
GDT. These instructions setting the segment selector can be located by GDT. Now, we
know that if setup.s does not create GDT in the real mode, these instructions cannot be
executed.

Note that SP increases from a high address to a low address in memory, as shown in
Figure 1.27.

0x00000 OxFFFFFF

Kernel

Code segment base address |

Data segment base address [
i
Stack segment base address rﬁw

4k
user_stack(0) user_stack (1024)

Stack (enlarging direction of its top)

15 8 7 0

7 The offset address bits of interrupt service program, 31..16 6

5 | P| DPL 4
3 Segment selector 2
1 The offset address bits of interrupt service program, 15..0 0

Figure 1.27 Set stack.

1.3 Transfer to 32-bit Mode and Prepare for the Main Function

27

In Figure 1.8, when setting the stack pointer register, we set sp, but here we set esp

instead to adapt to the protected mode. The code is as follows.

//code path:Boot/head.s

Lss

_stack_start, $esp

The following codes are used to set IDT:

//code path:boot/head.s
Call setup idt

setup_idt:

lea

ignore_int, %edx

movl $0x00080000, $eax
movwdx, $ax/* selector = 0x0008 = cs */
movw $0x8E00,%dx/* interrupt gate - dpl = 0, present */

lea

_idt,sedi

mov $256, $ecx
rp_sidt:
movl%eax, ($edi)
movl%edx, 4 ($edi)
addl s$8,%edi
dec%ecx

jne

rp_sidt

lidt idt_descr

ret

Tip:
The structure of the interrupt descriptor is introduced as follows.

15 8 7 0

7 The offset address bits of interrupt service program, 31..16 6

5 | P| DPL 4
3 Segment selector 2
1 The offset address bits of interrupt service program, 15..0 0

The interrupt descriptor has 64 bits including OFFSET, SELECTOR, DPL, P,
TYPE, and so on. The No. 0-No. 15 bits and the No. 48-No. 63 bits are combined
as the 32-bit offset address of the interrupt service routine. The No. 16-No. 31
bits are the SELECTOR, which is used to fix the segment including the interrupt
service routine. The No. 47 bit is P, which is used to identify whether the segment
is in memory or not. The No. 45-No. 46 bits are DPL. The No. 40-No. 43 bits are
TPYE, and the TPYE of the interrupt descriptor is 1110(0xE), which tags this seg-
ment descriptor with “386.”

28

I. From Power-Up to the Main Function

0x00000 OxFFFFFF

OxFFFFF
Kernel
M- S errupt
Code segment base address """+ ‘I, IDT (0x54AA) ignore_int
Data segment base address e, ...

Stack segment base address

0000 5428

idt_descr' **.

0000| 8E00
47 15 0 g3 e
Base address | Limit 63 =32 0008|5428 | EAX
0000] 54AA | 7FE 0000 | 8E00

IDTR 0008 | 5428 000054AA| EDI
31 IDTitem O

Figure 1.28 Set IDT.

This is the start point for rebuilding the interrupt service system. It makes all inter-

rupt descriptors point to ignore_int and then sets the value of IDTR. Figure 1.28 shows
the whole process.

Comment

By creating IDT and pointing the interrupt descriptor to ignore_int, it is possible to
build an interrupt mechanism framework and prevent a dangling pointer.

Now, head.s abolishes the existing GDT and creates a new GDT in the new position in
the kernel, as shown in Figure 1.29. The second and third items of the GDT are the kernel

0x00000 OxFFFFFF
OxFFFFF

_-_i Dy
. interrupt

| INote: the old GDT is destroyed

Data segment base address ~"**-.., J GDT (0x54B2)
Stack segment base address

Code segment base address

............ 0000 0000
0000 0000
gdt_descr gdt_descr+2K

N 0000 0000

. 0000 0000

00C0 9200

47 15 0

Base address | Limit 0000 OFFF
0x54B2 7FF 00C0 9A00
GDTR 0000 OFFF

“... | 0000 0000

adt_desci 0000 0000

Note: the new GDT also has only two items
and only revised the segment limit compared
with the old GDT

Figure 1.29 Rebuild GDT.

1.3 Transfer to 32-bit Mode and Prepare for the Main Function

code segment descriptor and the kernel data segment descriptor, respectively. The segment
limit is set to 16M, and the value of GDTR is set.

//code path:boot/head.s

setup_gdt

setup_gdt:

lgdt gdt_descr

Ret

_gdt:.quad 0x0000000000000000/* NULL descriptor */
.quad 0x00c09a0000000fff/* 16Mb */

.quad 0x00c0920000000fff/* 16Mb */

.quad 0x0000000000000000/* TEMPORARY - don’t use */
.£i11 252,8,0

Comment

Why does head.s abolish the existing GDT and create a new one?

The original GDT location is assigned in setup.s; this setup module’s location in the
memory will be covered by buffer in the future. If the location does not change, the
contents of GDT will certainly be covered by buffer and thus influence system opera-
tion. Thus, the only safe place in the memory is within the location of head.s.

Hence, is it possible to directly copy GDT to the location of head.s when setup.s is
being executed? The answer is no. If you copy the contents of the GDT first and then
move the system module, the GDT will be covered by the system module. If you move the
system module first and then copy the contents of the GDT, head.s will be covered before
executing.

The location and content of the GDT might change. The last 3 bits become FFF, which
means the segment limit is not 8M, but 16M. Thus, we need to reset some segment selec-
tors, including DS, ES, FS, GS, and SS, as shown in Figure 1.30.

The routine to set DS and ES is as follows:

//code path:boot/head.s

movl $0x10,%eax # reload all the segment registers
mov%ax, %ds # after changing gdt. CS was already
mov%ax, ¥es # reloaded in ‘setup_gdt’

mov%ax, %$fs

mov%ax, $gs

Through testing, we found that if we set the segment limit with 16M in setup.s, we do
not need to reset these segment selectors.

The starting location of the user_stack data structure is the bottom of the kernel stack;
esp points to the outer edge of the user_stack data structure, which is the top of the kernel
stack. Thus, when the latter program needs to be pushed, it can maximize the use of stack
space. The top of the stack growth direction is from high to low, as shown in Figure 1.31.

The routine that sets esp is as follows.

//code path:boot/head.s
Lss _stack_start, $esp

30

I. From Power-Up to the Main Function

0x00000 OxFFFFFFFF
OxFFFFF

Kernel { ke
I_-J* errupt

DS segment limit: 16 MB

OxFFFFFF

Segment base address 1]5 | DS ES
[48 bits [ox10 | FS GS

No. 3-15 bits

limit =600 9A00
1| 0000 OFFF

0000 0000
0} 0000 0000

gdt_descr(gdt contents)

7 15.. .0
GDT base address | Limit |
0x54B2 | 7FF | GDTR

Segment Privilege level:
base address: Kernel privilege
0x00000000 level Data segment

I I |
00000000{1100]0000 11(;OIODOOOOOOO 00000000 00000000 00001111 11111111

!
Segment limit: OXOOFFF*AL%(—> 16M

The figure of the second item data structure in gdt_descr

Figure 1.30 Readjust DS, ES, FS, and GS.

0x00000 OxFFFFFF
OxFEFFF

Kernel Sl
T — W

Code segment base address
Data segment base address
Stack segment base address

user_stack[0] user_stack[1024]

]

ESP
Stack (the enlarged direction of stack)

Figure 1.31 Set the kernel stack.

1.3 Transfer to 32-bit Mode and Prepare for the Main Function

3l

0x00000 OxFFFFFF
OxFFFFF

I
interrupt
I I Write data at the address 0x000000

‘ Kernel

i 0x000000

@ E 0x100000

Equal Unequal
d \—’Tﬁe A20 address line is open

Figure 1.32 Inspect the opening of A20.

The fundamental difference between the protected mode and the real mode is that
whether the address line A20 is open or not, we need to check that the address line is really
open. In Figure 1.32, there is a visual representation of the inspection.

The code we use to check whether the address line is opened or not is as follows:

//code path: boot/head.s
xorl%eax, $eax

1: incl%eax

movl%eax, 0x000000
cmpl%eax, 0x100000

je 1b

Comment

If the address line A20 is not opened, then the computer is in the real mode. In that
condition, when the addressing is beyond the limit of 0xFFFFF, the rollback will hap-
pen. For example, when the address 0x100000 rolls back to the address 0x000000,
the value stored in the address 0x100000 is the same as that stored in the address
0x000000 (find the description in Figure 1.30). The solution is to write data in the
address 0x000000 of the memory and then compare the consistency between the data
and data stored in the address 0x100000 (1 Mb; notice that it is beyond the limit of the
real mode).

31 4 10

e 1| 0 | CRO register
| 11l
PG ET| |PE

If there is x87 coprocessor MP

EM

v X
Set x87 to protected mode Set CRO J

Figure 1.33 Inspect the maths coprocessor.

I. From Power-Up to the Main Function

After checking whether the address wire named A20 is open or not, the code head.s
will set the math coprocessor in the protected mode if it detects the existence of the math
coprocessor, as shown in Figure 1.33.

Tip:

x87 coprocessor: in order to meet the requirement of x86 in the floating point arith-
metic, Intel designed the math coprocessor in the x87 series, which was an external
and optional chip in 1980. In 1989, Intel released the 486 processor. After that, there is
an internal coprocessor in the CPU. Thus, it is necessary that the OS is able to detect
the existence of the math coprocessor for computers earlier than the series 486.

The code we use to inspect the math coprocessor is as follows:

//code path:boot/head.s
movl%cr0, $eax

call check x87
check_x87:

The code head.s is the last preparation for calling the main function. The
stage is the last stage of the execution of the program head.s and is also the last
stage before the main function.

The execution code is as follows:

//code path:boot/head.s
jmp after page tables
after page tables;
pushl $0O

pushl $0O

pushl $0O

Figure 1.34 shows the whole process.

The code head.s pushes the flag L6 and the entrance address of the main function into
the stack. The top of the stack is the address of the main function, in order to execute the
main function directly with the instruction “ret” after executing the code head.s, as shown
in Figure 1.35.

0x00000 OxFFFFFF
OxFFFFF
Kernel
T
— interrup

Base address of CS

Base address of DS

Base address of SS

user_stack[0] user_stack[1024]

ESP
Stack, the enlarged direction of the stack

Figure 1.34 Push evnp, argv, and argc.

1.3 Transfer to 32-bit Mode and Prepare for the Main Function

0x00000 OxFFFFFF

Kernel OxFFFFF
S ———
interrup

Base address of CS ..*e-eul.
Base address of DS -
Base address of SS

user_stack[0 user_stack[1024]

d==

ESP
Stack, the enlarged direction of the stack

Figure 1.35 Push the entry address of the main function and the L6 symbol.

If the main function exits, the program returns to the flag L6 and continues to run,
which means it is actually an infinite loop.
The execution code is as follows:

//code path:boot/head.s
pushl $L6
pushl $_main

After pushing, head.s jumps to “setup_paging:” to start building the paging mech-
anism.

At first, the program places the page directory tables and four page tables at the start-
ing position of the physical memory. The memory space amounting to five pages from
the starting position is clear. It is noticed that the space that the program head.s shares is
covered by one page directory table and four page tables, as shown in Figure 1.36.

0x00000 OxFFFFFF
! OxFFFFF
Kerne —raable
- _- interrupt
Base address of CS """ 0x0000—0x4FFF,20K
Base address of DS L. Page directory and 4 page tables
Base address of SS
0x0000 0x1000 0x2000 0x3000 0x4000 Ox4FFF
(_Lpg_dir) (pg0) (pg1) (pg2) (pg3)
| Page directory + Page table 0-3 |

Figure 1.36 Place the page directory tables and page tables at the beginning of memory.

34

I. From Power-Up to the Main Function

The execution code is as follows:

//code path:boot/head.s
jmp setup paging
setup_paging:

movl $1204*5, %ecx
xorl%eax, $eax

xorl%edi, $edi
cld;rep;stosl

Comment

It is important that the program places the page directory tables and four page tables
at the starting position of the physical memory. It is the basis of the OS to control
overall and master the process safely in the memory. We will talk about fundamental
effects later.

The head.s clears the space the page directory table and four page tables share and
then sets the first four entries of the page content table in order to make them point to
four page tables, as shown in Figure 1.37.

The execution code is as follows:

//code path:boot/head.s
movl $pg0+7, pg dir /* set present bit/user r/w */

movl $pgl+7, pg dir+4 /*— — — — — — — VI — — — — — — - x/
movl $pg2+7, pg dir+8 /*— — — — — — — VI — — — — — — - x/
movl $pg3+7, pg dir+l2 /*— — — — — — — VI — — — — — — - x/

movl $pg3+4092, %edi
movl $0xfff007,%eax /* 16Mb-4096+7 (r/w user,p) */

0x00000 OxFFFFFF

OxFFFFF
Disable
{nterrupt

Kernel

Base address of CS " **" 0x0000-0x4FFF,20K

Base address of DS _..; Page directory and 4 page tables

Base address of SS .-* ¢

0x0000 0x1000 0x2000 0x3000 0x4000 OX4FFF
(pg dig-.... (Pg0) (pgl) (pg2) (pg3)

= directory .. pg0+7 Page table 0-3——————————————|
31 211 o
lox1000(pg0)] I

Figure 1.37 Make the entries of page directory table point to four page tables.

1.3 Transfer to 32-bit Mode and Prepare for the Main Function

35

After setting the page directory table, the range of addressing based on Linux in the
protected mode expands to OxXFFFFFF (16 MB). The last item where the pg3 + 4902 points
refers to the last page in the range. It is about the size of 4 KB starting from the address
0xFFF000, as shown in Figure 1.38.

Then, all four page tables are cleared from the high address to the low address and
successively point to the pages of the memory from the high address to the low address. In
Figure 1.38, the process of setting the page tables for the first time is shown.

Continually, the last second item (pg3-4 + 4902 points to the item) of the fourth page
table (pg3 points to the table) is set to point to the last second page. It is about the size of
4 KB starting from the address 0xFFF000-0x1000. It is obvious that there are differences
between Figures 1.38 and 1.39.

In the end, all four page tables have been cleared from the high address to the low
address, and every entry of the page tables points to each page in the same direction cor-
respondingly. In Figure 1.39, there is a visual representation of the process.

All these four page tables belong to the kernel privately. Similarly, every user process
has its private page tables. In the next chapter, we will discuss the difference between the
kernel and the user process in the range of addressing.

The execution code executed in Figures 1.38 through 1.40 is as follows:

//code path:boot/head.s
movl $Spg3+4092, %edi
movl $Oxfff007, $eax /* 16Mb-4096+7 (r/w user,p) */

std
1: stosl /* £ill pages backwards-more efficient 9§ */
subl $0x1000, $eax
jpe 1b
0x00000 OxFFFFFF
OxFFFFF
Kernel Disable
I IS Y oterrupt
Base address of CS """ 0x0000-0x4FFE,20K
Base address of DS .7 Page directory and
Base address of S .-=~ < 4 page tables
... pgB+4902
0)‘(OOOQ 0x1000 0x2000 0x3000 0x4000 0x4FFF.'.',-.
(pg_dir) (pg0) (pg1) (pg2) (pg3) L
— P } Page table 0-3 ———————— =])
age 1 age table 0-3 " Untf007

directory K
4 page tables’ address in page directory is ready 31..-7 1211 0’
OXFFf000 i

0f S + OXFFFFFF
The space of adJressing in memory 4k (16M)
(One page)

Figure 1.38 Status of page content tables after being set.

36

I. From Power-Up to the Main Function

0x00000 OxFFFFFF

OxFFFFF
Disable
{nterrupt

Kernel

Base address of CS ** -l 0x0000-0x4FFF,20K
Base address of DS ...+ page directory and
Base address of S§ .= - 4 Ppage tables

.................................... Pg3—4+4902
[
0x0000 0x1000 0x2000 0x3000 0x4000 O0x4FFF '°|
(_pg_dir) (pg0) (pgl) (pg2) pgd) e
Page - Page table 0-3 ————————— =" {
directory — T et 0x f007-0x1000
31T o (o
] 0xffe000 |1|1|1|
ol <S } | | OXFFFFFE
The space of addressing in memory 4kak (16M)

Figure 1.39 Set the page tables.

0x00000 OxFFFFFF
OxFFFFF
Kernel Sreable

| e B Peerupt

Base address of C§ """+ 0x0000—-0x4FFF,20K

Base address of DS ...+ Page directory and 4 page tables

Base address of SS)
0x0000 0x1000 0x2000 0x3000 0x4000 Ox4FFF
(_pg_dir) (pg0) (pgl) (pg2) (pg3)

. Page ! Page table 0-3 |
directory

Page directory and page tables are ready!

Figure 1.40 Status of page content tables and page tables after being set.

The overall arrangement of the memory is shown in Figure 1.41, after executing the
previous code. There is only 184 bytes left in the memory for the kernel. Thus, the planning
is accurate when the program head.s and the system module are designed.

The program head.s has set the page tables; however, the paging mechanism has not
been finished. The process that creates the paging mechanism is as follows: the page con-
tent register named CR3 is set to point to page content tables and then the highest position
of the register CRO is set as 1, as shown in Figure 1.42.

1.3 Transfer to 32-bit Mode and Prepare for the Main Function 37

(111 m— 1] -
J [N

| M
0x0000 0x1000 0x2000 0x3000 0x4000 Ox4FFF
(_pg_dir) (pg0) (pgl) (pg2) (pg3)

Figure 1.41 The overall arrangement of the memory.

L L

0x064b8

0x05cb8
(184 B)

L]
¢ 0x054b8
0x05400

0x05000

0x04000

0x03000

0x02000

0x01000

0x00000
Figure 1.42 Structure of the memory.

Tip:

PG (paging) mark: the 32nd bit of the register CRO controls the paging mecha-
nism. When the first bit PE of CRO is set to 1, the bit PG can be set as open status.
In this status, the address mapping mode is the paging mechanism. When PE is
0, PG cannot be set; otherwise, CPU will be illegal.

I. From Power-Up to the Main Function

Register CR3: a 32-bit control register, the first 20 bits stores the base address
of the page content. When PG is set, the CPU maps the virtual address to the
physical address with the page content and the page tables that CR3 points to.

The execution code is as follows:

//code path:boot/head.s

xorl%eax, %$eax /* pg dir is at 0x000 */
movl%eax, $cr3 /*cr3-page directory start */
movl%cro0, $eax

orl $0x80000000, $eax

movl%eax,%cr0 /* set paging (PG) bit */

The first two lines make CR3 point to the page content tables. The OS treats 0x0000
as the start of the page content tables. The next three lines start the paging mechanism by
switching PG bit to enter the paging address mode. Until now, the kernel’s paging mecha-
nism has been set up (Figure 1.43).

The following code is more important:

xorl%eax, %eax /* pg dir is at 0x000 */

In Figure 1.17, we move the system module to the address 0x0000. In Figure 1.25, we
create the paging mechanism for the kernel. Lastly, the page content tables are at the start
of the memory because of the above code. Based on those, the kernel can control user
programs. The address 0x0000 is the only starting one that can guarantee that the linear
address is the same as the physical one. We will talk about it in detail later.

0x00000 OxFFFFFF
OxFFFFF

Kernel Sreable
| R rerrupt

.....
.....

Base address of CS e
Base address of DS

Base address of SS [I:I:I:I] IIIIIIIIIIIIIIII

Page directory and 4 page tables
8 0x0000—-0x4FFF,20K

—
1=

CRO Register

et
.
.o

0x0000 0x1000 0x2000 0x3000 0x4000 O0x4FFF
(_pg_dir) (pg0) (pgl) (pg2) (pg3)
age directory Page table 0-3 {
31 1211 0
0x0000 | CR3 Register

0x0000 di
x0000(_pg_dir) | Base address of page directory

Figure 1.43 Global status after setting the paging mechanism.

1.3 Transfer to 32-bit Mode and Prepare for the Main Function

39

The last step in executing the program head.s is “ret.” Then, jump to the main function.

In Figure 1.35, the entrance address of the main function is pushed at the top of the
stack. When executing the instruction “ret,” the pushed entrance address is popped to EIP.
Figure 1.44 describes the whole process of popping the address.

Thereisatrick usually used in the bottom code. We talk about it in detail in Figure 1.45.

Let us consider the call and return method for the common function first. Because
Linux 0.11 calls the main function by way of returning, the position returned and the
entrance of the main function are in the same stack. In part I of Figure 1.45, the process of
calling and returning in the same stack is shown.

The instruction CALL pushes the value of EIP automatically, protects the returning,
and executes the program of the function called. Until the execution reaches the instruc-
tion “ret,” it pops the value to EIP and returns to the origin, and then continues to execute
the next instruction of the program CALL. That is the common way to call a function. But
for the main function of the OS, it does not work. If the main function of OS is called by
CALL, what should be returned when “ret” is to be executed? Is there another host to catch
the returning of OS? Obviously, it is incorrect, since OS is the basis. People may wonder
how to call the main function of OS without returning? Linus presents us with an inge-
nious method in part IT of Figure 1.45.

The designer calls the main function of OS achieved by “ret.” Because it is called by
“ret,” there is no need for returning. However, the process of pushing and jumping can be
achieved only through CALL. The designer copies the process manually. The code used for
pushing and jumping is to call setup_paging. Please note that the pushed value of EIP is
the executing entrance address “_main” to the main function of the OS. In this way, when
the setup_paging function reaches the instruction “ret,” the entrance address is popped
to EIP from the stack. EIP points to the entrance address to the main function. Hence, we
can call the main function with the returning instruction.

In Figure 1.45, the pushed executing entrance address to the main function is popped
to CS:EIP. From now on, the CPU starts to execute the program “main.” There is a descrip-
tion of this status in Figure 1.46.

0x00000 OxFFFFFF
Kernel OxFEFFF
I
interrupt
Base address of CS l Kernel stack (0x1E25C)
Base address of DS .=t Ttttee....
Base address of SS |_mai L6| | |

user_stack[0] user_stack[1024]

ESP _ Pop the address of main function

Stack, enlarging direction of its top | __main

Figure 1.44 Execute ret, pop address to EIP.

40

I. From Power-Up to the Main Function

Call and return of CALL

CALL
| EIP
;::'.::::::'.f EIP
. POP stack
EIP
CALL
return
RET

Call and return of “copy CALL”
after_page_tables

-PUSH -------o------o:

_IMP : f 1
@ooecche ; g 0
s L o
*2COMMOn :
“call” >:<situation : 0
. : : L6
setup_paging : veveeel22] _main
S PCgP stack
R : !
RET -..‘.-‘-.-.-.-.-.-.-..:.-.-‘-.-.-I
_rmain “return” .
EIP

Figure 1.45 Description of “copy CALL.”

1.3 Transfer to 32-bit Mode and Prepare for the Main Function 41

0x00000 Ox9FFFF OxFFFFF OxFFFFFFFF

i Do
interrupt

0x00000 e OXFFEFF

Kernel

cea,

ROM BIOS and VGA

3 X
tee.
.....

l Kernel stack (0x1E25C)

user_stack[0] user_stack[1024]

ESP
main() (init/main.c 0x664C) EIP

Figure 1.46 Begin to execute the main function.

Comment

Why is the main function called at first?

In the program written in C, there is a main function as well. The execution starts
from the main function. Linux 0.11 is coded in C. It is strange why three programs written
in compilation language are executed first before the main function when the OS starts.

Usually, the programs written in C are user applications. One important charac-
teristic of these programs is that they must be executed on the fundamentals of the
OS. That is to say, the OS creates a process for programs and loads the executable code
from the hard disk to the memory. When talking about the OS, the question what
loads the executable code of the OS exists.

We know from previous sections that when loading the OS, the computer is just
powered. At that time, only the BIOS is executed and the computer is in the 16-bit
real mode status. The code on the first sector of the floppy disk (512 bytes) is loaded
into the memory according to the addresses kept in 16-bit interrupt vector tables, and
16-bit interrupt service routine is created by the program BIOS. There BIOS ends.
Exactly, it is an appointment that loading the code of the first sector is the same for any
OS. The code on rest sectors is loaded based on the former.

So why not execute the main function right now after loading the code of OS?

As we know, Linux 0.11 is a 32-bit, real-time, and multitasking OS. Hence, the
main function must execute a 32-bit code. When compiling the code of the OS, there
are 16-bit and 32-bit compiler options. In the 16-bit condition, the compiled code is
16 bits. It may be because a variable of type int only has 2 bytes. However, Linux 0.11
wants the compiled code of 32 bits. Only in this way will the code of the OS be 32 bits.
The 32-bit code can use a 32-bit bus, protected mode, and paging. It is thus a modern
OS with real-time and multitasking characteristics. The 16-bit real mode is completely
different from the 32-bit protected mode. So what can change the real mode to the
protected mode? The answer is “head.s.” The program head.s opens the address line
A20, opens pe and pg, abandons the old 16-bit interrupt response mechanism, and

I. From Power-Up to the Main Function

builds up the new 32-bit IDT. After these preparations, the computer is in a 32-bit
protected mode. It is ready to call the 32-bit main function. Then, all operations can
be finished by the 32-bit compiled main function.

From here on, one important stage of starting the kernel has been finished, and it will
be followed by the main function. It is noticed that the system is in the closed interrupt
status.

ID 1.4 Summary

This chapter has two parts: part I, loading the OS; part II, preparation for executing the
main function in the 32-bit protected mode and paging mode.

Beginning with loading “bootsect.s” into the memory with BIOS, the files “setup.s”
and “system” are executed to load the OS. Then, it is followed by the preparation for exe-
cuting the main function in the 32-bit protected mode and paging mode. During this
period, IDT, GDT, page content tables, page tables, and machine statistics are set.

After all these, the system jumps from the execution entrance to the main function
and starts executing it.

1.4 Summary

43

This page intentionally left blank

Device Initialization

and Process O
Activation

From now on, the main function begins!

Before the operating system (OS) enters the idle state, the core purpose of all the pre-
paratory work is to allow user applications to run normally in the “process” way. There are
three aspects involved: the user application can run computing on the host, interaction
with peripherals, and human-computer interaction. This chapter explains the content
to achieve this goal, including device initialization and activation of the first process—
process 0.

Linux 0.11 is a modern OS supporting multi-processes, which means to ensure nor-
mal host operation, user processes cannot interfere with each other while processing.
However, the process does not have a natural “boundary” to protect itself, which relies
on the boundary, that is, the process management information data structure. Process
management information data structure consists of the following: task_struct, task[64],
and GDT, et al. Task_struct is a unique structure for the process, which identifies each
attribute value of a process, including the remaining time slice, execution state, local
descriptor table LDT, and task status descriptor table TSS. Task[64] and GDT are data
structures for the management of multi-processes, and the task[64] structure stores all the
task_struct pointers of the process. If the OS needs to compare and choose from multiple
processes, it can traverse through the task[64] structure to meet the requirement. GDT
keeps a set of index structure for all the processes; thus, the OS can locate each process
indirectly by the LDT and TSS through index.

45

This section will also explain how the OS sets the memory, central processing unit
(CPU), serial port, monitor, keyboard, hard disk, floppy disk, and other hardware, and
how the OS attaches the interrupt service routine of the corresponding hardware with
the interrupt descriptor table and sets up the environment for process 0, as well as the
subsequent process created directly or indirectly by process 0, to communicate with
peripherals.

2.1 Set Root Device 2 and Hard Disk

The kernel initializes the root device and the hard disk first, using the information of the
machine system data in 0x901FC written by bootsect.s (refer to Section 1.2.3) to set the
floppy disk as the root device. The hard disk parameter table, namely, the 32 bytes starting
from the location 0x90080, is used to set drive_info.

The code is as follows:

//Code path:init/main.c:

#define DRIVE_ INFO (* (struct drive info *)0x90080)//Disk parameter
//table, see
//system data

#define ORIG ROOT DEV (* (unsigned short *)0x901FC)//root device id

struct drive info {char dummy[32];} drive info; //The structure stores
//disk parameter table
void main (void)

{
ROOT_DEV = ORIG_ROOT DEV;//According to the system data written
/ /by bootsect
drive_info = DRIVE INFO;//the root device is floppy disk
}

The location of setting the root device and the hard disk in the memory is shown in Figure
2.1

2.2 Set Up Physical Memory Layout, Buffer Memory,
Ramdisk, and Main Memory

Second, the kernel begins to set buffer memory, ramdisk, and main memory. The CPU and
the memory need to work together to execute computation. As memory is an important
component in computing, the layout of the buffer and the main memory fundamentally
determines the amount of memory and mode used by all processes, which will surely
affect the computing speed of the process.

The layout is as follows: except for memory space occupied by the kernel code and
data, the rest of the physical memory is divided into three main parts: main memory,

46

2. Device Initialization and Process 0 Activation

0x00000 Ox9FFFF OxFEFFF 0x3FFFFF Ox5FFFFF OxFFFFFF

Kernel
Disable
interrupt

t Mem addr| Len Name
et teenl, . 0x90000 2 Cursor position
.Kernel code area Kernel data area [0x90002 | 2 | Extended memory number
d 0x90004 | 2 | Display page
el g - : |10x90006 | 1 | Display mode
ROOT DEV [drive_info 0x90007 | 1 Character column number
(0x12964) (0x1ddéc) : [0x90008 | 2
+ [0x9000A | 1 Display memory
* |0x9000B | 1 | Display state
0x9000C | 2 | Characteristic parameter
Cursor position
+10x90080 [16 | Disk parameter table
~0x90090 | 16 | Disk parameter table
H0x901FC | 2 Root device number
After backup Machine system data (0x90000)
: Before backup
" Mem addr| Len Name :
0x90000 2 Cursor position
Kernel code area Kernel data area [0x90002 | 2 | Extended memory number
: — 0x90004 | 2 Display page :
: oo 0x90006 | 1 | Display mode :
A 0x90007 1 Character column number
ROOT_DEV I D:I drive_info 0x90008 5 227
(0x12964) (Ox1ddéc) 0x9000A | 1 | Display memory
0x9000B | 1 Display state :
0x9000C | 2 Characteristic parameter
: Cursor position $
0x90080 | 16 | Disk parameter table
i 0x90090 | 16 | Disk parameter table
0x901FC | 2 Root device number
: Machine system data (0x90000)

Figure 2.1 Copy root device number and disk parameter table.

buffer memory, and the ramdisk. The main memory is the place where the process code
resides, and it also contains the data structure that the kernel uses to arrange the process;
the buffer memory is mainly used as the data transfer station between the host and periph-
erals; the ramdisk is optional. If the ramdisk is to be used, the data in peripherals should
be copied to the ramdisk at first. Since data operating speed in memory is higher than that
in peripherals, system performance can be improved in this manner.

As discussed, the OS sets the size, location, and management mode of these three dif-
ferent regions in the memory.

According to the size of the memory, the location and size of the buffer and main
memory are initialized first (Figure 2.2).

2.2 Set Up Physical Memory Layout, Buffer Memory, Ramdisk, and Main Memory

Tsable
Based on the actual size of physical memory, the usage of memory should be designed accordingly
OxFFFFF 0x3FFFFF
0x00000 | Ox1FFFFF

The end of buffer The end of
OxBFFEFF OxFFFFFF physical memory

>16 MB e
- The end of physical memory
12-16 MB ,/
The end of buffer The end of physical memory
6-12 MB
The end of buffer The end of physical memory

<o

Figure 2.2 The initial setting of the memory.

The execution code is as follows:

//Code path:init/main.c:
#define EXT MEM K (* (unsigned short *)0x90002)//Extended memory (KB)
//starts from 1M

memory end = (1<<20) + (EXT MEM K<<10);//1M+extend memory,i.e. the
//total number of memory

memory end & = OxEfffff000;//Get integer multiple of pages, ignore
//the part less than one page at the end of memory

if (memory end > 16*1024*1024)
memory end = 16*1024*1024;
if (memory end > 12*1024*1024)
buffer memory end = 4*1024*1024;
else if (memory end > 6*1024*1024)
buffer memory end = 2*1024*1024;
else
buffer memory end = 1*1024*1024;
main memory start = buffer memory end;//After the buffer is in
//main memory

Memory_end is the end of effective memory; the exceeding part is not visible to the
OS. Main_memory_start is the starting position of the main memory. Buffer_memory_end

48

2. Device Initialization and Process 0 Activation

is the end of buffer memory. The starting position of the buffer memory will be introduced
in detail in Section 2.1.13.

Tip:

There are several common data relations of left shift and right shift that should
be mentioned:

<<20 or >>20 is equivalent to be multiplied or divided by 1M,

<<12 or >>12 is equivalent to be multiplied or divided by 4K (associate with the
page)

<<10 or >>10 is equivalent to be multiplied or divided by 1K

Thus, 1 <<201is IM; EXT_MEM_K << 10 is the bytes of EXT_MEM_K (kilo-
bytes of extended memory).

IB 2.3 Ramdisk Setup and Initialization

The kernel sets up the ramdisk in the peripheral as follows. First, the kernel checks the
“ramdisk label” in makefile to determine whether the system uses the ramdisk. We assume
that the computer has a 16 MB physical memory and the ramdisk size is set as 2 MB; thus,
the kernel allocates a 2 MB memory space for the ramdisk from the buffer memory end,
and the starting position of the main memory is moved 2 MB back to the end of ramdisk
space. Figure 2.3 shows the result of the layout in physical memory.

Disable

Based on the actual size of physical memory, the usage of memory should be designed accordingly (nterrupt

OxFFFFF
0x00000 | Ox1FFFFF

Ox3EFEFE , RAM Drive

The end of
OxFFFFFE physical memory

Ox5FFFFF OxBFFEFF

>16 MB

The end| of buffer The end|of physical memory
12-16 MB
The end|of buffer The end of physicalmemory ;[vl}lleic?i Elfsléit\li\g?trai;’te 7
point of main memory|
6-12 MB
The end of buffer /The end of physical memory
<6 MB

1 MB 2 MB 4 MB 6 MB 12 MB 16 MB

Figure 2.3 Physical memory layout.

2.3 Ramdisk Setup and Initialization

The system calls rd_init to start setting the ramdisk, and the code is as follows:

//Code path:init/main.c:
void main (void)

{

#ifdef RAMDISK
main memory start + = rd init (main memory start, RAMDISK*1024) ;
#endif

struct blk dev struct ({
void (*request fn) (void) ;
struct request * current request;

#if (MAJOR NR == 1)

//Code path:kernel/blk drv/11l rw blk.c: //11 means low level
struct blk dev struct blk dev[NR BLK DEV] = {

{NULL, NULL}, /* no dev */

{NULL, NULL}, /* dev mem */

{NULL, NULL}, /* dev fd */

{NULL, NULL}, /* dev hd */

{NULL, NULL}, /* dev ttyx */

{NULL, NULL}, /* dev tty */

{NULL, NULL} /* dev 1lp */
IT

long rd init (long mem start, int length) //hd init (), floppy init() are
//similar to this function
{

int 1i;
char *cp;

50

2. Device Initialization and Process 0 Activation

blk dev[MAJOR NR].request fn = DEVICE REQUEST;//hang on do_rd
//request ()
rd_start = (char *) mem start;
rd_length = length;
cp = rd start;
for (i = 0; i < length; i++)
*cp++ = ‘\0’; //Initialized to 0
return (length) ;

In rd_init, do_rd_request in the ramdisk is attached with the second item of blk_
dev[7], which is the control structure, as shown at the left upper part of Figure 2.3.
The primary function of blk_dev[7] is to attach the equipment with its corresponding
request processing function, and the system that we are discussing can operate six kinds
of equipment. The request will be explained in detail in Section 2.1.6. The attachment
means that the kernel can operate the ramdisk request by calling do_rd_request. After
attachment, all ramdisk space is initialized to 0. Note that the ramdisk is just a piece of
“blank disk,” which is not yet processed by operations such as “format”; thus, it cannot
be used as a block device. The block equipment and “format” of the ramdisk will be
introduced in detail as part of the rd_load function. Figure 2.4 shows the execution of
the rd_init().

0x00000 Ox9FFFF OxFFFFF 0x3FFFFF O0x5FFFFF OxFFFFFF

Kernel
Disable
"“(erTUpt

A LT

Kernel data area I I T I] I

=

:::: Set the RAM Drive position in memory to \O

Before RAM Drive initialization:

Kernel code area Kernel data area I:I:I:IZD:D

.
..........

Figure 2.4 Ramdisk setup and initialization.

2.3 Ramdisk Setup and Initialization

51

Then, the length value of the ramdisk is returned, which will be used to reset the start-
ing position of the main memory.

24 Initialization of the Memory Management
Structure mem_map

As the starting position of the main memory is reset, the location and size of the main
memory and buffer memory are both identified. The system calls mem_init. First, the
kernel sets the management structure of the main memory; the process is shown in
Figure 2.5.

The execution code is as follows:

//Code path:init/main.c:
void main(void)

#define LOW_MEM 0x100000 //1MB

#tdefine PAGING MEMORY (15*1024*1024)

#define PAGING PAGES (PAGING MEMORY>>12) //Page number of 15M
#define MAP_ NR(addr) (((addr)-LOW_MEM)>>12)

#define USED 100

static long HIGH MEMORY = O;

void mem init (long start mem, long end mem)

{

int 1i;

HIGH MEMORY = end mem;
for (i = 0 ; i<PAGING PAGES ; i++)
mem map[i] = USED;
i = MAP NR(start mem) ; //The size of start mem is 6M,
//after virtual disk
end mem - = start mem;
end mem >> = 12; //Page number of 15M
while (end mem-- >0)
mem map [i++] = 0;

By mem_map, the system will manage the memory above 1 MB in paging mode and
keep the reference number of each page.

52

2. Device Initialization and Process 0 Activation

0x00000 Ox9FFFF OxFFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF

Kernel
isable
=

. mem_map|] each unit of memory page
state management structure control the

Lot Kernel code area

Set the usage
number to 100

Set to 100
1M 6M 16M

Set main memory area
page as “not use” state

After setting mem_map(]

vI 61\ 16)

=<

Figure 2.5 The initialization of the memory management structure mem_map.

First, mem_init sets the reference number of all memory pages as USED (100, i.e.,
being used), and then it initializes all reference numbers in the main memory to 0, after
which the system will take the page with reference number 0 as idle page.

Why can’t the system use this paging method to manage the memory within 1 MB?
The reason is that the designer implemented two different paging management methods
for the kernel and the user process. For the kernel, the linear address and physical address
are exactly the same and mapped one by one. That means the kernel can access the physical
address directly. But for the user mode, the linear address differs from the physical address
dramatically, and there is no relationship between them. The aim of the design is that the
user process cannot extrapolate the special physical address by the linear address. The
kernel can access the user process and the user process cannot access the kernel and other
user processes. The memory space within 1 MB is just for the code and data controlled
only by the kernel, which the user process cannot access. The memory space beyond 1 MB,
especially the main memory, is for the user process. We will talk about memory manage-
ment in detail in Chapter 6 and the mechanism behind in Chapter 9.

2.5 Binding the Interrupt Service Routine

The user process and the kernel often use interruption and handle many exceptions, such
as overflow, boundary checking, page fault exception, and so on. The interruption mecha-
nism is also widely used in system call. These interruptions and exceptions need a special
service program to execute. The function trap_init can hook the service program of the
interruption and exception to the interruption descriptor table (idt), which also rebuilds
the interruption service to support the operation of the kernel and the process in the host.

2.5 Binding the Interrupt Service Routine

53

The process of binding and the space occupied by the interruption service routine are
shown in Figure 2.6.
The execution code is as follows:

//Code path:init/main.c:
void main (void)

//Code path:kernel/traps.c:
void trap_ init (void)

{

int i;

set_trap gate(0,÷ error);//Divide by zero error

set_trap_gate (1, &debug) ; //step-by-step debugging

set_trap_gate (2, &nmi) ; //Non-maskable interrupt

set_system gate(3,&int3); /* int3-5 can be called from all */

set_system gate (4, &overflow) ; //overflow

set_system gate (5, &bounds) ; //bounds check error

set_trap_gate (6, &invalid _op) ; //Invalid operation

set_trap_gate (7, &device not_available) ; //Invalid device

set_trap_gate (8, &double_ fault) ; //double fault

set_trap gate (9, &coprocessor segment_ overrun) ;//coprocessor segment
//overrun

set_trap_gate (10, &invalid_TSS) ; //Invalid TSS

set_trap_gate (11, &segment_not_present) ; //Segment does not present

set_trap gate (12, &stack_segment) ; //stack exception

set_trap gate (13, &general_ protection) ; //general protection exception

set_trap_gate (14, &page_fault) ; //page fault

set_trap_gate (15, &reserved) ; //reserved

set_trap_gate (16, &coprocessor_error) ; //coprocessor error

for (i = 17;1<48;i++) //they are all binding, the interrupt service routine
//name is initialized to reserved
set_trap gate (i, &reserved) ;

set_trap gate (45,&irqgl3) ; //coprocessor
outb_p(inb_p(0x21) &0xfb, 0x21); //Allow IRQ2 interrupt request
outb (inb_p (0xAl) &0xdf, 0xAl) ; //Allow IRQ2 interrupt request

set_trap_gate (39, ¶llel interrupt); //parallel port

//Code path:include\asm\system.h:

#define _set_gate(gate_ addr, type,dpl,addr) \

__asm__ (“movw%%dx, $%ax\n\t” \ //The low word of edx is assigned to the low
//word of eax
“movw%0, $3dx\n\t” \ //% 0 corresponds to “i” at the first line
//after the second colon
“movl%%eax, %1\n\t” \ //% 1 corresponds to “o” at the second line
//after the second colon
“movl%%edx, %2” \ //% 0 corresponds to “o” at the third line
//after the second colon
\ //After this colon are outputs, After the next colon are
//inputs
“i” ((short) (0x8000+(dpl<<13)+ (type<<8))), \ //Immediate
“o” (*((char *) (gate_addr))), \ //Address of the former 4 bytes
//of interrupt descriptor
“o” (*(4+(char *) (gate_addr))), \//Address of the last 4 bytes

//of interrupt descriptor

54

2. Device Initialization and Process 0 Activation

“d” ((char *) (addr)),”a” (0x00080000))//”d” corresponds to edx,
//"a" corresponds to eax

#define set_trap gate(n,addr) \
_set_gate(&idt[n],15,0,addr)

0x00000
Kernel

Ox9FFFF OxFFFFF O0x3FFFFF Ox5FFFFF OxFFFFFF

Disable
interrupt

*+ Kernel data area

Tees
B R
*reseas

ode area *

ot Kernel ¢

48 interruption service program

5]
H
|}

RN

0 47 ""t255

——— Hook interrupt service
——— program with IDT
LT
After hook up
Kernel code area Kernel data area Before hook up

i | DT

47 %4255

(=]

seesresessesstsesstssrtnns

Figure 2.6 Hooking the interrupt service program.

The purpose of the code is to make up the idt descriptors described in Section 1.3.5.
The idt is copied for ease of reading, as shown in the following:

The result of executing the above code is as follows (Figure 2.7):

Comparing:

set_trap gate (0, ÷ error)
set_trap gate(n,addr)
_set_gate(&idt[n],15,0,addr)
_set_gate(gate_addr, type,dpl,addr)

2.5 Binding the Interrupt Service Routine

55

CPU addr Interrupt service program

divide_error(void)

addr
IDTR .
addr debug(void)
IDT nmi(void)
. . addr
gate_addr————— = idt[0] ÷_error
gate_addr————idt[1] &debug addr int3(void)
te_addpP——i i
gate_addr '1dt[2] &nmi overflow(void)
gate_addr———idt[3] &int3
gate_addr idt[4] &overflow @(——mMmm | ..
Ignore GDT

Figure 2.7 An overview of the interrupt handle.

As we can see, n is 0; gate_addr is &idt[0], which is the address of the first content of
idt; type is 15; dpl (descriptor privilege level) is 0; and addr is the entrance address of the
interrupt service program “divide_error(void) (Figure 2.8).”

The instruction “movw%0,%%dx\n\t” means that the low word of edx is assigned to
the low word of eax. Then edx is (char *) (addr), as well as ÷_error. The value of eax
is 0x0080000, which is mentioned in head.s. Here, 8 is 1000 in binary, of which every bit is
meaningful. Thus, the value of eax is 0x0080000 + (the low word of(char *)(addr)). 0x0008
is the segment selector, with the same meaning as the “jmpi 0,8” described in Chapter 1.

The instruction “movw%0,%%dx\n\t” means that (short) (0x8000 + (dpl<<13) +
(type<<8)) is assigned to dx. Do not forget that, here, edx is (char *) (addr), as well as
÷_error.

set_trap_gate(0, ÷_error)

set_trap_gate(n, addr)

\

_set_gate(&idt[n], 15, 0, addr)

_set_gate(gate_addr, type, dpl, addr)

Figure 2.8 Function parameters.

2. Device Initialization and Process 0 Activation

Because data of this part is spliced by bit, we must calculate precisely as follows.
0x8000 is 1000 0000 0000 0000 in binary.
dplis 00, and dpl<<13 is 000 0000 0000 0000.

type is 15, and type<<8 is 1111 0000 0000.

Adding them up amounts to 1000 1111 0000 0000, which is the value of dx. Calculation
result of edx is the high word of (char *) (addr), as well as the high word of ÷_error
+1000 1111 0000 0000.

The instruction “movl%%eax,%1\n\t” means that the value of eax is assigned to
*((char *) (gate_addr)), also the first 4 bytes of idt[0]. Similarly, “movl%%edx,%2” means
that the value of edx is assigned to *(4+(char *) (gate_addr)), also the last 4 bytes of idt[0].
All 8 bytes together is integral idt[0]. The result is as follows (Figure 2.9):

The first entry of interrupt descriptor “diving by zero” in the IDT table is initialized
completely. Initialization of other interrupt service routine and IDT is quite similar.

0x8000: 1000 0000 0000 0000
dpl<<13: 000 0000 0000 0000

type<<8: 1111 0000 0000

1000 1111 0000 0000

15 8 7 0

7 (char*)(addr), the high word of ÷_error 6
< edx

*511/0 0/0/1 1 1 1/{0 0 0O 0 O O O O 4

3 Selector 0x0008 2
% < eax

1 (char*)(addr), the low word of ÷_error 0

I
15 8 7 0

"d"((char*)(addr)) 7 (char*)(addr), the high word of ÷_error 6

"movw %0,%%dx\n\t" "movl %%edx,%2"
"i"((short)(0x8000+(dpl<<3)+(type<<8))) 5 | 1o o 0 1 1 1 1]0 0 0. 0 0 0 0 0 4 ©rchar)gateaddn)

3 Selector 0x0008 2
"2"(0x00080000) | "movl %%eax,%1"

" %9%dx, %% ¢ | "0"(*((char*)(gate_addr
movw %%dx.%Raxin 1 (char*)(addr), the low word of ÷_error 0 (e (gate 2

|

Figure 2.9 How the parameters add into the IDT.

2.5 Binding the Interrupt Service Routine

57

Both set_system_gate(n,addr) and set_trap_gate(n,addr) use the same _set_
gate(gate_addr,type,dpl,addr), and the difference is that the dpl of set_trap_gate is 0 while
the dpl of set_system_gate is 3. “dpl is 0” means that it can only be handled by the kernel.
However, “dpl is 3” means that system can be called from privilege level 3 (also the user
privilege level).

Learn more about privilege level in Volume 3.pdf of the Intel IA-32 Architectures
Software Developer’s Manual.

Next, int 0x11-0x2F of idt are all initialized, and the pointer to interrupt service pro-
gram in idt is set with the status “reserved.”

Set the idt of the co-processor.

Enable the interrupt request from IRQ2 and IRQ3 of the 8259A interrupt controller.

Set the idt of the parallel port (access to printer).

The 32-bit interrupt service system is established to meet the interrupt signal
mechanism “passive response,” which is described as follows. On one hand, the hard-
ware sends signals to 8259A, and 8259A preliminarily handles signals and transfers
interrupt signals to the CPU. On the other hand, if the CPU does not receive signals,
it executes the program. Otherwise, the program being executed is interrupted and a
specific interrupt service program is located by the idt, which will be executed immedi-
ately. After interruption is completed, the CPU will return to the program point where
interrupt happens to continue. If interrupt signal is again received, the CPU will repeat
the process.

The original design is not like this. Originally, the CPU polls all hardware from
time to time to check whether its task has been completed or not. If not, the CPU
continues. This method takes time for handling user process and reduces the over-
all efficiency of the system. We can see that it is not efficient to handle signals by
way of “active polling.” It is an improvement that the “passive response” mode takes
the place of the “active polling” mode in handling the I/O problem between host and
peripherals.

2.6 Initialize the Request Structure of the
Block Device

In Linux 0.11, peripherals are divided into two categories: block device and character
device. The block device divides storage space into little parts with the same size named
as a block. Every block has its own block ID and is independent, which can also be read or
written randomly. Hard disks and floppy disks are both block devices. Character devices
carry out I/O communication by character. Keyboards and command displays are char-
acter devices.

Any process communicates with a block device using the buffer in the host’s memory.
Request management structure “request[32]” is a data structure for reading and writing,
which is a “bridge” between buffer block in the OS buffer and logical block in a block
device.

I/0 communication between the process and a block device is shown in Figure
2.10.

The OS executes the reading and writing operation between the buffer and the block
device based on their priorities and records the buffer needed to operate on the request.

58

2. Device Initialization and Process 0 Activation

Process Process Process Process Process

meeeee (30 0O QO
|/ \ |

Butfer zone |

Request

Floppy Floppy Disk Disk

Figure 2.10 An overview of the relationship among block device, buffer, request, and process.

After receiving the operation command, the CPU locates the logical block according to
the request.
The code is as follows:

//Code path:init/main.c:
void main (void)

#define NR_REQUEST 32

struct request {
int dev; /* -1 if no request */
int cmd; /* READ or WRITE */

int errors;

unsigned long sector;

unsigned long nr_ sectors;

char * buffer;

struct task struct * waiting;

struct buffer head * bh;

struct request * next; //This means requests can build a link-list

2.6 Initialize the Request Structure of the Block Device

//Code path:kernel/blk dev/1l rw block.c:
struct request request [NR_REQUEST] ; //array list

void blk dev_init (void)

{
int i;
for (i = 0 ; i<NR_REQUEST ; i++)
request[i] .dev = -1; //set as idle
request [i] .next = NULL; //break the link
1
1

Notice that request[32] is an array link-list. “request[i].dev = -1” means that this
request does not specially correspond to any device. This flag is used to specify whether
the current requested device is free or not. “request[il.next = NULL” means that the
queue of the request is not built. The process of initialization and the results are shown
in Figure 2.11.

0x00000 Ox9FFFF OxFFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF

‘ Kernel
Disable
interrupt

Request[32] has 32 items,

gt ‘e, set every "device number" and
..-*Kernel code area'Kernel data arean o ¢ prg,inter“ to "-1" and "NULL"

.. Item 0 Item 1 Item 2 Item 31

l | || | ll | || | .l | || | l l | || | l Request[32]
I [1 | —|1 |

|
-1 NULL -1 NULL-1 NULL NULL

Initialize the request([32] After initialization
Before initialization:

Item O Item 1 Item 2 Item 31

L T - - -

Figure 2.11 Initialization of request[32].

60

2. Device Initialization and Process 0 Activation

I 2.7 Binding with the Interrupt Service Routine of
Peripherals and Establishing the Human—
Computer Interaction Interface

Linus Torvalds originally designed chr_dev_init() in the OS to initialize the character
device, but it does nothing. Linus then implemented tty_init() to initialize the character
device. Note that people sometimes explain tty as teletype.

Character device initialization builds work environment for process and serial port,
which means initializing serial port, display and keyboard, and binding the relevant
interrupt service routine with IDT (interrupt descriptor table). In tty_init, it first calls
rs_init to set the serial port and then calls con_init to set the display. The specific code is
as follows:

//Code path:init/main.c:
void main (void)

//Code path:kernel/chr dev/tty io.c:
void tty init (void)

{
rs_init () ;
con_init ()

2.7.1 Set the Serial Port

The two serial port interrupt service programs and IDT are connected, and two serial
ports are initialized based on the content of the tty_table data structure, including the
following: setting the line control register DLAB bit, setting the send baud rate factor, and
setting the DTR and RTS. Finally, IRQ3 and IRQ4 of 8259A are enabled to send the inter-
rupt request.

The specific process of binding is shown in the upper part of Figure 2.12.

The specific code is as follows:

//Code Path:kernel/chr dev/serial.c:
void rs_init (void)

{

set_intr gate(0x24,rsl interrupt) ; //Set interrupt of serial port 1,
//referring 2.5

set_intr gate (0x23,rs2_ interrupt) ; //Set interrupt of serial port 2

init (tty table[1] .read g.data); //initialize serial port 1

init (tty table[2] .read g.data); //initialize serial port 2

outb (inb p (0x21)&0xXE7, 0x21) ; //allow IRQ3,IRQ4

2.7 Binding with the Interrupt Service Routine of Peripherals and Establishing the Human—Computer Interaction Interface

0x00000 Ox9FFFF OxFFFFF O0x3FFFFF Ox5FFFFF OxFFFFFF

‘ Kernel
£ Disable
| interrupt
R T Motherboard
..* Kernel code area "°* Kernel data area
..................... i i-tty_table[1].read_q.data o . e [l
[apT) . : Send
....... Lt ‘tty_table[2].read_q.data __[c.; IRQ4 -
0 47 "--. 255 .- ’

?rsZJnterrupt

i rs1_interrupt

After setting serial port

Kernel code area Kernel data area Before setting serial ports

R

rsl_interrupt rs2_interrupt

Figure 2.12 Hanging serial port interrupt service routine.

The function set_intr_gate that hooks the two serial port interrupt service programs
with IDT is similar to set_trap_gate introduced before. The difference is that the type of
set_trap_gate is 15(1111), but it is 14(1110) for set_intr_gate.

2.7.2 Set the Display

As the system provides information to indicate whether the graphics card is “monochrome
or color,” the OS sets the matching information. At the time of Linux 0.11, most graphics
devices are monochrome, so we assume that the attribute of the graphics card is mono-
chromatic EGA, the graphics memory location is 0xb0000-0xb8000, the index register
port is set to 0x3b4, the data port is set to 0x3b5, and the graphics card attribute, EGA,
is printed on the screen. Furthermore, initialize the variables used for scrolling screen,
including the origin, scr_end, top and bottom.
The effect is shown in Figure 2.13.

2.7.3 Set the Keyboard

How is the keyboard set? First, the OS hooks the interrupt service routine with IDT and then
removes the keyboard interrupt mask of 82594, enabling IRQI to send an interrupt signal.
After disabling the keyboard work, the keyboard is enabled to be ready. The function set_
intr_gate() is designed to do so, which is similar with the set_trap_gate() introduced before.

62

2. Device Initialization and Process 0 Activation

0x00000 O0x9FFFF OxFFFFF 0x3FFFFF Ox5FFFFF OxFFFFFF
Kernel

J h‘ D
. . interrupt

et Kernel code area (_)xbOO(S(.)' Streeennnll, 0xb8000
| “EGAm” |
Setting display attribute data Step 2

Mem addr| Len Name .
0x90000 | 2 Cursor position
0x90002 2 Extended memory number
0x90004 | 2 | Display page
0x90006 1 Display mode
0x90007 1 Character column number
0x90008 2
0x9000A | 1 Display memory
0x9000B | 1 Display state
0x9000C [2 Characteristic parameter

Cursor position
0x90080 | 16 | Disk parameter table
0x90090 | 16 | Disk parameter table
0x901FC | 2 | Root device number After display setting

Before display setting :

Kernel code area Kernel data area

Figure 2.13 Set the display.

The execution process is shown in Figure 2.14.
The specific code is as follows:

//Code Patvh:kernel/chr dev/console.c:
#define ORIG_X
#define ORIG_Y
#define ORIG_VIDEO_ PAGE
#define ORIG_VIDEO_MODE

(* (unsigned char *)0x90000)
(-k
(-k
((
#define ORIG_VIDEO COLS ((
(2
(-k
(-k
(-k

unsigned char *)0x90001)

unsigned short *)0x90004)

(unsigned short *)0x90006) & Oxff)

* (unsigned short *)0x90006) & O0xff00) >> 8)
)

unsigned short *)0x90008)

unsigned short *)0x9000a)

unsigned short *)0x9000c)

#define ORIG VIDEO LINES

#define ORIG_VIDEO EGA AX
#define ORIG_VIDEO EGA BX
#define ORIG_VIDEO EGA CX

~— = Ul ~ % ~ ~ —~

#define VIDEO TYPE MDA 0x10 /* Monochrome Text Display */
#define VIDEO TYPE CGA 0x11 /* CGA Display */

2.7 Binding with the Interrupt Service Routine of Peripherals and Establishing the Human—Computer Interaction Interface

#define VIDEO TYPE_ EGAM 0x20 /* EGA/VGA in Monochrome Mode */
#define VIDEO TYPE EGAC 0x21 /* EGA/VGA in Color Mode */

#define NPAR 16

void con_init (void)

{
register unsigned char a;
char *display desc = “?222?”;
char *display ptr;

video_num columns = ORIG_VIDEO COLS;//see the machine system data
video_size_row = video num columns * 2;

video_num_lines = ORIG_VIDEO_LINES;

video_page = ORIG_VIDEO_PAGE;//see the machine system data
video_erase_char = 0x0720;

if (ORIG_VIDEO MODE = = 7) /* Is this a monochrome display? */
{
video_mem_start = 0xb0000;
video_port_reg = 0x3b4;
video_port_val = 0x3Db5;
if ((ORIG_VIDEO_EGA BX & Oxff) ! = 0x10)//see the machine system data
{
video_type = VIDEO TYPE_ EGAM;
video_mem end = 0xb8000;

display desc = “EGAm”;
}
else
{
video type = VIDEO TYPE MDA;
video_mem_ end = 0xb2000;
display_desc = “*MDA”;
}
}
else /* If not, it is color. */
{
video _mem start = 0xb8000;
video port_reg = 0x3d4;
video port_val = 0x3d5;
if ((ORIG_VIDEO_EGA BX & Oxff) ! = 0x10)//see the machine system data
{
video type = VIDEO TYPE EGAC;
video_mem end = 0xbc000;
display desc = “EGAc”;
}
else

video type = VIDEO TYPE CGA;
video_mem end = 0xba000;
display desc = “*CGA”;

/* Let the user known what kind of display driver we are using */

display ptr = ((char *)video mem start) + video size row - 8;
while (*display_ desc)

2. Device Initialization and Process 0 Activation

{

*display ptr++ = *display desc++;

display ptr++;
/* Initialize the variables used for scrolling (mostly EGA/VGA) */
origin = video_mem start;
scr end = video mem start + video num lines * video size row;
top = 0;

i
bottom = video num_lines;

gotoxy (ORIG_X,0RIG Y);//see the machine system data
set_trap gate (0x21, &keyboard interrupt);//set the interrupt of keyboard,
//reference Section 2.5
outb _p(inb p(0x21)&0xfd, 0x21) ;//Cancel the keyboard interrupt mask,
//allow IRQ1
a = inb p(0x61) ;

outb p(a|0x80,0x61) ; //disable the keyboard
outb (a, 0x61) ; //allow the keyboard
}
0x00000 Ox9FFFF OxFFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF
Kernel |
< Disab\e
R D errupt
Lo Kernel code area’* Kernel data area Motherboard
[aDT) e IRQII
0 47 eoss et =
- e
4

After keysettings

Before keysettings:
Kernel code area Kernel data area :

Figure 2.14 Set the keyboard.

2.7 Binding with the Interrupt Service Routine of Peripherals and Establishing the Human—Computer Interaction Interface

65

I 2.8 Time Setting

startup_time is the basis of calculations related to time. In the OS, some operations
depend on time information, furthermore, some programs need the time as parameter,
for example, the file modification time, file access time, i node modified time, and so on.
Other time information can be calculated according to startup_time.

The process is as follows: First, the system collects time data by calling time_init,
which is on CMOS, a small memory chip on the main board, to extract different level time
factors, for example, second time.tm_sec, minute time.tm_min, year time.tm_year, and
so on. Then, integrate these factors to obtain startup_time.

The code is as follows:

//Code path:init/main.c:
void main (void)

#define CMOS_ READ (addr) ({\ //read time data from COMS

outb p(0x80|addr, 0x70) ; \ //0x80|addr:read CMOS address, 0x70:write port

inb p(0x71); \ //0x71 : read port

3]

#define BCD_TO BIN(val) ((val) = ((val)&l5) + ((val)>>4)*10)//Change 10 hex to 2
//hex

static void time_init (void)

{

struct tm time;

do {

time.tm sec = CMOS_READ(0) ;//the second value of current time, The
//following analogy

time.tm min = CMOS_READ (2

time.tm_hour = CMOS_READ (

)i
4) ;
time.tm mday = CMOS_READ (7)
)
9
(

i

time.tm mon = CMOS_READ (8
time.tm_year = CMOS_READ (
} while (time.tm sec ! = CMOS_READ
BCD_TO BIN(time.tm_sec) ;
BCD_TO_BIN(time.tm min) ;
BCD_TO_BIN(time.tm hour) ;
()
(

)i
0));

BCD_TO_BIN(time.tm mday) ;

BCD_TO_BIN(time.tm mon) ;

BCD_TO_BIN(time.tm_year) ;

time.tm mon-- ;

startup time = kernel mktime (&time);//boot time, start from 0 clock 1970.1.1}

//Code path:include\asm\io.h: //Embedded assembler refers to the comments of
//trap_init

#define outb p(value,port) \ //write value to port

__asm__ (“outb%%al, $%dx\n” \

"\tjmp 1f\n” \ //jmp to the first next 1:to delay

66

2. Device Initialization and Process 0 Activation

“1:\tjmp 1f\n” \
“1:”::“a” (value),“d” (port))

#define inb_p(port) ({\
unsigned char _v; \
__asm__ volatile (“inb%%dx,%%al\n” \ //disable compiler optimize the
//following codes
"\tjmp 1f\n” \ //delay
“1:\tjmp 1f\n” \
“Lrviw = oar ((v):nd” (port)); \
Vi \

3]

0x00000 Ox9FFFF OxFFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF
‘ Kernel

/ .
ROM BIOS C Disable
| and VGA p) ““\'_e((u

""" m

et Kernel code area’"** Kernel data area Motherboard
Step 1:

extract time elements

startup_time and obtain boot time CMOS -

Step 2:
set boot start time

Operation
processing After setting boot time

Before setting boot time :

Kernel code area Kernel data area Motherboard
startup_time CMOS -

ssecssesressesssssscsesssessnss e

Figure 2.15 Boot time setting.

The calculation process and storage locations of boot time in the memory are as
shown in Figure 2.15.

2.9 Initialize Process 0

Process 0 is the first process on Linux, which is also the first parent process to start the
Linux OS. The following contents have the most important and deeply influence on the
normally operation of process 0 in the host, mainly including three aspects:

2.9 Initialize Process 0

67

1.

Initialize process 0.

The task_struct (init_task = {INIT_TASK,}) of process 0 has been imple-
mented in the code design stage, but this does not mean that process 0 was avail-
able. We need to hook LDT and TSS in the task_struct of process 0 with GDT
and initialize GDT, the process tank, and registers related to process scheduling.

As a modern OS, the most important indicator of Linux 0.11 is that it supports
multiple-process execution, which means that a process is required to have multi-
ple processes’ polling capacity. System will set the timer interrupt in order to
laying foundations for the schedule of process 0 and other processes, which are
directly or indirectly by process 0.

Process 0 needs to cope with system calls. Each process in operation may interact
with the kernel, by a system call program. The system uses the set_system_gate
function to bind system_call with IDT and then process 0 becomes capable of
dealing with system calls. System_call is the general entrance of any system call.

Process 0 needs to acquire the above three kinds of ability to ensure that it operates

properly in the future and passes on these abilities to its offspring.

The code is as follows:

//Code path:init/main.c:
void main (void)

sched_init () ;

//Code path:kernel/sched.c:

#define LATCH (1193180/HZ) //The vibration frequency of each time slice

union task_union { //The union of task struct and kernel’s stack

} 5

struct task struct task;
char stack[PAGE_SIZE]; //PAGE_SIZE is 4K

static union task union init_task = {INIT TASK,};//task struct of process 0

//task[0] is used by process 0
struct task struct * task[NR_TASKS] = {&(init_task.task),};

void sched init(void)

{

int 1i;
struct desc_struct * p;

if (sizeof (struct sigaction) ! = 16)

panic (“Struct sigaction MUST be 16 bytes”);
set_tss_desc (gdt+FIRST TSS_ENTRY, & (init_task.task.tss));//set TSSO
set_ldt_desc (gdt+FIRST LDT ENTRY,&(init_task.task.1ldt));//set LDTO

p = gdt+2+FIRST TSS_ENTRY; //Set all above of TSS1 to 0 from the sixth of
for(i = 1;i<NR_TASKS;i++) { //gdt table and clear the process slot from 1
task[i] = NULL;
p->a = p->b = 0;
Pt+i
p->a = p->b = 0;
Pt+i

68

2. Device Initialization and Process 0 Activation

/* Clear NT, so that we won’t have troubles with that later on */
__asm__ (“pushfl ; andl $0xffffbfff, (¥esp) ; popfl”);
ltr(0) ; //Important!Bind tss with TR register
114t (0) ; //Important !Bind 1ldt with LDTR register
outb _p(0x36,0x43); /* binary, mode 3, LSB/MSB, ch 0 *///set timer

outb p (LATCH & Oxff, 0x40); /*LSB*///timer interrupt each 10 millisecond

outb (LATCH >> 8, 0x40); /* MSB */

set_intr gate (0x20,&timer_ interrupt) ; //Important! Set timer interrupt and
//it’s the base of process scheduling

outb (inb_p (0x21) &~0x01, 0x21) ; //allow time interrupt

set_system gate (0x80, &system call);//Important! Set the entry of system call

}

//Code path:include\linux\sched.h:// //embedded assembly refer the
//trap_init’s comments

#define FIRST TSS ENTRY 4 //See the entry of TSS
#define FIRST LDT ENTRY (FIRST_TSS_ENTRY+1)

#define _TSS(n) ((((unsigned long) n)<<4)+(FIRST_TSS_ENTRY<<3))
#define _LDT(n) ((((unsigned long) n)<<4)+(FIRST_LDT ENTRY<<3))
#define ltr(n) _ asm__ (“ltr%%ax”::“a” (_TSS(n)))

#define 11dt(n) _ asm__(“11ldt%%ax”::“a” (_LDT(n)))

//Code path:include\asm\system.h:

#define set_intr_gate(n,addr) \
_set_gate (&idt[n],14,0,addr)

#define set_trap_gate(n,addr) \
_set_gate (&idt[n],15,0,addr)

#define set_system gate(n,addr) \
_set_gate(&idt[n],15,3,addr)

#define _set_tssldt_desc(n,addr,type) \//See the trap_init’s comments of
//embedded assembly

asm (“movw $104,%1\n\t” \//put 104(1101000)in the first word in LDT
“movw%%ax, $2\n\t” \//put low 16-bit base address of TSS or LDT into
//NO.3, 4 bytes of this descriptor
“rorl $16,%%eax\n\t” \
“movb%%al, $3\n\t” \ //put NO.3 byte of base address into NO.5 byte
“movb $” type “,%4\n\t” \//put 0x89 or 0x82 into NO.6 byte
“movb $0x00,%5\n\t” \//put 0x00 into NO.7 byte
“movb%%ah, $6\n\t” \//put NO.4 byte of base address into NO.8 byte
“rorl $16,%%eax” \ //restore eax
::a” (addr), “m” (*(n)), “m” (*(n+2)), “m” (*(n+4)), \
“m” (*(n+5)), “m” (*(n+6)), “m” (*(n+7)) \
//'m” (*(n))is a memory cell start from NO.n descriptor of the GDT.
// m” (*(n+2)) a memory cell start from NO.3 byte of NO.n descriptor of the GDT.
//The remaining and so on
)
#define set_ tss_desc(n,addr) _set_ tssldt_desc(((char *) (n)),addr,“0x89")
#define set_ldt desc(n,addr) _set_ tssldt_desc(((char *) (n)),addr, “0x82")

*
*

//Code path:include/linux/sched.h:

struct tss_struct {

long back_link; /* 16 high bits zero */
long esp0;

long ss0; /* 16 high bits zero */
long espl;

long ssl; /* 16 high bits zero */
long esp2;

long ss2; /* 16 high bits zero */
long cr3;

long eip;

long eflags;

long eax,ecx,edx,ebx;

long esp;

long ebp;

2.9 Initialize Process 0

long esi;

long edi;

long es; /* 16 high bits zero */

long cs; /* 16 high bits zero */

long ss; /* 16 high bits zero */

long ds; /* 16 high bits zero */

long fs; /* 16 high bits zero */

long gs; /* 16 high bits zero */

long 1ldt; /* 16 high bits zero */

long trace_bitmap; /* bits: trace 0, bitmap 16-31 */

struct i387_struct i387;

struct task_struct {
/* these are hardcoded - don’t touch */
long state; /* -1 unrunnable, 0 runnable, >0 stopped */
long counter;
long priority;
long signal;
struct sigaction sigaction[32];
long blocked; /* bitmap of masked signals */
/* various fields */
int exit_code;
unsigned long start_code,end code,end data,brk,start_stack;
long pid, father, pgrp, session, leader;
unsigned short uid,euid, suid;
unsigned short gid, egid, sgid;
long alarm;
long utime,stime,cutime,cstime,start_time;
unsigned short used math;
/* file system info */
int tty; /* -1 if no tty, so it must be signed */
unsigned short umask;
struct m_inode * pwd;
struct m_inode * root;
struct m_inode * executable;
unsigned long close on_exec;
struct file * filp[NR OPEN] ;
/* 1ldt for this task 0 - zero 1 - cs 2 - ds&ss */
struct desc_struct 1dt[3];
/* tss for this task */
struct tss_struct tss;

/* task_struct of process 0

* INIT TASK is used to set up the first task table, touch at
* your own risk!. Base = 0, limit = Ox9ffff (= 640kB)

*/

#define INIT TASK \
/* state etc */

/* signals */

/* ec,brk... */

{ \ //Ready state,15 time slice

0

0,0,0,0,0,
/* pid etc.. */ 0,-1,0,0,0

0

0

0

=1,0,0,0, \ //PID 0
/* uid etc */ ;0,0,0,0,0, Y\
/* alarm */ ,0,0,0,0,0, \
/* math */ o\
/* fs info */ -1,0022,NULL, NULL, NULL, 0, \
/* £ilp */ {nuLL, }, \

{\
{o,0}, \

/* 1ldt */ {0x9f,0xc0fa00}, \
{0x9f, 0xc0£200}, \
1o\
/*tss*/ {0,PAGE_SIZE+ (long)&init_task, 0x10,0,0,0,0, (long) &pg_dir,\
0,0,0,0,0,0,0,0, \ //the value of eflags determines the cli only can be
//used in the 0 privileges
0,0,0x17,0x17,0x17,0x17,0x17,0x17, \
_LDT(0),0x80000000, \
\
o\

2. Device Initialization and Process 0 Activation

2.9.1 Initialization of Process 0

sched_init () :

The difficulty in understanding the sched_init() function is seen in the following two
lines:

set_tss_desc(gdt+FIRST TSS_ENTRY, & (init_task.task.tss));
set_1ldt_desc(gdt+FIRST LDT ENTRY, & (init_task.task.1ldt));

The purpose of the two lines is to initialize the 4, 5 items of process 0 in the GDT table.
The initialization of TSS0 and LDTO is shown in Figure 2.16.

Take the TSSO as an example; based on the comments in the source code, we can draw
the picture below (Figures 2.17 and 2.18).

Compared to the source code, comments, and figure, we can find the movw$104,% 1
assign 104 to 15:0 part to segment limit, G is 0, that indicates the segment limit is 104 bytes,
and TSS just has 104 bytes except struct i387_struct i387. LDT is 3 X 8 = 24 bytes, 104 bytes
limit is long enough. The TSS type is x89, that is the 10001001 binary. We can see that the
movb $“ type "% 4 to assign the type 1001. By the way, will assign the value of P DPL, S fields.
Similarly, movb $0 x00,%5 assign the part of 0000, at the same time, also conveniently assign
G, D/B, preserved, and AVL fields.

The task_struct of process 0 has been hard-coded by the OS designers, which is the
INIT_TASK in sched.h (see the source code, the related structure, and comments below),
and the INIT_TASK pointer initialized 0 item of task[64] (Figure 2.19).

Sched_init() will clear the task[64] except for the 0 item in process 0 subsequently and, at
the same time, will clear all items above TSS1 and LDT1 in GDT. The results are shown below.

<
GDT T LDT of process 0
Process 2
8 [TSS2 TSS of process 0
| Data nt_ | T
b 7 |ILDT1 2 [— dzscrsi;gt::en: long back_link;
rocess 1 Segment limit long esp0;
6 [TSS1 104B privilege level 0 lOI‘lg ss0;
longespl;
5 I longssl;
LDTO long esp2;
Process 0 |~ Code segment | long ss2;
4 TSSO — 1 | descriptor ___| long cr3;
long eip;
long eflags;
? |NULL Segment limit long eax, ecx, edx, ebx;
104B privilege | long esp;
2 KSSRNEL level 0 long ebp;
Kernel 0 NULL —| long esi;
1 KERNEL long edi;
CS longes;
0 long cs;
NULL longss;
gdt long ds;
long fs;
long gs;
longldt;
long trace_bitmap;

Figure 2.16 The relationship among GDT, LDT, and TSS.

2.9 Initialize Process 0

71

Segment descriptor

/— Reserved

1]
‘ ‘ ‘ ‘ | D A Segment max
Base address 31:24 G|/ |0 |V limit 19:16
B L
P | DPL S Type Base address 23:16
Base address 15:0
Segment limit 15:0
Figure 2.17 The structure of the segment descriptor.
TSSO
Tl|1 1T T
movb %%ah %6 ——= | | Thebaseaddress 11 41015/ 9/ 0] 0] 0| 0| <e—— movb $0x00%5
T The base address rorl $16,%%eax
movb $"type"%od——m= [10| 0[0[1[0|0]|1 (TfTJSS 2|3:16 ovh %‘%?ai),%3
movw %%ax,%2 ———— The base address of TSS 15:0

movw $104,%1——» (0|0 |0|0|0O|0O|0O|OfO|1|1/0|/1|/0|0|O

Figure 2.18 The structure of TSSO.

union task_union

struct task_struct task;
char stack[PAGE_SIZE];
% esp

-—

stack(4 KB,a page)

init_task
(task_union)

task_struct(INIT_TASK)(956 B)

INIT_TASK pointer The stack is used by the

kernel; the kernel code stack

won't overlap task_struct

Figure 2.19 The structure of task_union.

72

2. Device Initialization and Process 0 Activation

0x00000 Ox9FFFF OXFFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF

| Kernel
Disable
interrupt

Before setting task[64] and GDT

Kernel code area Kernel data area

Figure 2.20 Initialize the correlative task of the process.

The final step of initializing the management structure is also very important (Figure
2.20). It puts the TR register point to TSSO and the LDTR register point to LDT0. The CPU
can find the TSSO LDTO in process 0 through the TR and LDTR registers, and you can find
the related management information of process 0.

29.2 Set the Timer Interrupt

The timer interrupt is the basis of schedule of process 0 and other processes created by
process 0. The process of setting timer interrupt is divided into the following three steps:

1. Set the 8253 timer that supports polling. This operation is the first step in Figure
2.21, in which the key is LATCH, defined by a macro, and through it define
“# define LATCH (1193180/HZ)” in sched.c, namely, the system happens once
timer interrupt in every 10 seconds.

2. Set the timer interrupt, which is the second step in Figure 2.21, after the timer_
interrupt function is binded; when timer interrupt occurs, the system can find
this service routine through the interrupt descriptor table and perform some spe-
cific actions.

2.9 Initialize Process 0

73

0x00000 Ox9FFFF OxFFFFF O0x3FFFFF Ox5FFFFF OxFFFFFF
‘ Kernel

£ -
ROM BIOS Disable .
and VGA) interrup

ces

..+ Kernel code area

— e, |..4DT) Mainboard
------- 0 azce.. 255
? timer_interrupt T
b T T ' 8253 timer
Step 2: bind t}}e timer Transfer LATCH data ——-
interrupt service routine
with the 0x20 item of IDT

Step 1: set the timer interrupt

After binding the timer interrupt
service routine and setting 8253

Before binding the timer interrupt»
service routine and setting 8253 *

Kernel code area Kernel data area

Motherboard

8253 timer

»
»
»
»
»
»
»
»
»
»
»
»
»
»

Figure 2.21 Set timer interrupt.

3. Open the maskable bits related with timer interrupt in the 8259A chip. After
opening, the timer interrupt produce, from now on, the timer interrupt produce
in each 1/100 seconds. Because of the “disable interrupt” state, the CPU does not
respond, but process 0 has the potential to be involved in the schedule.

2.9.3 Set the Entrance of System Call

The system call processing function system_call needs to be bound with the int 0x80
interrupt descriptor. System_call is the total entry of system call soft interrupt in the whole
OS. All user programs use system call. After producing int 0x80 soft interrupt, OS finds
specific system call functions through the total entry. This process is shown in Figure 2.22.

The system call’s function is the basic support of the OS to the user program. In the
OS, the core is protected by the privilege level that relies on the hardware and does not
allow the user process to directly access the kernel code. But there are a lot of processes,

74

2. Device Initialization and Process 0 Activation

0x00000 Ox9FFFF OxFFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF

L ‘ Kernel ‘
Z Disable
. ‘ interrupt

e,
LIS

et I(.e.rnel code area

ey

Kernel data area

H “] | l [system_call

Hook the system call service program system_call

to the 0x80 item of IDT After loading system
call service program

L4700 255 R

Figure 2.22 Call service program of the system.

‘ Kernel codearea Kernel data area Defore loading system ’
! m! call service program |
' (IDT) } DAL)
5 ’

such as reading a disk and creating the child process of such specific transaction process-
ing, that need the support of the kernel code. In order to resolve the contradiction, the
designer of the OS provides the system call solutions and a set of system service interface.
When the user process needs to deal with the kernel, it calls the interface program, which
immediately triggers int 0x80 soft interrupt. The following things don’t need the user
program, but through a different route which the CPU responds to the interrupt signal,
change privilege level, from a user process privilege level 3 flip to 0 privilege level, through
the interrupt descriptor table find system call port, call specific system function to handle
affairs, and then, iret flip back to the 3 privilege level of process, the process continue to
execute the original logic, contradiction is solved.

2.10 Initialize the Buffer Management Structure

The buffer area is the medium through which the memory exchanges data with peripher-
als. The biggest difference between the memory and the hard drive lies in the fact that
the disk saves large amounts of data at a low cost. The disk is not involved in operations
(because the CPU cannot address the disk). In addition, the memory not only needs to
store data, but the more important thing here is to perform data operation with the CPU
and bus. The buffer is in between, and it not only saves the data but also participates in
some searching, organization, and indirect, auxiliary operation. After having the buffer
medium to the peripherals, it only needs to consider exchanging data with the buffer in
accordance with the requirements and does not need to consider how the memory will use
these interaction data. As for memory, it also only needs to consider whether the condition

2.10 Initialize the Buffer Management Structure

75

of the interaction with the buffer is ready and does not need to care about the interaction
between buffer and peripherals. Organization, management, and coordination are oper-
ated by the OS.

The OS manages the buffer through the hash_table[NR_HASH] and the buffer_head
two-way chain complex hash table.

The OS sets the buffer by calling the buffer_init function; the execute code is as follows:

//code path:init/main.c:
void main (void)

In the buffer_init function, from the kernel end and the terminal of the buffer area
beginning at the same time grow in relative direction, pair to make buffer_head, buffer
block, until less than a pair of buffer_head, a buffer block, in the second chapter, at the
beginning of the memory set pattern, with about 3000 pairs of buffer_head, buffer block,
buffer_head in low address, buffer block in the high address (Figure 2.23).

Set the member of device head: device id b_dev, b_count, “update” sign b_uptodate,
“dirty” logo sign b_dirt, and “locking” flag b_lock to 0. As shown in the figure, the b_data
pointer points to the corresponding buffer block. Using the b_prev_free and b_next_free
of the buffer_head, set all the buffer_head into a two-way linked list. The free_list refers to
the first buffer_head, and use free_list to set the two-way linked list formed by the buffer
head link into a bidirectional ring chain, as shown in the following illustration (Figure 2.24).

Notice the memory change shown at the top of Figure 2.25. There is a black area of the
memory near the system core part that stored the buffer management structure. Because
it manages more than 3000 buffer blocks, it takes up the same memory space as the kernel.
The figure describes the two-way linked list structure.

Finally, set the hash_table[307] and all the contents of hash_table[307] to NULL. As
shown in Figure 2.25, the code is as follows:

free_list

h->b_data = (char *) b

bu.ffer_head

.
oo
eec®
.
.o
o
.o
oo
.....
.o
.o
.o
.o
.o
eoc®
oo
.

Note: both sides are
arranged tightly

Figure 2.23 An overview of initialization a.

2. Device Initialization and Process 0 Activation

free_list

\ hash_table

N
It is free when starting N
N

N indicates that count is 0 N indicates NULL

Figure 2.24 An overview of initialization b.
0x00000 Ox9FFFF OxFFFFF O0x3FFFFF Ox5FFFFF OxFFEFFF
Kernel
isable
) “Etlerr“ pt

.. -I(é;nel code area Kernel data 'a'rea. . |

B Step 1: sets free list
Hash table :

List head —-%j: .

After initializing buffer

Before initializing buffer

TR - 1T st e

Figure 2.25 Initialize the buffer management structure.

//code path:fs/buffer.c:

struct buffer head * start_buffer = (struct buffer head *) &end;
struct buffer head * hash_table [NR_HASH] ;

static struct buffer head * free list;

2.10 Initialize the Buffer Management Structure 77

void buffer init(long buffer end)

{

struct buffer head * h = start_buffer;

void * b;
int 1i;
if (buffer end = = 1<<20)
b = (void *) (640%1024);
else
b = (void *) buffer end;

//Eachtime h and d enter the buffer head and buffer block one piece from the low and
//high address of buffer. Ignore the remain buffer head and the space of buffer.
while ((b - = BLOCK SIZE) > = ((void *) (h+1))) {

h->b dev = 0;

h->b _dirt = 0;

h->b _count = 0;

h->b lock = 0;

h->b uptodate = 0;

h->b wait = NULL;

= NULL;

h->b next //Initialize the two item empty,
//articulate the subsequent to hash table
h->b _prev = NULL;
h->b _data = (char *) b; //articulate each buffer head to a buffer
h->b_prev free = h-1; //The two items articulate buffer head to front
h->b next free = h+l;//and rear of buffer head, produce a doubly linked list
h++;
NR BUFFERS++;
if (b = = (void *) 0x100000) //avoid ROMBIOS&VGA
b = (void *) 0xA0000;
1
==p
free list = start buffer; //free_list points to buffer head
free list->b _prev free = h; //let buffer head doubly linked list
h->b next free = free list; //form doubly linked list
for (i = 0;i<NR _HASH;i++) //clear hash table[307
hash_table[i] = NULL;

Look at the code struct buffer_head *h = start_buffer; in this line, start_buffer iden-
tifies the starting position of the buffer. This also solves the problem about the starting
position of the buffer. It is defined in buffer.c:

struct buffer head * start_buffer = (struct buffer head *) &end;

The end is the end address of the kernel code. In the designing stage, it is difficult to
accurately estimate this address. Set the end value during kernel module linking and use
it here.

2.11 Initialize the Hard Disk

To build the environment of communications between a process and the hard disk, the OS
must initialize the hard disk.

In the function hd_init, the program links the hard disk request service routine
do_hd_request and blk_dev control structure; the interact work of the hard disk and the
request is handled by the function do_hd_request and then links the hard disk interrupt
service routine hd_interrupt and the interrupt descriptor table. Finally, it resets the mask
bit of primary 8259A int2 to allow the interrupt request signals sent by the vice-chip; it
then resets the hard disk interrupt request mask bit (on-vice-chip), allowing the interrupt
request signals sent by the hard disk controller.

The code is as follows:

78

2. Device Initialization and Process 0 Activation

//Code path: init/main.c:
void main (void)

{

hd_init () ;

//Code path: kernel/blk_dev/hd.c://Similar with rd_init, see the comment of rd_init
void hd_init (void)
{
blk_dev[MAJOR_NR] .request_fn = DEVICE_REQUEST; //Link do_hd_request ()
set_intr gate (0x2E, &hd_interrupt); //Set the hard disk interrupt
outb_p (inb_p (0x21) &0xfb, 0x21) ; //Allow 8259A to send interrupt request
outb (inb_p (0xAl) &0xbf, 0xAl) ; //Allow hard disk to send interrupt request

Figure 2.26 shows the process of initialization.

ROM BIOS
and VGA

Figure 2.26 Initialize the hard drive.

2.11

Initialize the Hard Disk

79

ID 2.12 |Initialize the Floppy Disk

The floppy disk and floppy disk drives can be detached. In this book, for convenience,
floppy disk represents the floppy disk drive and floppy disk as a whole.

Initialization of the floppy disk is similar to hard disk initialization. The difference
is the link function do_fd_request(), initializing the interrupt that is associated with the
floppy disk. Details can be found in Section 2.11.

The code is as follows:

//Code path: init/main.c:
void main (void)

void floppy_init (void)

{
blk_dev [MAJOR_NR] .request fn = DEVICE REQUEST; //Link do_fd request ()
set_trap gate (0x26,&floppy interrupt); //Set the floppy disk interrupt
outb (inb_p (0x21) &~0x40,0x21) ; //Allow floppy disk to send a interrupt

Figure 2.27 gives the main steps to initialize the floppy disk.

IB 2.13 Enable the Interrupt

Now, all the interrupt service routines and the IDT have been linked; this means that the
interrupt service system has been finished. The system can deal with the interrupt in the
32-bit protected mode. Importantly, it means that the system call can be used.

Now we can enable the interrupt!

The code is as follows:

//Code path: include/asm/system.h:
#define sti() _ asm (“sti”::)

//Code path: init/main.c:
void main (void)

80

2. Device Initialization and Process 0 Activation

0x00000 Ox9FFFF OxFFFFF O0x3FFFFF Ox5FFFFF OxFFFFFF

Kernel
ROM BIOS C Disable "
and VGA) ‘mteﬂ“ P

RN Kernel code area

Kernel data area

047"" 255

| ”) ‘ | ﬂopp‘/finterruptf | I]:[I:Hblk_dev 7]

e a1 R H Motherboard
Step 2: Step 1:
hook floppy interrupt service hook floppy request service
program floppy_interrupt to program do_fd_request to the
the 0x26 item of IDT second item of blk_dev [7]
(#define MAJOR_NR 2 in
floppy.c) 8259A

Step 3: reset floppy interrupt
request mask bit, allow floppy
disk controller to send interrupt
request signal

After setting disk

=)
=
N

H

)

U

N

Figure 2.27 Initialize the floppy disk.

Figure 2.28 gives the effect after enabling the interrupt. Be aware of the changes in EFlags.

2.14 Process 0 Moves from Privilege Level 0 to 3 and
Becomes a Real Process

Linux OS requires that all processes should be built by an existing process in privilege
level 3, with the exception of process 0. In Linux 0.11, the code and data of process 0 are
written in the kernel of the OS. It is in privilege level 0; at this time, strictly speaking, the
process 0 is not a real process. In order to comply with the rules, before process 0 creates
process 1, process 0 must be moved from privilege level 0 to 3. The specific method is to
call the function move_to_user_mode, imitating the interrupt return action, to move the
privilege level of process 0 from 0 to 3.

2.14 Process 0 Moves from Privilege Level 0 to 3 and Becomes a Real Process

8l

Figure 2.28 Enable the interrupt.

The code is as follows:

//Code path: init/main.c:
void main (void)

move_to_user_mode () ;

//Code path: include/system.h: //See 1.3.4
#define move_to_user mode () \ //Imitate push, the order is ss, esp, eflags, cs, eip
__asm__ (“movl%%esp, $%eax\n\t” \
“pushl $0x17\n\t” \ //Push ss, 0x17 is 10111 in binary system(Privilege
//level 3, 1dt, data segment)
“pushl%%eax\n\t” \ //Push esp
“pushfl\n\t” \ //Push eflags
“pushl $0x0f\n\t” \ //Push cs, 0x0f is 1111 in binary system(Privilege level
//3, 1dt, Code segment)
“pushl $1f\n\t” \ //Push eip
“iret\n” \ //return, move from the privilege level 0 to 3
“1:\tmovl $0x17,%%eax\n\t” \ //The following codes make ds, es, fs, gs and ss
//have the same value
“movw$%ax, $%¥ds\n\t” \
“movw$%ax, ¥%es\n\t” \
“movw$%ax, $%3fs\n\t” \

82 2. Device Initialization and Process 0 Activation

One way to change the privilege level in TA-32 is through interruption, as introduced
in Chapter 1. When an interrupt request is received, the CPU can interrupt the current
program; cs:eip switches to perform the corresponding interrupt service routine. When
finished, perform iret to return to the interrupted program to continue.

During this period, the CPU hardware does two things: to protect and restore the
environment and to change the privilege level.

We can see from the code performance that interruption is just like function calls.
They can jump from a code that is being executed to another section of the code and
then return to the original code to execute after finishing the execution of the new code.
In order to make sure that the process could return to the original code accurately, you
need to push CS and EIP to save the next line of code (protect environment). When fin-
ished executing the called function or interrupt service routine, pop CS and EIP (restore
environment). Thus, the CPU can perform the called function or interrupt program accu-
rately. The EFlags and other important registers also need to be protected.

The difference between interruption and function call is that the function call is
designed by a programmer; the compiler can compile in advance the protection and the
restoration code. While the interruption is unpredictable, they cannot be compiled in
advance. Hence, the protection and restoration environment of the interruption have to
be performed by the hardware. Therefore, the command int instruction will cause the
hardware to complete the push of SS, ESP, EFlags, CS, and EIP. Similarly, when executing
the command iret, the hardware will pop them to the corresponding register.

According to the settings of dpl, when the CPU responds to the interruption, it can
change the privilege level. In function sched_init(), set_system_gate (0x80,&system_call)
is to set the interrupt int 0x80 move from privilege level 3 to 0. When the process of privi-
lege level 3 do the system call int 0x80, CPU will flip to privilege level 0. Similarly, the com-
mand iret could change the privilege level from 0 to 3.

The function move_to_user_mode is based on this principle, using iret to change the
privilege level from 0 to 3.

So far, process 0 is in privilege level 0; the stack does not have the values of these five
registers: ss, esp, eflags, cs and eip. In order to use the command iret, the designer pushes
value of these registers manually, which is similar to the command int. When performing
the command iret, the CPU automatically pops this 5 value to the register and turns to
privilege level 3, executing the code in privilege level 3.

In order to change to privilege level 3, not only should the push order be correct, but
the privilege level of SS and CS must also be right. Note that the value of SS in the stack is
0x17, which is 00010111 in the binary system; the last two bits represent 3, the user privi-
lege level. Then, the sixth bit is 1, which means the segment descriptor is obtained from
the LDT; the 10 of 4-5 bits means obtaining the stack segment descriptor from the third
item of the LDT.

When executing the command iret, the hardware would pop the 5 value from the
stack to SS, ESP, EFlags, CS, and EIP in order. The pop order is the same as the usual inter-
ruption return; also, the effect of the return is the same.

When the system finished executing the function move_to_user_mode(), equivalent
to an interruption return, the privilege level of process 0 changes from 0 to 3, which means
process 0 becomes a real process.

2.14 Process 0 Moves from Privilege Level 0 to 3 and Becomes a Real Process

83

This page intentionally left blank

Creation and
Execution of Process |

IB 3.1 Creation of Process |

Now, process 0 is at privilege level 3, which is a process state. As a parent process, its first
task is to call fork() to create the first child process—process 1, which is the first imple-
mentation of the parent-child process-creating mechanism. On the basis of this mecha-
nism, all processes are created by the parent process later.

3.1.I Preparation for Creating Process |

In Linux, any new process is created by calling fork(). The procedure is shown in
Figure 3.1.
The code is as follows:

//code path:init/main.c:

static inline syscallO (int, fork)//correspond to fork
static inline _syscallO (int,pause)

static inline _syscalll (int, setup,void *,BIOS)

void main (void)

{

sti();

85

move to user mode () ;

if (!fork()) { /* we count on this going ok */
init () ;

}
/*
* NOTE!! For any other task ‘pause()’ would mean we have to get a
* gignal to awaken, but taskO0 is the sole exception (see ‘schedule()’)
* as task 0 gets activated at every idle moment (when no other tasks
* can run). For taskO ‘pause()’ just means we go check if some other
* task can run, and if not we return here.
&

for(;;) pause();

The fork() in main.c indicates that the execution is actually transferred to syscall0
macro in unistd.h. The code is shown as follows:

//code path:include/unistd.h:

#define _ NR setup 0 /* used only by init, to get system going */
#define _ NR exit 1
#define _ NR fork 2
#define _ NR read 3
#define _ NR write 4
#define _ NR open 5
#define _ NR close 6

#define _syscallO (type,name) \
type name (void) \

{\

long _ res; \

__asm__ volatile (“int $0x80” \

N = a” (__res) \
“0” (__NR_ ##name)); \
if (__res > = 0) \
return (type) _ res; \

errno = -__res; \
return -1; \

}

volatile void _exit (int status);
int fcntl (int fildes, int cmd,...);
int fork(void);

int getpid(void) ;

int getuid(void) ;

int geteuid(void) ;

//code path:include/linux/sys.h:
extern int sys_setup();
extern int sys_exit();

extern int sys_fork(); //correspond to _sys_fork in system call.s, there is an
//underline* ” in front of

extern int sys_read() ; //functions in Assembler corresponding to that in C language.

extern int sys_write(); //such as:_sys fork is the corresponding function of sys_ fork.

extern int sys_open() ;

fn_ptr sys_call_table[] = {sys_setup, sys_exit, sys_fork, sys_read,//sys_fork corresponds to

//the third item
sys_write, sys open, sys_close, sys_waitpid, sys_creat, sys_link, //of _sys_call table
sys_unlink, sys_execve, sys_chdir, sys_time, sys_mknod, sys_chmod,

3. Creation and Execution of Process |

0x00000 Ox9FFFF OXxFFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF

Figure 3.1 Preparation for creating process 1.

Syscall0 looks like the following after expansion:

int fork(void) //refer to the code annotation about embedding assemble

{ //in section 2.5, 2.9, 2.14

long _ res;

__asm__ volatile (“int $0x80” //int 0x80 is the head entry of all system call,one of which
//is fork().You can refer to the explanation in section 2.9

“ = a” (_ res) //output part.The value of _res is assigned to eax.

“0” (__NR_fork)); //input part, “0” is eax, NR_ fork is 2, which is assigned to eax.
if (__res > = 0) //this line will be executed after return from int 0x80
return (int) _ res;
errno = -__res;

return -1;
!

//Attentions:Caused by int 0x80, the hardware will automatically push ss, esp, eflags, cs, eip!
//You can refer to the explanation in section 2.14

3.1

Creation of Process |

87

Regarding the long procedure of int 0x80, the general process is illustrated below.

The detailed steps are as follows:

The code “0” (__NR_ fork) is executed first. The value of _NR_fork, which is the cor-
responding function number of fork in sys_call_table[], is assigned to eax, namely, 2. This
number is the offset value of the sys_fork function in sys_call_table.

_exit(int status)

fentl(int fildes, int cmd, ...)
fork(void)

getpid(void)

getuid(void)

Privilege level 3

IIIIiIIII

IDT

int 0x80

Privilege level 0

_system_call:

cmpl $nr_system_calls-1,%eax
jabad_sys_cal

push %

push %es

push %fs

pushl %edx

pushl %ecx

pushl %ebx

movl $0x10,%edx

mov %dx,%ds

mov %dx,%es

movl $0x17,%edx

mov %dx,%fs

call sxsfcallﬁtable(,%eax,él)
pushl %eax
movl _current,%eax
cmpl $0,state(%eax)
jne reschedule

cmpl $0,counter(%eax)
je reschedule

B oW N = o

sys_call_table

sys_setup |———m-

sys_exit

sys_setup()

sys_fork

L.

sys_read

sys_write

:é.}}é_fork:
call_find_empty_process
test] %eax,%eax

s
qush %gs
pushl %esi
pushl %edi
pushl %ebp
pushl %eax
call coggﬁprocess
addl$20,%esp
L:ret

— find_empty_process()

copy_process()

copy_mem()

get_free_page()

get_limit()
get_base()

set_base()

Figure 3.2 The calling path of system call.

copy_page_tables()

—m= get_free_page()

3. Creation and Execution of Process |

After which, “int $ 0x80” is executed. It triggers a soft interrupt and the central process-
ing unit (CPU) starts executing the kernel code in privilege level 0 from the process code in
level 3. The hardware automatically pushes ss, esp, eflags, cs, and eip to the kernel stack of pro-
cess 0ininit_task, which is shown in Figure 3.1. You should pay attention to the red stripe after
the init_task structure, which is the value of the five registers. The push action in the move_
to_user_mode mentioned before is to imitate hardware push in interruption. The pushed
data will be used to initialize the TSS of process 1 in the subsequent copy_process function.

Note that the pushed eip data points to the next line of the instruction “int $ 0x80,”
which is the line if (__res> = 0). Process 0 will continue to execute this line after being
back from interrupt in fork(). In Section 3.3, we will see that this line is also the first
instruction that process 1 starts to execute. Keep this point in mind!

According to the settings of set_system_gate (0x80, & system_call) in sched_init()
explained in Section 2.9, after pushing automatically, the CPU jumps to _system_call in
sytem_call.s and continues to push in ds, es, fs, edx, ecx, and ebx, which is used to prepare
for initializing TSS in process 1 when calling copy_process(). Finally, according to the off-
set value 2, the kernel looks up sys_call_table[] to learn that the corresponding function
is sys_fork. The corresponding function name to C language in Assembler has an under-
score “_” in front (e.g., _sys_fork in Assembler corresponds to sys_fork in C language);
thus, the kernel starts to execute _sys_fork.

Tip:

The function parameters are not defined by the function itself but made out
by another procedure through pushing, which is one of the main distinctions
between the OS code and the application code. Clearly understanding the com-
pilation and implementation of C language will help one grasp this method.
Parameters of C language exist in the stack when operating; hence, system
designers can force the value in stacks as parameters of function in sequence. In
this way, functions will use the value in stacks as parameters.

The code is as follows:

//Code path:kernel/system call.s:

_system call: #int 0x80— — head entry of system call
cmpl $nr_system calls-1,%eax
ja bad_sys_call

push%ds

push%es

push%fs
pushl%edx
pushl%ecx
pushl%ebx

movl $0x10, $edx
mov%dx, ¥ds
mov%dx, ¥es

movl $0x17,%edx
mov%dx, $fs

call _sys_call table(,%eax,4)

#all the 6 pushes are used as the parameters of
#copy process () .

#remember the order and don’t forget int 0x80 in front.

#5 values are pushed, too.

push%ebx, $ecx, $edx as parameters
to the system call

set up ds,es to kernel space

fs points to local data space

#eax is 2, this line is equal to call (_sys_call
table + 2x4),

pushl%eax #namely the entry of _sys fork
movl _current, $eax
cmpl $0,state (%eax) # state

3.1 Creation of Process |

89

jne reschedule

cmpl $0, counter (%eax) # counter

je reschedule
ret_from sys call:

movl _current, $eax

cmpl _task, $eax

task[0] cannot have signals

je 3f

cmpw $0x0f, CS (%esp) # was old code segment supervisor ?
jne 3f

cmpw $0x17,0LDSS (%esp) # was stack segment = 0x17 ?

jne 3f

movl signal (%eax), $ebx
movl blocked (%eax), $ecx

notl%ecx
andl%ebx, $ecx
bsfl%ecx, $ecx
je 3f
btrl%ecx, $ebx

movl%ebx, signal ($eax)

incl%ecx
pushl%ecx
call do_signal
popl%eax

BE popl%eax
popl%ebx
popl%ecx
popl%edx
pop%fs
pop%es
pop%ds
iret

_sys_fork:

#the entry of sys fork()

In the line call _sys_call_table (,%eax,4), the value of eax is 2. This line can also be
seen as call _sys_call_table + 2 x 4, in which the value 4 means 4 bytes in each item of
_sys_call_table[]. It is equal to call _sys_call_table[2], namely, sys_fork.

Note: The instruction call _sys_call_table (,% eax, 4) will protect the field by itself, and the
sixth parameter in copy_process(), long none, indicates this push action. The execution code

is as follows:

//Code path:kernel/system call.s:

_system call:

_sys_fork:

call find empty process

testl%eax, $eax

js 1f
push%gs

pushl%esi
pushl%edi
pushl%ebp
pushl%eax
call _copy_process
addl $20,%esp

g EEIE

#if the return value is -EAGAIN(11), there have been 64 process
#in execution

#already.

#the following values of five registers pushed in the stack
#is set as the initial parameters of copy process ()

90

3. Creation and Execution of Process |

3.1.2 Apply for an Idle Position and a Process Number for Process |

The sys_fork function begins to work.

As introduced in Section 2.9, all items except for the 0 of task[64] have been cleared by
sched_init(). Now, find_empty_process will be called to find an available pid and location
in task[64]. The calling effect is shown in Figure 3.3.

In find_empty_process(), the global variable last_pid is used to store all the process
numbers after booting, and this variable is also used as the pid of newly created process.
After traversing task[64] for the first time, the kernel executes ++last_pid because of the
true “&&” condition. On the second time, the kernel will get the first idle i, which is also
named as the task number.

After two passes, the new process number of last_pid is 1, occupying the second item
of task[64]. The result is shown in the middle right part in Figure 3.3.

0x00000 OX9FFFF OXFFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF

Figure 3.3 Find an idle item in the kernel data area.

3.1 Creation of Process |

91

Because there are only 64 items in task[64] in Linux 0.11, the maximum number
of parallel processes is restricted to 64. If the return value of find_process_number is
-EAGAIN, it means that there have been 64 processes currently. By now, this situation will
not happen. The execution code is as follows:

//code

path:kernel/fork.c:

long last pid = 0;

int f£ind empty process(void) //£find an idle position for new created

{

repeat:

The

//process, NR_TASKS is 64

int 1i;
if ((++last_pid)<0) last_pid=1; //if last_pid overflows after ++, the value
//is set to 1
for(i=0 ; i<NR_TASKS ; i++) //find available last_pid, the value is 1
if (task[i] && task[i]l->pid == last_pid) goto repeat;
for(i=1 ; i<NR_TASKS ; i++) //return the first idle i
if (ttaskl[i])
return i;
return -EAGAIN; //EAGAIN is 11

newly created process 1 gets its ID after confirming the process pid and the loca-

tion in task[64]. The five registers’ value will be pushed into the kernel stacks of process 0,
prepared as parameters for calling copy_process() and initializing the TSS of process 1.

Note: The eax value pushed last is the returned pid of find_empty_process() and is also the
first parameter int nr of copy_process().

3.1.3 Call Copy_process()

Process 0 has become a parent process that can create a child process, and it has manage-
ment information such as task_struct and page table entry of itself in the kernel. Process
0 will perform some important jobs in calling copy_process(), which reflects the parent-
child process-creating mechanism:

1.

S vk » Db

Creating task_struct. The task_struct of process 0 is copied to process 1.
Setting task_struct and TSS for process 1.

Creating the first page table. The page items of process 0 are copied to process 1.
Sharing the files of process 0.

Setting the GDT of process 1.

Setting process 1 in ready state. After that, it can participate in process schedule.

Calling copy_process() from now on!

Before explaining copy_process, it is worth reminding that all the parameters are
formed through pushing accumulatively by previous codes. The value of the parameters is
also related to the pushing state (Figure 3.4). The execution code is as follows:

92

3. Creation and Execution of Process |

OXFFFFF

union task_union

{

struct task_struct task;
char stack[PAGE_SIZE]; esp

b - ¢

stack(4 KB,a page)

init_task
(task_union)

task_struct(INIT_TASK)(956 B)

INIT_TASK pointer The stack is used by the
kernel; the kernel code stack
won't overlap task_struct

Figure 3.4 Push action before calling copy_process.

3.1 Creation of Process | 93

//code path:kernel/fork.c:
int copy process (int nr,long ebp,long edi,long esi,long gs,long none,
long ebx,long ecx,long edx,
long fs,long es,long ds, //
long eip,long cs,long eflags,long esp,long ss)
//Attention:these parameters are pushed by int 0x80, system call and sys_fork.
{
struct task _struct *p;
int 1i;
struct file *f;

//get one page at the end of 16MB memory.
p = (struct task _struct *) get free page();
if (!p)
return -EAGAIN;
task[nr] = p; //nr is 1, which means this page is used as task union. refer
//to section 2.9.1.

Get_free_page() will be called after entering copy_process(), and the kernel will
apply for an idle page. The new cleared page will be used for the task_struct and kernel
stack of process 1.

According to the algorithm of get_free_page(), the new page starts from the end of
the main memory to the low-address memory progressively. Since it is the first time for the
kernel to apply for an idle page in the main memory for process 1 after booting, this new
idle page has to be located at the end of the 16 MB main memory.

The code is as follows:

//code path:mm/memory.c:

unsigned long get_ free_ page (void) //get an idle page,refer to the code annotation about
//embedding assemble.

{

register unsigned long _ res asm(“ax”);

__asm__(“std ; repne ; scasb\n\t” //scan the string reversely, repeat when al(0)is not
//equal to di.
“jne 1f\n\t”
“movb $1,1(%%edi)\n\t” //1 is assigned to edi+l
“sall $12,%%ecx\n\t” //ecx arithmetically shifts 12 bits left, namely the
//page address.
“addl%2, $%ecx\n\t” //PAGING_PAGES + ecx (page address

“movl%%ecx, $%edx\n\t”
“movl $1024,%%ecx\n\t”
“leal 4092 (%%edx),%%edi\n\t” //this valid address of edx + 4K is assigned to edi.
“rep ; stosl\n\t” //eax(0) is assigned to the address edi point to, to
//clear the page.
“movl%%edx, $%eax\n”
Ny.w
Y = a” (__res)
:“0” (0),“i” (LOW_MEM),“C" (PAGING_PAGES),
“D” (mem map+PAGING PAGES-1)//edx
;s %di”, Yex”, “dx”) ; //these values have been changed.
return __ res;

}

After executing get_free_page, copy_process() converts the pointer of this page to
the one pointing to task_struct and assigns it to task[1]; that is, task[nr] = p. nr is the first
parameter, which is the returned task number of find_empty_process().

Note that a pointer in C language has both address and types. The conversion deems
that the low-address end of this page is the primary address of task_struct, which also

94

3. Creation and Execution of Process |

implies that the high-address part belongs to the kernel stack. This helps us understand
p->tss.esp0 = PAGE_SIZE + (long) p later.

Tip:

Task_struct is the most important data structure that the OS uses to identify and
manage processes. Each process must have its own, unique task_struct.

//code path:kernel/fork.c:

int copy_process (int nr,long ebp,long edi,long esi,long gs,long none,
long ebx,long ecx,long edx,

long fs,long es,long ds, //

long eip,long cs,long eflags,long esp,long ss)

if (!p)
return -EAGAIN;
task[nr] = p; //nr is 1

/* current points to task_struct of process 0. In next line,task struct of parent process is
assigned to child process, which is the characteristic of parent-child process creating
mechanism.*/

*p = *current; /* NOTE! this doesn’t copy the supervisor stack */

p->state = TASK UNINTERRUPTIBLE; //only the process which is set to ready
//state can be waken up.
//there is no other way.

p->pid = last_pid; //initialize the individual settings of
//child process

p->father = current->pid;

p->counter = p->priority;

p->signal = 0;

p->alarm = 0;

p->leader = 0; /* process leadership doesn’t inherit */

p->utime = p->stime = 0;

p->cutime = p->cstime = 0;

p->start_time = jiffies;

p->tss.back_link = 0; //set the TSS of child process

The effect is shown below (the figure in Section 2.9.1 might be helpful).

union task_union
{
struct task_struct task;

char stack[PAGE_SIZE];
b esp

stack(4 KB, a page)

init_task
(task_union)

task_struct(INIT_TASK)(956 B)

INIT_TASK pointer The stack is used by the

kernel; the kernel code stack
won't overlap task_struct

3.1 Creation of Process | 95

Tip:

Ingenuity lies in the design of task_union. Task_struct is located in front of the
page, and the kernel stack is at the end. As the progressive direction is opposite,
these two parts occupy just one page, corresponding to the paging mechanism
and making it convenient to distribute the memory. The system designer must
test the code repeatedly in order to assure that the maximum length of pushing
in all possible calling will not overwrite the task_struct in the front part. Since
all kernel codes are written by the OS designer, he has an overall arrangement of
the page space. On the contrary, there will be a big problem when providing stack
space for user processes using this method.

The following code is of great significance:

*p = *current; /* NOTE! this doesn't copy the supervisor stack */

Current is the pointer of the current process, and p is the pointer of process 1. The
current process is process 0, which is the parent process of process 1. Copying the task_struct
of the parent process to the child process means that the most important attribute of the
parent process is copied to the child process. Thus, the child process inherits most of the
capacity of the parent process, which is one of the characteristics of the parent-child
process-creating mechanism.

While the prototype of task_struct in process 1 has been formed, the information of
task_struct in process 0 may not be appropriate for process 1; thus, the content of task_struct
should be adjusted to specific situations. Codes starting from P-> are used to adjust set-
tings for process 1 individually, and data used to adjust TSS are parameters formed by
pushing of previous codes (Figure 3.5).

The execution code is as follows:

//code path:kernel/fork.c:

int copy_process (int nr,long ebp,long edi,long esi,long gs,long none,
long ebx,long ecx,long edx,

long fs,long es,long ds, //

long eip,long cs,long eflags,long esp,long ss)

p->start_time = jiffies;

p->tss.back_link = 0; //start setting TSS of child process
p->tss.esp0 = PAGE SIZE + (long) p; //esp0 is the pointer of kernel stack,
//refer to section 2.9.1
p->tss.ss0 = 0x10; //0x10 is equal to 10000, privileged level 0, gdt,
//data segment
p->tss.eip = eip; //Note!this eip of parameters is pushed by int 0x80,
//which points to if (__res >= 0)

p->tss.eflags = eflags;
p->tss.eax = 0; //Note!this line decides the branch of if (!fork())
//in main function.

p->tss.ecx ecx;

p->tss.edx = edx;
p->tss.ebx = ebx;
p->tss.esp = esp;
p->tss.ebp = ebp;
p->tss.esi = esi;
p->tss.edi = edi;

p->tss.es
p->tss.cs
p->tss.ss

es & Oxffff;
cs & Oxffff;
ss & Oxffff;

96

3. Creation and Execution of Process |

p->tss.
p->tss.

p->tss

p->tss.
p->tss.

if (la

0x00000

ds = ds & Oxffff;

fs = fs & Oxffff;

.gs = gs & Oxffff;

1dt = _LDT(nr) ; //mount on 1ldt of child process
trace bitmap = 0x80000000;
st_task used math = = current)

__asm__ (“clts ; fnsave%0”::“m” (p->tss.i387));

Ox9FFFF OxFFFFF

i

O0x3FFFFF OxFFFFFF

Ox5FFFFF

and VGA

Figure 3.5 Initializing the task structure of process 1.

3.1

Creation of Process |

97

0x00000 Ox9FFFF OxEFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF

Kernel
Eﬂa\)\e
interrup t

.-+*The page that task_struct of

task_struct of process 1 resides
process 1

. *rea,
te.
h

Adjust every management number of process 1
Process status

Current process

i Process 0 Process 1
i i Ready I Uninterruptible
i 1)

Before copying task_struct of process 1

The page that task_struct of
process 1 resides

Figure 3.6 Adjusting the task_struct of process 1.

Tip:

p->tss.eip = eip;
p->tss.eax 0;

These two lines of code foreshadow executing if (__res> = 0) in fork for the sec-
ond time. It is not easy to see this foreshadowing, but this should be remembered.

The task_struct of process 1 after adjusting is shown in Figure 3.6.

3.1.4 Set the Page Management of Process |

The paging mechanism in the architecture of Intel 80x86 is based on the protection mode,
which means pe should be opened before opening pg. Since the protection mode is based on
segment, setting the segments of process 1 should be done before setting the page management.

98

3. Creation and Execution of Process |

Generally speaking, each process has to load its own code and data, of which the
addressing mode is the algorithm of segment address plus offset, namely, the logical
address. The hardware will automatically convert the logical address to the linear address,
which will be converted automatically again to the physical address in pages, according to
the settings of the page directory table and page table. Through this technical route, the
OS sets the code and data segment in the 64 MB linear address space of process 1 and then
in the page directory table and page table.

3.1.4.1 Set the Code Segment and Data Segment in the
Linear Address Space of Process |

By calling copy_mem(), the system sets the segment base address and segment limit
length of the segment and data segment of process 1 at first. Extract information on the
code segment, data segment, and segment limit length of the current process (process 0);
meanwhile, set the base address of the segment and data segment of process 1, which is its
process number, nr*64MB, and set the base address in the segment descriptor in the local
descriptor tables of the new process. It is shown as the first step in Figure 3.7.

The code is as follows:

//Code path:kernel/fork.c:

int copy_ process (int nr,long ebp,long edi,long esi,long gs,long none,
long ebx,long ecx,long edx,

long fs,long es,long ds, //

long eip,long cs,long eflags,long esp,long ss)

if (last_task used math == current)

__asm__(“clts ; fnsave%0”::“m” (p->tss.i387));
if (copy mem(nr,p)) f{ //set code segment and data segment of child process,

//create and copy the first page
//table of child process
task[nr] = NULL; //now this situation doesn’t happen
free page((long) p);
return -EAGAIN;
}
for (i = 0; i<NR_OPEN;i++) //reference count of file corresponding to parent
//process is plused by 1
//showing that parent and child process share the
//same file

//Code path:include/linux/sched.h:

#define _set_base (addr,base) \ //set addr by base.Referring to 2.9.1
asm__ (“movw%%dx, $0\n\t” \
“rorl $16,%%edx\n\t” \
“movb%%dl, $1\n\t” \
“movb%%dh, $2” \
:'m” (*((addr)+2)), \

“m” (*((addr)+4)), \
“m” (*((addr)+7)), \
*d” (base) \
. vdx”)
#define set base(ldt,base) _set base(((char *)&(ldt)), base)
#define _get base(addr) ({\ //obtain base address addr. Referring to _set base

//and 2.9.1

3.1 Creation of Process |

0 64M 128M 192M

Segment limit: 640 K

0x00000 Ox9FFFF OxFFFFF
Kernel

ll page directory table

4 page tables
. Step 3: set page directory item

NI
L[] {]foge vte
L[] e e

II"IIII Page table

159 1023
Page table

0

Page table of'
process 0:
the first 160
items valid

Step 2: copy page table

Process status

Ox3FFFFF Ox5FFFFF

256M 4G-1

OxFFFFFF

ab\e
-

et The page that

ot task_struct of
.+ "task_struct of] process 1 resides

Step 1:
set base address of code
segment and data segment

CPU

—1

Ste]ilék
flush TLB cache

Process 0 Process 1

i Ready
1

Current process

I Uninterruptible

0 159 10
Page
[T e R 2

After setting page directory and page table of process 1’

23

Figure 3.7 Set the linear address space of process 1.

unsigned long _ base; \

__asm__ (“movb%3,%%dh\n\t” \
“movb%2, %$%d1\n\t” \
“shll $16, %$%edx\n\t” \
“movw%1l, $%dx” \
:v=d” (__base) \
s (* ((addr)+2)), \
“m” (*((addr)+4)), \
“m” (*((addr)+7))); \

__base;})

100

3. Creation and Execution of Process |

#define get base(ldt) _get base(((char *)&(1ldt)))
#define get_limit (segment) ({\
unsigned long _ limit; \

__asm__ (“1s11%1,%0\n\t //obtain segment limit length and pass it to _ limit
incl%0”
:N=r” (_ limit)
:“r” (segment)); \
_ limit;})

//Code path:kernel/fork.c:

int copy mem(int nr,struct task_struct * p)//set code segment and data segment of child
//process, create and copy the first table of

//child process

unsigned long old data_base,new data base,data limit;
unsigned long old_code_base,new code base,code limit;

//obtain limit length of code and data segment of child process

code_limit = get limit(0x0f); //0x0f is 111l:code segment,
data_limit = get_limit (0x17); //0x17 is 10111l:data segment,

el ,;
el ,;

3 privilege level
3 privilege level

//obtain base address of code and data segment of parent process(Process 0)

old _code_base = get_base(current->1dt[1]);
old data base = get_base (current->1dt[2]);
if (old_data_base ! = old_code_base)
panic (“We don’t support separate I&D”) ;
if (data_limit < code_ limit)
panic(“Bad data_limit”);

new_data base = new_code base = nr * 0x4000000; //now nr is 1, 0x4000000 means 64MB

p->start_code = new_code base;

set_base(p->1dt[1],new_code_base) ; //set base address of code segment of child
//process

set_base (p->1dt [2] ,new_data_base) ; //set base address of data segment of child
//process

if (copy_page_tables(old data_base,new_data_base,data_limit))

free page_tables (new_data base,data limit);
return -ENOMEM;

}

return 0;

3.1.4.2 Create the First Page Table for Process | and
Set the Corresponding Page Directory Entry

{

In Linux 0.11, when the program code of every process is executed, its address needs to be
specified based on its linear address and it needs to be mapped to the physical memory.
As shown in Figure 3.8, the linear address is 32 bits and the CPU parses this address into

31 2 21 12 11 0
Linear address | Page directory item | Page table item | Page offset |
Page directory table Page table Page
—]

Page directory item

Page table item —l
CR3 | — — .

Figure 3.8 Mapping process from linear address to physical address.

The physical
address mapped

3.1 Creation of Process |

101

three parts: page directory entry, page table entry, and offset within page. The page direc-
tory entry is in the page directory table and is used to manage the page table. The page
table entry is in the page table and is used to manage the page and ultimately find the spec-
ified address in the physical memory. There is only one page directory table in Linux 0.11.
We can find the corresponding page directory entry in the page directory table based on
the data “page directory entry” provided by the linear address. Then, find the correspond-
ing page table entry in the page table according to the data “page table entry” provided by
the linear address. Then, find the corresponding physical page according to this page table
item. Finally, find the actual value of the physical address based on the data “offset within
page” provided by the linear address.

Calling the function copy_page_tables, setting the page directory table, and copying
the page table are as shown in the second and third steps in Figure 3.7. The position where
the page directory entry lies should be noticed.

The code is as follows:

//Code path:kernel/fork.c:
int copy mem(int nr,struct task struct * p)

set_base (p->1dt [1] ,new_code_base) ; //set base address of code segment of child

//process
set_base (p->1dt [2] ,new_data_base) ; //set base address of data segment of child
//process

//create first page table and copy page table of Process 0 for Process 1. Set page
//directory entry of Process 1
if (copy page_tables(old data_base,new_data base,data_limit)) {
free_page_tables (new_data_base,data limit) ;
return -ENOMEM;

}

return 0;

Entering the function copy_page_tables, apply a free page for the new page table at
first and copy the first 160 page table items in the first page table of process 0 to this page
(1 page table entry manages a memory space of about 4 KB of a page, and 160 page table
items manage a memory space of about 640 KB). Then, both process 0 and process 1 point
to the same page, meaning that process 1 can manage the page of process 0. After that, set
the page directory table of process 1. Last, refresh page transforming cache by resetting
CR3. The setting of the page table and page directory table of process 1 is completed.

The code is as follows:

//Code path:mm/memory.c:

#define invalidate() \
__asm__(“movl%%eax, %%cr3”::“a” (0)) //reset CR3 as 0

int copy page_ tables (unsigned long from,unsigned long to,long size)

unsigned long * from page_ table;
unsigned long * to_page_table;
unsigned long this_page;

102

3. Creation and Execution of Process |

unsigned long * from dir, * to dir;
unsigned long nr;

/* O0x3fffff is 4M, managing range of a page table. In binary there is 22 ones.Both sides of
11 must be 0. So,last 22 bits of from and to must be 0. In this way, a page table corresponds
to contiguous linear address space about 4MB. Paging requests the linear address about
integer multiple of 4M starting from 0x000000.*/
if ((from&0x3fffff) || (to&Ox3fffff))
panic (“copy_page_tables called with wrong alignment”) ;

/*A page directory entry managed space of 4MB, and an item is 4 bytes, so the address of item
is item number *4 which is M number of the starting of linear address managed by item.>> 22 is
MB number of address, and &0xffc is &111111111100b in binary, which is address of page
directory entry.*/

from dir = (unsigned long *) ((from>>20) & Oxffc); /* _pg_dir = 0 */
to_dir = (unsigned long *) ((to>>20) & Oxffc);

size = ((unsigned) (size+Ox3fffff)) >> 22; //>> 22 is 4MB number
for(; size-->0 ; from dir++,to dir++) {

if (1 & *to_dir)

panic (“copy page_tables: already exist”);
if (1 (1 & *from dir))

continue;

//*from dir is address in page directory entry, Oxfffff000& means clear low 12 bits, and high
20 bits is the address//of page table.
from page table = (unsigned long *) (0xfffff000 & *from dir);

if (!(to_page table = (unsigned long *) get free page()))
return -1; /* Out of memory, see freeing */
*to_dir = ((unsigned long) to_page table) |7; //7 is 111, referring to 1.3.5
nr = (from = =0)?0xA0:1024; //0xA0 is 160, directory number of
//copied page tables
for (; nr--> 0 ; from page_table++,to_page table++) { //copy page tables of

//parent process
this page = *from page table;
if (! (1 & this_page))
continue;
this page & = ~2; //set property of page table
//item.2 is010.~2 is 101 meaning
//user, reading only and exitance
*to_page_ table = this page;
if (this_page > LOW_MEM) { //kernel area within 1MB doesn’t
//manage user paging
*from page table = this page;

this _page - = LOW_MEM;
this_page >> = 12;
mem map [this_pagel++; //add up reference count.
//Referring to mem_init
}
}
}
invalidate(); //reset CR3 as 0. Refresh TLB.

return 0;

Now, process 1 is empty, and its page tables are copied from process 0. Hence, they
have the same page and share the same managing structure of memory page temporarily,
as shown in Figure 3.9.

When process 1 has its programs, the relation will be ceased and process 1 organizes
its managing structure of memory.

3.1.5 Process | Shares Files of Process 0

At copy_process, the system sets members corresponding to files in task_struct, including
p->filp[20], the structure of the currently working directory i node, the structure of the
root directory i node, and the structure of the execution file i node. Although these values

3.1 Creation of Process |

103

. -l Process 0 page

0 . 640 KB 1MB 16 MB
lf. | Physical

memory
N

Process 1 page

seene®
e
oo

Figure 3.9 Process 0 and process 1 share the same page.

in process 0 are null and process 0 is only operated in the host without any interaction
with peripherals, the sharing is meaningful, because the parent-child process-creating
mechanism passes down the ability to the child process.

The code is as follows:

//Code path:kernel/fork.c:

int copy_process (int nr,long ebp,long edi,long esi,long gs,long none,
long ebx,long ecx,long edx,

long fs,long es,long ds,

long eip,long cs,long eflags,long esp,long ss)

return -EAGAIN;
for (i = 0; i<NR OPEN;i++) //add 1 to reference count of property of files
//corresponding to parent process
if (f = p->filp[il)
f->f count++;
if (current->pwd)

current->pwd->i count++;
if (current->root)
current->root->i count++;
if (current->executable)
current->executable->i count++;
set_tss_desc (gdt+ (nr<<1) +FIRST_TSS_ENTRY, & (p->tss)) ; //set items in gdt, referring to
//sched.c

3.1.6 Set the Table Item in the GDT of Process |

Next, bind the TSS and the LDT of process 1 with the global descriptor table (refer to

Section 2.9). It is shown in Figure 3.10. Note the position that process 1 occupies in
GDT.

The code is as follows:

//Code path:kernel/fork.c:

int copy_process (int nr,long ebp,long edi,long esi,long gs,long none,
long ebx,long ecx,long edx,

long fs,long es,long ds,

long eip,long cs,long eflags,long esp,long ss)

104 3. Creation and Execution of Process |

current->executable->i_ count++;
set_tss_desc (gdt+ (nr<<1) +FIRST TSS_ENTRY, & (p->tss)) ; //set item in gdt,referring to
//sched.c
set_ldt_desc (gdt+ (nr<<1)+FIRST LDT ENTRY, & (p->1dt)) ;
p->state = TASK RUNNING; /* do this last, just in case */ //set child process as
//state of ready

0x00000 Ox9FFFF OxFFFFF O0x3FFFFF 0x5FFFFF OxFFFFFF
Kernel

hb , e
L - interrup L

Lt T, .. .+**The page that task_struct of
,-+"Kernel code area **Kerne] data area ;sg(c_esst?ia of I' procIe)ssg 1 resides

H LDT
gy Sy
O
TSS
Process status
i Process 0 Process 1 i
i i Ready I Ready i
| 1 |
! Current process !
After hooking process 1 to GDT
ctoTTTes -]§ ez’o;e .hc;oidltlg.p;o;:e;s.l EO.G‘D.T K
: L “Kernel code area Kernel data area l '
: ot W :
‘ e T The page that task_struct of '
' process 1 resides '
‘ ’

Figure 3.10 Hook managing structure of process 1 to GDT.

3.1.7 Process | Is in Ready State to Complete the Creation of Process |

When process 1 is set as ready, it participates in process scheduling and returns pid 1.
Please notice the progress bar representing the process in the middle of Figure 3.10.
Process 1 is in ready state. The code is as follows:

3.1 Creation of Process | 105

//Code path:kernel/fork.c:

int copy_process (int nr,long ebp,long edi,long esi,long gs,long none,
long ebx,long ecx,long edx,
long fs,long es,long ds,
long eip,long cs,long eflags,long esp,long ss)

p->state = TASK_RUNNING; /* do this last, just in case */ //set child process as
//ready state
return last pid;

Now, we have completed the creation of process 1, and process 1 now has all the abilities
of process 0.

After creating process 1, the function copy_process has been executed. Then, return
to the line next to call_copy_process in sys_fork. The code is as follows:

//Code path:kernel/system call.s:

_sys_fork:
call find empty process
testl%eax, $eax
js 1f
push%gs
pushl%esi
pushl%edi
pushl%ebp
pushl%eax
call copy process
addl $20,%esp //copy_process returns to this line,and esp+ = 20 means clear
//20-byte stack
//that is the value of gs, esi, edi, ebp and eax pushed before
1: ret //Notice that there remains data in kernel
//stack, and return
//to pushl%$eax in _system call to execute

We need to clear the values of five registers pushed in sys_fork, that is, the first
five parameters of copy_process(): gs, esi, edi, ebp, and eax. Note that eax corresponds
to the first parameter nr of copy_process(), which is the return value last_pid of copy_
process() and pid of process 1. Then, return to the line pushl%eax next to call _sys_call_
table(,%eax,4) in _system_call to execute.

First, inspect whether the current process is process 0 or not. Notice that the line
pushl%eax pushes the pid of process 1 and executes at the line _ret_from_sys_call..

The code is as follows:

//Code path:kernel/system call.s:
_system call:

call _sys_call_table(, %eax,4)

pushl%eax #sys_fork returns here. eax is return value last_pid
#of copy process()

movl _current, %$eax #current process is Process 0

cmpl $0,state (%eax) # state

jne reschedule #1f Process is not in ready state, schedule process

cmpl $0, counter ($eax) # counter

106

3. Creation and Execution of Process |

je reschedule
ret_from sys call:
movl _current, $eax
cmpl _task, $eax
je 3f
cmpw $0x0f, CS (%esp)
jne 3f
cmpw $0x17,0LDSS (%esp)
jne 3f
movl signal (%eax), $ebx
movl blocked (%eax), $ecx
notl%ecx
andl%ebx, $ecx
bsfl%ecx, $ecx
je 3f
btrl%ecx, $ebx
movl%ebx, signal ($eax)
incl%ecx
pushl%ecx
call _do_signal
popl%eax

SE popl%eax
popl%ebx
popl%ecx
popl%edx
pop%fs
pop%es
pop%ds

#if Process has no time slice, schedule process
task[0] cannot have signals

#if Process 0 is current process, jump to 3: below
was old code segment supervisor ?

was stack segment = 0x17 ?

#pop values of 7 registers to CPU

iret #CPU hardware pops values of ss,esp,eflags,cs and eip pushed
#when int 0x80 happens to
#corresponding registers in CPU
cs:eip points to the line if(_res> = 0) next to line int 0x80

#in fork ()

to execute

Because process 0 is the current process, jump to label 3 to revert the values of all
registers pushed before. The process of clearing stack in init_task is shown in the first step
of Figure 3.11. Note that the line popl%eax means reverting the pid of process 1 mentioned
before to the value of eax, which is 1, in the CPU.

Next, the interruption iret returns. The CPU hardware automatically popped values of
ss, esp, eflags, cs, and eip pushed when int 0x80 happens to the corresponding registers in
the CPU. The execution changes from kernel code in privilege level 0 to process 0 code in
privilege level 3. cs:eip points to the line if(_res> = 0) next to line int 0x80 in fork() to execute.

The code is as follows:

//Code path:include/unistd.h:
int fork(void)

{
long _ res;
__asm__ volatile (“int $0x80”
: N = a” (__res)

: “0” (_NR_fork));
if (__res > = 0)

return (int) res;
errno = -__ res;
return -1;

//value of _ res is eax and returning value last_
//pid (1) of copy process()

//execute here after iret. res is eax and the value
//is 1
//return to 1

Before analyzing how to execute if(_res> = 0), let us look at “ = a” (__res), which assigns
the value of _res to eax. The line if(_res> = 0) is used to judge the value of eax. As introduced
recently, the value of eax is pid 1 of process 1 and return(type)_res returns as 1.

3.1 Creation of Process |

107

0x00000 Ox9FFFF OxFFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF

Kernel
Ena\)\e
] - interrupt

Lot "Kernel code area”* Kernel data area

Seees
D
cee,
ftrseaa,,
*eteaa,,
“eeas

. l init_task

- ‘. . task_struct of %

Process status

Process 0 Process 1
1

i i Ready I Ready i
i Current process i

Figure 3.11 How the OS distinguishes between process 0 and process 1.

Process 0 returns to call site if(!fork()) of the function fork to execute, because !1 is
false. Then, process 0 continues to execute and comes to the line for(;;)pause().
The code is as follows:

//Code path:init/main.c:

void main(void)

sti();
move_to_user_mode () ;
if (1fork()) { //the returning value of fork is 1,so if(!1l) is
//false/* we count on this going ok */
init () ; //this line isn’t executed
}
for (;;) pause(); //execute this line

The above process is shown in the second step of Figure 3.11.

108 3. Creation and Execution of Process |

IB 3.2 Kernel Schedules a Process for the First Time

Now, the code of process 0 is executed. From this time, process 0 prepares to switch to
process 1 to execute.

In the process-scheduling mechanism of Linux 0.11, there are two situations when
process switch happens.

First, the time allows running processes to end.

When created, a process is assigned with limited time slice to ensure that any process
runs in limited time every time. When time slice reduces to 0, it means that this process
used up the time and switches to another process to execute. This, in turn, is the imple-
mentation of multiprocesses.

Second, a process stops running.

In those situations where a process waits for data applied by peripherals or the results
of other programs or a process is finished, even if there is time slice left, a process does not
have the logical conditions to continue to run. If it remains waiting for the time interrup-
tion to switch to another process, time is wasted and switching to another process should
be done immediately.

Either of the above situations happening leads to process switch.

The role of process 0 is special. Now, switching from process 0 to process 1 meets the
second situation and also means idling process. We will talk about the idling process in
Section 3.3.1.

Process 0 executes the line for(;;) pause() and finally switches to process 1 by execut-
ing the function schedule. The process is shown in Figure 3.12.

The code of the function pause() is as follows:

//Code path:init/main.c:
static inline _syscallO (int, fork)
static inline syscallO (int,pause)

{
move to user mode () ;
if (!fork()) /* we count on this going ok */
init () ;
1
for(;;) pause():;
1

The way of calling pause() is similar to that of fork(). When it comes to syscall0
in unistd.h, according to interruption int 0x80, map call _sys_call_table(,%eax,4) in
system_call.s to the system calling function in sys_pause() to execute. The procedure in
detail refers to calling the function fork() in Section 3.1.1. There is little difference that
the function fork() is written in assembly language and the function sys_pause() is in
C language.

In sys_pause(), it sets process 0 as in an interruptible state, just as the first step in
Figure 3.12. Then, call the function schedule() to switch process. The code is as follows:

3.2 Kernel Schedules a Process for the First Time 109

//Code path:kernel/sched.c:
int sys pause (void)
{
//set Process 0 as interruptible state. When interruption happens or
//other process transfers special
//signals to this process, this process is possibly set as ready
//state.
current->state = TASK INTERRUPTIBLE;
schedule() ;
return 0;

0x00000 Ox9FFFF OxEFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF

Kernel
E“a\)\e
. - interrup L

.-*'Kernel code area"* *Kernel data area

e tee.,
RO P tea,
ces
.

. LER
.. s

ves
p .

*++| init_task
SChedUIeﬂsys o . lnl .

Step 2 : process switching

task_struct of process 0 _

Step 1: set to interruptible
Process status

Process 0 Process 1
i Interruptible I Ready
1)

Current process

Before executing sys_pause

Ready state

Figure 3.12 Process 0 hangs and executes scheduling programs.

110 3. Creation and Execution of Process |

0x00000 Ox9FFFF OxFFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF

Kernel
-
interrup L

e,

..*"Kernel code area " "Kernel data area

-| task[64]
Scheduleq e
. M- T
Step 2: ready to switch process 1 to execute T‘ """""

Step 1: after two-round traverse,
and pick process 1

Process status

Process 0 Process 1
1T

i i Interruptible I Ready
I Current process

Figure 3.13 Execute scheduling process 1.

In the function schedule, the system first checks the necessity of switching the pro-
cess. If necessary, it will switch.

First, on the basis of the structure task[64], traverse all the processes for the first time. As
long as the address pointer is not null, deal with alarm timer value “alarm” and signal bitmap
“signal.” Currently, these handles will not take effect, especially since process 0 does not receive
any signal and, thus, is in an interruptible state, and impossible to revert to a ready state.

We need to traverse all the processes for the second time and compare the state and
time slice of processes to find the process in ready state and with the maximum counter.
Now, there are only process 0 and process 1. Process 0 is in an interruptible state, and not
in a ready state. Only process 1 is in a ready state. Hence, execute switch_to(next), and
switch to process 1 to run. It is shown in the first step of Figure 3.13.

The code is as follows:

//Code path:kernel/sched.c:
void schedule (void)

int i,next,c;
struct task struct ** p;

/* check alarm, wake up any interruptible tasks that have got a signal */

for(p = &LAST TASK ; p > &FIRST TASK ;——p)

3.2 Kernel Schedules a Process for the First Time

if (*p) {
if ((*p)->alarm && (*p)->alarm < jiffies) { //set timing or timer
//has expired

(*p) ->signal | = (1<<(SIGALRM-1)); //set SIGALRM
(*p) ->alarm = 0; //clear alarm
if (((*p)->signal & ~(BLOCKABLE & (*p)->blocked)) &&
(*p) ->state = =TASK_INTERRUPTIELE)

(*p) ->state = TASK RUNNING;

/* this is the scheduler proper: */
while (1) {
c = -1;
next = 0;
i = NR_TASKS;
p = &task[NR_TASKS] ;

while (——i) {
if (l1*——p)
continue;
if ((*p)->state = = TASK RUNNING && (*p)->counter > c)//find process in ready state with
//maximum counter
c = (*p)->counter, next = i;

}

if (e¢) break;

for(p = &LAST TASK ; p > &FIRST TASK ;——p)
if (*p)
(*p) ->counter = ((*p)->counter >> 1) +
(*p) ->priority; //counter = counter/2 + priority

}

switch to(next);

The code is as follows:

//Code path:include/sched.h:

//FIRST TSS_ENTRY<<3 is 100000, ((unsigned long) n)<<4, it is 1000 for Process 1
//_TSS(1) is 110000.Last 2 bit is privilege level.Third bit on the left is gdt. 110 is
//subscript of ttsO

#define TSS(n) ((((unsigned long) n)<<4)+(FIRST_ TSS_ENTRY<<3))
#define switch_to(n) {\ //refer to 2.9.1
struct {long a,b;} _ tmp; \ //prepare data structure for cs and eip of
//15mp
__asm__ (“cmpl%%ecx,_ current\n\t” \
“je 1f\n\t” \ //if Process n is current process, exit
//without switching
“movw%%dx, $1\n\t” \ //low word of edx is assigned to *& tmp.b
“xchgl%%ecx, current\n\t” \ //task[n] switch with task[current]
“1jmp%0\n\t” \ //ignore the offset

“cmpl%$%ecx, last_task used math\n\t” \ //whether using coprocessor or not last time
“jne 1f\n\t” \

“clts\n” \ //clear the switch task flag in CRO

Wi\
::'m” (*& tmp.a),“m” (*&_ tmp.b), \ //.a corresponds to eip..b corresponds to cs
“d” (_TSS(n)),“c” ((long) task[n]));\ //edx is index number of tss n. Ecx is task|[n]

In “ljmp%0\n\t,” through the task-gate mechanism of the CPU, ljmp saves the values
of each register of the CPU into the TSS of process 0 and also reverts the TSS data of
process 1 and the descriptor data of the code/data segment of LDT to each register of the

112

3. Creation and Execution of Process |

CPU. Hence, it is a switch from a kernel code with privilege level 0 to a process 1 code with
privilege level 3. It is shown in the second step of Figure 3.13.

Next, it is process I’s turn. It will further build the environment, so that the process
in the form of a file can interact with the peripherals.

Please note that the procedures of calling pause() involves switching from code
of process 0 with privilege level 3 to the kernel code with privilege level 0 by int 0x80
interrupt, and then calling switch() in schdule() in sys_pause(), where the code switch
to process 1 by ljmp instruction is executed. However, now, the code after ljmp and call
_sys_call_table(,%eax,4) is not executed and int 0x80 does not return as well.

3.3 Turn to Process | to Execute

Before analyzing process 1, let us review the process of creating process 1 based on
process 0.

When analyzing the calling of the function copy_process() in Section 3.1.3, we know
that the tss.eip set for process 1 is the eip value of ss, esp, eflags, cs, and eip popped auto-
matically by the CPU hardware. Pushing is caused by the interruption int 0x80 when
process 0 creates process 1 by calling fork(). This value points to the position of the code
next to the line int 0x80, that is, if(_res> = 0).

As ljmp reverts the value of TSS in process 1 automatically to the CPU according to
the CPU’s task-gate mechanism, tss.eip is also reverted to the CPU. Now, eip in the CPU
points to the line “if(_res> = 0).” Thus, process 1 starts to execute here.

The code is as follows:

//Code path:include/unistd.h:
#define syscallO (type,name) \
int fork (void)

{

long _ res;

__asm__ volatile (“int $0x80”

Y = a” (__res)
“0” (__NR_ fork));
if (__res > = 0) //from now on,tss.eip designed for Process
//1 by copy process points to this line
return (int) _ res;
errno = -__res;

return -1;

It is shown in the first step of Figure 3.14.

According to the introduction in Section 3.1.3, __res is the value of eax in the TSS of
process 1, and the value is written as 0 in Section 3.1.3 by p->tss.eax = 0; therefore, when
return(type) __res was being executed, the return value is 0.

After returning, if(!Fork()) in the main function is executed, !0 is “true,” call the init
function!

3.3 Turn to Process | to Execute

113

The specific code is as follows:

//Code path:init/main.c:
void main (void)

{
if (!fork()) { //'0 is true,
init();

After entering the init function, first call the setup function. The specific code is as follows:

//Code path:init/main.c:
void init (void)

The way to call this function is similar to the way to call the fork() and pause() functions,
but slightly different with the way to call the setup() function, which is completed not through

0x00000 0x9FFFF OxFFFFF 0x3FFFFF 0x5FFFFF OxFFFFFF

Figure 3.14 State of process 1 when it starts to execute.

114 3. Creation and Execution of Process |

_syscallO() but through _syscalll(). The specific implementation processes are similar, that
is, also through the int0x80, _system_call, _sys_call_table (call,%eax,4), and sys_setup().

Reminder: The int 0x80 interrupt in the pause() function is still not returned; now, setup()
creates another interruption.

3.3.1 Preparing to Install the Hard Disk File System by Process |

In this section, although it introduces a bunch of code, it only has a sole purpose: to pre-
pare to install the hard disk file system, which will be introduced in Chapter 5.
This process probably has three steps:

1. According to the machine system data, set the hard disk parameters.

2. Read the hard disk boot block.

3. Get information from the boot block.

3.3.1.1 Process | Set hd_info of Hard Disk

According to the machine data in the drive_info, such as the hard disk cylinder number,
head number, and sector number, set the hd_info of the kernel (Figure 3.15).
The code is as follows:

//Code path:kernel/blk _dev/hd.c:
struct hd_i_struct {
int head, sect,cyl,wpcom, lzone,ctl;

struct hd_i_struct hd info[] = {{0,0,0,0,0,0},{0,0,0,0,0,0}};

static struct hd_struct {

long start_sect; //Starting sector number
long nr_sects; //Total number of sectors
} hd[s*MAX_HD] = {{0,0},};

/* This may be used only once, enforced by ‘static int callable’ */
int sys_setup(void * BIOS) //BIOS is drive_info, refer to 2.1
{

static int callable = 1;

int i,drive;

unsigned char cmos_disks;

struct partition *p;

struct buffer head * bh;

if (!callable) //only call one time

return -1;

callable = 0;

#ifndef HD_TYPE

for (drive = 0 ; drive<2 ; drive++) { //read drive_info to
//set hd info
hd info[drive] .cyl = *(unsigned short *) BIOS; //Number of cylinders
hd_info[drivel] .head = * (unsigned char *) (2+BIOS); //Number of Heads

hd_infol[drive] .wpcom = *(unsigned short *) (5+BIOS);

hd_infol[drivel] .ctl = *(unsigned char *) (8+BIOS);

hd_info[drive] .1zone = * (unsigned short *) (12+BIOS);

hd_info[drive] .sect = * (unsigned char *) (14+BIOS); //the number of sectors
//per track

3.3 Turn to Process | to Execute 115

BIOS + = 16;

if (hd_info[1].cyl) //Judge the number of hard drives
NR_HD = 2;
else
NR HD = 1;
#endif

for (i = 0 ; i<NR_HD ; i++) {//one physical hard disk can have four logical disk at most,
//0 is the physical disk, 1-4 is logical disk, in sum, 5; the
//first physical disk is 0*5, the second physical disk is 1%*5
hd[i*5] .start_sect = 0;
hd[i*5] .nr_sects = hd_infol[i] .head*
hd_infol[i] .sect*hd infol[il.cyl;

}

if ((cmos_disks = CMOS_READ (0x12)) & 0xf0)
if (cmos_disks & 0x0f)

NR_HD = 2;
else

NR_HD = 1;
else

NR_HD = 0;

i
for (1 = NR HD ; i < 2 ; i++) {
hd[i*5] .start_sect = 0;
hd[i*5] .nr_sects = 0;

}

for (drive = 0 ; drive<NR_HD ; drive++) {//the device id of the first physical disk
//is 0x300, the second is 0x305,
//read the block 0, namely boot block,
//of every physical disk,
//which has the partition information

if (! (bh = bread(0x300 + drive*5,0))) {
printk (“Unable to read partition table of drive%d\n\r”,
drive) ;
panic (“”) ;

3.3.1.2 Read the Hard Disk Boot Blocks to the Buffer

In Linux 0.11, the partition table is the most basic information of the hard disk. Other

information can be obtained from this information, which is stored in the boot block. A

hard disk has only one boot block, that is, No. 0 logic block, and the boot block has two

sectors, the first sector of which is useful. Our computer has only one hard disk. The hard

disk boot block is read into the buffer, which can be used by follow-up procedures. This

work is completed through calling the bread() function (bread is short for block read).
The code is as follows:

//Code path:kernel/blk dev/hd.c:

//First physical disk device number is 0x300, second is 0x305, read the block 0,

//namely boot block, of every physical disk, which has the partition information
for (drive = 0 ; drive<NR HD ; drive++) {

if (!(bh = bread(0x300 + drive*5,0))) {
printk (“Unable to read partition table of drive%d\n\r”,
drive) ;
panic(“") ;
}

16 3. Creation and Execution of Process |

0x00000 Ox9FFFF OxFFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF
Kernel
P

005,
. .
-

. e,

drive_info

Step 1: initialize hd_info

Step 2: use hd_info structure to work out
the initial sector of hard disk, as well as sector,
and record in the hd data structure

Process status

Process 0 Process 1

I Interruptible

Figure 3.15 Initialize hard drive control data structure.

After entering the bread function, first call the getblk() function to apply for a free
buffer block.
The code is as follows:

//Code path:fs/buffer.c:
struct buffer head * bread(int dev,int block)
{//read specific dev, block, dev of the first hard disk is 0x300,
//block is 0
struct buffer head * bh;

if (! (bh = getblk(dev,block))) //get a buffer block corresponding
//to the specific dev and block or
//get a free buffer block in buffer
panic (“bread: getblk returned NULL\n”);//it’s the first
//time to use buffer, thus, it’s
//impossible to have no free buffer

3.3 Turn to Process | to Execute 17

if (bh->b uptodate) //now, it’s the first use, the free buffer which
//we get is surely not used by other process

return bh;

11 _rw_block (READ,bh) ;

wait_on buffer (bh) ;

if (bh->b uptodate)
return bh;

brelse (bh) ;

return NULL;

Figure 3.16 describes in detail the procedures when applying for a free buffer block.
In the getblk() function, first call get_hash_table to search hash table, which search the
hard disk that will be read (with the same device id and block id) has been read into the buffer
by other processes. If it has been read into the buffer, it can be used directly. The purpose of
using hash tables for queries is to improve query speed. It is the first step shown in Figure 3.16.
The code is as follows:

//Code path:fs/buffer.c:

//£find the corresponding buffer block with the same dev, block or free
//buffer block in the buffer: dev:0x300, block:0

struct buffer head * getblk(int dev,int block)

{
struct buffer head * tmp, * bh;
repeat:
if (bh = get hash table(dev,block))
return bh;
tmp = free list;
do {
if (tmp->b count)
continue;
if (!bh || BADNESS (tmp)<BADNESS (bh)) {
bh = tmp;
if (!BADNESS (tmp))
break;
}
1

Once inside the get_hash_table function, call the find_buffer() function to search the
buffer block whose device number and block number are appointed in the buffer; if it can
be found, it can be used directly.

The code is as follows:

//Code path:fs/buffer.c:

//find the corresponding buffer block with the same dev, block or free
//buffer block in the buffer: dev:0x300, block:0

struct buffer head * get hash table(int dev, int block)

118 3. Creation and Execution of Process |

struct buffer head * bh;

for (;;) {
if (!(bh = find buffer (dev,block)))
return NULL; //now, it’s the first use, thus, it’s
//impossible to find the block has
//been read into buffer
bh->b_count++;
wait_on buffer (bh) ;
if (bh->b dev = = dev && bh->b blocknr = = block)
return bh;
bh->b count——;

0x00000 Ox9FFFFOXFFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF

Kernel
Ena ble
- interrupt

........... B Step 2 rea Iva Step 3: search an
hash_table[307] T P Y ii proprlate buffer

free buffer OCk ock in free list

,,,, 307 ', in free table ble head E
HIHIIIHIIIIIII [T Eﬁ ol %
Step 1. Table head
looE up hash table Table head !
""""" Step 4: hook with hash table
Process status
E Process 0 Process 1
E i Interruptible I Ready
i
i Current process
_______________ After executing getblk
.. Beforeexecutmggetbl k
| hash_table[307] : :
e e, 307 L
. Table head

Figure 3.16 Find the buffer block.

3.3 Turn to Process | to Execute 119

Now, this is the first time to use the buffer. Thus, there are no buffer blocks read into
the buffer; that is, hash_table does not hook any nodes and find_buffer() returns NULL.
The code is as follows:

//Code psth:fs/buffer.c:

//NR_HASH is 307, for dev:0x300, block:0, hashfn(dev,block) is 154
#define _hashfn(dev,block) (((unsigned) (dev®block))%NR_HASH)
#define hash(dev,block) hash_table[_hashfn (dev,block)]

//find the buffer block with specific dev, block in the buffer
static struct buffer head * find buffer (int dev, int block)

{

struct buffer head * tmp;

for (tmp = hash(dev,block) ; tmp ! = NULL ; tmp = tmp->b_next) //now, the tmp->b_next
//is NULL
if (tmp->b_dev == dev && tmp->b_blocknr == block)
return tmp;
return NULL;

The function find_buffer(), get_hash_table(), exit to the getblk() function, and apply
for a new free buffer block in the free form. All buffer blocks are now bound in the free
table, so apply for a new buffer block in the free table, as shown in the second step in Figure
3.16.

The code is as follows:

//Code path:fs/buffer.c:
#define BADNESS (bh) (((bh)->b_dirt<<1)+(bh)->b_lock)//b _dirt, b _lock are 0, BADNESS(bh) is 00
struct buffer head * getblk(int dev,int block)

{

struct buffer head * tmp, * bh;

repeat:
if (bh = get_hash_ table (dev,block))
return bh;
tmp = free_ list;

do {
if (tmp->b_count) //tmp-> b_count is 0
continue;
if (!bh || BADNESS (tmp)<BADNESS (bh)) { //bh is 0
bh = tmp;
if (!BADNESS (tmp)) //BADNESS (tmp) is 00, get the free buffer!
break;

}
/* and repeat until we find something good */

} while ((tmp = tmp->b_next_ free) ! = free_list);

if (!bh) {//in this case, it’s impossible to cannot find free buffer
sleep on (&buffer wait);
goto repeat;

}

wait_on_buffer(bh);//buffer block is unlock

if (bh->b_count)//the buffer block is not in use
goto repeat;

while (bh->b_dirt) {//the content of buffer block is not revised
sync_dev (bh->b_dev) ;
wait_on_buffer (bh) ;
if (bh->b_count)

goto repeat;

}

if (find buffer (dev,block))//now, find the free buffer, but it does not link to the
//hash table
goto repeat ;

120

3. Creation and Execution of Process |

After getting a buffer block, initialize it, and attach it to the hash_table.
The code is as follows:

//Code path:fs/buffer.c:
struct buffer head * getblk(int dev, int block)

if (find buffer (dev,block))
goto repeat;

bh->b count = 1;//be used

bh->b dirt = 0;

bh->b uptodate = 0;

remove from queues (bh) ;

bh->b dev = dev;

bh->b blocknr = block;

insert into queues (bh) ;

return bh;

//Code path:fs/buffer.c:

static inline void remove from queues(struct buffer head * bh)

{
/* remove from hash-queue */
if (bh->b next) //bh->b next is NULL
bh->b next->b prev = bh->b prev;
if (bh->b prev) //bh->b prev is NULL
bh->b prev->b next = bh->b next;
if (hash(bh->b dev,bh->b blocknr) == bh)//in this case, it

//will never appear
hash (bh->b_dev,bh->b blocknr) = bh->b next;
/* remove from free list */
if (! (bh->b prev free) || ! (bh->b next free))//never appear in
//the normal
//condition
panic (“Free block list corrupted”) ;
bh->b prev free->b next free = bh->b next free;
bh->b next free->b prev free = bh->b prev free;
if (free list == bh)
free list = bh->b next free;

In order to make it easier to understand the code, we will step out of this process
(Figures 3.17 through 3.19).

3.3 Turn to Process | to Execute 121

The code binding hash_ table is as follows (Figures 3.20 through 3.22):

//Code path:fs/buffer.c:

static

{

/* put at end of free list */

bh->b next free
bh->b prev free

= free list;

inline void insert into queues (struct buffer head * bh)

= free list->b prev free;

free list->b prev free->b next free = bh;
free list->b prev free = bh;

/* put the buffer in new hash-queue if it has

bh->b prev = NULL;
bh->b next = NULL;

if (!bh->b dev)
return;

a device */

bh->b next = hash(bh->b dev,bh->b blocknr) ;

hash (bh->b_dev,bh->b blocknr) =

bh->b next->b prev = bh;

Initial state

bh->b_prev_free

/

bh

tmp

Figure 3.17 Step 1.

bh;

bh->b_next_free->b_prev_free

free_list

bh->b_next_free

/

bh->b_prev_free->b_next_free

122

3. Creation and Execution of Process |

The state after
executing the
following two lines bh->b_prev_free->b_next_free

bh->b_prev_free->b_next_free = bh->b_next_free;
bh->b_next_free->b_prev_free = bh->b_prev_free;

/

bh->b_prev_free bhosb,_next._fred

bh->b_next_free->b_prev_free

tmp
free_list

Figure 3.18 Step 2.

The state after
%)cl(icutlngt e
ollowing bh->b_prev_free->b_next_free

free_list = bh -> b_next_free

bh->b_prev_free _—

~—— free_list

bh->b_next_free->b_prev_free

Figure 3.19 Step 3.

3.3 Turn to Process | to Execute 123

The state after
executing the following

bh->b_next_free = free_list;

bh->b_prev_free = free_list->b_prev_free;
free_list->b_prev_free->b_next_free = bh;
free_list->b_prev_free = bh; bh->b_prev_free->b_next_free

bh->b_prev_free —

bh->b_next_free

BN
NULL bh / \\

bh->b_next_free->b_prev_free

154 ~ ~———— free_list

tmp

Figure 3.20 Step 4.

The state after
executing the following

bh->b_prev = NULL;
bh->b_next = NULL;
if (bh=>b_dev)
bhosh hext = hash(bh-sb_dev,bh->b,_blocknr)
->D_next = has -> ev,bh->b_Dblocknr);
hash(bh-sb_dev,bh->b_blocknr) = bk bh->b_prev_free->b_next_free
bh->b_next->b_prev =bh;

NULL
bh->b_prev_free——
bh->b_next_free
154 ——u____ free list

bh/

tmp

bh->b_next_free->b_prev_free

Figure 3.21 Step 5.

124 3. Creation and Execution of Process |

® o
Overview °
°
°
°
°
o
o
I .
°
b_next *
153 ' °
154 _| . NULL °
°
155 [°
°
°
°
°
free_list ®
b_prev_free ®
°
°
o
°
o
e ©
b_next_free

Figure 3.22 Step 6.

After executing getblk(), return to bread().

3.3.1.3 Bind the Buffer Block with Request

After returning to the bread function, call ll_rw_block() to bind the buffer block with
request, as shown in Figure 3.23.
The code is as follows:

//Code path:fs/buffer.c:
struct buffer head * bread(int dev,int block)

{
struct buffer head * bh;
if (! (bh = getblk(dev,block)))
panic (“bread: getblk returned NULL\n”) ;
if (bh->b uptodate)//the applied buffer block has not been update
return bh;
11 rw block (READ,bh) ;
wait on buffer (bh) ;
if (bh->b_uptodate)
return bh;
brelse (bh) ;
return NULL;
1

3.3 Turn to Process | to Execute 125

0x00000 Ox9FFFF OxFFFFF O0x3FFFFF Ox5FFFFF OxFFFFFF

Kernel
Ena\)\e
W | merruet

......
.......

Table head

Step 2: i
hook up with request item |

Process 0 Process 1
1T

i i Interruptible I Ready i
i Current process i

Before executing 1l_rw_block :

Table head
Reading requests—

Figure 3.23 Hang the buffer block with request.

Once inside thell_rw_block function, first determine whether the device correspond-
ing to the buffer block exists or the request function of this device is normal; if it is present
and normal, the block buffer can be used. Call the make_request function and prepare to
bind the buffer block with request. The code is as follows:

126 3. Creation and Execution of Process |

//Code path:kernel/blk _dev/11_rw block.c:
void 11 _rw block(int rw, struct buffer head * bh)

{

unsigned int major;

if ((major = MAJOR(bh->b_dev)) > = NR_BLK DEV || //NR_BLK DEV is 7, Major device
//number0-6,> = 7 means not exists
! (blk_dev[major] .request_£n)) {
printk (“Trying to read nonexistent block-device\n\r”) ;
EEIELET

}

make request (major,rw,bh) ;

Process 1 continues to execute; after entering the make_request function, first lock
the buffer block to protect the buffer block from being used by other processes. As shown
in the right side of Figure 3.23, the management structure that corresponds to the selected
buffer block has been locked.

Then, apply for a free request and bind it with the selected buffer block. If the request
is read, the entire request items can be used; if the request is written, only the first two-
thirds of the request items can be used. Because user hope reading data faster. As shown in
Figure 3.23, the last item of request[32] has been selected. Later, bind the buffer block with
the request item and initialize every number of the request item.

The code is as follows:

//Code path:kernel/blk dev/11l rw block.c:
static inline void lock buffer (struct buffer head * bh)

{

cli();

while (bh->b_ lock) //now, it’s unlock
sleep on(&bh->b wait) ;

bh->b lock = 1; //lock the buffer block

sti();

}

static void make request(int major,int rw, struct buffer head * bh)//
struct request * req;
int rw_ahead;

/* WRITEA/READA is special case - it is not really needed, so if the */
/* buffer is locked, we just forget about it, else it's a normal read */

if (rw_ahead = (rw == READA || rw == WRITEA)) ({
if (bh->b_lock)//now, it’s unlock
return;
if (rw == READA)//abandon pre-read, replaced by normal read/write
rw = READ;
else

rw = WRITE;

}

if (rw! = READ && rw! = WRITE)
panic (“Bad block dev command, must be R/W/RA/WA");

lock buffer (bh); //lock

if ((rw == WRITE && !bh->b dirt) || (rw == READ && bh->b uptodate)) { //now, it’s unused
unlock_buffer (bh) ;
return;

repeat:

/* we don't allow the write-requests to fill up the queue completely:
* we want some room for reads: they take precedence. The last third
* of the requests are only for reads.

*/

3.3 Turn to Process | to Execute 127

if (rw == READ) //read request is from the end of request[32], write request
//is from the 2/3 of request[32
req = request+NR_REQUEST;
else
req = request+ ((NR_REQUEST*2)/3) ;
/* find an empty request */

while (——reqg > = request) //find the free request item from end, dev was
//initialized to -1 in blk dev_init, namely, free
if (reg->dev<0) //find the free request item
break;

/* if none found, sleep on new requests: check for rw_ahead */
if (req < request) {
if (rw_ahead) {
unlock_buffer (bh) ;
return;
}
sleep_on(&wait_for_ request) ;
goto repeat;

/* £ill up the request-info, and add it to the queue */

reqg->dev = bh->b_dev; //set the request item
reg->cmd = rw;

reg->errors = 0;

reg->sector = bh->b_blocknr<<l;

reqg->nr_sectors = 2;

reqg->buffer = bh->b data;
reg->waiting = NULL;

reg->bh = bh;

reqg->next = NULL;

add_request (major+blk dev,req);

Call the add_request function to add this request item to the request item queue;
after entering add_request, first analyze the work situation of the hard disk and then set
this request item as the current request item and call (dev->request_fn)(); that is, the
do_hd_request function sent a read command to the hard disk. The corresponding rela-
tion between the request item management structure and the do_hd_ request function is
as shown in Figure 3.24.

The code is as follows:

//Code path:kernel/blk dev/11l_rw block.c:
static void add request(struct blk dev_struct * dev, struct request * req)

{

struct request * tmp;

reg->next = NULL;
cli();
if (reqg->bh)
req->bh->b dirt = 0;

if (!(tmp = dev->current_request)) {
dev->current_request = req;
sti();
(dev->request_fn) () ; //do_hd request()
return;
1
for (; tmp->next ; tmp = tmp->next) //the effect of elevator algorithm is

//making the moving distance of magnetic
//head of disk is minimum

if ((IN_ORDER(tmp,req) ||

!IN_ORDER (tmp, tmp->next)) &&

IN_ORDER (req, tmp->next))

break;
reqg->next = tmp->next; //bind the request item queue
tmp->next = req;
sti();

128 3. Creation and Execution of Process |

0x00000 Ox9FFFF OxFFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF
Kernel

ROM BIOS - Enable ¢
. and VGA) interrup

‘Kernel code area " Kerne] data area

do_hd_reques blk_dev[7
Idle

Using the structure of blk_dev,
find disk request processmifunctlon,
prepare to send reading disk command

Process status

Process 0 Process 1
i Interruptible I Ready
1T

Current process

Figure 3.24 Bind the request item with the hard disk processing function.

3.3.1.4 Read the Hard Disk

Execute the do_hd_request function to prepare for reading the hard disk, as shown in
Figure 3.25.

First, analyze the members of the request item to get the head, sector, cylinder, and
the number of sectors needed to operate. Then, establish the necessary hard drive read
parameters and move the head to 0 cylinder. Then, send operation command(read/wrote)
to the hard disk; now that the command is read, read boot block of the hard drive and call
the hd_out function to send operation command to the hard disk. Take note of the last
two real parameters: WIN_READ means read operation and read_intr is an interrupt ser-
vice program corresponding to read operation, as shown in the third step in Figure 3.25.

The code is as follows:

//Code path:kernel/blk _dev/hd.c:
void do_hd request (void)
{
int 1i,r;
unsigned int block,dev;
unsigned int sec,head,cyl;
unsigned int nsect;

INIT REQUEST;

dev = MINOR (CURRENT->dev) ;

block = CURRENT->sector;

if (dev > = 5*NR_HD || block+2 > hd[dev].nr_sects) {
end_request (0) ;
goto repeat;

3.3 Turn to Process | to Execute 129

}

block + = hd[dev].start_sect;

dev/= 5;

__asm__ (“divl%4”:“ = a” (block)," = d” (sec):“0” (block),“1” (0),
“r” (hd_info[dev] .sect));

__asm__ (“divl%4”:“ = a” (cyl),"“ = d” (head):“0” (block),“1” (0),
“r” (hd_info[dev] .head)) ;

sec++;

nsect = CURRENT->nr_ sectors;
if (reset) {

reset = 0; //set, prevent mutiply execute if (reset)
recalibrate = 1; //set, assure executing if (recalibrate)
reset_hd (CURRENT_DEV) ; //send the command “WIN_SPECIFY” to hard

//disk by calling hd out, and establish the
//necessary parameter for reading hard disk
return;
}
if (recalibrate) {
recalibrate = 0; //set, prevent mutiply execute if
// (recalibrate)
hd_out (dev,hd_info [CURRENT DEV] .sect,0,0,0,
WIN_RESTORE, &recal_intr); //send the command “WIN_RESTORE” to
//hard disk, and move the magnetic
//head to cycle 0 for reading data
//from hard disk

return;
if (CURRENT->cmd == WRITE) {
hd_out (dev,nsect, sec,head, cyl, WIN_WRITE, &write_intr);
for(i = 0 ; i<3000 && !(r = inb p(HD_STATUS) &DRQ STAT) ; i++)
/* nothing */;
if (1x) {
bad_rw_intr() ;
goto repeat;
1
port_write (HD_DATA, CURRENT->buffer, 256) ;
} else if (CURRENT->cmd == READ) {
hd out (dev,nsect, sec,head, cyl, WIN READ, &read intr); //Note two parameters!

} else
panic (“unknown hd-command”) ;

Send read hard disk command as shown in the first step in Figure 3.26.
The specific code is as follows:

//Code path:kernel/blk _dev/hd.c:

static void hd out (unsigned int drive,unsigned int nsect,unsigned int sect,
unsigned int head,unsigned int cyl,unsigned int cmd,
void (*intr addr) (void)) //the parameter is WIN READ, &read intr

register int port asm(“dx”);

if (drive>1 || head>15)
panic (“*Trying to write bad sector”);
if (!controller ready())
panic (“HD controller not ready”) ;
do_hd = intr_addr; //determine it’s read intr or
//write_intr according to the parameter,
//in this case, it’s read intr
outb_p(hd_info[drivel] .ctl,HD_CMD) ;
port = HD DATA;
outb_p(hd_info[drivel] .wpcom>>2, ++port) ;
outb_p (nsect, ++port) ;
outb_p(sect, ++port) ;
outb_p(cyl, ++port) ;
outb_p(cyl>>8, ++port) ;

130 3. Creation and Execution of Process |

outb p (0xA0| (drive<<4) |head, ++port) ;
outb (cmd, ++port) ;

}

//Code path:kernel/system call.s:
_hd interrupt:

ilg jmp 1f

1: xorl%edx, $edx

xchgl _do_hd, $edx

testl%edx, $edx

jne 1f

movl $ unexpected hd_interrupt, $edx

do_hd = intr_addr binds the reading disk service routine with the hard disk interrupt
service routine; here the do_hd is the content of “xchgl _do_hd,%edx” in _hd_interrupt
function (system_call.s).

In this case, the operation is read disk, so attach to the read_intr(), if in the case of
write disk, attach to the write_intr() functions.

Do read disk order!

The hard disk reads the data of the boot block into its cache; at the same time, the pro-
gramalso returns and will callhd_out(), do_hd_request(),add_request(), make_request(),
and 1l_rw_block() in the opposite direction until it returns to the bread() function.

0x00000 Ox9FFFF OXxFFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF
Kernel

able
b—
Step 2:

detect the state of hard disk

Kernel data area

LT, 4 Disk

Step 3:

hook up interrupt -hd info |] hd
response program q
Step 1: S Y

analyzing data sent to hard disk port register

Process status

Process 0 Process 1

1T

: i
% i Interrupt wait state I Ready i
| Current process i

Figure 3.25 Prepare for reading the hard disk.

3.3 Turn to Process | to Execute 131

0x00000 Ox9FFFF OxFFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF

Figure 3.26 Send parameters to hard drive port registers and suspend the current process.

Now, the hard disk continues to read the boot block; if the program continues to
execute, it needs to manipulate the data in the boot block, but these data are not read from
the hard drive, so call the wait_on_buffer function and suspend the process!

The execution code is as follows:

//code path:fs/buffer.c:
struct buffer head * bread(int dev,int block)

{

struct buffer head * bh;

if (! (bh = getblk(dev,block)))
panic (“bread: getblk returned NULL\n”) ;
if (bh->b uptodate)
return bh;
11_rw_block (READ,bh) ;
wait on buffer (bh); //suspend the process waiting
//for unlock buffer
if (bh->b uptodate)
return bh;
brelse (bh) ;
return NULL;

132

3. Creation and Execution of Process |

0x00000 Ox9FFFF OxFFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF
Kernel

hb-‘ D
interrupt

. Step 1: disable interrupt

oo° *Kernel code area ** Kernel data area

Scl{e'zdule; ".Sle.e.[i_on 'wait._'dn_buffer

Step 4:
execute schedule Step 2: call sleep_on

Process status

Process 0 Process 1
i Interruptible I Uninterruptible
1

Current process
Step 3: suspend process 1

Figure 3.27 Process 1 suspends and executes schedule.

After entering the wait_on_buffer, it checks whether the buffer block is locked or not.
If the buffer block is locked, it calls the sleep_on. The code is as follows:

//code path:fs/buffer.c:
static inline void wait_on buffer (struct buffer head * bh)

{
cli();
while (bh->b_lock) //has been lock before
sleep on(&bh->b wait);
sti();
1

Enter the sleep_on function and set process 1 to uninterruptible state, as shown in
step 3 in Figure 3.27. Process 1 suspends then call the schedule function and be ready to
switch processes. The execution code is as follows:

3.3 Turn to Process | to Execute

133

//code path:kernel/sched.c:
void sleep on(struct task_struct **p)

{
struct task struct *tmp;
if (!p)
return;
if (current == &(init_task.task))
panic(“task[0] trying to sleep”);
tmp = *p;
*p = current;
current->state = TASK UNINTERRUPTIBLE;
schedule() ;
if (tmp)
tmp->state = 0;
1

3.3.1.5 Wiait for Hard Disk Reading Data, Process Scheduling,
and Switch to Process 0 to Execute

After entering the schedule functions, it switches to process 0. Figure 3.28 gives the main
steps.

Specific implementation steps have been illustrated in Section 3.2. The results are not
similar to the execution results in Section 3.2 when traversing task[64] the second time. At
this time, only two processes, the state of process 0 is interruptible state, the state of pro-
cess 1 is set to uninterruptible state, the conventional process switching condition is that
has the most of rest time piece and must be ready state. Like the code "if ((*p)-> state ==
TASK_RUNNING & & (* p)-> counter > ¢)" give conditions. Now the two processes are
not ready condition, according to the conventional conditions, it cannot be the switching
process and no process can be executed.

This is a very embarrassing state!

To solve this problem, the designers of the OS are forced to switch to process 0!

Note: The value of ¢ will continue to be -1; hence, the next will still be 0, next is the process
ID which switch to. If there is no suitable process, the value of next will always be 0, and the
process will switch to process 0 to execute.

The execution code is as follows:

//code path:kernel/sched.c:
void schedule (void)

while (1) {
@ = =g
next = 0;
i = NR_TASKS;

134

3. Creation and Execution of Process |

p = &task[NR_TASKS] ;
while (——1i) {
if (!*——p)
continue;
if ((*p)->state == TASK RUNNING && (*p)->counter > c)
¢ = (*p)->counter, next = i;
1
if (c) break;
for(p = &LAST TASK ; p > &FIRST TASK ;——p)

if (*p)
(*p) ->counter = ((*p)->counter >> 1) +
(*p) ->priority;
1
switch to(next);//next is 0!
1
0x00000 Ox9FFFF OxFFFFF 0x3FFFFF Ox5FFFFF OxFFFFFF
Kernel

b ‘ e
T | e

" Step 1:
. enable interrupt, since every
. process has standalone eflag

Schedule
I switch_to

EIP
Execute instructions next to the switch
point of process 0

“cmpl %%ecx,_last_task_used_math\n\t"\ ' I Reading data continuously from disk

Step 3: execute switch_to

Process status

Process 0 Process 1
i Interruptible I Uninterruptible
T

Current process

Step 2: switch to process 0
S S NS I e T P —— 1

Figure 3.28 Switch to process 0 to execute.

3.3 Turn to Process | to Execute 135

Call switch_to(0). The execution code is as follows:

//code path:kernel/sched.h:
#define switch to(n) {\
struct {long a,b;} tmp; \
__asm__ (“cmpl%$%ecx, current\n\t” \
“je 1f\n\t” \
“movw%%dx, $1\n\t” \
“xchgl%%ecx, current\n\t” \
“1jmp%0\n\t” \ //jump to process 0, reference the
//introduction of switch to in Section 3.2
“cmpl%%ecx, last task used math\n\t” \
“jne 1f\n\t” \

“clts\n” \

STPIRN

::'m” (*&_ tmp.a),“m” (*& tmp.b), \
“d” (_TSS(m)),“c” ((long) task[nl)); \

After executing switch_to(0), it has switched to process 0. As illustrated in Section
3.2, when the process 0 switch to the process 1, it begin with the line “ljmp% 0\n\t” of the
switch_to(1) switch to, TSS save all the value of CPU registers, cs,eip points to the next
line, so the process 0 begin to execute from the cmpl%% ecx _last_task_used_math \n\t. It
is shown as the third step in Figure 3.28.

Execute code as follows:

//code path:kernel/sched.h:
#define switch to(m) {\
struct {long a,b;} _ tmp; \
__asm__ (“cmpl%%ecx, current\n\t” \
“je 1f\n\t” \
“movw%%dx, $1\n\t” \
“xchgl%$%ecx, current\n\t” \
“1jmp%0\n\t” \
“cmpl%%ecx, last task used math\n\t” \ //from this line to
//execute, in this case,
//it‘'s process 0 with

//privilege level 0
“jne 1f\n\t” \

“elts\n” \

\\1 B " \

:'m” (*& tmp.a),“m” (*& tmp.b), \
“d” (_TSS(n)),“c” ((long) task([n])); \

In Section 3.2, process 0 switching to process 1 is caused by pause(), sys_pause(),
schedule(), and switch_to(1). Now, the latter part of switch_to(1) has been implemented; it
will return to sys_pause(), for (;;) the pause() to execute.

Pause() will be called repeatedly in the for (;;) cycle; thus, it will continue to call sched-
ule() to switch process. When switching again, the two processes are not in the ready status,
all processes suspend, and the kernel performs switch_to and is forced to switch to process 0.

136

3. Creation and Execution of Process |

Now, the condition that switch_to need to deal with has some changes, the meaning

» .

of “cmpl%% ecx, _current \n\t” “je, 1f\n\t,” is: if the process to switch to is the current pro-
cess, jump to the following “I:” directly return. The current process is the process 0 and
also the process to switch to, just meet this condition.

The execution code is as follows:

//code path:init/main.c:
void main (void)

for(;;) pause();

1

//code path:kernel/sched.h:

#define switch to(n) {\

struct {long a,b;} tmp; \

__asm__ (“cmpl%%ecx, current\n\t” \
“je 1f\n\t” \
“movw%%dx, $1\n\t” \
“xchgl%%ecx, current\n\t” \
“1jmp%0\n\t” \
“cmpl%%ecx, last task used math\n\t” \
“jne 1f\n\t” \

“eclts\n” \

\\1:” \

::'m” (*&_ tmp.a),“m” (*&_ tmp.b), \
“d” (_TSS(n)),“c” ((long) taskiln])); \

Hence, return to process 0 (Note: it’s not switch to process 0).

Repeatedly execute this operation.

From here, the reader can see the special functions of process 0 that are designed by
OS designers: when all processes suspend or do not have any process to execute, process
0 emerges to maintain the basic OS functions, waiting other suspended processes meet
the ready condition to continue execute (Figure 3.29).

Note: The read and write speed of the hard disk are much lower than the speed of the CPU in
executing instructions (about two to three orders of magnitude). Now, the drive is still busy
reading the specified data into its cache.

3.3.1.6 Hard Disk Interruption Occurs During the Execution of Process 0

After executing repeatedly, the hard drive reads out the data of one sector at some point,
resulting in hard disk interruption. After the CPU receives the interrupt instruction, it
terminates the program being executed. The position of termination is certainly in the
following line instruction: pause(), sys_pause(), schedule(), switch_to (n). This is shown
as the first step in Figure 3.30.

3.3 Turn to Process | to Execute

137

0x00000 OX9FFFF OxFFFFF 0x3FFFFF Ox5FFFFF OxFFFFFF
Kernel

hb-‘ Faus
y and VGA '“\teﬂf“ P

Schedule - Step 1:
I switch._to execute sys_pause repeatedly
EIP
Current process is still process 0
“je 1f\n\t"\
Reading data continuously from disk
Step 2:

process scheduling processing

Process status

Current process

i Process 0 Process 1 i
i i Interruptible I Uninterruptible i
| 1 |

Figure 3.29 The repeatedly executing process of process 0.

Then, change to execute the disk interrupt service program. The execution code is as
follows:

//code path:kernel/system call.s:
_hd interrupt:

pushl%eax //save the state of CPU

pushl%ecx

pushl%edx

push%ds

push%es

push%fs

movl $0x10, %eax

mov%ax, $ds

mov%ax, $es

movl $0x17,%eax

mov%ax, $fs

movb $0x20, %al

outb%al, SOxXA0

jmp 1f

138 3. Creation and Execution of Process |

g jmp 1f
i e xorl%edx, $edx

xchgl _do hd, %edx

testl%edx, $edx

jne 1f

movl $ unexpected hd interrupt, $edx
1: outb%al, $0x20

call *%edx

Do not forget that the interrupt can automatically push ss, esp, eflags, cs, and eip,
and the hard interrupt service program code continues to push register data to save the
program interrupt site. Then, execute the reading disk interrupt program of _do_hd. The
corresponding code is the line of “call *% edx”; the edx is the address of the reading disk
interrupt program read_intr; see the explanation and code comments of the hd_out()
function.

0x00000 Ox9FFFF OxFFFFF O0x3FFFFF Ox5FFFFF OxFFFFFF

Kernel
Enab\e
- ‘mteﬂ“t
s,

a ' -:l Buffer block

..-*Kernel code area " * Kernel data area

hd_interrupt U read_intr

Step 1:
the disk interrupt service function starts to run

Reading data continuously from disk

Step 2:
load data to the appointed buffer block

Disk

Process status

Process 0 Process 1
T

1
|
i Interruptible I Uninterruptible i
1
1
|
Current process i

i

Figure 3.30 The process of executing disk interrupt.

3.3 Turn to Process | to Execute 139

The read_intr() function will copy the data that have already been read into the hard
disk cache to the locked buffer block (note: the lock is to stop the operation of the process
but does not prevent the operation of the peripherals); then, the data of one sector and 256
words (512 bytes) are read into the buffer block which was applied before. This is shown as
the second step in Figure 3.30. The execution code is as follows:

//code path:kernel/blk dev/hd.c:
static void read intr(void)

{
if (win _result()) {
bad rw_intr() ;
do_hd request () ;
return;
}
port read (HD DATA, CURRENT->buffer,256) ;
CURRENT->errors = 0;
CURRENT->buffer + = 512;
CURRENT->sector++;
if (——CURRENT->nr_sectors) {
do hd = &read intr;
return;
}
end request (1) ;
do _hd request () ;
}

However, the boot block data is 1024 bytes, request requirement is 1024 bytes. Now,
half of it has been read, the hard drive will continue to read disk. At the same time, learned
that the request corresponding to the buffer block of data is not fully read, the kernel will
again binding read_intr() with the hard disk interrupt service routine in order to the next
use, then the interrupt service routine return.

Process 1 is still in a suspended state; the pause(), sys_pause(), schedule(), switch_to (0)
cycle continues to repeat from the site interrupted by the hard disk, and the hard drive
continues to read the disk.

This process is shown in Figure 3.31.

After a period of time, another half data of the hard disk has been read. The hard disk
generates an interrupt, and the read disk interrupt service program again responds to the
interrupt and enters the read_intr function. It still will determine whether the request
corresponding to the buffer data finished reading. The corresponding code is as follows:

//code path:kernel/blk dev/hd.c:
static void read intr (void)

140

3. Creation and Execution of Process |

0x00000 Ox9FFFF OXFFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF

Figure 3.31 Process 0 continued to repeatedly execute.

The data that request requires has been read. After confirmation is complete, do not
execute the inside content of if and skip to the end_request function to performing, as
shown in Figure 3.32.

After entering end_request and the content of the buffer block has been read, it sets
the buffer update flag b_uptodate to 1. The execution code is as follows:

//code path:kernel/blk dev/blk.h:
extern inline void end request (int uptodate)

{
DEVICE OFF (CURRENT->dev) ;
if (CURRENT->bh) {
CURRENT->bh->b uptodate = uptodate; //uptodate is
//parameter, its
//value is 1
unlock buffer (CURRENT->bh) ;
1
if (!luptodate) {
printk (DEVICE NAME “ I/O error\n\r”);
printk (“dev%04x, block%d\n\r”, CURRENT->dev,
CURRENT->bh->b_blocknr) ;
1
wake up (&CURRENT->waiting) ;
wake up (&wait for request) ;
CURRENT->dev = -1;
CURRENT = CURRENT->next;
1

3.3 Turn to Process | to Execute 141

0x00000 Ox9FFFF OxFFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF

ROM BI(
afid-VGA

Figure 3.32 Respond to disk interrupt again and wake up process 1.

Then, unlock_buffer() is called to unlock the buffer block. Call the wake_up() func-

tion in the unlock_buffer() function, set process 1 to ready state, and operate the request,
for example, set its corresponding request to free....

The code is as follows:

//code path:kernel/blk dev/blk.h:
extern inline void unlock buffer(struct buffer head * bh)

{
if (!bh->b lock)
printk (DEVICE NAME “: free buffer being unlocked\n”) ;
bh->b lock = 0;
wake up (&bh->b wait);

}

//code path:kernel/sched.c:
void wake up (struct task _struct **p)

{
if (p && *p) {
(**p) .state = 0; //set the ready state
*p = NULL;
}
}

142

3. Creation and Execution of Process |

0x00000 Ox9FFFF OxFFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF

Kernel l ‘
R —

. Step 1:
. the system enables interrupt

Kernel data area

Breadﬂ sys_setup

Step 2:
after the execution, return sys_setup

Process status

Process 0 Process 1

1T

Current process

i
i
i Interrupt wait state I Ready i
1
!
i
|
i

Figure 3.33 Switch to process 1 and then return sys_setup.

After the hard disk interrupt handling ends, which means the end of the loading boot
block of hard disk, the computer continues to execute in pause(), sys_pause(), schedule(),
and switch_to (0), repeatly, shown as the second step in Figure 3.32.

3.3.1.7 After Reading the Disk, Switch Process Scheduling to Process |

Now, the two sectors of the boot block have been loaded into the buffer block of the kernel.
Process 1 is in a ready state. Note: Although process 0 has been involved in the cycle to
run, it is in a non-ready state. There are only process 1 and process 0. Thus, when the cycle
runs to schedule(), switch to process 1. This process is shown in Figure 3.33.

Switch to process 1. Process 1 then continues to execute from the code of the follow-
ing function.

//code path:kernel/sched.h:
#define switch to(n) {\
struct {long a,b;} _ tmp; \
__asm__ (“cmpl%%ecx, current\n\t” \
“je 1f\n\t” \
“movw%%dx, $1\n\t” \
“xchgl%%ecx, current\n\t” \
“1jmp%0\n\t” \

3.3 Turn to Process | to Execute

143

“cmpl%%ecx, last task used math\n\t” \ //the reason is same to the
//“switch to” illustrated

//before

“jne 1f\n\t” \
“clts\n” \
RNELAN

::'m” (*&_ tmp.a),'m” (*& tmp.b), \
“d” (_TSS(n)),“c” ((long) task[n])); \

This is the model that suits to the switching among all processes.

Process 1 switched from “ljmp%0\n\t”; hence, execute the next line. Now, return to
sleep_on(), which is the switch initiator. And eventually return to the bread() function.
Judge the field “b_uptodate” of the buffer has been set to 1 in function bread(), then return
directly. Function bread run over. The execution code is as follows:

//code path:fs/buffer.c:
struct buffer head * bread(int dev,int block)

{

struct buffer_head * bh;

if (! (bh = getblk(dev,block))
panic (“bread: getblk returned NULL\n”) ;
if (bh->b_uptodate)
return bh;
11_rw block (READ, bh) ;
wait_on_buffer (bh) ;
if (bh->b_uptodate)
return bh;
brelse (bh) ;
return NULL;

Continue execution when returning to the function sys_setup(). Perform functions
after loading the boot block of the hard disk to the buffer. The buffer is loaded with the
contents of the hard disk boot block. Judge the effective sign '55A A’ of the hard disk at first.
If the last 2 bytes of the first sector is not '55A A, then the data of this sector is invalid. (We
assume that the data of the boot block has no problem.) The execution code is as follows:

//code path:kernel/blk dev/hd.c:
int sys setup(void * BIOS)

for (drive = 0 ; drive<NR HD ; drive++) (

bread (0x300 + drive*5,0))) {

if (! (bh
printk (“Unable to read partition table of drive%d\n\r”,
drive) ;
panic(“");
}
if (bh->b data[510] ! = 0x55 || (unsigned char) //We assume that the data of

//boot block has no problem

144 3. Creation and Execution of Process |

bh->b data[511] ! = 0xAA) {
printk (“Bad partition table on drive%d\n\r”,h drive) ;

panic (v7);

}

p = Ox1BE + (void *)bh->b data; //set hd[] according to the partition
//information of the boot block.

for (i = 1;i<5;i++,p++) {

hd[i+5*drive] .start_sect = p->start_sect;
hd[i+5*drive] .nr_sects = p->nr_sects;

brelse (bh) ; //release buffer block
if (NR_HD)

printk (“Partition table%s ok.\n\r”, (NR_HD>1)?“s”:“");

Then, use the partition table information collected from the boot block to set hd[], as

shown in Figure 3.34.

The buffer of the reading boot block has completed its mission. Then, call the function

brelse() for release in order to the program can use it again.

Set hd[] according to the hard disk partition information. The work preparing for the
installation of the hard disk file system in Chapter 5 has been completed. Next, we will
introduce process 1 using a Ramdisk in place of a floppy disk and make it as the root

device in preparation for loading the root file system.

0x00000 Ox9FFFF OxFFFFF 0x3FFFFF Ox5FFFFF OxFFFFFF
Kernel

..+*Kernel code area " " Kernel data area "

_ Buffer block

Process status

Current process

i Process 0 Process 1 i
i i Interruptible I Ready i
i T i

Figure 3.34 Using the boot block to set the hard disk partition management structure.

J h ‘ E
! - interrupt

3.3 Turn to Process | to Execute

145

3.3.2 Process | Formats the Ramdisk and Replaces
the Root Device as the Ramdisk

In Section 2.3, the Ramdisk space has been set up and initialized. The Ramdisk is still
a “blank disk” before a similar deal like “formatting,” but it cannot be used as a block
device. Information for formatting is in the floppy disk of boot OS. Chapter 1 explains that
the first sector is Bootsect, the four sectors behind are setup, and the next 240 sectors are
the system module that contains the head, which is a total of 245 sectors. Formatting the
Ramdisk information starts from the 256 sectors.

In the following, process 1 calls rd_load() to use the information of the sector in
the floppy disk after 256 to format the Ramdisk and make it as a block device.

The execution code is as follows:

//code path:kernel/blk dev/hd.c:
int sys_setup(void * BIOS)

{
if (NR_HD)
printk (“Partition table%s ok.\n\r”, (NR_HD>1)?“s”:“");
rd load() ;
mount_root () ;
return (0) ;
1

After entering rd_load(), call breada() to read-ahead data block from the floppy
disk, which are boot block and super block, which are needed for formatting the
Ramdisk.

Note: Now the root device is the floppy disk.

Breada() and bread() are similar; the difference is that the breada() function can read
in a number of consecutive data blocks, a total of three (257, 256, and 258), including
guide block 256 (although the guide blocks are not actually used) and super block 257. The
principle of reading the data block from a floppy disk is the same as bread reading the hard
disk data block (see the explanation in Section 3.3.1). After reading, you can see in Figure
3.35 that three consecutive data blocks are read into the buffer cache block; the super block
is marked with a red box.

Then, analyze the super block information, including judging whether the file system
is Minix or not, and whether the data blocks of the root file system will be loaded will more
than the entire Ramdisk space. These conditions should be satisfied in order to continue to
load the root file system. Release the buffer block after analyzing. These are shown as the
first, second, and third steps in Figure 3.36.

146

3. Creation and Execution of Process |

0x00000 Ox9FFFF OxFFFFF 0x3FFFFF Ox5FFFFF OxFFFFFF
Kernel

hb ‘ E
- interrupt
L o

et Kernel code area " Kernel data area’. e,
S :,'-" , block+2 block block+1
ettt e : t Read some blocks and write

Breadag rd_load to the specific buffer block
ﬂ

Current process

pTTTTTTTTTTTT T Tt i
E Process 0 Process 1 E
E i Interruptible I Ready E
, |

Figure 3.35 Read root file system super block.

0x00000 Ox9FFFF OxFFFFF Ox3FFFFF O0x5FFFFF OxFFFFFF
Kernel
Enable
- interrupt
- task struct of { - The page that task_struct of
. ...- prOC_eSS 1 b Jprocess 1 resides

_ test data in the super block

‘B Step 2:
release the buffer block
that contains the super block

Step 1: backup super block

Process status

i Process 0 Process 1
i 1

i
i Interruptible I Ready i
Current process !

Figure 3.36 Backup super block and test data.

3.3 Turn to Process | to Execute 147

The code is as follows:

//code path:kernel/blk dev/ramdisk.c:
void rd_load(void)

{

struct buffer head *bh;

struct super block s;

int block = 256; /* Start at block 256 */
int I-=1;

int nblocks;

char *cp; /* Move pointer */

if (!rd_length)
return;

printk (“Ram disk:%d bytes, starting at 0x%x\n”, rd_length,
(int) rd_start);

if (MAJOR(ROOT DEV) ! = 2) //if the root device is not floppy disk
return;

bh = breada (ROOT_DEV,block+1,block,block+2,-1) ;

if (!bh) {
printk (“Disk error while looking for ramdisk!\n”) ;
return;

}

* ((struct d_super block *) &s) = *((struct d_super block *)

bh->b_data) ;

brelse (bh) ;

if (s.s_magic ! = SUPER MAGIC) //if unsatisfied, it’s not Minix file system
/* No ram disk image present, assume normal floppy boot */
return;

nblocks = s.s_nzones << s.s_log zone size; //calculate the block

//numbers in Ramdisk

if (nblocks > (rd_length >> BLOCK_SIZE BITS)) {

printk (“Ram disk image too big! (%d blocks, %d avail)\n”,

nblocks, rd_length >> BLOCK_SIZE BITS) ;

return;
}
printk (“Loading%d bytes into ram disk... 0000k”,

nblocks << BLOCK_SIZE BITS) ;

The system then calls breada, copies the file system content from the floppy disk to
the Ramdisk and releases the buffer blocks to complete “format,” as shown in the first and
second steps in Figure 3.37.

After copying, set the Ramdisk as the root device.

//The code path:kernel/blk_dev/ramdisk.c:
void rd_load(void)

printk (“*Loading%d bytes into ram disk... 0000k”,
nblocks << BLOCK_SIZE_BITS) ;
cp = rd_start;
while (nblocks) {//copy the file system from the floppy disk to the
//Ramdisk
if (nblocks > 2)
bh = breada (ROOT_DEV, block, block+l, block+2, -1);

148 3. Creation and Execution of Process |

else
bh = bread(ROOT_DEV, block) ;

if (!bh) {
printk (“I/O0 error on block%d, aborting load\n”,
block) ;
return;
}
(void) memcpy (cp, bh->b data, BLOCK SIZE) ;
brelse (bh) ;

printk (*\010\010\010\010\010%4dk",1i) ;
cp + = BLOCK SIZE;

block++;

nblocks——;

i++;

printk (*\010\010\010\010\010done \n”) ;
ROOT DEV = 0x0101; //set the Ramdisk as the root device

We will introduce the loading of the root file system.

3.3.3 Process | Loads the Root File System into the Root Device

The loading of the root file system involves the concept of files, file systems, the root file
system, loading file systems, and loading root file systems. In order to make it easier to
understand, we will only discuss the block device, which is the floppy disk, the hard disk,
and the Ramdisk (for more discussion of the block device, please read Chapters 5 and 7).

0x00000 Ox9FFFF OxFFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF
Kernel o
= % ROMBIOS Enable i
-and VGA- g e¥F§{p,, et

B8 oo

Buffer block

Step 2:
load data of root file system to RAM Drive

Step 1:
copy root file system continually from floppy to buffer

Process status

Process 0 Process 1
1
% Interruptible I Ready
1]

Current process

Figure 3.37 Copy the file system content from the floppy disk to the Ramdisk.

3.3 Turn to Process | to Execute

149

i node of root directory file
I inode_table[32]

inode of i node of)
directory file A directory file B inode of N file

Root directory file A directory file

B directory file M directory file Contents of N file

T A

Directory entry A Directory entry B Directory entry C| [Directory entry N|

Figure 3.38 The relationship between file path and the i node.

The file system in the OS can be roughly divided into two parts: one is in the OS ker-
nel and the other is in the hard disk, the floppy disk, and the Ramdisk.

The file system is designed to manage the files, and it uses the “i node” to manage
files. When there is a file in the OS, there is a corresponding i node. The file path in the
OS is managed by the directory entry; a directory entry corresponds to a level of the path,
and the directory files are also files that are managed by the i node. A file is mounted on
a directory file’s directory entry; the directory file may be mounted on another directory
according to the different physical path. Hence, a directory file has more than one direc-
tory entry to different paths. This is shown in Figure 3.38.

The i node of all files (including the directory files) eventually mounted into a tree-
like structure; the root i node is called the file system’s root i node. A logical device (a
physical device can be divided into multiple logical devices, such as a physical hard disk
can be divided into multiple logical hard disks) has only one file system. A file system only
contains one tree structure; that is, a logical device only has one root i node.

The most important sign of loading the file system is associating the root i node of a
logical device with another file system’s i node; which is determined by the user’s mount
command. This is shown in Figure 3.39.

In other words, a file system must be linked to another file system. According to this
policy, there must be a file system to mount any other file systems, and the special file sys-
tem is called the root file system, and the device is called the root device.

If any other file system can be mounted on the root file system, then where should the
root file system be mounted?

The answer? Mount it on the super_block[8].

Linux 0.11 OS has only one super_block[8]. Each element of the array is a super block;
a super block manages a logical device, which means that the OS can only manage eight
logical devices, and among them, there is only one root device. The most important sign
of loading the root file system is that the i node of the root file system is mounted on the
corresponding super_block[8].

Generally speaking, the whole process of loading the root file system consists of three
main steps:

1. Copying the super block of the root device to the super_block[8] and
mounting the i node of the root device to the corresponding super block in
super_block[8]

150

3. Creation and Execution of Process |

Root file system

Q
CXK O O/ \O i noc.le of root

\ File system

Figure 3.39 Logical overview of the mount root file system.

2. Mounting the root device logical block bitmap and the i node bitmap to s_zmap[8]
and s_imap([8] in super_block([8]

3. Setting the current process’s pointers pwd and root pointing to the i node of
root device

This is shown in Figure 3.40.

Now, let us switch to the third part of this section: process 1 calls mount_root to
mount the root file system on the root device Ramdisk.

The code is as follows:

//The code path:kernel/blk dev/hd.c:
int sys setup(void * BIOS)

{
brelse (bh) ;
if (NR _HD)
printk (“Partition table%s ok.\n\r”, (NR_HD>1)?“s”:“");
rd load() ;
mount_ root () ; //loading the root file system
return (0) ;
1

3.3 Turn to Process | to Execute

151

RAM Drive of
root device Disk

N/

super_block[8]

Current process

inodetable32]||||||| T[T

s_imap s_zmap

inode of root

Root file system& /
\ File system
(& ﬁ Reference Chapter 5 \
O

Figure 3.40 Overview of the file system.

3.3.3.1 Copying the Super Block of the Root Device to the super_block[8]

In mount_root, the system initializes the super block management structure super_block[8]
and then sets the device lock flags and all processes waiting for unlock to 0. Whenever
the system wants to exchange data in the form of a file with a device, it must load the
super block of the device into the super_block[8]. The system is able to acquire some basic
information of the device file system from super_block[8]; also, the super block of the root
device works in the same way, as shown in Figure 3.41.

The code is as follows:

//the code path:fs/super.c:
void mount root (void)
{
int i, free;
struct super_block * p;
struct m_inode * mi;

if (32 ! = sizeof (struct d inode))
panic(“*bad i-node size”) ;
for(i = 0;i<NR_FILE;i++) //initialize file table[32], prepare

//for the following code
file table[i] .f count = 0;

152

3. Creation and Execution of Process |

if (MAJOR(ROOT DEV) == 2) {//2represents floppy disk, the root device is
//Ramdisk, that is 1.
//conversely, load the root file system of floppy
//disk.
printk (“Insert root floppy and press ENTER”) ;
wait_for_ keypress();

}

//initialize super blockI[8]

for (p = &super block[0] ; p < &super block[NR SUPER] ; p++) {
p->s_dev = 0;
p->s_lock = 0;
p->s_wait = NULL;

if (! (p = read_super (ROOT_DEV)))
panic (“Unable to mount root”) ;

rd_load() has “formatted” the Ramdisk and set it as a root device. Then, the system
will call the function read_super(), reading the super block of the root device from the

Ramdisk and copying it to super_block][8].

0x00000. Ox9FFFF OxFFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF

Figure 3.41 Initialize kernel file table and super block.

3.3 Turn to Process | to Execute

The code is as follows:

//the code path:fs/super.c:
void mount root (void)

if (! (p = read super (ROOT DEV)))
panic (“Unable to mount root”);

In the function read_super(), it first checks whether the super block has been read
into the super_block[8]. If the super_block is there, it will be used directly without loading
again.

The code is as follows:

//the code path:fs/super.c:
static struct super block * read super (int dev)

{
struct super block * s;
struct buffer head * bh;
int i,block;
if (!dev)
return NULL;
check disk change (dev) ; //test whether change the disk
if (s = get super(dev))
return s;
1

Because the root file system is not loaded, we need to apply a slot in super_block[8],
as shown in Figure 3.42. Now, we find the first location of the super_block, initialize and
lock it, and prepare for reading the super block of the root device.

The code is as follows:

//the code path:fs/super.c:
static struct super block * read super (int dev)

{
for (s = O+super block ;; s++) {
if (s > = NR_SUPER+super block) //NR_SUPER is 8
return NULL;
if (!s->s_dev)
break;
1

s->s_dev = dev;

154

3. Creation and Execution of Process |

s->s_isup = NULL;

s->s_imount = NULL;

s->s _time = 0;

s->s rd only = 0;

s->s dirt = 0;

lock_super (s) ; //lock the super
//block

The whole process consists of the following steps: calling the function bread, loading
the super block from the Ramdisk to the buffer, and copying it from the buffer to the first
location of super_block[8]. We have introduced the function bread in Section 3.3.1.2; there
is little difference here. As mentioned in Section 3.3.1.5, if we send an order to the hard disk,
the system will call the function do_hd_request. Since we operate the Ramdisk now, the sys-
tem calls the function do_rd_request. It is worth reminding that the Ramdisk is considered
as a peripheral, but after all, it is the memory space, not the actual peripheral; thus, calling
do_rd_request would not trigger any interrupt, such as hard disk interrupt (Figure 3.43).

After the super block was loaded into the buffer, the system would copy the super
block data from the buffer to the first location of super_block[8]. After that, the root device
is managed by super_block[8]; then, call the brelse function to free the buffer.

0x00000 Ox9FFFF OxFFFFF 0x3FFFFF Ox5FFFFF OxFFFFFF

" Kernel data area

- super_block[8]

Find a frée super block and lock it

Process status
Progess 0 Process 1
Interruptible Ready

i L
Current process

Figure 3.42 Loading root file system’s super block.

3.3 Turn to Process | to Execute

155

0x00000 Ox9FFFF OxFFFFF O0x3FFFFF O0x5FFFFF OxFFFFFF
Kernel

ten.

..-Kernel code area " Kernel data area

|' -super_block[8]

.
C e,
c.

Step 2:
copy data of super block
to kernel super block table

Step 1:
read super block of root file system

from RAM Drive to buffer block
Process status

Current process

i Process 0 Process 1 i
i i Interruptible I Ready |
' !
| 1 |
| :

Figure 3.43 Copy the super block from the Ramdisk to the kernel super block table.

The code is as follows:

//the code path:fs/super.c:
static struct super_ block * read super (int dev)

if (! (bh = bread(dev,1))) { //read the super block of root device to
the buffer
s->s_dev = 0;
free_super (s) ; //free the super block
return NULL;

}

* ((struct d_super_block *) s) = //copy the super block from the buffer
* ((struct d_super_block *) bh->b_data); //to the first location of super_block[8]
brelse (bh) ; //free the buffer
if (s->s_magic ! = SUPER_MAGIC) { //test the s_magic
s->s_dev = 0;
free_super (s) ; //free the super block

return NULL;

The system initializes the i node bitmap management structure s_imap and logical
block bitmap management structure s_zmap in super_block[8]; then, load the i node bit-
map and logical block bitmap into the buffer and mount them to s_imap[8] and s_zmap[8].

156 3. Creation and Execution of Process |

Because we will access them frequently, the system would not release them, and they will
be kept in the buffer all the time.

As shown in Figure 3.44, the super block mounts the s_imap and s_zmap.

The code is as follows:

//the code path:fs/super.c:
static struct super block * read_super (int dev)

for (i = 0;i<I_MAP_SLOTS;i++) //initialize s_imap[8] and s_zmap[8
s->s_imap[i] = NULL;
for (i = 0;i<Z_MAP_SLOTS;i++)
s->s_zmap[i] = NULL;
block = 2; //the 1st block of Ramdisk
//is super block,
//the 2nd is I-node bitmap and
//logical bitmap

for (1 = 0 ; i < s->s_imap blocks ; i++) //read all the logical block of
//I-node bitmap to the buffer
if (s->s_imap[i] = bread(dev,block)) //mount them to s_imap[8
block++;
else
break;

for (1 = 0 ; i < s->s_zmap_blocks ; i++) //read all the logical block of logical
bitmap to the buffer

if (s->s_zmapli] = bread(dev,block)) //mount them to s_zmap [8]
block++;
else
break;
if (block ! = 2+s->s_imap_blocks+s->s_zmap_blocks) { //if the number of blocks is wrong,
for(i = 0;i<I_MAP_SLOTS;i++) //that means the system error
brelse(s->s_imapl[il); //free them

for(i = 0;i<Z_MAP_SLOTS;i++)
brelse (s->s_zmap[il) ;
s->s_dev = 0;
free_super(s) ;
return NULL;
}s->s_imap[0]->b_datal0] | =
s->s_zmap [0] ->b_data[0] |
free_super (s) ;
return s;

1; //avoid return 0 and mix up with 0 I-node
=1;

3.3.3.2 Mount the i node of the Root Device to the Root
Device Super Block in super_block[8]

Back to mount_root, it calls iget() to read the root i node from the Ramdisk. The signifi-
cance of the root i node is as follows: any i node in the system can be located through the
root i node, which means we can find any files in the system.

The code is as follows:

//the code path:fs/super.c:
void mount_root (void)

{

if (!(p = read_super (ROOT_DEV)))
panic (“Unable to mount root”) ;
if (! (mi = iget (ROOT DEV,ROOT INO)))
panic (“Unable to read root i-node”) ;

3.3 Turn to Process | to Execute

157

0x00000

O0x9FFFF OxFFFFF

Unlock a

Process status

s_ninodes

s_nzones

s_imap_blocks

s_zmap_blocks

s_firstdatazone

s_log_zone_size

s_max_size

s_magic

s_imap|8]
s_zmap|8] E

s_dev

s_isup

s_imount

s_time

s_wait

s_lock

s_rd_only

| s_dirt

Ox3FFFFF

Ox5FFFFF

OxFFFFFF

| ———— —

Process 0

i Interruptible

Process 1

I Ready
T

Current process

Figure 3.44 Read the logical bitmap and the i node bitmap.

Enable
interrupt

In iget(), the OS would apply for a free i node slot in inode_table[32] (inode_table[32]
is used by the OS to control the maximum number of concurrent opening files). At this
stage, it should be the first i node; initialize the i node, including the device number of the
inode, the node number of the i node. The location of the root i node in the kernel i node
table is shown in Figure 3.45.
The code is as follows:

//the code path:fs/inode.c:
struct m_inode * iget (int dev,int nr)

{

struct m_inode * inode, * empty;

if (!dev)

panic (“iget with dev ==0");
empty = get_empty inode();

inode = inode_table;
while (inode < NR_INODE+inode_table) {
if (inode->i_dev ! = dev || inode->i num ! = nr)

inode++;
continue;

//apply a location for I-node in
//inode_table[32]

//find the same inode

{

158

3. Creation and Execution of Process |

}

wait_on_inode (inode) ; //wait for unlocking

if (inode->i_dev ! = dev || inode->i num ! = nr) { //if it changes when
waiting,
inode = inode_table; //go on finding
continue;

inode->i_count++;
if (inode->i_mount) {

int 1i;
for (i = 0 ; i<NR SUPER ; i++) //if it is the mount point,
if (super_block[i].s_imount = =inode) //find the super block
break;

if (i > = NR_SUPER) ({
printk (“Mounted inode hasn’t got sb\n”);
if (empty)
iput (empty) ;
return inode;
}

iput (inode) ;

dev = super_blockl[i].s_dev; //get the device number in the

//super block

nr = ROOT INO; //ROOT_INO is 1,the node number

//of root I
inode = inode_table;
continue;
}
if (empty)
iput (empty) ;
return inode;
}
if (!empty)
return (NULL) ;
inode = empty;
inode->i_dev = dev; //initialize
inode->i num = nr;

read inode (inode) ; //read the root I-node from the

//Ramdisk
return inode;

The function read_inode() first locks the i node in inode_table[32] so that the i node
will not be used by another program until it is released. The function then calculates the
logical block number of the i node through the super block of the i node and reads in the
i node logical block, gets the information of the i node, and loads it to the i node location
that has just been locked, as shown in Figure 3.46. Note the change in inode_table. Finally,

it will free the buffer and unlock the i node.
The code is as follows:

//the code path:fs/inode.c:
static void read inode(struct m_inode * inode)

{

lock_inode (inode) ; //lock the inode

if (!(sb = get_super (inode->i_dev))) //get the super block of the I-node

block = 2 + sb->s_imap_blocks + sb->s_zmap blocks +
(inode->i_num-1) /INODES_PER_BLOCK;

if (! (bh = bread(inode->i_dev,block))) //read the logical block of I-node

panic (“unable to read i-node block”) ;
* (struct d_inode *)inode = //copy all
((struct d_inode *)bh->b_data)
[(inode->i_num-1)$INODES_PER_BLOCK] ;

brelse (bh) ; //free the buffer blocks

unlock_inode (inode) ; //unlock

3.3 Turn to Process | to Execute

159

0x00000 OX9FFFE OXFFEFF Ox3FFFEF _ Ox5FFFFF OXFFEFEF
‘ : % f 1 3

Figure 3.45 Read the root i node.

Back to iGet, it returns the pointer inode to the function mount_root and assigns it
to pointer mi.

The following is the process of loading the root file system:

Mount the Ramdisk root i node in inode_table[32] to the s_isup and s_imount in
super_block([8]. Hence, the OS could find the files step by step through the relationship
established here.

3.3.3.3 Associate the Root File System with Process |

The system sets the members of task_struct that is related to the file system i node and
binds the root i node with the current process (process 1), as shown in Figure 3.47.
The code is as follows:

//the code path:fs/super.c:
void mount_root (void)

if (! (mi = iget (ROOT_DEV,ROOT_INO))) //the root I-node of root device
panic (“Unable to read root i-node”) ;
mi->i count + = 3 ; /* NOTE! it is logically used 4 times, not 1 */

p->s_isup = p->s_imount = mi; //The important step

current->pwd = mi; //the current process manage the root
//I-node of root file system

current->root = mi; //The parent-child create mechanism will

//inherit this attribute to child process

160 3. Creation and Execution of Process |

0x00000 Ox9FFFF OxFFFFF O0x3FFFFF Ox5FFFFF OxFFFFFF

Kernel
E“ab\e
. - interrupt

Lot *Kernel code aré.a' “**Kernel data area

.. L _ir_19_de_table[32]

mount_root
d_inode

Find the position of root directory i node in
the i node table of root directory by calling read_inode

iget

Process status

Current process

i Process 0 Process 1
!
i T

i Interruptible I Ready !

Figure 3.46 Read theinode.

After getting the super block of the root file system, we can identify the status (occu-
pied or free) of the Ramdisk through the information recorded in the super block and
record this information in the buffer that was mentioned in Section 3.3.3.1. The code is as
follows:

//the code path:fs/super.c:
void mount_root (void)

{

free = 0;
i = p->s_nzones;
while (——1 > = 0) //calculate the number of free logical blocks
if (!set_bit (i&8191,p->s_zmap[i>>13]->b_data))
free++;
printk (“%d/%d free blocks\n\r”, free,p->s_nzones) ;
free = 0;
i = p->s_ninodes+1;
while (—i > = 0) //calculate the number of free I-node in the
//Ramdisk
if (!set_bit (i&8191,p->s_imap[i>>13]->b_data))
free++;
printk(“%$d/%d free inodes\n\r”, free,p->s_ninodes) ;

3.3 Turn to Process | to Execute

161

0x00000 O0x9FFFF OxFFFFF
Kernel

Ox3FFFFF

L.t Kernel code area” " * Kernel data area

’ super_block[S.] J
mount_root peeet T, Lt

E
-

Process 0 Process 1
i Interruptible I Ready
T

mmmmmmcemmmccmmcmmaaag

Current process

Ox5FFFFF

OxFFFFFF
b e
- 'mterf“t

task_struct of . .
process 1 .«*' -

The page that task_struct of
process 1 resides

Figure 3.47 Finish loading the root file system and return.

At this stage, the function sys_setup is completed. This function is called by a soft
interrupt; hence, return to system_call, and after that, call the function ret_from_sys_call.
Now, the current process is process 1; thus, the following will call the function do_signal
(as long as the current process is not process 0, it would execute the function do_signal) to
detect the bitmap of the current process. The code is as follows:

//the code path:kernel/system call.s:

ret_from sys_call:

movl _current, ¥eax
cmpl _task, seax
je 3f

cmpw $0x0f,CS (%esp)

jne 3f

cmpw $0x17,0LDSS (%esp)
jne 3f

movl signal (%eax) , $ebx
movl blocked (%eax) , $ecx
notl secx

andl %ebx, $ecx

bsfl %ecx, secx

task[0] cannot have signals
was old code segment
supervisor ?

was stack segment = 0x17 ?

#the following would get the
#signal bitmap

162

3. Creation and Execution of Process |

je 3f

btrl %$ecx, $ebx

movl %$ebx,signal (%eax)

incl $ecx

pushl $ecx

call _do_signal #call the function do_signal ()

Now, the current process (process 1) does not receive any signal, so there is no need
to call do_signal.

At this point, sys_setup has finished and process 1 will return to the calling point
mentioned in Section 3.3, preparing the code below.

//the code path:init/main.c:
void init (void)

{
int pid,i;
setup ((void *) &drive info) ;
(void) open (“/dev/tty0”,0 RDWR,O0) ;
(void) dup(0) ;
(void) dup(0) ;
printf (“%d buffers =%d bytes buffer space\n\r”,NR BUFFERS,
NR_BUFFERS*BLOCK SIZE) ;
1

In this chapter, we introduce how the system creates process 1, installs the hard disk
file system, “formats” the Ramdisk and makes it as the root device, and loads the root file
system into the Ramdisk. After all done, we will explain how process 1 creates process 2
and finish the shell, which is the human-computer interface of the OS.

3.3 Turn to Process | to Execute

163

This page intentionally left blank

Creation and
Execution of Process 2

Il 4.1 Open the Terminal Device File and Copy
the File Handle

Shell is a user-interface (UT) process. Through shell, computer users implement human-
computer interactions with operating systems by using the monitor and the keyboard
(terminal equipment).

4.1.1 Open the Standard Input Device File

Figure 4.1 shows the scene after tty0 file has been loaded.

4.1.1.1 File_table[0] is Mounted to Filp[0] in Process |

After the root file system is loaded, process 1 opens the standard input device file by call-
ing the open function. The code is as follows:

//code path:init/main.c:
void init (void)

{

int pid, i;

setup ((void *) &drive info) ;

165

(void) open(“/dev/tty0”,0 RDWR,O0);//create standard input device,
//the path is /dev/tty0

(void) dup(0) ;//create standard output device

(void) dup(0);//create standard error output device

printf (“%d buffers =%d bytes buffer space\n\r”,NR BUFFERS, //show

//the information with the support of standard output device

NR_BUFFERS*BLOCK SIZE) ;
printf (“Free mem:%d bytes\n\r”,memory end-main memory start) ;

The open() function triggers a soft interrupt and the process will be transferred to
sys_open(), which is quite similar to fork() in Section 3.1.1.

//code path:fs/open.c:
int open(const char * filename, int flag,...)

{

register int res;
va_list arg;

va_start (arg, flag) ;

__asm__("int $0x80” //similar to the path from fork() to sys_fork(), refer
//the technique route that in Section 3.1.1
:”=a" (res)
:”0” (__NR_open),”b” (filename),”c” (flag),
“d” (va_arg(arg,int)));
if (res>=0)
return res;
errno = -res;
return -1;
}
task_struct
file_table[64] inode_table[32]
! | | filp[20] I |
Load this i node
Super block
Boot block

inode bitmap Logical block bitmap i node Data block
l I | |

Figure 4.1 The distribution of file information in the memory and process after tty0 is opened.

166 4. Creation and Execution of Process 2

In sys_open(), the kernel will mount the filp of process 1 to file_table[64] first, and
then establish the relationship between process and file_table[64], as shown below:

//code path:fs/open.c:
int sys_open(const char * filename,int flag,int mode)

{

struct m_inode * inode;
struct file * f;
int i, fd;

mode &=0777 & ~current->umask;
for (fd=0 ; fd<NR_OPEN ; fd++) //parse the filp of process 1
if (!current->filp[£fd]) //get an idle item and fd is the number
break;
if (£d>=NR_OPEN) //return when filp has no more idle item
return -EINVAL;
current->close_on_exec &= ~(l<<fd);
f=0+file table;//get the initial address of file table[64]
for (i=0 ; i<NR _FILE ; i++,f++) //parse the file table[64]
if (!f->f count) break; //f is the pointer of the idle item
if (i>=NR_FILE)//
return -EINVAL;
(current->filp[fd]=f) ->f count++; //mount filp to file table and
//increase the citation number
if ((i=open_namei (filename, flag,mode, &inode))<0) {//get the i node
current->filp [£d] =NULL;
f->f count=0;
return 1i;

The mounting scenario is shown in Figure 4.2.

4.1.1.2 Determine the Starting Point of Absolute Path

The kernel calls open_namei to acquire the i node of the standard input device file as
shown below:

//code path:fs/open.c:
int sys open(const char * filename,int flag,int mode)
{

struct m_inode * inode;

struct file * £;

int 1i,fd;

mode &=0777 & ~current->umask;
for (£d=0 ; f£d<NR_OPEN ; fd++)
if (!current->filpl[£fd])
break;
if (fd>=NR_OPEN)
return -EINVAL;

4.1 Open the Terminal Device File and Copy the File Handle 167

current->close on _exec &= ~(l<<fd);
f=0+file table;
for (i=0 ; i<NR FILE ; i++,f++)

if (!f->f count) break;
if (i> = NR_FILE)

return -EINVAL;
(current->filp[fd]=f) ->f count++;

if ((i = open namei (filename, flag,mode, &inode)) <0) {//filename is

//the pointer of/dev/tty0
current->filp [£d] =NULL;
f->f count=0;
return i;

The object can be satisfied by analyzing the name of the path continuously. The first
stage of the analysis is to get the topmost i node by calling dir_namei, that is, the i node
of the directory file dev in/dev/tty0. The second stage is to call find_entry to find the tty0

directory item and get the i node of tty0.

0x00000 Ox9FFFF OxFFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF
Kernel ‘
E“ab‘e
)] _ . interrupt
el The page that
Teeel «+** task_struct of
e task_struct of [process 1 resides

process 1 . .e*® "t

..-*Kernel code area ** Kernel data area

.
= file_table[64] | l
o (IIE e

Process status

Current process

i Process 0 Process 1 :
i i Interruptible I Ready i
| :
: 1 :

Figure 4.2 Preparation for the open terminal device file.

4. Creation and Execution of Process 2

The code for calling dir_namei is as follows:

//code path:fs/namei.c:
int open namei(const char * pathname, int flag, int mode,
struct m_inode ** res inode)//pathname is the pointer of /dev/tty0

const char * basename;//basename records the address of '/’ in front
int inr,dev,namelen;//namelen records the name length

struct m_inode * dir, *inode;

struct buffer head * bh;

struct dir entry * de;//de points to the directory content

if ((flag & O _TRUNC) && ! (flag & O_ACCMODE))

flag | = O_WRONLY;
mode &= 0777 & ~current->umask;
mode |= I _REGULAR;
if (! (dir = dir namei (pathname, &namelen, &basename)))//get topmost i node
return -ENOENT;
if (!namelen) { /* special case: ‘/usr/' etc */
if (!(flag & (O_ACCMODE|O CREAT|O TRUNC))) {
*res_inode=dir;
return 0;
}
iput (dir) ;

return -EISDIR;
bh = find entry(&dir,basename,namelen, &de);//find the directory through

//topmost i node

The function dir_namei() will call get_dir() to get the topmost i node first and then

acquires the address of tty0 and the length of the file name by parsing the name of the
path. The code for calling get_dir is as follows:

//code path:fs/namei.c:
static struct m inode * dir namei (const char * pathname,//pathname is the
//pointer of
//"“/dev/tty0”
int * namelen, const char ** name)
{ char c;
const char * basename;
struct m_inode * dir;

if (! (dir = get dir (pathname))) //execution function of get i node
return NULL;
basename = pathname;
while (c get fs byte (pathname++))
//traverse the characters of/dev/tty0 and copy each one to ¢ till the end

4.1

Open the Terminal Device File and Copy the File Handle

169

if (e=='/")

basename=pathname;
*namelen = pathname-basename-1;//determine the name length of tty0
*name = basename;//get the address of '/’ in front of tty0
return dir;

It is noteworthy that get_fs_byte is the core function of path resolution, which would
extract the string in the path name one by one. This function will be used to analyze the
path later. Its internal process is as follows:

//code path:include/asm/Segment.h:
extern inline unsigned char get fs byte(const char * addr)

{

unsigned register char _v;

__asm__ (“movb%%fs:%1,%0”//movb could move 1 byte data to specific
//register
:"=r"” (_v)//v is the output character

:"m” (*gddr));//*addr is the memory address to input
return _v;

Get_dir() will determine the absolute starting point of the path first, namely,
whether the first character of “/dev/tty0” is “/” or not, if yes, it means that it is the abso-
lute path name. Get_dir() starts searching files from the root i node, which is loaded
in the kernel when loading root file system in Section 3.3.3 and is determined as the
absolute starting point of the path. At the same time, the citation count of the root i
node will increase. The code is as follows:

//code path:fs/namei.c:

static struct m inode * get dir(const char * pathname)//pathname is
//the pointer
//of “/dev/tty0”

char c;

const char * thisname;
struct m_inode * inode;
struct buffer head * bh;
int namelen, inr, idev;
struct dir entry * de;

170

4. Creation and Execution of Process 2

if (!current->root || !current->root->i count)//root i node of
//current process doesn’t exist or citation number is 0, the kernel
//breaks
panic (“No root inode”) ;
if (!current->pwd || !current->pwd->i count)
//root i node of current directory in current process doesn’t
//exist or citation number is 0, the kernel breaks.
panic (“No cwd inode”) ;
if ((c=get fs byte(pathname))=='/’) {//it identifies that the
//first character of “/dev/tty0” is '/’
inode = current-s>root;
pathname++;
} else if I
inode = current->pwd;
else
return NULL; /* empty name is bad */

inode->i count++;//the citation count of this i node increases by 1

Figure 4.3 shows how to locate the starting point of the path.

0x00000 Ox9FFFF OxFFFFF Ox3FFFFF Ox5FFFFF OxFFEFFF

Kernel J ‘
IIIIIIII“EEEEE%IIIIIIII <

Lot Kernel code area " Kerne] data area

R
LeeenttT . glir._r{amei. 'open-_'namei o L i_ng?r.t?lb'l?[BZ]

get_dir : . [[I]
I | Set root i node as starting point

Process status

Process 0 Process 1
i Interruptible I Ready i
T

Current process

Figure 4.3 Preparation for analyzing the file name.

4.1

Open the Terminal Device File and Copy the File Handle

171

4.1.1.3 Acquiring the i node of Dev

Starting from the root i node, get_dir() will traverse and parse the pathname “/dev/tty0”
to get the directory item dev first. After that, it will find the logical block in Ramdisk and
read it into the specific buffer block. The code is as follows:

//code path:fs/namei.c:
static struct m inode * get dir(const char * pathname)
{
char c;
const char * thisname;//thisname records the address of “/”, which
//is in front of the directory entry name
struct m_inode * inode;
struct buffer head * bh;
int namelen, inr,idev;//namelen records the name length
struct dir entry * de;//de points to the contents of directory entry

if ((c=get_ fs byte (pathname))=='/") {
inode = current->root;
pathname++;//pathname is the pointer to the first char of “/dev/
//tty0”, namely ‘/’, it points to ‘d’ after ++ operation.
} else if I

inode = current-s>pwd;
else
return NULL; /* empty name is bad */

inode->i_ count++;
while (1) {//loop this process till finding topmost i node
thisname = pathname;//thisname points to ‘d’
if (!S_ISDIR(inode->i mode) || !permission(inode,MAY EXEC)) ({
iput (inode) ;
return NULL;
1
for (namelen=0; (c=get_ fs byte (pathname++))&&(c!="/") ;namelen++)
//the loop breaks when examining '/’ or c is ’\0’
/* nothing */;//pay attention to this semicolon
if (!e)
return inode;
if (! (bh = find entry(&inode, thisname,namelen, &de))) {
//get directory item through i node and relative information
iput (inode) ;
return NULL;
}
inr = de->inode;
idev = inode->i dev;
brelse (bh) ;
iput (inode) ;
if (! (inode = iget (idev,inr)))
return NULL;

172

4. Creation and Execution of Process 2

Get_fs_byte is used to traverse the path name “dev” from the “d” character in/dev/
tty0 again. It will exit the loop when it meets “/” and the value of namelen increases to 3.
All this information with the root i node pointer are used as parameters of find_entry, and
the logical block, which has the directory will be read into buffer block.

Please note that the last parameter, namely de, of find_entry points to a data struc-
ture, which is directory structure. The code is as follows:

//code path:/include/linux/fs.h
#define NAME LEN 14

struct dir entry {//directory item structure
unsigned short inode;//i node of corresponding directory file in
//device
char name [NAME LEN] ;//directory item name, 14 bytes

IF

After getting the i node id, it can find the inode of directory file corresponding to the
“dev” directory entry. Furthermore, the kernel will find the “dev” directory file through
this inode. The code is as follows:

//code path:fs/namei.c:
static struct m inode * get dir(const char * pathname)

if ((c=get fs byte(pathname)) = ='/") {
inode = current->root;
pathname++;
} else if I
inode = current->pwd;
else
return NULL; /* empty name is bad */
inode->i count++;
while (1) {//loop this process till finding topmost i node
thisname = pathname;
if (!S ISDIR(inode->i mode) || !permission(inode,MAY EXEC)) ({
iput (inode) ;
return NULL;

1

for (namelen = 0; (c=get fs byte (pathname++))&&(c! = ‘'/’) ;namelen++)
/* nothing */;

if (!e)
return inode;

if (! (bh = find entry(&inode, thisname,namelen, &de))) {//de points

//to dev

iput (inode) ;
return NULL;

1

inr = de->inode;//find i node id through directory entry

4.1 Open the Terminal Device File and Copy the File Handle 173

idev = inode->i dev;//pay attention: this inode is root i node,

//which is used to determine device id
brelse (bh) ;

iput (inode) ;
if (! (inode = iget(idev,inr)))//store the i node of dev to
//corresponding item in inode table[32]

//and return the pointer of this item
return NULL;

Inode_table is used to manage all the i nodes of opened files and iget would load the i
node into the inode_table according to the id of the i node and the id of the device number.
Getting the i node of “dev” (directory file) is shown in Figure 4.4.

0x00000 Ox9FFFF OxFFFFF O0x3FFFFF Ox5FFFFF OxFFFFFF

Kernel ‘
Enab\e
interrupt

. Teee
. LN

.+ Kernel code area’

* Kernel data area

Process status

Process 0

i Interruptible

Process 1

I Ready i

T

Current process

Figure 4.4 Getting the i node of dev.

174

4. Creation and Execution of Process 2

4.1.1.4 Determine the i node of Dev as the Topmost i node

The execution path of acquiring the topmost i node and target i node is shown in Figure 4.5.
The relationship of directory entry, directory file, and i node has been introduced in

Section 3.3.3.

r— - 1
: Determine the : ,,,,,,,
| initial i node |
| S, l _____ . |
Search "/"
Find "/" | Cannot find "/"
,,,,,,,,,,,,,, E - |-

According to i node of directory
file and directory name, get the
directory name in the directory file

l

Get i node id of directory
file from directory name

!

According to the i node id
and equipment number, get
i node of next directory file

Indicate that the i node obtained
in the last cycle is tip i node,
then return i node

. i node of root

i node of common
directory file

. The topmost i node

The i node of
target file

Figure 4.5 The execution path of getting the topmost i node and the target i node.

4.1

Open the Terminal Device File and Copy the File Handle

175

The process of traversing and parsing the/dev/tty0 continuously is the same as that of
parsing dev, although the result is different. The code is as follows:

//code path:fs/namei.c:
static struct m inode * get dir(const char * pathname)

if ((c=get fs byte(pathname))=='/’) {
inode = current-s>root;
pathname++;
} else if I
inode = current->pwd;
else
return NULL; /* empty name is bad */
inode->i_ count++;
while (1) {//loop this process till finding topmost i node
thisname = pathname;//thisname points to first ‘t’ in ttyo0
if (!S_ISDIR(inode->i_mode) || !permission (inode,MAY EXEC)) {
iput (inode) ;
return NULL;

for (namelen=0; (c=get_fs byte (pathname++))&&(c!="/’) ;namelen++)
//continue to search ‘/’ and break loop when c is ’\0’
/* nothing */;
if (!le)
return inode;//return the topmost inode
if (! (bh = find entry (&inode, thisname,namelen, &de))) {
iput (inode) ;
return NULL;
1
inr = de->inode;
idev = inode->i_dev;
brelse (bh) ;
iput (inode) ;
if (! (inode = iget (idev,inr)))
return NULL;
1

C provides “\0” as the end of the character string; thus, the function exits the loop
when it meets “\0” because the condition value of c=get_fs_byte (pathname++) is false.
This also means that the “/,” which is detected at last, is the last character in the string, and
the next “tty0” is the file name of the target, which is stored in the directory entry “tty0”
of directory file “dev.” Through the directory file “dev,” the process will find “tty0” finally,
and the i node of dev is named as the topmost i node.

After getting the topmost i node, there are two items of information being confirmed,
the address of the first character and the name length, which are used to be compared with

176

4. Creation and Execution of Process 2

the directory name in the Ramdisk. The way to get information about the directory name
is shown in the code below:

//code path:fs/namei.c:
static struct m inode * dir namei (const char * pathname,
int * namelen, const char ** name)

{
char c;
const char * basename;
struct m_inode * dir;
if (! (dir = get dir (pathname))) //execution function to
//get i node
return NULL;
basename = pathname;
while (c=get fs byte (pathname++))
//traverse the character string of/dev/tty0 and copy each one
//to ¢, until the end of string
i (e=="/")
basename=pathname;
*namelen = pathname-basename-1;//determine name length of tty0
*name = basename;//get address of first ‘t’ in ttyo0
return dir;
1

4.1.1.5 Acquire the i node of the ttyO File

In the second stage, the process of acquiring the i node of the target file is the same as that
of getting the topmost i node introduced before. First, the kernel loads the directory entry
of the target file “tty0” to the buffer by calling find_entry() and gets the i node. It then calls
iget() to get the i node of “tty0” in the ramdisk through the i node id and device id, and
then return this inode. The code is as follows:

//code path:fs/namei.c:

int open namei(const char * pathname, int flag, int mode,
struct m inode ** res inode)

{

const char * basename;

int inr,dev,namelen;

struct m_inode * dir, *inode;
struct buffer head * bh;
struct dir entry * de;

if ((flag & O _TRUNC) && ! (flag & O ACCMODE))

flag |= O_WRONLY;
mode &= 0777 & ~current->umask;
mode |= I_REGULAR;

4.1 Open the Terminal Device File and Copy the File Handle

177

4. Creation and Execution of Process 2

if ((S_ISDIR(inode->i mode) && (flag & O ACCMODE)) ||
Ipermission (inode, ACC_MODE (flag))) {
iput (inode) ;
return -EPERM;
}
inode->i atime = CURRENT_TIME;
if (flag & O_TRUNC)
truncate (inode) ;
*res inode = inode;//return this i node to sys_open
return 0;

Finding out the i node of the tty0 file is shown in Figure 4.6.

0x00000

- Teeeda.L,. ~ % load dev directory
open_namei [(I M i tletobuter

Kernel

Ox9FFFF OxFFFFF O0x3FFFFF Ox5FFFFF OxFFFFFF

..Kernel code area * Kernel.data area

1 node_table[32] Step 2:

tty0 directory item

The i node id of tty0

Step 1: find dev directory by i node of dev directory file

Process status

Process 0 Process 1
i Interruptible I Ready
T

Current process

Figure 4.6 Find the i node of tty0.

i e
interrupt

4.1 Open the Terminal Device File and Copy the File Handle

179

4.1.1.6 Determine tty0O as the Character Device File

In order to geti_mode, which is the property of the i node of the tty0 file, we will locate the
device file and get the id of the device through the i_zone[0] in the i node. The “current-
>tty” and “tty_table” will be set as well. The code is as follows:

//code path:fs/open.c:
int sys_open(const char * filename,int flag, int mode)

if ((i=open_namei (filename, flag, mode, &inode))<0) {
current->filp [£d] =NULL;
f->f count=0;
return 1i;
1
/* ttys are somewhat special (ttyxx major==4, tty major==5) */
if (S_ISCHR (inode->i mode))//examine the i node property of tty0
//and confirm it is the device file
if (MAJOR (inode->i zone[0])==4) {//device number is 4,
if (current->leader && current->tty<0)
current->tty = MINOR (inode->i_ zone[0]) ;
//set tty0 number as subset number of this i node
tty table[current->tty] .pgrp = current->pgrp;
//set parent process group number of current tty table
//as the parent process group number of this process

} else if (MAJOR (inode->i zone[0])==5)
if (current->tty<0) {
iput (inode) ;
current->filp [£d] =NULL;
f->f count=0;
return -EPERM;
}
/* Likewise with block-devices: check for floppy change */
if (S_ISBLK(inode->i mode))
check _disk change (inode->i_zone [0]) ;
f->f mode = inode->i_mode;
f->f flags flag;
f->f count = 1;
f->f inode = inode;
f->f pos = 0;
return (£4);

Analyzing the properties of the i node and relative settings is shown in Figure 4.7.

180 4. Creation and Execution of Process 2

0x00000 Ox9FFFF OxFFFFF Ox3FFFFF Ox5FFFFF

OXFFFFFF
Kernel ‘
v R o
and VGA J "nte““t
.-*"The page that

task struct of | task_struct of
process 1 _...’-.., process 1 resides

----- --...-...ltty_table[]
; i node_table[32] 1 o,
| sys_open ceent c

i_zone[0]

i_mode

Process status

-

Process 0 Process 1

i Interruptible I Ready

Li

Current process

Figure 4.7 Analyzing the tty i node of the current process.

4.1.1.7 Set file_table[0]

At last, sys_open() has to set file_table[0] in file_table[64] correspond to the filp[20] in pro-
cess 1. In this way, the system establishes the relationship between tty0 (standard input device
file) and process 1 by file_table[64]. The specific setup process is shown in the following codes:

//code path:fs/open.c:
int sys_open(const char * filename,int flag,int mode)

{
if ((i=open_namei (filename, flag, mode, &inode))<0) {
current->filp [£d] =NULL;
f->f count=0;
return 1i;
}
/* ttys are somewhat special (ttyxx major==4, tty major==5) */

if (S_ISCHR (inode->i_mode))
if (MAJOR (inode->i_ zone[0])==4) ({
if (current->leader && current->tty<0) ({

4.1 Open the Terminal Device File and Copy the File Handle 181

current->tty = MINOR (inode->i_zone[0]) ;
tty tablelcurrent->tty] .pgrp = current->pgrp;
}
} else if (MAJOR (inode->i_zone[0]) = =5)
if (current->tty<0) {
iput (inode) ;
current->filp[fd] = NULL;
f->f count = 0;
return -EPERM;
}
/* Likewise with block-devices: check for floppy change */
if (S_ISBLK(inode->i_mode))
check_disk change (inode->i_zone[0]) ;

f->f mode = inode->i mode; //set file attributes based on file i node
//attributes

f->f flags = flag; //set file ID according to parameter flag

f->f count = 1; //the file reference count is incremented

f->f inode = inode; //build relationship between file and
//i-node

f->f pos = 0; //set file write and read pointer as 0

return (£d);

Setting file_table[0] and then return fd is shown in Figure 4.8.

4.1.2 Open the Standard Output and Standard Error Output Device File

In Section 4.1.1, opening the standard input device file using the function open was intro-
duced. We will open the standard output and standard error output device file. The differ-
ence here is the method of copying the file handle.

After the function open() returns, process 1 copies the file handle twice according to
calling the function dup() based on the condition that the tty0 device file is opened.

The code of the first copy is as follows:

//code path:init/main.c:
void init (void)

{

int pid, i;

setup ((void *) &drive info) ;
(void) open(“/dev/tty0”,0 RDWR,O0) ;
(void) dup(0);//copy the handle to build the standard output device
(void) dup(0) ;
printf (“%d buffers =%d bytes buffer space\n\r”,NR BUFFERS,
NR_BUFFERS*BLOCK SIZE) ;
printf (“Free mem:%d bytes\n\r”,memory end-main memory start) ;
if (! (pid=fork())) {//below if is code of process 2
close (0) ;
if (open(“/etc/rc”,0 RDONLY,O0))

182 4. Creation and Execution of Process 2

_exit(1);
execve (“/bin/sh”,argv_rc,envp_rc) ;

_exit(2);
}
if (pid>0)
while (pid ! = wait(&i))

/* nothing */;

The function dup will eventually be mapped to the system calling function sys_dup()
(this mapping process is broadly consistent with the mapping process from the function
open to the function sys_open) and called the function dupfd() to copy the file handle.
The code is as follows:

0x00000 Ox9FFFF OXFFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF
Kernel
Enable
. 'mte(r\lt
.. | """" The page that task_struct of
l . l process 1 resides

e,
e,

Kernel code area Kerriel data area

f_mode
f flags

f count |¢&—— 1

mmmmmmmmmmmmemmaeemeam=%] f jnode

f pos — 0

Process status

Current process

i Process 0 Process 1 E
| i Interruptible I Ready E
i T i
! 1
i :

Figure 4.8 Set the file_table[64] and return fd.

4.1 Open the Terminal Device File and Copy the File Handle 183

//code path:fs/fcntl.c:

int sys dup (unsigned int fildes)//system call function in kernel
//corresponding to dup

{

}

return dupfd(fildes,0);//copy handle

After ensuring the copying conditions, we will find free item in the filp[20] of process
1 and then get the second item filp[1]. The system copies the pointer of the tty0 device
file stored in filp[0] to filp[1] and increases the reference number of the file f count in

file_table[0] to 2 in order to realize the effect that process 1 opens the standard output
device file ttyO0.

The code is as follows:

//code path:£fs/fcntl.c:
static int dupfd(unsigned int fd, unsigned int arg)

{
if (£d >= NR OPEN || !current->filp[fd])//Detect whether it has the
//conditions to copy the file handle

return -EBADF;

if (arg >= NR_OPEN)
return -EINVAL;

while (arg < NR_OPEN)
if (current->filplarg])//find free item in f£ilp[20] (it is the

//second item) of process 1 to copy

arg++;

else
break;

if (arg >= NR_OPEN)
return -EMFILE;

current->close on_exec &= ~(l<<arg);

(current->filplarg] = current->filp[fd])->f count++;
//copy file handle to build standard output device and set
//f_count as 2

return arg;

}

The situation that opens the standard output device file is shown in Figure 4.9.

When dup returns, process 1 calls it again to copy the file handle for the second time
and builds the standard error output device.

The code is as follows:

//code path:init/main.c:
void init (void)

{

int pid,i;

setup ((void *) &drive info) ;

184 4. Creation and Execution of Process 2

0x00000 Ox9FFFF OxFFFFF O0x3FFFFF Ox5FFFFF OxFFFFFF
Kernel ‘

o
RIS - R it
and VGA . "nteﬂ“ P

l' **"The page that task_struct of
task_struct of process 1 _,.*.., process1 resides

.-** Kernel code area " Kernel ilata area i

| |_T Duplicate file handle

file_table[64]

|| filp[20]

Current process

i Process 0 Process 1 i
i i Interruptible I Ready i
i :
s 1 i

Figure 4.9 Duplicate the filp[fd] and open std output device.

(void) open(“/dev/tty0”,0 RDWR,O0) ;
(void) dup(0);//copy handle to build the standard output device
(void) dup(0) ;//copy handle again to build the standard error
//output device

printf (“%$d buffers =%d bytes buffer space\n\r”,NR BUFFERS,

NR_BUFFERS*BLOCK SIZE) ;
printf (“Free mem:%d bytes\n\r”, memory end-main memory start) ;
if (!(pid=fork())) {//below if is code of process 2

close (0) ;

if (open(“/etc/rc”,0 RDONLY, 0))

_exit(1);
execve (“/bin/sh”,argv_rc,envp rc) ;
_exit(2);

if (pid>0)
while (pid !=wait (&i))
/* nothing */;

4.1 Open the Terminal Device File and Copy the File Handle 185

//code path:fs/fcntl.c:
static int dupfd(unsigned int fd, unsigned int arg)

{
if (£d »>= NR OPEN || !current->filp[fd])/Detect whether it has
//the conditions to copy the file handle
return -EBADF;
if (arg >= NR_OPEN)
return -EINVAL;
while (arg < NR_OPEN)
if (current->filplarg])//find free item in filp[20] (it is
//the third item) of process 1
//to copy
arg++;
else
break;
if (arg >= NR_OPEN)
return -EMFILE;
current->close on exec &= ~(l<<arg);
(current->filplarg] = current->filp[fd])->f count++;
//copy file handle to build standard output device and set
//f_count as 3
return arg;
1

//code path:init/main.c:
void init (void)

{
int pid,i;
setup ((void *) &drive info) ;
(void) open (“/dev/tty0”,0 RDWR,O0) ;
(void) dup (0) ;
(void) dup (0) ;
printf (“%d buffers =%d bytes buffer space\n\r”,NR BUFFERS,
NR_BUFFERS*BLOCK SIZE) ;
printf (“Free mem:%d bytes\n\r”,memory end-main memory start) ;
if (! (pid=fork())) {//process 1 creates process 2
close (0) ;
if (open(“/etc/rc”,0 RDONLY,0))
_exit(1);
execve (“/bin/sh”,argv_rc,envp_rc) ;
_exit(2);
1
if (pid>0)
while (pid ! = wait(&i))
/* nothing */;
1

186 4. Creation and Execution of Process 2

0x00000 Ox9FFFF OxFFFFF O0x3FFFFF Ox5FFFFF OxFFFFFF

Kernel ‘ ‘
Enable
I interrupt
""""""""" The page that task_struct
.. l task_struct of process 1 __..}.., 9f process 1 resides
Lot K‘ernel code are.a. : 'Kernel,ldata area i
......... file_tablef64] |

....................... L]
BN 111111 1 S R

Process status

Current process

E Process 0 Process 1 i
i i Interruptible I Ready i
i 1 i

Figure 4.10 Duplicate the filp[fd] and open std output device again.

Let us go back to the function dupfd() again. As the procedure shown before, the ker-
nel finds free item in the filp[20] of process 1. However, this time, it comes to the third item
filp[2]. The system copies the pointer of the tty0 device file stored in filp[0] to filp[2] and
increases the reference number of the file f_count in file_table[0] to 3 in order to realize
the effect that process 1 opens the standard output device file tty0.

The code is as follows:

The situation that opens the standard output device file is shown in Figure 4.10.

At this point, the terminal standard input device file, standard output device file, and
standard error output device file have been opened. It means that, in the program, the
function printf can be used later (stdio in stdio.h is standard input/output).

4.2 Fork Process 2 and Switch to Process 2
to Execute

Next, process 1 calls the function fork and creates process 2.

The code is as follows:
The process of mapping fork to sys_fork is similar to the procedure introduced in Section
3.1.1, that s, to call the function _find_empty_process to find free task item in task[64] for
process 2 and call the function copy_process to copy the process.

4.2 Fork Process 2 and Switch to Process 2 to Execute

187

The code is as follows:

//code path:kernel/system call.s:

.align 2
_sys_execve:
lea EIP(%esp),%eax
pushl%eax
call do execve
addl $4,%esp
EEIE
.align 2
_sys_fork:
call find empty process//find free item in task[64] for
//process 2 and set new process pid
testl%eax, $eax
js 1f
push%gs
pushl%esi
pushl%edi
pushl%ebp
pushl%eax
call copy process//copy process 2
addl $20, %esp
il g ret

_hd interrupt:
pushl%eax
pushl%ecx
pushl%edx
push%ds
push%es
push%fs
movl $0x10, %eax
mov%ax, $ds
mov%ax, $es
movl $0x17,%eax
mov%ax, $fs
movb $0x20, %al
outb%al, SOXA0 # EOI to interrupt controller #1
jmp 1f # give port chance to breathe

An instance of finding a new free item for process 2 in task[64] is shown in Figure 4.11.

In copy_process, the kernel applies a free page for task_struct, the kernel stack of
process 2, and copies task_struct. The task_struct of process 2 is specifically set, including
the settings of every register, management of memory page, shared files, GDT table item,
and so on. The process is similar to the process introduced in Section 3.1 where process 0
creates process 1.

188

4. Creation and Execution of Process 2

0x00000
Kernel

Process status

Ox9FFFF OxFFFFF O0x3FFFFF Ox5FFFFF OxFFFFFF

E“ab\e
interrupt

ROM BIOS
and VGA

.-**'Kernel code area” " Kernel data area

task[64] r:

The process slot applied for process 2

Current process

E Process 0 Process 1

i i Interruptible I Ready i
s 1 s
= ;

Figure 4.11 Process 1 begins to fork process 2.

The code is as follows:

//code path:kernel/system call.s:
int copy process (int nr,long ebp,long edi,long esi,long gs,long none,

long ebx,long ecx,long edx,
long fs,long es,long ds,
long eip,long cs,long eflags,long esp,long ss)

struct task struct *p;
int i;
struct file *f;

p = (struct task struct *) get free page();//apply page for
//process 2
if (!p)
return -EAGAIN;
task[nr] = p;//to ensure address pointer of task struct of

//process 2 is loaded into specified location in
//task

4.2 Fork Process 2 and Switch to Process 2 to Execute

189

*p = *current; /* NOTE! this doesn’t copy the supervisor stack
*/ //copy task_struct

p->state = TASK UNINTERRUPTIBLE;//set the process 2 as

//uninterruptible state

p->pid = last pid; //personalize setting of the process 2

p->father = current->pid;

p->counter = p->priority;

p->signal = 0;

p->alarm = 0;

p->leader = 0; /* process leadership doesn’t inherit */

p->utime = p->stime = 0;

p->cutime = p->cstime = 0;

p->start_time = jiffies;

p->tss.back_link = 0;

p->tss.esp0 = PAGE SIZE + (long) p;

p->tss.ss0 = 0x10;

p->tss.eip = eip;

p->tss.eflags = eflags;

p->tss.eax = 0;

p->tss.ecx = ecx;

p->tss.edx = edx;

p->tss.ebx = ebx;

p->tss.esp = esp;

p->tss.ebp = ebp;

p->tss.esi = esi;

p->tss.edi = edi;

p->tss.es = es & Oxffff;

p->tss.cs = cs & Oxffff;
p->tss.ss = ss & Oxffff;
p->tss.ds = ds & Oxffff;
p->tss.fs = fs & Oxffff;

p->tss.gs = gs & Oxffff;

p->tss.ldt = LDT(nr);

p->tss.trace _bitmap = 0x80000000;

if (last_task used math == current)
__asm__ (“clts ; fnsave%0”::”"m” (p->tss.i387));

if (copy mem(nr,p)) {//set up paging management of process 2
task[nr] = NULL;

free_page ((long) p);
return -EAGAIN;
1
for (i = 0; i<NR_OPEN;i++)//The following is that the process
//2 shares files of process 1
if (f=p->filpli])
f->f count++;
if (current->pwd)
current->pwd->i_ count++;
if (current->root)
current->root->i_ count++;
if (current->executable)
current->executable->i count++;
set_tss desc(gdt+ (nr<<1)+FIRST TSS ENTRY, & (p->tss));//set entry of
//process 2 in GDT table

190 4. Creation and Execution of Process 2

set_1dt_desc (gdt+ (nr<<1l)+FIRST_LDT ENTRY, &(p->1dt)) ;

p->state = TASK RUNNING; /* do this last, just in case */
//set process in ready state

return last pid;

The situation involving copy process and some specific settings is shown in Figure 4.12.

The situation involving copy page tables and setting page directory entry for process
2 is shown in Figure 4.13.

Figure 4.14 shows the situation concerning the adjusting process that process 2 shares
files with process 1.

After creating process 2, fork() returns and the return value is 2. Thus, the value of
I(pid = fork()) is false (introduced in Section 3.1.7) and the calling wait(). Its function is
as follows: if process 1 has a child process in the state of waiting for exit, prepare to exit
this process; if process 1 has a child process not in the state of waiting for exit, switch the
process; if the process has no child process, the function returns.

0x00000 Ox9FFFF OxFFFFF O0x3FFFFF Ox5FFFFF OxFFFFFF
Kernel
[¢ Ena\)\e
: = "(\teff“t
task_struct l " task_struct t
[| of process 2 ..e*" ten, of process 1 ,.e*"""*eu,

1 Step 2: copy the
j task_struct of
ot i process 1 to process 2
Task[64] | ;

N

Stepl: hook up

Step 3: update every management
member of new process

Current process

i Process 0 Process 1 Process 2 i
i i Interruptible I Ready I Uninterruptible i
| 1 ;

Figure 4.12 Copy task_struct of process 1 and adjust it for process 2.

4.2 Fork Process 2 and Switch to Process 2 to Execute

191

0x00000 Ox9FFFF OxFFFFF O0x3FFFFF Ox5FFFFF OxFFFFFF

Kernel
I ¢ Ena\)\e
.) - intexrupt

1

Current process

.., I Page directory The page table J The page table]

of process 2, .. of process 1 ...,

0.--"16 32 48 e, Q..-+159 1023 0,.-+159 1023

Set page directory item
copy

ProCess AU e
i Process 0 Process 1 Process 2 i
: i Interruptible I Ready I Uninterruptible i
| |

Figure 4.13 Copy the page table and set the page directory for process 2.

The code is as follows:

//code path:init/main.c:
void init (void)

{
int pid,i;
setup ((void *) &drive_ info) ;
(void) open(“/dev/tty0”,0 RDWR,O0) ;
(void) dup(0);
(void) dup (0);
printf (“%d buffers =%d bytes buffer space\n\r”,NR_BUFFERS,
NR_BUFFERS*BLOCK_SIZE) ;
printf (“Free mem:%d bytes\n\r”,memory end-main memory start);
if (! (pid = fork())) { //the following is code of process 2
close(0) ;
if (open(“/etc/rc”,0_RDONLY,0)
_exit (1) ;
execve (“/bin/sh”,argv_rc,envp_rc) ;
_exit(2);
}
if (pid>0)
while (pid !=wait (&i)) //process 1 waits for exit of child process,
//switch to process 2 finally.
/* nothing */;
}

192 4. Creation and Execution of Process 2

0x00000 Ox9FFFF OxFFFFF O0x3FFFFF Ox5FFFFF OxFFFFFF

Kernel
r E“dﬂe
.) - interrupt

l- " "The page that task_struct of
. task_struct of process 1 .., process1 resides

Lot Kernel code are.zi " *Kernel data area i

file_table [64J . | . Update some data of process 1
such as current directory

.

i

f mode R

/Rflags | ¢

+1 f_count

{inode

T

Current process

f pos
F_r_o_c_:(_ess status e
E Process 0 Process 1 Process 2 E
E i Interruptible I Ready I Ready E

Figure 4.14 Add the count of sharing file in file_table[64].

The function waiting is finally mapped to the system calling function sys_waitpid().
The mapping system is similar to that of the mapping fork() to sys_fork(). The function
sys_waitpid() first checks all the processes to find out which process is a child process of
process 1. Because process 1 creates a child process only, process 2 is chosen.

The code is as follows:

//code path:kernel/exit.c:

int sys waitpid(pid t pid,unsigned long * stat addr, int options) //wait ()
//corresponds to system call function sys waitpid ()

{

int flag, code;
struct task struct ** p;

verify area(stat_addr,4);

repeat:
flag = 0;
for(p = &LAST TASK ; p > &FIRST TASK ; --p) {
if (!*p || *p == current)

continue;

4.2 Fork Process 2 and Switch to Process 2 to Execute

193

if ((*p)->father != current->pid)
continue;

//select current process, namely the child process of process 1, now,
//it is process 2
if (pid>0) {

if ((*p)->pid != pid)

continue;

} else if (!pid) {

if ((*p)->pgrp != current->pgrp)

continue;
} else if (pid != -1) {
if ((*p)->pgrp != -pid)
continue;

}

switch ((*p)->state) {//judge state of process 2
case TASK STOPPED://if process 2 is in stopping state, handle here
if (! (options & WUNTRACED))
continue;
put_fs_long (0x7f,stat_addr) ;
return (*p)->pid;
case TASK ZOMBIE://if process is in zombie state, handle here

current->cutime += (*p)->utime;
current->cstime += (*p)->stime;
flag = (*p)->pid;

code = (*p)->exit_code;

release (*p) ;
put_fs_long(code,stat_addr) ;
return flag;
default://if process 2 is in ready state,handle here and set
//flag as 1 to jump out of hoop
flag=1;
continue;

An instance of searching for a child process of process 1 is shown in Figure 4.15.

Next, the system analyzes process 2 to make sure that process 2 is not prepare to exit,
thus setting flag bit as 1. This flag will lead to the process switching.

The code is as follows:

//code path:kernel/exit.c:
int sys waitpid(pid t pid,unsigned long * stat addr, int optiomns)
//wait () corresponds to system call function sys waitpid()

{
int flag, code;
struct task struct ** p;
verify area(stat_addr,4);
repeat:
flag=0;
for(p = &LAST TASK ; p > &FIRST TASK ; --p) {

if (!*p || *p == current)

194

4. Creation and Execution of Process 2

According to the status of process 2, we set the flag, as shown in Figure 4.16.

4.2 Fork Process 2 and Switch to Process 2 to Execute 195

0x00000 Ox9FFFF OxFFFFF O0x3FFFFF Ox5FFFFF

b 1 e
S et

Kernel

Kernel code area ' Kernel data area

l task([64]

OxFFFFFF

Search right child process and find process 2

Process status

Process 0 Process 1
T

i
|
i i Interruptible i Ready
; Current process

Figure 4.15 Find the child process of process 1.

0x00000 Ox9FFFF OxFFFFF O0x3FFFFF Ox5FFFFF

Kernel

The page that task_struct of [UPTTSPRELE L
process 1 resides

task_struct of process 1

Process status

Process 0 Process 1

i Interruptible H Ready

1

Current process

Figure 4.16 Adjust the status of process 2.

Process 2

I Ready i

OxFFFFFF

Er\ab\e
- mesrupt

vesseeset?
.

set flag to be 1

Process 2

I Ready

196

4. Creation and Execution of Process 2

Execute if (flag), first, the kernel sets the status of process 1 as interruptible, and then
call the schedule function to switch to process 2 because only process 2 is ready, the pro-
cess of schedule has been introduced in Section 3.2. The code is as follows:

//The code path:kernel/exit.c:
int sys waitpid(pid t pid,unsigned long * stat_addr, int optioms) {
switch ((*p)->state) {
case TASK STOPPED:
if (! (options & WUNTRACED))
continue;
put_fs_long (0x7f,stat_addr) ;
return (*p)->pid;
case TASK ZOMBIE:
current->cutime += (*p)->utime;
current->cstime += (*p)->stime;
flag = (*p)->pid;
code = (*p)->exit_code;
release (*p) ;
put_fs_long(code, stat_addr) ;
return flag;

default:
flag = 1;
continue;
}
if (flag) ({
if (options & WNOHANG)
return 0;

current->state=TASK INTERRUPTIBLE;//set the state of process 1 as
//interruptible, because there is no child process of process 1 prepare to exit.
schedule () ;//switch to process 2
if (! (current-s>signal &= ~(l<<(SIGCHLD-1))))
goto repeat;
else
return -EINTR;

}

return -ECHILD;

The procedure on how to switch to process 2 is shown in Figure 4.17.

0x00000 Ox9FFFF OxFFFFF 0x3FFFFF 0x5FFFFF OxFFFFFE

Figure 4.17 Switch to process 2.

4.2 Fork Process 2 and Switch to Process 2 to Execute

197

I 4.3 Load the Shell Program

4.3.1 Close the Standard Input File and Open the rc File

After switching to process 2 and because f (I(pid = fork())) is true, the system calls the close()
function to close the standard input file and replaces it by rc file. The code is as follows:

//The code path:init/main.c:
void init (void)

{
int pid, i;
setup ((void *) &drive_ info) ;
(void) open (“/dev/tty0”,0 RDWR,O0) ;
(void) dup(0) ;
(void) dup(0) ;
printf (“$d buffers =%d bytes buffer space\n\r”, NR_BUFFERS,
NR_BUFFERS*BLOCK_SIZE);
printf (“Free mem:%d bytes\n\r”, memory end-main_ memory start) ;
if (! (pid = fork())) {
close (0) ;//close standard input device file
if (open(“/etc/rc”,0 RDONLY,O0))//replace it by rc file
_exit (1) ;
execve (“/bin/sh”,argv_rc,envp_rc);//load shell program
_exit(2);
1
if (pid>0)
while (pid != wait(&i))
/* nothing */;
1

The close function will be mapped to sys_close function. Because process 2 has
received the management information of process 1, the content of the filp file of process 2
is the same as that of process 1; the first item of the filp file should be emptied and decrease
the reference number of the f_count in the file_table. Then, it calls the open function,
which will select the first item of the filp file to establish the relationship of process 2 and
the i node of the rc file, to make “rc” replace “tty0.”

The code of the close function is as follows:

//The code path:£fs/open.c:
int sys_close (unsigned int fd)//corresponding system call function of

//close ()
{
struct file * filp;
if (fd > = NR_OPEN)
return -EINVAL;
current->close on exec &= ~(l<<fd);

198

4. Creation and Execution of Process 2

if (! (filp = current->filp[fd]))//get the pointer of standard
//input device file of process 2

return -EINVAL;

current->filp[fd] = NULL;//release the relationship between

//this device file and process 2

if (filp->f count == 0)
panic(“Close: file count is 0”);

if (filp->f count)//decrease the reference count of this

//device file

return (0) ;

iput (filp->f inode) ;

return (0) ;

The view of closing tty0 file is shown in Figure 4.18.
The procedure of opening rc file is shown in Figure 4.19.

0x00000 Ox9FFFF OxFFFFF 0x3FFFFF Ox5FFFFF OxFFFFFF
Kernel

“**"the page that task_struct of
'. ;arsokc—esstsrlid of I J__. process 1 resides

.-*"'Kernel code area”* Kernel data area

| file_table[64] I | | || | |

*filp[20]

o
.
.o

S o S o

Remove the file-binding relationship of this handle

Process status

Current process

Process 0 Process 1 Process 2 E
1

i Interruptible i Interruptible I Ready i

i s

Figure 4.18 Prepare for open/etc/rc.

4.3 Load the Shell Program 199

After opening the rc file, process 2 will call execve to load the shell program. The code
is as follows:

//The code path:init/main.c:
void init (void)

{

int pid,i;

setup ((void *) &drive_info) ;
(void) open(“/dev/tty0”,0 RDWR,O) ;
(void) dup(0) ;

(void) dup(0) ;

printf (“%d buffers =%d bytes buffer space\n\r”, NR_BUFFERS,
NR_BUFFERS*BLOCK_SIZE) 8
printf (“Free mem:%d bytes\n\r”,memory end-main memory start) ;
if (! (pid = fork())) {
close(0) ;//close standard input device file
if (open(“/etc/rc”,0_RDONLY,0))//replace it by rc file
_exit(1);
execve (“/bin/sh”,argv_rc,envp_rc);//load shell program,
//“/bin/sh” is the path of shell file, argv_rc and envp_rc is the parameter and
//environment variables respectively

_exit(2);

}
if (pid>0)
while (pid ! = wait(&i))
/* nothing */;

It is worth mentioning that the arguments and environment variables have been pre-
pared in advance in the kernel code. The code is as follows:

//The code path:init/main.c:

static char * argv_rcl[] = {“/bin/sh", NULL};prepare parameters for
shell process

static char * envp rc[] = {“HOME =/", NULL, NULL};prepare environment
variables for shell process

The code of the execve function is as follows:

//The code path:kernel/system call.s:

.align 2

_sys_execve:/ //corresponding system call function of execve ()
lea EIP(%esp), %eax
pushl%eax //push the address of “eip value in the stack”
call do_execve //do_execve is the main function to

//support loading shell program

addl $4,%esp
ret

200

4. Creation and Execution of Process 2

0x00000 Ox9FFFF OxFFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF

Kernel

i node_table [32]J

f mode

f flags f——

1
]
I
i
I
i .
i .
i .
]
i
I
]
I
i

f count |je——o0

f_inode

f pos Je——

Process status

Process 0 Process 1 Process 2
i Interruptible H Interruptible I Ready
1T

Current process

Figure 4.19 Open/etc/rc.
4.3.2 Detect the Shell File

4.3.2.1 Detect the Attribute of the i node

The do_execve() function calls the namei() function to get the i node of the shell first, the
procedure of get inode is similar with the process of get inode in Section 4.1.1, and the
system checks the attribute of the i node to determine whether the shell program can be

loaded. The code is as follows:

int do_execve(unsigned long * eip,long tmp,char * filename,

char ** argv, char ** envp)
{
struct m_inode * inode;
struct buffer_head * bh;
struct exec ex;
unsigned long page [MAX ARG_PAGES] ;
int i,argc,envc;
int e_uid, e_gid;
int retval;
int sh bang = 0;

unsigned long p=PAGE_SIZE*MAX ARG _

PAGES-4;

4.3 Load the Shell Program

201

if ((oxffff & eip[l]) !=0x000f //checks whether the kernel calls
//do_execve () by checking privilege level
panic (“execve called from supervisor mode”);//if yes, the
//kernel will crash, obviously, it is not true in this case.
for (i=0 ; i<MAX ARG_PAGES ; i++)
pagel[il=0; //clear the page pointer management table, which
//used to parameter and environmental variables

if (! (inode = namei(filename)))//get the inode of shell program file
return -ENOENT;

argc = count (argv);//count the parameters

envc = count (envp);//count the environment variables

restart_interp:
if (!S_ISREG (inode->i mode)) { /* must be regular file */
retval = -EACCES;
goto exec_error2;

}
i = inode->i_mode;//check process 2 through checking uid and gid in inode
e

uid = (i & S_ISUID) ? inode->i _uid : current->euid;//whether has the
//authority to execute shell program
e _gid = (i & S_ISGID) ? inode->i_gid : current->egid;
if (current->euid == inode->i_uid)
i >>= 6; //adjust the permission bits in
//inode by analyzing the owner
//relationship between file and
//current process
else if (current->egid == inode->i_gid)
i >>= 3;
if (! (1 & 1) && //exit the loading work, if user has no

//permission to execute shell program
! ((inode->i mode & 0111) && suser())) {
retval = -ENOEXEC;
goto exec_error2;

The procedure on how to get the i node is shown in Figure 4.20.

The procedure on how to detect the i node is shown in Figure 4.21.

By detecting the attribute of the i node of the shell file, we know that process 2 can
execute the program in this context.

4.3.2.2 Test File Header’s Attributes

Through the information of the device id and block id provided by the i node, the system
will load the file header to the buffer and get its information. The code is as follows:

int do_execve(unsigned long * eip,long tmp,char * filename,
char ** argv, char ** envp)/*system call.s*/

{
if (! (i & 1) &&//If user don’t have permission to perform the
//program, the shell will exit the loading work
! ((inode->i_mode & 0111) && suser())) {
retval = -ENOEXEC;

goto exec_error2;

}

if (! (bh = bread(inode->i_dev,inode->i_zone[0]))) {

202

4. Creation and Execution of Process 2

//Through the i_nodes to make sure the device id and block
//id(i_zone[0]) of shell file and get the file header
retval = -EACCES;
goto exec_error2;
}

ex = *((struct exec *) bh->b data);//Get the information of file header //

from buffer block

if ((bh->b_data[0] == ‘#’) && (bh->b data[l] == ‘!’) && (!sh_bang))
brelse (bh) ;
if (N_MAGIC(ex) != ZMAGIC || ex.a_trsize || ex.a drsize ||

ex.a_text+ex.a_data+ex.a_bss>0x3000000 ||

inode->i_size < ex.a_text+ex.a data+ex.a_ syms+N_TXTOFF (ex)) {

retval = -ENOEXEC;
goto exec_error2;
}
if (N_TXTOFF (ex) != BLOCK SIZE) {
printk (“%s: N_TXTOFF != BLOCK SIZE. See a.out.h.”, filename);
retval = -ENOEXEC;
goto exec_error2;
}

if (!sh_bang) {
p = copy_ strings(envc,envp,page,p,0);
p = copy strings(argc,argv,page,p,0);

if (ip) {
retval = -ENOMEM;
goto exec_error2;
}
}
}
0x00000 Ox9FFFF OxFFFFF O0x3FFFFF Ox5FFFFF OXFFFFFF
Kernel

ROM BIOS
and VGA

..* Kernel code area’ Kernel ilata area

i node_table[BZ]J".
Buffer block

Getinode
Process status

Process 0 Process 1 Process 2
i Interruptible i Interruptible I Ready
1

Current process

Figure 4.20 Get the i node of shell.

4.3 Load the Shell Program

203

0x00000 Ox9FFFF OxFFFFF O0x3FFFFF Ox5FFFFF OxFFFFFF

Kernel J ‘
/ .
% 8 5]

..+* Kernel code area’’ Kerne] data area

i node_table[BZ]J".

Process status

Current process

Process 0 Process 1 Process 2 i
i Interruptible i Interruptible I Ready i
' s

Figure 4.21 Detect the i node of shell.

The procedure of obtaining the file header is shown in Figures 4.22 and 4.23.
The system will check the information of the file header to confirm the content of the
shell file and judge whether it is fit for the rule of loading. The code is as follows:

int do_execve(unsigned long * eip,long tmp,char * filename,
char ** argv, char ** envp)/*system call.s*/

{
if (! (i & 1) &&//If user don’t have permission to perform the
//program,the shell will exit the loading work
! ((inode->i mode & 0111) && suser())) {
retval = -ENOEXEC;

goto exec_error2;

if (!(bh = bread(inode->i_ dev,inode->i_ zone[0]))) {
//Through the i nodes to make sure the device id and block
//id(i_zone[0]) of shell file and get the file header

retval = -EACCES;

goto exec_error2;
}
ex = *((struct exec *) bh->b data);//Get the information of file header

//from buffer block

if ((bh->b datal0] == ‘#’) && (bh->b data[l] = = ‘!’) && (!sh bang)) {
//Test file header, learned that shell file is not script file,so the
//contents of if don’t execute

brelse (bh) ;

204 4. Creation and Execution of Process 2

if (N_MAGIC(ex) ! = ZMAGIC || ex.a trsize || ex.a drsize ||
ex.a_ text+ex.a data+ex.a_bss>0x3000000 ||
inode->i size < ex.a_ text+ex.a data+ex.a syms+N TXTOFF (ex)) {

//Test the information of file header to make sure the content of shell
//file and judge it whether fit for the rule of loading

retval = -ENOEXEC;

goto exec_error2;

}
if (N_TXTOFF (ex) ! = BLOCK SIZE) {
//If the file header size is not equal to 1024, the program might not
//be executed
printk (“%$s: N_TXTOFF ! = BLOCK SIZE. See a.out.h.”, filename);
retval = -ENOEXEC;

goto exec_error2;

if (!sh bang) {
p = copy_ strings (envc,envp,page,p,0) ;
p = copy strings (argc,argv,page,p,0) ;

if (i1p) {
retval = -ENOMEM;

goto exec_error2;

Figure 4.23 shows an incidence of testing the file header.
After checking the header attributes of the shell file, we find that the program in the

shell file is ready to run.
OXFFFFFF

0x00000 Ox9FFFF OxFFFFF 0x3FFFFF O0x5FFFFF

Kernel

erctcectcrrttetscnnnn ity
cessesseseset

Read the shell file header into buffer

Process status

Current process

Process 0 Process 1 Process 2 i
i Interruptible H Interruptible I Ready i
i s

Figure 4.22 Read the shell file header into the buffer.

205

4.3 Load the Shell Program

0x00000 Ox9FFFF OxFFFFF O0x3FFFFF Ox5FFFFF OxFFFFFF

Kernel
E“ab\e
interrupt
I TEL A .
] cese®
B o **""The page that task_struct of
..., process2 resides
task_struct of process 2 .0t
._..' -...' a_magic q ‘_-.
o a_text o
Buffer block 0
a_data
a_bss
a_syms
Get the header of shell file a_entry
a_trsize
a_drsize |+

Process status

Current process

Process 0 Process 1 Process 2 i
i Interruptible i Interruptible I Ready i
i s

Figure 4.23 Test whether the file is a script file by analyzing the file header.
4.3.3 Prepare to Execute the Shell Program

4.3.3.1 Load Parameters and Environment Variables

The system sets the management point table page of parameters and environment vari-
ables, counts the numbers of parameters and environment variables, and copies and maps
them to the stack of process 2 eventually.

The code is as follows:

int do_execve(unsigned long * eip,long tmp,char * filename,
char ** argv, char ** envp)/*system call.s*/
{

struct m_inode * inode;

struct buffer_head * bh;

struct exec ex;

unsigned long page [MAX ARG_PAGES] ;

int i,argc,envc;

int e_uid, e_gid;

int retval;

int sh _bang = 0;

unsigned long p=PAGE_SIZE*MAX ARG PAGES-4;//Set the parameters and
//environment variables in the process of initial migration space pointer.

206 4. Creation and Execution of Process 2

for (i=0 ; i<MAX ARG PAGES ; i++) /* clear page-table */
page[i]l=0;//Set the management point table page of parameters and
//environment variables to 0

argc = count (argv);//statistical the numbers of parameters
envc = count (envp);//statistical the numbers of environment variables

if (!sh bang) {

p = copy_ strings (envc,envp,page,p,0);//Copy environment

//variables to process space
p = copy_strings(argc,argv,page,p,0);//Copy parameters to
//process space

if (!p) {
retval = -ENOMEM;
goto exec_error2;
}
}
p = (unsigned long) create_tables((char *)p,argc,envc);

//Create the management point table of parameters and environment
//variables in new stack space of process

Examples of loading parameters and environment are shown in Figures 4.25 through 4.28.

0x00000 Ox9FFFF OxFFFFF Ox3FFFFF Ox5FFFFF
Kernel

OxFFFFFF

. l .. Drocess 2 resides

task_struct of process 2 .

a_magic

a_text
a_data

a_bss q
a_syms

a_entry

a_trsize

a_drsize

Process status

Process 0 Process 1 Process 2

i i Interruptible i Interruptible I Ready
i

1

Current process

Figure 4.24 Continue to analyze the file header.

4.3 Load the Shell Program 207

0x00000 Ox9FFFF OxFFFFF O0x3FFFFF Ox5FFFFF OxFFFFFF

‘mterr\l pt

Kernel

'Ihe page that task_struct of

process 2 resides

Current process

'page[32]
Read the directory dataof L ..eccctt""
sh file into buffer IIIIIIIIIIIII
Set all of them to be 0

Process status
5 i
i Process 0 Process 1 Process 2 ;
i i Interruptible i Interruptible I Ready :
? :
| T |
1 1
= |

Figure 4.25 Set the parameter and environment variables to 0.

0x00000 Ox9FFFF OxFFFFF O0x3FFFFF Ox5FFFFF OxFFFFFF

Kernel

..** Kernel code area **

*argv_rc|] Eq

- interrupt

Kernel data area

*envp_rc|] El q

Count the number of parameters and environment variables

Process status

Process 0

i Interruptible

Process 1 Process 2
i Interruptible I Ready
T

Current process

Figure 4.26 Count the number of parameters and environment variables.

208

4. Creation and Execution of Process 2

0x00000 Ox9FFFF OxFFFFF O0x3FFFFF Ox5FFFFF OxFFFFFF

Kernel
Enab\e
-J 'mteﬂ“t

. Apply for a free page)
.+* " Kernel code area "Kerne] data area in memory

. -
e e

*argv_rc|] = q *envp_rc|] 5 q

Copy parameters and environment variables

Process status
Process 0 Process 1 Process 2
i Interruptible wait state i Interruptible wait state I Ready

Ll

Current process

Figure 4.27 Copy the parameters and environment variables.

0x00000 Ox9FFFF OxFFFFF O0x3FFFFF Ox5FFFFF OxFFFFFF

Kernel
E“ab\e
T et

soeo®
sesveeect
.o

The page of parameters j]
and environment
‘|‘ Set the pointer table of parameters

and environment variables
Process status

Current process

Process 0 Process 1 Process 2 i
H Interruptible H Interruptible I Ready i
‘ :

Figure 4.28 Set the information of the segment.

4.3 Load the Shell Program 209

4.3.3.2 Adjust the Management Structure of Process 2

Process 2 has its corresponding shell program; thus, it will adjust its task_struct. For exam-

ple, it will remove relations with its shared files and memory page with parent process, mea-

sure ldt, set code segment, date segment, and stack segment according to the shell program.
The code is as follows:

//code path:fs/exec.c:
int do_execve (unsigned long * eip,long tmp,char * filename,
char ** argv, char ** envp)

(!sh bang) {
p = copy strings(envc,envp,page,p,0) ;
p = copy_strings(argc,argv,page,p,0) ;
if (1p) {

retval = -ENOMEM;

goto exec_error2;

/* OK, This is the point of no return */
if (current-s>executable)//Test the process whether has its corresponding
//executable program
iput (current-s>executable) ;
current->executable = inode;//Set executable program use the i nodes of
//shell program file

for (i=0 ; 1<32 ; i++)

current->sigaction[i] .sa_handler = NULL;//Clear the signal management

//structure of process 2 to NULL

for (i=0 ; i<NR_OPEN ; i++)

if ((current->close on_ exec>>1) &l)

sys_close(i);//close all files which is labeled by
//close_on_exec

current->close_on exec = 0;//Clear the close_on exec to 0
free_page_tables (get_base (current->1dt[1]),get_limit (0x0f)) ;
free page tables(get_base (current->1dt [2]),get_ limit (0x17)) ;
//Remove the page relation between process 1 and process 2
if (last_task_used math == current)

last_task_used math = NULL;
current->used math = 0;//Clear the sign of math coprocessor in process 2 to 0
p += change_ldt (ex.a_text,page) -MAX ARG _PAGES*PAGE_SIZE;//Reset the LDT (local

//descriptor table) in
//process 2

p = (unsigned long) create_tables((char *)p,argc,envc);
current->brk = ex.a_bss +
(current->end data = ex.a_data +

(current->end_code = ex.a_text));
current->start_stack = p & Oxfff£ff000;
current->euid = e_uid;
current->egid = e _gid;
i = ex.a_text+ex.a_data;
while (i&Oxfff)
put_fs_byte (0, (char *) (i++));
//Set end_code, end _data, brk, start_stack, ID euid and ID egid. Finally, clear
//a page data of BSS segment in main memory to 0

eip[0] = ex.a_entry; /* eip, magic happens :-) */
eip[3] = p; /* stack pointer */
return 0;

The procedure of adjusting the task_struct of process 2 is shown in Figures 4.29
through 4.33.

210 4. Creation and Execution of Process 2

0x00000 Ox9FFFF OxFFFFF O0x3FFFFF Ox5FFFFF OxFFFFFF

Kernel
]injﬁ)\e

l **"""The page that task_struct of
task_struct of process 2 ..+"-.. , process 2 resides

I Adjust executable field

Process status

Current process

Process 0 Process 1 Process 2 i
i Interruptible i Interruptible I Ready i
i s

Figure 4.29 Adust the task_struct of Process 2.

0x00000 Ox9FFFF OxFFFFF 0x3FFFFF O0x5FFFFF OxFFFFFF

Kernel
Exﬁﬁﬂe
- interry pt

.

e

R
PR

l " "The page that task_struct of
task_struct of process 2 ,..<"-.. Process 2 resides

IAdjust close_on_exec field

Sigaction[32]

NULL NULL

Process status

Process 0 Process 1 Process 2
1T

i
i i Interruptible i Interruptible I Ready
i Current process

Figure 4.30 Clear the sigaction[32] and filp according to close_on_exec.

4.3 Load the Shell Program 211

0x00000 Ox9FFFF OxFFFFF O0x3FFFFF Ox5FFFFF OxFFFFFF

Kernel ‘
_-J

>;< el J Page directory g?gr%acgeiste;ble |_ ><

X IHI IIH |||||

>i< Set page dlrectory item

Current process

Process 0 Process 1 Process 2 i
i Interruptible i Interruptible I Ready E
' s

Figure 4.31 Free the pages of code segment and data segment.

4.3.3.3 Adjust EIP and ESP to Execute Shell

The system will set the value in the stack which was pushed by the sys_execve soft inter-
rupt, and set the EIP with the entry address value of the shell program, and set the ESP
with the new top stack address value of process 2. The code is as follows:

//code path:fs/exec.c:
int do_execve (unsigned long * eip,long tmp,char * filename,
char ** argv, char ** envp)

{

eip[0] = ex.a_entry;//Set the entry EIP of process 2

eip[3] = p; //Set the top stack pointer ESP of process 2
return 0;

}

After executing the do_execve() function, sys_execve() will return and continue to
execute the shell program, the view of adjusting EIP and ESP was shown in Figure 4.34.

212 4. Creation and Execution of Process 2

0x00000 Ox9FFFF OXFFFFF ~ Ox3FFFFF Ox5FFFFF OxFFFFFF

Kernel
ab\e
S—

task struct of l **The page that task_struct of
process 2 ... tee. process 2 resides

e,

LDT

Code segment LDT[1]
Data segment LDT[2]

0 128 MB 192 MB 4 GB-1

b i Linear address space

ode segment
limit
[

Data segment limit
Process status

Process 0 Process 1 Process 2
i Interruptible i Interruptible I Ready
T

Current process

Figure 4.32 Adjust the base of CS and DS.

0x00000 Ox9FFFF OxFFFFF Ox3FFFFF
Kernel

OxFFFFFF

E“ab\e
e AR

O0x5FFFFF

l """ The page that task_struct of
task_struct of process 2..:"-., Process 2 resides

T

Adjust the information in
the task_struct of process 2

Process status

Process 0 Process 1 Process 2
i Interruptible H Interruptible I Ready
T

Current process

Figure 4.33 Adjust the task_struct of process 2 according to the parameters and environment
variables.

4.3 Load the Shell Program 213

0x00000 Ox9FFFF OxFFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF
Kernel ‘

SavGs” J s _-J et
and VGA) : '“\teftu %

The page that parameters ,.»***" e
and environment
variables locate

Adjust ESP pointer

0 128 MB 192 MB 4 GB-1

Linear address space

T

Current process

Adjust EIP pointer
Process status
i Process 0 Process 1 Process 2 i
i i Interruptible H Interruptible I Ready i

Figure 4.34 Adjust EIP and ESP.
4.34 Execute the Shell Program
4.34.1 Execute the First Page Program Loading by the Shell

The shell program starts to execute, while its linear address space corresponding program
contents are not loading. Thus, do not exit the corresponding page. Then, produce a “page
fault” interrupt. The interrupt will distribute the page by calling the “page fault” handler
program and loading a page of the shell program.

The code is as follows:

//code path:mm/page.s:
_page fault://page fault handler program entrance
xchgl%eax, (%esp)
pushl%ecx
pushl%edx
push%ds
push%es
push%fs
movl $0x10, %edx
mov%dx, $ds
mov%dx, $es
mov%dx, $fs
movl%cr2, $edx

214 4. Creation and Execution of Process 2

pushl%edx

pushl%eax

testl $1, %eax

jne 1f

call do no page..//Call the do no page handler program

Figure 4.35 shows how to produce a page fault.

The do_no_page() function starts to execute to identify the reason for the missing
page; if it is the need to load program, it will try to share shell with other processes (obvi-
ously, there is no process loads shell, thus, cannot share with other process, then) apply for
a new page, and read the 4 KB content of the shell program from the ramdisk by calling
the bread_page() function and load the memory page. The code is as follows:

//code path:mm/memory.c:
void do_no_page (unsigned long error_ code,unsigned long address)
{
.int nr(4];
unsigned long tmp;
unsigned long page;
int block, i;
address &= Oxfffff000;
tmp = address - current->start_code;
if (!current-s>executable || tmp > = current->end data) {//If it is not
//loading program, it must be other reason result in page fault
get_empty page (address); //If there is no space for push in the stack, apply the
//page and then return directly
return;
}//Obviously, this is not the case now, really need to load the program
if (share_page(tmp)) //Try to share the program with other process,but
//it’s impossible
return;
if (! (page = get_ free page()))//Apply a new page for shell program
oom() ;
/* remember that 1 block is used for header */
block = 1 + tmp/BLOCK SIZE;
for (i=0 ; i<4 ; block++,i++)
nr(i] = bmap (current-sexecutable,block) ;
bread_page (page, current ->executable->i_dev,nr);//Read 4 logical block
//content of shell
//program into memory page
//After adding a page memory, the part of this page memory may outstrip
//the end_data position of process
//The following is handling the beyond part of physical page
i = tmp + 4096 - current->end data;
tmp = page + 4096;
while (i-- > 0) {
tmp--
*(char *)tmp = 0;
}
if (put_page (page,address)
return;
free_page (page) ;
oom() ;

Figure 4.36 shows an application of the free page.
Figure 4.37 shows an instance of loading the shell program.
Figure 4.38 shows how the loading content is tested.

4.3 Load the Shell Program

215

0x00000 Ox9FFFF OxFFFFF 0x3FFFFF O0x5FFFFF OXFFFFFF
Kernel

.-**"Kernel code area * Kernel data area

do_no_page -

]‘ Page fault interrupt happens,
then page fault handling function starts to run
Process status

Process 0 Process 1 Process 2
1T

E i Interruptible H Interruptible I Ready
i Current process

Figure 4.35 Page fault interrupt happens.

0x00000 Ox9FFFF OxFFFFF O0x3FFFFF Ox5FFFFF OxFFFFFF

Kernel
E“a\)\e
-l 'mteﬂ"‘t

Apply for a free
page in memory

Process status

Process 0 Process 1 Process 2
i Interruptible H Interruptible I Ready
1T

Current process

Figure 4.36 Get the free page.

216 4. Creation and Execution of Process 2

0x00000 Ox9FFFF OxFFFFF O0x3FFFFF Ox5FFFFF OxFFFFFF

Kernel
Enab\e
-I interrupt

Load part of shell program

L}

Current process

to the page applied .
Process status
i Process 0 Process 1 Process 2 i
E i Interruptible H Interruptible I Ready i
i i

Figure 4.37 Load the shell program.

0x00000 Ox9FFFF OxFFFFF 0x3FFFFF O0x5FFFFF OxFFFFFF

Kernel
Enab\e
) R

Do not need to clear according to the detection result
Process status

Process 0 Process 1 Process 2
i Interruptible wait state i Interruptible wait state I Ready

T

Current process

Figure 4.38 Adjust the memory according to the task_struct of process 2.

4.3 Load the Shell Program 217

4.3.4.2 Map the Physical Address and Linear Address of the Loading Page

After loading a page shell program, the kernel will map the content of this page to the
linear address space of the shell process and create the mapping management relation in
the page directory table, page table, and page. The code is as follows:

//code path:mm/memory.c:
void do_no_page (unsigned long error_code,unsigned long address)

Mapping of these addresses is shown in Figure 4.39.

0x00000 Ox9FFFF OxFFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF

Kernel
Enab\e
) -l eterrupt

The new page table[The page that part.

Set page directory item of process2 _,.-: &fasél:él rfélsrilg(t;:n l-
0..-+159 1023 _____ T e

Mappmg linear address and physu:al address
0 128 MB ¢ 192 MB 4GB-1

Linear address space

Process status

Current process

Process 0 Process 1 Process 2 !
' :

: i Interruptible i Interruptible I Ready

Figure 4.39 Mapping the linear address and physical address.

218 4. Creation and Execution of Process 2

//code path:mm/memory.c:
unsigned long put_page (unsigned long page,unsigned long address)

{

unsigned long tmp, *page_table;
/* NOTE !!! This uses the fact that pg dir = 0 */

if (page < LOW_MEM || page >= HIGH MEMORY)
printk (“Trying to put page %$p at $p\n”, page,address) ;

if (mem map[(page-LOW_MEM)>>12] ! = 1)
printk (“mem map disagrees with %p at %p\n”, page,address) ;
page_table = (unsigned long *) ((address>>20) & oxffc) ; //compute the

//corresponding entry of page directory table in address
if ((*page_table)&l)//If the page directory entry has its corresponding
//page table, then get the address of page table
page_table=(unsigned long *) (0xfffff000 & *page_table) ;
else {//If hasn’'t page table, apply a page for page table
if (! (tmp = get_free page()))//The applying page is used to bear the
//page information

return 0;
*page table = tmp|7;
page_table = (unsigned long *) tmp;
}
page_table[(address>>12) & 0x3ff] = page | 7;//Create the relation

//between page and page
//table, finally achieve
//mapping
/* no need for invalidate */
return page;
}

I 44 The System Gets to the ldle State

44.1 Create the Update Process

During the execution of shell, it would read the information on the standard input file,
that is, the file information of the first item in filp[20] in the task_struct. We have intro-
duced it in Section 4.3.1. At the start of the shell process, it replaces the standard device
file tty0 by the rc file. Hence, the shell program is reading the information from the rc file.
The specific reading process is shown in Figure 4.40.
Shell reads the commands from the “/etc/rc” script file, which mainly includes the
following two commands:

According to the command/etc/update, shell first creates a new process. The new pro-
cess pid is 3 (the shell process pid is 2; thus, the new process pid is 3). The item in task[64]
is also 3; we call it the “process update.” Then, it loads the update program, and subse-
quently suspends itself to switch to the process update. The process of creating, loading,

4.4 The System Gets to the Idle State

219

0x00000 Ox9FFFF OxFFFFF O0x3FFFFF Ox5FFFFF OxFFFFFF

Kernel ‘
' J e
: : :

g

Load/etc/rc to buffer block

Process status

i i Interruptible i Interruptible I Ready
E Current process

Process 0 Process 1 Process 2(shell) E
i s

Figure 4.40 Load the “/etc/rc” file into the buffer.

and switching is the same as that when process 1 creates process 2 and switches to process
2, as introduced in Section 4.2.

It is shown in Figure 4.41.

The process update has a very important task: synchronizing the data in the buffer
to the peripherals (floppy disk, hard disk, etc.). As the speed of host and peripheral data
exchange is much lower than the speed of data exchange in the host, when the kernel needs
to write data to the peripherals, it writes the data to the buffer first in order to improve the
efficiency and then synchronizes the data to the peripherals from the buffer accordingly.

From time to time, the update process would be woken up, to synchronize the data to
the peripherals. Later, the process will suspend and it will wait for the next waking up and
continue to execute again and again.

After switching to the update process, there will no synchronization tasks. The pro-
cess suspends and switches to the shell process to continue.

The procedure is shown in Figure 4.42.

4.4.2 Switch to the Shell Process

As introduced in Section 4.4.1, the shell process has executed the first command in the rc
file and created the process update. It will now execute the second command echo “/dev/
hd1/” >/etc/mtab and write string “/dev/hd1/” to the “/etc/mtab” file in the Ramdisk. After

220

4. Creation and Execution of Process 2

0x00000 Ox9FFFF OxFFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF

Kernel J
h-m

. I(ernel code area ‘ Kernel data area:

S The page that update function locates

Task[64] l Analyze instruction

..
R R R R L

The position of update process

Process status

Process 0 Process 1 Process 2(shell) Process (update)
i Interruptible i Interruptible I Ready I Ready
T

Current process

Figure 4.41 The status of the update process.

0x00000 Ox9FFFF OxFFFFF O0x3FFFFF Ox5FFFFF OxFFFFFF

Kernel
Y

Process status

Process 0 Process 1 Process 2(shell) Process (update)
i Interruptible H Interruptible I Ready Interruptible
T

Current process Suspend

Figure 4.42 Changes in process state.

4.4 The System Gets to the Idle State 221

that, the shell program will continue to read the rc file. The read() function corresponds to
the system call sys_read(). The code is as follows:

//The code path:fs/read write.c:
int sys_read(unsigned int fd,char * buf,int count)

{

if (inode->i pipe)//read the pipe file
return (file->f mode&l)?read_pipe (inode, buf, count) : -EIO;
if (S_ISCHR(inode->i _mode))//read the character device file
return rw_char (READ, inode->i_zone [0] ,buf, count, &file->f pos) ;
if (S_ISBLK(inode->i_mode))//read the block device file
return block read(inode->i_zone[0],&file->f pos,buf, count) ;
if (S_ISDIR(inode->i_mode) || S_ISREG(inode->i_mode)) {//read the
//common file
if (count+file->f pos > inode->i_size)
count=inode->i_size - file->f pos;
if (count<=0)
return 0;
return file_read(inode, file,buf,count) ;
}
printk (“ (Read) inode->i_mode =%060\n\r”,inode->i_mode) ;
return -EINVAL;

As the “/etc/rc” file is a common file, its return value should be -ERROR accordingly (the
specific steps of reading a file will be introduced in Chapter 5). This return value will result in
the exiting of the shell process, and the corresponding system call function is sys_exit(). The
code is as follows:

//The code path:kernel/exit.c:
int sys exit (int error code)

{
}

return do exit ((error code&0xff)<<8) ;

After entering the function do_exit(), it starts to prepare for the exit of the shell pro-
cess. The code is as follows:
The process of releasing the pages is shown in Figure 4.43.

//The code path:kernel/exit.c:
int do_exit (long code)

{

int i;

free page_tables (get_base (current->1dt[1]),get_limit (0x0f)) ;
free page_tables (get_base (current->1dt[2]),get_limit (0x17));//free the pages
//that the code segment and data segment occupied of process shell
for (i=0 ; i<NR TASKS ; i++)//detect whether the process shell has a child
//process
if (task[i] && task[i]->father = = current->pid) ({

222

4. Creation and Execution of Process 2

task[i] ->father = 1;//before the exit of process shell, set the father
//process of process update to process 1
if (task[i]->state = = TASK ZOMBIE)//if the child process is in the
//zombie state, then send termination signal
/* assumption task[l] is always init */
(void) send_sig(SIGCHLD, task[1], 1);

for (1 = 0 ; i<NR OPEN ; i++)//the following is remove the relationship of
//process shell with other process, files,
//terminals, etc.
if (current->filp[i])
sys_close(i) ;
iput (current->pwd) ;
current->pwd = NULL;
iput (current->root) ;
current->root = NULL;
iput (current->executable) ;
current->executable = NULL;
if (current->leader && current->tty >=0
tty table[current->tty] .pgrp=0;
if (last_task_used math==current)
last_task_used math = NULL;
if (current-s>leader)
kill session() ;
current->state = TASK ZOMBIE;//set the current process to zombie state
current->exit_code = code;
tell father (current->father);//send signal to process 1, tell it the
//process shell will exit
schedule () ; //switch the process
return (-1); /* just to suppress warnings */

The relationship of the shell process and other processes, files, terminals, and so on, as
well as sending signal to the father process, is shown in Figure 4.44.

0x00000 Ox9FFFF OxFFFFF 0x3FFFFF Ox5FFFFF OxFFFFFF

ROM BIOS
and VGA

Release the page and page table
occupied by shell process
Process status

Process 0 Process 1 Process 2(shell) Process (update)
i Interruptible i Interruptible I Ready I Interruptible
1T

Current process

Figure 4.43 Free the page and page table owned by the shell process.

4.4 The System Gets to the Idle State 223

0x00000 Ox9FFFF OxFFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF

Kernel
b-m

The page that,eeeeersss" "'
l. .o tasl(_StI’llCt of
.. shell process resides

task_struct of

shell process __,.«* * " The page that task_struct of

task_struct of I .
..1.. process 1 resides

process1 ..

t Set the file-related field el +

Signal bitmap |
I Send the signal of
"child processes exit" to process 1
Process status
Process 0 Process 1 Process 2(shell) ~ Process (update)
i Interruptible i Interruptible I Zombie I Interruptible

Current process

Figure 4.44 Treatment after the shell process exits.

The execution of the function tell_father and schedule is worth noting. In the func-
tion tell_father, it will send the SIGCHLD signal to process 1 to notify it that a child pro-
cess will exit. The code is as follows:

//The code path:kernel/exit.c:

static void tell_father(int pid)//notify the father process that the child
//process will exit

{

int i;
if (pid)

for (i=0;i<NR_TASKS;i++) {
if (!task[i]l)

continue;
if (task[i]->pid ! = pid)
continue;
task([i] ->signal | = (1<<(SIGCHLD-1)) ;//send SIGCHLD

//signal to the
//father process
return;

/* if we don’t find any fathers, we just release ourselves */
/* This is not really OK. Must change it to make father 1 */
printk (“BAD BAD - no father found\n\r”);
release (current) ;

224

4. Creation and Execution of Process 2

After the function tell_father(), the system will call the function schedule() to prepare
to switch the process; the detection of the signal affects the process switch. The code is as
follows:

//The code path:kernel/sched.c:
void schedule (void)

int i,next,c;
struct task_struct ** p;

/* check alarm, wake up any interruptible tasks that have got a signal */

for(p = &LAST TASK ; p > &FIRST TASK ; --p)//traverse all
//processes
if (*p) {
if ((*p)->alarm && (*p)->alarm < jiffies) {
(*p) ->signal | = (1<<(SIGALRM-1));

(*p) ->alarm = 0;
}
if (((*p)->signal & ~(_BLOCKABLE & (*p)->blocked)) &&
(*p)—>state==TASK_INTERRUPTIBLE)//the process 1 has
//received the signal and
//its state is interruptible
(*p) ->state=TASK_RUNNING;//set the process 1 to
//ready state

}

/* this is the scheduler proper: */

while (1) {
c© = =lp
next = 0;
i = NR_TASKS;
p = &task[NR_TASKS];

while (-- i) {
if (1*-- p)
continue;
if ((*p)->state==TASK RUNNING && (*p)->counter > c)
¢ = (*p)->counter, next = i;//find that only
//process 1 is in the
//ready state
1
if (c¢) break;
for(p = &LAST TASK ; p > &FIRST TASK ;--)
if (*p)
(*p) ->counter = ((*p)->counter >> 1) +

(*p) ->priority;
1

switch to(next);//decide to switch to the process 1

As introduced in Section 4.2, when executing the function sys_waitpid(), process 1
calls schedule() and switches to process 2. When it switches to process 1, it will continue

4.4 The System Gets to the Idle State 225

to follow the schedule() and eventually return to the function sys_waitpid (for more infor-
mation, see Section 3.2). The code is as follows:

//The code path:kernel/exit.c:
int sys waitpid(pid t pid,unsigned long * stat addr, int options)
//the system call function corresponding to wait ()

{
int flag, code;
struct task_struct ** p;
verify area(stat_addr,4);
repeat:
flag = 0;
for(p = &LAST TASK ; p > &FIRST TASK ; --p) {
if (!*p || *p== current)
continue;
if ((*p)->father !=current->pid)
continue;
if (flag) {
if (options & WNOHANG)
return 0;
current->state=TASK INTERRUPTIBLE;
schedule () ; //when complete, return to function sys waitpid
if (! (current->signal &=~ (1l<<(SIGCHLD-1))))
//receive the SIGCHLD signal, the child process
//will exit
goto repeat;//repeat to deal with the child process exit
elise
return -EINTR;
}
return -ECHILD;
}

It is worth noting that the SIGCHLD signal that process 1 received was sent by the
function tell_father(). The function sys_waitpid() continues to execute; at this time, there
is a child process exit and it needs to be dealt with. The code is as follows:

//The code path:kernel/exit.c:
int sys_waitpid(pid_t pid,unsigned long * stat_addr, int options)

{

repeat:

flag = 0;
for(p = &LAST_TASK ; p > &FIRST_TASK ; --p) {
if (!*p || *p==current)
continue;
if ((*p)->father != current->pid)
continue;

226

4. Creation and Execution of Process 2

switch ((*p)->state) { //continue to prepare for the exit of process shell
case TASK_ZOMBIE: //the process shell is in the zombie state
current->cutime += (*p)->utime;
current->cstime += (*p)->stime;
flag = (*p)->pid; //record the pid of process 2, that is 2
code = (*p)->exit_code;
release (*p) ; //free the page occupied by the
//task_struct of process 2
put_fs_ long(code,stat_addr) ;
return flag; //return shell’s pid, that is 2
}

Figure 4.45 shows an instance of releasing pages of shell’s task_struct.

0x00000
Kernel

Ox9FFFF OxFFFFF Ox3FFFFF O0x5FFFFF OxFFFFFF

Kernel code area

-H ‘Et“e%‘?ift
X
1

Release the page occupied by
task_struct of shell process, which
means this process will disappear forever

* Kernel data area

Task[64] I

The position of shell process in task[64] is emptied

Process status

Process 0

i Interruptible

Process 1 Process (update)
H Ready I Interruptible
1T

Current process

Figure 4.45 Process 1 clears the information of the shell process in task[64].

4.4 The System Gets to the Idle State

227

When the function sys_waitpid() is completed, it will return to the function wait()
and will ultimately return to the function init(). Process 1 continues to execute. The code
is as follows:

//The code path:init/main.c:
void init (void)

if (pid>0)
while (pid != wait(&i)) //2! = 2 is wrong, jump to
//while (1)
/* nothing */;
while (1) { //restart process shell
if ((pid=fork())<0) ({
printf (“Fork failed in init\r\n”);

continue;
1
if (lpid) {
close(0) ;close (1) ;close(2) ;
setsid() ;
(void) open (“/dev/tty0”,0 RDWR,O0) ;
(void) dup(0) ;
(void) dup(0) ;
_exit (execve (“/bin/sh”,argv, envp)) ;
1
while (1)
if (pid== wait (&i))
break;
printf (“\n\rchild%d died with code%04x\n\r”,6pid, i) ;
sync () ;
1
_exit (0); /* NOTE! _exit, not exit() */

What we have introduced in Section 4.2 is worth noting: when process 2 is created,
the pid value is 2, and the flag, which is the return value of sys_waitpid(), is also 2. That is,
the function wait() returns 2; if the while is false, jump out of the loop.

44.3 Reconstruction of the Shell

Process 1 continues to execute and prepares for the reconstruction of the shell. The code
is as follows:

//The code path:init/main.c:
void init (void)

if (pid>0)
while (pid ! = wait(&i)) //2! = 2 is wrong, jump to while(
/* nothing */;
while (1) { //restart the process shell

228

4. Creation and Execution of Process 2

if ((pid=fork())<0) { //the process 1 create process 4, that is, rebuild
//process shell
printf (“Fork failed in init\r\n”);

continue;
}
if (!pid) {
close(0) ;close (1) ;close(2) ; //new process shell closes all the opened
//file
setsid() ; //create new session
(void) open(“/dev/tty0”,0 RDWR,O0); //re-open the standard input device file
(void) dup(0) ; //re-open the standard input device file
(void) dup(0) ; //re-open the standard error output
//device file
_exit (execve (“/bin/sh”,argv,envp));//load the process
//shell
}
while (1)
if (pid = = wait (&i)) //process 1 waits for the exit of child process
break;
printf (“\n\rchild%d died with code%04x\n\r”,6 pid, i) ;
sync () ;
}
_exit(0); /* NOTE! _exit, not exit() */
Reconstruction of the shell process is shown in Figure 4.46.
0x00000 Ox9FFFF OxFFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF
Kernel
ROM BIOS [
_ and VGA -|‘1|

. The shell process is reloaded

Lot Kernel code area " Kerne] data area

Task[64] I

|

The new position of shell process

Process status

o e m e]

Process 0 Process 1 Process (shell) Process (update)
i Interruptible H Interruptible I Ready I Interruptible
1

Current process

Figure 4.46 Reload the shell process.

4.4 The System Gets to the Idle State

229

Now, we have introduced execution path of the code. The difference that is worth not-
ing is that the pid of the shell process is created by last_pid, so it is 4, but in the task[64],
it is still 2, which is the item of shells that exited before. In addition, the shell reopens the
standard input device file tty0 instead of the rc file, which prevents the shell from exiting.
The code is as follows:

//The code path:fs/read write.c:
int sys_read(unsigned int £d,char * buf,int count)

if (inode->i_pipe)
return (file->f mode&l) ?read pipe (inode,buf, count) : -EIO;
if (S_ISCHR(inode->i_mode))//the shell reads tty0 as the character
//device file
return rw_char (READ, inode->i_zone [0] ,buf, count, &file->f pos) ;
if (S_ISBLK(inode->i_mode))
return block read(inode->i_zone[0],&file->f pos,buf, count) ;
if (S_ISDIR(inode->i mode) || S_ISREG(inode->i mode)) {//the rc file is
//a common file
if (count+file->f pos > inode->i_size)
count = inode->i_size - file->f pos;
if (count<=0)
return O;
return file read(inode, file,buf, count) ;

printk (™ (Read) inode->i_mode =%060\n\r”,inode->i_mode) ;
return -EINVAL;

After entering the function rw_char, all processes are in the interruptible state. Now,
switching to process 0 again, the system enters the idle state.

After the system enters the idle, users should use the shell process to communicate
with the computer. The principle of the shell process is as follows: the users input informa-
tion through the keyboard and store it in the specified character buffer queue, which is the
content of the tty0 terminal device file. The shell process will read the data in the buffer
queue again and again. If the user does not give any command, there will be no data in the
buffer queue, and the shell process will be set to the interruptible state. If the user types
a command on the keyboard, it will trigger a keyboard interrupt. The interrupt service
routine will store the information in the buffer queue and will send a signal to the shell
process. The signal will wake up the shell process. The shell continues to read data from
the buffer queue and deal with it. Upon completion, the shell process will be suspended
again and will wait for the next keyboard interrupt.

230

4. Creation and Execution of Process 2

S File Operation

IB 5.1 Install the File System

In Section 3.3.3, the operating system (OS) loads the root file system successfully, so that
data can interact with the root device. Installing the file system means that the file system
in the hard disk is loaded as the root file system, in order for the OS to interact data with
the root device.

There are three steps to install the file system:

1. Read the super block from the hard disk and load it into super_block([8] in the
system.

2. Read the specified i node from the Ramdisk and load it into inode_table[32] in the
system.

3. Mount the super block of the hard disk into the specified i node of inode_table[32].

The overall structure of the file system of the hard disk, after it is completely installed,
is shown in Figure 5.1.

The command “mount/dev/hd1/mnt” can be used to install the file system in shell.
This command includes three parameters, that is, mount, /dev/hdl, and /mnt. “mount” is
the name of a command with the purpose of installing the file system. “/dev/hd1” and
“/mnt” are directory path names, to indicate the mount file system of the device “hd1” to

231

Rogt i node i node of mnt file directory

l i node_table[32]

. Super block on disk

super_block(8]

Figure 5.1 Schematic diagram of a successful file system installation.

the directory file “mnt.” After shell receives this command, it creates a new process. This
process calls mount(), which is eventually mapped into the system function sys_mount().
The task of installing the file system is finished by sys_mount().

5.1.

| Get the Super Block of Peripherals

Tip:

The hard disk can be partitioned. Each partition can be taken as a device. In
this and the following chapter, the entire hard disk is a partition by default. hdl
represents the hard disk.

The function sys_mount() first calls the function namei() to get the i node of the

device hdl file based on the directory name “/dev/hd1.” It then gets the device id from the
i node and reads out the super block of the device based on the device id.

The code is as follows:

//code path:fs/super.c:
int sys_mount (char * dev_name, char * dir name, int rw_flag)

{

struct m_inode * dev_i, * dir_i;
struct super_block * sb;

int dev;

if (! (dev_i = namei (dev_name))) //get inode of device hdl file
return -ENOENT;

dev = dev_i->i_zonel[0]; //get device number based on inode

if (!S_ISBLK(dev_i->i_mode)) { //if hdl file is not block device file
iput (dev_i) ; //free its inode

return -EPERM;

232

5. File Operation

}

iput (dev_i) ; //free inode of device hdl file

if (!(dir_i = namei (dir_name)))
return -ENOENT;
if (dir i->i count ! = 1 || dir_i->i_num = = ROOT_INO) {

iput (dir i) ;
return -EBUSY;

if (!S_ISDIR(dir i->i mode)) {
iput (dir_i);
return -EPERM;

}

if (!(sb = read_super(dev))) { //get super block of device from device number
iput (dir_i);
return -EBUSY;

}

if (sb->s_imount) {
iput (dir i) ;
return -EBUSY;

if (dir_i->i_mount)
iput (dir i) ;
return -EPERM;

}

sb->s_imount = dir_i;

dir_i->i mount = 1;

dir i->i_dirt = 1; /* NOTE! we don’t iput(dir_i) */
return 0; /* we do that in umount */

The process of getting the i node in the function namei() is similar to that in Section 4.1.1.

There are three steps to read the device super block by read_super(). First, it chooses
an free slot to store the super block in super_block. Second, it loads the super block into
this item. Finally, it loads the i node bitmap and logic block bitmap on the basis of the
information from the super block. Besides, before being operated, the super block table
item should be locked to avoid interfering with other actions. After the operation is fin-
ished, it will be unlocked. The code is as follows:

//code path:fs/super.c:
static struct super block * read super (int dev)
{

struct super block * s;

struct buffer head * bh;

int i,block;

if (!dev)
return NULL;
check_disk_change (dev) ;

if (s = get_super (dev)) //if super block of hdl has been loaded, return
//directly
return s;
for (s = O+super block ;; s++) { //find free item for hdl in super_block

if (s >= NR_SUPER+super_block)
return NULL;

if (!s->s_dev) //the second item of super_block is free
break;
}
s->s_dev = dev; //following s->... is to set parameters in super
//block item
s->s_isup = NULL; //corresponding to memory operation

5.1 Install the File System

233

s->s_imount = NULL;
s->s_time = 0;
s->s_rd _only = 0;
s->s_dirt = 0;
lock_super (s) ; //lock super block item to avoid interfacing
if (! (bh = bread(dev,1))) {
//read super block according to device number and block number of hdl
// (1 indicates the second block in device,which is the logic block number of super block)
s->s_dev = 0;
free_super (s) ;
return NULL;
}
*((struct d_super block *) s) = //load information of super block into item,namely
//the second item
*((struct d_super_block *) bh->b_data) ;

brelse (bh) ;
if (s->s_magic ! = SUPER MAGIC) ({ //check super magic number to determine whether
s->s_dev = 0; //the file system of device is available

free_super(s) ;
return NULL;
}
for (i = 0;i<I_MAP_SLOTS;i++)
//load inode bitmap and logic block bitmap, and correspond them with s_imap and s_zmap

s->s_imap[i] = NULL;
for (i = 0;i<Z_MAP_SLOTS;i++)
s->s_zmap[i] = NULL;
block = 2;
for (1 = 0 ; i < s->s_imap_blocks ; i++)
if (s->s_imap[i] = bread(dev,block))
block++;
else
break;
for (1 = 0 ; i < s->s_zmap_blocks ; i++)
if (s->s_zmap[i] = bread(dev,block))
block++;
else
break;
if (block ! = 2+s->s_imap_blocks+s->s_zmap_blocks) {

//check whether logic block amount read form device is equal to that the device should have
for(i = 0;i<I_MAP_SLOTS;i++)
brelse(s->s_imap[il) ;
for(i = 0;i<Z_MAP_SLOTS;i++)
brelse(s->s_zmap[il) ;
s->s_dev = 0;
free_super(s) ;
return NULL;

}

s->s_imap[0]->b_data[0] | = 1;
s->s_zmap[0] ->b_datal0] | = 1;
free_super (s) ; //completing process of setting, unlock super block

//item
return s;

5.1.2 Confirm the Mount Point of the Root File System

The system calls namei() to get the i node of the mnt directory file based on the directory
name “/mnt.” It then analyzes the property of the i node and checks whether the i node is
available to mount the file system. The code is as follows:

//code path:fs/super.c:
int sys_mount (char * dev_name, char * dir name, int rw_flag)

struct m_inode * dev_i, * dir_ i;
struct super_block * sb;
int dev;

234 5. File Operation

if (!(dev_i = namei(dev_name))) //get inode of hdl device file
return -ENOENT;

dev = dev_i->i zone[0]; //get device id from inode
if (!S_ISBLK(dev_i->i_ mode)) { //if file hdl is not block device file
iput (dev_1i) ; //free its inode

return -EPERM;

}

iput (dev_1i) ; //free inode of hdl device file

if (!(dir_i = namei(dir name))) //get inode of mnt directory file
return -ENOENT;

if (dir_i->i count ! = 1 || dir i->i num = = ROOT INO) {

//only if inode of mnt is referred once and it is not root inode, it is available
iput (dir_ i) ;
return -EBUSY;
}
if (!S_ISDIR(dir i->i mode)) //confirm that mnt is directory file
iput (dir_ i) ;
return -EPERM;

if (! (sb=read_ super (dev))) { //get super block of device from device id
iput (dir_i);
return -EBUSY;

}

if (sb->s_imount)
iput (dir i) ;
return -EBUSY;

}

if (dir_i->i mount)
iput (dir_i);
return -EPERM;

}

sb->s_imount = dir i;

dir i->i mount = 1;

dir i->i dirt = 1; /* NOTE! we don’t iput(dir_i) */
return 0; /* we do that in umount */

Here, mnt is available to mount the file system.

5.1.3 Mount the Super Block with the Root File System

Make sure that the mount point and the mounted point are clear before mounting; that
is, the file system of the device hdl is not installed and other file systems are not installed
in the directory file mnt. After these, the system mounts them all. The code is as follows:

//code path:fs/super.c:

int sys_mount (char * dev_name, char * dir name, int rw_flag)

if (!(sb = read super(dev))) { //get super block of device from device id
iput (dir_1i);
return -EBUSY;

if (sb->s_imount) { //determine the file system of hdl is not
//installed
iput (dir_i); //in other places

return -EBUSY;

5.1 Install the File System

235

if (dir_i->i_mount) { //determine the inode of mnt is not installed
iput (dir_i); //with other file system
return -EPERM;

}

sb->s_imount = dir i; //mount dir i in root file system with
//s_imount in super block

dir i->i mount = 1; //mark dir_i indicate that inode has been
//mounted with file system

dir i->i dirt = 1; //mark dir_i indicate that the information

//of inode has been modified
/* NOTE! we don’t iput(dir_ i) */
return 0; /* we do that in umount */

}

We will explain how the file system works through three examples about file operation in
Sections 5.2 and 5.8.

Example 1: the user process opens a file in the hard disk and reads out the content.
Example 2: the user process creates a new file in the hard disk and writes the content.

Example 3: the user process closes the file and deletes it.

Example 1: the user process opens a file that exists in the hard disk and reads out
the content. This example is divided into two parts: open file and read file. The code is as
follows:

void main ()

{

//open file

char buffer[12000] ;

int fd = open(“/mnt/user/userl/user2/hello.txt”, O_RDWR,0644)) ;
//read out file

int size = read(fd,buffer,sizeof (buffer)) ;

return;

}

IB 5.2 Opening a File

The first step to open a file is to find out which file is to be operated by the process. This
process of finding is divided into two stages:

1. *Filp[20] in the user process task_struct is bind with the file_table[64] in the kernel.

2. I node corresponding to the file opened by the user process is registered in
file_table[64].

236 5. File Operation

The OS accesses a file according to the demand of user process. The kernel can control the
process of opening a file many times or many files once through *filp[20]. Once a file (the same
or a different one) is opened, an item in *filp[20] is occupied (e.g., if the file “hello.txt” is opened
twice by the user process, two items in *filp[20] are occupied) to store the pointer. Hence, in
one process, the total numbers of opening a file at the same time cannot be more than 20.

In the OS, file_table[20] is the data structure that manages all processes used to open
a file. It records the following information: different processes open different files, differ-
ent processes open the same file, and different files are opened many times by the same
process. Similar to filp[20], once a file is opened, it is recorded in file_table[64].

The i node is the most important data structure that records file profile. In the OS, the
i node corresponds to files one by one; hence, the i node uniquely identifies a file. The ker-
nel keeps track of these file i nodes in use through inode_table[32], and each file i node in
use is recorded. The nature of opening a file is to build up the relationship among filp[20],
file_table[64], and inode_table[32], that is, to build up the relationship represented by the
orange line in Figure 5.2.

File File File

inode_table[32]

file_table[64]

-
=

Filp[20] Filp[20] Filp[20] Filp[20]

Figure 5.2 Overview of opening a file.

5.2 Opening a File

237

There are three steps in this process.

Step 1: bind *filp[20] in the user process task_struct with file_table[64] in the kernel.

Step 2: use the directory name “mnt/user/userl/user2/hello.txt” given by the user as
a clue to locate the i node of the file “hello.txt.”

Step 3: the i node corresponding to hello.txt is registered in file_table[64].

Call the function open() to complete the task of opening the file. This function is
eventually mapped to sys_open(). The process of mapping and the basic implementa-
tion of the function sys_open() are introduced in Section 4.4.1. We will explain the
implementation details of sys_open() and analyze its design.

5.2.1 Mount *Filp[20] in the User Process to File_table[64]
In sys_open, the code, which realize the bind *filp[20] with file_table[64], is as follows:

//code path:include/linux/fs.h:
#define NR_OPEN 20 //max mount of files to be opened by process
#define NR_FILE 64 //max mount of files to be opened by 0S

struct file {

unsigned short f mode; //mode of file operating

unsigned short f_ flags; //lag for file open or control
unsigned short f_ count; //number of file handles

struct m_inode * f_inode; //inode pointing to corresponding file
off_t f pos; //file position(read and write offset)

//code path:include/linux/sched.h:
struct file * filp[NR OPEN] ; //pointer array of manage process to use file

//code path:fs/file table.c:
struct file file table[NR FILE]; //record controlling information that OS has open
//files

//code path:fs/open.c:
int sys_open(const char * filename,int flag, int mode)
{

struct m_inode * inode;

struct file * £;

int 1, £fd;
mode & = 0777 & ~current->umask; //set mode as available to user
for(fd = 0 ; fd<NR_OPEN ; fd++) //find free item in *filp[20] of current process
if (lcurrent->filp[£fd])
break;
if (£d>=NR_OPEN) //check structure *filp[20] is beyond use limits or not

return -EINVAL;

238

5. File Operation

current->close_on_exec &= ~(l<<fd); //set close-flag as 0 (will be explained in Chapter 6)
f = 0+file_table;

for (i=0 ; i<NR_FILE ; i++,f++) //fine free item in file table[64]
if (!f->f count) break;
if (i>=NR_FILE) //check file table[64] is beyond limits or

//not (Maximum is 64)
return -EINVAL;

(current->filp[fd] = f)->f count++; //bind *filp[20] of current process with corresponding
...... //item in file table[64] and add up amount of file
//handle

To achieve the task, free items should be found in *filp[20] and file_table[64] indepen-
dently. The system then binds *filp[20] in the current process with the corresponding item
in file_table[64] and adds up the mount of the file handles of the corresponding item in
file_table[64] (file handle will be explained in Chapter 7).

Note that it is so complex and unable to pre-estimate in situation of many processed
using files. For example, the free items of *filp[20] and file_table[64] cannot always be
found. That is to say, the error information will be given by the kernel when beyond the
using limitation of the two data structure. So the designing that check firstly and use later
is throughout.

5.2.2 Get the File’s i node

This section analyzes the path name “/mnt/user/userl/user2/hello.txt” to find the i node
of the hello.txt file.

The difference with the i_node finding method introduced in Section 4.1.1 is that the
hello.txt file is stored in the hard disk and the search process will start from the root i node
and find the file in the hard disk through the Ramdisk. The whole process is shown below.

As we can see from Figure 5.3, the parsing process has an obvious isomorphism and
the process is as follows:

Look up the i node — Find the directory file through the i node —

Find the directory entry by directory file — Find the i node number of the directory
file by directory entry —

Find the directory entry by directory file — Find the i node number of the directory
file by directory entry —

Eventually, find the hello.txt file.

5.2.2.1 Get the i node of the Directory File

The process of program calling to get the i node is shown in Figure 5.4.

5.2 Opening a File

239

‘yred o1y o) asxed o3 ssavo1g ¢*s 2y

WoYT K1030011p

1X3°0[[9H wa)T £1030011p JUW

wat A1030211p 15| [wa1 £1030011p 11950 wa) £1030211p 1950

[y A1030211p ZI9S() 3y A1030011p TI19S() | [y A1030211p J95() SSIP JO 3]y A1030011p uoom‘ a1y A1030211p 300

81 SSIP [ensiA

3y A1030211p [y A1030311p SIp JO I3[y

1Y Xy orRY 3|y A1010511p
11380 JO 9pou 1 1351 JO 9POU | £103021p 1001 JO dpou 1

Joapout 2335N JO apou 1

£10303.11p [y JUW Jo Spou 1

walsks ay) ur [gg]a[qer apout _

37y A1010211p 1001 JO Spou T

5. File Operation

240

Execute open_namei and get
the i node of hello.txt file

! Y

Execute dir_namei, analyze Call find_entry function, by
path and get the i node of given i node directory name,
user2 directory file get the directory item

! !

Call i_get function, by given the i node

Execute get_dir number provided by the directory item and
the device number provided by i node, get
the i node of directory file

l hello.txt

Traverse from root i node

!

Call find_entry, by given the

mnt i node of directory file and
directory name, get the
directory item

User \L

Userl

Call i_get function, by given the i node
number provided by the directory item
User2 | and the device number provided by

i node, get i node of directory file

Figure 5.4 Process of getting the i node.

The goal of acquiring the i node of the directory file is achieved by calling open_
namei(). The code is as follows:

//path name:fs/open.c:
int sys_open(const char * filename,int flag, int mode)

{
if ((i = open namei (filename, flag, mode, &inode))<0) { //get inode of hello.txt file.
current->filp[fd] = NULL; //*filp[20] are set Null if
//inode is not found
f->f count = 0; //citation count in file_

//table[64] is set 0 if inode
//is not found.

return i;

Open_namei() will first set the flag and mode of the opened file as per user’s request.
The code is as follows:

5.2 Opening a File 24|

//path name:include/fcntl.h: //octal form:

#define O_ACCMODE 00003 //file access mode mask

#define O RDONLY 00 //read-only flag

#define O WRONLY 01 //write-only flag

#define O_RDWR 02 //read-write flag

#define O_CREAT 00100 /* not fcntl */ //create new file flag
#define O_EXCL 00200 /* not fcntl */ //process exclusive flag
#define O _NOCTTY 00400 /* not fcntl */ //no control terminal flag
#define O_TRUNC 01000 /* not fcntl */ //truncate flag

#define O_APPEND 02000 //append flag

#define O NONBLOCK 04000 /* not fcntl */ //non-block flag

#define O_NDELAYO NONBLOCK

//path name:include/fcntl.h://binary form: (notice the rule in setting flag)

#define O_ACCMODE 0000 0000 0000 0011

#define O RDONLY 0000 0000 0000 0000

#define O WRONLY 0000 0000 0000 0001

#define O_RDWR 0000 0000 0000 0010

#define O_CREAT 0000 0000 0100 0000/* not fcntl */
#define O_EXCL 0000 0000 1000 0000/* not fcntl */
#define O_NOCTTY 0000 0001 0000 0000 /* not fcntl */
#define O_TRUNC 0000 0010 0000 0000 /* not fcntl */
#define O_APPEND 0000 0100 0000 0000

#define O NONBLOCK 0000 1000 0000 0000 /* not fcntl */

#define O_NDELAYO NONBLOCK

//path name:fs/namei.c:
int open_namei (const char * pathname, int flag, int mode,

struct m_inode ** res_inode) //pathname is/mnt/user/userl/user2/hello.txt
{

const char * basename; //basename records the address of’/’

int inr,dev,namelen;

struct m_inode * dir, *inode;

struct buffer head * bh;

struct dir entry * de; //de points to directory content
if ((flag & O_TRUNC) && ! (flag & O_ACCMODE)) //if file is read-only and length is 0
flag | = O_WRONLY; //set the file to write-only
mode & = 0777 & ~current-s>umask;
mode | = I_REGULAR; //set the file to regular
if (! (dir = dir namei (pathname, &namelen, &basename))) //parse path name and get topmost inode
return -ENOENT;
if (!namelen) ({ /* special case: ‘/usr/’' etc */
if (!(flag & (O_ACCMODE|O_CREAT|O_TRUNC))) ({
*res_inode = dir;
return 0;
iput (dir) ;

return -EISDIR;

bh = find entry(&dir,basename,namelen, &de) ; //£find directory entry of target file
//through topmost inode

After setting, dir_namei() is called to analyze the file path and traverse the i nodes of
all directory files to find the i node of the last directory file, namely, the topmost i node.
Dir_namei() will call get_dir() to get the i node. The code is as follows:

//path name:fs/namei.c:
static struct m inode * dir namei (const char * pathname,
int * namelen, const char ** name) //pathname points to/mnt/user/userl/user2/hello.txt

242 5. File Operation

char c;
const char * basename;
struct m_inode * dir;

if (! (dir = get_dir(pathname))) //call get_dir() to parse path name and get inode
return NULL;

basename = pathname;

while (c=get_fs byte (pathname++)) //after tranversing, pathname points to ’/0’ in string.
//tranverse each string in “/mnt/user/userl/user2/hello.txt” and copy one character to ¢ in
//each cycle

if (e=='/")
basename = pathname; //after tranversing string, basename points to the last ‘/’
*namelen = pathname-basename-1; //compute the name length of ”hello.txt”
*name = basename; //get the address of '/’ before hello.txt

return dir;

}

Get_dir() will get the i node content. The process has been introduced preliminarily
in Section 4.1.1: the work is complete through “find directory entry and get i node through
directory entry” continuously.

The corresponding function in finding the directory entry is find_entry().

The corresponding function in getting the i node is iget().

These two functions are introduced in detail here. The code is as follows:

//pathname: fs/namei.c:
static struct m_inode * get_dir(const char * pathname)
{
char c¢;

const char * thisname;

struct m_inode * inode;

struct buffer head * bh;

int namelen, inr,idev;

struct dir entry * de;

if (!current->root || !current-sroot->i_count) //current root inode does not exist or
panic (“No root inode”) ; //the citation count is 0

if (lcurrent->pwd || !current->pwd->i_count) //current directory root inode does not exist or
panic (“No cwd inode”) ; //the citation count is 0

if ((c = get_fs_byte(pathname)) = ='/’) { //identify the first character of
inode = current-s>root; //" /mnt/usr/usrl/usr2/hello.tet” is ‘/’
pathname++;

} else if (c)
inode = current->pwd;

else
return NULL; /* empty name is bad */
inode->i_count++; //citation count increases by 1
while (1) { //cycle the statements below until find topmost inode
thisname = pathname; //thisnamepoints to ‘m’ first
if (!S_ISDIR(inode->i_mode) || !permission(inode,MAY EXEC)) {
iput (inode) ;
return NULL;
}
for (namelen = 0; (c = get_fs_byte (pathname++))&&(c! = '/’) ;namelen++)
//the loop breaks each time when finding '/’ in string or c is ’\0’
/* nothing */; //notice this ‘;’
TER Q)

return inode;

5.2 Opening a File 243

if (!(bh = find entry(&inode, thisname,namelen,&de))) {//get directory entry through inode
iput (inode) ; //release the inode if assigned directory entry is not found
return NULL; //and return NULL

}

inr = de->inode;//get inode number from directory entry

idev = inode->i_dev;//get device number from inode

brelse (bh) ;

iput (inode) ; //release all inodes of each directory file after used
//to avoid wasting space in inode_table

if (! (inode = iget (idev,inr))) //get inode

return NULL;

The main task of find_entry() is as follows: First, the function determines the amount
of directory entries in the directory file by the i node. Then, begins from the first logic
block corresponding to the directory file, the logic blocks are continuously loaded into the
buffer from the peripherals, and the function searches the specified directory entry until
it is found.

The code is as follows:

//code path:include/linux/fs.h:
#define BLOCK SIZE 1024
//path name:fs/namei.c:
static struct buffer head * find entry(struct m_inode ** dir,
const char * name, int namelen, struct dir_ entry ** res_dir)
//get directory entry of mnt
{
int entries;
int block,i;
struct buffer head * bh;
struct dir entry * de;
struct super block * sb;

#ifdef NO_TRUNCATE
if (namelen > NAME LEN)//return “NULL” if the name length exceeds 14 under the premise of NO_ TRUNCATE
return NULL;
#else
if (namelen > NAME_LEN) //or truncate the name length
namelen = NAME_ LEN;
#endif
entries = (*dir)->i_size/(sizeof (struct dir entry));
//calculate the amount of directory entries according to file length information namely i_size
*res dir = NULL;
if (!namelen)//examine the file name length is 0 or not
return NULL;
/* check for ‘..’, as we might have to do some “magic” for it */
if (namelen = =2 && get_fs_byte(name) = =’.’ && get_fs_byte(name+l) = ='.’) {
/handle the case if directory entry is..

if (! (block = (*dir)->i_zone[0]))
//determine the first logic block number of directory file is not 0
return NULL;
if (! (bh = bread((*dir)->i_dev,block)))//read logic blocks into specified buffer
return NULL;
i=0;
de = (struct dir_entry *) bh->b data;//de points to the head address of buffer
while (i < entries) {//search for mnt in all directory entries
if ((char *)de > = BLOCK SIZE+bh->b_data) {
//if specified directory entry is not found in the logic block
brelse (bh) ;
bh = NULL;

244

5. File Operation

//then continue to search for mnt directory file after reading the next logic block into buffer
if (! (block = bmap(*dir,i/DIR_ENTRIES_PER _BLOCK)) ||
! (bh = bread((*dir)->i_dev,block))) {
i + = DIR_ENTRIES_PER BLOCK;
continue;

}

de = (struct dir_entry *) bh->b data;

if (match(namelen,name,de)) {//match the directory entry
*res dir = de;//if mnt is found, pass it to *res_dir
return bh;

}
de++;
i4+4;
}
brelse (bh) ;
return NULL;//return NULL if mnt is not found after all directory file are examined

}

The main task of iget() is to get the i node according to the i node id and the device
id of the directory entry. The specific access is as follows: First, the function searches the i
node in inode_table[32] and uses it if the specified i node already exists. Since each file has
only one i node and the same file could be referred by multiple processes, if the specified
i node is already loaded by other processes, then loading the i node repeatedly would not
only cause confusion but also waste time.

Besides, if any i node is mounted with the file system, the root i node of the file system
would be loaded and it becomes the starting point for searching files in another file system.

The i node of “mnt” is the first one to be obtained. According to Section 5.1, the file
system is mounted with the i node of mnt; thus, the root i node of the file system need to
be loaded in the i node table.

The code is as follows:

//code path:fs/namei.c:
struct m_inode * iget (int dev,int nr) //get inode of mnt, dev and nr specify device id
//and inode id

//struct m_inode * inode, * empty;

if (!dev)//if device number is null

panic (“iget with dev = =0");
empty = get_empty inode () ; //get an free inode item from inode table[32]
inode inode_ table;

while (inode < NR_INODE+inode table) {
//examine specified inode is loaded already or not, in this case the inode of mnt is loaded before

if (inode->i dev ! = dev || inode->i num ! = nr) {
//compare device id and inode id to specified one
inode++;
continue;

}
wait_on_inode (inode) ;
//wait until the inode is unlocked

if (inode->i dev ! = dev || inode->i num ! = nr) {//this inode may have been released
inode = inode_table; //thus traverse inode table[32] and if not removed
continue; //the inode could be used, the inode of mnt is not

//removed in this case
inode->i_count++;
if (inode->i mount) { //if the inode is mount with file system(in mnt case)
int 1i;

5.2 Opening a File

245

for (i = 0 ; i<NR_SUPER ; i++) //search for peripheral of file system,namely the
//super block of hdl
if (super block[i] .s_imount==inode)

break;
if (i > = NR_SUPER) ({ //inode is not mount with file system
printk (“Mounted inode hasn’t got sb\n”);
if (empty)
iput (empty) ;

return inode;

}

iput (inode) ;

dev = super_block[i] .s_dev; //get device id by super block of hdl

nr = ROOT_INO; //determine root inode of peripheral and ROOT_INO isl

inode = inode_table; //traverse inode of peripheral (hard disk) again and
//determine
//it has been mount already

continue;

}
if (empty)
iput (empty) ;

return inode;

if (!empty) //there’s no free item in inode_ table[32]
return (NULL) ;
//root inode of hdl is not found so that it will be loaded
inode = empty;
inode->i_dev = dev;
inode->i_num = nr;
read_inode (inode) ; //read inode;
return inode; //because inode of mnt is mount with file system then root
//inode of hdl is returned

After preparation, read_inode() is called to read i nodes from peripherals (hard disk),
and the i nodes are loaded into inode_table[32].
The code is as follows:

//code path:fs/inode.c:
static void read_inode(struct m _inode * inode) //read inode
{

struct super block * sb;

struct buffer head * bh;

int block;
lock_inode (inode) ; //lock specified inode in inode_table[32]
if (!(sb = get_super (inode->i_dev))) //get super block of inode, which has been loaded

panic(“trying to read inode without dev”) ;
block = 2 + sb->s_imap_blocks + sb->s_zmap blocks +

(inode->i_num-1) /INODES_PER BLOCK; //determine the logic block which stores the
//specific inode
if (! (bh = bread(inode->i_dev,block))) //load the logic block into specified buffer
panic (“unable to read inode block”) ;
* (struct d_inode *)inode = //load inode into specified location in

//inode_table [32
((struct d_inode *)bh->b_data)
[(inode->i num-1) $INODES_PER_BLOCK] ;
brelse (bh) ;

unlock_inode (inode) ; //unlock inode after table item operation

After acquiring the root i node of the file system in the hard disk, get_dir() will con-
tinuously call find_entry() and iget() to get the i node of user and userl, that is, the direc-
tory files, in order to get the i node of user2, namely, the topmost i node. The execution
procedure is the same as finding the i node of mnt; the difference lies in the fact that the

246 5. File Operation

i nodes of these directory files are not mounting with the file system, and there is also
disparity in the execution route.
The code is as follows:

//code path:fs/namei.c:
struct m_inode * iget (int dev,int nr) //get inode of following directory files

{

struct m_inode * inode, * empty;

if (!dev)//if device id is 0, system crashes.
panic(“iget with dev = =0");
empty = get_empty_inode () ; //get an free item from inode_table [32]
inode = inode_table;
while (inode < NR_INODE+inode_table) {
//examine whether the inode has been load already, inodes of other directory files are
//never loaded.

if (inode->i_dev ! = dev || inode->i_num ! = nr) {
//the loop breaks after compare
inode++;
continue;

}

if (!empty)
return (NULL) ;
//prepare to load the inode beacause it is not found in other directory files
inode = empty;
inode->i_dev = dev;
inode->i_num = nr;

read_inode (inode) ; //read inode
return inode; //continue to search and return the inode of user, userl and user2
//successively

The function returns the i node of user2 after execution and gets back to dir_namei().
The code is as follows:

//code path:fs/namei.c:
static struct m_inode * dir namei (const char * pathname,
int * namelen, const char ** name) //pathname is the pointer to/mnt/user/userl/user2/
//hello.txt

char c¢;
const char * basename;
struct m_inode * dir;

if (!(dir = get_dir (pathname))) //the function to get inode
return NULL;
while (c = get_fs_byte (pathname++)) //after traverse, pathname points to ’/0’ at the end

//of string traverse each string in “/mnt/user/userl/user2/hello.txt” and copy one character
//to ¢ in each loop

if (¢ = ='/")
basename = pathname; //basename points to the last ’/’ after traverse
*namelen = pathname-basename-1; //calculate the name length of “hello.txt”
*name = basename; //get the address of '/’ before hello.txt

return dir;

}

5.2 Opening a File 247

Finally, the function gets back to open_namei() and returns the i node of user2, that
is, the topmost i node.

//code path:fs/namei.c:
int open_namei (const char * pathname, int flag, int mode,
struct m_inode ** res_inode)

if (!(dir = dir namei (pathname, &namelen, &basename))) //get topmost inode by analyzing pathname
return -ENOENT;

After getting the topmost i node by analyzing the path name, the main task of open_
namei() is completed. The next procedure is to identify the i node of hello.txt through the
topmost i node.

5.2.2.2 Get the i node of the Target File

The procedure of getting the i node of hello.txt is basically the same as getting the topmost
i node in Section 5.2.2.1, that is, getting the i node by calling find_entry() and iget().
The code is as follows:

//code path:fs/namei.c:
int open namei (const char * pathname, int flag, int mode,
struct m_inode ** res_inode)

{
if (! (dir = dir_namei (pathname, &namelen, &basename))) //get topmost inode by analyzing
//pathname
return -ENOENT;
if (!namelen) ({ //if name length of target file
//is 0
if (!(flag & (O_ACCMODE|O_CREAT|O_TRUNC))) { //refer the flag to that in

//Section 5.2.2.1
*res_inode = dir;
return 0;
}
iput (dir) ;
return -EISDIR;

bh = find entry(&dir,basename,namelen, &de) ;
//load hello.txt into buffer, de points to hello.txt

if (!bh) { //after hello.txt is loaded the buffer block is not null
}
inr = de->inode; //get inode number
dev = dir->i_dev; //get device number of hdl
brelse (bh) ;
iput (dir) ; //release the inode of user2
if (flag & O_EXCL) //refer the flag to that in Section 5.2.2.1
return -EEXIST;
if (! (inode = iget(dev,inr))) //get inode of hello.txt
return -EACCES;
if ((S_ISDIR(inode->i_mode) && (flag & O_ACCMODE)) || //refer the flag to that in
//Section 5.2.2.1
Ipermission (inode, ACC_MODE (flag))) { //examine the access permission

//of user
iput (inode) ;
return -EPERM;

248

5. File Operation

inode->i_atime = CURRENT TIME;

if (flag & O_TRUNC) //refer the flag to that in Section 5.2.2.1
truncate (inode) ;

*res_inode = inode; //pass inode to sys_open

return 0;

After getting the i node of hello.txt, the i node is mounted to file_table[64].

5.2.3 Bind File i node with File_table[64]

In Section 5.2.2.2, the i node of hello.txt has been loaded into inode_table[32]. The i node
should be bind with file_table[64] now so that file_table[64] could find the i node through
the pointer of the item in inode_table[32]. In addition, the OS will set the attributes, cita-
tion count, and read-write pointer offset of hello.txt.

The code is as follows:

//code path:fs/open.c:
int sys_open(const char * filename,int flag,int mode)

if (S_ISCHR (inode->i_mode)) //hello.txt is not character device file
if (MAJOR(inode->i_zone[0]) = =4) {
if (current->leader && current->tty<0) {
current->tty = MINOR (inode->i_zone[0]) ;
tty table[current->tty] .pgrp = current->pgrp;
}
} else if (MAJOR (inode->i_zone[0]) = =5)
if (current->tty<0) {
iput (inode) ;
current->filp[fd] = NULL;
f->f count = 0;
return -EPERM;

/* Likewise with block-devices: check for floppy change */

if (S_ISBLK (inode->i_mode)) //hello.txt is not block device file
check disk_ change (inode->i_ zone[0]) ;
f->f mode = inode->i_mode; //set file attribute by inode
f->f flags = flag; //set file operating mode by flag
f->f count = 1; //citation count increases by 1
f->f inode = inode; //build reference between file and inode
f->f pos = 0; //set read-write pointer to 0
return (£4d); //return file handle to user space

Until now, file_table[64] is bound to the pointer of filp[20] of the current process
on one hand and to the i node of hello.txt in inode_table[32] on the other hand. The OS
retuns fd, which is the offset of the mount point in file_table[64], that is, file handle, to the
user process. The system could determine which file is demanded by the process after that
process transfers fd to the OS. Take the following case as an example:

int size = read(£fd,buffer,sizeof (buffer)) ;

This line is used to read hello.txt: the actual parameter fd is the tag of hello.txt. After
this parameter is transferred to the kernel, the OS will find the mount point by fd and
operate next.

Details on reading the file operation will be introduced in the next section.

5.2 Opening a File

249

I@ 5.3 Reading a File

Reading a file means reading data from the file opened by the user process. It is completed
by the function read().

5.3.1 Locate the Position of the Data Block in the Peripherals

The function read() is eventually mapped to sys_read() to execute. Before executing the main
content, the system will first check the feasibility of this operation, including whether the
file handle passed by the user process and bytes of number read are in a reasonable range,
whether the page where the user process data are is written into the data is not read-only,
and so on. After these checks, begin to perform the main content, that is, call the function
file_read() and read the file data specified by the process. The code is as follows:

//file path:fs/read write.c:

int sys_read(unsigned int £d,char * buf,int count) //read data from the file “hello.txt”
{ //fd is the file handle, buf is a user space pointer, and count is the number of bytes
//to read

struct file * file;
struct m_inode * inode;

if (fd> = NR_OPEN || count<0 || !(file = current->filp[£d]))//whether fd and count is
//within reasonable range,file
//is opened or not
return -EINVAL;

if (!count) //if number of bytes is 0, return
return 0;
verify area(buf,count) ; //verify the property of page where buf is. If it is

//read-only, copy this page (refer to chapter 6)
inode = file->f inode;
if (inode->i_pipe)
return (file->f mode&l)?read_pipe (inode,buf, count) : -EIO;
if (S_ISCHR (inode->i_mode))
return rw_char (READ, inode->i_zone [0] ,buf, count, &file->f pos) ;
if (S_ISBLK(inode->i_mode))
return block read(inode->i_zone[0],&file->f pos,buf, count) ;
if (S_ISDIR(inode->i_mode) || S_ISREG(inode->i_mode)) { //analyze node-i property of file
//“hello.txt” and it is common file
if (count+file->f pos > inode->i_size)
count = inode->i_size - file->f pos;
if (count< = 0)
return 0;
return file_ read(inode, file,buf, count) ; //read data specified by process
}
printk (" (Read) inode->i_mode =%060\n\r”,inode->i_mode) ;
return -EINVAL;

In file_read(), the system locates the logic block number of the specified file data block
in the peripheral by bmp(). The code is as follows:

//code path:include/linux/fs.h:
#define BLOCK_SIZE 1024

//code path:fs/file dev.c:

int file read(struct m_inode * inode, struct file * filp, char * buf, int count) {
int left,chars,nr;
struct buffer head * bh;

250

5. File Operation

if ((left = count)< = 0)
return 0;
while (left) ({ //not more than data about one buffer block(1KB) is copied into
//buf memory in every loop
if (nr = bmap (inode, (filp—>f_pos)/BLOCK_SIZE)) {
//file operation pointer offset divided by BLOCK SIZE(1024) is where the data operated
//locates
//in this case, filp->f pos is 0
//based on the data block number in file, find the logic block number in the peripheral
if (! (bh = bread(inode->i_dev,nr))) //read data from the peripheral
break;

Note that when the function bmp() calls the function _bmp(), add another parameter.
The code is as follows:

//code path:fs/inode.c:
int bmap (struct m_inode * inode, int block)

{

return _bmap (inode,block, 0) ; //last parameter is creating flag. 0
//means operating a existed block. 1
//means creating a new block.

We will first introduce how the i node manages files.

The i node manages file data block through its structure i_zone. The diagram is shown
in Figures 5.5 through 5.7.

I_zone[9] records the file data block context info. When the number of file data block
is more than 9, Linux has to find another tactic: it continues to store the index value of the
logic block in the data block of the data area to manage the data block hierarchically, in
order to enlarge the number of data blocks for management.

| I i node of file

=

Logical blocks

The total amount of file data block is less than
or equal to 7 KB

Figure 5.5 Management schematic diagram of the i node when file data is less than 7 blocks.

5.3 Reading a File

251

Indirect block
in level 1

|-— 512 blocks

The total amount of file data block is more than
7 KB, and less than or equal to (7 + 512) KB

Figure 5.6 Management schematic diagram of the i node when file data is between 7 blocks and
(7 + 512) blocks.

—————————

m]mmﬂl Level 1 indirect blocks

Level 2
indirect blocks

512 blocks

The total amount of file data block
is more than 7 + 512 blocks, and less
thanorequalto7 + 512 + 512 *512blocks [A..FFA

512 512
blocks blocks
I*— 512 * 512 blocks —'(

Figure 5.7 Management schematic diagram of the i node when file data is between (7 + 512) blocks
and Minix.

252

5. File Operation

When the total amount of data is not more than 7 KB, the first seven members of
i_zone[9] are used, recording the block number of these seven data blocks in the data area.

When the total amount of data is more than 7 KB, one should start a one-level indi-
rect management program. The eighth member of i_zone[9] records the block number of
a data block; however, it stores the logic block number of the next 512 data blocks in the
peripherals, not the file data context. On the basis of these block numbers, find the cor-
responding data block. Because the amount of data block is 1024 bytes and each block
number occupies 2 bytes, a data block can store a block number of 512. In this way, the
management limit is 7 + 512 data blocks, that is, (7 + 512) KB.

When the total amount of data is more than (7 + 512) KB, we use two-level indirect man-
agement instead. The ninth member of i_zone[9] records the block number of a data block;
however, it stores the logic block number of the next 512 data blocks in the peripherals, not the
file data context. These 512 data blocks store another 512 data blocks. In this way, the maxi-
mum blocks of management is 7 + 512 + 512 * 512 data blocks, that is, (7 + 512 + 512 * 512) KB.

In case 1, it is in the process of reading the first data block in the file “hello.txt.” It is in
the situation of having less than seven logic blocks. The code is as follows:

//code path:fs/inode.c:
static int _bmap (struct m inode * inode,int block,int create)

{

struct buffer head * bh;

int 1i;

if (block<0) //if operating file data block number is less than 0
panic(“_bmap: block<0”) ;

if (block > = 7+512+512*%512) //if operating file data block number is greater than

//allowable maximum
panic (“_bmap: block>big”) ;

//============ === =not more than 7 logic blocks = = = = = = = = = = = = = = = =
if (block<7) { //operating file data block number is less than 7
if (create && !inode->i_zone [block]) //create a new data block

new_block (inode->i_dev)) {
CURRENT_TIME;

if (inode->i_zone [block]
inode->i_ctime
inode->i_dirt = 1;
}
return inode->i_zone [block]; //return value of logic block number recorded in
//block item of i_zone

// ====2======== between 7 and (7+512) logic blocks = = = = = = = = = = = = = = = =
block - = 7;
if (block<512) {
if (create && !inode->i_zone[7]) //creat a new data block
if (inode->i_zone([7] = new_block (inode->i_dev)) {

inode->i_dirt = I;
inode->i_ctime = CURRENT_TIME;

}

if (!inode->i_zonel[7]) //one-level indirect block has no index number, stop
//finding, return 0
return 0;
if (! (bh = bread(inode->i_dev,inode->i_zone([7]))) //get one-level indirect block
return 0;
i = ((unsigned short *) (bh->b_data)) [block]; //get logic block number of item
//block in indirect block
if (create && !i) //whether create a new data block
//or not

5.3 Reading a File

if (i = new_block(inode->i_dev)) {
((unsigned short *) (bh->b data)) [block] = i;
bh->b dirt = 1;

}

brelse (bh) ;
return 1i;
}
//======== === between (7+512) and (7+512+512*512)logic blocks = = = = = = = = = = =
block - = 512;
if (create && !inode->i_zone[8]) //whether create a new data block
if (inode->i_zone[8] = new_block (inode->i_dev)) {

inode->i_dirt = I;
inode->i_ctime = CURRENT TIME;

}

if (!inode->i_zone[8]) //one-level indirect block has no index
//number, stop finding, return 0
return 0;
if (! (bh = bread(inode->i_dev, inode->i_zone[8]))) //get one-level indirect block
return 0;
i = ((unsigned short *)bh->b data) [block>>9]; //get logic block number of item block/512

//in indirect block
if (create && !i)
if (i = new_block(inode->i_dev)) {
((unsigned short *) (bh->b data)) [block>>9] = i;
bh->b dirt = 1;

}

brelse (bh) ;
if (i)
return 0;
if (! (bh = bread(inode->i_dev,i))) //get two-level indirect block
return 0;
i = ((unsigned short *)bh->b data) [block&511];//get logic block number of item block&512

//in second level of indirect block
if (create && !i)
if (i = new_block (inode->i_dev)) {
((unsigned short *) (bh->b data)) [block&511] = i;
bh->b dirt = 1;

brelse (bh) ;
return i;

5.3.2 Data Block Is Read into the Buffer Block

By calling read(), the first data block of the file “hello.txt” is read into the specified bufter
from the hard disk. The scenario is shown in Figure 5.8.
The code is as follows:

//code path:fs/file dev.c:
int file read(struct m_inode * inode, struct file * filp, char * buf, int count)

{

while (left) //not more than data about one buffer block(1KB) is copied into
//buf memory in every loop
if (nr = bmap(inode, (filp->f pos) /BLOCK_SIZE)) { //find logic block number in
//device based on data block number in file
if (! (bh = bread(inode->i_dev,nr))) //read data from peripherals
break;
} else
bh = NULL;

For more about bread(), refer to Section 3.3.1.

254

5. File Operation

0x00000 Ox9FFFF OxFFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF

Load the hello.txt
to buffer

Figure 5.8 Read data from the file into the buffer.

5.3.3 Copy Data from the Buffer into the Process Memory

After loading the data block to the buffer, the system will copy it into a specified user pro-
cess data memory (*buf) from the buffer. The code is as follows:

//code path:fs/file dev.c:
int file read(struct m_inode * inode, struct file * filp, char * buf, int count)

while (left) {
} else
bh = NULL;
nr = filp->f pos% BLOCK_SIZE; //calculate amount of data needing to be
//copied in next 4 lines
chars = MIN(BLOCK SIZE-nr, left);
filp->f pos + = chars;

left - = chars;
if (bh) { //get data from peripheral successfully
char * p = nr + bh->b data;
while (chars— >0) //copy data of chats bytes into specified
//memory
put_fs_byte (* (p++) ,buf++) ;
brelse (bh) ;
} else { //otherwise copy 0 with amount of chars

while (chars— >0)
put_fs_byte (0,buf++) ;
}
}

inode->i_atime = CURRENT_TIME;
return (count-left)? (count-left) :-ERROR;

}

5.3 Reading a File

255

0x00000 Ox9FFFF OxFFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF

Kernel
ROM BIOS -
and VGA p

.........

.........

..........
‘e, .

I Load from buffer to main memory I

Figure 5.9 Read data from the buffer into the main memory.

The process of copying data stored in the buffer to a specified memory is shown in
Figure 5.9.

Here, the system only reads data of a data block (1 KB) from the beginning of the
file “hello.txt.” The “while” loop will complete the process that loads data of a specified
amount into area *buf.

The process of reading a file is completed, and we then explain the operation of creat-
ing a new file and writing the file based on example 2.

Example 2: the user process creates a new file in the hard disk and writes the con-
tent into this file. The example is divided into two parts: creating a new file and writing.
The code is as follows:

void main ()

{
char strl[] = “Hello, world”;
//create new file
int fd = creat (“/mnt/user/userl/user2/hello.txt”,0644)) ;
//write
int size = write(fd,strl,strlen(strl));
1

54 Creating a New File

Creating a new file is the process of creating a file that does not exist in the file system
based on user process requirements. It is performed by the function creat().

5.4.1 Searching a File

The function creat() is mapped to sys_creat() eventually. The code for creating a new file
is similar with that for opening a file; hence, the system will directly call the function
sys_open() to create a new file after entering the function sys_creat().

256

5. File Operation

The code is as follows:

//code path:fs/file_dev.c:
int sys_creat (const char * pathname, int mode) //create a new file
{

return sys_open (pathname, O_CREAT | O_TRUNC, mode) ;

//notice: both creating flag O _CREAT and exclusive flag O _TRUNG is set, parameter
//flag is different from that in 5.2.2

}

The system acquires the i node of the file “hello.txt” by calling the function
open_nameil().

The code is as follows:

//code path:fs/open.c:
int sys_open(const char * filename,int flag,int mode)

mode &= 0777 & ~current->umask; //set mode of file as user-available state
for (£d=0 ; fd<NR_OPEN ; fd++)

if (!current->filp[£d])

return -EINVAL;
(current->filp [fd]=f) ->f count++;
if ((i=open_namei (filename, flag, mode, &inode))<0) { //get i-node of file

//“hello.txt”
current->filp [£d] =NULL;

In this example, because the file does not exist, the execution of open_namei() dif-
fers from that in Section 5.2.2. If the “hello.txt” directory item cannot be searched after

getting the i node by calling dir_namei() to analyze the directory name, the value of bh is
set as NULL.

The code is as follows:

//code path:fs/namei.c:
int open_namei (const char * pathname, int flag, int mode,
struct m_inode ** res_inode)

mode &= 0777 & ~current-s>umask;

mode |= I_REGULAR; //set this file as regular file

if (! (dir = dir_namei (pathname, &namelen, &basename))) //analyze path,get i-node
return -ENOENT;

if (!namelen) { /* special case: ‘/usr/’' etc */

if (!(flag & (O_ACCMODE|O_CREAT|O_TRUNC))) {
*res_inode=dir;
return 0;

iput (dir) ;
return -EISDIR;

5.4 Creating a New File

257

}

bh = find entry(&dir,basename,namelen, &de) ; //search content item of file “hello.txt”
through topmost i-node

//code path:fs/namei.c:
static struct buffer head * find entry(struct m_inode ** dir,
const char * name, int namelen, struct dir_entry ** res_dir)

(struct dir_entry *) bh->b_data; //de points to the first address of buffer

while (i < entries) ({ //search "hello.txt" from all directory items
//of buffer block
if ((char *)de >= BLOCK_SIZE+bh->b_data) { //if directory item can’t be found
brelse (bh) ;
bh = NULL;
if (!(block = bmap (*dir,i/DIR_ENTRIES_PER BLOCK)) ||
! (bh = bread((*dir)->i_dev,block))) { //continue to search
//while loading directory
//item
i += DIR_ENTRIES_ PER BLOCK;
continue;
}
de = (struct dir_entry *) bh->b data;
1
if (match(namelen,name,de)) { //confirm the match of directory item
*res_dir = de; //1if "hello.txt" is found, it is passed to pointer
*res_dir
return bh;
}
de++;
i++;
}
brelse (bh) ;
return NULL; //"hello.txt" directory item can’t be found eventually

Note that in Section 5.2.1, the mode parameter has not been used when a file is open.
However, this time, it is used to set the property of the i node.

54.2 Create a New i node for a File

Not finding the directory item of the file “hello.txt” does not mean that the user process
aims at creating a new file (maybe the path is wrong). Before creating a new i node, the
system needs to check whether the flag O_CREAT is set or not. If it is set, the user pro-
cess actually aims at creating a new file (the set process is introduced in Section 5.4.1).
Otherwise, create a new i node for the file “hello.txt” and write new directory item infor-
mation corresponding to the file “hello.txt” into the directory file named user2. Check
whether this process has write permission. Then, call the function new_inode() to create a
new i node and set the information such as the property of the i node.
The code is as follows:

//code path:fs/namei.c:
int open_namei (const char * pathname, int flag, int mode,
struct m_inode ** res_inode)

if (! (dir = dir_namei (pathname, &namelen, &basename))) //analyze path and get i-node
return -ENOENT;

258 5. File Operation

if (!namelen) { /* special case: ‘/usr/’' etc */

if (!(flag & (O_ACCMODE|O_CREAT|O_TRUNC))) {
*res_inode = dir;
return 0;

}

iput (dir) ;

return -EISDIR;

bh = find entry(&dir,basename,namelen, &de) ; //find directory item of aimed file through
//topmost i-node

if (!bh) { //buffer block is empty when no item is get
if (!(flag & O_CREAT)) { //confirm that user actually aims at
//creating a new file
iput (dir) ;
return -ENOENT;
}
if (!permission(dir,MAY WRITE)) { //confirm that user has write permission to
//directory file "user2"
iput (dir) ;
return -EACCES;

}

inode = new_inode(dir->i_dev) ; //create new i-node
if (!inode) {
iput (dir) ;

return -ENOSPC;

}

inode->i_uid = current->euid; //set id of i-node user
inode->i_mode = mode; //set i-node as access mode
inode->i_dirt = 1; //set revised flag of i-node as 1
bh = add_entry(dir,basename,namelen, &de) ; //create new directory item

if (!bh) {

inode->i nlinks— ;
iput (inode) ;

iput (dir) ;

return -ENOSPC;

}

de->inode = inode->i num;
bh->b dirt = 1;

brelse (bh) ;

iput (dir) ;

*res_inode = inode;
return 0;

The task that the function new_inode() performs to create a new i node is divided
into two steps:

1. In the inode bitmap, the bit corresponding to the new i node is identified.

2. Load part of the property information of the i node into a specified table item of
inode_table[32].

The code is as follows:

//code path:fs/bitmap.c:
struct m_inode * new_inode (int dev)
{

struct m_inode * inode;

struct super block * sb;

struct buffer head * bh;

int i,3;

5.4 Creating a New File 259

if (! (inode = get_empty inode())) //get free i-node item in inode_table[32]
return NULL;
if (! (sb = get_super (dev))) //get device super block (loaded when installing file system)
panic(“new_inode with unknown device”) ;
//below set i-node bitmap based on information about i-node bitmap from super block
j = 8192;
for (i = 0 ; 1<8 ; i++)
if (bh = sb->s_imap[il)
if ((j = find _first_ zero(bh->b_data))<8192)
break;
if (1bh || j > = 8192 || j+i*8192 > sb->s_ninodes) {
iput (inode) ;
return NULL;
}
if (set_bit(j,bh->b_data))
panic(“new_inode: bit already set”);
//above set i-node bitmap based on information about i-node bitmap from super block

bh->b dirt = 1; //1set revised flag of buffer block where i-node bitmap is as 1
//below set property of i-node

inode->i_count = 1;

inode->i nlinks = 1;

inode->i_dev = dev;

inode->i_uid = current->euid;

inode->i_gid = current->egid;

inode->i_dirt = 1;

inode->i num = j + i*8192;

inode->i mtime = inode->i_atime = inode->i ctime = CURRENT TIME;
return inode;

5.4.3 Create a New Content Item

The directory item of the file “hello.txt” is loaded into directory file user2. We first intro-
duce the schematic diagram of the directory file (Figure 5.10).

:The first :The second : The third : The fourth
:data block :datablock :datablock : datablock
{(LKB) {(1KB) :(1KB) (1 KB)

Directory file Case 1
pirecory e [T | Case
. . Case 4

The directory item which has
never been used

The directory item which has
been deleted after used

The occupied directory item

The new directory item that was
inserted continuously

Figure 5.10 Schematic diagram of the directory file.

260 5. File Operation

Situation 1 is the initial state of a content file. Situation 2 concerns deleting one of the
directory items (i.e., clear the i node number of directory items as 0). Situations 3, 4, and 5
involve loading directory items continuously.

The system calls the function add_entry() to create a new directory item.

The code is as follows:

//code path:fs/namei.c:

int open namei (const char * pathname, int flag, int mode,

res_inode)

inode = new_inode (dir->i_dev) ;
if (!inode) {

}

iput (dir) ;
return -ENOSPC;

inode->i_uid = current->euid;
inode->i_mode = mode;
inode->i_dirt = 1;

bh = add_entry(dir,basename,namelen, &de) ;

if (!bh)

}

de->inode = inode->i_num;

{

inode->i_nlinks— ;
iput (inode) ;

iput (dir) ;

return -ENOSPC;

bh->b dirt = 1;
brelse (bh) ;

iput (dir)

i

*res_inode = inode;

return 0;

struct m_inode **

//create new i-node

//set id of i-node user
//set i-node as access mode
//set use-flag of i-node as 1
//add directory item

//add i-node number in directory item

The task of the function add_entry() is to load a new directory item if an free item can
be found in the directory file. If not, the system will create a new data block in the periph-
erals to load. The scenario of loading is shown previously.

The code is as follows:

//code path:fs/namei

static struct buffer head * add entry(struct m _inode * dir,
const char * name, int namelen, struct dir entry ** res_dir)

int block,i;

-@3

struct buffer head * bh;

struct dir_entry

*res_dir = NULL;
#ifdef NO_TRUNCATE

* de;

if (namelen > NAME_LEN)
return NULL;

#else

if (namelen > NAME_LEN)
namelen = NAME_LEN;

//add directory item in
//directory file user2

5.4 Creating a New File

261

#endif
if (!namelen)
return NULL;
if (! (block = dir->i_zone[0])) //confirm logic block number on
//device of the first file block in directory file user2 (not 0)
return NULL;
if (! (bh = bread(dir->i_dev,block))) //load content of directory file into a
//data block
return NULL;

i=0;

de = (struct dir_entry *) bh->b data;

while (1) { //search idle directory item in directory file
// = = = = =load next data block to continue searching when whole data block has no free item

//create new data block on device to load new content item when all have no free item = = = = = =
if ((char *)de >= BLOCK SIZE+bh->b_data) {
brelse (bh) ;
bh = NULL;
block = create_block(dir,i/DIR_ENTRIES PER BLOCK) ;
if (!block)
return NULL;
if (! (bh = bread(dir->i_dev,block))) {
i += DIR_ENTRIES_PER BLOCK;
continue;

//=================== =find free item at end of data block, and load
//directory item where it is idle =
if (i*sizeof (struct dir_entry) >= dir->i_size) {
de->inode=0;
dir->i_size = (i+1)*sizeof (struct dir_ entry);
dir->i_dirt = 1;
dir->i_ctime = CURRENT TIME;

//=================== =find free item in middle of data block, and load
//directory item there = = = = = = = = = = = = = = == = = = =
if (l!de->inode) {
dir->i _mtime = CURRENT TIME;
for (i=0; i < NAME_LEN ; i++)
de->name [i] = (i<namelen) ?get_fs_byte (name+i) : 0;

bh->b dirt = 1;

*res dir = de;

return bh;

}
de++;
i++;

}

brelse (bh) ;

return NULL;

The code of the function create_block() is as follows:

//code path:fs/inode.c:
int create block(struct m_inode * inode, int block)
{
return _bmap (inode,block,1) ;
//last parameter is creating flag,here it is set as 1,meaning
//creating new data block probably, which is different in chapter 5.3.1

}

262 5. File Operation

After entering the function _bmp(), the code below is very important:

//code path:fs/inode.c:
static int _bmap (struct m _inode * inode,int block,int create)
{

struct buffer head * bh;

int 1i;

if (block<0) //if data block number of file to be operated is less
//than 0
panic(“_bmap: block<0”) ;
if (block > = 7+512+512*512) //if data block number of file to be operated is less
//than allowable limits
panic (“_bmap: block>big”) ;
//= = === === == = — - —not more than 7 logic blocks === === = = === = = = = = = =
if (block<7) { //file block number of data block to be operated is
//less than 7
if (create && !inode->i_zone [block]) //if it is to create a new data block,
//execute below code
if (inode->i_zone [block] = new_block(inode->i_dev)) {
inode->i_ctime = CURRENT_ TIME;
inode->i_dirt = 1;
}
return inode->i_zone [block] ; //return value of logic block number
//recorded in block item of i_zone

/[/= === === == = = = between 7 and (7+512) logic blecks = == = == == = = = = = = = —
block - = 7;
if (block<512) { //if file block number of data block to be
//operated is less than 512, block number of one-level indirect search file is needed
if (create && !inode->i_zone[7]) //if it is to create a
//new data block, execute below code
if (inode->i_zone([7] = new_block (inode->i_dev)) {
inode->i_dirt = 1;

inode->i_ctime = CURRENT_ TIME;

if (!inode->i_zone[7]) //return 0 directly if one-level block has
//no index number

return 0;

if (! (bh = bread(inode->i_dev,inode->i_zone([7]))) //get one-level indirect block
return 0;

i = ((unsigned short *) (bh->b data)) [block]; //get logic block number of block

//item in direct block
if (create && !i) //execute below code if it is to

//create a new data block
if (i = new_block (inode->i_dev)) {
((unsigned short *) (bh->b_data)) [block] = i;
bh->b_dirt = 1;

brelse (bh) ;
return i;
1
//== === === = = between 7+512 and 7+512+512*512 logic blocks = = = = = = = = = = = = =
block - = 512;
if (create && !inode->i_zone[8]) //execute below code if it is to create a
//new data block
if (inode->i_zone([8] = new_block (inode->i_dev)) {
inode->i_dirt = 1;
inode->i_ctime = CURRENT_ TIME;
if (!inode->i_zone[8]) //return 0 if one-level indirect block has no index
return 0;
if (! (bh = bread(inode->i_dev,inode->i_zone[8]))) //get one-level indirect block
return 0;
i = ((unsigned short *)bh->b_data) [block>>9]; //get logic block number of

//block/512 item in indirect block

5.4 Creating a New File 263

if (create && !i) //if it is to create a new data
//block, execute below code
if (i = new_block(inode->i_dev)) {
((unsigned short *) (bh->b data)) [block>>9] = i;
bh->b dirt = 1;

}

brelse (bh) ;

if (i)
return 0;

if (! (bh = bread(inode->i_dev,i))) //get two-level indirect block
return 0;

i = ((unsigned short *)bh->b_data) [block&511];//get logic block number of block&512 item

in indirect block

if (create && !1i) //if it is to create a new data block, execute below code
if (i = new_block (inode->i_dev)) {
((unsigned short *) (bh->b data)) [block&511] = i;
bh->b dirt = 1;

brelse (bh) ;
return 1i;

When the create flag is set, it’s not means creating a new data block without any
condition. Furthermore, we should ensure that the next file block does not exist, that is,
linode->izone]......] or ! is true; thus, apply a new data block. Similar to this example, when
loading the content of a directory item with no idle item found in a data block, the next
data block might have one idle item. If the data block is forced to be allocated, the existing
block will be overwritten, leading to directory file management confusion.

The task of creating a new data block is finished in the function new_block(). We will
introduce it in detail in Section 5.5.

The scenario of creating a new directory item is shown in Figure 5.11.

0x00000 Ox9FFFF OxFFFFF O0x3FFFFF Ox5FFFFF OxFFFFFF

_Kernel ‘ J
y | 9

ROM BIOS
and VGA

| hello.txt | Directory item

]‘ Create a new directory
item for hello.txt

Figure 5.11 Find idle directory item and add directory data.

264

5. File Operation

I 5.5 Writing a File

The process of writing a file by the OS is as follows: First, write data into the buffer from
the process memory; then, synchronize data from the buffer to the peripherals under the
appropriate conditions. Meanwhile, the OS synchronizes data in units of data block (1 KB)
from the buffer (1 KB) to the peripherals. This requires the buffer and logic block need to
be written in the peripherals should bind together before synchronizing. Make sure that
data to be written in the buffer block of the user memory can be exactly synchronized to
the specified logic block.
We first introduce how to determine the binding relationship.

5.5.1 Locate the Position of the File to Be Written In

The function write() is eventually mapped to sys_write(). This function checks the param-
eters. Then, call the function file_write() to write the file.
The code is as follows:

//code path:fs/read write.c:
int sys_write(unsigned int fd,char * buf,int count)//write file

{

struct file * file;
struct m_inode * inode;

if (fd> = NR_OPEN || count <0 || !(file = current->filp[£fd])) //whether fd, count is within
//reasonable range and file
//is open
return -EINVAL;
if (!count) //f amount of bytes written
//in is 0, return directly
return 0;
inode = file->f inode;
if (inode->i_ pipe)
return (file->f mode&2) ?write pipe (inode, buf, count) : -EIO;
if (S_ISCHR (inode->i_mode))
return rw_char (WRITE, inode->i zone[0],buf, count, &file->f pos) ;
if (S_ISBLK(inode->i_mode))
return block write(inode->i zone[0],&file->f pos,buf, count) ;

if (S_ISREG (inode->i_mode)) //make sure that file
//to be written is regular file
return file write(inode, file, buf, count) ; //write file

printk (™ (Write)inode->i mode =%060\n\r”,inode->i_mode) ;
return -EINVAL;

The parameter flags passed by the user process to determine the position of the data
to be written. Within the function file_write(), the system checks flag f_flags to determine
the position where data are written at first and then calls create_block() function, which
creates a peripheral logic block corresponding to the position of this file and returns the
logic block number.

5.5 Writing a File 265

The code is as follows:

//code path:fs/file _dev.c:
int file write(struct m_inode * inode, struct file * filp, char * buf, int count)
{

off_t pos;

int block,c;

struct buffer head * bh;

char * p;

int 1 = 0;

/*
* ok, append may not work when many processes are writing at the same time
* but so what. That way leads to madness anyway.

*/
if (filp->f flags & O_APPEND) //if you set add-write flag of the end of file
pos = inode->i_size; //pos is moved to the end of file
else
pos = filp->f pos; //begin to write in data directly at the position that

//file pointer f pos points to(in this example, f pos is 0)
while (i<count) {
if (! (block = create_block (inode, pos/BLOCK_SIZE))) //create logic block and
//return the number

break;
if (! (bh = bread(inode->i_dev,block))) //apply for buffer block
// (no need for reading)
break;

The code for creating a new data block corresponding to the specified i_zone[9] in the
i node is as follows:

//code path:fs/inode.c:
int create block(struct m inode * inode, int block)
{
return _bmap (inode,block,1) ; //last parameter is to create flag. When it is set as
//1, new block is created

//code path:fs/inode.c:
static int _bmap (struct m _inode * inode,int block,int create)
{

struct buffer head * bh;

int 1i;

if (block<0) //if data block number of file to be
//operated is less than 0
panic(“_bmap: block<0”) ;
if (block > = 7+512+512%512) //if data block number of file to be
//operated is more than available maxim
panic (“_bmap: block>big”) ;

if (block<7) { //blockN0if data block number “block”of data block
//file to be operated is less than 0. In this example, it is 0
if (create && !inode->i_zone [block]) //create a new data block

if (inode->i_zone[block] = new_block(inode->i_dev)) {//data block created
newly is corresponded to specified i_zone[9] in i-node.
inode->i_ctime = CURRENT_TIME;
inode->i_dirt = 1;
}
return inode->i_zone [block] ; //return value of logic block number
//recorded in item block in i_zone[9

266

5. File Operation

The creation of the new block is executed in the function new_block(). The content is
divided into two parts:

1. Set the bit in logic block bitmap corresponding to new created data block as 1.

2. Apply for buffer block for new created data block in buffer area, used to load con-
tents written in.

The code is as follows:

//code path:fs/bitmap.c:
int new _block(int dev)//create a new data block

{

struct buffer head * bh;
struct super block * sb;

int i,3;
if (!(sb = get_super(dev))) //get super block of device
panic (“trying to get new block from nonexistant device”) ;
j = 8192;
//= = = = = below is to set logic block bitmap of new data block based on information about
//logic block bitmap in super block
for (i = 0 ; 1i<8 ; i++)

if (bh = sb->s_zmapl[il)
if ((j = find first_ zero(bh->b data))<8192)
break;
if (i> = 8 || !bh || j> = 8192)
return 0;
if (set_bit (j,bh->b_data))
panic (“new _block: bit already set”);
//= = = =above is to set logic block bitmap of new data block based on information about
//logic block bitmap in super block

bh->b _dirt = 1; //set use-flag of buffer block where logic
//block bitmap is as 1
j + = 1*8192 + sb->s_firstdatazone-1; //find logic block number of data block
if (j > = sb->s_nzones)
return 0;
if (! (bh = getblk(dev,j))) //apply for new idle buffer block for new

//data block in buffer area
panic (“new_block: cannot get block”) ;
if (bh->b _count ! = 1)
panic (“new block: count is ! = 1”);
clear block (bh->b_data) ; //clear data in this logic block
bh->b_uptodate = 1; //set update-flag as 1
bh->b _dirt = 1; //set rewrite-flag as 1
brelse (bh) ;
return j;

5.5.2 Apply for a Buffer Block

The system calls bread(). Because a new buffer block is created by the function new_
block(), it is unnecessary to load the logic block from the peripherals. The code is as
follows:

5.5 Writing a File

267

//code path:fs/file dev.c:
int file write(struct m_inode * inode, struct file * filp, char * buf, int count)

while (i<count) {

if (! (block = create_block (inode, pos/BLOCK SIZE))) //create new data block
break;

if (! (bh = bread(inode->i_dev,block))) //load buffer block
break;

c = pos% BLOCK SIZE;

//code path:fs/buffer.c:
struct buffer head * bread(int dev,int block)

{

struct buffer head * bh;

if (! (bh = getblk(dev,block))) //data block is hooked to hash
//table and no need to read from peripherals

panic (“bread: getblk returned NULL\n”) ;
if (bh->b_uptodate) //set b_uptodate as 1 in

//new_block () ,and return directly

return bh;
11_rw block (READ, bh) ;
wait_on_buffer (bh) ;
if (bh->b_uptodate)

return bh;
brelse (bh) ;
return NULL;

5.5.3 Copy Specified Data from the Process Memory to the Buffer Block

Figure 5.12 shows an instance of copying specified data from the process memory to the

buffer block.

The characters “Hello, world” is about to be written and one bufter block is enough to

load it. So the while loop once runs one round.

0x00000 Ox9FFFF OxFFFFF 0x3FFFFF Ox5FFFFF
Kernel

ROM BIOS
and VGA

Load the data from main
memory to the buffer

OxFFFFFF

Figure 5.12 Copy data from the memory to the buffer.

268

5. File Operation

The code is as follows:

//code path:fs/file dev.c:
int file write(struct m _inode * inode, struct file * filp, char * buf, int count)

if (! (bh = bread(inode->i_dev,block))) //apply for buffer block
break;
c = pos% BLOCK SIZE; //calculate the number of bytes

//to be written into buffer block
p = ¢ + bh->b data;
bh->b dirt = 1;
c = BLOCK SIZE-c;
if (¢ > count-i) c = count-i;
pos + = c;
if (pos > inode->i_size) {

inode->i_size = pos;
inode->i_dirt = 1;
}
i+ =c
while (c— >0)
* (p++) = get_fs byte (buf++) ; //write data into specified
//buffer block
brelse (bh) ;

}

inode->i_mtime = CURRENT TIME;

if (! (filp->f_ flags & O_APPEND)) {
filp->f pos = pos;
inode->i_ctime = CURRENT_TIME;

}

return (i?i:-1);

At this point, data specified by the user process is not written into the hard disk, only
at the buffer. Next, we talk about how to synchronize data from the buffer to the hard disk.

5.54 Two Ways to Synchronize Data from the Buffer to the Hard Disk

Here are two ways to synchronize data from the buffer area to the hard disk. One is regular
synchronization “updata” and the other is that the OS forces synchronization because the
buffer area is limited.

The first way is as follows:

It is designed such that when the shell process runs for the first time, the update pro-
cess is started. This process will reside in the memory. Its function is to synchronize data
from the buffer area to the peripherals.

This process will call pause(), which is eventually mapped to the function sys_pause(),
resulting in the process being in an interruptible wait state. The OS will wake the updata
process intervally. When it runs, call the function sync() and synchronize data from the
buffer area to the peripherals.

The function sync() is eventually mapped to the system calling the function sys_
sync() to run. In order to guarantee the integrity of the file synchronization contents, it
needs to synchronize the file i node bitmap, the file i node, the file data block, and the logic
block bitmap corresponding to data block. Sys_sync() writes the modified file i node into
the buffer area (others are already in the buffer area) and then traverses the entire buffer.
As soon as the content of the buffer block is modified (b_dirt is set as 1), all are synchro-
nized to the peripherals.

5.5 Writing a File

269

The code is as follows:

//code path:fs/buffer.c:
int sys_sync(void)

int 1i;
struct buffer head * bh;

sync_inodes () ;

bh = start_buffer;

for (i=0 ; i<NR_BUFFERS ; i++,bh++) {
wait_on_buffer (bh) ;
if (bh->b dirt)

11_rw_block (WRITE,bh) ;

return 0;

//write i-node into buffer area

//traverse the entire buffer area

//\if buffer block is in-use, wait for
//unlocking this buffer block

//as soon as content of this buffer block
//is modified

//synchronize content of buffer block to
//peripherals

The task that synchronizes the i node is completed by the function sync_inode().

The code is as follows:

//code path:fs/inode.c:
void sync_inodes (void)
{

int 1i;

struct m_inode * inode;

inode = 0+inode_table;
for(i=0 ; i<NR_INODE ; i++,inode++) {
wait_on_inode (inode) ;

if (inode->i_dirt && !inode->i_pipe)

write_inode (inode) ;

//code path:fs/inode.c:
static void write_inode(struct m_inode * inode)
{

struct super block * sb;

struct buffer head * bh;

int block;

lock_inode (inode) ;

if (!inode->i_dirt || !inode->i_dev) ({
unlock_inode (inode) ;
return;

}

if (! (sb = get_super (inode->i_dev)))

//traverse all i-node

//if i-node traversed is in use,

//wait for this i-node to be unlocked
//if content of i-node has been
//modified and it is not i-node of pipe file
//synchronize i-node to buffer area

//lock up i-node to avoid
//interruption

//get super block of peripherals

panic (“trying to write inode without device”) ;
block = 2 + sb->s_imap_blocks + sb->s_zmap blocks +

(inode->i_num-1) /INODES_PER BLOCK;
if (! (bh = bread(inode->i_dev,block)))

panic (“unable to read i-node block”) ;

//logic block number of i-node bitmap in
//peripherals
//load logic block where i-node is into
//buffer area

270

5. File Operation

((struct d_inode *)bh->b_data) //synchronize i-node to buffer area
[(inode->i_num-1) $INODES_PER_BLOCK] =
* (struct d_inode *)inode;

bh->b dirt = 1; //set b_dirt of buffer block as 1
inode->i_dirt = 0; //set i_dirt of i-node as 0
brelse (bh) ;

unlock_inode (inode) ; //unlock i-node

After synchronization is completed, the update process will be suspended, and con-
tinues to synchronize the buffer block after the next waking up.

The second way is as follows:

Example 2 is simple because data written in the buffer area is less. We may alter it
slightly. The code is as follows:

void main ()

{
char strl[] = “Hello, world”;
int 1i;
//create new file
int £d = creat (“/mnt/user/userl/user2/hello.txt”,0644)) ;
//write in file
for(i = 0;1<1000000;i++)

int size = write(fd,strl,strlen(strl)) ;

Consider the following scenario: the data to be written is more than 10 MB, but the
buffer area is certainly not more than 10 MB. How can data be written then if the buffer
area is full before process update is woken up? For data to continue to be written, data in
the buffer area must be forced to synchronize with the hard disk, in order to leave enough
space to write on.

This task is completed by the function getblk(), introduced in Section 3.3.1.2. When
all free blocks in the buffer area are unable to be written in data(b_dirt is 1), it means it
needs more space.

The code is as follows:

//code path:fs/buffer.c:
struct buffer head * getblk(int dev,int block)
{

struct buffer head * tmp, * bh;

repeat:
if (bh = get_hash table(dev,block))
return bh;
tmp = free list;
do {

5.5 Writing a File 271

if (tmp->b_count)
continue;
if (!bh || BADNESS (tmp)<BADNESS (bh)) {
bh = tmp;
if (!BADNESS (tmp))
break;

/* and repeat until we find something good */
} while ((tmp = tmp->b_next_ free) != free_list); //find free buffer block (not
//equal to b_dirt is 0)
if (1bh) {
sleep on(&buffer wait) ;
goto repeat;
}
wait_on_buffer (bh) ;
if (bh->b_count)
goto repeat;

while (bh->b_dirt) ({ //though there is free buffer block, buffer area has
//mo usable buffer block because b _dirt is 1, and it needs to synchronically in order to more space
sync_dev (bh->b_dev) ; //synchronize data

wait_on buffer (bh) ;
if (bh->b_count)
goto repeat;

/* NOTE!! While we slept waiting for this block, somebody else might */
/* already have added “this” block to the cache. check it */

if (find buffer (dev,block))

goto repeat;

/* OK, FINALLY we know that this buffer is the only one of it’s kind, */
/* and that it’s unused (b_count = 0), unlocked (b_lock = 0), and clean */

bh->b_count=1;

bh->b dirt=0;

bh->b_uptodate=0;

remove_from queues (bh) ;

bh->b_dev=dev;

bh->b_blocknr=block;

insert_into_queues (bh) ;

return bh;

Those are two ways to synchronize data.

They are worth discussing below.

In Section 5.5.3, the data block that p points to is newly applied so that writing data
from the beginning of a specified data block does not affect existing data. However, if the
file “hello.txt” is not a newly created file but an existing file, writing data in any data block
that p points to will overwrite the existing data beyond the writing point in this data block
(unless p points to end).

It means that the user can only add in data at the end of the file. If data is modified
in the middle of the file, relying solely on the function sys_write() is not enough. Thus,
how does OS handle more complex situations of modifying data? It is explained in detail
below.

5.6 Modifying a File

The nature of modifying files is to insert and delete data anywhere without affecting the
existing data in the file. The solution to this problem is to call the functions sys_read(),
sys_write(), and sys_Iseek(). The functions sys_read() and sys_write() have been described
in Sections 5.3 and 5.5. Now, we will first introduce the function sys_Iseek() and then
describe how to use it in combination with the other functions.

272

5. File Operation

5.6.1 Reposition the Current Operation Pointer of the File

The user processes call the function Iseek() to reposition the current operation f_pos; it is

eventually mapped to the function sys_Iseek() to execute.

The code is as follows:

//the code path:include/Unistd.h:

#define SEEK SET 0 //indicate
#define SEEK CUR 1 //indicate
#define SEEK END 2 //indicate

//the code path:fs/read write.c:

that shift from the start of the file
that shift from the current place
that shift from the end of the file

int sys_lseek(unsigned int fd,off t offset, int origin)

//adjust the file operation pointe, offset is the bytes shifted from f _pos to the end of the

//file

{

struct file * file;
int tmp;

if (f£d >= NR_OPEN || ! (file=current->filp[fd]) || ! (file->f_inode)
|| !IS_SEEKABLE (MAJOR (file->f_ inode->i_dev)))

return -EBADF;
if (file->f inode->i_pipe)
return -ESPIPE;
switch (origin) {

case 0: //set the file starting place as the starting point, set

//file->f pos
if (offset<0) return -EINVAL;
file->f pos=offset;

//set file->f pos as the current file operation place

if (file->f pos+offset<0) return -EINVAL;

//set the file ending place as the starting point, set

//file->f pos

if ((tmp = file->f_ inode->i_size+offset) < 0)

return -EINVAL;

break;

case 1:
file->f pos += offset;
break;

case 2:
file->f pos = tmp;
break;

default:

return -EINVAL;

}

return file->f pos;

5.6.2 Modifying Files

Now, let us assume that hello.txt is an existing file in your hard disk, and its content is
“Hello,world.” Here, using sys_read(), sys_write(), and sys_Iseek() in combination, we

insert the data to the file hello.txt.
The code is as follows:

#include <fcntl.hs>
#include <stdio.h>
#include <string.h>

5.6 Modifying a File

273

#define LOCATION 6

int main(char argc, char **argv)

{

char strl[] = “Linux”;
char str2[1024];
int fd, size;

memset (str2, 0, sizeof (str2));

fd = open(“hello.txt”, O_RDWR, 0644);
lseek (fd, LOCATION, SEEK_SET) ;

strcpy (str2, strl);

size = read(fd, str2+5, 6);

lseek (fd, LOCATION, SEEK_SET) ;
size = write(fd, str2, strlen(str2));

close (fd) ;
return 0;

}

This program is to insert the string “Linux” into the hello.txt file; eventually, the hello.
txt file should be “Hello, Linuxworld.”

fd = open(“*hello.txt”, O_RDWR, 0644);

The function open() maps to the function sys_open() and opens the file you will
operate.

lseek (fd, LOCATION, SEEK_SET) ;

The function Iseek() maps to the function sys_lIseek(); the third parameter is SEEK_
SET, which indicates that the current operation pointer is 6 bytes from the beginning of
the file.

strcpy (str2, strl);

This line means copy string “Linux” to the beginning of the array str2[1024].

size = read(fd, str2+5, 6);

The function read() maps to the function sys_read(); it reads the content of the file
hello.txt. The parameter “str2+5” means to copy the content of the file hello.txt to the
sixth element of the array str2. The parameter “6” indicates that it will read out the file’s
six characters. The function lseek(FD, LOCATION, SEEK_SET) has shifted the current
operation pointer to 6 bytes from the beginning of the file; hence, the content to be read
out is the string “world.” Finally, the result is “Linuxworld.”

lseek (fd, LOCATION, SEEK_SET) ;

274

5. File Operation

This line is the same as the earlier one. They changed the current operation pointer to
determine where to write the files.

size = write(fd, str2, strlen(str2));

The function write() maps to the function sys_write(). It writes the string “Linuxworld”
to the file hello.txt, and the final result is “Hello, Linuxworld.”

Example 3: close the file and then remove it from the file system. We may rewrite
the code in Section 5.6. The new code is as follows:

#include <fentl.hs>
#include <stdio.h>
#include <string.h>

#define LOCATION 6

int main(char argc, char **argv)

{
char strl[] = “Linux”;
char str2[1024];
int fd, size;
memset (str2, 0, sizeof (str2)) ;
fd = open (“/mnt/user/userl/user2/hello.txt”, O RDWR, 0644);
lseek (fd, LOCATION, SEEK_SET);
strcpy (str2, strl);
size = read(fd, str2+5, 6);
lseek (fd, LOCATION, SEEKﬁSET);
size = write(fd, str2, strlen(str2));
//close the file
close (fd) ;
//delete the file
unlink (“/mnt/user/userl/user2/hello.txt”) ;
return 0;
1

IB 5.7 Closing a File

Closing a file is completed by close().

5.7.1 Disconnecting Filp and File_table[64] in the Current Process

The function close() maps to the function sys_close(), and it disconnects the current pro-
cesses’ file_table[64] and *filp[20] in the task_struct, as shown in Figure 5.13.

5.7 Closing a File

275

0x00000 Ox9FFFF OxFFFFF Ox3FFFFF Ox5FEFFF OxFFFFFF

s s

. The page that

LK task_struct of

. task_struct of user process resides
user process | .""-..... P
e Se. teel,

.. Kernel code area *Kernel data area

File_table[64] | .

. ||| Filp[20]

Remove the association between process and filp[20]
Figure 5.13 Overview of closing a file.

The code is as follows:

//the code path:fs/open.c:
int sys_close(unsigned int £fd)

{

struct file * filp;

if (fd > = NR_OPEN)
return -EINVAL;
current->close_on_exec & = ~(1l<<fd);
if (! (filp = current->filp[£fd]))
return -EINVAL;
current->filp[£d] NULL; //set £d in filp[20] to NULL
if (filp->f_ count = 0)
panic(“Close: file count is 0”);
if (— filp->f count) //decline the file handle reference counting in
//file_table[64]

return (0);
iput (filp->f_inode); //disconnecting the node i with file table[64]
return (0);

Note:

The structure file_table[64] manages all file operations. Other processes may be
in operation on the file hello.txt at this time and use the same structure (which
we have introduced in Section 5.2.1). Filp->f_count reduces the reference count,
instead of being simply emptied. Of course, in example 3, if there is no process
operating on the file, filp->f_count will decrease to 0 and the list item in file_
table[64] becomes free.

276 5. File Operation

5.7.2 Releasing the Files’ i node

The releasing procedure is as follows: First, by checking the various properties of the
i node, in example 3, one can determine whether the contents of the i node have been
changed. Therefore, the i node should be synced to the specified buffer block at first. Then,
by decreasing i_count to 0, the i node in inode_table[32] becomes available.

The code is as follows:

//the code path:fs/open.c:

void iput (struct m_inode * inode) //releasing the i-node of files
{
if (!inode)
return;
wait_on_inode (inode) ; //the i-node is probably being used, so waiting
if (!inode->i_count) //if the releasing i-node’s reference count is 0
panic (“iput: trying to free free inode”) ;
if (inode->i_pipe) { //if the i-node is a pipe file’s i-node
wake up (&inode->i_wait) ;
if (-~ 4inode->i_count)
return;
free page(inode->i_size) ;
inode->i_count = 0;
inode->i_dirt = 0;
inode->i_pipe = 0;
return;
}
if (linode->i_dev) { //if the device number is 0
inode->i_count— ; //decline the count
return;
if (S_ISBLK(inode->i_mode)) { //if the i-node is a block device file’s i-node
sync_dev (inode->i_zone [0]) ; //sync it to the peripheral

wait_on_inode (inode) ;

}

repeat:

if (inode->i_count>1) { //the reference count of i-node is bigger then 1
inode->i_count— ; //decline the count
return;

if (!inode->i_nlinks) { //if the i-node’s link count is 0
truncate (inode) ; //release all the logical block of the i-node
free_inode (inode) ; //release this i-node
return;

}
if (inode->i_dirt) ({
//for this case,the content of the i-node is changed, sync it to the peripheral
write_inode (inode); /* we can sleep - so do again */
wait_on_inode (inode) ;
goto repeat;

}

inode->i_count— ; //decline the i-node’s reference count
return;

Il 5.8 Deleting a File

Deleting files is different from closing files. Closing files only disconnects the binding
point in file_table[64] of current process with the file hello.txt, but deleting a file means all
the processes in the computer would have no access to the file.

5.8 Deleting a File

277

Tip:

In Linux 0.11, using the system call sys_link to set the path “/mnt/user/Zhang/
chengxu.c” pointing to the path “/mnt/user/hello.txt” file is permitted, and it is
similar to the shortcuts under Windows. It allows different users to build their
own familiar path name and file name to access the files they want, rather than
having to remember the original path name. In the i node, use the i_nlinks to
identify how many path names (directory) link to a file. When establishing such
alink,i_nlinks increases by 1.

5.8. Checking the Deleting Conditions of Files

In example 3, the function unlink() eventually maps to the sys_unlink() system call.
Getting the i node of the file hello.txt and then checking the information of the file’s prop-
erty and permissions will determine whether the file can be deleted.

The code is as follows:

//the code path:fs/namei.c:
int sys_unlink(const char * name)
{
const char * basename;
int namelen;
struct m_inode * dir, * inode;
struct buffer head * bh;
struct dir entry * de;

if (!(dir = dir_namei (name, &namelen, &basename)))
//analysing the path name, finding the topmost i-node of the deleting files
return -ENOENT;
if (!namelen) ({ //if namelen is 0
iput (dir) ; //release the topmost i-node
return -ENOENT;
}
if (!permission(dir,MAY WRITE)) {
//if the user process has no writing authority to the file
iput (dir) ; //release the topmost i-node
return -EPERM;

}

bh = find entry(&dir,basename,namelen, &de) ; //get the file’s directory entry
if (!bh) {
iput (dir) ;

return -ENOENT;

}

if (! (inode = iget (dir->i_dev, de->inode))) {
//get the i-node of the deleting file
iput (dir) ;
brelse (bh) ;

return -ENOENT;

}

if ((dir->i_mode & S_ISVTX) && !suser() &&

current->euid != inode->i_uid &&
current->euid != dir->i_uid) {
//if the user process has no writing authority to the file
iput (dir) ; //release the topmost i-node
iput (inode) ; //release the i-node of the target file
brelse (bh) ;

return -EPERM;

if (S_ISDIR(inode->i_mode)) { //if the target file is a directory file
iput (inode) ; //release the i-node of the target file
iput (dir) ; //release the topmost i-node
brelse (bh) ;

return -EPERM;

if (!inode->i_nlinks) {

278 5. File Operation

//if this i-node’s link is 0,

then set it to 1

printk (“Deleting nonexistent file (%04x:%d),%d\n”,
inode->i_dev, inode->i_num, inode->i nlinks) ;

inode->i nlinks=1;

//the following delete the files

de->inode = 0;
bh->b dirt = 1;
brelse (bh) ;
inode->i_nlinks— ;
inode->i_dirt = 1;

inode->i_ctime = CURRENT TIME;

iput (inode) ;
iput (dir) ;
return 0;

5.8.2 Specific Deleting Work
The process of deleting the hello.txt file is shown in Figure 5.14.

The code is as follows:

//the code path:fs/namei.c:

int sys_unlink(const char * name)

{

const char * basename;
int namelen;

struct m_inode * dir, * inode;

struct buffer head * bh;
struct dir entry * de;

//the following delete the files

de->inode = 0;
bh->b dirt = 1;
brelse (bh) ;
inode->i_nlinks— ;
inode->i_dirt = 1;

inode->i_ctime = CURRENT_TIME;

iput (inode) ;
iput (dir) ;
return 0;

0x00000 Ox9FFFF OxFFFFF
Kernel

Clear the bitmap
of logical block

Clear the
i node bitmap

Figure 5.14 Delete the file hello.txt.

O0x3FFFFF

//clear the directory item of hello.txt in user2
//set the buffer block b_dirt to 1

//decline the links of the target file
//set the target file’s i-node to 1

//release the i-node of file hello.txt
//release the i-node of user2 directory file

O0x5FFFFF OxFFFFFF

o ——

Directory item

Set the directory item
of hello.txt to free

5.8 Deleting a File

279

Note that the execution of the function iput() is different from that in Section 5.7.2.

The code is as follows:

//the code path:fs/open.c:
void iput (struct m_inode * inode)

{

repeat:
if (inode->i_count>1) {
inode->i_count— ;

//release the target file’s i-node

//decline the reference count

return;

}

if (!inode->i_nlinks) {

//the reference count of i-node is bigger than 1

//now, the link number is 0, it means there is no process connecting to the i-node

truncate (inode) ;
//according to i-node’s i_zone[9], release the logical block of the file
free_inode (inode) ;
//clear the bit in the i-node’s bitmap, and clear the inode_table[32]
return;
}

if (inode->i_dirt) {
//for this example, the content of i-node has changed, sync it to peripheral

write_inode (inode); /* we can sleep - so do again */
wait_on_inode (inode) ;
goto repeat;

}

inode->i_count— ;

return;

//decline the i-node’s referenc

The system calls the function truncate(), according to the i node’s i_zone[9], and

releases all logic blocks of the file on the peripherals.

The code is as follows:

//the code path:fs/open.c:
void truncate (struct m_inode * inode)

{

int 1i;
if (! (S_ISREG(inode->i mode) || S_ISDIR(inode->i_mode)))
//if the file hello.txt is not a normal or directory file
return; //return directly

for (i=0;i<7;i++)
if (inode->i_ zonel[i]) {
free block (inode->i_dev, inode->i_zone[i]) ;
//set the former 7 bit of i_zone to 0
inode->i_zone[i]=0;
}

free_ind(inode->i_dev, inode->i_zone[7]) ;
//set the logical blocks of level 1 indirect block and the manager
//logical block to 0

free_dind(inode->i_dev, inode->i_zone [8]) ;
//set the logical blocks of level 2 indirect block and the manager
//logical block to 0

inode->i_ zone[7] = inode->i_zone[8] = 0;
inode->i_size = 0;

inode->i_dirt = 1;

inode->i mtime = inode->i_ ctime = CURRENT TIME;

280

5. File Operation

The system calls the function free_inode() to clear the i node bitmap and table item.
The code is as follows:

//the code path:fs/bitmap.c:
void free_inode (struct m_inode * inode)
{
struct super block * sb;
struct buffer_head * bh;

if (!inode) //if the i-node is NULL
return;

if (linode->i_dev) { //if the device number is 0
memset (inode, 0, sizeof (*inode)) ;
return;

}

if (inode->i_count>1) { //if the i-node is multiple referenced
printk (“trying to free inode with count =%d\n”,inode->i_count) ;
panic (“free_ inode”) ;

}

if (inode->i_nlinks) //if the i-node is connected to the process
panic(“*trying to free inode with links”);
if (! (sb = get_super (inode->i_dev)))

//if the i-node’s file system has no superblock
panic(“*trying to free inode on nonexistent device”);

if (inode->i num < 1 || inode->i num > sb->s ninodes)//check i-node number
panic(“trying to free inode 0 or nonexistant inode”) ;
if (! (bh = sb->s_imap[inode->i num>>13]))

//if the i-node’s has no bitmap
panic (“nonexistent imap in superblock”) ;
if (clear_bit (inode->i_num&8191,bh->b_data)
//clear the bit corresponding to hello.txt in the i-node’s bitmap
printk (“free_inode: bit already cleared.\n\r”);
bh->b_dirt = 1;
//set the buffer block b_dirt to 1
memset (inode, 0, sizeof (*inode)) ;
//clear the file hello.txt’s i-node to 0 in the i-node table

}

The OS syncs the emptied i node bitmap, logical block bitmap, and i node table infor-
mation to your hard disk (but does not clear its content in the logical block). These are
management information from the file hello.txt. This information are no longer exists,
and even if the logical block contents of file were stored in the hard disk, you would no
longer have access to them.

5.8 Deleting a File

28I

This page intentionally left blank

The User Process and
Memory Management

The important feature of modern operating systems is that they support real-time mul-
titasking, that is, running multiple programs simultaneously. The running programs are
called processes. In the viewpoint of the designers of the UNIX system, the core of the
operating system is the process, the so-called OS is actually a number of running pro-
cesses. According to this principle, the creation of process can only be borne by process,
that is, the parent-child process creation mechanism. In any case, there is at least one pro-
cess in the OS, that is, process 0. Also, a special process is responsible for users interacting
with the computer, that is, the shell process. In short, everything is the process.

When one computer has only one with only one core, the essence of multiple pro-
cesses running simultaneously is time shared running by turn. To ensure multiple pro-
cesses running at the same time in a correct way, you must solve two key issues: one is how
to prevent one process’s code and data from interacting with another; the other is how to
make it possible for the multiple process to run in an orderly way.

The first problem involves the protection of the process, and the second problem is for
scheduling of the process.

In Intel IA-32 architecture, process protection embodies the protection of the mem-
ory space, and protection of process memory space is achieved by linear address protec-
tion and physical address protection.

283

ID 6.1 Linear Address Protection

Now, computers basically follow the Von Neumann system. In the system, instruction and
data are stored in the same memory. Memory designed as random-access memory (RAM)
can read and write data or instructions arbitrarily. When there is no protected mode,
different user program codes and data have no physical difference; they are formed by a
series of Os and 1s. There is no mechanism to stop mutual interference between different
user programs.

When supporting real-time multitasking, the first problem is how to ensure that
every process has no interference with other processes, that is, ensure one process has no
access to the other process’s codes and data.

6.1.1 Patterns of the Process Linear Address Space

In the intel IA-32 CPU architecture, as long as it opens PE and PG, all programs that are
running on your computer use only the linear address and turn it into a physical address;
the conversion is done by the hardware automatically.

The linear address is the address that the CPU can address. Under the IA-32 archi-
tecture, the linear address space ranges from 0 to 4 GB when the address bus is 32-bit. In
order to separate the address memory space, Linux 0.11 separates the 4 GB linear address
space into 64 portions; every portion is 64 MB, and every process owns one portion, up
to open 64 processes. It requires that the process cannot cross the starting point and the
ending point. In this way, the linear address space of the processes are not overlapping
each other, achieving the protection of process memory space. This is the core design of
OS Linux 0.11; any other designs should be subordinated to this pattern.

Task[64] is the basic point of this pattern; the registration and cancellation of all pro-
cesses are centrally managed by it; only positioned in task[64], a process can be arranged
in linear address space. According to nr in task[64], the OS can find corresponding LDT
in the GDT. Task[64] has a key role to control the total processes and connect the process
with LDT and TSS in the GDT.

Although planning out the 64 divided 4 GB equally in the linear address space’s struc-
ture, can it effectively stop the visit of access across a 64 MB linear address space? In other
words, can it ensure that the linear address spaces of the process do not overlap each other?

While operating system kernels make out a structure about the linear address space
of process, it cannot only rely on algorithms and controlling logic to block cross-boundary
processes. The reason is that CPU can perform only one instruction at a time, further-
more, it cannot execute kernel instruction when it is implementing the instruction of pro-
cess. So, no matter how beautiful the algorithm to control cross-boundary processes, it
isn’t executing, and it can’t control cross-boundary processes when the process implement
visits a cross-boundary process.

The software does not work; it can only rely on the hardware.

Intel TA-32 architecture designed a method that was based on the hardware of the
CPU process control method of access across borders.

6.1.2 Segment Base Addresses, Segment Limit,
GDT, LDT, and Privilege Level

The protection of Intel IA-32 to the linear address space is based on the segment.

284

6. The User Process and Memory Management

Historically, as the function (subroutine) link needed, the divide segment method in
memory was invented. All designs are based on segments. Linear address space is one-
dimensional, so we only need to look at both ends of a linear address space, making the
procedure work in segment space without overstepping the boundary; it won’t interfere
with other segments.

Early Intel CPUs, in order to reduce costs, were only designed with the starting posi-
tion of head register without an ending register. In order to compatible with early CPUs,
Intel IA-32 (head) structure designed a segment limit in head register. One register acts
as two registers.

With the help of Intel IA-32 CPU architecture providing a segment base and limit, the
Linux 0.11 operating system stops the crossing of the border behavior in the segments. For
example, JMP x, if x is large and exceeds a limit, hardware will block this act and report a
general protection (GP) fault immediately.

To the ljmp code across segment boundaries in the process, the base address and seg-
ment limit cannot prevent the 1jmp crossing boundary process code. What method does
the Linux 0.11 operating system use to block illegal access across a process?

There are two ways of illegally crossing the border. One is one process crosses to
another process illegally; the other is a process crosses into the kernel.

One process crossing to another process illegally. From a IA-32 perspective, 1jmp
instructions illegally cross one process to another process, the code segments of two pro-
cesses are all 3 privilege level, and all the processes of Linux 0.11 are arranged in a linear
address space of 4 GB. So, this 1jmp instruction is permitted to execute. Segment base
addresses and limits can’t prevent illegal trans-border effects. Linux 0.11 stopped illegal
ljmp instruction execution, which was supported by LDT.

In Chapter 2, we explained GDT, LDT’s design of the Linux 0.11 operating system.
There are 64 processes, and each process consumes two GDT items: one TSS; another is
LDT. All processes of LDT are designed the same. Each LDT has three items; the first
item is empty, the second is the process of the code segment, and the third is the process
data segment. If there is an illegal cross-process jump instruction in the process code,
for example, when the ljmp instruction executes, the following instruction operation is
“offset within segment selectors.” Segment selectors of the code segments are inside the
CS. Look carefully; it can be seen that the content of all processes CS are same in Linux
0.11 operating system; in the binary expressed form it is: 0000000000001111. CPU hard-
ware is unable to identify CS belongs to any process, so it isn’t able to select the specific
segment descriptor, and only can use the current LDT as default segment descriptors. As
the ljmp instructions, which can jmp between segments, no matter how the operands are
written, it is unable to cross the current process code, and it also will not be able to jump
between segments; it is only the implementation of this segment. This shows that Linux
0.11 designs what appears to be duplicate of LDT, but genius.

Imagine if Linux 0.11 is not designed as this, but write all the code segment descrip-
tors of process directly into the GDT. To the Linux 0.11, all processes share a 4 GB
linear address space; the illegal jump instruction across processes can be performed
unimpeded.

According to this thinking, you can see that Linux 0.11 is not very good in preventing
illegal long jumps between processes. We have introduced TSS and LDT in the Chapter 2
that the limits of them are the same, 104 B; the limit for TSS is appropriate but too long for
LDT; LDT has only three entries; each entry is 8 bytes; the total is only 24 B. We can see

6.1 Linear Address Protection

285

from the INIT TASK of process 0 that the LDT is immediately followed by TSS, and this
data structure would be given to the child process when it is created, so all process’s LDT
and TSS in the task_struct are the same. If the process code is like this:

Ljmp offsets, CS (CS is 0000000000111111, namely: privilege level in the 3, LDT table
of the 8th).

This instruction will still be performed within a segment, and the content of LDT
base with offset 8 is unpredictable; occurring errors are unpredictable. No matter what
the errors, they are unable to cross process boundaries nor to change the LDT.

Looking at this issue in turn, even if an illegal long jump instruction across the pro-
cess can be executed, just the code jump, data, and stack segments do not transform. Code
executes in one process, and data and stack execute in another process under these con-
ditions, and the code will generally perform dead. From the reverse angle, we can gain a
deeper understanding of why the normal process of switching is using TSS to transform
all code, data, and stack. To make a correct process switch, you must save the execution
state of the process and switch to another process fully and completely.

The above explanation describes how to use ljmp illegal crossing from one process to
another process, and a procedure is discussed below about [jmp crossing into the kernel
illegally.

Crossing into the kernel from an illegal process. The user process privilege level is
3, and the kernel privilege level is 0. Intel IA-32 forbids the program to jump across the
privileged level, and privilege level 3 jumps to privilege level 0 are forbidden. Also, privi-
lege level 0 jumps to privilege level 3 are forbidden. So it is clear that the CPU would pre-
vent the long jump effectively, and the border of the processes and kernel has an effective
protection. The code of privilege level 0 has access to the data of privilege level 3; however,
the code of privilege level 3 has no access to the data of privilege level 0. These prohibitions
are very rigid by hardware.

As is seen from the explanation above, the settings of GDT and LDT could prevent
the illegal visiting of one process to another. Could a user process modify the GDT and
LDT? The answer is no. Because Linux 0.11 put the GDT and LDT structures into the ker-
nel data area, they are at the privilege level 0, and only privilege level 0 code can modify
them.

However, could a user process create the GDT and LDT in their own data segment
based on their willingness? If they only form a set of data structures like GDT and LDT,
it’s, of course, OK, but they can’t play the real role of GDT and LDT. The real GDT and
LDT must be recognized by the CPU, both their first addresses should be hooked on the
CPU’s GDTR, LDTR, in the running time, and the CPU only recognizes the data struc-
tures that the GDTR and LDTR point to, even if there are other data structures called
GDT and LDT that the CPU cannot recognize. The Linux 0.11 kernel attached GDT, LDT
to GDTR, LDTR at the initialization phase of the process.

Can user processes attach their own GDT, LDT to GDTR, LDTR? The answer is no.
Because the set instructions of LGDT and LLDT, which load GDTR and LDTR respec-
tively, they could only run in the privilege level 0.

Now, we can see clearly that the Linux operating system designs a set of hardware
protection mechanisms based on the Intel IA-32 architecture, including the segment base
address, segment limit, GDT, LDT and privilege. It creates a solid boundary between pro-
cess and process and process and kernel in the linear address and prevents the illegal visit
from being effective.

286

6. The User Process and Memory Management

Then, how to solve the reasonable data communication across the border between
processes? How to operate it when switching between processes or when the process needs
the reasonable support of the operating system kernel?

The first question, we will introduce in Chapter 8 on communication between processes.

The second question relates to a TSS and CPU hardware interrupt.

The process switching of Linux 0.11 is completed by schedule()?, and its technology
route likes the task gate (but not the task gate). It is in the privilege level 0, using instruc-
tion ljmp jump directly to the TSS of switching process (it seems strange to jump from
instruction to data, but actually, the CPU does a lot of the work, eventually jumping to the
target process’s code segment) to achieve process switching.

When the processes want to be supported by the kernel (such as read), it can use
the interrupt technique that the Intel IA-32 architecture provides, which could support
the jump from privilege level 3 to privilege level 0. Note that the jump is not an ordinary
jump; it requires the CPU’s interrupt mechanism, unlike the flat, normal jump in memory
address. Once you have been supported by the kernel, use the iret instruction to jump
from privilege level 0 to privilege level 3 to continue your own process.

6.2 Paging
6.2.1 Linear Address to Physical Address

Previously, we introduced linear address, and the linear address has to convert to a physi-
cal address eventually. Linux 0.11 open PG before idling, the linear address mapped to the
physical address through the three mapping modes of page directory table - page table -
page. Code is shown below:

//Code path:boot/head.s:

xorl%eax,%eax /* pg dir is at 0x0000 */

movl%eax,%cr3 /* cr3 - page directory start */

movl%cr0, $eax

orl $0x80000000, %eax

movl%eax,%cr0 /* set paging (PG) bit */ //set CRO, open PG
ret /* this also flushes prefetch-queue */

Through the introduction in the first chapter, we learned that PE has already opened
before opening the PG and switched to protected mode. The CPU hardware default, in
protected mode, the linear address equally maps to the physical address. If you open the
PG, the linear address needs to be resolved through the MMU and mapped to the physi-
cal address through the three mapping modes of page directory table - page table - page.

In protected mode, whether opened PG, the influence of the linear address map to the
physical address is shown in Figure 6.1.

Why does Linux 0.11 open PG? We have introduced that in the IA-32 system the
linear address space ranges from 0 to 4 GB and has been divided equally by 64 processes;
each has 64 MB, and if the PG is not open, the linear address can only map to the physical
address on the basis of the CPU default rules, and Linux 0.11 only supports 16 MB physical

6.2 Paging

287

Linear address

Close PG Q Open PG

MMU

Physical address

Figure 6.1 Influence of PG on linear address mapping.

memory, so apparently most of the linear address space are wasted and cannot support
multiple processes executed simultaneously, so the open PG, according to the actual car-
rying capacity of the physical memory, maps the linear address of the process to the physi-
cal address, in order to support multiple process execution.

The progress of linear address mapping to the physical address is like this: The value
of each linear address is 32, and the MMU identifies a linear address value according to the
10-10-12 length and analyzes it to the page directory item number, page table item number,
the page offset, and finally maps to the physical address. The progress is shown in Figure 6.2.

Linux 0.11 only has a page directory table; the CR3 stores the base address of the page
directory table. The MMU should find out the information in CR3 when analyzing the
linear address; then it can find the page directory table and have the following resolution,
so the most important thing is to make the page directory table base address load to the
CR3 before opening the PG.

31 22 21 12 11 0
Linear address | Page directory item Page table item Page offset
Page directory table Page table Page
Page directory item 1
Page table item The P hYSical
| address mapped
CR3 B L -

Figure 6.2 Linear address mapping to a physical page based on page directory, page table.

288 6. The User Process and Memory Management

Code is shown in below:

//Code path:boot/head.s:

stosl /* £ill pages backwards - more efficient :-) */
subl $0x1000, $eax
jge 1b

xorl%eax, %eax /* pg dir is at 0x0000 */

movl%eax, %cr3 /* cr3 - page directory start */ //load the base
//address 0 of page directory table to CR3

movl1%cr0, $eax

orl $0x80000000, $eax

movl%eax, $cr0 /* set paging (PG) bit */ //set CRO, open PG

ret /* this also flushes prefetch-queue */

We can find the page directory item in the page directory table through parsing the
page directory item’s 10 bits of data of the linear address value. The page directory item
records the physical address of the page table, and we can find the location of the page
table accordingly. Then we can find the page table item through parsing the 10 bits of data
of the linear address value which represents the page table item. Similarly, the page table
item records the physical address value of the page, and we can find the location of the
page; then we can eventually find the physical address after analyzing the 12 bit in the
linear address value which represents the value of page offset.

The page directory table, page tables, and the page’s three mapping relationships are
established by the kernel, and the kernel establishes the mapping relationship that allows
a different linear address to map to a different physical address and can also map to the
same physical address. Next we take the execution of the process and paging, for example,
to describe the different linear address mapping to the different physical address.

6.2.2 Process Execution Paging

The kernel needs to be enough to do the following when paging and mapping to the physi-
cal page.

1. It can only allocate a new page from the free page and cannot be assigned the

page that is being used by other processes and interfere with the execution of

other processes. The page of the kernel area cannot be diverted for other purposes.

We learned from the introduction of the second chapter, the kernel manages to page
more than 1 MB memory space through a mem_map structure before idling, and the
reference count of each page in the main memory is initialized to 0, which defaults to the
free pages.

The code is shown below:

//Code path:mm/memory.c:
#define LOW_MEM 0x100000 //1MB
#define PAGING_MEMORY (15*%1024%1024)

6.2 Paging

289

#define PAGING PAGES (PAGING MEMORY>>12) //the total
//number of page

#define MAP_NR (addr) (((addr)-LOW_MEM)>>12)

#define USED 100

void mem init (long start mem, long end mem)

{
int 1i;
HIGH MEMORY = end mem;
for (i=0 ; i<PAGING_ PAGES ; i++)
mem map [i] = USED;
i = MAP_NR(start_ mem) ;
end mem -= start_ mem;
end _mem >>= 12;
while (end mem— >0) //Set reference count to 0
mem map [1++]=0;
1

It only operates in the control range of mem_map when allocating a page for process
and only selects the page with reference count 0. If applied successfully, it will set the refer-
ence count to 1 to prevent diverting for other purposes and causing confusion.

The code is shown below:

//Code path:mm/memory.c:

;gefine PAGING_MEMORY (15%*1024%*1024) //don’t proceed page management below 1MB
;Eefine MAP_NR (addr) (((addr)-LOW_MEM) >>12)

Ggsigned long get_free page (void)

{

register unsigned long _ res asm(“ax”);

__asm__ (“std ; repne ; scasb\n\t” //only choose the page with reference count 0
“jne 1f\n\t”
“movb $1,1(%%edi)\n\t” //set reference count to 1 after apply

“sall $12,%%ecx\n\t”
“addl%2, $%ecx\n\t”

:"=a” (__res)
:”0” (0),”i” (LOW_MEM),”c” (PAGING_PAGES),
“D” (mem map+PAGING PAGES-1) //find the empty page in the limits

//of mem_map managed
on
.Ildill ”cX" Ildxll) .
return __ res;

}

290 6. The User Process and Memory Management

If it is not assigned a page, it will intervene forcibly to terminate the execution.

//Code path:kernel/fork.c:

int copy process (int nr,long ebp,long edi,long esi,long gs,long none,
long ebx,long ecx,long edx,
long fs,long es,long ds,
long eip,long cs,long eflags,long esp,long ss)

struct task struct *p;

int i;

struct file *f;

p = (struct task_struct *) get_ free page(); //assign free page for
//task_struct process and kernel stack

if (!p) //if not assgin page, return error, stop execution

return -EAGAIN;
task[nr] = p;
g = “EUIEEENIE /* NOTE! this doesn’t copy the supervisor stack */

int copy page_tables (unsigned long from,unsigned long to,long size)

unsigned long * from page_table;
unsigned long * to_page_table;
unsigned long this_page;

unsigned long * from dir, * to_dir;
unsigned long nr;

if (! (1 & *from dir)
continue;

from page_table = (unsigned long *) (O0xfffff000 & *from dir);

if (! (to_page_table = (unsigned long *) get_free page())) //apply free
//page for the copying page table

return -1; /* Oout of memory, see freeing */ //if not apply,
//return -1,stop execution

*to dir = ((unsigned long) to_page_table) | 7;

nr = (from==0)?20xA0:1024;

if (share_page (tmp))

return;
if (! (page = get_free_page())) //apply free page for the process
//loading program
oom () ; //if not apply, exit the process

/* remember that 1 block is used for header */
block = 1 + tmp/BLOCK SIZE;
for (i=0 ; i<4 ; block++,i++)
nr[i] = bmap (current->executable,block) ;

6.2 Paging 291

static inline volatile void oom(void)

{

printk (“out of memory\n\r”) ;

do_exit (SIGSEGV) ; //exit the process
}
#define PAGING MEMORY (15*1024%*1024) //don’t proceed page management below
//1MB
#define MAP_NR (addr) (((addr)-LOW_MEM) >>12)

unsigned long get_ free page (void)

{

register unsigned long res asm(“ax”) ;

__asm__ (“std ; repne ; scasb\n\t”
“jne 1f\n\t”
:"=a” (__res)

:”0” (0),”i” (LOW_MEM),”c” (PAGING_PAGES),
“D” (mem map+PAGING PAGES-1) //find the empty page in the limit of mem map
:lldi!! . HCXII . lldXH) ;

return _ res;

}

2. When to apply a new page to the process and when you should not.

From the introduction to the first chapter, we learn that the last three bits of each
page directory entry and page table entry mark the properties of the page (a page table
itself also takes a page) that it manages. They are U/S, R/W, and P. Determining whether
to apply a page is determined when parsing the linear address, and the key depends on
P flag.

A page directory entry or page table entry, if it relates to a page, the P flag will be set to 1.
If not create a mapping relationship, the flag is 0. The linear address value will be parsed
by the MMU when executing a process. If you parse out a table P bit to 0, it indicates that
the item doesn’t have a corresponding page and will generate a page fault. The page fault
which we introduced earlier generated. If the P bit is 1, it indicates the entry corresponding
to the specific page. It can find the specific page according to the address value recorded
in the item. So this bit is very important. The designer must ensure that this bit of infor-
mation is clear when designing the kernel and definitely not a garbage value because the
garbage value is equal to the error.

It sets a page directory table and four page tables to 0, and sets P-bit to 1 when paging
for kernel.

//Code path:boot/head.s:

setup_paging: //clear 0
movl $1024*5, %ecx /* 5 pages - pg_dir+4 page tables */
xorl%eax, $eax
xorl%edi, $edi /* pg_dir is at 0x000 */
cld;rep;stosl
movl $pg0+7, pg_dir /* set present bit/user r/w */

292

6. The User Process and Memory Management

movl $pgl+7, pg dir+4 [r— — — — == - = = - %/

movl $pg2+7, pg_dir+8 JrF— — — — - mon_ — — — _ %/
movl $pg3+7, pg dir+l2 JrF— — — — - Mm%/
movl $pg3+4092, $edi
movl $O0xfff007,%eax /* 16Mb - 4096 + 7 (r/w user,p) */
std
1: stosl /* £ill pages backwards - more efficient :-) */
subl $0x1000, %eax
jge 1b

The binary of 7 is 111, and the P-bit is setted to 1.

When it creates a process, it will apply for paging. As long as calling the get_free_
page() function, it will set the memory to 0 because we cannot predict the usage of this
page memory. If it is used as a page table, unclear 0 will have garbage value, and it is a
hidden danger.

The code is shown below:

//Code path:mm/memory.c:
unsigned long get free page (void)

“leal 4092 (%%edx),%%edi\n\t”
“rep ; stosl\n\t” //clear page to 0

You have to establish the mapping relationship when copying a page table. After
creating the mapping, set the P-bit to 1.

//Code path:mm/memory.c:
int copy page_ tables (unsigned long from,unsigned long to,long size)

from page_ table = (unsigned long *) (Oxfffff000 & *from dir);
if (! (to_page_table = (unsigned long *) get_ free_page()))
return -1;/* Out of memory, see freeing */
*to dir = ((unsigned long) to page table) | 7; //Set the P-bit of page
//directory table item to 1
nr = (from==0)7?0xA0:1024;
for (; nt—— > 0 ; from page table++,to_page table++) {
this_page = *from page_ table;
if (1 (1 & this_page))
continue;

this_page &= ~2; //Set the bit of page table item to 1,the binary of
//~2 is 101
*to_page_table = this_page;
if (this page > LOW_MEM) {
*from page_table = this_page;

6.2 Paging

293

The page table item will clear 0 after relieving the relationship of the page table and
page, and after relieving the relationship of the page directory item and page table, the
page directory item is also clear 0, so it is equal to clear P,,.

//Code path:mm/memory.c:
int free page tables(unsigned long from,unsigned long size)

{
if (1 & *pg table)
free page (Oxf££f£ff000 & *pg table) ;
*pg table = 0; //clear page table item to 0
pg_table++;
}
free page (Oxfff££f000 & *dir) ;
*dir = 0; //clear page directory table item to 0
1}

In the program loading stage in the process, it first calls the free_page_tables () func-
tion to clear the P-bit of the corresponding page table entry or page directory entry to 0,
and it indicates that the corresponding page of the linear address does not exist and gener-
ates a page fault when the process executes the program.

It builds a mapping relationship with the new page after loading the program in the
process, and the P-bit is set to 1. The code is shown below:

//Code path:mm/memory.c:
unsigned long put page (unsigned long page,unsigned long address)

if ((*page table)&l)
page_table = (unsigned long *) (0xfffff000 & *page_ table);

else {

if (! (tmp=get free page()))

return 0;
*page_table = tmp|7; //Set the P-bit of page directory
//entry to 1

page_table = (unsigned long *) tmp;
}
page_table[(address>>12) & 0x3ff] = page | 7; //Set the bit of page

//table entry to 1

294 6. The User Process and Memory Management

3. Map the new application page to the linear address in the process.

Linux0.11 creates the paging foundation on the basis of the segmentation foundation.
If each linear address space of the process is limited without interfering with each other,
then the page shouldn’t be chaos. We have introduced a process linear address space
overall pattern, and in the IA-32 system, it divides a 4 GB linear address space into
64 portions, and each processes one portion without interfering with one another, and
the page directory entry’s design fully complies with this pattern. The Linux 0.11 page
directory table only has one, and a page directory table can control 1024 page tables,
and a page table controls 1024 pages. A page has 4 KB, and such a page directory table
can control 1024 * 1024 * 4 KB size = 4 GB memory space. Divide a page directory table
into 64 portions, and each process can take a 16-page directory items, control a 16-page
tables, namely an occupied 64 MB physical page. This makes for each process page to
be mapped to a different page table entry, and the page table is also mapped to a differ-
ent page directory entry, so when the MMU analyzes the linear address of any process,
finally, it can be mapped to a different physical address. Of course, for sharing page
needs, a different linear address is allowed to mapping to the same page, but that is just
the practical application demand, a kind of strategy. A page directory table, page table,
page, and this mapping mode are enough to support the only page mapping to the linear
address space of the process.

To the sharing page problem, we will introduce you below.

6.2.3 Process Sharing the Page

Each process page will map to its own linear address space when process paging, and
process execution will not interfere with each other. But, in some cases, a process needs
to share the page, such as the father and child process needs to share the page. The most
obvious example is that the process 1 creates process 2, and before the process 2 load shell,
they share code. It is shown below:

//Code path:init/main.c:
void init (void)

{
if (! (pid=fork())) {
close (0) ; //These codes share with the process
if (open(“/etc/rc”,0 RDONLY,0))
_exit(1);
execve (“/bin/sh” ,argv_rc,envp_rc) ;
_exit(2);
1
if (pid>0)
while (pid != wait(&i))
1

6.2 Paging

295

The best choice is when the child processes have been created, it uses the parent
process code at first, and the child process shares the pages that belongs to the father.
Then, the child process remaps when loading its program. This raises a question:
Multiple processes operate on the same page and have read and written, and this is
equivalent to break a hole the process-enclosed environment. Therefore, we need to
do something to make the hole blocked.

Linux 0.11 uses two bits of a page table to make the hole blocked.

First, introduce the U/S bit, and if the U/S bit is set to 0, it indicates a program of
the privilege level of 3 cannot access this page while another privilege level can. If set to
1, it indicates all programs of the privilege level of 3 can access this page. Its function is
watching the user processes, preventing the page, which only accessed by kernel, from
using by a user process. Of course, the protection of Linux 0.11 is more stress to the use
of “segment.”

U/S bit is set to 1 when the kernel pages before idling; the code is as follows:

//Code path:boot/head.s:

setup paging:

movl $1024*5, %ecx /* 5 pages - pg dir+4 page tables */
xorl%eax, $eax
xorl%edi, $edi /* pg_dir is at 0x000 */
cld;rep;stosl
movl $pg0+7, pg dir /* set present bit/user r/w */
movl $Spgl+7, pg dir+4 [r— — — — = N N - = - %/
movl $pg2+7, pg dir+8 [r— — — — = N N - = - %/
movl $pg3+7, pg dir+l2 [r— — — — - N N - = - %/
movl $pg3+4092, %$edi
movl $0xfff007, %eax /* 16Mb - 4096 + 7 (r/w user,p) */
std

1:stosl /* £ill pages backwards - more efficient :-) */
subl $0x1000, $eax
jge 1b

The binary of 7 is 111 in the code; it indicates that the U/S-bit is set to 1.
The U/S-bit of the child processes page directory entry and page table is set to 1 when
creating the process; the code is shown below:

//Code path:mm/memory.c:
int copy page_tables (unsigned long from,unsigned long to,long size)

from page table = (unsigned long *) (O0xfffff000 & *from dir);
if (!(to_page_table = (unsigned long *) get_ free page()))
return -1; /* Out of memory, see freeing */
*to dir = ((unsigned long) to_page table) | 7; //Set the U/S-bit of page
//directory table entry to 1
nr = (from==0)?0xA0:1024;
for (; nr— > 0 ; from page_ table++,to_page_ table++) {
this_page = *from_page_table;
if (! (1 & this_page))

296

6. The User Process and Memory Management

continue;
this_page &= ~2; //Set the U/S-bit of page table entry to 1, the
//binary of ~2 is 101
*to_page_table = this_page;
if (this page > LOW MEM) {
*from page_table = this_page;

The new application page of the process maps to the linear address space of the pro-
cess will set the U/S-bit of the corresponding page table entry to 1. If it is a new page table,
it will also set the U/S-bit of the corresponding page directory entry to 1.

//Code path:mm/memory.c:
unsigned long put_page (unsigned long page,unsigned long address)

if ((*page_table) &1)
page_table = (unsigned long *) (Oxfffff000 & *page_ table) ;

else {

if (! (tmp = get_ free page()))

return 0;
*page_table = tmp|7; //Set the U/S-bit of page directory
//entry to 1

page_table = (unsigned long *) tmp;
}
page table[(address>>12) & 0x3ff] = page | 7; //Set the U/S-bit of page

//table entry to 1

Next, we introduce the R/W. If it is set to 0, it indicates the page can only read and
can’t write. If it is set to 1, it indicates that it can read and write.

The process can share the page that will bring you a question, if multiple processes
write the data to one page, this page will appear chaotic, so it needs protection. The R/'W
bit provides this kind of protection.

The father and child process share pages when create the child process, and the shared
page cannot be written into the data; the R/W bit is set to 0. The code is shown below:

//Code path:mm/memory.c:
int copy page tables(unsigned long from,unsigned long to,long size)

this page = *from page table;
if (! (1 & this page))
continue;
this page &= ~2; //Set the R/W-bit of page table item to 1,the
//binary of ~2 is 101
*to page table = this page;
if (this page > LOW_MEM) {
*from page table = this page;

6.2 Paging

297

Furthermore, the processes without father and child relationship can also share the page

and do not need load again. At this time, it will set the R/W to 0 and prohibit writing data.

//Code path:mm/memory.c:
void do no page (unsigned long error code,unsigned long address)

if (!current-sexecutable || tmp >= current->end data) {
get_empty page (address) ;
return;

if (share page (tmp))
return;

if (! (page = get free page()))
oom() ;

static int share page (unsigned long address) //ready to share page

if ((*p)->executable ! = current-s>executable)
continue;
if (try to share (address, *p))
return 1;
}
return 0;

}

static int try to share (unsigned long address, struct task struct * p)
//detect whether can share page

to &= OxEfff£f000;

to_page = to + ((address>>10) & Oxffc);

if (1 & *(unsigned long *) to_page)

panic(“try to_share: to page already exists”);
/* share them: write-protect */

* (unsigned long *) from page &= ~2; //Set the R/W-bit of page
//table item to 1,the
//binary of ~2 is 101

* (unsigned long *) to page = *(unsigned long *) from page;

invalidate () ;

Through the above introduction, it is not difficult to locate a process sharing page, and

there are only two possible operations, either read or write. Although read will not cause
data chaos, it will result in literally reading. If it is written, it is possible to cause chaos, and
it needs to be banned. To the writing requirements, Linux 0.11 takes the write-on-copy
strategy to solve, namely to copy the written data page to process, and the two processes
each have one, and each writes each page, so it won’t result in chaos. We will use an oper-
ating example to explain the write-on-copy mechanism at the end of this chapter section.

298

6. The User Process and Memory Management

Linux 0.11 does have such demand like pipeline, and two processes in the same page
can read and write. We will introduce how to ensure that process operating does not pro-

duce data of chaos in Chapter 8.

6.2.4 Kernel Paging

For the kernel, it pages itself at first after entering protection mode. Paging is built on the
basis of linear address space. In the front section, we introduced that the kernel’s segment
base is 0, and the segment limit of the code segment and data segment are 16 MB. Each page
size is 4 KB, each page table can manage 1024 pages, and each page directory can manage
1024 page tables. Because the segment limit is 16 MB; thus it needs the four-page table below
the 4-page directory entries to manage the 16 MB memory. The code is as follows:

//Code path:boot/head.s:

setup_paging:

movl

$1024*5, %ecx

xorl%eax, $eax
xorl%edi, $edi
cld;rep;stosl

movl
movl
movl
movl
movl
movl
std

Spg0+7, pg_dir

Spgl+7, pg_dir+4
Spg2+7, pg_dir+8

Spg3+7,_pg_dir+l2

$pg3+4092, $edi
S0xfff007, $eax

l:stosl

subl

$0x1000, $eax

jge 1b

/* 5 pages - pg _dir+4 page tables */

/* pg _dir is at 0x000 */

/* set present bit/user r/w */

/*_ - - 0w ow_ — */
/*_ - - 0w ow_ — */
/*_ - - 0w ow_ — */

/* 16Mb - 4096 + 7 (r/w user,p) */

/* £fill pages backwards - more efficient :-) */

From Figure 6.3, we can see that the linear address of the kernel is equal to the physi-
cal address. The objective is that the kernel can visit the memory area of all the processes.

’ I = I ‘ 1 page directory table
4 page tables

0

4

B

8 MB 12 MB 16 MB

The 0—16 MB is kernel control space, which is also 0—16 MB physical address

Figure 6.3 Kernel paging.

6.2 Paging

299

Identity mapping mode is not the only mode; the kernel chose linear addresses to
physical addresses of identity mapping because it’s the most convenient to kernel. For
example, when the kernel applies a page for the process; the page always need to map to a
page table entry, and this needs to write the physical address to the page table entry. If it’s
identity mapping mode, it obtains a linear address value, which directly can use as physi-
cal addresses after calling get_free_page() function, so it is more convenient.

The kernel not only controls all the memory page access rights, but also has the abil-
ity to set each page’s reading and writing attributes and to record the information on the
entries in page directory table and page table. The code is shown below:

//Code path:boot/head.s:

setup_paging:
movl $1024*5,%ecx /* 5 pages - pg dir+4 page tables */
xorl%eax, $eax
xorl%edi, $edi /* pg dir is at 0x000 */
cld;rep;stosl
movl $pg0+7, pg dir /* set present bit/user r/w */
movl $pgl+7, pg dir+4 [*— — — — - % v — — %/
movl $pg2+7, pg dir+8 [*— — — — - % v — — %/
movl $pg3+7, pg dir+l2 [*— — — — - % v — — %/
movl $pg3+4092, ¥edi
movl $0xfff007, %eax /* 16Mb - 4096 + 7 (r/w user,p) */
std

1:stosl /* f£ill pages backwards - more efficient :-) */
subl $0x1000, %eax
jge 1b

The meanings of “7” have introduced in the first chapter.

Note: It should find the page directory table firstly when the CPU hardware analyzes
the linear address value, and if it can’t find it, a follow-up about the page table and page
analysis is unable to be done. This base address of page directory default stores in CR3 by
hardware; as long as it’s analyzing the linear address, go to CR3 to find the base address,
so the kernel loads the base address into CR3.

//Code path:boot/head.s:

xorl %eax, $eax /* pg_dir is at 0x0000 */
movl %eax, %cr3 /* cr3 - page directory start */

In this line of CR3 operation instruction, only 0 privilege level code can execute,
which means that, in the future process started, even if it imitates the kernel to make a
page directory data structure, in the result of the 3 privilege level, it can’t put this structure

300 6. The User Process and Memory Management

articulate to CR3 and can’t find the page that is used by other processes. This will protect
the other processes.

Note: Although the kernel linear address space is not similar to the user process, the
kernel cannot directly access the process across linear address space. But it occupies all the
pages, and the privilege level is 0, so the kernel in enforcement can change all the contents
of a page and equals the operation of the page of all processes. But this is different from the
kernel directly visiting the process through the linear address segment. A typical example,
if the process reads the disk, it always writes the data in the buffer into user space, and this
matter is completed by the kernel.

//Code path:mm/memory.c:
int file_read(struct m_inode * inode, struct file * filp, char * buf, int count)

chars = MIN(BLOCK_SIZE-nr, left);
filp->f pos += chars;

left -= chars;
if (bh) {
char * p = nr + bh->b data;
while (chars—— >0)
put_fs_byte (* (p++) ,buf++);//copy data
brelse (bh) ;
} else {
while (chars—— >0)

put_fs_byte (0,buf++) ;

//Code path:include/asm/Segment.h:

extern inline void put_fs_byte (char val,char *addr) {

__asm__ (“movb%0,%%fs:%1”::”r” (val),”m” (*addr));//store a byte in the memory
//address of segment which is recorded in fs register

}

//Code path:kernel/system call.s

movl $0x10, %$edx # set up ds,es to kernel space

mov%dx, $ds

mov%dx, $es

movl $0x17,%edx # fs points to local data space

mov%dx, $fs //kernel use fs register to store the data segment descriptor of
//user process LDT

call _sys_call_table(, %eax, 4)

From the code, we can see the kernel can directly access the process LDT, which cor-
responds to the page of the memory address, but it does not mean that the kernel can cross
segment of the linear address, and access to the linear address space of the process. The
base protection of the segment, is not broken because of paging.

6.2 Paging 301

Il 6.3 Complete Process of User Process from Creation

to Exit

Based on the principle explained before, we take an example, practicing with theory, to
explain the complete process of the user process from creation to exit in detail.

6.3.1 Create Process strl

Prepare conditions for the creation of process strl.
First, let’s introduce the source code of process strl:

#include <stdio.h>
int foo (int n)

{
char text [2048];
if (n = =0)
return 0;
else{
int i = 0;
for (i; 1<2048; i++)
text [1] = *\0’;
printf (“text %d = 0x%x, Pid =%d\n”, n, text, getpid());
sleep(5) ;
foo(n-1) ;
}
}
int main(int argc, char **argv)
{
foo (6) ;
return O;
}

There is an executable file called strl on the disk. Users input a command in the inter-
face of shell.

./strl, shell

The program will respond and analyze this command and create a user process start-
ing from this.

By analyzing, we need to perform program strl now, and then shell calls the function
fork to start creating the process to produce a soft interrupt of int 0x80, eventually mapped
to the function of sys_fork. The function find_empty_process() is called for process strl
to apply for an available process ID and a free position in task[64] in the process. We here
assume that process strl is the first applied user process after the operating system has
been idling. According to previous chapter introduced, the applied process ID is 5, and the
idle position found in the task[64] is 5.

Take access to the process ID and idle situation of task[64] as well as the position
occupied by process strl in task[64] (Figure 6.4).

302

6. The User Process and Memory Management

0x00000 Ox9FFFF OxFFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF

Kernel
ROM BIOS [
and VGA el

L. “Kernel code area Kernel data area

@=L
Get the PID Apply for free item

Figure 6.4 Take access to the process ID and idle situation of task[64].

Later, according to the item number in task[64], determine process strl is in which 64
MB linear address space, and its LDT and TSS is bind with which two GDT. Let’s look at
the following implementation.

Find storage space for the management structure of process strl. Function
copy_process() first needs to apply a page for process strl, and this page will be used
to store task_struct and kernel stack of the process. We learn from the former intro-
duction that in order to achieve the protection of the process the system designs a
special structure for the management of each process, and this is task_struct. Each
process has an account in order to ensure noninterfering. After the process turns into
the kernel, the code of implementation is the kernel code, but the execution path is not
necessarily the same. This will result in a different order and content of data pushed in
the stack. These stacks cannot be stored in the user space of each process, so it is easy
to be overwritten or altered, which requires a specially prepared set of kernel stack for
each process.

Through the earlier explanation of the kernel paging strategy, all the pages have
mapped to the 16M linear address space of the kernel when entering the protected mode.
Now, it calls get_free_page() function, which executes in the kernel and gets the task_
struct and kernel stack page, which can only be in the kernel linear address space. From
the operating system’s subsequent program, we cannot find codes that map the page to
another process linear address space. Although this page is distributed for managing the
strl process, this page does not map to the linear address space of the strl process, and
the strl process can’t visit this page because the page is always grasped in the hand of the
kernel.

From the strategy of applying the page by the get_free_page() function, we can
see the operating system make the page-intensive accumulation to the high address
so as to improve efficiency in the use of memory. When the process executes, and

6.3 Complete Process of User Process from Creation to Exit

303

especially multiple processes execute, the release of the page is random, which often
causes the memory to spread the release of the free page, and the get_free_page()
function always traverses all pages from the high address to a lower address as long
as it finds a free page to apply until there is no free page position. This will ensure
that all application pages in memory are closely arranged and make a 4 GB linear
address space dispersion in the process memory, intensive to limited physical memory
to execute.

Of course, if it does not apply to a free page, it indicates the memory has no page
for process use, so it directly returns an error message, and the process’s creation
ends. The system has a large number of free pages in the memory after idling, and
the strl process is just created after idling, so it can apply for a free page. According
to the item number of task[64], it mounts the process task_struct to task[64], and the
item of task[64] conforms to 64 equal portions of layout of linear address space. Each
creates a process and loads the address pointer of task_struct into task[64], and if the
system searches the process, just find the task[64]; then it can find the task_struct
with no chaos.

The code is shown as follows:

//Code path:kernel/fork.c:
int copy_ process (int nr,long ebp,long edi, //The nr is the item number of taskl[64]
long esi,long gs,long none,
long ebx,long ecx,long edx,
long fs,long es,long ds,
long eip,long cs,long eflags,long esp,long ss)

struct task_struct *p;

int 1i;
struct file *f;
p = (struct task struct *) get free page(); //apply free page for strl process
if (!p) //if not apply, return error
return -EAGAIN;
task([nr] = p; //mount the task_struct of strl process to task[64]
*p = *current; /* NOTE! this doesn’t copy the supervisor stack */

p->state = TASK UNINTERRUPTIBLE;
p->pid = last_pid;

The free pages applied in the main memory shown in Figure 6.5 mark in the mem_
map of the kernel data area. The articulated situation of task[64] and the free page of use
as the strl process task_struct is shown in Figure 6.5.

Process strl copy task_struct from the shell. In Linux 0.11, at any time, there should
be a process at work; hence, the current pointer is pointed to the current process. When a
process is going to be forked, the task is finished by a process; furthermore, it is finished by
the current process. The shell copies the task_struct of itself to process strl, and this is also
the extension of the designing philosophy.

304

6. The User Process and Memory Management

0x00000 Ox9FFFF OxFFFFF O0x3FFFFF Ox5FFFFF OxFFFFFF

Kernel & J
Y 51

Free page
____ - .I mem._map(]

f *Task[64] e

1
i

1

i Increase the reference
1

! count of page

i

1

Associate free item in task[64] with the free page

Figure 6.5 Apply the page for task_struct of strl.

The code is as follows:

//code path: kernel/fork.c:
int copy process(int nr,long ebp, //nr corresponds to id of task[64]
long edi,long esi,long gs,long none,
long ebx,long ecx,long edx,
long fs,long es,long ds,
long eip, long cs,long eflags,long esp, long ss)

if (!p)
return -EAGAIN;
task[nr] = p;
*p = *current; /* NOTE! this doesn’t copy the supervisor stack */
//copy task_struct to process strl
p->state = TASK UNINTERRUPTIBLE;
p->pid = last pid;

Figure 6.6 illustrates the copy procedure.

When task_struct is copied to strl, the process strl inherits all the management infor-
mation from the shell. However, because the structure information of each process is dif-
ferent, it is necessary to personalize the structure information. First, set the status of the
process to be uninterruptible. When the kernel is processing, Linux 0.11 disallows process
interchange, so the setting of status is not a must. In the situation in which process sched-
ule is allowed when the kernel is at work, the status must be set uninterruptible. That’s

6.3 Complete Process of User Process from Creation to Exit

305

0x00000 Ox9FFFF OxFFFFF O0x3FFFFF Ox5FFFFF OxFFFFFF

e

aee®
cer
eese®
ces®
)

.o .ot
see®

eeet®

Thepagethat
*“'The page that .
task_struct of l task pst%uct of Task_struct of l task_struct of
strl process , oette., . strl process resides shell process, . oste., shell process resides

Figure 6.6 Copy the task_struct.

because the task_struct structure is already mounted in the task[64] structure, and when
interruption occurred in the procedure of the structure personalization, this process will
be put into run although its personalization is unfinished. When this process is put into
run, processes will be in disorder.

The code is as follows:

//code path: kernel/fork.c:

int copy_process (int nr,long ebp,long edi,long esi,long gs,long none,
long ebx, long ecx,long edx,
long fs,long es,long ds,
long eip,long cs,long eflags,long esp,long ss)

task[nr] = p;

*p = *current; /* NOTE! this doesn’t copy the supervisor stack */

p->state = TASK UNINTERRUPTIBLE; //process strl is set to be uninterruptible state
p->pid = last_pid;

p->father = current->pid;

The procedure is illustrated in Figure 6.7.

Copy the process page table of strl and set its page directory entry. Task_structalso
contains other fields that need to be personalized. Process strl has different pids compared
with the shell process, furthermore, pid of shell is also different from it’s parent. All this
information needs personalization. The code is as follows:

//code path: kernel/fork.c:

int copy_process (int nr,long ebp,long edi,long esi,long gs,long none,
long ebx,long ecx,long edx,
long fs,long es,long ds,
long eip,long cs,long eflags,long esp,long ss)

*p = *current; /* NOTE! this doesn’t copy the supervisor stack */

306 6. The User Process and Memory Management

0x00000 Ox9FFFF OxFFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF
Kernel ‘

ROM BIOS
and VGA

The a ewhere
task_struct of l task_: pst%uct of
strl TOCESS, oo e, .strl process resides

LDT
Code segment LDT[1]
Data segment LDT|[2]

0 256 MB 320 MB 4G-1

Linear
address space

Figure 6.7 Determine the location of process in linear space.

p->state = TASK UNINTERRUPTIBLE;

p->pid = last_pid; //set the pid of process stril

p->father = current->pid; //set shell to be the parent process of strl
p->counter = p->priority;

p->signal = 0;

Process strl inherits its time slice value from the shell process, when the shell has been
processing for a while; thus, the time slice of strl, which inherits from shell has been reduced.
However, we shall not make this happen, so strl shall define its time slice value due to the
priority of the shell rather than inheriting the time slice value from the shell directly. If the
priority of the shell is not set by the user, its time slice value will be 15 by default.

The code is shown as follows:

//code path: kernel/fork.c:

int copy_process (int nr,long ebp,long edi,long esi,long gs,long none,
long ebx,long ecx,long edx,
long fs,long es,long ds,
long eip,long cs,long eflags,long esp,long ss)

*p = *current; /* NOTE! this doesn’t copy the supervisor stack */

p->state = TASK UNINTERRUPTIBLE;

p->pid = last_pid;

p->father = current->pid;

p->counter = p->priority; //time slice value of strl is set due to the priority
//of current process

p->signal = 0;

p->alarm = 0;

6.3 Complete Process of User Process from Creation to Exit 307

The next section follows the personalization of the signal. In the task_struct struc-
ture, there are three fields related to the signal: signal, sigaction[32], and blocked, which
respectively correspond to the signal bitmap, the mount point of the signal handler func-
tion, and the signal blocking code. When the process strl is forked, only the signal is
reset, and other information is not set. This is because if the signal of strl is not set to 0,
it will inherit its signal information from the parent process. When strl is processing, if
the kernel is turned into running before return, the signal will be checked. Process strl
should not have received a signal, but because of the misuse of the signal information, an
unnecessary signal process will occur. In order to process signal, there will need to modify
the information of user stack and to bind the signal process handler of a specific process,
while process strl has no preparation for these action. When the process turned from the
kernel to the current process with these uncertainties, the process will come into disorder.

Now that no signal is received, we do not care about the mount point of the signal handler
function and blocking code, so they are not personalized. The specified code is as follows:

//code path: kernel/fork.c:

int copy process (int nr,long ebp,long edi,long esi,long gs,long none,
long ebx,long ecx,long edx,
long fs,long es,long ds,
long eip, long cs,long eflags,long esp,long ss)

{
p->father = current->pid;
p->counter = p->priority;
p->signal = 0; //reset signal bitmap
p->alarm = 0;
p->leader = 0; /* process leadership doesn’t inherit */
1

A detailed signal process procedure will be introduced in Chapter 8.

Then, we will introduce the personalization of other fields. Similarly, reset and inherit
by default actions also apply to the time setting and session organization of strl.

The specified code is as follows:

//code path: kernel/fork.c:

int copy_process (int nr,long ebp,long edi,long esi,long gs,long none,
long ebx,long ecx,long edx,
long fs,long es,long ds,
long eip,long cs,long eflags,long esp,long ss)

p->counter = p->priority;

p->signal = 0;

p->alarm = 0; //reset alarm time

p->leader = 0; /* process leadership doesn’t inherit */ //reset the session leader field
p->utime = p->stime = 0;

p->cutime = p->cstime = 0;

p->start_time = jiffies;

p->tss.back_link = 0;

p->tss.esp0 = PAGE SIZE + (long) p;

308 6. The User Process and Memory Management

Other fields related to time settings and session organizations are all inherited. The
fields above are set for kernel management.

The next section comes with an introduction to the TSS field, which is designed for
process switch. Process switch is guaranteed by process protection. Different process pro-
tection designs correspond to different process switch modes. When the process is run-
ning, various registers are used. As a consequence, process switch is a switch of a series of
register values rather than a simple jump. To guarantee the order of the process, the status
before and after process switch shall be consistent. Thereby, Linux 0.11 records all registers
in the task_struct, which is TSS. Process switch shall be consistent with the mechanism:
Before process switch, TSS saves the current key state (i.e., the current status of each reg-
isters), and after switching back, restore register value from TSS.

The code is as follows:

//code path: kernel/fork.c:

int copy process (int nr,long ebp,long edi,long esi,long gs,long none,
long ebx,long ecx,long edx,
long fs,long es,long ds,
long eip,long cs,long eflags,long esp,long ss)

p->cutime = p->cstime = 0;
p->start_time = jiffies;
p->tss.back_link = 0; //code follows set TSS fields
p->tss.esp0 = PAGE_SIZE + (long) p;
p->tss.ss0 = 0x10;

p->tss.eip = eip;

p->tss.eflags = eflags;

p->tss.eax = 0;

p->tss.ecx = ecx;

p->tss.edx = edx;

p->tss.ebx = ebx;

p->tss.esp = esp;

p->tss.ebp = ebp;

p->tss.esi = esi;

p->tss.edi = edi;

p->tss.es = es & Oxffff;

p->tss.cs = cs & Oxffff;
p->tss.ss = ss & Oxffff;
p->tss.ds = ds & Oxffff;
p->tss.fs = fs & Oxffff;

p->tss.gs = gs & Oxffff;

p->tss.ldt = _LDT(nr); //codes above set TSS fields
p->tss.trace_bitmap = 0x80000000;
if (last_task used math = = current)

__asm__(“clts ; fnsave%0”::"m” (p->tss.i387));

As we can see from the code, most parameters of the copy_process function is used to
set register status. When strl begins to run, it must be caused by a process switch. Once a
process switch happens, all values stored in TSS will be restored to initialize the value of
CPU registers and determine the start status of process strl.

It is worth noticing that these register values are automatically set by the CPU, so we
can’t find any code corresponding to register assignment. Then how does the CPU know

6.3 Complete Process of User Process from Creation to Exit

309

the right value set to each register? The only possibility is that CPU circuits have a default
order for register assignment, that is, the order listed in the above code if the order is dif-
ferent from the default order, the process will run into disorder.

Process protection is not only within the kernel’s management to process and process
switch; when the process is running, measures shall be taken to guard the boundary of the
process at any time. In details, pagination and segmentation are introduced, which will be
explained in the following sections.

Copy strl’s page table and set the corresponding page directory entry. Now the
copy_mem() function is called to segment for the process, which will define its linear
address space.

Through the knowledge we learned before, the key to defining a linear address space
is to define the segment base address and segment limit.

The code is as follows:

//code path: kernel/fork.c:
int copy_mem(int nr,struct task struct * p)

unsigned long old_data_base,new_data base,data limit;
unsigned long old_code_base,new_code_base,code_limit;

code_limit=get_limit (0x0f) ; //length of code segment of current process (shell)
data_limit=get_limit (0x17); //length of data segment of current process (shell)
old_code_base = get_base (current->1dt[1]);
old _data_base = get_base (current->1dt[2]);
if (old_data_base !=old_code_base)

panic(“We don’t support separate I&D”);
if (data_limit < code_ limit)

panic(“"Bad data_limit”);
new_data_base = new_code_base = nr * 0x4000000; //define new segment base according to nr

//in taskl[64]

p->start_code = new_code_base;
set_base (p->1dt [1],new_code_base) ; //define its LDT refer to strl’s code segment base
set_base (p->1dt [2] ,new_data_base) ; //define its LDT refer to strl’s data segment base
if (copy_page_tables (old_data_base,new_data_base,data_limit)) {

free page_tables(new_data base,data limit) ;

return -ENOMEM;

}

return 0;

It is worth noticing, as we can infer from the code, strl’s segment base is set according
to item number nr in task[64], and str’s LDT is set according to its segment base address
while we didn’t see the setting of segment limit. To our knowledge, the segment limit of
a process stores in LDT, and when task_struct is copied, LDT is also copied without any
modification, that is to say, strl inherits its parent process, shell’s LDT. The reason we do
this is when strl begins to run, its code will be executed sooner or later, but its own pro-
gram is not loaded yet (perhaps this might not happen ever). Thus strl can only share the
code with its parent process, and by inheriting the segment limit of parent process, strl
can share all code and data with its parent process.

After segmentation, we begin to consider paging. Paging is based on segmentation,
and this is because the segment base address and segment limit have defined copy from
where, copy to where, and the number of entries needs to copy from the page table entry
information. The specified code is as follows:

310

6. The User Process and Memory Management

//code path: kernel/fork.c:
int copy_mem(int nr,struct task struct * p)

new_data base = new_code base = nr * 0x4000000;

p->start_code = new_code_base;

set_base (p->1dt [1] ,new_code_base) ;

set_base (p->1dt [2] ,new_data_base) ;

if (copy page tables(old data base,new data base,data limit)){ //call this function

//to page for strl

free_page_tables (new_data base,data limit);
return -ENOMEM;

}

return 0;

As we mentioned in our introduction to segmentation, after strl is forked, it doesn’t
own its code yet and shares code with its parent process shell. Correspondently, strl shares
its page with the shell; in other words, we shall create a set of new page directory entries
and page table entries for strl so that it points to the same page with shell. The code is as
follows:

//code path: mm/memory.c:
int copy page_ tables (unsigned long from,unsigned long to,long size)

for(; size— >0 ; from dir++,to_dir++) { //pagination is based on segmentation
if (1 & *to_dir)
panic (“copy page_tables: already exist”);

if (! (1 & *from_dir))
continue;
from_page_table = (unsigned long *) (Oxfffff000 & *from dir) ;
if (! (to_page_table = (unsigned long *) get free page()))//allocate a new page for

// created page
return -1;/* Out of memory, see freeing */
*to dir = ((unsigned long) to_page table) | 7; //set the page directory entry
nr = (from = =0)?0xA0:1024;
for (; nr— > 0 ; from page table++,to_page table++) { //copy page table
this page = *from page table;

if (! (1 & this page)

continue;
this page & = ~2; //make the share to be read-only for shell
*to _page table = this page; //make the share to be read-only for stril

if (this page > LOW_MEM) {
*from page table = this page;
this page - = LOW_MEM;
this _page >> = 12;
mem_map [this page]++;

}
}
invalidate() ;

return 0;

}

Figure 6.8 illustrates the procedure of copying page table and settings of page direc-
tory entry.

6.3 Complete Process of User Process from Creation to Exit

311

0x00000 Ox9FFFF OxFFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF

Kernel ‘
VA J B _J“d
............. .| Page directory Page table l et . Page table]
......... of strl proc?.s‘s_ of shell pro.c.e.s_s_
0 18 4 ea e . Q.15 1023 L1589 1023
1 1 1 |||| ------ D
Set page dlrectory item Copy

Figure 6.8 Copying page table and setting the page directory for strl.

It is worth noticing that, when a page table is created for a new process, the function
get_free_page() should be called to allocate free pages.

The pages we allocated here, from the perspective of need, will be used to load the
page table entries of the new process. These page table entries are used to manage the page
possessed by strl rather than being used by the process directly. So we only allocated the
page and didn’t map it to the linear space address of process strl. Similar to allocating
pages for the task_struct or kernel stack of process, the program is executed in kernel
when allocating pages, running within the linear address space of kernel. At this time, the
allocated pages have already mapped to the kernel’s linear address space, and the kernel is
capable of accessing these pages. Similarly, pages allocated when preparing for loading a
page table are all used for kernel management, and they can only be accessed by the kernel
but are not accessible for the process. The fundamental reason of such accessibility is that
the kernel didn’t map these pages to the linear address space.

After segmentation and paging, we shall handle the issue of file inheritance. Files
opened by shell shall be inherited by its child process. Specifically, we accumulate the
counter of file reference and counter of the i node reference counter. When the child pro-
cess needs to use these files, they can be processed without a reopen. For example, if file tty
is opened and the handler is copied by shell, then its child process can use tty directly, and
there’s no need to reload the file. The code for aggregating reference counter is as follows:

//code path: kernel/fork.c:

int copy_process (int nr,long ebp,long edi,long esi,long gs,long none,
long ebx,long ecx,long edx,
long fs,long es,long ds,
long eip,long cs,long eflags,long esp,long ss)

if (copy_mem(nr,p)) {
task[nr] = NULL;
free_page((long) p);
return -EAGAIN;
}
for (i = 0; i<NR_OPEN;i++)
if (f = p->filplil)

f->f count++; //accumulate the file reference counter
if (current-s>pwd)
current->pwd->i_count++; //accumulate the reference of current working

//directory i-node

312

6. The User Process and Memory Management

if (current->root)

current->root->i_ count++; //accumulate the reference of root directory i-node
if (current-s>executable)

current->executable->i_count++; //accumulate the reference of executable file i-node
set_tss_desc(gdt+ (nr<<1)+FIRST TSS_ENTRY, & (p->tss)) ;
set_1dt_desc(gdt+ (nr<<1)+FIRST LDT_ENTRY, & (p->1dt)) ;

Create the relationship between strl and GDT (global description table). Now that
we have resolved the file inheritance issue, then we shall mount the TSS and LDT of pro-
cess strl to the specified position of GDT. The specified code is as follows:

//code path: kernel/fork.c:

int copy_process (int nr,long ebp,long edi,long esi,long gs,long none,
long ebx,long ecx,long edx,
long fs,long es,long ds,
long eip,long cs,long eflags,long esp,long ss)

if (current->pwd)
current->pwd->i_count++;

if (current->root)
current->root->i_count++;

if (current-s>executable)
current->executable->i_count++;

set_tss_desc (gdt+ (nr<<1)+FIRST_TSS_ENTRY, & (p->tss)); //mount TSS of strl to GDT and
//set segment information
set_ldt_desc (gdt+ (nr<<1)+FIRST_LDT ENTRY, &(p->1dt)); //mount LDT of strl to GDT and

//set segment information
p->state = TASK _RUNNING; /* do this last, just in case */
return last_pid;

The setting is illustrated in Figure 6.9.

0x00000 Ox9FFFF OxFFFFF O0x3FFFFF Ox5FFFFF OxFFFFFF
Kernel k J
ROM BIOS
: s - S 508
..'*'Ihepagethat
l task_struct of l task_struct of

strl process ... strl process resides

Lot "Kernel code area”* Kernel data area

Figure 6.9 Mount the TSS and LDT of process strl to GDT.

6.3 Complete Process of User Process from Creation to Exit

TSS and LDT are critical to process protection. The essence of protection is to prevent
the process from interfering with other process when it is running. In the term of segment,
there are two ways to jump to another process:

The first, as we mentioned before, is carrying out a jump instruction within a segment
while the jump value exceeds the segment length limit. The hardware is always guard-
ing it, and LDT keeps a record of the process’s segment base address and segment limit.
Each instruction, when executed, will be checked by the hardware to determine whether it
exceeds the specified length limit. If so, it will be reported to GP and come to interception.

The second is when an inter-segment jump instruction is executed to implement an
inter-segment jump when the process is running. In Linux 0.11, each process keeps its own
LDT, in which situation the process is executed in privilege level 3, and the LDT provides
a segment descriptor. Hence, when an inter-segment jump is conducted, the current LDT
shall be replaced by the LDT of another segment, in order to modify the segment descriptor.
This must be caused by the instruction “LLDT” in which the base address of LDTR and LDT
are needed. However, the instruction LLDT can only be executed under privilege level 0. So
LDT cannot be modified at this time. Furthermore, there is no way that can a current pro-
cess jump to another segment; in other words, the process cannot jump to other processes.

Assuming Linux 0.11 takes any other different process protection pattern, in which
all processes record their segment descriptor by using GDT rather than LDT, then modify
GDT by LGDT instruction is not the only way to realize inter-segment jump. Thereby, an
inter-segment jump will be possible, which will disrupt the process protection. As we can
see, the segment level protection is well designed by the designer of Linux.

Both protections have been guaranteed, and the segment level protection is finished
completely. On the basis of segment level protection, we will implement the page level
protection.

As we can infer from two invocations of function get_free_page(), the whole pagina-
tion procedure is finished by kernel, and if the pages are not mapped to the processes’
linear address space, they will be not accessible for the processes. When considering map-
ping, the page directory table and page table must be specified. And the page directory
entry in the directory table page is determined by the linear address space of the process.
So as long as the linear address spaces are not overlapped, the processes memory disorder
will not happen.

Set the status of strl to ready. So far, the procedure to create the process strl is fin-
ished. We will now set its status to be “ready,” which means that process strl is ready for
the schedule.

The code is as follows:

//code path: kernel/fork.c:

int copy_process (int nr,long ebp,long edi,long esi,long gs,long none,
long ebx, long ecx,long edx,
long fs,long es,long ds,
long eip,long cs,long eflags,long esp,long ss)

set_tss_desc(gdt+ (nr<<1l) +FIRST TSS_ENTRY, & (p->tss)) ;

set_1dt_desc (gdt+ (nr<<1) +FIRST LDT_ENTRY, & (p->1dt)) ;

p->state = TASK RUNNING; /* do this last, just in case */ //set the status to be ready
return last_pid;

314

6. The User Process and Memory Management

0x00000 Ox9FFFF OxFFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF

Kernel
ROM BIOS L
and VGA B e e R,

""" **The .p.a;ge that
task_struct of l task_struct of
strl process ,..+**+.. strl process resides

Set to TASK_RUNNING

Figure 6.10 Set the status of strl to be ready.

The procedure is illustrated in Figure 6.10, in which the state is set to be TASK_
RUNNING.

6.3.2 Preparation to Load strl

Preparations for loading user process strl. Preparations for loading user process strl
and loading shell are similar, including the following steps: detection of external environ-
ments, such as parameters and environmental variables; detection of the executable code
of strl; specified adjustment to the task_struct of process strl; and at last, settings of EIP
and ESP.

After entering the do_execve function, external preparations shall be made. First,
setting up the pages for parameters and environmental variables of process strl. Second,
read the i node of strl file, which stores the code of strl, and check whether the file has
problems by detecting the i node’s information. Through the i node, find the file and check
the record of the length of the code segment and data segment to determine whether the
code and data can be contained within a linear address space of 64 MB.

The code is as follows:

//code path: fs/exec.c:
int do_execve (unsigned long * eip,long tmp,char * filename,
char ** argv, char ** envp)

if (N_MAGIC(ex) ! = ZMAGIC || ex.a_trsize || ex.a_drsize ||
ex.a_text+ex.a_data+ex.a_bss>0x3000000 || //length of code, data and heap shall be
//less than 48MB
inode->i_size < ex.a_text+ex.a_data+ex.a_syms+N_TXTOFF (ex)) {
retval = -ENOEXEC;
goto exec_error2; //if the length exceeds 48M, go to error

Passing all these checks means that the code of strl meets the executable file regula-
tion and can be contained in a linear address space of 64 MB. Only when such criteria are
met, the following adjustments make sense.

6.3 Complete Process of User Process from Creation to Exit

315

As we already know, when creating process strl, some opened files and signal fields
are inherited from the shell process. Now it’s time to load strl’s own program, so some
relationships shall be released, and some shall be reset.

The specified code is as follows:

//code path: fs/exec.c:
int do_execve (unsigned long * eip,long tmp,char * filename,
char ** argv, char ** envp)

if (!sh_bang) {

p = copy_strings (envc,envp,page,p,0) ;
p = copy_strings(argc,argv,page,p,0);
if (1p) {

retval = -ENOMEM;
goto exec_error2;

}

/* OK, This is the point of no return */
if (current-s>executable) //we are loading program from strl’s
// executable file, no longer need to
//sharing shell’s i-node

iput (current->executable) ; //release the relationship with shell’s
//executable file
current->executable = inode; //replace with the executable file’s i-node
for (i = 0 ; i1<32 ; i++)
current->sigaction[i] .sa_handler = NULL; //clear signal handler

//loading the user defined signal
//processing program

for (i = 0 ; i<NR_OPEN ; i++)

if ((current->close_on_exec>>i)&l)
sys_close (i) ;

current->close on_exec = 0; //reset the blocking code of the opened file

free_page_tables(get_base (current->1dt[1]),get_limit (0x0f)) ;

free_page_tables (get_base (current->1dt [2]),get_limit (0x17)) ;...

Release the page table of strl. As introduced before, the process strl is now sharing
the same pages with shell. Now strl is loading its own program, so the sharing relationship
shall be cancelled. This is finished by calling the free_page_tables() function.

The code is as follows:

//code path: fs/exec.c:
int do_execve (unsigned long * eip,long tmp,char * filename,
char ** argv, char ** envp)

for (i = 0 ; i<NR OPEN ; i++)
if ((current->close_on_exec>>1i)&l)
sys_close (i) ;

current->close_on_exec = 0;

free page_tables (get_base (current->1dt [1]),get_limit (0x0f)) ; //release sharing pages
//of code segment

free page_tables (get_base (current->1dt [2]),get_limit (0x17)) ; //release sharing pages
//of data segment

if (last_task_used math == current)

last_task used math = NULL;
current->used math = 0;

316 6. The User Process and Memory Management

//code path: mm/memory.c:
int free page_tables (unsigned long from,unsigned long size)

{

if (1 & *pg_table)

free page (0xfffff000 & *pg_table) ; //release sharing pages
*pg_table = 0; //reset page table
pg_table++;
}
free page (0Xfffff000 & *dir); //release page taken by page
//table itself
*dir = 0; //reset page table index

The procedure of releasing the page table is shown in Figure 6.11; please notice the
change of page directory entry.

It is worth noticing that, as we mentioned, strl and shell share their pages; thus, these
pages are all read-only to them. Now that the sharing relationship of strl has been can-
celled, the pages are still read-only to shell. Will this influence the processing of shell?
This will be explained in the following sections related to the procedure of write-on-copy.

Resetting the code segment and data segment of strl. Process strl is now loading its
own program, and LDT shall be reset according to the length of the program. The speci-
fied code is as follows:

//code path: fs/exec.c:
int do_execve (unsigned long * eip,long tmp,char * filename,
char ** argv, char ** envp)

p += change_ldt (ex.a_text,page)-MAX_ARG_PAGES*PAGE_SIZE; //re-set the segment limit

static unsigned long change_ldt (unsigned long text_size,unsigned long * page)

code_limit = text_size+PAGE_SIZE -1;

code_limit &= OxFFFFF000; //re-set the code segment limit according
//to the code length

data_limit = 0x4000000; //set the length of data segment to be 64MB

code_base = get_base (current->1dt[1]);

data_base = code base; //segment base address keeps unchanged

set_base (current->1dt [1],code_base) ;
set_limit (current->1dt[1],code_limit) ;
set_base (current->1dt [2] ,data_base) ;
set_limit (current->1dt[2],data_limit);

This is the last setting for strl’s segment limit, which is always less than 64 MB. If a
new process is forked from strl, according to the process copying mechanism, the segment
length limit of strI’s child processes will be less than 64 MB. Hence, each process created
by the system will be limited within its own 64 MB memory space.

The procedure is shown in Figure 6.12.

6.3 Complete Process of User Process from Creation to Exit

317

0x00000 | Ox9FFFF OxFFFFF Ox3FFFFF Ox5FFFFF OxFFEFFF
Kerne!

. | Pa%e directory Page table of | ..**
aene Ltable strl process_l"

feea.,
e,
cey

e 0..T59 1093

32 48 64
||I|||I|||!H| ><

0,..-16°

I

Set page directory item

Figure 6.11 Release the pages of process strl.

0x00000 Ox9FFFF OxFFFFF Ox3FFFFF Ox5FFFFF OxFFEFFF

Kernel J
ST

oo
see
e
weeseeet?
.
oo
casoe®

.
e
cnsos®

+****The page that
task_struct of
... strl process resides

Task_struct of |
strl process ,..t.,,

i LDT
Code segment LDT[1]
Data segment LDT[2]
Po 256 MB 320 MB 4G-1
i Linear address space

The limit df code segment

The limit of data segment

Figure 6.12 Re-set strl’s code segment and data segment.

Adjust task_struct of process strl. The intention of setting fields, such as brk, start_
stack in task_struct of strl, is to avoid mistakes during the procedure of process. The
essence of such setting is management but not protection.

318 6. The User Process and Memory Management

The code is as follows:

//code path: fs/exec.c:

int do_execve (unsigned long * eip,long tmp,char * filename,
char ** argv, char ** envp)

{

current->used math = 0;

p += change 1ldt (ex.a_text,page)-MAX ARG PAGES*PAGE SIZE;

p = (unsigned long) create_ tables((char *)p,argc,envc);

current->brk = ex.a_bss + //set up control fields of the process
(current->end_data ex.a data + //according to the ex information in the file
(current->end code = ex.a_text));

current->start stack = p & Oxfff£ff000;

current->euid e_uid;

current->egid = e_gid;

i = ex.a_ text+ex.a data;

while (i&0xfff)
put_fs_byte (0, (char *) (i++));

eip[0] = ex.a_entry; /* eip, magic happens :-) */

eip[3] p;

The procedure of these adjustment in task_struct of strl is shown in Figure 6.13.

As last mentioned, we shall adjust EIP and ESP to make the soft interrupt return
and put the first instruction of strl’s code into run. Because strl and shell had released
the page-sharing relationship, and the page table has been released, which means its
mapping relationship with strl has been cut off. It means that the content of the page
directory entry is 0, including the P-bit. Once strl execute, MMU will find the corre-
spondent page directory entry’s P-bit is 0 by mapping the linear address. Hence, page
fault is invoked.

0x00000 Ox9FFFF OxFFFFF O0x3FFFFF Ox5FFFFF OXFFFFFF
Kernel

ROM BIOS
and VGA

" The page that

task_struct of strl process .1, task_struct of strl process resides

' Adjust some variables of the task_struct of strl process

Figure 6.13 Adjust the task_struct of process strl.

6.3 Complete Process of User Process from Creation to Exit

319

6.3.3 Running and Loading of Process strl

Generation of interrupt and OSs responding. After the generation of page fault inter-

ruption, the response will be by the page_fault service. Eventually, the interruption will

be processed by page fault handler _do_no_page by calling _do_no_page in _page_fault.
The code is as follows:

//code path: mm/page.s:
_page_fault:

testl $1,%eax
jne 1f
iLg call _do_no_page

After entering the do_no_page() function, before loading strl, two detections shall be
made. First is whether strl has loaded its code and whether the linear address value caused
page fault is out of the end of the code. Obviously, neither condition is true, so the code of
strl will be loaded from the hard disk.

The code is as follows:

//code path: mm/memory.c:
void do_no_page (unsigned long error code,unsigned long address)

{

address &= Oxfffff000;

tmp = address - current->start_code;

if (!lcurrent-sexecutable || tmp>= current->end_data) { //executable is the i node of
//strl’s code file
//end_data is the end of code

get_empty page (address) ;
return;
}
if (share_page (tmp))
return;

Second, strl possibly shares code with a current process, for example, has any other
process already loaded str1? This is also obviously impossible in this case.
The code is as follows:

//code path: mm/memory.c:
void do_no_page (unsigned long error code,unsigned long address)

{

if (!current-s>executable || tmp > = current->end data) ({
get_empty page (address) ;
return;
!
if (share_page (tmp)) //detect whether it is sharing pages with other process
return;
if (! (page = get free page()))
oom() ;

320 6. The User Process and Memory Management

The current situation is the same with the situation when we load shell, and the pro-
cess needed to be loaded from the hard disk. The following comes allocating free pages in
memory and load strl.

Allocate a memory page for strl. Allocate a free page in main memory, and load the
first part of strl to the allocated page. The code is as follows:

//code path: mm/memory.c:
void do_no_page (unsigned long error_ code,unsigned long address)

if (share page (tmp))

return;
if (! (page = get_free page())) //allocate page for strl
oom () ; //if the allocation fails, let strl exit

/* remember that 1 block is used for header */
block = 1 + tmp/BLOCK SIZE;

The procedure of allocating a free page and the registration of management structure
mem_map is shown in Figure 6.14.

As we can infer from the former introduction, all pages allocated to the process
have two mapping relationships, one is mapped to the kernel’s linear address space,
and another is mapped to the process’ linear address space. The mapping relationship

0x00000 Ox9FFFF OxFFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF
Kernel k J
3S I3
. \ Free page l
..-Kernel code area " Kernel data area eeeet” AT

1
Increase the reference count of page

Figure 6.14 Allocate a memory page for strl.

6.3 Complete Process of User Process from Creation to Exit 321

between the kernel and the pages always exists. Consider the pages’ mapping to kernel
is cut off after the pages are mapped to process, it means that the kernel will not be

able to access these pages.

Loading the program of strl to newly allocated pages. Now the program is loaded
into the newly allocated pages from the hard disk, 4 KB content per loop.

The code is as follows:

//code path: mm/memory.c:
void do_no_page (unsigned long error_code,unsigned long address)

if (! (page = get_free page()))
oom() ;
/* remember that 1 block is used for header */
block = 1 + tmp/BLOCK_SIZE;

for (i = 0 ; i<4 ; block++,i++)

nr[i] = bmap (current->executable,block) ;
bread_page (page, current->executable->i_dev,nr); //read strl’s information

//from hard disk

i = tmp + 4096 - current->end data;
tmp = page + 4096;

In the above code, the function bmap() has been introduced in Chapter 5, Section 5.5.
The procedure of function bread_page() is same with bread() in essence.

The procedure is shown in Figure 6.15.

Because the page has already mapped to the kernel’s linear address space, when data
are loaded in, they can be modified by the kernel at any time needed. This also suitable for
the data loaded in the future.

0x00000 Ox9FFFF OxFFFFF O0x3FFFFF Ox5FFFFF OxFFFFFF
Kernel ’

' l’l“d

o
.
.

. l ’ .l;ree page

Load part of strl program
to the free page that applied

Figure 6.15 Loading the initial part for process strl to newly allocated page.

6. The User Process and Memory Management

Mapping the physical memory address process of strl to its linear address space.

After strl is loaded, we shall map it to strl’s linear address space.
The specified code is as follows:

//code path: mm/memory.c:
void do_no_page (unsigned long error code,unsigned long address)

{

while (i—— > 0)
tmp——;
*(char *)tmp = 0;

if (put_page (page,address)) //mapping to strl’s linear address space
return;

free page (page) ;
oom() ;

The mapping procedure is illustrated in Figure 6.16; please notice that the correspon-
dent page directory entry is set up in this procedure.

Only after the mapping, process will be able to execute the loaded code.

Loading complete content of strl by repeating page fault. Given that the program
is larger than the size of a page, when other parts of the program are needed during exe-
cution, page fault will be invoked again and again in order to load the required program.

Until now, the loading process of strl has been completed. Next, we are going to intro-
duce the situation after strl is executing.

The program strl begins to push stack. Once the program begins to execute, push-
ing stack actions begin.

0x00000 Ox9FFFF OxFFFFF O0x3FFFFF Ox5FFFFF OxFFFFFF
Kernel ‘ J
| Page directory table l’ “The He.w‘[;age table The page
cestthe, Jee of strl process RE
veeet e, B .+*" strl process resides
3 48 64 e, O <1023 .

—_— ©

Set page dlreCtorY item | ___________________ J telet i:mear address
. corresponds to
teeeerresreenenenansenenensasansas Dhysical address
0 256 MB 320 MB 4GB-1

Linear address space

Figure 6.16 Mapping strl’s physical address to its linear address.

6.3 Complete Process of User Process from Creation to Exit

323

0x00000 O0x9FFFF OxFFFFF O0x3FFFFF Ox5FFFFF OxFFFFFF
Kernel

e
......
.....
.....
......
......

.....
,,,,,
......
.o .

ESP pointer

Figure 6.17 The first time strl pushing stack.

The foo function in the strl program is called recursive. In this case, we set up a char
array, namely “text,” with the length of 2048 bytes to accelerate the increasing speed of
strl’s stack space. Therefore, page fault will be invoked more quickly (after only two stack
pushing, a page fault will be invoked). Each time the foo function is called, the stack of strl
(ESP) increases by 2048 bytes.

Stack pushing when process strl calls foo for the first time. The first time foo func-
tion is called, ESP increases by 2048 bytes. Before increasing, the stack ESP pointed to
has taken up some place in the page to store the process’s parameters and environment
variables. So after expanding 2048 bytes, adding to the space already in use, the ESP is still
within 4 KB—the size of a page. In other words, the program is still within the capacity
of one physical page. As illustrated in Figure 6.17, the more black part in the lower right
corner stands for parameters and environmental variables already in the page, and we can
see that they are contained in the same page with part of the stack data.

Page fault invoked when strl pushing stack for the second time. The second time
that function foo is called, it will be a different case. Add with the data already in the
physical page, another 2048 bytes will exceed the capacity of the page. When MMU is
mapping the linear address value, the P-bit of a new page table entry is 0, and page fault is
invoked again, making preparations for allocating a new page.

Handling the page fault invoked in the second stack pushing. A new physical page
will be mapped to strl’s linear address space eventually in order to support addressing. The
function do_no_page is again called when handling the page fault this time, but the code
to execute will be different, and the following code will be executed:

//code path: mm/memory.c:
void do_no_page (unsigned long error code,unsigned long address)

address & = Oxfffff000;

tmp = address - current->start_code;

if (lcurrent-sexecutable || tmp > = current-s>end data) {//this conditions is true
get_empty page (address) ; //allocate free space when pushing stack
return;

324

6. The User Process and Memory Management

This is because the condition tmp > = current->end_data becomes true this time.
The program is executing to a linear address that exceeds the end_data of the process.
Therefore, call function get_empty_page(), and no extra data are loaded into the page this
time. Pushing stack also invokes page fault, having nothing with peripheral.

After entering get_empty_page(), the required page will be allocated and mapped to
the linear address space of process strl.

The code is as follows:

//code path: mm/memory.c:
void get_empty page (unsigned long address)

{

unsigned long tmp;

if (! (tmp=get_free page()) || !put_page (tmp,address)) { //allocating page and
//mapping to strl’s linear
//address space
free_page (tmp) ; /* 0 is ok - ignored */
oom() ;

}

Process strl continues to process, repeating pushing stack, and invoking page
fault. The process continues to run, and such procedure is repeated: “pushing stack — if
the P-bit of the page table entry is 0 — invoke page fault — allocating physical memory —
pushing stack-----”. When the function foo is called for the nth time, the mapping relation-
ship between the user process stack and physical memory is shown in Figure 6.18. Please
notice the memory page change of stack data.

Clear the stack after strl is finished. After the program is finished, the recursion
of function foo comes to an end (if (n = =0) return 0). At this time, the function return
will lead to the clearing of the process stack. ESP shrinks up to the higher address
direction, and the space for the user process to use is actually reduced. Thus, the for-
mer physical page mapped to linear space in the stack should be freed. Nevertheless,
in our analysis and test to the Linux 0.11 source code, such procedure is not actually
conducted. The reason is as follows: When the process is working, the kernel is not at
work, and the pages discarded by the process during its processing can’t be detected
by the kernel in time. Besides, no circuit in the CPU is designed for such staff; there
is no mechanism for discarded page detection. Even if the function is implemented by
the kernel, there is no chance to carry out such a function. Thereby, pages are not freed
after clearing the stack.

The result is shown in Figure 6.19.

6.3.4 Exiting of Process strl

Here, we introduce the exiting of process strl, including how to release the operation pro-
cess of the occupied memory space, how to deal with the occupied space of its task_struct,
and so on. In fact, the exiting of the strl and shell process is generally identical, all through

6.3 Complete Process of User Process from Creation to Exit

325

0x00000 | Ox9FFFF OxFFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF
Kernel

TR

ESP pointer

0x00000 Ox9FFFF OxFFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF

m k_ﬂ““

[ESP pointer
0x00000 Ox9FFFF OxFFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF
Kernel
ESP pointer
0x00000 | Ox9FFFF OxFFFFF Ox3FFFFF Ox5FFFFF OXFFFFFF
Kerne!

ESP pointer

Figure 6.18 Reparation of strl’s pushing stack.

326 6. The User Process and Memory Management

0x00000 Ox9FFFF OxFFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF

I

-, oot
.......... St
------- .
.
.

'o%
ARl
. ..
..............
ee®

ESP pointer

0x00000 Ox9FFFF OxFFFFF Ox3FFFFF Ox5FFFFF OxFFEFFF

- _lll“d

T
.
.

.o,
.......
...........
......
.............

ESP pointer

Figure 6.18 (Continued) Reparation of strl’s pushing stack.

0x00000 Ox9FFFF OxFFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF

m _lllild

........ anest T
........... .
.
.

ESP pointer

Figure 6.19 Clearing the stack after process strl is finished.

calling exit() function to realize. The parent is responsible to release the page where the
task_struct is located. Now we come to the concrete process.

The strl process is ready to exit. The strl process calls exit() function to exit,
eventually mapping to the sys_exit() function to carry out, and calling the do_exit() func-
tion to deal with the related affairs of strl process exit.

6.3 Complete Process of User Process from Creation to Exit 327

The specific code is as follows:

//code path:include/unistd.h:
volatile void exit (int status) ;

//code path:kernel/exit.c:
int sys exit (int error code)

{
}

return do exit ((error code&0xff)<<8);

There are two aspects of the content related to process exits, which include, first,
releasing the physical memory that the code and data of strl process occupied and remov-
ing the relationship with strl. By this, the strl process is self-responsible. Second, release
the physical memory, which is occupied by the strl process’s management structure task_
struct and withdraw its relationship with task[64]. This is done by the parent process shell.

Release the page occupied by strl process. While executing the do_exit() function,
the system uses the free_page_tables() function to release the page that the strl program
takes, which includes the pages that have been clear stack but not been released, and
release the page table and the page directory that manages these pages. These pages are
still kept in the garbage data of the strl process but the mapping relationship has been
released. Process strl will not be able to find these pages.

The code is as follows:

//code path:kernel/exit.c:
int do_exit (long code)

{

int 1i;
free_page_tables (get_base (current->1dt [1]),get_limit (0x0f)) ; //release the page of
//strl code segment
//occupied
free_page_tables (get_base (current->1dt [2]),get_limit (0x17)) ; //release the page of
//strl data segment
//occupied
for (i=0 ; i<NR_TASKS ; i++)
if (task[i] && task[i]->father = = current->pid) {
task[i] ->father = 1;
if (task[i]->state = = TASK_ZOMEIE)

/* assumption task[l] is always init */
(void) send sig(SIGCHLD, task[1], 1);

The procedure is shown in Figure 6.20.

Remove file-related contents of strl and send a signal to the parent process. The
specific performance of how to remove the relationship between this process and the strl
program’s executable file is that the file shared with the parent process is released first,
and then the kernel sets the strl process to zombie state and sends a signal to the parent

328 6. The User Process and Memory Management

0x00000 Ox9FFFF OxFFFFF Ox3FFFFF Ox5FFFFF OxFFEFFF

’ Kernel
M

Release page and page table

ROM BIOS
and VGA

Figure 6.20 Release the page of strl program takes.

process shell that the child process has exited. The problem of signal processing will be
introduced in the Chapter 8 in detail.
The code is as follows:

//code path:kernel/exit.c:
int do_exit (long code)

for (i=0 ; i<NR_OPEN ; i++) //following release the file shared with

//the parent process
if (current->filp[i])
sys_close (i) ;

iput (current->pwd) ;

current - >pwd=NULL;

iput (current->root) ;

current ->root=NULL;

iput (current->executable) ;

current - >executable=NULL; //above release the file shared with the
//parent process

current->state = TASK ZOMBIE; //set strl to zombie states
current->exit code = code;
tell father (current->father); //send a signal to the parent process shell

The process of removing a relationship and sending a signal to the parent process is
shown in Figure 6.21.

Implement the process scheduling after the exiting of strl program. So far, the
rehabilitation work of the strl process for the exiting has been finished. The strl process
will switch to other processes to execute. Because only one user process is created, now in
the system there are process 0, process 1, updata process, shell process, and the strl user
process.

The code is as follows:

//code path:kernel/exit.c:
int do_exit (long code)

{

current->state = TASK ZOMBIE;

current->exit_code = code;

tell_father (current->father) ;

schedule () ; //ready to switch to the shell execution
return (-1); /* just to suppress warnings */

The process of the switching effect is shown in Figure 6.22.

6.3 Complete Process of User Process from Creation to Exit 329

0x00000 Ox9FFFF OxFFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF

Kernel ‘ J
- DI
The page that .
task_struct of
strl process resides ,..eott"” e 'gff{e page that
task_struct of task_struct of [task_struct of)
strl process ..e**eu,, shell process ,,vee*+e., _shell process resides
Set the fields |
that relate to the file et
‘ Signal bitmay
sigaction [32

Send “child process
exit” signal to shell process

Process status

i Strl process Shell process i
i i Zombie I Interruptible i
i 1 ;
! Current process E
i i

Figure 6.21 Remove the strl procedure’s content, which is related to the document.

0x00000 Ox9FFFF OxFFFFF O0x3FFFFF Ox5FFFFF OxFFFFFF

Kernel 3_11‘4

Release the task_struct
of strl process

Process status

Shell process

I Ready

T
Current process

Figure 6.22 Strl process exit, switch to shell process.

The shell process receives the signal transmitted by the strl and waked up, which
means set to the ready state, then switching to the shell process to execute. After the shell
process executing into the kernel, the kernel will release the page, which is occupied by the
strl process task_struct, and remove the relationship between task[64] and the strl pro-
cess. So strl is completely withdrawn from the system. The empty task[64] position can be

330

6. The User Process and Memory Management

used by another process, and the process, which takes up this position, will have the same
linear address space and a page directory entry with strl.

6.4 Multiple User Processes Run Concurrently

In this section, we will have a look at how to execute and switch among multiple processes
with three user processes strl, str2, and str3 as examples.

6.4.1 Process Scheduling

Create strl, str2, and str3 processes in order. We assume that there is no user pro-
cess running in the system. There are three executable files, strl, str2, and str3, in the
peripheral, and the program in the file is the same as the strl process code, which was
introduced before. Under this premise, we create three user processes: strl, str2, and
str3 in order.

Now, last_pid has accumulated to 4, so the pid of the three processes should be: 5, 6,
and 7 in order. Now, the first four has been occupied in the task[64], and the number in
task[64] is 4, 5, and 6 in order. From this, we can further conclude that their position in
the linear address space should be: 4*64 MB to 5*64 MB, 5*64 MB to 6*64 MB, and 6*64
MB to 7%64 MB, respectively.

The distribution of these three processes in a linear space is shown in Figure 6.23.

Figure 6.24 shows the distribution of task_struct of the three processes and the data
pushed into the stack in the physical memory.

The implementation effect of the strl process pushing into the stack. Suppose that
it is the strl process’s turn to execute at this time. Strl starts to call foo function, and
then a page-fault exception is produced. During the page-fault handling, kernel applies a
free physical page for strl process, and it was mapped into the linear address space of the

256 MB 320 MB 384 MB 448 MB 4 GB-1

H H Linear address space

Strl code Str2 code Str3 code
and data and data and data

Figure 6.23 Distribution of strl, str2, and str3 processes in a linear space.

0x00000 Ox9FFFF OxFFFFF O0x3FFFFF O0x5FFFFF OxFFFFFF

’ Kernel J ‘
er Mﬂ“

The pages that task_struct
of strl, str2 and str3,
code, stack data reside

Figure 6.24 Distribution of task_struct of the three processes and the data information to be
pressed into the stack in the main memory area.

6.4 Multiple User Processes Run Concurrently

331

0x00000 Ox9FFFF OxFFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF

Kernel
ROM BIOS C “‘
and VGA

et
0
PO
PR
es*®
aec’
e

aec,
.....
......
......

‘[Push data to stack of strl process

Figure 6.25 Effect of strl process push stack.

strl process. After that, process settings for text array, contents are written in the newly
allocated physical pages.

The result is shown in Figure 6.25.

During srtl running, timer interrupt generated and switches to str2. In Linux 0.11,
there are two cases leading to process switch. One is the timer interrupt, which has no
relationship with the running process at all. No matter which process is running, on privi-
lege level 0 or privilege level 3, a timer interrupt will be generated. If switch requirements,
switches with no doubt, it switches. Another is invoked by the process running. When the
process runs in the kernel, if the process run programs need to read data in hard disk, the
process cannot continue to execute before data reads, and it suspend the current process
and switches to other processes. But in both cases, the full set of information in TSS and
LDT follows the process. Let’s first look at the switching caused by timer interrupt.

While strl is running, timer interrupt will generate every 10 ms, which will reduce
its time slice. Therefore, we call the sleep() function in a program in order to have an
effect of time delay. When the time slice of the current process is cut into 0, the program
is not finished, and the privilege level is 0 or 3. If the strl process was executing user
programs, and the privilege level is 3, then it will call the schedule function to prepare
for process switching.

The code is as follows:

//code path:kernel/sched.c:
void do_timer (long cpl)

{

if ((—— current-s>counter)>0) return; //judge whether time slice is cut into 0
current ->counter=0;
if (lcpl) return; //only in the 3 privilege level can be

//switched, 0 privilege levels cannot
schedule () ;

When switching to run str2 process, it also performed the same logic program.
Notably, when setting the text array, the logical address of the print screen and the strl

332

6. The User Process and Memory Management

program is the same. But their linear addresses are different, and the process of str2 did
not overlap strl in physical memory.

The effect of str2 pushing into the stack is shown in Figure 6.26.

During the running of str2, it will switch to str3 when encountering a timer interrupt.

When str2 runs after a period of time, the time slice cuts into 0 and then switches to
the str3, and it will also push into the stack, and str3 starts running. The code of imple-
mentation is the same as the str2 process. It is also pushed into the stack and sets up text.

The effect of str3 pushing into the stack is shown in Figure 6.27.

We may change the code of str3 a little and call the open(), read(), and close() func-
tions to read a file from the hard disk, which then maps to sys_read() function. After
reading the instruction in the disk, the data does not immediately enter the buffer zone.
str3 cannot continue without data. At this time it will suspend itself and then switch to
other processes to execute.

0x00000 Ox9FFFF OxFFFFF O0x3FFFFF Ox5FFFFF OxFFFFFF

Kernel &-IJHIIIII“BJ

ROM BIOS
and VGA

- The data that has
been pushed into
stack of strl process

Push data to stack of str2 process

Figure 6.26 Effect of str2 pushing into the stack.

0x00000 Ox9FFFF OxFFFFF O0x3FFFFF 0x5FFFFF OxFFFFFF

Kernel J
‘-_"J]|||||||“‘

......
.......

.......

The data has been The data has been

pushed into stack pushed into stack

of str2 process of strl process
Push data to stack of str3 process

Figure 6.27 Effect of str3 pushing into the stack.

6.4 Multiple User Processes Run Concurrently

333

The code is as follows:

//code path:fs/buffer.c:
struct buffer head * bread(int dev,int block)

{

struct buffer head * bh;

if (! (bh=getblk (dev,block)))
panic (“bread: getblk returned NULL\n”) ;
if (bh->b_uptodate)
return bh;
11_rw_block (READ, bh) ;
wait_on_buffer (bh) ; //check whether need to wait for the buffer
//block unlock and therefore suspend the
//process
if (bh->b_uptodate)
return bh;
brelse (bh) ;
return NULL;

static inline void wait_on_buffer (struct buffer head * bh)

{

cli();
while (bh->b_lock)
sleep_on (&bh->b_wait) ; //the buffer block is still locking, so it
//is necessary to suspend the process
sti();

}

void sleep on(struct task struct **p)

tmp = *p;

*p = current;

current->state = TASK_UNINTERRUPTIBLE; //suspend the current process, it is str3
schedule () ; //switch to other processes in this case
if (tmp)

tmp->state=0;

When the three procedures run over a period of time, what is the distribution
pattern in main memory? When str3 executes after a period of time, the time slice also
used up. Although these three user processes still need to continue to run, the time
slice has used up. If a timer interrupt happens again, do_timer will call a schedule()
function to switch the process once again, and the system will re-allocate a time slice
for them.

From the end of the task[], the kernel makes a redistribution of a time slice to all
processes (including the sleep process but except the process 0) in the current system.
The size of the time slice is counter/2 + priority. Priority is the priority of the process,
so if the process has a higher priority level, the value of priority is larger and it will gain
more time slice and then reselect the process to run according to the time slice and such
repeated.

334

6. The User Process and Memory Management

The code is as follows:

//code path:kernel/sched.c:
void schedule (void)

{
for(p = &LAST TASK ; p > &FIRST TASK ; ——p)
if (*p)
(*p) ->counter = ((*p)->counter >> 1) +
(*p) ->priority;
}

It is worth mentioning that, when redistributing the time slices, there is no need to
distribute for process 0. The reason is that as long as all processes in the system cur-
rently do not have condition to execute, the system will automatically switch to process
0. Process 0 will run even if its time slice is cut into 0. Because if there is no other process
running, the system relies on process 0 to continue. Thus, the time slice has no meaning
for process 0. Therefore, process 0 is a special one, its execution is decided by the current
demand of the system, and the mechanism of the time slice rotation does not apply to
it. They will continue to constantly push stack as shown in Figure 6.35. The data pushed
into their respective stack. In the linear address space, the data in the stack is continuous
respectively, but in the physical space, the data is completely “staggered” allocated.

When these three procedures run over a period of time, the distribution in the main
memory area of the data, which is pressed into their respective stack by themselves is
shown in Figure 6.28.

It is not difficult to find that, at any time, only one process is running. There is no
multiple processes executing at the same time. The simultaneous running of multiple pro-
cesses is only the subjective feeling of people. The data does not cover each other, and no
matter what kind of situation produces process switch, it is all switched by calling the
schedule() function. When this function is doing process switch, it will use the full set of
data of TSS and LDT to follow the process in order to protect the process.

0x00000 Ox9FFFF OXFFFFF O0x3FFFFF Ox5FFFFF OxFFFFFF
Kernel ‘
\ Sl VGR S SIS
s -.‘-

The data has been The data has been The data has been The data has been The data has been The data has been
pushed into stack pushed into stack pushed into stack pushed into stack pushed into stack pushed into stack
of str3 process of str2 process of str1 process of str3 process of str2 process of strl process

Figure 6.28 Distribution in the main memory area of the data that are pressed into stack during a
period of time when these three procedures run.

6.4 Multiple User Processes Run Concurrently

335

6.4.2 Page Protection

Process A and B share page. Suppose now the system has one user process (process A),
and the corresponding program code of it has been loaded into memory. The number of
the page reference that is occupied in the memory of this process is “1,” and then it begins
execution, creating a new process (process B) by calling the fork() function. While creat-
ing a process, the system copies all page table entries of process A to process B and sets
the page directory entry (PDE) of process B. At this time, the two processes share the
page, citing the shared page accumulated to 2, and the shared page is all set to “read only”
attribute, which means that either process A or B can only run the read operation for these
shared pages, rather than write operation.
The code is as follows:

//code path:mm/memory.c:
int copy_page_tables (unsigned long from,unsigned long to,long size)

for (; nr— > 0 ; from page_table++,to_page_table++) {
this_page = *from page_table;
if (! (1 & this_page))
continue;
this_page &= ~2; //the page’s operation attribute of Process A
//is set to read-only
*to_page_table = this_page; //the page’s operation attribute of Process B

//is set to read-only
if (this_page > LOW_MEM) {
*from page_table = this_page;
this_page -= LOW_MEM;
this_page >>= 12;
mem_map [this_page] ++; //reference counting record in the mem map,
//and accumulate to 2

The page sharing situation is shown in Figure 6.29.

0x00000 0x9FFFF OxFFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF
Kernel ‘

I S

The shared stack data The shared code
| Read-only | Read-only |
reference count is 2 reference count is 2
parent process parent process
child process child process

Figure 6.29 Page sharing situation of process A and B.

336

6. The User Process and Memory Management

0x00000 Ox9FFFF OxFFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF

' 15151

oo ®
RS

Parentprocess L eeeeesttt
pushdatatoshared @ ...t
stack space |

..........

.............

o .y o

! Read-only | | Read-only |
reference count is 2 reference count is 2
parent process parent process
child process child process

Figure 6.30 Process A ready for pushing.

Process A prepare for pushing operation. We assume that process A executes next,
and it is a push action. Let us see what will happen.

Now all the pages of the program of process A are read only. It means that whether
the page occupied by the code or the corresponding page of the original push data can
only do the read operation rather than write operation. However, the push action is a write
operation. After parsing the corresponding linear address value during push, it must be
mapped to a read-only page and will produce a “page write protect” interrupt. It is shown
in Figure 6.30.

The push action of process A triggers page write protection. The corresponding
function of page fault interrupt when it happens page write protection is un_wp_page()
function. It performs as follows. The first step is to apply for a free page in the main mem-
ory (in the following, we call it the new page) to make a backup for all the data of the page
(in the following, we call it the original page) in the location of push stack. Then we sub-
tract 1 from the citing count of the original page. This is because the data in the original
page will be backed up to a new page, and the process A will go to a new page to operate
data, and no longer need to maintain relations with the original page, so the citing count
of the original page subtracts 1.

The code is as follows:

//code path:mm/memory.c:
void un wp page (unsigned long * table entry)

{
if (! (new_page = get free page())) //get a new page
oom () ;
if (old page >= LOW_MEM)
mem_map [MAP NR (old page)]—; //citing count of page is
//decremented for 1
}

6.4 Multiple User Processes Run Concurrently

337

0x00000 O0x9FFFF OxFFFFF O0x3FFFFF Ox5FFFFF OxFFFFFF
Kernel ‘

ROM BIOS
and VGA J

ae e

...........
.......

........
.....
......

.....

Apply for a new page
| Read-only || Read-only
reference count is 1 reference count is 2
parent process parent process
child process child process

Figure 6.31 Apply for a new page for the process A to store the push data.

The main distribution of memory after performing page write protection for pro-
cess A to apply for a new page is shown in Figure 6.31.

What is notable is that we just make the citing count of original page subtract 1 but
do not completely release it. This is because, in the operating system, all resources may be
shared by multiple processes, for example, the file i node, file management, memory page
table, and so on, need to represent the state through the citing count. When a process
terminates a relationship with them, other processes are not doing the same things; then
simple “release” is not appropriate.

Putting the page table of process A points to the new application pages. Although
has been applied for the new page, the page table entry in the page table of process A,
which corresponds to the original page, still points to the original page. Because there
is no page table entry corresponding to the new page, then it is unable finally to find the
physical address. So it also lets the page table entry, which points to the original page in the
page of process A, point to a new page. And changes the attribute from the “read-only” to
“read/write,” so the process A has an ability to process the data in the new page.

The code is as follows:

//code path:mm/memory.c:
void un wp page (unsigned long * table entry)

{
if (old_page >= LOW_MEM)
mem_map [MAP_NR (old page)]——;
*table entry = new page | 7; //the binary form of 7 is
//111, it means a new
//page can read and write.
invalidate () ;
copy_page (old_page,new_page) ;
1

338

6. The User Process and Memory Management

0x00000 Ox9FFFF OxFFFFF O0x3FFFFF O0x5FFFFF OxFFEFFF

Kernel
: ROM BIOS "u“‘
and VGA))
. o.\ ‘.l. g .
. RSN e e A i Parent process

.........
...............

.............

| Readand write | Read-only | Read-only |
reference countis 1 reference count is 1 reference count is 2
parent process child process parent process

child process
Figure 6.32 Page table of process A corresponds to the new application page.

When this operation is done, the state of the new page that is allocated to process A
is shown in Figure 6.32.

Copy the contents of the original page to the new application page of process A.
When everything is ready, you can copy the contents of the original page to the new page.
After this action, process A will complete the push action in the new page.

The code is as follows:

//code path:mm/memory.c:
void un_wp page (unsigned long * table entry)

{
if (old page >= LOW_MEM)
mem map [MAP_NR (old page)]—;
*table entry = new page | 7;
invalidate () ;
copy_page (old_page,new_page) ; //here we copy the data
//of original page to the
//new page, let process A
//using
1

After the copy operation, the storage case in the new memory page, the process A
application is shown in Figure 6.33.

Process B is preparing for operation of the shared page. After process A has been
running for a period of time, it should turn to its child process, process B. Process B still
uses the original page, assuming that it will do a write operation in the original page, but
now the original page attribute is still “read only.” This is arranged when process A creates
process B and has never changed. So in this case, it needs page-write protection again, and
it is still mapped to the un_wp_page() function. Because the citing count of the original

6.4 Multiple User Processes Run Concurrently 339

0x00000 Ox9FFFF OxFFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF

,_______________________,.,_______________-.,._-__': ______________ .,:'_. __________ iParent process
T page table

etve, .
“e. .o cea,
. ..
.

The stack data B
of child process The shared code

[
| | | |

Copy
Read and write Read-only Read-only
reference count is 1 reference count is 1 reference count is 2
parent process child process parent process

child process

Figure 6.33 Copy the content of the original page to a new page process A application.

page has been reduced to 1, now set the original page attribute to “read/write.” The code
is as follows:

//code path:mm/memory.c:
void un_wp_page (unsigned long * table_entry)

old _page = Oxfffff000 & *table_entry;
if (old_page >= LOW_MEM && mem_map [MAP_NR (old_page)]==1) { //found that the citing
//count of original
//page is 1, do not share
*table_entry |= 2; //the binary form of 2
//is 010, the R/W bit is
//set to 1, read/write
invalidate () ;
return;

The process A and B can operate different pages for each other in stack data process-
ing, and these pages are all read/write, and the citing count is 1; they will not interfere with
each other later (Figure 6.34).

Now the process B does not have its own procedures, and if it has in the future, it will
relieve the relationship with the original page. The citing count of the original page will
continue to subtract 1, so it becomes 0, and then the system will recognize it as the “free
page.”

Assuming that the processes B execute the push operation first. We now again
assume that it is not the parent process (process A) to implement first but the child process
(process B); then what would happen?

340 6. The User Process and Memory Management

0x00000 Ox9FFFF OxFFFFF O0x3FFFFF Ox5FFFFF OxFFFFFF
Kernel & J
L Lot - - P S i Page table of
b e . ot parent process

Lty RETUNTT LA el el

The stack data The stack data The shared cod
of parent process of child process O SiETE @l
! Readable and writable | Read-only !

reference count is 1
parent process

Reference count is 1
child process

reference count is 2
parent process

child process

Figure 6.34 Process B changes the character of the original shared page.

This case is symmetrical with the front, and the system applies for a page for the process
B; then let the page table entry, which is corresponding to the original page in the page table
of process B, point to the new page. Finally, it copies the content of the original page to a new
page for process B to operate. When turning to process A to implement, the original page
that is set to “read/write” the process A still uses the original page to execute data operation.

The memory allocation of process B implementing the push operation first is shown
in Figure 6.35.

What is also worth noting is that page-write protection is an action performed by the
kernel. While the whole action occurs, the user process remains normal execute. It does
not know it is duplicated in memory or which page to be copied either.

0x00000 Ox9FFFF OxFFFFF O0x3FFFFF Ox5FFFFF OxFFFFFF

Kernel
ROM BIOS
and VGA

e mmmcmgae I L —— R Page table of

E child process
i
H se, ~—— oe, .o
The stack data The stack data The shared cod [
of child process of parent process L CoCs
| Readand write I Read and write | I Read-only !
reference count is 1 reference count is 1 reference count is 2
child process parent process parent process

child process
— T
d/

Figure 6.35 Memory distribution of process B implementing the push operation.

6.4 Multiple User Processes Run Concurrently

341

This page intentionally left blank

Buffer and
Multiprocess File

The preceding chapters have explained the process, file, and memory management. Based
on these explanations, the readers can understand the operating system, the complex rela-
tionship among process, the file system, and the buffer which is across the above three
parts. If we to understand the complex relationship among OS, process, file system and
memory management deeply, we must make clear what the function of the buffer is.

7.1 Function of Buffer

In order to make clear what the function of the buffer is, we want to ask: Is it alright with-
out a buffer, and what problems will come out without it?

From the physical aspect of the computer, the buffer is a space that is opened in the
physical memory. There is no essential difference in the physical property between this
memory space and the memory space that is occupied by a process. Exchanging data
between the block device (for convenience, this chapter discusses the hard disk only) and
the buffer is the same as the process between the hard disk and memory space of process
in the physical aspect. It does not affect the correctness of data interaction or the transmis-
sion speed. In this view, even without the buffer, it can also complete the data interface
between process and hard disk.

Therefore, the buffer is not necessary. Designing a buffer is sure to make the operating
system run better, thus adding a beautiful thing to a contrasting beautiful thing.

343

What benefits can be brought to the operation of an operating system by designing a
buffer?
We think that it is mainly reflected in two aspects:

1. It formsa uniform distribution of all block devices and makes the designing of the
operating system more convenient and flexible.

2. It makes the file operations of the block device run more efficiently.

The first aspect is relatively easy to understand, and the second is one of the diffi-
cult problems to understand the operating system, so in this chapter, we will explain the
design in detail about the buffer in improving the running efficiency of operation files of
the block device through two examples of files operated by multiprocess.

In Figure 7.1, we can find that there seems to be a problem in which the process mem-
ory space and the buffer memory space are the same. When exchanging the data between
the process memory space and the hard disk, a buffer is added, and it only adds to the time
of the data changing hands in memory once, but this data changing hands is without any
data processing. It is just simply changing hands and should only increase CPU resource
consumption. But why is it faster than the process of directly exchanging data from the
hard disk?

The reason is buffer sharing. In the computer, the speed of data interaction between
memory and memory is faster 2 levels than that between the memory and the hard disk.
If the process A has read the data from the hard disk to the buffer, and process B also
needs to read this data, then it does not need to read it from the hard disk, and it can be
directly read from the buffer. Then the time process B takes is only about one percent of
the process A time for reading this data, so efficiency is increased by two level of mag-
nitude. If there are processes C, D, and E, etc. that all need to read this data, the whole
efficiency of the computer will be greatly improved. This is a model of buffer sharing; it
means that different processes share the same data in the buffer. If the process A reads
the data, uses this data, and reads the data again after a period of time, and it is still in

00000 Cw
N\ 7

Buffer

‘ | ‘ ‘ Block device

Figure 7.1 Pattern picture of process, buffer, and block device.

344

7. Buffer and Multiprocess File

the buffer, process A can directly read it from the buffer, and it doesn’t spend the time
from the hard disk. It is another mode of sharing, and that is the same process multiple
shares the same data in the buffer at different times. Another is the combination of these
two patterns. What we analyze above is the sharing of a read operation that is the same
as a write operation.

From the above analysis, we can find that if we want to improve the overall efficiency
of file read-and-write, we should share the data in the buffer as much as possible. If we
want to do this, the most effective and direct way is to let the data of the buffer stay in
it as long as possible!

We can say that the kernel design of the codes, which manage the buffer, is how to
ensure the correctness of the interactive data and how to make the data in the buffer
stay as long as possible. In this chapter, we’ll explain how the operating system code
achieves this goal of making the data stay in the buffer as long as possible through two
examples.

7.2 Structure of Buffer

The buffer relates to process, memory, and file. It has a lot of content and complex codes,
and it is not easy to understand. It is one of the difficult problems to understand in the
operating system. In order to learn and master buffer design better, first, let’s look at the
buffer structure (Figure 7.2).

In Linux, to support buffer, we design two pieces of important management informa-
tion: buffer_head and request. Buffer_head is mainly responsible for the data interaction
of the buffer block between the process and the buffer. Under the condition of making
sure data interaction correct, let the data in the buffer stay as long as possible. Request is
mainly responsible for the interaction between the data in the buffer and the block device.
Under the circumstances of the correctness of data interaction, let the data that is modi-
fied by the process in the buffer block be synchronized into the block devices as soon as
possible.

000000 =
<= [|

Buffer

=
|:| \:| |:| Block device

Figure 7.2 Pattern chart of buffer, buffer_head, and request.

7.2 Structure of Buffer

345

The code of the data structure of the two management information is as follows:

//code path:include/linux/fs.h:
struct buffer head {

char * b_data; /* pointer to data block (1024 bytes) */
unsigned long b_blocknr; /* block number */

unsigned short b_dev; /* device (0 = free) */

unsigned char b_uptodate;

unsigned char b_dirt; /* 0-clean,1-dirty */

unsigned char b_count; /* users using this block */

unsigned char b_lock; /* 0 - ok, 1 -locked */

struct task struct * b_wait;
struct buffer head * b _prev;
struct buffer head * b _next;
struct buffer head * b _prev_ free;
struct buffer head * b _next free;

I

//code path:kernel/blk drv/blk.h:

struct request {
int dev; /* -1 if no request */
int cmd; /* READ or WRITE */
int errors;
unsigned long sector;
unsigned long nr_sectors;
char * buffer;
struct task struct * waiting;
struct buffer head * bh;
struct request * next;

We will explain in detail why this data structure is designed and how this data struc-
ture achieves this goal of letting the data stay in the buffer as long as possible next.

7.3 The Function of b_deyv, b_blocknr, and Request

b_dev and b_blocknr are very important members in buffer_head structure and are the
foundation of supporting of the multiple process sharing file. They are both the founda-
tion of correctness, and also the foundation that the data stay in the buffer as long as pos-
sible. We first introduce how these two members ensure the correctness.

7.3.1 Ensure the Correctness of the Data Interaction
between Processes and Buffer Block

Process and buffer make the interactive data not in units of files but in a buffer block.
Several blocks interact at one time, and the data that is less than the size of one block still
occupies one buffer block. Interaction between buffer and disk is still in a block, and a buf-
fer block has the same size as a hard block. When a process operates files, the request of
document operation, which is proposed by the process, is implemented by the operating
system to interact with a specific data block in the hard disk. Because there is a buffer, the
data block in the process and hard disk is not in interaction directly but through a buffer.

346

7. Buffer and Multiprocess File

If we want to ensure the correctness of data interaction, first we have to ensure that the
data block of the hard disk must strictly correspond with the buffer block.

Because the hard disk device number and block number can only identify a specific
hard block, and from the second chapter, we know that each block has only one buffer_head
to manage, the strategy of the operating system is as follows: The kernel binds the relation-
ship between the buffer block and the hard disk through b_dev and b_blocknr in the
buffer_head structure, and this will ensure the uniqueness of the relationship between the
disk block and the buffer block, furthermore, it is equivalent in data interaction between
the buffer block and the hard disk and the interaction between process and buffer, so as to
ensure data interaction without confusion. The code is as follows:

//code path:fs/buffer.c:
struct buffer head * getblk(int dev,int block) //apply for buffer block
{
repeat:
if (bh = get hash table (dev,block)) //if it is found that buffer
//block has been bound with
//the specified device (DEV)
//and the data block (block)
return bh; //return, use it directly
tmp = free list; //if bound buffer block
//which is in standard is
//not found, apply for a new
//buffer block

do {
if (tmp->b_count)
continue;
if (!bh || BADNESS (tmp)<BADNESS (bh)) {
bh = tmp;
if (!BADNESS (tmp))
break;
/* and repeat until we find something good */
} while ((tmp = tmp->b next free) ! = free list);

/* OK, FINALLY we know that this buffer is the only one of it’s kind, */
/* and that it’s unused (b_count = 0), unlocked (b _lock = 0), and clean */
bh->b _count = 1;
bh->b _dirt = 0;
bh->b_uptodate = 0;
remove from_ queues (bh) ;

bh->b dev = dev; //set up device number of
//new buffer block
bh->b blocknr = block; //set up block number of new

//buffer block
insert_into_queues (bh) ;
return bh;

From the code, we can see that when applying for a new one, it will lock in the rela-
tionship between the buffer block and the data block. This makes the kernel in the process
direction and determines the location of the file and switches it to b_dev and b_blocknr.
Do not consider the relationship between the hard disk data block and the buffer block
because the interaction with the hard disk is definitely right finally.

When reading the file, the kernel calculates b_dev and b_blocknr where the file
data content is through a file pointer. In the process, it goes to the buffer block. After

7.3 The Function of b_dev, b_blocknr, and Request

347

implementing the bread() function, it should no longer deal with the data block of the

hard disk directly. The code is as follows:

//code path:fs/file dev.c:

int file read(struct m_inode * inode, struct file * filp, char * buf, int count)

{

if ((left =

//read file

count)< = 0)
return 0;
while (left) {
if (nr = bmap(inode, (filp->£f_ pos)/BLOCK_SIZE) { //through the file offset
//pointer, calculate the
//block number
if (! (bh = bread(inode->i_dev,nr))) //in the actual parameters inode->i_dev is
//device number, nr is block number
break;
} else
bh = NULL;
nr = filp->f pos% BLOCK SIZE;
chars = MIN(BLOCK SIZE-nr, left);

//code path:fs/buffer.c:
struct buffer head * bread(int dev,int block)
{

struct buffer head * bh;

if (! (bh = getblk(dev,block)))

panic («bread: getblk returned NULL\n») ;
if (bh->b_uptodate)
return bh;

//read the equipment data of bottom block

//when apply for buffer block, the number
//device of equipment and block we will use

It is the same as reading a file. When writing a file, the kernel calculates b_dev and
b_blocknr where the file data content is through a file pointer. In the process, it goes to the

buffer block. The code is as follows:

//code path:fs/file dev.c:
int file write(struct m_inode * inode,
//write file

if (filp->f_ flags & O_APPEND)
pos = inode->i_size;
else
pos = filp->f pos;
while (i<count) {
if (! (block =

break;

if (! (bh = bread(inode->i_dev,block)))
break;

c = pos% BLOCK_SIZE;

p = ¢ + bh->b_data;

bh->b dirt = 1;

struct file * filp, char * buf,

int count)

create_block (inode, pos/BLOCK_SIZE))) //through the file offset

//pointer, calculate the
//block number

//in the actual parameters inode->i_dev is
//device number, nr is block number

348

7. Buffer and Multiprocess File

//code path:fs/buffer.c:

struct buffer head * bread(int dev,int block) //read the equipment data of bottom block
//device

{

struct buffer head * bh;

if (! (bh = getblk(dev,block))) //when apply for buffer block, the number
//of equipment and block we will use

panic (“bread: getblk returned NULL\n”) ;

if (bh->b_uptodate)

return bh;

The direction of extending interchange file is the same as the content and management.

When the kernel reads the i node, it calculates the b_dev of the i node and the
b_blocknr through the number of the i node and the information in the super block
without operating the hard disk data blocks across the buffer directly. The code is as
follows:

//code path:fs/inode.c:
static void read inode(struct m inode * inode) //read the i node

{

lock_inode (inode) ;
if (!(sb = get_super(inode->i_dev)))
panic (“trying to read inode without dev”) ;
block = 2 + sb->s_imap blocks + sb->s zmap blocks + //determine the block (number)
//through the number of the
//i node and the information of
//the super block
(inode->i_num-1) /INODES PER BLOCK;
if (! (bh = bread(inode->i_ dev,block))) //the inode->i dev in the actual parameter is
//the device number, nr is the block number
panic (“unable to read i-node block”) ;
* (struct d_inode *)inode =
((struct d_inode *)bh->b data)
[(inode->i num-1)%$INODES_PER BLOCK] ; //extract the i node from the buffer
//and load it into the inode_table[32]
brelse (bh) ;
unlock_inode (inode) ;

//code path:fs/buffer.c:
struct buffer head * bread(int dev,int block) //read the underlying block device data
{

struct buffer head * bh;

if (! (bh = getblk(dev,block))) //the device number and the block number

//needed when allocate the buffer

panic («bread: getblk returned NULL\n») ;

if (bh->b_uptodate)

return bh;

7.3 The Function of b_dev, b_blocknr, and Request 349

Similarly to the kernel reading the i node, it calculates the b_dev of the i node and the
b_blocknr through the number of the i node and the information in the super block when
writing into the i node. The action stops here. The code is as follows:

//code pat.
static voi

{

if (! (sb =

bh->b_dirt

h:fs/inode.c:
d write_inode (struct m_inode * inode) //write the i node

get_super (inode->i_dev)))
panic(“trying to write inode without device”);
block = 2 + sb->s_imap_blocks + sb->s_zmap blocks + //determine the block (number)
//through the i node
//number and the information
//of the super block
(inode->i_num-1) /INODES_PER_BLOCK;
if (! (bh = bread(inode->i_dev,block))) //the inode->i_dev in the actual parameter
//is the device number, and nr is the
//block number
panic (“unable to read i-node block”) ;
((struct d_inode *)bh->b_data)
[(inode->i_num-1)%INODES_PER_BLOCK] =
* (struct d_inode *)inode; //extract the i node from the inode table[32]
//and load it into the buffer
= 1;
inode->i_dirt = 0;

//code path:fs/buffer.c:
struct buffer head * bread(int dev,int block) //read the underlying block device data

{

struct buffer head * bh;

if (! (bh = getblk(dev,block))) //the device number and the block
//number needed when allocate the buffer

panic (“bread: getblk returned NULL\n”) ;

if (bh->b_uptodate)

return bh;

Similarly, when the kernel loads the super block, it calculates the b_dev and
b_blocknr of the super block, the i node bitmap, and the logical block bitmap through
the device number and the block number specified; the action continues here. The code
is as follows:

//code path:fs/super.c:

static struct super block * read super (int dev) //read the super block
{
s->s_time = 0;

s->s_rd only = 0;
s->s_dirt = 0;
lock_super (s) ;

if (! (bh = bread(dev,1))) { //1 is the block number, super block
//is the first data block of the
//device

s->s_dev = 0;
free_super(s) ;
return NULL;

}

350

7. Buffer and Multiprocess File

* ((struct d_super_block *) s) =

* ((struct d_super_block *) bh->b_data);
brelse (bh) ;

if (s->s magic ! = SUPER MAGIC) ({

s->s_dev = 0;

free_super(s) ;

return NULL;

block = 2; //2 is the block number of the first i node bitmap
for (i = 0 ; 1 < s->s_imap_blocks ; i++)

if (s->s_imap[i] = bread(dev,block))

block++;

else

break;

for (i = 0 ; 1 < s->s_zmap_blocks ; i++) //block continue to

//accumulate, load the super
//block bitmap according to

//this
if (s->s_zmap[i] = bread(dev,block))
block++;
else
break;
if (block ! = 2+s->s_imap blocks+s->s_zmap blocks) {

for(i = 0;i<I_MAP_SLOTS;i++)
brelse(s->s_imap[i]) ;

//code path:fs/buffer.c:

struct buffer head * bread(int dev,int block) //read the underlying block
//device data

{

struct buffer head * bh;

if (! (bh = getblk(dev,block))) //the device number and the block
//number needed when allocate the
//buffer

panic («bread: getblk returned NULL\n») ;

if (bh->b_uptodate)

return bh;

The code above shows that, in the direction of the process, the accuracy is assured by
making sure the device number and the block number correspond to the buffer. And the
getblk() function achieves the binding function.

From the hard disk direction, the kernel supports the interaction between the buffer
and the hard disk through another request data structure, the device number dev and
the first sector number of the block (the block is the operating system concept, and the
hard drive only has the concept of a sector) in the request to determine the position of the
data interaction, and the value of these two fields is also set by the values of b_dev and
b_blocknr in the buffer_head. This shows that, as long as the device number and the block
number of the buffer are determined, it is enough to consider the buffer when the kernel
interacts with the hard disk through the request. There is no need to extend to the process
of considering the file operations.

7.3 The Function of b_dev, b_blocknr, and Request

351

The code is as follows:

//code path:kernel/blk drv/ll rw blk.c:
void 11_rw _block(int rw, struct buffer head * bh) //operate the underlying block device
{

unsigned int major;

if ((major = MAJOR (bh->b_dev)) > = NR_BLK DEV ||

! (blk_dev[major] .request_fn)) {

printk (“Trying to read nonexistent block-device\n\r”) ;

return;

}

make_request (major, rw,bh) ; //set the request item

}

static void make_request (int major,int rw, struct buffer head * bh)

{

if (req < request) {
if (rw_ahead) {
unlock_buffer (bh) ;
return;
1
sleep on(&wait_for_ request) ;
goto repeat;

req->dev = bh->b_dev; //use the b_dev in the Buffer block to set the
//request item
reg->cmd = rw;
reg->errors = 0;
req->sector = bh->b blocknr<<1; //use the b_blocknr in the Buffer block to
//set the request item
reg->nr_sectors = 2;
req->buffer = bh->b _data;
reqg->waiting = NULL;
reg->bh = bh;
reg->next = NULL;
add_request (major+blk_dev,req) ; //load the request item
1
static void add_request (struct blk dev_struct * dev, struct request * req)

{

if (!(tmp = dev->current_request)) {
dev->current_request = req;
sti();
(dev->request_fn) () ; //make hard disk operation command
return;

}

//code path:kernel/blk drv/hd.c:
void do_hd_request (void)

{

INIT REQUEST;

dev = MINOR (CURRENT->dev) ; //get the device number from the request
block = CURRENT->sector; //get the block number from the request
if (dev > = 5*NR_HD || block+2 > hd[dev] .nr sects) {

end_request (0) ;
goto repeat;

__asm__(“div1l%4”:” = a” (block),” = d” (sec):”0” (block),”1” (0), //calculate the heads,
//sectors and the cylinders
//by the block number
“r” (hd_info[dev] .sect)) ;
__asm__ (“divl%4”:” = a” (cyl),” = d” (head):”0” (block),”1” (0),
“r” (hd_info[dev] .head)) ;
sec++;
nsect = CURRENT->nr_sectors;

352 7. Buffer and Multiprocess File

Process data ... -
G Then load into process space

Buffer zone

{+ 4+ {+ Loadinto buffer

Disk

Process data

Insert data

Buffer zone

Disk

Process data

@ Reapply buffer block and write the data after jointing

Buffer zone

o488 I":{} Copy the data from buffer to disk

Disk

File A File B FileC
Figure 7.3 Add data within the block.

In summary, in the direction of the process, any complex file operation, such as modi-
tying, inserting, and deleting data in any part of the file, could ensure the accuracy as long
as these two fields (b_dev and b_blocknr) and data block are locked. From the direction
of the process, the interaction with the buffer is equivalent to the interaction with the data
block in the hard disk.

The situation that additional data is just within a block is shown in Figure 7.3. The
additional data between blocks is shown in Figure 7.4.

7.3.2 Let the Data Stay in the Buffer as Long as Possible

The b_dev and b_blocknr not only ensure accuracy, but also lay the foundation for letting
the data stay longer in the buffer.

Whether the data stays in the buffer depends on whether there is a binding relation-
ship between the buffer and the data block of the hard disk. The code is as follows:

//code path:fs/buffer.c:
struct buffer head * getblk(int dev,int block) //allocate the buffer

{

struct buffer head * tmp, * bh;

repeat:
if (bh = get_hash table (dev,block)) //try to continue to use from the existing
//binding relationship of the the buffer
return bh;
tmp = free list;

}

struct buffer head * get_hash table(int dev, int block)

7.3 The Function of b_dev, b_blocknr, and Request

353

for (;;) {
if (! (bh = find buffer (dev,block))) //find the buffer whose device number and
//the block number meets the request
return NULL;
bh->b_count++;
wait_on_buffer (bh) ;

}

static struct buffer head * find buffer(int dev, int block)
{
struct buffer head * tmp;
for (tmp = hash(dev,block) ; tmp ! = NULL ; tmp = tmp->b next) //go through the hash
//table to make comparison
if (tmp->b _dev = =dev && tmp->b_blocknr = =block)
return tmp; //if find a existing one, return tmp
return NULL; //return NULL if not find a existing one

We can see from the code above that the kernel only uses the device number and the
block number when searching the existing buffer from the hash table. The kernel main-
tains that the data in the data block still stays in the buffer and can be used directly with-
out reading from the hard disk as long as the binding relationship between the buffer and
the hard disk data still exists. It saves 100 times the time reading from the hard disk.

After going through the buffer, all the buffers have a binding relationship with the
data in the disk, but b_dev and b_blocknr of blocks in the buffer are not needed by the
process. If we still cannot find the proper one, then the kernel uses a free buffer not being

Process data ... -
G ‘Then load into process space

Buffer zone
ﬁ ﬁ ﬁ Load into buffer
Disk
File A File B
Process data ... _
Insert data

Process data
Reapply buffer block and
write the data after jointing

Synchronize the data from buffer
@ @ @ U todisk

Buffer zone

Disk

File A File B FileC

Figure 7.4 Add data between two different blocks.

354

7. Buffer and Multiprocess File

used by the process temporarily (b_count is 0), abolishes the existing binding relationship,
and replaces it with a new binding relationship, that is, a new-built buffer block. Until now,
the data in the disk data block does not stay in the buffer. The code is as follows:

//code path:fs/buffer.c:
struct buffer head * getblk(int dev,int block) //allocate the buffer

if (find_buffer (dev,block))
goto repeat;
bh->b_count = 1;
bh->b dirt = 0;
bh->b_uptodate = 0;
remove_ from_queues (bh) ;
bh->b_dev = dev;
bh->b_blocknr = block;
insert_into_queues (bh) ;
return bh;

The meaning of these two lines of code is to build the binding relationship of the buf-
fer just allocated and the data block. There will be two cases when allocating a new buffer.
There will be two cases; in the first case, when the system just boots, the buffer does not
build any binding relationship with a data block. In the other case, the operating system
has been running for some time and has done enough file to read and write operations, so
all the buffers have established a binding relationship with the hard disk data block and
all the buffers cannot be shared because they do not assort with the b_dev and b_blocknr
of the new buffer. So we could only occupy a buffer forcefully from the buffers not used
(b_count is 0) by the process. In this situation, these two lines of code have two meanings:

1. To build a new binding relationship between the buffer and the hard disk data
block.

2. At the same time, to abolish the existing binding relationship between the buffer
and the data block of the hard disk.

It is worth noting that there is not any mechanism or code in the kernel that could
release the binding relationship established between the buffer and the hard disk data
block deliberately and proactively. Only in compelling circumstances is it replaced by the
newly established binding relationship forcefully. The purpose of all these is only to let the
data stay in the buffer as long as possible. Now we can see that b_dev and b_blocknr are
very important management information of the hard disk data block to stay in the buffer
longer.

The design idea of the request is just opposite to the buffer. Its purpose is to let the
buffer interact data with the hard disk as soon as possible. As we introduced earlier, there
are fields similar to the b_dev and b_blocknr in the request, which are the device number
“dev” and the first sector number “sector”, and they can not only ensure the accuracy of
the interaction between the buffer and the hard disk data block, but can let the buffer and
the data block interact as soon as possible. Let’s look at the following code:

7.3 The Function of b_dev, b_blocknr, and Request

355

//code path:kernel/blk drv/1l rw blk.c:
void 11_rw block (int rw, struct buffer head * bh) //the underlying block device operation

{

unsigned int major;

if ((major = MAJOR(bh->b_dev)) > = NR_BLK DEV ||

! (blk_dev[major] .request_£n)) {
printk (“Trying to read nonexistent block-device\n\r”) ;
return;

}

make_request (major, rw,bh) ; //set the request

static void make_ request (int major,int rw, struct buffer head * bh)

if (req < request) {
if (rw_ahead) {
unlock_buffer (bh) ;
return;
}
sleep_on(&wait_for_ request) ;
goto repeat;

}

reqg->dev = bh->b dev; //use the b_dev in the buffer to set the request
reg->cmd = rw;

req->errors = 0;

reqg->sector = bh->b blocknr<<l; //use the b blocknr set in the buffer to set the request
reqg->nr_sectors = 2;

reg->buffer = bh->b data;

reqg->waiting = NULL;

req->bh = bh;

reqg->next = NULL;

add_request (major+blk_dev, req) ; //load the request item

static void add request (struct blk dev_struct * dev, struct request * req)
{
struct request * tmp;
reqg->next = NULL;
cli();
if (req->bh)
reg->bh->b_dirt = 0;
if (! (tmp = dev->current request)) {//let the current buffer corresponding to the request
//interact with the hard disk immediately as long as
//the hard disk is free
dev->current_request = req;

sti();
(dev->request_f£n) () ;
return;
}
for (; tmp-s>next ; tmp = tmp->next) //load the request into the request queue if the hard

//disk is busy
if ((IN_ORDER (tmp,req) ||
!IN_ORDER (tmp, tmp->next)) &&
IN_ORDER (req, tmp->next))

break;
reg->next = tmp->next; //next pointer is used to set up the queue
tmp->next = req;

sti();

Two scenarios could emerge when performing the add_request function: If the hard
disk is free, then use it to process the current request. If the hard disk is busy process-
ing a request at the moment, here comes a new request and it is inserted into the request
queue. The “next” pointer in the request structure is used to build the request, as Figure
7.5 shows.

356

7. Buffer and Multiprocess File

3
1 1 1 | Buffer block

|
| U U WA
|\
|\ \ \\

5 O-0-0-0-0

Request queue
n _

Figure 7.5 Build the request queue.

Now;, have a look at the code processing the request in the queue:

//code path:kernel/blk drv/hd.c:
static void read intr(void)
{
if (win_result()) {
bad_rw_intr();
do_hd request () ;
return;

port_read (HD_DATA, CURRENT->buffer, 256) ;
CURRENT->errors = 0;

CURRENT->buffer + = 512;
CURRENT->sector++;

if (— CURRENT->nr sectors) {
do_hd = &read intr;
return;
}
end request (1) ; //cope with the aftermath after processing a request
do_hd request(); //keep giving interaction command if there remain

//many requests; else, return

static void write_ intr(void)
{
if (win_result()) {
bad_rw_intr();
do_hd request () ;
return;

if (— CURRENT->nr_sectors) {
CURRENT->sector++;
CURRENT->buffer + = 512;
do_hd = &write_ intr;
port_write (HD_DATA, CURRENT->buffer, 256) ;
return;

}

end_request (1)

//many requests; else, return

void do_hd request (void)

{
int i, r;
unsigned int block,dev;
unsigned int sec,head,cyl;
unsigned int nsect;

i //cope with the aftermath after processing a request
do_hd_request () ; //keep giving interaction command if there remain

7.3 The Function of b_dev, b_blocknr, and Request

357

INIT REQUEST; //determine whether there remaining requests right here
dev = MINOR (CURRENT->dev) ;
block = CURRENT->sector;
if (dev > = 5*NR_HD || block+2 > hd[dev].nr_sects) {
end_request (0) ;
goto repeat;

//code path:kernel/blk drv/hd.c:

extern inline void end request(int uptodate)

wake_up (&CURRENT->waiting) ;
wake_up (&wait_for_ request) ;

CURRENT->dev = -1;
CURRENT = CURRENT->next; //set the current request be the next, make
//preparations for processing the left requests
}
#define INIT REQUEST \
repeat: \
if (!CURRENT) \ //CURRENT is empty meaning there is no request left
return; \
if (MAJOR (CURRENT->dev) ! = MAJOR_NR) \
panic (DEVICE_NAME “: request list destroyed”); \

if (CURRENT->bh) {\
if (!CURRENT->bh->b lock) \
panic (DEVICE_NAME “: block not locked”); \

We can see from the code that, no matter the read interrupt service routine or the
write interrupt service routine, they will all call the end_request() function and the
do_hd_request() function after processing the interaction of a buffer and the data block.
This produces the loop operation processing the requests in the queue. The macro INIT_
REQUEST in the do_hd_request() function is used to determine whether the loop is
completed. If the request is not empty currently, which means there remains buffer space
corresponding to the requested need to interact, keep giving the interaction command
until all the tasks in the request are processed, and the CURRENT is empty, then return.
This loop performs as shown in Figure 7.6.

1 2 3
|:|:|:|:|:| Buffer block [IT_T T T] Bufferblock [IT_T T T 1 Buffer block
‘\ \\ \\\ . \\
Disk \ ‘\\ \ \\ ‘\ Dlsk \\ Dlsl(
\ \ A k
I:H:H:H:l O

EI%I:IHEPI:I EIHI:IHI:I

Request queue Request queue Request queue

5 6
:EEED Buffer block :EEED Buffer block [T T T 1 Buffer block

Dlsk D1sl< Disk

*:.

Request queue Request queue

Figure 7.6 OS process the request queue.

358

7. Buffer and Multiprocess File

The only purpose of the request design is to let the buffer and the hard disk data block
interact with each other as soon as possible.

It is noteworthy that the size of the request is 32 as request[32], so why is it 32 and not
16 or 64?

This is because the data interaction in the host computer has a speed 100 times quicker
than in the hard disk, which means that, on average, 100 pieces of buffer data interact with
the process while only 1 piece of buffer data interacts with the hard disk. The maximum
number of the buffer blocks in the host computer is 3000. The ratio of the buffer to the
request is exactly 100, which matches the ratio of their interaction speed. If the request is
too great for the hard disk to handle, the request will be idle and waste the memory. If the
number of the requests is too small, there is not enough request, leading to the new com-
mand cannot be given, and the hard disk is free while the process has no proper buffer to
use and suspend frequently; this will reduce the operating efficiency of the entire system.
And 32 is just the right size.

74 Function of Uptodate and Dirt

As was introduced in the previous section, the b_dev and the b_blocknr are the basis of
the process of sharing the buffer, and they are the signs of whether data in the buffer still
stays. If it stays, then it will be shared, and the use will be extended to two directions: One
is the process direction, which can be shared and which can be not shared by the process;
another is the hard disk direction, which needs to be synchronized to the hard disk and
which needn’t. And the core task of these two use directions is to ensure the accuracy of
the data in the buffer and the data block.

The two fields b_uptodate and b_dirt in buffer_head are all used to ensure the accu-
racy of the data in the buffer and the data block.

b_uptodate aims at the process direction; it tells the kernel that it could support the
data shared by the process safely as long as the b_uptodate of the buffer is assigned 1 and
the data in the buffer is the latest of the data block. Otherwise, the b_uptodate is 0, which
warns the kernel that the buffer is not updated by the binding data of the data block and
should not support the process to share the buffer.

b_dirt aims at the hard disk direction; when the b_dirt of the buffer is assigned 1, it
tells the kernel that the buffer has been rewritten by the data of the process direction and
needs to be synchronized to the hard disk or else it is 0, and it needn’t be synchronized.

74.1 Function of b_uptodate

First, we have a look at the process direction and what happens without the control of
the b_uptodate.

Without the control of the b_uptodate, the buffer binds with the hard disk block, and
an error may occur when the process operates the data in the buffer directly to read the
file, for example, as Figure 7.7 shows.

From the diagram, it is not difficult to find that the data in the buffer is not updated due
to the data of the data block. b_uptodate is 0, and the data in the buffer is garbage data, so the
data read by the process is also garbage data, and the data in the hard disk is not read at all.
This is not the original intention that the process read the hard disk data, and the data is wrong.

To write the file, an example is shown in Figure 7.8.

74 Function of Uptodate and Dirt

359

Process data . X
The aim of process is to

read the data block of file
to process memory space

Process data

Apply one buffer block and
bind with disk data block,
but don’t use uptodate
buffer block of data block

Buffer zones

If it is not the uptodate
buffer block, the data in
the buffer block is garbage.
It will cause a problem if

Process data

Buffer zone the garbage data is treated
b as a hard disk data block and
P read into the process memory

Figure 7.7 Read file if OS do not use b_uptodate to control file operation.

processdata .. [T o Theaimis touse rocess doa

@ to change disk data block

Apply buffer and bind with data
block; do not use the data in the
data block to update the buffer
block. Directly write process data
into the buffer block. We can

see that, in addition to process
data, there is garbage

data in the buffer block.

Process data

Buffer zone

Process data

The garbage data also
synchronized, covering
the existing data

Buffer zone

Disk

Figure 7.8 Write file if OS do not use b_uptodate to control file operation.

360 7. Buffer and Multiprocess File

From the diagram, it is not difficult to find that the size of the data that the process
wants to write to the file is smaller than a block. Without updating the buffer by the data
in the data block, b_uptodate is 0, and the garbage data of the buffer is not only written
into the data block when synchronizing the data, but it also overwrites the original data,
leading to an error. And it is not the real intention of the process.

It is thus clear that if we don’t update the data in the buffer by the data in the hard disk
data block, the subsequent read file and write file to the buffer are not built on the basis of
data in the hard disk data block, and it may lead to the data error. Setting b_uptodate to
be 1, means that the data in the buffer is based on the hard disk data block, and the kernel
could support data interaction of the process and the buffer safely.

Therefore, when we execute an interrupt service routine in the hard disk, read the
data from the hard disk to the buffer, or synchronize from the buffer to the hard disk, set
the b_uptodate to be 1. The code is as follows:

//code path:kernrl/blk drv/hd.c:
static void read_intr (void) //read interrupt service routine

CURRENT->buffer + = 512;
CURRENT->sector++;

if (— CURRENT->nr sectors) {
do_hd = &read_intr;
return;
}
end_request (1) ; //cope with the aftermath after

//processing a request
do_hd_request () ;

//code path:kernrl/blk drv/hd.c:
static void write_intr (void) //write interrupt service routine

if (— CURRENT->nr sectors) {

CURRENT->sector++;

CURRENT->buffer + = 512;

do_hd = &write_intr;

port_write (HD_DATA, CURRENT->buffer, 256) ;

return;

1

end_request (1) ; //cope with the aftermath after
//processing a request

do_hd_request () ;

//code path:kernrl/blk drv/blk.h:
extern inline void end_ request (int uptodate)
{
DEVICE_OFF (CURRENT->dev) ;
if (CURRENT->bh) {
CURRENT->bh->b_uptodate = uptodate;//set b_uptodate to be 1, data is
//updated and synchronized
unlock buffer (CURRENT->bh) ;

74 Function of Uptodate and Dirt

36l

It is worth noting that the b_uptodate assigned 1 tells the kernel the data in the buf-
fer has been updated by the data in the data block, but it does not mean the two should
be absolutely identical. For example, building a new data block for the file needs to build
a new buffer and build the binding relationship with the data block just built. Building
the binding relationship clears the buffer; then set the b_uptodate of the buffer to be 1. Of
course, now the data is not virtually synchronized, and the data of the buffer and hard disk
block is inconsistent, but this does not affect the synchronization of the data correctly.

We learned from Chapter 5 that the new built data block only has two uses: to store
the contents of the files or to store the indirect block management information of the
i_zone of the file. If it is used to store the contents of the files, the new built data block and
the new built hard disk data block are all the garbage data, and they are not the process
needed; no matter whether the data is updated, the consequence is “equivalent” to solving
the problem. So set the b_uptodate of the buffer to be 1. (Just think about it; it does not
matter if the buffer is empty or not).

If it is the indirect block management information, it must be clear 0, meaning it does
not index the indirect data block; otherwise, the garbage data will lead to the index error
and damage the accuracy of the file operations. Although the data of the buffer and the
hard disk data block is different by now, according to the same reason, the b_uptodate
could be assigned 1.

The designer gives an overall consideration and takes this strategy: as long as we allo-
cate the buffer for the new data block, no matter what the buffer is used for in the future,
the process does not need the data in it now, so just clear up 0 altogether. Thus, it does not
matter what information the data block bounded stores, set the b_uptodate of the buffer
to be 1, and the update problem “is equivalent” to be solved.

The code is as follows:

//code path:fs/inode.c:

int create block(struct m_inode * inode, int block) //create a new
//data block

{

}

static int bmap(struct m inode * inode,int block, int create)

return _bmap (inode,block,1) ;

if (block<7) {
if (create && !inode->i_zone [block])
if (inode->i zone[block] = new block (inode->i dev)) {
inode->i ctime = CURRENT_TIME;
inode->i dirt = 1;
}

return inode->i_zone [block] ;

1
//code path:fs/Bitmap.c:
int new block (int dev) //allocate a data block in the device dev

362

7. Buffer and Multiprocess File

if (bh->b count ! = 1)
panic (“new block: count is ! = 17);
clear block (bh->b _data) ;
bh->b uptodate = 1; //set the buffer to be updated
bh->b dirt = 1;
brelse (bh) ;
return j;

}

After b_uptodate is assigned 1, there could be only two conditions to the buffer. Let’s
see what happens.

For reading, the buffer is newly built although it has garbage data inside. In view of
its being the newly built file, there is no logic requirement of reading the empty file data
block, and the kernel won’t do such a stupid action.

In the write circumstances, because the newly built buffer is cleared, and the hard disk
data block is garbage data, the data of the buffer and the data block are all not what the process
needs, and it does not matter if they are updated or overwritten. It can be seen as updated
already equivalently. So executing the write operations is not against the process’s purpose.

Let’s look at the diagram given in Figure 7.9.

Above is the scenario that the b_uptodate of the kernel is assigned 1. The figure shows
that the hard disk data block is used to store the file content. The white parts mean clearing
0, and it does not matter if it stores the file data block or the information of the indirect
block.

Process data

The aim of process is to
write data to data block

Apply for new buffer block
and bind with new disk,
write data to buffer block

Need to write disk

Buffer zone data into disk,
garbage section was
filled with 0
Disk

Figure 7.9 Read file if the OS uses b_uptodate to control file operation.

74 Function of Uptodate and Dirt

363

On the contrary, if the data in the buffer is not updated, and the b_uptodate is 0, the
kernel will prevent the process from sharing the data in the buffer no matter whether it is
read or write with the purpose of preventing the data corruption caused by no-update as
we discussed above. For example, it judges for two times when reading the block device
data, and the code is as follows:

//code path:fs/Buffer.c:
struct buffer head * bread(int dev,int block)

{
struct buffer head * bh;
if (! (bh = getblk(dev,block)))
panic («bread: getblk returned NULL\n») ;
if (bh->b uptodate) //see if it is updated when allocating
//the buffer to determine whether return
//to use the buffer
return bh;
11 rw block (READ, bh) ;
wait_on buffer (bh) ;
if (bh->b uptodate) //check if it is updated again after
//reading from the hard disk to determine
//whether return to use the buffer
return bh;
brelse (bh) ;
return NULL;
1

In this code, the getblk() function is very likely to have found a buffer block from the
buffer, which already built the binding relationship—both b_dev and b_blocknr match—
and just enough to be used by the current process; however, this buffer cannot be used and
is only to be released because the b_uptodate is 0.

In another example, allocating a new buffer block is to interact with the data block
that exists in the file. Set the b_uptodate to be 0, meaning this buffer data has not been
updated and cannot be shared by the process. The code is as follows:

//code path:fs/Buffer.c:
struct buffer head * getblk(int dev, int block)

if (find buffer (dev,block))
goto repeat;
bh->b count = 1;
bh->b dirt = 0;
bh->b uptodate = 0; //data is not updated yet and can not be
//shared by the process
remove from queues (bh) ;
bh->b dev = dev;
bh->b blocknr = block;
insert into queues (bh) ;
return bh;

364

7. Buffer and Multiprocess File

The code has been introduced in Section 7.1, and a new buffer comes up right here
the first time it comes into being, the data of it and the hard disk data block are different,

so set the b_uptodate to be 0 to avoid the process misusing it.

74.2 Function of the b_dirt

After setting b_uptodate to be 1, the kernel could support the process to share the data of
the buffer block, read and write. The read operation won’t change the data in the buffer,
but the write operation changes the buffer data, so set the b_dirt to be 1, such as write data

into the block device file, write into the common file, etc. The specific code is as follows:

//code path:£fs/blk dev.c:
int block write(int dev, long * pos, char * buf, int count)//write
//block device file content into the buffer

offset = 0;
*pos + = chars;
written + = chars;
count - = chars;
while (chars— >0)
* (p++) = get fs byte (buf++) ;
bh->b dirt = 1;
brelse (bh) ;

//code path:fs/file dev.c:
int file write(struct m_inode * inode, struct file * filp, char * buf,
int count) //write common file content into the buffer

c = pos% BLOCK SIZE;

p = ¢ + bh->b data;

bh->b dirt = 1;

¢ = BLOCK SIZE-c;

if (¢ > count-i) ¢ = count-i;

pos + = c;

if (pos > inode->i size) {
inode->i size = pos;
inode->i dirt = 1;

i+ =c;
while (c— >0)
* (p++) = get fs byte(buf++) ;

//code path:fs/file dev.c:

static struct buffer head * add entry(struct m inode * dir,

const char * name, int namelen, struct dir entry ** res dir)
//directory file use write buffer block when loading the directory entry

{

74 Function of Uptodate and Dirt

365

if (i*sizeof (struct dir entry) > = dir->i size) ({
de->inode = 0;

dir->i size = (i+l)*sizeof (struct dir entry);
dir->i dirt 1;

dir->i_ctime = CURRENT TIME;

if (!de->inode) {
dir->i_mtime = CURRENT TIME;
for (i = 0; i < NAME LEN ; i++)
de->name [i] = (i<namelen)?get fs byte (name+i) :0;
bh->b dirt = 1;
*res _dir = de;
return bh;

Should the b_uptodate be assigned 0 again and forbid the kernel supporting the pro-
cess to share the buffer after changing the buffer data? Let’s look at Figure 7.10.

From the diagram, it is not difficult to find that the data of this buffer has been
updated by the data of the hard disk data block, so after writing the new data into the buf-
fer, the part not written into it is still the same as the corresponding part of the hard disk
data block. When synchronizing to the data block in the future, all the data in the process
hopes to synchronize to the hard disk data block, and it won’t synchronize the garbage
data to the data block. So the b_uptodate still is 1, and there is no need to change it, and the
data of this buffer block could still be shared by the process, no matter whether it is read
or write. Let’s look at the sketches to continue writing data (Figure 7.11).

Process A Q

Buffer zone | | | | . | | |
1 1 Data has been updated,
1 1
1 1 b_uptodate set to 1
Process B Q Part of buffer block data
is changed, and b_dirt is
@ set to 1. Because

previous data in the buffer
block has been updated,
the subsequent
synchronization and

Buffer zone ’ | | ‘ . | |
1 1
1 1
! ! not-overwritten part will
Disk not be affected.
sk -+ Synchronous results is

what the process needs,
so b_uptodate is still 1.

Figure 7.10 Write data into buffer.

366 7. Buffer and Multiprocess File

Process A !
%

Buffer zone
Process changes data
Disk
Buffer zone .i
: Process re-changes data
Disk
Buffer zone
The synchronized
result is what
Disk the process wants.

Figure 7.11 Continue to write data into buffer.

By that analogy, the data in the buffer is changing naturally when writing data into
the buffer constantly, and in the future, these new data will be naturally synchronized to
the hard disk data block as the process hopes.

Buffer_head set the two fields b_uptodate and b_dirt on the process direction and the
hard disk direction respectively, and the structure of the request also takes the two directions
into account. Compared with the write operation, the read operations are more urgent to the
users, so the request sets different sizes for the two operations, and the code is as follows:

//code path:kernel/blk drv/11l rw blk.c:
static void make_request (int major,int rw, struct buffer head * bh)

lock_buffer (bh) ;
if ((rw = = WRITE && !bh->b dirt) || (rw = = READ && bh->b uptodate)) {
unlock buffer (bh) ;
return;
}
repeat:
if (rw = = READ)
req = request+NR REQUEST;
else
req = request+((NR_REQUEST*Z)/B);
while (— req > = request)
if (reg->dev<0)
break;

74 Function of Uptodate and Dirt

367

It is not difficult to find, from the code above, that there is only two thirds the space
the request[32] could be used to write, and all that is left could be used to read. In the same
condition, executing the read operation has a better chance.

In addition, through carefully evaluating b_uptodate and b_dirt, we could find that the
process can share the data inside as long as the b_uptodate is assigned 1. If there is no buffer
block that can be shared by the process in the buffer, and it can be used for other purposes as
long as the b_count is 0. Bind the buffer with the other data block for another use and not the
data error. But if the b_dirt is assigned 1, things will be different, and the data of this buffer
is already different from that of the data block and needs to be synchronized. Although there
is no need to synchronize it right away, but it cannot be misdirected before synchronizing.
Otherwise these data will be overwritten, and data in the hard disk data block does not reflect
the rewrite of the process, leading to data corruption. If the buffer is not enough to be used by
the process, then the process has to wait until the synchronization finishes. The kernel will
set the b_dirt to be 0 immediately when the synchronization has been finished, making more
buffer for the process. The code is as follows:

//code path:kernel/blk drv/1l rw blk.c:
static void add request (struct blk dev struct * dev, struct request *
req)

{

struct request * tmp;

reg->next = NULL;

eli();

if (reg->bh)
reqg->bh->b dirt = 0;

if (!(tmp = dev->current request)) {
dev->current request = req;
sti();
(dev->request fn) () ;
return;

74.3 Function of the i_update, i_dirt, and s_dirt

Controlling the accuracy of the file content is described above, and the content ensures the
accuracy of the buffer data and hard disk data block data by b_uptodate and b_dirt. The
file management information has similar fields, such as the i node stored in the inode_
table[32]. When different processes are operating the same file, they share the information
of the i node file. So its data structure has two fields, i_update (actually not used in the
Linux 0.11) and i_dirt. The code is as follows:

//code path:include/linux/fs.h:
struct m_inode {
unsigned short i mode;
unsigned short i uid;
unsigned long i_size;

368

7. Buffer and Multiprocess File

unsigned long i mtime;
unsigned char i gid;
unsigned char i nlinks;
unsigned short i zone[9];
/* these are in memory also */
struct task _struct * i wait;
unsigned long i_atime;
unsigned long i ctime;
unsigned short i_dev;
unsigned short i_num;
unsigned short i_count;
unsigned char i lock;
unsigned char i_dirt;
unsigned char i pipe;
unsigned char i mount;
unsigned char i_seek;
unsigned char i_update;

IE

It is not hard to understand designing the i_dirt, such as changing the file size, so the file
i node should change the size record. Then the i node in the inode_table[32] is different from
that of the hard disk, and it needs to be synchronized. The i_update in the i node is not used
in the system, and this is because the file management information in the hard disk is stored in
the shape of the data block and loaded into the buffer in the shape of a block. It is the same as
the hard disk data block after loading it into the buffer, which is equivalent to being updated. It
could be shared directly without setting the i_update in the management structure.

There are also sharing problems of the super block in the super_block[8]. The super
block stores the management information of the entire file system, and it will be used
when multiprocessing the file. Its data structure has a s_dirt, and the code is as follows:

//code path:include/linux/fs.h:

struct super block {
unsigned short s ninodes;
unsigned short s nzones;
unsigned short s imap blocks;
unsigned short s zmap blocks;
unsigned short s firstdatazone;
unsigned short s log zone size;
unsigned long s max size;
unsigned short s magic;

/* These are only in memory */
struct buffer head * s imap([8];
struct buffer head * s zmap([8];
unsigned short s dev;
struct m_inode * s isup;
struct m_inode * s imount;
unsigned long s_time;
struct task struct * s wait;
unsigned char s lock;
unsigned char s_rd only;
unsigned char s dirt;

74 Function of Uptodate and Dirt 369

The reason why there are no fields similar to the uptodate is the same as that the
i_update is not be used in the i node. They are also loaded into the buffer in the shape of
a block. There is no need to use the uptodate in the management structure because after
loading it into the buffer it is equivalent to being updated. The s_dirt fields have not been
used only when reading the super block and are set to be 0. There is no s_dirt in the Linux
0.11 because the process reads from super_block[8] to share the super block information
without writing it into the table entry.

7.5 Function of the Count, Lock, Wait, Request

After staying in the buffer, the problem of the data used in the process direction goes on.
This section will introduce the b_count, b_lock, and *b_wait.

7.5.1 Function of b_count

When the process applies to the kernel, it could only make the choice from the following
two conditions: 1) Let the process share the same buffer with the other processes, using all
the value of the control fields or 2) apply a buffer not to be used by any other process for
this process and reset all the control fields.

The process needs to know which buffer has been occupied and which is not in order
to make the choice. Some buffers might be shared by more than one process, and then a
field should be set in the buffer to let the kernel know at any time “how many processes of
each buffer are shared,” and b_count is the field.

There is no process using the buffer block during the initialization of the buffer, so
the b_count of each buffer is assigned 0.

The code is as follows:

//code path:fs/buffer.c:
void buffer init (long buffer end)

{
h->b_dev = 0;
h->b_dirt = 0;
h->b count = 0; //there is no process using the buffer
//block, set b count = 0
h->b_lock = 0;
h->b_uptodate = 0;
h->b_wait = NULL;
h->b _next = NULL;
h->b_prev = NULL;
h->b _data = (char *) b;
h->b prev _free = h-1;
h->b next free = h+l;
1

The buffer block should not be used by any other process when allocating a new buffer
block. Set b_count 0, and the bufter is shared by the first process and b_count is assigned
1 after that. The code is as follows:

370

7. Buffer and Multiprocess File

//code path:fs/buffer.c:
struct buffer head * getblk(int dev,int block)

{
tmp = free list;
do {
if (tmp->b_count) //Reference technology must
//be zero
continue;
if (!bh || BADNESS (tmp)<BADNESS (bh)) { //take into account the
//application again
bh = tmp;
if (!BADNESS (tmp))
break;
}
/* and repeat until we find something good */
} while ((tmp = tmp->b_next free) ! = free_list);
bh->b_count = 1; //the new buffer, meaning only the current process is

//using it, so b_count is forcefully assigned 1
bh->b_dirt = 0;
bh->b_uptodate = 0;
remove_from_queues (bh) ;
bh->b_dev = dev;
bh->b_blocknr = block;
insert_into_queues (bh) ;
return bh;

The buffer is shared by the process one after another. The value of the b_count is
gradually accumulated on the basis of the original data. The code is as follows:

//code path:fs/buffer.c:
struct buffer head * getblk(int dev,int block)
{
struct buffer head * tmp, * bh;
repeat:
if (bh = get_hash table(dev,block)) //go through the hash table
//to see if the buffer could

//share with other process
return bh;

struct buffer head * get_hash table(int dev, int block)

{

struct buffer_head * bh;

for (;;) {

if (! (bh = find buffer (dev,block))

return NULL;

bh->b_count++; //if the buffer can be shared then one
//more process use it, b_count increase

wait_on_buffer (bh) ;

if (bh->b_dev = = dev && bh->b _blocknr = = block)

return bh;

bh->b_count— ;

}

7.5 Function of the Count, Lock, Wait, Request 371

After one process reads the file, there is no need to share the buffer, and the kernel
will release the relationship of the process and the buffer, b_count minus one. If all the
relationships of the process and the buffer are released, the b_count decreases to 0, and
then the buffer can be allocated as a new one. The code is as follows:

//code path:fs/file dev.c:
int file read(struct m_inode * inode, struct file * filp, char * buf, int count) //readfile

{

while (chars— >0)
put_fs_byte (* (p++) ,buf++) ;
brelse (bh) ; //the reference count decrease
} else {
while (chars— >0)
put_fs byte (0,buf++) ;

}

int file write(struct m_inode * inode, struct file * filp, char * buf, int count) //writefile

{

while (c— >0)
* (p++) = get_fs byte (buf++) ;
brelse (bh) ; //the reference count decrease

}

inode->i mtime = CURRENT TIME;

if (! (filp->f flags & O_APPEND)) {
filp->f pos = pos;

inode->i_ctime = CURRENT TIME;

}
_—

//code path:fs/buffer.c:
void brelse (struct buffer head * buf)

{
if (!buf)
return;
wait_on_buffer (buf) ;
if (! (buf->b_count—))
panic (“Trying to free free buffer”);
wake up (&buffer wait) ;

It is worthy to note that when all processes sharing the buffer are released from the
share relationship, although the b_count is absolutely 0, it does not mean the binding
relationship of the buffer and the data block is released. If a process operates this buffer
again in the future, there is no need to read from the hard disk again, and the process
could continue to use the buffer as long as the b_dev and b_blocknr of the buffer are not
changed.

7.5.2 Function of i_count

It is the content data of the file that is shared between the process and the buffer block. Not
only the b_count field is needed to administer the content data of the file, some similar
fields are also needed to refer to all the conditions that data structures like “search for a
free entry” and “be repurposed after the research” are needed in the file management
information, for example, inode_table[32]. The specific code is as follows:

372

7. Buffer and Multiprocess File

//code path:include/linux/fs.h:

struct m_inode {
unsigned short i_mode;
unsigned short i_uid;
unsigned long i_size;
unsigned long i_mtime;
unsigned char i_gid;
unsigned char i_nlinks;
unsigned short i_zone[9];

/* these are in memory also */
struct task struct * i _wait;
unsigned long i_atime;
unsigned long i_ctime;
unsigned short i_dev;
unsigned short i_num;
unsigned short i_count;
unsigned char i_lock;
unsigned char i_dirt;
unsigned char i_pipe;
unsigned char i_mount;
unsigned char i_seek;
unsigned char i_update;

Inode_table[32] is file management information. The process references the file data
block corresponding to the buffer block. So the process inevitably references the i node
entry in inode_table[32]. And both are synchronized. So inode_table[32] also needs the field
i_count to identify how many processes are sharing the i node entry. If it is not shared, then
i_count turns out to be 0, and it can be regarded as a free entry. For example, when a process
wants to open a file that had never been opened, but the i node entry cannot be shared with
other processes at the same time, this free i node entry can be used to load the i node.

However super_block[8] is quiet different from this. A device only owns a super
block, and the entire system can be installed in only eight super blocks, which is fixed.
From loading the file system to uninstalling it, the superblock represents only one device.
So there is no need to consider whether it is free or use it for any other intentions. More
than one process can load the same file system, and operation on the same superblock
is required, but a field like count is not needed to record the number of the super_block
cited. The specific code is as follows:

//code path:include/linux/fs.h:

struct super_block {
unsigned short s_ninodes;
unsigned short s_nzones;
unsigned short s_imap_blocks;
unsigned short s_zmap_blocks;
unsigned short s_firstdatazone;
unsigned short s_log_zone_size;
unsigned long s_max_size;
unsigned short s_magic;

/* These are only in memory */
struct buffer head * s_imapl[8];
struct buffer head * s_zmapl[8];
unsigned short s_dev;
struct m_inode * s_isup;
struct m_inode * s_imount;
unsigned long s_time;
struct task struct * s_wait;
unsigned char s_lock;
unsigned char s_rd only;
unsigned char s_dirt;

7.5 Function of the Count, Lock, Wait, Request

373

As we can see from the code, no field like count exists.

It is worth noting that except for i node and super blocks, file management informa-
tion also includes i node bitmap and logical block bitmap. These two types of file manage-
ment information do not have a dedicated data structure. But they also need to support
share. They are stored in the buffer block, you might say, permanently. These buffer blocks
are used only by the i node’s bitmap and the logical block bitmap.

//code path:fs/super.c:
static struct super_block * read super (int dev)

for (i = 0 ; i < s->s_imap_blocks ; i++) //load I-node bitmap into the buffer block
if (s->s_imap[i] = bread(dev,block))
block++;
else
break;
for (i = 0 ; i < s->s_zmap_blocks ; i++) //load logical block bitmap into buffer block
if (s->s_zmap[i] = bread(dev,block))
block++;
else
break;
if (block ! = 2+s->s_imap_blocks+s->s_zmap_blocks) {//release if Abnormal

situations appear
for(i = 0;i<I_MAP_SLOTS;i++)
brelse(s->s_imapl[il) ;
for(i = 0;i<Z MAP_SLOTS;i++)
brelse(s->s_zmap[il);
s->s_dev = 0;
free_super(s) ;
return NULL;
}
s->s_imap[0]->b_datal[0] | = 1;
s->s_zmap [0] ->b_data[0] =1;
free_ super(s);
return s;

//code path:fs/buffer.c:
struct buffer head * bread(int dev,int block) //Read the underlying block device data

{
struct buffer head * bh;
if (! (bh = getblk(dev,block))) //Device number and a block number is needed when applying
buffer block
panic (“bread: getblk returned NULL\n”) ;
if (bh->b_uptodate)
return bh;

}

struct buffer head * getblk(int dev,int block)

{

if (find buffer (dev,block))
goto repeat;
bh->b_count = 1; //Reference count is 1
bh->b_dirt = 0;
bh->b_uptodate = 0;

As can be seen from the code, after the i node’s bitmap and the logical block bitmap
are loaded into the buffer blocks, the b_count in these buffer blocks is set to 1, never to be
released later. So the count of the buffer block cannot be reduced to 0, as a result of which
these buffer blocks are not available when any process wants to apply for a new buffer
block. So these buffer blocks become dedicated.

374 7. Buffer and Multiprocess File

7.5.3 Function of b_lock and *b_wait

The kernel applies a buffer block for the process, especially when the b_count in the buffer
block turns out to be 0, and considering the synchronization, there is great possibility that
this buffer block is transacting data with the hard disk. So the b_lock field is set in this
buffer_head structure. If this field is set to be 1, it means this buffer block is interacting
data with the hard disk. The kernel will stop the process from conducting operations to
the buffer block until the end of the interaction with the hard disk. The interception will
be relieved when the field is set to 0.

Ifthe b_lock field in the buffer block, which is applied by the process, is set to 1, the process
also needs to be suspended even though the process has already got the buffer block. The buf-
fer block can only be accessed until it is unlocked. When the bufter block is locked, no matter
how many processes had applied the bufter block, they cannot immediately operate the buffer
block. All these processes should be suspended and switch to other processes to execute. We
need to record which processes are suspended while waiting for this buffer block. Due to the
use of a waiting queue of the process, a field can solve this record. The field is *b_wait.

These two fields are often used in combination. The specific code is as follows:

b_lock is set to 0, and *b_wait is set to null when we initialize the buffer block.

//code path:fs/buffer.c:
void buffer init (long buffer end)

{
h->b dev = 0;
h->b dirt = 0;
h->b count = 0;
h->b lock = 0;
h->b uptodate = 0;
h->b wait = NULL;
h->b next = NULL;
h->b prev = NULL;
h->b data = (char *) b;
h->b prev free = h-1;
h->b next free = h+1l;
1

After the buffer block is applied, this block should be locked before the operation on
the bottom layer, which means b_lock should be set to 1. The specific code is as follows:

//code path:kernel/blk drv/1l rw block.c:
static void make request (int major,int rw, struct buffer head * bh)

if (rw! = READ && rw! = WRITE)

panic (“*Bad block dev command, must be R/W/RA/WA") ;

lock buffer (bh) ; //lock the buffer block
if ((rw = = WRITE && !bh->b dirt) || (rw = = READ && bh->b

uptodate)) {

7.5 Function of the Count, Lock, Wait, Request

375

unlock buffer (bh) ;
return;

static inline void lock_buffer (struct buffer head * bh)

{

cli();
while (bh->b_lock)

//if the buffer block is already locked

sleep on (&bh->b wait) ; //suspend the process directly

bh->b_lock = 1;
sti();

//lock the buffer block

Before the hard disk data blocks start transacting data with the buffer blocks, the
function lock_bufter() will judge whether the buffer block is locked. If it is locked, it is
possible that this buffer block is already applied by other processes, and it is transacting
data with the hard disk. So we could call function sleep_on() to suspend the process and
switch to the other processes to execute. Lock the buffer block again to prevent it from
being misused by other process when we switch back to the current process later. B_lock
and *b_wait’s combination is not only reflected here, but also all the conditions when the
buffer block’s state should be determined. The specific code is as follows:

//code path:fs/buffer.c:
struct buffer head * bread(int dev,int block)

{

if

struct buffer head * bh;

if (! (bh = getblk(dev,block)))
panic (“bread: getblk returned NULL\n”) ;
if (bh->b uptodate)
return bh;
11 rw block (READ, bh) ;
wait on buffer (bh) ; //Detect whether process need to
//wait for the buffer block to be
//unlock or not

(bh->b_uptodate)

return bh;
brelse (bh) ;
return NULL;

static inline void lock buffer (struct buffer head * bh)

{

cli();

while (bh->b lock) //if the buffer block is already locked
sleep on (&bh->b wait) ; //suspend the process

bh->b lock = 1; //lock the buffer block

sti();

376

7. Buffer and Multiprocess File

They should be used in combination when we lock the buffer and suspend the process.
And they are also used in combination when we unlock the buffer block and wake the
process. The specific code is as follows:

//code path:kernel/blk drv/ll rw block.c:
static void make_request (int major,int rw, struct buffer head * bh)

{

lock_buffer (bh) ;

if ((rw = = WRITE && !bh->b_dirt) || (rw = = READ && bh->b_uptodate)) {
unlock_buffer (bh) ; //unlock the buffer block and wake up the process
return;

}
if (rw = = READ)

req = request+NR REQUEST;

static inline void unlock buffer (struct buffer head * bh) //unlock the buffer block and
//wake up the process
{

if (!bh->b_lock)

printk(“11_rw _block.c: buffer not locked\n\r”);
bh->b_lock = 0;
wake_up (&bh->b_wait) ;

After transacting the data, an interrupt service routine will run. And this will unlock
the buffer block. The processes waiting for this buffer block will be awakened later. The
specific code is as follows:

//code path:kernel/blk drv/blk.h:
extern inline void end request (int uptodate) //Process the rehabilitation work after the
//completion of the request operation
DEVICE_OFF (CURRENT->devV) ;
if (CURRENT->bh) {
CURRENT->bh->b_uptodate = uptodate;
unlock_buffer (CURRENT->bh) ; //unlock the buffer block and wake up the
//process

if (luptodate) {
printk (DEVICE _NAME “ I/O error\n\r”);

printk (“dev%04x, block%d\n\r”, CURRENT->dev,
CURRENT->bh->b_blocknr) ;

static inline void unlock buffer (struct buffer head * bh) //unlock the buffer block and
//wake up the process
{

if (!bh->b_lock)

printk (DEVICE NAME “: free buffer being unlocked\n”) ;
bh->b_lock = 0; //release the lock of buffer block
wake_up (&bh->b_wait) ; //wake up the process waiting for the buffer block

7.5 Function of the Count, Lock, Wait, Request 377

7.5.4 Function of i_lock, i_wait, s_lock, and *s_wait

When we share the contents of the file, the b_lock and *b_wait fields are stored in the buf-
fer block. Sharing the management information of the file and sharing the contents of the
file are corresponding. So there are similar fields in the data structure of the file manage-
ment information, for example, inode_table[32] and super_block[8]. The specific code is
as follows:

//code path:include/linux/fs.h:

struct m_inode {
unsigned short i_mode;
unsigned short i_uid;
unsigned long i_size;
unsigned long i mtime;
unsigned char i gid;
unsigned char i nlinks;
unsigned short i zone[9];

/* these are in memory also */
struct task _struct * i_wait;
unsigned long i_atime;
unsigned long i ctime;
unsigned short i_dev;
unsigned short i_num;
unsigned short i_count;
unsigned char i_lock;
unsigned char i _dirt;
unsigned char i _pipe;
unsigned char i _mount;
unsigned char i_seek;
unsigned char i_update;

IE;

struct super block {
unsigned short s ninodes;
unsigned short s_nzones;
unsigned short s_imap blocks;
unsigned short s_zmap blocks;
unsigned short s_firstdatazone;
unsigned short s_log zone size;
unsigned long s _max_size;
unsigned short s_magic;

/* These are only in memory */
struct buffer head * s_imapl[8];
struct buffer head * s_zmapl[8];
unsigned short s_dev;
struct m_inode * s isup;
struct m_inode * s_imount;
unsigned long s_time;
struct task_struct * s _wait;
unsigned char s_lock;
unsigned char s_rd only;
unsigned char s_dirt;

378 7. Buffer and Multiprocess File

Fields like lock and wait both exist in the file management information, and they are
used in combination because they should serve the sharing service. Situations in which
i_lock and i_wait are used in combination in inode_table[32] are as follows. The specific
code is as follows:

//code path:fs/inode.c:
static void read inode (struct m_inode * inode)//read the i-node

lock_inode (inode) ; //lock the i-node
if (! (sb = get super (inode->i dev)))
panic(“trying to read inode without dev”);

* (struct d_inode *)inode =
((struct d_inode *)bh->b_data)
[(inode->i num-1)%$INODES_PER BLOCK] ;
brelse (bh) ;
unlock inode (inode) ; //unlock the i-node

static void write inode (struct m_inode * inode)//write the i-node

lock_inode (inode) ; //lock the i-node

if (!inode->i dirt || !inode->i dev) {
unlock_ inode (inode) ;

return;

1

bh->b_dirt = 1;
inode->i dirt = 0;

brelse (bh) ;
unlock inode (inode) ; //unlock the i-node

1

static inline void lock inode (struct m _inode * inode)

{
cli();
while (inode->i lock) //if i-node is locked
sleep on(&inode->i wait) ; //suspend the process
inode->i lock = 1; //lock the i-node
sti();

1

static inline void unlock inode (struct m_inode * inode)

{
inode->i lock = 0; //unlock the i-node
wake up (&inode->i wait) ; //wake up the processes waiting

for i-node to be unlocked

1

Situations in which s_lock and *s_wait are used in combination in super_block[8] are
as follows. The code is as follows:

7.5 Function of the Count, Lock, Wait, Request

379

//code path:fs/inode.c:
static struct super block * read super(int dev)//read the super block

{
s->s _time = 0;
s->s rd only = 0;
s->s dirt = 0;
lock super(s); //lock the super block
if (! (bh = bread(dev,1))) {
s->s dev = 0;
free super (s) ;
return NULL;
1
s->s_imap[0]->b _datal[0] | = 1;
s->s zmap[0] ->b _datal[0] | = 1;
free super(s); //unlock the super block
return s;
1
void put super (int dev)//release the super block
{
if (sb->s imount) ({
printk (“Mounted disk changed - tssk, tssk\n\r”);
return;
1
lock super(s); //lock the super block
sb->s dev = 0;
for (i = 0;i<I_MAP_SLOTS;i++)
brelse(sb->s _imap[i]) ;
for (i = 0;i<Z MAP_SLOTS;i++)
brelse(sb->s zmap[i]) ;
free super (sb) ;
free super(s); //lock the super block
1
static void lock super(struct super block * sb)
{
cli();
while (sb->s lock) //if the super block locked
sleep on(&(sb->s wait)); //suspend the process
sb->s lock = 1; //lock the super block
sti();
1
static void free_ super(struct super block * sb)
{
cli();
sb->s lock = 0; //unlock the super block
wake up (&(sb->s wait)) ; //wake up the process waiting
for the unlocked super block
sti();
1

380 7. Buffer and Multiprocess File

7.5.5 Function of Request

Fields in the buffer block, i nodes, and super block establish a foundation of sharing the
buffer block for the process. And they solved the problem about whether the buffer block
could be shared or not. Here is how to share the buffer block more efficiently.

We have presented problems about using the buffer blocks concerning the process
above. Then we will present the problems about using the buffer blocks concerning the
hard disk. Let’s look at the data structure of request. Codes are as follows:

//code path:kernel/blk drv/Blk.h:
struct request {
int dev; /* -1 if no request */
int cmd; /* READ or WRITE */
int errors;
unsigned long sector;
unsigned long nr sectors;
char * buffer;
struct task struct * waiting;
struct buffer head * bh;
struct request * next;

}

Request needs to interact with the hard disk. So the cmd field is designed to determine
whether it needs to write or read. Besides we need to be clear about which buffer block
needs to interact. For example the *bh and *buffer fields are designed for this. We also
need to consider the mapping rules of the data blocks and sectors, for example, the sec-
tor and nr_sectors fields are designed for this. We also need to consider what to do if the
interaction is wrong. We use errors to record the times that problems emerge. All these
fields are designed for interaction with the hard disk.

The transaction is totally about one buffer block and one data block. So we don’t need
to consider the sharing problems. As a result, there is no field like b_count in the request.
There are only two states in the record about the interaction condition, busy and free.
So the dev field is not only used to present the device number, but it is also used to judge
whether the request is being occupied. Codes are as follows:

//code path:kernel/blk drv/ll_rw block.c:
void blk_dev_init (void)
{

int 1i;

for (i = 0 ; i<NR_REQUEST ; i++) {

request [1] .dev = -1; //The device number is set to -1, which means the
//request entry is free

request [i] .next = NULL;

}

static void make_request (int major,int rw, struct buffer head * bh)

/* find an empty request */
while (- req > = request) //find a free request
if (reg->dev<0) //That must be -1, if it is less than 0, which means
//it is free

7.5 Function of the Count, Lock, Wait, Request

381

req->dev = bh->b dev; //set dev using equipment number, It can’t be -1, not
//-1 this value device number

reg->cmd = rw;
req->errors 0;
reqg->sector bh->b_blocknr<<1;
reqg->nr_sectors = 2;
reg->buffer = bh->b data;
reqg->waiting = NULL;
reqg->bh = bh;
reqg->next = NULL;
add_request (major+blk_dev, req) ;

}

//code source:kernel/blk drv/Blk.h:
extern inline void end request (int uptodate)

{

wake_up (&CURRENT->waiting) ;

wake_up (&wait_for request) ;

CURRENT->dev = -1; //set the request to free once it completed its mission
CURRENT = CURRENT->next;

1

Besides it is worth noting that request is set to achieve the balance of data interaction
between the host and hard disk as far as possible. But this balance is not absolute. For
example, if the writing operation is too frequent or the hard disk itself incurred an error
as a result of which data transacting failed, and there is great possibility that data may be
backlogged in request. This may eventually lead to lack of request. Even if the kernel has
obtained the buffer blocks for the process, the process can only be suspended due to the
absence of request. A field is also needed to record which process is suspended. *waiting is
the field used to record which process is suspended. The specific code is as follows:

//code path:kernel/blk drv/1ll rw block.c:
static void make_request (int major,int rw, struct buffer head * bh)

if (req < request) ({ //can’t find a free request
if (rw_ahead) {
unlock_buffer (bh) ;
return;
}
sleep_on(&wait_for_ request); //process is suspended
goto repeat;

When free request is available, the process will then be woken up. The specific code
is as follows:

//code source:kernel/blk drv/blk.h:
extern inline void end_request (int uptodate)

wake_up (&CURRENT->waiting) ;
wake_up (&wait_for_ request) ; //process waiting for request is woken up
CURRENT->dev = -1;
CURRENT = CURRENT->next;

382 7. Buffer and Multiprocess File

Similarly, more than one process may be suspended due to waiting for some one
request. Only *waiting one field is not capable of recording this. So we need process
waiting queue to solve this problem. It is also mentioned earlier that it is used to record
processes waiting for the buffer block. Process waiting queue techniques are needed to
complete the recording of more than one waiting process.

7.6 Example |: Process Waiting Queue of Buffer Block

Below we present a case in which more than one process operates the same file at the same
time. We use this to embody the problem of the sharing problem and explain clearly the
principle of the process waiting queue.

Suppose there is a file named hello.txt on your hard disk. The file’s size is 700 B (which
is smaller than the size of a data block). A buffer block can carry the entire contents of
this file when it is loaded in. Once three processes start operating, this file is equivalent
to that they are operating the same buffer block relying on the system. This will produce
the process waiting queue. This section will detail the process of generating the queue and
waking up the processes in the queue.

Here we introduce the scene of example 1. The three processes are as follows:

Process A is about reading the disk. The purpose is to read 100 bytes in the hello.txt
file into the buffer[100]. The specific code is as follows:

void FunA() ;
void main ()

{
FunA() ;
}
void FunA ()
{
char buffer[100];
int 1i,3;
//open the file
int £d = open(“/mnt/user/userl/user2/hello.txt”, O RDWR,0644));
//read the file
read (fd,buffer, sizeof (buffer));
//close the file
close (£fd) ;
for (i=0;i<1000000;i++) //Time-consuming piece
{
for (j=0;3<1000000; j++)
}
}
return;
}

Process B is about reading the disk too. The purpose is to read 200 bytes in the hello.
txt file into the buffer[200]. The specific code is as follows:

7.6 Example |: Process Waiting Queue of Buffer Block

383

void FunB() ;
void main ()

void FunB ()
{
char buffer[200];
int i,j;
//open file
int fd = open(“/mnt/user/userl/user2/hello.txt”,0 RDWR,0644));
//read the file
read (fd,buffer,sizeof (buffer));
//close the file
close (£d) ;
for (i=0;i<1000000;i++)//Time-consuming piece
{

for(j=0;3<1000000;j++)

~

return;

Process C is about writing the disk. The purpose is to write characters “ABCDE” in
strl[] to the hello.txt file. The specific code is as follows:

void FunC() ;
void main ()

void FunC ()
{
char strl[]=“ABCDE”;
int i,3;
//open file
int fd = open(“/mnt/user/userl/user2/hello.txt”, O RDWR,0644));
//write file
write (fd, strl,strlen(strl));
//close file
close(£d);
for(i=0;i<1000000;i++)//Time-consuming piece
{
for(j=0;3<1000000;j++)

{
}

~

return;

384 7. Buffer and Multiprocess File

The execution order of these three processes is process A first, process B second, and
process C the last. These three processes have no parent-child relationship.

Let’s look at the specific implementation process.

Process A is suspended after reading the file. After it is started, process A exe-
cutes the sentence “int fd = open (“/mnt/user/userl/user2/hello.txt”, O_RDWR,0644))”.
Function open() will eventually be mapped to sys_open() function to execute. Function
sys_open()’s implementation is introduced in Chapter 5. The specific code is as follows:

//code source: fs/open.c:
int sys_open(const char * filename,int flag,int mode)

(current->filp[fd] = f)->f count++; //bind *filp[20] in process A with items
//corresponding to file_table[64],and add
//file handle count

if ((i = open_namei (filename, flag, mode, &inode))<0) { //To obtain the I node in
//hello.txt file

f->f mode = inode->i_mode; //set file attributes using i-node
//attributes,
f->f flags = flag; //set file operations with the flag
//parameter
f->f count = 1; //File reference count plus 1
f->f inode = inode; //build relationships between the i-node

//and the file.
f->f pos = 0 //File read and write pointer is set to 0
return (£4d); //return the file handle to the user space

Implementation is shown in Figure 7.12.

Then the sentence “read(fd, buffer, sizeof (buffer))” is executed. The function read()
will eventually be mapped to function sys_read() to execute. The function sys_read() will
call function file_read() to read the contents of the file. Function file_read() calls function
bread() to read data from the hard disk. The specific code is as follows:

//code source: fs/read write.c:
int sys_read(unsigned int fd,char * buf,int count) //Reading data from hello.txt file
//fd is the file handle, buf is a user-space pointer,
//and count is the number of bytes to read
if (S_ISDIR(inode->i_mode) || S_ISREG(inode->i_mode)) {
if (count+file->f pos > inode->i_size)
count = inode->i_size - file->f pos;
if (count< = 0)
return 0;
return file read(inode, file,buf, count) ; //Read specified data of process
}
printk (" (Read) inode->i_mode =%060\n\r”,inode->i_mode) ;
return -EINVAL;

}

//code source:fs/file dev.c:
int file read(struct m_inode * inode, struct file * filp, char * buf, int count)

if (nr = bmap(inode, (filp->f_pos)/BLOCK_SIZE)) {

if (! (bh = bread(inode->i_dev,nr))) //read data from the hard disk
break;

} else
bh = NULL;

7.6 Example |: Process Waiting Queue of Buffer Block

385

0x00000 Ox9FFFF OxFFFFF 0x3FFFFF Ox5FFFFF OxFFFFFF

Kernel
8 Sp——

* The page that
"task_struct of

task_struct of process A | process A resides

e,
. MERIN .

L0t I&ernel code area "Kernel data area

.. . .
. . .
Cee. .

inode_table[32] j file_table[64]]

W w “frim ELLL

Current process

i node of E Ve
hello.txt ! -
1
e ;

Process status
i Process 0 Process A i
i i Interruptible I Ready i
] L) i

Figure 7.12 System open file hello.txt for process A.

The implementation process after entering function bread() has been described in
detail in Section 3.3.1. The code is as follows:

//code source:fs/buffer.c:

struct buffer head * bread(int dev,int block) //read data from the hard disk
{
if (! (bh = getblk(dev,block)))//Apply for a free buffer block
11_rw_block (READ, bh) ; //The buffer block is locked and is bound with
//request item, sending disc reading instruction
wait_on_buffer (bh) ; //suspend the process waiting for unlocked

//buffer block,
if (bh->b_uptodate)
return bh;

Process A is suspended in function wait_on_buffer(). The code is as follows:

386 7. Buffer and Multiprocess File

//code source:fs/buffer.c:
static inline void wait on buffer (struct buffer head * bh)//suspend
the process waiting for unlocked buffer block,

{
cli();//Interrupt off
while (bh->b lock) //Detect whether the buffer block is locked
sleep on(&bh->b wait); //suspend the buffer block process
// (A process), and switch to
//other process
sti();//Open interrupt
1

The buffer block has been locked when 1I_rw_block() function is being executed (as
is described in Section 3.3.1.3). If the result of (bh->b_lock) is true, function sleep_on() is
called. Arguments that is transported is &bh->b_wait and bh->b_wait, which represents a
pointer of the process that is waiting for the unlocking of the buffer block. All the b_wait
in all the buffer blocks are set to NULL (as mentioned in Section 2.10) when the system is
initialized. And this buffer block is a new application, which has never been used by other
processes. So the value of bh->b_wait is NULL at this time. Next, the process enters the
following function sleep_on(). The code is as follows:

//code source:kernel/sched.c:
void sleep on(struct task _struct **p)

{
struct task struct *tmp;
if (!p)
return;
if (current = = &(init_task.task))
panic(“task[0] trying to sleep”);
tmp = *p; //at this time tmp stores
/ /NULL
*p = current; //*p stores pointer of
//process A
current->state = TASK UNINTERRUPTIBLE; //set process A to
//uninterruptible state
schedule () ; //switch process
if (tmp)
tmp->state = 0;
1

From the introduction of arguments in sleep_on() function we learned that *p points
to bh->b_wait. *p stores the pointer of process A, which means that process A is waiting
for buffer block bh to be unlocked.

Calling function schedule() and switching to execute process B after the process A is
suspended. At the same time, the hard disk is also transporting data to the data register
port. This situation is shown below:

The progress bar representing process A in Figure 7.13 is turned into gray, which
means process A is suspended.

It is worth noting that tmp in the code is stored in the kernel stack of the process A as
NULL. Bh->b_wait stores the pointer of process A (Figure 7.14).

7.6 Example |: Process Waiting Queue of Buffer Block

387

0x00000 Ox9FFFF OxFFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF

a [:i Buffer block

Disk read data continually

Process status

Process 0 Process A
i Interruptible I Uninterruptible
1

Current process
Figure 7.13 System reads data in hello.txt and suspends process A.

b_wait

bh I

Process A

Kernel stack - NULL tmp

task_struct

9 L

Figure 7.14 Set process A into wait queue.

Process B was suspended after reading the file. Process B first executes the sen-
tence int fd = open (“/mnt/user/userl/user2/hello.txt”, O_RDWR,0644)). Function open()
will eventually be mapped to function sys_open() to execute. Function sys_open() will
apply for a free new entries in the file management table file_table[64] to mount[20] file_
table[64] empty entries mount and the *filp in task_struct in process B. Although the
process B and process A are opening the same file, these two processes” operation of the

388

7. Buffer and Multiprocess File

file are not related to each other. As a result, two sets of books are needed. The specific
code is as follows:

//code source:fs/open.c:
int sys_open(const char * filename,int flag,int mode)

for(fd = 0 ; fd<NR_OPEN ; fd++)
if (!current->filp[£d])
break;
for (i = 0 ; i<NR_FILE ; i++,f++)
if (!f->f count) break;

(current->filp[fd] = £f)->f count++; //bind *£ilp[20] in process B and items
//corresponding to file table[64],and add file handle count
if ((i = open_namei (filename, flag, mode, &inode))<0) { //To obtain the I-node in

//hello.txt file

f->f mode = inode->i_mode; //set file attributes using i-node attributes
f->f flags = flag; //set file operations with the flag parameter
f->f count = 1; //File reference count plus 1
f->f inode = inode; //build relationships between the i-node and the file.
f->f pos = 0; //File read and write pointer is set to 0
return (£4); //return the file handle to the user space

The scenario of binding is shown below:

The hard disk is constantly reading data, which means the request of reading the disk
from process A is not yet completed (Figure 7.15).

The process calls function open_namei() and gets i node in hello.txt file and finally
mounts the i node and file_table[64]. The specific code is as follows:

//code source:fs/open.c:
int sys_open(const char * filename,int flag,int mode)

if ((i = open namei (filename, flag,mode, &inode))<0) {//To obtain the I node in hello.txt file

f->f mode = inode->i_mode; //set file attributes using i-node attributes
f->f flags = flag; //set file operations with the flag parameter
f->f count = 1; //File reference count plus 1
f->f inode = inode; //build relationships between the i-node and the file.
f->f pos = 0; //File read and write pointer is set to 0
return (£f4d); //return the file handle to the user space

It is worth noting that the way to get the i node from the hello.txt file is different from
the way process A gets i node. The specific code is as follows:

//code source:fs/namei.c:
int open_namei (const char * pathname, int flag, int mode,
struct m_inode ** res_inode)

if (flag & O_EXCL)
return -EEXIST;

if (! (inode = iget (dev,inr))) //To obtain the I node
return -EACCES;

7.6 Example |: Process Waiting Queue of Buffer Block

389

0x00000 Ox9FFFF OxFFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF

Kernel Jij-m‘

. .+*"""The page that
‘. task_struct of
task_struct of process B_,.l., process B resides

CEP
. . .
. . o
. Cen,

..

L.t Kernel code area " Kernel data area
ﬁle_table[64]J R

.]]]Mﬁlp[zo]
M -1

Attach new item in file_table[64] and ~ Disk reads data continually
new item in filp[20]

pem———

Process status

Process 0 Process A Process B
i Interruptible I Uninterruptible I Ready
1T

Current process

Figure 7.15 System build relationships between process B and the kernel file management table.

//code source:fs/namei.c:
struct m_inode * iget (int dev,int nr)

{
empty = get_empty_inode() ; //apply for free entry in inode_table[32]
while (inode < NR_INODE+inode_table) {//Traversethe entire inode_table [32]
if (inode->i_dev ! = dev || inode->i_num ! = nr) {//If can not find a ready-made
list, then keep looking
continue;
}
wait_on_inode (inode) ;
if (inode->i dev ! = dev || inode->i num ! = nr) {
continue;
}
inode->i_count++; //if ready-made i-node in hello.txt file can be find,

//reference count increases
if (empty) //free entry found in inode_table[32] is useless, release it
iput (empty) ;
return inode; //return i-node in hello.txt

390 7. Buffer and Multiprocess File

0x00000 Ox9FFFF OxFFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF

|||IIJ

Kernel

.. Kernel code area

Kerne] data area

R Disk reads data continually
inode_table[32] }

Get the new free i node table item

Process status

Process 0 Process A Process B
i Interruptible I Uninterruptible I Ready
1

Current process

Figure 7.16 System creates the conditions for loading the i node in.

The application of a free i-node scenario is shown in Figure 7.16.

One file is only corresponding to one i node. Two sets of accounts are needed to record
the operation to the file by process A and B. But there is only one i node that operates in
hello.txt. Process A has loaded i node into inode_table[32]. Process B needs to continue to
use the i node then.

The i node operation scenario of the above code is shown in Figure 7.17.

After opening the file, process B runs the sentence read(fd,buffer,sizeof(buffer)); and
reads the content in the file hello.txt. Function read() will eventually be mapped to func-
tion sys_read() to execute. Then function sys_read() calls function file_read() to read the
contents of the file. Function file_read() calls function bread() to read data from the hard
disk. The specific code is as follows:

//code source:fs/read write.c:
int sys_read(unsigned int fd,char * buf,int count) //Reading data from hello.txt file
{ //fd is the file handle, buf is a user-
//space pointer, and count is the number of
//bytes to read
if (S_ISDIR(inode->i_mode) || S_ISREG(inode->i_mode)) {
if (count+file->f pos > inode->i_size)
count = inode->i_size - file->f pos;
if (count< = 0)
return 0;
return file read(inode, file,buf, count) ; //read specific data of process
1
printk (" (Read) inode->i_mode =%060\n\r”,inode->i_mode) ;
return -EINVAL;

7.6 Example |: Process Waiting Queue of Buffer Block

391

0x00000 Ox9FFFF OxFFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF

Kernel
: ——

., .+**""The page where
task_struct of
task_struct of process B. ..+t... process B resides

et Kernel code area” " Kernel data area

inode_table(32] | "fle_table[64] I . ",
. filp[20]

The newly applied .,

i node has not
been used O i
1

Process B shares the i node !
of hello.txt with process A *“--==-==-=-=====----- !

Disk reads data continually

Process status

Process 0 Process A Process B
i Interruptible I Uninterruptible I Ready
1

Current process

Figure 7.17 System finds the i node already loaded into file hello.txt for process B.

//code source:fs/file_dev.c:
int file read(struct m_inode * inode, struct file * filp, char * buf, int count)

{
if (nr = bmap(inode, (filp->f_pos)/BLOCK_SIZE)) {
if (! (bh = bread(inode->i_dev,nr))) //read data from the hard disk
break;
} else
bh = NULL;
}

392 7. Buffer and Multiprocess File

The implementation process after entering the bread() function has been described in
detail in Section 3.3.1. The specific code is as follows:

//code source:fs/buffer.c:
struct buffer head * bread(int dev,int block)//read data from the hard disk

if (! (bh = getblk(dev,block))) //Apply for a free buffer block

11_rw block (READ,Dbh) ; //The buffer block is locked and is bound
//with request item, sending disc reading
//instruction

wait_on_buffer (bh) ; //suspend the process waiting for unlocked

//buffer block
if (bh->b_uptodate)
return bh;

The execution scenario of function getblk() and function 11_rw_block() is different. It
returns immediately after entering function getblk() because the data block correspond-
ing to the file hello.txt has been loaded into the buffer block. The specific code is as follows:

//code source:fs/buffer.c:
struct buffer head * getblk(int dev,int block) //apply for a buffer block

if (bh = get_hash table (dev,block)) //At this point the
//specified buffer block can
//be found in the hash table
return bh; //return to the bh pointer directly

Then execute function II_rw_block(). As the buffer block has been locked, process B
will be suspended by the system due to waiting for the buffer block to be unlocked. The
specific code is as follows:

//code source:kernel/blk drv/1l_rw block.c:
void 11_rw _block (int rw, struct buffer head * bh)

{

unsigned int major;

if ((major = MAJOR (bh->b dev)) > = NR BLK DEV ||

! (blk_dev[major] .request fn)) {
printk (“Trying to read nonexistent block-device\n\r”) ;
return;

}

make_request (major,rw,bh);//set the request

static void make_request (int major,int rw, struct buffer head * bh)

7.6 Example |: Process Waiting Queue of Buffer Block

393

lock buffer (bh);//lock the buffer block the bh pointing to
if ((rw == WRITE && !bh->b dirt) || (rw == READ && bh->b uptodate))
unlock_buffer (bh) ;
return;

static inline void lock buffer (struct buffer head * bh) //lock the buffer block

{

cli();
while (bh->b_lock) //if the buffer block is already locked
sleep on (&bh->b wait) ; //suspend the process waiting for the
//buffer block
bh->b lock = 1; //If program executed to here, it means the
//buffer block is not locked. Then lock it
sti();

Then the kernel executes function sleep_on(). It is the same file that is operated by
processes A and B in Example 1. And it is corresponding to the same buffer block bh. The
value of b_wait in the buffer block is set to the task_struct pointer of process A. So the
scene of executing the function sleep_on() is completely different from the implementa-
tion of the previous process A. The specific code is as follows:

//code source:kernel/sched.c:
void sleep_on(struct task_struct **p)

{

struct task_struct *tmp;

if (!p)
return;
if (current = = &(init_task.task))
panic("task[0] trying to sleep");
tmp = *p; //at this time tmp stores task struct
//pointer of process A
*p = current; //*p stores pointer of process B

current->state = TASK UNINTERRUPTIBLE; //set process B to uninterruptible
//waiting state
schedule () ; //switch process
if (tmp)
tmp->state = 0;

The kernel calls the function schedule() after process A is suspended and switches to
process C to execute.

At the same time, the hard disk is transacting data to the data register port. This sce-
nario is shown in Figure 7.18.

It is worth noting that tmp in the code is stored in the kernel stack of the process
B and is stored as task_struct pointer of process A. At this time, bh-> b_wait stored the
pointer of the process B as shown in Figure 7.19.

Process C is suspended after writing files. Process C is excuted, and in the same
operation hello.txt file, the data is written to the file. The data is written to the hello.txt
file after the process C starts to execute. The technical route of executing process C is

394

7. Buffer and Multiprocess File

0x00000 Ox9FFFF OxFFFFF O0x3FFFFF

Kernel

Process status

Process 0 Process A
i Interruptible
T

Current process

Disk reads data continually

I Uninterruptible

Ox5FFFFF

S——(1

Process B

I Uninterruptible

OxFFEFFF

Figure 7.18 Process B was set to TASK_UNINTERRUPTIBLE.

b_wait

Process A

Kernel stack NULL

task_struct «[

Figure 7.19 Process B was set to TASK_UNINTERRUPTIBLE and added to the process wait

queue.

broadly consistent with the process B. Execute the sentence int fd = open(“/mnt/user/
userl/user2/hello.txt”, O_RDWR,0644)) first. Function open() will eventually be mapped
to function sys_open() to execute. The final results of the implementation of function
sys_open() is that a free entry is reapplied in the file_table[64] and *filp[20] in task_struct

tmp

Kernel stack

task_struct «[

of process C binds with file_table[64] in the free entry.

Process B

tmp

7.6 Example I: Process Waiting Queue of Buffer Block

395

Then function sys_open() calls function open_namei(). The i node of this file will also
be found in the i node table inode_table[32]. The number of references of the i node adds
1 again. The specific code is as follows:

//code source:fs/open.c:
int sys_open(const char * filename,int flag,int mode)

{

(current->filp[£d] = £)->f count++; //mount *f£ilp[20] in process ¢ and items
//corresponding to file_table[64],and add
//file handle count

if ((1i = open_namei (filename, flag,mode, &inode))<0) { //To obtain the I node in
//hello.txt file

f->f mode = inode->i_mode; //set file attributes using i-node attributes
f->f flags = flag; //set file operations with the flag parameter
f->f count = 1; //File reference count plus 1
f->f inode = inode; //build relationships between the i-node and the file.
f->f pos = 0; //File read and write pointer is set to 0
return (£4); //return the file handle to the user space

Process B continues to execute this sentence write (fd, strl, strlen (strl)) and writes
data into file hello.txt (Figure 7.20).

0x00000 Ox9FFFF OxFFFFF O0x3FFFFF Ox5FFFFF OxFFFFFF
Kernel ‘
.".. ..o+ 'The page where
) ¢ c task_struct of
l task_struct of process -.,..processCresides

I.(.ernel code a.r.eﬁ' * Kernel data area i

inode_table[32]]+*""" file_table[64] J

Process status

Process 0 Process A Process B Process C
i Interruptible I Uninterruptible I Uninterruptible I Ready
1T

Current process

Figure 7.20 Process C is ready to read file hello.txt.

396 7. Buffer and Multiprocess File

Function write() will eventually be mapped to function sys_write() to execute. The
function sys_ write() calls function file_read() to read the contents of the file. Function
file_read() calls function bread() to read data from the hard disk. The specific code is as
follows:

//code source:fs/read write.c:
int sys_write (unsigned int fd,char * buf,int count) //write data into hello.txt file
{ //£d is the file handle, buf is a user-space pointer, and count is the number of
//bytes to read
if (S_ISBLK(inode->i_mode))
return block write(inode->i_zone[0],&file->f_pos,buf, count) ;
if (S_ISREG (inode->i_mode))
return file write (inode, file,buf, count) ; //write specified data in process
printk (" (Write)inode->i_mode =%06o\n\r”, inode->i_mode) ;
return -EINVAL;

//code source:fs/file_dev.c:
int file write (struct m_inode * inode, struct file * filp, char * buf, int count)

if (! (block = create_block (inode, pos/BLOCK_SIZE)))
break;
if (! (bh = bread(inode->i_dev,nr))) //write data into hard disk

¢ = pos% BLOCK SIZE;
p = ¢ + bh->b data;
bh->b_dirt = 1;

The implementation process after entering the function bread() is consistent with the
process B. The code is as follows:

//code source:fs/buffer.c:
struct buffer head * bread(int dev,int block)//read data from the hard disk

{
if (! (bh = getblk(dev,block)))//Apply for a free buffer block
11_rw_block (READ, bh) ; //The buffer block is locked and is bound
//with request item, sending disc reading
//instruction
wait_on_buffer (bh) ; //suspend the process waiting for unlocked
//buffer block,
if (bh->b_uptodate)
return bh;
}

7.6 Example |: Process Waiting Queue of Buffer Block 397

After entering function getblk(), it returns immediately because the data block cor-
responding to the file hello.txt is loaded into the buffer block.

//code source:fs/buffer.c:
struct buffer head * getblk(int dev, int block)//apply for a buffer block

{

struct buffer head * tmp, * bh;

repeat:
if (bh = get_hash table (dev,block)) //At this point the specified buffer block
//can be found in the hash table
return bh; //return to the bh pointer directly

tmp = free list;

Then execute function 1l_rw_block(). As the buffer block is locked, process C will be
suspended by the system due to waiting for the buffer block to be unlocked. The specific
code is as follows:

//code source:kernel/blk drv/1ll rw block.c:
void 11 rw block(int rw, struct buffer head * bh)

{

unsigned int major;

if ((major = MAJOR(bh->b_dev)) > = NR_BLK DEV ||

! (blk_dev[major] .request_fn)) {
printk (“Trying to read nonexistent block-device\n\r”) ;
return;

}

make_request (major,rw,bh);//set the request

}

static void make_request (int major,int rw, struct buffer head * bh)

lock_buffer (bh);//lock the buffer block the bh pointing to

if ((rw = = WRITE && !bh->b_dirt) || (rw = = READ && bh->b_uptodate)) {
unlock_buffer (bh) ;
return;

static inline void lock_buffer (struct buffer head * bh)//lock the buffer block

{

cli();
while (bh->b_lock) //if the buffer block is already locked
sleep_on (&bh->b_wait) ; //suspend the process waiting for the buffer block
bh->b_lock = 1; //1f program executed to here, it means the buffer
//block is not locked. Then lock it
sti();

}

Then execute function sleep_on(). It is the same file that is operated by processes A,
B, and C in example 1. And it is corresponding to the same buffer block bh. The value
of b_wait in the buffer block is set to the task_struct pointer of process B. So the scene of

398 7. Buffer and Multiprocess File

executing the function sleep_on() is completely different from the implementation of the

previous process B. The code is as follows:

//code source:kernel/sched.c:
void sleep on(struct task_struct **p)

{

struct task struct *tmp;

if (!p)
return;
if (current = = &(init_task.task))
panic(“task([0] trying to sleep”);
tmp = *p; //at this time tmp stores task_struct
//pointer of process B
*p = current; //*p stores pointer of process C
current->state = TASK UNINTERRUPTIBLE; //set process c to uninterruptible state
schedule () ; //switch process
if (tmp)

tmp->state = 0;

The schedule() function is called after process C is suspended. And the system has no

ready process. So the kernel switches to process 0 to execute.

At the same time, the hard disk is transacting data to a data register port. This sce-

nario is shown in Figure 7.21.

It is worth noting that the code tmp is stored in the kernel stack of the process C, and
the storage is the task_struct pointer of the process B; the process C pointer is stored in the

bh->b_wait at this time, for instance (Figure 7.22).

0x00000 Ox9FFFF OxFFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF
Kerne ‘

RN 108 y S
and VGA g

a I:I Buffer block

The system finds the buffer block
that needs to be applied has been loaded

Disk reads data continually

Process status Disk
oo — - T,
i Process 0 Process A Process B Process C

i i Interruptible I Uninterruptible I Uninterruptible I Uninterruptible

| 1

: Current process

Figure 7.21 Process C was set to TASK_UNINTERRUPTIBLE.

7.6 Example |: Process Waiting Queue of Buffer Block

399

Process A Process B Process C
Kernel stack NULL |tmp Kernel stack | |pointerofprocessA|tmp | Kernel stack -| [Pointer of process B |tmp
task_struct { task_struct { task_struct {

Figure 7.22 Process C was set to TASK_UNINTERRUPTIBLE and added to the process wait queue.

Now the situation is that three processes are suspended by the system due to waiting
for the buffer block bh to unlock. Then it forms a waiting queue, before it is suspended, the
task_struct pointer of the previous suspended process is stored in the kernel stack of each
process, and the Picture performance is the waiting queue. The role of this queue is that
until the buffer block unlocks, the operating system can wake up the suspended process
before this process suspends according to the record in the kernel stack of each awakened
process, in this way, all the processes waiting for the buffer block releases will be awakened
in turn, and the specific process will be described in detail below.

The three processes are awakened in the reverse order. Now the process A, process
B, and process C have been suspended, and all the processes in the system are not in ready
state. Now it has switched to execute the process 0 by default until the data read is com-
pleted, and then the hard disk generates an interrupt as shown in Figure 7.23.

0x00000 Ox9FFFF OXFFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF

-Illlld

Kernel

Disk reads data continually

Process status

________ _— _— — - —————

Process 0 Process A Process B Process C

i Interruptible IUninterruptible I Uninterruptible I Uninterruptible

Current process

Figure 7.23 Switch again to execute process 0.

400

7. Buffer and Multiprocess File

The interrupt service routine will start to work after a hard disk interrupt has gener-
ated. At this time, the hard disk has loaded all the data specified into the buffer block.
After the interrupt service routine has started to work, the bh buffer block will unlock, and
call function wake_up() to wake up the wait field in bh corresponding process (process C),
and the code is as follows:

//code path:kernel/blk drv/Blk.h:
extern inline void end_request (int uptodate)

{
DEVICE_OFF (CURRENT->devV) ;
if (CURRENT->bh) {
CURRENT->bh->b uptodate = uptodate;
unlock_buffer (CURRENT->bh) ; //unlock the buffer block

extern inline void unlock buffer (struct buffer head * bh)

{

if (i1bh->b_lock)

printk (DEVICE_NAME “: free buffer being unlocked\n”) ;
bh->b lock = 0; //unlock the buffer block
wake_ up (&bh->b_wait) ; //wake up process waiting for buffer block unlock

When function wake_up() is called, the passed parameter is & bh-> b_wait, and from
the process waiting queue graph, it is not difficult to find that the bh->b_wait direct to
task_struct pointer of the process C, so process C is awakened.

The code of function wake_up() is as follows:

//code path:kernel/sched.c:
void wake_up (struct task_struct **p)

{
if (p && *p) {
(**p) .state = 0;//process C is set to ready state
*p = NULL;
1
1

This setting scene is shown in Figure 7.24.
After the interrupt service routine, it will return to the process 0 once again and switch
to the ready process C. Process C is in function sleep_on() and calls function schedule() to

7.6 Example |: Process Waiting Queue of Buffer Block

401

0x00000 Ox9FFFF OxFFFFF O0x3FFFFF Ox5FFFFF OxFFFFFF

——

Load data into buffer

ROM BIOS
and VGA

2 SN

Unlock buffer
Process status
Process 0 Process A Process B Process C
i Interruptible I Uninterruptible I Uninterruptible I Ready

Current process

Figure 7.24 Process C is awakened.

switch the process; therefore, process C will eventually enter function sleep_on(), and the

first code to be executed is as follows:

//code path:kernel/sched.c:
void sleep_on(struct task_struct **p)

{

schedule () ;
if (tmp)
tmp->state = 0;//process that is related to tmp is set to ready state

We look at the diagram shown in Figure 7.25.

b_wait
bh
Process A Process B Process C
Kernel stack NULL |tmp Kernelstack Pointer of process A | tmp | Kernel stack Pointer of process B
task_struct { task_struct «[task_struct{
>

Figure 7.25 Process C was woken up and exited from the process wait queue.

tmp

402

7. Buffer and Multiprocess File

H

Figure 7.26 Process B is woken up.

Now the kernel program is in execution, using the kernel stack of the process C, so
tmp corresponds to the task_struct pointer of the process B, and at this point, process B
is set to a ready state.

Set the scene as shown in Figure 7.26.

Kernel continues to execute, and the data from character array strl that the process
C source program has specified will be written to the buffer block that is related to the file
hello.txt, and the code is as follows:

//code path:fs/file dev.c:
int file write(struct m_inode * inode, struct file * filp, char * buf, int count)

{

if (pos > inode->i_size) {
inode->i_size
inode->i_dirt

pos;
1;

while (c-->0)
* (p++) = get_fs byte(buf++);//write string to the buffer block
brelse (bh) ;

The written scenario is shown in Figure 7.27.
Then return to the user program of process C. The code is as follows:

for(i = 0;1<1000000;1i++)//time-consuming slice

{

for(j = 0;3<1000000;7++)

In the implementation process, the timer interrupt continues to generate, and the
time slice of process C is cut continuously as shown in Figure 7.28.

7.6 Example |: Process Waiting Queue of Buffer Block 403

0x00000 Ox9FFFF OxFFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF
Kernel ‘

S -FJIIIIIJ

.

The page where user data

Current process

.." l of process C resides
Buffer i o

Process status

e |
| :
i Process 0 Process A Process B Process C E
| i Interruptible I Uninterruptible I Ready I Ready |
| 1 |

Figure 7.27 The system will write data to the specified buffer block for process C.

0x00000 Ox9FFFF OxFFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF

Kernel J J
b-llllll

Process status

Process 0 Process A Process B Process C
C is decreased

i Interruptible IUninterruptib[e I Ready g?fhtétgfosclécs‘;i Ready i
Current process i

Figure 7.28 In the implementation process of process C, the time slice is cut continuously.

Pay attention to the picture; the progress bar of each process is in the execution state,
the time slice of the process C is cut continuously (Figure 7.29).

The time slice of the process C has been reduced to zero and then switches the process.
It has been introduced before, after process C is awoken, and the first thing that the system
will do is setting process B to the ready state. At this time, both process B and process C in
the system are in a ready state, and the time slice of the process C has been used up; then
it will switch to the process B to perform as is shown in Figure 7.30.

404

7. Buffer and Multiprocess File

0x00000 Ox9FFFF OxFFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF

%{ S b-llllld

Process status

Current process

i Process 0 Process A Process B Process C }‘
i The time slice |
! i Interruptible I Uninterruptible I Ready of the process u Ready |
i C is continually !
! decreased 1 |

Figure 7.29 Time slice of the process C is reduced to zero.

0x00000 OX9FFFF OxFFFFF 0x3FFFFF Ox5FFFFF OxFFFFFF
Kernel
and VGA J

Process status

Current process

i

E Process 0 Process A Process B Process C
i The time slice

1

i C is reduced to

! zero

i

1

1

i Interruptible I Uninterruptible I Ready ofthe process H Ready i

Figure 7.30 Switch to process B to perform.

Process B is also in the function sleep_on(), calling function schedule() to switch the
process; therefore, the process B will eventually be in function sleep_on(), and the first
code to be executed is as follows:

//code path:kernel/sched.c:
void sleep on(struct task_struct **p)

{
schedule () ;
if (tmp)
tmp->state = 0;//process that is related to tmp is set to ready state
}

We look at the diagram shown in Figure 7.31.

The kernel program is in the implementation, using the kernel stack of the process B,
so tmp corresponds to the task_struct pointer of process A at this time, and process A is
set to a ready state.

The scene of waking up process A is shown in Figure 7.32.

7.6 Example |: Process Waiting Queue of Buffer Block 405

b_wait

th:[l

Process A Process B Process C

Kernel stack NULL tmp Kernel stack{ [Pointer of process A| tmp

task_struct { task_struct { task_struct ~|:

_E,

Figure 7.31 Process B was woken up and exited from the process wait queue.

0x00000 Ox9FFFF OxFFFFF 0x3FFFFF Ox5FFFFF OxFFFFFF

Kernel
S 5 I

Process status

Process 0 Process A Process B Process C
C is reduced to
1 Zero

i i
1 1
1 1
: 1
i The time slice i
! Interruptible Ready Ready of the process Ready i
i |
1]
i Current process i
H 1
1 1

Figure 7.32 Wake up process A.

The current process is process B, and it will read data from the specified buffer block.
The executable code is as follows:

//code path:fs/file dev.c:
int file read (struct m_inode * inode, struct file * filp, char * buf, int count)

if (bh) {
char * p = nr + bh->b data;
while (chars— >0)
put_fs byte (* (p++) ,buf++); //data is read into user space of process B
brelse (bh) ;
} else {
while (chars-->0)
put_fs_byte (0,buf++) ;

406

7. Buffer and Multiprocess File

Then return to the program of process B; executable code is as follows:

for(i = 0;1i<1000000;i++)//consuming time slice
{

for(j = 0;j<1000000;j++)

{

1

1

As the timer interrupt generates continuously, after the time slice of the process B is
cut to 0 because only process A in the system is in a ready state, its time slice has not been
cut to 0, so it will switch to process A to perform as shown in Figure 7.33.

Process A is also in the function sleep_on(), calling function schedule() to switch the
process; therefore, the process A will eventually be in function sleep_on(), and the first
code to be executed is as follows:

//code path:kernel/sched.c:
void sleep on(struct task struct **p)

schedule () ;

if (tmp) //tmp is NULL at this time
tmp->state = 0; //here the code isn’t executed and do not wake up the process

The scene of the execution is not the same; we look at the diagram shown in Figure
7.34.

The kernel program is in the execution, using the kernel stack of the Process A, thus
NULL, that is related to tmp will not wake up the process.

These are the processes that the process is awakened in the process waiting queue. The
three processes are suspended in the order of process A, process B, and process C, and it
has been introduced in Section 7.1.4 that the wake-up order is process C, process B, and
process A, and it is just the opposite order of the suspended.

0x00000 Ox9FFFF OxFFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF

Kernel ‘
I
and VGA L

Process status

Current process

i Process 0 Process A Process B Process C i
i i Interruptible I Ready |:| Ready H Ready i
s i e

Figure 7.33 Switch to process A.

7.6 Example |: Process Waiting Queue of Buffer Block

407

b_wait

bh[l]

Process A Process B Process C

Kernel stack NULL tmp

task_struct ~|: task_struct ~|: task_struct ~|:

>

Figure 7.34 Process A was woken up and exited from the process wait queue.

7.7 Overall Look at the Buffer Block and the

Request Item

The b_dev and b_blocknr are flags of data that stays in the buffer block in the practical
application of the buffer block; the kernel did not remove these two fields intentionally.
This means that, if it applies for the buffer block continuously, then all buffer blocks would
be bound to the data block soon. At this time, if it continues to apply for the buffer block,
it can only replace the old binding relationship with the new binding relationship, and the
data in this buffer block has become invalid. This reflects a strategy that lets the buffer
data stay in the buffer as long as possible.

In order to make the data stay for a long time, the kernel does as much as possible
not to apply for the new buffer block, and it had better use the binding relationship that
has been established, and if there is no other way to go, then apply for a new one. This
approach is embodied in the code as follows:

//code path:fs/buffer.c:

struct buffer head * getblk(int dev,int block) //apply for the buffer block
{
repeat:
if (bh = get_hash table (dev,block)) //if it is found that a buffer block has

//already bound
//with the specify data block (block) of
//the specified
//device (dev)
return bh; //use the off-the-shell directly

tmp = free_list; //if the binding buffer block according
//with the specified standard
//can’t be found, then apply for a
//new buffer block

do {

/* and repeat until we find something good */
} while ((tmp = tmp->b_next_free) ! = free_list);

408

7. Buffer and Multiprocess File

From the code, it is not difficult to find that the kernel searches the hash table first,
then compares b_dev and b_blocknr to analyze whether it can still be used. If not, then it
executes the loop do... While and applies for a new buffer block.

Here we look at the scene of applying for a new buffer block.

The code is shown as below:

//code path:fs/buffer.c:
#define BADNESS (bh) (((bh)->b_dirt<<l)+(bh)->b_lock)
struct buffer head * getblk(int dev,int block) //apply for the buffer block

{

tmp = free_ list;

do {
if (tmp->b_count) //if the buffer block is occupied, then
//skip the cycle

continue;

if (!bh || BADNESS (tmp)<BADNESS (bh)) { //weigh BADNESS and select the buffer block
bh = tmp;
if (!BADNESS (tmp))

break;

}
/* and repeat until we find something good */
} while ((tmp = tmp->b_next_free) ! = free_list);

The present situation is that the hash table has been traversed, and all the buffer
blocks in the buffer can’t be used by the process, so the kernel must apply for a new buffer
block. When the kernel apples for the new buffer block, it should start the search from the
header of free_list without destroying the buffer block that has bound with the data block
as much as possible. Let them remain in the buffer for a while. If there is really no other
way (such as all buffer blocks in the buffer have bound with data blocks), it has to replace
the old relationship the new relationship.

The implementation in the circulation starts under this premise.

It does not analyze the b_uptodate field in the circulation because the searching hash
table in front has confirmed that no suitable buffer block can still be used. This means one
thing for the current process that all the buffer blocks in the buffer are not available. It
does not matter whether they are updated or not as long as b_uptodate is 1 or 0. So, at this
time, there is no need to analyze values of b_uptodate.

It judges whether the b_count is 0 or not first in the loop. If not, it shows that the buf-
fer block is shared by other processes. The current process can’t abolish the buffer block
that is being shared by another process, and this buffer block cannot be used, so the kernel
should apply for a new bufter block for it. If the b_count 0 buffer block cannot be found in
the buffer, this process can only be suspended.

The code is as shown below:

//code path:fs/buffer.c:
#define BADNESS (bh) (((bh)->b_dirt<<l)+(bh)->b_lock)
struct buffer head * getblk(int dev,int block) //apply for the buffer block

tmp = free list;

if (tmp->b_count) //if the buffer block is
//occupied, skip the loop

7.7 Overall Look at the Buffer Block and the Request Item

409

continue;
if (!bh || BADNESS (tmp)<BADNESS (bh)) {
bh = tmp;
if (!BADNESS (tmp))
break;
}

/* and repeat until we find something good */

} while ((tmp = tmp->b next free) ! = free list);
if (!bh) { //b_count 0 buffer block can’t be found finally
sleep on(&buffer wait) ; //the current process has to be suspended

goto repeat;

If a buffer block with b_count as 0 has been found, there are about two fields that will
be further chosen. The one is b_dirt, and the other is b_lock. If these two fields are 0, the
buffer block is appropriate, and it can be used directly. If b_lock is 1 or b_dirt is 1, then
which is more appropriate? Comparing the two choices, b_lock at 1 is the favorable one.
The reason is that if there is a 1 in these two fields, the current process cannot be used cer-
tainly, and it has to wait. In contrast, the less time the better. B_lock is 1, indicating that
the buffer block is interacting data with the hard disk. When it has finished, it will be used
by the current process finally. However, when b_dirt is 1 it indicates that before creating
a new binding relationship, it needs to synchronize data to the hard disk definitely. When
it synchronizes the data, it should be locked definitely, and b_lock is set to 1. Therefore,
the choice that b_lock is 1 to b_dirt is 1 is less waiting time than the choice that b_dirt is
1 to b_lock is 1. This can also be seen in the code.

The code is as follows:

//code path:fs/buffer.c:
#define BADNESS (bh) (((bh)->b _dirt<<l)+(bh)->b_lock)
struct buffer head * getblk(int dev,int block) //apply for the buffer block

tmp = free list;

if (tmp->b_count) //if the buffer block is occupied,skip the loop
continue;
if (!bh || BADNESS (tmp)<BADNESS (bh)) {
bh = tmp;
if (!BADNESS (tmp))
break;

}

/* and repeat until we find something good */

} while ((tmp = tmp->b_next_ free) ! = free_ list);
if (!bh) { //b_count 0 buffer block can’t be found finally
sleep_on(&buffer wait); //the current process has to be suspended

goto repeat;

}

while (bh->b_dirt) ({ //if b_dirt 1 buffer block has been applied,
//write directly to the disk.
//If write outside, then use the current process
sync_dev (bh->b_dev) ;
wait_on_buffer (bh) ;
if (bh->b_count)
goto repeat;

410

7. Buffer and Multiprocess File

Visibly, not applying for the b_dirt 1 buffer block first will allow the process to imple-
ment as soon as possible, and it is more beneficial. So in #define BADNESS(bh) (((bh)->b_
dirt<<1)+(bh)->b_lock), we should move b_dirt one bit to the left in order to make it gain a
higher weight. BADNESS(tmp)<BADNESS(bh), in this line of logic, make b_dirt be applied as
late as possible when b_dev, b_blocknr, and b_count are under the same conditions.

7.8 Example 2: Comprehensive Examples of
Multiprocess Operating File

Let’s introduce the problems of the buffer block selection and the use of request through
a set of cases of multiprocess operating files. The situations of the three processes are as
follows. Process A is a write process in order to write characters “ABCDE” in strl[] to the
file hellol.txt. The code is as follows:

void FunA();
void main ()

{
FunA () ;
}
void FunA()
{
char strl[] = “ABCDE”;
int i;
//open the file
int fd = open(“/mnt/user/userl/user2/hellol.txt”, O RDWR,0644)) ;
for(i=0;1i<1000000;i++)
{
//write the file
write(fd,strl,strlen(strl));
}
//close the file
close (£4) ;
return;
}

Process B is a write process in order to write characters “ABCDE” in strl[] to the file
hello2.txt. The code is as follows:

void FunB();
void main ()

7.8 Example 2: Comprehensive Examples of Multiprocess Operating File

411

void FunB()

{

char strl[]="ABCDE”;

int i;

//open the file

int fd=open (“/mnt/user/userl/user2/hello2.txt”, O RDWR,0644));
for (i=0;1<1000000;i++)

{

//write the file
write(fd,strl,strlen(strl));

}

//close the file
close (£d) ;
return;

Process C is a read process, and the purpose is read 20,000 bytes to the buffer from
hello3. txt. The code is as follows:

void FunC();
void main ()

void FuncC()

{

char buffer[20000];

int i, j;

//open the file

int fd = open(“/mnt/user/userl/user2/hello3.txt”, O RDWR,0644));
//read the file

read (fd, buffer, sizeof (buffer)) ;

//close the file

close(£d) ;

return;

The executive order of three processes are as follows:

At first, process A is executed; then process B is executed; process C is in the end. The
three processes do not have a parent-child relationship.

The system will write data to the buffer continuously for process A. First, process A
starts with performing the function write, assuming that there is nothing in file hellol.txt.
Process A only needs to apply for a buffer block in the buffer and writes the specified data
to the buffer block. The premise of applying the new buffer block is that the buffer block is
free and not dirty. We assume that the system has all the buffer blocks free and not dirty
and filled with data. Figure 7.35 shows the state of a system that is all free and not dirty as

412

7. Buffer and Multiprocess File

Process A

3

. ! . . Buffer zone

rerwI Irwlrw r II r | Request item

“write” request item
L |

T
P .
The time slice of process read” request item

Process A

8 Locked []DLE [|NON-IDLE
“write” or “read” request item “read” request item

Figure 7.35 System continues to write data to process A.

a buffer block filled with data. Next, we will look at what circumstances applying for the
new buffer block and writing operations will cause when the buffer is in the state Figure
7.35 shows.

Continuous performance will lead data of the buffer block to be synchronized.
The current process is still process A, and the system is far from completing its request. It
should continue to write data to the buffer. This requires the function getblk to find a free
buffer block in the buffer, that is the buffer block with b_count as 0.

The executable code is as follows:

//code path:fs/buffer.c:
struct buffer head * getblk(int dev,int block)

tmp = free list;

do {
if (tmp->b_count) //find the free buffer block
continue;
if (!bh || BADNESS (tmp)<BADNESS (bh)) {//on the basis of the idle,
//weigh BADNESS
bh = tmp;
if (!BADNESS (tmp))
break;

}

/* and repeat until we find something good */
} while ((tmp = tmp->b_next free) ! = free_list);

But now the situation is that the buffer has no free and not dirty buffer blocks but only
a free but dirty buffer block. This means that the next step is to synchronize data from the

7.8 Example 2: Comprehensive Examples of Multiprocess Operating File

413

buffer to the hard disk by force in order to hollow out more space in the buffer and provide
support for a subsequent write disk. The executable code is as follows:

//code path:fs/buffer.c:
struct buffer head * getblk(int dev,int block)

if (bh->b_count)
goto repeat;
while (bh->b_dirt) { //if all the free buffer blocks are dirty,
//it indicates there is too much data needed
//to be synchronized to the hard disk
sync_dev (bh->b_dev) ; //synchronize immediately
wait_on_buffer (bh) ;
if (bh->b_count)
goto repeat;

Synchronize the data from the buffer to the hard disk. At this time, the function
sync_dev() is used to synchronize data from the buffer to the hard disk. After entering
sync_dev function, the executable code is as follows:

//code path:fs/buffer.c:
int sync_dev(int dev)

bh = start_buffer;
for (i=0 ; i<NR_BUFFERS ; i++,bh++) { //all have to be traversed
if (bh->b_dev != dev)
continue;
wait_on_buffer (bh) ;
if (bh->b_dev == dev && bh->b_dirt) //as long as the device number matches and
//it is dirty, then
//synchronization
11_rw block (WRITE,bh) ;

The function sync_dev will traverse the entire buffer, and all the “dirty” blocks in the
buffer block will be synchronized to the hard disk. The synchronous step of each “dirty”
buffer block is like this:

First, the buffer block will be bound with free request items that have been applied,
and the records in the claims will be used as the unique basis for data synchronization.

Second, if there is no hard disk working at this time, then the command of the writing
disk will be issued, and the data will be synchronized. If the hard disk is working, then
the request will be inserted in the request queue. When the hard disk has finished the data
synchronization and triggered an interrupt, the interrupt service routine will send com-
mand to the hard disk continuously in order to make the data correspond to each item in
the request queue synchronized to the hard disk one after another.

Function Sync_dev will keep on executing the above work until it can’t apply for a
free request.

414 7. Buffer and Multiprocess File

The synchronization process of each buffer block is completed in function II_rw_
block. In this process, the buffer block will be locked. The lock can only prevent the data
interaction between the process and the buffer block and prevent data interaction between
the system itself and the buffer block, but it doesn’t stop the data interaction between the
buffer block and the hard disk. Before sending sync command, the dirty flag b_dirt of the
buffer block that needs to be synchronized will be set to 0, indicating that it is no longer a
“dirty” buffer block.

The specific route of the implementation: After entering function Il_rw_block, it will
call function make_request to bind the buffer block with the request. First the buffer block
will be locked in function make_request and load request through function add_request.
After the completion of the loading request, the system will send write disk command
to the hard disk through calling function do_hd_request. Function do_hd_request is an
interactive underlying function between the system and the hard disk, and according to
the data in the request, it will write the data of the specified buffer block to the specified
hard disk block ultimately. The executable code is as follows:

//code path:kernel/blk drv/11l rw blk.c:
static void make_ request (int major,int rw, struct buffer head * bh)

{

if (rw! = READ && rw! = WRITE)

panic (“Bad block dev command, must be R/W/RA/WA") ;
lock_buffer (bh) ; //lock the buffer block
if ((rw = = WRITE && !bh->b dirt) || (rw = = READ && bh->b_uptodate)) {
unlock_buffer (bh) ;
return;

}

reg->buffer = bh->b data;
reqg->waiting = NULL;
reg->bh = bh;
reg->next = NULL;
add_request (major+blk_dev, req) ; //load claims

static void add request (struct blk dev_struct * dev, struct request * req)

{

if (reg->bh)
reqg->bh->b_dirt = 0; //the buffer block is synchronized and it will not be dirty

(dev->request_fn) () ; //this line of code corresponds to the function do_hd request

-

The performance of synchronizing a buffer block is as shown in Figure 7.36, and this
buffer block is locked in make_request, but the dirty flag of the buffer block has been set
to 0 in the function add_request. At this time, the buffer block has become a buffer block
which is free but not dirty. In contrast with Figure 7.35, pay attention to the state change
of the buffer block.

The final result of function sync_dev continuously synchronizes the buffer block as
is shown in Figure 7.37. Note that all the request items which have been left to the write
operation have been occupied, and at the same time, the status of the buffer block corre-
sponds to the write request item, has also been set to the free and not the dirty state. The
hard disk is constantly processing the claims.

7.8 Example 2: Comprehensive Examples of Multiprocess Operating File

415

Process A

a
I I II I |Bufferzone

Process A

1_| Request item queue @@ Locked I:l IDLE |:|NON—IDLE

Figure 7.36 Writing request is inserted into the requesting queue.

“write” or “read” request item “read” request item

Process A

AaA & A4
|1 -1 T 00 [f | [puferzone

Process A

1| Request item queue fli Locked D IDLE D NON-IDLE

“write” or “read” request item . “read” request item

Figure 7.37 Space in the structure of the claims for the write request has run out.

416 7. Buffer and Multiprocess File

The code for this process is as follows:

//code path:fs/buffer.c:
int sync dev(int dev)
{
int 1i;
struct buffer head * bh;
bh = start buffer;
for (i=0 ; i<NR BUFFERS ; i++,bh++) { //traverse all buffer

//blocks
if (bh->b dev ! = dev)
continue;
wait on buffer (bh) ;
if (bh->b dev = = dev && bh->b dirt)

11 rw block (WRITE,bh) ;

//code path:kernel/blk drv/11l rw blk.c:
void 11 rw block(int rw, struct buffer head * bh)
{
unsigned int major;
if ((major = MAJOR (bh->b dev)) > = NR BLK DEV ||

! (blk devImajor] .request fn)) ({
printk (“Trying to read nonexistent block-device\n\r”) ;
return;

}

make request (major,rw,bh) ;

static void make request (int major,int rw, struct buffer head * bh)

if (rw! = READ && rw! = WRITE)
panic (“*Bad block dev command, must be R/W/RA/WA") ;
lock buffer(bh) ; //it is locked here

add_request (major+blk dev,req) ;

static void add request (struct blk dev struct * dev, struct request *
req)

reqg->next = NULL;
cli();
if (reg->bh)
reqg->bh->b dirt = 0; //here the dirty flag is set to 0

7.8 Example 2: Comprehensive Examples of Multiprocess Operating File 417

Although there are free request items in the structure of the request, the request items
that left to the “write” operation only account for two thirds of the total number of request
items. The corresponding code is as follows:

//code path:kernel/blk drv/11l rw blk.c:
static void make request (int major,int rw, struct buffer head * bh)

{
if (rw = = READ)
req = request+NR REQUEST; //all request items can be used
//for read operations
else
req = request+ ((NR_REQUEST*2)/3); //only 2/3 of the claims can be
//used for write operations
1

Because two thirds of the request items have all been occupied, now no free request
item can serve the “sync.” The write request is as shown in Figure 7.37.

Process A is suspended by the system because of waiting for free request. There
is no free request item for write, but function sync_dev() will still continue to be called.
After re-entering the function make_request(), it will execute the following code:

//code path:kernel/blk drv/11 rw blk.c:
static void make request (int major,int rw, struct buffer head * bh)

while (-- reqg >= request)

if (reqg < request) { //indicate that there is no free request
//item here

The function of these codes is when suitable free claim can’t be found in the end, the
current process will be suspended. After calling the function sleep_on(), process A has
become the process of waiting for free request, and it will be suspended. This process is
shown in Figure 7.38. The hard disk is still processing the request constantly while process
A has been in the suspended state despite its time slice.

418

7. Buffer and Multiprocess File

Process A Suspend

AeA & A8
L L1 T P10 | [Bufferzone

Suspend

Process A

t_I Request item queue fli Locked |:| IDLE |:| NON-IDLE

“write” or “read” request item “read” request item

Figure 7.38 Process A is suspended.

Start to execute Process B. Process B starts to be executed, which is also a write disk
process. The system should also apply for the buffer block for process B so that it can write
data. The executable code is as follows:

//code path:fs/buffer.c:
struct buffer head * getblk(int dev,int block)

{
tmp = free list;
do {
if (tmp->b_ count)
continue;
if (!bh || BADNESS (tmp)<BADNESS (bh)) {
bh = tmp;
if (!BADNESS (tmp))
break;
1
/* and repeat until we find something good */
} while ((tmp = tmp->b next free) != free list);
1

As can be seen in Figure 7.38, the state of each free buffer block in the buffer is dif-
ferent at this time. The system will comprehensively analyze the state of all the free buf-
fer blocks in the current case in order to determine which buffer block will be applied for

7.8 Example 2: Comprehensive Examples of Multiprocess Operating File

419

Process A Suspend Process B

AaAA A AA
[1 I T L0 0] | [ufferzone
. %
o .

|rw!rw! !rw!rwl r II r |Requestitem

Process A Process B

tI Requestitem queue @l Locked [| IDLE [| NON-IDLE £ Dirty

“write” or “read” request item “read” request item

Figure 7.39 System has applied for a buffer block for process B.

process B. The system uses the BADNESS (tmp) to carry on a comprehensive analysis.
BADNESS (tmp) is defined as follows:

#define BADNESS (bh) (((bh)->b_dirt<<1)+(bh)->b_lock).

Through the above analysis. we know that its role is to divide the buffer block in the
buffer into four levels according to the principle more favorable for process executing.
From favorable to unfavorable in order are

Level 1: There is a not “dirty” and not “locked” free buffer block, and the value of
BADNESS in such a buffer block is 0.

Level 2: There is a not “dirty” but “locked” free buffer block, and the value of
BADNESS in such a bufter block is 1.

Level 3: There is a “dirty” but not “locked” free buffer block, and the value of
BADNESS in such a buffer block is 2.

Level 4: There is a “dirty” and “locked” free buffer block, and the value of BADNESS
in such a buffer block is 3.

The smaller the value of BADNESS is, the more convenient the buffer block is to use.
Otherwise, it is inconvenient.

The system has locked some buffer blocks, and their “dirty” flags are set to 0. Thus,
it makes their BADNESS values become 1. In the present circumstance, this is the most
convenient buffer block to use. Therefore, the system applies for a buffer block whose
BADNESS value is 1 for process B. This buffer block is locked, which means that the buffer

420

7. Buffer and Multiprocess File

block cannot be operated immediately. But it’s better than applying for a dirty buffer
block. Figure 7.39 shows the buffer block that the system has applied for process B.

Process B is also suspended. The buffer block the system has applied is a “locked”
buffer block, and it leads to the process or system not being able to exchange data with the
buffer block immediately. Thus, the system will directly call function wait_on_buffer()
and process B will also be suspended as is shown in Figure 7.40. Note that the system and
the hard disk continue to process the request.

The code is as follows:

//code path:fs/buffer.c:
struct buffer head * getblk(int dev, int block)

{
if (!bh) {
sleep on(&buffer wait) ;
goto repeat;
1
wait on buffer (bh) ; //process B is suspended here
if (bh->b_count)
goto repeat;
1

The process C starts to execute and then subsequently is suspended. Process C starts
to execute, which is a read disk process, and the system should also apply a buffer block for
it. Based on the condition of buffer, the system applies for the same buffer block for process
C and process B. From the introduction of Section 7.2.6, we learned that this buffer block

Process A Suspend Process B Suspend

AAA A aa
[Lo L1 1T [| [eufferzone

Process A Process B

t_1 Request item queue fli Locked D IDLE D NON-IDLE

“write” or “read” request item “read” request item

Figure 7.40 Process B is also suspended.

7.8 Example 2: Comprehensive Examples of Multiprocess Operating File

421

‘ Process C Suspend

‘ProcessB
AAA A am

L L0 T F 0] | [suferzone

Process A Suspend

Process A Process B Process C

t_| Request item queue f§ Locked |:| IDLE |:| NON-IDLE

Dirty
M “write” or “read” request item “read” request item

Figure 7.41 Waiting queue in which the processes A, B, and C are and their running state.

is locked, and the buffer block cannot be operated, but it can be applied. So the process C
will also be suspended.

Process C and process B are now suspended because of waiting for the same buffer
block to unlock. These two processes form a process waiting queue.

Until now, three user processes are suspended in example 2, so it switches to process
0 to execute by default. The situation that they are suspended in is shown in Figure 7.41.
Process A is in the waiting queue of waiting for free request, but process B and process C
are in the queue waiting for the same buffer block to unlock.

Process A and process C are awakened. Here we will introduce the process of the three
user processes that are waken up. After they have been waken up, the system will continue to
determine what user process will execute according to the various aspects of the situation of
the buffer block and request items.

After a while, the hard disk has completed the synchronization task delivered by the
request, and will produce a hard disk interrupt. The interrupt service routine begins to
execute. The code is as follows:

//code path:kernel/blk dev/blk.h:
extern inline void end request (int uptodate)

422

7. Buffer and Multiprocess File

}

extern inline void unlock buffer (struct buffer head * bh)

bh->b lock = 0;
wake up (&bh->b wait) ;

Process A is suspended for waiting for free request item. Then wake_up (&wait_for_
request), and this line of code will wake up process A as shown in the process A in the left
bottom of Figure 7.42.

Process B and process C form a process waiting queue. Process C is waken up first
because it is suspended later than process B as shown in the process C in the left bottom
of Figure 7.42.

In addition, the operation of the data in the specified buffer block has already been
completed, so the interrupt service routine will unlock the buffer block. The interrupt ser-
vice routine will continue to call function do_hd_request after the above work has been
done. If there are request items to deal with, it will send a write disk command to the hard
disk again. Obviously, the hard disk continues to the subsequent synchronization. As can
be seen from the right part of Figure 7.42, the hard disk is processing the next request item.
And, at the moment, there is an available free “write” request item.

We can see in Figure 7.42 that the time slice of process C is more than that of pro-
cess A. Therefore, the system switches the current process from process 0 to process C.

Process A ‘ Process B

‘ ‘ProcessC

Aaa & a
I I || I I || I |Bufferzone

Process A Process B Process C

1| Request item queuefli Locked D IDLE D NON-IDLE

“write” or “read” request item “read” request item

Figure 7.42 State of each process after the synchronization of data in the buffer block has
completed.

7.8 Example 2: Comprehensive Examples of Multiprocess Operating File

423

‘ Process B

‘ProcessC
AaaA & A

Ll 1 P T] T fpuffersone

Process A

r | Request item

H l I Suspend

Process A Process B Process C

t_1 Request item queuefll Locked |:| IDLE |:| NON-IDLE

“write” or “read” request item “read” request item

Figure 7.43 State of each process after the read request has been inserted into a queue request by
process C.

The first thing is to wake up the process B as shown in the left bottom of Figure 7.43. The
code is as follows:

//code path:fs/buffer.c:
struct buffer head * getblk(int dev, int block)

{
if (!bh) {
sleep on(&buffer wait) ;
goto repeat;
}
wait on buffer (bh); //after waking up the process C, it
//continues to execute and wake up the
//process B firstly.
if (bh->b_ count)
goto repeat;
}
static inline void wait on buffer (struct buffer head * bh)
{
cli();
while (bh->b lock)
sleep_on (&bh->b_wait) ;
sti () ;
}

424

7. Buffer and Multiprocess File

The buffer block that the system has applied for process C is unlocked now, and it can
be used. First, the system will set the buffer block, including set its reference number to 1.
The code is shown below:

//code path:fs/buffer.c:
struct buffer head * getblk(int dev,int block)

if (!bh) {
sleep on(&buffer wait) ;
goto repeat;

wait on buffer (bh) ; //after waking up process B, process C
//continues to execute from here
if (bh->b_count)
goto repeat;
bh->b _count = 1; //reference count is set to 1
bh->b _dirt = 0;
bh->b uptodate = 0;

So the buffer block is no longer a free buffer block. And then apply for a free request
item in the request [32], which is bound with the buffer block, and the buffer block is
locked again. But it does not mean that the request item can be handle immediately, even
if it has been set completely. The hard disk is busy processing other request items synchro-
nously, and now the read disk request item can only be inserted into the request queue.
The code is as shown below:

//code path:kernel/blk dev/11 rw blk.c:
static void add request (struct blk dev struct * dev, struct request *

req)

for (; tmp->next ; tmp = tmp->next) //device is busy and the
//request item will be inserted into the queue
if ((IN_ORDER (tmp,req) ||
!'IN ORDER (tmp, tmp->next)) &&
IN_ ORDER (req, tmp->next))

break;
reg->next = tmp->next; //next is used to form the request queue
tmp->next = req;

sti();

Process C will be suspended by the system.
Now the process status in the system is as shown in Figure 7.43, and the read request
is the last item in the request queue, and the first item pointer in the request item arrays

points to it.

7.8 Example 2: Comprehensive Examples of Multiprocess Operating File

425

The process B switches to the process A to execute. After process C is suspended, the
time slice of process B is clearly more than that of process A, so switch to the process B.
The system has already applied for the buffer block for process B. At that time, the buffer
block is locked, so process B has to be suspended. Now the buffer block is still locked, so
process B will be suspended again, and the system switches to process A as is shown in
Figure 7.44.

Now the current process is A, which is suspended because of lacking free request
items when it synchronizes the buffer block. So after it is waken up, the system will con-
tinue to synchronize buffer block. As can be seen in Figure 7.44, now the system has free
claims for writing disk. So this request item is bound with the block buffer that will be
synchronized soon, and it is inserted into the request queue. Then there is no free request
item, so process A will be suspended again as is shown in Figure 7.45.

Next, the above steps will be repeated. On the one hand, as long as the hard disk has
completed a synchronous operation, it will release a request item, and the corresponding
buffer block will be unlocked. The process waiting for idle request or for the buffer block to
unlock is waken up, caused by these. On the other hand, these awakened processes cause
data interaction between the buffer and the hard disk constantly so that these processes
are suspended constantly as is shown in Figure 7.46.

Until the last three processes have completed each read disk and write disk tasks as is
shown in Figure 7.47.

The depth understanding of the buffer is the key to the understanding of multiprocess
operating files. Now, as can be seen more clearly, that buffer design guideline is to make
the data in the buffer stay in the buffer as long as possible. The interaction between the
process and the hard disk had better be in the buffer, and it is better when there is less read
and write hard disk data. Starting from the design guideline, carefully examine the source

‘ Process B

‘ProcessC
AaA A& a8

[1 QT 10 I-f | [Bufferzone

Process A

|rw|rw| Irwlrwl r II r |Request item
it

|
H l I Suspend

Process A Process B Process C

Dirty

t_| Request item queuefll Locked [| IDLE [| NON-IDLE

“write” or “read” request item “read” request item

Figure 7.44 Process B is suspended, and the system switches to the process A to execute.

426

7. Buffer and Multiprocess File

‘ Process B

‘ProcessC
aAam A Aam

II I I I II I |Bufferzone

Process A

r | Request item

H I l Suspend

Process A Process B Process C

tJ Request item queuef@ Locked | |IDLE [| NON-IDLE

M “write” or “read” request item “read” request item

Figure 7.45 Process A is suspended again.

Process A Process B Process C

L 4 4 L 4
Ada eaaaad

. ! . . Buffer zone

|rw|rw| Irwlrwl r Ilr |Requestitem
tl | i —

H H Ready

Process A Process B Process C

t_IRequest item queueflil Locked D IDLE D NON-IDLE

“write” or “read” request item “read” request item

Figure 7.46 Wake up the process B when the synchronization of the buffer block has completed
again.

7.8 Example 2: Comprehensive Examples of Multiprocess Operating File

427

N N I N N N) I v ot

|rw|rw| Irwlrwl r II r |Requestitem

Process A Process B Process C

[Jmie []NoN-IDLE
“write” or “read” request item “read” request item

Figure 7.47 All the requests of processes have been processed.
code of Linux. As can be seen, the design of synchronization code has some deviation

from this design guiding ideology.

//code path:fs/buffer.c:
int sys_sync (void)

int i;
struct buffer head * bh;
sync_inodes(); /* write out inodes into buffers */

bh = start_buffer;
for (i=0 ; i<NR_BUFFERS ; i++,bh++) { //traverse the entire
//buffer and do not miss a buffer block
wait_on buffer (bh) ;
if (bh->b dirt)
11_rw_block (WRITE,bh) ;

}

return 0;

int sync_dev (int dev)
{
int i;
struct buffer head * bh;
bh = start_buffer;
for (i=0 ; i<NR_BUFFERS ; i++,bh++) { //traverse the entire
//buffer and do not miss a buffer block
if (bh->b_dev != dev)
continue;
wait_on buffer (bh) ;
if (bh->b_dev == dev && bh->b_dirt)
11_rw_block (WRITE,bh) ;

428 7. Buffer and Multiprocess File

sync_inodes () ;

bh = start buffer;

for (i=0 ; i<NR BUFFERS ; i++,bh++) { //traverse the entire

//buffer and do not miss a buffer block

if (bh->b dev != dev)
continue;

wait_on buffer (bh) ;

if (bh->b_dev == dev && bh->b_dirt)
11_rw_block (WRITE,bh) ;

1

return O;

B_count is not in the code. No matter whether it is 0 or not, the buffer block should
be synchronized as long as b_dirt is 1. It is not very consistent with the design guideline
of shared buffers as many as possible and read and write hard disks as little as possible.

7.8 Example 2: Comprehensive Examples of Multiprocess Operating File

429

This page intentionally left blank

Inter-Process
Communication

The previous chapters explain that the processes are not allowed to cross the border to
access other process’s codes and data in Linux 0.11, which is the core content of the
protected-mode of the operating system.

From the practical point of view, the processes often need to work cooperatively and
share mutual information, which seems to be contrary to the process protection. The
problem is how to achieve the reasonable requirements of interprocess communication
without destroying the process protection? The Linux 0.11 operating system designs two
sets of mechanism to provide services to the requirements. One is the “pipe mechanism,”
and another is the “signal mechanism.” In this chapter, we will give a detailed introduc-
tion about the two mechanisms via two actual application cases.

8.1 Pipe Mechanism

In order to protect the process and complete interprocess communication without cross-
ing the process boundaries, Linux 0.11 bypasses the boundary protection of the process
and designs the pipe mechanism. Each pipe allows two processes to interact data. One
process inputs the data into the pipe; another one outputs the data from the pipe. Thus it
completes interprocess communication and does not need to cross the boundary of pro-
cess illegally (Figure 8.1).

The operating system provides a page of memory for each pipe. It gives the file attri-
bute to the page of the memory (the reason for giving the file attribute will be explained

431

Pipe

Process ::> :::> Process

Input data Output data

Figure 8.1 Principle of pipe operation.

in Chapter 9). This page in the main memory is shared by two processes, but it will not
be assigned to any of the processes and is controlled only by the kernel.

The pipe operation is divided into two parts. One part is to create the pipe; another

#include <stdio.h>
#include <unistd.h>

part is the read-write operation of the pipe. Here we will introduce these two parts by
example 1. The code of example 1 is as follows.

int main()
int n, f£dl[2];
pid t pid;
int 1i,73;
char strl[] = “ABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDE

ABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDE
ABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDE
ABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDE
ABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDE
ABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDE
ABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDE
ABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDE
ABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDE
ABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDE
ABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDE
ABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDE
ABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDE
ABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDE
ABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDE
ABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDE
ABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDE
ABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDE
ABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDE
ABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDEABCDE
ABCDEABCDEABCDEABCDEABCD” ;

char str2[512];

if (pipe(fd) < 0){//create pipe
printf (“pipe error\n”) ;
return -1;

}

if ((pid = fork()) < 0){
printf (“fork error\n”) ;
return -1;

432

8.

Inter-Process Communication

else if (pid > 0)//parent process writes data into the pipe

1)
71<10000; i++)
1] ,strl,strlen(strl)) ;

else { //child process reads data from the pipe
close (fd[1]) ;
for(j = 0;3<20000;7++)
read (fd[0],,str2,strlen(str2)) ;

}

return 0;

Example 1 demonstrates the scene of sharing data between processes. The parent pro-
cess writes the data in strl into the pipe, and the child process reads data from the pipe.
The character size of strl is 1024 bytes, which is 1 KB.

8.1.1 The Creation Process of the Pipe

In the technical view, the pipe is a page in memory, but the process should operate it with
the form of manipulating files. Thus it requires that the page in the memory has some file
attributes, and the page attributes of the page should be reduced.

The file attributes of this page are shown as follows. Creating a pipe is equivalent to
creating a file, such as the connection between filp[20] and file_table[64], and creation of
the i node and the connection between file_table[64] and the i node need to be done in the
process of creating the pipe. Ultimately, it makes the process know that it is operating the
files with the form of the pipe without concerning the others.

The reducing of the page attributes is shown as follows. After all, the page of
memory should be used as a file. For example, the process could not access the
memory as it accesses the data in its own user space and this page could not be
mapped to the linear address space of the process. Another example is that there
are two processes operating the page; one is reading while another is writing. It
could not trigger page fault protection caused by the writing access to the page that
will duplicate the page, and it could not share with the pipe. Next we will show the
specific process for creating the pipe.

Apply for an free entry in file_table[64] for pipe file. The created files are all used by the
current process (one process) while the pipe file is naturally created for the two processes
(the read pipe process and the write pipe process). The pipe in example 1 is created by a
parent process (the write pipe process). The parent process prepares everything for the
child process (the read pipe process) while creating the pipe. Once the child process is cre-
ated, it naturally has the capability of operating the pipe.

First, the parent process applies for two free entries in file_table[64] and sets the cited
number of the two free entries to be 1. It means that they are cited. The parent and child
process could use each of them respectively, when operating pipe files. The code is as
follows.

8.1 Pipe Mechanism

433

//code’s path:fs/pipe.c:
int sys_pipe(unsigned long * fildes)
{

struct m_inode * inode;

struct file * f£[2];

int fd[2];
int i,9;
j=0;
for(i = 0;j<2 && i<NR FILE;i++) //ready to apply for two free entries in file table[64]
if (!file_table[i] .f_count) //find out free entries
(E[j++] = i+file table)->f count++; //set every cited number to be 1
if (= =1)
£[0]->f count = 0;
if (§<2)

return -1;

The two free entries that are applied in file_table[64] for creating the pipe file are
shown in Figure 8.2.

Connect the table entries between filp[20] in the process task_struct and file_table[64].
We apply for two free entries in *filp[20] in the parent process task_struct. The two free
entries connect with the two table entries applied for in file_table[64] previousely, respec-
tively. Thus, there are two table entries in *filp[20], the file management structure of the
current process, building the relationship with file_table[64]. When it creates a child pro-
cess as a parent process, the two table entries in *filp[20] are naturally copied to its child
process. It naturally makes the table entries build a relationship with the same pipe files in
the file_table[64] structure. The specific code is as follows.

//code path:fs/pipe.c:
int sys_pipe(unsigned long * fildes)

if (j = = 1)
£[0]->f count = 0;
if (§<2)
return -1;
j = 0;
for(i = 0;j<2 && i<NR_OPEN;i++) //ready to apply for two free entries in
//£ilp[20]
if (lcurrent->filp[i]) //find out out free entries
current->filp[fd[j] = 1] = £[j]; //connect with the two free entries applied
//for in file table[64] respectively
J++i
}
if (j = =1)
current->filp[£fd[0]] = NULL;
if (§<2) {

£[0]->f count = £[1]->f count = 0;
return -1;

Figure 8.3 shows the effect after setting up the relationship between the current pro-
cess and pipe files.

434 8. Inter-Process Communication

0x00000 Ox9FFFF OxFFFFF O0x3FFFFF Ox5FFFFF OxFFFFFF

kernel J
S

Apply two free items in file_table[64]

Figure 8.2 Two free entries that are applied for in file_table[64] for creating the pipe file.

0x00000 Ox9FFFF OxFFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF
kernel J
."-, The page that
. Task_struct of | °" task_struct of
- parent process .l parent process resides
.. Kernel code area " Kernel data area

file_table[64] J . 3
| rtteeeL,,, - - ﬁlp[QO]

Figure 8.3 Build a relationship between current process and pipe files.

Create i node of the pipe file. The process should build a relationship between i node of
the pipe file and file_table[64] if it wants to have the capability of operating the pipe file.
To achieve this, we should call function get_pipe_inode() and apply a i node in inode_
table[32] for the pipe file. The specific code is as follows.

8.1 Pipe Mechanism 435

//code path:fs/pipe.c:
int sys pipe(unsigned long * fildes)

i (9 = =1)
current->filp[£d[0]] = NULL;
if (§<2) {

f[0] ->f count = f£[1]->f count = 0;
return -1;

}

if (! (inode = get pipe inode())) { //create node i for the pipe
current->filp[£d[0]] =
current->filp[£d[1]] = NULL;

f[0] ->f count = f£[1]->f count = 0;
return -1;

Due to the nature of the pipe being a page of memory, the system applies for an free
page of memory and loads the address of the page into i node. It is worth noting that at the
moment the field inode->i_size no longer carries the size of the file but the original address

of the memory page. The specific code is as follows.

//code path:fs/inode.c:
struct m_inode * get pipe inode (void)

{

struct m_inode * inode;

if (! (inode = get empty inode()))
return NULL;
if (! (inode->i size = get free page())) { //apply for the page to
//be the pipe
inode->i count = 0;

return NULL;

}

inode->i count = 2; /* sum of readers/writers */

The pipe file is also a file, so it needs to have a i node. Thus, it should have cited count.
Linux 0.11 defaults that it should have two and only two processes to operate the pipe file.
One is a read process, and another is a write process. Thus, we set it to be 2 directly.

Then, let both the read pipe pointer and write pipe pointer point to the original
position of the pipe (the free page) for the operation of the process of the read and write
pipe. Then set the attribute of the i node to be “the type of pipe i node” to identify the

436

8. Inter-Process Communication

particularity of i node. That means actually it is not i node stored in the file in the hard
disk; it is only a page of memory. The specific code is as follows.

//code path:fs/inode.c:
struct m_inode * get_pipe_inode (void)

if (!(inode->i_size = get_free page())) {
inode->i_count = 0;
return NULL;

}

inode->i_count = 2; /* sum of readers/writers */ //set the cited number to be 2
PIPE_HEAD (*inode) = PIPE TAIL(*inode) = 0; //PIPE_HEAD is write pipe pointer, PIPE_TAIL is
//read

//pipe pointer, set both of them
//to be 0
//set up the attribute of the

inode->i_pipe = 1;
//pipe file

return inode;

The process of the application for i node for the pipe file and setting process is shown
in Figure 8.4.

Build a relationship between i node of the pipe file and file_table[64]. Now, we can
build a relationship between i node of the pipe file and file_table[64] because the i node
of the pipe file has been set up. The specific operation is shown as follows. Initialize
the two free entries in file_table[64] and let them point to the i node of the pipe and let
all of the file read and write pointers point to the original position of the pipe. Set the
first free entry’s mode of file to read and the second to write. Thus, the parent process

0x00000 O0x9FFFF OxFFFFF 0x3FFFFF Ox5FFFFF OXFFFFFF
kernel

| Apply for free page
.4+ (pipe file)

.
.o e,
ey

.t Kernel code area’** Kernel data area

.o -" : 4
Leett < | i_mode ;
i node_table[32] : I
JUTTTAL I i nlinks | The first pomtér of pipe
N J
N © 2| The end pointer of pipe
3R
teen., i B A
i node of pipe file I ‘. :
i_count

m_inode structure

Figure 8.4 Create i node for pipe file.

8.1 Pipe Mechanism 437

has got the capability of operating the pipe file. The child process created by the parent
process will also get the capability of operating the pipe file naturally. The specific code
is as follows.

//code path:fs/pipe.c:
int sys_pipe (unsigned long * fildes)

if (!(inode = get pipe inode())) {
current->filp[£d[0]] =
current->filp[£fd[1]] = NULL;
f[0]->f count = f[1]->f count = 0;
return -1;

f[0]->f inode = f[1]->f inode = inode;//connect node i and table entry

fl0]->f pos = f£[1]->f pos = 0; //the file pointer return to 0
f[0]->f mode = 1; /* read */ //set it to be read mode
fl1]->f mode = 2; /* write */ //set it to be written mode

put_fs_long(fd[0],0+fildes) ;
put_fs_long(fd[1],1+fildes) ;
return 0;

It is shown in Figure 8.5.

Return the pipe file handle to the user’s process. Now return the two handles of the pipe
file to the user’s process, which is fd[2] in the code of example 1. This array has two entries,
and each of them stores a handle. Thus, the child process will inherit the two file handles,

0x00000 Ox9FFFF OxFFFFF O0x3FFFFF O0x5FFFFF OxFFFFFF

kernel
,~ b-lli

. ve,
..

Lot Kernel code area’ " Kernel data area

inode_table[32] j file_table[64] J

i node of pipe file i - -

Figure 8.5 Build a relationship between node i of pipe and file_table[64].

438

8. Inter-Process Communication

and the parent and child processes can operate the pipe file through different file handles.

The specific code is as follows.

//code path:fs/pipe.c:

int sys_pipe (unsigned long * fildes)

f[0]->f inode = f[1]->f inode = inode;

f£[0]->f pos = f[1]->f pos =
£[0] ->f_mode
£[1] ->f_mode
put_fs_long (fd[0],0+£fildes) ;
put_fs_long(fd[1],1+fildes) ;
return 0;

}

The result of returning the file handle to the user’s process is shown in Figure 8.6.

8.1.2 Operation of Pipe

The effect of Linux 0.11 pipe operation is as follows. If there is some unread data in the
pipe during the execution of the read pipe process, the data should be read. If there is not
unread data, the process should be suspend. Thus, the dirty data will not be read. If there
is some excess space in the pipe during the execution of the write pipe process, the data
should be written. And if there is no excess space, the process should be suspended. Thus,
the unread data will not be covered. In addition, the size of the pipe is just one page. So
after the end of the page has been read, the read and write pointer should be able to roll

0;

1; /* read */
2; /* write */
//set the handle of read pipe file
//set the handle of write pipe file

back to the head of the page in order to continue the operation.

0x00000 Ox9FFFF OxFF
kernel
ROM BIOS
and VGA

e,

.. -Kérnel code area’Kernel data area

...........
o *ees

FFF Ox3FFFFF

Ox5FFFFF

OxFFFFFF

it

The user space of
parent process

Fm———

_r-—--
]
i
]
]
'
]
]
]
]

Figure 8.6 Return the handle of the pipe file to the user’s process.

8.1 Pipe Mechanism

439

The code of rolling back is as follows.

//code path:fs/read write.c:
int sys_read(unsigned int fd,char * buf,int count)//the pointer to read pipe

while (count>0) {
if (chars > size)
chars = size;
count - = chars;
read + = chars;
size = PIPE_TAIL(*inode) ;

PIPE_TAIL(*inode) + = chars; //the number that the pointer offsets is the
//number which it reads the data when the
PIPE_TAIL(*inode) & = (PAGE_SIZE-1); //pointer exceeds one page, (& =)operation

//could achieve automatically rollback
while (chars— >0)

put_fs byte(((char *)inode->i_size) [size++],buf++);

int write_pipe(struct m_inode * inode, char * buf, int count)//write pipe pointer

while (count>0) {

f (chars > size)
chars = size;
count - = chars;
written + = chars;
size = PIPE_HEAD (*inode) ;

PIPE_HEAD (*inode) + = chars; //the number that the pointer offsets is the
//number which it writes the data when
PIPE_HEAD (*inode) & = (PAGE_SIZE-1); //the pointer exceeds one page, (& =)operation

//could achieve automatically rollback
while (chars— >0)

((char *)inode->i_size) [size++] = get_fs_byte (buf++);

In the case of rolling back constantly, the code for controlling the write, read, wake
up, or hang the process is as follows.

//code path:include/linux/fs.h:

#define PIPE_HEAD (inode) ((inode).i_zone[0])
#define PIPE_TAIL(inode) ((inode).i_zone[1])
#define PIPE_SIZE(inode) ((PIPE_HEAD (inode)-PIPE_TAIL (inode)) & (PAGE_SIZE-1))

//code path:fs/read write.c:
int sys_read(unsigned int fd,char * buf,int count)//the pointer to read the pipe

while (count>0) {
while (! (size = PIPE_SIZE(*inode))) { //when the read pointer and written pointer

//coincidence, it means the data in the pipe
//has been read

440 8. Inter-Process Communication

wake_up (&inode->i_wait) ; //all the data in the pipe has been read,
//wake up write pipe process

if (inode->i_count ! = 2)/* are there any writers? */
return read;
sleep on(&inode->i_wait) ; //there is no data to read, suspend the read

//pipe process

chars = PAGE_SIZE-PIPE_TAIL (*inode) ;
if (chars > count)

chars = count;
if (chars > size)
chars = size;
}
wake up (&inode->i_wait) ; //read the data and it means the pipe has
//excess space, wake up the write pipe
//process

return read;

}

int write pipe(struct m_inode * inode, char * buf, int count)//the pointer to write pipe

while (count>0) {
while (! (size = (PAGE_SIZE-1)-PIPE_SIZE (*inode))) {//written pointer could write at
//most 4095 bytes
//of data, then it means the pipe has been
//fully written

// (the size of one page is 4096 bytes
wake up (&inode->i wait) ; //the pipe has been fully written and it has
//data again, wake up the read pipe process

if (inode->i_count ! = 2) {/* no readers */
current->signal | = (1<<(SIGPIPE-1));
return written?written:-1;

}
sleep on(&inode->i_wait) ; //there is no excess space, suspend the
//written pipe process

}
chars = PAGE_SIZE-PIPE_HEAD (*inode) ;
if (chars > count)
chars = count;
if (chars > size)
chars = size;

wake up (&inode->i_wait) ; //it means the pipe has data after writing
//data into it, wake up read pipe process
return written;

}

When all the writable space has been fully written, the write pipe pointer rolls one
circle back. Thus, the write pipe pointer is one byte less than the read pipe pointer. The
write pipe process should be suspended then. Linux 0.11 designs function sys_write() as
follows. The write pipe process can write 4095 bytes at one time at most.

Now, we will introduce the process of the operation of the pipe through example 1.

Read pipe process begins to operate the pipe file. In example 1, the parent process
begins to create the child process that is the read pipe process after creating the pipe.
When the process has been created, we may assume that there are only two processes,
that is, the read pipe process and the write pipe process, being in the ready state in the
system. The read pipe process will execute first, and it will execute the source code “read

8.1 Pipe Mechanism

441

(fd[0],,str2,strlen(str2))” in example 1. The read() function is mapped to the system call
function sys_read() and executed. Ultimately, it will execute into the read_pipe() func-
tion. Because there is not any data in the pipe at the moment, the system will suspend the
read pipe process and then switch to the write pipe process to execute. The specific code
is as follows.

//code path:fs/read write.c:
int sys_read(unsigned int fd,char * buf,int count)

verify area(buf,count) ;
inode = file->f inode;
if (inode->i_pipe)
return (file->f mode&l)?read_pipe (inode, buf, count) : -EIO; //call read pipe
//function
if (S_ISCHR (inode->i_mode))
return rw_char (READ, inode->i_zone [0] ,buf, count, &file->f pos);

//code path:fs/pipe.c:
int read pipe (struct m_inode * inode, char * buf, int count) //read pipe function
{
int chars, size, read = 0;
while (count>0) {
while (! (size = PIPE_SIZE(*inode))) { //there is no data in the pipe, enter into
//this loop and execute
wake_up (&inode->i_wait) ;

if (inode->i_count ! = 2)/* are there any writers? */
return read;
sleep_on(&inode->i_wait) ; //suspend the read pipe process and switch

//to the read pipe process (assume that only
//two processes in the operation pipe is in
//the ready state already)

1
chars = PAGE_SIZE-PIPE TAIL (*inode) ;
if (chars > count)

chars = count;

There is not any data in the pipe at the moment; the read pipe process is suspended.
The state of the process is shown in Figure 8.7.

Write pipe process writes data into the pipe. The write pipe process begins to execute,
and it will write the specified 1024 bytes of data in the strl array of example 1 into the
pipe cyclically. The process is executing the source code “write(fd[1],strl,strlen(strl)).” The
write() function will be mapped to the system call function sys_write() to execute, and
ultimately, it will be executed to the write_pipe() function. After the writing, the pipe has
got the data that can be read out. Then wake up the read pipe process (that the read pipe
process has been woken up does not mean the read pipe process will execute immediately).

442

8. Inter-Process Communication

0x00000 Ox9FFFF OxFFFFF O0x3FFFFF Ox5FFFFF OxFFFFFF

kernel
‘ | qus

Pipe (memory page)

The head pointer of pipe.."' .
(“write” pipe) l .

The end pointer of pipe
“road” pi
Process status (“read” pipe)

Parent process Child process
i Ready i Uninterruptible
1T

Current process

Figure 8.7 The process begins to operate the pipe; suspend the read process.

Thus the execution for the operation of the write pipe completes. The specific code is as
follows.

//code path:fs/read write.c:
int sys_write(unsigned int fd,char * buf,int count)

if (!count)

return 0;
inode = file->f inode;
if (inode->i_pipe)

return (file->f mode&2)?write_pipe (inode,buf, count) : -EIO; //call the write pipe

//function
if (S_ISCHR (inode->i_mode))
return rw_char (WRITE, inode->i_zone [0] ,buf, count, &file->f pos) ;

//code path:fs/pipe.c:
int write_pipe(struct m_inode * inode, char * buf, int count) //read pipe function

int chars, size, written = 0;
while (count>0) {
size = PIPE_HEAD (*inode) ;
PIPE_HEAD (*inode) + chars;
PIPE_HEAD (*inode) & (PAGE_SIZE-1) ;
while (chars— >0)
((char *)inode->i_size) [size++] = get_fs_byte (buf++); //write data into the
//pipe

}

wake_up (&inode->i_wait) ; //wake up the read pipe
//process

}

8.1 Pipe Mechanism 443

The process in which the write pipe process writes data into the pipe is shown in
Figure 8.8.

Write pipe process keeps on writing data into the pipe. The current process is write
pipe process. After writing data into the pipe, it will return to the user space. We know
that the writing process should be operated for 10,000 times while the time slice of the
write pipe process has not been used up according to the code “for(i = 0;i<10000;i++)”
in example 1. Thus it will keep on executing the writing operation.

The process of writing data into the pipe constantly is shown in Figure 8.9.

The pipe space has been filled up by the write pipe process. Assume that the timer inter-
rupt occurs during the process of the write pipe process works. The time slice has been
decreased. As long as the time slice has not reduced to 0, it will keep on executing. The
corresponding code is as follows.

//code path:kernel/sched.c:
void do_timer (long cpl) //timer interrupt processing function

if (next timer) ({
next_timer->jiffies— ;
while (next_timer && next timer->jiffies < = 0) {
void (*fn) (void) ;

fn = next_timer->fn;
next_timer->fn = NULL;
next_timer = next_ timer->next;

(£n) () ;
}
}

if (current DOR & 0xfO0)
do_floppy timer();
if ((— current->counter)>0) return; //time slice is not 0, return back
//dirrectly
current->counter = 0;
if (!cpl) return;
schedule() ;

The bottom of Figure 8.10 shows the effect on the write pipe process after the occur-
rence of the timer interrupt.

During the writing process, the write pipe pointer always points to the position that
the data is written in and moves to the end of the pipe continuously until the pipe is fully
filled (4095 bytes can be regarded as fully filled).

444

8. Inter-Process Communication

0x00000 O0x9FFFF OxFFFFF 0x3FFFFF
kernel

Ox5FFFFF

The head pointer of pipe..-"

(“write” pipe)

The end pointer of pipe
Process status (“read” pipe)
i Parent process Child process
E i Ready i Ready
| 1
: Current process

OxFFFFFF

Hllld

+** Pipe (memory page)

Figure 8.8 Write pipe process writes data into the pipe.

0x00000 Ox9FFFF OxFFFFF Ox3FFFFF
kernel

Ox5FFFFF

OxFFFFFF

Fllld

J ' Pipe (memory page)

The fl'ead pointer of pipe
(“write”-p.ipe)

The end pointer of pipe
Process status (“read” pipe)
i Parent process Child process
i i Ready i Ready
| 1
i Current process

Figure 8.9 Write pipe process writes data into the pipe constantly.

8.1 Pipe Mechanism

445

0x00000 Ox9FFFF OxFFFFF O0x3FFFFF Ox5FFFFF OxFFFFFF

kernel
~ ST

{ Pipe (memory page)
. “.. The head pointer of pipe

w “(“write” pipe)
P : .

(Clock interrupt happened) Pipe

The end pointer of pipe

“read” pipe
Process status (pipe)

Parent process Child process
Timesslice (| Ready Ready
to reduce

L)

Current process

Figure 8.10 During the process that the writing process executes, the timer interrupt occurs.

Suspend the write pipe process. After the pipe is fully filled by written, the system will
suspend the write pipe process and switch to the read pipe process to execute. The specific
code is as follows.

//code path:fs/pipe.c:
int write_pipe(struct m_inode * inode, char * buf, int count)
{
int chars, size, written = 0;
while (count>0) {
while (!(size = (PAGE_SIZE-1)-PIPE SIZE(*inode))) { //writing 4095 bytes can be
//regarded as fully
//filled, the condition is true
//and then enter
//while to execute
wake_up (&inode->i_wait) ;
if (inode->i_count ! = 2) {/* no readers */
current->signal | = (1<<(SIGPIPE-1));
return written?written:-1;
}
sleep_on(&inode->i_wait) ; //hang the write pipe process and
//switch to
//the read pipe process to
//execute

446 8. Inter-Process Communication

0x00000 Ox9FFFF OxFFFFF 0x3FFFFF O0x5FFFFF OxFFFFFF

kernel
_—

.) ., The head pointer of pipe
. ‘. (“write” pipe)

The end pointer of pipe

“read” pipe
Process status (pipe)

Parent process Child process
u Uninterruptible i Ready
L)

Current process

Figure 8.11 Suspend the write pipe process and wake up the read pipe process.

The process of suspending the write pipe process and switching to the read pipe pro-
cess is shown in Figure 8.11.

Read pipe process reads data from the pipe. The read pipe process will continue to exe-
cute in the read_pipe() function. According to the code of example 1, the execution would
read 512 bytes of data in the pipe into the user’s space of the read pipe process. The specific
code is as follows.

//code patrh:fs/pipe.c:
int read_pipe(struct m_inode * inode, char * buf, int count)

while count>0 rea 512 tes o ata
hile () //read by £ d

chars = PAGE_SIZE-PIPE TAIL (*inode) ;
if (chars > count)
chars = count;
if (chars > size)
chars = size;
count - = chars;
read + = chars;
size = PIPE_TAIL(*inode) ;
PIPE_TAIL(*inode) + = chars; //the number that the
//pointer moves is the
//number that it

//reads
PIPE_TAIL(*inode) & = (PAGE_SIZE-1);
while (chars-- >0)
put_fs byte (((char *)inode->i_size) [size++] ,buf++) ; //the code of reading
//data

8.1 Pipe Mechanism

447

Reading out data means that the pipe has excess space. Now the system wakes up the
write pipe process. The specific code is as follows.

//code path:fs/pipe.c:
int read pipe(struct m_inode * inode, char * buf, int count)

{
while (count>0) {
size = PIPE TAIL(*inode) ;
PIPE TAIL(*inode) + = chars;
PIPE TAIL(*inode) & = (PAGE SIZE-1) ;
while (chars-- >0)
put fs byte(((char *)inode->i size) [size++],buf++);
}
wake up (&inode->i wait) ; //wake up the write pipe process
}

The procedure of the read pipe process reading data from the pipe is shown in
Figure 8.12.

Read pipe process continues to execute and keeps on reading data from the pipe. The
current process is the read pipe process. After reading data from the pipe once, it will
return to the user’s space. According to the code “for(j = 0;j<20000;j++)” in example 1,
read pipe should be operated 20,000 times while the time slice of the read pipe process has

0x00000 Ox9FFFF OxFFFFF 0x3FFFFF Ox5FFFFF OxFFFFFF

JUH

[Pipe (memory page)

The head pointer of pipe
. *. (“write” pipe)

.. 4095 bytes

The end pointer of pipe
(“read” pipe)

Process status

Parent process Child process
u Ready i Ready
L}

Current process

Figure 8.12 Read pipe process reads data from the pipe.

448 8. Inter-Process Communication

0x00000 Ox9FFFF OxFFFFF 0x3FFFFF Ox5FFFFF
kernel

ROM BIOS
and VGA

OxFFFFFF

The end pointer of pipe

Process status (“read” pipe)

Parent process Child process
u Ready i Ready
1T

Current process

Figure 8.13 Read pipe process reads data from the pipe constantly.

not been used up. Thus the reading process should be operated continually. The process

The head pointer of pipe
. (“write” pipe)

that the read pipe process reads data from the pipe constantly is shown in Figure 8.13.

Timer interrupt occurs during the execution of the read pipe process. Assume that
timer interrupt occurs during the execution, and time slice is cut down. As long as it has

not reduced to 0, it will continue to execute. The specific code is as follows.

//code path:kernel/schde.c:
void do_timer (long cpl)

{

if (next_timer) {
next_timer->jiffies—- ;
while (next_timer && next_timer->jiffies < = 0) {
void (*fn) (void) ;

fn = next_timer->fn;
next_timer->fn = NULL;
next_timer = next_ timer->next;
(£n) () ;

}

if (current DOR & 0xf0)
do_floppy_timer () ;

if ((-- current-s>counter)>0) return;

current->counter = 0;

if (!cpl) return;

schedule () ;

//time slice is not 0, return back directly

8.1 Pipe Mechanism

449

0x00000 Ox9FFFF OxFFFFF O0x3FFFFF Ox5FFFFF OxFFFFFF

kernel ‘
ROM BIOS [
and VGA ; '""‘
[Pipe (memory page)
The head pointer of pipe
P .'.' '._‘
(Clock interrupt happened) Pipe

.. 4095 bytes

The end pointer of pipe
(“read” pipe)

Process status

Parent process Child process
Time slice
u Ready to reduce u Ready
1

Current process

Figure 8.14 Timer interrupt occurs during the execution of the read pipe process.

The processing method for the occurrence of timer interrupt during the execution of
the read pipe process is shown in Figure 8.14. Pay attention to the process bar of the read
pipe process in the figure; its time slice has been cut down.

Timer interrupt occurs again during the execution of the read pipe process. Timer
interrupt occurs again during the execution of the read pipe process, and the time slice
of the read pipe process is 0. The read pipe process will be suspended and switched to the
write pipe process to execute. The specific code is as follows.

//code path:kernel/schde.c:
void do timer (long cpl)

{

if (current DOR & 0xfO0)
do floppy timer() ;

if ((-- current->counter)>0) return; //time slice becomes 0
current->counter = 0;

if (!cpl) return;

schedule () ; //process switch

450

8. Inter-Process Communication

0x00000 Ox9FFFF OxFFFFF O0x3FFFFF Ox5FFFFF OxFFFFFF

kernel
ROM BIOS <
and VGA) . _|”|‘
[Pipe (memory page)
“.. The head pointer of pipe
*.(“write” pipe)
D _-'. .'.‘
(Clock interrupt happened) Pipe

.. 4095 bytes

The end pointer of pipe
(“read” pipe)
Process status

Parent process Child process
Time slice
u Ready reduces to H Ready
zero 1

Current process

Figure 8.15 Timer interrupt occurs during the execution of the read pipe process.

The process for timer interruption is shown in Figure 8.15. The time slice of the pro-
cess bar that represents the read pipe process has reduced to 0.

It is worth noticing that the twice timer interrupts cannot affect writing in or read-
ing out the data from pipe. The fundamental reason is that writing or reading the data
executed in the kernel code with the 0 privilege level and is completely controlled by the
system. It will only cut down the time slice without affecting the execution of the data
operation.

Switch read pipe process to the write pipe process to execute. The pointer of pipe opera-
tion has been moved to the head of the pipe before the write pipe process is suspended.
Then the write pipe process will keep on writing data into the pipe from the head of the
pipe until the pipe has no excess space again. The process is shown in Figure 8.16.

Suspending the write pipe process and switch to execute the reading pipe process. The
pipe is fully filled again, and the system will suspend the write pipe process. Then it will
switch to the read pipe process to execute. The principle of the Linux 0.11 reallocation time
slice is that when all the processing time slices in the ready state become 0, then assign a
time slice. Because the read pipe process is the only process in the ready state, and its time

8.1 Pipe Mechanism

451

(a) 0x00000 O0x9FFFF OxFFFFF 0x3FFFFF 0x5FFFFF OxFFFFFF

kernel J
y IS

[Pipe (memory page)

The head pointer of plpe - .
(“write” pipe) .

Pipe

The end pointer of pipe

(“read” pipe)
Process status

Parent process Child process
! H Ready |:| Ready !
i 1 i
i Current process i
(b) 0x00000 Ox9FFFF OxFFFFF O0x3FFFFF Ox5FFFFF OxFFFFFF
kernel J

Current process

The head pointer of plpe.
(“write” pipe) .
Pipe
The end pointer of pipe
(“read” pipe)
Process status
E Parent process Child process i
i i
i u Ready H Ready |
s |

Figure 8.16 Write pipe process continues to write data.

452 8. Inter-Process Communication

slice has been used up, the system will assign a time slice to them again. The specific code
is as follows.
//code path:kernel/schde.c:
void schedule (void)
{
while (1) {
e = =lg
next = 0;
i = NR_TASKS;
p = &task[NR_TASKS] ;
while (-- i) {
if (1*-- p)
continue;
if ((*p)->state = = TASK RUNNING && (*p)->counter > c)
c = (*p)->counter, next = 1i;
}
if (c) break;
for(p = &LAST TASK ; p > &FIRST TASK ;-- p) //assign time slice
if (*p)
(*p) ->counter = ((*p)->counter >> 1) +
(*p) ->priority;
}
switch to(next) ;
}

Then the read pipe process continues to execute. The process of reading a part of data

is shown in Figure 8.17.

0x00000 Ox9FFFF OxFFFFF 0x3FFFFF Ox5FFFFF OxFFFFFF

kernel

ROM BIOS
and VGA

; qus

The head pointer of pipe_.*" .
(“write” pipe) .

Pipe

The end pointer of pipe
(“read” pipe)

Process status (redistribution time slice)

Parent process Child process
Time slice I Uninterruptible I Ready
than 15

L)

1)
1
1
i
1
1
i
i
i
| is greater
i
i
1
1)
1
1
i
1
1

Current process

Figure 8.17 Read pipe process continues to read data from the pipe.

8.1

Pipe Mechanism

453

The read pipe process continues to execute until it finishes reading data from the pipe.
After the beginning of the execution of the read pipe process, it will continue to read data
from the pipe. When it operates at the end of the pipe it will move the read pipe pointer
from the end of the pipe to the head of the pipe. Then it will continue to read data from the
head of the pipe until the data is completely read out. Then the two pointers will coincide.
The specific code is as follows.

//code path:fs/pipe.c:
int read_pipe(struct m_inode * inode, char * buf, int count)

while (count>0) {

while (! (size = PIPE_SIZE(*inode))) { //the pointers coincide, it means that the
//data has been read out
wake_up (&inode->i_wait) ; //wake up the write pipe process
if (inode->i_count ! = 2)/* are there any writers? */
return read;
sleep_on(&inode->i_wait) ; //suspend the read pipe process and switch

//to the write pipe process to execute

}
chars = PAGE_SIZE-PIPE TAIL(*inode) ;
if (chars > count)

chars = count;
if (chars > size)

chars = size;
count - = chars;
read + = chars;
size = PIPE_TAIL(*inode) ;
PIPE_TAIL(*inode) + = chars;
PIPE_TAIL(*inode) & = (PAGE_SIZE-1);
while (chars— >0)

put_fs byte(((char *)inode->i_size) [size++],buf++);//read data

The procedure is shown in Figure 8.18.

According to the previous introduction of the pipe operation, two processes share the
same pipe if two processes in file_table[64] occupy the file item of one pipe file, respec-
tively, it can operate the pipe.

If process A creates two pipes and process B, process A and B could conduct reversed
communication of data by the two pipes. The procedure is shown in Figure 8.19.

If process A creates six pipes and creates processes B and C, it could conduct reversed
communication of data between any two of them through the six pipes. The procedure is
shown in Figure 8.20.

Aslong as the total number of the processes is no more than 64 and the number of file
items that the processes occupy does not exceed the carrying capacity of file_table[64], we
can build an arbitrarily complex operation structure of pipe combinations.

8.2 Signal Mechanism

A signal mechanism is a “partial similar interrupt mechanism” provided to the process
by Linux 0.11. During the process of the execution, if the system finds out that a process
receives a signal, it will interrupt the execution of the process temporarily and turn to
execute the signal processing handler of the process. After the processing, it will continue
to execute from where the process was interrupted.

454

8. Inter-Process Communication

0x00000 Ox9FFFF OxFFFFF 0x3FFFFF 0x5FFFFF OxFFFFFF
kernel

The head pointer of pipe "’ ..

(“write” pipe) . .

Pipe

‘The end pointer of pipe
(“read” pipe)
Process status

Parent process Child process
I Ready I Ready
L)

Current process

Figure 8.18 Read pipe process reads data from the pipe completely.
Pipe

C—— —

Process Process

B —

Pipe

Figure 8.19 Two processes use the pipe to transfer data respectively.

Process A

Process B Process C

Figure 8.20 Three processes use a pipe to transfer data between any two processes.

8.2 Signal Mechanism 455

This section contains two parts to give a detailed description about signal mechanism.

The first part gives a detailed description about the procedure that the system and the
process handle the signal through the process of execution in example 2.

In the second part, the system changes the execution state of the process through the

analysis of the signal.

First, here we will introduce the first part: example 2.

This is an example about sending, receiving, and processing the signal. We will intro-
duce the procedure that the system and the process handle the signal by the example.

There are two user processes. One of them is used for receiving and processing the
signal. This process is called processsig. Its corresponding code is as follows.

#include <stdio.h>
#include <signal.h>

void sig_usr(int signo)

if (signo = = SIGUSR1)

printf (“received SIGUSR1\n”) ;
else

printf (“received%d\n”, signo) ;
signal (SIGUSR1, sig_usr);

int main(int argc, char **argv)

{

signal (SIGUSR1, sig_usr) ;

for (;;)
pause () ;
return 0;

//the function for handling signal

//reset the pointer of the signal
//processing function of processsig
//process for the next use

//connect the pointer of the signal
//processing function of processsig
//process

Another one is used for sending the signal. This process is called sendsig. Its corre-

sponding code is as follows.

#include <stdio.h>
int main(int argc, char **argv)
{
int pid, ret, signo;
int 1i;

if (arge ! = 3)

printf (“Usage: sensig <signo> <pid>\n") ;

return -1;

}
signo = atoi(argv([1]l) ;
pid = atoi(argv[2]);

ret = kill(pid, signo);
for (i = 0;1<1000000;i++)

if (ret ! = 0)

printf (“send signal error\n”);

return 0;

//send signal here

456

8. Inter-Process Communication

The system needs to have the following three functions to support the signal
mechanism.

1. The system needs to support the process to send and receive the signal.

The system sets the field “signal” (signal bitmap) for receiving the signal in
task_struct of every process. The signal that every process receives is stored in
this data structure bit by bit. The system supports two ways of sending the signal
to the process. One way is that a process sends the signal to another process by
calling specific library functions. Another way is that users generate keyboard
interrupt by inputting keyboard information, and the interrupt service routine
sends the signal to the process. The principals of these two ways to send a signal
are the same. They are all achieved by setting the bits of the signal in the signal
bitmap.

The example will be combined with the first way that one process sends a
signal to another one to show how the system sends and receives a signal.

2. The system should be able to detect the signal that the process has received in
time.

The system detects whether the process has received the signal by two ways.
One way is to detect whether the current process has received the signal before the
system call returns. Another way is that after the occurrence of the timer inter-
rupt, the system detects whether the current process has received the signal before
the execution of the interrupt service routine ends.

The two ways of signal detection are similar. The example will be combined
with the first way to show how the system detects the signal it receives.

3. The system needs to support the process to handle the signal.

The system should guarantee that when the user process need not to process
the signal, the signal processing function does not participate in the execution
of the user process completely, and when the user process needs to handle the
signal, the program of the process will stop executing temporarily and switch
to executing the signal processing function. When the signal processing func-
tion finishes executing, the program of the process will continue to execute from
where the pause happened.

The example will show how the system is achieved these through three
aspects. They are “bind the user-defined signal processing function with the pro-
cess,” “the pretreatment that the system does to the signal,” and “restore the site of
process after the processing of the signal.”

Here we will introduce how the two processes begin to run. The user is in the shell
interface now.

8.2 Signal Mechanism 457

Step 1: Input the command below and run the program of processsig process.

[/usr/root]l #./processsig &
<160> //here we know that the pid of processsig is 160
[/usr/root] #

Step 2: Input the command below and run the program of sendsig process. Send
SIGUSRI signal to processsig process.

[/usr/root]l #./sendsig 10 160 //10 represents signal SIGUSR1, 160
//is the pid of processsig

received SIGUSR1

[/usr/root] #

Now we will introduce the execution of the two processes. The processsig process
executes first, so first we will introduce its execution.

8.2.1 Use of Signal

Processsig process begins to execute. The processsig process begins to execute and pre-
pares to receive the signal. The specific performance is that specify what kind of signal
should be handle. After entering the main() function, we should combine a user-defined
signal processing handler with the processsig process. The user program achieves the
bind by calling the signal() function. This function is a library function. It will gener-
ate soft interrupt int0x80 after the execution and be mapped to the system call function
sys_signal() to execute. Its function is to combine the user-defined signal processing han-
dler sig_usr() with the processsig process. It means that as long as the processsig process
receives signal SIGUSR], it will call the sig_usr() function to process the signal. The bind
work is done by the function.

After entering the sys_signal() function, the system will detect whether the signal
that the user specifies meets the regulation before the combination. Because Linux 0.11
processes only 32 kinds of signals and ignores SIGKILL signal by default, as long as the
signal that the user specifies does not meet these requirements, the system will not be able
to process it.

//code path:kernel/signal.c:
int sys_signal (int signum, long handler, long restorer)
{
struct sigaction tmp;
if (signum<l || signum>32 || signum = =SIGKILL) //after detecting we know that
//the signal meets the provision
return -1;

458

8. Inter-Process Communication

When the detection is completed, it begins to conduct setting sigaction[32] in task_
struct of processsig process. This structure has 32 members, and it just corresponds to the
default 32 kinds of signal. Each member in sigaction[32] will provide a set of services for
the process of each kind of signal.

The specific code is as follows.

//code path:kernel/signal.c:
int sys_signal (int signum, long handler, long restorer)

if (signum<l || signum>32 || signum = =SIGKILL)
return -1;
tmp.sa_handler = (void (*) (int)) handler; //at the moment handler parameter is

//the address of sig usr()
//function in the code
//“signal (SIGUSR1, sig usr)” in the
//programme of processsig process.
//The combination makes that as
//long as the process receives signal
//in the future, the signal will
//be processed by sig_usr function.
tmp.sa_mask = 0;
tmp.sa_flags = SA ONESHOT | SA NOMASK;

tmp.sa_restorer = (void (*) (void)) restorer; //here combines

//the restorer function
handler = (long) current->sigaction[signum-1].sa_handler;
current->sigaction[signum-1] = tmp; //sigaction[signum-1] provides

//service for SIGUSR1 signal
return handler;

The setting is shown in Figure 8.21.

Please note that restorer() is also combined in the sys_signal() function. The function
of this function is also very important. We will introduce it in detail later.

The state of the processsig process and the condition of the code in the memory is
shown in Figure 8.22. The processsig process is in the ready state at the moment.

Processsig process enter the interruptible state. In the program of the processsig
process, we call pause() function specially in order to reflect the signal’s effect on the
state of the process’s execution. The function will eventually lead the process to be set to

Handler (the address of signal
processing function)

Restorer (the address of field
restore function)

Signum-1 item

Sigaction[32]

Figure 8.21 Set the address of the user process signal processing function.

8.2 Signal Mechanism 459

0x00000 Ox9FFFF OxFFFFF Ox3FFFFF Ox5FFFFF OxFFFFFF

kernel ‘
‘ ROM BIOS II')
and VGA

Process status

Processsig process

I Ready

T

Current process

Figure 8.22 Condition of the two processes in the memory.

“interruptible state.” When the process has received the signal, its state will switch from
“interruptible state” to “ready state.”

After the execution of signal(), it will return to the user’s space of the processsig pro-
cess and continue to execute. Then it calls the pause() function, and the function will be
mapped into the system call function sys_pause(). The specific code is as follows.

//code path:kernel/sched.c:
int sys_pause (void)

{

current->state = TASK INTERRUPTIBLE; //set processsig process to
//interruptible state

schedule () ; //switch process

return 0;

The processsig process will be set to interruptible state. It is shown in Figure 8.23.

Sendsig process begins to execute and sends signal to processsig process. The processsig
process is suspended temporarily while the sendsig process is executing. The sendsig pro-
cess will send a signal to the processsig process and then switch to the processsig process
to execute.

The sendsig process executes “ret = kill(pid, signo)” first. kill() is a library function,
and it will eventually be mapped to the sys_kill() function to execute. In addition, it will

460

8. Inter-Process Communication

0x00000 Ox9FFFF OxFFFFF O0x3FFFFF O0x5FFFFF OxFFFFFF

kernel

CS: EIP oot
switch to process 0

Process status

Processsig process

Ll

|

1

i

|

! Interruptible
i

i

; Current process

1

1

Figure 8.23 Processsig process in interruptible state.

send a SIGUSRI signal to the processsig process referring to the parameters “10” and
“160.” The specific code is as follows.
//code path:kernel/exit.c:
int sys_kill(int pid,int sig)
if (!pid) while (-- p > &FIRST_TASK) {
if (*p && (*p)->pgrp = = current->pid)
if (err = send_sig(sig, *p,1))
retval = err;
}else if (pid>0) while (-- p > &FIRST_TASK) {
if (*p && (*p)->pid = = pid) //find out processsig process
if (err = send sig(sig, *p,0)) //the function is in charge of specific
//sending work
retval = err;
} else if (pid = = -1) while (-- p > &FIRST TASK)
if (err = send_sig(sig, *p,0))
retval = err;
}
//code path:kernel/exit.c:
static inline int send_sig(long sig,struct task_struct * p,int priv)
{
if (!p || sig<l || sig>32)
return -EINVAL;
if (priv || (current->euid = =p->euid) || suser())
p->signal | = (l<<(sig-1)); //find out the corresponding location of
//SIGUSRL signal in signal bitmap
//signal of processsig process, and then set
//it to 1.
else
return -EPERM;
return 0;
}

8.2 Signal Mechanism

461

0x00000 Ox9FFFF OxFFFFF O0x3FFFFF Ox5FFFFF OxFFFFFF

Figure 8.24 Send signal to process processsig.

The procedure of sending the SIGUSR1 signal to the processsig process and the proce-
dure’s influence on the corresponding field of the management structure of the processsig
process are shown in Figure 8.24.

Later it will return to the user’s space of process sendsig and continue to execute.
With the occurrence of timer interrupt, the time slice of process sendsig will be cut down
to 0. Thus, it leads the process to be switched. The schedule() function begins to execute.
The corresponding code is as follows.

//code path:kernel/sched.c:
void schedule (void)

for(p = &LAST TASK ; p > &FIRST TASK ;-- p)
if (*

if (((*p)->signal & ~(_BLOCKABLE & (*p)->blocked))&& //after traversing processsig
//process, the
//signal it receives has been
//detected

(*p) ->state = =TASK_INTERRUPTIBLE) //processsig process is still in
//interruptible state

(*p) ->state = TASK RUNNING; //set it to ready state

462

8. Inter-Process Communication

0x00000 Ox9FFFF OxFFFFF Ox3FFFFF Ox5FFFFF
kernel

ROM BIOS
and VGA

Sendsig |...----"""""“f’i’z)cesssig

process code

CS: EIP

process code

Process status

Sendsig process Processig process
T

i I Ready I Ready
i Current process

Figure 8.25 Because the processsig process has received a signal, it should be set to be in ready

state.

The procedure is shown in Figure 8.25.

It will be switched to the processsig process to execute during the second traverse. The

specific code is as follows.

//code path:kernel/sched.c:
void schedule (void)

OxFFFFFF

{
while (1) {
e ==
next = 0;
i = NR_TASKS;
p = &task[NR_TASKS] ;
while (-- i) {
if (!*-- p)
continue;
if ((*p)->state = = TASK RUNNING && (*p)->counter > c)
¢ = (*p)->counter, next = 1i; //processsig process is
//already ready
}
if (c) break;
for(p = &LAST TASK ; p > &FIRST TASK ;— p)
if (*p)
(*p) ->counter = ((*p)->counter >> 1) +
(*p) ->priority;
}
switch to(next); //switch to processsig
//process to execute
}

8.2 Signal Mechanism

463

The system detects the signal that the current process receives and prepares to process.
When the processsig process begins to execute, it will continue to execute the pause()
function in the loop. Because the function will eventually be mapped to the system calling
function sys_pause() to execute, when the system call returns, it must be able to execute
at the label of ret_from_sys_call: and call the do_signal() function eventually. Then it will
begin to process the signal of the processsig process. The specific code is as follows.

//code path:kernel/system call.s:

ret_from sys call:
movl _current, $eax # task[0] cannot have signals
cmpl _task, ¥eax
je 3f
cmpw $0x0f, CS (%esp) # was old code segment supervisor ?
jne 3f
cmpw $0x17,0LDSS (%$esp) # was stack segment = 0x17 ?
jne 3f
movl signal (%eax), $ebx
movl blocked (%eax), ¥ecx
notl%ecx
andl%ebx, $ecx
bsfl%ecx, $ecx
je 3f
btrl%ecx, $ebx
movl%ebx, signal (%eax)
incl%ecx
pushl%ecx
call _do_signal //prepare to process the signal

The system detects whether the binding of the pointer of the signal processing handler is
regular. Here, we start to introduce the preparation before processing the signal.

After entering the do_signal() function, the signal processing handler of the process
processsig should be judged first. As we have introduced earlier in this section, the pointer
of the signal processing handler of the process processsig is loaded into the sigaction[32]
structure in the task_struct of process. It is shown in Figure 8.26.

Now it begins to play a role in the procedure. If the pointer is null, the process is likely
to quit. Of course, the pointer cannot be null in this case. The pointer points to the signal
processing handler sig_usr() of the process processsig. The corresponding detection code
is as follows.

//code path:kernel/signal.c:
void do_signal (long signr,long eax, long ebx, long ecx, long edx,
long fs, long es, long ds,
long eip, long cs, long eflags,
unsigned long * esp, long ss)

{

struct sigaction * sa = current->sigaction + signr - 1;

sa_handler = (unsigned long) sa->sa handler;
if (sa_handler = =1)
return;
if (!sa_handler) ({ //if the pointer of the function is null
if (signr = =SIGCHLD) //if it is signal SIGCHLD, then return dirrectly
return;
else
do_exit (1<<(signr-1)); //otherwise the current process quits

464

8. Inter-Process Communication

0x00000 Ox9FFFF OxFFFFF 0x3FFFFF O0x5FFFFF OxFFFFFF

kernel
‘ ROM BIOS
and VGA

~The page where
+ task_struct of
CS: EIP Task_struct of l processsig process
processsig process| , _resides

I

e

III IIIIII Sigaction[32]
Process status @\

i I Ready I Ready
: Current process

i
. . ‘
Sendsig process Processsig process i
i

i

1

!

i

i

!

i

t 1

i

!

!

H

i

i

Figure 8.26 Location of the signal processing handler in sigaction structure.

Adjust the kernel stack of the process processsig in order to execute the signal pro-
cessing handler first after system call return. The core purpose of the preparation we
have done is to adjust the data in the user stack, making the “signal processing han-
dler” of process processsig be “first” executed after the system call return and then
continue to execute from the user process “interrupt position.” As introduced before,
when pause() executes, it will trigger int 0x80 soft interrupt, and the next instruc-
tion close to the “int 0x80” is the user process “interrupt position” (of course, if the
process does not need to deal with signals, it can return to the “interrupt position”
place directly, but now we must process the signal problem first, and then go to the
“interrupt position”).

After the soft interrupt was generated, the CPU automatically saves the “instruction
and data” in the kernel stack of current process. The “instruction and data” include the
value in EIP, CS, EFlags, ESP, SS registers, and so on. As long as the system call returns,
these value in the “kernel stack” will be popped to the corresponding register, so the pro-
cess will be continued from the user space “interrupt position” place.

Due to this kind of situation, Linux 0.11 will back up these register value, which are
saved in the “kernel stack,” to the current process’ “user stack” first before the system call
return (the kernel has the ability to visit all physical memory, so it’s no problem), and then
change these original register value in the “kernel stack.” So after the system call function
return, the execution will jump to the signal processing handler place in user space first,
according to the latest changed data in the “kernel stack.” When the process enters the

8.2 Signal Mechanism

465

user space, the “user stack” will play the role. After the signal processing, the execution
will return to the “interrupt position” through “instruction and data” backup in the user
space before.

This is the strategy of signal processing. Then let’s see the concrete implementation
code:

//code source:kernel/signal.c:

void do_signal (long signr,long eax, long ebx, long ecx, long edx,
long fs, long es, long ds,
long eip, long cs, long eflags,
unsigned long * esp, long ss)

if (sa->sa_flags & SA ONESHOT)

sa->sa_handler = NULL;

* (&eip) = sa_handler; //adjust eip’s position in kernel stack,
//making it point processing process’ signal process
//function sig_usr ()

longs = (sa->sa_flags & SA NOMASK)?7:8;

*(&esp) - = longs; //adjust the top of stack pointer esp in “user stack”
//space, making the top of stack pointer move the
//inverse direction of the bottom of stack,
//in order to back up data in user stack space next

tmp_esp = esp; //the following is to write the data, which is used

//to restore, to the user stack space

put_fs_long((long) sa->sa_restorer,tmp_esp++) ;

put_fs_long(signr, tmp_esp++) ;

if (! (sa->sa_flags & SA_NOMASK))

put_fs_long(current->blocked, tmp_esp++) ;

put_fs_long(eax, tmp_esp++) ;

put_fs_long(ecx, tmp_esp++) ;

put_fs_long(edx, tmp_esp++) ;

put_fs_long(eflags, tmp_esp++) ;

put_fs long(old eip,tmp_esp++) ;

current->blocked | = sa->sa_mask;

The procedure of modifying the kernel stack and the user stack and the change of user
stack space and kernel stack space’s data adjustment are shown in Figures 8.27 and 8.28.

The signal preprocessing work has been completed until here, so let’s see how these
data will be used after the system call return and will influence the “signal processing
function execution” and “the process protection site recovery after execute.”

We have bound the signal processing handler sig_usr with the process processsig
before, so when the system call return, it will execute from the sig_usr() function place in
the process processsig, which will processes signal. After the function is executed, it will
execute the “ret” instruction. The essence of ret is to use the EIP value that is stored in the
stack at that time to restore the EIP register, making the execution jump to the address
position EIP pointing. So, at this time, the function address value that “sa - > sa_restorer”
in the stack top represents will play a role. At this time, the execution will jump to the posi-
tion of the function address value that “sa - > sa_restorer” represents.

Ithas been said in this section previously that we have also bound the function address
called restorer with the sigaction[32] structure. Restorer is a library function address. It
is an actual parameter passed down by signal(). This library function will restore the
“instruction and data” executed by the user process after the signal processing work and
finally jump to the user program “interrupt position” to execute.

466

8. Inter-Process Communication

Main function

The position
at which

Kernel stack space
SS
ESP

EFLAGS
CS

User stack space

system call
soft interrupt

sig_usr

Restorer

signal processsig function

field restore function

N EIP

DS

ES

FS
EDX
ECX
EBX
EAX

SIGNR

Figure 8.27 Protection site data in the kernel stack before adjusting for its significance.

Main function

The position
at whic

Kernel stack space

system call
soft interrupt

| _
7]
I}

sig . .
signal processing functio|

Restorer
field restore function

User stack space

SS
ESP
EFLAGS
CS
EIP old_eip
DS L—s EFLAGS
ES EDX
FS — ECX
n EDX EAX
ECX blocked f—---
EBX = SIGNR
EAX sa_restorer
SIGNR .

Figure 8.28 Protection site data in the kernel stack after adjusting for its significance.

8.2 Signal Mechanism

467

Now the signal processing has been done, and the restorer function starts to work.

Let’s take a look at this function code first:

.globl sig_restore
.globl masksig_ restore
sig_restore:

addl $4,%esp

popl%eax //the content that do_signal () function finally set in
//user stack before is just used to popl here to restore
//the register value

popl%ecx

popl%edx

popfl

ret

masksig restore:
addl $4,%esp

call ssetmask
addl $4,%esp
popl%eax //the content that do_signal () function finally set in

//user stack before is just used to popl here to restore
//the register value

popl%ecx

popl%edx

popfl

ret

We have introduced that the do_signal() function adjusts value in the stack space in

front. It will play a role here. Let’s review the code shown below:

//code source:kernel/signal.c:

void do_signal (long signr,long eax, long ebx, long ecx, long edx,
long fs, long es, long ds,
long eip, long cs, long eflags,
unsigned long * esp, long ss)

put_fs_long((long) sa->sa_restorer,tmp_esp++) ;

put_fs_ long(signr, tmp_ esp++) ;

if (! (sa->sa_flags & SA NOMASK))
put_fs_long(current->blocked,tmp_esp++) ;

put_fs_long(eax,tmp_esp++) ;

put_fs_long(ecx,tmp_esp++) ;

put_fs_long(edx, tmp_esp++) ;

put_fs long(eflags,tmp_esp++) ;

put_fs_long(old eip,tmp_esp++) ;

current->blocked | = sa->sa_mask;

468

8. Inter-Process Communication

After the protection site has been recovered, the process will continue to execute.

Pay attention to the assemble function “ret” at the last line of the restorer function.
Due to the nature of ret being to use the current top of stack value to set EIP and make
the program jump to the position of the EIP pointing to execute, obviously, after a series
of clear stack operations, the top of the stack value is set by “put_fs_long (old_eip, tmp_
esp + +)” this line of code. This old_EIP is the next instruction of soft interrupt int0x80,
which was produced when the pause() function tried to map to the sys_pause() function.
It’s the “interrupt position” of the process processsig. So, after ret was executed, the signal
processing was over, and the execution eventually went back to pause() to continue.

This is all the process of Linux 0.11 signal processing.

8.2.2 The Influence of Signal on the Process Execution State

Next we will introduce the second part of this section. It will reflect the different influ-
ences of the signal on the execution state of the process by comparing two processes with
“interruptible state” and “uninterruptible state” respectively.

The case with interruptible state as follows:

#include <stdio.h>
main ()

{
}

exit () ;

After the process shell creates this user process (this process will naturally become
the child of the process shell), then it is set to the interruptible state. Now, the user process
will exit, so we use that as an example to introduce the influence of signal to the process
execution state.

User process exits and sends signals to the process shell.

The user process calls the exit() function to deal with some affairs first before exit-
ing, including releasing the memory page that its own program occupied, removing the
relationship between the process and the file on which the process operates, and so on.
Then send the “child processes exit” signal to the process shell, informing the process shell
that you are going to exit, and set yourself to zombie state and call the schedule() function
finally, preparing the process switching. The corresponding code is as follows:

//code source:kernel/exit.c:
int do_exit (long code) //child processes exit

if (current->leader)
kill session() ;
current->state = TASK ZOMBIE;
current->exit_code = code;
tell father (current->father); //send signal to father process
schedule () ; //process switching
return (-1); /* just to suppress warnings */

8.2 Signal Mechanism

469

static void tell_ father (int pid)

{
int i;
if (pid)
for (i = 0;i<NR TASKS;i++) { //seek father process, that'’s,
//process shell
if (!task[i])
continue;
if (task[i]->pid ! = pid)
continue;
task[i] ->signal | = (1<<(SIGCHLD-1)); //send “child processes exit”
//signal to process shell
return;
}
}

The procedure of sending signals in the user’s exit process and setting itself to zombie
state are shown in Figure 8.29.

Process shell is waken up and switching to execute. After entering the schedule()
function, traversal all processes for the first time first. If there is a process that has
received specific signals and the process is in the interruptible state, set the process
to the ready state. The system can get that process shell to comply with this condition
through traversalling, and the process shell is set to the ready state. It is shown in

Figure 8.30.
0x00000 Ox9FFFF OxFFFFF O0x3FFFFF Ox5FFFFF OxFFFFFF
B ROM BIOS “
and VGA £
The pagewher_e__..--""'“.
_ task_struct of Step 1:
task_struct of shell process resides pages which user process
shell process [T EAAETIION occupied are released

Step 2:

sending signal to shell process
Process status g sig P

Current process the state of user process

is set as zombie

: 1
1 1
1 1
i User process Shell process :
i i
i I Zombie I Interruptible |
1 1
: i
: T Step 3: i
1 1
H i
H i

Figure 8.29 User process sends signals to the process shell.

470 8. Inter-Process Communication

0x00000 Ox9FFFF OxEFFFF OXBFF?FF Ox5FFFFF OxFFFFFF
kernel |

User process Shell process

1
)
:
)
'
1
:
]
Ready i
1]
1
:
1]
1
i
1
1
i

Figure 8.30 Process shell is set to ready state.

The corresponding code is shown as follows:

//code source:kernel/sched.c:
void schedule (void)

for(p = &LAST TASK ; p > &FIRST TASK ;-- p)

if (*p) |
if ((*p)->alarm && (*p)->alarm < jiffies) {
(*p) ->signal | = (1<<(SIGALRM-1));

(*p) ->alarm = 0;

}

if (((*p)->signal & ~(_BLOCKABLE & (*p)->blocked)) && //Check whether the process
//received signal
(*p) ->state = =TASK INTERRUPTIBLE) //Check whether the process is
//can interrupt wait state
(*p) ->state = TASK RUNNING; //If the conditions are

//satisfied at the same
//time, set the process
//to ready state

Then, traversal all processes for the second time. There is only the process shell in the
ready state, so we switch to the process shell to execute. The execution code is shown as follows:

//code source:kernel/sched.c:
void schedule (void)

{

while (1) {
c = -1;
next = 0;
i = NR_TASKS;
p = &task[NR_TASKS] ;

while (-- i) {
if (1%-- p)
continue;
if ((*p)->state = = TASK RUNNING && (*p)->counter > c)
¢ = (*p)->counter, next = i;

if (c) break;
for(p = &LAST TASK ; p > &FIRST TASK ;-- p)
if (*p)
(*p) ->counter = ((*p)->counter >> 1) +
(*p) ->priority;

switch to(next); //switch to process shell to execute

8.2 Signal Mechanism 471

0x00000

Ox9FFFF OxFFFFF O0x3FFFFF

kernel

ROM BIOS
and VGA

Process status

Shell process

I Ready

Current process

Ox5FFFFF

OxFFFFFF

fll

Page occupied
by the task_struct
of user process is released

Figure 8.31 Process shell handling the rehabilitation work after user process exit.

Process shell execute, final processing for the exit of child process. After the process
shell start, call the wait() function for the child process exit, including releasing the page
that the task_struct of child process occupied, etc. It is shown in Figure 8.31.

The code is as follows:

//code source:kernel/exit.c:
int sys_waitpid(pid_t pid,unsigned long * stat_addr, int options)

{

repeat:

switch ((*p)->state) {

if (flag)

case TASK STOPPED:
if (! (options & WUNTRACED))
continue;
put_fs_long(0x7f,stat_addr) ;
return (*p)->pid;
case TASK ZOMBIE:

current->cutime +
current->cstime +
flag = (*p)->pid;
code = (*p)->exit_code;
release (*p) ;
put_fs_long(code,stat_addr) ;
return flag;

default:
flag = 1;
continue;

(*p) ->utime;
(*p) ->stime;

}
{
if (options & WNOHANG)
return 0;
current->state = TASK INTERRUPTIBLE;
schedule () ;
if (! (current->signal & = ~(1l<<(SIGCHLD-1))))

goto repeat;
else

}

return -ECHILD;

return -EINTR;

//detect the child processes is
//zombie state, do as follows

//get that the signal received is
//child processes exit signal

472

8. Inter-Process Communication

0x00000 Ox9FFFF OxFFFFF O0x3FFFFF Ox5FFFFF OxFFFFFF

kernel
ROM BIOS “‘
and VGA
Process status

Shell process
I Interruptible

Ll

Current process

Figure 8.32 Process shell gets into interruptible state again.

Process shell is suspended again. Then the process shell continues executing, reading
data from the terminal device file tty0. We assume that the user doesn’t input any infor-
mation through the keyboard at this time, so the process shell doesn’t read any data, and
so the process shell will be set to the interruptible state, waiting for the next waken up. It
is shown in Figure 8.32.

Thus, to the process with interruptible state, if sends signal to it, when the schedule()
function executes, the signal it received and its state will be detected, and its state will be
changed to the ready state and then wake up the process.

Next, we will introduce the uninterruptible state of the process. We assume that a
system has three user processes now, and they are, respectively, process A, process B, and
process C, and they are in ready state now. Process B is the child process of process A, and
process A is running. We take this scene as an example to introduce the influence of the
signal to the state of process execution.

Process A and process B case program:

main ()

char buffer[12000];

int pid,i;
int fd = open(“/mnt/user/hello.txt”, O_RDWR, 0644)) ;
read (fd, buffer, sizeof (buffer)) ; //read file
if (! (pid = fork())) {
exit () ; //code of process B(child process)
}
if (pid>0)
while (pid ! = wait(&i) //wait for the child process exit
close (f4d) ;
return;

Process C case program:

main ()
{
int i,3;
for(i = 0;1i<1000000;1i++)
for(i = 0;1i<1000000;i++)

8.2 Signal Mechanism

473

0x00000 Ox9FFFF OxFFFFF O0x3FFFFF Ox5FFFFF OxFFFFFF

[|||||||uuud

Buffer block

Process C Process B Process A
I Ready I Ready I Uninterruptible
1

Current process

Figure 8.33 Process A is suspended.

Process A is suspended due to the wait for read disk. Process A needs to read data from
hard disk. So it calls the read() function to trigger a soft interrupt, and finally map to the
sys_read() function to execute. After a series of function calls, send the read disk com-
mand. After it returns, process A is set to the uninterruptible state. This is because the
next execution of process A needs the support of the data read out from the disk. Before
the data was read, no matter what signal this process has received, it cannot be waken up.
If it was waken up, it will operate the data in the buffer, but at this time, the data in the
buffer has not been read from the hard disk, so this will cause data chaos. It is shown in
Figure 8.33.

Process A executed and was finally suspended. The corresponding code is shown below:

//code source:fs/buffer.c:
struct buffer head * bread(int dev,int block)

if (bh->b_uptodate)
return bh;
11_rw_block (READ, bh) ;
wait_on_buffer (bh) ; //Test whether need to wait until buffer
//block unlock
if (bh->b_uptodate)
return bh;

static inline void wait_on_buffer (struct buffer head * bh)

{

cli();

while (bh->b_lock) //Buffer block has really been lock
sleep_on(&bh->b_wait) ; //Have to suspend process A

sti();

474

8. Inter-Process Communication

//code source:kernel/sched.c:
void sleep on(struct task struct **p)

tmp = *p;
*p = current;
current->state = TASK UNINTERRUPTIBLE; //set process A to uninterruptible state
schedule () ;
if (tmp)
tmp->state = 0;

Switch process A to process B to execute. It also needs to call schedule() later, and
finally switches to the other process to execute. Assume that switch to the child process
of process A, namely process B, to execute. Process B was executed and ready to exit, so
process B is set to zombie state and then sends a signal to process A, informing process A
that it would exit and finally call the schedule() function, preparing process switching. It
is shown in Figure 8.34.

Execution code is as follows:

//code source:kernel/exit.c:
int do_exit (long code) //process B exit

if (current->leader)
kill_session() ;

current->state = TASK_ ZOMBIE;

current->exit_code = code;

0x00000 Ox9FFFF OxFFFFF 0x3FFFFF Ox5FFFFF OxFFFFFF

e g hm*lmgl

Some pages of _
process B are released -,

The page where task_struct
of process A resides

task_struct of process A, ,.e**"

Sending signal to process A

Process status

Process C Process B Process A
T

i
i
i
i
:
i
i I Ready I Zombie state IUninterruptible
i
i
|
i
! Current process

i

i

i

Figure 8.34 Process B exit and send signal to process A.

8.2 Signal Mechanism

475

tell father (current->father) ; //send signal to parent process
schedule () ; //process switch
return (-1); /* just to suppress warnings */

}

static void tell father (int pid)
{
int 1i;
if (pid)
for (i = 0;i<NR_TASKS;i++) { //seek parent process, namely, process A
if (ltask[i])
continue;
if (task[i]->pid ! = pid)
continue;
task[i] ->signal | = (1<<(SIGCHLD-1)); //send process A “child process exit” signal
return;

Although a signal has been received by process A, it can’t be waken up. After entering
the schedule() function, traversal all processes for the first time. Although process A has
received a signal at this time, because it was uninterruptible state, it would not be set to
ready state, and we have to switch to process C to execute (Figure 8.35).

Execution code is shown below:

//code source:kernel/sched.c:
void schedule (void)

for(p = &LAST TASK ; p > &FIRST TASK ;-- p)
if (*p) {
if ((*p)->alarm && (*p)->alarm < jiffies) {

0x00000 Ox9FFFF OxFFFFF O0x3FFFFF Ox5FFFFF OxFFFFFF

kernel ’
ROM BIOS \
and VGA

Buffer block

Process C Process B Process A

T

]
i
' Ready I Zombie I Uninterruptible
E Current process

Figure 8.35 For the uninterruptible state, it can’t use the signal to wake up.

476 8. Inter-Process Communication

(*p) ->signal | = (1<<(SIGALRM-1));
(*p) ->alarm = 0;

if (((*p)->signal & ~(_BLOCKABLE & (*p)->blocked)) && //detect process A has
//really received the signal
(*p) ->state = =TASK INTERRUPTIBLE) //process A is uninterruptible state
(*p) ->state = TASK RUNNING; //won’t execute here

Because peripheral data has been read completely, process A was waken up. After pro-
cess C executes for a period of time, the data process A specified has been read from the
hard disk, so the hard disk interrupt service routine will set process A to the ready state
forcibly. (This is also the only way to set the process in the uninterruptible state to the
ready state.) It is shown in the bottom right of Figure 8.36, and the execution code is
shown below:

//code path:kernel/blk dev/blk.h:
extern inline void end request (int uptodate)
{
DEVICE_OFF (CURRENT->devV) ;
if (CURRENT->bh) {
CURRENT->bh->b_uptodate = uptodate;
unlock_buffer (CURRENT->bh) ; //buffer block release
}
if (luptodate) {
printk (DEVICE NAME “ I/O error\n\r”);
printk (“dev%04x, block%d\n\r”, CURRENT->dev,
CURRENT->bh->b_blocknr) ;

}

extern inline void unlock buffer (struct buffer head * bh)

{

if (!bh->b_lock)

printk (DEVICE NAME “: free buffer being unlocked\n”) ;
bh->b_lock = 0;
wake_up (&bh->b wait) ; //waken up the process that wait buffer block

//release, namely, waken up process A

So process A has executive ability, but this is not equal to process A executing imme-
diately. After the hard disk interrupt routine return, it is still process C to continue execut-
ing as shown in the left bottom of Figure 8.36.

Switch to process A to execute and process the signal. The time slice of process C was
used up and switched the process. After entering into the schedule() function here, it is
found that only process A is in ready state, so switch to process A to execute. As process
A was started, process the data that was read out from the hard disk just now first; thus,
the sys_read() execution has completed. At this time, soft interrupt is ready to return, and
before it returns, it will check whether process A received any signal first. Sure enough, it
has detected that process A received a signal, so process the entry address of the process-
ing signal service handler, so that once the soft interrupt returns, the signal processing
handler will process the signal as shown in Figure 8.37.

8.2 Signal Mechanism

477

0x00000 Ox9FFFF OxFFFFF O0x3FFFFF Ox5FFFFF OxFFFFFF

%{ hllllllllll“

Buffer block

Process status

Process C Process B Process A
I Ready I Zombie I Ready
T

Current process

Figure 8.36 Process A is waken up.

1

Current process

0x00000 Ox9FFFF OxFFFFF O0x3FFFFF Ox5FFFFF OxFFFFFF
kernel
/ |
| Y |||¥l“l
Page occupied by
Buffer block the task_struct of
process B is released
Process status
i Process C Process B Process A i
bor éﬁi:;ig” Ready I Zombie I Ready :
! zero H

Figure 8.37 Process A execute and process the signal.

478 8. Inter-Process Communication

Thus it can be seen that for the process in the uninterruptible state, unless it is set to
ready state directly, there is no other way to change its state to a ready state, and whether
it has received a signal is meaningless.

8.3 Summary

This chapter takes “processes operating pipe” and “interprocess send signal” as examples
to explain the interprocess communication.

In the “processes operating pipe” cases, the operating system allocates a pipe file first
in file_table[64] and inode_table[32] and applies for a page as a pipe in memory. After the
establishment of the pipe, the two processes begin to exchange data; one reads data from
the pipe; the other writes data to the pipe. Even if a clock interrupt interrupts the execu-
tion of processes, the data also won’t get chaotic.

In the “interprocess send signal” cases, before the completion of the system call, it will
process the signal of the current process. If the signal is received, the system does some set
preparation. When the system call returns, the signal processing function will be executed
immediately, and the process produce system calls soft interrupt will be executed. In addi-
tion, for each operating system process scheduling, it will check all processes. If the pro-
cess is in interruptible wait state and has received the signal, it will be set to task ready. If
the signal is in uninterruptible wait state, even if it has received the signal, the state will
not be changed.

8.3 Summary

479

This page intentionally left blank

Operating System’s
Design Guidelines

Kings have long arms; all within the boundaries, has the kings’ servants
—The book of Lesser Odes

The former eight chapters have analyzed and explained the operation principle and work-
ing mechanism of the Linux operating system in great detail, and this chapter will try to
explore the operating system design guidelines from the designer’s view.

9. Run a Simple Program to See What the Operating
System Has Done

The most effective way to understand the operating system clearly is to see what the oper-
ating system has done when a simple program is executed on a computer.
We take a “hello world” of C language version as example:

#include <stdio.h>
void main ()

{
}

printf (*hello world\n”) ;

481

After this program is compiled and linked, an executable file will be generated. We
run this program on Linux, and eventually the system will display “hello world” on the
screen. Intuitively, “hello world” displayed on the screen is all because of the programs we
have written, but in fact, the program we have written only plays a small role. Obviously,
the program calls the printf library function of C language because the theme of this book
is the operating system, so we won't discuss library function.

Let’s briefly investigate what the Linux 0.11 operating system has done for running
the hello program. The following small words are summary descriptions of the operating
system work, involving more than 10,000 lines. Except for interprocess communication, it
touches on almost all aspects of the operating system. We want readers have an intuitive
understanding of what Linux has done when the simplest program is running.

Case description: There is an executable file named hello in hard disk, and the
source program of the file is as front:

Now the system has been in the idle state, the user prepares to make the program
of the file in the hard disk load and execute through typing a command, “/hello”,
and eventually to make the hello world string display.

The first step: The user inputs command, and shell process is waken up to ana-
lyze the order.

To achieve this step, the system will do at least the following preparations:

(1) The user stroke, and the information typed in is recorded in terminal equip-
ment file ttyO0.

If the system operates the terminal equipment in the form of file, it needs to
construct a set of file systems first, and then load the file system, so as to oper-
ate the files on this basis. The file system includes “super block,” “logic block
bitmap,” “i node bitmap,” “file i node,” “block,” etc. Second, classify the data
according to the different function of files, including regular file, device file,
directory file, etc. tty0 belongs to device files. It is likely to operate terminal

device file tty0 with these preparations.

(2) After stroke, it also produces the keyboard interrupt, and the system will be
able to process the keyboard interrupt.

First of all, the interrupt will transmit to programmable interrupt controller
8259A, so we need to set the interrupt controller 8259A. Then, the interrupt will
be communicated with the CPU, and the CPU will find the interrupt descriptor
table in memory through the interrupt descriptor table register IDTR and then
find the keyboard interrupt handler through searching the interrupt descriptor
table and execute the program. In order to realize these operations, it needs to
construct a set of interrupt service systems, including the interrupt descriptor
table register IDTR setting, and establishing an interrupt descriptor table to
link the interrupt service routine. Then it also needs to program the interrupt
service routine to be able to serve for the specific interrupt. In addition, it also
needs to link the interrupt service routine with the interrupt descriptor table.

482

9. Operating System’s Design Guidelines

(3) The interrupt service routine starts to execute and wakes up process shell.
After that, switch process 0 to process shell to execute through the process
scheduling mechanism.

It needs the system to establish a set of process management mechanisms.
For shell, it needs to create process and load process shell, so that we can estab-
lish the human-machine interactive interface. At the same time, it also needs
to create a process 0 and switch to process 0 to execute when other processes
are not in ready state, and once there is a process that has been waken up,
switch to the process to execute immediately. This mechanism is applicable
to all processes of the operating system. Before supporting multi-processes
execution, we need to design a set of process schedule mechanisms, which
produce timer interrupt, leading to process switching. There are a lot of prob-
lems that need to be considered in this mechanism, such as designing timer
interrupt service handler and 8253 timer setting, etc.

(4) Process shell reads the command information that the user has typed from
the terminal device file tty0 through the execution of its own program and
then analyzes the command and prepares to execute the corresponding treat-
ment. Of course, this command cannot be input by knocking the keyboard
only once. Each stroke can repeat the action above, and then process shell
sleeps again and waits for the next keyboard interrupt.

So far, the system is only responding to the command the user typed, and
the official processing hasn't started yet. These preparations introduced above
are the simplest introduction of the specific steps, and behind these prepara-
tions, there is more preparation work. Strictly speaking, to carry out this first
step, the preparation introduced in the first chapter and second chapter of this
book is almost all useful.

The second step: After process shell analyzes the user command, call fork() creates
a user process, so that we can control the program of the “hello world” file.

The system needs to create at least a set of process management structures for
user process here, and each process will have such a structure in order to control the
future loading program. This structure is very complicated, including time slice,
priority, process status, the corresponding files of the process, the task state descrip-
tor table TSS of the process, and the local descriptor table LDT of the process, etc.
Each of these fields has a strong relationship with the operation of the system. Take
TSS as example, it contains all the data in the register for the current running pro-
cess, and once there is process switching, the system will store the value of each cur-
rent register in the TSS while, at the same time, using the data in the TSS to set the
value of each registers of the process which will switch to and finally switch. Visibly,
the data in TSS is the fundamental guarantee for process switching. For another
example, LDT contains the code segment descriptor and data segment descriptor
for the current process, and the two descriptors both control the program controlled
by process directly, and the fundamental purpose of process operation is to execute
the user program.

9.1

Run a Simple Program to See What the Operating System Has Done

483

In addition, each process has TSS and LDT. To facilitate the management, it also
needs to design a set of data structures, which is a global descriptor table GDT, and the
TSS of all process and LDT indices are both stored in the GDT. In order to facilitate
the operation of GDT and further operation of LDT and TSS, the system also needs
to set the special registers of these three tables in CPU, which are global descriptor
table register (GDTR), local descriptor table register (LDTR), and task register (TR).

But only these are far from enough, the beginning of the BOOT is the real
mode, and the value in each segment register is the actual address value. The data
in the segment register becomes the segment selector until the system gets into pro-
tected mode, so that the GDT table can participate in the application, so the system
should do a full range of preparations in order to converse from the real mode to
protected mode.

These above are only expansion analysis for TSS and LDT, the other fields in the
process management structure also have a close relationship with the system; for
example, the most basic way of process scheduling is through the time slice rotary,
and the most important reference of time slice rotary is the time slice of the current
process. For another instance, only process is able to operate files, so the process will
build comprehensive relationships with the files, including file i nodes, the item in
file management table, and the file management pointer table of process itself, and
SO on.

To create process, we must create a process management structure, with all
fields of process management structure, and all of these fields should all be created
and set. In addition to process management structure, when creating process, it also
needs to duplicate a pages table and create a page directory entry for the new pro-
cess, and all of these have a direct relationship with the application of the memory
page, and the strategy of the memory application is one of the most complex applica-
tion strategies in the whole operation system.

Step 3: After creating a new process, load the corresponding program of file
hello world.

To complete this step, process will do comprehensive preparation in two
aspects: One is files, and the other is memory. The program “hello world” must be
stored in the executable file in the hard disk, so it must check whether the files are
available before loading the file. It mainly displays in the file i node detection and
the file header testing. I node is the file management information; as long as the i
node is involved, it can’t get away from the i node search, so we should analyze the
file path, operate directory file and directory entry, operate i node table, and so on,
no one less. File header is stored in the data block and can’t manipulate the data
block without the support of logical block bitmap, so we will use the whole content
involved in the entire file system.

With the file loading conditions, we will load file “hello world” into memory, so
the system will solve allissues related to memory, including removing the relationship
with the original process shared page. This involves the page reference count, page
management mechanism with three level (page directory table, page table, page),
page data (read-only/can read write), and a series of problems, and the system will
have to establish page write protection mechanisms for this to solve these problems.

484 9. Operating System’s Design Guidelines

But only solving these problems is far from enough; the program’s loading is also
a very exquisite strategy, of which the most important is page fault interrupt mecha-
nism; namely it must analyze whether it needs to apply for a new page to load the
content of the program according to the need. For this reason, it needs to judge much
related data so as to determine the necessity of loading, such as whether the corre-
sponding physical address of linear address have been mapped into the linear address
space, etc., which requires a physical address to linear address mapping scheme. In
addition, the design of the page fault interrupt mechanism is also very exquisite. Page
fault is not equal to must loading in the peripherals program. For example, a page fault
exeception as the result of pushing stack also needs to apply for a new page to load data,
but this has no relationship with peripherals. These are all problems that the designing
of the page fault interrupt mechanism needs to be comprehensively considered.

In short, the load of program “hello world” almost involves all aspects of file
management and memory management. Moreover, the above is just the most basic
introduction of loading process “hello world”. Linux supports the execution of the
processes, and each process is likely to load its own programs, furthermore, files and
memory are the resources all processes share, thus there still exists a more complex
management relationship between them. For example, when two processes load the
same file “hello world”, whether to share, how to share, how to calculate the count
of page reference after share, how to determine the attribute of reading and writing,
etc., are all problems.

Step 4: Program “hello world” starts to execute, making string “hello world”
display on the screen.

Program “hello world” will start to execute after loading into memory. The pro-
gram is simple, and it is to let the string “hello world” display on the screen. But, even
so, the system will have to do a lot of work for this, of which the most important is the
aspects about display, such as how to determine the video card attributes, display card
is monochrome or color; how to determine the video memory location; how to deter-
mine the position displaying on the screen; if there are too many characters; whether
rolling show is needed and how to display, etc. These problems will be all done by the
operating system, and it directly interacts with the bottom hardware of the display.

From above description, we can easily find that the operating system does a lot of
work even to run a simple program. We may conclude that if we think in the contrary
way: Without the operating system, we have to write all these complex programs with
the function of an operating system even to print a message “hello world” on the screen.
No doubt that without the operating system we can hardly load computer with pro-
grams and not even get the results.

So what does the operating system do to run the application on earth?

Through comprehensive analysis, we get some conclusions here: OS is supposed to
provide applications of the basic programs for the use of hard disks, monitors, and key-
boards. In other words, the operating system provides supports to peripherals for the run-
ning of an application. If the operating system doesn’t write these supporting programs,
the application has to write them, and the contents of these programs that all the applica-

9.1 Run a Simple Program to See What the Operating System Has Done

485

tions have to write are just alike. So the operating system can be seen as the part that is
shared by all the applications.

Modern operating systems like Linux not only provide support to peripherals for appli-
cations, but also support the running of several programs at the same time. It means that the
operating system not only supports peripherals, but also makes efficient organization man-
agement and coordination for many programs that are running, in order to avoid any pro-
gram obtains the whole resources of CPU, RAM and peripherals, making the other programs
unable to work normally. Besides, it has to prevent mutual reading, writing, and covering
among running programs to make sure all the programs work normally. The key is that the
operating system can’t be read or written directly by applications, or covered by applications.

9.2 Thoughts on the Design of the Operating System:
Master—Slave Mechanism

These requirements, which seem to be reasonable, hide a problem behind them: An appli-
cation is a program, and an operating system is also a program, so then how can the oper-
ating system organize, manage and coordinate the applications without suffering hurt
from the applications?

We think it can be solved by privilege mechanism. To make sure that the operating
system is capable of organizing, managing, and coordinating applications, escaping from
their hurts at the same time, the most efficient way is to separate the operating system
from the applications and to separate applications from applications to make sure that the
operating system can’t visit applications arbitrarily, applications can’t visit the operating
system, and there is no mutual visit between applications.

It means that the operating system has to make sure it can do the things listed below:
If it wants some application to run in some places of the RAM, this application will follow
its order to run there. It should allocate RAM for applications that have their own clear
boundaries, so that applications can’t reach out. It determines the time during which an
application occupies CPU, and the application can only run within this limited time, after
which the application has to return the right of CPU use to the operating system without
detaining the right of CPU use privately. If some application wants to use peripherals, it
can’t directly ask for peripherals; it has to ask the operating system for rights. If the operat-
ing system thinks the applications can use peripherals, then it lets them use them. If the
operating system doesn’t think so, then it denies its request.

Under this privilege mechanism, the relationship between operating system and
application becomes a master—slave relationship. In order to remember it easily, we call
this privilege mechanism the master-slave mechanism.

9.2.1 Process and Its Creation Mechanism in
the Master—Slave Mechanism

9.2.1.1 Program Boundary and Process

To realize the master—slave mechanism, first of all, we should establish effective boundaries

between kernel programs and applications and between applications and applications.
Most objects in real life have natural boundaries, such as houses, desks, and benches

around us and ourselves. We have skin, which is our natural boundary. These natural

486

9. Operating System’s Design Guidelines

boundaries can effectively prevent fusion between person and person, between object and
object, and between person and object, which keeps an independent and integral body and the
characteristics of independence and integrity. But there are some objects in real life that don’t
have natural definite boundaries, such as gasses, liquids, and so on. Because gas doesn’t have a
boundary, different gases can mix easily, after which they can never be separated. If we want to
hold water, the most effective way is to use containers with boundaries, such as cups and bottles.
Program codes in the computer are the same as in the cases of gasses and liquids.
They don’t have natural and definite boundaries. The operating system is required to
determine boundaries artificially, which will play the role of containers that can separate
and hold. Therefore designers of modern operating systems put forward the concept of
process, using a “task_struct” structure to divide boundaries definitely. “Task_struct” is
the main symbol of process. In terms of the operating system, process is a running pro-
gram that accepts organization management and coordination of the operating system.

9.2.1.2 Process Creation

Technically, there are many ways to create process. Process creation in the Linux uses the
mode of object creation. Object creation is using objects that already exist to create a new
object and to use a process that already exists to create a new process, which is called the
mechanism of parent and child process creation. Essentially, the most important thing
when creating a process is to create “task_struct.”

It’s very easy to deduce in a contrary way in logic that the creation mechanism of a
parent and child process means the initial parent process must exist independently, which
is process 0. It’s easy to understand that process 0 cannot be created by the creation mech-
anism of parent and child, so the operating system designers have to compile the “task_
struct” of process 0 manually. When the process was created, the creation mechanism of
parent and child can use process 0 as a parent process to create a child process.

When we have a process, we get the object of organization management and coordi-
nation of the master—slave mechanism.

9.2.2 How Does the Designing of Operating System
Display the Master—Slave Mechanism?

The relationship between the operating system kernel and user process should be designed
as a master—slave relationship in order to realize the master—slave mechanism. The operat-
ing system can work stablely only if the master—slave mechanism has been realized.

The designer of an operating system uses a full set of design schemes to implement
the master-slave mechanism. In terms of an operating system designer, we will analyze
how the thoughts of operating system design display the master—slave mechanism in three
aspects below. In the first aspect, process scheduling reflects the master—slave mechanism;
in the second aspect, RAM management reflects the master—slave mechanism; and in the
third aspect, the file system reflects the master-slave mechanism.

9.2.2.1 Master—Slave Mechanism That the Operating
System Reflects in Process Scheduling

When the operating system is conducting process scheduling, the ways to treat the kernel
and process are entirely different. Precisely, process scheduling is operated by the kernel.

9.2 Thoughts on the Design of the Operating System: Master—Slave Mechanism

487

When a timer interrupt occurs, the scheduler will be triggered and will judge whether
the time slice of the running process has been used up. If it has been used up, the operat-
ing system begins to schedule, and the running process is suspended at once no matter
whether this process has been finished, and then the operating system will schedule other
processes. If it’s the kernel, the scheduler returns after judging and ensuring, and the ker-
nel will go on running until the task is finished. No matter how long the kernel occupies
the CPU, it’s always so, and all user processes will halt and keep waiting for the end of the
kernel running. Thus, it can be seen that when the operating system gained the right of pro-
cess scheduling, this right only works for its slave, process, and not for its master, kernel.

The run time that is assigned to process by Linux each time is actually several time
slices. How much time assigned is determined by the operating system. And there is even
no chance for process to increase the time slice. The right to use the CPU will be returned
to the kernel once the time slice is used up. It’s worth noting that this return is not done in
the way of negotiation or by turns, but forcibly withdrawn. If the process is finished, the
operating system will withdraw the right to use CPU and not wait even though there are
some time slices remaining.

If we don’t adopt a master—slave mechanism, the process schedule will be designed
to hand in execute permissions to the operating system proactively and consciously. And
then whether and when to hand in the right to use CPU directly depend on the design of
the program of process, and the operating system can hardly control it. What is more hor-
rible is that if the process is a malware program or a program with frequently exception
zombie happens, the operating system will probably never withdraw the right to use CPU,
which will lead to paralysis of the entire system.

The design of the master-slave mechanism ensures that the situation in which an
application occupies the resources of the CPU will, at most, have a influence on the time
slices assigned to it by the operating system. When these time slices are used up, execute
permission will be returned to the operating system naturally, after which the operating
system can deal with process and forcibly turn off a process that has failed.

Specific details of technique have been introduced in Chapter 6.

9.2.2.2 Master—Slave Mechanism That the Operating
System Adopts in Memory Management

As was said previously, the most important symbol of process is the “task_struct” data
structure. In a “task_struct” data structure, the boundary of process is definitely defined,
and any action to cross a border that has not been permitted will be deterred. The distinct
boundaries ensure that process cannot cross a border directly to visit the operating sys-
tem kernel, and processes cannot visit each other directly. That is the embodiment of the
master—slave mechanism.

The kernel and the user process of Linux 0.11 adopt a paging mechanism, respectively,
but there are two sets of management data adopted: one set works for the kernel, and its
range is the whole memory space of 0-16 M; the other sets works for the user process, and
its range is limited to the space from 1 M to 16 M (space size below 1 M is for the kernel),
which is shown in Figure 9.1.

It can be clearly seen from Figure 9.1 that if the system kernel code is in the kernel’s
private space, process can never reach it, and the range of space that the kernel can visit
includes the whole memory space. You can’t reach the place that is occupied by me, and

488

9. Operating System’s Design Guidelines

+++++++++
+++++++++
+++++++++
+++++++++
+++++++++
+++++++++
+++++++++ Process

Kernel +++++++++ paging area

pogmgarea | FTHHEFFEE
+++++++++
+++++++++
+++++++++
+++++++++
+++++++++
+++++++++

¥ + + +

+++++++++ Kermilarea

Figure 9.1 Kernel and user process paging sketch.

I can reach the place that is yours because your place is my place. It is “all over the world
belongs to the king,” which inevitably results in “all the ones with land are the king’s
servants!”

Besides, the user process can only deal with logic address and can’t directly use physi-
cal address. When it needs to use RAM and is transformed to an actual physical address
by the operating system kernel according to the second set 1-16 M management data
scheme, the kernel divides the whole memory into memory blocks with same volume,
namely page. When a process is running, the operating system will assign it several pages.
If the operating system assigns it more than two pages, these pages will not have to be
adjacent, and in fact, they are always nonadjacent. The process doesn’t know where these
pages have been assigned and how many pages. To be precise, the process doesn’t even
have the feeling of paging. In the eyes of the process, it uses a continuous logic address in
memory.

The process doesn’t know where it is, not to mention that it will know where other
processes are, so mutual visits between processes will never happen. The kernel code is
surely placed in the kernel area. From Figure 9.1, we can easily find that the kernel area is
beyond the reach of process; therefore, the process can never visit the kernel. The process
storage area is within the reach of the kernel; therefore the kernel can visit the memory
space of the process at will. This is the typical master—slave relationship.

Specific details of technique have been introduced in Chapters 3 and 6.

9.2.2.3 Master—Slave Mechanism Is Reflected by OS File System

Applying for disk space when writing files is taken as an example here. When the user
wants to write files into disks, first, it needs to apply to the kernel and describe which pro-
cess it is, the volume of resource it needs, and the right for reading and writing resource.
When the kernel receives the application, it will decide whether to fulfill the application
at once according to the resource occupied in disks now and the actual situation of buffer

9.2 Thoughts on the Design of the Operating System: Master—Slave Mechanism

489

area. If there are several processes applying for resources, the kernel will decide which
process will gain resources first and make other processes keep waiting. The kernel will
manage the sequence of the waiting queue to reach a standard that the kernel thinks to be
best. If the current resource can’t fulfill the requirement, the kernel will refuse the applica-
tion. It also reflects the master-slave mechanism between the kernel and the user process.
Once the work of the user process reaches the basement, it needs to apply or report to the
kernel in advance because it doesn’t have the right to apply for resources directly. The ker-
nel handles all sorts of hardware resources and takes charge of organization management
and coordination of many processes that apply for resources.
Specific details of technique have been introduced in Chapter 5.

9.3 Three Key Techniques in Realizing the
Master—Slave Mechanism

We analyze the thought of the design of the master-slave mechanism reflected in the
operating system in detail from three aspects above. We will explain what the designer of
the operating system takes to realize the master—slave mechanism below. We think it takes
three key techniques: protection and paging, privilege level, and interruption. Relying on
the hardware mechanism provided by the CPU is a characteristic shared by the three
techniques.

9.3.1 Protection and Paging

As was introduced in Chapter 1, Linux 0.11 opens PE and PG, which means it opens pro-
tected mode and paging mechanism. When protected mode is opened, substantial changes
occur to the addressing mode of the CPU. Take code addressing for example; it’s CS:IP in
real mode; IP changes to EIP when in protected mode, and the more important change is
that CS changes from a direct code segment base address to a code segment selector. The
assigned code segment descriptor in GDT will be gained through analyzing the code seg-
ment selector and the code segment base address can be gained through further analysis.

There are two more changes that are profound: One is segment limitation, and the
other is privilege level.

Although CS is the segment base address of the code segment under real mode, CS
is just in charge of guarding the starting position of the code segment, and Intel CPU
doesn’t design the segment ending register to guard the ending address of the code seg-
ment. Although the segment length is 64 KB, it has to allow the cover of other segments
because the case in which code segment is far smaller than 64 KB always occurs in actual
use. It has to allow covering in order not to be wasting memory.

Besides the segment base address in real mode, there still is segment limitation, which
not only makes it compatible that there is only one segment register in real mode, but also
adds a segment ending register in effect, which prevents the covering to code segment and
access to code segment out of bounds, which apparently enhances the protective effects.

It is the privilege level that has a great influence on the master-slave mechanism.
Starting from Chapter 1, we have mentioned many times that the last two bits of CS are
privilege level. On the hardware, Intel forbids codes in a code segment with a low privilege
level to use some important instructions, such as LGDT, LLDT, LTR, and LIDT. Besides,
Intel also provides some chances to allow the designer of the operating system to forbid

490

9. Operating System’s Design Guidelines

the user process to use some important instructions that are of great importance in con-
trolling a situation, such as cli, sti, and so on through some setting to privilege.

On the basis of this hardware, the operating system can design the kernel with the
highest privilege level and the user process with the lowest privilege level. Thus, the operat-
ing system designer can make sure that the operating system kernel can execute all instruc-
tions and do whatever it wants. The operating system can visit GDT, LDT, TR, and GDT,
and LDT is the key to the transformation from logic address to linear address, which means
the operating system can control the linear address, and the user process cannot do it. The
user process can only use the logic address, and the logic process of the user process must
transform to a linear address by the kernel, furthermore, the physical address is trans-
formed from the linear address by the kernel, and we won’t know the physical address if we
don’t know the linear address, which also means the operating system can actually reach
any physical address. Thus, for the user process, it can feel that it is visiting the memory
space of a logic address, just the same as visiting the “real memory space.” The mapping
from the actual logic address to the physical address is arranged by operating system. The
operating system places the memory user process that wants to visit in memory at will, and
the user process does not even know where the actually visited physical address is.

The design scheme of the linear address space of the user process in the Linux 0.11
operating system is to divide the 4 GB linear address space into 64 identical parts, and
each process has one part, and the logic address space of each process is 64 MB. In other
words, from the aspects of the user process, there are 64 MB memory for using, thus 64
MB x 64 = 4 GB. Because the space that the user process can visit cannot go beyond 64
MB, the linear address space of each process will never overlap. Thus theoretically speak-
ing, on the level of linear address space, the direct mutual addressing and visiting among
user processes are not available, which means it’s more impossible for the user process to
visit the operating system kernel.

Thus, protected mode provides the operating system designers the chance to make it
possible that the user process can’t visit the operating system kernel and can’t visit each
other, but the operating system kernel can actually visit any user process, which is a reflec-
tion of the master—slave mechanism.

The precondition for paging is protected mode, which means PE and PG must open
at the same time, and PG without PE will not exist. We can probably say that paging and
protection units to be one. The paging mechanism depends on the hardware of the CPU;
as well, it not only improves the efficiency of memory space use, but it also makes it pos-
sible for operating system designers to realize that there is no mutual visiting among user
processes and no access to the kernel, but the kernel can actually visit any user process.

Under the paging mechanism, there is only one paging method to make the linear
address equal to the physical address in theory. We will talk about the theory and opera-
tion of this method in detail below.

We use a simple linear equation to show the relationship between the linear address
and the physical address:

y=kx+b,
where x represents the linear address, and y represents the physical address. k is the scal-

ing relationship between the linear address and the physical address because the unit of
the linear address and the physical address is a byte, and if the growth directions are the

9.3 Three Key Techniques in Realizing the Master—Slave Mechanism

491

same, the scaling relationship between linear address and physical address is 1, which also
means

k=1.
Thus,
y=kx+b
becomes
y=x+b.
It’s easy to find out that
y=%
which will become true as long as
b=0,

which also means the physical address equals the linear address.

If the operating system kernel wants to realize under the paging mechanism that the
linear address equals the physical address, it must put the starting position of the paging
of the operating system kernel in the starting position of the physical address, which is
the key!!!

After recalling Figure 1.23 in and the content of Section 6.2, you can truly understand
the profound significance of kernel paging starting from the starting position of memory.
Its effect is to make sure that b = 0, which means the linear address equals the physical
address!

For the kernel, its task is to face physical memory directly, and the most direct way is
to realize a one-to-one relationship between the linear address and the physical address.
When the kernel wants to visit memory, it can directly visit physical memory and doesn’t
look like the process that was dragged around by the operating system and doesn’t even
know the specific position it is in in the physical memory.

To meet this demand under the precondition of the paging mechanism, the operat-
ing system has particularly designed a set of page tables for the kernel to use exclusively.
The value of this set of page tables can just realize the identity mapping between the value
of the linear address and the value of the physical address, and the range of mapping is
not limited to the 1 M space of the kernel itself but includes the whole 16 M space, which
also means the kernel can actually visit the memory space of any process. The technique
details of this specific scheme have been introduced in Figures 1.38 to 1.40 and Section
6.2 in detail.

The user process can only face one logic address, and when it needs to use memory,
this logic address first will be transformed into a linear address and transformed into the
real address later by MMU according to the paging scheme designed exclusively for the
process provided by the kernel. The transformation of the linear address and the physical
address is in a contrary way to direct mapping.

492

9. Operating System’s Design Guidelines

Physical address

Y
16 MB - .
Process paging
~— Kernel paging
1 MB
X
0 .
Linear address

Figure 9.2 Kernel paging and user process paging.

First of all, the distribution of the memory page of the user process begins from high-
end of the physical address and moves toward the low address along with the running of
programs. It can be roughly believed that the distribution of the page is in the direction
contrary to the linear address, and k = -1, so b can’t be zero naturally. The operating sys-
tem assigns a process page temporarily, totally depending on the demands of multipro-
cess when it is actually running, and the page is assigned in the physical memory and
is not known beforehand, or precisely speaking, even the operating system kernel can’t
predict, and it looks like the random distribution of pages. It results in the complete insu-
lation between the logic address of the user process and the real physical memory, which
makes it easier for the kernel to manage memory. It fully shows that the kernel as a master
directly manipulates and manages memory, has the right to use and manage the whole
memory, and knows the exact place that the real memory of each process has been put in.
In the mean time, it also shows the user process as the slave who does not know the actual
position of memory it uses doesn’t have the right to visit the space of other processes. The
kernel code and distribution of physical memory of all processes are entirely under the
control of the kernel, which realizes the master—slave mechanism.

Specific details of technique have been introduced in Sections 6.3 and 6.4 in detail.

Figure 9.2 shows the principles of kernel paging and user process paging.

9.3.2 Privilege Level

Privilege mainly depends on the protected mode the CPU hardware provides and focuses
on “segment.” The last two bits of all segment selectors identify privilege levels and will
finally influence the segments decided by the segment selectors. These segment selectors
include CS, SS, DS, ES, FS, and GS. The key point is that the range influenced by privilege
level is the “segment.”

9.3 Three Key Techniques in Realizing the Master—Slave Mechanism

493

Kernel privilege level
O e
1 —_
2 e
User privilege level
3 —

Figure 9.3 Kernel and user privilege level.

For the Linux operating system, the so-called kernel mode and user mode use the
exact statement of which is some code segment, data segment or stack segment. The pres-
ent privilege level is either 0 level, which is the kernel privilege level, or 3 level, which is
the user privilege level.

The kernel privilege level can execute all instructions on any condition, and the oper-
ating system can make sure that the user privilege level cannot execute instructions that
may destroy the kernel privilege level. As for the CPU hardware, it can not only make all
the codes stay in the kernel privilege level, but it can also make them stay in the user privi-
lege level, which is shown in Figure 9.3.

But once all the codes in the computer stay in the user privilege level, instructions on
the high privilege level will never be used, which is exactly the original intention of the
privilege level designer. Besides, if all the codes are on the same privilege level, the chaos
phenomena of mutual visiting and covering will easily occur and will be extremely hard
to deal with once these situation occur.

The operating system designers are wise and will not do such stupid things. They will
design the kernel code of the operating system into a high privilege level and design the code
of the user process into a low privilege level. Thus the kernel can execute all the instruc-
tions, and the user process cannot do it, which shows again the master-slave mechanism.

9.3.3 Interrupt

After the running of the operating system and user programs, the code and data of the
user privilege level and the kernel privilege level in the computer appear alternately
because of the transformation of the privilege levels. The Intel CPU provides several
ways for transforming, and the main method Linux 0.11 uses is interrupt. Through
interrupt and return from interrupt, Linux 0.11 realizes the transformation among
privilege levels. Figure 9.4 vividly shows the overturn of the privilege level caused by
interrupt.

494

9. Operating System’s Design Guidelines

0 Kernel privilege level
19 Interrupt

2 —

3 . User privilege level

Figure 9.4 Interrupt leading to overturn of privilege level.

We will talk about why the interrupt technique can realize the transformation of the
privilege level in detail below.

In our view, the three most important things in the computer are execution sequence,
being identifiable, and being predictable.

We will begin to analyze from the execution sequence. Figure 9.5 shows the classifica-
tion of the computer program execution sequence.

First of all, there are two sorts of execution sequences in the computer: sequence and
branch. The realization of sequential execution depends on automatically accumulat-
ing the program counter PC in the CPU. Each time an instruction is executed, PC will
accumulate automatically. PC unites with the instruction pointer IP or EIP and forms
the execution sequence of the sequence. Besides there is branch, which can be divided
into two parts: branch with return and branch without return. Branch without return is
jump. Jump can happen in some conditions, after which there will be no return. The other
sort is return after jumping, which means calling the function and interrupt or, more
generally speaking, calling subroutines. Under this condition, after finishing executing
subroutines, we have to return to the next line of calling instruction to go on executing.

Execution sequence

\

Sequence Branch
No return Return
/ N\
Loop Predictable Unpredictable
s / AN

Jump to Jump to Function Interrupt
reverse execution execution
sequence direction sequence direction

Figure 9.5 Program execution sequence.

9.3 Three Key Techniques in Realizing the Master—Slave Mechanism

495

The precondition to return to the next line of call instruction is to make sure that “it can
return to the next line of calling instruction.” So it needs to save the state of the execution
of call instruction, which is the so-called site protection and which, in essence, is to pro-
tect the values of relative registers, which are the flags of the running state of the CPU and
memory. When the call is over and site is restored, the next line of call instruction will be
returned to go on running. In this view, there are many parts alike between interrupt and
function. But for program designers, the difference between them is whether it is predict-
able or not, which leads to the huge difference in playing.

Call instructions of function are written by program designers, and they are predict-
able to program designers and protection actions of function calls. The interrupt technique
was originally invented to solve IO problems of peripheral hardware, and later the software
interrupt occurred, which imitated the interrupt of the hardware and used similar meth-
ods. In short, interrupt is unpredictable to the operating system, and there may be a new
event cutting in that disturbs the original execution sequence at any time under the condi-
tion that the original execution sequence is unpredictable; therefore, it’s called “interrupt.”

As the appearance of interrupt is unpredictable, the task of protecting the site can’t be
finished by programmers and can only be finished by the CPU hardware, which, in fact,
equals “call by hardware.” Recall the codes talked about in Chapter 2 below:

//directory of code:kernel/fork.c

int copy process (int nr,long ebp,long edi,long esi,long gs,long none,
long ebx,long ecx,long edx,
long fs,long es,long ds,
long eip,long cs,long eflags,long esp,long ss)

Parameters in the last line “long eip, long cs, long eflags, long esp, and long ss” can’t
find parameter passing before calling. It can’t find the code of parameter passing and
doesn’t see any action of pushing or turning other data into stack whether it’s original
code or disassembling code, but it can work properly, which is indeed puzzling. Because
the call of copy process comes from interrupt 0x80, and the five parameters are pushed
by the CPU hardware. Attention, the sequence of the five parameters is the same as the
sequence of the push of the CPU hardware introduced in the manual of Intel IA-32. This
is the characteristic of interrupt. After the interrupt service routine is finished, what will
be done is “hardware’s ret,” iret.

I just want to mention that there is another characteristic hidden in the process of
interrupt execution we talked about previously, which is the great difference between
interrupt call and ordinary call. It seems that the ordinary call slips smoothly down to
the called position along the memory address, which is not right for interrupt. Interrupt
seems to be independent of memory. It flips to another position of the interrupt service
routine in memory through the CPU hardware.

This characteristic of ordinary call is no problem to the common program but is fatal
to the writing operating system, which is the underlying system software. When the user
wants to use the code of the kernel’s system call, the ordinary call could be used to realize
it, which means the user program can visit the operating system kernel at will and may
modify and even cover it if the call can visit, which will severely betray the master—slave
mechanism and will lead to the chaos of the whole system.

496

9. Operating System’s Design Guidelines

The characteristic of which the interrupt “flips” to the interrupt service routine
through the CPU hardware has caught the attention of the operating system designers.
When interrupt “flips” through the CPU hardware, the designers of the CPU hardware
take this opportunity to make the CPU flip the privilege level of all segments, which
makes interrupt become the ladder of the flips between the user privilege level and the
kernel privilege level. Besides, the interrupt technique has another important character-
istic, which lets the hardware signal cut in directly. From the view of schedule of OS, the
most important is timer interrupt.

Reliable process scheduling will be unimaginable if there is no timer interrupt. If so,
the operating system could only be designed to consult the right of using the CPU with
the user process, wait for the user process to return the right to use the CPU voluntarily.

It is completely different with the timer interrupt in the hardware. Timer interrupt
is just like a scepter in the hand of the operating system kernel, which is the symbol of
royalty and will never consult with process. It will forcibly chop off the process execution
sequence, recapture the right to use the CPU, and perform the master privilege once time
is up, which reflects the master-slave mechanism.

9.4 Decisive Factor in Establishing the Master—Slave
Mechanism: The Initiative

So far, the master-slave mechanism seems to have been well expressed, and there is a
problem that remains unexplained. For the same CPU and instruction set, both the user
program and the operating system are programs, but why are the instructions that the
operating system kernel program uses not available for the user program? The answer may
be that the privilege level of the kernel is higher than the user program’s. If further asked,
why can the kernel program obtain the high privilege level but the user program can’t?

We think that the key point is the initiative!

When the computer boot starts up, the mode is real, and it doesn’t have the concept
of privilege level. When the operating system kernel starts loading, under normal circum-
stances, at this time, there is no other programs except BIOS and OS. When the start-up
procedures of the operating system opens PE, the privilege level must be the highest privi-
lege level. Otherwise, some parts of the instructions can never be used forever.

This is a very important moment! The operating system designer is to make use of
the most favorable time, trade time for privilege, forcibly occupy all the privilege, make
full use of the privilege, and create processes. Because all the processes are created by the
operating system directly or indirectly, the operating system has the sufficient conditions
and chances to lower the privilege level of user process. Once the privilege level of the
process has been lowered, it couldn’t turn over unless the design of the operating system
program code has some mistakes, which raise the privilege level of the process. Obviously,
the designer of OS will carefully examine these mistakes and seriously test, finally, avoid
any these mistakes. If the code of the operating system has no mistake like this, once pro-
cess is created, it will never obtain the kernel privilege level and be the slave all its life long.
Thus, it can be seen that controlling the initiative makes a decisive role in the master—slave
mechanism of the operating system.

Conversely, some malicious programs whose time is later in entering the com-
puter than the operating system will try to use all the available bugs in the operating

9.4 Decisive Factor in Establishing the Master—Slave Mechanism: The Initiative

497

system design, regain the initiative, and grab the initiative. And once they grasp the
opportunities, immediately these malicious programs can obtain the highest privilege
level and do whatever they want. There is a certain type of virus program, which uses
an operating system bug and tries to stay to the system boot sector of the hard disk,
even the BIOS, through this point. According to the principle the front part of the book
explains, you can understand that BIOS and the hard disk system boot sector program
are prior to the operating system in getting into the memory, so this type of virus pro-
gram is prior to the operating system in getting into the memory. And once they grab
the initiative, they will obtain the highest privilege level, and the operating system will
have trouble.

9.5 Relationship between Software and Hardware

A computer can be divided into the host, which includes the CPU, memory, bus, and the
peripherals, which include the hard disk, floppy drive, CD-ROM, display, and network
card except the host. Because the software programming cannot control the bus directly,
we can only pay attention to the CPU and memory in the host.

The host’s work is an arithmetic operation, and the peripherals’ are data inputting and
outputting, data saving during power-off.

Fundamentally, the aim of using a computer is to solve the user’s operation problems,
whose direct embodiment is the user application. From the view of the operating system,
the running user application is the user process. It can be said that the user process repre-
sents the user’s arithmetic operation.

The user operation needs the support of the peripherals. First, the application and the
data to be dealt with need to be input into the host by the peripherals, such as the key-
board, the hard disk, and the network, and go on to the arithmetic operation. The results
of the operation need to be output by the display, the printer, and the other peripherals,
furthermore, saving and transferring of data during power-oft by hard disk, etc. Take the
hard disk as an example; as we all know, the data stored on it can be mapped to the files
by the operating system. We can expand the concept of the files further from the data on
the peripheral extended to the peripheral itself, such as the keyboard, the display, which
can also be expanded to the character device file. The files, in this view, embody using the
peripherals by user.

We first explain the process in detail, then the file.

9.5. Nonuser Process: Process 0, Process |, Shell Process

First, we can think about a problem, that is, the operating system should have the user
interface, namely the so-called shell. For Linux 0.11, the function of shell undertakes
by the shell process but not the operating system kernel itself. Obviously, shell is one of
the operation system functions. But why is it undertaken by the process and not by the
kernel?

After thinking about it carefully, we can find that, if the Linux operating system is
only used for a personal computer, the shell can be undertaken by the kernel seemingly.
Considering Linux’s huge development space in the server field, the server operating sys-
tem has more demands for multishell; thus, it is better for the process to undertake the
shell than the kernel.

498

9. Operating System’s Design Guidelines

Figure 9.6 Diagram of the relationship between process and hardware.

However, the process of undertaking the shell cannot be the normal user, obviously.
For example, if the shell is undertaken by a “Go program”, obviously this is not appropri-
ate. The “Go program” itself is an application and needs to be loaded by the shell. If the
“Go program” itself becomes the shell, it would be strange that there is a “Go program”
that can’t quit in the operating system all the time. It will be more terrible if the “Go pro-
gram” can quit because once the “Go program” ends up and exits, the operating system
will have no shell. The operating system without the shell will be useless, and then what’s
the value of the operating system?

Thus, it can be seen that the shell must be a special process correspondingly designed
for the operating system, which can’t quit from the beginning of accepting the user’s using
to shutdown.

The essence of the shell is the user interface program controlling the display, the key-
board, etc., which are all peripherals. The mechanism of creating processes in a Linux oper-
ating system is that the parent process creates the child processes, from which we can infer
a conclusion that the father process of the shell must have the ability to use peripherals and
the available peripheral environment, and the father process is the process like process 1.
Peripherals must be controlled by the host, so all processes must have the ability to work in
the host. From this, we can infer the father process of the process 1 should be like process 0.

Now, we can see more clearly that the creation of the process 0, process 1, shell process
explained in Chapters 2, 3, 4, which embodies the host, peripherals, and special peripher-
als, the user interface. The three parts are also exactly three components of the computer
macroscopic constitution. Thus, it can be seen that the partition of the three processes
has a profound meaning. If the three processes merge into one, the structure cannot be
indicated clearly. Figure 9.6 expresses the corresponding hardware of process 0, process 1,
and process shell.

9.5.2 Storage of File and Data

From the content of the front chapters, it is not difficult to find that although the quantity
of the code the file system involves is the biggest and almost accounts for half of the total;

9.5 Relationship between Software and Hardware

499

the file system is the easiest to understand relatively. Take the hard disk as an example, the
file maps the data stored on the disk whose storage space is very large and much bigger
than the memory’s. But in the final analysis, the file is also the data storage, and the hard
disk can be seen as the computer’s data storehouse. Although the steps of storage work
are multifarious, they can be much easier than the operation work. And the reason why
they are complex is mainly that the hard disk storage space is very large and “the fragment
mapping into the fragment.” If we use the simple management method, the quantity of
data that needs to be managed is very large, and the data in this part not only occupies
the space of the hard disk but also doesn’t belong to the user data. In order to decrease the
amount of the data like this in the space of the hard disk and manage the biggest amount
of user data with the least amount of management data, the designers of the operating
system put forward a set of management structures with super block, i node, logic block
bitmap, i node bitmap, etc. And the structure also involves the process, which makes the
file system become very complex. But, in general, the file represents the stored data (and
also the equipment), which is more simple than the arithmetic operation.

9.5.2.1 Memory, Hard Disk, Buffer: Computing Storage,
Storing Storage, Transition State Storage

The memory is in the host while the hard disk is in the peripheral. On the surface, the
function of them is stored, but why are they divided by the host and the peripheral? It is
often said that the memory with the fast speed, high price, the small capacity and cannot
store the data once power-oft while the hard disk and the memory are complementary.

We can further ask that, if the only difference is the function of data storage without
power, why do we use two modes that are completely different from each other to man-
age them? The operating system manages the memory with process, page, privilege level,
table, etc. (a lot of complex data structure), and the hard disk is managed with file, i node,
bitmap, block, etc., which has a big difference.

The CPU is completely different from the memory in its appearance. In fact, they must
be united to complete the most important job, computing, in the computer. That is, comput-
ing happens between the CPU and the memory, which means that computing happens in
the host and can’t be completed only with the CPU. Both the CPU computing instructions
and the computing results are stored in the memory. Not only that, but complex computing
work can’t be finished by one instruction and needs a complex algorithm arranged in the
memory. For example, we can transfer a complicated arithmetic operation to a reverse-
polish notation and get the algorithm in the memory by the stack operation. Thus, the CPU
and the memory operate together and get the computing results finally. In this process, it is
hard to deny that the memory is also involved in the “calculation.” The memory, which has
not only the storing function but also the computing function, is computing level storage.
Now look at the hard disk. Although it also has the storing function, little signs of comput-
ing can be seen. So it is a very pure storage device and the storage level storage.

Computing level storage has the computing function, which the storing level stor-
age doesn’t have. Because computing is more complex than storing, computing level stor-
age has more management information naturally. For example, to the file management
and the i node, the file management information in the memory has more fields than
the file management information in the hard disk. The file management information in
the hard disk is used for storing, and only need to ensure find the correct result without

500

9. Operating System’s Design Guidelines

error. But the file management information in the memory is very different. Besides these
requirements, it has to execute the search operation, which is computing itself, so the
file management information in the memory has the “computing” meaning. While the
file management information in the hard disk is really a simple kind of data “accounting
library.” The hard disk doesn’t execute the search computing, which happens in the host,
so the hard disk doesn’t need extra computing management information.

Let us see the computing by standing higher. It can be seen that the computing, which
discussed here, can be classified in two classes: One is the user process computing, namely
the user program computing, and another is the kernel computing for running the file
system, which has no direct relationship with the user process computing. In order to
see clearly, we call the memory participating in the user process as the full-computing
storage, the memory participating in computing the kernel for running the file system as
semi-computing storage, and the memory, which completely simulates the peripheral and
has no computing operation as the noncomputing storage.

When we have the concept of full-computing storage, semi-computing storage, and
noncomputing storage, we can understand another concept: the buffer.

The buffer in the memory is a kind of transition state between the full-computing
storage and noncomputing storage. And in the operation process of files, for example, the
operations of searching for an item in the directory file is finished in the buffer. Because its
specific operation is the string-comparison, the process must be the computing process.
However, these operations are obviously not the user program operation, so the buffer
belongs to the semicomputing storage.

Examining the memory by this view, we can find the file system management struc-
ture in the memory, such as “super block management table,” “i node management table”
(which are residents in the kernel data area in the memory), “logical block bitmap,” “i node
bitmap,” (which are residents in the buffer) etc., which serves the semicomputing obvi-
ously, in the memory. We can call the memory space (in the kernel data area or buffer) the
management structure occupies as a joint name: the special file system buffer. Compared
with the normal buffer, we can clearly know that the two buffers are controlled and oper-
ated by the kernel. The buffer is normally aimed at the process while the special file system
buffer is aimed at the file system.

Conversely, if the two buffers do not exist, the data in the peripherals data will interact
with the memory directly, and the operating system would have to do computing opera-
tions such as searching for the file system in the full-computing storage space in which the
user process itself should compute. Stirring the full-computing with the semicomputing
together is really in chaos. What’s worse, the full-computing of the user process is based
on the code of the user program, and the semicomputing of the operating system is based
on the code of the operating system kernel. The processing data that the kernel code and
the user code operated is in the memory space belongs to the user process, which goes
against the master-slave mechanism.

Moreover, another function of the buffer is sharing. If a file has been read into buffer
by one process and other processes need to read the same file, the file in the buffer can be
shared. If there is no buffer existing, every process can only read its files, which may gener-
ate multiple copies of the same file in the memory. That is to say, there is only one copy in
the memory shared by the buffer.

Examining the Ramdisk with the concept, we can easily find that the Ramdisk is the
simple simulating peripheral in the memory. The characteristic of the memory space is

9.5 Relationship between Software and Hardware

501

noncomputing, which maps the peripherals, such as the floppy disk, not the file. No mat-
ter how much the data stored in the floppy disk, even 1k, the whole floppy disk should be
mapped, which wastes the memory space obviously. And because the Ramdisk is noncom-
puting storage, it has to be transferred through the semicomputing when it is used by the
user process. Thus, we should avoid the noncomputing memory.

9.5.2.2 Guiding Ideology of Designing Buffer

When designs the operating system buffer, you should ensure the correctness of multi-
ple processes read/write and that the efficiency is as high as possible. The speed of data
interaction in the memory is approximately two to three orders of magnitude faster than
the speed of data interaction between the memory and the hard disk. The buffer is in the
memory, and from the perspective of data flow, the buffer is between the process and the
hard disk. In order to meet the requirements of correctness and efficiency, the guiding
ideology of the designing buffer is to 1) make the data read/write in order, and 2) make the
data stay in the buffer aslong as possible and try to use the data that can be used in the buf-
ter. If the buffer really doesn’t have the data the user process needs, then the data should
be read from the hard disk to the buffer. The design related to the buffer in the operating
system reflects the guiding ideology directly or indirectly.

In order to realize the guiding ideology of designing, Linux 0.11 designed a set of data
that includes hash_table, b_count, b_lock, b_dirt, *b_data, b_dev, b_blocknr, b_uptodate,
b_wait, etc. and relevant functions.

The *b_data is used to point to the buffer block, which has data interaction with the
process, and b_dev and b_blocknr are respectively used to assign the device id and the
block id (“hard disk block” for short) of a data block. This coupling of buffer block and
hard disk block are linked to hash_table, forming the binding relationship, and so on;
hash_table would bind all the hard disk block and corresponding buffer block that need
read/write, forming the management relationship showed in Figure 9.7.

When the user process reads/writes files, it does not necessarily read/write all the
data in the file. The operating system decides which hard disk block to operate through
the analysis of files and identifies it with b_dev and b_blocknr. In order to maximize the

Processc Processa Process b

Buffer zone

hash_table

Disk block

LB O

Figure 9.7 Corresponding image of management relationship of buffer, hash table, hard disk data
block.

502

9. Operating System’s Design Guidelines

reusability of the buffer block data, after the tasks of files reading/writing are completed,
the data in the buffer block corresponding to the hard disk will not be cleared immedi-
ately. Thus, when executing the new read/write task, the operating system will search it
in the hash_table with buffer management structure first, and compare the recording of
the hard disk block of buffer block with the hard disk in the operating system needing, to
check whether they are same. As long as they are same, it turns out that the hard disk data
that need to be operated do not need to read the disk in all likelihood. According to the
guiding ideology that tries to use the data in the buffer as much as possible, use the exist-
ing data as much as possible.

However, the two fields, b_dev and b_blocknr, matching with each other can only
show that the buffer includes the buffer block corresponding to the hard disk block that
the operating system needs to operate, and it does not mean that the data in the buf-
fer block can be used because the data in the buffer block may be invalid. For example,
the content of a file has been deleted, and the data in the file’s “surviving” buffer block
remains, but it can’t be reused.

To solve the problem, the operating system sets up b_uptodate. If the value of b_uptodate
is 1, this shows the data in the buffer block is valid, and the disk doesn’t need to be read. And if
the value is 0, the data is invalid and cannot be used directly. The new data has to be read
from the hard disk block, and then the buffer block can be used. B_uptodate is important
for the read operation. When the data in the hard disk block is read to the buffer block, the
interrupt service handler of the operating system sets b_uptodate as 1, which indicates the
data in the buffer block is valid now. When a new buffer block is applied, b_uptodate is set
as 0, indicating the data in the buffer block is invalid.

In the view of the operating system, the user process writing the data to the disk is
really that the operating system writes the data of the user process to the buffer. And the
operating system decides when the data in the buffer really writes to the hard disk. That
is to say, the user process writing data to the disk contains two steps: first, the operating
system writes the user data to the buffer, and the data stays in it as long as possible to
be reused. Second, the operating system writes to the disk at the right moment. Usually,
the two steps are not continuously executed and may have a pause. In order to make the
data in the buffer synchronize efficiently when the operating system pauses and avoid
the unnecessary synchronization, b_dirt, whose function is to identify the changed data
when the operating system writes the user process data to the buffer block previously, is
designed. It sets its value to 1, indicating that the data that is managed in the buffer block
needs to be synchronous with the data on the hard disk. After all the data in the buffer
block is consistent with the data in the hard disk, the field is set to 0.

Please notice that the write operation is different from the read operation. If the oper-
ation is read and the buffer block has no ready-made data, then the data should be read
from the hard disk block and be read immediately because the user is still waiting for the
use of the data. And the write operation is different. The user process does not know that
the so-called writing disk is just writing the data to the buffer block, and the operating
system decides when the data synchronizes with the data in the hard disk discretionarily.
Before the synchronization work, even if the value of b_dirt is 1, going on writing the data
to the buffer block is also feasible. In the future, the operating system only makes the final
data synchronous, which reflects the guiding ideology of the designing buffer.

In order to ensure the correctness of the reading/writing data, it must ensure that
the data is read in order. For example, the new data can’t be written to the buffer block

9.5 Relationship between Software and Hardware

503

while the data is synchronizing between the buffer block and the hard disk. B_lock has
the identification function. Before the data in the buffer is synchronized, the buffer block
must be locked; namely b_lock is equal to 1. When the operating system kernel sees the
identification, it will not write the data from the process to the buffer block. So in the
synchronization procedure, the data in the buffer block will not be changed, ensuring
the data consistency between the buffer block and the hard disk before the synchroni-
zation operation is done. That is to say, reading/writing the buffer block and the data
synchronization operation can’t be done at the same time. When b_lock is set to 0, only
the data interaction between process and the buffer block is permitted by operating sys-
tem. And when b_lock is set to 1, only the data interaction between the buffer block and
the hard disk is permitted. So the simultaneous operations can be avoided.

When the buffer block is locked, it is possible that other processes need to do data
interaction with the locked buffer block. Because the operating system prohibits data inter-
actions between any process and the locked buffer block, the operating system can only
suspend the process, switch to another process, and use *b_wait to point at the suspended
process in order to wake up the suspended process after the buffer block is unlocked.
When the number of the processes that need data interactions with the locked buffer block
is more than one, *b_wait points at the last process applying for the data interaction with
the locked buffer block and the other processes form an implicit queue, which is shown in
Figure 9.8. And the waiting queue is shown on the top left corner.

When a process needs data interaction with the hard disk, the operating system first
goes through the management structure hash table of the buffer. And if it finds the ready-
made buffer block from the hash table, even if it is being used by another process, then
using the ready-made comes first so long as the data is valid. Using the ready-made is more
convenient than operating the hard disk because data does not need to be read from the
hard disk block. If the ready-made can’t be found, then applying for a free buffer block is
needed. B_count is the identification of whether the buffer block is free. Actually, several

Process wait queue Process C Process A Process B

1l 2] 3]
*b_wait
Ibfloclk
HEEEEEEE | Buffer zone
Synchronous

Hash table

[

Figure 9.8 State diagram of the multiprocesses accessing the device.

Disk block

504

9. Operating System’s Design Guidelines

processes may put forward applications and need to exchange data with the same buffer
block. And when a process putting forward application is added, b_count adds 1, con-
versely sub 1. If the result is reduced to 0, which shows that the buffer block has not been
referenced, then the buffer block is free.

With these measures, the data consistency between the user process and the hard disk
can be ensured in system, and efficiency as high as possible can be realized.

Below we will explain another connection between the file system and the process:

pipe.

9.5.2.3 Use the File System to Implement Interprocess Communication: Pipe

Pipe, which is for interprocess communication and remains in the memory, should follow
the policy of memory management. It is strange that the pipe’s management style is not
the memory’s but the file system’s. Why?

The guiding ideology of designing the process management is to make the processes
fully independent and isolated with each other. The design of protected mode is based on
this idea. Interprocess communication means the data needs to flow across the process
border. And if the way of direct interaction is adopted, it will violate the design guid-
ing ideology obviously. What can we do to make the data flow across the process border
reasonably and realize the interprocess communication without damaging the protection
from the operating system for processes.

After careful analysis, we can find that, for processes, file is a kind of resource every
process can access. That is to say, the file can be shared by the processes. If the data needs
to be transmitted between the processes, take the files as its transfer station, and multi-
ple processes access one file at the same time. Some of the processes write the data, and
some read the data, realizing the interprocess data transmission. This not only satisfies
the ideology of the independence and isolation but also realizes the function of the com-
munication between processes. However, file represents peripheral and the speed of com-
munication between the CPU and peripheral is two or three magnitudes slower than the
speed between the CPU and memory. Because the operating system can virtualize a floppy
disk in the memory, it can also virtualize the file. In the memory a file is virtualized for
interprocess communication, and this is the pipe. Because the operating system has the
pipe, which not only gets the file as the interprocess communication transfer station, but
it also gets the speed of memory level. Because the pipe derives from the file, its manage-
ment style is like the file’s. This is the reason why the pipe is managed by the file system.

9.6 Parent and Child Processes Sharing Page

When the parent process creates the child process, the operating system first copies all
the management data structure of the parent to the child. Before the child loads its code,
it shares the parent’s code. And the child cuts off the sharing relationship with the par-
ent’s code after it loads its own code. Why doesn’t the child cut off the relationship at the
moment of its being created?

Because the child, at this time, does not have any code itself, and the work of loading
its own code also needs code that only the parent has according to the Linux rules. So if
the child could not share the parent’s code, it would not finish the work of loading its own
code.

9.6 Parent and Child Processes Sharing Page

505

The mechanism of sharing the parent’s code provides conveniences to many server
programs. Because the parent code sharing is permitted, the child should be permitted
to execute the parent code completely, thus, it must face the situation that the parent and
child use the same code and data and result in data corruption possibly. To avoid the
situation, the page write protected mechanism, whose technical details are explained in
Section 6.4.2. The design guiding ideology of the page write protected mechanism is to
avoid the data corruption that multiple processes accessing the sharing data brings. And
so on, for all the data corruption introduced by accessing the sharing data (including the
memory’s and the peripheral’s); the basic ideas of solving problems like this are similar.

9.7 Operating System’s Global Interrupt and the
Process’s Local Interrupt: Signal

Previously, we mentioned interrupt many times. For the operating system, the impor-
tance of interrupt cannot be overemphasized. Below, we continue extending along the
interrupt’s technology route and analyze the relationship between interrupt and TASK_
INTERRUPTIBLE, TASK_UNINTERRUPTIBLE.

In Chapter 1 of this book, use the “cli” instruction to disable interrupt has been men-
tioned. We know that cli can prevent the operating system receiving the interrupt signal,
which is equal to disable the interrupt of the whole system.

Even though TASK_INTERRUPTIBLE and TASK_UNINTERRUPTIBLE contain
the characters of interrupt, the relationship between them and interrupt in normal sense
can’t be seen.

Through following the track of using TASK_INTERRUPTIBLE and TASK_
UNINTERRUPTIBLE, we can find that signal is closely related to them. Why do the
parameters related to signal have a name related to interrupt?

From reviewing the interrupt technology, we can know that the initial motivation of
interrupt technology invention is to avoid the operating system’s active polling to the IO
states of the peripherals and wasting of host resources. Interrupt technology changes the
operating system’s active polling to passive response, reducing the cost of host resources
greatly and improving the operating efficiency.

Comparing and analyzing interrupt and signal, it can be seen that signal obviously
imitates the technology route of interrupt. Changing active polling to passive response
between processes reduces the operating system cost of communication between pro-
cesses and enhances the whole running efficiency. For example, the shell process creates
a child process, and if the child process exits, theoretically, the management structure of
the child process should be released by shell, which is the subsequent work for the exiting
of the child. The problem is how shell knows the child process wants to exit? It is easy to
think about a method that is to inquire the child process if it wants to exit. If shell has cre-
ated dozens of child processes, according to this method, it has to periodically poll every
process to know whether the child wants to exit. And no matter how many child processes
are wanting to exit, even zero, shell has to poll the child processes frequently for dealing
with the exiting of the child processes in a timely manner. This is very like the situation in
which the host frequently polls the peripheral IO before interrupt technology is invented.
The designer of the operating system designs the signal simulating interrupt by referring

506

9. Operating System’s Design Guidelines

Interrupt Signal

cli TASK_UNINTERRUPTIBLE
sti TASK_INTERRUPTIBLE
IDT, interrupt vector Sigaction

Interrupt service routine Signal service handler

Figure 9.9 Diagram of comparing interrupt with signal.

to the interrupt technology route. We can easily find that the technology routes of them
are very similar by comparing them. Their relationship is shown in Figure 9.9.

It can be found that symmetry is obvious, and they are highly comparable. The dif-
ference is that interrupt is aimed at the operating system while the signal is aimed at the
process. We can even consider the normal interrupt as a “global interrupt” and the signal
as a “local interrupt,” which you can see the essence of it clearly. The reader can under-
stand and master signal, TASK_UNINTERRUPTIBLE, TASK_INTERRUPTIBLE by
using comparison.

9.8 Summary

So far, we have already seen the content of the operating system design guiding ideology
in this chapter. However, an operating system is very complex, and only depending on
the content of this chapter is not enough to design an operating system that can be used.
But the content of this chapter is enough to help readers fully understand and master the
operating system in the perspective of the designer of the operating system.

Conclusion

Now it is the end of this book; glad to see you here. According to our many years of teach-
ing experience, seeing you here shows that your knowledge of the operating system will
not be looked down upon because the operating system is too complex for most readers
to stick it out. If you are still feeling fully enjoyable, return to the start, and read it again!

9.8 Summary

507

This page intentionally left blank

Computer Science/Computer Engineering/Computing

Uses the Running Operation as the Main Thread

Difficulty in understanding an operating system (OS) lies not in the technical aspects,
but in the complex relationships inside the operating systems. The Art of Linux Kernel
Design: lllustrating the Operating System Design Principle and Implementation
addresses this complexity. Written from the perspective of the designer of an oper-
ating system, this book tackles important issues and practical problems on how
to understand an operating system completely and systematically. It removes the
mystery, revealing operating system design guidelines, explaining the BIOS code
directly related to the operating system, and simplifying the relationships and
guiding ideology behind it all.

Based on the Source Code of a Real Multi-Process Operating System

Using the 0.11 edition source code as a representation of the Linux basic design,
the book illustrates the real states of an operating system in actual operations. It
provides a complete, systematic analysis of the operating system source code,
as well as a direct and complete understanding of the real operating system run-
time structure. The author includes run-time memory structure diagrams and an
accompanying essay to help readers grasp the dynamics behind Linux and similar
software systems.

e |dentifies through diagrams the location of the key operating system data
structures that lie in the memory

e |ndicates through diagrams the current operating status information, which
helps users understand the interrupt state and left time slice of processes

e Examines the relationship between process and memory, memory and file,
file and process, and the kernel

e Explores the essential association, preparation, and transition, which is the
vital part of operating system

Develop a System of Your Own

This text offers an in-depth study on mastering the operating system and provides
an important prerequisite for designing a whole new operating system.

K15142

6000 Broken Sound Parkway, NW
CRC Press Suite 300, Boca Raton, FL 33487 ISBN-13: 978-1-4kb5-1403-2
Taylor & Francis Group | 711 Third Avenue 2 0 00 O
an informa business iewyorc NI 001 7

2 Park Square, Milton Park

WWW . Crcepress.com Abingdon, Oxon OX14 4RN, UK
P g 9781466518032

	Front Cover
	Contents
	Preface
	Author
	1. From Power-Up to the Main Function
	2. Device Initialization and Process 0 Activation
	3. Creation and Execution of Process 1
	4. Creation and Execution of Process 2
	5. File Operation

	6. The User Process and Memory Management
	7. Buffer and Multiprocess File
	8. Inter-Process Communication
	9. Operating System’s Design Guidelines

