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Foreword

As the Linux kernel and the applications that use it become more widely used, we are seeing an increasing number of system software developers who want to become
involved in the development and maintenance of Linux. Some of these engineers are motivated purely by personal interest, some work for Linux companies, some work
for hardware manufacturers, and some are involved with in-house development projects.

But all face a common problem: The learning curve for the kernel is getting longer and steeper. The system is becoming increasingly complex, and it is very large. And
as the years pass, the current members of the kernel development team gain deeper and broader knowledge of the kernel's internals, which widens the gap between
them and newcomers.

1 believe that this declining accessibility of the Linux source base is already a problem for the quality of the kernel, and it will become more serious over time. Those
who care for Linux clearly have an interest in increasing the number of developers who can contribute to the kernel.

One approach to this problem is to keep the code clean: sensible interfaces, consistent layout, "do one thing, do it well," and so on. This is Linus Torvalds' solution.

The approach that I counsel is to liberally apply commentary to the code: words that the reader can use to understand what the coder intended to achieve at the time.
(The process of identifying divergences between the intent and the implementation is known as debugging. It is hard to do this if the intent is not known.)

But even code commentary does not provide the broad-sweep view of what major subsystems are intended to do, and how their developers set about doing them.

This, the starting point of understanding, is what the written word serves best. Robert Love's contribution provides a means by which experienced developers can gain
that essential view of what services the kernel subsystems are supposed to provide, and how they set about providing them. This will be sufficient knowledge for many
people: the curious, the application developers, those who want to evaluate the kernel's design, and others.

But the book is also a stepping stone to take aspiring kernel developers to the next stage, which is making alterations to the kernel to achieve some defined objective. I
would encourage aspiring developers to get their hands dirty: The best way to understand a part of the kernel is to make changes to it. Making a change forces the
developer to a level of understanding that merely reading the code does not provide.

The serious kernel developer will join the development mailing lists and interact with other developers. This is the primary means by which kernel contributors learn and
stay abreast. Robert covers the mechanics and culture of this important part of kernel life well.
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Please enjoy and learn from Robert's book. And should you decide to take the next step and become a member of the kernel development community, consider
yourself welcomed in advance. We value and measure people by the value of their contributions, and when you contribute to Linux, you do so in the knowledge that
your work is of small but immediate benefit to tens or even hundreds of millions of human beings. This is a most enjoyable privilege and responsibility.
Andrew Morton

Digeo Interactive, Palo Alto

July 2003
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Preface

When I was first approached about converting my experiences with the Linux kernel into a book, I was unsure how to proceed. I did not want to simply write yet
another kernel book. Sure, there are not that many books on the subject, but I still desired something to make my approach unique. What would place my book at the
top of its subject? I thought hard about how my book could be special.

I then realized that I could offer quite a unique approach to the topic. My job is hacking the kernel. My hobby is hacking the kernel. My love is the kernel. Over the
years, | have surely accumulated interesting anecdotes and important tips. With my experiences, I could write a book on how to hack the kernel and how not to hack
the kernel. Primarily, this is a book about the design and implementation of the Linux kernel. The book's approach differs, however, in that the information is given with
a slant to learning enough to actually get work done—and getting it done right.

1 hope that readers can walk away from this book with a better understanding of the rules (written and unwritten) of the kernel. I hope readers, fresh from reading this
book and the kernel source code, can jump in and start writing useful, correct, clean kernel code. Of course, you can read this book just for fun, too.

Whatever your intentions with Linux, I hope you enjoy this book.

Author's Introduction

Developing code in the kernel does not require genius, magic, or a bushy Unix-hacker beard. The kernel, although having some interesting rules of its own, is not much
different from any other big software project. There is much to learn as with any large project, but there is not too much more sacred or confusing about the kernel than
any other software endeavor.

It is very important that you read the source. The open availability of the source code for the Linux system is a rarity that you must not take for granted. It is not
sufficient only to read the source, however. You need to dig in and change some code. Find a bug and fix it. Improve the drivers for your hardware. Find an itch and
scratch it! Only by writing code will it all come together.

Audience

This book targets software developers who are interested in understanding the Linux kernel. It is not a line-by-line commentary of the kernel source. Nor is it a guide
to developing drivers or a reference on the kernel API (as if there even was a formal kernel API). Instead, the goal of this book is to provide enough information on the
design and implementation of the Linux kernel that a sufficiently accomplished programmer can begin developing code in the kernel. Kernel development can be fun and
rewarding, and I want to introduce the reader to that world as readily as possible. This book, however, in discussing both theory and application, should appeal to
readers of either interest. I have
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always been of the mind that one needs to understand the theory to understand the application, but I do not feel this book leans too far in either direction. I hope that
whatever your motivations for understanding the Linux kernel, this book will explain the design and implementation sufficiently for your needs.

Thus, this book covers both the usage of core kernel systems and their design and implementation. I think this is important, and deserves a moment's discussion. A
good example is Chapter 6, "Bottom Halves and Deferring Work," which covers bottom halves. In that chapter, I discuss both the design and implementation of the
kernel's bottom- half mechanisms (which a core kernel developer might find interesting) and how to actually use the exported interfaces to implement your own bottom
half (which a device driver developer might find interesting). In fact, I believe both parties should find both discussions relevant. The core kernel developer, who
certainly needs to understand the inner workings of the kernel, should have a good understanding of how the interfaces are actually used. At the same time, a device
driver writer will benefit from a good understanding of the implementation behind the interface.

This is akin to learning some library's API versus studying the actual implementation of the library. At first glance, an application programmer needs only to understand
the API—it is often taught to treat interfaces as a black box, in fact. Likewise, a library developer is concerned only with the library's design and implementation. I
believe, however, both parties should invest time in learning the other half. An application programmer who better understands the underlying operating system can
make much greater use of it. Similarly, the library developer should not grow out of touch with the reality and practicality of the applications that use the library.
Consequently, I discuss both the design and usage of kernel subsystems, not only in the hope that this book is useful to either party, but in the hope that the whole book
is useful to both parties.

I assume the reader knows the C programming language and is familiar with Linux. Some experience with operating system design and other computer science
concepts is beneficial, but I try to explain concepts as much as possible—if not, there are some excellent books on operating system design referenced in the
bibliography.

This book is appropriate for an undergraduate course introducing operating system design as the applied text, if an introductory book on theory accompanies it. It

should fair well either in an advanced undergraduate course or in a graduate-level course without ancillary material. I encourage potential instructors to contact me; I am
eager to help.

Organization of Material

This book is designed to be read from start to finish; that is, each chapter builds off the previous as much as possible to provide a linear presentation of the material.
That is not to say, however, that it is impossible to visit random chapters for reference. To the contrary, I have tried to make each chapter sufficiently self-contained for
one who is already familiar with the material in general, but is seeking reference on a specific topic.

Chapter 1 introduces operating systems, kernels, Unix, and ultimately Linux itself.
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Someone who has previously read a book on Unix, Linux, or operating systems should find the material familiar. Chapter 2 discusses the kernel abstraction of the
process and how processes are created, destroyed, and otherwise managed. Because the point of the operating system is ultimately to allow the user to run programs,
this is a fundamental chapter. Continuing with the concept of processes, Chapter 3 discusses process scheduling. In preemptive multitasking operating systems such as
Linux, the kernel is responsible for scheduling process execution. The Chapter begins with an overview of scheduling design and eventually goes over the Linux
scheduler in detail. Chapter 4 covers system calls, which are the standard mechanism applications use to interface with the kernel. The chapter discusses the philosophy
of system calls, the design of the system call handler, and how to implement new system calls. Chapter 5 covers interrupts and interrupt handlers and Chapter 6 covers
bottom halves and other methods of deferring work. These concepts are instrumental in writing device drivers and managing hardware. I broke synchronization and
locking into two chapters. First, Chapter 7 discusses the issues of synchronization and concurrency, including race conditions and deadlocks. The chapter suggests
solutions to these problems, such as locking, and discusses related issues, such as deadlocks. Then, Chapter 8 introduces the actual kernel interfaces, such as spin
locks and semaphores, which maintain synchronization inside the kernel. After Chapter 7 provides the essentials, Chapter 8 acts as a good reference to the kernel's
locking interfaces. Chapter 9 is on the flow of time inside the kernel. This chapter discusses the meaning and representation of time to an operating system and how the
kernel manages time for the system. The chapter then discusses both the implementation and use of kernel timers. Chapter 10 discusses memory management and how
to allocate memory inside the kernel. Chapter 11 talks about the Virtual Filesystem (VFS), which provides a common filesystem interface to user-space. The VFES is
the glue layer between hardware, filesystems, and user-space. The block /O layer, the subsystem of the kernel responsible for managing devices such as hard drives, is
discussed in Chapter 12. The block I/O layer is an important part of the kernel due to the performance sensitivity of block devices. Chapter 13, in turn, considers the
process address space and the virtualization of memory provided to processes. Chapter 14 discusses the page cache and how the kernel carries out page writeback.
The page cache is the primary memory cache in Linux. Memory caches are used to improve system performance by reducing the amount of disk access. Chapter 15
considers the art of debugging the kernel. Debugging the kernel is often cited as the largest difficulty in programming the kernel over user-space, as the kernel is not
afforded the same luxuries that user-space applications are. This chapter discusses the basic methods of debugging the kernel, some of the add-on kernel debuggers
available (alas, there is no standard debugger!), and some debugging tricks that might help you out of a tough spot. Chapter 16 discusses portability and the quirks of
various system architectures that you must keep in mind to write code that can run on any architecture that Linux supports. Portability is an interesting topic because it
sheds light on architectural design differences. It is also a very important consideration in writing good kernel code
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because Linux is a portable operating system and, thus, runs on many different architectures. Finally, Chapter 17 discusses issues such as generating and using patches
and working in the Linux kernel community. Four appendixes and a bibliography wrap up the book. The appendixes cover the kernel linked list implementation, the
per-processor allocation interface, the kernel random number generator, and algorithmic complexity, respectively. The bibliography provides a recommended reading
list on a handful of related topics.

Book Web Site

I maintaina Websiteat ht tp: //tech9.net/rml/kernel book/ that contains information pertaining to the book, including errata, expanded and revised
topics, and information on future printings and editions. I encourage readers to check it out.
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1
Introduction to the Linux Kernel

AFTER THREE DECADES OF USE, the Unix operating system is still regarded as one of the most powerful and elegant systems in existence. Since the creation of Unix in 1969,
the brainchild of Dennis Ritchie and Ken Thompson has become a creature of legends, a system whose design has withstood the test of time with few bruises to its
name.

Unix grew out of Multics, a failed Bell Laboratories multiuser operating system project. With the Multics project terminated, members of Bell Laboratories' Computer
Sciences Research Center were left without a capable interactive operating system. In the summer of 1969, Bell Lab programmers sketched out a file system design
that ultimately evolved into Unix. Thompson implemented the new system on an otherwise idle PDP-7. In 1971, Unix was ported to the PDP-11, and in 1973 the
operating system was rewritten in C, an unprecedented step at the time, but one that paved the way for future portability. The first Unix widely used outside of Bell
Labs was Unix System, Sixth Edition, more commonly called V6.

Other companies ported Unix to new machines. Accompanying these ports were enhancements that resulted in several variants of the operating system. In 1977, Bell
Labs released a combination of these variants into a single system, Unix System III; in 1982, AT&T released System '

The simplicity of Unix's design, and the fact that it was distributed with source code, led to further development at outside organizations. The most influential of these
contributors was the University of California at Berkeley. Variants of Unix from Berkeley are called Berkeley Software Distributions (BSD). The first Berkeley Unix
was 3BSD in 1981. A series of 4BSD releases, 4.0BSD, 4.1BSD, 4.2BSD, and 4.3BSD, followed 3BSD. These versions of Unix added virtual memory, demand
paging, and TCP/IP. In 1993, the final official Berkeley Unix, featuring a rewritten VM, was released as 4.4BSD. Today, development of BSD continues with the
FreeBSD, NetBSD, and OpenBSD systems. In the 1980s and 1990s, multiple workstation and server companies introduced their own commercial version of Unix.
These systems were typically based on either an AT&T

' What about System IV? The rumor is it was an internal development version.
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or Berkeley release and supported high-end features developed for their particular architecture. Among these systems were Digital's Tru64, Hewlett Packard's HP-
UX, IBM's AIX, Sequent's DYNIX/ptx, SGI's IRIX, and Sun's Solaris.

The original elegant design of the Unix system, coupled with the years of innovation and evolutionary improvement that followed, has made Unix a powerful, robust,
and stable operating system. A handful of characteristics of Unix are responsible for its resilience. First, Unix is simple; whereas some operating systems implement
thousands of system calls and have unclear design goals, Unix systems typically implement only hundreds of system calls and have a very clear design. Second, in Unix,

everything is a ﬁlez. This simplifies the manipulation of data and devices into a set of simple system calls: open (), read (), write (),ioctl (),andclose
() . Third, the Unix kernel and related system utilities are written in C—a property that gives Unix its amazing portability and accessibility to a wide range of
developers.

Next, Unix has fast process creation time and the unique fork () system call. Finally, Unix provides simple yet robust interprocess communication primitives that,
when coupled with the fast process creation time, allow for the creation of simple utilities that do one thing and do it well, which can be strung together to accomplish
more complicated tasks.

Today, Unix is a modern operating system supporting multitasking, multithreading, virtual memory, demand paging, shared libraries with demand loading, and TCP/IP
networking. Many Unix variants scale to hundreds of processors, whereas other Unix systems run on small, embedded devices. Although Unix is no longer a research
project, implementations continue to benefit from advances in operating system design, yet remain a practical and general-purpose operating system.

Unix owes its success to the simplicity and elegance of its design. Its strength today lies in the early decisions that Dennis Ritchie, Ken Thompson, and other early
developers made; choices that have endowed Unix with the capability to evolve without compromising itself.

Introduction to Linux

Linux was developed by Linus Torvalds in 1991 as an operating system for computers using the Intel 80386 microprocessor, which was new at the time. Today, Linux
is a full-fledged operating system also running on AMD x86-64, ARM, Compaq Alpha, CRIS, DEC VAX, H8/300, Hitachi SuperH, HP PA-RISC, IBM S/390, Intel
1A-64, MIPS, Motorola 68000, PowerPC, SPARC, UltraSPARC, and v850. It runs on systems as small as a watch to as large as super-computer clusters. Today,
commercial interest in Linux is strong. Both new Linux-specific corporations, as well as old mainstays, are providing Linux-based solutions for embedded, desktop, and
server needs.

: Well, OK, not everything—but much is represented as a file. Modern operating systems, such as Unix's successor Plan9, implement nearly everything as a file.
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Linux is a Unix clone, but it is not Unix. That is, although Linux borrows many ideas from Unix and implements the Unix API (as defined by POSIX and the Single Unix
Specification) it is not a direct decedent of the Unix source code like other Unix systems. Where desired, it has deviated from the path taken by other implementations,
but it has not compromised the general design goals of Unix or broken the application interfaces.

One of Linux's most interesting features is that it is not a commercial product; instead, it is a collaborative project developed over the Internet. Although Linus remains
the creator of Linux and the maintainer of the kernel, work continues through a loose-knit group of developers. In fact, anyone can contribute to Linux. The Linux

kernel, as with much of the system, is free or open source software’. Specifically, the Linux kernel is licensed under the GNU General Public License (GPL) version
2.0. Consequently, you are free to download the source code and make any modifications you want. The only caveat is that if you distribute your changes, you must

continue to provide the recipients with the same rights you enjoyed, including the availability of the source code”.

Linux is many things to many people. The basics of a Linux system are the kernel, C library, compiler, toolchain, and basic system utilities, such as a login process and
shell. A Linux system can also include a modern X Window System implementation including a full-featured desktop environment, such as GNOME. Thousands of free
and commercial applications exist for Linux. In this book, when I say Linux I typically mean the Linux kernel. Where it is ambiguous, I try explicitly to point out
whether I am referring to Linux as a full system or just the kernel proper. Strictly speaking, after all, the term Linux only refers to the kernel.

Because the Linux source code is available, it follows that you are able to configure the kernel before compiling it. It is possible to compile support for just the drivers
and features you need. This capability is controlled via configure options of the form CONFIG_FEATURE. For example, symmetrical multiprocessing (SMP) support
is configured via CONFIG_SMP. Ifit is set, SMP support is enabled. If it is not set, SMP support is disabled. These options are stored in the . config file in the
root of your kernel tree and set via one of the configure programs, for example make xconfig. The configure options are used both to decide which files to
compile during a build and to manipulate the build via preprocessor directives.

Overview of Operating Systems and Kernels

Thanks to some modern commercial operating systems, the notion of an operating system is vague. Many users consider what they see on the screen the operating
system.

? L will leave the fiee vs. open debate to those who care. See http: //www. fsf.organd http://www.opensource.org.

*You should probably read the GNU GPL if you have not. There is a copy in the file COPYING in your kernel source tree. You can also find it online at
http://www.fsf.orqg.
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Generally, and in this book, the operating system is considered to be the parts of the system responsible for basic use and administration. This includes the kernel and
device drivers, boot loader, command shell or other user interface, and basic file and system utilities. The stuff you need. The term system refers to the operating
system and all the applications running on top of it.

Of course, the topic of this book is the kernel. Whereas the user interface is the outermost portion of the operating system, the kernel is the innermost. It is the core
internals; the software that provides basic services for all other parts of the system, manages hardware, and distributes system resources. The kernel is sometimes
referred to as the supervisor or core of the operating system. Typical components of a kernel are interrupt handlers to service interrupt requests, a scheduler to share
processor time among multiple processes, a memory management system to manage process address spaces, and system services such as networking and interprocess
communication. On modern systems with protected memory management units, the kernel typically resides in an elevated system state compared to normal user
applications. This includes a protected memory space and full access to the hardware. This system state and memory space is collectively called kernel-space.
Conversely, user applications execute in user-space. They see a subset of the machine's available resources and are unable to perform certain system functions, directly
access hardware, or otherwise misbehave. When executing the kernel, the system is in kernel-space as opposed to normal user execution in user-space.

Applications running on the system communicate with the kernel via system call (see Figure 1.1). An application typically calls functions in a library—for example, the
C library—that in turn relies on the system call interface to instruct the kernel to carry out tasks on their behalf. Some library calls provide many features not found in
the system call, and thus, calling into the kernel is just one-step in an otherwise large function. For example, consider the familiar print £ () function. It provides
formatting and buffering of the data and only eventually calls write () to write the data to the console. Conversely, some library calls have a one-to-one relationship
with the kernel. For example, the open () library function does nothing except call the open () system call. Still other C library functions, such as st rcpy (),
hopefully make no use of the kernel at all. When an application executes a system call, it is said that the kernel is executing on behalf of the application.
Furthermore, the application is said to be executing a system call in kernel-space, and the kernel is running in process context. This relationship—that applications
call into the kernel via the system call interface—is the fundamental manner in which applications get work done.



15

Application 1 Application 2 Application 3

user-space

Systemn Call Interface

> kernel-space

Kemel Subsystems

Device Drivers l

TTIT -

Figure 1.1 Relationship between applications, the kernel, and hardware.
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Kernels also manage the system's hardware. Nearly all architectures, including all systems that Linux supports, provide the concept of interrupts. When hardware
wants to communicate with the system, it issues an interrupt that asynchronously interrupts the kernel. Interrupts generally are associated with a number. The kernel
uses the number to execute a specific interrupt handler to process and respond to the interrupt. For example, as you type, the keyboard controller issues an interrupt
to let the system know there is data in the keyboard buffer. The kernel notes the interrupt number being issued and executes the correct interrupt handler. The interrupt

handler processes the keyboard data and lets the keyboard controller know it is ready for more data. To provide synchronization, the kernel can usually disable

interrupts—either all interrupts or just one specific interrupt number. In many operating systems, the interrupt handlers do not run in a process context. Instead, they run
in a special interrupt context that is not associated with any process. This special context exists solely to let an interrupt handler quickly respond to an interrupt, and

then exit.
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These contexts represent the breadth of the kernel's activities. In fact, in Linux, we can generalize that the processor is doing one of three things at any given moment:

* In kernel-space, in process context, executing on behalf of a specific process
« In kernel-space, in interrupt context, not associated with a process, handling an interrupt

* In user-space, executing user code in a process

Linux Versus Classic Unix Kernels

Owing to their common ancestry and same API, modern Unix kernels share various design traits. With few exceptions, Unix kernels are typically monolithic static
binaries. That is, they exist as a large single-executable image that runs in a single address space. Unix systems typically require a system with a paged memory-
management unit; this hardware enables the system to enforce memory protection and provide a unique virtual address space to each process. See the bibliography for
my favorite books on the design of the classic Unix kernels.

As Linus and other kernel developers contribute to the Linux kernel, they decide how best to advance Linux without neglecting its Unix roots (and more importantly,
the Unix API). Consequently, because Linux is not based on any specific Unix, Linus and company are able to pick and choose the best solution to any given
problem—or at times, invent new solutions! Here is an analysis of characteristics that differ between the Linux kernel and other Unix variants:

* Linux supports the dynamic loading of kernel modules. Although the Linux kernel is monolithic, it is capable of dynamically loading and unloading kernel code on
demand.

* Linux has symmetrical multiprocessor (SMP) support. Although many commercial variants of Unix now support SMP, most traditional Unix implementations did
not.

* The Linux kernel is preemptive. Unlike traditional Unix variants, the Linux kernel is capable of preempting a task if it is running in the kernel. Of the other
commercial Unix implementations, Solaris and IRIX have preemptive kernels.

« Linux takes an interesting approach to thread support: It does not differentiate between threads and normal processes. To the kernel, all processes are the
same—some just happen to share resources.

* Linux ignores some common Unix features that are thought to be poorly implemented, such as STREAMS, or standards that are brain dead.

* Linux is free in every sense of the word. The feature set Linux implements is the result of the freedom of Linux's open development model. If a feature is without
merit or poorly thought out, the Linux developers are under no obligation to
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implement it. To the contrary, Linux has adopted an elitist attitude toward changes: Modifications must solve a specific real-world problem, have a sane design, and
have a clean implementation. Consequently, features of some other modern Unix variants, such as pageable kernel memory, have received no consideration.
Despite any differences, Linux remains an operating system with a strong Unix heritage.

Linux Kernel Versions

Linux kernels come in two flavors: stable or development. Stable kernels are production-level releases suitable for widespread deployment. New stable kernels are
released typically only to provide bug fixes or new drivers. Development kernels, on the other hand, undergo rapid change where (almost) anything goes. As
developers experiment with new solutions, often-drastic changes to the kernel are made.

Linux kernels distinguish between stable and development kernels with a simple naming scheme (see Figure 1.2). Three numbers, each separated by a dot, represent
Linux kernels. The first value is the major release, the second is the minor release, and the third is the revision. The minor release also determines whether the kernel is a
stable or development kernel; an even number is stable, whereas an odd number is development. Thus, for example, the kernel version 2.6.0 designates a stable kernel.
This kernel has a major version of two, a minor version of six, and is revision zero. The first two values also describe the "kernel series"—in this case, the 2.6 kernel
series.

This is the first release.

Major version is two.

2 « B
Minor version is five.
This is a development kernel.

. 1

Figure 1.2 Kernel version naming convention.

Development kernels have a series of phases. Initially, the kernel developers work on new features and chaos ensues. Over time, the kernel matures and eventually a
feature freeze is declared. At that point, no new features can be submitted. Work on existing features, however, can continue. After the kernel is considered nearly
stabilized, a code freeze is put into effect. When that occurs, only bug fixes are accepted. Shortly thereafter (hopefully), the kernel is released as the first version of a
new stable series. For example, 2.5 stabilized into 2.6.
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The current Linux source code is always available in both a complete tarball and an incremental patchat http: //www.kernel.org.

Where to install and hack on the source

The kernel source is typically installed in /usr/src/1inux. Note that you should not use this source tree for development. The kernel version your C library
is compiled against is often linked to this tree. Besides, you do not want to have to be root to make changes to the kernel-instead, work out of your home directory
and use root only to install new kernels.

This book is based on the 2.6 stable kernel series.

The Linux Kernel Development Community

When you begin developing code for the Linux kernel, you become a part of the global kernel development community. The main forum for this community is the /inux-
kernel mailing list. Subscription information is availableat ht tp: //vger.kernel . org. Note that this is a high-traffic list with upwards of 300 messages a
day and that the other readers—which include all the core kernel developers, including Linus—are not open to dealing with nonsense. The list is, however, a priceless
aide during development as it is the place where you will find testers, receive peer review, and ask questions.

Chapter 17 provides an overview of the kernel development process and a more complete description of participating successfully in the kernel-development
community.

A Beast of a Different Nature

The kernel has several differences compared to normal user-space applications that, while not making it necessarily harder to program than user-space, certainly
provide unique challenges to kernel development.

These differences make the kernel a beast of a different nature. Some of the usual rules are bent; other rules are entirely new. Although some of the differences are
obvious (we all know the kernel can do anything it wants), others are not so obvious. The most important of these differences are

* The kernel does not have access to the C library.

* The kernel is coded in GNU C.

* The kernel lacks memory protection like user-space.

* The kernel cannot easily use floating point.

* The kernel has a small fixed-size stack.

* Because the kernel has asynchronous interrupts, is preemptive, and supports SMP, synchronization and concurrency are concerns within the kernel.

* Portability is important.
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Let's briefly look at each of these issues because all kernel development must keep them in mind.

No libe

Unlike a user-space application, the kernel is not linked against the standard C library (or any other library, for that matter). There are multiple reasons for this,
including some chicken and the egg situations, but the primary reason is speed and size. The full C library—or even a decent subset of it—is too large and too inefficient
for the kernel.

Do not fret, because many of the usual libc functions have been implemented inside the kernel. For example, the common string manipulation functions are in
lib/string.c.Justinclude <linux/string.h> and have at them. Note that when I talk about header files here—or elsewhere in this book—I am
referring to the kernel headers files that are part of the kernel source tree. Kernel source files cannot include outside headers, just as they cannot use outside libraries.

Of the missing functions, the most familiaris print £ () . The kernel does not have access to print £ (), but it does have accessto printk (). Theprintk
() function copies the formatted string into the kernel log buffer, which is normally read by the syslog program. Usage is similarto printf () :

printk("Hello world! A string: %s and an integer: %d\n", a_string, an_integer);

One notable difference between printf () and printk () isthatprintk () allows you to specify a priority flag. This flag is used by syslog to decide where to
display kernel messages. An example of these priorities:

printk (KERN_ERR "this is an error!\n");
Wewilluse printk () throughout this book. Chapter 15, "Debugging," has more informationonprintk ().

GNUC

Like any self-respecting Unix kernel, the Linux kernel is programmed in C. Perhaps surprising, the kernel is not programmed in strict ANSI C. Instead, where
applicable, the kernel developers make use of various language extensions available in gcc (gee is the GNU Compiler Collection, which contains the C compiler used
to compile the kernel).

The kernel developers use both ISO €99° and GNU C extensions to the C language. These changes wed the Linux kernel to gcc, although recently compilers, such as
the Intel C compiler, have sufficiently supported enough gec features that they too can compile the Linux kernel. The ISO C99 extensions that the kernel uses are
nothing special and, because C99 is an official revision of the C language, are slowly cropping up in

> 1SO €99 s the latest major revision to the ISO C standard. C99 adds numerous enhancements to the previous major revision, ISO C90, including named structure
initializers and a comp 1l ex type.



Page 10

a lot of other code. The more interesting, and perhaps unfamiliar, deviations from standard ANSI C are those provided by GNU C. Let's look at some of the more
interesting extensions that may show up in kernel code.

Inline Functions

GNU C supports inline functions. An inline function is, as its name suggests, inserted inline into each call site. This eliminates the overhead of function invocation and
return (register saving and restore), and allows for potentially more optimization, as the compiler can optimize the caller and the called function together. As a downside
(nothing in life is free), code size increases, which increases memory consumption and instruction cache footprint. Kernel developers use inline functions for small time-
critical functions. Making large functions inline, especially those that are used more than once or are not time critical, is frowned against.

An inline function is declared using the keywords static and inline as part of the function definition. For example:

static inline void dog(unsigned long tail size)

The function declaration must precede any usage, or else it cannot be inlined. Common practice is to place inline functions in header files. Because they are marked
static, anon-inlined compilation unit is not created. If an inline function is only used by one file, it can also be placed toward the top of just that file.

In the kernel, using inline functions is preferred over complicated macros.
Inline Assembly

The gec C compiler enables the embedding of assembly instructions in otherwise normal C functions. This feature, of course, is only used in parts of the kernel that are
unique to a given system architecture.

The Linux kernel is programmed in a mixture of C and assembly, with assembly relegated to low-level architecture and fast path code. The vast majority of kernel code
is programmed in straight C.

Branch Annotation

The gee C compiler has a built-in directive that optimizes conditional branches as either very likely taken or very unlikely taken. The compiler uses the directive to
appropriately optimize the branch. The kernel wraps the directive in very easy to use macros, 1ikely () andunlikely ().

For example, consider an if statement such as:

if (foo) {
/* o0 %/
}
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To mark this branch as very unlikely taken (that is, likely not taken):

/* we predict foo is zero .. */
if (unlikely(foo)) {
/* L0 %/

}

Conversely, to mark a branch as very likely taken:

/* we predict foo is nonzero .. */
if (likely(foo)) {
VA

}
You should only use these directives when the branch direction is overwhelmingly known a priori or when you want to optimize a specific case at the cost of the other

case. This is an important point: These directives result in a performance boost when the branch is correctly predicted, but a performance loss when the branch is
mispredicted. A very common usage forunlikely () and 1ikely () is error conditions.

No Memory Protection
When a user-space application attempts an illegal memory access, the kernel can trap the error and kill the process. If the kernel attempts an illegal memory access, the
results are less controlled. Memory violations in the kernel result in an oops, which is a major kernel error. It should go without saying that you must not access illegal

memory, dereference a NULL pointer, and so on—but within the kernel, the stakes are much higher!

Additionally, kernel memory is not pageable. Therefore, every byte of memory you consume is one less byte of available physical memory. Keep that in mind next time
you have to add one more feature to the kernel!

No (Easy) Use of Floating Point

When a user-space process uses floating point instructions, the kernel manages the transition from integer to floating point mode. What the kernel has to do when using
floating point instructions varies by architecture.

Unlike user-space, the kernel does not have the luxury of seamless support for floating point. Using floating point inside the kernel requires manually saving and
restoring the floating point registers, among possible other chores. The short answer is: Don't do it; no floating point in the kernel.

Small, Fixed Size Stack

User-space can get away with statically allocating tons of variables on the stack, including huge structures and many-element arrays. This behavior is legal because
user-space has a large stack that can dynamically grow in size.
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The kernel stack is neither large nor dynamic; it is small and fixed in size. The kernel stack is fixed at 8 KB on 32-bit architectures and 16 KB on most 64-bit
architectures.

For more discussion on the kernel stack, see the section Statically Allocating on the Stack in Chapter 10, "Memory Management."
Synchronization and Concurrency

The kernel is prone to race conditions. Unlike a single-threaded user-space application, a number of properties of the kernel allow for concurrent access of shared
resources and thus require synchronization to prevent races. Specifically,

* The Linux kernel supports multiprocessing. Therefore, without proper protection, kernel code executing on two or more processors can access the same
resource.

* Interrupts occur asynchronously with respect to the currently executing code. Therefore, without proper protection, an interrupt can occur in the midst of
accessing a shared resource and the interrupt handler can access the same resource.

* The Linux kernel is preemptive. Therefore, without protection, kernel code can be preempted in favor of different code that then accesses the same resource.
Typical solutions to race conditions include spinlocks and semaphores.

For a thorough discussion of synchronization and concurrency, see Chapter 7, "Kernel Synchronization Introduction," and Chapter 8, "Kernel Synchronization
Methods."

Portability Is Important

While user-space applications do not save to aim for portability, Linux is a portable operating system and should remain one. This means that architecture-independent
C code must correctly compile and run on a wide range of systems.

A handful of rules—such as remain endian neutral, 64-bit clean, do not assume the word or page size, and so on—go a long way. Chapter 16, "Portability," is
dedicated to the topic of portability.

Building the Kernel

Building the kernel is fairly easy. In fact, it is surprisingly easier than compiling and installing other system-level components, such as glibc. The 2.6 kernel series
introduces a new configuration and build system, which makes the job even easier and is a welcome improvement over 2.4.

Before you can build the kernel, you must configure it. Because the kernel offers a myriad of features and supports tons of varied hardware, there is a /of to configure.
Configuration options are represented by symbols prefixed by CONFIG, such as CONFIG _PREEMPT, which represents whether or not kernel preemption is
enabled. Configuration options are either Booleans or tristates. A Boolean option is either yes or no. Kernel features, such as CONFIG PREEMPT, are usually
Booleans. A tristate option is one of
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ves, no, or module. The module setting represents a configuration option which is set, but is to be compiled as a module (that is, a separate dynamically loadable
object). Drivers are usually represented by tristates.

The kernel provides multiple tools to facilitate configuration. The simplest tool is a text-based command- line utility:
make config

This utility goes through each option, one by one, and asks the user to interactively select yes, no, or (for tristates) module. Because this takes a /ong time, unless you
are paid by the hour, you should use an ncurses-based graphical utility:

make menuconfig
Or, an X11-based graphical utility:
make xconfig

These two utilities divide the various configuration options into categories, such as "Processor Features" and "Network Devices. ""You can move through the categories,
view the kernel options, and of course change their values.

The configuration options are stored in the root of the kernel source tree, in a file named . conf ig. You may find it easie—as most of the kernel developers do—to
just edit this file directly. It is quite easy to search for, and it changes the value of the configuration options. After making changes to your configuration file, or when
using an existing configuration file on a new kernel tree, you can validate and update the configuration:

make oldconfig

You should always run this before building a kernel, in fact. Once the kernel configuration is set, you can build it:

make

Unlike kernels before 2.6, you no longer need to run make dep before building the kernel—the dependency tree is maintained automatically. You also do not need
to specify a specific build type, such as bzImage, as you did in old versions. The default Makefile rule will handle everything!

A trick to minimize build noise, but still see warnings and errors, is to redirect the output from ma ke(1):
make > some_other file
If you ever do need to see the build output, you can read the file. But since the warnings and errors are displayed, you normally do not need to.

Once the kernel is built, you need to install it. How it is installed is very architecture and boot loader dependent—consult the directions for your boot loader on where
to copy the kernel image and how to add it to set it up to boot. Always keep a known-safe kernel or two around in case your new kernel has problems!
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As an example, on x86 using grub, you might copy arch/1386/boot/bzImage to /boot andedit /etc/grub/grub. conf with anew entry for the
new kernel.

The build process also creates the file Sy stem.map in the root of the kernel source tree. It contains a symbol lookup table, mapping kernel symbols to their start
addresses. This is used during debugging to translate memory addresses to function and variable names.

Before We Begin

This book is about the Linux kernel: how it works, why it works, and why you should care. It covers the design and implementation of the core kernel subsystems as
well as its interfaces and programming semantics. The book is practical, and takes a middle road toward explaining how all of this stuff works. This interesting
approach—coupled with some personal anecdotes and tips on kernel hacking—should ensure this book gets you off the ground running.

I hope you have access to a Linux system and have the kernel source. Ideally, by this point, you are a Linux user and have been poking and prodding at the source, but
require some help making it all come together. Conversely, you might never have used Linux but just want to learn the design of the kernel out of curiosity. However, if

your desire is to write some code of your own, there is no substitute for the source. The source code is fi-eely available; use it!

Oh, and above all else, have fun!
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2
Process Management

THE PROCESS Is ONE OF THE FUNDAMENTAL abstractions in Unix operating systems . A process is a program (object code stored on some media) in execution. It is, however,
more than just the executing program code (often called the fext section in Unix). Processes also include a data section containing global variables, a set of resources
such as open files and pending signals, an address space, and one or more threads of execution.

Threads of execution, often shortened to threads, are the objects of activity within the process. Each thread includes a unique program counter, process stack, and set
of processor registers. The kernel schedules individual threads, not processes. In traditional Unix systems, each process consists of one thread. In modern systems,
however, multithreaded programs are common. As you will see later, Linux has a unique implementation of threads—it does not differentiate between threads and
processes.

Processes provide two virtualizations: a virtualized processor and virtual memory. The virtual processor gives the process the illusion that it alone monopolizes the
system, despite possibly sharing the processor amongst dozens of other processes. Chapter 3, "Scheduling," discusses this virtualization. Virtual memory lets the
process allocate and manage memory as if it alone owned all the memory in the system. Virtual memory is covered in Chapter 10, "Memory Management and
Addressing." Threads share the virtual memory abstraction while each receives their own virtualized processor.

Note that a program itself is not a process; a process is an active program and related resources. Indeed, two or more processes can exist that are executing the same
program. In fact, two or more processes can exist that share various resources, such as open files or an address space. A process begins its life when, not surprisingly,
it is created. In Linux, this occurs by means of the fork () ~ system call, which creates a new process by duplicating an existing one. The process that calls fork ()
is the parent, whereas the new process is the child. The parent resumes execution, and the child starts execution, at the same place, where the call returns. Often,
following a fork it is desirable to execute a new, different, program. The exec () — family of function calls is used to create a new address space and load a new
program into it.

! The other fundamental abstraction is files.

* In modern Linux kernels, fork () is actually implemented via the clone () system call, which is discussed in a following section.
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Finally, a program exits viathe exit () system call. This function terminates the process and frees all its resources. A parent process can inquire about the status of a

terminated child, via the wait4 () system call that enables a process to wait for the termination of a specific process. When a process exits, it is placed into a special
zombie state that is used to represent terminated processes until the parent calls wait () orwaitpid ().

Another name for a process is a task. The Linux kernel often refers to processes as tasks. In this book, I will use the terms interchangeably, although I will try to
denote the kernel representation of a running program as a fask and the user-space representation as a process.

The Process Descriptor and Task Structure

The kernel stores the processes in a circular doubly linked list called the task / ist'. Each element in the task list is a process descriptor of the type struct
task_struct,whichisdefinedin include/linux/sched. h. The process descriptor contains all the information about a specific process.

The task_struct is arelatively large data structure at around 1.7 kilobytes on a 32-bit machine. This size, however, is quite small considering that the structure
contains all the information the kernel needs about a process. The process descriptor contains the data that describe the executing program—open files, the process's
address space, pending signals, the process's state, and much more (see Figure 2.1).

Allocating the Process Descriptor

The task_struct is allocated via the slab allocator to provide object reuse and cache coloring (see Chapter 10, "Memory Management"). Prior to the 2.6 kernel
series, the task_struct was stored at the end of the kernel stack of each process. This allowed architectures with few registers, such as x86, to calculate the
location of the process descriptor via the stack pointer without using an extra register to store the location. With the process descriptor now dynamically created via
the slab allocator, a new structure, struct thread info, was created that again lives at the bottom of the stack (for stacks that grow down) or at the top of

the stack (for stacks that grow up)s. See Figure 2.2.

3 The kernel implements the wait4 () system call. Linux systems, via the C library, typically provide the wait (), waitpid(),wait3 (),and wait4 ()
functions. All these functions return status about a terminated process, albeit with slightly different semantics.

* Some texts on operating system design call this list the zask array. Because the Linux implementation is a linked list and not a static array, it is called the task /ist.

> Register-impaired architectures were not the only reason for creating st ruct thread info. The new structure also makes it rather easy to calculate offsets of
its values for use in assembly code.
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struct thread infoisdefinedonx86in<asm/thread info.h>as

struct thread info {
struct task_struct *task;
struct exec_domain *exec_domain;
unsigned long flags;
__u32 cpu;
832 preempt_ count;
mm_segment_t addr_ limit;
u8 supervisor stack[0];
bi

Each task's thread_info structure is allocated at the end of its stack. The t a s k element of the structure is a pointer to the task's actual task_struct.

Storing the Process Descriptor

The system identifies processes by a unique process identification value or PID. The PID is a numerical value that is represented by the opaque type(’ pid_t,which
is typically an i nt. Because of backward compatibility with earlier Unix and Linux versions, however, the default maximum value is only 32,767 (that of a short
int). The kernel stores this value as p i d inside each process descriptor.

This maximum value is important, as it is essentially the maximum number of processes that may exist concurrently on the system. Although 32,767 might be sufficient
for a desktop system, large servers may require many more processes. If the system is willing to break compatibility with old applications, the administrator may
increase the maximum value via /proc/sys/kernel/pid max.

Inside the kernel, tasks are typically referenced directly by a pointer to their task struct. In fact, most kernel code that deals with processes works directly with
the task_struct. Consequently, it is very useful to be able to quickly lookup the process descriptor of the currently executing task, which is done via the
current macro. This macro must be separately implemented by each supported architecture. Some architectures save a pointer to the task struct of the
currently running process in a register, allowing for efficient access. Other architectures, such as x86 with few registers to waste, make use of the fact that
thread_info isstored on the kernel stack to calculate thread info and subsequently the task struct.

On x86, current is calculated by masking out the 13 least significant bits of the stack pointer to obtain the thread info structure. This is done by the
current thread info () function. The assembly is shown here:

movl $-8192, %eax
andl %esp, %eax

% An opaque type is a data type whose physical representation is unknown or irrelevant.
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Finally, current dereferences the task member of thread infotoreturnthe task struct:
current_thread_info()->task;

Contrast this approach with that taken by PowerPC (IBM's modern RISC-based microprocessor), which stores the current task_struct in aregister. Thus,
current on PPC merely returns the value stored in the register r 2. PPC can take this approach because, unlike x86, it has plenty of registers. Because accessing
the process descriptor is a common and important job, the PPC kernel developers deem using a register worthy for the task.

Process State

The state field of the process descriptor describes the current condition of the process (see Figure 2.3). Each process on the system is in exactly one of five
different states. This value is represented by one of five flags:

* TASK_RUNNING—The process is runnable; it is either currently running or on a runqueue waiting to run (runqueues are discussed in Chapter 3, "Scheduling").

* TASK_INTERRUPTIBLE—The process is sleeping (that is, it is blocked) waiting for some condition to occur. When this condition occurs, the kernel sets the
process's state to TASK_RUNNING. The process also awakes prematurely and becomes runnable if it receives a signal.

* TASK_UNINTERRUPTIBLE—This state is identical to TASK_INTERRUPTIBLE except that it will not wake up and become runnable if it receives a
signal. This is used in situations where the process must wait without interruption or when the event is expected to occur quite quickly. Because the task will not
respond to signals in this state, TASK_UNINTERRUPTIBLE is less often used than TASK_INTERRUPTI BLE'.

* TASK_ZOMBIE—The task has terminated, but its parent has not yet issued a wait4 () system call. The task's process descriptor must remain in case the
parent wants to access it. If the parent calls wait4 (), the process descriptor is deallocated.

* TASK_STOPPED—Process execution has stopped; the task is not running nor is it eligible to run. This occurs if the task receives the SIGSTOP, SIGTSTP,
SIGTTIN, or SIGTTOU signal or if it receives any signal while it is being debugged.

7 This is why you have those dreaded unkillable processes with state D in ps(1). Because the task will not respond to signals, you cannot send it a SIGTERM signal.
Further, even if you could terminate the task, it would not be wise as the task is supposedly in the middle of an important operation and may hold a semaphore.
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Figure 2.3 Flow chart of process states.
Manipulating the Current Process State
Kernel code often needs to change a process's state. The preferred mechanism is using the set _task state (task, state) function, which sets the given

task to the given state. If applicable, it also provides a memory barrier to force ordering on other processors (this is only needed on SMP systems). Otherwise, it is
equivalent to

task->state = state;
The method set current state(state) issynonymousto set task state (current, state).

Process Context

One of the most important parts of a process is the executing program code. This code is read in from an executable file and executed within the programs address
space. Normal program execution occurs in user-space. When a program executes a system call (see Chapter 4, "System Calls") or triggers an exception, it enters
kernel-space. At this point,
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the kernel is said to "be executing on behalf of the process" and is in process context. When in process context, the cur rent macro is valid®. Upon exiting the
kernel, the process resumes execution in user-space, unless a higher-priority process has become runnable in the interim, in which case the scheduler is invoked to
select the higher priority process.

System calls and exception handlers are well-defined interfaces into the kernel. A process can begin executing in kernel-space only through one of these interfaces—all
access to the kernel is through these interfaces.

A distinct hierarchy exists between processes in Linux. All processes are descendents of the 1ni t process whose PID is one. The kernel starts in1i t in the last step
of the boot process. The i ni t process, in turn, reads the system initscripts and executes more programs, eventually completing the boot process.

Every process on the system has exactly one parent. Likewise, every process can have one or more children. Processes that are all direct children of the same parent
are called siblings. The relationship between processes is stored in the process descriptor. Each task struct has a pointer to the parent's task struct,
named parent, and a list of children, named chi1dren. Consequently, given the current process, it is possible to obtain the process descriptor of its parent with
the following code:

struct task struct *task = current->parent;

Similarly, it is possible to iterate over a process's children with

struct task_struct *task;
struct list head *list;

list_for each(list, &current->children) {
task = list_entry(list, struct task_struct, sibling);
/* task now points to one of current's children */

The init task's process descriptor is statically allocated as init task. A good example of the relationship between all processes is that this code will always
succeed:

struct task_struct *task;
for (task = current; task != &init_task; task = task->parent)

7

/* task now points to init */

In fact, you can follow the process hierarchy from any one process in the system to any other. Oftentimes, however, it is desirable simply to iterate over a/l processes in
the

¥ Other than process context there is interrupt context, which we discuss in Chapter 5. In interrupt context, the system is not running on behalf of a process, but is
executing an interrupt handler. There is no process tied to interrupt handlers and consequently no process context.
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system. This is easy because the task list is a circular doubly linked list. To obtain the next task in the list, given any valid task:
list _entry(task->tasks.next, struct task struct, tasks)
Obtaining the previous works the same way:
list _entry(task->tasks.prev, struct task struct, tasks)

These two routines are provided by the macros next task (task) andprev_task (task).Finally, themacro for each process (task) is
provided which iterates over the entire task list. On each iteration, t a s k points to the next task in the list:

struct task_struct *task;

for each process(task) {
/* this pointlessly prints the name and PID of each task */
printk ("$s[%d]\n", task->comm, task->pid);

Note, it can be expensive to iterate over every task in a system with many processes; code should have good reason (and no alternative) before doing so.

Process Creation

Process creation in Unix is unique. Most operating systems implement a spawn mechanism to create a new process in a new address space, read in an executable, and
begin executing it. Unix takes the unusual approach of separating these steps into two distinct functions: fork () and exec () % The first, fork (), creates a child
process that is a copy of the current task. It differs from the parent only in its PID (which is unique), its PPID (parent's PID, which is set to the original process), and
certain resources and statistics, such as pending signals, which are not inherited. The second function, exec (), loads a new executable into the address space and
begins executing it. The combination of fork () followed by exec () is similar to the single function most operating systems provide.

Copy-on-Write
Traditionally, upon fork () all resources owned by the parent are duplicated and the copy is given to the child. This approach is significantly naive and inefficient.

With Linux, fork () is implemented using copy-on-write pages. Copy-on-write (or COW) is a technique to delay or altogether prevent copying of the data. Instead
of duplicating the

? By exec () I mean any member of the exec () family of functions. The kernel implements the execve () system call on top of which execlp (), execle
(),execv (),and execvp () are implemented.
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process address space, the parent and the child can share a single copy. The data, however, is marked in such a way that if it is written to, a duplicate is made and each
process receives a unique copy. Consequently, the duplication of resources occurs only when they are written; until then, they are shared read-only. This technique
delays the copying of each page in the address space until it is actually written to. In the case that the pages are never written—for example, if exec () is called
immediately after fork () —they never need to be copied. The only overhead incurred by fork () is the duplication of the parent's page tables and the creation of
a unique process descriptor for the child. This optimization prevents the wasted copying of large amounts of data (the address space, easily tens of megabytes); in the
common case a process executes a new executable image immediately after forking. This is an important optimization because the Unix philosophy encourages quick
process execution.

fork ()

Linux implements fork () viathe clone () system call. This call takes a series of flags that specify which resources, if any, the parent and child process should
share (see the section on "The Linux Implementation of Threads" later in this chapter for more about the flags). The fork (), vfork (),and _clone () library
callscall c1lone () with the requisite flags. The c1one () system call, in turn, calls do_fork ().

The bulk of the work in forking is handled by do fork (), which is defined in kernel/ fork.c. This function calls copy process (), and then starts the
process running. The interesting work is done by copy process ():

* Callsdup_task_struct () which creates a new kernel stack, thread_info structure, and task_struct for the new process whose values are
identical to those of the current task. At this point, the child and parent process descriptors are identical.

* Check that the new child will not exceed the resource limits on the number of processes for the current user.

* Now the child needs to differentiate itself from its parent. Various members of the process descriptor are cleared or set to initial values.

* Next, the child's state is set to TASK_UNINTERRUPTIBLE, to insure it does not yet run.

* Calls copy_flags () toupdate the f1ags memberofthe task struct.The PE_SUPERPRIV flag, which denotes whether a task used super-user
privileges, is cleared. The PF_ FORKNOEXEC flag, which denotes a process that has not called exec (), is set.

* Callsget pid() toassign an available PID to the new task.

* Depending on the flags passed to c1lone (), either copy or share open files, filesystem information, signal handlers, process address space, and namespace.
These
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resources are typically shared between threads in a given process; otherwise they are unique and thus copied here.
* Share the remaining timeslice between the parent and its child (this is discussed in Chapter 3, "Scheduling").
* Finally, cleanup and return a pointer to the new child.
Backindo fork(),ifcopy process () returns successfully, the new child is woken up and run. Deliberately, the kernel runs the child process first'’. In the

common case of the child simply calling exec () immediately, this eliminates any copy-on-write overhead that would occur if the parent ran first and began writing to
the address space.

viork ()

The vEfork () system call has the same effect as fork (), except that the page table entries of the parent process are not copied. Instead, the child executes as the
sole thread in the parent's address space, and the parent is blocked until the child either calls exec () or exits. The child is not allowed to write to the address space.
This was a welcome optimization in the old days of BSD 3.0 when the call was introduced because at the time fork () was not implemented using copy-on-write
pages. Today, with copy-on-write and child-runs-first semantics, the only benefit to vfork () is not copying the parent page tables entries. If Linux one day gains

copy-on-write page table entries there will no longer be any benefit' . Because the semantics of vEork () are tricky (what, for example, happens if the exec ()
fails?) it would be nice if vEork () died a slow painful death. It is entirely possible to implement vEork () asanormal fork ()—in fact, this is what Linux did
until 2.2.

The vEfork () system call is implemented via a special flag to the c1one () system call:

*Incopy process(),thetask struct member vfork doneissetto NULL.

*Indo_fork (), ifthe special flag was given, vfork done is pointed at a specific address.

* After the child is first run, instead of returning the parent waits for the child to signal it through the vfork done pointer.

*Inmm_release (), the function that is used when a task exits a memory address space, if vEork done is not NULL the parent is signaled.
* Backindo_fork (), the parent wakes up and returns.

If this all goes as planned, the child is now executing in a new address space and the parent is again executing in its original address space. The overhead is lower, but
the design is not pretty.

10 Actually, this does not currently function correctly, although the intention is to run the child first.

"' fact, there are currently patches to add this functionality to Linux. Although we most likely will not see shared page tables in 2.6, such a feature may appear in 2.7.
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The Linux Implementation of Threads

Threads are a popular modern programming abstraction. They provide multiple threads of execution within the same program in a shared memory address space. They
can also share open files and other resources. Threads allow for concurrent programming and, on multiple processor systems, true parallelism.

Linux has a unique implementation of threads. To the Linux kernel, there is no concept of a thread. Linux implements all threads as standard processes. The Linux
kernel does not provide any special scheduling semantics or data structures to represent threads. Instead, a thread is merely a process which shares certain resources.
Each thread has a unique task struct and appears to the kernel as a normal process (which shares resources, such as an address space, with other processes).

This approach to threads contrasts greatly with operating systems such as Microsoft Windows or Sun Solaris, which have explicit kernel support for threads (and
sometimes call threads /ightweight processes). The name "lightweight process" sums up the difference in philosophies between Linux and other systems. To these
other operating systems, threads are an abstraction to provide a lighter, quicker execution unit than the heavy process. To Linux, threads are simply a manner of sharing

resources between processes (which are already quite lightweight)lz. For example, assume we have a process that consists of four threads. On systems with explicit
thread support, there might exist one process descriptor that in turn points to the four different threads. The process descriptor describes the shared resources, such as
an address space or open files. The threads then describe the resources they alone possess. Conversely, in Linux, there are simply four processes and thus four normal
task_struct structures. The four processes are setup to share certain resources.

Threads are created like normal tasks with the exception that the c Lone () system call is passed flags corresponding to specific resources to be shared:

clone (CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND, O0);

The previous code results in behavior identical to a normal fork (), except the address space, filesystem resources, file descriptors, and installed signal handlers are
shared. In other words, the new task and its parent are threads.

In contrast, anormal fork () can be implemented as

clone (SIGCHLD, O0);

and vfork () as

clone (CLONE_VFORK | CLONE_VM | SIGCHLD, 0);

The flags provided to cLone () help specify the behavior of the new process and detail what resources the parent and child will share. Table 2.1 lists the clone flags
and their effect.

12 C L . .
As an example, benchmark process creation time in Linux versus process (or even thread!) creation time in these other operating systems. The results are quite nice.
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Table 2.1 clone () Flags

Flag Meaning
CLONE_CLEARTID clear the TID
CLONE_DETACHED the parent does not want a SIGCHLD signal sent on exit
CLONE FILES parent and child share open files
CLONE_FS parent and child share filesystem information
CLONE IDLETASK set PID to zero (only used by the idle tasks)
CLONE NEWNS create a new namespace for the child
CLONE_PARENT child is to have same parent as its parent
CLONE_PTRACE continue tracing child
CLONE_SETTID write the TID back to user-space
CLONE SETTLS create a new TLS for the child
CLONE_STIGHAND parent and child share signal handlers
CLONE_SYSVSEM parent and child share System V SEM_UNDO semantics
CLONE THREAD parent and child are in the same thread group
CLONE_VFORK vfork() was used and the parent will sleep until the child wakes it
CLONE_VM parent and child share address space

Kernel Threads

It is often useful for the kernel to perform some operations in the background. The kernel accomplishes this via kernel threads—standard processes that exist solely in
kernel-space. The significant difference between kernel threads and normal processes is that kernel threads do not have an address space (in fact, their mm pointer is
NULL). They operate only in kernel-space and do not context switch into user-space. Kernel threads are, however, schedulable and preemptable as normal
processes.

Linux delegates several tasks to kernel threads, most notably the pdflush task and the ksoftirgd task. These threads are created on system boot by other kernel
threads. Indeed, a kernel thread can only be created by another kernel thread. The interface for spawning a new kernel thread from an existing one is

int kernel thread(int (*fn) (void *), void * arg, unsigned long flags)

The new task is created via the usual clone () system call with the specified £ 1ags argument. On return, the parent kernel thread exits with a pointer to the child's
task_struct. The child executes the function specified by £n with the given argument a rg. A special clone flag, CLONE KERNEL, specifies the usual flags for
kernel threads: CLONE_F'S, CLONE FILES, and CLONE_SIGHAND. Most kernel threads pass this for their £ 1ags parameter.

Typically, a kernel thread continues executing its initial function forever (or at least until the system reboots, but with Linux you never know). The initial function usually
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implements a loop in which the kernel thread wakes up as needed, performs its duties, and then returns to sleep.

We will discuss specific kernel threads in more detail in later chapters.

Process Termination

It is sad, but eventually processes must terminate. When a process terminates, the kernel must release the resources owned by the process and notify the child's parent
of its unfortunate demise.

Typically, process destruction occurs when the process calls the ex it () system call, either explicitly when it is ready to terminate or implicitly on return from the main
subroutine of any program (that is, the C compiler will place acall to exit () aftermain () returns). A process can also terminate involuntarily. This occurs when
the process receives a signal or exception it cannot handle or ignore. Regardless of how a process terminates, the bulk of the work is handled by do_exit (), which
completes a number of chores:

* Set the PF_ EXITING flagin the flags member of the task struct.

« If BSD process accounting is enabled, call acct _process () to write out accounting information.

*Call  exit mm() torelease the mm struct held by this process. If no other process is using it (in other words, if it is not shared) then deallocate it.

* Call sem exit ().Ifthe process is queued waiting for an IPC semaphore, it is dequeued here.

*Call_ exit files (), exit fs(),exit namespace(),andexit sighand () to decrement the usage count of objects related to file
descriptors, filesystem data, the process namespace, and signal handlers, respectively. If any usage counts reach zero, then the object is no longer in use by any
process and it is removed.

» Set the task's exit code, stored in the exit code memberofthe task struct, to the code provided by exit () or whatever kernel mechanism forced
the termination.

*Callexit notify () tosend signals to the task's parent, reparent any of the task's children to another thread in their thread group or the init process, and set
the task's state to TASK_ZOMBIE.

* Finally, call schedule () to switch to a new process (see Chapter 3). Because TASK _ZOMBIE tasks are never scheduled, this is the last code the task will
ever execute.

The code for do_exit () isdefinedin kernel/exit.c.
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At this point, all objects associated with the task (assuming the task was the sole user) are freed. The task is not runnable (and in fact no longer has an address space to
run in) and is of the TASK_ZOMBIE state. The only memory it occupies is its kernel stack and slab object, which contain its thread info and
task_struct structures, respectively. The task exists solely to provide information to its parent.

Removal of the Process Descriptor

After do_exit () completes, the process descriptor for the terminated process still exists but the process is a zombie and is unable to run. As discussed, this allows
the system to obtain information about a child process after it has terminated. Consequently, the acts of cleaning up after a process and removing its process descriptor
are separate. After the parent has obtained information on its terminated child, the child's task_struct is deallocated.

The wait () family of functions are implemented via a single (and complicated) system call, wait 4 () . The standard behavior is to suspend execution of the calling
task until one of its children exit at which time the function returns with the PID of the exited child. Additionally, a pointer is provided to the function that on return holds
the exit code of the terminated child.

When it is time to finally deallocate the process descriptor, release task () isinvoked. It does the following:
*Call free uid() todecrement the usage count of the process's user. Linux keeps a per-user cache of information related to how many processes and files a
user has opened. If the usage count reaches zero, the user has no more open processes or files, and the cache is destroyed.
* Callunhash _process () toremove the process from the pidhash and remove the process from the task list.
« If the task was ptraced, reparent it to its original parent and remove it from the ptrace list.
* Finally,call put _task struct () to free the pages containing the process's kernel stack and thread info structure and deallocate the slab cache
containing the task struct.
At this point, the process descriptor and all resources belonging solely to the process have been freed.

The Dilemma of the Parentless Task

If a parent exits before its children, some mechanism must exist to reparent the child tasks to a new process or else parentless terminated processes would forever
remain zombies, wasting system memory. The solution, hinted upon previously, is to reparent a task's children on exit to either another process in the current thread
group or, if that fails, the init process.Indo _exit (),notify parent () isinvoked, whichcalls forget original parent () to perform the
reparenting:
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struct task_struct *p, *reaper = father;
struct list_head *1list;

if (father->exit_signal != -1)

reaper = prev_thread(reaper);
else

reaper = child reaper;
if (reaper == father)

reaper = child_reaper;

This code sets reaper to another task in the process's thread group. If there is not another task in the thread group, it sets reaper to child reaper, which
isthe in1it process. Now that a suitable new parent for the children is found, each child needs to be located and reparented to reaper:

list_for_each(list, &father->children) {
p = list _entry(list, struct task struct, sibling);
reparent thread(p, reaper, child reaper);

}

list_for_each(list, &father->ptrace_children) {
p = list _entry(list, struct task struct, ptrace list);
reparent_thread(p, reaper, child reaper);

This code iterates over two lists: the child list and the ptraced child list, reparenting each child. The rationale behind having both lists is interesting; it is a new feature in
the 2.6 kernel. When a task is ptraced, it is temporarily reparented to the debugging process. When the task's parent exits, however, it must be reparented along with
its other siblings. In previous kernels, this resulted in a loop over every process in the system looking for children. The solution, as noted previously, is simply to keep
a separate list of a process's children that are being ptraced—reducing the search for one's children from every process to just two relatively small lists.

With the process successfully reparented, there is no risk of stray zombie processes. The i n it process routinely calls wait () on its children, cleaning up any
zombies assigned to it.
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3
Scheduling

THE SCHEDULER 1S THE COMPONENT OF THE KERNEL that selects which process to run next. The scheduler (or process scheduler, as it is sometimes called) can be viewed as
the code that divides the finite resource of processor time between the runnable processes on a system. The scheduler is the basis of a multitasking operating system
such as Linux. By deciding what process can run, the scheduler is responsible for best utilizing the system and giving the impression that multiple processes are
simultaneously executing.

The idea behind the scheduler is simple. To best utilize processor time, assuming there are runnable processes, a process should always be running. If there are more
processes than processors in a system, some processes will not always be running. These processes are waiting to run. Deciding what process runs next, given a set
of runnable processes, is a fundamental decision the scheduler must make.

Multitasking operating systems come in two flavors: cooperative multitasking and preemptive multitasking. Linux, like all Unix variants and most modern operating
systems, provides preemptive multitasking. In preemptive multitasking, the scheduler decides when a process is to cease running and a new process is to resume
running. The act of involuntarily suspending a running process is called preemption. The time a process runs before it is preempted is predetermined, and is called the
timeslice of the process. The timeslice, in effect, gives each process a slice of the processor's time. Managing the timeslice enables the scheduler to make global
scheduling decisions for the system. It also prevents any one process from monopolizing the system. As we will see, this timeslice is dynamically calculated in the Linux
scheduler to provide some interesting benefits.

Conversely, in cooperative multitasking, a process does not stop running until it voluntary decides to do so. The act of a process voluntarily suspending itself is called
yielding. The shortcomings of this approach are numerous: The scheduler cannot make global decisions regarding how long processes run, processes can monopolize
the processor for longer than the user desires, and a hung process that never yields can potentially bring down the entire system. Thankfully, most operating systems
designed in the last decade have provided preemptive multitasking, with Mac OS 9 and earlier being the most notable exceptions. Of course, Unix has been
preemptively multitasked since the beginning.
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During the 2.5 kernel series, the Linux kernel received a scheduler overhaul. A new scheduler, commonly called the O(1) scheduler because of its algorithmic

behavior', solved the shortcomings of the previous Linux scheduler and introduced powerful new features and performance characteristics. In this section, we will
discuss the fundamentals of scheduler design and how they apply to the new O(1) scheduler and its goals, design, implementation, algorithms, and related system calls.

Policy

Policy is the behavior of the scheduler that determines what runs when. A scheduler's policy often determines the overall feel of a system and is responsible for
optimally utilizing processor time. Therefore, it is very important.

1/0-Bound Versus Processor-Bound Processes

Processes can be classified as either //O-bound or processor-bound. The former is characterized as a process that spends much of its time submitting and waiting on
1/0 requests. Consequently, such a process is often runnable, but only for short periods, because it will eventually block waiting on more /O (this is any type of /O,
such as keyboard activity, and not just disk I/O). Conversely, processor-bound processes spend much of their time executing code. They tend to run until they are
preempted because they do not block on I/O requests very often. Because they are not I/O-driven, however, system response does not dictate that the scheduler run
them often. The scheduler policy for processor-bound processes, therefore, tends to run such processes less frequently but for longer periods. Of course, these
classifications are not mutually exclusive. The scheduler policy in Unix variants tends to explicitly favor I/O-bound processes.

The scheduling policy in a system must attempt to satisfy two conflicting goals: fast process response time (low latency) and high process throughput. To satisfy these
requirements, schedulers often employ complex algorithms to determine the most worthwhile process to run, while not compromising fairness to other, lower priority,
processes. Favoring I/O-bound processes provides improved process response time, because interactive processes are I/O-bound. Linux, to provide good interactive
response, optimizes for process response (low latency), thus favoring I/O-bound processes over processor-bound processors. As you will see, this is done in a way
that does not neglect processor-bound processes.

Process Priority

A common type of scheduling algorithm is priority-based scheduling. The idea is to rank processes based on their worth and need for processor time. Processes with
a higher

"0(1) isan example of big-o notation. Basically, it means the scheduler can do its thing in constant time, regardless of the size of the input. A full explanation of big-o
notation is in Appendix D, for the curious.
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priority will run before those with a lower priority, while processes with the same priority are scheduled round-robin (one after the next, repeating). On some systems,
Linux included, processes with a higher priority also receive a longer timeslice. The runnable process with timeslice remaining and the highest priority always runs. Both
the user and the system may set a process's priority to influence the scheduling behavior of the system.

Linux builds on this idea and provides dynamic priority-based scheduling. This concept begins with the initial base priority, and then enables the scheduler to increase
or decrease the priority dynamically to fulfill scheduling objectives. For example, a process that is spending more time waiting on I/O than running is clearly I/O bound.
Under Linux, it receives an elevated dynamic priority. As a counterexample, a process that continually uses up its entire timeslice is processor bound—it would receive
a lowered dynamic priority.

The Linux kernel implements two separate priority ranges. The first is the nice value, a number from —20 to 19 with a default of zero. Larger nice values correspond to
a lower priority—you are being nice to the other processes on the system. Processes with a lower nice value (higher priority) run before processes with a higher nice
value (lower priority). The nice value also helps determine how long a timeslice the process receives. A process with a nice value of —20 receives the maximum
timeslice, whereas a process with a nice value of 19 receives the minimum timeslice. Nice values are the standard priority range used in all Unix systems.

The second range is the real-time priority, which will be discussed later. By default, it ranges from zero to 99. All real-time processes are at a higher priority than
normal processes. Linux implements real-time priorities in accordance with POSIX. Most modern Unix systems implement a similar scheme.

Timeslice

The timeslice? is the numeric value that represents how long a task can run until it is preempted. The scheduler policy must dictate a default timeslice, which is not
simple. A timeslice that is too long will cause the system to have poor interactive performance; the system will no longer feel as if applications are being concurrently
executed. A timeslice that is too short will cause significant amounts of processor time to be wasted on the overhead of switching processes, as a significant percentage
of the system's time will be spent switching from one process with a short timeslice to the next. Furthermore, the conflicting goals of I/O-bound versus processor-bound
processes again arise; [/O-bound processes do not need longer timeslices, whereas processor-bound processes crave long timeslices (to keep their caches hot, for
example).

With this argument, it would seem that any long timeslice would result in poor interactive performance. In many operating systems, this observation is taken to heart,

and the default timeslice is rather low—for example, 20ms. Linux, however, takes advantage of the fact that the highest priority process always runs. The Linux
scheduler bumps the

Timeslice is sometimes called guantum or processor slice in other systems. Linux calls it timeslice.
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priority of interactive tasks, enabling them to run more frequently. Consequently, the Linux scheduler offers a relatively high default timeslice (see Table 3.1).
Furthermore, the Linux scheduler dynamically determines the timeslice of a process based on priority. This enables higher priority, allegedly more important, processes
to run longer and more often. Implementing dynamic timeslices and priorities provides robust scheduling performance.

lower priority or higher priority or
less interactivity more interactive
Minimum Detault Maximum
10ms 100ms 200ms

Figure 3.1 Process timeslice calculation.

Note that a process does not have to use all its timeslice at once. For example, a process with a 100 millisecond timeslice does not have to run for 100 milliseconds in
one go or risk losing the remaining timeslice. Instead, the process can run on five different reschedules for 20 milliseconds each. Thus, a large timeslice also benefits
interactive tasks—while they do not need such a large timeslice all at once, it ensures they remain runnable for as long as possible.

When a process's timeslice runs out, the process is considered expired. A process with no timeslice is not eligible to run until all other processes have exhausted their
timeslice (that is, they all have zero timeslice remaining). At that point, the timeslices for all processes are recalculated. The Linux scheduler employs an interesting
algorithm for handling timeslice exhaustion that is discussed in a later section.

Process Preemption

As mentioned, the Linux operating system is preemptive. When a process enters the TASK RUNNING state, the kernel checks whether its priority is higher than the
priority of the currently executing process. If it is, the scheduler is invoked to pick a new process to run (presumably the process that just became runnable).
Additionally, when a process's timeslice reaches zero, it is preempted, and the scheduler is invoked to select a new process.

The Scheduling Policy in Action

Consider a system with two runnable tasks: a text editor and a video encoder. The text editor is I/O-bound because it spends nearly all its time waiting for user key
presses (no
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matter how fast the user types, it is not that fast). Despite this, when it does receive a key press, the user expects the editor to respond immediately. Conversely, the
video encoder is processor-bound. Aside from reading the raw data stream from the disk and later writing the resulting video, the encoder spends all its time applying
the video codec to the raw data. It does not have any strong time constraints on when it runs—if it started running now or in half a second, the user could not tell. Of
course, the sooner it finishes the better.

In this system, the scheduler gives the text editor a higher priority and larger timeslice than the video encoder, because the text editor is interactive. The text editor has
plenty of timeslice available. Furthermore, because the text editor has a higher priority, it is capable of preempting the video encoder when needed. This ensure the text
editor is capable of responding to user key presses immediately. This is to the detriment of the video encoder, but because the text editor runs only intermittently, the
video encoder can monopolize the remaining time. This optimizes the performance of both applications.

The Scheduling Algorithm

The Linux scheduler is defined in kernel/sched. c. The scheduler algorithm and supporting code went through a large rewrite early in the 2.5 kernel
development series. Consequently, the scheduler code is entirely new and unlike the scheduler in previous kernels. The new scheduler was designed to accomplish
specific goals:

* Implement fully O (1) scheduling. Every algorithm in the new scheduler completes in constant-time, regardless of the number of running processes or any other
input.
* Implement perfect SMP scalability. Each processor has its own locking and individual runqueue.

* Implement improved SMP affinity. Naturally attempt to group tasks to a specific CPU and continue to run them there. Only migrate tasks from one CPU to
another to resolve imbalances in runqueue sizes.

* Provide good interactive performance. Even during considerable system load, the system should react and schedule interactive tasks immediately.

* Provide fairness. No process should find itself starved of timeslice for any reasonable amount of time. Likewise, no process should receive an unfairly high amount
of timeslice.

* Optimize for the common case of only 1-2 runnable processes, yet scale well to multiple processors each with many processes.
The new scheduler accomplished these goals.
Runqueues

The basic data structure in the scheduler is the runqueue. The runqueue is defined in kernel/sched.cas struct runqueue. The runqueue is the list of
runnable processes on a given processor; there is one runqueue per processor. Each runnable process is on



Page 36

exactly one runqueue. The runqueue additionally contains per-processor scheduling information. Consequently, the runqueue is the primary scheduling data structure for
each processor. Why kernel/sched.candnot include/linux/sched.h? Because it is desired to abstract away the scheduler code and provide only
certain interfaces to the rest of the kernel.

Let's look at the structure, with comments describing each field:

struct runqueue {

spinlock_t lock; /* spin lock which protects this
runqueue */

number of runnable tasks */
number of contextswitches */
time of last array swap */
number of tasks in

uinterruptible sleep */

unsigned long
unsigned long
unsigned long
unsigned long

nr_running; /*
nr switches; /*
expired timestamp; /*
nr uninterruptible; /*

struct task_struct “*curr; /* this processor's currently
running task */
struct task_struct *idle; /* this

struct mm_struct

*prev_mm;

mm_struct of last running task
*/

struct prio_array *active; /* pointer to the active priority
array */
struct prio_array *expired; /* pointer to the expired

priority array */

struct prio_array arrays|[2]; /* the actual priority arrays */

int prev_cpu_load[NR _CPUS];/* load on each processor */

struct task struct “*migration thread; /* the migration thread on this
processor */

struct list head migration queue; /* the migration queue for this
processor */

atomic_t nr iowait; /* number of tasks waiting on I/O

*/

Because runqueues are the core data structure in the scheduler, a group of macros is used to obtain specific runqueues. The macro cpu_rqg (processor) returns
a pointer to the runqueue associated with the given processor. Similarly, the macro this rq () returns the runqueue of the current processor. Finally, the macro
task_rqg(task) returns a pointer to the runqueue on which the given task is queued.

Before a runqueue can be manipulated, it must be locked (locking is discussed in-depth in Chapter 7, "Kernel Synchronization Introduction"). Because each runqueue
is unique to the current processor, it is rare when a processor desires to lock a different processor's runqueue (it does happen, however, as we will see). The locking of
the runqueue prohibits any changes to it while the lock-holder is reading or writing the runqueue's members. The most common way of locking a runqueue is when you
want to lock the runqueue a specific task runs on. In that case, the task_rqg lock() and task rqg unlock () functions are used:
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struct runqueue *rqg;
unsigned long flags;

rq = task_rqg lock(task, &flags);
/* manipulate the task's runqueue */
task_rqg unlock(rqg, &flags);

Alternatively, the method this rq lock () locks the current runqueue and rq_unlock (struct runqueue *rq) unlocks the given runqueue.

To avoid deadlock, code that wants to lock multiple runqueues needs always to obtain the locks in the same order: by ascending runqueue address (again, Chapter 7
offers a full explanation). Example:

/* to lock ... */
if (rql < rqg2) {
spin_lock (&rgl->lock);
spin_lock (&rg2->lock);
} else {
spin_lock (&rg2->lock);
spin_lock (&rgl->lock);
}

/* manipulate both runqueues ... */
/* to unlock ... */

spin_unlock (&rgl->lock) ;
spin_unlock (&rg2->lock) ;

These steps are made automatic by the double rq lock () anddouble rg unlock () functions. The above steps would then become:
double rq lock(rqgl, rq2);
/* manipulate both runqueues ... */

double rqg unlock(rqgl, rg2);

Let's look at a quick example of why the order of obtaining the locks is important. The topic of deadlock is covered in Chapters 7 and 8, as this is not a problem
unique to the runqueues; nested locks always need to be obtained in the same order. The spin locks are used to prevent multiple tasks from simultaneously manipulating
the runqueues. They work like a key to a door. The first task to reach the door grabs the key and enters the door, locking the door behind it. If another task reaches
the door and finds it locked (because another task is already inside), it must sit and wait for the first task to exit the door and return the key. This waiting is called
spinning because the task actually sits in a tight loop, repeatedly checking for the return of the key. Now, consider if one task wants
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to lock the first runqueue and then the second, while another task wants to lock the second runqueue and then the first. Assume our first task succeeds in locking the
first runqueue while simultaneously our second task succeeds in locking the second runqueue. Now, the first task tries to lock the second runqueue and the second task
tries to lock the first runqueue. Neither task succeeds because the other task holds the lock. Both tasks wait forever for each other. Like an impasse creating a traffic
deadlock, this out-of-order locking results in the tasks waiting for each other, forever, and thus, also deadlocking. If both tasks obtained the locks in the same order,
this would not have happened. See Chapters 7 and 8 for the full scoop on locking.

The Priority Arrays

Each runqueue contains two priority arrays, the active and the expired array. Priority arrays are defined in kernel/sched.cas struct prio array.
Priority arrays are the data structure that provide O(1) scheduling. Each priority array contains one queue of runnable processors per priority level. These queues
contain lists of the runnable processes at each priority level. The priority arrays also contain a priority bitmap used to efficiently discover the highest priority runnable
task in the system.

struct prio_array {

int nr active; /* number of tasks */
unsigned long bitmap [BITMAP_SIZE]; /* priority bitmap */
struct list head queue[MAX PRIO]; /* priority queues */

}i

MAX_ PRIO is the number of priority levels on the system. By default, this is 140. Thus, there is one st ruct list head for each priority. BITMAP SIZEis
the size that an array of unsigned long typed variables would have to be to provide one bit for each valid priority level. With 140 priorities and 32-bit words,
this is five. Thus, b i tmap is an array with five elements and a total of 160 bits.

Each priority array contains a bi tmap field that has at least one bit for every priority on the system. Initially, all the bits are zero. When a task of a given priority
becomes runnable (that is, its state becomes TASK _RUNNING), the corresponding bit in the bitmap is set to one. For example, if a task with priority seven is
runnable, then bit seven is set. Finding the highest priority task on the system is therefore only a matter of finding the first set bit in the bitmap. Because the number of
priorities is static, the time to complete this search is constant and unaffected by the number of running processes on the system. Furthermore, each supported
architecture in Linux implements a fast find first set algorithm to quickly search the bitmap. This method is called sched find first bit ().

Each priority array also contains an array called queue of struct list head queues, one queue for each priority. Each list corresponds to a given priority
and, in fact, contains all the runnable processes of that priority that are on this processor's runqueue. Finding the next task to run is as simple as selecting the next
element in the list. Within a given priority, tasks are scheduled round robin.
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The priority array also contains a counter, nr _active. This is the number of runnable tasks in this priority array.

Recalculating Timeslices

Many operating systems (older versions of Linux included) have an explicit method for recalculating each task's timeslice when they have all reached zero. Typically,
this is implemented as a loop over each task, such as:

for (each task on the system) {
recalculate priority
recalculate timeslice

The priority and other attributes of the task are used to determine a new timeslice. This approach has some problems:

« It potentially can take a long time. Worse, it scales O (n) for n tasks on the system.

* The recalculation must occur under some sort of lock protecting the task list and the individual process descriptors. This results in high lock contention.

* The nondeterminism of a randomly occurring recalculation of the timeslices is a problem with deterministic real-time programs.

« It is just gross (which is a quite legitimate reason for improving something in the Linux kernel).
The new Linux scheduler alleviates the need for a recalculate loop. Instead, it maintains two priority arrays for each processor: both an active array and an expired
array. The active array contains all the tasks in the associated runqueue that have timeslice left. The expired array contains all the tasks in the associated runqueue that
have exhausted their timeslice. When each task's timeslice reaches zero, its timeslice is recalculated before it is moved to the expired array. Recalculating all the

timeslices is then as simple as just switching the active and expired arrays. Because the arrays are accessed only via pointer, switching them is as fast as swapping two
pointers. This is performed in schedule () :

struct prio_array array = rg->active;
if (larray->nr_active) {
rg->active = rg->expired;
rg->expired = array;

This swap is a key feature of the new O(1) scheduler. Instead of recalculating each process's priority and timeslice all the time, the O(1) scheduler performs a simple
two-step array swap. This resolves the previously discussed problems.
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The act of picking the next task to run and switching to it is implemented via the schedule () function. This function is called explicitly by kernel code that wants to
sleep and it is also invoked whenever a task is to be preempted.

The schedule () function is relatively simple for all it must accomplish. The following code determines the highest priority task:

struct task_struct *prev, *next;
struct list head *queue;

struct prio_array array;

int idx;

prev = current;

array = rg->active;

idx = sched find first bit(array->bitmap);
queue = array->queue + idx;

next = list entry(queue->next, struct task struct, run list);

First, the active priority array is searched to find the first set bit. This bit corresponds to the highest priority task that is runnable. Next, the scheduler selects the first
task in the list at that priority. This is the highest priority runnable task on the system and is the task the scheduler will run. See Figure 3.2.

schedule()

sched_find_first_set()

bit 0 priority 0 N
Q /—.—\ bit 7 (pricrity 7) —————

% lists of all runnable

tasks, by priority

140-bit priority array
bit 139 (priority 139)

run the first process in the list A4 OF Tunnatics tasks
for priority 7
Figure 3.2 The Linux O(1) scheduler algorithm.

If prev does not equal nex t, then a new task has been selected to run. The architecture-specific function context switch () is called to switch from prev
to next. We will discuss context switching in a subsequent section.
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Two important points should be noted from the previous code. First, it is very simple and consequently quite fast. Second, the number of processes on the system has
no effect on how long this code takes to execute. There is no loop over any list to find the most suitable process. In fact, nothing affects how long the schedule ()
code takes to find a new task. It is constant in execution time.

Calculating Priority and Timeslice

At the beginning of this chapter, we looked at how priority and timeslice are used to influence the decisions the scheduler makes. Additionally, we looked at I/O-bound
and processor-bound tasks and why it is beneficial to boost the priority of interactive tasks. Now, let's look at the actual code that implements this design.

Processes have an initial priority that is called the nice value. This value ranges from —20 to 19 with a default of zero. Nineteen is the lowest and —20 is the highest
priority. This value is stored in the static prio member of the process's task struct. The value is called the static priority because it does not change from
what the user specifies. The scheduler, in turn, bases its decisions on the dynamic priority that is stored in pr i 0. The dynamic priority is calculated as a function of the
static priority and the task's interactivity.

The method effective prio () returns the dynamic priority of a task. The method begins with the task's nice value and computes a bonus or penalty in the
range —5 to +5 based on the interactivity of the task. For example, a highly interactive task with a nice value of ten can have a dynamic priority of five. Conversely, a
mild processor hog with a nice value of ten can have a dynamic priority of 12. Tasks that are only mildly interactive receive no bonus or penalty and their dynamic
priority is equal to their nice value.

Of course, the scheduler does not magically know whether a process is interactive. It requires some heuristic that is capable of accurately reflecting whether a task is
1/0-bound or processor-bound. The most indicative metric is how long the task sleeps. If a task spends most of its time asleep it is I/O-bound. If a task spends more
time runnable than sleeping, it is not interactive. This extends to the extreme; a task that spends nearly all the time sleeping is completely I/O-bound, whereas a task that
spends nearly all its time runnable is completely processor-bound.

To implement this heuristic, Linux keeps a running tab on how much time a process is spent sleeping versus how much time the process spends in a runnable state. This
value is stored in the sleep avg member of the task struct. Itranges from zero to MAX SLEEP_AVG, which defaults to 10 milliseconds. When a task
becomes runnable after sleeping, sleep avg is incremented by how long it slept, until the value reaches MAX SLEEP_AVG. For every timer tick the task runs,
sleep_ avg isdecremented until it reaches zero.

This metric is surprisingly accurate. It is computed based not only on how long the task sleeps but also on how little it runs. Therefore, a task that spends a great deal of
time sleeping, but also continually exhausts its timeslice will not be awarded a huge bonus—the metric works not just to award interactive tasks but also to punish
processor-bound
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tasks. It is also not vulnerable to abuse. A task that receives a boosted priority and timeslice quickly loses the bonus if it turns around and hogs the processor. Finally,
the metric provides quick response. A newly created interactive process quickly receives a large s1eep avg. Despite this, because the bonus or penalty is applied
against the initial nice value, the user can still influence the system's scheduling decisions by changing the process's nice value.

Timeslice, on the other hand, is a much simpler calculation because dynamic priority is already based on nice value and interactivity (the metrics the scheduler assumes
are most important). Therefore, timeslice can simply be based on the dynamic priority. When a process is first created, the new child and the parent split the parent's
remaining timeslice. This provides fairness and prevents users from forking new children to get unlimited timeslice. After a task's timeslice is exhausted, however, it is
recalculated based on the task's dynamic priority. The function task timeslice () returnsanew timeslice for the given task. The calculation is a simple scaling
of the priority into a range of timeslices. The higher a task's priority the more timeslice it receives per round of execution. The maximum timeslice, given to the highest
priority tasks, is MAX TIMESLICE, which by default is 200 milliseconds. Even the lowest priority tasks receive at least the minimum timeslice,

MIN TIMESLICE, which is 10 milliseconds. Tasks with the default priority (nice value of zero and no interactivity bonus or penalty) receive a timeslice of 100
milliseconds. See Table 3.1.

Table 3.1 Scheduler Timeslices

Timeslice Duration Interactivity Nice Value
Initial half of parent's N/A parent's
Minimum 10ms low high
Default 100ms average zero
Maximum 200ms high low

The scheduler provides one additional aide to interactive tasks: If a task is sufficiently interactive, when it exhausts its timeslice, it will not be inserted into the expired
array, but instead reinserted back into the active array. Recall that timeslice recalculation is provided via the switching of the active and the expired arrays. Normally, as
processes exhaust their timeslice, they are moved from the active array to the expired array. When there are no more processes in the active array, the two arrays are
switched; the active becomes the expired, and the expired becomes the active. This provides O (1) timeslice recalculation. It also provides the possibility that an
interactive task can become runnable, but fail to run again until the array switch occurs, because the task is stuck in the expired array. Reinserting interactive tasks back
into the active array alleviates this problem. Note that the task will not run immediately, but will be scheduled round robin with the other tasks at its priority. The logic to
provide this feature is implemented in scheduler tick (), whichis called via the timer interrupt (discussed in Chapter 9, "Timers and Time Management"):
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struct task_struct *task = current;
struct runqueue *rg = this_rq();

if (!--task->time_slice) {
if (!TASK INTERACTIVE (task) || EXPIRED STARVING (rq))
enqueue_task (task, rg->expired) ;
else
enqueue_task (task, rg->active);

First, the code decrements the process's timeslice and checks if it is now zero. If it is, the task is expired and it needs to be inserted into an array, so the code first
checks if the task is interactive via the TASK_INTERACTIVE () macro. This macro computes whether a task is "interactive enough" based on its nice value. The
lower the nice value (the higher the priority), the less interactive a task needs to be. A nice 19 task can never be interactive enough to be reinserted. Conversely, a nice
—20 task would need to be a heavy processor hog not to be reinserted. A task at the default nice value, zero, needs to be relatively interactive to be reinserted, but it is
not too difficult. Next, the EXPIRED STARVING () macro checks whether there are processes on the expired array that are starving—that is, if the arrays have
not been switched in a relatively long time. If they have not been switched recently, reinserting the current task into the active array will further delay the switch;
additionally starving the tasks on the expired array. If this is not the case, the process can be inserted into the active array. Otherwise, it is inserted into the expired
array, which is the normal practice.

Sleeping and Waking Up

Tasks that are sleeping (blocked) are in a special non-runnable state. This is important because otherwise the scheduler would select tasks that did not want to run or,
worse, sleeping would have to be implemented as busy looping. A task sleeps for a number of reasons, but always by waiting for some event. The event can be a
specified amount of time, more data from a file I/O, or another hardware event. A task can also involuntarily go to sleep when it tries to obtain a contended semaphore
in the kernel (this is covered in Chapter 8, "Kernel Synchronization Methods™). A common reason to sleep is file I/O—for example, the task issued a read () request
on a file which needs to be read in from disk. As another example, the task could be waiting for keyboard input. Whatever the case, the kernel behavior is the same:
The task marks itself as sleeping, puts itself on a wait queue, removes itself from the runqueue, and calls schedule () to select a new process to execute. Waking
back up is the inverse; the task is set runnable, removed from the wait queue, and added back to the runqueue.

As discussed in the previous chapter, two states are associated with sleeping, TASK_INTERRUPTIBLE and TASK UNINTERRUPTIBLE. They differ only in
that tasks in the TASK_UNINTERRUPT IBLE state ignore signals, whereas tasks in the TASK_INTERRUPTIBLE state will wake up prematurely and respond
to a signal if one is issued. Both types of sleeping tasks sit on a wait queue, waiting for an event to occur, and are not runnable.
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Sleeping is handled via wait queues. A wait queue is a simple list of processes waiting for an event to occur. Wait queues are represented in the kernel by

wake queue_ head_t.Wait queues are created statically via DECLARE_WAIT QUEUE HEAD () ordynamically viainit waitqueue head().
Processes put themselves on a wait queue and mark themselves not runnable. When the event associated with the wait queue occurs, the processes on the queue are
awakened. It is important to implement sleeping and waking correctly, to avoid race conditions.

Some simple interfaces for sleeping used to be in wide use. These interfaces, however, have races; it is possible to go to sleep after the condition becomes true. In that
case, the task might sleep indefinitely. Therefore, the recommended method for sleeping in the kernel is a bit more complicated:

/* 'q' is the wait queue we wish to sleep on */
DECLARE_WAITQUEUE (wait, current);

add_wait_queue (g, &wait);

set_current state (TASK_INTERRUPTIBLE) ; /* or TASK_UNINTERRUPTIBLE */

while (!condition) /* 'condition' is the event we are waiting for */
schedule () ;

set_current state (TASK_RUNNING) ;

remove wait queue(q, &wait);

The steps performed by the task to add itself to a wait queue are

» Create a wait queue entry via DECLARE_WAITQUEUE ().

* Add itself to a wait queue via add_wait queue (). This wait queue will awaken the process when the condition it is waiting for occurs. Of course, there
needs to be code elsewhere that calls wake up () on the queue when the event actually does occur.

* Change the process state to TASK_INTERRUPTIBLE or TASK _UNINTERRUPTIBLE.
« Test if the condition is true; if it is, there is no need to sleep. If it is not true, call schedule ().
» When the task awakes, it will again check if the condition is true. If it is, it will exit the loop. Otherwise, it will again call schedule () and repeat.
*» Now that the condition is true, the task can set itself to TASK_RUNNING and remove itself from the wait queue via remove wait queue ().
If the condition occurs before the task goes to sleep, the loop will terminate, and the task will not erroneously go to sleep. Note that kernel code often has to perform

various other tasks in the body of the loop. For example, it might need to release locks before calling schedule () and reacquire them after, check if a signal was
delivered and return —-ERESTARTSY S, or react to other events.



Page 45

Waking is handled via wake up (), which wakes up all the tasks waiting on the given wait queue. Itcalls try to wake up (), which sets the task's state to
TASK_RUNNING,callsactivate task () toadd the task to a runqueue, and sets need_resched if the woken task's priority is higher than the priority of
the current task. The code that causes the event to occur typically calls wake up () afterward. For example, when data arrives from the hard disk, the VFS calls
wake up () onthe wait queue that holds the processes waiting for the data.

An important note about sleeping is that there are spurious wake ups. Just because a task is woken up does not mean the event it is waiting for has occurred; sleeping
should always be handled in a loop that ensures the condition the task is waiting for has indeed occurred.

_ _add_wait_gueue() adds task to a wait queue, sets the task’s siate to
TASK_INTERRUPTIBLE, and calls schedule(). schedule() calls
deactivate_task() which removes the task from the runqusue.

(task is runnable) (task is not runnable)

receives a signal
< task state is set to TASK_RUNNING
and task executes signal handler

TASK_INTERRUPTIBLE

Event the task is waiting for occurs, and try_to_wake_up() sets the task to
TASK_RUNNING, calls activate_task() to add the task to a runqueue, and
calls schedule(). _ _remove_wait_gueue() removes the task from the wait
queus.

Figure 3.3 Sleeping and waking up.
The Load Balancer

As discussed, the Linux scheduler implements separate runqueues and locking for each processor on a symmetrical multiprocessing system. That is, each processor
maintains its own list of processes and operates the scheduler only on those tasks. The entire scheduling system is, in effect, unique to each processor. How, then, does
the scheduler enforce any sort of global scheduling policy on multiprocessing systems? What if the runqueues become unbalanced, say with five processes on one
processor's runqueue, but only one on another? The solution is the load balancer, which works to ensure that the runqueues are balanced. The load balancer compares
the current processor's runqueue to the other runqueues in the system. If it finds an imbalance, it pulls processes from the busier runqueue to the current runqueue.
Ideally, every runqueue will have the same number of processes. That is a lofty goal, but the load balancer comes close.
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The load balancer is implemented in kernel/sched.cas load_balance ().Ithastwo methods of invocation. It is called by schedule () whenever the
current runqueue is empty. It is also called via timer: every 1 millisecond when the system is idle and every 200 milliseconds otherwise. On uniprocessor systems,
load_balance () isnever called and, in fact, is not even compiled into the kernel image because there is only a single runqueue and thus, no balancing is needed.

The load balancer is called with the current processor's runqueue locked and with interrupts disabled to protect the runqueues from concurrent access. In the case
where schedule () calls load balance (), its job is pretty clear, because the current runqueue is empty and finding any process and pulling it onto this
runqueue is advantageous. When the load balancer is called via timer, however, its job might be a less apparent; it needs to resolve any imbalance between the
runqueues to keep them about even. See Figure 3.4.

Process 1
Process 2

Process 3 \ Process 3

Process 4 Process 4
I load_balance()

Process & Process 5

Process 6 pull process from one rungueue Process 6

to another to relisve imbalances

Process 20 Process 15
Processor 1's Rungueue Processor 2's Rungueus
total processes: 20 total processes: 15

Figure 3.4 The load balancer.
The load_balance () function and related methods are fairly large and complicated although the steps they perform are comprehensible:

* First, Lload_balance () calls find busiest queue () to determine the busiest runqueue. In other words, this is the runqueue with the greatest
number of processes in it. If there is no runqueue that has 25% or more processes than the current, find busiest queue () returns NULL and
load balance () returns. Otherwise, the busiest runqueue is returned.

* Second, 1load_balance () decides which priority array on the busiest runqueue it wants to pull from. The expired array is preferred because those tasks
have not run in a relatively long time, thus are most likely not in the processor's cache (that is, they are not cache hot). If the expired priority array is empty, the
active one is the only choice.
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* Next, Load balance () finds the highest priority (smallest value) list that has tasks, because it is more important to fairly distribute high priority tasks than
lower priority ones.

» Each task of the given priority is analyzed, to find a task that is not running, not prevented to migrate via processor affinity, and not cache hot. If the task meets this
criteria, pull task () is called to pull the task from the busiest runqueue to the current runqueue.

* As long as the runqueues remain imbalanced, the previous two steps are repeated and more tasks are pulled from the busiest runqueue to the current. Finally,
when the imbalance is resolved, the current runqueue is unlocked and 1oad balance () returns.

Preemption and Context Switching

Context switching, the switching from one runnable task to another, is handled by the context switch () function definedin kernel/sched. c.Itis called
by schedule () when a new process has been selected to run. It does two basic jobs:

* Calls switch mm(),whichisdefinedin include/asm/mmu_context . h,to switch the virtual memory mapping from the previous process's to that
of the new process.

* Calls switch to(),definedin include/asm/system.h,to switch the processor state from the previous process's to the current's. This involves
saving and restoring stack information and the processor registers.

The kernel, however, must know when to call schedule () .Ifitonly called schedule () when code explicitly did so, user-space programs could run
indefinitely. Instead, the kernel provides the need_resched flag to signify whether a reschedule should be performed (See Table 3.2). This flag is set by
scheduler tick () when aprocess runs out of times-liceandby try to wake up () when a process that has a higher priority than the currently running
process is awakened. The kernel will check the flag, see that it is set, and call schedule () to switch to a new process. The flag is a message to the kernel that the
scheduler should be invoked as soon as possible because another process deserves to run.

Table 3.2 Functions for Accessing and Manipulating need resched

Function Purpose
set tsk need resched (task) Set the need_resched flag in the given process
clear tsk need resched (task) Clear the need resched flag in the given process

need_resched() Test the value of the need resched flag; return true if set and false otherwise
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Upon returning to user-space or returning from an interrupt, the need_resched flag is checked. If it is set, the kernel invokes the scheduler before continuing.

The flag is per-process, and not simply global, because it is faster to access a value in the process descriptor (because of the speed of current and because it might
be in a cache line) than a global variable. Historically, the flag was global before the 2.2 kernel. In 2.2 and 2.4, the flag was an int insidethe task struct.In
2.6, it was moved into a single bit of a special flag variable inside the thread info structure. As you can see, the kernel developers are never satisfied.

User Preemption

User preemption occurs when the kernel is about to return to user-space, need_resched is set, and therefore, the scheduler is invoked. If the kernel is returning to
user-space, it knows it is in a safe quiescent state. In other words, if it is safe to continue executing the current task, it is also safe to pick a new task to execute.
Consequently, whenever the kernel is preparing to return to user-space, either on return from an interrupt or after a system call, the value of need_reschedis
checked. If it is set, the scheduler is invoked to select a new (more fit) process to execute. Both the return paths for return from interrupt and return from system call
are architecture-dependent and typically implemented in assembly in ent ry . S (which, aside from kernel entry code, also contains kernel exit code).

In short, user preemption can occur

» When returning to user-space from a system call

» When returning to user-space from an interrupt handler

Kernel Preemption

The Linux kernel, unlike most other Unix variants and many other operating systems, is a fully preemptive kernel. In non-preemptive kernels, kernel code runs until
completion. That is, the scheduler is not capable of rescheduling a task while it is in the kernel—kernel code is scheduled cooperatively, not preemptively. Kernel code
runs until it finishes (returns to user-space) or explicitly blocks. In the 2.6 kernel, however, the Linux kernel became preemptive; it is now possible to preempt a task at
any point, so long as the kernel is in a state in which it is safe to reschedule.

So when is it safe to reschedule? The kernel is capable of preempting a task running in the kernel so long as it does not hold a lock. That is, locks are used as markers
of regions of non-preemptibility. Because the kernel is SMP-safe, if a lock is not held, the current code is reentrant and capable of being preempted.

The first change in supporting kernel preemption was the addition of a preemption counter, preempt count, to each process's thread-1info structure. This
counter begins at zero and increments for each lock that is acquired and decrements for each lock that is released. When the counter is zero, the kernel is preemptible.
Upon return from
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interrupt, if returning to kernel-space, the kernel checks the values of need reschedand preempt count.Ifneed reschedissetand

preempt count is zero, then a more important task is runnable and it is safe to preempt. Thus, the scheduler is invoked. If preempt count is nonzero, a
lock is held and it is unsafe to reschedule. In that case, the interrupt returns as usual to the currently executing task. When all the locks that the current task is holding
are released, preempt count returns to zero. At that time, the unlock code checks if need resched is set. If so, the scheduler will be invoked. Enabling and
disabling kernel preemption is sometimes required in kernel code and will be discussed in Chapter 8.

Kernel preemption can also occur explicitly, when a task in the kernel blocks or explicitly calls schedule (). This form of kernel preemption has always been
supported because no additional logic is required to ensure the kernel is in a state that is safe to preempt. It is assumed that the code that explicitly calls schedule
() knows it is safe to reschedule.

Kernel preemption can occur

» When returning to kernel-space from an interrupt handler
* When kernel code becomes preemptible again
» If a task in the kernel explicitly calls schedule ()

« If a task in the kernel blocks (which results in a call to schedule ())

Real-Time

Linux provides two real-time scheduling policies, SCHED FIFO and SCHED RR. The normal, not real-time scheduling policy is SCHED OTHER.
SCHED_FIFO implements a simple first-in, first-out scheduling algorithm without timeslices. A runnable SCHED FIFO task will always be scheduled over any
SCHED_OTHER tasks. When a SCHED FIFO task becomes runnable, it will continue to run until it blocks or explicitly yields the processor; it has no timeslice and
can run indefinitely. Two or more SCHED FIFO tasks at the same priority run round robin. Ifa SCHED FIFO task is runnable, all tasks at a lower priority cannot
run until it finishes.

SCHED_RRisidentical to SCHED FIFO except that each process can only run until it exhausts a predetermined timeslice. That is, SCHED RRis SCHED FIFO
with timeslices—it is a real-time round-robin scheduling algorithm.

Both real-time scheduling policies implement static priorities. The kernel does not calculate dynamic priority values for real-time tasks. This ensures that a real-time
process at a given priority will always preempt a process at a lower priority.

The real-time scheduling policies in Linux provide soft real-time behavior. Soft real-time refers to the notion that the kernel tries to schedule applications within timing
deadlines, but the kernel does not promise to always be able to fulfill them. Conversely, hard real-time systems are guaranteed to meet any scheduling requirements
within certain limits. Linux makes no guarantees on the ability to schedule real-time tasks. The
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Linux scheduling policy, however, does ensure real-time tasks are running whenever they are runnable. Despite not having a design that guarantees hard real-time
behavior, the real-time scheduling performance in Linux is quite good. The 2.6 kernel is capable of meeting very stringent timing requirements.

Real-time priorities range inclusively from one to MAX RT PRIO minus one. By default, MAX RT PRIO is 100—therefore, the default real-time priority range is

one to 99. This priority space is shared with the nice values of SCHED OTHER tasks; they use the space from MAX RT PRIOto(MAX RT PRIO + 40).By
default, this means the —20 to +19 nice range maps directly onto the 100 to 140 priority range.

Scheduler-Related System Calls

Linux provides a family of system calls for the management of scheduler parameters. These system calls allow manipulation of process priority, scheduling policy, and
processor affinity, as well as provide an explicit mechanism to yield the processor to other tasks.

Various books—and your friendly system man pages—provide reference to these system calls (which are all implemented in the C library without much wrapper—they

just invoke the system call). Table 3.3 lists the system calls and provides a brief description. How system calls are implemented in the kernel is discussed in Chapter 4,
"System Calls."

Table 3.3 Scheduler-Related System Calls

System Call

nice ()

sched setscheduler ()
sched getscheduler ()
sched_setparam()

sched getparam ()

sched get priority max()
sched get priority min()
sched rr get interval()
sched setaffinity()
sched getaffinity ()

sched_yield()

Description

Set a process's nice value

Set a process's scheduling policy
Get a process's scheduling policy
Set a process's real-time priority
Get a process's real-time priority
Get the maximum real-time priority
Get the minimum real-time priority
Get a process's timeslice value
Get a process's processor affinity
Set a process's processor affinity

Temporarily yield the processor

Scheduling Policy and Priority-Related System Calls

The sched setscheduler () and sched _getscheduler () system calls set and get a given process's scheduling policy and real-time priority,
respectively. Their implementation, like most system calls, involves a lot of argument checking, setup, and cleanup. The important work, however, is merely to read or
writethe policyand rt priority valuesinthe process's task struct.
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The sched setparam() and sched getparam () system calls set and get a process's real-time priority. This call merely returns rt_priority
encoded in a special sched param structure. The calls sched _get priority max () and sched get priority min () returnthe maximum
and minimum priorities, respectively, for a given scheduling policy. The maximum priority for the real-time policies is MAX USER_RT_PRIO minus one; the minimum
is one.

For normal tasks, the nice () function increments the given process's static priority by the given amount. Only root can provide a negative value, thereby lowering the
nice value and increasing the priority. The nice () function calls the kemel's set _user nice () function, whichsetsthe static_ prio and prio valuesin
the task's task_struct, as appropriate.

Processor Affinity System Calls

The Linux scheduler enforces hard processor affinity. That is, although it tries to provide soft or natural affinity by attempting to keep processes on the same processor,
the scheduler also enables a user to say "this task must remain on this subset of the available processors no matter what." This hard affinity is stored as a bitmask in the
task's task struct as cpus_allowed. The bitmask contains one bit per possible processor on the system. By default, all bits are set and, therefore, a
process is potentially runnable on any processor. The user, however, via sched setaffinity (), canprovide a different bitmask of any combination of one or
more bits. Likewise, the call sched getaffinity () will return the current cpus_allowed bitmask.

The kernel enforces hard affinity in a very simple manner. First, when a process is first created, it inherits its parent's affinity mask. Because the parent is running on an
allowed processor, the child thus runs on an allowed processor. Second, when the affinity of a processor is changed, the kernel uses the migration threads to push the
task onto a legal processor. Finally, the load balancer only pulls tasks to an allowed processor. Therefore, a process only ever runs on a processor whose bit is set in
the cpus_allowed field of its process descriptor.

Yielding Processor Time

Linux provides the sched yield () system call as a mechanism for a process to explicitly yield the processor to other waiting processes. It works by removing
the process from the active array (where it currently is, because it is running) and inserting it into the expired array. This has the effect of not only preempting the
process and putting it at the end of its priority list, but putting it on the expired list—guaranteeing it will not run for a while. Because real-time tasks never expire, they
are a special case. Therefore, they are merely moved to the end of their priority list (and not inserted into the expired array). In earlier versions of Linux, the semantics
ofthe sched yield () call were quite different; at best, the task was only moved to the end of their priority list. The yielding was often not for a very long time.
Nowadays, applications and even kernel code should be certain they truly want to give up the processor before calling sched yield ().
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Kernel code, as a convenience, can call yield (), which ensures the task's state is TASK_RUNNING, and then calls sched yield (). User-space
applications use the sched_yield () system call.
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4
System Calls

THE KERNEL PROVIDES A SET OF INTERFACES for interacting with the system for processes running in user-space. These interfaces give applications access to hardware and
other operating system resources. The interfaces act as the messenger between applications and the kernel, with the applications issuing various requests, and the kernel
fulfilling them (or telling the application to go away). The fact that these interfaces exist, and that applications are not free to do directly whatever they please, is key to
providing a stable system and avoiding a big mess.

System calls provide a layer between the hardware and user-space processes. This layer serves three primary purposes. First, it provides an abstracted hardware
interface for user-space. When reading or writing from a file, for example, applications need not concern themselves with the type of disk, media, or even the filesystem
on which the file resides. Second, system calls ensure system security and stability. With the kernel acting as a middleman between system resources and user-space,
the kernel can arbitrate access based on permissions and other criterion. For example, this prevents applications from incorrectly using hardware, stealing other
process's resources, or doing harm to the system. Finally, a single common layer between user-space and the rest of the system allows for the virtual system afforded
processes as discussed in Chapter 2, "Process Management." If applications were free to access system resources without the kernel's knowledge, it would be nearly
impossible to implement multitasking and virtual memory. In Linux, system calls are the only means user-space has of interfacing with the kernel; they are the only legal
entry point into the kernel. Indeed, other interfaces, such as device files or / proc, are ultimately accessed via system calls. Interestingly, Linux implements far fewer

system calls than most systemsl .

This chapter addresses the role and implementation of system calls in Linux.

" About 250 system calls are on x86 (each architecture is allowed to define unique system calls). Although not all operating systems publish their exact system calls,
some operating systems are estimated to have over one thousand.
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APIs, POSIX, and the C Library

Typically, applications are programmed against an Application Programming Interface (API), not directly to system calls. This is important, because no direct
correlation is needed between the interface that applications make use of and the actual interface provided by the kernel. An API defines a set of programming
interfaces used by applications. Those interfaces can be implemented as a system call, implemented using multiple system calls, or implemented without using system
calls at all. In fact, the same API can exist on multiple systems and provide the same interface to applications while the implementation of the API itself can differ greatly
from system to system.

One of the more popular application programming interfaces in the Unix world is based on the POSIX standard. Technically, POSIX is comprised of a series of
standards from the IEEE? that aim to provide a portable operating system standard roughly based on Unix. Linux is POSIX compliant.

POSIX is an excellent example of the relationship between APIs and system calls. On most Unix systems, the POSIX-defined API calls have a strong correlation to
the system calls. Indeed, the POSIX standard was created to resemble the interfaces provided by earlier Unix systems. On the other hand, some systems that are far
from Unix, such as Windows NT, offer POSIX-compatible libraries.

The system call interface in Linux, as with most Unix systems, is provided in part by the C library. The C library implements the main API on Unix systems, including
the standard C library and the system call interface. The C library is used by all C programs and, because of C's nature, is easily wrapped by other programming
languages for use in their programs. The C library additionally provides the majority of the POSIX APIL

call to printf() F-I*printﬁ} inthe C IitJrarf--‘xL write() in the C |ibrary/_ 12N write() system call

Application » C library ———» Kemnel
Figure 4.1 The relationship between applications, the C library, and the kernel with a callto printf ().
From the programmer's point of view, system calls are irrelevant; all the programmer is concerned with is the API. Conversely, the kernel is only concerned with the
system calls; what library calls and applications make use of the system calls is not of the kernel's concern. Nonetheless, it is important for the kernel to keep in mind

the potential uses of a system call and keep the system call as general and flexible as possible.

A common motto related to interfaces in Unix is "provide mechanism, not policy." In other words, Unix system calls exist to provide a specific function in a very
abstract sense. The manner in which the function is used is not any of the kernel's business.

* [EEE (eye-triple-E) is the Institute of Electrical and Electronics Engineers. It is a nonprofit professional association involved in numerous technical areas and
responsible for many important standards, such as POSIX. For more information, visithttp: //www.ieee.orgq.
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Syscalls

System calls (often called syscalls in Linux) are typically accessed via function call. They can define one or more arguments (inputs) and might result in one or more side
effects, for example writing to a file or copying some data into a provided pointer. System calls also provide a return value of type long4 that signifies success or error.

Usually, although not always, a negative return value denotes error. A return value of zero is usually (but again not always) a sign of success. Unix system calls, on

error, will write a special error code into the global e r rno variable. This variable can be translated into human-readable errors via library functions such as perror
0.

Finally, system calls, of course, have a defined behavior. For example, the system call getpid () is defined to return an integer that is the current process's PID. The
implementation of this syscall in the kernel is very simple:

asmlinkage long sys_getpid(void)
{

return current->tgid;

}

Note that the definition says nothing of the implementation. The kernel must provide the intended behavior of the system call, but is free to do so with whatever
implementation it desires as long as the result is correct. Of course, this system call is as simple as they come and there are not too many other ways to implement it

(certainly no simpler method exists)s.

We can make a couple of observations about system calls even from this simple example. First, note the a sm1inkage modifier on the function declaration. This is a

bit of magic to tell the compiler to look only on the stack for this function's arguments. This is a required modifier for all system calls. Second, note that the getpid
() systemcallis definedas sys _getpid () inthekernel. This is the naming convention taken with all system calls in Linux: system call bar () is implemented in

the kernel as function sys _bar ().

System Call Numbers

In Linux, each system call is assigned a syscall number. This is a unique number that is used to reference a specific system call. When a user-space process executes a
system call, the syscall number delineates which syscall was executed; the process does not refer to the syscall by name.

? Note the might here. Although nearly all system calls have a side effect (that is, they result in some change of the system's state), a few syscalls, such as getpid (),
merely return some data from the kernel.

* The use of type 1ong is for compatibility with 64-bit architectures.

> You might be wondering why does getpid () return tgid, the thread group ID? This is because, in normal processes, the TGID is equal to the PID. With
threads, the TGID is the same for all threads in a thread group. This enables the threads to call getpid () and get the same PID.
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The syscall number is important; when assigned, it cannot change, or else compiled applications will break. Likewise, if a system call is removed, its system call number
cannot be recycled. Linux provides a "not implemented" system call, sys _ni syscall (), which does nothing except return ~-ENOSY S, the error corresponding

to an invalid system call. This function is used to "plug the hole" in the rare event a syscall is removed.

The kernel keeps a list of all registered system calls in the system call table, storedin sys call table.Itis architecture-dependent and typically defined in
entry. S. This table assigns each valid syscall to a unique syscall number.

System Call Performance

System calls in Linux are faster than in many other operating systems. This is partly because of Linux's incredibly fast context switch times; entering and exiting the
kernel is a streamlined and simple affair. The other factor is the simplicity of the system call handler and the individual system calls themselves.

System Call Handler

It is not possible for user-space applications to execute kernel code directly. They cannot simply make a function call to a method existing in kernel-space because the
kernel exists in a protected memory space. If applications could directly read and write to the kernel's address space, system security would go out the window.

Instead, user-space applications must somehow signal the kernel that they want to execute a system call and have the system switch to kernel mode, where the system
call can be executed in kernel-space by the kernel on behalf of the application.

The mechanism to signal the kernel is a software interrupt: Incur an exception and then the system will switch to kernel mode and execute the exception handler. The
exception handler, in this case, is actually the system call handler. The defined software interrupt on x86 is the int $0x80 instruction. It triggers a switch to kernel
mode and the execution of exception vector 128, which is the system call handler. The system call handler is the aptly-named function system call ().Itis

architecture-dependent and typically implemented in assembly in entry . st
Denoting the Correct System Call
Simply entering kernel-space alone is not sufficient because there are multiple system calls, all of which enter the kernel in the same manner. Thus, the system call

number must be passed into the kernel. On x86, storing the system call number in the e a x register before issuing the software interrupt does this. The system call
handler then reads the value from e a x. Other architectures do something similar.

% Much of the following description of the system call handler is based on the x86 version. Do not fret, they are all very similar.
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The system_call () function checks the validity of the given system call number by comparing itto NR_syscalls. Ifitis larger than or equal to
NR_syscalls, the function returns ~-ENOSYS. Otherwise, the specified system call is invoked:

call *sys_call table(, 3eax, 4)

Because each element in the system call table is 32-bits (four bytes), the kernel multiplies the given system call number by four to arrive at its location in the system call
table. See Figure 4.2.

N TS ST

call read() read() wrapper systam_call() sys_read()

k./‘\-— /\____,/

Application C library Syscall Handler sys_read()
read() wrapper

User Space Kernel Space

Figure 4.2 Invoking the system call handler and executing a system call.
Parameter Passing
In addition to the system call number, most syscalls require that one or more parameters be passed to them. Somehow, user-space must relay the parameters to the
kernel during the exception trap. The easiest way to do this is via the same means the syscall number is passed: The parameters are stored in registers. On x86, the
registers ebx, ecx, edx, esi,and edi contain, in order, the first five arguments. In the unlikely case of six or more arguments, a single register is used to hold a

pointer to user-space where all the parameters exist.

The return value is sent to user-space also via register. On x86, it is written into the e a x register.

System Call Implementation

The actual implementation of a system call in Linux does not need to concern itself with the behavior of the system call handler. Adding a new system call to Linux is
relatively easy. The hard work lies in designing and implementing the system call; registering it with the kernel is simple. Let's look at the steps involved in writing a new
system call for Linux.
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The first step in implementing a system call is defining its purpose. What will it do? The syscall should have exactly one purpose. Multiplexing syscalls (a single system
call that does wildly different things depending on a flag argument) is discouraged in Linux. Look at ioct1 () as an example of what not to do.

What are the new system call's arguments, return value, and error codes? The system call should have a clean and simple interface with the smallest number of
arguments possible. The semantics and behavior of a system call are important; they must not change, because existing applications will come to rely on them.

Designing the interface with an eye toward the future is important. Are you needlessly limiting the function? Design the system call to be as general as possible. Do not
assume its use today will be the same as its use tomorrow. The purpose of the system call will remain constant but its uses may change. Is the system call portable? Do
not make assumptions about an architecture's wordsize or endianness. Chapter 16, "Portability," discusses these issues. Make sure you are not making poor
assumptions that will break the system call in the future. Remember the Unix motto: "provide mechanism, not policy."

When you write a system call, it is important to realize the need for portability and robustness, not just today but in the future. The basic Unix system calls have survived
this test of time; most of them are just as useful and applicable as they were nearly thirty years ago!

Verifying the Parameters

System calls must carefully verify all their parameters to ensure they are valid and legal. The system call runs in kernel-space, and if the user is able to pass invalid input
into the kernel without restraint, the system's security and stability can suffer.

For example, file I/O syscalls must check whether the file descriptor is valid. Process-related functions must check whether the provided PID is valid. Every parameter
must be checked to ensure it is not just valid and legal, but correct.

One of the most important checks is the validity of the pointers that the user provides. Imagine if a process could pass any pointer into the kernel unchecked, even one
for which it did not have read access! Processes could then trick the kernel into copying data for which they did not have permission to access, such as data belonging
to another process. Before following a pointer into user-space, the system must ensure

= The pointer points to a region of memory in user-space.

= The pointer points to a region of memory in the process's address space.

= [f reading, the memory is marked readable. If writing, the memory is marked writable.

The kernel provides two methods for performing the requisite checks and the desired copy to and from user-space. Note kernel code must never blindly follow a
pointer into user-space! One of these two methods must always be used.

For writing into user-space, the method copy to user () is provided. It takes three parameters. The first is the destination memory address in the process's
address space. The
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second is the source pointer in kernel-space. Finally, the third argument is the size in bytes of the data to copy.

For reading from user-space, the method copy from user () isanalogousto copy to_ user (). The function reads from the second parameter into the
first parameter the amount of bytes specified in the third parameter.

Both of these functions return the number of bytes they failed to copy on error. On success, they return zero. It is standard for the syscall to return ~EFAULT in the
case of such an error.

Let's consider an example system call that uses both copy from user () and copy to user ().Thissyscall, silly copy (), is utterly worthless; it
copies data from its first parameter into its second. This is highly suboptimal as it involves the intermediate extraneous copy into kernel-space for absolutely no reason.
But it helps illustrate the point.

asmlinkage long sys_silly copy(unsigned long *src, unsigned long *dst, unsigned
long len)

{
unsigned long buf;

/* fail if the kernel wordsize and user wordsize do not match */
if (len != sizeof (buf))
return -EINVAL;

/* copy src, which is in the user's address space, into buf */
if (copy_ from user (&buf, src, len))
return -EFAULT;

/* copy buf into dst, which is in the user's address space */
if (copy_to_user(dst, &buf, len))
return -EFAULT;

/* return amount of data copied */
return len;

Note that both copy to user () and copy from user () may block. This occurs, for example, if the page containing the user data is not in physical
memory but swapped to disk. In that case, the process sleeps until the page fault handler can bring the page from the swap file on disk into physical memory.

A final check is for valid permission. In older versions of Linux, it was standard for syscalls that require 7oot privilege to use suser () . This function merely checked

whether a user was root or not; this is now removed and the finer-grained "capabilities" system is in place. The new system allows specific access checks on specific

resources. A call to capable () with a valid capabilities flag returns nonzero if the caller holds the specified capability and zero otherwise. For example, capable
(CAP_SYS NICE) checks whether the caller has the ability to modify nice values of other processes. By default, the
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superuser possesses all capabilities and non-root possess none. See <linux/capability.h> fora list of all capabilities and what rights they entail.

System Call Context

As discussed in Chapter 2, "Process Management," the kernel is in process context during the execution of a system call. The cur rent pointer points to the current
task, which is the process that issued the syscall.

In process context, the kernel is capable of sleeping (for example, if the system call blocks on a call or explicitly calls schedule () ) and is fully preemptible. These
two points are important. First, the ability to sleep means system calls can make use of the majority of the kernel's functionality. As we will see in Chapter 5, "Interrupts

and Interrupt Handlers," the ability to sleep greatly simplifies kernel programming7. The fact that process context is preemptible implies that, like user-space, the current
task may be preempted by another task. Because the new task may then execute the same system call, care must be exercised to ensure that system calls are reentrant.
Of course, this is the same concerns that symmetrical multiprocessing introduces. Protecting against reentrancy is covered in Chapter 7, "Kernel Synchronization
Introduction," and Chapter 8, "Kernel Synchronization Methods."

When the system call returns, control continues in system_call (), which ultimately switches to user-space and continues the execution of the user process.
Final Steps in Binding a System Call
After the system call is written, it is trivial to register it as an official system call:

= Add an entry to the end of the system call table. This needs to be done for each architecture that supports the system call (which, for most calls, is all the
architectures). The position of the syscall in the table, starting at zero, is its system call number. For example, the tenth entry in the list is assigned syscall number
nine.

= For each architecture supported, the syscall number needs to be defined in include/asm/unistd.h.

= The syscall needs to be compiled into the kernel image (as opposed to compiled as a module). This can be as simple as putting the system call in a relevant file in
kernel/.

Let us look at these steps in more detail with a fictional system call, foo () . First, we want to add sys_foo () to the system call table. For most architectures, the
table is located in ent ry . S and it looks like

7 Interrupt handlers cannot sleep, and thus are much more limited in what they can do than system calls running in process context.
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ENTRY (sys_call_table)
.long sys restart syscall /* 0 */
.long sys_exit
.long sys_fork
.long sys read
.long sys_write
.long sys_ open /* 5 */

.long sys timer delete

.long sys_clock_settime

.long sys clock gettime /* 265 */
.long sys_clock_getres

.long sys_clock_nanosleep

We then append our new system call to the tail of this list:
.long sys_foo

Although we did not explicitly specify it, our system call is then given the next subsequent syscall number, 268. For each architecture we wish to support, our system
call must be added to the architecture's system call table (it need not receive the same syscall number under each architecture). Usually, you would want to make the
system call available to each architecture. Note the convention of placing the number in a comment every five entries; this makes it easy to find out which syscall is
assigned which number.

Next, we add our system call number to include/asm/unistd. h, which currently looks somewhat like

/*
* This file contains the system call numbers.

*/

#define _ NR restart_syscall 0
#define  NR exit 1

#define _ NR fork 2
#define _ NR read 3
#define _ NR write 4
#define _ NR open 5
#define _ NR timer delete 263
#define = NR clock settime 264
#define _ NR clock gettime 265
#define  NR clock getres 266

#define _ NR clock nanosleep 267
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We then add the following to the end of the list:

#define _ NR foo 268

Finally, we implement the actual £oo () system call. Because the system call must be compiled into the core kernel image in all configurations, we will put it in
kernel/sys.c. Youshould put it wherever the function is most relevant; for example, if the function is related to scheduling, you could putitin sched. c.

/*
* sys_foo - everyone's favorite system call.
*

* An utterly worthless function that just returns
* "out of memory" on each invocation.
*/
asmlinkage long sys_foo(void)
{
return -ENOMEM;
}

User-space can now invoke the foo () system call.
Accessing the System Call from User-Space

Generally, the C library supports system calls. User applications can pull in function prototypes from the standard headers and link with the C library to use your system
call (or the library routine that in turn uses your syscall call). If you just wrote the system call, however, it is doubtful that glibc already supports it!

Thankfully, Linux provides a set of macros for wrapping access to system calls. It sets up the register contents and issues the int $0x80 instruction. These macros
arenamed syscalln (), where n is between zero and six. The number corresponds to the number of parameters passed into the syscall because the macro needs
to know how many parameters to expect and, consequently, push into registers. For example, consider the system call open (), defined as

long open(const char *Component, int flags, int mode)
The syscall macro to use this system call without explicit library support would be

#define NR_ open 5
_syscall3(long, open, const char *, Component, int, flags, int, mode)

Then, the application can simply call open ().

For each macro, there are 2+2*n parameters. The first parameter corresponds to the return type of the syscall. The second is the name of the system call. Next
follows the type and name for each parameter in order of the system call. The NR_open defineis in <asm/unistd.h>, itis the system call number. This expands
into a C function with inline assembly; the assembly performs the steps discussed in the previous section to push the system call number and parameters into the correct
registers and issue the software
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interrupt to trap into the kernel. Placing this macro in an application is all that is required to use the open () system call.
Why Not to Implement a System Call

It is easy to implement a new system call, but that in no way should encourage you to do so. Often, much more viable alternatives to providing a new system call are
available. Let's look at the pros, the cons, and the alternatives.

The pros of implementing a new interface as a syscall:

= System calls are simple to implement and easy to use.

= System call performance on Linux is blindingly fast.
The cons:

= You need a syscall number, which needs to be officially assigned to you during a developmental kernel series.
= After the system call is in a stable series kernel, it is written in stone. The interface cannot change without breaking user-space applications.
» Each architecture needs to separately register the system call and support it.

= For simple exchanges of information, a system call is overkill.
The alternatives:

= Implement a device node and read () andwrite () toit. Use ioctl () to manipulate specific settings or retrieve specific information.
= Certain interfaces, such as semaphores, can be represented as file descriptors and manipulated as such.
= The current trend is to implement a simple RAM-based filesystem where files represent the specific interfaces. Applications perform normal file I/O on the files to

access the interface. Chapter 13, "Virtual Filesystems," provides more details.

For many interfaces, system calls are the correct answer. Linux, however, has tried to avoid simply adding a system call to support each new abstraction that comes
along. The result has been an incredibly clean system call layer with very few regrets or deprecations (interfaces no longer used or supported).

The slow rate of addition of new system calls is a sign that Linux is a relatively stable and feature-complete operating system. Only a handful of system calls were added
in total during the 2.3 and 2.5 kernel development series. The vast majority of these new calls were to provide performance enhancements.
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5
Interrupts and Interrupt Handlers

ONE OF THE MAJOR RESPONSIBILITIES OF THE kernel is managing the hardware connected to the machine. As part of this work, the kernel needs to communicate with the
machine's individual devices. Given that processors are typically magnitudes faster than the hardware they talk to, it is not ideal for the kernel to issue a request and wait
for a response from the potentially slow hardware. Instead, because the hardware is comparatively slow to respond, the kernel must be free to go off and handle other
work and deal with the hardware only after it has actually completed its work. One solution to this problem is polling. Periodically, the kernel can check the status of
the hardware in the system and respond accordingly. This incurs overhead, however, regardless of whether the hardware is even active or ready because the polling
occurs repeatedly at regular intervals. A better solution is to provide a mechanism for the hardware to signal the kernel when attention is needed. This solution is called
interrupts.

Interrupts

Interrupts allow hardware to communicate with the processor. For example, when you type, the keyboard controller (the hardware device which controls the
keyboard) issues an interrupt to alert the operating system to available key presses. Interrupts are special electrical signals sent from hardware devices to the processor.
The processor receives the interrupt and signals the operating system so that the OS can process the new data. Hardware devices generate interrupts asynchronously
with respect to the processor clock—they can occur at any time. In turn, the kernel can be interrupted at anytime to process interrupts.

An interrupt is physically produced by electronic signals originating from the devices and directed into input pins on an interrupt controller. The interrupt controller, in
turn, sends a signal to the processor. The processor detects this signal and interrupts its current execution to handle the interrupt. The processor can then notify the
operating system that an interrupt has occurred, and the operating system can handle the interrupt appropriately.
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Different devices are associated with unique interrupts by means of a unique value associated with each interrupt. This way, interrupts from the keyboard are distinct
from interrupts from the hard drive. This enables the operating system to differentiate between interrupts and to know which hardware device caused which interrupt. In
turn, the operating system can service each interrupt with a unique handler.

These interrupt values are often called interrupt request (IRQ) lines. Typically, they are given a numeric value—for example, on a PC, IRQ zero is the timer interrupt
and IRQ one is the keyboard interrupt. Not all interrupt numbers are so rigidly defined, however. Interrupts associated with devices on the PCI bus, for example, are
dynamically assigned. Other non-PC architectures have similar dynamic assignments for interrupt values. The important notion is that a specific interrupt is associated
with a specific device, and the kernel knows this.

Exceptions

Exceptions are often discussed at the same time as interrupts. Unlike interrupts, they occur synchronously with respect to the processor clock. In fact, they are often
called synchronous interrupts. Exceptions are produced by the processor while executing instructions either in response to programming error (for example, divide
by zero) or abnormal conditions that must be handled by the kernel (for example, a page fault). Because many processor architectures handle exceptions in a similar
manner to interrupts, the kernel infrastructure for handling the two is similar. Much of the discussion of interrupts (asynchronous interrupts generated by hardware) in
this chapter also pertains to exceptions (synchronous interrupts generated by the processor itself).

Interrupt Handlers

The function the kernel runs in response to a specific interrupt is called an interrupt handler or interrupt service routine (ISR). Each device that generates interrupts
has an associated interrupt handler. For example, one function handles interrupts from the system timer, while another function handles interrupts generated by the
keyboard. The interrupt handler for a device is part of the device's driver—the kernel code that manages the device.

In Linux, interrupt handlers are normal C functions. They match a specific prototype, which enables the kernel to pass the handler information in a standard way, but
otherwise they are ordinary functions. What differentiates interrupt handlers from other kernel functions is that the kernel invokes them in response to interrupts and that
they run in a special context, which we will discuss, called interrupt context.

Because an interrupt can occur at any time, an interrupt handler can in turn be executed at any time. It is imperative that the handler run quickly, to resume execution of
the interrupted code as soon as possible. Therefore, although it is important to the hardware that the interrupt is serviced immediately, it is important to the rest of the
system that the interrupt handler execute in as short a period as possible.

In the very least, an interrupt handler's job is to acknowledge the interrupt's receipt to the hardware. Usually, however, interrupt handlers often have a large amount of
work
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to perform. For example, consider the interrupt handler for a network device. On top of responding to the hardware, the interrupt handler needs to copy networking
packets from the hardware into memory, process it, and push it down to the appropriate protocol stack or application. Obviously, this can be a lot of work.

Top Halves Versus Bottom Halves

These two goals—that an interrupt handler execute quickly, but additionally perform a large amount of work—are plainly in contrast. Because of these conflicting goals,
the processing of interrupts is split into two parts, or halves. The interrupt handler is the fop half—it is run immediately upon receiving the interrupt and performs only
the work that is time critical, such as acknowledging receipt of the interrupt or resetting the hardware. Work that can be performed later is delayed until the bottom
half. The bottom half runs later, at a more convenient time, with all interrupts disabled—quite often, the bottom half runs as soon as the interrupt handler returns. Linux
provides various mechanisms for implementing bottom halves, and they are all discussed in Chapter 6, "Bottom Halves and Deferring Work."

Registering an Interrupt Handler

Drivers can register an interrupt handler and enable a given interrupt line for handling via the function

int request_irg(unsigned int irq,
irgreturn_t (*handler) (int, void *, struct pt regs *),
unsigned long irgflags,
const char * devname,
void *dev_id)

The first parameter, i rq, specifies the interrupt number to allocate. For some devices, for example legacy PC devices such as the system timer or keyboard, this value
is typically hard-coded. For most other devices, it is probed or otherwise determined dynamically.

The second parameter, handler, is a pointer to the actual interrupt handler that services this interrupt. This function is invoked whenever the interrupt is received by
the operating system. Note the specific prototype of the handler function—it takes three parameters and has a return value of irgreturn_t. We will discuss this
function later in this chapter.

The third parameter, 1 rgf 1ags, may be either zero or a bit mask of one or more of the following flags:

* SA_INTERRUPT: This flag specifies that the given interrupt handler is a fast interrupt handler. Historically, Linux differentiated between interrupt handlers that
were fast versus slow. Fast handlers were assumed to execute quickly, but potentially very often, so the behavior of the interrupt handling was modified to enable
them to execute as quickly as possible. Today, there is only one difference: fast interrupt handlers run with all interrupts disabled on the local processor. This
enables a fast
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handler to complete quickly, without possible interruption from other interrupts. By default (without this flag), all interrupts are enabled except the interrupt lines of
any running handlers, which are masked out on all processors. Sans the timer interrupt, most interrupts do not want to enable this flag.

* SA_SAMPLE RANDOM: This flag specifies that interrupts generated by this device should contribute to the kernel entropy pool. The kernel entropy pool
provides truly random numbers derived from various random events. If this flag is specified, the timing of interrupts from this device will be fed to the pool as
entropy. Do not set this if your device issues interrupts at a predictable rate (for example, the system timer) or can be influenced by external attackers (for
example, a networking device). On the other hand, most other hardware generates interrupts at nondeterministic times and is, therefore, a good source of entropy.
For more information on the kernel entropy pool, see Appendix C, "Kernel Random Number Generator."

* SA_SHIRQ: This flag specifies that the interrupt line can be shared among multiple interrupt handlers. Each handler registered on a given line must specify this
flag; otherwise, only one handler can exist per line. More information on shared handlers is provided in a following section.

The fourth parameter, devname, is an ASCII text representation of the device associated with the interrupt. For example, this value for the keyboard interrupt on a
PCis "keyboard". These text names are used by /proc/irgand /proc/interrupts for communication with the user, which we will discuss shortly.

The fifth parameter, dev_1id, is used primarily for shared interrupt lines. When an interrupt handler is freed (discussed later) dev_id provides a unique cookie to
allow the removal of only the desired interrupt handler from the interrupt line. Without this parameter, it would be impossible for the kernel to know which handler to
remove on a given interrupt line. You can pass NULL here if the line is not shared, but you must pass a unique cookie if your interrupt line is shared (and unless your
device lives on the ISA bus, there is good chance it must support sharing). This pointer is also passed into the interrupt handler on each invocation. A common practice
is to pass the driver's device structure: This pointer is unique and might be useful to have within the handler.

On success, request_irqg () returns zero. A nonzero value indicates error, in which case the specified interrupt handler was not registered. A common error is —
EBUSY, which denotes that the given interrupt line is already in use (and either the current user or you did not specify SA SHIROQ).

Note request_irq () might sleep and, therefore, cannot be called from interrupt context or other situations where code cannot block. It is a common mistake to
assume request _irqg () canbe safely called from a context where it is not safe to sleep. This is partly due to why request irq () cansleep—it is indeed
unclear. On registration, an entry corresponding to the interrupt is created in /proc/1irq. The function proc_mkdixr () is used to create new procfs entries. This
function calls proc_create () to
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set up the new procfs entries, which in turn calls kmalloc () to allocate memory. As we will discuss in Chapter 10, "Memory Management and Addressing,"
kmalloc () cansleep. So there you go!

To request an interrupt line and install a handler in a driver:
if (request_irg(irgn, my_ interrupt, SA SHIRQ, "my device", dev)) {

printk (KERN_ERR "my device: cannot register IRQ %d\n", irgn);
return -EIO;

In this example, 1 rqn is the requested interrupt line, my interrupt is the handler, the line can be shared, the device is named "my device," and we passed
dev for dev_id. On failure, the code prints an error and returns. If the call returned zero, the handler was successfully installed. From that point forward, the handler
is invoked in response to an interrupt. It is important to initialize hardware and register an interrupt handler in the proper order to prevent the interrupt handler from
running before the device is fully initialized.

Freeing an Interrupt Handler

To free an interrupt line, call

void free irg(unsigned int irg, void *dev_id)

If the specified interrupt line is not shared, this function removes the handler and disables the line. If the interrupt line is shared, the handler identified via dev_idis
removed. The line itself is only disabled when the last handler is removed. Now we can see why a unique dev_ i d is important. With shared interrupt lines, a unique
cookie is required to differentiate between the multiple handlers on the single line and allow free irq () toremove the correct handler. In either case (shared or

unshared), if dev_id is non-NULL, it must match the desired handler.

Acallto free irg () mustbe made from process context.

Writing an Interrupt Handler

The following is a typical declaration of an interrupt handler:

static irgreturn_t intr handler (int irqg, void *dev_id, struct pt_regs *regs)

Note this matches the argument givento request_irq (). The first parameter, i rq, is the numeric value of the interrupt line the handler is servicing. This is not
entirely useful today, except perhaps in printing log messages. Prior to the 2.0 kernel, there was no dev_ id parameter and, thus, i rq was used to differentiate

between multiple devices using the same driver and, therefore, the same interrupt handler (as an example, consider a computer with multiple hard drive controllers).

The second parameter, dev_1d, is a generic pointer to the same dev_id that was givento request_irqg () when the interrupt handler was registered. If this
value is
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unique (which is recommended to support sharing), it can act as a cookie to differentiate between multiple devices potentially using the same interrupt handler.
dev_ id might also point to a structure of use to the interrupt handler. Because the device structure is both unique to each device and potentially useful to have within
the handler, it is typically passed for dev_id.

The final parameter, regs, holds a pointer to a structure containing the processor registers and state prior to servicing the interrupt. They are rarely used, except for
debugging.

The return value of an interrupt handler is the special type 1 rqreturn_t. An interrupt handler can return two special values, IRQ NONE or IRQ HANDLED.
The former is returned when the interrupt handler detects an interrupt for which its device was not the originator. The later is returned if the interrupt handler was
correctly invoked, and its device did cause the interrupt. Alternatively, IRQ_RETVAL (x) may be used. If x is nonzero, this macro returns TRQ_HANDLED.
Otherwise, the macro returns IRQ _NONE. These special values are used to let the kernel know if devices are issuing spurious (unrequested) interrupts. If all the
interrupt handlers on a given interrupt line return TRQ NONE, then the kernel can detect the problem. Note the curious return type, irgreturn_t, which is simply
an int. This value is used to provide backward compatibility with earlier kernels, which did not have this feature—before 2.6, interrupt handlers returned void.
Drivers may simply typedef irgreturn_t tovoid and then work in 2.4 without further modification.

The interrupt handler is normally marked stat ic, since it is never called directly from another file.
The role of the interrupt handler depends entirely on the device and its reasons for issuing the interrupt. At a minimum, most interrupt handlers need to provide
acknowledgment to the device that they received the interrupt. Devices that are more complex need to additionally send and receive data and perform extended work
in the interrupt handler. As mentioned, the extended work is pushed as much as possible into the bottom half handler, which is discussed in the next chapter.
Reentrancy and Interrupt Handlers
Interrupt handlers in Linux need not be reentrant. When a given interrupt handler is executing, the corresponding interrupt line is masked out on all processors,
preventing another interrupt on the same line from being received. Normally all other interrupts are enabled, so other interrupts are serviced, but the current line is
always disabled. Consequently, the same interrupt handler is never invoked concurrently to service a nested interrupt.

Shared Handlers

A shared handler is registered and executed much like a non-shared handler. Three main differences are

» The SA_SHIRQ flag must be setinthe f1ags argumentto request irqg().

* The dev_ id argument must be unique to each registered handler. A pointer to any per-device structure is sufficient; a common choice is the device structure as
itis
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both unique and potentially useful to the handler. You cannot pass NULL for a shared handler!

* The interrupt handler must be capable of distinguishing whether its device actually generated an interrupt. This requires both hardware support and associated
logic in the handler. If the hardware does not offer this capability, there would be no way for the interrupt handler to know whether its associated device or some
other device sharing the line caused the interrupt.

All drivers sharing the interrupt line must meet the previous requirements. If any one device does not share fairly, none can share the line. When request_irq() is
called with SA_ SHIRQ specified, the call will succeed only if the interrupt line is currently not registered, or if all registered handlers on the line also specified
SA_SHIRQ. Note that in 2.6, unlike the behavior in older kernels, shared handlers can mix usage of SA_ INTERRUPT.

‘When the kernel receives an interrupt, it invokes sequentially each registered handler on the line. Therefore, it is important that the handler be capable of distinguishing
whether it generated a given interrupt. The handler must quickly exit if its associated device did not generate the interrupt. This requires the hardware device to have a
status register (or similar mechanism) that the handler can check. Most hardware does indeed have such a feature.

A Real Life Interrupt Handler

Let's look at a real interrupt handler, from the RTC (real-time clock) driver, found in drivers/char/rtc. c. An RTC is found in many machines, including PCs.
It is a device, separate from the system timer, which is used to set the system clock, provide an alarm, or supply a periodic timer. Setting the system clock is typically
done by writing into a specific register or I/O range. An alarm or periodic timer, however, is normally implemented via interrupt. The interrupt is equivalent to a real-
world clock alarm: When the interrupt is sent, the alarm or timer is going off.

When the RTC driver loads, the function rtc_init () isinvoked to initialize the driver. One of its duties is to register the interrupt handler:

if (request_irg(RTC_IRQ, rtc_interrupt, SA INTERRUPT, "rtc", NULL) {
printk (KERN_ERR "rtc: cannot register IRQ %d\n", rtc_irq);
return -EIO;

}

From this, we see the interrupt line is stored in RTC_ IRQ. This is a preprocessor define that specifies the RTC interrupt for a given architecture. On the PC, for
example, the RTC is always located at IRQ 8. The second parameter is our interrupt handler, rt ¢ interrupt, which runs with all interrupts disabled, thanks to
the SA_ INTERRUPT flag. From the fourth parameter, we see that the driver name is " r t ¢ ". Because this device cannot share the interrupt line and the handler has
no use for any special value, NULL is passed for dev_id.
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Finally, the handler itself:

static irgreturn_t rtc_interrupt(int irqg, void *dev_id, struct pt_regs *regs)

{

* Can be an alarm interrupt, update complete interrupt,
* or a periodic interrupt. We store the status in the
* low byte and the number of interrupts received since
* the last read in the remainder of rtc_irg_ data.

spin_lock (&rtc_lock);

rtc_irg data += 0x100;
rtc_irg_data &= ~Oxff;
rtc_irg data |= (CMOS_READ(RTC_INTR FLAGS) & 0xFO);

if (rtc_status & RTC_TIMER ON)
mod timer (&rtc_irq timer, jiffies + HZ/rtc freq + 2*HZ/100);

spin_unlock (&rtc_lock);

/*

* Now do the rest of the actions

*/
spin_lock (&rtc_task_lock);

if (rtc_callback)
rtc_callback—>func(rtc_callback—>private_data);
spin_unlock (&rtc_task lock);
wake_ up_interruptible (&rtc_wait);

kill_fasync (&rtc_async_queue, SIGIO, POLL_IN);
return IRQ_ HANDLED;
This function is invoked whenever the machine receives the RTC interrupt. First, note the spin lock calls—the first set ensures that rtc_irqg data is not accessed

concurrently by another processor on an SMP machine, and the second set protects rtc_callback from the same. Locks are discussed in Chapter 8, "Kernel
Synchronization Methods."

rtc_irqg_data stores information about the RTC and is updated on each interrupt to reflect the status of the interrupt.
Next, if an RTC periodic timer is set, it is updated viamod_timer (). Timers are discussed in Chapter 9, "Timers and Time Management."

The final bunch of code, wrapped with the second set of spin locks, executes a possible preset callback function. The RTC driver enables a callback function to be
registered and executed on each RTC interrupt.
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Finally, this function returns IRQ_ HANDLED to signify that it properly handled this device. Because the interrupt handler does not support sharing, and there is no
mechanism by which the RTC can detect a spurious interrupt, this handler always returns IRQ HANDLED.

Interrupt Context

When executing an interrupt handler or bottom half, the kernel is in interrupt context. Recall that process context is the mode of operation the kernel is in while it is
executing on behalf of a process—for example, executing a system call or running a kernel thread. In process context, the cur rent macro points to the associated
task. Furthermore, because a process is coupled to the kernel in process context, process context can sleep or otherwise invoke the scheduler.

Interrupt context, on the other hand, is not associated with a process. The cur rent macro is not relevant (although it points to the interrupted process). Without a
backing process, interrupt context cannot sleep—how would it ever reschedule? Therefore, you cannot call certain functions from interrupt context. If a function sleeps,
you cannot use it from your interrupt handler—this limits the functions which one can call from an interrupt handler.

Interrupt context is time critical because the interrupt handler interrupted other code. Code should be quick and simple. Busy looping is discouraged. This is a very
important point; always keep in mind that your interrupt handler interrupted other code (possibly even another interrupt handler on a different line!). Because of this
asynchronous nature, it is imperative that all interrupt handlers are as quick and as simple as possible. As much as possible, work should be pushed out from the
interrupt handler and performed in a bottom half, which runs at a more convenient time.

Finally, the interrupt handler does not receive its own stack. Instead, it shares the kernel stack of the process it interrupted. If no process is running, it uses the idle
task's stack. Because interrupt handlers share the stack, they must be exceptionally frugal with what they allocate there. Of course, the kernel stack is limited to begin

with', so all kernel code should be cautious.

Implementation of Interrupt Handling

Perhaps not surprising, the implementation of the interrupt handling system in Linux is very architecture-dependent. The implementation depends on the processor, the
type of interrupt controller used, and the design of the architecture and machine itself.

Figure 5.1 is a diagram of the path an interrupt takes through hardware and the kernel.

" The kernel stack is SKB on 32-bit architectures and 16KB on 64-bit architectures. This is shared by the executing process context code and a// interrupts that occur.
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Figure 5.1 The path an interrupt takes from hardware and on through the kernel.

A device issues an interrupt by sending an electric signal over its bus to the interrupt controller. If the interrupt line is enabled (they can be masked out), the interrupt
controller sends the interrupt to the processor. In most architectures, sending a signal to the processor over a special pin accomplishes this. Unless interrupts are
disabled in the processor (which can also happen), the processor immediately stops what it is doing, disables the interrupt system, and jumps to a predefined location in
memory and executes the code located there. This predefined point is setup by the kernel and is the entry point for interrupt handlers.

The interrupt's journey in the kernel begins at a predefined entry point, just like system calls. For each interrupt line, the processor jumps to a unique location. This way,
the kernel knows the IRQ number of the incoming interrupt. The initial entry point simply saves this value and stores the current register values (which belong to the
interrupted task) on the stack; then, the kernel calls do TRQ () . From here onward, most of the interrupt handling code is written in C—however, it is still
architecture-dependent.

do_TRQ() is declared as
unsigned int do IRQ(struct pt regs regs)

Because the C calling convention places function arguments at the top of the stack, the pt regs structure contains the initial register values that were previously
saved in the assembly entry routine. Because the interrupt value was also saved, do_ IRQ () can extract it. The x86 code is

int irqg = regs.orig eax & Oxff;

After the interrupt line is calculated, do_ TRQ () acknowledges the receipt of the interrupt and disables interrupt delivery on the line. On normal PC machines, these
operations are handled by mask and ack 8259A(),whichdo IRQ () calls.
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Next, do_IRQ () ensures that a valid handler is registered on the line, and that it is enabled and not currently executing. If so, it calls hardware IRQ event
() to run the installed interrupt handlers for the line. On x86, handle IRQ event () is

int handle_ IRQ event (unsigned int irqg, struct pt_regs *regs, struct irgaction

*action)
{
int status = 1;
if (! (action->flags & SA INTERRUPT))
local_irg enable();
do {
status |= action->flags;
action->handler(irqg, action->dev_id, regs);
action = action->next;

} while (action);

if (status & SA SAMPLE RANDOM)
add_interrupt_randomness (irq);
local irqg disable();

return status;

First, because the processor disabled interrupts, they are turned back on unless SA_INTERRUPT was specified during the handler's registration. Recall that
SA_INTERRUPT specifies that the handler must be run with interrupts disabled. Next, each potential handler is executed in a loop. If this line is not shared, the loop
terminates after the first iteration. Otherwise, all handlers are executed. After that, add _interrupt randomness () iscalledif SA_SAMPLE RANDOM
was specified during registration. This function uses the timing of the interrupt to generate entropy for the random number generator. Appendix C, "Kernel Random
Number Generator," has more information on the kernel's random number generator. Finally, interrupts are again disabled (do IRQ () expects them to still be off)
and the function returns. Back in do_ IRQ () , the function cleans up and returns to the initial entry point, which then jumpsto ret from intr ().

Theroutine ret from_intr () is, like the initial entry code, written in assembly. This routine checks whether a reschedule is pending (recall from Chapter 3,
"Scheduling," that this implies need resched is set). If a reschedule is pending, and the kernel is returning to user-space (that is, the interrupt interrupted a user
process), schedule () is called. If the kernel is returning to kernel-space (that is, the interrupt interrupted the kernel itself), schedule () is called only if the
preempt count is zero (otherwise it is not safe to preempt the kernel). After schedule () returns, or if there is no work pending, the initial registers are
restored and the kernel resumes whatever was interrupted.
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On x86, the initial assembly routines are located in arch/1386/kernel/entry. S, and the C methods are located in arch/i386/kernel/irqg.c.
Other supported architectures are similar.

/proc/interrupts

Procfs is a virtual filesystem that exists only in kernel memory and is typically mounted as /p r o c. Reading or writing files in procfs invokes kernel functions that
simulate reading or writing from a real file. A relevant example is the /proc/interrupts file, which is populated with statistics related to interrupts on the
system. Here is sample output from a uniprocessor PC:

CPUO
0: 3602371 XT-PIC timer
1: 3048 XT-PIC 18042
2: 0 XT-PIC cascade
4: 2689466 XT-PIC wuhci-hcd, ethO
5: 0 XT-PIC EMU10K1
12: 85077 XT-PIC uhci-hcd
15: 24571 XT-PIC aic7xxx
NMI: 0
LOC: 3602236
ERR: O

The first column is the interrupt line. On this system, interrupts numbered 0-2, 4, 5, 12, and 15 are present. Handlers are not installed on lines not displayed. The
second column is a counter of the number of interrupts received. In fact, a column is present for each processor on the system, but this machine only has one processor.
As we can see, the timer interrupt has received 3,602,371 interruptsQ, whereas the sound card (EMU10K1) has received none (which is an indication that it has not
been used since the machine booted). The third column is the interrupt controller handling this interrupt. X T-P I C corresponds to the standard PC programmable
interrupt controller. On systems with an I/O APIC, most interrupts would list ITO-APIC-1level or IO-APIC-edge as their interrupt controller. Finally, the last
column is the device associated with this interrupt. This name is supplied by the devname parameter to request _1irq (), as discussed previously. If the interrupt
is shared, as is the case with interrupt four in this example, all the devices registered on the interrupt line are listed.

For the curious, procfs code is located primarily in £s/proc. The function that provides /proc/interrupts is, not surprisingly, architecture-dependent and
named show _interrupts().

* After reading Chapter 9, "Timers and Time Management," can you tell how long the system has been up (in terms of HZ) knowing the number of timer interrupts
which have occurred?



Page 77

Interrupt Control

The Linux kernel implements a family of interfaces for manipulating the state of interrupts on a machine. These interfaces enable you to disable the interrupt system for
the current processor or mask out an interrupt line for the entire machine. These routines are all very architecture-dependent and can be found in
<asm/system.h>and <asm/irqg.h>. See Table 5.1 for a complete listing of the interfaces.

Reasons to control the interrupt system generally boil down to needing to provide synchronization. By disabling interrupts, you can guarantee that an interrupt handler
won't preempt your current code. Moreover, disabling interrupts also disables kernel preemption. Neither disabling interrupt deliver nor disabling kernel preemption
provides any protection from concurrent access from another processor, however. Because Linux supports multiple processors, kernel code more generally needs to
obtain some sort of lock to prevent access to shared data simultaneously from another processor. These locks are often obtained in conjunction with disabling local
interrupts. The lock provides protection against concurrent access from another processor, whereas disabling interrupts provides protection against concurrent access
from a possible interrupt handler. Chapters 7 and 8 discuss the various problems of synchronization and their solutions. Nevertheless, understanding the kernel interrupt
control interfaces is important.

Disabling and Enabling Interrupts

To disable interrupts locally for the current processor (and only the current processor) and later enable them:

local irqg disable();
/* interrupts are disabled .. */
local irqg enable();

These functions are usually implemented as a single assembly operation (of course, this depends on the architecture). Indeed, on x86, Llocal irqg disable () is
asimple c1iand local irg enable () isasimple sti instruction. For non-x86 hackers, c11i and st i are the assembly calls to clear and set the allow
interrupts flag, respectively. In other words, they disable and enable interrupt delivery on the issuing processor.

The local irqg disable () routine is dangerous if interrupts were already disabled prior to its invocation. The corresponding call to

local irg enable () unconditionally enables interrupts, despite the fact that they were off to begin with. Instead, a mechanism is needed to restore interrupts
to a previous state. This is a common concern because a given code path in the kernel can be reached both with and without interrupts enabled, depending on the call
chain. For example, imagine the previous code snippet is part of a larger function. This function is called by two other functions: one of which disables interrupts and
one of which does not. Because it is becoming harder as the kernel grows to know all the code paths leading up to a function, it is much safer to save the state of the
interrupt system before disabling it. Instead, when you are ready to enable them, you simply restore them to their original state:



Page 78

unsigned long flags;

local_irqg_save(flags);
/* interrupts are disabled .. */

local_irqg restore(flags); /* interrupts are restored to their previous state .. */

Note these methods are implemented at least in part as macros, so the £1ags parameter is seemingly passed by value. The parameter contains architecture-specific
data containing the state of the interrupt systems. Because at least one supported architecture incorporates stack information into the value (SPARC), £1ags cannot
be passed to another function (in other words, it must remain on the same stack frame). For this reason, the call to save and the call to restore must occur in the same
function.

All of the previous functions can be called from both interrupt and process context.
No more global c11 ()

The kernel formerly provided a method to disable interrupts on all processors in the system. Furthermore, if another processor called this method, it would have to
wait until interrupts were enabled before continuing. This function was named c1i () and the corresponding enable call was named st i () —very x86 centric.
These interfaces were removed during 2.5, and consequently all interrupt synchronization must now use a combination of local interrupt control and spin locks
(discussed in Chapter 8, "Kernel Synchronization Methods"). This means that code that previously only had to disable interrupts globally to ensure mutual exclusive
access to shared data now needs to do a bit more work.

Previously, driver writers could assume a c11i () used in their interrupt handler and anywhere else the shared data was accessed would provide mutual exclusion.
The c11 () call would ensure that no other interrupt handlers (and thus their specific handler) would run. Furthermore, if another processor entereda c11i ()
protected region, it would not continue until the original processor exited their c11 () protected region and called sti ().

Removing the global c11 () has a handful of advantages. First, it forces driver writers to implement real locking. A fine-grained lock with a specific purpose is
faster than a global lock, which is effectively what c11i () is. Second, it streamlined a lot of code and removed a bunch more. The resulting interrupt system is
simpler and easier to comprehend.

Disabling a Specific Interrupt Line

In the previous section, we looked at functions that disable all interrupt deliver for an entire processor. In some cases, it is useful to disable only a specific interrupt line
for the entire system. This is called masking out an interrupt line. As an example, you might want to disable delivery of a device's interrupts before manipulating its
state. Linux provides four interfaces for this task:

void disable irqg(unsigned int irq);
void disable irg nosync(unsigned int irq);
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void enable irg(unsigned int irq);
void synchronize irqg(unsigned int irq);

The first two functions disable a given interrupt line in the interrupt controller. This disables delivery of the given interrupt to a// processors in the system. Additionally,
the disable irqg() function will not return until any currently executing handler completes. Thus, callers are assured not only that new interrupts will not be
delivered on the given line, but also that any already executing handlers have exited. The function disable irqg nosync () does not have this property.

The function synchronize irqg () will wait for a specific interrupt handler to exit, if it is executing, before returning.
Calls to these functions nest. For each callto disable irg() ordisable irg nosync () ona given interrupt line, a corresponding call to
enable irg() isrequired. Only onthe lastcallto enable irq() is the interrupt line actually enabled. For example, if disable irq() is called twice,

the interrupt line will not actually be enabled again until the second call to enable irqg().

All three of these functions can be called from interrupt or process context and do not sleep. If calling from interrupt context, be careful! You do not want, for example,
to enable an interrupt line while you are handling it (recall that the interrupt line of a handler is masked out while it is being serviced).

It would be rather rude to disable an interrupt line that is shared among multiple interrupt handlers. Disabling the line disables interrupt deliver for a/l devices on the line.

Therefore, drivers for newer devices tend not to use these interfaces’. Because PCI devices have to support interrupt line sharing by specification, they should not use
these interfaces at all. Thus, disable irqg () and friends are found more often in older legacy devices, such as the PC parallel port.

Status of the Interrupt System

It is often useful to know the state of the interrupt system (for example, whether interrupts are enabled or disabled) or whether you are currently executing in interrupt
context.

The macro irgs _disabled (), defined in <asm/system.h>, returns nonzero if the interrupt system on the local processor is disabled. Otherwise, it returns
zero.

Two macros, defined in <asm/hardirqg.h>, provide an interface to check the kernel's current context. They are

in_interrupt ()
in_irqg()

} Many older devices, particularly ISA devices, do not provide a method of obtaining whether or not they generated an interrupt. Because of this, oftentimes interrupt
lines for ISA devices cannot be shared. Because the PCI specification mandates the sharing of interrupts, modern PCI-based devices support interrupt sharing. In
contemporary computers, nearly all interrupt lines can be shared.
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The most useful is the first: It returns nonzero if the kernel is in interrupt context. This includes either executing an interrupt handler or a bottom half handler. The macro
in_irg() returns nonzero only if the kernel is specifically executing an interrupt handler.

More often, you want to check if you are in process context. That is, you want to ensure you are not in interrupt context. This is often the case because code wants to
do something that can only be done from process context, like sleep. If in_interrupt () returns zero, the kernel is in process context.

Table 5.1 Listing of Interrupt Control Methods
Function

local irqg disable()

local irg enable()

local irg save (unsigned long flags)
local irg restore(unsigned long flags)

disable irg(unsigned int irq)

disable irg nosync(unsigned int irq)
enable irg(unsigned int irq)
irgs_disabled()

in_interrupt ()

in irg()

Description

Disable local interrupt deliver

Enable local interrupt deliver

Save the current state of local interrupt deliver and then disable it
Restore the local interrupt deliver to the given state

Disable the given interrupt line and ensure no handler on the line is executing
before returning

Disable the given interrupt line

Enable the given interrupt line

Returns nonzero if local interrupt deliver is disabled; otherwise returns zero
Returns nonzero if in interrupt context and zero if in process context

Returns nonzero if currently executing an interrupt handler and zero
otherwise
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6
Bottom Halves and Deferring Work

IN THE PREVIOUS CHAPTER, WE LOOKED at interrupt handlers as the kernel mechanism for dealing with interrupts. Interrupt handlers are a useful—indeed, required—part of
the kernel. Because of certain limitations, however, they form only the first half of the interrupt processing solution. The limitations include

* Interrupt handlers run asynchronously and thus interrupt other potentially important code (even other interrupt handlers). Therefore, they need to run as quickly as
possible.

» Interrupt handlers run with the current interrupt level disabled at best, and at worst (if SA_ INTERRUPT is set) with all interrupts disabled. Again, they need to
run as quickly as possible.

* Interrupt handlers are often very timing-critical because they deal with hardware.
* Interrupt handlers do not run in process context, therefore, they cannot block.
It should now be obvious that interrupt handlers are only a piece of the whole solution to managing hardware interrupts. We certainly need a quick, asynchronous,

simple handler for immediately responding to hardware and performing any time-critical actions. Interrupt handlers serve this function well, but other, less critical work,
should be deferred to a later point when interrupts are enabled.

Consequently, managing interrupts is divided into two parts, or halves. The first part, interrupt handlers (top halves), are executed by the kernel asynchronously in

immediate response to a hardware interrupt, as we discussed in the previous chapter. In this chapter, we look at the second part of managing interrupts, bottom
halves.

Bottom Halves

The job of bottom halves is to perform any interrupt-related work not performed by the interrupt handler itself. In an ideal world, this is nearly all the work because we
want
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the interrupt handler to perform as little work (and in turn be as fast) as possible. We want interrupt handlers to return as quickly as possible.

Nonetheless, the interrupt handler must perform some of the work. For example, the interrupt handler almost assuredly needs to acknowledge the receipt of the
interrupt with the hardware. It might also need to copy data to or from the hardware. This work is timing-sensitive, so it makes sense to perform it in the interrupt
handler itself.

Almost anything else is fair game for performing in the bottom half. For example, if you copy data from the hardware into memory in the top half, it certainly makes
sense to process it in the bottom half. Unfortunately, no hard and fast rules exist about what work to perform where—the decision is left entirely up to the device driver
author. Although no arrangement is wrong, an arrangement can easily be suboptimal. Remember, the interrupt handlers run asynchronously, with at least the current
interrupt line disabled. Minimizing their duration is important. No strict rules about how to divide the work between the top and bottom half exist, but a couple useful
tips might help:

« If the work is time-sensitive, perform it in the interrupt handler.
« If the work is related to the hardware itself, perform it in the interrupt handler.
« If the work needs to ensure that another interrupt (particularly the same interrupt) does not interrupt it, perform it in the interrupt handler.
* For everything else, consider performing the work in the bottom half.
When attempting to write your own device driver, looking at other interrupt handlers and their corresponding bottom halves will help. When deciding how to divide

your interrupt processing work between the top and bottom half, ask yourself what /as to be in the top half and what can be in the bottom half. Generally, the quicker
the interrupt handler executes, the better.

Why Bottom Halves?

It is crucial to understand why to defer work, and when exactly to defer it. You want to limit the amount of work you perform in an interrupt handler because interrupt
handlers run with the current interrupt line disabled. Worse, handlers that register with SA  INTERRUPT run with a// local interrupts disabled (plus the local interrupt
line globally disabled). Minimizing the time spent with interrupts disabled is important to system response and performance. Add to this the fact that interrupt handlers
run asynchronously with respect to other code—even other interrupt handlers—and then it is clear that we should work to minimize how long interrupt handlers run.
The solution is to defer some of the work until later.

But when is later? The important thing to realize is that /ater is often simply not now. The point of a bottom half is nof to do work at some specified point in the future,
but simply to defer work until any point in the future when the system is less busy and interrupts are again enabled. Often, bottom halves run immediately after the
interrupt returns. The key is that they run with all interrupts enabled.
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Not just Linux, but many operating systems separate the processing of hardware interrupts into two parts. The top half'is quick and simple and runs with some or all
interrupts disabled. The bottom half (however it is implemented) runs later with all interrupts enabled. This design keeps system response time low by running with
interrupts disabled for as little time as necessary.

A World of Bottom Halves

Unlike the top half, which we implement entirely via the interrupt handler, multiple mechanisms are available for implementing a bottom half. These mechanisms are
different interfaces and subsystems that allow you to implement bottom halves. Whereas in the previous chapter we looked at just a single way of implementing interrupt
handlers, in this chapter we will look at multiple methods of implementing bottom halves. In fact, over the course of Linux's history there have been many bottom half
mechanisms. Confusingly, some of these mechanisms have similar or even really dumb names.

In this chapter, we will discuss both the design and implementation of the bottom half mechanisms that exist in 2.6. We will also discuss how to use them in the kernel
code you write. The old, but long since removed, bottom half mechanisms are historically significant, so they'll be mentioned when relevant.

In the beginning, Linux provided only the "bottom half" for implementing bottom halves. The name was sane because that was the only means available for deferring
work at the time. The infrastructure was also known as "BH," which is what we will call it to avoid confusion with the generic term "bottom half." The BH interface was
very simple, like most things in those good old days. It provided a statically created list of 32 bottom halves. The top half could mark whether the bottom half would run
by sitting a bit in a 32-bit integer. Each BH was globally synchronized. No two could run at the same time, even on different processors. This was easy-to-use, yet
inflexible; simple, yet a bottleneck.

Later on, the kernel developers introduced task queues both as a method of deferring work and as a replacement for the BH mechanism. The kernel defined a family
of queues. Each queue contained a linked list of functions to call. The queued functions were run at certain times, depending on which queue they were in. Drivers could
register their bottom halves in the appropriate queue. This worked fairly well, but it was still too inflexible to replace entirely the BH interface. It also was not lightweight
enough for performance critical subsystems, such as networking.

During the 2.3 development series, the kernel developers introduced softirgs and tasklets. With the exception of compatibility with existing drivers, softirqs and
tasklets were capable of completely replacing the BH interface'. Softirgs are a set of 32 statically defined bottom halves that can run simultaneously on any

processor—even two of the same type can run concurrently. Tasklets, which have an awful and confusing namez, are
! Due to the global synchronization of any running BH with any other, it is nontrivial to convert them to softirgs or tasklets. It did eventually happen, however, in 2.5.

: They have nothing to do with tasks. Think of a tasklet as a simple and easy-to-use softirq.
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flexible, dynamically created bottom halves that are built on top of softirqs. Two different tasklets can run concurrently on different processors, but two of the same
type of tasklet cannot run simultaneously. Thus, tasklets are a good tradeoff between performance and ease-of-use. For most bottom half processing, the tasklet is
sufficient. Softirgs are useful when performance is critical, such as with networking. Using softirgs requires more care, however, because two of the same softirq can
run at the same time. In addition, softirqs must be registered statically at compile-time. Conversely, code can dynamically register tasklets.

To further confound the issue, some people refer to all bottom halves as software interrupts or softirgs. In other words, they call both the softirq mechanism and bottom
halves in general softirgs. Ignore those people.

While developing the 2.5 kernel, the BH interface was finally tossed to the curb as all BH users were converted to the other bottom half interfaces. Additionally, the
task queue interface was replaced by the work queue interface. Work queues are a very simple yet useful method of queueing work to later be performed in process

context.

Consequently, today in 2.6 we have three bottom half mechanisms in the kernel: softirgs, tasklets, and work queues. The kernel used to have the BH and task queue
interfaces, but today they are mere memories.

Kernel Timers
Another mechanism for deferring work is kernel timers. Unlike the mechanisms discussed in the chapter thus far, timers defer work for a specified amount of time.
That is, although the tools discussed in this chapter are useful to defer work to any time but now, you use timers to defer work until at least a specific time has

elapsed.

Therefore, timers have different uses than the general mechanisms discussed in this chapter. A full discussion of timers is given in Chapter 9, "Timers and Time
Management."

Bottom Half Confusion
This is some real confusing stuff, but really it is just naming issues. Let's go over it again.

"Bottom half" is a generic operating system term referring to the deferred portion of interrupt processing. In Linux, it currently has this meaning, too. All the kernel's
mechanisms for deferring work are "bottom halves." Some people also confusingly call all bottom halves "softirgs," but they are just being annoying.

"Bottom half" also refers to the original deferred work mechanism in Linux. This mechanism is also known as a "BH," so we call it by that name now and leave the
former as a generic description. The BH mechanism was deprecated awhile back and fully removed in 2.5.

Currently, there are three methods for deferring work: softirgs, tasklets, and work queues. Tasklets are built on softirqs and work queues are entirely different. Table
6.1 presents a history of bottom halves.
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Table 6.1 Bottom Half Status

Bottom Half Status

BH Removed in 2.5
Task queues Removed in 2.5
Softirq Auvailable since 2.3
Tasklet Auvailable since 2.3
Work queues Auvailable since 2.5

With this naming confusion settled, let's look at the individual mechanisms.

Softirqs

We begin our discussion of the actual bottom half methods with softirgs. Softirgs are rarely used; tasklets are a much more common form of bottom half. Nonetheless,
because tasklets are built on softirgs we'll cover them first. The softirq code lives in kernel/softirqg.c.

Implementation of Softirqs

Softirgs are statically allocated at compile-time. Unlike tasklets, you cannot dynamically register and destroy softirgs. Softirgs are represented by the
softirg action structure, whichis definedin <linux/interrupt.h>:

/‘k

* structure representing a single softirqg entry

*/

struct softirqg action

{
void (*action) (struct softirg action *); /* function to run */
void *data; /* data to pass to function */

bi

A 32-entry array of this structure is declared in kernel/softirg.c:
static struct softirg action softirg vec[32];

Each registered softirq consumes one entry in the array. Consequently, there can be a possible 32 softirgs. Note, this is fixed—the maximum number of registered
softirgs cannot be dynamically changed. In the current kernel, however, only six of the 32 entries are used’.

* Most drivers use tasklets for their bottom half. Tasklets are built off softirgs, as we shall see in the next section.
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The Softirq Handler
The prototype of a softirq handler, act i on, looks like:
void softirqg handler (struct softirq action *)

When the kernel runs a softirq handler, it executes this act i on function with a pointer to the corresponding softirqg action structure as its lone argument.
For example, if my softirqgpointed to anentry inthe softirg vec array, the kernel would invoke the softirq handler function as

my softirg->action(my_softirq)

It might be a bit surprising that the kernel passes the entire structure, and not just the da t a value, to the softirq handler. This trick allows future additions to the
structure without requiring a change in every softirq handler. Softirq handlers can retrieve the data value, if they need to, simply by dereferencing their argument and
reading the dat a member.

A softirq never preempts another softirq. In fact, the only event that can preempt a softirq is an interrupt handler. Another softirq—even the same one—can run on
another processor, however.

Executing Softirqs

A registered softirq must be marked before it will execute. This is called raising the softirg. Usually, an interrupt handler marks its softirq for execution before
returning. Then, at a suitable time, the softirq runs. Pending softirgs are checked for and executed in the following situations:

* After processing a hardware interrupt
* By the kso ft irqgd kernel thread

* By code that explicitly checks and executes pending softirgs, such as the networking subsystem

Regardless of the method of invocation, softirq execution occurs in do_softirg (). The function is really quite simple. If there are pending softirgs,
do_softirqg() loops over each one, invoking its handler. Let's look at a simplified variant of the important part of do_softirqg() :

u32 pending = softirqg pending(cpu) ;

if (pending) {

struct softirg action *h = softirg vec;
softirg pending(cpu) = 0;
do {

if (pending & 1)



Page 87

h->action (h);
h++;
pending >>= 1;
} while (pending);
}

This snippet is the heart of softirq processing. It checks for, and executes, any pending softirgs. Specifically,

* Set the pending local variable to the value returned by the softirq pending () macro. This is a 32-bit mask of pending softirqgs—if bit n is set, the
softirq of that value is pending.

» Now that the pending bitmask of softirgs is saved, clear the actual bitmask®.

* The pointer h is set to the first entry inthe softirqg vec.

* If the first bit in pendingis set, h->action (h) iscalled.

* The pointer h is incremented by one so that it now points to the second entry in the softirg_vec array.

* The bitmask pending is right-shifted by one. This tosses the first bit away, and moves all other bits one place to the right. Consequently, the second bit is now
the first (and so on).

* The pointer h now points to the second entry in the array and the pending bitmask now has the second bit as the first. Repeat the previous steps.
» Continue repeating until pending is zero, at which point there are no more pending softirqs and our work is done. Note, this check is sufficient to ensure h
always points to a valid entry in softirg_vec because pending has at most 32 set bits and thus this loop executes at most 32 times.

Using Softirqs

Softirgs are reserved for the most timing critical and important bottom half processing on the system. Currently, only two subsystems—networking and SCSI—directly
use softirgs. Additionally, kernel timers and tasklets are built on top of softirgs. If you are adding a new softirq, you normally want to ask yourself why using a tasklet is
insufficient. Tasklets are dynamically created and are simpler to use because of their weaker locking requirements, and they still perform quite well. Nonetheless, for

timing-critical

* This actually occurs with local interrupts disabled, but that is omitted in this simplified version. If interrupts were not disabled, a softirq could have been raised (and
thus be pending) in the intervening time between saving the mask and clearing it. This would result in incorrectly clearing a pending bit.
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applications that are able to do their own locking in an efficient way, softirgs might be the correct solution.
Assigning an Index

You declare softirgs statically at compile-time viaan enumin <linux/interrupt .h>. The kernel uses this index, which starts at zero, as a relative priority.
Softirgs with the lowest numerical priority execute before those with a higher numerical priority.

Table 6.2 Listing of Bottom Half Control Methods

Tasklet Priority Softirq Description
HI_SOFTIRQ 0 High priority tasklets
TIMER SOFTIRQ 1 Timer bottom half

NET TX SOFTIRQ 2 Send network packets
NET RX_ SOFTIRQ 3 Receive network packets
SCSI_SOFTIRQ 4 SCSI bottom half
TASKLET SOFTIRQ 5 Tasklets

Creating a new softirq includes adding a new entry to this e num. When adding a new softirq you might not want to simply add your entry to the end of the list, as you
would elsewhere. Instead, you need to insert the new entry depending on the priority you want to give it. Historically, HI SOFT IRQ is always the first and
TASKLET SOFTIRQ is always the last entry. A new entry probably belongs somewhere after the network entries, but prior to TASKLET SOFTIRQ.

Registering Your Handler

Next, the softirq handler is registered at run-time via open_softirq (), which takes three parameters: the softirq's index, its handler function, and a value for the
data field. The networking subsystem, for example, registers its softirgs like this:

open_softirg(NET TX SOFTIRQ, net tx action, NULL);
open_softirg(NET_RX SOFTIRQ, net rx action, NULL);

The softirq handlers run with interrupts enabled and cannot sleep. While a handler runs, softirgs on the current processor are disabled. Another processor, however,
can execute other softirgs. In fact, if a softirq is raised again while it is executing, another processor can run it simultaneously. This means that any shared data—even
global data used only within the softirq handler itself—needs proper locking (as discussed in the next two chapters). This is an important point, and it is the reason
tasklets are usually preferred. Simply preventing your softirgs from running concurrently is not ideal. If a softirq obtained a lock to prevent itself from running
simultaneously, there would be little reason to use a softirq. Consequently, most softirgs handlers resort to per-processor data (data unique to each processor and thus
not requiring locking) or some other tricks to avoid explicit locking and provide excellent scalability.
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Raising Your Softirq

After a handler is added to the enum list and registered via open softirq (), itisready to run. To mark it pending, so it is run at the next invocation of
do_softirqg(),callraise softirg().Forexample, the networking subsystem would call

raise softirq(NET_TX SOFTIRQ);

This raises the NET TX SOFTIRQ softirq. Its handler, net tx action (),runs the next time the kernel executes softirqs. This function disables interrupts
prior to actually raising the softirq, and then restores them to their previous state. If interrupts are already off, the function raise softirg irqoff () canbe
used as a minor optimization. For example:
/ *

* interrupts must already be off!

*

/

raise_softirg _irqoff (NET_TX SOFTIRQ);

Softirgs are most often raised from within interrupt handlers. In the case of interrupt handlers, the interrupt handler performs the basic hardware-related work, raises the
softirq, and then exits. When done processing interrupts, the kernel invokes do_softirq (). The softirq then runs and picks up where the interrupt handler left off.
In this example, the "top half" and "bottom half" naming should make sense.

Tasklets

Tasklets are a bottom half mechanism built on top of softirgs. As already mentioned, they have nothing to do with tasks. Tasklets are similar in nature and work in a
similar manner to softirgs; however, they have a simpler interface and relaxed locking rules.

The decision of whether to use softirgs versus tasklets is simple: You usually want to use tasklets. As we saw in the previous section, you can count on one hand the
users of softirgs. Softirgs are required only for very high frequency and highly threaded uses. Tasklets, on the other hand, see much greater use. Tasklets work just fine
for most cases and they are very easy to use.

Implementation of Tasklets

Because tasklets are implemented on top of softirgs, they are softirgs. As discussed, tasklets are represented by two softirgs: HI_SOFTIRQ and
TASKLET SOFTIRQ. The only real difference in these types is that the HI SOF T IRQ-based tasklets run prior to the TASKLET SOFTIRQ tasklets.

The Tasklet Structure

Tasklets are represented by the tasklist struct structure. Each structure represents a unique tasklet. The structure is declared in
<linux/interrupt.h>:

struct tasklet struct {
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struct tasklet struct *next; /* pointer to the next tasklet in the list */
unsigned long state; /* state of the tasklet */

atomic_t count; /* reference counter */

void (*func) (unsigned long); /* tasklet handler function */

unsigned long data; /* argument to the tasklet function */

bi
The func member is the tasklet handler (the equivalent of act ion to a softirq) and it receives data as its sole argument.
The state member is one of zero, TASKLET STATE _SCHED, or TASKLET STATE RUN.

TASKLET STATE_ SCHED denotes a tasklet that is scheduled to run and TASKLET STATE_RUN denotes a tasklet that is running. As an optimization,
TASKLET STATE_RUN is only used on multiprocessor machines because a uniprocessor machine always knows whether the tasklet is running (it is either the
currently executing code, or not).

The count field is used as a reference count for the tasklet. If it is nonzero, the tasklet is disabled and cannot run; if it is zero, the tasklet is enabled and can run if
marked pending.

Scheduling Tasklets

Scheduled tasklets (the equivalent of raised softirgs)” are stored in two per-processor structures: task1is t_vec (for regular tasklets) and tasklet hi vec
(for high-priority tasklets). Both of these structures are linked lists of tasklet struct structures. Each tasklet struct structure in the list represents a
different tasklet.

Tasklets are scheduled via the tasklet schedule () and tasklet hi schedule () functions, which receive a pointer to the tasklet's
tasklet struct as their lone argument. The two functions are very similar (the difference being one uses TASKLET SOFTIRQ and one uses
HI_ SOFTIRQ). We will go over writing and using tasklets in the next section. For now, let's look at the details of tasklet schedule ():
* Check if the tasklet's state is TASKLET_STATE SCHED. Ifit is, the tasklet is already scheduled to run and the function can return.
» Save the state of the interrupt system, and then disable local interrupts. This ensures nothing on this processor will mess with the tasklet code while we are.
* Add the tasklet to-be-scheduled to the head of the tasklet vecortasklist hi vec linked list, which is unique to each processor in the system.
* Raise the TASKLET SOFTIRQor HI SOFTIRQ softirq, so this tasklet will execute in the near future by do_softirqg().

* Restore interrupts to their previous state and return.

> Yet another example of the evil naming schemes at work here. Why are softirgs raised but tasklets scheduled? Who knows? Both terms mean to mark that bottom
half pending so that it is executed soon.
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At the next earliest convenience, do_softirqg () isrun as discussed in the previous section. Because most tasklets and softirgs are marked pending in interrupt
handlers, do_softirqg () most likely runs when the last interrupt returns. Because TASKLET SOFTIRQor HI SOFTIRQisnow raised, do_softirg ()
executes the associated handlers. These handlers, tasklet action () and tasklet hi action (), are the heart of tasklet processing. Let's look at
what they do:

» Disable interrupts and retrieves the tasklet vecortasklist hi vec list for this processor.

* Clear the list for this processor by setting it equal to NULL.

* Enable interrupts (there is no need to restore them to their previous state because the code here is always called as a softirq handler, and thus, interrupts are
always enabled).

* Loop over each pending tasklet in the retrieved list.

» If this is a multiprocessing machine, check if the tasklet is running on another processor by checking the TASKLET STATE_RUN flag. Ifit is currently running,
do not execute it now and skip to the next pending tasklet (recall, only one tasklet of a given type may run concurrently).

» If the tasklet is not currently running, set the TASKLET STATE_RUN flag, so another processor will not run it.
* Check for a zero count value, to ensure that the tasklet is not disabled. If the tasklet is disabled, skip it and go to the next pending tasklet.

* We now know that the tasklet is not running elsewhere, is marked as running by us so it will not start running elsewhere, and has a zero count value. Run the
tasklet handler.

* After the tasklet runs, clear the TASKLET STATE_RUN flag in the tasklet's st ate field.

* Repeat for the next pending tasklet, until there are no more scheduled tasklets waiting to run.
The implementation of tasklets is simple, but rather clever. As we saw, all tasklets are multiplexed on top of two softirgs, HI _SOFTIRQ and
TASKLET SOFTIRQ. When a tasklet is scheduled, the kernel raises one of these softirgs. These softirgs, in turn, are handled by special functions that then run any

scheduled tasklets. The special functions ensure that only one tasklet of a given type is running at the same time (but other tasklets can run simultaneously). All this
complexity is then hidden behind a clean and simple interface.

Using Tasklets

In most cases, tasklets are the preferred mechanism with which to implement your bottom half for a normal hardware device. Tasklets are dynamically created, easy to
use, and relatively quick.
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Declaring Your Tasklet

You can create tasklets statically or dynamically. What option you choose depends on whether you have (or want) a direct or indirect reference to the tasklet. If you
are going to statically create the tasklet (and thus have a direct reference to it), use one of two macros in <linux/interrupt.h>:

DECLARE_TASKLET (name, func, data)
DECLARE_TASKLET_DISABLED (name, func, data);

Both of these macros statically createa st ruct tasklist struct with the given name. When the tasklet is scheduled, the given function func is executed
and passed the argument da t a. The difference between the two macros is the initial reference count. The first macro creates the tasklet with a count of zero, and
the tasklet is enabled. The second macro sets count to one, and the tasklet is disabled. Here is an example:

DECLARE_TASKLET (my_tasklet, my tasklet handler, dev);

This line is equivalent to

struct tasklet_ struct my_ tasklet = { NULL, 0, ATOMIC_INIT(O),
tasklet handler, dev };

This creates a tasklet named my tasklet thatis enabled with tasklet handler asits handler. The value of dev is passed to the handler when it is
executed.

To initialize a tasklet given an indirect reference (a pointer) to a dynamically created

struct tasklet_struct, t:

tasklist init(t, tasklet handler, dev); /* dynamically not statically */

Writing Your Tasklet Hander

The tasklet handler must match the correct prototype:

void tasklet handler (unsigned long data)

As with softirgs, tasklets cannot sleep. This means you cannot use semaphores or other blocking functions in a tasklet. Tasklets also run with all interrupts enabled, so
you must take precautions (for example, disable interrupts and obtain a lock) if your tasklet shares data with an interrupt handler. Unlike softirgs, however, two of the
same tasklets never run concurrently—although two different tasklets can run at the same time on two different processors. If your tasklet shares data with another
tasklet or softirq, you need to use proper locking (see Chapter 7, "Kernel Synchronization Introduction," and Chapter 8, "Kernel Synchronization Methods").
Scheduling Your Tasklet

To schedule a tasklet for execution, tasklet schedule () is called and passed a pointer to the relevant tasklet struct:

tasklet_ schedule (&émy_tasklet); /* mark my tasklet as pending */
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After a tasklet is scheduled, it runs once at some time in the near future. If the same tasklet is scheduled again, before it has had a chance to run, it still runs only once. If
it is already running, for example on another processor, the tasklet is rescheduled and runs again. As an optimization, a tasklet always runs on the processor that
scheduled it—hopefully, making better use of the processor's cache.

You can disable a tasklet viaa call to tasklet disable (), which disables the given tasklet. If the tasklet is currently running, the function will not return until it
finishes executing. Alternatively, you canuse tasklet disable nosync (), which disables the given tasklet but does not wait for the tasklet to complete
prior to returning. This is usually not safe, as you cannot assume the tasklet is not still running. A callto tasklet enable () enables the tasklet. This function also
must be called before a tasklet created with DECLARE TASKLET DISABLED () is usable. For example:

tasklet disable (&my tasklet); /* tasklet is now disabled */
/* we can now do stuff knowing the tasklet cannot run .. */
tasklet enable (&my tasklet); /* tasklet is now enabled */

You can remove a tasklet from the pending queue via tasklet kill (). Itreceives a pointer as a lone argument to the tasklet's tasklet struct.
Removing a scheduled tasklet from the queue is useful when dealing with a tasklet that often reschedules itself. This function first waits for the tasklet to finish executing
and then it removes it from queue. Nothing stops some other code from rescheduling the tasklet, of course. This function must not be used from interrupt context, as it
sleeps.

ksoftirqd

Softirq (and thus tasklet) processing is aided by a set of per-processor kernel threads. These kernel threads help in the processing of softirqs when the system is
overwhelmed with softirgs.

As we discussed, the kernel processes softirgs in a number of places, most commonly on return from handling an interrupt. Softirqs might be raised at very high rates
(such as during intense network traffic). Worse, softirq functions can reactivate themselves. That is, while running, a softirq can raise itself so that it runs again (indeed,
the networking subsystem does this). The possibility of a high frequency of softirgs in conjunction with their capability to remark themselves active can result in starving
user-space programs of processor time. Not processing the reactivated softirgs in a timely manner, however, is unacceptable. This caused a dilemma that needed
fixing, and neither obvious solution was a good one. First, let's look at each of the two obvious solutions.

The first solution is simply to keep processing softirgs as they come in and to recheck and reprocess any pending softirgs before returning. This ensures that the kernel
processes softirgs in a timely manner and, most importantly, that any reactivated softirgs are also immediately processed. The problem lies in high load environments, in
which many
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softirgs occur, that continually reactivate themselves. The kernel might continually service softirgs without accomplishing much else. User-space is neglected—indeed,
nothing but softirgs and interrupt handlers run and, in turn, the system's users get mad. This approach might work fine if the system is never under intense load,; if the
system, however, experiences even moderate interrupt levels this solution is not acceptable. User-space cannot be starved for significant periods.

The second solution is not to handle reactivated softirgs. On return from interrupt, the kernel merely looks at all pending softirgs and executes them as normal. If any
softirgs reactivate themselves, however, they will not run until the next time the kernel handles pending softirgs. This is most likely not until the next interrupt occurs,
which can equate to a lengthy amount of time before any new (or reactivated) softirgs are executed. Worse, on an otherwise idle system it is beneficial to process the
softirgs right away. Unfortunately, this approach is oblivious to which processes may or may not be runnable. Therefore, although this method prevents starving user-
space, it does starve the softirgs, and it does not take good advantage of an idle system.

Some sort of compromise was needed. The solution implemented in the kernel is to not immediately process reactivated softirgs. Instead, if the number of softirgs
grows excessive, the kernel wakes up a family of kernel threads to handle the load. The kernel threads run with the lowest possible priority (nice value of 19), which
ensures they do not run in lieu of anything important. They do run eventually, however, and this concession prevents heavy softirq activity from completely starving user-
space of processor time. Conversely, it also ensures that "excess" softirgs do run eventually. Finally, this solution has the nice property that on an idle system, the
softirgs are handled rather quickly (because the kernel threads will schedule immediately).

There is one thread per processor. The threads are each named ksoft irgd/n where n is the processor number. On a two-processor system, you would have
ksoftirgd/0 and ksoftirqgd/1. Having a thread on each processor ensures an idle processor, if available, is always able to service softirgs. After the
threads are initialized, they run a tight loop similar to this:

for (;;) {
if (!softirg pending(cpu))
schedule () ;

set_current_ state (TASK_RUNNING) ;

while (softirqg_pending(cpu)) {
do_softirqg();
if (need_resched())
schedule () ;
}

seticurrentistate(TASKilNTERRUPTIBLE);



Page 95

If any softirgs are pending (as reported by softirg pending()), ksoftirqgdcallsdo softirqg() tohandle them. Note that it does this repeatedly, to
handle any reactivated softirgs, too. After each iteration, schedule () is called if needed, to allow more important processes to run. After all processing is complete
the kernel thread sets itself TASK_INTERRUPT IBLE and invokes the scheduler to select a new runnable process.

The softirq kernel threads are awakened whenever do _softirg () detects an executed kernel thread reactivate itself.
The Old BH Mechanism

Although the old BH interface, thankfully, is no longer present in 2.6, it was around for a Jong time—since the earliest versions of the kernel. Seeing as it had immense
staying power, it certainly carries some historical significance that requires more than a passing look. Nothing in this brief section actually pertains to 2.6, but the history
is important.

The BH interface is ancient, and it shows. Each BH must be statically defined, and there are a maximum of 32. Because the handlers must all be defined at compile-
time, modules could not directly use the BH interface. They could piggyback off an existing BH, however. Over time, this static requirement and the maximum of 32
bottom halves became an annoyance.

All BH handlers are strictly serialized—no two BH handlers, even of different types, can run concurrently. This made synchronization easy, but it wasn't a good thing
for multiprocessing performance. A driver using the BH interface did not scale well to multiple processors. The networking layer, in particular, suffered.

Other than these attributes, the BH mechanism is similar to tasklets. In fact, the BH interface was implemented on top of tasklets in 2.4. The 32 possible bottom halves
were represented by constants defined in <1inux/interrupt.h>. To mark a BH as pending, the function mark bh () was called and passed the number of
the BH. In 2.4, this in turn scheduled the BH tasklet, bh _action (), to run. Prior to 2.4, the BH mechanism existed on its own; much like softirgs do today.

Because of the shortcomings of this form of bottom half, kernel developers introduced task queues to replace bottom halves. Task queues never accomplished this
goal, although they did win many new users. In 2.3, the softirq and tasklet mechanisms were introduced to put an end to the BH. The BH mechanism was implemented
on top of tasklets. Unfortunately, it was complicated to port bottom halves from the BH interface to tasklets or softirgs, because of the weaker inherent serialization of
the new interfaces’. During 2.5, however, the conversion did occur when timers and SCSI—the remaining BH users—finally moved over to softirgs. The kernel
developers summarily removed the BH interface. Good riddance, BH!

% That is, the weaker serialization was beneficial to performance but also harder to program. Converting a BH to a tasklet, for example, required careful thinking: Is this
code safe running at the same time as any other tasklet? When finally converted, however, the performance was worth it.
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Work Queues

Work queues are a different form of deferring work from what we have looked at so far. Work queues defer work into a kernel thread—the work always runs in
process context. Thus, code deferred to a work queue has all the usual benefits of process context. Most importantly, work queues are schedulable and can therefore
sleep.

Normally, there is little decision between work queues or softirgs/tasklets. If the deferred work needs to sleep, work queues are used. If the deferred work need not
sleep, softirgs or tasklets are used. Indeed, the usual alternative to work queues is kernel threads. Because the kernel developers frown upon creating a new kernel
thread (and, in some locales, it is a punishable offense), work queues are strongly preferred. They are really easy to use, too.

If you need a schedulable entity to perform your bottom half processing, you need work queues. They are the only bottom half mechanism that runs in process context,
and thus, the only that can sleep. This means they are useful for situations where you need to allocate a lot of memory, obtain a semaphore, or perform block I/O. If
you do not need a kernel thread to handle your deferred work, consider a tasklet instead.

Implementation of Work Queues

In its most basic form, the work queue subsystem is an interface for creating kernel threads to handle work that is queued from elsewhere. These kernel threads are
called worker threads. Work queues let your driver create a special worker thread to handle deferred work. The work queue subsystem, however, implements and
provides a default worker thread for handling work. Therefore, in its most common form, work queues are a simple interface for deferring work to a generic kernel
thread.

The default worker threads are called events/n where n is the processor number; there is one per processor. For example, on a uniprocessor system there is one
thread, events/ 0. A dual processor system would additionally have an events /1 thread. The default worker thread handles deferred work from multiple
locations. Many drivers in the kernel defer their bottom half work to the default thread. Unless a driver or subsystem has a strong requirement for creating its own
thread, the default thread is preferred.

Nothing stops code from creating its own worker thread, however. This might be advantageous if you are performing large amounts of processing in the worker thread.
Processor-intense and performance-critical work might benefit from its own thread. This also lightens the load on the default threads, which prevents starving the rest of
the queued work.

Data Structures Representing the Threads
The worker threads are represented by the workqueue struct structure:
/ *

* The externally visible workqueue abstraction is an array of
* per-CPU workqueues:
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*/
struct workqueue_struct {
struct cpu_workqueue struct cpu wqg[NR CPUS];
}i

This structure contains an array of struct cpu_ workqueue struct, one per possible processor on the system. Because the worker threads exist on each
processor in the system, there is one of these structures per worker thread, per processor, on a given machine. The cou_workqueue struct is the core data
structure and is defined in kernel /workqueue.c:

/*
* The per-CPU workqueue:
*/
struct cpu_workqueue_struct {

spinlock_t lock;

atomic_t nr queued;

struct list_head worklist;
wait queue head t more work;
wailt_queue_head_t work_done;

struct workqueue_struct *wgq;
task t *thread;
struct completion exit;

}i

Note that each type of worker thread has one workqueue struct associated to it. Inside, there is one cpu_workqueue struct for every thread, and
thus, every processor, because there is one worker thread on each processor.

Data Structures Representing the Work

All worker threads are implemented as normal kernel threads running the worker thread () function. After initial setup, this function enters an infinite loop and
goes to sleep. When work is queued, the thread is awakened and processes the work. When there is no work left to process, it goes back to sleep.

The work is represented by the work struct structure, defined in <linux/workqueue.h>:

struct work struct ({
unsigned long pending; /* is this work pending? */
struct list_head entry; /* link list of all work */
void (*func) (void *); /* handler function */
void *data; /* argument to handler */
void *wqg_data; /* used internally */
struct timer list timer; /* timer used by delayed work queues */
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These structures are strung into a linked list, one for each type of queue on each processor. For example, there is one list of deferred work for the generic thread, per
processor. When a worker thread wakes up, it runs any work in its list. As it completes work, it removes the corresponding work struct entries from the linked
list. When the list is empty, it goes back to sleep.

Let's look at the heart of worker thread (),simplified:

for (;7) |
set_task_state(current, TASK_INTERRUPTIBLE) ;
add _wait queue (&cwg->more work, &wait);
if (list_empty(&cwg->worklist))
schedule () ;
else

set_task state(current, TASK_RUNNING) ;
remove wait queue (&cwg->more_ work, &wait);

if (!list_empty(&cwg->worklist))

run_workqueue (cwq) ;

This function performs the following functions, in an infinite loop:

* The thread marks itself sleeping (state is set to TASK_INTERRUPTIBLE) and adds itself to a wait queue.
« If the linked list of work is empty, the thread calls schedule () and goes to sleep.
» If the list is not empty, the thread does not go to sleep. Instead, it marks itself TASK_RUNNING and removes itself from the wait queue.

» Ifthe list is nonempty, call run_workqueue () to perform the deferred work.

run_workqueue ()

The function run_workqueue (), in turn, actually performs the deferred work:

while (!list_empty(&cwg->worklist)) {

struct work_struct *work = list_entry(cwg->worklist.next,
struct work_struct, entry);
void (*f) (void *) = work->func;

void *data = work->data;
list_del init (cwg->worklist.next);

clear_bit (0, &work->pending);
f (data) ;
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This function loops over each entry in the linked list of pending work and executes the func member of the workqueue struct for each entry in the linked list:

* While the list is not empty, grab the next entry in the list.

* Retrieve the function we want to call, func, and its argument, data.

» Remove this entry from the list and clear the pending bit in the structure itself.

* Invoke the function.

* Repeat.
Excuse Me?
The relationship between the different data structures is admittedly a bit convoluted. Figure 6.1 provides a graphical example, which should bring it all together.
At the highest level, there are worker threads. There can be multiple types of worker threads. There is one worker thread per processor of a given type. Parts of the
kernel can create worker threads as needed. By default, there is the events worker thread. Each worker thread is represented by the cou_workqueue struct
structure. The workqueue struct structure represents all the worker threads of a given type.
For example, let's assume that in addition to the generic events worker type, I also create a falcon worker type. Also, I have a four-processor computer. Then, there
are four events threads (and thus four cpu_workqueue struct structures) and four falcon threads (and thus another four cou_workqueue struct
structures). There is one workqueue_struct for the events type and one for the falcon type.
At the lowest level, there is work. Your driver creates work, which it wants to defer to later. The work struct structure represents this work. Among other
things, this structure contains a pointer to the function that will handle the deferred work. The work is submitted to a specific worker thread. The worker thread then

wakes up and performs the queued work.

Most drivers use the existing default worker threads, named events. They are easy and simple. Some more serious situations, however, demand their own worker
threads. The XFS file system, for example, creates two new types of worker threads.

Using Work Queues
Using work queues is easy. We will cover the default events queue first, and then we will look at creating new worker threads.
Creating Work

The first step is actually creating some work to defer. To create the structure statically at run-time:

DECLARE_WORK (name, void (*func) (void *), void *data);
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Figure 6.1 The relationship between work, work queues, and the worker threads.
This statically creates a work struct structure named name with handler function func and argument data.

Alternatively, you can create work at run-time via a pointer:

INIT_WORK (struct work_struct *work, void (*func) (void *), void *data);

This dynamically initializes the work queue pointed to by wo r k with handler function

func and argument da ta.

Your Work Queue Handler

The prototype for the work queue handler is

void work handler (void *data)

A worker thread executes this function, and thus, the function runs in process context. By default, interrupts are enabled and no locks are held. If needed, the function
can sleep. Note that, despite running in process context, the work handlers cannot access user-space because there is no associated user-space memory map for
kernel threads. The kernel only accesses user-space when running on behalf of a user-space process, when user memory is mapped in, such as when executing a

system call.

Locking between work queues or other parts of the kernel is handled just as with any other process context code. This makes writing work handlers much easier. The
next two chapters cover locking.
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Scheduling Work
Now that the work is created, we can schedule it. To queue a given work's handler function with the default events, simply call
schedule work (swork) ;
The work is scheduled immediately and is run as soon as the events worker thread on this processor wakes up.

Sometimes, you do not want the work to execute immediately, but instead after some delay. In those cases, you can schedule work to execute at a given time in the
future:

schedule delayed work (&work, delay);

In this case, the work struct pointed to by &work will not execute for at least de 1 ay timer ticks into the future. Using ticks as a unit of time is covered in
Chapter 9.

Flushing Work

Queued work is executed when the worker thread next wakes up. Sometimes, you need to ensure that a given batch of work has completed before continuing. This is
especially important for modules, which probably want to call this function before unloading. Other places in the kernel also might need to make certain no work is
pending, to prevent race conditions.

For these needs, there is a function to flush a given work queue:

void flush_scheduled work (void);

This function waits until all entries in the queue are executed before returning. While waiting for any pending work to execute, the function sleeps. Therefore, you can
only call it from process context.

Note that this function does not cancel any delayed work. That is, any work that was scheduled via schedule delayed work (), and whose delay is not yet
up, is not flushed via f1ush _scheduled work (). To cancel delayed work, call

int cancel delayed work(struct work struct *work);
This function cancels the pending work, if any, associated with the given work struct.
Creating New Work Queues

If the default queue is insufficient for your needs, you can create a new work queue and corresponding worker threads. Because this creates one worker thread per
processor, you should only create unique work queues if your code really needs the performance of a unique set of threads.

You create a new work queue and the associated worker threads via a simple function:
struct workqueue_ struct *create workqueue (const char *name);
The parameter name is used to name the kernel threads. For example, the default events queue is created via

struct workqueue_struct *keventd wqg = create_workqueue ("events");
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This creates all the worker threads (one for each processor in the system) and prepares them to handle work.

Creating work is handled the same regardless of the queue type. After the work is created, the following functions are analogous to schedule work () and
schedule delayed work (), except that they work on the given work queue and not the default events queue.

int queue_work (struct workqueue_struct *wqg, struct work_ struct *work);

int queue_delayed work (struct workqueue_struct *wq,
struct work struct *work, unsigned long delay):

Finally, you can flush a wait queue via a call to the function
flush workqueue (struct workqueue_ struct *wq);
This function works identically to f1ush scheduled work () aspreviously discussed, except that it waits for the given queue to empty before returning.

The Old Task Queue Mechanism

Like the BH interface, which gave way to softirqs and tasklets, the work queue interface grew out of shortcomings in the task queue interface. The task queue interface
(often called just g in the kernel), like tasklets, also has nothing to do with tasks in the process sense’ . The users of the task queue interface were ripped in half during
the 2.5 development kernel. Half of the users were converted to tasklets. The other half continued using the task queue interface. What was left of the task queue
interface then became the work queue interface. Briefly looking at task queues, which were around for some time, is a useful historical exercise.

Task queues work by defining a bunch of queues. The queues have names, such as the scheduler queue, the immediate queue, or the timer queue. Each queue is run at
a specific point in the kernel. A kernel thread, keventd, ran the work associated with the scheduler queue. This was the precursor to the full work queue interface. The
timer queue was run at each tick of the system timer and the immediate queue was run in a couple of places to ensure it was run "immediately." There were other
queues, too. Additionally, you could dynamically create new queues.

All this might sound useful, but the reality is the task queue interface was a mess. All the queues were essentially arbitrary abstractions. The only meaningful queue was
the scheduler queue, which provided the only way to defer work to process context.

The other good thing about task queues was the simple interface. Despite the myriad of queues and the arbitrary rules about when they ran, the interface was as simple
as possible. But that's about it—the rest of task queues needed to go.

7 Bottom half names are apparently a conspiracy to confuse new kernel developers.
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The various task queue users were converted to other bottom half mechanisms. Most of them switched to tasklets. The scheduler queue users stuck around. Finally, the
keventd code was generalized into the excellent work queue mechanism we have today and task queues were finally ripped out of the kernel.

Which Bottom Half Should I Use?

The decision over which bottom half to use is important. In the current 2.6 kernel, there are three choices: softirgs, tasklets, and work queues. Tasklets are built on
softirgs and, therefore, both are similar. The work queue mechanism is entirely different and is built on kernel threads.

Softirgs, by design, provide the least serialization. This requires softirq handlers to go through extra steps to ensure shared data is safe, as two or more softirgs of the
same type may run concurrently on different processors. If the code in question is already highly threaded, such as the networking subsystem that is entirely using per-
processor variables, softirqs make a good choice. They are certainly the fastest alternative for timing-critical and high-frequency uses. Tasklets make more sense if the
code is not finely threaded. They have a simpler interface and, because two tasklets of the same type might not run concurrently, they are easier to implement.

If your deferred work needs to run in process context, your only choice of the three is work queues. If process context is not a requirement—specifically, if you have
no need to sleep—softirgs or tasklets are perhaps better suited. Work queues involve the highest overhead because they involve kernel threads and, therefore, context
switching. This is not to say they are inefficient, but in light of thousands of interrupts hitting per second, as the networking subsystem might experience, other methods
make more sense. For most situations, however, work queues are sufficient.

In terms of ease of use, work queues take the crown. Using the default events queue is child's play. Next, come tasklets, which also have a simple interface. Coming in
last are softirgs, which need to be statically created.

Table 6.3 is a comparison between the three bottom half interfaces.

Table 6.3 Bottom Half Comparison

Bottom Half Context Serialization

Softirq Interrupt None

Tasklet Interrupt Against the same tasklet

Work queues Process None (scheduled as process context)

In short, normal driver writers have two choices. First, do you need a schedulable entity to perform your deferred work—do you need to sleep for any reason? Then
work queues are your only option. Otherwise, tasklets are preferred. Only if scalability becomes a concern, then investigate softirgs.
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Locking Between the Bottom Halves

We have not discussed locking yet, which is such a fun topic I devote the next two chapters to it. Nonetheless, it is important to understand that it is crucial to protect
shared data from concurrent access while using bottom halves, even on a single processor machine. Remember, a bottom half can run at virtually any moment. You
might want to come back to this section after reading the next two if the concept of locking is foreign to you.

One of the benefits of tasklets is that they are serialized with respect to themselves: The same tasklet will not run concurrently, even on two different processors. This
means you do not have to worry about intratasklet concurrency issues. Intertasklet concurrency (that is, when two different tasklets share the same data) requires
proper locking.

Because softirgs provide no serialization, (even two instances of the same softirq might run simultaneously) all shared data needs an appropriate lock.

If process context code and a bottom half share data, you need to disable bottom half processing and obtain a lock before accessing the data. Doing both ensures local
and SMP protection and prevents a deadlock.

If interrupt context code and a bottom half share data, you need to disable interrupts and obtain a lock before accessing the data. This also ensures both local and SMP
protection and prevents a deadlock.

Any shared data in a work queue requires locking, too. The locking issues are no different from normal kernel code because work queues run in process context.

In Chapter 7 we cover the magic behind locking. In Chapter 8 we cover the kernel locking primitives. These chapters will cover how to protect data that bottom halves
use.

Disabling Bottom Halves

Normally, it is not sufficient only to disable bottom halves. More often, to safely protect shared data, you need to obtain a lock and disable bottom halves. Such
methods, which you might use in a driver, are covered in Chapter 8. If you are writing core kernel code, however, you might need to disable just the bottom halves.

To disable all bottom half processing (specifically, all softirgs and thus all tasklets), call Local bh disable (). To enable bottom half processing, call
local bh enable (). Yes, the function is misnamed; no one bothered to change it when the BH interface gave way to softirgs. Table 6.4 is a summary of these
functions.

Table 6.4 Listing of Bottom Half Control Methods

Method Description

void local bh disable () Disable softirq and tasklet processing on the local processor

void local bh enable() Enable softirq and tasklet processing on the local processor
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The calls might be nested—only the final callto local bh enable () actually enables bottom halves. The functions accomplish this by maintaining a per-task

counter viathe preempt _count (interestingly, the same counter used by kernel preemption)s. When the counter reaches zero, bottom half processing is possible.
Because bottom halves were disabled, Local bh enable () also checks for any pending bottom halves and executes them.

The functions are unique to each supported architecture and are usually written as complicated macros in <asm/softirqg.h>. The following are close C
representations for the curious:

/*
* disable local bottom halves by incrementing the preempt_ count
*/

void local_bh_disable (void)

{

struct thread info *t = current thread info();

t->preempt_count += SOFTIRQ OFFSET;

* decrement the preempt count - this will 'automatically' enable
* bottom halves if the count returns to zero

* optionally run any bottom halves that are pending
*/
void local_bh_enable (void)
{
struct thread_info *t = current_thread_info();

t->preempt_count -= SOFTIRQ OFFSET;

/*
* is preempt count zero and are any bottom halves pending?
* if so, run them
*/
if (unlikely(!t->preempt_count && softirg pending (smp_processor_id())))
do_softirqg();

*In fact, this counter is used both by the interrupt and bottom half subsystems. Thus, in Linux, a single per-task counter represents the atomicity of a task. This has
proven very useful for work such as debugging sleeping-while-atomic bugs.
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These calls do not disable the execution of work queues. Because work queues run in process context, there are no issues with asynchronous execution, and thus, there
is no need to disable them. Because softirqs and tasklets can occur asynchronously (say, on return from handling an interrupt), however, kernel code may need to
disable them. With work queues, on the other hand, protecting shared data is the same as in any process context. Chapters 7 and 8 give the details.
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7
Kernel Synchronization Introduction

IN A SHARED MEMORY APPLICATION, care must be taken to ensure that shared resources are protected from concurrent access. The kernel is no exception. Shared resources

require protection from concurrent access because if multiple threads of execution' access and manipulate the data at the same time, the threads may overwrite each
other's changes or access data while it is in an inconsistent state. Concurrent access of shared data is a recipe for instability that often proves very hard to track down
and debug—getting it right off the bat is important.

Properly protecting shared resources can be tough. Years ago, before Linux supported symmetrical multiprocessing, preventing concurrent access of data was simple.
Because only a single processor was supported, the only way data could have been accessed concurrently was if an interrupt occurred or if kernel code explicitly
rescheduled and allowed another task to run. Back then, life was simple.

Those days are over. Symmetrical multiprocessing support was introduced in the 2.0 kernel and has been continually enhanced ever since. Multiprocessing support
implies that kernel code can simultaneously run on two or more processors. Consequently, without protection, code in the kernel, running on two different processors,
can simultaneously access shared data at exactly the same time. With the introduction of the 2.6 kernel, the Linux kernel is preemptive. This implies that (again, in the
absence of protection) the scheduler can preempt kernel code at virtually any point, and reschedule another task. Today, a number of scenarios allow for concurrency
inside the kernel and they all require protection.

" The term threads of ‘execution implies any instance of executing code. This includes, for example, a task in the kernel, an interrupt handler, or a kernel thread. This
chapter may shorten threads of execution to simply threads. Keep in mind that this term describes any executing code.
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This chapter discusses the issues of concurrency and synchronization, as they exist in an operating system kernel. The next chapter details the mechanisms and
interfaces that the Linux kernel provides to solve these synchronization issues and prevent race conditions.

Critical Regions and Race Conditions

Code paths that access and manipulate shared data are called critical regions. It is usually unsafe for multiple threads of execution to access the same resource
simultaneously. To prevent concurrent access during critical regions, the programmer (that's you) must ensure that the code executes atomically—that is, the code
completes without interruption as if the entire critical region were one indivisible instruction. It is a bug if it is possible for two threads of execution to be simultaneously
in the same critical region. When this actually occurs, we call it a race condition (named because the threads raced to get there). Note how rare this could be—
debugging race conditions is often very hard because they are not easily reproducible. Ensuring concurrency is prevented and that race conditions do not occur is called
synchronization.

Why Do We Need Protection?

To best identify race conditions, let's look at just how ubiquitous critical regions are. For a first example, consider a very simple shared resource, a single global integer,
and a very simple critical region, the operation of merely incrementing it:

i++;
This might translate into instructions to the computer's processor that resemble:

get the current value of i and copy it into a register
add one to the value stored in the register
write back to memory the new value of i

Now, assume that there are two threads of execution, both enter this critical region, and the initial value of i is seven. The desired outcome is then similar to (each row
represents a unit of time):

Thread 1 Thread 2

get 1 (7) -

increment i (7 -> 8) -

write back i (8) -

_ get 1 (8)

_ increment i (8 -> 9)

- write back i (9)
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As expected, seven incremented twice is nine. A possible outcome, however, is

Thread 1 Thread 2
get 1 (7) -
- get i (7)
increment i (7 -> 8) -
- increment 1 (7 -> 8)
write back i (8) -

- write back i (8)

If both threads of execution read the initial value of i before it is incremented, both threads will increment and save the same value. As a result, the variable i contains
the value eight when, in fact, it should now contain nine. This is one of the simplest examples of a critical region. Thankfully, the solution is equally as simple—we merely
need a way to perform these operations in one indivisible step. Most processors provide an instruction to atomically read, increment, and write back a single variable.
Using such an instruction would alleviate the problem. The kernel provides a set of interfaces that implement these atomic instructions; we will discuss them in the next
chapter.

Locking

Now, let's consider a more complicated race condition that requires a more complicated solution. Assume we have a queue of requests that need to be serviced. How
we implement the queue is irrelevant, but we can assume it is a linked list, where each node represents a request. Two functions manipulate the queue. One function
adds a new request to the tail of the queue. Another function removes a request from the head of the queue and does something useful with the request. Various parts
of the kernel invoke these two functions; thus, requests are continually being added, removed, and serviced.

Manipulating the request queues certainly requires multiple instructions. If one thread attempts to read from the queue while another is in the middle of manipulating it,
the reading thread will find the queue in an inconsistent state. It should be apparent the sort of damage that can occur if access to the queue could occur concurrently.
Often, when the shared resource is a complex data structure, the result of a race condition is corruption of the data structure.

The previous scenario, at first, might not have a clear solution. How can we prevent one processor from reading from the queue while another processor is updating it?
Although it is feasible for a particular architecture to implement simple instructions, such as arithmetic and comparison atomically, it is ludicrous for architectures to
provide instructions to support the indefinitely sized critical regions like the previous example. What is needed is a method of marking where a critical region begins and
ends and preventing—or, locking—access to it while another thread of execution is in the region.
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A lock provides such a mechanism; it works much like a lock on a door. Imagine the room beyond the door as the critical region. Inside the room, only one thread of
execution can be present at a given time. When a thread enters the room, it locks the door behind it. When the thread is finished manipulating the shared data, it leaves
the room and unlocks the door. If another thread reaches the door while it is locked, it must wait for the thread inside to exit the room and unlock the door before it can
enter.

In the previous request queue example, a single lock could have been used to protect the queue. Whenever there was a new request to add to the queue, the thread
would first obtain the lock. Then, it could safely add the request to the queue and ultimately release the lock. When a thread wanted to remove a request from the
queue, it too would obtain the lock. Then, it could read the request and remove it from the queue. Finally, it would release the lock. Any other access to the queue
would similarly need to obtain the lock. Because the lock can only be held by one thread at a time, only a single thread can manipulate the queue at a time. The lock
prevents concurrency and protects the queue from race conditions.

Any code that accessed the queue would first need to obtain the relevant lock. If another thread of execution comes along, the lock will prevent concurrency:

Thread 1 Thread 2
try to lock the queue try to lock the queue
succeeded: acquired lock failed: waiting...
access queue... waiting...
unlock the queue waiting...

succeeded: acquired lock
access queue...

unlock the queue

Notice that locks are advisory and voluntary. Locks are entirely a programming construct that the programmer must take advantage of. Nothing prevents you from
writing code that manipulates our fictional queue without the appropriate lock. Such a practice, of course, would eventually result in a race condition and corruption.

Locks come in various shapes and sizes—Linux alone implements a handful of different locking mechanisms. The most significant difference between the various

mechanisms is the behavior when the lock is contended (already in use)—some locks simply busy wait?, whereas other locks put the current task to sleep until the lock
becomes available. The next chapter discusses the behavior of the different locks in Linux and their interfaces.

> That is, spin in a tight loop, waiting for the lock to become available.
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What Causes Concurrency Anyway?

In user-space, the need for sychronization stems from the fact that programs are scheduled preemptively by the will of the scheduler. Because a process can be
preempted at any time and another process can be scheduled onto the processor, it is possible for a process to be involuntarily preempted in the middle of accessing a
critical region. If the newly scheduled process then enters the same critical region (say, if the two processes are threads and they access the same shared memory), a
race can occur. The same problem can occur within a single program with signals, because signals can occur asynchronously. This type of concurrency—where two
things do not actually happen at the same time, but interleave each other so that they might as well—is called pseudo-concurrency.

If you have a symmetrical multiprocessing machine, two processes can actually be executing in a critical region at the exact same time. That is called true concurrency.
Although the causes and semantics of true versus pseudo concurrency are different, they both result in the same race conditions and require the same sort of protection.

The kernel has similar causes of concurrency. They are

* Interrupts—An interrupt can occur asynchronously at almost any time, interrupting the currently executing code.
« Kernel preemption—Because the kernel is preemptive, one task in the kernel can preempt another.
* Sleeping and synchronization with user-space—A task in the kernel can sleep and thus invoke the scheduler, resulting in the running of a new process.

» Symmetrical multiprocessing—Two or more processors can be executing code at the exact same time.

It is important that kernel developers understand and prepare for these causes of concurrency. It is a bug if an interrupt occurs in the middle of code that is manipulating
a resource and the interrupt handler can access the same resource. Similarly, it is a bug if kernel code can be preempted while it is accessing a shared resource.
Likewise, it is an open invitation to race conditions if code in the kernel sleeps while in the middle of a critical section. Finally, two processors should never be able to
simultaneously access the same shared data. With a clear picture of what data needs protection, it is not hard to provide the locking to keep the world safe. Rather, the
hard part is identifying these conditions and realizing that to prevent concurrency, you need some form of protection. Let us reiterate this point, because it is quite
important. Implementing the actual locking in your code to protect shared data is not hard, especially when done early on while designing the code. The tricky part is
identifying the actual shared data and the corresponding critical sections. This is why designing locking into your code from the get go, and not as an afterthought, is of
paramount importance. It can be very hard to go in, after the fact, and identify what needs locking and retrofit locking into the existing code. The result is usually not
pretty, either. The moral of this is to a/ways design proper locking into your code from the beginning.
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Code that is safe from concurrent access from an interrupt handler is said to be interrupt-safe. Code that is safe from concurrency on symmetrical multiprocessing

machines is SMP-safe. Code that is safe from concurrency with kernel preemption is preempt-safej. The actual mechanisms used to provide synchronization and
protect against race conditions in all of these cases will be covered in the next chapter.

What Needs Protecting?

Identifying what data specifically needs protection is vital. Since any code that can be accessed concurrently may need protection, it is probably easier to identify what
data does not need protection and work from there. Obviously, any data that is local to one particular thread of execution does not need protection, because only that
thread can access the data. For example, local automatic variables do not need any sort of locking, because they exist solely on the stack of the executing thread.
Likewise, data that is only accessed by a specific task does not require locking.

What does need locking? Most global kernel data structures do. A good rule of thumb is if another thread of execution can access the data, it needs some sort of
locking; if anyone else can see it, lock it.

CONFIG options: SMP versus UP

Because the Linux kernel is configurable at compile-time, it makes sense that you can tailor the kernel specifically for a given machine. Most importantly, whether the
kernel supports SMP is provided via the CONFIG_SMP configure option. Many locking issues disappear on uniprocessor machines; consequently, when
CONFIG_SMP is unset, unnecessary code is not compiled into the kernel image. For example, this enables uniprocessor machines to forgo the overhead of spin
locks. The same trick applies to CONFIG_PREEMPT (the configure option enabling kernel preemption). This was an excellent design decision—the kernel
maintains one clean source base, and the various locking mechanisms are used as needed. Different combinations of CONFIG_SMP and CONFIG_PREEMPT

on different architectures compile in varying lock support.

In your code, provide appropriate protection for all issues and all scenarios will be covered.
Whenever you write kernel code, you should ask yourself these questions:

* Is the data global? Can a thread of execution other than the current access it?

* Is the data shared between process context and interrupt context? Is it shared between two different interrupt handlers?
« If'a process is preempted while accessing this data, can the newly scheduled process access the same data?

* Can the current process sleep (block) on anything? If it does, what state does that leave any shared data in?

» What prevents the data from being freed out from under me?

? We will also see that, barring a few exceptions, being SMP-safe implies being preempt-safe.
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» What happens if this function is called again on another processor?

» What are you going to do about it?

In short, nearly all global and shared data in the kernel requires some form of the synchronization methods discussed in the next chapter.

Deadlocks

A deadlock is a condition involving one or more threads of execution and one or more resources, such that each thread is waiting for one of the resources, but all the
resources are already held. The threads are all waiting for each other, but they will never make any progress toward releasing the resources they already hold.
Therefore, none of the threads can continue, which means we have a deadlock.

A good analogy is a four-way traffic stop. If each car at the stop decides to wait for the other cars before going, no car will ever go and we have a traffic deadlock.

The simplest example of a deadlock is the self- deadlock®: If a thread of execution attempts to acquire a lock it already holds, it will have to wait for the lock to be
released. But it will never release the lock, because it is busy waiting for the lock, and the result is deadlock:

acquire lock
acquire lock, again
wait for lock to become available

Similarly, consider # threads and » locks. If each thread holds a lock the other thread wants, all threads will block waiting for their respective lock to become available.
The most common example is with two threads and two locks, which is often called the ABBA deadlock:

Thread 1 Thread 2
acquire lock A acquire lock B
try to acquire lock B try to acquire lock A
wait for lock B wait for lock A

Each thread is waiting for the other and neither thread will ever release their original lock; therefore, neither lock will ever become available. This type of deadlock is
also known as the deadly embrace.

* Some kernels prevent this type of deadlock by having recursive locks that are locks that a single thread of execution may acquire multiple times. Linux, thankfully,
does not provide recursive locks. This is usually considered a good thing. Although recursive locks might alleviate the self-deadlock problem, they very readily lead to
sloppy locking semantics.
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Prevention of deadlock scenarios is important. Although it is difficult to prove that code is free of deadlocks, it is possible to write deadlock free code. A few simple
rules go a long way:

* Lock ordering is vital. Nested locks must a/ways be obtained in the same order. This prevents the deadly embrace deadlock. Document the lock ordering so
others will follow it.

* Prevent starvation. Ask, does this code always finish? If foo does not occur, will bar wait forever?
* Do not double acquire the same lock.

» Complexity in your locking scheme invites deadlocks—design for simplicity.

The first point is important, and worth stressing. If two or more locks are ever acquired at the same time, they must a/ways be acquired in the same order. Let's assume
we have the cat, dog, and fox locks that protect data structures of the same name. Now assume we have a function that needs to work on all three of these data
structures simultaneously—perhaps to copy data between them. Whatever the case, the data structures require locking to ensure safe access. If one function acquires
the locks in the order cat, dog, and then fox, then every other function must obtain these locks (or a subset of them) in this same order. For example, it is a potential
deadlock (and hence a bug) to first obtain the fox lock, and then obtain the dog lock (because the dog lock must always be acquired prior to the fox lock). Once
more, here is an example where this would cause a deadlock:

Thread 1 Thread 2
acquire lock cat acquire lock fox
acquire lock dog try to acquire lock dog
try to acquire lock fox wait for lock dog

wait for lock fox -

Thread one is waiting for the fox lock, which thread two holds, while thread two is waiting for the dog lock, which thread one holds. Neither ever releases their locks
and hence both wait forever—bam, deadlock. If the locks were always obtained in the same order, a deadlock in this manner would not be possible.

Whenever locks are nested with other locks, a specific ordering must be obeyed. It is good practice to place the ordering in a comment above the lock. Something like
the following is a good idea:

/‘k

* cat_lock - always obtain before the dog lock

* (and always obtain the dog lock before the fox lock)
*/

Note the order of unlock does not matter with respect to deadlock, although it is good practice to release the locks in the inverse order they were acquired.
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Preventing deadlocks is very important. The Linux kernel has some basic debugging facilities for detecting deadlock scenarios in a running kernel. These features are
discussed in the next chapter.

Contention and Scalability

The term lock contention, or simply contention, is used to describe a lock that is currently in use, but that another thread is trying to acquire. A lock that is highly
contended often has threads waiting to acquire it. Because a lock's job is to serialize access to a resource, it comes as no surprise that locks can slow down the
performance of a system. A highly contended lock can become a bottleneck in the system, quickly limiting its performance. Of course, the locks are also required to
prevent the system from tearing itself to shreds, so a solution to high contention must continue to provide the necessary concurrency protection.

Scalability is a measurement of how well a system can be expanded. In operating systems, we talk of the scalability with large number of processes, large number of
processors, or large amounts of memory. We can discuss scalability in relation to virtually any component of a computer to which we can attach a quantity. Ideally,
doubling the number of processors should result in a doubling of the system's processor performance. This, of course, is never the case.

The scalability of Linux on a large number of processors has increased dramatically in the time since multiprocessing support was introduced in the 2.0 kernel. In the
early days of Linux multiprocessing support, only one task could execute in the kernel at a time. During 2.2, this limitation was removed as the locking mechanisms
grew more fine-grained. Through 2.4 and onward, kernel locking became even finer grained.

The granularity of locking is a description of the size or amount of data that a lock protects. A very coarse lock protects a large amount of data—for example, an entire
subsystem's set of data structures. On the other hand, a very fine grained lock protects a very small amount of data—say, only a single element in a larger structure. In
reality, most locks fall somewhere in between these two extremes, protecting neither an entire subsystem nor an individual element, but perhaps a single structure. Most
locks start off fairly coarse, and are made more fine-grained as lock contention proves to be a problem.

One example of evolving to finer-grained locking is the scheduler runqueues, discussed in Chapter 3, "Scheduling." In 2.4 and prior kernels, the scheduler had a single
runqueue (recall, a runqueue is the list of runnable processes). In 2.6, the O(1) scheduler introduced per-processor runqueues each with a unique lock. The locking
evolved from a single global lock to separate locks for each processor.

Generally, this scalability improvement is a very good thing, as it improves the performance of Linux on larger and more powerful systems. Rampant scalability
"improvements" can lead to a decrease in performance on smaller SMP and UP machines, however, because smaller machines may need not such fine grained locking,
but will nonetheless have to put up with the increased complexity and overhead. Consider a linked list. An initial locking scheme would provide a single lock for the list.
In time, this
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single lock might prove to be a scalability bottleneck on very large multiprocessor machines that frequently access this linked list. In response, the single lock could be
broken up into one lock per node in the linked list. For each node you wanted to read or write, you obtained the node's unique lock. Now there is only lock contention
when multiple processors are accessing the same exact node. What if there is still lock contention, however? Do we provide a lock for each element in each node?
(Answer: No.) Seriously, even though this very fine-grained locking might perform excellent on very large SMP machines, how does it perform on dual processor
machines? The overhead of all those extra locks is wasted if a dual processor machine does not see significant lock contention to begin with.

Nonetheless, scalability is an important consideration. Designing your locking from the beginning to scale well is important. Coarse locking of major resources can easily
become a bottleneck on even small machines. There is a thin line between too coarse locking and too fine locking. Too coarse of locking results in poor scalability if
there is high lock contention, whereas too fine of locking results in wasteful overhead if there is little lock contention. Both scenarios equate to poor performance. Start
simple and grow in complexity only as needed. Simplicity is key.

Locking and Your Code

Making your code SMP-safe is not something that can be added as an afterthought. Proper synchronization—locking that is free of deadlocks, scalable, and clean—
requires design decisions from start through finish. Whenever you write kernel code, whether it is a new system call or a rewritten driver, protecting data from
concurrent access needs to be a primary concern.

Provide sufficient protection for every scenario—SMP, kernel preemption, and so on—and rest assured the data will be safe on any given machine and configuration.
The next chapter will discuss just how to do this.
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8
Kernel Synchronization Methods

THE PREVIOUS CHAPTER DISCUSSED THE SOURCEs of and solutions to race conditions. Thankfully, the Linux kernel implements a large family of synchronization methods. This
chapter discusses these methods and their interface, behavior, and use.

Atomics Operations

Atomic operations provide instructions that execute atomically—without interruption. Just as the atom was originally thought to be an indivisible particle, atomic
operators are indivisible instructions. For example, as discussed in the previous chapter, an atomic increment can read and increment a variable by one in a single
indivisible and uninterruptible step. Instead of the race discussed in the previous chapter, the outcome is always similar to (assume 1 is initially seven):

Thread 1 Thread 2
increment i (7 -> 8) -

- increment 1 (8 -> 9)

The resulting value, nine, is correct. It is never possible for the two atomic operations to occur on the same variable concurrently. Therefore, it is not possible for the
increments to race.

The kernel provides two sets of interfaces for atomic operations—one that operates on integers and another that operates on individual bits. These interfaces are
implemented on every architecture that Linux supports. Most architectures either directly support simple atomic operations or provide an operation to lock the memory
bus for a single operation (and thus ensure another operation cannot occur simultaneously). Architectures that cannot easily support primitive atomic operations, such as
SPARC, somehow cope.
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Atomic Integer Operations

The atomic integer methods operate on a special data type, atomic_ t. This special type is used, as opposed to having the functions work directly onthe C int
type, for a couple of reasons. First, having the atomic functions accept only the at omic_t type ensures that the atomic operations are only used with these special
types. Likewise, it also ensures that the data types are not passed to any other nonatomic functions. Indeed, what good would atomic operations be if sometimes they
were used and other times they were not? Next, the use of atomic_t ensures the compiler does not (erroneously but cleverly) optimize access to the value—it is
important that the atomic operations receive the correct memory address and not an alias. Finally, use of atomic_t can hide any architecture-specific differences in
its implementation.

Despite being an integer, and thus 32-bits on all the machines that Linux supports, code must assume an atomic_t is no larger than 24-bits in size. This is because
of the SPARC architecture, which has an odd implementation of atomic operations: A lock is embedded in the lower 8-bits of the 32-bit i nt (it looks like Figure 8.1).
The lock is used to protect concurrent access to the atomic type, because the SPARC architecture lacks appropriate support at the instruction-level. Consequently,
only 24-bits are usable on SPARC machines. Although code that assumes the full 32-bit range exists will work on other machines, it can fail in strange and subtle ways
on SPARC machines—and that is just rude.

32-bit atomic_t

signed 24-bit integer fock

(bity 31 7 0

Figure 8.1 Layout of the 32-bit atomic_t on SPARC.
The declarations needed to use the atomic integer operations are in <asm/atomic . h>. Some architectures provide additional methods which are unique to that
architecture, but all architectures provide at least a minimum set of operations which are used throughout the kernel. When you write kernel code, you can ensure these

operations are correctly implemented on all architectures.

Definingan atomic_t is done in the usual manner. Optionally, you can set it to an initial value:

atomic_t u; /* define u */
atomic_t v = ATOMIC_INIT(0); /* define v and initialize it to zero */



Operations are all simple:

atomic_set (&v, 4); /* v = 4 (atomically)
atomic_add (2, &v); /* v o=V
atomic_inc(&v); /* v = v

If you ever need to convertan atomic ttoanint,useatomic read():

printk("$d\n", atomic read(&v)); /* will print "7"

*/

(
+ 2 = 6 (atomically)
+ 1 =7 (atomically)

*/

*/
*/
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A common use of the atomic integer operations is to implement counters. Protecting a sole counter with a complex locking scheme is silly, so instead developers use
atomic_inc () andatomic_dec (), which are much lighter in weight. Another use of the atomic integer operators is atomically performing an operation and

testing the result. A common example is the atomic decrement and test:

int atomic_dec_and_test (atomic_t *v)

This function decrements by one the given atomic value. If the result is zero, it returns true; otherwise, it returns false. A full listing of the standard atomic integer

operations (those found on all architectures) is in 7able 8.1. All the operations implemented on a specific architecture can be found in <asm/atomic.h>.

Table 8.1 Full Listing of Atomic Integer Operations
Atomic Integer Operation

ATOMIC INIT (int 1)

int atomic read(atomic_t *v)

void atomic_set (atomic_t *v, int i)
void atomic add(int i, atomic t *v)
void atomic_sub(int i, atomic t *v)
void atomic_inc(atomic_t *v)

void atomic dec(atomic t *v)

int atomic_sub and test (int i, atomic_t *v)

int atomic add negative (int i, atomic t *v)

int atomic dec and test(atomic t *v)

int atomic inc_and test(atomic t *v)

Description

At declaration, initialize an atomic_t to i
Atomically read the integer value of v
Atomically set v equal to i

Atomically add i to v

Atomically subtract i from v

Atomically add one to v

Atomically subtract one from v

Atomically subtract 1 from v and return true if the result is
zero; otherwise false

Atomically add i to v and return true if the result is negative;
otherwise false

Atomically decrement v by one and returns true if zero; false
otherwise

Atomically increment v by one and return true if the result is
zero; otherwise false
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The atomic operations are typically implemented as inline functions with inline assembly (kernel developers like inlines). In the case where a specific function is
inherently atomic, the given function is usually just a macro. For example, on most sane architectures, a word-sized read is atomic. That is, a read of a single word
cannot complete in the middle of a write to that word. Consequently, atomic read () is usually just a macro returning the integer value of the atomic_t.

In your code, preferring atomic operations to more complicated locking mechanisms when applicable is usually preferred. On most architectures, one or two atomic
operations incur less overhead and less cache-line thrashing than a more complicated synchronization method. As with any performance-sensitive code, however,
testing multiple approaches is always smart.

Atomic Bitwise Operations

In addition to atomic integer operations, the kernel also provides a family of functions that operate at the bit-level. Not surprisingly, they are architecture-specific and
definedin <asm/bitops.h>.

What may be surprising is that the bitwise functions operate on generic memory addresses. The arguments are a pointer and a bit number. Bit zero is the least significant
bit of the given address. On 32-bit machines, bit 31 is the most significant bit and bit 32 is the least significant bit of the following word. There are no limitations on the
bit number supplied, although most uses of the functions provide a word and, consequently, a bit number between 0 and 31 (or 63, on 64-bit machines).

Because the functions operate on a generic pointer, there is no equivalent of the atomic integer's atomic_ t type. Instead, you can work with a pointer to whatever
data you desire. Let us consider an example:

unsigned long word = 0;

set_bit (0, &word); /* bit zero is now set (atomically) */

set _bit(l, &word); /* bit one is now set (atomically) */

printk ("%ul\n", word); /* will print "3" */

clear_bit (1, &word); /* bit one is now unset (atomically) */

change_bit (0, &word); /* bit zero is flipped; now it is unset (atomically) */

/* atomically sets bit zero and returns the previous value (zero) */
if (test_and set bit (0, &word)) {
/* never true ... */

A listing of the standard atomic bit operations is in Table 8.2.
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Table 8.2 Listing of Atomic Bitwise Operations

Atomic Bitwise Operation Description

void set bit(int nr, void *addr) Atomically set the nr-th bit starting from addr

void clear bit(int nr, void *addr) Atomically clear the nr-4 bit starting from addr

void change bit(int nr, void *addr) Atomically flip the value of the nr-#4 bit starting from addr
int test and set bit(int nr, void *addr) Atomically set the nr-#h bit starting from addr and return

the previous value

int test and clear bit(int nr, void *addr) Atomically clear the nr-th bit starting from addr and return
the previous value

int test and change bit (int nr, void *addr) Atomically flip the nr-#4 bit starting from addr and return
the previous value

int test bit(int nr, void *addr) Atomically return the value of the nr-zA bit starting from
addr

Conveniently, nonatomic versions of all the bitwise functions are also provided. They behave identical to their atomic siblings, except they do not guarantee atomicity
and their names are prefixed with double underscores. For example, the nonatomic formof test bit () is  test bit ().Ifyou do not require atomicity
(say, for example, because a lock already protects your data), these variants of the bitwise functions might be faster.

The kernel also provides routines to find the first set (or unset) bit starting at a given address:

int find first bit (unsigned long *addr, unsigned int size)
int find first zero bit (unsigned long *addr, unsigned int size)

Both functions take a pointer as their first argument and the number of bits in total to search as their second. They return the bit number of the first set or first unset bit,
respectively. If your code is only searching a word, the routines  ££s () and ££z (), which take a single parameter of the word in which to search, are optimal.

Unlike the atomic integer operations, code typically has no choice whether to use the bitwise operations—they are the only portable way to set a specific bit. The only
question is whether to use the atomic or nonatomic variants. If your code is inherently safe from race conditions, you can use the nonatomic versions, which might be
faster depending on the architecture.
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Spin Locks

Although it would be nice if every critical region were as simple as incrementing a variable, reality is much crueler. In real life, critical regions can span multiple functions.
For example, it is often the case that data must be removed from one structure, formatted and parsed, and added to another structure. This entire operation must occur
atomically; it must not be possible for other code to read either structure before we are done updating it. Because simple atomic operations are clearly incapable of
providing the needed protection, a more complex method of synchronization is needed—Ilocks.

The most common lock in the Linux kernel is the spin lock. A spin lock is a lock that can be held at most by one thread of execution. If a thread of execution attempts
to acquire a spin lock while it is contended (already held), the thread will busy loop—spin—waiting for the lock to become available. If the lock is not contended, the
thread can immediately acquire the lock and continue. The spinning prevents more than one thread of execution from entering the critical region at any one time. Note
the same lock can be used in multiple locations—so all access to a given data structure, for example, can be protected and synchronized.

The fact that a contended spin lock causes threads to spin (essentially wasting processor time) while waiting for the lock to become available is important. It is not wise
to hold a spin lock for a long time. In fact, this is the nature of the spin lock: a lightweight single-holder lock that should be held for short durations. An alternative
behavior when the lock is contended is to put the current thread to sleep and wake it up when it becomes available. Then, the processor can go off and execute other
code. This incurs a bit of overhead—most notably the two context switches to switch out of and back into the blocking thread. Therefore, it is wise to hold spin locks
for less than the duration of two context switches. Because most of us have better things to do than measure context switches, just try to hold the lock as short as

possible1 . The next section will cover semaphores, which provide a lock that makes the waiting thread sleep, instead of spin, when contended.

Spin locks are architecture-dependent and implemented in assembly. The architecture-dependent code is defined in <asm/spinlock.h>. The actual usable
interfaces are defined in <1inux/spinlock.h>. The basic use of a spin lock is

spinlock_t mr_lock = SPIN_LOCK_ UNLOCKED;
spin_lock (&mr_lock) ;

/* critical region ... */
spin_unlock (&mr_lock) ;

" This is especially important now that the kernel is preemptive. The duration of locks held is equivalent to the scheduling latency of the system.
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The lock can only be held simultaneously by at most one thread of execution. Consequently, only one thread is allowed in the critical region at a time. This provides the
needed protection from concurrency on multiprocessing machines. Note on UP machines, the locks compile away and do not exist. They simply act as markers to
disable and enable kernel preemption. If kernel preempt is turned off, the locks compile away entirely.

Warning: Spin Locks Are Not Recursive!

Unlike spin lock implementations in other operating systems, the Linux kernel's spin locks are not recursive. This means that if you attempt to acquire a lock you
already hold, you will spin, waiting for yourself to release the lock. But because you are busy spinning, you will never release the lock and you will deadlock. Be
careful!

Spin locks can be used in interrupt handlers (semaphores, however, cannot because they sleep). If a lock is used in an interrupt handler, you must also disable local
interrupts (interrupt requests on the current processor) before obtaining the lock. Otherwise, it is possible for an interrupt handler to interrupt kernel code while the lock
is held and attempt to reacquire the lock. The interrupt handler spins, waiting for the lock to become available. The lock holder, however, will not run until the interrupt
handler completes. This is an example of the double-acquire deadlock discussed in the previous chapter. Note, you only need to disable interrupts on the current
processor. If an interrupt occurs on a different processor, and it spins on the same lock, it will not prevent the lock holder (which is on a different processor) from
eventually releasing the lock.

The kernel provides an interface that conveniently disables interrupts and acquires the lock. Usage is

spinlock t mr_lock = SPIN_LOCK UNLOCKED;
unsigned long flags;

spin_lock irgsave (&émr_lock, flags);
/* critical region ... */
spin_unlock irgrestore (&mr lock, flags);

Theroutine spin lock irgsave () saves the current state of interrupts, disables them locally, and then obtains the given lock. Conversely,
spin unlock irgrestore () unlocks the given lock and returns interrupts to their previous state. This way, if they are initially disabled, your code will not
erroneously enable them. Note that the £ 1ags variable is seemingly passed by value. This is because the lock routines are implemented partially as macros.

On uniprocessor systems, the previous example must still disable interrupts to prevent an interrupt handler from accessing the shared data, but the lock mechanism is
compiled away. The lock and unlock also disable and enable kernel preemption, respectively.
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What Do I Lock?

It is important that each lock is clearly associated with what it is locking. More importantly, it is important that you protect data and not code. Despite the examples
in this chapter explaining the importance of protecting the critical sections, it is the actual data inside that needs protection and not the code. Locks that simply lock
code regions are hard to understand and prone to race conditions. Instead, associate data with a specific lock. For example, "the st ruct foo is locked by
foo lock."” Always associate each piece of global data with a given lock. Whenever you access the data, make sure it is safe. Most likely, this means obtaining
the appropriate lock before manipulating the data and releasing the lock when finished.

If you know that interrupts are initially enabled, there is no need to restore their previous state. You can unconditionally enable them on unlock. In those cases,
spin_lock irg() and spin_unlock irqg() are optimal:

spinlock_t mr_lock = SPIN_LOCK_UNLOCKED;

spin_lock_irqg(&mr_lock);

/* critical section ... */
spin_unlock_irg(&mr_lock) ;

It is increasingly hard to ensure that interrupts are always enabled in any given code path in the kernel. Because of this, use of spin_ lock irg() isnot
recommended. If you do use it, you had better be positive that interrupts were originally off or someone will be upset when they find them on!

Debugging Spin Locks
The configure option CONFIG DEBUG SPINLOCK enables a handful of debugging checks in the spin lock code. For example, with this option the spin lock

code will check for the use of uninitialized spin locks and unlocking a lock that is not yet locked. When testing your code, you should always run with spin lock
debugging enabled.

Other Spin Lock Methods

The method spin_lock init () canbe used to initialize a dynamically created spin lock (a spinlock t that you do not have a direct reference to, just a
pointer).

The method spin_try lock () attempts to obtain the given spin lock. If the lock is contended, instead of spinning and waiting for the lock to be released, the
function immediately returns nonzero. If it succeeds in obtaining the lock, it returns zero. Similarly, spin is locked () returns nonzero if the given lock is

currently acquired. Otherwise, it returns zero. In neither case does this function actually obtain the lock®.

See Table 8.3 for a complete list of the standard spin lock methods.

? Use of these two functions can lead to gross code. You should not frequently have to check the values of spin locks—your code should either always acquire the
lock itself or always be called while the lock is already held. Some legitimate uses do exist, however, so these interfaces are provided.



Table 8.3 Listing of Spin Lock Methods
Method

spin lock()

spin_lock_irg()

spin_lock irgsave ()

spin unlock()

spin_unlock irqg()

spin_unlock irgrestore ()

spin lock init()

spin_trylock()

spin_is locked()

Spin Locks and Bottom Halves
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Description

Acquires given lock

Disables local interrupts and acquire given lock

Saves current state of local interrupts, disable local interrupts, and acquires given lock
Releases given lock

Releases given lock and enables local interrupts

Releases given lock and restores local interrupts to given previous state

Initializes given spinlock t

Tries to acquire given lock; if unavailable, returns nonzero

Returns nonzero if the given lock is currently acquired, else it returns zero

As mentioned in Chapter 6, "Bottom Halves and Deferring Work," certain locking precautions must be taken when working with bottom halves. The function
spin_ lock bh () obtains the given lock and disables all bottom halves. The function spin unlock bh () performs the inverse.

Because a bottom half may preempt process context code, if data is shared between a bottom half and process context, you must protect the data in process context
with both a lock and the disabling of bottom halves. Likewise, because an interrupt handler may preempt a bottom half; if data is shared between an interrupt handler
and a bottom half, you must both obtain the appropriate lock and disable interrupts.

Recall that two tasklets of the same type do not ever run simultaneously. Thus, there is no need to protect data used only within a single type of tasklet. If the data is
shared between two different tasklets, however, you must obtain a normal spin lock before accessing the data in the bottom half. You do not need to disable bottom
halves because a tasklet will never preempt another running tasklet on the same processor.

With softirgs, regardless of whether it is the same softirq type or not, if data is shared by softirgs it must be protected with a lock. Recall that softirgs, even two of the
same type, may run simultaneously on multiple processors in the system. A softirq will never preempt another softirq running on the same processor, however, so

disabling bottom halves is not needed.

Reader-Writer Spin Locks

Sometimes, lock usage can be clearly divided into readers and writers. For example, consider a list that is both updated and searched. When the list is updated (written

to), it is
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important no other code is concurrently writing to or reading from the list. Writing demands mutual exclusion. On the other hand, when the list is searched (read from),
it is only important that nothing else is writing to the list. Multiple concurrent readers are safe so long as there are no writers. The task list (discussed in Chapter 2,
"Process Management") is very similar to this description. Not surprisingly, the task list is protected by a reader-writer spin lock.

When a data structure is neatly split into reader/writer paths like this, it makes sense to use a locking mechanism that provides similar semantics. In this case, Linux
provides reader-writer spin locks. Reader-writer spin locks provide separate reader and writer variants of the lock. One or more readers can concurrently hold the
reader lock. The writer lock, conversely, can be held by at most one writer with no concurrent readers. Usage is similar to spin locks. The reader-writer spin lock is
initialized via

rwlock t mr_rwlock = RW_LOCK_UNLOCKED;
Then, in the reader code path:

read_lock(&émr_rwlock);
/* critical section (read only) ... */
read_unlock (&mr_rwlock) ;

Finally, in the writer code path:

write lock(&mr_rwlock);
/* critical section (read and write) ... */
write unlock (&mr_ rwlock);

Normally, the readers and writers are in entirely separate code paths, such as in this example.

Note that you cannot "upgrade" a read lock to a write lock. This code

read_lock (&mr_rwlock);
write_lock (&mr_rwlock);

will deadlock as the writer lock will spin, waiting for all readers to release the lock, including yourself. If you ever need to write, obtain the write lock from the very
start. If the line between your readers and writers is muddled, it might be an indication that you do not need to use reader-writer locks. In that case, a normal spin lock
is optimal.

It is safe for multiple readers to obtain the same lock. In fact, it is safe for the same thread to recursively obtain the same read lock. This lends itself to a useful and
common optimization. If you only have readers in interrupt handlers but no writers, you can mix use of the "interrupt disabling" locks. You canuse read_lock ()
instead of read_lock_  irgsave () forreader protection. You still need to disable interrupts for write access, alawrite lock irgsave (), otherwise
a reader in an interrupt could deadlock on the held write lock. See Table 8.4 for a full listing of the reader-writer spin lock methods.
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Table 8.4 Listing of Reader-Writer Spin Lock Methods

Method

read lock()
read_lock_irg()
read_lock irgsave()

read unlock ()
read_unlock irqg()
read_unlock irgrestore ()
write lock()

write lock irg()

write lock_irgsave ()
write unlock()

write unlock irqg()

write unlock_irgrestore ()
write trylock()

rw_lock init ()

rw_is locked()

Description

Acquires given read-lock

Disables local interrupts and acquires given read-lock

Saves the current state of local interrupts, disables local interrupts, and acquires the given read-lock
Releases given read-lock

Releases given read-lock and enables local interrupts

Releases given read-lock and restores local interrupts to the given previous state

Acquires given write-lock

Disables local interrupts and acquires the given write-lock

Saves current state of local interrupts, disables local interrupts, and acquires the given write-lock
Releases given write-lock

Releases given write-lock and enables local interrupts

Releases given write-lock and restores local interrupts to given previous state

Tries to acquire given write-lock; if unavailable, returns nonzero

Initializes given rwlock t

Returns nonzero if the given lock is currently acquired, else it returns zero

A final important consideration in using the Linux reader-writer spin locks is that they favor readers over writers. If the read lock is held and a writer is waiting for
exclusive access, readers that attempt to acquire the lock will continue to succeed. The spinning writer will not acquire the lock until all readers release the lock.
Therefore, a sufficient number of readers can starve pending writers. This is important to keep in mind when designing your locking.

Spin locks provide a very quick and simple lock. The spinning behavior is optimal for short hold times and code that cannot sleep (interrupt handlers, for example). In
cases where the sleep time might be long or you potentially need to sleep while holding the lock, the semaphore is a solution.

Semaphores

Semaphores in Linux are sleeping locks. When a task attempts to acquire a semaphore that is already held, the semaphore places the task onto a wait queue and puts
the task to sleep. The processor is then free to execute other code. When the processes® holding the

® As we will see, multiple processes can simultaneously hold a semaphore, if desired.
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semaphore release the lock, one of the tasks on the wait queue will be woken up so that it can acquire the semaphore.

We can draw some interesting conclusions from the sleeping behavior of semaphores:

* Because the contending tasks sleep while waiting for the lock to become available, semaphores are well suited to locks that can be held a long time.
* Conversely, semaphores are not optimal for locks that are held for very short periods because the overhead of sleeping can outweigh the total lock hold time.
* Because a thread of execution sleeps on lock contention, semaphores can only be obtained in process context, as interrupt context is not schedulable.

* You can (although you may not want to) sleep while holding a semaphore because you will not deadlock when another process acquires the same semaphore (as
it will just go to sleep and eventually let you continue).

* You cannot hold a spin lock while you acquire a semaphore, because you might have to sleep while waiting for the semaphore, and you cannot sleep while holding

a spin lock.

These facts highlight the uses of semaphores versus spin locks. In most uses of semaphores, there is little choice as to what lock to use. If your code needs to sleep,
which is often the case when synchronizing with user-space, semaphores are the sole solution. It is often easier, if not necessary, to use semaphores because they allow
you the flexibility of sleeping. When you do have a choice, the decision between semaphore and spin lock should be based on lock hold time. Ideally, all your locks
should be held as short as possible. With semaphores, however, longer lock hold times are more acceptable. Additionally, unlike spin locks, semaphores do not disable
kernel preemption and, consequently, code holding a spin lock can be preempted. This means semaphores do not adversely affect scheduling latency.

A final useful feature of semaphores is that they can allow for an arbitrary number of simultaneous lock holders. Whereas spin locks permit at most one task to hold the
lock at a time, the number of permissible simultaneous holders of semaphores can be set at declaration time. This value is called the usage count or simply count. The
most common value is to allow, like spin locks, only one lock holder at a time. In this case, the count is equal to one and the semaphore is called a binary semaphore
(because it is either held by one task or not held at all) or a mutex (because it enforces mutual exclusion). Alternatively, the count can be initialized to a nonzero value
greater than one. In this case, the semaphore is called a counting semaphore, and it allows at most count holders of the lock at a time. Counting semaphores are not
used to enforce mutual exclusion, because they allow multiple threads of execution in the critical region at once. Instead, they are used to enforce limits in certain code.
They are not used much in the kernel. If you use a semaphore, you almost assuredly want to use a mutex (a semaphore with a count of one).
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Semaphores were formalized by Edsger Wybe Dijkstlra4 in 1968 as a generalized locking mechanism. A semaphore supports two atomic operations, P () and V (),
named after the Dutch word Proberen, to test (literally, to probe), and the Dutch word Verhogen, to increment. Later systems called these methods down () and up
(), respectively, and so does Linux. The down () method is used to acquire a semaphore by decrementing the count by one. If it is zero or greater, the lock is
acquired and the task can enter the critical region. If the count is negative, the task is placed on a wait queue and the processor moves on to something else. The
function is used as a verb; you down a semaphore to acquire it. The up () method is used to release a semaphore upon completion of a critical region. This is called
upping the semaphore. The method increments the count value; if the semaphore's wait queue is not empty, one of the waiting tasks is awakened and allowed to
acquire the semaphore.

Creating and Initializing Semaphores

The semaphore implementation is architecture-dependent and defined in <asm/semaphore.h>. The struct semaphore type represents semaphores.
Statically declared semaphores are created via

static DECLARE_SEMAPHORE_GENERIC (name, count) ;
where name is the variable's name and count is the usage count of the semaphore. As a shortcut to create the more common mutex, use
static DECLARE_MUTEX (name) ;

where, again, name is the variable name of the semaphore. More frequently, semaphores are created dynamically, often as part of a larger structure. In this case, to
initialize a dynamically created semaphore to which you have only an indirect pointer reference, use

sema_init (sem, count);

where sem is a pointer and count is the usage count of the semaphore. Similarly, to initialize a dynamically created mutex, you can use
init_ MUTEX (sem) ;

Using Semaphores

The function down _interruptible () attempts to acquire the given semaphore. If it fails, it sleeps in the TASK_ INTERRUPTIBLE state. Recall from
Chapter 2 that this process state implies a task can be woken up with a signal, which is generally a good thing. Ifa

*Dr. Dijkstra (1930-2002) is one of the most accomplished computer scientists in the (admittedly brief) history of computer scientists. His numerous contributions
include work in OS design, algorithm theory, and the concept of semaphores. He was born in Rotterdam, The Netherlands and taught at the University of Texas for 15
years. He is probably no t happy with the large number of GOTO statements in the Linux kernel, however.
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signal is received while waiting for the semaphore, the task is woken up and down _interruptible () returns ~EINTR. Alternatively, the function down ()
places the task in the TASK_UNINTERRUPTIBLE state if it sleeps. You most likely do not want this because the process waiting for the semaphore will not

respond to signals. Therefore, use of down _interruptible () is much more common than down (). Yes, the naming is not ideal.

Youcanuse down _trylock () tononblockingly try to acquire the given semaphore. If the semaphore is already held, the function immediately returns nonzero.
Otherwise, it returns zero and you successfully hold the lock.

To release a given semaphore, call up () . Let's look at an example:

static DECLARE_MUTEX (mr_sem) ;

if (down_interruptible (&mr_ sem))
/* signal received, semaphore not acquired */

/* critical region ... */

up (&mr_sem) ;

A complete listing of the semaphore methods is in Table 8.5.

Table 8.5 Listing of Semaphore Methods

Method Description

sema_init (struct semaphore *, int) Initializes the dynamically created semaphore to the given count

init MUTEX (struct semaphore *) Initializes the dynamically created semaphore with a count of one

init MUTEX LOCKED (struct semaphore *) Initializes the dynamically created semaphore with a count of zero (so it is
initially locked)

down_interruptible (struct semaphore *) Tries to acquire the given semaphore and enter interruptible sleep if it is
contended

down (struct semaphore *) Tries to acquire the given semaphore and enter uninterruptible sleep if it is
contended

down_trylock(struct semaphore *) Tries to acquire the given semaphore and immediately return nonzero if it is
contended

up (struct semaphore *) Releases the given semaphore and wake a waiting task, if any
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Reader-Writer Semaphores

Semaphores, like spin locks, also come in a reader-writer flavor. The situations where reader-writer semaphores are preferred over standard semaphores are the same
as with reader-writer spin locks versus standard spin locks.

Reader-writer semaphores are represented by the st ruct rw_semaphore type, which is defined in <1inux/rwsem.h>. Statically declared reader-writer
semaphores are created via

static DECLARE RWSEM (name) ;

where name is the declared name of the new semaphore.

Reader-writer semaphores that are created dynamically can be initialized via

init_rwsem(struct rw_semaphore *sem)

All reader-writer semaphores are mutexes (that is, their usage count is one). Any number of readers can concurrently hold the read lock, so long as there are no
writers. Conversely, only a sole writer (with no readers) can acquire the write variant of the lock. All reader-writer locks use uninterruptible sleep, so there is only one

version of each down () . For example:

static DECLARE_RWSEM (mr_rwsem) ;

down_read (&mr_rwsem) ;
/* critical region (read only) ... */

up_read (&mr_rwsem) ;

down write (&mr rwsem) ;
/* critical region (read and write) ... */

up_write (&mr_rwsem);

As with semaphores, implementations of down read trylock() anddown write trylock () areprovided. Each has one parameter: a pointer to a
reader-writer semaphore. They both return nonzero if the lock is successfully acquired and zero if it is currently contended. Be careful—for admittedly no good
reason—this is the opposite of normal semaphore behavior!

Reader-writer semaphores have a unique method that their reader-writer spin lock cousins do not have: downgrade writer (). This function atomically
converts an acquired write lock to a read lock.
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Reader-writer semaphores, as spin locks of the same nature, should not be used unless there is a clear separation between write paths and read paths in your code.
Supporting the reader-writer mechanisms has a cost, and it is only worthwhile if your code naturally splits along a reader/writer boundary.

Knowing when to use a spin lock versus a semaphore is important to writing optimal code. In many cases, however, there is little choice. Only a spin lock can be used
in interrupt context, whereas only a semaphore can be held while a task sleeps. Table 8.6 reviews the requirements that dictate which lock to use.

Table 8.6 What to Use: Spin Locks Versus Semaphores

Requirement Recommended Lock
Low overhead locking Spin lock is preferred
Short lock hold time Spin lock is preferred
Long lock hold time Semaphore is preferred
Need to lock from interrupt context Spin lock is required
Need to sleep while holding lock Semaphore is required

Completion Variables

Condition variables are an easy way to synchronize between two tasks in the kernel, when one task needs to signal to the other that an event has occurred. One task
waits on the completion variable while another task performs some work. When the other task has completed the work, it uses the completion variable to wake up any
waiting tasks. If this sounds like a semaphore, you are right—the idea is much the same. In fact, completion variables merely provide a simple solution to a problem
whose answer is otherwise semaphores.

Completion variables are represented by the st ruct completion type, whichis definedin <linux/completion.h>. A statically created completion
variable is created and initialized via

DECLARE COMPLETION (mr_ comp) ;
A dynamically created completion variable is initialized via init completion ().

On a given completion variable, the tasks that want to waitcall wait for completion (). After the event has occurred, calling complete () signals all
waiting tasks to wake up. Table 8.7 has a listing of the completion variable methods.
Table 8.7 Completion Variables Methods

Method Description

init completion (struct completion *) Initializes the given dynamically created completion variable
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wait for completion (struct completion *) Waits for the given completion variable to be signaled

complete (struct completion *) Signals any waiting tasks to wake up

For sample usages of completion variables, see kernel/sched.c and kernel/fork. c. A common usage is to have a completion variable dynamically
created as a member of a data structure. Kernel code waiting for the initialization of the data structure calls wait for completion (). When the initialization is
complete, the waiting tasks are awakened via a call to completion ().

BKL: The Big Kernel Lock

Welcome to the redheaded stepchild of the kernel. The Big Kernel Lock (BKL) is a global spin lock which was created to ease the transition from Linux's original
SMP implementation to fine-grained locking. The BKL has some interesting properties:

* You can sleep while holding the BKL. The lock is automatically dropped when the task is unscheduled and reacquired when the task is rescheduled. Of course,
this does not mean it is safe to sleep while holding the BKL, merely that you can and you will not deadlock.

» The BKL is a recursive lock. A single process can acquire the lock multiple times and not deadlock, as it would with a spin lock.

* You can only use the BKL in process context.

* Itisevil.

These features helped ease the transition from kernel version 2.0 to 2.2. When SMP support was introduced in kernel version 2.0, only one task could be in the kernel
at a time (of course, now the kernel is quite finely threaded—we have come a long way). A goal of 2.2 was to allow multiple processors to execute in the kernel

concurrently. The BKL was introduced to help ease the transition to finer grained locking. It was a great aide then; now it is a scalability burden’.

Use of the BKL is discouraged. In fact, new code should never introduce locking using the BKL. The lock is still fairly well used in parts of the kernel, however.
Therefore, understanding the BKL and its interfaces is important. The BKL behaves like a spin lock, with the additions discussed previously. The function

lock kernel () acquires the lock and the function unlock kernel () releases the lock. A single thread of execution may acquire the lock recursively, but
mustthencallunlock kernel () an

> Although, it may not be as terrible as some make it out to be - some people believe it to be the kernel incarnation of the devil.
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equal number of times to release the lock. On the last unlock call the lock will be released. The function kernel locked () returns nonzero if the lock is currently
held; otherwise, it returns zero. These interfaces are declared in <1inux/smp_lock.h>. Sample usage:

lock_kernel();

/
Critical section, synchronized against all other BKL users...
Note, you can safely sleep here and the lock will be transparently
released. When you reschedule, the lock will be transparently
reacquired. This implies you will not deadlock, but you still do
not want to sleep if you need the lock to protect data here!

/

EE

unlock kernel();

The BKL also disables kernel preemption while it is held. On UP kernels, the BKL code does not actually perform any physical locking. Table 8.8 has a complete list
of the BKL functions.

Table 8.8 List of BKL functions

Function Description

lock kernel() Acquires the BKL

unlock kernel () Releases the BKL

kernel locked() Returns nonzero if the lock is held and zero otherwise (UP always returns nonzero)

One of the major issues concerning the BKL is determining what the lock is protecting. Too often, the BKL is seemingly associated with code (for example, "it
synchronizes callers to foo () ") instead of data ("it protects the £ oo structure"). This makes replacing BKL uses with a spin lock difficult because it is not easy to
determine just what is being locked. The replacement is made even harder in that the relationship between all BKL users needs to be determined.

Seq Locks

Seq locks are a new type of lock introduced in the 2.6 kernel. They provide a very simple mechanism for reading and writing shared data. They work by maintaining a
sequence counter. Whenever the data in question is written to, a lock is obtained and a sequence number is incremented. Prior to and after reading the data, the
sequence number is read. If the values are the same, then a write did not begin in the middle of the read. Further, if the values are even then a write is not underway
(grabbing the write lock makes the value odd while releasing it makes it even, since the lock starts at zero).
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To define a seq lock, do

seqlock_t mr_seq_lock = SEQLOCK_UNLOCKED;

The write path is then

write seqglock(&mr seq lock);
/* write lock is obtained... */
write sequnlock (&mr seq lock);

This looks like normal spin lock code. The oddness comes in with the read path, which is quite a bit different:
unsigned long seq;

do {
seq = read_segbegin (&mr_seq_lock);
/* read data here ... */

} while (read_seqretry(&mr_seqg_lock, seq));

Seq locks are useful to provide a very lightweight and scalable look for use with many readers and a few writers. Seq locks, however, favor writers over readers. The
write lock will always succeed in being obtained so long as there are no other writers. Readers will not effect the write lock, as is the case with reader-writer spin locks
and semaphores. Furthermore, pending writers will continually cause the read loop (the previous example) to repeat, until there are no longer any writers holding the
lock.

Preemption Disabling

Because the kernel is preemptive, a process in the kernel can stop running at any instant to allow a process of higher priority to run. This means a task can begin running
in the same critical region as a task that was preempted. To prevent this, the kernel preemption code uses spin locks as markers of nonpreemptive regions. If a spin
lock is held, the kernel is not preemptive. Because the concurrency issues with kernel preemption and SMP are the same, and the kernel is already SMP-safe, this
simple change makes the kernel preempt-safe, too.

Or so we hope. In reality, some situations do not require a spin lock, but do need kernel preemption disabled. The most frequent of these situations is per-processor
data. If the data is unique to each processor, there may be no need to protect it with a lock because only that one processor can access the data. If there are no spin
locks held, the kernel is preemptive, and it would be possible for a newly scheduled task to access this same variable, as shown here

task A manipulates variable foo
task A is preempted

task B is scheduled

task B

task B

manipulates variable foo
completes
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task A is scheduled
task A manipulates variable foo

Consequently, even if this were a uniprocessor computer, the variable could pseudo-concurrently be accessed by multiple processes. Normally, this variable would
require a spin lock (to prevent true concurrency on multiprocessing machines). If this were a per-processor variable, however, it might not require a lock.

To solve this, kernel preemption can be disabled via preempt disable (). The call is nestable; you may call it any number of times. For each call, a
corresponding call to preempt _enable () isrequired. The final corresponding call to preempt _enable () willre-enable preemption. For example:

preempt_disable();
/* preemption is disabled ... */

preempt_enable () ;
The preemption count stores the number of held locks and preempt disable () calls. If the number is zero the kernel is preemptive. If it is one or greater, the

kernel is not preemptive. This count is incredibly useful—it is a great way to do atomicity and sleep debugging. The function preempt count () returns this value.
See Table 8.9 for a listing of kernel preemption-related functions.

Table 8.9 Kernel Preemption-Related Functions

Function Description

preempt disable() Disables kernel preemption

preempt_enable () Enables kernel preemption and check and service any pending reschedules
preempt enable no_resched() Enables kernel preemption but do not reschedule

preempt count () Returns the preemption count

As a cleaner solution to per-processor data issues, you can obtain the processor number (which presumably is used to index into the per-processor data) via
get cpu (). This function will disable kernel preemption prior to returning the current processor number:

int cpu = get _cpu();
/* manipulate per-processor data ... */

put_cpu(); /* all done, reenable kernel preemption */
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Barriers

When dealing with synchronization between multiple processors or with hardware devices, it is sometimes a requirement that memory-reads (loads) and memory-writes
(stores) issue in the order specified in your program code. When talking with hardware, you often need to ensure a given read occurs before another read or write.
Additionally, on symmetrical multiprocessing systems, it may be important for writes to appear in the order your code issues them (usually to ensure subsequent reads
see the data in the same order). Complicating these issues is the fact that both the compiler and the processor can reorder reads and writes® for performance reasons.
Thankfully, all processors that do reorder reads or writes provide machine instructions to enforce ordering requirements. It is also possible to instruct the compiler not
to reorder instructions around a given point. These instructions are called barriers.

Basically, on some processors the code

a=1;
b =2;

may store the new value in b before they store the new value in a. The processor and the compiler, however, will never reorder writes such as

a = 1;
b = a;

because there is clearly a data dependency between a and b. Neither the compiler nor the processor, however, know about code in other contexts. Occasionally, it is
important that writes are seen by other code and the outside world in the specific order you intend. This is often the case with hardware devices, but is also a

commonality on multiprocessing machines.

The rmb () method provides a read memory barrier. It ensures that no loads are reordered across the rmb () call. That is, no loads prior to the call will be
reordered to after the call and no loads after the call will be reordered to before the call.

The wmb () method provides a write barrier. It functions in the same manner as rmb () , but with respect to stores instead of loads—it ensures no stores are
reordered across the barrier.

Themb () call provides both a read barrier and a write barrier. No loads or stores will be reordered across a call to mb () . It is provided because a single instruction
(often the same instruction used by rmb () ) can provide both the load and store barrier.

Avariantof rmb (), read barrier depends (), provides a read barrier, but only for loads that subsequent loads depend on. All reads prior to the
barrier are guaranteed to complete before any reads after the barrier that depend on the reads prior to the barrier. Got

6 Although, Intel x86 processors do not ever reorder writes. That is, they do not do out-of-order stores. But other processors do.
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it? Basically, it enforces a read barrier, like rmb (), but only for certain reads—those that depend on each other. On some architectures,
read barrier depends () is much quicker than rmb () because it is not needed and, thus, is a noop.

Let's consider an example using mb () and rmb () . The initial value of a is one and b is two.

Thread 1 Thread 2
a = 3; -

mb () ; -

b = 4; c = b;
- rmb () ;
- d=a;

Without using the memory barriers, on some processors it is possible that ¢ receives the new value of b, while d receives the o/d value of a. For example, c could
equal four (what we expect), yet d could equal one (not what we expect). Using the mb () ensured a and b were written in the intended order, while the rmb ()
insured c and d were read in the intended order.

This sort of reordering occurs because modern processors dispatch and commit instructions out-of-order, to optimize use of their pipelines. What can end up
happening in the above example is that the instructions associated with the loads of b and a occur out of order. The rmb () and wmb () functions corresponds to
instructions which tell the processor to commit any pending load or store instructions, respectively, before continuing.

Let's look at a similar example, but one in which we canuse read barrier depends () instead of rmb () . In this example, initially a is one, b is two, and p
is &b.

Thread 1 Thread 2
a = 3; -
mb () ; -
p = &a; pp = p;

- read barrier depends();

- b = *pp;

Again, without memory barriers, it would be possible for b to be set to pp before pp was set to p. The read barrier depends (), however, provides a
sufficient barrier because the load of * pp depends on the load of p. It would also be sufficient to use rmb () here, but because the reads are data-dependent, we can
use the potentially faster read barrier depends (). Note in either case, the mb () is required to enforce the intended load/store ordering in the left thread.

The macros smp_rmb (), smp_wmb (), smp_mb (),and smp read barrier depends () provide a useful optimization. On SMP kernels they are
defined as the usual memory barriers, while on UP kernels they are defined only as a compiler barrier. You can use these SMP variants when the ordering constraints
are specific to SMP systems.
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Thebarrier () method prevents the compiler from optimizing loads or stores across the call. The compiler knows not to rearrange stores and loads in ways that
would change the effect of the C code and existing data dependencies. It does not have knowledge, however, of events that can occur outside of the current context.
For example, the compiler cannot know about interrupts that might read the same data you are writing. For this reason, you might want to ensure a store is issued
before a load, for example. The previous memory barriers also function as compiler barriers, but a compiler barrier is much lighter in weight (it is practically free) than a
memory barrier.

Table 8.10 has a full listing of the memory and compiler barrier methods provided by all architectures in the Linux kernel.

Table 8.10 Memory and Compiler Barrier Methods

Barrier Description

rmb () Prevents loads being reordered across the barrier

read barrier depends () Prevents data-dependent loads being reordered across the barrier

wib () Prevents stores being reordered across the barrier

mb () Prevents load or stores being reordered across the barrier

smp_rmb () On SMP, provides a rmb () and on UP provides a barrier ()

smp_read barrier depends () On SMP, provides a read barrier depends () and on UP provides a barrier ()
smp_wmb () On SMP, provides a wmb () and on UP provides a barrier ()

smp_mb () On SMP, provides a mb () and on UP provides a barrier ()

barrier () Prevents the compiler from optimizing stores or loads across the barrier

Note the actual effects of the barriers vary for each architecture. For example, if a machine does not perform out-of-order stores (for example, Intel x86 chips do not)
then wmb () does nothing. You can use the appropriate memory barrier for the worst case (that is, the weakest ordering processor) and your code will compile
optimally for your architecture.
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9
Timers and Time Management

THE PASSING OF TIME Is VERY IMPORTANT t0 the kernel. A large number of kernel functions are time driven, as opposed to event driven'. Some of these functions are
periodic, such as balancing the scheduler runqueues or refreshing the screen. They occur on a fixed schedule, such as 100 times per second. The kernel schedules other
functions, such as delayed disk I/O, at a relative time in the future. For example, the kernel might schedule work for 500 milliseconds from now. Finally, the kernel must
also manage the system uptime and the current date and time.

Note the differences between relative and absolute time. Scheduling an event for five seconds in the future requires no concept of the absolute time—only the relative
time (for example, five seconds from now). Conversely, managing the current time of day requires the kernel to understand not just the passing of time, but also some
absolute measurement of it. Both of these concepts are crucial to the management of time.

Also, note the differences between events that occur periodically and events the kernel schedules for a fixed point in the future. Events that occur periodically—say,
every 10 milliseconds—are driven by the system timer. The system timer is a programmable piece of hardware that issues an interrupt at a fixed frequency. The
interrupt handler for this timer—called the timer interrupt—updates the system time and performs periodic work. The system timer and its timer interrupt are central
to Linux, and a large focus of this chapter.

The other focus is dynamic timers—the facility used to schedule events that run once after a specified time has elapsed. For example, the floppy device driver uses a

timer to shut off the floppy drive motor after a specified period of inactivity. The kernel can create and destroy timers dynamically. This chapter covers the kernel
implementation of dynamic timers, as well as the interface available for their use in your code.

" More accurately, time-driven events are also event driven—the event being the passing of time.
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Kernel Notion of Time

Certainly, the concept of time to a computer is a bit obscure. Indeed, the kernel must work with the system's hardware to comprehend and manage time. The
hardware provides a system timer that the kernel uses to gauge the passing of time. This system timer works off an electronic time source, such as a digital clock or the
frequency of the processor. The system timer goes off (often called Aitting or popping) at a preprogrammed frequency, called the tick rate. When the system timer
goes off, it issues an interrupt that the kernel handles via a special interrupt handler.

Because the kernel knows the preprogrammed tick rate, it knows the time between any two successive timer interrupts. This period is called a tick and is equal to one-
over-the-tick-rate seconds. As you'll see, this is how the kernel keeps track of both wall time and system uptime. Wall time—the actual time of day—is of most
importance to user-space applications. The kernel keeps track of it simply because the kernel controls the timer interrupt. A family of system calls provide the date and
time of day to user-space. The system uptime—the relative time since the system booted—is useful to both the kernel and user-space. This is because a lot of code
must be aware of the passing of time. The difference between two uptime readings—now and then—is a simple measure of this relativity.

The timer interrupt is very important to the management of the operating system. A large number of kernel functions live and die by the passing of time. Some of the
work executed periodically by the timer interrupt includes:

* Update the system uptime

* Update the time of day

* On an SMP system, ensure that the scheduler runqueues are balanced, and if not, balance them (as discussed in Chapter 3, "Scheduling")

* Check if the current process has exhausted its timeslice and, if so, cause a reschedule (also discussed in Chapter 3)

* Run any dynamic timers that have expired

« Update resource usage and processor time statistics
Some of this work occurs on every timer interrupt—that is, the work is carried out with the frequency of the tick rate. Other functions still execute periodically, but only

every n timer interrupts. That is, these functions occur at some fraction of the tick rate. In the section "The Timer Interrupt Handler," we will look at the timer interrupt
handler itself.

The Tick Rate: HZ

The frequency of the system timer (the tick rate) is programmed on system boot based on a static preprocessor define, HZ. The value of HZ differs for each supported
architecture. In fact, on some supported architectures, it even differs between machine types.



Page 143

The kernel defines the value in <asm/param. h>. The tick rate has a frequency of HZ hertz and a period of 1 /HZ seconds. For example, in include/asm-
1386/param. h, the 1386 architecture defines:

#define HZ 1000

/* internal kernel time frequency */

Therefore, the timer interrupt on 1386 has a frequency of 1000 Hz and occurs 1000 times per second (every one-thousandth of a second, which is every millisecond).

Most other architectures have a tick rate of 100. Table 9.1 is a complete listing of each supported architecture and their defined tick rate.

Table 9.1 Frequency of the Timer Interrupt

Architecture
alpha
arm
cris
h8300
1386
ia64
m68k
m68knommu
mips
mips64
parisc
ppc
ppco64
$390

sh
sparc
sparc64
um
v850
x86-64

Frequency (in Hertz)

1024
100
100
100
1000

32 or 10247
100

50, 100, or 1000
100

100

100 or 1000
100

1000

100

100

100

100

100

24, 100, or 122
1000

When writing kernel code, do not assume HZ has any given value. This is not a common mistake these days because so many architectures have varying tick rates. In

the past, however, Alpha was the only architecture with a tick rate not equal to 100 Hz, and it

% The IA-64 simulator has a tick rate of 32 Hz. Real IA-64 machines have a tick rate of 1024 Hz.
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was common to see code incorrectly hard-code the value 1 00 when the HZ value should have been used. Examples of using HZ in kernel code will be shown later.

The frequency of the timer interrupt is rather important. As we saw, the timer interrupt performs a lot of work. Indeed, the kernel's entire notion of time derives from the
periodicity of the system timer. Picking the right value, like a successful relationship, is all about compromise.

The Ideal HZ Value

The 1386 architecture, ever since the initial version of Linux, has had a timer interrupt frequency of 100 Hz. During the 2.5 development series, however, the frequency
was raised to 1000 Hz and was (as such things are) controversial. Because so much of the system is dependent on the timer interrupt, changing its frequency has a
reasonable impact on the system. Of course, there are pros and cons to larger versus smaller HZ values.

Increasing the tick rate means the timer interrupt runs more frequently.
Consequently, the work it performs occurs more often. This has the following benefits:

* The timer interrupt has a higher resolution and, consequently, all timed events have a higher resolution.

* The accuracy of timed events improve.

The resolution increases by the same factor that the tick rate increases. For example, the granularity of timers with HZ=100 is 10 milliseconds. In other words, all

periodic events occur on the timer interrupt's 10 millisecond boundary and no finer precision3 is guaranteed. With HZ=1 000, however, resolution is 1 millisecond—
10x finer. Although kernel code can create timers with 1 millisecond resolution, there is no guarantee the precision afforded with HZ=1 00 is sufficient to execute the
timer on anything better than 10 millisecond intervals.

Likewise, accuracy improves in the same manner. Assuming the kernel starts timers at random times, the average timer is off by half the period of the timer interrupt
because timers might expire at any time, but are only executed on occurrences of the timer interrupt. For example, with HZ=1 00, the average event occurs +/— 5
millisecond off from the desired time. Thus, error is 5 millisecond on average. With HZ=100 0, the average error drops to 0.5 millisecond—a 10x improvement.

This higher resolution and greater accuracy provides multiple advantages:

* Kernel timers execute with finer resolution and increased accuracy (this provides a large number of improvements, one of which is the following).

* System calls, suchas poll () and select (), which optionally employ a timeout value, execute with improved precision.

Use precision here in the computer sense, not the scientific. Precision in science is a statistical measurement of repeatability. In computers, precision is the number of
significant figures used to represent a value.
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» Measurements, such as resource usage or the system uptime, are recorded with a finer resolution.

* Process preemption occurs more accurately.

Some of the most readily noticeable performance benefits come from the improved precision of po11 () and select () timeouts. The improvement might be quite
large; an application that makes heavy use of these system calls might waste a great deal of time waiting for the timer interrupt, when, in fact, the timeout has actually
expired. Remember, the average error (that is, potentially wasted time) is half the period of the timer interrupt.

Another benefit of a higher tick rate is the greater accuracy in process preemption, which results in decreased scheduling latency. Recall from Chapter 3, that the timer
interrupt is responsible for decrementing the running process's timeslice count. When the count reaches zero, need resched is set and the kernel will run the
scheduler as soon as possible. Now, assume a given process is running and has 2 milliseconds of its timeslice remaining. In 2 milliseconds, the scheduler should
preempt the running process and begin executing a new process. Unfortunately, this event will not occur until the next timer interrupt, which might not be in 2
milliseconds. In fact, at worst the next timer interrupt might be 1 /HZ of a second away! With HZ=100, a process might get nearly ten extra milliseconds to run. Of
course, this all balances out and fairness is preserved, because all tasks receive the same imprecision in scheduling—but that is not the issue. The problems stems from
the latency created by the delayed preemption. If the to-be-scheduled task had something time sensitive to do, such as refill an audio buffer, the delay might not be
acceptable. Increasing the tick rate to 1000 Hz lowers the worst-case scheduling overrun to just 1 millisecond, and the average-case overrun to just 0.5 milliseconds.

Now, there must be some downside to increasing the tick rate or it would have been 1000 Hz to start (or even higher). Indeed, there is one large issue: A higher tick
rate implies more frequent timer interrupts, which implies higher overhead, because the processor must spend more time executing the timer interrupt handler. The
higher the tick rate the more time the processor spends executing the timer interrupt. This adds up to not just less processor time available for other work, but also a
more frequent periodic thrashing of the processor's cache. The issue of the overhead's impact is debatable. A move from HZ=100 to HZ=1000 clearly brings with it
a 10x greater overhead from the timer interrupt. However, how substantial is the overhead to begin with? Ten times nothing is still nothing! The final agreement is that,

at least on modern systems, HZ=1 000 does not create unacceptable overhead. Nevertheless, it is possible in 2.6 to compile the kernel with a different value for H z*.

* Due to architectural and NTP-related issues, however, not just any value is acceptable for HZ. On x86, 100, 500, and 1000 all work fine.
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A tickless OS?

You might wonder if an operating system even needs a fixed timer interrupt. Is it possible to design an OS without ticks? Yes, it is possible but it might not be
pretty.

There is no absolute need for a fixed timer interrupt. Instead, the kernel can use a dynamically programmed timer for each pending event. This quickly adds a lot of
timer overhead, so a better idea is to have just one timer, and program it to occur when the next earliest event is due. When that timer executes, create a timer for
the next event and repeat. With this approach, there is no periodic timer interrupt and no HZ value.

Two issues need to be overcome with this approach. The first is how to manage some concept of ticks, at least so the kernel can keep track of relative time. This is
not too hard to solve. The second issue—how to overcome the overhead of managing all the dynamic timers, even with the optimized version—is a bit harder. The

overhead and complexity is high enough that the Linux kernel does not take this approach. Nonetheless, people have tried and the results are interesting—search
online archives if interested.

Jiffies

The global variable j i £ £ies holds the number of ticks that have occurred since the system booted. On boot, the kernel initializes the variable to zero, and it is
incremented by one during each timer interrupt. Thus, because there are HZ timer interrupts in a second, there are HZ jiffies in a second. The system uptime is thus
jiffies/HZ seconds.

The jiffies variableisdeclaredin <linux/jiffies.h>as:

extern unsigned long volatile jiffies;

In the next section, we will look at its actual definition, which is a bit peculiar. For now, let's look at some example kernel code. To convert from seconds to
jiffies:

(seconds * HZ)
Likewise, to convert from j i f fies to seconds:
(jiffies / HZ)

The former is more common. For example, code often needs to set a value for some time in the future:

unsigned long time_stamp = jiffies; /* now */
unsigned long next tick = jiffies + 1; /* one tick from now */
unsigned long later = jiffies + 5*HZ; /* five seconds from now */

The latter is typically reserved for communicating with user-space, as the kernel itself rarely cares about any sort of absolute time.

Note that jiffies is prototyped as unsigned 1long and storing it in anything else is incorrect.
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Internal Representation of Jiffies

The actual internal representation of j 1 £ £ies is rather strange. For 2.6, the variable type changed from an unsigned longtoa u64. In other words, it is an
unsigned 64-bit integer, even on 32-bit machines. The declaration for the full 64-bit tick countisin <linux/jiffies.h>:

extern u64 jiffies 64;

A 32-bit jiffies value, with a timer tick occurring 100 times per second, will overflow in about 497 days, which is pretty reasonable. Increasing HZ to 1000,
however, will bring the overflow down to just 49.7 days. Conversely, a 64-bit value will not overflow in anyone's lifetime. In the next section, we will look at the
potential problems with overflow (while undesirable, overflow in the tick count is a normal and expected occurrence).

The transition from a 32-bit to a 64-bit value would normally require care. The kernel developers applied some smart thinking, however. Because existing code
references the j i f £ ies variable and most code only cares about the lower 32-bits, the original j i £ £i e s variable is still used. Using some magic linker scripts, the

jiffies variableis overlaid onto thenew jiffies 64 variable. Figure 9.1 shows the layoutof jiffiesversus jiffies 64.

jiffies_84 (and jiffies on 64-bit machines)

4 A

bit 63 3 0

Y
jiffies on 32-bit machines

Figure 9.1 Layoutof jiffies versus jiffies 64.

Code that accesses jiffies simply reads the lower 32-bitsof jiffies 64.Thefunctionget jiffies 64 () canbe used to read the full 64-bit value®.
Such a need is rare, consequently, most code simply continues to read the lower 32-bits directly viathe j i f fies variable.

*A special function is needed because 32-bit architectures cannot atomically access both 32-bit words in a 64-bit value. The special function locks the jiffies count via
the xt ime_ 1ock lock before reading.
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On 64-bit architectures, however, jiffies 64 and jiffies simply refer to the same thing. Code canread either jiffiesorcallget jiffies 64 ()
because both have the same effect.

Jiffies Wraparound
The jif fies variable, like any C integer, experiences overflow when its value is increased beyond its maximum storage limit. For a 32-bit unsigned integer, the
maximum valueis 2 32 — 1. Thus, a possible 4294967295 timer ticks can occur before the tick count overflows. When the tick count is equal to this maximum and it

is incremented, it wraps around to zero.

Let's look at an example of a wraparound:

unsigned long timeout = jiffies + HZ/2; /* timeout in 0.5s */
/* do some work, then see if we took too long ... */
if (timeout < jiffies) {
/* we did not time out, good ... */
} else {
/* we timed out, error ... */

}

The intention of this code snippet is to set a timeout for some time in the future—for one half second from now, to be precise. The code then proceeds to perform some
work, presumably poking hardware and waiting for a response. When done, if the whole ordeal took longer than the timeout, the code handles the error as
appropriate.

Multiple potential overflow issues are here, but let's study one of them: Consider what happens if j i £ £ i e s wrapped back to zero after setting t imeout. Then, the
first conditional would fail as the j i £ £ i e s value would be smaller than t ime out despite logically being larger. Conceptually, the j 1 £ £i e s value should be a
very large number—Iarger than t imeout. Because it overflowed its maximum value, however, it is now a very small value—perhaps only a handful of ticks over
zero. Because of the wraparound, the results of the 1 £ statement are switched. Whoops!

Thankfully, the kernel provides four macros for comparing tick counts that correctly handle wraparound in the tick count. They arein <linux/jiffies.h>:

#define time_after (unknown, known) ((long) (known) - (long) (unknown) < 0)
#define time before (unknown, known) ((long) (unknown) - (long) (known) < 0)
#define time_after eqg(unknown, known) ((long) (unknown) - (long) (known) >= 0)
#define time before eq(unknown, known) ((long) (known) - (long) (unknown) >= 0)

The unknown parameter is typically 7 i f f ies and the known parameter is the value you want to compare against.

The time after (unknown, known) macro returns true if time unknown is after time known;otherwise, it returns false. The time before
(unknown, known) macro returns true if time unknown is before time known;otherwise, it returns false. The final two macros perform identically to the first
two, except they also return true if the parameters are equal.
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The timer-wraparound-safe version of the previous example would look like:

unsigned long timeout = jiffies + HZ/2; /* timeout in 0.5s */

/* oL x/
if (time_after(jiffies, timeout)) {

/* we did not time out, good ... */
} else {

/* we timed out, error ... */

}

If you are curious as to why these macros prevent errors because of wraparound, try various values for the two parameters. Then assume one parameter wrapped to
zero and see what happens.

User-Space and HZ

Previously, changing the value of HZ resulted in user-space anomalies. This was because of values that were exported to user-space in units of ticks-per-second. As
these interfaces became permanent, applications grew to rely on a specific value of HZ. Consequently, changing HZ scales various exported values by some constant—
without user-space knowing! Uptime would read 20 hours when it was in fact two!

To remedy this, the kernel must scale all exported j i £ fies values. It does this by defining USER_HZ, which is the HZ value that user-space expects. On x86,
because HZ was historically 100, USER_HZ=100. The macro jiffies to clock_ t () isthen used to scale a tick count count in terms of HZ to a tick
count in terms of USER _HZ. The macro used depends on whether USER_HZ and HZ are integer multiples of themselves. If so, the macro is rather simple:

#define jiffies to clock t(x) ((x) / (HZ / USER_HZ)
A more complicated algorithm is used if the values are not integer multiples.
Finally, the function jiffies 64 to clock t () isprovided to converta 64-bit jiffies valuefrom HZ to USER_HZ units.

These functions are used anywhere a value in ticks-per-seconds needs to be exported to user-space. Example:

unsigned long start = jiffies;
unsigned long total time;

/* do some work ... */

total_time = jiffies - start;
printk ("That took %lu ticks\n", jiffies to_clock_ t(total time));

User-space expects the previous value as if HZ=USER_HZ. If they are not equivalent, the macro scales as needed and everyone is happy. Of course, this example is
silly: It would make more sense to print the message in seconds, not ticks, that is

printk ("That took %lu seconds\n", total time / HZ);
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Hardware Clocks and Timers

Architectures provide two hardware devices to help with time keeping—the system timer, which we have been discussing, and the real-time clock. The actual behavior
and implementation of these devices varies between different machines, but the general purpose and design is about the same for each.

Real-Time Clock

The real-time clock (RTC) provides a nonvolatile device for storing the system time. The RTC continues to keep track of time even when the system is off, by way of a
small battery typically included on the system board. On the PC architecture, the RTC and the CMOS are integrated and a single battery keeps the RTC running and
the BIOS settings preserved.

On boot, the kernel reads the RTC and uses it to initialize the wall time, which is stored in the x t ime variable. The kernel does not typically read the value again;
however, some supported architectures, such as x86, periodically save the current wall time back to the RTC. Nonetheless, the real time clock's primary importance is
only during boot, when x t ime is initialized.

System Timer

The system timer serves a much more important (and frequent) role in the kernel's timekeeping. The idea behind the system timer, regardless of architecture, is the
same—to provide a mechanism for driving an interrupt at a periodic rate. Some architectures implement this via an electronic clock that oscillates at a programmable
frequency. Other systems provide a decrementer—a counter is set to some initial value and decrements at a fixed rate until the counter reaches zero. When the counter
reaches zero, an interrupt is triggered. In any case, the effect is the same.

On x86, the primary system timer is the programmable interrupt timer (PIT). The PIT exists on all PC machines and has been driving interrupts since the days of DOS.

The kernel programs the PIT on boot to drive the system timer interrupt (interrupt zero) at HZ frequency. It is a simple device with limited functionality, but it gets the
job done. Other x86 time sources include the local APIC timer and the time stamp counter (TSC).

The Timer Interrupt Handler

Now that we have an understanding of HZ, j i £ £1ies, and what the system timer's role is, let's look at the actual implementation of the timer interrupt handler. The
timer interrupt is broken into two pieces: an architecture-dependent and an architecture-independent routine.

The architecture-dependent routine is registered as the interrupt handler for the system timer and, thus, runs when the timer interrupt hits. Its exact job depends on the
given architecture, of course, but most handlers perform at least the following work:
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* Obtain the xt ime_1ock lock, which protects accessto jiffies 64 and the wall time value, xt ime .
» Acknowledge or reset the system timer as required.
* Periodically save the updated wall time to the real time clock.

* Call the architecture-independent timer routine, do_timer () .
The architecture-independent routine, do_timer (), performs much more work:

* Increment the jiffies 64 count by one (this is safe, even on 32-bit architectures, as the xt ime 1 ock lock was previously obtained).
» Update resource usages, such as consumed system and user time, for the currently running process.

* Run any dynamic timers that have expired (discussed in the following section).

* Execute scheduler tick () asdiscussed in Chapter 3.

* Update the wall time, which is stored in xt ime .

* Calculate the infamous load average.

The actual routine is very simple, as other functions handle most of the previously discussed work:

void do_timer (struct pt_regs *regs)
{
jiffies 64++;

update_process_times (user_mode (regs)) ;
update_times();

The user mode () macro looks at the state of the processor registers, regs, and returns one if the timer interrupt occurred in user-space and zero if the interrupt
occurred in kernel mode. This enables update process times () to attribute the previous tick to the proper mode, either user or system:

voild update process_times (int user_tick)
{
struct task_struct *p = current;
int cpu = smp_processor id();
int system = user_tick * 1;

update_one_process (p, user_tick, system, cpu);
run_local timers();
scheduler_tick(user_tick, system);
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The update one process () function does the actual updating of the process's times. It is rather elaborate, but note how one of either the user tickor
the s ystem value is equal to one and the other is zero, because of the XOR. Therefore, updates_one_process () cansimply add each value to the
corresponding counter without a branch:

/‘k
* update by one jiffy the appropriate time counter
*/

p->utime += user;

p->stime += system;

The appropriate value is increased by one and the other value remains the same. You might realize that this implies that the kernel credits a process for running the
entire previous tick in whatever mode the processor was in when the timer interrupt occurred. In reality, the process might have entered and exited kernel mode many
times during the last tick. In fact, the process might not even have been the only process running in the last tick! Unfortunately, without much more complex accounting,
this is the best the kernel can provide. It is also another reason for a higher frequency tick rate.

Next, the run_local timers () function marks a softirq (see Chapter 6, "Bottom Halves and Deferring Work") to handle the execution of any expired timers.
We will look at timers in a following section, "Timers."

Finally, the scheduler tick () function decrements the currently running process's timeslice and sets need_resched if needed. On SMP machines, it also
balances the per-processor runqueues as needed. This was all discussed in Chapter 3.

Whenupdate process times () returns,do_timer () callsupdate times () to update the wall time:

void update_ times(void)
{
unsigned long ticks;

ticks = jiffies - wall jiffies;
if (ticks) {
wall jiffies += ticks;
update wall time(ticks);
}
last _time offset = 0;
calc_load(ticks);

The ticks value is calculated to be the change in ticks since the last update. In normal cases, this is, of course, one. In rare situations, timer interrupts can be missed
and the ticks are said to be /ost. This can occur if interrupts are off for a long time. It is not the norm and quite often abug. The wall jiffies valueis increased
by the t icks value—thus, it is equal to the j i £ £ i e s value of the most recent wall time update—and
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update wall time () iscalled toupdate xt ime, which stores the wall time. Finally, calc_load () is called to update the load average and
update times () returns.

The do_timer () function returns to the original architecture-dependent interrupt handler, which performs any needed clean up, releases the xt ime 1ock lock,
and finally returns.

All this occurs every 1 /HZ of a second. That is /000 times per second on your PC.

The Time of Day

The current time of day (the wall time) is defined in kernel/timer.c:
struct timespec xtime;
The t ime spec data structure is defined in <1inux/time . h> as:

struct timespec {
time t tv_sec; /* seconds */
long tv_nsec; /* nanoseconds */

bi

The xtime.tv_sec value stores the number of seconds that have elapsed since January 1, 1970 (UTC). This date is called the epoch. Most Unix systems base
their notion of the current wall time as relative to this epoch. The xt ime . v_nsec value stores the number of nanoseconds that have elapsed in the last second.

Reading or writing the x t 1me variable requires the xt ime 1 ock lock, which is not a normal spinlock but a seqlock. Chapter 8, "Kernel Synchronization
Methods," discusses seqlocks.

To update x t ime, a write seqlock is required:

write_seglock (&xtime lock);
/* update xtime ... */

write_sequnlock (&xtime_lock) ;

Reading x t ime requires use of the read_segbegin () and read seqretry () functions:

do {
unsigned long lost;
seq = read segbegin(&xtime lock);
usec = timer->get offset();
lost = jiffies - wall jiffies;
if (lost)
usec += lost * (1000000 / HZ);
sec = xtime.tv sec;
usec += (xtime.tv _nsec / 1000);

} while (read segretry(&xtime lock, seq));
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This loop repeats until the reader is assured it read the data without an intervening write. If the timer interrupt occurred and updated x t ime during the loop, the
returned sequence number is invalid and the loop repeats.

The primary user-space interface for retrieving the wall time is get t imeofday (), which is implemented as sys _gettimeofday ():

asmlinkage long sys_gettimeofday(struct timeval *tv, struct timezone *tz
{
if (likely(tv != NULL)) {
struct timeval ktv;
do_gettimeofday (&ktv) ;
if (copy to_user(tv, &ktv, sizeof (ktv)))
return -EFAULT;
}
if (unlikely(tz != NULL)) {
if (copy to user(tz, &sys tz, sizeof(sys tz)))
return -EFAULT;
}

return 0;

If the user provided anon-NULL tv value, the architecture-dependent do _gettimeofday () is called. This function primarily performs the x t ime read loop
previously discussed. Likewise, if t z is non-NULL, the system time zone (stored in sy st z) is returned to the user. If there were errors copying the wall time or
time zone back to user-space, the function returns ~-EFAULT. Otherwise, it returns zero for success.

The kernel also implements the t ime () 6 system call, but gett imeofday () largely supersedes it. The C library also provides other wall time-related library
calls, suchas ftime () and ctime ().

The settimeofday () system call sets the wall time to the specified value. It requires the CAP_SYS TIME capability.

Other than updating x t ime, the kernel does not make nearly as frequent use of the current wall time as user-space. One notable exception is in the filesystem code,
which stores access timestamps in inodes.

Timers
Timers—sometimes called dynamic timers or kernel timers—are essential for managing the flow of time in kernel code. Kernel code often needs to delay execution
of some function until a later time. In previous chapters, we looked at using the bottom half mechanisms, which are great for deferring work until later. Unfortunately,

the definition of /ater is intentionally quite vague. The purpose of bottom halves is not so much to delay work,

% Some architectures, however, do not implement sys _time () and instead specify that it is emulated in the C library using get timeofday ().
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but simply to not do the work now. What we need is a tool for delaying work a specified amount of time—certainly no less, and with hope, not much longer. The
solution is kernel timers.

A timer is very easy to use. You perform some initial setup, specify an expiration time, specify a function to execute upon said expiration, and activate the timer. The

given function will run after the timer expires. Timers are not cyclic. The timer is destroyed once it expires. This is one reason for the dynamic nomenclature’; timers
are constantly created and destroyed, and there is no limit on the number of timers. Timers are very popular throughout the entire kernel.

Using Timers

Timers are represented by struct timer 1list,whichisdefinedin<linux/timer.h>:

struct timer list {

struct list_head entry; /* timers are part of linked list */
unsigned long expires; /* expiration value, in jiffies */
spinlock t lock; /* lock protecting this timer */

void (*function) (unsigned long); /* the timer handler function */
unsigned long data; /* lone argument to the handler */
struct tvec_t base_ s *base; /* internal timer field, don't touch */

bi

Fortunately, the usage of timers requires little understanding of this data structure. In fact, toying with it is discouraged to keep code forward compatible with changes.
The kernel provides a family of timer-related interfaces to make timer management easy. Everything is declared in <1inux/timer .h>. Most of the actual
implementationisin kernel/timer.c.

The first step in creating a timer is defining it:

struct timer_list my_timer;

Next, the timer's internal values must be initialized. This is done via a helper function and must be done prior to calling any timer management functions on the timer:

init_timer (&my_timer);

Now, you fill out the remaining values as required:

my timer.expires = jiffies + delay; /* timer expires in delay ticks */
my timer.data = 0; /* zero is passed to the timer handler */
my_ timer.function = my_function; /* function to run when timer expires */

Another reason is because of the existence of static timers in older (pre-2.3) kernels. They were created at compile-time, not runtime. They were lame, so no one
shed tears over their demise.
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Themy timer.expires value specifies the timeout value, in absolute ticks. When the current j 1 £ fies count is equal to or greater than
my timer.expires,thehandler functionmy timer.function isrun withtheloneargumentofmy timer.data.As we see from the

timer 1ist definition, the function must match this prototype:

voild my_timer function(unsigned long data);

The data parameter enables you to register multiple timers with the same handler, and differentiate between them via the argument. If you do not need the argument,
you can simply pass zero (or any other value).

Finally, you activate the timer:

add_timer (&my timer);

And, voila, the timer is off and running! Note the significance of the e xp i red value. The kernel runs the timer handler when the current tick count is equal to or
greater than the specified expiration. Although the kernel guarantees to run no timer handler prior to the timer's expiration, there may be a delay in running the timer.
Typically, timers are run fairly close to their expiration; however, they might be delayed until the next timer tick. Consequently, timers cannot be used to implement any

sort of hard real-time processing.

Sometimes you might need to modify the expiration of an already active timer. The kernel implements a function, mod_timer (), which changes the expiration of a
given timer:

mod_timer (&my_timer, jiffies + new_delay);

Themod timer () function can operate on timers that are initialized but not active, too. If the timer is inactive, mod_timer () will activate it. The function
returns zero if the timer was inactive and one if the timer was active. In either case, upon return frommod_timer (), the timer is activated and set to the new
expiration.

If you need to deactivate a timer prior to its expiration, use the del timer () function:

del timer (&my timer);

The function works both on active and inactive timers. If the timer is already inactive, the function returns zero; otherwise, the function returns one. Note you do not
need to call this for timers that have expired because they are automatically deactivated.

A potential race condition that must be guarded against exists when deleting timers. When del timer () returns, it guarantees only that the timer is no longer active
(that is, that it will not be executed in the future). On a multiprocessing machine, however, the timer handler might be executing on another processor. To deactivate the
timer and wait until a potentially executing handler for the timer exits,use del timer sync():

del_timer sync(&my_timer);

Unlike del timer (),del timer sync () cannotbe used from interrupt context.
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Timer Race Conditions

Because timers run asynchronously with respect to the currently executing code, several potential race conditions exist. First, never do the following as a substitute for a
mere mod_timer (), because this is unsafe on multiprocessing machines:

del timer (my_timer)
my timer->expires = jiffies + new_delay;
add_timer (my_timer);

Second, in almost all cases, you shoulduse del timer sync () overdel timer ().Otherwise, you cannot assume the timer is not currently running, and
that is why you made the call in the first place! Imagine if, after deleting the timer, the code goes on to free or otherwise manipulate resources used by the timer handler.
Therefore, the synchronous version is preferred.

Finally, you must make sure to protect any shared data used in the timer handler function. The kernel runs the function asynchronously with respect to other code.
Shared data should be protected as discussed in Chapter 8.

The Timer Implementation

The kernel executes timers in bottom half context, as a softirq, after the timer interrupt completes. The timer interrupt handler runs update process times ()
whichcalls run_local timers():

void run_local_timers (void)
{

raise_softirqg(TIMER_SOFTIRQ) ;
}

The TIMER SOFTIRQ softirqis handled by run timer softirg (). This function runs all the expired timers (if any) on the current processor.

Timers are stored in a linked list. However, it would be unwieldy for the kernel to either constantly traverse the entire list looking for expired timers, or keep the list
sorted by expiration value, as the insertion and deletion of timers would then become very expensive. Instead, the kernel partitions timers into five groups based on their
expiration value. Timers move down through the groups as their expiration time draws closer. The partitioning ensures that, in most executions of the timer softirq, the
kernel has to do little work to find the expired timers. Consequently, the timer management code is very efficient.

Delaying Execution

Often, kernel code (especially drivers) needs a way to delay execution for some time without using timers or a bottom half mechanism. This is usually to allow hardware
time to complete a given task. The time is typically quite short. For example, the specifications for a network card might list the time to change Ethernet modes as two
microseconds.
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After setting the desired speed, the driver should wait at least the two microseconds before continuing.

The kernel provides a number of solutions, depending on the semantics of the delay. The solutions have different characteristics. Some hog the processor while
delaying, effectively preventing the accomplishment of any real work. Other solutions do not hog the processor, but offer no guarantee that your code will resume in

exactly the required time®.
Busy Looping

The simplest solution to implement (although rarely the optimal solution) is busy waiting or busy looping. This technique only works when the time you want to delay is
some integer multiple of the tick rate or precision is not very important.

The idea is simple: Spin in a loop until the desired number of clock ticks pass. For example,
unsigned long delay = jiffies + 10; /* ten ticks */

while (time_before(jiffies, delay)

;

The loop will continue until j i £ fies is larger than de 1 ay, which will occur only after 10 clock ticks have passed. On x86 with HZ equal to 1000, this is 10
milliseconds. Similarly,

unsigned long delay = jiffies + 2*HZ; /* two seconds */

while (time before(jiffies, delay))

;

This will spin until 2 *HZ clock ticks has passed, which is always two seconds regardless of the clock rate.

This approach is not nice to the rest of the system. While your code waits, the processor is tied up spinning in a silly loop—no useful work is accomplished! In fact, you
rarely want to take this brain-dead approach, and it is shown here because it is a clear and simple method for delaying execution. You might also encounter it in
someone else's not-so-pretty code.

A better solution would reschedule the processor to accomplish other work while your code waits:

unsigned long delay = jiffies + 5*HZ;

§ Actually, no approach guarantees that the delay will be exactly for the time requested. Some come extremely close, however - and they all promise to wait at least
as long as needed. Some just wait longer.
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while (time before(jiffies, delay)
cond_resched() ;

Thecallto cond resched () schedules a new process, but only if need resched is set. In other words, this solution conditionally invokes the scheduler only
if there is some more important task to run. Note that because this approach invokes the scheduler, you cannot make use of it from an interrupt handler—only process
context. In fact, all these approaches are best used from process context, because interrupt handlers should execute as quickly as possible (and busy looping does not
help accomplish that goal!). Furthermore, delaying execution in any manner, if at all possible, should not occur while a lock is held or interrupts are disabled.

C aficionados might wonder what guarantee is given that the previous loops even work. The C compiler is usually free to perform a given load only once. Normally, no
assurance is given that the j 1 £ £ i e s variable in the loop conditional is even reloaded on each iteration. We require, however, that 1 £ £ ies be reread on each
iteration as the value is incremented behind our back, in the timer interrupt. Indeed, this is why the variable is marked volatilein<linux/jiffies.h>. The
volatile keyword instructs the compiler to reload the variable on each access from main memory and never alias the variables value in a register, guaranteeing that
the previous loop completes as expected.

Small Delays

Sometimes, kernel code (again, usually drivers) requires very short (smaller than a clock tick) and rather precise delays. This is often to synchronize with hardware,
which again usually lists some minimum time for an activity to complete—often less than a millisecond. It would be impossible to use j i f f i e s-based delays, like the
previous examples, for such a short wait. With a timer interrupt of 100 Hz, the clock tick is a rather large 10 milliseconds! Even with a 1000 Hz timer interrupt, the
clock tick is still one millisecond. We clearly need another solution for smaller, more precise delays.

Thankfully, the kernel provides two functions for microsecond and millisecond delays, both defined in <1inux/delay.h>, whichdonotuse jiffies:

void udelay (unsigned long usecs);
void mdelay (unsigned long msecs);

The former function delays execution by busy looping for the specified number of microseconds. The latter function delays execution for the specified number of
milliseconds. Recall one second equals 1000 milliseconds, which equals 1000000 microseconds. Usage is trivial,

udelay(150); /* delay for 150 us */
The udelay () function is implemented as a loop which knows how many iterations can be executed in a given period of time. The mde lay () function is then

implemented in terms of ude 1ay () . Because the kernel knows how many loops the processor can complete in a second (see the sidebar on BogoMIPS), the
udelay () function simply scales that value to the correct number of loop iterations for the given delay.
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My BogoMIPS are Bigger than Yours!

The BogoMIPS value has always been a source of confusion and humor. In reality, the BogoMIPS calculation has very little to do with the performance of your
computer and is primarily used only for the udelay () and mdelay () functions. Its name is a contraction of bogus (that is, fake) and MIPS (million of
instructions per second). Everyone is familiar with a boot message similar to the following (this is on a 1GHz Pentium 3):

Detected 1004.932 MHz processor.
Calibrating delay loop... 1990.65 BogoMIPS

The BogoMIPS value is the number of busy loop iterations the processor can perform in a given period. In effect, BogoMIPS are a measurement of how fast a
processor can do nothing! This value is stored in the 1oops per jiffy variable and is readable from /proc/cpuinfo. The delay loop functions use the
loops_per_ jiffy value to figure out (fairly precisely) how many busy loop iterations they need to execute to provide the requisite delay.

The kernel computes 1loops _per Jjiffyonbootviacalibrate delay () ininit/main.c.

The udelay () function should only be called for small delays because larger delays on fast machines might result in overflow. As a general rule, try to not use
udelay () fordelays of over one millisecond in duration. For such longer durations, mdelay () works fine. Like the other busy waiting solutions to delaying
execution, neither of these functions (especially mde 1ay (), because it is used for such long delays) should be used unless absolutely needed. Remember that it is
rude to busy loop with locks held or interrupts disabled, because system response and performance will be adversely effected. If you require precise delays, however,
these calls are your best bet. Typical uses of these busy waiting functions delay for a very small amount of time, usually in the microsecond range.

schedule timeout()

A more optimal method of delaying execution is to use schedule timeout (). This call will put your task to sleep until at least the specified time has elapsed.
There is no guarantee that the sleep duration will be exact/y the specified time—only that the duration is at least as long as specified. When the specified time has
elapsed, the kernel wakes the task up and places it back on the runqueue. Usage is easy:

set_current state (TASK_INTERRUPTIBLE) ;
schedule_timeout (s * HZ);

The lone parameter is the desired relative timeout, in jiffies. This example puts the task in interruptible sleep for s seconds. Because the task is marked
TASK_INTERRUPTIBLE, it wakes up prematurely if it receives a signal. If the code does not want to process signals, you can use
TASK_UNINTERRUPTIBLE instead. The task must be in one of these two states prior to calling schedule timeout () or else the task will not go to sleep.
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Note that because schedule timeout () invokes the scheduler, code which calls it must be capable of sleeping. See Chapter 8 for a discussion of atomicity
and sleeping. Briefly, you must be in process context and must not hold a lock.

The schedule timeout () function is fairly straightforward. Indeed, it is a simple application of kernel timers, so let's take a look at it:

signed long schedule timeout (signed long timeout)
{

timer t timer;

unsigned long expire;

switch (timeout)
{
case MAX_ SCHEDULE_TIMEOUT:
schedule () ;
goto out;
default:
if (timeout < 0)
{
printk (KERN_ERR "schedule timeout: wrong timeout "
"value %1x from %p\n", timeout,
__builtin return address(0));
current->state = TASK_RUNNING;
goto out;

expire = timeout + jiffies;

init_timer (&timer);

timer.expires = expire;

timer.data = (unsigned long) current;
timer.function = process_timeout;

add_timer (&timer);
schedule () ;
del_timer_sync(&timer);

timeout = expire - jiffies;

out:
return timeout < 0 ? 0 : timeout;

The function creates a timer, t imer, and sets it to expire in t imeout clock ticks in the future. It sets the timer to execute the process timeout () function
when the timer expires. It then enables the timer and calls schedule () . Because the task is supposedly
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marked TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE, the scheduler will not run the task, but pick a new one.

When the timer expires, it runs process_timeout ():

void process_timeout (unsigned long data)
{

wake up_process ((task _t *) data);
}

This function puts the task in the TASK_RUNNING state and places it back on the runqueue.

When the task reschedules, it returns to where it left offin schedule timeout () (right after the call to schedule () ). In case the task was woken up
prematurely (if a signal was received), the timer is destroyed. The function then returns the time slept.

The code inthe switch () statement is for special cases and not part of the general usage of the function. The MAX SCHEDULE_TIMEOUT check enables a
task to sleep indefinitely. In that case, no timer is set (because there is no bound on the sleep duration) and the scheduler is immediately invoked. If you do this, you had
better have another method of waking your task up!

Sleeping on a Wait Queue, with a Timeout

In Chapter 3 we looked at how process context code in the kernel can place itself on a wait queue to wait for a specific event, and then invoke the scheduler to select a
new task. Elsewhere, when the event finally occurs, wake up () is called and the tasks sleeping on the wait queue are woken up and can continue running.

Sometimes, it is desirable to wait for a specific event or wait for a specified time to elapse—whichever comes first. In those cases, code might simply call
schedule timeout () instead of schedule () after placing itself on a wait queue. The task wakes up when the desired event occurs or the specified time
elapses. The code needs to check why it woke up—it might be because of the event occurring, the time elapsing, or a received signal—and continue as appropriate.
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10
Memory Management

MEMORY ALLOCATION INSIDE THE KERNEL is not as easy as memory allocation outside the kernel. A lot of factors contribute to this. Primarily, the kernel simply lacks the
luxuries enjoyed by user-space. Unlike user-space, the kernel is not always afforded the capability to easily allocate memory. For example, often the kernel cannot
sleep. Furthermore, the kernel cannot easily deal with memory errors. Because of these limitations, and the need for a lightweight memory allocation scheme, getting
hold of memory in the kernel is more complicated than in user-space. This is not to say that kernel memory allocations are difficult, however, as we'll see.

This chapter discusses the methods used to obtain memory inside the kernel. Before we can delve into the actual allocation interfaces, we need to look at how the
kernel handles memory.

Pages

The kernel treats physical pages as the basic unit of memory management. Although the processor's smallest addressable unit is usually a word, the memory
management unit (MMU, the hardware that manages memory and performs virtual to physical address translations) typically deals in pages. Because of this, the MMU
manages the system's page tables with page-sized granularity (hence their name). In terms of virtual memory, pages are the smallest unit that matters.

As we'll see in Chapter 16, "Portability," each architecture supports its own page size. Many architectures even support multiple page sizes. Most 32-bit architectures
have 4KB pages, whereas most 64-bit architectures have 8KB pages. This implies that on a machine with 4KB pages and 1GB of physical memory, physical memory
is divided up into 262,144 distinct pages.

The kernel represents every physical page on the system witha st ruct page structure. This structure is defined in <1 inux/mm.h>:

struct page {
unsigned long flags;
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atomic_t count;
struct list_head list;
struct address_space *mapping;
unsigned long index;
struct list head lru;
union {
struct pte chain *chain;
pte_addr_t direct;
} pte;
unsigned long private;
void *virtual;

}i

Let's look at the important fields. The £1ags field stores the status of the page. Such flags include whether the page is dirty or whether it is locked in memory. Bit
flags represent the various values, so at least 32 different flags are simultaneously available. The flag values are defined in <1inux/page-flags.h>.

The count field stores the usage count of the page—that is, how many references there are to this page. When this count reaches zero, no one is using the page, and
it becomes available for use in a new allocation.

The mapping field points to the address space object that is associated with this page.

The virtual field is the page's virtual address. Normally, this is simply the address of the page in virtual memory. Some memory (called high memory) is not
permanently mapped into the kernel's address space. In that case, this field is NULL and the page must be dynamically mapped when needed. We'll discuss high
memory shortly.

The important point to understand is that the pa ge structure is associated with physical pages, not virtual pages. Therefore, what the structure describes is transient at
best. Even if the data contained in the page continues to exist, it might not always be associated with the same page structure because of swapping and so on. The
kernel uses this data structure to describe whatever is stored in the associated physical page at that moment. The data structure's goal is to describe physical memory,
not the data contained therein.

The kernel uses this structure to keep track of all the pages in the system, because the kernel needs to know whether a page is free (that is, if the page is not allocated).
If a page is not free, the kernel needs to know who owns the page. Possible owners include user-space processes, dynamically allocated kernel data, static kernel
code, the page cache, and so on.

Developers are often surprised that an instance of this structure is allocated for each physical page in the system. They think, "What a lot of memory used!" Let's look
at just how bad (or good) the space consumption is from all these pages. Assume struct page consumes 40 bytes of memory, the system has 4KB physical
pages, and the system has
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128MB of physical memory. Then, all the page structures in the system consume slightly more than 1MB of memory—not too high a cost for managing all the
physical pages.

Zones
Because of hardware limitations, the kernel cannot treat all pages as identical. Some pages, because of their physical address in memory, cannot be used for certain
tasks. Because of this limitation, the kernel divides pages into different zones. The kernel uses the zones to group pages of similar properties. In particular, Linux has to

deal with two shortcomings of hardware with respect to memory addressing:

» Some hardware devices are capable of performing DMA (direct memory access) only to certain memory addresses.

 Some architectures are capable of physically addressing larger amounts of memory than they can virtually address. Consequently, some memory is not
permanently mapped into the kernel address space.

Because of these constraints, there are three memory zones in Linux:
* ZONE DMA
This zone contains pages that are capable of undergoing DMA.
* ZONE_NORMAL
This zone contains normal, regularly mapped, pages.
* ZONE_ HIGHMEM
This zone contains "high memory," which are pages not permanently mapped into the kernel's address space.

The actual use and layout of the memory zones is architecture independent. For example, some architectures have no problem performing DMA into any memory
address. In those architectures, ZONE_ DMA is empty and ZONE NORMAL is used for allocations regardless of their use. As a counterexample, on the x86

architecture, ISA devices' cannot perform DMA into the full 32-bit address space, because ISA devices can only access the first 16MB of physical memory.
Consequently, ZONE _DMA on x86 consists of all memory in the range 0—16MB.

ZONE_HIGHMEM works in the same regard. What an architecture can and cannot directly map varies. On x86, ZONE HIGHMEM is all memory above the physical
896MB mark. On other architectures, ZONE_HIGHMEM is empty as all memory is directly mapped. The memory contained in ZONE HIGHMEM is called Aigh
memoryz. The rest of the system's memory is called low memory.

' Some broken PCI devices can only perform DMA into a 24-bit address space. But they are broken.

* This has nothing to do with high memory in DOS.
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ZONE_NORMAL tends to be whatever is left over after the previous two zones claim their requisite share. On x86, for example, ZONE _NORMAL is all physical

memory from 16MB to 896MB. On other (more fortunate) architectures, ZONE NORMAL is all available memory. Table 10.1 is a listing of each zone and its
consumed pages on x86.

Table 10.1 Zones on x86

Zone Description Physical Memory
ZONE_DMA DMA-able pages < 16MB
ZONE_NORMAL Normally addressable pages 16-896MB
ZONE_HIGHMEM Dynamically mapped pages > 896MB

Linux partitions the system's pages into zones to have a pooling in place to satisfy allocations as needed. For example, having a ZONE _DMA pool gives the kernel the
capability to satisfy memory allocations needed for DMA. If such memory is needed, the kernel can simply pull the required number of pages from ZONE_DMA. Note
that the zones do not have any physical relevance; they are simply logical groupings used by the kernel to keep track of pages.

Although some allocations may require pages from a particular zone, the zones are not hard requirements in both directions. While an allocation for DMA-able memory
must originate from ZONE _ DMA, a normal allocation can come from ZONE DMA or ZONE NORMAL. The kernel will prefer to satisfy normal allocations from the
normal zone, of course, to save the pages in ZONE_ DMA for allocations that need it. But if push comes to shove (if memory should get low), the kernel can dip its
fingers in whatever zone is available and suitable.

Each zone is represented by st ruct zone, whichisdefinedin <linux/mmzone.h>:

struct zone {

spinlock_t lock;

unsigned long free pages;
unsigned long pages_min;
unsigned long pages_low;
unsigned long pages_high;
spinlock t lru_lock;

struct list_head active_list;
struct list head inactive list;
atomic_t refill counter;
unsigned long nr_active;
unsigned long nr_inactive;

int all unreclaimable;
unsigned long pages_scanned;
struct free_area free_area[MAX_ ORDER];
wait_queue_head t *wait_table;

unsigned long walt_ table size;
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unsigned long wait table bits;
struct per_cpu_pageset pageset [NR_CPUS];
struct pglist data *zone_pgdat;
struct page *zone_mem_map;
unsigned long zone_start pfn;
char *name;

unsigned long spanned_pages;
unsigned long present_pages;

}i
The structure is big, but there are only three zones in the system and, thus, only three of these structures. Let's look at the more important fields.

The 1ock field is a spin lock that protects the structure from concurrent access. Note that it protects just the structure, and not all the pages that reside in the zone. A
specific lock does not protect individual pages, although parts of the kernel may lock the data that happens to reside in said pages.

The free_pages field is the number of free pages in this zone. The kernel tries to keep at least pages_min pages free (through swapping, if needed), if possible.

The name field is, unsurprisingly, a NUL L-terminated string representing the name of this zone. The kernel initializes this value during boot in mm/page _alloc.c
and the three zones are given the names "DMA," "Normal," and "HighMem."

Getting Pages

Now with an understanding of how the kernel manages memory—via pages, zones, and so on—Ilet's look at the interfaces the kernel implements to allow you to
allocate and free memory within the kernel.

The kernel provides one low-level mechanism for requesting memory, along with several interfaces to access it. All these interfaces allocate memory with page-sized
granularity and are declared in <1inux/gfp.h>. The core functionis struct page * alloc pages (unsigned int gfp mask,
unsigned int order)

order

This allocates 2° " (thatis, 1 << order) contiguous physical pages and returns a pointer to the first page's page structure; on error it returns NULL. We will
look at the gfp ma sk parameter in a later section. You can convert a given page to its logical address with the function

void * page address (struct page *page)

This returns a pointer to the logical address where the given physical page currently resides. If you have no need for the actual st ruct page, you can call
unsigned long _ get free pages(unsigned int gfp mask, unsigned int order)

This function works the ssme as alloc_pages (), except that it directly returns the logical address of the first requested page. Because the pages are contiguous,
the other pages simply follow from the first.
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If you only need one page, two functions are implemented as wrappers to save you a bit of typing:

struct page * alloc_page (unsigned int gfp_mask)

unsigned long _ get free page (unsigned int gfp_mask)

These functions work the same as their brethren but pass zero for the order 2% =one page).

Getting Zeroed Pages

If you need the returned page filled with zeros, use the function

unsigned long get_ zeroed page (unsigned int gfp_ mask)

This function works the ssameas  get free page (), except that the allocated page is then filled with zeros. This is useful for pages given to user-space, as the

random garbage in an allocated page is not so random—it might "randomly" contain sensitive data. All data must be zeroed or otherwise cleaned before returning to
user-space, to ensure system security is not compromised. Table 10.2 is a listing of all the low-level page allocation methods.

Table 10.2 Low-Level Page Allocations Methods

Flag Description
alloc_page (gfp_mask) Allocate a single page and return a pointer to its page structure
alloc_pages (gfp_mask, order) Allocate 2orderpages and return a pointer to the first page's page structure
get_free_page(gfp_mask) Allocate a single page and return a pointer to its logical address
__get_free pages(gfp_mask, order) Allocate 2orderpages and return a pointer to the first page's logical address
get_zeroed page (gfp_mask) Allocate a single page, zero its contents, and return a pointer to its logical address
Freeing pages
To free allocated pages when you no longer need them:
void _ free pages(struct page *page, unsigned int order)

void free pages(unsigned long addr, unsigned int order)
void free_page (unsigned long addr)

You must be careful to only free pages you allocate. Passing the wrong st ruct page or address, or the incorrect o rder, can result in corruption. Remember,
the kernel trusts itself. Unlike user-space, the kernel happily hangs itself if you ask it.
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Let's look at an example. Here, we want to allocate 8 pages:
unsigned long page;
page = _ get free pages (GFP_KERNEL, 3);

if (!page)

/* insufficient memory: you must handle this error! */

/* 'page' 1is now the address of the first of eight contiguous pages ... */
free pages (page, 3);

/ *

* our pages are now freed and we should no

* longer access the address stored in 'page'

*/
The GFP_KERNEL parameter is an example gfp_mask flag. We will look at it shortly.

Make note of the error checking after the callto _get free pages (). Akemel allocation can fail and your code must check for and handle such errors. This
might mean unwinding everything you have done thus far. Because of this, it often makes sense to allocate your memory at the start of the routine, to make handling the
error easier. Otherwise, by the time you attempt to allocate memory, it may be rather hard to bail out.

These low-level page functions are useful when you need page-sized chunks of physically contiguous pages, especially if you need exactly a single page or a large
number of pages. For more general byte-sized allocations, the kernel provides kmalloc ().

kmalloc()

The kmalloc () function works very similar to user-space's familiar malloc () routine, with the exception of the addition of a flags parameter. The kmalloc
() function is a simple interface for obtaining kernel memory in byte-sized chunks. If you need whole pages—especially if you need an amount close to a power of
two—the previously discussed interfaces might be a better choice. For most kernel allocations, however, kmalloc () is the preferred interface.

The function is declared in <1inux/slab.h>:
void * kmalloc(size t size, int flags)

The function returns a pointer to a region of memory that is at /easts i z e bytes in length3, The region of memory allocated is physically contiguous. On error, it returns

It may allocate more than you asked, although you have no way of knowing how much more! Because at its heart the kernel allocator is page-based, some allocations
may be rounded up to fit within the available memory. The kernel will never return /ess memory than requested. If the kernel is unable to find at least the requested
amount, the allocation will fail and the function will return NULL.
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NULL. Kernel allocations always succeed, unless there is an insufficient amount of memory available. Thus, you must check for NULL after all calls to kmalloc ()
and handle the error appropriately.

Let's look at an example. Assume we need to dynamically allocate enough room for a fictional dog structure:

struct dog *ptr;

ptr = kmalloc(sizeof (struct dog), GFP_KERNEL);
if (!ptr)
/* handle error ... */

Ifthe kmalloc () call succeeds, pt r now points to a block of memory that is at least the requested size. The GFP_ KERNEL flag specifies the behavior of the
memory allocator while trying to obtain the memory to return to the caller of kmalloc ().

gfp_mask Flags
We have looked at various examples of allocator flags in both the low-level page allocation functions and kmalloc (). Now, let's discuss these flags in depth.

The flags are broken up into three categories: action modifiers, zone modifiers, and types. Action modifiers specify #ow the kernel is supposed to allocate the requested
memory. In certain situations, only certain methods can be employed to allocate memory. For example, interrupt handlers must instruct the kernel not to sleep (because
interrupt handlers cannot reschedule) in the course of allocating memory. Zone modifiers specify from where to allocate memory. As we saw, the kernel divides
physical memory into multiple zones, each of which serves a different purpose. Zone modifiers specify which of these zones to allocate from. Type flags specify a
combination of action and zone modifiers as needed by a certain #ype of memory allocation. Type flags simplify specifying numerous modifiers; instead, you generally
specify just one type flag. The GFP_KERNEL is a type flag, which is used for code in process context inside the kernel. Let's look at the flags.

Action Modifiers

All the flags, the action modifiers included, are declared in <1 inux/gfp.h>.Including <1inux/slab.h> includes this header, however, so you often need
not include it directly. In reality, you will usually use only the type modifiers, which we will look at later. Nonetheless, it is good to have an understanding of these
individual flags. Table 10.3 is a list of the action modifiers.

Table 10.3 Action Modifiers

Flag Description

__GFP_WAIT The allocator can sleep.

__GFP_HIGH The allocator can access emergency pools.
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__GFP_IO The allocator can start disk 1/0.

__GFP_FS The allocator can start filesystem 1/0.
__GFP_COLD The allocator should use cache cold pages.
__GFP_NOWARN The allocator will not print failure warnings.
__GFP_REPEAT The allocator will repeat the allocation if it fails.

__ GFP_NOFAIL The allocator will indefinitely repeat the allocation.
__GFP_NORETRY The allocator will never retry if the allocation fails.
__GFP_NO_GROW Used internally by the slab layer.

These allocations can be specified together. For example,
ptr = kmalloc(size, _ GFP_WAIT | _ GFP_IO | _ GFP_FS);

instructs the page allocator (ultimately al1oc_pages () ) that the allocation can block, perform I/O, and perform filesystem operations, if needed. This allows the
kernel great freedom in how it can find the free memory to satisfy the allocation.

Most allocations specify these modifiers, but do so indirectly, by way of the type flags we will discuss shortly. Do not worry, you will not have to figure out which of
these weird flags to use every time you allocate memory!

Zone Modifiers

Zone modifiers specify from which memory zone the allocation should originate. Normally, allocations can be fulfilled from any zone. The kernel prefers
ZONE_NORMAL, however, to ensure that the other zones have free pages when they are needed.

There are only two zone modifiers because there are only two zones other than ZONE NORMAL (which is where, by default, allocations orginate). Table 10.4 is a
listing of the zone modifiers.

Table 10.4 Zone Modifiers

Flag Description
__GFP_DMA Allocate only from ZONE_DMA
__GFP_HIGHMEM Allocate from ZONE_HIGHMEM or ZONE_NORMAL

Specifying one of these two flags modifies the zone from which the kernel attempts to satisfy the allocation. The ~ GFP_DMA flag forces the kernel to satisfy the
request from ZONE DMA. Conversely, withthe  GFP_HIGHMEM flag, the allocation is satisfied from either ZOME _NORMAL or (preferentially)
ZONE_HIGHMEM. If neither flag is specified, the kemel fulfills the allocation from either ZONE_DMA or ZONE NORMAL, with a strong preference to satisfy the
allocation from ZONE_NORMAL.

You cannot specify GFP_HIGHMEMtoeither get free pages () orkmalloc ().Because both of these return a logical address, and not a page
structure, it is possible that
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these functions would allocate memory that is not currently mapped in the kernel's virtual address space and, thus, does not have a logical address. Only
alloc_pages () canallocate high memory. The majority of your allocations, however, will not specify a zone modifier, as ZONE_NORMAL is sufficient.

Type Flags

The type flags specify the required action and zone modifiers to fulfill a particular type of transaction. Because of this, kernel code tends to use the correct type flag and
not specify the myriad of other flags it might need. This is both simpler and less error prone. Table 10.5 is a list of the type flags and Table 10.6 shows which modifiers
are associated with each type flag.

Table 10.5 Type Flags

Flag

GFP_ATOMIC

GFP_NOIO

GFP_NOFS

GFP_KERNEL

GFP_USER

GFP_HIGHUSER

GFP_DMA

Description

The allocation is high-priority and must not sleep. This is the flag to use in interrupt handlers, bottom halves, and other
situations where you cannot sleep.

This allocation might block, but will not initiate disk I/O. This is the flag to use in block I/O code when you cannot cause
more disk I/0.

This allocation might block and might initiate disk I/O, but will not initiate a filesystem operation. This is the flag to use in
filesystem code when you cannot start another filesystem operation.

This is a normal allocation and might block. This is the flag to use in process context code when it is safe to sleep.
This is a normal allocation and might block. This flag is used to allocate memory for user-space processes.

This is an allocation from ZOME HIGHMEM and might block. This flag is used to allocate memory for user-space
processes.

This is an allocation from ZONE_DMA. Device drivers that need DMA-able memory use this flag, usually in combination
with one of the above.

Table 10.6 Listing of the Modifiers Behind Each Type Flag

Flag

GFP_ATOMIC
GFP_NOIO
GFP_NOFS
GFP_KERNEL
GFP_USER
GFP_HIGHUSER
GFP_DMA

Modifier Flags
~ GFP_HIGH
~ GFP_WAIT
(__GFP_WAIT | _ GFP_IO)
(__GFP_WAIT | _ GFP_IO | _ GFP_FS)
(__GFP_WAIT | _ GFP_IO | _ GFP_FS)
(__GFP_WAIT | _ GFP_IO | _ GFP FS | _ GFP_HIGHMEM)

__ GFP_DMA
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Let's look at the frequently used flags and when and why you might need them. The vast majority of allocations in the kernel use the GFP_ KERNEL flag. The resulting
allocation is a normal priority allocation that might sleep. Because the call can block, this flag can only be used from process context that can safely reschedule (that is,
no locks are held and so on). As this flag does not make any stipulations to how the kernel may obtain the requested memory, the memory allocation has a high
probability of succeeding.

On the far other end of the spectrum is the GFP_ ATOMIC flag. Because this flag specifies a memory allocation that cannot sleep, the allocation is very restrictive in the
memory it can obtain for the caller. If no sufficiently sized contiguous chunk of memory is available, the kernel will not be very likely to free memory because it cannot
put the caller to sleep. Conversely, the GFP_ KERNEL allocation can put the caller to sleep to swap pages to disk, flush dirty pages to disk, and so on. Because
GFP_ATOMIC is unable to perform any of these actions, it has less of a chance of succeeding (at least when memory is low) compared to GFP_ KERNEL
allocations. Nonetheless, the GFP_ ATOMIC flag is the only option when the current code is unable to sleep, such as with interrupt handlers and bottom halves.

In between these two flags are GFP_ NOIO and GFP_NOF'S. Allocations initiated with these flags might block, but they refrain from performing certain other
operations. A GFP_ NOZIO allocation will not initiate any disk /O whatsoever to fulfill the request. On the other hand, GEFP_ NOF'S might initiate disk /O, but will not
initiate filesystem 1/O. Why might you need these flags? They are needed for certain low-level block /O or filesystem code, respectively. Imagine if a common path in
the filesystem code allocated memory without the GFP_NOF'S flag. If the allocation resulted in more filesystem operations, the allocations might cause more filesystem
operations, which would then result in another allocation and, thus, more filesystem operations! This could continue indefinitely. Code such as this that invokes the
allocator must ensure that the allocator also does not execute it, or else the allocation can create a deadlock. Not surprisingly, the kernel uses these two flags only in a
handful of places.

The GFP_ DMA flag is used to specify that the allocator must satisfy the request from ZONE_ DMA. This flag is used by device drivers, which need DMA -able memory
for their devices. Normally, you combine this flag with the GTP_ ATOMIC or GFP_KERNEL flag.

In the vast majority of the code that you write you will use either GFP_ KERNEL or GFP_ ATOMIC. Table 10.7 is a list of the common situations and the flags to
use. Regardless of the allocation type, you must check for and handle failures.

Table 10.7 Which Flag to Use When

Situation Solution
Process context, can sleep Use GFP_KERNEL
Process context, cannot sleep Use GFP_ATOMIC, or perform your allocations with GFP_KRENEL at an earlier or later point

when you can sleep

Interrupt handler Use GFP_ATOMIC
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Bottom Half Use GFP_ATOMIC

Need DMA-able memory, can sleep Use (GFP_DMA | GFP_KERNEL)

Need DMA-able memory, cannot sleep Use (GFP_DMA | GFP_ATOMIC), or perform your allocation at an earlier point when you can sleep
kfree ()

The other end of kmalloc () iskfree (), whichisdeclaredin <linux/slab.h>:void kfree (const void *ptr)

The kfree () method will free a block of memory previously allocated with kmal loc () . Calling this function on memory not previously allocated with
kmalloc (), oronmemory which has already been freed, will result in very bad things, such as freeing memory belonging to another part of the kernel. Just like in
user-space, be careful to balance your allocations with your deallocations to prevent memory leaks and other bugs. Note, calling k free (NULL) is explicitly
checked for and safe.

Let's look at an example of allocating memory in an interrupt handler. In this example, an interrupt handler wants to allocate a buffer to hold incoming data. The
preprocessor define BUF _SIZE is the size in bytes of this desired buffer, which is presumably larger than just a couple bytes.

char *buf;

buf = kmalloc (BUF_SIZE, GFP_ATOMIC) ;

if (!buf)

/* error allocting memory ! */
Later, when we no longer need the memory, do not forget to free it:
kfree (buf) ;

vmalloc ()

The vimalloc () function works similar to kmalloc (), except it allocates memory that is only virtually contiguous and not necessarily physically contiguous. This
is also how a user-space allocation function works: The pages returned by malloc () are contiguous within the virtual address space of the processor, but there is
no guarantee that they are actually contiguous in physical RAM. The kmalloc () function guarantees that the pages are physically contiguous (and virtually
contiguous). The vimalloc () function only ensures that the pages are contiguous within the virtual address space. It does this by allocating potentially noncontiguous
chunks of physical memory and "fixing up" the page tables to map the memory into a contiguous chunk of the logical address space.
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For the most part, only hardware devices require physically contiguous memory allocations. Hardware devices live on the other side of the memory management unit
and, thus, do not understand virtual addresses. Consequently, any regions of memory that hardware devices work with must exist as a physically contiguous block and
not merely a virtually contiguous one. Blocks of memory used only by software—for example, process-related buffers—are fine using memory that is only virtually
contiguous. In your programming, you will never know the difference. All memory appears to the kernel as logically contiguous.

Despite the fact that physically contiguous memory is only required in certain cases, most kernel code uses kmalloc () andnot vimalloc () to obtain memory.
Primarily, this is for performance. The vimalloc () function, to make nonphysically contiguous pages contiguous in the virtual address space, must specifically set up
the page table entries. Worse, pages obtained via vimalloc () must be mapped by their individual pages (because they are not physically contiguous), which results

in much greater TLB* thrashing than when using directly mapped memory. Because of these concerns, vmalloc () is only used when absolutely necessary—
typically, to obtain very large regions of memory. For example, when modules are dynamically inserted into the kernel, they are loaded into memory created via
vmalloc ().

The vmalloc () functionisdeclaredin <1linux/vmalloc.h> and defined inmm/vmalloc. c. Usage is identical to user-space's mal loc ():
void * vmalloc (unsigned long size)

The function returns a pointer to at least s i ze bytes of virtually contiguous memory. On error, the function returns NULL. The function might sleep, and thus cannot
be called from interrupt context or other situations where blocking is not permissible.

To free an allocation obtained via vimalloc (), use

void vfree(void *addr)

This function frees the block of memory beginning at add r that was previously allocated via vmalloc () . The function can also sleep and, thus, cannot be called
from interrupt context. It has no return value.

Usage of these functions is simple:

char *buf;

buf = vmalloc(l6 * PAGE SIZE); /* get 16 pages */
if (!buf)
/* error! failed to allocate memory */

* The TLB (translation lookaside buffer) is a hardware buffer used by most architectures to cache the mapping of virtual addresses to physical addresses. This greatly
improves the performance of the system, because most memory access is done via virtual addressing.
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* buf now points to at least a 16*PAGE_SIZE bytes
* of virtually contiguous block of memory

*/
After you are done with the memory, make sure to free it using

vfree (buf) ;

Slab Layer

Allocating and freeing data structures is one of the most common operations inside any kernel. To facilitate frequent allocations and deallocations of data, programmers
often introduce free lists. A free list contains a block of available, already allocated, data structures. When code requires a new instance of a data structure, it can grab
one of the structures off the free list instead of allocating a sufficient amount of memory and setting it up for the data structure. Later on, when the data structure is no
longer needed, it is returned to the free list instead of deallocated. In this sense, the free list acts as an object cache, caching a frequently used type of object.

One of the main problems with free lists in the kernel is that there exists no global control. When available memory is low, there is no way for the kernel to communicate
to every free list that it should shrink the sizes of its cache to free up memory. In fact, the kernel has no understanding of the random free lists at all. To remedy this, and
to consolidate code, the Linux kernel provides the slab layer (also called the slab allocator). The slab layer acts as a generic data structure-caching layer.

The concept of a slab allocator was first implemented in Sun Microsystem's SunOS 5.4 operating systems. The Linux data structure-caching layer shares the same
name and basic design.

The slab layer attempts to leverage several basic tenets:

* Frequently used data structures tend to be allocated and freed often, so cache them.

* Frequent allocation and deallocation can result in memory fragmentation (the inability to find large contiguous chunks of available memory). To prevent this, the
cached free lists are arranged contiguously. Because freed data structures return to the free list, there is no resulting fragmentation.

* The free list provides improved performance during frequent allocation and deallocation, as a freed object can be immediately returned to the next allocation.
« If part of the cache is made per-processor (separate and unique to each processor on the system), allocations and frees can be performed without an SMP lock.

* Stored objects can be colored to prevent multiple objects from mapping to the same cache lines.

The slab layer in Linux was designed and implemented with these premises in mind.

* And subsequently documented in Bonwick, J. "The Slab Allocator: An Object-Caching Kernel Memory Allocator," USENIX, 1994.
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Design of the Slab Layer

The slab layer divides different objects into groups called caches, each of which stores a different type of object. There is one cache per object type. For example, one
cache is for process descriptors (a free list of task struct structures), whereas another cache is for inode objects (st ruct inode) . Interestingly, the
kmalloc () interface is built on top of the slab layer using a family of general purpose caches.

The caches are then divided into slabs (hence the name of this subsystem). The slabs are composed of one or more physically contiguous pages. Typically, slabs are
composed of only a single page. Each cache may consist of multiple slabs.

Each slab contains some number of objects, which are the data structures being cached. Each slab is in one of three states: full, partial, or empty. A full slab has no free
objects (all objects in the slab are allocated). An empty slab has no allocated objects (all objects in the slab are free). A partial slab has some allocated objects and
some free objects. When some part of the kernel requests a new object, the request is satisfied from a partial slab, if one exists. Otherwise, the request is satisfied from
an empty slab. If there exists no empty slab, one is created. Obviously, a full slab can never satisty a request because it does not have any free objects. This strategy
reduces fragmentation.

Let's look at the i node structure as an example, which is the in-memory representation of a disk inode (see Chapter 11). These structures are frequently created and
destroyed, so it makes sense to manage them via the slab allocator. Thus, st ruct inode is allocated from the inode cachep cache (such a naming
convention is standard). This cache is made up of one or more slabs—probably a lot of slabs because there are a lot of objects. Each slab contains as many st ruct
inode objects as possible. When the kernel requests a new inode structure, the kernel returns a pointer to an already allocated, but unused structure from a partial
slab or, if there is no partial slab, an empty slab. When the kernel is done using the i node object, the slab allocator marks the object as free. Figure 10.1 diagrams
the relationship between caches, slabs, and objects.

Each cache is represented by a kmem cache s structure. This structure contains three lists, slabs full, slabs partial,and slabs empty,
stored inside a kmem 11 st 3 structure. These lists contain all the slabs associated with the cache. A slab descriptor, st ruct slab, represents each slab:

struct slab {

struct list head 1list; /* full, partial, or empty list */
unsigned long colouroff; /* offset for the slab coloring */
void *s_mem; /* first object in the slab */
unsigned int inuse; /* number of allocated objects */
kmem_bufctl_t free; /* first free object, if any */

}i

Slab descriptors are allocated either outside of the slab in a general cache or inside the slab itself, at the beginning. The descriptor is stored inside the slab if the total
size of the slab is sufficiently small, or if internal slack space is sufficient to hold the descriptor.
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Figure 10.1 The relationship between caches, slabs, and objects.
The slab allocator creates new slabs by interfacing with the low-level kernel page allocator via __get free pages ():
static inline void * kmem getpages (kmem_ cache_t *cachep, unsigned long flags)
{

void *addr;

flags |= cachep->gfpflags;
addr = (void*) _ get free pages(flags, cachep->gfporder);

return addr;

The first parameter to this function points to the specific cache that needs more pages. The second parameter points to the flags givento get free pages().
Note how this value is binary OR'ed against another value. This adds default flags that the cache requires to the £ 1ags parameter.

Memory is then freed using kmem_freepages (), whichcalls free pages () on the given cache's pages. Of course, the point of the slab layer is to refrain
from allocating and freeing pages. In turn, the slab layer only invokes the page allocation function when there does not exist any partial or empty slabs in a given cache.
The freeing function is only called when available memory grows low and the system is attempting to free memory, or when a cache is explicitly destroyed.

The slab layer is managed on a per-cache basis through a simple interface, which is exported to the entire kernel. The interface allows the creation and destruction of
new
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caches and the allocation and freeing of objects within the caches. The sophisticated management of caches and the slabs within is entirely handled by the internals of
the slab layer. After you create a cache, the slab layer works just like a specialized allocator for the specific type of object.

Slab Allocator Interface

A new cache is created via

kmem cache t * kmem cache create(const char *name, size t size,
size_t offset, unsigned long flags,
void (*ctor) (void*, kmem cache t *,
unsigned long),
void (*dtor) (void*, kmem cache t *,
unsigned long))

The first parameter is a string storing the name of the cache. The second parameter is the size of each element in the cache. The third parameter is the offset of the first
object within a slab. This is done to ensure a particular alignment within the page. Normally, zero is sufficient, which results in the standard alignment. The f1ags

parameter specifies optional settings controlling the behavior of the cache. It can be zero, specifying no special behavior, or one or more of the following flags OR'ed
together:

SLAB_NO_REAP This flag instructs the slab layer not to automatically reap objects (that is, free the memory backing unused objects) when memory is low.
Normally, you do not want to set this flag as your cache could then prevent the system from recovering enough memory to continue operation when memory is low.

SLAB_HWCACHE_ALIGN This flag instructs the slab layer to align each object within a slab to a cache line. This prevents "false sharing" (two or more objects
mapping to the same cache line despite existing at different addresses in memory). This improves performance, but comes at a cost of increased memory footprint
because the stricter alignment results in more wasted slack space. How large the increase in memory consumption is depends on the size of the objects and how
they naturally align with respect to the system's cache lines. For frequently used caches in performance critical code, setting this option is a good idea; otherwise,
think twice.

SLAB_MUST HWCACHE ALIGN Ifdebugging is enabled, it might be infeasible to both perform debugging and cache align the objects. This flag forces the slab
layer to cache align the objects. Normally, this flag is not needed and the previous is sufficient. Specifying this flag while slab debugging is enabled (it is disabled by
default) might result in a large increase in memory consumption. Only objects where cache alignment is critical, such as the process descriptor, should set this flag.

SLAB_CACHE_DMA This flag instructs the slab layer to allocate each slab in DMA-able memory. This is needed if the allocated object is used for DMA and must
reside in ZONE_DMA. Otherwise, you do not need this and you should not set it.
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The final two parameters, ct or and dtor are a constructor and destructor for the cache, respectively. The constructor is called whenever new pages are added to
the cache. The destructor is called whenever pages are removed from the cache. Having a destructor requires a constructor. In practice, caches in the Linux kernel do

not utilize a constructor or destructor. You can pass NULL for both of these parameters.

On success, kmem_cache create () returns a pointer to the created cache. Otherwise, it returns NULL. This function must not be called from interrupt context
as it can sleep.

To destroy a cache, call
int kmem_ cache_destroy(kmem_cache_t *cachep)

This destroys the given cache. This function is generally invoked from module shutdown code in modules that create their own caches. It must not be called from
interrupt context as it may sleep. The caller of this function must ensure two conditions are true prior to invoking this function:

* All slabs in the cache are empty. Indeed, if an object in one of the slabs were still allocated and in use, how could the cache be destroyed?

* No one accesses the cache during (and obviously after) a call to kmem cache destroy (). The caller must ensure this synchronization.
On success, the function returns zero; it returns nonzero otherwise.
After a cache is created, an object is obtained from the cache via
void * kmem_ cache_alloc (kmem_cache_t *cachep, int flags)
This function returns a pointer to an object from the given cache cachep. If no free objects are in any slabs in the cache, and the slab layer must obtain new pages via
kmem_getpages (),thevalueof flagsispassedto get free pages (). These are the same flags we looked at earlier. You probably want
GFP_KERNEL or GFP_ATOMIC.
To later free an object and return it to its originating slab, use the function
void kmem cache free (kmem cache t *cachep, void *objp)
This marks the object objp in cachep as free.

Example of Using the Slab Allocator

Let's look at a real-life example using the task st ruct structure (the process descriptor). This code, in slightly more complicated form, is in
kernel/fork.c.

First, the kernel has a global variable that stores a pointer to the task struct cache:

kmem cache t *task _struct_cachep;

During kernel initialization, in fork _init (), the cache is created:

task_struct_cachep = kmem cache create("task_struct", sizeof (struct
task struct),
0, SLAB_MUST_HWCACHE_ ALIGN, NULL,
NULL) ;
if (!task_struct_cachep)
panic("fork init(): cannot create task struct SLAB cache");
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This creates a cache named task struct cachep, which stores objects of type st ruct task_struct. The objects are created with the default offset
within the slab and are all cache aligned. There is no constructor or destructor. Note the return value is checked for NULL, which denotes failure—you must check the
return! In this case, if the kernel was unable to create the task struct cachep cache, it panics (halts the machine), because this is a requisite cache for system
operation (the machine is not much good without process descriptors).

Each time a process calls fork (), anew process descriptor must be created (recall Chapter 2, "Process Management"). This is done in dup _task_struct
(), whichis called from do_fork ():

struct task_struct *tsk;

tsk = kmem cache alloc(task struct cachep, GFP_KERNEL);
if (ltsk) |

/* failed to allocate process descriptor, cleanup and return error */ free thread info(ti);
return NULL; }

After a task dies, if it has no children waiting on it, its process descriptor is freed and returned to the task _struct cachep slab cache. This is done in
free task struct()

(where t sk is the exiting task):

kmem cache free(task struct cachep, tsk);

Because process descriptors are part of the core kernel and always needed, the
task_struct_cachep cache is never destroyed. If it were, however, we would destroy the cache via

int err;

err = kmem_cache_destroy(task_struct_cachep);
if (err)
/* error destroying cache */

Easy enough? The slab layer handles all the low-level alignment, coloring, allocations, freeing, and reaping during low-memory conditions. If you are frequently creating
many objects of the same type, consider using the slab cache. Definitely do not implement your own free list!

Statically Allocating on the Stack

In user-space, allocations, such as some of the examples discussed thus far, could have occurred on the stack because we knew the size of the allocation a priori.
User-space is afforded the luxury of a very large and dynamically-growing stack, whereas the kernel has no such luxury—the kernel's stack is small and fixed. On most
32-bit architectures,
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the stack is 8KB. On most 64-bit architectures, the stack is 16KB. This is primarily done for efficiency reasons. By giving each process a small, fixed kernel stack,
memory consumption is minimized and the kernel need not burden itself with stack management code.

Each process receives its own kernel stack. The entire call chain of a process executing inside the kernel must be capable of fitting on the stack. Interrupt handlers also
use the stack of the process they interrupt. This means that, at worst, the 8KB kernel stack might need to be shared by a multiple function-deep call chain and a couple
of interrupt handlers. Obviously, unbounded recursion is out!

In any given function, you must keep stack usage to a minimum. There is no hard and fast rule, but you should keep the sum of all local variables (also known as
automatic variables or variables on the stack) in a particular function to a maximum of a couple hundred bytes. Performing a large static allocation on the stack, such as
of a large array or structure, is dangerous. Otherwise, stack allocations are performed in the kernel just as in user-space. Stack overflows occur silently and will
undoubtedly result in problems. Because the kernel does not make any effort to manage the stack, when the stack overflows, the excess data simply spills into
whatever exists at the tail end of the stack. First, this is the thread info structure (recall from Chapter 2 that this structure is allocated at the end of each process's
kernel stack). Beyond the stack, any kernel data might lurk. At best, the machine will crash when the stack overflows. At worst, the overflow will silently corrupt the
kernel.

Therefore, it is wise to use a dynamic allocation scheme, such as one of those discussed earlier in this chapter for any large memory allocations.

High Memory Mappings

By definition, pages in high memory might not be permanently mapped into the kernel's address space. Thus, pages obtained viaalloc_ pages () withthe
___GFP_HIGHMEM flag might not have a logical address.

On the x86 architecture, all physical memory beyond the 896MB mark is high memory and is not permanently or automatically mapped into the kernel's address space,

despite x86 processors being capable of physically addressing up to 4GB (64GB with PAE6) of physical RAM. Once allocated, these pages must be mapped into the
kernel's logical address space. On x86, pages in high memory are mapped somewhere between the 3 and 4GB mark.

Permanent Mappings
To map a given page structure into the kernel's address space, use
void *kmap (struct page *page)

6PAE stands for Physical Address Extension.ltisa feature of x86 processors that allow them to physically address 36-bits (64GB) worth of memory,
despite having only a 32-bit virtual address space.
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This function works on either high or low memory. If the page structure belongs to a page in low memory, the page's virtual address is simply returned. If the page
resides in high memory, a permanent mapping is created and the address is returned. The function may sleep, so kmap () only works in process context.

Because the number of permanent mappings are limited (if not, we would not be in this mess and could just permanently map all memory), high memory should be
unmapped when no longer needed. This is done via

void kunmap (struct page *page)
which unmaps the given page.
Temporary Mappings

For times when a mapping must be created but the current context is unable to sleep, the kernel provides temporary mappings (which are also called atomic
mappings). These are a set of reserved permanent mappings that can temporarily hold a mapping on-the-fly. The kernel can atomically map a high memory page into
one of these reserved mappings. Consequently, a temporary mapping can be used in places that cannot sleep, such as interrupt handlers, because obtaining the
mapping never blocks.

Setting up a temporary mapping is done via
void *kmap atomic(struct page *page, enum km type type)
The t ype parameter is one of the following enumerations, which describe the purpose of the temporary mapping. They are defined in <asm/kmap types.h>:

enum km_type {
KM_BOUNCE_READ,
KM_SKB_SUNRPC_DATA,
KM_SKB_DATA_SOFTIRQ,
KM _USERO,
KM USERL,
KM BIO SRC_IRQ,
KM _BIO DST IRQ,
KM_PTEO,
KM PTEL,
KM_PTE2,
KM IRQO,
KM_IRQ1,
KM_SOFTIRQO,
KM_SOFTIRQ1,
KM _TYPE NR

bi

This function does not block and thus can be used in interrupt context and other places that cannot reschedule. It also disables kernel preemption, which is needed
because the mappings are unique to each processor (and a reschedule might change which task is running on which processor).
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The mapping is undone via

void kunmap atomic(void *kvaddr, enum km type type)

This function also does not block. In fact, in many architectures it does not do anything at all except enable kernel preemption, because a temporary mapping is only
valid until the next temporary mapping. Thus, the kernel can just "forget about" the kmap atomic () mappingand kunmap_atomic () does not need to do
anything special. The next atomic mapping will then simply overwrite the previous one.

Which Allocation Method Should I Use?

If you need contiguous physical pages, use one of the low-level page allocators or kmalloc () . This is the standard manner of allocating memory from within the
kernel, and most likely, how you will allocate most of your memory. Recall that the two most common flags given to these functions are GFP_ ATOMIC and
GFP_KERNEL. Specify the GFP_ATOMIC flag to perform a high priority allocation that will not sleep. This is a requirement of interrupt handlers and other pieces of
code that cannot sleep. Code that can sleep, such as process context code that does not hold a spin lock, should use GFP_ KERNEL. This flag specifies an allocation
that can sleep, if needed, to obtain the requested memory.

If you want to allocate from high memory, use alloc pages ().Thealloc pages () functionreturnsa struct page,and not a pointer to a logical
address. Because high memory might not be mapped, the only way to access it might be via the corresponding st ruct page structure. To obtain an actual pointer,
use kmap () to map the high memory into the kernel's logical address space.

If you do not need physically contiguous pages—only virtually contiguous—use vimalloc () (although bear in mind the slight performance hit taken with vmalloc
() over kmalloc ()). The vmalloc () function allocates kernel memory that is virtually contiguous but not, per se, physically contiguous. It performs this feat
much like user-space allocations, by mapping chunks of physical memory into a contiguous logical address space.

If you are creating and destroying many large data structures, consider setting up a slab cache. The slab layer will maintain a per-processor object cache (a free list),
which might greatly enhance object allocation and deallocation performance. Instead of frequently allocating and freeing memory, the slab layer will store a cache of
already allocated objects for you. When you need a new chunk of memory to hold your data structure, the slab layer often does not need to allocate more memory and
can instead simply return an object from the cache.
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11
The Virtual Filesystem

THE VIRTUAL FILESYSTEM (SOMETIMES CALLED the Virtual File Switch or simply the VF'S) is the subsystem of the kernel that implements the filesystem interface provided to
user-space programs. All filesystems rely on the VFS to allow them not only to coexist, but also to interoperate. This enables you to use standard Unix system calls to
read and write to different filesystems on different media, as shown in Figure 11.1.

hard disk with ext3

VFS <« | CP()

removable disk
with ext2

Figure 11.1 The VFS in action: Using the cp (1) utility to move data from a hard disk mounted as ext3 to a removable disk mounted as ext2.

Common Filesystem Interface

The VFS is the glue that enables system calls such as open (), read (),and write () to work regardless of the filesystem or underlying physical medium. It
might not sound impressive these days—we have long been taking such a feature for granted—but it is a



Page 186

nontrivial feat for such generic system calls to work across all supported filesystems and media. More so, the system calls work between these different filesystems and
media—we can copy or move from one filesystem to another using standard system calls. In older operating systems (think DOS), this would never have worked; any
access to a nonnative filesystem would require special tools. It is only because modern operating systems, Linux included, abstract access to the filesystems via a virtual
interface is such interoperation and generic access possible.

Filesystem Abstraction Layer

A generic interface for any type of filesystem is only feasible because the kernel itself implements an abstraction layer around its low-level filesystem interface. This
abstraction layer enables Linux to support different filesystems, even if they differ greatly in supported features or behavior. This is possible because the VFS provides a
common file model that is capable of representing any conceivable filesystem's general features and behavior. Of course, it is biased toward Unix-style filesystems (we
will see what constitutes a Unix-style filesystem in the proceeding sections). Regardless, wildly different filesystems are still supportable in Linux.

The abstraction layer works by defining the basic abstract interfaces and data structures all filesystems support. The filesystems mold their view of concepts such as
"this is how I open files" and "this is what a directory is to me" to match the expectations of the VFS. The actual filesystem code hides the implementation details.
To the VFS layer and the rest of the kernel, however, each filesystem looks the same. They all support notions, such as files and directories, and they all support
operations, such as create file and delete file.

The result is a general abstraction layer that enables the kernel to support many types of filesystems easily and cleanly. The filesystems are programmed to provide the
abstracted interfaces and data structures the VFS expects; in turn, the kernel easily works with any filesystem and the exported user-space interface seamlessly works
on any filesystem.

In fact, nothing in the kernel needs to understand the underlying details of the filesystems, except the filesystems themselves. For example, consider a simple user-space
program that does

write(f, &buf, len);

This writes the 1 e n bytes pointed to by &bu £ into the current position in the file represented by the file descriptor £. This system call is first handled by a generic
sys_write () system call that determines the actual file writing method for the filesystem on which £ resides. The generic write system call then invokes this
method, which is part of the filesystem implementation, to write the data to the media (or whatever this filesystem does on write). Figure 11.2 shows the flow from user-
space's write () call through the data arriving on the physical media. We will look at how the VFS achieves this abstraction and provides its interfaces throughout
the rest of this chapter.
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Unix Filesystems
Historically, Unix provided four basic filesystem-related abstractions: files, directory entries, inodes, and mount points.

A filesystem is a hierarchical storage of data adhering to a specific structure. Filesystems contain files, directories, and associated control information. Typical
operations performed on filesystems are creation, deletion, and mounting. In Unix, filesystems are mounted at a specific mount point in a global hierarchy1 known as a
namespace. This enables all mounted filesystems to appear as entries in a single tree”.

A file is an ordered string of bytes. The first byte marks the beginning of the file and the last byte marks the end of the file. Each file is assigned a human-readable name
for identification by both the system and the user. Typical file operations are read, write, create, and delete.

Files are laid out in directories. A directory is analogous to a folder and usually contains related files. Directories can also contain subdirectories; in this fashion,
directories may be nested to form paths. Each component of a path is called a directory entry. An example path is "/ home /wolfman/ f oo"—the root
directory /, the directories home and wo 1l fman, and the file £ oo are all directory entries, called dentries. In Unix, directories are actually normal files that simply
list the files contained therein. Because a directory is a file to the VF'S, the same operations performed on files can be performed on directories.

Unix systems separate the concept of a file from any associated information about it (such as access permissions, size, owner, creation time, and so on). This
information is sometimes called file metadata (that is, data about data) and is stored in a separate data structure from the file, called the inode. This name is short for
index node, although these days the term "inode" is much more ubiquitous.

All this information is tied together with the filesystem's control information, which is stored in the superblock. The superblock is a data structure containing information
about the filesystem as a whole. Sometimes, the collective data is referred to as filesystem metadata. Filesystem metadata includes information about both the
individual files and the filesystem as a whole.

Traditionally, Unix filesystems implement these notions as part of their physical on-disk layout. For example, file information is stored as an inode in a separate block on
the disk, directories are files, control information is stored centrally in a superblock, and so on. The Linux VFS is designed to work with filesystems that understand and
implement such concepts. Non-Unix filesystems, such as FAT or NTFS, still work in Linux, but their filesystem code must provide the appearance of these concepts.
For example, even if a filesystem does not support distinct inodes, it must assemble the inode data structure in

! Recently, Linux has made this hierarchy per-process, to give a unique namespace to each process. Although, by default, each process inherits its parent's namespace
and, thus, there is seemingly one global namespace.

’ As opposed to at a given drive letter, like "C:".
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memory as if it did. Or, if a filesystem treats directories as a special object, to the VFS they must represent directories as mere files. Oftentimes, this involves some
special processing done on the fly by the non-Unix filesystems to cope with the Unix paradigm and the requirements of the VFS. Such filesystems still work, however,
and usually suffer very little.

. - - o filesystem's -
writel ) r o sys_write( ) e | sy >
user-space VFS filesystem physical media

Figure 11.2 The flow of data from user-space issuinga write () call, through the VFS's generic system call, into the filesystem's specific write method, and finally
arriving at the physical media.

VES Objects and Their Data Structures

The VFS is object- oriented®. A family of data structures represents the common file model. These data structures are akin to objects. Because the kernel is
programmed strictly in C, without the benefit of a language directly supporting object-oriented paradigms, the data structures are represented as C structures. The
structures contain both data and pointers to filesystem-implemented functions that operate on the data.

The four primary object types of the VES are

* The superblock object, which represents a specific mounted filesystem.

* The inode object, which represents a specific file.

* The dentry object, which represents a specific directory entry.

* The file object, which represents an open file as associated with a process.

Note that, because the VFS treats directories as normal files, there is not a specific directory object. Recall from earlier in this chapter that a dentry represents a
component in a path, which might include a regular file. In other words, a dentry is not the same as a directory, but a directory is the same as a file. Got it?

} People often miss this, or even deny it, but there are many examples of object-oriented programming in the kernel. Although the kernel developers may shun C++ and
other explicitly object-oriented languages, thinking in terms of objects is often useful. The VFS is a good example of how to do clean and efficient OOP in C, which is
a language that lacks any OOP constructs.
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An operations object is contained within each of these primary objects. These objects describe the methods that the kernel invokes against the primary objects.
Specifically, we have

» The super operations object, which contains the methods the kernel can invoke on a specific filesystem, such as read inode () and sync_fs
().
* The inode_ operations object, which contains the methods the kernel can invoke on a specific file, suchas create () and 1ink ().

* Thedentry operations object, which contains the methods the kernel can invoke on a specific directory entry, suchas d_compare () and
d delete().

* The file object, which contains the methods a process can invoke on an open file, such as read () and write ().

The operations objects are implemented as a structure of pointers to functions that operate on the parent object. For many methods, the objects can inherit a generic
function if basic functionality is sufficient. Otherwise, the specific instance of the particular filesystem fills in the pointers with its own filesystem-specific methods.

Again, note that by object we mean structures—not explicit object data types, such as those in C++ or Java. These structures, however, represent specific instances of
an object, their associated data, and methods to operate on themselves. They are very much objects.

Other VFS Objects

The VFS loves structures, and it is composed of a couple more than the primary objects previously discussed. Each registered filesystem is represented by a
file system type structure. This object describes the filesystem and its capabilities. Furthermore, each mount point is represented by the v £ smount
structure. This structure contains information about the mount point, such as its location and mount flags.

Finally, three per-process structures describe the filesystem and files associated with a process. They are the file struct, fs_struct,and namespace
structures.

The rest of this chapter concentrates on discussing these objects and the role they play in implementing the VFS layer.

The Superblock Object

The superblock object is implemented by each filesystem, and is used to store information describing that specific filesystem. This object usually corresponds to the
filesystem superblock or the filesystem control block, which is stored in a special sector on disk (hence the object's name). Filesystems that are not disk-based (a
virtual memory-based filesystem, such as sysfs, for example) generate the superblock on the fly and store it in memory.

The superblock object is represented by st ruct super blockanddefinedin <linux/fs. h>.Hereis what itlooks like, with comments describing each

entry:



struct super_block {

struct list_head
dev_t

unsigned long
unsigned long
unsigned char
unsigned char

unsigned long long

s_list;

s_dev;
s_blocksize;
s_old blocksize;
s_blocksize_bits;
s_dirt;
s_maxbytes;

struct file system_ type s_type;
struct super_operations s_op;
struct dquot_operations *dg op;

struct quotactl ops

*s_qgcop;

struct export operations *s_export op;

unsigned long
unsigned long
struct dentry

struct rw_semaphore
struct semaphore
int

int

int

atomic_t

void

struct list head
struct list_head
struct hlist head
struct list_head
struct block device
struct list_head
struct quota info
char

struct kobject

void

struct semaphore

}i

s_flags;
s_magic;
*s_root;
siumount;
s_lock;
s_count;
s_syncing;
s_need_sync_fs;
s_active;
*s_security;
s_dirty;
s_io;
s_anon;
s_files;
*s_bdev;
s_instances;
s_dquot;
s_1id[32];
kobj;
*s_fs_info;

s_vfs_rename_sem;/*

list of all superblocks */
identifier */

block size in bytes */

old block size in bytes */
block size in bits */

dirty flag */

max file size */

filesystem type */

superblock methods */

quota methods */

quota control methods */
export methods */

mount flags */

filesystem's magic number */
directory mount point */
unmount semaphore */
superblock semaphore */
superblock reference count */
filesystem syncing flag */
not-yet-synced flag */

active reference count */
security module */

list of dirty inodes */

list of writebacks */
anonymous dentries for export */
list of assigned files */
associated block device driver */
list of filesystems of this type */
quota-specific options */
text name */

sysfs object */
filesystem-specific info */
directory rename semaphore */
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The code for creating, managing, and destroying superblock objects lives in £s/super.c. A superblock object is created and initialized viathe alloc super

() function. When mounted, a filesystem invokes this function, reads its superblock off the disk, and fills in its superblock object.

Superblock Operations

The most important item in the superblock object is s _op, which is the superblock operations table. The superblock operations table is represented by st ruct
super operationsandisdefinedin <linux/fs. h>.Itlooks like
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struct super operations {

struct inode *(*alloc_inode) (struct super_block *sb);
void (*destroy inode) (struct inode *);

void (*read_inode) (struct inode *);

void (*dirty inode) (struct inode *);

void (*write_inode) (struct inode *, int);

void (*put_ inode) (struct inode *);

void (*drop_inode) (struct inode *);

void (*delete inode) (struct inode *);

void (*put_super) (struct super_block *);

void (*write super) (struct super_block *);

int (*sync_fs) (struct super_block *, int);

void (*write super_ lockfs) (struct super block *);
void (*unlockfs) (struct super_block *);

int (*statfs) (struct super block *, struct statfs *);
int (*remount_fs) (struct super_block *, int *, char *);
void (*clear_ inode) (struct inode *);

void (*umount_begin) (struct super_block *);

int (*show_options) (struct seq file *, struct vfsmount *);
}i

Each item in this structure is a pointer to a function that operates on a superblock object. The superblock operations perform low-level operations on the filesystem and
its inodes.

When a filesystem needs to perform an operation on its superblock, it follows the pointers from its superblock object to the desired method. For example, if a
filesystem wanted to write to its superblock, it would invoke

sb->s_op->write_super (sb);

where sb is a pointer to the filesystem's superblock. Following that pointer into s op yields the superblock operations table and ultimately the desired
write super () function, which is then directly invoked. Note how the write super () call must be passed a superblock, despite the method being
associated with one. This is because of the lack of object-oriented support in C. In C++, a call such as

sb.write super();
would suffice. In C, there is no way for the method to cleanly obtain its parent, so we have to pass it.
Let's look at the superblock operations, which are specified by super operations:

*struct inode * alloc_inode(struct super block *sb) This function creates and initializes a new inode object under the given
superblock.

*void destroy inode (struct inode *inode) This function deallocates the given inode.
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*void read inode (struct inode *inode) This function reads the inode specified by inode~->1i ino from disk and fills in the rest of the
inode structure.

*void dirty inode(struct inode *inode) This function is invoked by the VFS when an inode is dirtied (modified). Journaling filesystems
(such as ext3) use this function to perform journal updates.

*void write inode(struct inode inode*, int wait) Writes the given inode to disk. The wa it parameter specifies whether the
operation should be synchronous.

*void put_ inode (struct inode *inode) This function releases the given inode.

*void drop inode (struct inode *inode) This function is called by the VFS when the last reference to an inode is dropped. Normal Unix
filesystems do not define this function, in which case the VFS simply deletes the inode. The caller must hold the inode lock.

*void delete inode(struct inode *inode) This function deletes the given inode from the disk.
*void put super (struct super block *sb) This function is called by the VFS on unmount to release the given superblock object.

*void write super(struct super block *sb) This function updates the on-disk superblock with the specified superblock. The VFS uses this
function to synchronize a modified in-memory superblock with the disk.

*int sync fs(struct super block *sb, int wait) This function synchronizes filesystem metadata with the on-disk filesystem. The wa it
parameter specifies whether the operation is synchronous.

*void write super lockfs(struct super block *sb) This function prevents changes to the filesystem, and then updates the on-disk
superblock with the specified superblock. It is currently used by LVM (the Logical Volume Manager).

*void unlockfs (struct super block *sb) This function unlocks the filesystem against changes as doneby write super lockfs ().

*int statfs(struct super block *sb, struct statfs *statfs) Thisfunctionis called by the VFS to obtain filesystem statistics.
The statistics related to the given filesystem are placed in statfs.



*int remount fs(struct super block *sb,
remounted with new mount options.

int *flags,
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char *data) This function is called by the VFS when the filesystem is

*void clear inode(struct inode *) This function is called by the VFS to release the inode and clear any pages containing related data.

*void umount begin(struct super block *sb) This function is called by the VFS to interrupt a mount operation. It is used by network

filesystems, such as NFS.

All these functions are invoked by the VFS, in process context. They may all block if needed.

Some of these functions are optional; the filesystem can then set their value in the superblock operations structure to NULL. If the associated pointer is NULL, the VFS

either calls a generic function or does nothing, depending on the operation.

The Inode Object

The inode object represents all the information needed by the kernel to manipulate a file or directory. For Unix-style filesystems, this information is simply read from the
on-disk inode and used to populate the VFS's inode object. If a filesystem does not have inodes, however, the filesystem must obtain the information from wherever it

is stored on the disk*.

The inode object is represented by st ruct inode andisdefinedin <1inux/fs.h>. Here is the structure, with comments describing each entry

struct inode {

struct hlist node i_hash; /*
struct list head i list; /*
struct list head i_dentry; /*
unsigned long i ino; /*
atomic_t i_count; /*
umode_t i mode; /*
unsigned int i _nlink; /*
uid t i uid; /*
gid t i gid; /*
kdev_t i rdev; /*
loff t i_size; /*

hash list */

linked list of inodes */
linked list of dentries */
inode number */
reference counter */
access permissions */
number of hard links */
user id of owner */
group id of owner */
real device node */

file size in bytes */

4 Filesystems without inodes generally store the information as part of the file itself. Some modern filesystems also employ a database to store the file's data. Whatever
the case, the inode object is constructed in whatever manner is applicable to the filesystem.



struct timespec
struct timespec
struct timespec
unsigned int
unsigned long
unsigned long
unsigned long
unsigned short
spinlock t
struct semaphore
inode operations
file operations
super_block
file_lock
address_space
address_space
dquot
list_head
pipe_inode_info
block_device
unsigned long
struct dnotify struct
unsigned long
unsigned int
unsigned char
atomic_t
void
_u32
union {

void

struct
struct
struct
struct
struct
struct
struct
struct
struct
struct

}oug

}i

i_atime;
i_mtime;

i ctime;
i_blkbits;

i blksize;

i _version;

i blocks;
i_bytes;

i lock;
i_sem;

*i op;

*1_ fop;

*1 sb;

*i flock;

*1 mapping;
i_data;

*i _dquot [MAXQUOTAS] ;
i_devices;

*i pipe;

*i bdev;

i dnotify mask;
*i dnotify;

i _state;
i_flags;
i_sock;
i_writecount;
*1_security;
i generation;

*generic ip;

/*
/*
/*
/*

/*
/*
/*
/*
/*

/*
/*
/*
/*

/*
/*
/*
/*
/*

/*
/*
/*
/*
/*

/*
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last file access */

last file modify */

file creation timestamp */
block size in bits */
block size in bytes */
version number */

file size in blocks */
bytes consumed */

lock protecting fields */
inode semaphore */

inode operations table */
file operations */
associated superblock */
file lock list */

backing address space */
device address space */
disk quotas for inode */
list of block devices */
pipe information */

block device driver */
Directory notify events */
dir notifications */
state flags */

filesystem flags */

is this a socket? */
write usage counter */
security module */

inode version number */

fs-specific info */

An inode represents each file on a filesystem (although an inode object is only constructed in memory as the files are accessed). This includes special files, such as
device files or pipes. Consequently, some of the entries in st ruct 1inode are related to these special files. For example, the 1 pipe entry points to a named
pipe data structure. If the inode does not refer to a named pipe, this field is simply NULL. Other special file-related fields are i devices, i bdev,and

i _cdev.
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It might occur that a given filesystem does not support a property represented in the inode object. For example, some filesystems might not record a creation

timestamp. In that case, the filesystem is free to implement the feature however it sees fit; it can store zero for i _ctime, make i ctime equalto i_mtime, or
whatever floats its boat.

Inode Operations

As with the superblock operations, the inode operations member is very important, as it describes the filesystem's implemented functions that the VFS can
invoke on an inode. As with the superblock, inode operations are invoked via

i->i op->truncate (i)

where 1 is a reference to a particular inode. In this case, the t runcate () operation defined by the filesystem on which i exists is called on the given inode. The
inode operations structureis definedin <linux/fs.h>:

struct inode operations {
int create(struct inode *dir, struct dentry *dentry, int mode)

struct dentry * (*lookup) (struct inode *, struct dentry *);

int (*1link) (struct dentry *, struct inode *, struct dentry *);

int (*unlink) (struct inode *, struct dentry *);

int (*symlink) (struct inode *, struct dentry *, const char *);

int (*mkdir) (struct inode *, struct dentry *, int);

int (*rmdir) (struct inode *, struct dentry *);

int (*mknod) (struct inode *, struct dentry *, int, dev_t);

int (*rename) (struct inode *, struct dentry *, struct inode *, struct
dentry *);

int (*readlink) (struct dentry *, char *, int);

int (*follow link) (struct dentry *, struct nameidata *);

void (*truncate) (struct inode *);

int (*permission) (struct inode *, int);

int (*setattr) (struct dentry *, struct iattr *);

int (*getattr) (struct vfsmount *, struct dentry *, struct kstat *);

int (*setxattr) (struct dentry *, const char *, const void *, size t,
int) ;

ssize t (*getxattr) (struct dentry *, const char *, void *, size t);

ssize_t (*listxattr) (struct dentry *, char *, size t);

int (*removexattr) (struct dentry *, const char *);

bi
Let's look at these operations:

*int create(struct inode *dir, struct dentry *dentry, int mode) The VFS calls this function from the creat () and
open () system calls to create a new inode associated with the given dentry object with the specified initial mode.
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*struct dentry * lookup(struct inode *dir, struct dentry *dentry) This function searches a directory for an inode
corresponding to a Component specified in the given dentry.

*int link(struct dentry *old dentry, struct inode *dir, struct dentry *dentry) The function is invoked by the
link () system call to create a hard link of the file 01d_dent ry in the directory d i r with the new Component dentry.

eint unlink(struct inode *dir, struct dentry *dentry) This functionis called fromthe unlink () system call to remove the
inode specified by the directory entry dent ry from the directory dir.

eint symlink(struct inode *dir, struct dentry *dentry, const char *symname) This function is called from the
symlink () system call to create a symbolic link named s ymname to the file represented by dent ry in the directory di r.

*int mkdir (struct inode *dir, struct dentry *dentry, int mode) This function is called from the mkdir () system call to
create a new directory with the given initial mode.

*int rmdir (struct inode *dir, struct dentry *dentry) This function is called by the rmdir () system call to remove the directory
referenced by dent ry from the directory dir.

*int mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev) This function is called by the mknod
() system call to create a special file (device file, named pipe, or socket) as referenced by r de v with the directory entry dent ry in the directory d i r with
the given initial mode.

*int rename(struct inode *old dir, struct dentry *old dentry, struct inode *new dir, struct dentry
*new_dentry) This function is called by the VFS to move the file specified by 01d dentry fromthe o1d dir directory to the directory new _dir
with the Component specified by new dentry.
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*int readlink(struct dentry *dentry, char *buffer, int buflen) This function is called by the readlink () system call to
copy at most bu f 1en bytes of the full path associated with the symbolic link specified by dent ry into the specified buffer.

*int follow link(struct dentry *dentry, struct nameidata *nd) This function is called by the VFS to translate a symbolic link
to the inode it points to.

*void truncate (struct inode *inode) This function is called by the VFS to modify the size of the given file. Before invocation, the inode's
i size field must be set to the desired new size.

*int permission(struct inode *inode, int mask) This function checks whether the specified access mode is allowed for the file
referenced by i node. This function returns zero if the access is allowed and a negative error code otherwise. Most filesystems set this field to NULL and use the
generic VFS method, which simply compares the mode bits in the inode's objects to the given mask. More complicated filesystems, such as those supporting
access control lists (ACL's), have a specific permission () method.

*int setattr(struct dentry *dentry, struct iattr *attr) Thisfunctioniscalledfromnotify change () tonotifya
"change event" after modifying an inode.

*int getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat) This function is invoked by the
VES upon noticing that an inode needs to be refreshed from disk.

*eint setxattr(struct dentry *dentry, const char *name, const void *value, size t size, int flags)
This function is used by the VFS to set the extended attribute’ name to the value value on the file referenced by denty.

> Extended attributes are a new feature introduced in the 2.6 kernel for pairing name/value tags to files, similar to a database. Although a few filesystems currently
support them, they have not yet seen widespread use.
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*ssize t getxattr(struct dentry *dentry, const char *name, void *value, size t size) This functionisused
by the VES to copy into value the value of the extended attribute name for the specified file.

*ssize t listxattr(struct dentry *dentry, char *list, size t size) This function copies the list of all attributes for the

specified file into the buffer 1 ist.

*int removexattr (struct dentry *dentry,

The Dentry Object

const char *name) This function removes the given attribute from the given file.

As discussed, the VFES treats directories as files. In the path /bin/vi, bothbin and vi are filess—b in being the special directory file and v i being a regular file.
An inode object represents both of these components. Despite this useful unification, the VFS often needs to perform directory-specific operations, such as path name
lookup. Path name lookup involves translating each component of a path, ensuring it is valid, and following it to the next component.

To facilitate this, the VFS employs the concept of a directory entry (dentry). A dentry is a specific component in a path. Using the previous example, /, bin, and vi
are all dentry objects. The first two are directories and the last is a regular file. This is an important point; dentry objects are a/l components in a path, including files.

They might also include mount points. In the path /mnt /cdrom/ foo, the components /, mnt, cdrom, and foo are all dentry objects. The VFS constructs
dentry objects on the fly, as needed, when performing directory operations.

Dentry objects are represented by st ruct dentry anddefinedin <linux/dcache.h>. Here is the structure, with comments describing each member:

struct dentry {
atomic_t
unsigned long
spinlock_t
struct inode
struct list head
struct list_head
struct list_head
struct list_head
unsigned long

d_count;

d vfs_ flags;
d_lock;
*d_inode;
d_lru;

d child;
d_subdirs;
d_alias;

d time;

/*
/*
/*
/*
/*
/*
/*
/*
/*

usage count */

dentry cache flags */
per-dentry lock */
associated inode */

unused list */

list of dentries in parent */
subdirectories */

list of alias inodes */
revalidate time */
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struct dentry operations *d op; /* dentry operations table */

struct super_block *d_sb; /* superblock of file */

unsigned int d flags; /* dentry flags */

int d_mounted; /* is this dentry a mount point? */

void *d_fsdata; /* filesystem-specific data */

struct rcu_head d_rcu; /* RCU locking */

struct dcookie struct *d_cookie; /* cookie */

unsigned long d _move_count; /* did we move during RCU? */

struct gstr *d_gstr; /* dentry name used during RCU
lookup */

struct dentry *d_parent; /* dentry object of parent
directory */

struct gstr d name; /* dentry name */

struct hlist node d hash; /* list of hash table entries */

struct hlist head *d_bucket; /* hash bucket */

unsigned char d_iname

[DNAME_INLINE_LEN _MIN]; /* short Components */
}i

Unlike the previous two objects, the dentry object does not correspond to any sort of on-disk data structure. The VFS creates it on the fly from a string-representation
of a path name. Because the dentry object is not physically stored on the disk, no flagin st ruct dentry specifies whether the object is modified (that is, whether
it is dirty and needs to be written back to disk).

Dentry State
A valid dentry object can be in one of three states: used, unused, or negative.

A used dentry corresponds to a valid inode (that is, d _inode points to an associated inode) and there are one or more users of the object (thatis, d _count is
positive). A used dentry is in use by the VFS and points to valid data and, thus, cannot be discarded.

An unused dentry corresponds to a valid inode (d_ inode points to an inode), but the VFS is not currently using the dentry object (d_count is zero). Because the
dentry object still points to a valid object, the dentry is kept around in case it is needed again. By not destroying the dentry prematurely, the dentry need not be
recreated if it is needed in the future and path name lookups can complete quicker. If it is necessary to reclaim memory, however, the dentry can be discarded because
it is not in use.

A negative dentry6 is not associated with a valid inode (d_inode is NULL) because either the inode was deleted or the path name was never correct to begin with.
The dentry is kept around, however, so that future lookups are resolved quickly. Although the dentry is useful, it can be destroyed, if needed, because nothing can
actually be using it.

® The name is misleading. There is nothing particularly negative about a negative dentry. A better name might be invalid dentry.
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A dentry object can also be freed, sitting in the slab object cache, as discussed in the previous chapter. In that case, there is no valid reference to the dentry object in
any VFS or any filesystem code.

The Dentry Cache

After the VFS layer goes through the trouble of resolving each element in a path name into a dentry object and arriving at the end of the path, it would be quite wasteful
to throw away all that work. Instead, the kernel caches dentry objects in the dentry cache, or, simply, the dcache.

The dentry cache consists of three parts:

» Lists of "used" dentries that are linked off their associated inode via the i dentry field of the inode object. Because a given inode can have multiple links, there
might be multiple dentry objects; consequently, a list is used.

* A doubly linked "least recently used" list of unused and negative dentry objects. The list is insertion sorted by time, such that entries toward the head of the list are
newest. When the kernel must remove entries to reclaim memory, the entries are removed from the tail because those are the oldest and have the least chance of
being used in the near future.

* A hash table and hashing function used to quickly resolve a given path into the associated dentry object.

The hash table is represented by the dentry hashtable array. Each element is a pointer to a list of dentries that hash to the same value. The size of this array
depends on the amount of physical RAM in the system.

The actual hash value is determined by d _hash () . This enables filesystems to provide a unique hashing function.
Hash table lookup is performed viad_lookup () . If a matching dentry object is found in the dcache, it is returned. On failure, NULL is returned.

As an example, assume you are editing a source file in your home directory, /home /dracula/src/ foo.c. Each time this file is accessed (for example, when
you first open it, later save it, then compile it, and so on), the VFS must follow each directory entry to resolve the full path: /, home, dracula, src,and finally
foo.c. To prevent this time-consuming operation each time this (or any) path name is accessed, the VFS can first try to lookup the path name in the dentry cache. If
the lookup succeeds, the required final dentry object is obtained without much effort. Conversely, if the dentry is not in the dentry cache, the VFS must manually
resolve the path. Once completed, it will add the dentry objects to the dcache to speed up any future lookups.

The dcache also provides the front end to an inode cache, the icache. Inode objects that are associated with dentry objects are not freed because the dentry maintains
a positive usage counter over the inode. This enables dentry objects to pin inodes in memory. As long as the dentry is cached, the corresponding inodes are cached,
too. Consequently, when a path name lookup succeeds from cache, as in the previous example, the associated inodes are already cached in memory.
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Dentry Operations
The dentry operations structure specifies the methods that the VFS invokes on directory entries on a given filesystem.

The dentry operations structure is defined in <1inux/dcache.h>:

struct dentry operations {

int (*d_revalidate) (struct dentry *, int);
int (*d_hash) (struct dentry *, struct gstr *);
int (*d_compare) (struct dentry *, struct gstr *, struct gstr *);
int (*d_delete) (struct dentry *);
void (*d_release) (struct dentry *);
void (*d_iput) (struct dentry *, struct inode *);
}i
The methods:

*int d revalidate(struct dentry *dentry, int flags) This function determines whether the given dentry object is valid. The VFS
calls this function whenever it is preparing to use a dentry from the dcache. Most filesystems set this method to NULL because their dentry objects in the dcache
are always valid.

*int d hash(struct dentry *dentry, struct gstr *name) This function creates a hash value from the given dentry. The VFS calls
this function whenever it adds a dentry to the hash table.

*int d compare (struct dentry *dentry, struct gstr *namel, struct gstr *name2) This functionis called by the VFS
to compare two Components, name 1 and name 2. Most filesystems leave this at the VFS default, which is a simple string compare. For some filesystems, such
as FAT, a simple string compare is insufficient. The FAT filesystem is case insensitive and therefore needs to implement a comparison function that disregards
case. This function requires the dcache_lock.

*int d delete (struct dentry *dentry) This function is called by the VFS when the specified dentry object's d _count reaches zero. This
function requires the dcache lock.

*void d_release(struct dentry *dentry) This function is called by the VFS when the specified dentry is going to be freed. The default
function does nothing.

*void d iput(struct dentry *dentry, struct inode *inode)
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This function is called by the VFS when a dentry object loses its associated inode (say, because the entry was deleted from the disk). By default, the VFS simply
callsthe iput () function to release the inode. If a filesystem overrides this function, it must also call iput () in addition to performing whatever filesystem-

specific work it requires.

The File Object

The final primary VFS object we look at is the file object. The file object is used to represent a file opened by a process. When we think of the VFS from the
perspective of user space, the file object is what readily comes to mind. Processes deal directly with files, not superblocks, inodes, or dentries. It is not surprising that
the information in the file object is the most familiar (data such as access mode and current offSet) or that the file operations are familiar system calls like read () and

write().

The file object is the in-memory representation of an open file. The object (but not the physical file) is created in response to the open () system call and destroyed in
response to the close () system call. All these file-related calls are actually methods defined in the file operations table. Because multiple processes can open and
manipulate a file at the same time, there can be multiple file objects in existence for the same file. The file object merely represents a process's view of an open file. The
object points back to the dentry (which in turn points back to the inode) that actually represents the open file. The inode and dentry objects, of course, are unique.

The file object is represented by struct file andisdefinedin <linux/fs.h>. Let's look at the structure, again with comments added to describe each

entry:

struct file {
struct
struct

list_head
dentry

struct vismount
struct file operations
atomic_t

unsigned int

mode_t

loff t

struct fown_struct
unsigned int
unsigned int

int

struct file ra_state
unsigned long

void

void

struct list_head
spinlock t

f list;

*f dentry;
*f vfsmnt;
*f_op;

f count;

f flags;

f mode;
f_pos;
f_owner;
f_uid;

f gid;

f error;

f ra;

f version;
*f security;
*private data;
f ep_links;
f ep lock;

list of file objects */
associated dentry object */
associated mounted filesystem */
file operations table */

file object's usage count */
flags specified on open */
file access mode */

file offset (file pointer) */
owner data for signals */
user's UID */

user's GID */

error code */

read-ahead state */

version number */

security module */

tty driver hook */

list of eventpoll links */
eventpoll lock */
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Similar to the dentry object, the file object does not actually correspond to any on-disk data. Therefore, no flag is in the object to represent whether the object is dirty

and requires writeback to disk. The file object does point to its associated dentry object via the £ dentry pointer. The dentry in turn points to the associated inode,
which reflects whether the file is dirty.

File Operations

As with all the other VFS objects, the file operations table is quite important. The operations associated with st ruct £ile are the familiar system calls that form
the basis of the standard Unix system calls.

The file object methods are specifiedin file operations anddefinedin <linux/fs.h>:

struct file operations {
struct module *owner;
loff t (*llseek) (struct file *, loff t, int);

ssize_t (*read) (struct file *, char *, size_t, loff t *);

ssize t (*aio_read) (struct kiocb *, char *, size t, loff t);

ssize t (*write) (struct file *, const char *, size t, loff t *);

ssize t (*aio write) (struct kiocb *, const char *, size t, loff t);

int (*readdir) (struct file *, void *, filldir t);

unsigned int (*poll) (struct file *, struct poll table struct *);

int (*ioctl) (struct inode *, struct file *, unsigned int, unsigned long);

int (*mmap) (struct file *, struct vm_area struct *);

int (*open) (struct inode *, struct file *);

int (*flush) (struct file *);

int (*release) (struct inode *, struct file *);

int (*fsync) (struct file *, struct dentry *, int);

int (*aio_fsync) (struct kiocb *, int);

int (*fasync) (int, struct file *, int);

int (*lock) (struct file *, int, struct file_lock *);

ssize_t (*readv) (struct file *, const struct iovec *, unsigned long,
loff t *);

ssize_t (*writev) (struct file *, const struct iovec *, unsigned long,
loff t *);

ssize_t (*sendfile) (struct file *, loff t *, size_t, read actor_t, void
*)i

ssize_t (*sendpage) (struct file *, struct page *, int, size_ t, loff t *,
int) ;

unsigned long (*get unmapped_area) (struct file *, unsigned long, unsigned
long,

unsigned long, unsigned long);
}i

Filesystems can implement unique functions for each of these operations or they can use a generic method if one exists. The generic methods tend to work fine on
normal
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Unix-based filesystems. A filesystem is under no obligation to implement all these methods—although not implementing the basics is silly—and can simply set the
method to NULL if not interested.

Let's look at the individual operations:
*loff t llseek(struct file *file, loff t offset, int origin) This function updates the file pointer to the given offset. It is

called viathe 11seek () system call.

*ssize t read(struct file *file, char *buf, size t count, loff t *offset) This functionreads count bytes from
the given file at position o £ f se t into bu f. The file pointer is then updated. This function is called by the read () system call.

*ssize t aio read(struct kiocb *iocb, char *buf, size t count, loff t offset) Thisfunction begins an
asynchronous read of count bytes into bu £ of the file described in 1 ocb. This function is called by the aio read () system call.

*ssize t write(struct file *file, const char *buf, size t count, loff t *offset) Thisfunction writes count
bytes from bu £ into the given file at position o f £ se t. The file pointer is then updated. This function is called by the write () system call.

*ssize t aio write(struct kiocb *iocb, const char *buf, size t count, loff t offset) This function begins an
asynchronous write of count bytes into bu £ of the file described in i ocb. This function is called by the aio write () system call

*int readdir(struct file *file, void *dirent, filldir t f£illdir) This function returns the next directory in a directory
listing. This function is called by the readdir () system call.

*unsigned int poll(struct file *file, struct poll table struct *poll table) This function sleeps, waiting for
activity on the given file. It is called by the po11 () system call.

*int ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
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This function is used to send a command and argument pair to a device. It is used when the file is an open device node. This function is called from the ioct1 ()
system call.

*int mmap (struct file *file, struct vm area struct *vma) This function memory maps the given file onto the given address
space and is called by the mmap () system call.

*int open(struct inode *inode, struct file *file) This function creates a new file object and links it to the corresponding inode
object. It is called by the open () system call.

eint flush(struct file *file) This function is called by the VFS whenever the reference count of an open file decreases. Its purpose is
filesystem-dependent.

*int release(struct inode *inode, struct file *file) This function is called by the VFS when the last remaining reference to the
file is destroyed — for example, when the last process sharing a file descriptor calls c1ose () or exits. Its purpose is filesystem-dependent.

eint fsync(struct file *file, struct dentry *dentry, int datasync) This function is called by the fsync () system call
to write all cached data for the file to disk.

*int aio fsync(struct kiocb *iocb, int datasync) This functioniscalledbythe aio fsync () system call to write all cached data
for the file associated with i ocb to disk.

*int fasync(int fd, struct file *file, int on) This function enables or disables signal notification of asynchronous I/O.
*int lock(struct file *file, int cmd, struct file lock *lock)
This function manipulates a file lock on the given file.
*ssize t readv(struct file *file, const struct iovec *vector, unsigned long count, loff t *offset)

This function is called by the readv () system call to read from the given file and put the results into the count buffers described by ve ctor. The file offset
is then incremented.
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*ssize t writev(struct file *file, const struct iovec *vector, unsigned long count, loff t
*offset) This function is called by the writev () system call to write from the count buffers described by ve ctor into the file specified by file.
The file offset is then incremented.

*ssize t sendfile(struct file *file, loff t *offset, size t size, read actor t actor, void
*target) This function is called by the sendfile () system call to copy data from one file to another. It performs the copy entirely in the kernel and
avoids an extraneous copy to user-space.

*ssize t sendpage(struct file *file, struct page *page, int offset, size t size, loff t *pos, int
more) This function is used to send data from one file to another.

*unsigned long get unmapped area(struct file *file, unsigned long addr, unsigned long len,
unsigned long offset, unsigned long flags) This function gets unused address space to map the given file.

Data Structures Associated with Filesystems

In addition to the fundamental VFS objects, the kernel uses other standard data structures to manage data related to filesystems. The first object is used to describe a
specific variant of filesystem, such as ext3 or XFS. The second data structure is used to describe a mounted instance of a filesystem.

Because Linux supports so many different filesystems, the kernel must have a special structure for describing the abilities and behavior of each filesystem.

struct file system_type {
const char *name; /* filesystem's name */
struct subsystem subsys; /* sysfs subsystem object */
int fs flags; /* filesystem type flags */



}i

/* the following is a function used to read the superblock off the disk */
struct super_block *(*get_sb) (struct file_system_type *, int, char
*, void *);

/* this is a function used to terminate access to the superblock */

void (*kill_sb) (struct super_block *);

struct module *owner; /* associated module (if any) */
struct file system type *next; /* next file system type in list */
struct list_ head fs_supers; /* list of superblock objects */
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The get sb () function is used to read the superblock from the disk and populate the superblock object when the filesystem is loaded. The remaining functions
describe the properties of the filesystem.

Thereisonlyone file system type per filesystem, regardless of how many instances of the filesystem are mounted on the system, or if the filesystem is even
mounted at all.

Things get more interesting when the filesystem is actually mounted, at which point the v £ smount structure is created. This structure is used to represent a specific
instance of a filesystem—in other words, a mount point.

The vfsmount structure is defined in <1inux/mount.h>. Hereitis

struct vfsmount {

}i

The complicated part of maintaining the list of all mount points is the relation between the filesystem and all the other mount points. The various linked lists in

struct list_head mnt_hash; /* hash table list */

struct vismount *mnt_parent; /* parent filesystem */

struct dentry *mnt_mountpoint; /* dentry of this mount point */
struct dentry *mnt root; /* dentry of root of this fs */
struct super block *mnt_sb; /* superblock of this filesystem */
struct list head mnt_mounts; /* list of children */

struct list_head mnt_child; /* parent-relative children */
atomic_t mnt count; /* usage count */

int mnt_flags; /* mount flags */

char *mnt_devname; /* device file name */

struct list_head mnt_list; /* list of descriptors*/

vismount keep track of this information.

The vfsmount structure also stores the flags, if any, specified on mount in the mnt_ f1lags field. Table 11.1 is a list of the standard mount flags.



Table 11.1 Listing of Standard Mount Flags

Flag Description

MNT NOSUID Forbids setuid and setgid flags on binaries on this filesystem
MNT NODEV Forbids access to device files on this filesystem

MNT NOEXEC Forbids execution of binaries on this filesystem

These flags are most useful on removable devices that the administrator does not trust.

Data Structures Associated with a Process
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Each process on the system has its own list of open files, root filesystem, current working directory, mount points, and so on. Three data structures tie together the VFS

layer and the processes on the system: the files struct, fs_struct, and namespace structure.

The files structisdefinedin <linux/file.h>. The address of this table is pointed to by the £i1es entry in the processor descriptor. All per-process

information about open files and file descriptors is contained therein. Here it is, with comments:

struct files_struct {

atomic_t count; /* structure's usage count */
spinlock_t file lock; /* lock protecting this structure */
int max_fds; /* maximum number of file objects */
int max_fdset; /* maximum number of file descriptors */
int next fd; /* next file descriptor number */
struct file **fd; /* array of all file objects */

fd_set *close_on_exec; /* file descriptors to close on exec()
fd set *open_ fds; /* pointer to open file descriptors */
fd_set close_on_exec_init; /* initial files to close on exec() */
fd set open fds init; /* initial set of file descriptors */
struct file *fd _array[NR OPEN DEFAULT]; /* array of file objects */

}i

The £d array points to the list of open file objects. By default, this is the fd _array array. Because NR_OPEN_DEFAULT is equal to 32, this includes room for
32 file objects. If a process opens more than 32 file objects, the kernel allocates a new array and points the £d pointer at it. In this fashion, access to a reasonable
number of file objects is quick, taking place in a static array. In the case that a process opens an abnormal number of files, the kernel can create a new array. If the
majority of processes on a system open more than 32 files, for optimum performance, the administrator can increase the NR_ OPEN DEFAULT preprocessor define

to match.
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The second process-related structure is £s_ st ruct, which contains filesystem information related to a process and is pointed at by the s field in the process
descriptor. The structure is defined in <linux/fs_ struct.h>. Hereitis, with comments:

struct fs_struct {

atomic t count; /* structure usage count */

rwlock_t lock; /* lock protecting structure */

int umask; /* default file permissions*/

struct dentry *root; /* dentry of the root directory */

struct dentry *pwd; /* dentry of the current working directory */
struct dentry *altroot; /* dentry of the alternative root */

struct vfsmount *rootmnt; /* mount object of the root directory */
struct vfsmount *pwdmnt; /* mount object of the cwd */

struct vfsmount *altrootmnt; /* mount object of the alt root dir */
bi

This structure holds the current working directory and root directory of the current process.
The third and final structure is the name space structure, which is defined in <1 inux/namespace . h> and pointed at by the name space field in the process
descriptor. Per-process namespaces were added to the 2.4 Linux kernel. They enable each process to have a unique view of the mounted filesystems on the system—

not just a unique root directory, but an entirely unique filesystem hierarchy, if desired. Here is the structure, with the usual comments:

struct namespace {

atomic t count; /* structure usage count */

struct vfsmount *root; /* mount object of root directory */
struct list head list; /* list of mount points */

struct rw_semaphore sem; /* semaphore protecting the namespace */

}i
The 11 st member specifies a doubly linked list of the mounted filesystems that make up the namespace.

These data structures are linked from each process descriptor. For most processes, their process descriptor points to unique files structand fs struct
structures. For processes created with the clone flag CLONE_FILES or CLONE_FS, however, these structures are shared’. Consequently, multiple process
descriptors might point to the same files struct or fs_struct structure. The count member of each structure provides a reference count to prevent
destruction while a process is still using the structure.

7 Threads usually specify CLONE FILES and CLONE_FS and, thus, share asingle files structand fs_struct amongst themselves. Normal
processes, on the other hand, do not specify these flags and consequently have their own filesystem information and open files table.
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The name space structure works the other way around. By default, all processes share the same namespace (that is, they all see the same filesystem hierarchy). Only
when the CLONE_NEWNS flag is specified during c1one () is the process given a unique copy of the name space structure.

Filesystems in Linux

Linux supports a wide range of filesystems, from native filesystems, such as ext2 and ext3, to networked filesystems, such as NFS and Coda, more than 50 filesystems
alone in the official kernel. The VFS layer provides these disparate filesystems with both a framework for their implementation and an interface for working with the
standard system calls. The VFS layer, thus, makes it both clean to implement new filesystems in Linux, and it allows those filesystems to automatically interoperate via
the standard Unix system calls.
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12
The Block I/0 Layer

BrLock DEVICES ARE HARDWARE DEVICES DISTINGUISHED by their random (that is, not necessarily sequential) access of fixed-size chunks of data, called blocks. The most
common block device is a hard disk, but many other block devices exist, such as floppy drives, CD-ROM drives, and flash memory. Notice how these are all devices
on which you mount a filesystem—this is how block devices are normally accessed.

The other basic type of device is a character device. Character devices, or char devices, are accessed as a stream of sequential data, one byte after another. Example
character devices are serial ports and keyboards. If the hardware device is accessed as a stream of data, it is implemented as a character device. On the other hand, if
the device is accessed randomly (nonsequentially), it is a block device.

Basically, the difference comes down to whether you access the device randomly—in other words, whether the device can seek to one position from another. As an
example, consider the keyboard. As a driver, the keyboard provides a stream of data. You type "dog" and the keyboard driver returns a stream with those three letters
in exactly that order. Reading the letters out of order, or reading any letter but the next one in the stream, makes little sense. The keyboard driver is thus a char device;
it provides a stream of the characters typed by the user onto the keyboard. Reading from the keyboard returns a stream first with "d," then "o0," and finally "g." When
there are no keystrokes waiting, the stream is empty. A hard drive, conversely, is quite different. The hard drive's driver might ask to read the contents of one arbitrary
block and then read the contents of a different block; the blocks need not be consecutive. Therefore, the hard disk is accessed randomly, and not as a stream, and thus
is a block device.

Managing block devices in the kernel requires more care, preparation, and work than managing character devices. This is because character devices have only one
position—the current one—while block devices must be able to navigate back and forth between any location on the media. Indeed, the kernel does not have to
provide an entire subsystem dedicated to the management of character devices, but block devices receive exactly that. Partly, such a subsystem is a necessity because
of the complexity of block devices. A large reason, however, for such extensive support is that block devices are quite
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performance sensitive; getting every last drop out of your hard disk is much more important than squeezing an extra percent of speed out of your keyboard.
Furthermore, as we will see, the complexity of block devices provides a lot of room for such optimizations. The topic of this chapter is how the kernel manages block
devices and their requests. This part of the kernel is known as the block I/O layer. Interestingly, revamping the block I/O layer was the primary goal for the 2.5
development kernel.

Anatomy of a Block Device

The smallest addressable unit on a block device is known as a sector. Sectors come in various powers of two, but 512 bytes is the most common size. The sector size
is a physical property of the device and the sector is the fundamental unit of all block devices—the device cannot address or operate on a unit smaller than the sector,
although many block devices can transfer multiple sectors at once. Although most block devices have 512 byte sectors, other sizes are common (for example, many
CD-ROM discs have two kilobyte sectors).

Software has different goals, however, and therefore imposes its own smallest logically addressable unit, which is the block. The block is an abstraction of the
filesystem—filesystems can only be accessed in multiples of a block. Although the physical device itself is addressable at the sector-level, the kernel performs all disk
operations in terms of blocks. Because the device's smallest addressable unit is the sector, the block size can be no smaller than the sector and must be a multiple of a
sector. Furthermore, the kernel (like hardware with the sector) needs the block to be a power-of-two. The kernel also requires that a block be no larger than the page

size (see Chapter 10, "Memory Management," and Chapter 16, "Portability")1 . Therefore, block sizes are a power-of-two multiple of the sector size and not greater
than the page size. Common block sizes are 512 bytes, one kilobyte, and four kilobytes.

Somewhat confusingly, some people refer to sectors and blocks with different names. Sectors, the smallest addressable unit to the device, are sometimes called "hard
sectors" or "device blocks." Meanwhile, blocks, the smallest addressable unit to the filesystem, are sometimes referred to as "filesystem blocks" or "I/O blocks." This
chapter continues to call the two notions "sectors" and "blocks," but you should keep these other terms in mind. Figure 12.1 is a diagram of the relationship between
sectors and buffers.

Other terminology, at least with respect to hard disks, is common—terms such as clusters, cylinders, and heads. Those notions are specific only to certain block

devices and, for the most part, are invisible to user-space software—we will not cover them here. The reason the sector is important to the kernel is because all device
/O must be done in units of sectors. In turn, the higher-level concept used by the kernel, blocks, is built on top of sectors.

" This is an artificial constraint that could go away in the future. Forcing the block to remain equal to or smaller than the page size, however, simplifies the kernel.
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Figure 12.1 Relationship between sectors and buffers.

hard disk block
=
Al#

sector

sector

mapping from sectors to blocks

Page 213

When a block is stored in memory (say, after a read or pending a write), it is stored in a buffer. Each buffer is associated with exactly one block. The buffer serves as
the object that represents a disk block in memory. Recall a block is composed of one or more sectors, but is no more than a page in size. Therefore, a single page can
hold one or more blocks in memory. Because the kernel requires some associated control information to accompany the data (such as which block device and which
specific block is the buffer from), each buffer is associated with a descriptor. The descriptor is called a buffer head and is of type struct buffer head. The

buffer head structure holds all the information the kernel needs to manipulate buffers and is defined in <1inux/buffer head.h>.

Let's look at this structure, with comments describing each field:

struct buffer head {
unsigned long
atomic_t
struct buffer head
struct page
sector_t
u32
char
struct block device
bh _end io t
void
struct list head

b state;
b_count;
*b_this page;
*b_page;

b _blocknr;
b_size;
*b_data;
*b_bdev;
*b_end io;
*b_private;
b_assoc_buffers;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

buffer state flags */

buffer usage counter */

list of buffers on the page */
associated page */

logical block number */

block size (in bytes) */
pointer to buffer in the page */
associated block device */

I/0 completion method */
completion method data */

list of associated mappings */
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Theb_state field specifies the state of this particular buffer. It can be one or more of the flags in Table 12.1. The legal flags are stored inthe bh _state bits
enumeration, which is defined in <1inux/buffer head.h>.

Table 12.1 bh_state Flags
Status Flag
BH Uptodate

BH Dirty

BH Lock

BH Req
BH_Mapped

BH New

BH Async Read
BH_Async_Write
BH Delay

BH Boundary

Meaning
Buffer contains valid data

Buffer is dirty (the contents of the buffer are newer than the contents of the block on disk and therefore the buffer
must be written back to disk)

Buffer is undergoing disk I/O and is locked to prevent concurrent access
Buffer is involved in a request

Buffer is a valid buffer mapped to an on-disk block

Buffer is newly allocated and not yet accessed

Buffer is undergoing asynchronous read I/0

Buffer is undergoing asynchronous write 1/0

Buffer does not yet have an associated on-disk block

Buffer forms the boundary of contiguous blocks—the next block is discontinuous

The bh state bits enumeration also contains as the last value in the lista BH_PrivateStart flag. This is not a valid state flag, but instead corresponds to
the first usable bit that other code can make use of. All bit values equal to and greater than BH PrivateStart are not used by the block I/O layer proper, so
these bits are safe to use by individual drivers who want to store information in the b st ate field. Drivers can base the bit values of their internal flags off this flag and
rest assured that they are not encroaching on an official bit used by the block 1/O layer.

Theb_count field is the usage count of the buffer. The value is incremented and decrements by two inline functions, both of which are defined in

<linux/buffer head.h>

static inline void get_bh(struct buffer head *bh)

{

atomic_inc (&bh->b_count) ;

}

static inline void put_bh(struct buffer_head *bh)

{

atomic_dec (&bh->b_count);

}
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Before manipulating a buffer head, you must increment its reference count via get _bh () to ensure that the buffer head is not deallocated out from under you. When
finished with the buffer head, decrement the reference count via put_bh ().

The physical block on disk that a given buffer corresponds to is the b_b1ocknr-th logical block on the block device described by b _bdev.

The physical page in memory that a given buffer corresponds to is the page described by b _page. More specifically, b _data is a pointer directly to the block (that
exists somewhere inb_page), whichisb_s1ize bytes in length. Therefore, the block is located in memory starting at address b _data and ending at address
(b_data + b _size).

The purpose of a buffer head is to describe this mapping between the on-disk block and the physical in-memory buffer (which is a sequence of bytes on a specific
page). Acting as a descriptor of this buffer-to-block mapping is the data structure's only role in the kernel.

Before the 2.6 kernel, the buffer head was a much more important data structure. In essence, it was the unit of I/O in the kernel. Not only did the buffer head describe
the disk-block-to-physical-page mapping, but it also acted as the container used for all block I/O. This had two primary problems. First, the buffer head was a large
and unwieldy data structure (it has shrunken a bit nowadays) and it was neither clean nor simple to manipulate data in terms of buffer heads. Instead, the kernel prefers
to work in terms of pages, which are simple and allow for greater performance. A large buffer head describing each individual buffer (which might be smaller than a
page) was inefficient. Consequently, in the 2.6 kernel, much work has gone into making the kernel work directly with pages and address spaces instead of buffers.
Some of this work is discussed in Chapter 14, "The Page Cache and Page Writeback," where we discuss the address space structure and the pdflush
daemons.

The second issue with buffer heads is that they describe only a single buffer. When used as the container for all I/O operations, the buffer head forces the kernel to
break up potentially large block I/O operations (say, a write) into many multiple buf fer head structures. This results in needless overhead and space
consumption. As a result, the primary goal of the 2.5 development kernel was to introduce a new, flexible, and lightweight container for block 1/O operations. The
result is the b1 o structure, which we discuss in the next section.

The bio structure

The basic container for block I/O within the kernel is the b 1 o structure, which is defined in <1 inux/bio . h>. This structure represents block 1/0O operations that
are in-flight (active) as a list of segments. A segment is a chunk of a buffer that is contiguous in memory. Thus, individual buffers need not be contiguous in memory. By
allowing the buffers to be described in chunks, the b1 o structure provides the capability to perform block I/O operations of even a single buffer from multiple locations
in memory. Hereis struct bio, with comments added for each field:



struct bio {
sector_t

struct bio
struct block_device *bi_bdev;

unsigned
unsigned
unsigned

unsigned
unsigned

unsigned

unsigned
unsigned

long
long
short

short
short

short

int
int

struct bio_vec
bio end io t

atomic_t
void

bio_destructor_t

}i

bi_ sector;
*bi next;

bi flags;
bi_rw;
bi vent;

bi idx;
bi phys_segments;

bi_hw_segments;

bi_size;

bi max vecs;
*bi io_vec;

*bi _end io;
bi_cnt;

*bi _private;
*bi_destructor;

/* associated sector on disk */
/* list of requests */

/* associated block device */
/* status and command flags */
/* read or write? */

/* number of bio

bi io vec */

/* current index in bi io vec */
/* number of segments after
coalescing */

/* number of segments after
remapping */

/* I/0 count */

/* maximum bio vecs possible */
/* bio_vec list */

/* 1/0 completion method */

/* usage counter */

/* owner-private method */

/* destructor method */
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The primary purpose of a b 1 o structure is to represent an in-flight block I/O operation. To this end, the majority of fields in the structure are housekeeping-related.
The most important fieldsare bi _io vecs,bi vent,andbi idx.

struct bio

bi_io_vec

bi_idx

Y
bio_wec|bio_wec

N list of bio_vec structures, bio_vent in all
bio_vec|bio_wvec

Figure 12.2 Relationship between st ruct bio, struct bio vec,and struct page.

page

page structures
involved in block /O operation
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Thebi io_ vecs field points to an array of bio vec structures. These structures are used as lists of individual segments in this specific block I/O operation.
Eachbio_vec is treated as a vector of the form <page, offset, len>,which describes a specific segment: the physical page it lies on, the location of the
block as an offset into the page, and the length of the block. The full array of these vectors describes the entire buffer. The bio_vec structure is defined in
<linux/bio.h>, whichis shown here:

struct bio_vec {
struct page *bv_page /* the physical page on which we reside */;
unsigned int bv_len /* the length of the block */;
unsigned int bv offset /* the offset within the page */;

bi

In each given block I/O operation, there are bi_vcnt vectorsinthe bio vec array startingwithbi 1o vecs. As the block I/0 operation is carried out, the
bi_idx field is used to point to the current index into the array.

In summary, each block I/O request is represented by a b i o structure. Each request is composed of one or more blocks, which are stored in an array of bio_vec
structures. These structures act as a vector and describe each segment's location in a physical page in memory. The first segment in the 1/O operation is pointed to by
b io_ vec. Each additional segment follows after the first, for a total of bi vcnt segments in the list. As the block I/O layer submits segments in the request, the
bi idx field is updated to point to the current segment. Table 12.3 is a diagram of the relationship between the b i o structure, the bio vec structure, and the
page structure.

The bi idx field is used to point to the current bio_vec in the list, which helps the block I/O layer keep track of partially completed block I/O operations. A
more important usage, however, is to allow the splitting of b i o structures. With this feature, drivers such as for RAID (Redundant Array of Inexpensive Disks, a hard
disk setup that allows single volumes to span multiple disks for performance and reliability purposes) can take a single b i o structure, initially intended for a single
device, and split it up among the multiple hard drives in the RAID array. All the RAID driver needs to do is copy the b i o structure and update the bi idx field to
point to where the individual drive should start its operation.

The b i o structure maintains a usage countin the bi _cnt field. When this field reaches zero, the structure is destroyed and the backing memory is freed. Two
functions, which follow, manage the usage counters for you.

void bio_get (struct bio *bio)
void bio put(struct bio *bio)

The former increments the usage count, whereas the latter decrements the usage count (and, if the count reaches zero, destroys the b i o structure). Before manipulating
an in-flight b 1 o structure, be sure to increment its usage count to make sure it does not
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complete and deallocate out from under you. When done, decrement the usage count in turn.

Finally, thebi private field is a private field for the owner (that is, creator) of the structure. As a rule, you can only read or write this field if you allocated the
bio structure.

The Old Versus the New

The difference between buffers heads and the new b 1 o structure is important. The b i o structure represents an I/O operation, which may include one or more pages
in memory. On the other hand, the buf fer head structure represents a single buffer, which describes a single block on the disk. Because buffer heads are tied to a
single disk block in a single page, buffer heads result in the unnecessary dividing of requests into block-sized chunks, only to later reassemble them. Because the bio
structure is lightweight, it can describe discontiguous blocks, and does not unnecessarily split I/O operations; it has none of these problems.

Switching from st ruct buffer headtostruct bio provided other benefits, as well:

» The b i o structure can easily represent high memory (see Chapter 10), because st ruct bi o only deals with physical pages and not direct pointers.

* The b i o structure can represent both normal page 1/0 and direct I/O (I/O operations that do not go through the page cache—see Chapter 14 for a discussion
on the page cache).

* The b1 o structure makes it easy to perform scatter-gather (vectored) block 1/0 operations, with the data involved in the operation originating from multiple
physical pages.

* The b i o structure is much more lightweight than a buffer head because it only contains the minimum information needed to represent a block I/O operation and
not unnecessary information related to the buffer itself.

The concept of buffer heads is still required, however, to function as a descriptor mapping disk blocks to pages. The b1 o structure does not contain any information
about the state of a buffer—it is simply an array of vectors describing one or more segments of data for a single block I/0 operation, plus related information. The
buffer head structure is still needed to contain information about buffers. Keeping the two structures separate allows each to remain as small as possible.

Request Queues

Block devices maintain request queues to store their pending block I/O requests. The request queue is represented by the request queue structure and is
defined in <1 inux/blkdev.h>. The request queue contains a doubly linked list of requests and associated control information. Requests are added to the queue
by higher level code in the kernel, such as filesystems. As long as the request queue is nonempty, the block device
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driver associated with the queue grabs the request from the head of the queue and submits it to its associated block device. Each item in the queue's request list is a
single request, of type struct request.

Requests

Individual requests on the queue are represented by st ruct request, whichis also defined in <1inux/blkdev.h>. Each request can be composed of
more than one b i o structure because individual requests can operate on multiple consecutive disk blocks. Note that although the blocks on disk must be adjacent, the
blocks in memory need not be—each b i o structure can describe multiple segments (recall, segments are contiguous chunks of a block in memory) and the request can
be composed of multiple b i o structures.

1/0 Schedulers

Simply sending out requests to the block devices in the order that the kernel issues them, as soon as it issues them, results in awful performance. One of the slowest
operations in an entire computer is disk seeks. Each seek—positioning the hard disk's head at the location of a specific block—takes many milliseconds. Minimizing
seeks is absolutely crucial to the performance of the system.

Therefore, the kernel does not issue block 1/O requests to the disk in the order they are received or as soon as they are received. Instead, it performs operations called

merging and sorting to greatly improve the performance of the system as a whole®. The subsystem of the kernel that performs these operations is called the /0
scheduler.

The I/O scheduler divides the resource of disk I/O among the pending block 1/O requests in the system. It does this through the merging and sorting of pending
requests in the request queue. The I/O scheduler is not to be confused with the process scheduler (see Chapter 3, "Scheduling"), which divides the resource of the
processor among the processes on the system. The two subsystems are related but not the same. Both the process scheduler and the I/O scheduler virtualize a
resource among multiple objects. In the case of the process scheduler, the processor is virtualized and shared among the processes on the system. This provides the
illusions inherit in a multitasking and timesharing operating system, such as any Unix. On the other hand, the I/O scheduler virtualizes block devices among multiple
outstanding block requests. This is done to minimize disk seeks and ensure optimum disk performance.

The Job of an I/0 Scheduler

An I/O scheduler works by managing a block device's request queue. It decides the order of requests in the queue and at what time each request is dispatched to the
block

* This point must be stressed. A system without these features, or wherein these features are poorly implemented, would perform horribly with even a modest amount
of block 1/O operations.
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device. It manages the request queue with the goal of reducing seeks, which will result in greater global throughput. The "global" modifier here is important. An I/O
scheduler, very openly, is unfair to some requests at the expense of improving the overall performance of the system.

/O schedulers perform two primary actions to minimize seeks: merging and sorting. Merging is the coalescing of two or more requests into one. Consider an example
request that is submitted to the queue by a filesystem—say, to read a chunk of data from a file (at this point, of course, everything is occurring in terms of sectors and
blocks and not files). If a request is already in the queue to read from an adjacent sector on the disk (for example, an earlier chunk of the same file), the two requests
can be merged into a single request operating on one or more adjacent on-disk sectors. By merging requests, the I/O scheduler reduced the overhead of multiple
requests down to a single request. More importantly, only a single command needs to be issued to the disk and servicing the multiple requests can be done without
seeking. Consequently, merging requests reduces overhead and minimizes seeks.

Now, assume our fictional read request is submitted to the request queue, but there is no read request to an adjacent sector. We are therefore unable to merge this
request with any other request. Now, we could simply stick this request onto the tail of the queue. But, what if there are other requests to a similar location on the disk?
Would it not make sense to insert this new request into the queue at a spot near other requests operating on physically near sectors? In fact, I/O schedulers do exactly
this. The entire request queue is kept sorted, sector-wise, so that all requests along the queue move (as much as possible) sequentially over the sectors of the hard disk.
The goal is not just to minimize each individual seek, but to minimize all seeking by keeping the disk head moving in a straight line. This is similar to the algorithm
employed in elevators—elevators do not jump all over, wildly, from floor to floor. Instead, they try to move gracefully in a single direction. When the final floor is
reached in one direction, the elevator can reverse course and move in the other direction. Because of this similarity, I/O schedulers (or sometimes just their sorting
algorithm) are called elevators.

The Linus Elevator

Now let's look at some real-life 1/O schedulers. The first I/O scheduler we will look at is called the Linus Elevator (this is not a typo; Linus has an elevator named
after him!). It was the default I/O scheduler in 2.4. In 2.6, it was replaced by the following two I/O schedulers we will look at—however, because this elevator is
simpler than the subsequent ones, and performs many of the same functions, it still deserves discussion.

The Linus Elevator performs both merging and sorting. When a request is added to the queue, it is first checked against every other pending request to see if it is a
possible candidate for merging. The Linus Elevator /O scheduler performs both firont and back merging. The type of merging describes where on the existing request
exists the adjacency. If the new request immediately precedes an existing request, it is front merged.
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Conversely, if the new request immediately precedes an existing request, it is back merged. Because of the way files are laid out (usually by increasing sector number)
and the I/O operations performed in a typical workload (we normally read data start to finish and not in reverse), front merging is very rare compared to back merging.
Nonetheless, the Linus Elevator checks for and performs either type of merge.

If the merge attempt fails, a possible insertion point in the queue (a location in the queue where the new request fits sector-wise between the existing requests) is then
sought. If one is found, the new request is inserted there. If a suitable location is not found, the request is added to the tail of the queue. Additionally, if an existing
request is found in the queue that is suitably old, the new request is also added to the tail of the queue. This prevents many requests to nearby on-disk locations from
indefinitely starving requests to other locations on the disk. Unfortunately, this "age" check is not very efficient. It does not provide any real attempt to service requests
in a given time frame—it merely stops insertion-sorting requests after a suitable delay. This leads to request starvation, which was the big must-fix of the 2.4 I/O
scheduler.

In summary, when a request is added to the queue, four operations are possible. In order, they are

« First, if a request to an adjacent on-disk sector is in the queue, the existing request and the new request are merged into a single request.
» Second, if a request in the queue is sufficiently old, the new request is inserted at the tail of the queue to prevent starvation of the other, older, requests.
* Next, if there is a suitable location sector-wise in the queue, the new request is inserted there. This keeps the queue sorted by physical location on disk.

* Finally, if no such suitable insertion point exists, the request is inserted at the tail of the queue.
The Deadline I/0 Scheduler

The Deadline I/O scheduler sought to prevent the starvation caused by the Linus Elevator. In the interest of minimizing seeks, heavy disk 1/O operations to one area of
the disk can indefinitely starve request operations to another part of the disk. Indeed, a stream of requests to the same area of the disk can result in other far-off
requests never being serviced. This starvation is unfair.

Worse, the general issue of request starvation introduces a specific problem known as writes-starving-reads. Write operations can usually be committed to disk
whenever the kernel gets around to them, entirely asynchronous with respect to the submitting application. Read operations are quite different. Normally, when an
application submits a read request, the application blocks until the request is fulfilled. That is, read requests occur synchronously with respect to the submitting
application. Although system response is largely unaffected by write latency (the time required to commit a write request), read latency (the time required to commit a
read request) is very important. Write latency has
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little bearing on application performance3, but an application must wait, twiddling its thumbs, for the completion of each read request. Consequently, read latency is
very important to the performance of the system.

Compounding the problem, read requests tend to be dependent on each other. For example, consider the reading of a large number of files. Each read occurs in small
buffered chunks. The application will not start reading the next chunk (or the next file, for that matter) until the previous chunk is read from disk and returned to the
application. Consequently, if each read request is individually starved, the total delay to such applications compounds and can grow enormous. Recognizing that the
asynchrony and interdependency of read requests results in a much stronger bearing of read latency on the performance of the system, the Deadline I/O scheduler
implements several features to ensure that request starvation, in general, and read starvation, in specific, is minimized.

Note that reducing request starvation comes at a cost to global throughput. Even the Linus Elevator makes this compromise, albeit in a much milder manner—the Linus
Elevator could provide better overall throughput (through a greater minimization of seeks) if it a/ways inserted requests into the queue sector-wise and never checked
for old requests and reverted to insertion at the tail. Although minimizing seeks is very important, indefinite starvation is not good either. The Deadline I/O scheduler,
therefore, works harder to limit starvation. Make no mistake, it is a tough act to provide request fairness, yet maximize global throughput.

In the Deadline I/O scheduler, each request is associated with an expiration time. By default, the expiration time is 500 milliseconds in the future for read requests and
five seconds in the future for write requests. The Deadline I/O scheduler operates similarly to the Linus Elevator in that it maintains a request queue sorted by physical
location on disk. It calls this queue the sorted queue. When a new request is submitted to the sorted queue, the Deadline I/O scheduler performs merging and insertion

like the Linus Elevator". The Deadline /O scheduler also, however, inserts the request into a second queue, depending on the type of request. Read requests are
sorted into a special read FIFO queue and write requests are inserted into a special write FIFO queue. Although the normal queue is sorted by on-disk sector, these
queues are kept FIFO (effectively, they are sorted by time). Consequently, new requests are always added to the tail of the queue. Under normal operation, the
Deadline I/O scheduler pulls requests from the head of the sorted queue into the dispatch queue. The dispatch queue is then fed to the disk drive. This results in minimal
seeks.

If the request at the head of either the write FIFO queue or the read FIFO queue expires (that is, if the current time becomes greater than the expiration time associated
with the request), the Deadline I/O scheduler then begins servicing requests from the

? This is not an incentive to delay writes indefinitely, however. Write requests need to promptly go out to the disk too, just not as critically as reads requests.

¢ Performing front merging is optional in the Deadline I/O scheduler, however, as it is not always worth the trouble since many workloads have very few requests that
can be front merged.
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FIFO queue. In this manner, the Deadline I/O scheduler attempts to ensure that no request is outstanding longer than its expiration time. See Figure 12.3.
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Figure 12.3 The three queues of the Deadline I/O scheduler.

Note that the Deadline I/O scheduler does not make any strict guarantees over request latency. It is capable, however, of generally committing requests on or before
their expiration. This prevents request starvation. Because read requests are given a substantially smaller expiration value than write requests, the Deadline I/O
scheduler also works to ensure that write requests do not starve read requests. This preference toward read requests provides minimized read latency.

The Deadline I/O scheduler livesin drivers/block/deadline-iosched.c.
The Anticipatory I/O Scheduler

Although the Deadline /O scheduler does a great job minimizing read latency, it does so at the expense of global throughput. Consider a system undergoing heavy
write activity. Every time a read request is submitted, the I/O scheduler quickly rushes to handle the read request. This results in the disk seeking over to where the read
is, performing the read operation, and then seeking back to continue the ongoing write operation, repeating this little charade for each read request. The preference
toward read requests is a good thing, but the resulting pair of seeks (one to the location of the read request and another back to the ongoing write) is detrimental to
global disk throughput. The Anticipatory I/O scheduler aims to continue to provide excellent read latency, but also provide excellent global throughput.

First, the Anticipatory 1/O scheduler starts with the Deadline I/O scheduler as its base. Therefore, it is not entirely different. The Anticipatory I/O scheduler implements
three queues (plus the dispatch queue) and expirations for each request, just like the Deadline I/O scheduler. The major change is the addition of an anticipation
heuristic.

The Anticipatory I/O scheduler attempts to minimize the seek storm that accompanies read requests issued during other disk I/O activity. When a read request is
issued, it is handled within its usual expiration period, as usual. After the request is submitted, however, the Anticipatory I/O scheduler does not immediately seek back
and return to handling any other requests. Instead, it does absolutely nothing for a few milliseconds (the actual value is configurable; by default it is six milliseconds). In
those few milliseconds, there is a good chance that the application will submit another read request. Any
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requests issued to an adjacent area of the disk are immediately handled. After the waiting period elapses, the Anticipatory 1/O scheduler seeks back to where it left off
and continues handling the previous requests.

It is important to note that the few milliseconds that are spent waiting for more requests (basically, the time is spent in anticipation of more requests) are well worth it if
they minimize even a modest percentage of the back-and-forth seeking that results from the servicing of read requests during other heavy requests. If an adjacent I/O
request is issued within the waiting period, the I/O scheduler just saved a pair of seeks. As more and more reads are issued to the same area of disk, many more seeks
are prevented.

Of course, if no activity occurs within the waiting period, the Anticipatory I/O scheduler loses and a few milliseconds are wasted. The key to reaping maximum benefit
from the Anticipatory 1/O scheduler is correctly anticipating the actions of applications and filesystems. This is done via a set of heuristics and statistics. The
Anticipatory I/O scheduler keeps track of per-application statistics pertaining to block I/O habits in hopes of correctly anticipating the actions of applications. With a
sufficiently high percentage of correct anticipations, the Anticipatory I/O scheduler can greatly reduce the penalty of seeking to service read requests, while still
providing the attention to such requests that system response requires. This allows the Anticipatory I/O scheduler to minimize read latency, while also minimizing the
number and duration of seeks. This results in low system latency and high system throughput.

The Anticipatory I/O scheduler livesin drivers/block/as-iosched. c. Both the Deadline I/O and the Anticipatory I/O scheduler are part of the standard
2.6 kernel. Which I/O scheduler a given block device uses is configurable. The default I/O scheduler—and of course the best choice for most users—is the
Anticipatory I/O scheduler.
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13
The Process Address Space

IN Cuaprer 10, "Memory Manacement," we looked at how the kernel manages physical memory. In addition to managing its own memory, the kernel also has to
manage the process address space—the view of memory given to each user-space process on the system. Linux is a virtual memory operating system, and thus the
resource of memory is virtualized among the processes on the system. To an individual process, the view is as if it alone has full access to the system's physical memory.
More importantly, the address space of even a single process can be much larger than physical memory. This chapter discusses how the kernel manages the process
address space.

The process address space consists of the linear address range presented to each process and, more importantly, the addresses within this space that the process is
allowed to use. Each process is given a ﬂatl 32 or 64-bit address space, with the size depending on the architecture. Normally, the address space is unique to each
process. A memory address in one process's address space tells nothing of that memory address in another process's address space. Processes can elect to share their
address space with other processes, however. We know these processes as threads.

A memory address is a given value within the address space, such as 4021f000. This particular value identifies a specific byte in a process's 32-bit address space. The
interesting part of the address space is the intervals of memory addresses, such as 08048000-0804c 000, that the process has permission to access. These
intervals of legal addresses are called memory areas. The process, through the kernel, can dynamically add and remove memory areas to its address space.

The process can only access a memory address in a valid area. Furthermore, the area can be marked read-only or nonexecutable. If a process accesses a memory
address not in

" The term "flat" describes the fact that the address space exists in a single range (as an example, a 32-bit address space extends from the address zero to
429496729). Some operating systems provide a segmented address space, with the address space not existing in a single linear range, but instead in segments.
Modern virtual memory operating systems generally have flat address spaces.
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a valid memory area, or if it accesses a valid area in an invalid manner, the kernel kills the process with the dreaded "Segmentation Fault" message.
Memory areas can contain all sorts of goodies, such as

» A memory map of the executable file's code, called the text section

» A memory map of the executable file's initialized global variables, called the data section

» A memory map of the zero page (a page consisting of all zeros, used for purposes such as this) containing uninitialized global variables, called the bss section®

» A memory map of the zero page used for the process's user-space stack (do not confuse this with the process's kernel stack, which is separate and maintained by
the kernel)

* An additional text, data, and bss section for each shared library, such as the C library and dynamic linker, loaded into the process's address space
* Any memory mapped files
* Any shared memory segments

* Any anonymous memory mappings, such as those associated withmalloc () }

All valid addresses in the process address space exist in exactly one area (memory areas do not overlap). As we see, there is a separate memory area for each
different chunk of memory in a running process: the stack, the object code, global variables, mapped file, and so on.

The Memory Descriptor

The kernel represents a process's address space with a data structure called the memory descriptor. This structure contains all of the information related to the
process address space. The memory descriptor is represented by st ruct mm_struct and definedin <linux/sched. n>*,

Let's look at the memory descriptor, with comments added describing each field:

* The term "BSS" is historic and quite old. It stands for block started by symbol. Uninitialized variables are not stored in the executable object, because
they do not have any associated value. But the C standard decrees that uninitialized global variables are assigned certain default values (basically, all zeros), so the
kernel loads the variables (without value) from the executable into memory and maps the zero page over the area, thereby giving the variables the value zero, without
having to waste space in the object file with explicit initializations.

3 Newer versions of glibc implement malloc () viammap () andbrk ().

* There is a rather tangled interdependency between the process descriptor, the memory descriptor, and their related functions. Consequently, struct mm_struct ends
up in sched.h.



struct mm_ struct

struct vm_area_struct
struct rb_root
struct vm_area_struct

unsigned
pgd_t
atomic_t
atomic_t
int

struct rw_semaphore
spinlock
struct list_head

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
int

{

long

t

long
long
long
long
long
long
long
long
long
long
long
long
long
long
long
long
long

mm_context_t

int

struct completion
struct completion

rwlock t

struct kioctx
struct kioctx

*mmap;

mm_rb;
*mmap_cache;
free area cache;
*pgd;

mm_users;
mm_count;
map_count;
mmap_sem;
page_table lock;
mmlist;
start_code;
end_code;
start_data;
end_data;
start_brk;

brk;
start_stack;
arg_start;
arg_end;
env_start;
env_end;

rss;

total_vm;
locked_vm;

def flags;
cpu_vm mask;
swap_address;
dumpable:1;
used_hugetlb;
context;
core_waiters;
*core_startup done;
core_done;

ioctx list lock;
*ioctx_list;
default kioctx;

list of memory areas */
rb tree of memory areas
last used memory area */

first hole */

page global directory */

users */

primary usage counter */
number of memory areas */
memory area semaphore */

page-table lock */

list of all mm_structs */
start of object code */
end of object code */

*/

initial address of data */

final address of data */

initial address of heap */

final address of heap */
start of process stack */
start of arguments */

end of arguments */

start of environment */
end of environment */

physical pages */

total number of pages */
number of locked pages */
default access flags */
lazy TLB switch mask */
last scanned address */

can we core dump? */

have we used hugetlb? */
arch-specific data */

thread core dump waiters */

dump start completion */
dump end completion */

AIO I/0 list lock */
AIO I/0 list */

AIO default I/O context */
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The mm_users field is the number of processes using this address space. For example, if two threads share this address space, mm_users is equal to two. The
mm_count field is the primary reference count for the mm_struct. Allmm_users equate to one increment of mm_count. Thus, in the previous example,
mm_count is only one. Only when mm_users reaches zero (when both threads exit) ismm_count decremented. When mm_count finally reaches zero, there
are no remaining references to thismm_struct and it is freed. Having two counters enables the kernel to differentiate between the main usage counter
(mm_count) and the number of processes using the address space (mm_users).

The mmap and mm_ rb fields are different data structures that contain the same thing: all the memory areas in this address space. The former stores them in a linked list
whereas the latter stores them in a red-black tree. A red-black tree is a type of binary tree; like all binary trees, searching for a given elementisan O (Log n)
operation.

While the kernel would normally avoid the redundancy of using two data structures to organize the same data, the redundancy comes in handy here. The mmap data
structure, as a linked list, allows for simple and efficient traversing of all elements. On the other hand, the mm__ rb data structure, as a red-black tree, is more suitable to
searching for a given element. We will look more closely at memory areas later in this chapter.

Allthe mm_struct structures are strung together in a doubly linked list via the mm1 i st field. The initial element in the listis the init mm memory descriptor,
which describes the address space of the idle process. The list is protected from concurrent access via the mm1ist 1ock, which is defined in
kernel/fork. c. The total number of memory descriptors is stored in the mm1ist nr global integer, which is defined in the same place.

Allocating a Memory Descriptor

The memory descriptor associated with a given task is stored in the mm field of the task's process descriptor. Thus, cur rent—->mm is the current process's memory
descriptor. The copy mm () function is used to copy a parent's memory descriptor to its child during fork (). The mm_struct structure is allocated from the
mm_cachep slab cache viathe allocate mm () macroin kernel/fork. c. Normally, each process receives a unique mm_struct and thus a unique
process address space.

Processes may elect to share their address space with their children by means of the CLONE_ VM flagto clone (). We then call the process a thread. Recall from
Chapter 2, "Process Management," that this is basically the only difference between normal processes and so-called threads in Linux; the Linux kernel does not
otherwise differentiate between them. Threads are regular processes to the kernel that merely share certain resources.
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In the case that CLONE_ VM is specified, allocate mm () is not called and the process's mm field is set to point to the memory descriptor of its parent via this
logicin copy mm () :

if (clone_flags & CLONE_VM) ({
/*
* current is the parent process and
* tsk is the child process during a fork()
*/
atomic_inc (&current->mm->mm users) ;
tsk->mm = current->mm;

Destroying a Memory Descriptor

When the process associated with an address space exits, the exit mm () function is invoked. This function performs some housekeeping and updates some
statistics. It then calls mmput (), which decrements the memory descriptor's mm_users user counter. If the user count reaches zero, mmdrop () is called to
decrement the mm_count usage counter. If that counter is finally zero, then the free mm () macro is invoked to return the mm_struct tothemm cachep
slab cache via kmem_cache free (), because the memory descriptor does not have any users.

The mm_struct and Kernel Threads

Kernel threads do not have a process address space and, therefore, do not have an associated memory descriptor. Thus, the mm field of a kernel thread's process
descriptor is NULL. Basically, this is the definition of a kernel thread—they have no user context.

This is fine, because kernel threads do not ever access any user-space memory (whose would they access?). Because kernel threads do not have any pages in user-
space, they do not really deserve their own memory descriptor and page tables (page tables are discussed later in the chapter). Despite this, kernel threads need some
of the data, such as the page tables, even to access kernel memory. To provide kernel threads the needed data, without wasting memory on a memory descriptor and
page tables, or wasting processor cycles to switch to a new address space whenever a kernel thread begins running, kernel threads use the memory descriptor of
whatever task ran previously.

Whenever a process is scheduled, the process address space referenced by their mm field is loaded. The active mm field in the process descriptor is then updated
to refer to the new address space. Kernel threads do not have an address space and mm is NULL. Therefore, when a kernel thread is scheduled, the kernel notices
that mm is NULL and keeps the previous process's address space loaded. The kernel then updates the act ive mm field of the kernel thread's process descriptor to
refer to the previous process's memory
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descriptor. The kernel thread can then use the previous process's page tables as needed. Because kernel threads do not access user-space memory, they only make
use of the information in the address space pertaining to kernel memory, which is the same for all processes.

Memory Areas

Memory areas are represented by a memory area object, which is stored in the vm_area struct structure and defined in <1 inux/mm.h>. Memory areas
are often called virtual memory areas or VMA's in the kernel.

The vim_area struct structure describes a single memory area over a contiguous interval in a given address space. The kernel treats each memory area as a
unique memory object. Each memory area shares certain properties, such as permissions and a set of associated operations. In this manner, the single VMA structure
can represent multiple types of memory areas—for example, memory-mapped files or the process's user-space stack. This is similar to the object-oriented approach
taken by the VFS layer (see Chapter 11, "The Virtual Filesystem"). Let's look at the structure, with comments added describing each field:

struct vm_area_struct {

struct mm_struct *vm_mm; /* associated mm_struct */
unsigned long vm_start; /* start of interval */
unsigned long vm_end; /* end of interval */
struct vm_area_ struct *vm_next; /* list of VMA's */
pgprot_t vm_page_prot; /* access permissions */
unsigned long vm_flags; /* flags */

struct rb_node vm_rb; /* this VMA's node */
struct list head shared; /* list of mappings */
struct vm_operations_struct *vm_ops; /* operations */

unsigned long vm_pgoff; /* offset within file */
struct file *vm_file; /* mapped file (if any) */
void *vm_private data; /* private data */

}i

As discussed, each memory descriptor is associated with a unique interval in the process's address space. The vm_start field is the initial (lowest) address in the
interval and the vm_end field is the final (highest) address in the interval. Thus, vm_end - wvm_start is the size (length) in bytes of the interval. Intervals in
different memory areas in the same address space cannot overlap.

The vm_mm field points to this VMA's associated mm_ st ruct. Note each VMA is unique to the mm_ st ruct to which it is associated. Therefore, even if two
separate processes map the same file into their respective address spaces, they each have a unique vim_area_struct to identify their unique memory area.
Conversely, two threads that share an address space also share all the vm_area struct structures therein.
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The vm_ f1ags field contains bit flags that specify the behavior of and delineate information about the pages contained in the memory area. Unlike permissions
associated with a specific physical page, the VMA flags specify behavior that the kernel is responsible for, not the hardware. Furthermore, vm_f1ags contains

information that relates to each page in the memory area, or the memory area as a whole. Table 13.1 is a listing of the possible vm_f1ags values.

Table 13.1 VMA Flags

Flag

VM READ

VM WRITE
VM _EXEC
VM_SHARED

VM _MAYREAD
VM MAYWRITE
VM_MAYEXEC
VM _MAYSHARE
VM_GROWSDOWN
VM_GROWSUP
VM_SHM

VM _DENYWRITE
VM EXECUTABLE
VM_LOCKED
VM IO

VM SEQ READ
VM RAND READ
VM_DONTCOPY
VM DONTEXPAND
VM_RESERVED
VM_ACCOUNT

VM _HUGETLB

Let's look at some of the more important and interesting flags in depth. The VM_READ,

Effect on the VMA and its pages
Pages can be read from
Pages can be written to

Pages can be executed

Pages are shared

The VM _READ flag can be set

The VM WRITE flag can be set

The VM_EXEC flag can be set

The VM_SHARED flag can be set

The area can grow downward

The area can grow upward

The area is used for shared memory

The area maps an unwritable file

The area maps an executable file

The pages in this area are locked

The area maps a device's /O space

The pages seem to be accessed sequentially
The pages seem to be accessed randomly
This area must not be copied on fork ()
This area cannot grow via mremap ()
This area must not be swapped out

This area is an accounted VM object

This area uses huget1b pages

VM WRITE, and VM_EXEC flags specify the usual read, write, and execute permissions for the pages in this memory area. They are combined as needed to form the

appropriate access permissions. For example, a mapping of the object code for a process might be
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mapped with VM_READ and VM_EXEC, but not VM_WRITE. On the other hand, the data section from an executable object would be mapped VM_READ and
VM_WRITE, but VM_EXEC would make little sense. Meanwhile, a read-only memory mapped data file would be mapped with only the VM_READ flag.

The vM_ SHARED flag specifies whether the memory area contains a mapping that is shared among multiple processes. If the flag is set, we intuitively call this a shared
mapping. If the flag is not set, only a single process can view this particular mapping, and we call it a private mapping.

The VM _ IO flag specifies that this memory area contains a mapping of a device's I/O space. This field is typically set by device drivers when performing mmap () on
their I/O space. It specifies, among other things, that the memory area must not be included in any process's core dump. The VM_RESERVED flag specifies that the
memory region must not be swapped out. It is also used by device driver mappings.

The VM_SEQ READ flag provides a hint to the kernel that the application is performing sequential (that is, linear and contiguous) reads in this mapping. The kernel
can then opt to increase the read-ahead performed on the backing file. The VM RAND_ READ flag specifies just the opposite, that the application is performing
relatively random (that is, not sequential) reads in this mapping. The kernel can then opt to decrease or altogether disable read-ahead on the backing file. These flags
are set viathe madvise () system call with the MADV_SEQUENTIAL and MADV_RANDOM flags, respectively. Read-ahead is the act of reading sequentially
ahead of requested data, in hopes that the additional data will be needed soon. Such behavior is beneficial if applications are reading data sequentially. If data access
patterns are random, however, read-ahead is not effective.

VMA Operations

The vm_ops fieldinthe vm_area struct structure points to the table of operations associated with a given memory area, which the kernel can invoke to
manipulate the VMA. The vim_area struct acts as a generic object for representing any type of memory area and the operations table describes the specific
methods, which can operate on this particular instance of the object.

The operations table is represented by st ruct vm_operations_ struct andisdefinedin <linux/mm.h>:

struct vm operations_struct {

void (*open) (struct vm_area struct *);
void (*close) (struct vm area struct *);
struct page * (*nopage) (struct vm area struct *, unsigned long, int);
int (*populate) (struct vm area struct *, unsigned long, unsigned long,

pgprot_t, unsigned long, int);
}i

Let's look at each individual method:

*void open(struct vm area struct *area)
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This function is invoked when the given memory area is added to an address space.
*void close(struct vm _area struct *area) This function is invoked when the given memory area is removed from an address space.

* struct page * nopage(struct vm area sruct *area, unsigned long address, int unused) This functionis
invoked by the page fault handler when a page which is not present in physical memory is accessed.

*int populate(struct vm area struct *area, unsigned long address, unsigned long len, pgprot t
prot, unsigned long pgoff, int nonblock) This functionis invoked by the remap pages () system call to prefault a new mapping.

Lists and Trees of Memory Areas

As discussed, memory areas are accessed via both the mmap and the mm_ rb fields of the memory descriptor. These two data structures independently point to all the
memory area objects associated with the memory descriptor. In fact, they both contain pointers to the very same vm_area struct structures, merely linked in
different ways.

The first field, mmap, links together all the memory area objects in a singly linked list. Each vm_area struct structure is linked into the list via their vm_next
field. The areas are sorted by ascended address. The first memory area is the vm_area struct structure that mmap points to. The last structure points to NULL.

The second field, mm_ rb, links together all the memory area objects in a red-black tree. The root of the red-black tree ismm_rb and each vim_area struct
structure in this address space is linked to the tree via their vm_rb field.

A red-black tree is a type of balanced binary tree. Each element in a red-black tree is called a node. The initial node is called the root of the tree. Most nodes have two
children: a left child and a right child. Some nodes have only one child, and the final nodes, called leaves, have no children. For any node, the elements to the left are
smaller in value, whereas the elements to the right are larger in value. Furthermore, each node is assigned a color (red or black, hence the name of this tree) according
to two rules: The children of a red node are black and every path through the tree from a node to a leaf must contain the same number of black nodes. The root node is
always red. Searching of, insertion to, and deletion from the tree isan O (1og (n) ) operation.

The linked list is used when every node needs to be traversed. The red-black tree is used when locating a specific memory area in the address space. In this manner,
the kernel uses the redundant data structures to provide optimal performance regardless of the operation performed on the memory areas.
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Memory Areas in Real Life

Let's look at a particular process's address space and the memory areas inside. For this task, we can use the useful /proc filesystem and pmap(1) utility. Let's
consider a very simple user-space program example, which does absolutely nothing of value, except act as our example:

int main(int argc, char *argv([])

{

return 0;

Let's list a few of the memory areas in this process's address space. Right off the bat, we know there is the text section, data section, and bss. Assuming this process is
dynamically linked with the C library, these three memory areas also exist for 1 ibc . so and again for 1d . so. Finally, there is also the process's stack.

The output from /proc/<pid>/maps lists the memory areas in this process's address space:

rml@phantasy:~$ cat /proc/1426/maps

00e80000-00£faf000 r-xp 00000000 03:01 208530 /lib/tls/libc-2.3.2.s0
00faf000-00£fb2000 rw-p 0012f000 03:01 208530 /1lib/tls/1libc-2.3.2.s0
00£fb2000-00fb4000 rw-p 00000000 00:00 O

08048000-08049000 r-xp 00000000 03:03 439029 /home/rml/src/example
08049000-0804a000 rw-p 00000000 03:03 439029 /home/rml/src/example
40000000-40015000 r-xp 00000000 03:01 80276 /1ib/1d-2.3.2.s0
40015000-40016000 rw-p 00015000 03:01 80276 /1lib/1d-2.3.2.s0

4001e000-4001£f000 rw-p 00000000 00:00 O
bfffe000-c0000000 rwxp f££££000 00:00 O

The data is in the form:
start-end permission offset major:minor inode file

The pmap(1) uti]jty5 formats this information in a bit more readable manner. Let's look at that, instead:

rml@phantasy:~$ pmap 1426
example[1426]

00e80000 (1212 KB) r-xp (03:01 208530) /lib/tls/libc-2.3.2.s0
00£faf000 (12 KB) rw-p (03:01 208530) /lib/tls/libc-2.3.2.s0
00£fb2000 (8 KB) rw-p (00:00 0)

08048000 (4 KB) r-xp (03:03 439029) /home/rml/src/example
08049000 (4 KB) rw-p (03:03 439029) /home/rml/src/example

> The pmap (1) utility displays a formatted listing of a process's memory areas. It is a bit more readable than the /proc output, but it is the same information. It is
found in newer versions of the procps package, which is available from http: //sources.redhat.com/procps/.
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40000000 (84 KB) r-xp (03:01 80276) /1ib/1d-2.3.2.s0
40015000 (4 KB) rw-p (03:01 80276) /1lib/1d-2.3.2.s0
4001e000 (4 KB) rw-p (00:00 0)
bfffe000 (8 KB) rwxp (00:00 0)
mapped: 1340 KB writable/private: 40 KB shared: 0 KB

The first three rows are the text section, data section, and bss of 1Libc . so, the C library. The next two rows are the text and data section of our executable object.
The following three rows are the text section, data section, and bss for 1d . so, the dynamic linker. The last row is the process's stack.

Note how the text sections are all readable and executable, which is what we expect for object code. On the other hand, the data section and bss (which both contain
global variables) are marked readable and writable, but not executable.

The entire address space takes up about 1340 KB, but only 40 KB are writable and private. If a memory region is shared or nonwritable, the kernel only keeps one
copy of the backing file in memory. This might seem like common sense for shared mappings, but the nonwritable case can come as a bit of a surprise. If you consider
the fact that a nonwritable mapping can never be changed (the mapping is only read from), it is clear that it is safe to load the image only once into memory. Therefore,
the C library need only occupy 1212 KB in physical memory, and not 1212 KB multiplied by every process using the library. Since this process has access to about
1340 KB worth of data and code, yet only consumes about 40 KB of physical memory, the space savings from such sharing is substantial.

Note the memory areas without a mapped file that are on device 00 : 00 and inode zero. This is the zero page. The zero page is a mapping that consists of all zeros.
By mapping the zero page over a writable memory area, the area is in effect "initialized" to all zeros. This is important as it provides a zeroed memory area, which is

expected by the bss.

Each of the memory areas that are associated with the process corresponds toa vm_area_struct structure. Because the process was not a thread, it has a
unique mm_ st ruct structure referenced from its task_struct.

Manipulating Memory Areas

The kernel often has to find whether any memory areas in a process address space matches a given criteria, such as whether a given address exists in a memory area.
These operations are frequent, and form the basis of the mmap () routine, which we will look at in the next section. A handful of helper functions are defined to assist
these jobs.

These functions are all declared in <1 inux/mm.h>.

find wvma ()

The find_vma () function is defined in mm/mmap. c.

The function searches the given address space for the first memory area whose vm_end field is greater than addr. In other words, this function finds the first
memory area that contains add r or begins at an address greater than addr. If no such memory
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area exists, the function returns NULL. Otherwise, a pointer to the vm_area_struct structure is returned. Note that, because the returned VMA may start at an
address greater than addr, the given address does not necessarily lie inside of the returned VMA. The result of the find_vma () function is cached in the
mmap_cache field of the memory descriptor. Because of the probability of an operation on one VMA being followed by more operations on that same VMA, the
cached results have a decent hit rate (about 30-40% in practice). Checking the cached result is quick. If the given address is not in the cache, all the memory areas
associated with this memory descriptor must be searched. This is done via the red-black tree:

struct vm_area struct * find vma(struct mm struct *mm, unsigned long addr)
{

struct vm_area_struct *vma = NULL;

if (mm) {
vma = mm->mmap_cache;
if (! (vma && vma->vm_end > addr && vma->vm_start <= addr)) {
struct rb_node * rb_node;

rb node = mm->mm_rb.rb node;
vma = NULL;
while (rb_node) {
struct vm_area_struct * vma_tmp;

vma_tmp = rb_entry(rb_node,
struct vm area_ struct, vm_rb);
if (vma_tmp->vm_end > addr) {
vma = vmaitmp;
if (vma_tmp->vm_start <= addr)

break;
rb_node = rb _node->rb_left;
} else
rb_node = rb_node->rb_right;
}
if (vma)
mm->mmap_cache = vma;

}

return vma;

The initial check of mmap cache tests whether the cached VMA contains the desired address. Note that simply checking if the VMA's vm_end field is bigger
than addr would not ensure that this is the first such VMA that is larger than addr. Thus, for the cache to be useful here, the given add r must lie in the VMA—
thankfully, this is just the sort of scenario in which consecutive operations on the same VMA would occur.
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If the cache does not contain the desired VMA, the function must search the red-black tree. Checking each node of the tree accomplishes this. If the current VMA's
vm_end is larger than add r, the function follows the left child; otherwise, it follows the right child. The function terminates as soon as a VMA is found that contains
addr. If such a VMA is not found, the function continues traversing the tree and returns the first VMA it found that starts after addr. If no VMA is ever found,
NULL is returned.

find vma_prev ()
The find vma_ prev () function works the same as f£ind vma (), but it also returns the last VMA before addr. The function is also defined in
mm/mmap . ¢ and declared in <1 inux/mm.h>:

struct vm_area_struct * find vma_prev(struct mm_struct *mm, unsigned long addr,
struct vm_area_struct **pprev)

The pprev argument stores a pointer to the VMA preceding addr.
find vma_intersection()

The find vma intersection () function returns the first VMA that overlaps a given address interval. The function is defined in <1inux/mm.h>, because
itis inline:

static inline struct vm area struct * find vma intersection(struct mm struct *mm,
unsigned long start_addr, unsigned long end_addr)

{

struct vm_area_struct *vma;

vma = find_vma(mm, start_addr);

if (vma && end_addr <= vma->vm_start)
vma = NULL;

return vma;

The first parameter is the address space to search, start addr is the start of the interval, and end_addr is the end of the interval.
Obviously, if find vma () returns NULL, sowould find vma_intersection().Iffind vma () returns a valid VMA, however,

find vma intersection () returnsthe same VMA only if it does not start after the end of the given address range. If the returned memory area does start
after the end of the given address range, the function returns NULL.

mmap () and do_mmap () : Creating an Address Interval

The do_mmap () function is used by the kernel to create a new linear address interval. Saying that this function creates a new VMA is not technically correct,
because if the
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created address interval is adjacent to an existing address interval, and if they share the same permissions, the two intervals are merged into one. If this is not possible, a
new VMA is created. In any case, do_mmap () is the function used to add an address interval to a process's address space—whether that means expanding an

existing memory area or creating a new one.

The do_mmap () function is declared in <1inux/mm.h>:

unsigned long do mmap (struct file *file, unsigned long addr,
unsigned long len, unsigned long prot,
unsigned long flag, unsigned long offset)

This function maps the file specified by £ i 1e at offset of £ set for length 1en. The £i1e parameter can be NULL and o f £ set can be zero, in which case a file
will not back the mapping. In that case, this is called an anonymous mapping. If a file and offset are provided, the mapping is called a file-backed mapping.

The addr function optionally specifies the initial address from which to start the search for a free interval.

The prot parameter specifies the access permissions for pages in the memory area. The possible permission flags are defined in <asm/mman . h> and are unique
to each supported architecture, although in practice each architecture defines the flags listed in 7able 13.2.

The f1ags parameter specifies flags that correspond to the remaining VMA flags. These flags are also defined in <asm/mman . h>. See Table 13.3.

Table 13.2 Page Protection Flags

Flag Effect on the pages in the new interval
PROT_READ Corresponds to VM_READ

PROT_WRITE Corresponds to VM _WRITE

PROT_EXEC Corresponds to VM_EXEC

PROT NONE Page cannot be accessed

Table 13.3 Page Protection Flags

Flag Effect on the new interval

MAP_SHARED The mapping can be shared

MAP PRIVATE The mapping cannot be shared

MAP FIXED The new interval must start at the given address addr
MAP_ ANONYMOUS The mapping is not file-backed, but is anonymous
MAP_GROWSDOWN Corresponds to VM_GROWSDOWN

MAP DENYWRITE Corresponds to VM DENYWRITE

MAP EXECUTABLE Corresponds to VM_EXECUTABLE

MAP_LOCKED Corresponds to VM_LOCKED
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MAP_ NORESERVE No need to reserve space for the mapping
MAP POPULATE Populate (prefault) page tables
MAP NONBLOCK Do not block on I/0

If any of the parameters are invalid, do_mmap () returns a negative value. Otherwise, a suitable interval in virtual memory is located. If possible, the interval is merged
with an adjacent memory area. Otherwise, anew vm_area struct structure is allocated from the vm_area cachep slab cache, and the new memory area
is added to the address space's linked list and red-black tree of memory areas via the vma_1ink () function. Next, the total vm field in the memory descriptor
is updated. Finally, the function returns the initial address of the newly created address interval.

The mmap () System Call

The do_mmap () functionality is exported to user-space via the mmap () system call. The mmap () system call is defined as

void * mmap2(void *start, size t length, int prot, int flags, int fd, off t pgoff)

This system call is named mmap2 () because it is the second variant of mmap () . The original mmap () took an offset in bytes as the last parameter; the current
mmap?2 () receives the offset in pages. This enables larger files with larger offsets to be mapped. The original mmap (), as specified by POSIX, is available from the

C library as mmap () but is no longer implemented in the kernel proper, while the new version is available as mmap2 () . Both library calls use the mmap2 () system
call, with the original mmap () converting the offset from bytes to pages.

munmap () and do_munmap () : Removing an Address Interval
The do_munmap () function removes an address interval from a specified process address space. The function is declared in <1inux/mm.h>:
int do_munmap (struct mm_struct *mm, unsigned long start, size_t len)

The first parameter specifies the address space from which the interval starting at address start oflength 1 en bytes is removed. On success, zero is returned.
Otherwise, a negative error code is returned.

The munmap () System Call

The munmap () system call is exported to user-space as a means to allow processes to remove address intervals from their address space; it is the complement of
the mmap () system call:
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int munmap(void *start, size t length)
The system call is defined in mm/mmarp . ¢ and acts as a very simple wrapper to do_munmap () :

asmlinkage long sys_munmap (unsigned long addr, size t len)
{

int ret;

struct mm_struct *mm;

mm = current->mm;
down_write (&émm->mmap_sem) ;
ret = do_munmap (mm, addr, len);

up_write (&émm->mmap sem) ;
return ret;

Page Tables

Although applications operate on virtual memory that is mapped to physical addresses, processors operate directly on those physical addresses. Consequently, when
an application accesses a virtual memory address, it must first be converted to a physical address before the processor can resolve the request. Performing this lookup
is done via page tables. Page tables work by splitting the virtual address into chunks. Each chunk is used as an index into a table. The table either points to another
table or the associated physical page.

In Linux, the page tables consist of three levels. The multiple levels allow a sparsely populated address space, even on 64-bit machines. If the page tables were
implemented as a single static array, their size on even 32-bit architectures would be enormous. Linux uses three levels of page tables even on architectures that do not
support three levels in hardware (for example, some hardware uses only two levels or implements a hash in hardware). Using three levels is a sort of "greatest common
denominator"—architectures with a less complicated implementation can simplify the kernel page tables as needed with compiler optimizations.

The top-level page table is the page global directory (PGD). The PGD consists of an array of pgd_ t types. On most architectures, the pgd_ t type is an
unsigned long. The entries in the PGD point to entries in the second-level directory, the PMD.

The second-level page table is the page middle directory (PMD). The PMD is an array of pmd_ t types. The entries in the PMD point to entries in the PTE.
The final level is called simply the page table and consists of page table entries of type pte t. Page table entries point to physical page.
In most architectures, page table lookups are handled (at least to some degree) by hardware. In normal operation, hardware can handle much of the responsibility of

using the page tables. The kernel must set things up, however, in such a way that the hardware is happy and can do its thing. Figure 13.1 diagrams the flow of a virtual
to physical address lookup using page tables.
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Figure 13.1 Page tables.

Each process has its own page tables (threads share them, of course). The pgd field of the memory descriptor points to the process's page global directory.
Manipulating and traversing page tables requires the page _table lock, which is located inside the associated memory descriptor.

Page table data structures are quite architecture-dependent and thus are defined in
<asm/page.h>.

Because nearly every access of a page in virtual memory must be resolved to its corresponding address in physical memory, the performance of the page tables is very
critical. Unfortunately, looking up all of these addresses in memory can only be so fast. To facilitate this, most processors implement a translation lookaside buffer, or
simply 7LB, which acts as a hardware cache of virtual to physical mappings. When accessing a virtual address, the processor will first check if the mapping is cached in
the TLB. If there is a hit, the physical address is immediately returned. Otherwise, if there is a miss, the page tables are consulted for the corresponding physical
address.

Nonetheless, page table management is still a critical—and evolving—part of the kernel. Changes to this area in 2.6 include allocating parts of the page table out of high
memory. Future possibilities include shared page tables with copy-on-write semantics. In that scheme, page tables would be shared between parent and child across a
fork (). When the parent or the child attempted to modify a particular page table entry, a copy would be created and the two processes would no longer share that
entry. Sharing page tables would remove the overhead of copying the page table entries on fork ().
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14
The Page Cache and Page Writeback

Tre Linux KERNEL IMPLEMENTS ONE PRIMARY DIsk cache, known as the page cache. The goal of this cache is to minimize disk I/O by storing in physical memory data that
would otherwise be accessed from disk. This chapter deals with the page cache.

Disk caches are beneficial for two reasons. First, disk access is magnitudes slower than memory access. Accessing data from memory instead of the disk is much
faster. Second, data accessed once will, with a high likelihood, find itself accessed again in the near future. This principle, that access to a particular piece of data tends
to be clustered in time, is called temporal locality. Temporal locality ensures that if data is cached on its first access, there is a high probability of a cache hit (access to
data that is in the cache) in the near future.

The page cache consists of physical pages in RAM. Each page in the cache corresponds to multiple blocks on the disk. Whenever the kernel begins a page /0
operation (a disk operation in page-size chunks, usually to a regular file), it first checks if the requisite data is in the page cache. If it is, the kernel can forgo accessing
the disk and use the data straight from the page cache.

Individual disk blocks can also tie into the page cache, by way of block I/O buffers. Recall from Chapter 12, "The Block I/O Layer," that a buffer is the in-memory
representation of a single physical disk block. Buffers act as descriptors that map pages in memory to disk blocks; thus, the page cache also reduces disk access during
block I/O operations by both caching disk blocks and buffering block 1/O operations until later. This caching is often referred to as the "buffer cache," although in reality
it is not a separate cache and is part of the page cache.

Let's look at the sort of operations and data that end up in the page cache. The page cache is primarily populated by page I/O operations, such as read () and
write ().Page /O operations manipulate entire pages of data at a time; this entails operations on more than one disk block. Consequently, the page cache caches
page-size chunks of files.
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Block /O operations manipulate a single disk block at a time. A common block I/O operation is reading and writing inodes. The kernel provides the bread ()
function to perform a low-level read of a single block from disk. Via buffers, disk blocks are mapped to their associated in-memory pages and, thus, cached in the
page cache.

For example, when you first open a source file in a text editor, data from the file is read into memory from disk. As you edit the file, more and more pages are read in.

When you later compile the file, the kernel can use the pages directly from the page cache; it need not reread the file from disk. Because users tend to read and
manipulate the same files repeatedly, the page cache reduces the need for a large number of disk operations.

Page Cache

The page cache, as its name suggests, is a cache of pages. The pages originate from reads and writes of regular filesystem files, block device files, and memory-

mapped files. In this manner, the page cache contains entire pages from recently accessed files. Prior to a page I/O operation, such as read () !, the kernel checks if
the data resides in the page cache. If the data is in the page cache, the kernel can quickly return the requested page.

The address_space Object

A physical page might be composed of multiple noncontiguous physical blocks”.

Checking the page cache to see if certain data has been cached is rendered more difficult because of the noncontiguous nature of the blocks that can up each page.
Because of this, it is not possible to index the data in the page cache using only a device name and block number, which would otherwise be the simplest solution.

Furthermore, the Linux page cache is quite general in what pages it can cache. Indeed, the original page cache introduced in System V Release 4 cached only
filesystem data. Consequently, the SVR4 page cache used its equivalent of the file object (called st ruct wvnode) to manage the page cache. The Linux page
cache aims to cache any page-based object, which includes many forms of files and memory mappings.

To remain generic, the Linux page cache uses the address_space structure to identify pages in the page cache. This structure is defined in <1inux/fs.h>:

struct address_space {
struct inode *host; /* owning inode */
struct radix tree root page tree; /* radix tree of all pages */

! As we saw in Chapter 11, "The Virtual Filesystem," it is not the read() and write() system calls which perform the actual page I/O operation, but the filesystem-
specific methods specified by file->f op->read() and file->f op->write().

* For example, a physical page is 4KB on the x86 architecture while a disk block on most filesystems can be as small as 512 bytes. Therefore, 8 blocks might fit in a
single page. The blocks need not by contiguous because the files themselves might be laid out all over the disk.
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spinlock t page_lock; /* lock protecting page tree */
struct list head clean_pages; /* list of clean pages */

struct list head dirty pages; /* list of dirty pages */

struct list_head locked_pages; /* list of locked pages */
struct list head io_pages; /* pages under I/0 */

unsigned long nrpages; /* total number of pages */
struct address_space operations *a ops; /* operations table */

struct list_head i_mmap; /* list of private mappings */
struct list head i mmap shared; /* list of shared mappings */
struct semaphore i_shared_sem; /* protects above two lists */
unsigned long dirtied_when; /* last modification */

int gfp_mask; /* allocator flag for the pages */
struct backing dev_info *backing dev_info; /* read-ahead information */
spinlock t private lock; /* private address space lock */
struct list head private list; /* private address_space list */
struct address space *assoc_mapping; /* associated buffers */

bi

The fields clean pages,dirty pages,and locked pages are doubly linked lists of all clean, dirty, and locked pages, respectively, that belong to this
address_space. Together, these lists contain all the pages associated with this address space. There are a total of nrpages pages among the lists.

The clean pages doubly linked list contains all the page descriptors associated with this address space that are neither locked nor dirty. A page is locked
if it is currently undergoing disk I/O. A page is dirty if the in-memory page has been updated, but the changes have not yet been written back to disk.

Thedirty pages list contains all the page descriptors associated with this address_space that are not locked, but are dirty. These pages have been
updated, but not yet written back to disk. That is, the cached copy of the page is newer than the on-disk copy. Eventually, the copy in the page cache needs to be
written back (synchronized) with the copy on the disk. Note that it is never possible that the on-disk copy becomes newer than the cached copy because all page I/O
goes through the page cache.

The locked pages list contains all the page descriptors associated with this address_space that are locked; the contents of these pages are currently being
transferred from the disk into the page cache, or vice versa.

The address_space is associated with some kernel object. Normally, this is an inode. If so, the ho s t field points to the associated inode. The hos t field is
NULL if the associated object is not an inode; for example, if the address space is associated with the swapper.

If the associated kernel object is the inode of a memory-mapped file, the i mmap and i mmap shared fields are used.

The a_ops field points to the address space operations table, in the same manner as the VFS objects and their operations tables. The operations table is represented
by struct address_ space operationsandisalsodefinedin <linux/fs.h>:



struct address_space_operations {
int (*writepage) (struct page *, struct writeback control *);

int (*readpage) (struct file *, struct page *);
int (*sync_page) (struct page *);
int (*writepages) (struct address space *, struct writeback control *);
int (*set_page_dirty) (struct page *);
int (*readpages) (struct file *, struct address_space *,
struct list_head *, unsigned);
int (*prepare write) (struct file *, struct page *, unsigned, unsigned);
int (*commit_ write) (struct file *, struct page *, unsigned, unsigned);
sector_t (*bmap) (struct address space *, sector_ t);
int (*invalidatepage) (struct page *, unsigned long);
int (*releasepage) (struct page *, int);
int (*direct_IO) (int, struct kiocb *, const struct iovec *,

loff t, unsigned long);
bi

The readpage () and writepage () methods are most important. Let's look at the steps involved in a page read operation.

First, the read method is passed an address_space plus offset pair. These values are used to search the page cache for the desired data:

page = find _get_page (mapping, index);
where mapping is the given address space and i ndex is the desired position in the file.
If the page does not exist in the cache, a new page is allocated and added to the page cache:

struct page *cached page;
int error;
cached page = page cache alloc cold(mapping);
if (!cached_page)
/* error allocating memory */
error = add_to_page_cache_lru(cached_page, mapping, index, GFP_KERNEL);
if (error)
/* error adding page to page cache */

Finally, the requested data can be read from disk, added to the page cache, and returned to the user:
error = mapping->a_ops->readpage (file, page);
Write operations are a bit different. For file mappings, whenever a page is modified, the VM simply calls

SetPageDirty (page) ;
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The kernel later writes the page out via the writepage () method. Write operations on specific files are more complicated. Basically, the generic write path in

mm/filemap . c performs the following steps:
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page = _ grab cache page (mapping, index, &cached page, &lru pvec);
status = a_ops->prepare _write(file, page, offset, offset+bytes);
page_fault = filemap copy from user (page, offset, buf, bytes);
status = a_ops->commit_write(file, page, offset, offset+bytes);

First, the page cache is searched for the desired page. If it is not in the cache, an entry is allocated and added. Next, the prepare write () method is called to
set up the write request. The data is then copied from user-space into a kernel buffer. Finally, the data is written to disk via the commit write () function.

Because the previous steps are performed during all page 1/0 operations, all page 1/O is guaranteed to go through the page cache. Consequently, the kernel attempts to

satisfy all read requests from the page cache. If this fails, the page is read in from disk and added to the page cache. For write operations, the page cache acts as a
staging ground for the writes. Therefore, all written pages are also added to the page cache.

Radix Tree

Because the kernel must check for the existence of a page in the page cache before initiating any page 1/0, such a check must be quick. Otherwise, the overhead of
searching and checking the page cache could nullify any benefits the cache might provide (at least if the cache hit rate is low—the overhead would have to be awful to
cancel out the benefit of retrieving the data from memory in lieu of disk).

As we saw in the previous section, the page cache is searched via the address space object plus an offset value. Each address_space has a unique radix
tree stored as page tree. Aradix tree is a type of binary tree. The radix tree allows very quick searching for the desired page, given only the file offset. Page cache
searching functions suchas find get page () callradix tree lookup (), which performs a search on the given tree for the given object.

The core radix tree code is available in generic formin 1ib/radix-tree. c. Users of the radix tree need to include <1linux/radix-tree.h>.

The Old Page Hash Table

Prior to the 2.6 kernel, the page cache was not searched via radix tree. Instead, a global hash was maintained over all the pages in the system. The hash returned a
doubly linked list of entries, which hash to the same given value. If the desired page was in the cache, one of the items in the list was the corresponding page.
Otherwise, the page was not in the page cache and the hash function returned NULL.

The global hash had four primary problems:

* A single global lock protected the hash. Lock contention was quite high on even moderately sized machines, and performance suffered as a result.

* The hash was larger than needed because it contained all of the pages in the page cache, whereas only pages pertaining to the current file were relevant.



Page 248

* Performance when the hash lookup failed (that is, the given page was not in the page cache) was slower than desired, particularly because of having to walk the
chains off a given hash value.

* The hash consumed more memory than other possible solutions.

The introduction of a radix tree-based page cache in 2.6 solved these issues.

The Buffer Cache

Linux no longer has a distinct buffer cache. Way back in the 2.2 kernel, there were two separate disk caches: the page cache and the buffer cache. The former cached
pages, the latter cached buffers. The two caches were not unified in the least; a disk block could exist in both caches simultaneously. This led to extensive effort in
synchronization between the two cached copies—not to mention wasted memory.

This was the case in the 2.2 Linux kernel and earlier, but starting with the 2.4 Linux kernel the two caches were unified. Today, we have one disk cache—the page
cache.

The kernel still needs to use buffers, however, to represent disk blocks in memory. Thankfully, the buffers describe the mapping of a block onto a page, which is in the
page cache.

The pdf1lush Daemon

Dirty pages that accumulate in memory eventually need to be written back to disk. Dirty page writeback occurs in two situations:

» When free memory shrinks below a specified threshold, the kernel must write dirty data back to disk to free memory.
» When dirty data grows older than a specific threshold, sufficiently old data is written back to disk, to ensure that dirty data does not remain dirty indefinitely.

These two jobs have rather different goals. In fact, in older kernel they were performed by two separate kernel threads (see the following section). In 2.6, however, a

gang3 of kernel threads, the pd £ 1 ush background writeback daemons (or, simply, the pd £ Lush threads), performs these jobs. Rumor has it that pdf 1ush is
short for "dirty page flush." Ignore the confusing name; let's look at each of these goals in more detail.

First, the pd £ 1 ush threads need to flush dirty data to disk when the amount of free memory in the system shrinks beyond a specified level. The goal of this

background writeback is to regain memory from dirty pages when available physical memory is low. The specified memory level is configurable by the
dirty background ratio sysctl. When free memory drops below this threshold, the kernel invokes the

* This is not slang. The term "gang" is commonly used in computer science to denote a group of things that can operate in parallel.
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wakeup bdflush () * call to wake up a pdflush thread and have it run the background writeout () function to begin writeback of dirty pages. This
function takes a lone parameter, which is the number of pages to attempt to writeback. The function continues writing out data until two conditions are true:

* The specified minimum number of pages has been written out.

* The mount of free memory is above the dirty background ratio threshold.

These conditions ensure that pdflush does its part to relieve low-memory conditions. Writeback stops prior to these conditions only if pd £ 1 ush writes back all the
dirty pages and there is nothing left to do.

For its second goal, pd £ 1ush periodically wakes up (unrelated to low memory conditions) and writes out very old dirty pages. This is done to ensure that no dirty
pages remain in memory indefinitely. During a system failure, because memory is volatile, dirty pages in memory that have not been written to disk are lost.
Consequently, periodically synchronizing the page cache with the disk is important. On system boot, a timer is initialized to wakeup a pd £ 1ush thread and have it run
the wb_kupdate () function. This function will then writeback all data that was modified longer than dirty expire centisecs hundredths of a second
ago. The timer is then reinitialized to expire againin dirty writeback centisecs hundredths of a second. In this manner, the pd £ 1ush threads
periodically wakeup and write to disk all dirty pages that are older than a specified limit.

The system administrator may set these values either in /proc/sys/vm or viasysctl. Table 11.1 is a list of each variable.

Table 11.1 pdflush Settings

Variable Description

dirty background ratio As a percentage of total memory, the number of pages at which the pdf1lush threads will
begin writeback of dirty data.

dirty expire centisecs In one hundredths of a second, how old data must be to be written out next time a pdflush
thread wakes to perform periodic writeback.

dirty ratio As a percentage of total memory, the number of pages a process will generate before it will
begin writeback of dirty data.

dirty writeback centisecs In one hundredths of a second, how often the pdf1ush threads wake up to writeback out
data.

The pdflush threads live in mm/pdf1ush . c and the write back mechanism lives in mm/page-writeback.cand fs/fs-writeback.c.

¢ Yes, it is misnamed. It should be wakeup pdflush (). See the following section for the heritage of this call.
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bdflush and kupdated
Prior to the 2.6 kernel, the job of the pd £ 1ush threads was met by two other kernel threads, bdf1ush and kupdated.

The bd f 1ush kernel thread performed background writeback of dirty pages when available memory was low. A set of thresholds were maintained, similar to
pdflush, and bdflush was awakened via wakeup bdflush () whenever free memory dropped below those thresholds.

There are two main differences between bd f 1ush and pd £ 1ush. The first, which we look at in the next section, is that there is always only one bdf 1ush
daemon, while the number of pd £ 1 ush threads is dynamic. The second difference is that bd £ 1 ush was buffer-based; it wrote back dirty buffers. Conversely,
pdflush is page-based; it writes back whole pages. Of course, the pages may correspond to buffers, but the actual I/O unit is a full page and not a single buffer.
This is beneficial as managing pages is easier than buffers, because pages are a more general and common unit.

Because bd £ 1 ush only flushes buffers when memory is low or the number of buffers is too large, the kupdated thread was introduced to periodically write back
dirty pages. It served an identical purpose to pdflush's wo_kupdate () function.

Both the bdf 1ush and kupdated kernel threads and their functionality was replaced by the pd £ 1ush threads.

Congestion Avoidance: Why We Have Multiple Threads

One of the major flaws in the bd £ 1 ush solution was that bd £ Lush consisted of one thread. This led to possible congestion during heavy page writeback where the
single bd £ Lush thread would block on a single congested device queue (the list of /O requests waiting to submit to disk), while other device queues would sit
relatively idle. If the system has multiple disks, and the associated processing power, the kernel should be able to keep each disk busy. Unfortunately, even with plenty
of data needing writeback, bd £ 1ush can become stuck handling a single queue and fail to keep all disks saturated. This occurs because the throughput of disks is a
finite—and unfortunately rather small—number. If only a single thread is performing page writeback, that single thread can easily spend a large portion of time waiting
for a single disk, because disk throughput is such a limiting quantity. To mitigate this, the kernel needs to multithread page writeback. In this manner, no single device
queue can become a bottleneck.

The 2.6 kernel solves this problem by allowing multiple pd £ 1 ush threads to exist. Each thread individually flushes dirty pages to disk, allowing different pdf lush
threads to concentrate on different device queues.

The number of threads changes throughout the uptime of a system, according to a simple algorithm. If all existing pd £ 1 ush threads are busy for at least one second, a
new pdflush thread is created. The total number of threads cannot exceed MAX PDFLUSH THREADS, which by default is eight. Conversely, ifapdflush
thread was asleep for more than a second, it is terminated. The minimum number of threads is at least MIN PDFLUSH THREADS, which by default is two. In this
manner, the number of pdf1ush
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threads adjusts dynamically depending on the amount of page writeback and congestion. If all existing pd £ 1 ush threads are busy writing back data, a new thread is
created. This ensures that a single device queue is not congested while other, less busy, device queues sit around needing data writeback. If the congestion diminishes,
however, the number of pd £ Lush threads is scaled back to conserve memory.

This is all well and good, but what if each pd £ 1 ush thread gets hung up writing to the same, congested, queue? In that case, the performance of multiple pdf1ush
threads would not be much improved over a single thread. The memory wasted, however, would be significantly greater. To mitigate this effect, the pd £ Lush threads
employ congestion avoidance. They actively try to writeback pages whose queues are not congested. As a result, the pd £ 1 ush threads spread out their work and
refrain from merely hammering on the same busy device. When the pd £ 1 ush threads are "busy"—and thus, a new thread is spawned—they are truly busy.

Because of the improvements in page writeback, including the introduction of pd £ 1 ush, the 2.6 kernel is capable of keeping many more disks saturated than any
earlier kernel. In the face of heavy activity, the pd £ 1ush threads can maintain high throughput across multiple disks.
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15
Debugging

ONE OF THE DEFINING FACTORS THAT SETs kernel development apart from user-space development is the hardship associated with debugging. It is difficult, at least relative to
user-space, to debug the kernel. To complicate the matter, a fault in the kernel could bring the whole system down—hard.

Growing successful at debugging the kernel—and ultimately, becoming successful at kernel development as a whole—is largely a function of your experience and
understanding of the operating system. Sure, looks and charm help, too—but to successfully debug kernel issues, you need to understand the kernel. We have to start
somewhere, however, so in this chapter we will look at approaches to debugging the kernel.

What You Need to Start

So, you're ready to start bug hunting? It might be a long and frustrating journey. Some bugs have perplexed the entire kernel development community for months.
Fortunately, for every one of these evil bugs, there is a simple bug with an equally simple fix. With luck, all your bugs will remain simple and trivial. You will not know
that, however, until you start investigating. For that, you need

* A bug. It might sound silly, but you need a well-defined and specific bug. It helps if it is reliably reproducible, at least for someone, but unfortunately bugs are not
always well-behaved or well-defined.

* A kernel version the bug exists on (presumably in the latest kernel, or who cares?). Even better is if you know the kernel version where the bug first appeared.
We will look at how to figure that out if you do not know it.

* Some good luck.

If you cannot reproduce the bug, many of the following approaches become worthless. It is rather crucial that you be able to duplicate the problem. If you cannot, fixing
the bug is limited to conceptualizing the problem and finding a flaw in the code. This does often
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happen (yep, the kernel developers are that good), but chances of success are obviously much more favorable if you can reproduce the problem.

It might seem strange that there is a bug that someone cannot reproduce. In user-space programs, bugs are quite often a lot more straightforward—for example, doing
foo makes me core dump. The kernel is an entirely different beast. The interactions between the kernel, user-space, and hardware can be quite delicate. Race
conditions might rear their ugly head only once in a million iterations of an algorithm. Poorly designed or even miscompiled code can result in acceptable performances
on some systems, but terrible performances on others. It is very common for some specific configuration, on some random machine, under some odd workload, to
trigger a bug otherwise unseen. The more information you have when tackling a bug, the better. Many times, if you can reliably reproduce the bug, you are more than
halfway home.

Bugs in the Kernel

Bugs in the kernel are as varied as bugs in user-space applications. They occur for a myriad of reasons and manifest themselves in just as many forms. Bugs range from
clearly incorrect code (for example, not storing the right value in the right place) to synchronization errors (for example, not properly locking a shared variable). They
manifest themselves as everything from poor performance to incorrect behavior to corrupt data.

Often, it is a large chain of events that leads from the error in the code to the error witnessed by the user. For example, a shared structure without a reference count
might cause a race condition. Without proper accounting, one process might free the structure while another still wants to use it. Later on, the second process may
attempt to use the variable. This might result in a NULL pointer dereference, reading of garbage data, or nothing bad at all (if the data was not yet overwritten). The
NULL pointer dereference causes an oops while the garbage data leads to corruption (and then bad behavior or an oops). The user reports the oops or incorrect
behavior. The kernel developer must then work backward from the error and see that the data was accessed after it was freed, there was a race, and the fix is proper
reference counting on the shared structure. It probably needs locking, too.

Debugging the kernel might sound difficult, but in reality the kernel is not unlike any other large software project. The kernel does have unique issues, such as timing

constraints and race conditions, which are a consequence of allowing multiple threads of execution inside the kernel. I assure you that with a little effort and
understanding, you can debug kernel problems (and perhaps even enjoy the challenge).

printk ()

The kernel print function, printk (), behaves almost identically to the C library print £ () function. Indeed, throughout this book we have not made use of any
real differences. For most intentions, this is fine; printk () is simply the name of the kernel's formatted print function. It does have some differences, however.
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The Robustness of printk ()

One property of printk () quickly taken for granted is its robustness. The printk () function is callable from just about anywhere in the kernel at anytime. It
can be called from interrupt or process context. It can be called while holding a lock. It can be called simultaneously on multiple processors, yet it does not require the
caller to hold a lock.

It is a resilient function. This is important because the usefulness of printk () rests on the fact that it is always there and always works.
The Nonrobustness of printk ()

A hole in the robustness of printk () does exist. It is unusable before a certain point in the kernel boot process, prior to console initialization. Indeed, if the console
is not initialized, where is the output supposed to go?

This is normally not an issue, unless you are debugging issues very early in the boot process (for example, in setup_arch (), which performs architecture-specific
initialization). Such debugging is a challenge to begin with—the absence of any sort of print method only compounds the problem.

There is some hope, but not a lot. Hardcore architecture hackers use the hardware that does work (say, a serial port) to communicate with the outside world. Trust
me, this is not fun for most people. Some supported architectures do implement a sane solution, however—and others (1386 included) have patches available that also
save the day.

The solutionisaprintk () variant that can output to the console very early in the boot process: early printk (). The behavior is the sameas printk (),
only the name and its capability to work earlier are changed. This is not a portable solution, however, because not all supported architectures have such a method
implemented. It might become your best friend, though, if it does.

Unless you need to write to the console very early in the boot process, you canrely on printk () to always work.
Loglevels

The major difference between printk () and printf () is the capability of the former to specify a loglevel. The kernel uses the loglevel to decide whether to
print the message to the console. The kernel displays all messages with a loglevel below a specified value on the console.

You specify a loglevel like this:

printk (KERN_WARNING "This is a warning!\n");
printk (KERN DEBUG "This is a debug notice!\n");
printk ("I did not specify a loglevel!\n");

The KERN_WARNING and KERN DEBUG strings are simple defines found in <1inux/kernel.h>. They expand to a string such as "<4>" or "<7>" that is
concatenated onto the front of the printk () message. The kernel then decides which messages to print on the console based on this specified loglevel and the
current console loglevel, console loglevel. Table 15.1 is a full listing of the available loglevels.
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Table 15.1 Available loglevels

Loglevel Description

KERN EMERG An emergency condition

KERN_ALERT A problem that requires immediate attention
KERN_CRIT A critical condition

KERN_ ERR An error

KERN_WARNING A warning

KERN_NOTICE A normal, but perhaps noteworthy, condition
KERN_ INFO An informational message

KERN DEBUG A debug message—typically superfluous

If'you do not specify a loglevel, it defaults to DEFAULT MESSAGE LOGLEVEL, which is currently KERN WARN ING. Because this value might change, you
should always specify a loglevel for your messages.

The kernel defines the most important loglevel, KERN_EMERG, as "<0>" and it defines KERN_DEBUG, the least critical loglevel, as " <7>". For example, after the
preprocessor is done, our previous examples resemble:

printk ("<4>This is a warning!\n");
printk ("<7>This is a debug notice!\n");
printk ("<4>I did not specify a loglevel!\n");

The avenue you take with your printk () loglevels is up to you. Of course, normal messages you intend to keep around should have the appropriate loglevel. But
the debugging messages you sprinkle everywhere when trying to get a handle on a problem—admit it, we all do it and it works—can have any loglevel you want. One
option is to leave your default console loglevel where it is, and make all your debugging messages KERN_CRIT or so. Conversely, you can make the debugging
messages KERN _DEBUG and change your console loglevel. Each has pros and cons; you decide.

The Log Buffer

Kernel messages are stored in a circular buffer of size LOG_BUF_LEN. This size is configurable at compile time via the CONFIG_LOG BUF_ SHIFT option. The
default for a uniprocessor machine is 16KB. In other words, the kernel can simultaneously store 16KB of kernel messages. If it is at this maximum and it receives
another message, it overwrites the oldest message. The log buffer is called circular because the reading and writing occurs in a circular pattern.

Using a circular buffer has multiple advantages. Because it is easy to simultaneously write to and read from a circular buffer, even interrupt context can easily use
printk (). Furthermore, it makes log maintenance easy. If there are too many messages, new messages simply overwrite the older ones. If there is a problem that
results in the generation of many messages, the log simply overwrites itself in lieu of uncontrollably consuming
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memory. The lone disadvantage of a circular buffer—the possibility of loosing messages—is a small price to pay for the simplicity and robustness it affords.
syslogd and klogd

On a standard Linux system, the user-space k1 ogd daemon retrieves the kernel messages from the log buffer and feeds them into the system log file via the
syslogd daemon. To read the log, the k1 ogd program can either read the /proc/kmsg file or call the syslog () system call. By default, it uses the /proc
approach. In either case, k1 ogd blocks until there is new kernel messages to read. It then wakes up, reads any new messages, and processes them. By default, it
sends the messages to the s ys1ogd daemon.

The sys1logd daemon appends all the messages it receives to a file, which is by default /var/log/messages. Itis configurable
via /etc/syslog.conf.

You can have k1 ogd change the console loglevel when it loads by specifying the - c flag when starting it.

A Note About printk () and Kernel Hacking

When you first start developing kernel code, you most likely will often transpose printf () forprintk (). Itis only natural because you cannot deny years of
experience using print £ () inuser-space programs. Hopefully, this mistake won't last long because the repeated linker errors will eventually grow rather annoying.

Someday, you might find yourself accidentally using printk () instead of printf () in your user-space code. When that day comes, you can say you are a true
kernel hacker.

QOops

An oops is the usual way a kernel says to the user something bad happened. Because the kernel is the supervisor of the entire system, it cannot simply fix itself or kill
itself as it can when user-space goes awry. Instead, the kernel issues an oops. This involves printing an error message to the console, dumping the contents of the
registers, and providing a back trace. A failure in the kernel is hard to manage, so the kernel must jump through many hoops to issue the oops and clean up after itself.
Often, after an oops the kernel is in an inconsistent state. For example, the kernel could have been in the middle of processing important data when the oops occurred.
It might have held a lock or been in the middle of talking to hardware. The kernel must gracefully back out of its current context and try to resume control of the system.
In many cases, this is not possible. If the oops occurred in interrupt context, the kernel cannot continue and it panics. A panic results in an instant halt of the system. If
the oops occurred in the idle task (pid zero) or the init task (pid one), the result is also a panic because the kernel cannot continue without these important processes. If
the oops occurs in any other process, however, the kernel kills the process and tries to continue executing.

An oops might occur for multiple reasons, including a memory access violation or an illegal instruction. As a kernel developer, you will often deal with (and undoubtedly
cause) oopses.



What follows is an oops example from a PPC machine, in the timer handler of the tulip network interface card:

Oops: Exception in kernel mode, sig: 4
Unable to handle kernel NULL pointer dereference at virtual address 00000001

NIP: CO13A7F0 LR: CO13A7F0 SP: CO0685E00 REGS: c0905d10 TRAP: 0700

Not tainted

MSR: 00089037 EE: 1 PR: 0 FP: 0 ME: 1 IR/DR: 11

TASK = c0712530[0] 'swapper' Last syscall: 120

GPROO: CO13A7CO C0295E00 C0231530 0000002F 00000001 C0380CB8 C0291B80 C02D0000
GPR08: 000012A0 00000000 00000000 CO292AA0 4020A088 00000000 00000000 00000000
GPR16: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
GPR24: 00000000 00000005 00000000 00001032 C3F7C000 00000032 FFFFFFFF C3F7C1CO
Call trace:

[c013ab30] tulip timer+0x128/0xlc4
[c0020744] runitimerisoftirq+0x10c/Oxl64
[c001b864] do softirg+0x88/0x104
[c0007e80] timeriinterrupt+0x284/Ox298
[c00033c4] ret from except+0x0/0x34
[c0007b84] default idle+0x20/0x60
[c0007bf8] cpu idle+0x34/0x38

[c0003ae8] rest_init+0x24/0x34

PC users might marvel at the number of registers (a whopping 32!). An oops on x86, which you might be more familiar with, is a little simpler. The important

information, however, is identical for all the architectures: the contents of the registers and the back trace.
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The back trace shows the exact function call chain leading up to the problem. In this case, we can see exactly what happened: the machine was idle and executing the
idle loop, cpu_idle (), whichcallsdefault idle () inaloop. The timer interrupt occurred, which resulted in the processing of timers. A timer handler, the
tulip timer () function, was executed, which performed a NULL pointer dereference. You can even use the offsets (those numbers like 0x728/0x1c4 to the

right of the functions) to find exactly the offending line.

The register contents can be equally useful, although less commonly so. With a decoded copy of the function in assembly, the register values help you recreate the exact
events leading to the problem. Seeing an unexpected value in a register might shine some light on the root of the issue. In this case, we can see which registers held
NULL (a value of all zeros) and discover which variable in the function had the unexpected value. In situations such as this, the problem is often a race—in this case,

between the timer and some other part of this network card. Debugging a race condition is always a challenge.
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ksymoops

The previous oops is said to be decoded because the memory addresses are translated into the functions they represent. An undecoded version of the previous oops is
shown here:

NIP: CO13A7F0 LR: CO13A7F0 SP: CO0685E00 REGS: c0905d10 TRAP: 0700

Not tainted

MSR: 00089037 EE: 1 PR: 0 FP: 0 ME: 1 IR/DR: 11

TASK = c0712530[0] 'swapper' Last syscall: 120

GPROO: CO13A7CO C0295E00 C0231530 0000002F 00000001 C0O380CB8 C0291B80 C02D0000
GPRO8: 000012A0 00000000 00000000 CO0292AA0 4020A088 00000000 00000000 00000000
GPR16: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
GPR24: 00000000 00000005 00000000 00001032 C3F7C000 00000032 FFFFFFFF C3F7C1CO
Call trace: [c013ab30] [c0020744] [c001b864] [c0007e80] [c00061c4]

[c0007b84] [c0007bf8] [c0003ae8]

The addresses in the back trace need to be converted into symbolic names. This is done via the ks ymoops command in conjunction with the System.map
generated during kernel compile. If you are using modules, you also need some module information. ks ymoops tries to figure out most of this information, so you can
usually invoke it via

ksymoops saved oops.txt

The program then spits out a decoded version of the oops. If the default information k s ymoops uses is unacceptable, or you want to provide alternative locations for
the information, the program understands various options. Its manual page has a lot of information that you should read before using.

The ks ymoops program most likely came with your distribution.
kallsyms

Thankfully, dealing with ks ymoopss is no longer a requirement. This is a big deal, because while developers might have had little problem using it, end users often
mismatch System.map files or fail to decode oopses altogether.

The 2.5 development kernel introduced the ka11syms feature, which is enabled via the CONFIG KALLSYMS configuration option. This option loads the
symbolic kernel name of memory address mapping into the kernel image, so the kernel can print predecoded back traces. Consequently, decoding oopses no longer
requires System.map or ksymoops. On the downside, the size of the kernel increases a bit, as the address to symbol mappings must reside in permanently
mapped kernel memory. It is worth the memory use, however, at least during development.

Kernel Debugging Options

Multiple configure options that you can set during compile to aid in debugging and testing kernel code are available. These options are in the Kernel hacking menu of
the
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kernel configuration editor. They all depend on CONFIG_DEBUG_KERNEL. When hacking on the kernel, consider enabling as many of these options as practical.

Some of the options are rather useful, enabling slab layer debugging, high-memory debugging, I/O mapping debugging, spin-lock debugging, and stack-overflow
checking. One of the most useful settings, however, is the sleep-inside-spinlock checking, which actually does much more.

Atomicity Debugging

Starting with 2.5, the kernel has an excellent infrastructure for detecting all sorts of atomicity violations. Recall from Chapter 7, "Kernel Synchronization Introduction,"
atomic refers to something's capability to execute without division; the code completes without interruption or it does not complete at all. Code that holds a spin lock or
has disabled kernel preemption is atomic. Code cannot sleep while atomic—sleeping while holding a lock is a recipe for deadlock.

Thanks to kernel preemption, the kernel has a great atomicity counter. The kernel can be set such that if a task sleeps while atomic, or even does something that might
sleep, the kernel will print a warning and provide a back trace. Potential bugs that are detectable include calling schedule () while holding a lock, issuing a blocking
memory allocation while holding a lock, or sleeping while holding a reference to per-CPU data. This debugging infrastructure catches a lot of bugs and is highly
recommended.

The following options make the best use of this feature:

CONFIG_PREEMPT=y
CONFIG_DEBUG_KERNEL=y
CONFIG_KALLSYMS=y
CONFIG_SPINLOCK_SLEEP=y

Causing Bugs and Dumping Information

A number of kernel routines make it easy to flag bugs, provide assertions, and dump information. Two of the most common are BUG () and BUG_ON () . When
called, they cause an oops, which results in a stack trace and an error message dumped to the kernel. Why these statements cause an oops is architecture-dependent.
Most architectures define BUG () and BUG_ON () to illegal instructions, which result in the desired oops. You normally use these routines as assertions, to flag
situations that should not happen:

if (bad_thing)
BUG () ;

Or, even better,
BUG_ON (bad_thing) ;

A more critical error is signaled via panic (). Acallto panic () prints an error message and then halts the kernel. Obviously, you only want to use it in the worst
of situations:
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if (terrible thing)
panic("foo is %1d!\n", foo);

Sometimes, you just want a simple stack trace issued on the console to help you in debugging. In those cases, dump _stack () isused. It simply dumps the contents
of the registers and a function back trace to the console:

if (!debug_check) {
printk (KERN_DEBUG "provide some information...\n");
dump_stack();

Magic SysRq Key

A possible lifesaver is the Magic SysRq Key, which is enabled via the CONFIG_MAGIC_SYSRQ configure option. The Sy sRq (system request) key is a standard
key on most keyboards. On 1386 and PPC, it is accessible via ALT-PrintScreen. When this configure option is enabled, special combinations of keys enable
you to communicate with the kernel regardless of what else it is doing. This allows you to perform some useful tasks in the face of a dying system.

In addition to the configure option, there is a sysctl to toggle this feature on and off. To turn it on:

echo 1 > /proc/sys/kernel/sysrq

From the console, you can hit SysRqg-h for a list of available options. Sy sRqg-s syncs dirty buffers to disk, Sy sRg—-u unmounts all file systems, and SysRg-b
reboots the machine. Issuing these three key combinations in a row is a safer way to reboot a dying machine than simply hitting the machine reset switch.

If the machine is badly locked, it might not respond to any Magic SysRq combinations, or it might fail to complete a given command. With luck, however, these options
might save your data or aid in debugging. Table 15.2 is a listing of the supported SysRq commands.

Table 15.2 Supporting SysRg Commands

Key Command Description

SysRg-b Reboot the machine

SysRg-e Send a SIGTERM to all processes except init
SysRg-h Display SysRq help on the console

SysRg-i Send a SIGKILL to all processes except init
SysRg-k Secure Access Key: kill all programs on this console
SysRg-1 Send a SIGKILL to all processes including init
SysRg-m Dump memory information to console

SysRg-o Shutdown the machine
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SysRg-p Dump registers to console

SysRg-r Turn off keyboard raw mode
SysRg-s Sync all mounted file systems to disk
SysRg-t Dump task information to console
SysRg-u Unmount all mounted file systems

The file Documentation/sysrq. txt in the kerel source tree has more information. The actual implementation isin drivers/char/sysrq.txt. The
Magic Sy sRqg Key is a vital tool for aiding in debugging or saving a dying system. Because it provides powerful capabilities to any user on the console, however, you
should exercise caution on important machines. For your development machine, however, it is a great help.

The Saga of a Kernel Debugger

Many kernel developers have long demanded an in-kernel debugger. Unfortunately, Linus does not want a debugger in his tree. He believes that debuggers lead to bad
fixes by misinformed developers. No one can argue with his logic—a fix derived from real understanding of the code is certainly more likely to be correct. Nonetheless,
plenty of kernel developers still want an official in-kernel debugger. Because it is unlikely to happen anytime soon, a number of patches have arisen that add kernel-

debugging support to the standard Linux kernel. Despite being external unofficial patches, these tools are quite well featured and powerful. Before we delve into these
solutions, let's look at how much help the standard Linux debugger, gdb, will give us.

gdb

You can use the standard GNU debugger to glimpse inside a running kernel. Starting the debugger on the kernel is about the same as debugging a running process:
gdb vmlinux /proc/kcore

The vm1 inux file is the uncompressed kernel image stored in the root of the build directory, not the compressed z Image or bz Image.

The optional /proc/kcore parameter acts as a core file, to let gdb actually peak into the memory of the running kernel. You need to be root to read it.

You can issue just about any of the gdb commands for reading information. For example, to print the value of a variable:

p global_variable

To disassemble a function:

disassemble function
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If you compile the kernel with the —g flag (add —g to the CFLAGS variable in the kermnel Make £i1e), gdb is able to provide much more information. For example,
you can dump the contents of structures and follow pointers. You also get a much larger kernel, so do not routinely compile with debugging information included.

Unfortunately, this is about the limit of what gdb can do. It cannot modify kernel data in any way. It is unable to single step through kernel code or set breakpoints.
The inability to modify kernel data structures is a large downside. Although it is undoubtedly useful to disassemble functions on occasion, it would be much more useful
to modify data, too.

kgdb
kgdb is a patch that enables gdb to fully debug the kernel remotely over a serial line. It requires two computers. The first runs a kernel patched with kgdb. The
second debugs the first over the serial line (a null modem cable connecting the two machines) using gdb. With kgdb, the entire feature set of gdb is accessible:

reading and writing any variables, settings breakpoints, setting watch points, single stepping, and so on! Special versions of kgdb even allow function execution.

Setting up kgdb and the serial line is a little tricky, but when complete, debugging is simple. The patch installs plenty of documentation in Documentation/—
check it out.

Different people maintain the kgdb patch for various architectures and kernel releases. Searching online is your best bet for finding a patch for a given kernel.

kdb

An alternative to kgdb is kdb. Unlike kgdb, kdb is not a remote debugger. kdb is a kernel patch that extensively modifies the kernel to allow direct debugging on
the host system. It provides variable modification, breakpoints, and single stepping, among other things. Running the debugger is simple: simply hit the break key on
the console. The debugger also automatically executes when the kernel oopses. Much documentation is available in Documentation/kdb, after the patch is
applied.

kdbisavailableat http://oss.sqgi.com/.

Poking and Probing the System

As you gain experience in kernel debugging, you gain little tricks to help you poke and probe the kernel for answers. Because kernel debugging can prove rather
challenging, every little tip and trick helps. Let's look at a couple.

Using UID as a Conditional

If the code you are developing is process-related, sometimes you can develop alternative implementations without breaking the existing code. This is helpful if you are
rewriting an important system call and would like a fully functional system with which to debug
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it. For example, assume you are rewriting the fork () algorithm to take advantage of an exciting new feature. Unless you get everything right on the first try, it would
not be easy to debug the system, as a nonfunctioning fork () system call will certainly result in a nonfunctioning system. As always, there is hope.

Often, it is safe to keep the remaining algorithm in place and construct your replacement on the side. You can achieve this by using the user id (UID) as a conditional
with which to decide which algorithm to use:

if (current->uid != 7777) {
/* old algorithm .. */
} else {
/* new algorithm .. */

}

All users except UID 7777 will use the old algorithm. You can create a special user, with UID 7777, for testing the new algorithm. This makes testing critical process-
related code much easier.

Using Condition Variables

If the code in question is not in process context, or if you want a more global method of controlling the feature, you can use a condition variable. This approach is even
simpler that using the UID. Simply create a global variable and use it as a conditional check in your code. If the variable is zero, you follow one code path. If it is
nonzero, you follow another. The variable can be set via an interface you export or a poke from the debugger.

Using Statistics

Sometimes you want to get a feel for how often a specific event is occurring. Sometimes you want to compare multiple events and generate some ratios for comparison.
This is easily done by creating statistics and a mechanism to export their values.

For instance, say we want to look at the occurrence of foo and the occurrence of bar. In a file, ideally the one where these events occur, declare two global variables:

unsigned long foo stat = 0;
unsigned long bar_stat 0;

For each occurrence of these events, increment the appropriate variable. Then, export the data how ever you feel fit. For example, you can create a file in / proc with
the values or write a system call. Alternatively, simply read them via a debugger.

Note, this approach is not particularly SMP-safe. Ideally, you would use atomic operations. For a trivial one-time debugging statistic, however, you normally do not
need such protection.
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Rate Limiting Your Debugging

Oftentimes, you want to stick some debugging checks (with some corresponding print statements) in an area to sniff out a problem. In the kernel, however, some
functions are called numerous times per second. If you stick a call to printk () insuch a function, the system is overwhelmed with debugging output and quickly
grows unusable.

Two relatively simple tricks exist to prevent this problem. The first is rate limiting, which is useful when you want to watch the progression of an event, but the event
occurs rather often. To prevent a deluge of debugging output, you only print your debug message (or do whatever you are doing) every few seconds. For example:

static unsigned long prev jiffy = jiffies; /* rate limiting */
if (time_after(jiffies, prev_jiffy + 2*HZ)) {

prev_jiffy = jiffies;
printk (KERN_ERR "blah blah blah\n");

In this example, the debug message is printed at most every two seconds. This prevents any flood of information on the console and the computer remains usable. You
might need the rate limiting to be larger or smaller, depending on your needs.

Another sticky situation arises if you are looking for any occurrence of an event. Unlike the previous example, you do not want to monitor the progress of the kernel,
but simply receive a notification when something happens. Perhaps you only want to receive this notice once or twice. This is an especially sticky problem if after the
check is triggered once, it is triggered a lot. The solution here is not to rate limit the debugging, but occurrence limit it:

static unsigned long limit = 0;
if (limit < 5) {
limit++;
printk (KERN_ERR "blah blah blah\n");
This example caps the debugging output to five. After five such messages, the conditional is always false.

In both examples, the variables should be st at ic and local to the function, as shown. This enables the variable's values to persist across functions calls.

Neither of these examples are SMP- or preempt-safe, although a quick switch to atomic operators will make them safe. Frankly, however, this is just debugging code,
so why go through the trouble?
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Binary Searching to Find the Culprit Change

It is usually useful to know when a bug was introduced into the kernel source. If you know a bug occurred in version 2.4.18, but not 2.4.17, then you have a clear
picture of the changes that occurred to cause the bug. The bug fix is often as simple as reverting or otherwise fixing the bad change.

Many times, however, you do not know what kernel version introduced the bug. You know the bug is in the current kernel, but it seemed to always have been in the
current kernel. It takes some investigative work, but with a little effort, you can find the offending change. With the change in hand, the bug fix is usually near.

To start, you need a reliably reproducible problem. Preferably, a bug you can verify immediately after boot. Next, you need a known-good kernel. You might already
know this. For example, you know a couple months back the kernel worked, so grab a kernel from that period. If you are wrong, try an earlier release. It shouldn't be
too hard—unless the bug has existed forever—to find a kernel without the bug.

Next, you need a known-bad kernel. To make things easier, start with the earliest kernel you know to have the bug.

Now, you begin a binary search from the known-bad kernel down to the known-good kernel. Let's look at an example. Assume the latest known-good kernel is
2.4.11 and the earliest known-bad is 2.4.20. Start by picking a kernel in the middle, such as 2.4.15. Test 2.4.15 for the bug. If 2.4.15 works, then you know the
problem began in a later kernel, so try a kernel in between 2.4.15 and 2.4.20—say, 2.4.17. On the other hand, if 2.4.15 does not work, then you know the problem is

in an earlier kernel, so you might try 2.4.13. Rinse and repeat.

Eventually you should narrow the problem down to two kernels—one of which will have the bug and one of which will not. You then have a clear picture of the
changes that caused the bug.

This approach beats looking at every kernel!

When All Else Fails: The Community

Perhaps you have tried everything you know. You have slaved over the keyboard for countless hours—indeed, perhaps countless days—and the solution still escapes
you. If the bug is in the mainstream Linux kernel, you can always elicit the help of the other developers in the kernel community.

A Drief, but complete, email sent to the kernel mailing list describing the bug and your findings might help aid in discovery of a solution. After all, no one likes bugs.

Chapter 17, "Patches, Hacking, and the Community," specifically addresses the community and its primary forum, the Linux Kernel Mailing List (LKML).
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16
Portability

Linux 1s A PORTABLE OPERATING sysTEM that supports a wide range of computer architectures. Portability refers to how easily—if at all—code can move from one system
architecture to another. We all know that Linux is portable because it has already been ported to various systems. But this portability did not occur overnight—it
required many design decisions along the way. Consequently, now it is easy (relatively speaking) to bring Linux up on a new system. This chapter discusses how to
write portable code—the issues you need to keep in mind when writing core kernel code or device drivers.

Some operating systems are designed with portability as a primary feature. As little code as possible is machine-specific. Assembly is kept to a minimum and interfaces
and features are sufficiently general and abstract that they work on a wide range of architectures. The obvious benefit is the relative ease with which a new architecture
can be supported. In some cases, highly portable and simple operating systems can be moved to a new architecture with just a few hundred lines of unique code. The
downside is that architecture-specific features are not supported and code cannot be hand-tuned for a specific machine. With this design choice, optimal code is traded
for portable code. Some examples of highly portable operating systems are Minix, NetBSD, and many research systems.

On the opposite side are operating systems that trade all portability for highly customized optimum code. As much as possible, code is written in assembly or otherwise
designed for a specific architecture. Kernel features are designed around specific architectural features. Consequently, moving the operating system to a new
architecture is tantamount to writing a kernel from scratch. With this design decision, portable code is traded for optimal code. Such systems are often harder to
maintain than more portable systems. Example systems are DOS and Windows 9x. Now, these systems need not be more optimal than a more portable system; they
have, however, the ability to hand-tune as much code as possible.

Linux takes the middle road toward portability. As much as practical, interfaces and core code are architecture-independent C code. Where performance is critical,
however, kernel features are tuned for each architecture. For example, much fast-path and
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low-level code is architecture-dependent and often assembly. This approach enables Linux to remain portable without forgoing optimizations. Where portability would
hinder performance, performance generally wins. Otherwise, code is kept portable.

Generally, exported kernel interfaces are architecture-independent. If there are any parts of the function that need be unique for each supported architecture (either for
performance reasons or as a necessity), that code is implemented in separate functions and called as needed.

A good example is the scheduler. The large majority of the scheduler is written in architecture-independent C and lives in kernel/sched. c. A few jobs of the
scheduler, such as switching processor state or switching the address space, are very architecture-dependent. Consequently, the C method context switch (),
which switches from one process to another, calls the methods switch to () and switch mm (), to switch processor state and switch address space,
respectively.

The code for switch to () and switch mm () is uniquely implemented for each architecture Linux supports. When Linux is ported to a new architecture, the
new architecture simply provides an implementation for these functions.

Architecture-specific files are located in arch/<architecture>/ and include/asm-<architecture>/ where <architecture> isashort
name representing each architecture in Linux. As an example, the Intel x86 architecture is given the short name 1 3 8 6. Architecture-specific files for these machines live
inarch/i386 and include/asm-1i386. The supported architectures in the 2.6 kernel series are alpha, arm, cris, h8300, 1386, 1a64, m68k,
m68knommu, mips, mips64, parisc, ppc, ppc64,s390, sh, sparc, sparc64,um, v850, and x86-64. A more complete listing of these
architectures is in Table 16.1.

History of Portability in Linux

‘When Linus first unleashed Linux on the unsuspecting world, it ran only on Intel 386 machines. Although the operating system was rather generalized and well written,
portability was not a major concern. In fact, Linus even once suggested Linux would never run on anything but the 1386 architecture! In 1993, however, work began on
porting Linux to the Digital Alpha architecture. The Digital Alpha was a modern high-performance RISC-based architecture with 64-bit memory addressing. This is a
stark contrast to Linus's original 386. Nonetheless, the initial port of Linux to the Alpha took about a year and the Alpha became the first officially supported
architecture after x86. This port was perhaps rather difficult because it had the unwelcome challenge of being the first. Instead of simply grafting onto the kernel support

for the Alpha, pieces of the kernel were rewritten as needed with portability in mind". Although this made for more work overall, the result was much cleaner and future
porting was made much easier.

' This is a common occurrence in kernel development. If something is going to be done at all, it should be done right! Kernel developers are not averse to rewriting
large amounts of code in the name of perfection.
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Although the first releases of Linux supported only the Intel x86 architecture, the 1.2 kernel series supported Digital Alpha, Intel x86, MIPS, and SPARC—although
support was somewhat experimental.

With the release of the 2.0 kernel, Linux officially added support for the Motorola 68k and PowerPC. Additionally, the architectures previously supported in 1.2
became official and stable.

The 2.2 kernel series brought even more architecture support, with the addition of ARM, IBM S/390, and UltraSPARC. A few years later, 2.4 nearly doubled the
number of supported architectures to 15, as support was added for the CRIS, IA-64, 64-bit MIPS, HP PA-RISC, 64-bit IBM S/390, and Hitachi SH.

The current kernel, 2.6, brought the number of supported architectures to 20 with the addition of Motorola 68k without MMU, H8/300, IBM POWER, v850, x86-
64, and a version of the kernel that runs in a virtual machine under Linux, known as Usermode Linux. The 64-bit s390 port was folded into the 32-bit s390 port,
removing the duplication.

It should be noted that each of these architectures supports various chip and machine types. Some supported architectures, such as ARM and PowerPC, each support
many different chips and machine types. Therefore, although Linux runs under 20 broad architectures, it runs on many more different machines!

Word Size and Data Types

A word is the amount of data that a machine can process at one time. This fits into the document analogy that includes characters (eight bits) and pages (many words)
as other measurements of data. A word is some number of bits—most commonly, 16, 32, or 64. When someone talks about the "n-bits" of a machine, they are
generally talking about the machine's word size. For example, when people say the Pentium is a 32-bit chip, they are referring to its word size, which is 32-bits, or four
bytes.

The size of a processor's general-purpose registers is equal to its word size. Usually, the widths of the components in a given architecture—for example, the memory

bus—are at least as wide as the word size. Typically, at least in the architectures Linux supports, the memory address space is equal to the word size’. Consequently,
the length of a pointer is equal to the word size. Additionally, the size of the C type 1 ong is equal to the word size, whereas the size of the i nt type is sometimes less
than that of the word size. For example, the Alpha has a 64-bit word size. Consequently, registers, pointers, and the 1 ong type are 64-bits in length. The i nt type,
however, is 32-bits long. The Alpha can access and manipulate 64-bits, one word, at a time.

? However, the actual addressable memory may be less than the word size. For example, while a 64-bit architecture would have 64-bit pointers, only 48-bits may be
usable and addressable. In addition, the total physical memory may be larger than the word size, thanks to things like Intel's PAE.
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Some operating systems and processors do not call the standard data size a word. Instead, a word is some fixed size based on history or arbitrary naming
decisions. For example, some systems might partition data sizes into bytes (8-bits), words (16-bits), double words (32-bits), and quad words (64-bit) despite the
fact the system in question may be 32-bit. In this book—and Linux in general—a word is the standard data size of the processor, as discussed previously.

Each supported architecture under Linux defines BITS PER LONGin <asm/types.h> to the length of the C 1 ong type, which is the system word size. A full

listing of all supported architectures and their word size is in Table 16.1.

Table 16.1 Supported Linux Architectures
Architecture
alpha

arm

cris
h8300
i386

ia64

m68k
mé68knommu
mips
mips64
parisc
ppc

ppc64
5390

sh

sparc
sparcé64
um

v850

x86_64

Description

Digital Alpha

ARM and StrongARM
CRIS

H8/300

Intel x86

1A-64

Motorola 68k

m68k without MMU
MIPS

64-bit MIPS

HP PA-RISC 32-bit or
PowerPC

POWER

IBM S/390

Hitachi SH

SPARC

UltraSPARC
Usermode Linux

v850

x86-64

Word size
64-bit
32-bit
32-bit
32-bit
32-bit
64-bit
32-bit
32-bit
32-bit
64-bit
64-bit
32-bit
64-bit
32-bit or 64-bit
32-bit
32-bit
64-bit
32-bit or 64-bit
32-bit
64-bit

The C standard explicitly leaves the size of the standard variable types up to implementations3. The uncertainty in the standard C types across architectures is both a
pro and a con. On the plus side, the standard C types can take advantage of the word size of various architectures and types need not explicitly specify a size. Under

Linux,a long is

® With the exception of cha r, which is always 8-bits (one byte).



Page 271

guaranteed to be the machine's word size. This is not strictly true of ANSI C, but is standard practice in Linux. On the downside, however, code cannot assume the

standard C types have any specific size. Furthermore, there is no guarantee that an int is the same sizeasa lon g

The situation grows even more confusing because there doesn't need to be a relation between the types in user-space and kernel-space. The sparc 64 architecture
provides a 32-bit user-space and therefore pointers and both the i nt and 1 ong types are 32-bit. In kernel-space, however, sparc64 has a 32-bit i nt type and
64-bit pointers and 1 ong types. This is not the norm, however.

Some rules to keep in mind:

* As dictated by the ANSI C standard, a char is always 8-bits (1 byte).

* Although there is no rule that the int type be 32-bits, it is on all currently supported architectures.

* The same goes for the short type, which is 16-bits on all current architectures.

* Never assume the size of a pointer or a 1 ong, which can be either 32- or 64-bits on currently supported machines.

* Because the size of a 1 ong varies on different architectures, never assume sizeof (int) == sizeof (long).

* Likewise, do not assume a pointer and an int are the same size.
Opaque Types

Opaque data types do not reveal their internal format or structure. They are about as black box as you can get in C. There is not a lot of language support for them.
Instead, developers declare a t ypede £, call it an opaque type, and hope no one typecasts it back to a standard C type. All use is generally through a special set of
interfaces the developer creates. An example is the pid_ t type, which stores a process identification value. The actual size of this type is not revealed—although
anyone can cheat and take a peak and see it is an int. If no code makes explicit use of this type's size, it can be changed without much hassle. Indeed, this was once
the case: in older Unix systems, pid_t was declared asa short.

Another example of an opaque type is atomic_t. Asdiscussed in Chapter 8, "Kernel Synchronization Methods," this type holds an integer value that can be
manipulated atomically. Although this type is an i nt, using the opaque type helps ensure the data is used only in the special atomic operation functions. The opaque
type also helps hide the size of the type, which is not always the full 32-bits.

* On the 64-bit architectures supported in Linux, in fact, an int and a 1 ong are not the same size; an int is 32-bits and a 1 ong is 64-bits. The 32-bit
architectures we are all familiar with have both types equal to 32-bits.
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Other examples of opaque types in the kernel include dev_t, gid t,and uid t.Rules when dealing with opaque types:

* Do not assume the size of the type.
* Do not typecast the type back to a standard C type.

* Write your code so that the actual storage and format of the type can change.
Special Types

Some data in the kernel, despite not being represented by an opaque type, requires a specific data type. Two examples are j i £ £y counts and the £ 1 ags parameter
used in interrupt control, both of which should always be stored in an unsigned long.

When storing and manipulating specific data, always pay careful attention to the data type that represents the type and use it. It is a common mistake to store one of
these values in another type, such as unsigned int. Although this will not result in a problem on 32-bit architectures, 64-bit machines will have trouble.

Explicitly Sized Types
Often, as a programmer, you need explicitly sized data in your code. This is usually to match an external requirement, such as with hardware, networking, or binary
files. For example, a sound card might have a 32-bit register, a networking packet might have a 16-bit field, or an executable file might have an 8-bit cookie. In these

cases, the data type that represents the data needs to be exact/y the right size.

The kernel defines these explicitly sized data types in <asm/types . h>, whichis included by <1inux/types.h>. Table 16.2 is a complete listing.

Table 16.2 Explicitly-Sized Data Types

Type Description

s8 signed byte

u8 unsigned byte

sl6 signed 16-bit integer
ulé unsigned 16-bit integer
532 signed 32-bit integer
u32 unsigned 32-bit integer
s64 signed 64-bit integer
u64 unsigned 64-bit integer

The signed variants are rarely used.

These explicit types are merely t ypede £'s to standard C types. On a 64-bit machine, they may look like:
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typedef signed char s8;
typedef unsigned char u8;
typedef signed short sl6;
typedef unsigned short ulé6;
typedef signed int s32;
typedef unsigned int u32;
typedef signed long s64;
typedef unsigned long u64;

While on a 32-bit machine, they are probably defined as:

typedef signed char s8;

typedef unsigned char u8;
typedef signed short sl6;
typedef unsigned short ul6;
typedef signed int s32;

typedef unsigned int u32;
typedef signed long long s64;
typedef unsigned long long u64;

Signedness of Chars

The C standard says that the char data type can be either signed or unsigned. It is the responsibility of the compiler, the processor, or both to decide what the
suitable default for the char type is.

On most architectures, cha r is signed by default and thus has a range from -128 to 127. On a few other architectures, such as ARM, cha r is unsigned by default
and has a range from 0 to 255.

For example, on systems where a char is by default unsigned, this code ends up storing 255 instead of -1in i:

char i = -1;

On other machines, where char is by default signed, this code correctly stores -1 in 1. If the programmer's intention is to store - 1, the previous code should be
signed char i = -1;

If you use char in your code, assume it can be either a signed char oranunsigned char. Ifyouneed itto be explicitly one or the other, declare it as
such.

Data Alignment

Alignment refers to a piece of data's location in memory. A variable is said to be naturally aligned if it exists at a memory address that is a multiple of its size. For
example, a 32-bit type is naturally aligned if it is located in memory at an address that is a multiple of four (that is, its lowest two bits are zero). Thus, a data type with

size 2" bytes must have an address with the  least significant bits set to zero.
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Some architectures have very stringent demands for the alignment of data. On some systems, usually RISC-based ones, a load of unaligned data results in a processor

trap (a handled error). On other systems, accessing unaligned data works, but results in degradation of performance. When writing portable code, alignment issues
must be avoided and all types should be naturally aligned.

Avoiding Alignment Issues
The compiler generally prevents alignment issues by naturally aligning all data types. In fact, alignment issues are normally not major concerns of the kernel
developers—the gcc folks have to worry about them. Issues arise, however, when the programmer plays too closely with pointers and accesses data outside of the

environment anticipated by the compiler.

Accessing an aligned address with a recast pointer of a larger-aligned address causes an alignment issue (whatever that might mean for a particular architecture). That
is, this is bad:

char dog[10];
char *p = &dog[l];
unsigned long 1 = * (unsigned long *)p;

This example treats the pointer to a char as a pointer to an unsigned 1ong which might result in loading the 32-bit unsigned long from an address that
is not a multiple of four.

If you are thinking, "when in the world would I do this?" you are probably right. Nevertheless, it has come up, and it will again, so be careful. The real-world
examples might not be so obvious.

Alignment of Nonstandard Types
As mentioned, the aligned address of a standard data type is a multiple of the size of that data type. Nonstandard (complex) C types have the following alignment rules:

* The alignment of an array is the alignment of the base type (and thus, each element is further aligned correctly).
* The alignment of a un i on is the alignment of the largest included type.

* The alignment of a structure is the alignment of the largest included type.
Structures also introduce padding, which introduces other issues.
Structure Padding

Structures are padded so that each element of the structure is naturally aligned. For example, consider this structure on a 32-bit machine:

struct foo_struct {
char dog; /* 1 byte */
unsigned long cat; /* 4 bytes */
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unsigned short pig; /* 2 bytes */
char fox; /* 1 byte */
}i

The structure does not look like this in memory because the natural alignment of the members is insufficient. Instead, the compiler creates the structure such that in
memory, the st ruct resembles:

struct foo_struct {

char dog; /* 1 byte */

u8  pad0[3]; /* 3 bytes */
unsigned long cat; /* 4 bytes */
unsigned short pig; /* 2 bytes */
char fox; /* 1 byte */

u8  padl; /* 1 byte */

bi
The padding variables exist to ensure proper natural alignment. The first padding provides a 3-byte waste-of-space to place cat on a 4-byte boundary. This
automatically aligns the remaining types because they are all smaller than cat. The second and final padding is to pad the size of the st ruct itself. The extra byte

ensures the structure is a multiple of four and thus, each member of an array of this structure is naturally aligned.

Note that sizeof (foo struct) returns 12 for either of these structures on most 32-bit machines. The C compiler automatically adds this padding to ensure
proper alignment.

You can often rearrange the order of members in a structure to obviate the need for padding. This gives you properly aligned data without the need for padding, and
therefore a smaller structure:

struct foo_struct {

unsigned long cat; /* 4 bytes */
unsigned short pig; /* 2 bytes */
char dog; /* 1 byte */
char fox; /* 1 byte */

bi

This structure is only eight bytes in size. It might not always be possible to rearrange structure definitions, however. For example, if this structure was specified as part
of a standard or already used in existing code, its order is set in stone. Oftentimes, you might want to use a specific order for other reasons—for example, to best
layout variables to optimize cache hit rates. Note that ANSI C specifies that the compiler itself must never change the order of members in a structure’—it is always up
to you, the programmer.

> If the compiler could arbitrarily change the order of items in a structure, any existing code using the structure would break. In C, functions calculate the location of
variables in a structure simply by adding offsets to the base address of the structure.
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Kernel developers need to be aware of structure padding when using structures wholesale—that is, when sending them out over the network or when saving a structure
directly to disk because the required padding might differ among various architectures. This is one reason C does not have a native structure comparison operator. The
padding in a structure might contain gibberish, and it is not possible to do a byte-by-byte comparison of one structure to another. The C designers (correctly) felt it is
best if the programmer write a comparison function for each unique situation, to take advantage of the structure's layout.

Byte Order

Byte ordering is the order of bytes within a word. Processors can either number the bytes in a word such that the least significant bit is the first (left-most) or last (right-
most) value in the word. The byte ordering is called big-endian if the most significant byte is encoding first with the remaining bytes decreasing in significance. The byte
ordering is called /ittle-endian if the least significant byte is encoded first with the remaining bytes growing in significance.

Do not ever assume any given byte ordering when writing kernel code (unless you are writing code for a specific architecture, of course). The Linux kernel supports
machines of both byte orders—including machines that can select from either ordering upon boot—and generic code must be compatible with either.

Figure 16.1 is an example of a big-endian byte ordering. Figure 16.2 is an example of a little-endian byte ordering.

T

more less
significant significant

Figure 16.1 Big-endian byte ordering.
The 386 architecture is little-endian. Most other architectures are big-endian.
Let's look at what this encoding means in practice. Consider the number 1027, stored as a four-byte integer in binary:
00000000 00000000 00000100 00000011

The internal storage in memory is different on big- verses little-endian, as shown in Table 16.3.
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Figure 16.2 Little-endian byte ordering.

Table 16.3 Explicitly-Sized Data Types

Address Big Endian Little Endian
0 00000000 00000011
1 00000000 00000100
2 00000100 00000000
3 00000011 00000000

Notice how the big-endian architectures store the most significant bytes in its smallest address. This is the exact inverse of little-endian.
As a final example, here is a simple code snippet to test whether a given architecture is big- or little-endian:

int x = 1;

if (* (char *)&x == 1)
/* little endian */
else
/* big endian */

This works either in user-space or inside the kernel.
History of Big and Little Endian

The terms big-endian and little-endian derive from Jonathan Swift's 1726 satirical novel, Gulliver's Travels. In the novel, the fictional Lilliputians major political issue is
whether eggs should be cracked open on the big side or the little side. Those who favor the big side are big-endians, whereas those who favor the small are little-
endians.

The parable to the big-endian versus little-endian debate is that the argument is rooted deeper in politics than technical merits.
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Byte Ordering in the Kernel

Each supported architecture in Linux definesoneof BIG ENDIANor LITTLE ENDIANin<asm/byteorder.h> incorrespondence to the
machine's byte order.

This header file also includes a family of macros from include/linux/byteorder/, which help converting to and from the various orderings. The most
commonly needed macros are

u23 _ cpu_to_be32(u32)
u32 _ cpu_to_le32(u32)
u32 _ be32 to_cpu(u32)
u32  1le32 to cpus(u32

; /* convert cpu's byte order to big-endian */
; /* convert cpu's byte order to little-endian */
; /* convert big-endian to cpu's byte order */
)i /* convert little-endian to cpu's byte order */

These convert from one byte order to another. In the case that the orders are the same (for example, if converting from native ordering to big-endian, and the processor
is big-endian), the macros do nothing. Otherwise, they return the converted value.

Time
Never assume the frequency of the timer interrupt and thus, the number of jiffies per second. Instead, always use HZ to scale your units of time correctly. This is very
important because not only can the timer frequency differ among the various architectures, but it can also change on a given architecture from one kernel release to the

next.

For example, HZ is 1000 on the x86 platforms. That is, the timer interrupt occurs 1000 times per second, or every millisecond. Before 2.6, however, HZ was 100 on
x86. On other architectures, the value differs: Alpha has HZ equal to 1024 and ARM has it equal to 100.

Never simply compare J i f fies toanumber such as 1000 and assume that always means the same thing. To scale time appropriately, multiply or divide by HZ. For
example:

HZ /* one second */
(2*HZ) /* two seconds */
(HZ/2) /* half a second */
(HZ/100) /* 10 ms */
(2*HZ/100) /* 20 ms */

HZ isdefined in <asm/param.h>. This is discussed further in Chapter 9, "Timers and Time Management."

Page Size

When working with pages of memory never assume the page size. It is a common mistake for x86 programmers to assume the page size is 4KB. Although this is true
on x86 machines, other architectures have different sizes. Some architectures support multiple page sizes, in fact! Table 16.4 lists each support architecture's valid page
size(s).

When working with pages of memory, use PAGE _SIZE as the size of a page, in bytes. The value PAGE _SHIFT is the number of bits to left shift an address to get
its page



number. For example, on x86 with 4KB pages, PAGE_SIZE is 4096 and PAGE _SHIFT is 12. These vales are defined in <asm/page . h>.

Table 16.4 Architecture page size(s)

Architecture
alpha

arm

cris

h8300

1386

ia64

m68k
m68knommu
mips

mips64
parisc

ppe

ppc64

$390

sh

sparc
sparc64
v850

x86_64

Processor Ordering

PAGE_SHIFT
13

12,14,15

13

12

12
12,13,14,16
12,13

12

12,13
13
12
12

PAGE_SIZE
8KB
4KB,16KB,32KB

8KB

4KB

4KB

4KB SKB,16KB,64KB
4KB,8KB

4KB

4KB

4KB

4KB

4KB

4KB

4KB

4KB

4KB,8KB

8KB

4KB

4KB
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Recall from Chapter 8, "Kernel Synchronization Methods," that architectures have varying degrees of processor ordering. Some have very strict ordering constraints
where all loads and stores occur in the order prescribed by the code. Other chips have very weak ordering and loads and stores are reordered as the processor sees

fit.

In your code, if you depend on data ordering, ensure even the weakest ordered processor commits your load and stores in the right order by using the appropriate
barriers, such as rmb () and wmb () . Chapter 8, "Kernel Synchronization Methods," has more information.

SMP, Kernel Preemption, and High Memory

It might seem somewhat incorrect to include symmetrical multiprocessing, kernel preemption, and high memory in a discussion of portability. After all, these are not

machine
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characteristics that affect an operating system but instead they are features of the Linux kernel that are indeed somewhat architecture-agnostic. They represent,
however, important configuration options that you should always assume are available in your code. That is, always program for an SMP/preempt/highmem system and
you will always be safe, in any configuration. In addition to following the previous portability rules:

* Always assume your code will run on an SMP system and use appropriate locking.

* Always assume your code will run with kernel preemption enabled and use appropriate locking and kernel preemption statements.

* Always assume your code will run on a system with high memory (nonpermanently mapped memory) and use kmap () as needed.

Portability Is Fun
In short, writing portable, clean, proper code has two major implications:

* Always code for the highest common factor: assume anything can happen and any potential constraint is in place.

* Always assume only the lowest common denominator is available: do not assume any given kernel feature is available and only require the minimum architectural
features.

Writing portable code requires adherence to many issues: wordsize, data type size, alignment, byte order, page size, processor ordering, and so on. In the large
majority of kernel programming, your primary concern is most likely only ensuring that data types are used correctly. Nonetheless, one day an archaic architecture issue
will arise—it is important to understand portability issues and always write clean, portable code inside the kernel.
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17
Patches, Hacking, and the Community

ONE OF THE GREATEST BENEFITS OF LINUX 1S the large community of users and developers that surround it. The community provides eyes to check your code and users to
test and report issues. Additionally, the community ultimately decides what code is accepted into the kernel. Understanding how everything works is very important.

The Community

If the Linux kernel community had to exist somewhere physically, it would call the Linux Kernel Mailing List home. The Linux Kernel Mailing List (or, as the regulars
abbreviate it, just /km/) is the location of the majority of the discussions, debates, and flame wars over the kernel. New features are discussed and most code is posted
to the list before any action is taken. The list sees upward of 300 messages a day, so it is not for the faint of heart. Subscribing (or at least reading a digest or the
archives) is recommended for anyone interested in serious kernel development. You can learn a lot simply by watching the wizards at work.

You can subscribe by sending the message:
subscribe linux-kernel <your@email.address>

in plain text to majordomo@vger . kernel . org. More information canbe hadatht tp: //vger.kernel.orqg/ and a FAQ is available at
http://www.tux.org/lkml/.

Numerous Web sites and other mailing lists pertain to the kernel specifically and Linux in general. An excellent resource for beginning kernel hackers is
http://www.kernelnewbies.org/—a Web site that, of all things, caters to those cutting their teeth on the kernel. Two other excellent sources of kernel
information include ht tp: //www. lwn.net/, Linux Weekly News, which has a great kernel news section, and http: //www.kerneltraffic.org
Kernel Traffic, which includes a summary of the previous week's lkml emails with insightful commentary.
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Linux Coding Style

The Linux Kernel, like any large software project, has a defined coding style that stipulates the formatting, style, and layout of your code. This is done not because the
Linux kernel style is superior (although it is) or because your style is illegible (although it might well be), but because consistency of coding style is crucial to
productivity in coding. Yet, it is often argued that coding style is irrelevant because it does not affect the compiled object code. In a large project, such as the kernel, in
which many developers are involved, consistency of coding style is crucial. Consistency implies familiarity, which leads to ease of reading, lack of confusion, and further
expectations that code will continue to follow a given style. This increases the number of developers who can read your code, and the amount of code in which you can
read. In an open-source project, the more eyes the better.

It is not so important what style is chosen as long as one is indeed selected and used exclusively. Fortunately, Linus long ago laid out the style we should use and most
code sticks to it. The majority of the style is covered in Linus's usual humor in Documentation/CodingStyle.

Indention

The kernel style for indention is to use tabs that are eight characters in length. This does not mean it is okay to use eight spaces for indention or four spaces or anything
else. It means each level of indention is a tab from the previous, and a tab is eight characters. For an unknown reason, this rule is one of the most commonly broken,
despite its very high impact on readability. Eight-character tabs make clearly identifying indention of different code blocks magnitudes easier after hours of hacking.

If eight-character tabs seem too long, stop indenting so much. Why are your functions nested five levels deep, anyhow? Fix the code, not the indention.
Braces

Brace placement is personal, and few technical reasons exist for one convention over the other, but we have to agree on something. The accepted kernel style is to put
the opening brace on the first line, at the end of the statement. The closing brace goes on a new line as the first character. Example:

if (fox) |
dog () ;
cat();
}

Note the closing brace is not on a line by itself when the following token is a continuation of the same statement. For example:

if (fox) {
ant () ;



Page 283

pig();
} else {
dog () ;
cat();
}
And,
do {
dog () ;
cat();

} while(fox);
This rule is broken for functions, because functions cannot nest inside of functions:

unsigned long func(void)
{
VAV
}
Finally, statements that do not need braces can omit them. For example, the following is acceptable:

if (foo)
bar () ;

The logic behind all this is K&R.*
Naming

No name should have mixed case. Calling a local variable 1 dx or even just i is perfectly fine if it is clear what it does. A cute name such as theLoopIndex is
unacceptable. Hungarian notation (encoding the variable type in the variable name) is evil and should never ever be used—this is C not Java, and Unix not Windows.

Nonetheless, global variables and functions should have very descriptive names. Calling a global function atty () is confusing; something like get _active tty
() is much more acceptable. This is Linux, not BSD.

Functions

As arule of thumb, functions should not exceed one or two screens of text and should have less than ten local variables. A function should do one thing and do it well.
There is no harm in breaking a function into a series of smaller functions. If you are worried about function call overhead, use inline.

"The C Programming Language by Brian Kernighan and Dennis Ritchie (Prentice Hall, ISBN# 0-13-11-362-8), nicknamed K&R, is the bible of C, written by C's
author and his colleague.
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Comments

Commenting your code is very important, but the commenting must be done correctly. Generally, you want to describe what and why your code is doing what it is
doing, not sow it is doing it. The #ow should be apparent from the code itself. If not, maybe you need to rethink what you wrote. Additionally, comments should not
include who wrote a function, the modification date, or other trivial nonsense. Such information is generally acceptable at the top of the source file, however.

The kernel uses C-style comments, even though gc c supports C++-style comments, too. The general style of a comment in the kernel resembles:

/*

* get_foo() - return the current value of foo

* We need this to calculate the bar ratio. This can sleep,
* so do not call while holding a lock.

*/

Comments inside of functions are rare, and should be reserved for special needs, such as documenting a bug or an important assumption. In comments, important notes
are often prefixed with " XXX : "', and bugs are often prefixed with "FIXME : " like so:

/*
* FIXME: We assume dog == cat which may not be true in the future
*/

The kernel has a facility for self-generating documentation. It is based on GNOME-doc, but slightly modified and renamed Kernel-doc. To create the standalone
documentation in HTML format, run:

make htmldocs

Or, for postscript,

make psdocs

You can document your functions using the system by following a special format for your comments:
/ *

calculate fox - calculate the fox quotient
@dog - the current dog value

@cat - the current cat value

Must call while holding the fox lock.
/
void calculate_ fox(int dog, int cat)
{
/xo K/
}

* Ok ok ok ok b %

For more information, see Documentation/kernel-doc-nano-HOWTO. txt.
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Typedefs
For various reasons, the kernel developers have a certain hatred for t ypede £ that almost defies explanation. Their rationale is

» typedef hides the real type of data structures.
* Because the type is hidden, code is more prone to do bad things, such as pass a structure by value on the stack.

» typedef isjust being lazy.
Therefore, to avoid ridicule, avoid t ypede f.

Of course, there are a few good uses of t ypede f s:hiding an architecture-specific implementation of a variable or providing forward-compatibility when a type may
change. Decide carefully whether the t ypede £ is truly needed or exists just to reduce the number of characters you need to type.

Using What Is Already Provided
Do not reinvent the wheel. The kernel provides string manipulation functions, compression routines, and a linked list interface, so use them.

Do not wrap existing interfaces in generic interfaces. Often you see code that was obviously ported from one operating system to Linux, and various kernel interfaces
are wrapped in some gross glue function. No one likes this, so just use the provided interfaces directly.

No ifdefs in the Source

Putting i fde £ preprocessor directives directly in the C source is frowned upon. You should never do something like the following in your functions:

#ifdef CONFIG_FOO
foo () ;
#endif

Instead, define foo () tonothingif CONFIG_FOO is not set:

#ifdef CONFIG_FOO
static int foo(void)

{

/* L. %/
}
#else
static inline int foo(void) { }
#endif

Then, you can unconditionally call foo () . Let the compiler do the work for you.
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Structure Initializers

Structures need to be initialized using labeled identifiers. This is good because it prevents structure changes from resulting in incorrect initialization. It also enables values
to be omitted. Unfortunately, C99 adopted quite an ugly format for labeled identifiers, and gcc is deprecating usage of the previous GNU-style labeled identifier,
which was rather handsome. Consequently, kernel code needs to use the new C99 labeled identifier format, however ugly it is

struct foo my_foo = {
.a = INITIAL A,
.b = INITIAL_B,
}i

where a and b are members of struct fooand INITIAL Aand INITIAL B are their initialized values, respectively. If a field is not set, it is set to its default
value per ANSI C (for example, pointers are NULL, integers are zero, and floats are 0.0). For example, if struct fooalsohas int c asamember, the
previous statement would initialize ¢ to zero.

Yes, it is ugly. No, we do not have a choice.

Fixing Code Up Ex Post Facto

If a pile of code falls into your lap that fails to even mildly resemble the Linux kernel coding style, do not fret. A little elbow grease and the i ndent utility will make
everything perfect. The i ndent program, an excellent GNU utility found on most Linux systems, formats source according to given rules. The default settings are for
the GNU coding style, which is not too pretty. To get the utility to follow the Linux kernel style, do

indent -kr -i8 -ts8 -sob -180 -ss -bs -psl <file>

This instructs the utility to format the code according to the kernel coding style. Alternatively, the script scripts/Lindent automatically invokes i ndent with
the desired options.

Chain of Command

Kernel hackers are the developers who work on the kernel. Some do it for pay, some as a hobby, but nearly all for fun. Kernel hackers with many significant
contributions are listed in the CREDITS file in the root of the kernel source tree.

Most parts of the kernel have an associated maintainer. The maintainer is the individual or individuals who are in charge of specific parts of the kernel. For example,
each individual driver has an associated maintainer. Each kernel subsystem—for example, networking—also has an associated maintainer. The maintainer for a specific
driver or subsystem is usually listed in the file MAINTAINERS which is also located in the root of the kernel source tree.
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There is a special type of maintainer, known as the kernel maintainer. This individual actually maintains the kernel tree itself. Historically, Linus maintains the
development kernel (where the real fun is) and the stable kernel for some period after development ends. Shortly after a development kernel becomes a stable kernel,
Linus passes the torch to one of the top kernel developers. They continue to maintain the tree while Linus begins work on the new development tree. In this fashion, the
2.0, 2.2, and 2.4 kernels are still actively maintained.

Despite the rumors, there is no cabal. Really.

Submitting Bug Reports

If you encounter a bug, the best course of action is to write a fix, create a patch, test it, and submit it as discussed in the following sections. Of course, you can also
report the problem and get someone to fix it for you.

The most important part of submitting a bug report is fully describing the problem. Describe the symptoms, any system output, and a fully decoded oops (if there is an
oops). More importantly, if you can, provide steps to reliably reproduce the problem, and a brief description of your hardware.

Determining who to send the bug report to is the next step. The file MAINTAINERS lists the individuals associated with each driver and subsystem—they should
receive any issues related to the code they maintain. If you cannot find an interested party, send the report to the Linux Kernel Mailing List at 1 inux—
kernel@vger.kernel.org. Evenifyou do find a maintainer, carbon copying the kernel mailing list never hurts.

The files REPORTING-BUGS and Documentation/oops—-tracing. txt provide more information.

Generating Patches

All changes to the Linux kernel are distributed in the form of patches, which are the output of the GNU di £ £ (1) program in a form that is readable by the patch
(1) program. The simplest way to generate a patch is to have two source trees, one that is the vanilla stock kernel and another that is the stock tree with your
modifications. A common scheme is to name the stock tree 1 i nux-x . y . z (which is what the source tarball extracts to, initially) and to name your modified tree
simply 1 i nux. Then, to generate a patch of the two trees, issue the command

diff -urN linux-x.y.z/ linux/ > my-patch

from one directory below your trees. This is typically done somewhere in your home, and not /usr/src/1linux, so you don't need to be root. The —u flag
specifies that the unified diff format should be used. Without this, the patch is ugly and not very readable by humans. The - r flag specifies to recursively diff all
directories, and the —N flag specifies that new files in the modified tree should be included in the diff. Alternatively, if you need to diff only a single file, you can do
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diff -u linux-x.y.z/some/file linux/some/file > my-patch

Note, it is important to always diff the trees from one directory below your source trees. This creates a patch that is very usable by others, even if their directory names
differ. To apply a patch made in this format, do

patch -pl < ../my-patch

from the root of your source tree. In this example, the patch is named my patch and is created one directory below the current. The ~p 1 flag specifies to strip the
first directory name from the patch. This enables you to apply a patch regardless of the directory-naming convention used by the patch maker.

Auseful utility is d 1 f £ stat, which generates a histogram of a patch's changes (line additions and removals). To generate the output on one of your patches, do
diffstat -pl my-patch

It is often useful to include this output when you post a patch to lkml. Because the patch (1) program ignores all lines until a diff is detected, you can even include a
short description at the top of the patch itself.

Submitting Patches

Patches should be generated as described in the previous section. If the patch touches a specific driver or subsystem, the patch should be sent to the maintainer listed in
MAINTAINER. Either way, the Linux Kernel Mailing Listat 1 inux-kernel@vger. kernel.org should be carbon copied. The patch should only be sent
to the kernel maintainer (for example, Linus) after extensive discussion, or if the patch is trivial and clearly correct.

Typically, the subject line of the email containing the patch is of the form " [PATCH] brief description." The body of the email describes in technical
detail the changes your patch makes and the rationale behind them. Be as specific as possible. Somewhere in the email, note the kernel version the patch was created
against.

Most kernel developers want to be able to read your patch inline with your email and optionally save the whole thing to a single file. Consequently, it is best to insert the
patch directly inline in the email, at the end of your message. Be aware that some evil email clients might wrap lines or otherwise change formatting; this will break the
patch and annoy developers. If your email client does this, see if it has an "Insert Inline" or similar feature. Otherwise, attaching the patch as plain text without encoding
works, too.

If your patch is large or contains several logical changes, you should break the patch into chunks, with each chunk representing a logical change. For example, if you
both introduce a new API and change a handful of drivers to use it, you can break that into two patches (the new API and then the driver changeover) and two emails.
If any chunk requires a previous patch, explicitly state that.
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After posting, remain patient and wait for a reply. Do not be discouraged by any negative response—at least you got a response! Discuss the issues and provide
updated patches as needed. If you fail to receive any response, try to discover what was wrong and resolve the issues. Solicit additional comments from the mailing list
and maintainer. With luck, you may see your changes in the next kernel release—congratulations!
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A
Linked Lists

A linked list is a data structure that allows the storage and manipulation of a variable number of elements (often called nodes) of data. Unlike a static array, the
elements in a linked list are dynamically created. This enables the creation of a variable number of elements that are unknown at compile time. Because the elements are
created at different times, they do not necessarily occupy contiguous regions in memory. Therefore, the elements need to be /inked together, so each element contains a
pointer to the next element. As elements are added or removed from the list, the pointer to the next node is simply adjusted. Figure A.1 is a linked list.

el el s

next E. next T next null

Figure A.1 A singly linked list.
In some linked lists, each element also contains a pointer to the previous element. These lists are called doubly linked lists because they are linked both forward and
backward. Linked lists, similar to the one in Figure A.1, that do not have a pointer to the previous element are called singly linked lists. Figure A.2 is a doubly linked
list.

~~ N~ N\

prav EEa next || prey T next || prey L i next null

Figure A.2 A doubly linked list.

null
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Circular Linked Lists

Normally, because the last element in a linked list has no next element, it is usually set to point to a special value, usually NULL, to indicate it is the last element in the
list. In some linked lists, the last element does not point to a special value. Instead, it points back to the first value. This linked list is called a circular linked list
because the links follow a circle. Circular linked lists can come in both doubly and singly linked versions. In a circular doubly linked list, the first node's 'previous’
pointer points to the last node. Figures A.3 and A.4 are singly and doubly circular linked list, respectively.

/—a/——m

e next L, S next aes next

Figure A.3 A circular singly linked list.

O\

naxt || prev

Figure A.4 A circular doubly linked list.

The Linux kernel's standard linked list implementation is a circular doubly linked list. Going with this type of linked list provides the greatest flexibility.
Moving Through a Linked List
Movement through a linked list occurs linearly. You visit one element, follow the next pointer, and visit the next element. Rinse and repeat. This is the easiest method of

moving through a linked list, and the one by which linked lists are best suited. Linked lists are usually not used when random access is an important goal. Instead, you
use linked lists when iterating over the whole list is important and the dynamic addition and removal of elements is required.
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Oftentimes, the first element is represented by a special pointer—called the sead—that makes it quick and easy to find. In a noncircular-linked list, the last element is
delineated by its next pointer being NULL. In a circular-linked list, the last element is delineated by the fact that it points to the head element. Traversing the list,
therefore, occurs linearly through each element from the first to the last. In a doubly linked list, movement can also occur backward, linearly from the last element to the
first. Of course, given a specific element in the list, you can go back and forth any number of elements, too. You need not traverse the whole list.

The Linux Kernel's Implementation

The Linux kernel has a unique approach to traversing linked lists. When traversing a linked list, unless ordering is important, it does not matter if you start at the head
element, in fact, it doesn't matter where you start at all! All that matters is that you visit each and every node. Indeed, we do not even need the concept of a first and
last node. If a circular linked list simply contains a collection of unordered data, any element can be the head element. To traverse the list, simply pick an element and
follow the pointers until you get back to the original element. This removes the need for a special head pointer. Additionally, the routines for manipulating a linked list
are simplified. Each routine simply needs a pointer to a single element in the list—any element. The kernel hackers are particularly proud of this clever implementation.

Linked lists in the kernel, as with any complex program, are common. For example, the kernel uses a linked list to store the task list (each process's task struct
is an element in the linked list).

The Linked-List Structure

In the old days, there were multiple implementations of linked lists in the kernel. A single, powerful linked list implementation was needed to remove duplicate code.
During the 2.1 kernel development series, the official kernel linked-list implementation was introduced. All existing uses of linked lists are now using the official
implementation and all new users must use the existing interface and not reinvent the wheel.

The linked-list code is declared in <1inux/1ist .h> and the data structure is simple:

struct list head {
struct list_head *next, *prev;
}i

Note the curious name, 1ist head. The name takes a cue from the fact that there is no head node. Instead, because the list can be traversed starting with any given
element, each element is in effect a head. Thus, the individual nodes are all called /ist heads. The nex t pointer points to the next element in the list and the prev
pointer points to the previous element. If this is the last element in the list, the ne x t pointer points to the first node. Likewise, if this is the first element in the list, the
prev pointer points to the last node. However, thanks to the kernel's elegant list implementation with no concept of
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list heads, we can ignore any concept of first and /ast element. Consider the list a big cycle with no start or finish.

A list head by itselfis worthless; it is normally embedded inside your own structure:

struct my_struct {
struct list head list;
unsigned long dog;
void *cat;

}i

The list needs to be initialized before it can be used. Because most of the elements are created dynamically (probably why you need a linked list), the most common
way of initializing the linked list is at runtime:

struct my_struct *p;

/* allocate my struct .. */
p->dog = 0;

p->cat = NULL;
INIT_LIST_HEAD (&p->list);

If the structure is statically created at compile time, and you have a direct reference to it, then you can simply do:

struct my_struct mine = {
.list = LISTiHEADilNIT(mine.list),
.dog = 0,
.cat = NULL

}i

To declare and initialize a static list directly:

static LIST_HEAD(fox);

This will declare and initialize a static list named fox.

You should never actually need to play with the internal members of the linked list. Instead, just embed the structure in your data, and you can make use of the linked
list interface to easily manipulate and traverse your data.

Manipulating Linked Lists

A family of functions is provided to manipulate linked lists. All of them take pointers to one or more 1ist head structures. All the functions are implemented as
inline functions in generic C and can be foundin include/linux/list.h.

Interestingly, all these functions are O (1) ! This means they execute in constant time regardless of the size of the list or any other inputs. For example, it takes the
same

" See Appendix D for an overview of algorithmic complexity.
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amount of time to add or remove an entry to or from a list whether that list has 3 or 3,000 entries. This is perhaps not surprising, but still good to know.
list_add(struct list_head *new, struct list_head *head)

This function adds the new node to the given list immediately after the he ad node. Because the list is circular and generally has no concept of first or last nodes, you
can pass any element for head. If you do pass the last element, however, this function can be used to implement a stack.

list_add_tail (struct list_head *new, struct list_head *head)

This function adds the new node to the given list immediately before the head node. Aswith 1ist add () because the lists are circular you can generally pass
any element for he ad. This function can be used to implement a queue, however, if you do indeed pass the first element.

list_del(struct list_head *entry)

This function removes the element en t ry from the list. Note, it does not free any memory belonging to ent ry or the data structure it is embedded in; this function
merely removes the element from the list. After calling this, you would typically destroy your data structure and the 1ist _head inside it.

list_del_init(struct list_head *entry)

This function is the same as 1ist_del () except it also reinitializes the given 11ist head with the rationale that you no longer want the entry in the list, but you
can reuse the data structure itself.

list_move (struct list_head *1list, struct list_head *head)

This function removes the 1 1 st entry from its linked list and adds it to the given list after the he ad element.
list move tail(struct list head *1list, struct list head *head)

This function does the same as 11st move (), but inserts the 11 st element before the head entry.
list_empty(struct list head *head)

This returns nonzero if the given list is empty, otherwise it returns zero.

list _splice(struct list head *1list, struct list head *head)

This one splices together two lists by inserting the list pointed to by 1 i st to the given list after the element head.
list_splice init(struct list head *list, struct list head *head)

This function works the same as 1ist splice (), except that the emptied list pointed to by 11 st is reinitialized.
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Saving a couple dereferences

If you happen to already have the nex t and prev pointers available, you can save a couple cycles (specifically, the dereferences to get the pointers) by calling the
internal list functions directly. Every previously discussed function actually does nothing except find the nex t and prev pointers and call the internal functions. The
internal functions generally have the same name as their wrappers, except they are prefixed by double underscores. For example, instead of calling 1ist del
(list) youcancall 1list del (prev, next).Thisisonly useful if the next and previous pointers are already dereferenced. Otherwise, you are just
writing ugly code. See include/linux/1list.h for the exact interfaces.

Traversing Linked Lists

Now you know how to declare, initialize, and manipulate a linked list in the kernel. This is all very well and good, but it is meaningless if you have no way to access
your data! The linked lists are just a container that holds your important data; we need a way to use the list to move around and access the actual structures that contain
our data. Thankfully, the kernel provides a very nice set of interfaces for traversing linked lists and referencing the data structures that include them.

Note that, unlike the list manipulation routines, iterating over a linked list is clearly an O (n) deal, for n entries in the list.

The simplest way to iterate over a listis withthe 1ist for each () macro. The macro takes two parameters, both 1ist head structures. The first is a
pointer used to point to the current entry. The secondisa 1ist head in the list you want to traverse. On each iteration of the loop, the first parameter points to the
next entry in the list, until each entry has been visited. Usage:

struct list_head *p;
list_for each(p, list) {

/* p points to an entry in the list */
}

Well, that is still worthless! A pointer to the list structure is usually no good, what we need is a pointer to the structure that contains the list. For example, with our
previous my struct example, we want a pointer to eachmy struct, not a pointer to the 1 i st member in the structure. The macro 1ist entry () is
provided, which returns the structure that contains a given 1ist head. It takes three parameters: a pointer to the given element, the type of structure the list is
embedded in, and the member name of the list within that structure.

Example:

struct list head *p;
struct my_struct *my;

list_for_each(p, mine->list) {
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my = list entry(p, struct my struct, list);
/*
* my points to each structure that list is
* embedded in
*/

The list for each () macro expands to a simple for loop. For example, the previous use expands to
for (p = mine->list->next; p != mine->list; p = p->next)

With the exception thatthe 1ist for each () macro also uses processor prefetching, if the processor supports such a feature, to prefetch subsequent entries
into memory. To not perform prefetching, themacro  1ist for each () works justlike this £or loop. Unless you know the list is very small or empty, you
should always use the prefetching version. You should never hand code the loop; always use the provided macros.

If you need to iterate through the list backward, youcanuse 1ist for each prev (), which follows the p rev pointers instead of the ne xt pointer.

Note, nothing prevents removal of list entries from the list while you are traversing it. Normally, the list needs some sort of lock to prevent concurrent access. The
macro list for each safe (), however, uses temporary storage to make traversing the list safe from removals:

struct list head *p, *n;

struct my_struct *my;

list_for each safe(p, n, mine->list) {
my = list_entry(p, struct my_struct, list);
/* my points to each my struct in the list */

}

Note, this macro only provides protection from removals. You might additionally require some locking protection to prevent concurrent manipulation of the actual list
data.
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B
The Per-CPU Interface
MODERN SMP-CAPABLE OPERATING sYsTEMS USE per-CPU data—data that is unique to a given processor—extensively. Typically, per-CPU data is stored in an array. Each

item in the array corresponds to a possible processor on the system. The current processor number indexes this array, which is how the 2.4 kernel handles per-CPU
data. Nothing is wrong with this approach, so plenty of 2.6 kernel code still uses it. You declare the data as

unsigned long my percpu[NR_CPUS];

Then you access it as

int cpu;

cpu = get_cpu();/* get current processor index and disable kernel preemption */
my percpulcpul]++;

printk ("my_percpu on cpu=%d is %1d\n", cpu, my_percpulcpul);
put_cpu(); /* enable kernel preemption */

Note, no lock is required because this data is unique to the current processor. As long as no processor touches this data except the current, no concurrency concerns
exist, and the current processor can safely access the data without lock.

Kernel preemption is the only concern with per-CPU data. Kernel preemption poses two problems, listed here:

* If our code is preempted and reschedules on another processor, the cpu variable is no longer valid because it points to the wrong processor. (In general, code
cannot sleep after obtaining the current processor.)
» If another task preempts our code, it can concurrently access my percpu on the same processor, which is a race condition.

Any fears are unwarranted, however, because the call get cpu (), on top of returning the current processor number, also disables kernel preemption. The
corresponding call to put _cpu () enables kernel preemption. Note, if you use a call to
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smp_processor_id() to get the current processor number, kernel preemption is not disabled—always use the aforementioned methods to remain safe.

The New percpu Interface

The 2.6 kernel introduced a new interface, known as percpu, for creating and manipulating per-CPU data. This interface generalizes the previous example. Creation
and manipulation of per-CPU data is simplified with this new approach.

The previously discussed method of creating and accessing per-CPU data is still valid and accepted. This new interface, however, grew out of the needs for a simpler
and more powerful method for manipulating per-CPU data on large symmetrical multiprocessing computers.

The header <1inux/percpu.h> declares all the routines. You can find the actual definitions there, inmm/slab. c,and in <asm/percpu.h>.
Per-CPU Data at Compile-Time

Defining a per-CPU variable at compile-time is quite easy:

DEFINE PER CPU(type, name);

This creates an instance of a variable of type t ype, named name, for each processor on the system. If you need a declaration of the variable elsewhere, to avoid
compile warnings, the following macro is your friend:

DECLARE_PER CPU(type, name) ;

You can manipulate the variables with the get _cpu_var () and put cpu_var () routines. Acallto get cpu_var () returns an l-value for the given
variable on the current processor. It also disables preemption, which put _cpu_var () correspondingly enables.

get_cpu_var (name) ++; /* increment name on this processor */
put_cpu_var(); /* done; enable kernel preemption */

You can obtain the value of another processor's per-CPU data, too:

per_cpu(name, cpu)++; /* increment name on the given processor */

You need to be careful with this approach because per cpu () neither disables kernel preemption nor provides any sort of locking mechanism. The lockless nature
of per-CPU data only exists if the current processor is the only manipulator of the data. If other processors touch other processor's data, you need locks. Be careful.

Chapter 7, "Kernel Synchronization Introduction," and Chapter 8, "Kernel Synchronization Methods," discuss locking.

Another subtle note, these compile-time per-CPU examples do not work for modules because the linker actually creates them in a unique executable section (for the
curious, . data . percpu). If you need to access per-CPU data from modules, or if you need to create such data dynamically, there is hope.
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Per-CPU Data at Run-Time

The kernel implements a dynamic allocator, similar to kmalloc (), for creating perCPU data. This routine creates an instance of the requested memory for each
processor on the systems. The prototypes are in <linux/percpu.h>:

void *kmalloc_percpu(size_t size, int flags);
void kfree percpu(const void *);

The kmalloc percpu () function allocates one instance of an object of the given size for every processor on the system. The £1ags parameters works the
same way as the flags for kmalloc (), as discussed in Chapter 10, "Memory Management and Addressing." See Table B.1.

Table B.1 kmalloc percpu () Flags

Flags Description

GFP_ATOMIC Allocate memory atomically; it will not sleep
GFP_KERNEL Allocate normal kernel memory; it might sleep
GFP_USER Allocate memory on behalf of the user; it might sleep

A corresponding call to kfree percpu () will free the data, on all processors.

Acallto kmalloc percpu () returns a pointer, which is used to indirectly reference the dynamically created per-CPU data. The kernel provides two macros to
make this easy:

get cpu ptr(ptr); /* return a void pointer to this processor's copy of ptr */
put_cpu ptr(ptr); /* done; enable kernel preemption */

The get cpu_ptr () macro returns a pointer to the specific instance of the current processor's data. It also disables kernel preemption, which a call to
put_ cpu ptr () then enables.

Let's look at a full example of using these functions. Of course, this example is a bit silly because you would normally allocate the memory once (perhaps in some
initialization function), use it in various places, and free it once (perhaps in some shutdown function). Nevertheless, this example should make usage quite clear:

void *percpu ptr;
unsigned long *foo;

percpu_ptr = kmalloc_percpu(sizeof (unsigned long), GFP_KERNEL) ;
if (!ptr)
/* error allocating memory .. */

foo = get_cpu_ptr(percpu_ptr);
/* manipulate foo .. */
put_cpu_ptr (percpu_ptr);
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Finally, the function per cpu_ptr () returns a given processor's unique data:
per_cpu_ptr(ptr, cpu);

Again, it does not disable kernel preemption and—if you touch another processor's data—keep in mind you probably need to implement locking.

Reasons for Using Per-CPU Data

There are a couple benefits to using per-CPU data. The first is the reduction in locking requirements. Depending on the semantics by which processors access the per-
CPU data, you might not need any locking at all. Keep in mind the "only this processor accesses this data" rule is only a programming convention. You need to
ensure that the local processor only accesses its unique data. Nothing stops you from cheating.

Second, per-CPU data greatly reduces cache invalidation. This occurs as processors try to keep their caches in sync. If one processor manipulates data held in another
processor's cache, that processor must flush or otherwise update its cache. Constant cache invalidation is called thrashing the cache and wrecks havoc on system
performance. The use of per-CPU data keeps cache effects to a minimum because processors ideally only access their own data.

Consequently, the use of per-CPU data often removes (or at least minimizes) the need for locking. The only safety requirement for their use is disabling kernel
preemption, which is much cheaper than locking and the interface does so automatically. PerCPU data can safely be used from either interrupt or process context.
Note, however, you cannot sleep in the middle of accessing per-CPU data (or else you might end up on a different processor).

No one is currently required to use the new per-CPU interface. Doing things manually (with an array as originally discussed) is fine, as long as you disable kernel
preemption. The new interface, however, is much easier to use and might gain additional optimizations in the future. If you do decide to use per-CPU data in your
kernel code, consider the new interface. One caveat against its use is that it is not backward compatible with earlier kernels.
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C
Kernel Random Number Generator

THE KERNEL IMPLEMENTS A STRONG RANDOM NUMBER GENERATOR that is theoretically capable of generating true random numbers. The random-number generator gathers
environmental noise from device drivers into an entropy pool. This pool is accessible from within the kernel and from user processes as a source of data that is not only
random but also non-deterministic to an outside attacker. Such numbers are of use in various applications, most notably cryptography.

True random numbers differ from the pseudo-random numbers generated by functions such as those found in the C library. Pseudo random numbers are created by a
deterministic function. Although the function might generate a sequence of numbers that exhibit some properties of a true random number, they are only statistically
random. Pseudo random numbers are deterministic—knowing one number in the sequence provides information about the rest of the sequence. In fact, knowing the
initial value of the sequence (known as the seed) usually determines the entire sequence. For applications that need truly random and nondeterministic numbers, such as
cryptography, a pseudo-random number is usually unacceptable.

As opposed to a pseudo-random number, a true random is produced independently of its generating function. Furthermore, knowing some value in a sequence of truly
random numbers does not allow an external party to deduce future values from the generator—the generator is nondeterministic.

From physics, entropy is a measurement of disorder and randomness in a system. Entropy is measured in energy-per-unit temperature (Joules/Kelvin). When Claude
Shannon', the founder of information theory, looked for a term to represent randomness

' Claude E. Shannon (April 30, 1916—February 24, 2001) was an engineer at Bell Labs whose most famous work, 4 Mathematical Theory of Communication,
published in 1948, introduced the concept of information theory and Shannon entropy. Shannon also enjoyed riding his unicycle.
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in information, the great mathematician John von Neumann® supposedly suggested he use the term entropy because no one really understood what that meant anyhow.
Shannon agreed, and today the term is sometimes called Shannon entropy. In hindsight, some scientists find the dual use confusing, and prefer simply the term
uncertainty when discussing information. Kernel hackers, on the other hand, think entropy sounds cool and encourage its use.

In discussions of random-number generators, Shannon entropy is an important property. It is measured in bits per symbol; high entropy implies there is little useful
information (but lots of random junk) in a sequence of characters. The kernel maintains an entropy pool that is fed data obtained from nondeterministic device events.
Ideally, this pool is entirely random. To help keep track of the entropy in the pool, the kernel keeps a measurement of the uncertainty of the data in the pool. As the
kernel feeds data into the pool, it estimates the amount of randomness in the data it is adding. Conversely, the kernel reduces the estimate of entropy as data is removed
from the pool. This measurement is called the entropy estimate. Optionally, the kernel can refuse a request for a random number if the entropy estimate is zero.

The kernel random-number generator was introduced in kernel version 1.3.30 and lives at drivers/char/randomn. c in the kernel source.

Design and Implementation

Computers are predictable devices. Indeed, it is hard to find randomness in a system whose behavior is entirely programmed. The environment of the machine,
however, is full of noise that is accessible and nondeterministic. Such sources include the timing of various hardware devices and user interaction with the computer.
For example, the time between key presses, the movement of the mouse, the timing between certain interrupts, and the time taken to complete a block /O request are
all both nondeterministic and not measurable by an outside attacker. Randomness from these values is taken and fed into the entropy pool. The pool grows to become
a random and unpredictable mixture of noise. As the values are added to the pool, an estimate of the randomness is calculated and a tally is kept. This enables the
kernel to keep track of the entropy in the pool. Figure C.1 is a diagram of the flow of entropy into and out of the pool.

The kernel provides a set of interfaces to allow access to the entropy pool, both from within the kernel and from user-space processes. When the interfaces are
accessed, the kernel first takes the SHA hash of the pool. SHA (Secure Hash Algorithm) is a message

? John von Neumann (December 28, 1903—February 8, 1957) was a member of the Institute for Advanced Study at Princeton. In his life, he gave the world
numerous contributions to mathematics, economics, and computer science. Some of his most important contributions were game theory, Neumann algebras, and the
von Neumann bottleneck.
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digest algorithm developed by the National Security Agency and made a United States Federal standard by NIST (via FIPS 186). A message digest is an algorithm
that takes a variable-sized input (small or large) and outputs a fixed-size hash value (typically 128 or 160-bits) that is a digest of the original input. From the outputted
hash value, the input cannot be reconstructed. Furthermore, trivial manipulations to the input (for example, changing one character) result in a radically different hash
value. Message digest algorithms have various uses, including data verification and fingerprinting. Other message digest algorithms include MD4 and MD5. The SHA
hash, not the raw contents of the pool, is returned to the user—the contents of the entropy pool are never directly accessible. It is assumed impossible to derive any
information about the state of the pool from the SHA hash. Therefore, knowing some values from the pool does not lend any knowledge to past or future values.
Nonetheless, the kernel can use the entropy estimate to refuse to return data if the pool has zero entropy. As entropy is read from the pool, the entropy estimate is
decreased in response to how much information is now known about the pool.

<« kernel-space user-space >

Keypresses generate
interrupts

l 10110001 ->

Kernel uses timing
values between applications read from the pool via
successive interrupts to Entropy Peal fdevirandom and /deviurandom
feed the entropy pool

via add_keyboard_randomness()

1111010000 >

111001011000001101M
01111010101110100010
001000101101 01011000

Figure C.1 The flow of entropy into and out of the kernel entropy pool.

When the estimate reaches zero, the kernel can still return random numbers. Theoretically, however, an attacker is then capable of inferring future output given prior
output. This requires that the attacker have nearly all the prior outputs from the entropy pool, and that the attacker successfully perform cryptanalysis on SHA. Because
SHA is believed to be secure, this possibility is infeasible. To high security cryptography users who accept no risk, however, the entropy estimate ensures the strength
of the random numbers. To the vast majority of users this extra assurance is not needed.
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Why is this done in the kernel?

A criterion for a kernel feature in Linux is that they cannot also be easily implemented in user space. Tossing things in the kernel because we can is not acceptable.
At first glance, a random-number generator and entropy pool have no place in the kernel. Three conditions, however, all but require that they live in the kernel. First,
the random-number generator needs access to system timings, such as interrupts and user input. It is not possible for user space to access such timings without
forcing the kernel to export various interfaces and hooks to notify user space of these events. Even if the data were exported, retrieving it would be neither clean nor
fast. Second, the random-number generator must be secure. Although the system could run as root and institute various security measures, the kernel provides a
much safer home for the entropy pool. Finally, the kernel itself makes use of the random data. It is neither practical nor clean for the kernel to have to obtain the
values from a user space agent. Therefore, the random-number generator lives happily in the kernel.

The Dilemma of System Startup

When the kernel first boots, it completes a series of actions that are almost entirely predictable. Consequently, an attacker can infer much about the state of the entropy
pool at boot. Worse, each boot is largely similar to the next, and the pool initializes to largely the same contents on each boot. This reduces the accuracy of the entropy
estimate, which has no way of knowing the entropy contributed during the boot sequence is less predictable than entropy contributed at other times.

To offset this problem, most Linux systems save some information from the entropy pool across system shutdowns. They do this by saving the contents of the entropy
pool on each shutdown. When the system boots, the data is read and fed into the entropy pool. This effectively loads the previous contents of the pool into the current
pool, without increasing the entropy estimate.

Therefore, an attacker cannot predict the state of the entropy pool without knowledge of both the current state of the system and the previous state of the system.

Interfaces to Input Entropy

The kernel exports a family of interfaces to facilitate feeding data into the entropy pool that are called by the appropriate kernel subsystems or drivers. They are

void add interrupt randomness (int irq)
void add_keyboard randomness (unsigned char scancode)
void add mouse randomness(_u32 mouse data)

add interrupt randomness () is called by the interrupt system whenever an interrupt is received whose handler was registered with

SA SAMPLE RANDOM. The parameter irq is the interrupt number. The random-number generator uses the timing between interrupts as a source of noise. Note,
not all devices are suitable for this; if the device generates interrupts deterministically (for example, the timer interrupt) or might be influenced by an outside attacker (for
example, a network device) it should not feed the pool. An acceptable device is a hard disk, which generates interrupts at an unpredictable rate.
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add_keyboard randomness () uses the scancode and the timing between successive key presses to feed the entropy pool. Interestingly, the routine is smart
enough to ignore autorepeat (when the user holds a key down) because both the scancode and timing interval are then constant, contributing little entropy. The sole
parameter is the scancode of the pressed key.

add mouse_randomness () uses the mouse position as well as the timing between interrupts to feed the pool. The parameter mouse data is the
hardware-reported position of the mouse.

All three of these routines add the supplied data to the entropy pool, calculate an estimate of the entropy of the given data, and increment the entropy estimate by this
amount.

All these exported interfaces use the internal function add _timer randomness () to feed the pool. This function calculates the timing between successive
events of the same type and adds the delay to the pool. For example, the timing between two successive disk interrupts is largely random—especially when measured
very precisely. Often, the low order bits are electrical noise. After this function feeds the pool, it calculates how much randomness was present in the data. It does this
by calculating the first, second, and third order deltas from the previous timing, along with the first and second order deltas. The greatest of these deltas, rounded down
to 12 bits, is used as the entropy estimate.

Interfaces to Output Entropy

The kernel exports one interface for obtaining random data from within the kernel:
voild get_random_bytes(void *buf, int nbytes)

This function stores nby t e s worth of random data in the buffer pointed to by bu £. The function returns the values regardless of whether the entropy estimate is zero.
This is less of a concern to the kernel than user space cryptography applications. The random data is suitable for a handful of kernel tasks, most notably networking,
where it is used to seed the initial TCP sequence number in a connection.

Kernel code can do the following to receive a word-size helping of randomness:

unsigned long rand;

get_random bytes (&rand, sizeof (rand));

For user-space processes, the kernel provides two character devices: /dev/randomand /dev/urandom. The first, /dev/random is suitable when very
strong random numbers are desired, as in high-security cryptographic applications. It only returns up to the maximum number of bits of random data noted by the
entropy estimate. When the entropy estimate reaches zero, / de v/ random blocks and will not return the remaining data until the entropy estimate is sufficiently
positive. Conversely, the device /dev /urandom does not have this feature but is generally just as secure. Both devices return numbers from the same pool.
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Reading from either file is simple. Here is an example of a user space function that an application can use to extract a word of entropy:

unsigned long get_ random(void)

{
unsigned long seed = 0;
int fd;

fd = open("/dev/urandom", O RDONLY) ;

if (fd == -1) {
perror ("open") ;
return 0;

if (read (fd, &seed, sizeof(seed)) < 0) {
perror ("read") ;

seed = 0;

if (close(fd))
perror ("close");

return seed;

Alternatively, you can easily read Sbytes bytes into the file $ £ 1 1 e using the dd program:

dd if=/dev/urandom of=$file count=1 bs=S$bytes
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D
Algorithmic Complexity

OFTEN, IN COMPUTER SCIENCE AND RELATED DISCIPLINES, it is useful to express the algorithmic complexity—or scalability—of algorithms as a meaningful value (as opposed to
less descriptive terms, like gross). Various methods for representing scalability exist. One common technique is to study the asymptotic behavior of the algorithm. This
is the behavior of the algorithm as its inputs grow exceedingly large or approach infinity. Asymptotic behavior shows how well an algorithm scales as its input grows
larger and larger. Studying an algorithm's scalability—how it performs as the size of its input increases—enables us to model the algorithm against a benchmark and
better understand its behavior.

Algorithms
An algorithm is a series of instructions, possibly one or more inputs, and ultimately a result or output. For example, the steps to count the number of people in the room
are an algorithm, with the people being the input and the count being the output. In the Linux kernel, both page eviction and the process scheduler are examples of

algorithms. Mathematically, an algorithm is like a function (or at least, we may model it as one). For example, if we call the people counting algorithm £ and the number
of people to count x, we can write:

y = £(x) people counting function
Where vy is the time required to count the x people.

Big-O Notation

One useful asymptotic notation is the upper bound—a function whose behavior is always greater than the one we are studying. It is said that the upper bound grows
faster than the function in question. A special notation, big-o (pronounced big oh) notation, is used to describe this growth. It is written £ (x) is O (g (x)) andis
read f'is big-oh of g. The formal mathematical definition is
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If £({x) is O(g(x)), then
He, x' such that f(x) = c.g(x), ¥x > x'

In English, the time to complete £ (x) is always less than the time to complete g (x) multiplied by some arbitrary constant (at least, it is less as long as the input x is
larger than some initial value x ').

Essentially, we are looking for a function whose behavior is as bad as or worse than our algorithm. We can then look at the result of very large inputs to the function
and obtain an understanding of the bound of our algorithm.

Big Theta Notation

‘When most people talk about big-oh notation they are more accurately referring to what Donald Knuth describes as big-theta notation. Technically, big-oh notation
refers to an upper bound. For example, seven is an upper bound of six; so are 9, 12, and 65. Subsequently, when most people discuss function growth they talk about

the least upper bound, or a function that models both the upper and lower bounds'. Professor Knuth describes this as big-theta notation and gives the following
definition:

If f(x) is big-theta of g(x), then
g(x) 1is both an upper bound and a
lower bound for f(x).

Then, we can also say £ (x) is of order g (x) . The order, or big-theta, of an algorithm is one of the most important mathematical tools for understanding algorithms
in the kernel.

Consequently, when people refer to big-o notation they are more often talking about the least such big-o, the big-theta. You really do not have to worry about this,
unless you want to make Professor Knuth really happy.

Putting It All Together

For example, consider again having to count the number of people in a room. Pretend you can count one person per second. Then, if there are seven people in the
room, it will take seven seconds to count them. Obviously, given n people it will take n seconds to count everyone. Thus, we can say this algorithm is O(n). What if the
task was to dance in front of everyone in the room? Because it would take the same amount of time to dance whether there were five or five thousand people in the
room, this task is O(1). See Table D.1 for other common complexities.

If curious, the lower bound is modeled by big-omega notation. The definition is the same as big-o, except g(x) is always less than or equal to f(x).
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Table D.1 Table of Time Complexity Values

0(g(x) Name

1 constant (perfect scalability)
logn logarithmic

n linear

n? quadratic

n? cubic

2" exponential (evil)

n! factorial (pure evil)

What is the complexity of introducing everyone in the room to everyone else? What is a possible function that models this algorithm? If it took thirty seconds to
introduce each person, how long would it take to introduce 10 people to each other? What about one hundred people to each other?

Perils of Time Complexity

Obviously, it is wise to avoid complexities such as O(n!) or O(2"). Likewise, it is usually an improvement to replace an O(n) algorithm with a functionally-equivalent O
(1) algorithm. This is not always the case, however, and a blind assumption should not be made based solely on big-o notation. Recall that, given O(g(x)), there is a
constant, ¢, multiplied by g(x). Therefore, it is possible an O(1) algorithm takes three hours to complete. Sure, it is always three hours, regardless of how large the
input, but that can still be a long time compared to an O(n) algorithm with few inputs. The typical input size should always be taken into account when comparing
algorithms. Do not optimize blindly for some random case!
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Bibliography and Reading List
This bibliography is sorted by subject and contains some of the more interesting and useful books on subjects similar or complimentary to those in this book.

All of these books have proved themselves quite useful over time. Some of them represent "sacred tomes" in their respective subjects, whereas others I have simply
found interesting, insightful, or entertaining in some capacity. I hope that they can assist you, as well.

Note that the absolute best reference or "additional reading” to compliment this book is the kernel source. Working on Linux, we are all gifted with full and unrestricted
access to the source code for an entire modern operating system. Do not take that for granted! Dive in!

Books on Operating System Design

These books cover OS Design, as discussed in an undergraduate course. They all tackle the concepts, algorithms, problems, and solutions involved in designing a
functional operating system.

Tanenbaum, Andrew. Operating Systems: Design and Implementation. Prentice Hall, 1997. A great introductory work on both the design and implementation of
a Unix-like system, Minix.

Tanenbaum, Andrew. Modern Operating Systems. Prentice Hall, 2001. A strong overview of the standard operating system design issues plus discussion on many
of the concepts used in today's modern operating systems, such as Unix and Windows.

A. Silberschatz, P. Galvin, and G. Gagne. Operating System Concepts. John Wiley and Sons, 2001. Also known as the Dinosaur book, for the seemingly
irrelevant dinosaurs on the cover. A great introduction to OS design. The book has frequent revisions; any of them should do fine.
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Books on Unix Kernels

These books tackle the design and implementation of Unix kernels. The first three discuss a specific flavor of Unix, and the later two focus on issues common to all
Unix variants.

Bach, Maurice. The Design of the Unix Operating System. Prentice Hall, 1986. A good discussion on the design of Unix System V Release 2.

M. McKusick, K. Bostic, M. Karels, and J. Quarterman. The Design and Implementation of the 4.4BSD Operating System. Addison-Wesley, 1996. A good
discussion on the design of the 4.4BSD system by the system designers themselves.

J. Mauro and R. McDougall. Solaris Internals: Core Kernel Architecture. Prentice Hall, 2000. An interesting discussion on the core subsystems and algorithms in
the Solaris kernel.

Vahalia, Uresh. Unix Internals: The New Frontiers. Prentice Hall, 1995. A superb book on very modern Unix features, such as thread management and kernel
preemption.

Schimmel, Curt. UNIX Systems for Modern Architectures: Symmetric Multiprocessing and Caching for Kernel Programmers. Addison-Wesley, 1994. A
superb book on the perils of supporting a modern Unix on a modern architecture.

Books on Linux Kernels
These books, like this one, discuss the Linux kernel.

A. Rubini and J. Corbet. Linux Device Drivers. O'Reilly and Associates, 2001. An excellent discussion on how to write device drivers for the 2.4 kernel.

D. Bovet and M. Cesati. Understanding the Linux Kernel. O'Reilly and Associates, 2002. A good discussion of the internal algorithms of the 2.4 Linux kernel. It
focuses on the underlying design of the kernel.

D. Mosberger and S. Eranian. [4-64 Linux Kernel: Design and Implementation. Prentice Hall, 2002. An excellent look at the Intel Itanium architecture and its
port of the Linux 2.4 kernel.

Books on Other Kernels

Understanding your enemies—err, competitors—never hurts. These books discuss the design and implementation of operating systems other than Linux. See what they
got right and what they got wrong.

M. Kogan and H. Deitel. The Design of OS/2. Addison-Wesley, 1996. An interesting look at OS/2 2.0.
D. Solomon and M. Russinovich. Inside Windows 2000. Microsoft Press, 2000. An interesting look at a very non-Unix operating system.

Richter, Jeff. Advanced Windows. Microsoft Press, 1997. A thorough discussion of low-level and systems programming in Windows.
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Books on the Unix API

In-depth discussions of the Unix system and its API are important not only for writing powerful user-space programs, but also understanding the responsibilities of the
kernel.

Stevens, W. Richard. Advanced Programming in the UNIX Environment. Addison-Wesley, 1992. An excellent, if not definitive, discussion on the Unix system
call interface.

Stevens, W. Richard. UNIX Network Programming, Volume 1. Prentice Hall, 1998. A classic text on the sockets API used by Unix systems.

M. Johnson and E. Troan. Linux Application Development. Addison-Wesley, 1998. A general overview of the Linux system and Linux-specific interfaces.
Other Works

A collection of other books not strictly related to operating systems, but which undoubtedly affect them.

Knuth, Donald. The Art of Computer Programming, Volume 1. Addison-Wesley, 1997. A priceless tour de force in the fundamental algorithms of computer
science, including best- and worst-fit algorithms used in memory management.

B. Kernighan and D. Ritchie. The C Programming Language. Prentice Hall, 1988. The definitive book on the C programming language.

Hofstadter, Douglas. Gédel, Escher, Bach: An Eternal Golden Braid. Basic Books, 1999. A profound and indispensable look at human thought that delves
wildly into multiple subjects, including computer science.

Web Sites
These Web sites provide up-to-date news and downloads related to Linux and our beloved kernel.

http://www.kerneltraffic.org/ Kernel Traffic. An excellent summary of the previous week's traffic on the Linux kernel mailing list (Ikml). Highly
recommended.

http://www.lwn.net/ Linux Weekly News. A great news site with an excellent commentary on the week's kernel happenings. Highly recommended.

http://www.kernelnewbies.org/ Kernel Newbies. Kernel Newbies is a community project to provide information and help to aspiring kernel
hackers.

http://www.kernel.org/ Kernel.org. The official repository of the kernel source. It is also home to a large number of the core kernel hacker's patches.
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Index

A

absolute time, 141
activate_task() function, 45
add_interrupt_randomness() interface, 306
add_keyboard_randomness() interface, 307
add_mouse_randomness() interface, 307
address_space_operations structure, 245
address_space structure, 244-247
addresses (memory), 164-167, 225-226
AIX (IBM), 2
algorithms

asymptotic behavior, 309

big-o notation, 309-310

big-theta notation, 310

defined, 309

scalability, 309-311

scheduling algorithm, 35

Secure Hash Algorithm (SHA), 304
alignment of data, 273-276
alloc_page() function, 168
alloc_pages() function, 167-168, 184
allocating memory, 163, 167-170, 174-176, 179-182, 184, 228-229
alloc_page() function, 168
annotation, 10-11
anonymous mapping, 238
Anticipatory I/0O Scheduler, 223-224
API (Application Programming Interface), 54
APIC timer, 150
Application Programming Interface (API), 54
arguments (system calls), 55
arrays, 299
assembly instructions, 10
asynchronous interrupts, 66
AT&T, 1
atomic_t data type, 118-120
atomicity debugging, 260
atomic operations, 117-121

B

barrier() function, 139
barriers, 137-139
bdflush daemon, 250-251
Bell Laboratories, 1
Berkeley Software Distributions (BSD), 1
BH interface, 83-84, 95
Big Kernel Lock (BKL), 133-134
big-endian byte ordering, 276-277
big-o notation, 309-310
big-theta notation, 310
binary searching, 266
binary semaphore, 128
bio structure, 215-218
BKL (Big Kernel Lock), 133-134
block devices, 211-215
block 1/0 layer
bio structure, 215-218
block I/O scheduler, 219-224
buffer_head structure, 218
defined, 212
request queues, 218-219
requests, 219
blocked tasks, 43-45
BogoMIPS value, 160
Booleans, 12
bottom halves
BH interface, 83-84, 95
comparison, 103



defined, 84
disabling, 104-106
ksoftirqd, 93-95
locking, 104
overview, 81-83
softirgs, 83-89
spin locks, 125

task queues, 83-84, 102-103

tasklets, 83-84, 89-93
work queues, 84, 96-102

braces (coding style), 282-283

branch annotation, 10-11

BSD (Berkeley Software Distributions), 1

buffer cache, 248
buffer head structure, 218
buffer heads, 213-215
buffers, 213-215
BUG_ON() routine, 260
bug reports, 287
BUG() routine, 260
bugs
atomicity, 260
BUG() routine, 260
dump_stack() routine, 261
manifestation of, 254
oops, 257-259
panic() routine, 260
range of, 254
reproducing, 253-254
building the kernel, 12-14
busy looping, 158-159
byte ordering, 276-278

C

C library, 9, 54, 62-63

C Programming Language, The 283

C++-style comments, 284
C-style comments, 284
cabal, 287
cache, 243-247, 302
chain of command
hackers, 286
kernel maintainer, 287
maintainers, 286
char data type, 273
character devices, 211
circular linked lists, 292
circular log buffer, 256-257
cli() function, 78
clusters, 212
coding style
braces, 282-283
comments, 284
consistency, 282
documentation, 282
functions, 283

Hungarian notation, 283

ifdef preprocessor directives, 285

importance of, 282

indent utility, 286

indentation, 282

interfaces, 285

naming conventions, 283

productivity, 282

structure initializers, 286

typedefs, 285
commands

kallsyms, 259

ksymoops, 259
comments

C++-style, 284

C-style, 284

coding style, 284

functions, 284
commit_write() function, 247

community of Linux users, 266, 281

complete() function, 133

completion variables, 132-133

concurrency, 12, 111-112
condition variables, 264
configuration options, 13
contention, 115
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context switch() function, 47-48
context switching, 47-48
controlling interrupts, 77-80
cooperative multitasking, 31
copy-on-write (COW), 22-23
core of the operating system, 4
creating patches, 287-288
CREDITS file, 286

critical regions, 108-110
current date and time, 141, 153-154
cylinders, 212

D

data section, 15
data types

alignment, 273-276

atomic_t, 118-120

byte ordering, 276-278

char data type, 273

explicitly-sized data types, 272-273

opaque data types, 271-272

special data types, 272
Deadline I/0 Scheduler, 221-223
deadlocks, 113-115
debugging

atomicity, 260

binary searching, 266

BUG_ON() routine, 260

BUG() routine, 260

community, 266

condition variables, 264

difficulty of, 253

dump_stack() routine, 261

GNU debugger, 262-263

in-kernel debugger, 262

kdb debugger, 263

kgdb debugger, 263

Magic SysRq Key, 261-262

occurrence limiting, 265

oops, 257-259

panic() routine, 260

printk() function, 254-257

rate limiting, 265

spin locks, 124

statistics, 264

UID as a conditional, 263-264
declaring linked lists, 293-294
del_timer_sync() function, 156
del_timer() function, 156
deleting timers, 156
dentry object (VFS), 188, 198-202
destroying memory descriptor, 229
development community, 8
development kernel, 7-8, 287
device blocks, 212
devices

block devices, 211-215

character devices, 211

interrupts, 66
diffstat utility, 288
Digital Tru64, 2
directories, 187
disable_irq_nosync() function, 79-80
disable_irq() function, 79-80
disabling

bottom halves, 104-106

interrupts, 77-78

preemption, 135-136

specific interrupt lines, 78-79
disk cache, 243-247
do_mmap() function, 237-239
do_munmap() function, 239-240
do_softirq() function, 86-87, 89
do_timer() function, 151, 153
documentation

coding style, 282

self-generating documentation, 284
double_rq_lock() function, 37
double_rq_unlock() function, 37
doubly linked lists, 291
down_interruptible() function, 129-130
down_trylock() function, 130
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down() function, 130
downgrade_writer() function, 131
dump_stack() routine, 261
dynamic timers, 141, 154-155
DYNIX/ptx (Sequent), 2

E

early_printk() function, 255
effective_prio() method, 41
elements of linked lists, 291-297
elevators, 220-224

enable_irq() function, 79-80
enabling interrupts, 77-78

entropy, 303-304

entropy pool, 303-308

epoch, 153

events, 141

exceptions, 66

exec() function, 22
EXPIRED_STARVING() macro, 43
explicitly-sized data types, 272-273

F

file metadata, 187
file object (VFS), 188, 202-206
file system type structure (VFS), 189, 206-207
file-backed mapping, 238
files, 187
files_struct structure (VFS), 208-209
filesystem blocks, 212
filesystem interface, 185-186
filesystem metadata, 187
filesystems, 187
find_vma() function, 235-237
find_vma_intersection() function, 237
find_vma_prev() function, 237
flags
gfp_mask flags, 170-174
SA INTERRUPT flag, 67
SA_SAMPLE_RANDOM flag, 68
SA SHIRQ flag, 68
VMA flags, 231-232
floating point instructions, 11
flush_scheduled_work() function, 101
fork() function, 22-24
free lists, 176
freeing
interrupt handlers, 69
memory, 167-169, 174-176
fs_struct structure (VFS), 209
functions
activate task(), 45
alloc_page(), 168
alloc_pages(), 167-168, 184
barrier(), 139
braces, 283
cli(), 78
coding style, 283
comments, 284
commit_write(), 247
complete(), 133
context switch(), 47-48
del_timer_sync(), 156
del timer(), 156
disable irq nosync(), 79-80
disable_irq(), 79-80
do_mmap(), 237-239
do_munmap(), 239-240
do_softirq(), 86-87, 89
do_timer(), 151, 153
double rq lock(), 37
double rq unlock(), 37
down_interruptible(), 129-130
down_trylock(), 130
down(), 130
downgrade writer(), 131
early_printk(), 255
effective_prio(), 41
enable irq(), 79-80
exec(), 22
find vma(), 235-237
find vma_intersection(), 237



find vma_prev(), 237
flush_scheduled work(), 101
fork(), 22-24

get bh(), 215
get_cpu_ptr(), 301

get cpu(), 136

get sb(), 207
gettimeofday(), 154

get free page(), 168
get_free pages(), 167-168
get zeroed page(), 168
get zeroed pages(), 168
ifdef preprocessor directives, 285
in_interrupt(), 80
in_irq(), 80
init_completion(), 132
init MUTEX LOCKED(), 130
inline functions, 10
irgs_disabled(), 80
kernel locked(), 134
kfree percpu(), 301
kfree(), 174
kmalloc_percpu(), 301
kmalloc(), 169-170, 184
list_add tail(), 295
list_add(), 295

list_del init(), 295
list_del(), 295
list_empty(), 295

list_for each prev(), 297
list for each safe(), 297
list_for_each(), 296-297
list move _tail(), 295

list move(), 295
list_splice_init(), 295
list_splice(), 295
load_balance(), 46-47
local _bh_disable(), 104
local bh_enable(), 104-105
local irq disable(), 80
local irq_enable(), 80
local_irq_restore(), 80
local_irq_save(), 80

lock kernel(), 133-134
mb(), 137-139
mdelay(), 159-160
mmap(), 239
mod_timer(), 156
munmap(), 239-240
nice(), 51

open_softirq(), 88-89
page address(), 167
per_cpu_ptr(), 302
preempt_count(), 136
preempt_disable(), 136

preempt_enable no_resched(), 136

preempt_enable(), 136
prepare_write(), 247
printf(), 9, 254, 257
printk()

debugging, 254-257

log buffer, 256-257

loglevels, 255-256
put_bh(), 215
put _cpu_ptr(), 301
raise_softirq_irqoff(), 89
raise_softirq(), 89
read barrier depends(), 137-139
read_lock irq(), 127
read lock_irgsave(), 127
read_lock(), 127
read_seqbegin(), 153
read_seqretry(), 153
read_unlock irq(), 127
read_unlock irqrestore(), 127
read_unlock(), 127
relationship with time, 141
rmb(), 137-139
run_local _timers(), 152
run_workqueue(), 98-99
rw_is_locked(), 127
rw_lock init(), 127
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schedule delayed work(), 101-102
schedule_timeout(), 160-162
schedule(), 40-41

scheduler tick(), 152
sema_init(), 130

sema MUTEX(), 130
smp_mb(), 138-139
smp_read_barrier depends(), 138-139
smp_rmby(), 138-139
smp_wmb(), 138-139
spin_is_locked(), 124-125
spin_lock bh(), 125
spin_lock init(), 124-125
spin_lock _irq(), 124-125
spin_lock_irgsave(), 125
spin_lock(), 125

spin_try lock(), 124
spin_trylock(), 125
spin_unlock bh(), 125
spin_unlock_irq(), 124-125
spin_unlock _irqrestore(), 125
spin_unlock(), 125
system_call(), 57
task_timeslice(), 42

tasklet _action(), 91

tasklet disable nosync(), 93
tasklet disable(), 93

tasklet enable(), 93
tasklet_hi_action(), 91
tasklet_hi_schedule(), 90
tasklet kill(), 93

tasklet schedule(), 90, 92
try_to_wake up(), 45
udelay(), 159-160

unlock kernel(), 133-134
up(), 130

update_one process(), 152
vfork(), 24

vmalloc(), 174-176, 184
wait_for_completion(), 133
wake_up(), 45

wmb(), 137-139
worker_thread(), 97-98
write_lock irq(), 127
write lock irgsave(), 127
write lock(), 127
write_trylock(), 127
write_unlock irq(), 127
write_unlock_irgrestore(), 127
write_unlock(), 127
writepage(), 246

G

gce (GNU Compiler Collection), 9
gdb debugger, 262-263

General Public License (GPL), 3
generating patches, 287-288
get_bh() function, 215
get_cpu_ptr() function, 301
get_cpu() function, 136
get_random_bytes() function, 307-308
get_sb() function, 207
gettimeofday() function, 154
get_free_page() function, 168
get_free_pages() function, 167-168
get_zeroed_page() function, 168
get_zeroed_pages() function, 168
gfp_mask flags, 170-174

global variables, 146-149

GNU G, 9-12

GNU Compiler Collection (gcc), 9
GNU debugger, 262-263

GNU General Public License (GPL), 3
granularity of locking, 115

H

hackers, 286

handlers (system calls), 56
hard sectors, 212
hardware management, 5
heads, 212

Hewlett Packard HP-UX, 2
high memory, 279-280
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high memory mappings, 182-184
HP-UX, 2

Hungarian notation, 283

HZ (tick rate), 142-145

I

I/O blocks, 212

1/O scheduler, 219-224
1/0-bound processes, 32
IBM AIX, 2

IEEE (Institute of Electrical and Electronics Engineers), 54

ifdef preprocessor directives, 285
in_interrupt() function, 80
in_irq() function, 80

in-kernel debugger, 262

indent utility, 286

indentation (coding style), 282
index node, 187

init_completion() function, 132

init. MUTEX_LOCKED() function, 130

initializing structures, 286
inline assembly, 10
inline functions, 10

inode object (VFS), 187-188, 193-198

installing the source code, 8

Institute of Electrical and Electronics Engineers (IEEE), 54

interrupt context, 73
interrupt control, 77-80
interrupt handlers

bottom half, 67

example, 71-73

freeing, 69

how they work, 66-67

implementation, 73-76

limitations, 81

reentrancy, 70

registering, 67-69

shared handlers, 70-71

top half, 67

writing, 69-70
interrupt request (IRQ), 66
interrupt service routine (ISR), 66
interrupt system status, 79-80
interrupts, 65-66
IRIX, 2
IRQ (interrupt request), 66
irqs_disabled() function, 80
ISR (interrupt service routine), 66

J-K

jiffies global variable, 146-149
K&R, 283
kallsyms, 259
kdb debugger, 263
KERN_ALERT loglevel, 256
KERN_CRIT loglevel, 256
KERN_DEBUG loglevel, 256
KERN_EMERG loglevel, 256
KERN_ERR loglevel, 256
KERN_INFO loglevel, 256
KERN_NOTICE loglevel, 256
KERN_WARNING loglevel, 256
kernel

activities, 6

building, 12-14

C library, 9

defined, 4

development community, 8

development kernel, 7-8

GNU C, 9-12

hardware, 5

interrupt context, 73

rules, 8-9

stable kernel, 7-8

system calls, 4, 54

Unix, 6-7
kernel_locked() function, 134
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kernel maintainer, 287
kernel messages

klogd daemon, 257

log buffer, 256-257

syslogd daemon, 257
Kernel Newbies Web site, 281
kernel preemption

defined, 48-49

disabling, 135-136

per-CPU data, 299-300

portability, 279-280
kernel threads, 26-27, 229-230
kernel timers. See timers
Kernel Traffic Web site, 281
kernel-space, 4
Kernighan, Brian, 283
kfree_percpu() function, 301
kfree() function, 174
kgdb patch, 263
klogd daemon, 257
kmalloc_percpu() function, 301
kmalloc() function, 169-170, 184
ksoftirqd, 93-95
ksymoops command, 259
kupdated daemon, 250

L

libe, 9
linked lists, 291-297
Linus Elevator, 220-221
Linux

development history, 2

GNU General Public License (GPL), 3

history of, 268-269

obtaining the source code, 8

open source status, 3

Unix, 3, 6-7
Linux filesystems, 210
Linux kernel development community, 8, 266, 281
Linux Kernel Mailing List (Ikml), 8, 281
Linux Weekly News, 281
list_add_tail() function, 295
list_add() function, 295
list_del_init() function, 295
list_del() function, 295
list_empty() function, 295
list_for_each_prev() function, 297
list_for_each_safe() function, 297
list_for_each() function, 296-297
list heads, 293-294
list_move_tail() function, 295
list_move() function, 295
list_splice_init() function, 295
list_splice() function, 295
little-endian byte ordering, 276-277
Ikml (Linux Kernel Mailing List), 8, 281
load_balance() function, 46-47
load balancer, 45-47
local_bh_disable() function, 104
local_bh_enable() function, 104-105
local_irq_disable() function, 80
local_irq_enable() function, 80
local_irq_restore() function, 80
local_irq_save() function, 80
lock contention, 115
lock_kernel() function, 133-134
locking, 104, 109-110, 112-113, 116
locks

Big Kernel Lock (BKL), 133-134

data versus code, 124

semaphores, 127-132

seq locks, 134-135

sleeping locks, 127-132

spin locks, 122-127, 132
log buffer, 256-257
loglevels

KERN_ALERT, 256

KERN_CRIT, 256

KERN DEBUG, 256

KERN EMERG, 256

KERN_ERR, 256

KERN_INFO, 256
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KERN_NOTICE, 256
KERN_WARNING, 256
printk() function, 255-256

M

macros
EXPIRED STARVING(), 43
TASK_INTERACTIVE(), 43
user_mode(), 151
Magic SysRq Key, 261-262
mailing list, 8, 281
maintainers, 286
MAINTAINERS file, 286
mapping memory, 182-184, 238
mb() function, 137-139
mdelay() function, 159-160
memory
address intervals, 237-240
addressing, 165-167, 225-226
allocating, 163, 167-170, 174-176, 179-182, 184, 228-229
allocation, 163
areas, 225-226, 230-237
flags, 231-232
free lists, 176
freeing, 167-169, 174-176
gfp_mask flags, 170-174
kernel threads, 229-230
mapping, 238
mappings, 182-184
memory descriptor, 226-229
page tables, 240-241
pages, 163-165
process address space, 225
protection, 11
slab allocator interface, 179-181
slab layer, 176-181
stack, 181-182
virtual memory areas (VMAs), 230-233
zones, 165-167
metadata, 187
methods. See functions
mmap() function, 239
mod_timer() function, 156
modifying timers, 156
module setting, 13
mount flags, 207-208
mount points, 187
Multics, 1
multiple threads of execution
contention, 115
critical regions, 108-110
deadlocks, 113-115
defined, 107
granularity of locking, 115
locking, 109-110, 112-113, 116
race conditions, 108-110
multitasking operating systems
cooperative multitasking, 31
preemptive multitasking, 31, 34
munmap() function, 239-240
mutex semaphores, 128

N

namespace, 187
namespace structure (VFS), 209-210
naming conventions (coding style), 283
navigating linked lists, 292-293, 296-297
nice() function, 51
notation

big-o notation, 309-310

big-theta notation, 310

0]

O(1) scheduler, 32
objects (VFS)
dentry, 188, 198-202
directory, 188
file, 188, 202-206
inode, 188, 193-198
operations, 189
superblock, 188-193
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occurrence limiting, 265
oops, 257-259

opaque data types, 271-272
open_softirq() function, 88-89
open() system call, 185
operating systems, 3-4
operations objects (VFS), 189

P

padding structures, 274-276
page cache, 243-247
page size, 278-279
page tables, 240-241
pages (memory), 163-165
page_address() function, 167
panic() routine, 260
parameters (system calls), 57-60
patches

generating, 287-288

kdb, 263

kegdb, 263

submitting, 288-289
pdflush daemon, 248-251
per_cpu_ptr() function, 302
per-CPU data

arrays, 299

benefits of using, 302

kernel preemption, 299-300

percpu interface, 300-302
PID (process identification value), 18-19
PIT (programmable interrupt timer), 150
policy (scheduler), 32-35
polling, 65
portability

byte ordering, 276-278

data alignment, 273-276

defined, 267

high memory, 279-280

implications of, 280

kernel preemption, 279-280

Linux, 267-269

operating systems, 267

page size, 278-279

processor ordering, 279

scheduler, 268

symmetrical multiprocessing, 279-280

time, 278

word size, 269-271
POSIX, 54
preempt_count() macro, 136
preempt_disable() macro, 136
preempt_enable_no_resched() macro, 136
preempt_enable() macro, 136
preemption

by kernel, 48-49

by user, 48

disabling, 135-136
preemptive kernel, 48-49
preemptive multitasking, 31, 34
prepare_write() function, 247
printf() function, 9, 254, 257
printk() function

debugging, 254-257

log buffer, 256-257

loglevels, 255-256
priority arrays, 38-39
priority-based scheduling of processes, 32-33, 41-42
process address space, 225
process descriptors, 16-20, 28
process identification value (PID), 18-19
process scheduler

context switching, 47-48

cooperative multitasking, 31

defined, 31

kernel preemption, 48-49

kernel/sched.c, 35

load balancer, 45-47

O(1) scheduler, 32



overhaul from previous version, 32, 35
policy, 32-35
preemptive multitasking, 31, 34
priority arrays, 38-39
purpose of, 31
real-time scheduling policies, 49-50
recalculating timeslices, 39
runqueues, 35-38
schedule() function, 40-41
sleeping tasks, 43-45
system calls, 50-52
timeslice, 31, 33-34, 42-43
user preemption, 48
wait queues, 44
waking up tasks, 45
yielding, 31
processes
address space, 15
context, 20-22
creating, 15, 22-24
data section, 15
defined, 15
flags
clone() flags, 26
TASK_INTERRUPTIBLE, 19-20
TASK _RUNNING, 19
TASK STOPPED, 19
TASK UNINTERRUPTIBLE, 19
TASK ZOMBIE, 19
1/0O-bound, 32
priority of, 32-33, 41-42
processor-bound, 32
programs, 15
resources, 15-16
spinning, 37
starving, 43
states, 19-20
task list, 16-17
tasks, 16
terminating, 16, 27-29
threads of execution
concurrent programming, 25
defined, 15
implementation in Linux, 25
kernel threads, 26-27
lightweight processes, 25
parallelism, 25
virtual memory, 15
virtual processor, 15
zombies, 28-29
processor ordering, 279
processor slice. See timeslice
processor-bound processes, 32
procfs (virtual filesystem), 76
programmable interrupt timer (PIT), 150
programs, 15
pseudo-concurrency, 111
pseudo-random numbers, 303
put bh() function, 215
put cpu ptr() function, 301

Q-R

quantum slice. See timeslice

race conditions, 108-110, 157

radix tree, 247-248
raise_softirq_irqoff() function, 89
raise_softirq() function, 89
raising_the_softirq, 86, 89

random number generator, 303-308
rate limiting, 265

read_barrier_depends() function, 137-139

read_lock_irq() function, 127
read_lock_irgsave() function, 127
read_lock() function, 127
read_seqbegin() function, 153
read_seqretry() function, 153
read_unlock_irq() function, 127
read_unlock_irqrestore() function, 127
read_unlock() function, 127
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read() system call, 185
reader-writer semaphores, 131-132
reader-writer spin locks, 125-127
real-time clock (RTC), 150
real-time scheduling policies, 49-50
recalculating timeslices, 39
registering interrupt handlers, 67-69
relative time, 141
reporting bugs, 287
REPORTING-BUGS file, 287
reproducing bugs, 253-254
request queues, 218-219
requests, 219
Ritchie, Dennis, 1-2, 283
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