Chapter 1

System Programming Basics

In the first part of this book we'll discuss the basics of system programming. We'll talk about the purpose of system
programming and the methods and tools used in system programming. We'll also explain the PC's basic structure and the
interaction between hardware, BIOS and DOS.

What Is System Programming?

Some users, regardless if they'e beginners or experienced programmers, believe system programming is a programming
technique that converts a problem into a finished program. Others think system programming means developing programs
for one particular computer system.

Application programming vs. system programming

Although both answers are incorrect, the second is more accurate than the first. The most accurate description of system
programming can be derived from the term application programming. This type of programming refers to information
management and presentation within a program. This involves arranging this information into lists, etc., and processing this
information. The algorithms used for this are system independent and can be defined for almost any computer.

The way this information is passed to a program, and the way the information is displayed or printed are system dependent.
System programming controls any hardware that sends information to, or receives information from, the computer. However,
since this information must be processed, developing programs for PCs requires both application programming and system
programming.

Programming hardware requires the interaction of system programming, DOS, and the ROM-BIOS (more on this later).

The Three-Layer Model

One of the most important tasks of system programming involves accessing the PC hardware. However, the access doesn't
have to occur immediately, with the program turning directly to the hardware, which is similar to accessing the processor on
avideo card. Instead, the program can use the ROM-BIOS and DOS to negotiate hardware access. The ROM-BIOS and DOS
are software interfaces, which were created specifically for hardware management.

Advantages of the DOS and BIOS interfaces

The greatest advantage of using DOS or BIOS is that a program doesn't have to communicate with the hardware on its own.
Instead, it calls a ROM-BIOS routine that performs the required task. After the task is completed, the ROM-BIOS returns
status information to the program as needed. This saves the programmer a lot of work, because calling one of these functions
is faster than directly accessing the hardware.

There's another advantage to using these interfaces. The ROM-BIOS and DOS function interfaces keep a program isolated
from the physical properties of the hardware. This is very important because monochrome graphic cards, such as the MDA
and Hercules cards, must be programmed differently from color graphic cards, such asthe CGA, EGA, VGA, and Super VGA.
If you want a program to support all these cards, you must implement individual routines for each card, which is very
time-consuming. The ROM-BIOS functions used for video output are adapted to the resident video card, so the program can
call these functions without having to adapt to the video card type.

ROM-BIOS

The BIOS offers functions for accessing the following devices:

2 1. System Programming Basics
» Video cards » RAM (extended memory) » Diskettes > Hard drives
» Serial ports » Parallel ports » Keyboard » Battery-operated realtime clock

As this illustration shows, the ROM-BIOS can

The three layer

model Application program | be viewed as a layer overlapping the hardware.
Although you can bypass the ROM-BIOS and
l directly access the hardware, generally you

| should use the ROM-BIOS functions because

| DOS they are standardized and can be found in

every PC. The ROM-BIOS, as its name

l indicates, is in a ROM component on the
computer's motherboard. The moment you

| BIOS | switch on your computer, the ROM-BIOS is

available (see Chapter 3 formore information).

Y l l DOS interface

Hardware | Along with BIOS, DOS provides functions for
accessing the hardware. However, since DOS
views hardware as logical devices instead of
physical devices, DOS functions handle hardware differently. For example, the ROM-BIOS views disk drives as groups of
tracks and sectors, but DOS views these drives as groups of files and directories. If you want to view the first thousand
characters of a file, first you must tell the ROM-BIOS the location of the file on the drive. With DOS functions, you simply
instruct DOS to open a file on drive A:, C:, or whatever device, and display the first thousand characters of this file.

Access often occurs through BIOS functions used by DOS. However, sometimes DOS also accesses hardware directly, but
you don't have to worry about this when you call a DOS function.

Which functions should you use?

Later in this chapter we'll show you how to call DOS and BIOS functions. Before doing this, however, we must determine
which hardware access to use. We have the option of direct hardware programming, calling BIOS functions, and calling DOS
functions. First, you don't always have a choice between direct hardware programming, and BIOS and DOS functions. Many
tasks aren't supported by the BIOS or DOS functions. For example, if you want your video card to draw circles or lines, you
won't find the appropriate functions in DOS or the BIOS. You must use direct hardware programming or purchase a
commercial software library that contains this program code.

Choosing between BIOS and DOS

When either a BIOS function or a DOS function can be used, your decision should be based on the current situation. If you
want to work with files, you must use DOS functions. If you want to format a diskette, you must use the appropriate BIOS
functions. This is similar to displaying characters on the screen. If you want to redirect your program output to a file (e.g.,
DIR >list.txt), you must use DOS functions. Only DOS functions automatically perform this redirection. The BIOS functions
provide better control of the screen (e.g., cursor placement). So, the situation determines which function you should use.

Slowing access

However, in some instances, both the BIOS functions and DOS functions are at a disadvantage because of slow execution
speed. As the number of software layers, which must be negotiated before hardware access occurs, increases, the programs
become longer. If the hardware must access a program that reads a file through BIOS and DOS, a hard drive's data transfer
rate can decrease a maximum of 80 percent.

This problem is caused by the way the layers are handled. Before the call can be passed to the next level, parameters must
be converted, information must be loaded from internal tables, and buffer contents must be copied. The time needed for this
passage is called overhead. So, as overhead increases, so does the programmer's work.

1. System Programming Basics 3

As aresult, when maximum execution speed is required and direct hardware programming is relatively simple, programmers
often use direct access instead of the BIOS and DOS. The best example of this is character output in text mode. Almost all
commercial applications choose the most direct path to the hardware because BIOS and DOS output functions are too slow
and inflexible. Direct video card access in text mode is quite easy (refer to Chapter 4 for more information), although graphic
mode output offers more challenges.

Later in this chapter you'll learn how to call the DOS and BIOS functions and how to directly access the hardware of the PC.

Basics Of PC Hardware

In this section we'll examine some of the basic concepts of PC architecture, which lead all the way to the system programming
level. Knowing something about the hardware will make it easier to understand some of the programming problems discussed
later in this book.

Birth of the PC

When the PC appeared on the market, much of what PC users take for granted today was inconceivable. The concept ofhaving
a flexible computer on a desktop wasn't new; companies much smaller than IBM had already introduced similar computers.
IBM had just completed work on its System/23 DataMaster. However, the DataMaster was equipped with an 8085 8-bit
processor from Intel, which was outdated. In 1980, the 16-bit processor was introduced and IBM began planning a new,
revolutionary machine.

Choosing a processor

The 8086 processor and 8088 processors from Intel were the first representatives of the new 16-bit processors. Both had 16-
bit registers. This meant they could access 1 megabyte memory addresses instead of the old 64K memory addresses. A
megabyte was an unimaginable amount of memory in 1980, just as 1 gigabyte of RAM is still unimaginable to many today.

Another reason developers were anxious to use the 8086 and 8088 processors was that many support chips already existed.
Obviously this saved a lot of development time. Also, both processors were supported by an operating system and an
implementation of the BASIC language, which was developed by Microsoft Corporation.

Block diagram '
of your PC's Expansion slots
hardware %/ %/ /
| BUS
I I
‘Memory‘ ‘
Lol o
RN il @
1T o
Support chips
CPU

SIMM module

The developers chose the 8088 over the 8086 because, while the 8088 worked on a 16-bit basis internally, it only
communicated with the outside world using an 8-bit data bus. Since the 8-bit DataMaster data bus already existed, the 8088
was the obvious choice. This bus connects the motherboard of the PC, where the processor and its support chips are resident,
to the memory and the expansion boards, which are plugged into the expansion slots.

4 1. System Programming Basics
The Bus

Although the bus is vital to the operation of the computer system, the development of the PC bus represents one of the darkest
moments in the history of the PC. Although IBM tried to create an open system and publish all technical information, it
neglected to document the exact sequence of the bus signals, probably assuming that no one would need or want this
information.

However, the openness of the PC and the option of easily adding expansion boards and more hardware added to the PC's
success on the market. Many users quickly took advantage of this, buying IBM expansion boards and third-party compatible
boards. The PC has its entire data and address bus on the outside; the bus connects to RAM, the various expansion boards,
and some support chips.

Operating the PC bus

The bus is basically a cable with 62 lines, from which data are loaded into memory by the processor, and through which data
can be transported to the processor.

The bus consists of the data bus and the address bus. When memory is accessed, the processor puts the address of the desired
memory location on the address bus, with the individual lines indicating a binary character. Each line can be only a 0 or a
1. Together, the lines form a number that specifies the address of the memory location. The more lines that are available, the
greater the maximum address and the greater the memory that can be addressed in this way. Twenty lines were available on
the original address bus because with 20 bits you can address 1 megabyte of memory, which corresponds to the processor's
performance.

The actual data are sent over the data bus. The first data bus was only 8 bits wide, so it could transfer only one byte at a time.
If the processor wanted to discard the contents of a 16-bit register or a 16-bit value in memory, it had to split the register or
value into two bytes and transfer one byte at a time.

Although theoretically this sounds simple, it's actually a complicated procedure. Along with the data and address buses,
almost two dozen other signal lines communicate between the processor and memory. All the boards communicate with the
bus. When a board takes responsibility for the specified address, it must send an appropriate signal to the processor. At this
point, all the other boards separate from the rest of the communication and wait for the beginning of the next data transfer
cycle.

Using expansion boards always leads to problems. This usually occurs when two boards claim the same address range or there
are overlapping address ranges. The DIP switches on these boards let you specify the address range. One board must be
reconfigured to avoid conflict with the other board.

As a system programmer, you'll never encounter bus signals. Actually, bus performance usually isn't important to system
programming. The bus signal timing is very important to expansion board manufacturers. Their products must follow this
protocol to function in the PC. However, this is the protocol that IBM never published. So, the manufacturers must measure
the signal sequences by using existing cards and then imitate those cards.

AT bus

In 1991, the IEEE (Institute of Electrical and Electronic Engineers) submitted an international standard for the AT bus. The
PC bus was limited by its 8-bit width. When the AT appeared on the market, it included a 16-bit bus that was compatible with
the older bus. That's why the old PC 8-bit boards can be used with the new 16-bit boards in one device. Obviously, the 16-
bit boards are much faster because they can transfer the same data in half the time it would take an 8-bit board.

The address bus was expanded to 24 bits, so the AT can address 16 megabytes of memory. Also, higher clock signal speed
increased bus transfer time. From 4.77 MHz on the PC, the AT speed increased to § MHz. However, that's as fast as the AT
address bus can handle information, although Intel processor speeds have reached the 100 MHz limit. As a result, the bus
is abottleneck, through which the data will never be transferred quickly enough between memory and the processor. Modern
hard drives have a higher data transfer rate than the bus.

1. System Programming Basics 5
Wait state
The wait state signals found in some expansion boards give slow boards more time to deliver data to the processor.

This is also one reason why the classic AT bus resulted in more powerful successors like the Micro Channel bus and the EISA
bus, which haven't been very successful on the market for other reasons. At first there wasn't a generic name for the AT bus.
However, when competition appeared on the market, the bus was assigned the name Industry Standard Architecture bus, or
ISA bus.

Problems with 16-bit boards on the AT bus

Since most of the modern 386s and 486s have an ISA bus, many problems in the PC can be traced to this bus. For example,
the coexistence of 8-bit and 16-bit expansion boards within a PC causes problems as long as the address range for which these
boards are responsible is located within any area of 128K. The problem starts at the beginning of a data transfer, when a 16-
bit board has to signal from a control line that it can take a 16-bit word from the bus and, unlike an 8-bit board, doesn't depend
on the transfer being split into two bytes.

However, the board must send this signal when it cannot even be aware the address on the data bus is intended for it and requires
an answer. Of the 24 address lines that carry the desired address, only lines A17 to A23 have been correctly initialized to this
point. This means the board only recognizes bits 17 to 23. These bits cover a complete 128K region, regardless of what might
follow in address bits 0 to 16. So for the moment, the board only knows whether the memory address is located in the 0K-
127K region, the 128K-255K region, etc.

If the 16-bit board sends the signal for a 16-bit transfer at this moment, it's speaking for all other boards within this region.
They experience this in the next moment, because after address bits 0 to 16 have arrived on the bus, the intended board will
be determined. If it really is the 16-bit board, no problems occur. However, if an 8-bit board was intended, the 16-bit board
will simply separate from the rest of the transfer, leaving the 8-bit board by itself. However, the 8-bit board won't be able to
manage the transfer because it's only set for 8-bit transfers. So, the expansion board cannot accept the data as sent.

PC BUS and Vesa Local Bus

In view of the limitations of the AT bus and the inability of the EISA and MCA bus to gain acceptance on the market,
developers devised some other bus concepts. The Vesa Local bus (VL bus) came out first, designed and publicized by the
independent VESA Committee. The members of the VESA committee made it their business to define standards for graphic
cards, so they didn't really have anything at all to do with PC bus design. However, graphic cards suffer from the low speed
of the AT bus. That's why the VESA committee made the suggestion for a faster bus, the VESA local bus.

Unlike the EISA, MCA and PCI buses, the VL bus does not replace the ISA bus, instead, it complements it. A PC witha VL
bus has a normal ISA bus and the appropriate slots for expansion cards. However, there are also one or two additional slots
for cards designed for the VL bus, usually graphic cards. Only these slots are connected to the CPU via the VL bus, so the
other slots are left undisturbed and ISA cards can perform their work.

As you might guess from the name, the VL bus is a local bus. Unlike the ISA bus, it is directly coupled to the CPU. On the
one hand, that gives the bus a significantly higher clock speed (that of the CPU), but it also makes the bus dependent, both
on the control lines of the CPU and on the clock. Along with these drawbacks, the specifications of the VESA committee aren't
very well thought out. As a result, the VL bus will not make the grade in the long run. While reasonably priced 486 systems
often have this bus type, its heyday is over.

Clearly, the bus of the future is Intel's PCI bus. PCI stands for Peripheral Component Interconnect, and represents a modern
bus that is superior to the ISA bus not only with regard to clock speed and a larger bus width. Finally, there is a bus that
automatically synchronizes/tunes installed expansion cards regarding their port addresses, DMA channels and interrupts. The
user no longer has to deal with this issue.

The PCI bus is independent from the CPU, because a PCI bus controller is always interconnected with the CPU and the PCI
bus. That makes it possible to use the PCI bus in systems that aren't based on an INTEL processor, such as an Alpha processor
from DEC. In the future, the Power Macintosh with the PowerPC processor is also supposed to be equipped with a PCI bus.

6 1. System Programming Basics

PCl upgrade cards work reliably in all systems equipped with a PCI bus and can be exchanged. Only the software drivers have
to be adapted to the host system, i.e., the CPU.

In addition to that, the PCI bus is not dependent on the clock of the CPU, because the PCI bus controller separates it from
the CPU. If you add a newer, faster CPU to your computer, you don't have to worry about your installed upgrade cards not
being able to handle the higher clock speeds. Because the CPU and PCI bus are separate, the higher clock rates don't even
affect them.

Modern Pentium computers are almost exclusively equipped with PCI buses, and the PCI bus is also becoming increasingly
popular with 486 boards. Although you cannot operate an ISA card in a PCI slot, this doesn't mean you have to do without
ISA cards on most systems with a PCI bus. Often a board with a PCI bus will have a "PCI to ISA bridge". This is a chip that
is interconnected to the various ISA slots and the PCI bus controller. Its job is to convert signals from the PCI bus to the ISA
bus. This allows you to continue running your ISA cards under the protection of the PCI bus.

Although the future belongs to the PCI bus, the ISA bus and ISA expansion boards will continue to exist. Not all expansion
boards require the high transfer rates made possible by the PCI bus. However, in the future, above all graphic, SCSI and
network cards will be attached to the PCI bus in ever greater numbers. The speed advantage of this bus system takes full effect
on these cards, so the hardware can keep up with the steadily increasing speed of the processor.

Support chips

Developers supplied the processor with some additional chips to handle tasks the processor cannot handle on its own. These
support chips, which are also called controllers because they control a part of the hardware for the processor, perform many
tasks. This enables the processor to concentrate on other tasks.

The following are descriptions of these support chips and the chips initially selected by IBM. If a support chip is
programmable, we'll indicate this later in the book.

DMA controller (8237)

DMA is an acronym for Direct Memory Access. This technique transfers data directly to memory by using a device (e.g., a
hard drive). This method seems to work much faster than the normal method, in which the processor prompts the hardware
for each word or byte and then sends the word or byte to memory. Actually, the DMA controller's advantages are evident only
with slow processors because the DMA is linked to the bus speed.

Modern processors, which work more than five times as fast as their bus, barely benefit from DMA transfer because the DMA
controller in the PC is obsolete. Because of this, the DMA controller cannot even be used for one of the most interesting areas
of programming, which is moving large amounts of data from conventional RAM to video RAM (RAM on the video card).
This chip is still found in all PCs although it isn't used for its original purpose, which is data transfer between disk drives and
memory. ATs have two DMA controllers.

The PC is equipped with DRAM (dynamic RAM) instead of SRAM (static RAM). DRAMs lose their contents unless the
system continually refreshes the RAM. The DMA controllers in AT systems, instead of the processors, perform this RAM
refresh.

Interrupt controller (8259)

The interrupt controller is important for controlling external devices, such as the keyboard, hard drive or serial port. Usually
the processor must repeatedly prompt a device, such as the keyboard, in short intervals to react immediately to user input and
pass this input to the program currently being executed. However, this continual prompting, also called polling, wastes
processor time because the user doesn't press a key as often as the processor polls the keyboard. However, the less often the
processor prompts the keyboard, the longer it takes until a program notices that a key has been pressed. This obviously defeats
the purpose, since the system is supposed to react promptly.

1. System Programming Basics 7

Hardware interrupt

The PC takes another route. Instead of the processor repeatedly prompting the devices, the devices report activity to the
processor. This is an example of a hardware interrupt, because at that exact moment the processor interrupts the execution
of'the current program to execute an interrupt handler. This interrupt handler is a small routine, usually provided by the BIOS,
that deals with the event that triggered the interrupt. After the routine ends, the processor continues executing the interrupted
program as though nothing happened. This means the processor is called only when something actually happens.

However, the process of triggering an interrupt, halting program execution, and calling the interrupt handler takes a long time.
Expansion board and support chip interrupt requests are sent to the interrupt handler first, instead of to the processor. The PC
has several interrupt lines, each connected to a device. Each of these devices could trigger an interrupt over its line
simultaneously.

Because the processor can only process one interrupt at a time, priorities must be defined so the incoming interrupt requests
are handled according to their priority. The interrupt controller is responsible for determining priority.

The interrupt controller in a PC/XT can process up to eight interrupt sources, which enables it to handle eight interrupt requests
simultaneously. Since this isn't sufficient foran AT, two interrupt controllers are coupled on the AT. Together they can process
up to 15 interrupt requests simultaneously. For more information about hardware interrupts, refer to the "Interrupts" section
in this chapter.

Interrupting a

program through Program
an interrupt

Interrupt
routine

Save register contents

Interrupt

Restore register contents

Program execution

IRET

-

Programmable peripheral interface (8255)

This chip connects the processor to peripheral devices, such as the keyboard and speaker. It acts only as a mediator, which
is used by the processor to pass given signals to the desired device. (Refer to Chapter 13 for more information on this chip
and how it's used to make musical sounds.)

The clock (8248)

If the microprocessor is the brain of the computer, then the clock could be considered the heart of the computer. This heart
beats several million times a second (about 14.3 MHz) and paces the microprocessor and the other chips in the system. Since
almost none of the chips operate at such high frequencies, each support chip modifies the clock frequency to its own
requirements.

8 1. System Programming Basics
The timer (8253)

The timer chip can be used as a counter and timekeeper. This chip transmits constant electrical pulses from one of its output
pins. The frequency of these pulses can be programmed as needed, and each output pin can have its own frequency. Each
output pin leads to another component. One line goes to the audio speaker and another to the interrupt controller. The line
to the interrupt controller triggers interrupt 8 at every pulse, which advances the timer count.

CRT controller (6845)

Unlike the chips we've discussed so far, the CRT (Cathode Ray Tube) controller is separate from the PC's motherboard (main
circuit board). This chip is located on the video card, which is mounted in one of the computer's expansion slots. Originally
the controller was a Motorola 6845 model controller, which was used on the CGA and MDA video cards first released by
IBM. The later EGA and VGA cards superseded these cards because of their more powerful processors. Even though these
new chips are no longer compatible with the original Motorola controllers, this doesn't affect the processor. Unlike the other
support chips, the processor doesn't come directly into contact with the CRT controller. The ROM-BIOS is specially adapted
to working with the CRT controller, which relieves the processor of the task (see Chapter 4 for more information about
programming video cards).

Disk controller (765)

This chip is also usually located on an expansion board. It's addressed by the operating system and controls disk drive
functions. It moves the read/write head of the disk drive, reads data from the diskette, and writes data to the diskette. Similar
to the CRT controller, the disk controller is addressed by the ROM-BIOS instead of by the processor.

The first PCs didn't have disk drives. IBM provided a cassette drive interface, assuming that this would be the preferred storage
device. However, disk drives became available shortly afterward, and IBM stopped using the cassette interface. Data storage
on a disk drive is much safer, faster, and more convenient than on a cassette. (Refer to Chapter 6 for more information on
diskettes, hard drives, and their controllers.)

The math coprocessors (8087/80287/80387/80487)

Until the 80486 was released, Intel processors weren't able to work with floating point numbers. They could only process
whole numbers. Depending on the bit width, integers cover a value range of 0 to 255 (8 bit), 0 to 65535 (16 bit) or 0 to
429624976 (32 bit), while floating point numbers cover the range of real numbers. That's why floating point numbers are used
wherever it's necessary to calculate with real numbers, for example in a spreadsheet or CAD program. While floating point
numbers can be represented with the help of integers and it is possible to base floating point arithmetic on integers via software,
calculating floating point numbers is much faster when done directly in the hardware.

That is why Intel offered special math coprocessors that could be plugged into a free socket on the motherboard, next to the
CPU. They were adapted to the successors of the Intel 8088, from generation to generation. There is a math coprocessor for
each Intel processor up to the 486 SX. The 486 DX and the various versions of the Pentium chip have this coprocessor built
in, so they are able to execute floating point calculations without adding a special coprocessor. However, there is one
requirement. The software must really make use of the appropriate machine language commands for floating point arithmetic.

We won't discuss programming a coprocessor in this book because this involves normal assembly language processing instead
of system programming. (Refer to Chapter 14 for more information about coprocessors.)

Memory layout

The first PCs included 16K of memory, which could be upgraded to as much as 64K on the motherboard. IBM also sold
memory expansion boards containing 64K of memory, which could be inserted in one of the five expansion slots. You could
install up to three of these boards, upgrading your PC to 256K of memory. In 1981, this was considered a lot of memory.

The PC developers defined a memory layout that allowed RAM expansion to 640K. Along with the RAM expansion, they
also planned for additional video RAM, additional ROM-BIOS, and some ROM expansions in the 1 megabyte address space
of the 8088 processor.

1. System Programming Basics 9

Whether RAM or ROM is in a given memory location doesn't matter to the processor, except that ROM locations cannot be
written. The processor can also address memory locations that don't exist physically. Although the processor can manage up
to 1 megabyte of memory, this doesn't guarantee that a RAM or ROM component exists behind every memory address.

As the following table shows, this memory layout is based on 64K segments because the 8088 and its successors manage
memory in blocks of this size (more on this in Chapter 12). Sixteen of these blocks comprise an address space of 1 megabyte.

Division of PC RAM

Block Address Contents

15 F000:0000 - FOOO:FFFF ROM-BIOS

14 | E000:0000 - EOQO:FFFF Free for ROM cartridges
13 D000:0000 - DO00:FFFF Free for ROM cartridges
12 C000:0000 - CO00:FFFF additional ROM-BIOS
11 B000:0000 - BOOO:FFFF Video RAM

10 | A000:0000 - AOOO:FFFF Additional video RAM (VGA/EGA)
9 9000:0000 - 9000:FFFF RAM from 576K to 640K
8 8000:0000 - 8000:FFFF RAM from 512K to 576K
7 7000:0000 - 7000:FFFF RAM from 448K to 512K
6 6000:0000 - 6000:FFFF RAM from 384K to 448K
4 5000:0000 - 5000:FFFF RAM from 320K to 384K
5 4000:0000 - 4000:FFFF RAM from 256K to 320K
3 3000:0000 - 3000:FFFF RAM from 192K to 256K
2 2000:0000 - 2000:FFFF RAM from 128K to 192K
1 1000:0000 - 1000:FFFF RAM from 64K to 128K
0 0000:0000 - 0000:FFFF RAM from OK to 64K

The first 10 memory segments are reserved for conventional memory, limiting its size to 640K. Memory segment 0 is
important because it contains important data and operating system routines.

Memory segment A follows conventional memory. This segment indicates an EGA or VGA card and contains additional
video RAM for generating the various graphics modes supported by these cards.

Memory segment B is reserved for a Monochrome Display Adapter (MDA) or Color/Graphics Adapter (CGA). They share
the same segment of video RAM. The monochrome card uses the lower 32K and the color card uses the upper 32K. Each video
card only uses as much memory as it needs for the display. The MDA uses 4K while the CGA card uses 16K.

The next memory segment contains ROM beginning at segment C. Some computers store the BIOS routines that aren't part
of'the original BIOS kernel at this location. For example, the XT uses these routines for hard drive support. Since this location
isn't completely utilized, this memory range may be used later to store BIOS routines supporting hardware extensions.

10 1. System Programming Basics

ROM cartridges

Segments D and E were originally reserved for ROM cartridges, but they were never properly used. Today this range is used
either for additional RAM or EMS memory (see Chapter 12 for more information).

Segment F contains the actual BIOS routines, the original system loader, and the ROM BASIC available on early PCs.
Following this memory layout

The PC hardware isn't limited to any particular memory layout, including IBM's. However, IBM set the standard with its first
PC, and suppliers still follow this standard. This usually affects software because the BIOS and DOS have adapted to the
locations of certain memory areas (e.g., video RAM). Every software product on the market also complies with IBM's memory
structure.

After the PC

Although the original IBM PC wasn't the last development in the PC world, it did establish a series of basic concepts, including
the BIOS functions, the memory layout, and the interaction between the processor and the support chips.

However, the XT and the AT brought a few small changes to these concepts. The XT, released in 1983, had the first hard drive
with a 10 megabyte capacity. This upgrade barely affected the total system, except the C segment was given an additional
hard drive ROM, which added some ROM-BIOS functions for hard drive access.

The AT

The AT (Advanced Technology) computer was released in 1984, only one year after the XT. The most significant
improvement involved the processor because developers used the Intel 80286 instead of the 8088. This processor finally gave
the PC a 16-bit data bus. So, memory accesses no longer had to be divided into two bytes, as long as the memory and expansion
board cooperated. Also, the address lines of the bus were increased from 20 to 24 bits because the 80286 could manage 24-
bit addresses, which allowed it to address a memory range of 16 megabytes.

Disk drives

The AT doubled the hard drive capacity to 20 megabytes and introduced the 5.25" HD (high density) disk drive with a capacity
of 1.2 megabytes. This disk drive is still used today. Also, the AT had a battery operated realtime clock, which finally made
it possible for the clock to continue running even after the computer was switched off. The AT also increased the number of
DMA controllers and interrupt controllers to two each.

A few new ROM-BIOS functions, such as functions for accessing the battery operated realtime clock, supported the new
hardware.

Although the AT provided many improvements, it signaled the beginning of a trend that favors the current version instead
of creating solutions for future upgrades. For example, "downward compatibility" in protected mode (an operating mode that
separated the 80286 from its predecessors) wasn't widely used until the 80386 and Windows 3.0 were introduced.

When the 80286 appeared, preparations hadn't been made for protected mode. DOS, BIOS, and software avoided supporting
this mode. Users continued working in real mode, in which the 80286 acts like a glorified 8088, performing at a fraction of
its total capacity. Unfortunately, this is still happening today; real mode will probably be used until the switch to Windows
NT and OS/2.

PS/2

After the AT, IBM attempted to set another standard with its PS/2 systems. These systems were successful mainly because
of an improved bus system called the Micro-Channel Architecture (MCA). However, IBM kept the architecture of the new
bus secret. It provided the information needed for building expansion cards only to hardware manufacturers that paid the
licensing fees. This resulted in a limited supply of expansion boards for a system that wouldn't accept any AT boards. ISA
boards cannot be used in systems with an MCA bus because the MCA bus has an entirely different line capacity.

1. System Programming Basics 11
No standards after the AT

Many companies began offering less expensive (and sometimes better) alternatives to the AT and PS/2. Companies like
Compagq, which released laptop computers and an AT that had an 80386 processor, kept PC technology moving forward.

However, no company could fill the gap that was left by IBM when it dropped in the market. Once the PC market became
fragmented, none of the companies had the power to define new hardware/software standards and push them onto the market.
After a few years, committees met to set hardware standards (e.g., the Super VGA standard) that improved system and
software compatibility.

Afterthe AT, anew PC based on the ISA bus wasn't defined. So, systems with 80386 or 80486 processors are still generically
referred to as ATs because they're based on the technology introduced by IBM when the AT was released.

The Processor

You don't have to become a professional assembly language programmer to understand system programming. You can also
use high level languages, such as BASIC, Pascal, or C, for system programming. However, you must understand some
concepts of the processor that are important in system programming. These concepts, which overlap into high level language
programs, include the processor register, memory addressing, interrupts, and hardware access.

Although these principles haven't changed much since the 8088 was introduced, this chip is in its fifth generation and has
capabilities that were unheard of ten years ago. However, these changes relate to the processor's speed instead of its
fundamental concept.

The PC's brain

Let's discuss the family of Intel PC processors. The microprocessor is the brain of the PC. It understands a limited number
of'assembly language instructions and processes or executes programs in this assembly language. These instructions are very
simple and can't be compared to commands in high level languages, such as BASIC, Pascal, or C. Commands in these
languages must be translated into numerous assembly language instructions the PC's microprocessor can then execute. For
example, displaying text with the BASIC PRINT statement requires the equivalent of several hundred assembly language
instructions.

Assembly language instructions are different for each microprocessor used in different computers. The terms Z-80, 6502, or
8088 assembly language (or machine language) refer to the microprocessor being programmed.

Intel's 80xx series

The PC has its own family of microprocessor chips, which were designed by the Intel Corporation. The following figure shows
the Intel 80xx family tree. Your PC may contain an 8086 processor, an 8088 processor (used in the PC/XT), an 80186
processor, an 80286 processor (used in the AT), or even an 80386 processor microprocessor. The first generation of this group
(the 8086) was developed in 1978. The successors of the 8086 were different from the original chip. The 8088 is actually a
step backward because it has the same internal structure and instructions of the 8086, but is slower than the 8086. The reason
for this is the 8086 transfers 16 bits (2 bytes) between memory and the microprocessor simultaneously. The 8088 is slower
since it transfers only & bits (1 byte) at a time.

The other microprocessors of this family are improved versions of the 8086. The 80186 provides auxiliary functions. The
80286 has additional registers and extended addressing capabilities. However, the 80286's greatest innovation is protected
mode (see Chapter 33 for more information). DOS doesn't support protected mode.

The 80386 followed the 80286, and marks a great leap forward in performance. However, it's already outdated, and you will
hardly find 386s on the market any more. This processor has advanced protected mode and 32-bit registers. Like protected
mode, DOS doesn't support these registers. The 80386 includes SX and DX versions, which differ in clock frequency and
data bus width. The SX works with a 16-bit data bus, while the DX can transfer an entire 32-bit word at one time.

12 1. System Programming Basics

The 80486 (often called the "i486" by Intel), is no longer "state of the art", although it is still very popular and selling in high
numbers. It differs from the 80386 because it includes the 80387 mathematical coprocessor, a code cache, and faster
processing of many assembly language instructions. However, the 80486 also maintains downward compatibility with the
8086.

The Pentium is currently considered the most advanced processor. Compared to the 486, the main improvement in the Pentium
is the internal processing speed. In specific situations, this processor is able to process two sequential commands
simultaneously, provided the second command doesn't depend on the result of the first command.

The name of the processor, Pentium, is also new. Users were expecting the 80586. Intel preferred to break with tradition,
because names such as 8088 or 80586 cannot be protected by copyright. Other chip manufacturers took advantage of this to
sell Intel compatible processors under similar names. Intel decided to take the wind out of the competition's sails and came
up with "Pentium", which is protected by copyright.

No one knows yet whether the Pentium will by followed by the "Hexium", but we can start looking forward to the next
generation of Intel processors, which will be introduced in 1995.

The Intel 80xx
processor family

90

80386

80486 DX/33
80486 DX4/100
Pentium/100

Performance

POOONOUAWNR
©
o
=
©
=

e

50

20

\

74 76 78 79 81 82 83 85 89 94

Year

Processor registers

Registers are memory locations within the processor itself instead of in RAM. These registers can be accessed much faster
than RAM. Registers are also specialized memory locations. The processor performs arithmetic and logical operations using
its registers.

The processor registers are important for system programming because the flow of information between a program and the
DOS and BIOS functions that call this program occurs through these registers.

From a system programming viewpoint, nothing has changed in registers since the 8086. This is because the BIOS and DOS
were developed in connection with this processor, so they only support this processor's 16-bit registers. The 32-bit registers

1. System Programming Basics 13

of an 80386 and 1486 cannot be used in system programming under DOS. We'll discuss only 8088 registers, which apply to
all later chips.

8088 registers | Common registers — Segment registers
also apply to 5 87 0
later processors :
AX
————————————————— Accumulator DS Data segment
AH { AL
Base ES Extra segment
fffffffffffffffff Count Code segment
CH { CL cs ’
DX Dat
fffffffffffffffff ata Stack segment
DH { DL SS 9
DI Destination index
Sl Source index Program counter P
SP Stack pointer)
P Instruction
Pointer
BP Base pointer
Flag register h
L[folofriTlsiz]aflr[]c|

All registers are 16 bits (2 bytes) in size. If all 16 bits of a register contain a 1, the result, which is the decimal number 65535,
is the largest number that can be represented within 16 bits. So, a register can contain any value from 0 to 65535 (FFFFH or
1111111111111111b).

Register groupings

As the illustration above shows, registers are divided into four groups: common registers, segment registers, the program
counter and the flag register. The different register assignments are designed to duplicate the way in which a program
processes data, which is the basic task of a microprocessor.

The disk operating system and the routines stored in ROM use the common registers extensively, especially the AX, BX, CX,
and DX registers. The contents of these registers tell DOS what tasks it should perform and which data to use for execution.

These registers are affected mainly by mathematical (addition, subtraction, etc.) and input/output instructions. They are
assigned a special position within the registers of the 8088 because they can be separated into two 8-bit (1 byte) registers. Each
common register usually contains three registers: a single 16-bit register and two smaller 8-bit registers.

14 1. System Programming Basics
Common registers

The common registers are important for calling DOS and BIOS functions and are used to pass parameters to a particular
function that needs these parameters for execution. These registers are also influenced by mathematical operations (addition,
subtraction, etc.), which are the central focus of all software activities at processor level. Registers AX, BX, CX, and DX have
a special position within this set of registers, because they can be divided into two 8-bit registers. This means that each of these
registers consists of three registers, one big 16-bit register and two small 8-bit registers.

The small registers have H (high) and L (low)

8a01§g g%%f;%s i Big 7 Bt designators. So, the 16-bit AX register may be
later processors divided into an 8-bit AH and an 8-bit AL
AH AL register. The H and the L register designators
occur in such a way the L register contains the
- - lower 8 bits (bit 0 through 7) of the X register,

Bit 15 Bit 0

and the H register contains the higher 8 bits
(bits 8 through 15) of the X register. The AH
register consists of bits 8-15 and the AL register consists of bits 0-7 of the AX register.

However, the three registers cannot be considered independent of each other. For example, if bit 3 of the AH register is
changed, then the value of bit 11 of the AX register also changes automatically. The values change in both the AH and the
AX registers. The value of the AL register remains constant since it is made of bits 0-7 of the AX register (bit 11 of the AX
register doesn't belong to it). This connection between the AX, the AH, and the AL register is also valid for all other common
registers and can be expressed mathematically.

You can determine the value of the X register from the values of the H and the L registers, and vice versa. To calculate the
value of the X register, multiply the value of the H register by 256 and add the value of the L register.

Example: The value of the CH register is 10 and the value of the CL register is 118. The value of the CX register results
from CH*256+CL, which is 10¥256+118 = 2678.

Specifying register CH or CL, you can read or write an 8-bit data item from or to any memory location. Specifying register
CX, you can read or write a 16-bit data item from or to a memory location.

In addition to common registers, segment registers and the flag register are an important part of system programming.
Flag register

The flag register communicates between consecutive assembly language instructions by storing the status of mathematical
and logical operations. For example, after using the carry flag to add two 16-bit registers, a program can determine whether
the result is greater than 65,535 and thus

present it as a 32-bit number. The sign,

zero, and overflow bits perform similar
tasks and can be used after two registers
have been compared to establish whether
the value of the first register is greater than,

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0O
‘ ‘ ‘ ‘ ‘OF‘DF‘IF‘TF‘SF‘ZF‘ ‘AF‘ ‘PF‘ ‘CF‘

L} _ less than, or equal to the value of the second

CF = Carry Flag register.

——» PF = Parity Flag

AF = Auxilliary Flag Only the carry flag and zero flag are
» ZF = Zero Flag important for system programming from
» SF = Sign Flag high level languages. Most DOS and BIOS
» TF = Trap Flag functions use these flags to indicate errors
» IF = Interrupt Flag for insufficient memory or unknown
» DF = Direction Flag filenames (see Chapter 2 for information
» OF = Overflow Flag on accessing these flags from high level

languages).

1. System Programming Basics 15

Memory addresses

How the processor generates memory addresses is especially important for system programming, because you must
constantly pass buffer addresses to a DOS or BIOS function. In these instances, you must understand what the processor is
doing. The 8088 and its descendants use a complicated procedure. So that you'll understand this procedure, we'll discuss the
origins of the 8086.

One of the design goals of the 8088 was to provide an instruction set that was superior to the earlier 8-bit microprocessors
(6502, Z80, etc.). Another goal was to provide easy access to more than 64K of memory. This was important because
increasing processor capabilities allows programmers to write more complex applications, which require more memory. The
designers of the 8088 processor increased the memory capacity or address space of the microprocessor (more than 16 times)
to one megabyte.

Address register

The number of memory locations that a processor can access depends on the width of the address register. Since every memory
location is accessed by specifying a unique number or address, the maximum value contained in the address register
determines the address space. Earlier microprocessors used a 16-bit address register, which enables users to access addresses
from 0 to 65535. This corresponds to the 64K memory capacity of these processors.

To address one megabyte of memory, the address register must be at least 20 bits wide. At the time the 8088 was developed,
it was impossible to use a 20-bit address register, so the designers used an alternate way to achieve the 20-bit width. The
contents of two different 16-bit numbers are used to form the 20-bit address.

Segment register

One of these 16-bit numbers is contained in a segment register. The 8088 has four segment registers. The second number is
contained in another register or in amemory location. To form a 20-bit number, the contents of the segment register are shifted
left by 4 bits (thereby multiplying the value by 16) and the second number is added to the first.

Structure of

Logical address

memory address 1514134 3 2 10 Bit i
from segment ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ HO‘O‘O‘O‘ Segment address| || 16 Bit
andOffset 514134 3 2 1 0Bit
addresses ‘ ‘

ﬂ |

191817 . ..

Segment and offset addresses

.4 3 2 1 0 Bit

1
UL L] | Cofsetadess] ff a6 si

‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Physical address ‘ 20 Bit

These addresses are the segment address and the offset address. The segment address, which is formed by a segment register,
indicates the start of a segment of memory. When the address is created, the offset address is added to the segment address.
The offset address indicates the number of the memory location within the segment whose beginning was defined by the
segment register. Since the offset address cannot be larger than 16 bits, a segment cannot be larger than 65,535 bytes (64K).

Let's assume the offset address is always 0 and the segment address is also 0 at first. In this case, you receive the address of
memory location 0. If the segment address is increased to 1, you receive the address of memory location 1 instead of memory
location 16. This happens because the segment address is multiplied by 16 when addresses are formed.

If you continue incrementing the segment address, you'll receive memory addresses of 32, 48, 64, etc., if the offset address
continues to be 0. According to this principle, the maximum memory address is 1 megabyte when the segment address reaches
65535 (FFFFH), which is its maximum value. However, if you keep the segment address constant and increment the offset
address instead, the segment address will quickly become the base address for a memory segment from which you can reach

16 1. System Programming Basics

atotal of 65,536 different memory locations. Each memory segment contains 64K. The offset address represents the distance
of the desired memory locations from the beginning of the segment.

Structure of Although the individual memory segments

memory address are only 16 bytes apart, they contain 64K.
from segment Offset address = 1104H So they obviously overlap in memory.
and offset Segment address = 1600H Because of this, amemory address, such as
addresses 130, can be represented in various ways by

using segment and offset addresses. For
example, you could specify 0 as the segment
address and 130 as the offset address. It's

also possible to specify 1 as the segment
26000H address and 114 as the offset address or 2
25FFFH
25FEFEH as the segment address and 98 as the offset

address, etc.

Segment

These overlapping segments are actually
easy to use. When you specify an address
you can choose the combination of segment
address and offset address yourself. You
must obtain the desired address by
multiplying the segment address by 16 and
adding the offset address to it; everything
else is unimportant.

17105H
17104H
17103H

16001H
16000H
15FFFH

A segment cannot start at every one of the
million or so memory locations.
Multiplying the segment register by 16
always produces a segment address that is
divisible by 16. For example, it's not
possible for a segment to begin at memory
location 22.

Incrementing memory address

Segmented address

The segmented address results from the combined segment and offset addresses. This segmented address specifies the exact
number of the memory location that should be accessed. Unlike the segmented address, the segment and the offset addresses
are relative addresses or relative offsets.

Combining the segment and offset addresses requires special address notation to indicate a memory location+s address. This
notation consists of the segment address, in four-digit hexadecimal format, followed by a colon, and the offset address in four-
digit hexadecimal format. For example, in this notation a memory location with a segment address of 2000H and an offset
address of AF3H would appear as "2000:0AF3". Because of this notation, you can omit the H suffix from hexadecimal
numbers.

The segment register for program execution

The 8088 contains four segment registers, which are important for the execution of an assembly language program. These
registers contain the basic structure of any program, which consists of a set of instructions (code). Variables and data items
are also processed by the program. A structured program keeps the code and data separate from each other while they reside
inmemory. Assigning code and data their own segments conveniently separates them. These segment registers are as follows:

CS The CS (Code Segment) register uses the IP (Instruction Pointer) register as the offset address. Then it determines the
address at which the next assembly language instruction is located. The IP is also called the Program Counter. When
the processor executes the current instruction, the IP register is automatically incremented to point to the next assembly
language instruction. This ensures the instructions are executed in the proper order.

1. System Programming Basics

17

DS Like the CS register, the DS (Data Segment) register contains the segment address of the data the program accesses
(writing or reading data to or from memory). The offset address is added to the content of the DS register and may be
contained in another register or may be contained as part of the current instruction.

SS The SS (Stack Segment) register specifies the starting address of the stack. The stack acts as temporary storage space
for some assembly language programs. It allows fast storage and retrieval of data for various instructions. For example,
when the CALL instruction is executed, the processor places the return address on the stack. The SS register and either
the SP or BP registers form the address that is pushed onto the stack.

When accessing the stack, address generation occurs from the SS register in conjunction with the SP or BP register.

ES The last segment register is the ES (Extra Segment) register. It's used by some assembly language instructions to
address more than 64K of data or to transfer data between two different segments of memory.

Copying of
Memory Areas
using DS and
ES Segment
Addresses

With the help of the ES register, however, it's
possible to leave the DS register on the memory
segment of the source area while referencing the
target area using the ES memory segment. The
8088 and its descendants even have assembly
language instructions that can copy an entire buffer
by assuming, before their execution, the segment
address of the start area has been loaded into the DS
register and the segment address of the target area
has been loaded into the ES register.

To copy, the instructions also need the start of both
areas within their memory segments. They expect
the start of the source area in the SI register and the
start of the target area in the DI register. Expressed
in the notation introduced earlier, these instructions
copy data from DS:SI to ES:DI.

Overlapping segments

As the following illustration shows, two segment
registers can specify areas of memory that overlap

or are completely different from each other. Usually a program doesn't require a full 64K segment for storing code or data.
So, you can conserve memory by overlapping the segments. For example, you can store data, which immediately follows the

program code, by setting the DS and CS registers accordingly.

18 1. System Programming Basics

Non-overlapping

(left) and
overlapping \/\
(right) segments
ES:FFFF
ESFFFF
CS:FFFF“‘V
ES:0000 |
CS:FFFF; ES:0000 % 9]
CS:0000 [g
°
°
©
>
A
CS:0000 o
SS.FFFF] GE)
SS:FFFF| =
(=)
£
=
DS:FFFF| 5
$5:0000 } : "E’
DSFRFE] SS:0000 o
\ o
£
DS:0000 M
DS:0000

NEAR and FAR pointers

The numbers we've been calling memory addresses are called pointers in high level languages. A pointer in the Pascal or C
language receives the addresses of the objects referenced by the pointers. If these addresses change location in memory, the
pointers also change. The two types of pointers are NEAR pointers and FAR pointers.

NEAR pointers

NEAR pointers specify the offset address of an object and are only 16 bits wide. Memory cannot be accessed without a segment
address. So the compiler prepares the segment address, which it automatically loads, to the appropriate segment register when
accessing the object. Because of this, NEAR pointer access is only possible for variables within the 64K segment created by
the compiler.

FAR pointers

FAR pointers consist of a segment address and an offset address, so they are saved as two words. The low word receives the
offset address and the high word receives the segment address. In Turbo Pascal, pointers are VAR, while in C their type
depends on the memory model (see Chapter 2 for more information about pointers).

Data types and their storage

Bytes and words aren't the only data types you'll encounter in system programming. You'll frequently encounter dwords
(double words), which are used when the 16 bits of one word aren't enough to store a number. For example, this applies to
the internal BIOS clock, which exceeds the 16-bit level of 65535 after a little more than ten hours.

1. System Programming Basics 19

The members of the Intel 80xxx family place dwords in memory so the low word (bits 0 to 15) precedes the high word (bits
16 to 31). This procedure is referred to as the /ittle endian format. This is different than the big endian format, which reverses
the order and is used by processors of the Motorola 68000 family (e.g., the Apple Macintoshy,).

The little endian principle also applies to word storage, in which the low word is placed in front of the high word. Even with
qgwords (4 words), which are used by the numerical coprocessor, the low-order dword (bits 0 to 31) is stored in front of the
high-order dword (bits 32 to 63). Then, within these two dwords, the high word is placed in front of the low word, etc. The
following illustration demonstrates this principle:

Storing different

data types in Offset 0 1

littl di .

vl Low byte | High byte Word
0 2
| Lowword | Highword | DWord
0 2
| Offset | Segment | FAR-PTR
0 4
| Low dword H High dword | QWord

Ports

Ports represent interfaces between the processor and the other system hardware. A port is similar to an 8-bit-wide data input
or output connected to a specific piece of hardware. It has an assigned address with values ranging from 0 to 65,535.

The processor uses the data bus and address bus to communicate with the ports. If the processor needs to access a port, it
transmits a port control signal. This signal instructs the other hardware the processor wants to access a port instead of RAM.

Although ports have addresses that are also assigned to memory locations in RAM, these addresses aren't related to the
memory locations. The port address is placed on the lowest 16 bits of the address bus. This instructs the system to transfer
the eight bits of information on the data bus to the proper port. The hardware connected with this port receives the data and
responds accordingly.

The 80(x)xx processor series has two instructions that control this process from within a program. The IN instruction sends
data from the processor to a port and the OUT instruction transfers data from a port into the processor.

Each hardware device is responsible for an area of port addresses. Therefore, conflicts between expansion boards that allocate
the same port address area often occur. So, most expansion boards have DIP switches for setting the port address to which
the board will respond. This helps avoid conflicts with other boards.

Standardizing port addresses

The system can set the port address of a certain hardware device. Since this address isn't a constant value, port addressing
is similar for the PC, XT, and AT. Although there are only a few differences between the PC and XT, there are many
differences between the PC and AT.

The following table shows the port addresses of individual chips in each system.

20 1. System Programming Basics

Component PC/XT AT
DMA controller (8237A-5) 000-00F 000-01F
Interrupt controller (8259A) 020-021 020-03F
Timer 040-043 040-05F
Programmable Peripheral Interface (PPI 8255A-5) | 060-063 none
Keyboard (8042) none 060-06F
Realtime clock (MC146818) none 070-07F
DMA page register 080-083 080-09F
Interrupt controller 2 (8259A) none O0AO0-OBF
DMA controller 2 (8237A-5) none 0CO0-0DF
Math coprocessor none OFO0-OF1
Math coprocessor none OF8-0FF
Hard drive controller 320-32F 1F0-1F8
Game port (joysticks) 200-20F 200-207
Expansion unit 210-217 none
Interface for second parallel printer none 278-27F
Second serial interface 2F8-2FF 2F8-2FF
Prototype card 300-31F 300-31F
Network card none 360-36F
Interface for first parallel printer 378-37F 378-37F
Monochrome Display Adapter and parallel interface | 3B0-3BE 3B0-3BF
Color/Graphics Adapter 3D0-3DF 3D0-3DF
Disk controller 3F0-3F7 3F0-3F7
First serial interface 3F8-3FF 3F8-3FF
Interrupts

In the "Basics of PC Hardware" section earlier in this chapter we explained that interrupts are mechanisms that force the
processor to briefly interrupt the current program and execute an interrupt handler. However, this is only one aspect of
interrupts. They are also important for controlling the hardware, and act as the main form of communication between a
program and the BIOS and DOS functions.

Software interrupts

Software interrupts call a program, with a special assembly language instruction, to execute a DOS, BIOS, or EMS function.
The program execution isn't really interrupted; the processor views the called function as a subroutine. After the subroutine
executes, the processor continues with the calling program.

1. System Programming Basics 21

To call a DOS or BIOS function using a software interrupt, only the number of the interrupt, from which the routine can be
reached, is needed. The caller doesn't even need to know the address of the routine in memory. These routines are standardized.
So, regardless of your DOS version, you know that by calling interrupt 21H you can access DOS functions.

The processor calls the interrupt handler using the interrupt vector table, from which the processor takes the addresses of the
desired function. The processor uses the interrupt number as an index to this table. The table is set during system bootup so
the various interrupt vectors point to the ROM-BIOS.

This illustrates the advantage of using interrupts. A PC manufacturer who wants to produce an IBM compatible PC cannot
copy the entire ROM-BIOS from IBM. However, the manufacturer is allowed to implement the same functions in its ROM-
BIOS, even if the BIOS functions are coded differently from within. So, the BIOS functions are called using the same
interrupts that IBM uses and expect parameters in the same processor registers. But the routines that provide the functions
are organized differently than the routines provided by IBM.

However, these aren't the only advantages of using interrupts. We'll discuss interrupts in more detail in Chapter 2. First, let's
look at the interrupt vector table, which represents the key to calling the interrupts.

Interrupt vector table

So far we've discussed a single interrupt and a single interrupt routine. Actually, the 8088 has 256 possible interrupts numbered
from 0 to 255. Each interrupt has an associated interrupt routine to handle the particular condition. To organize the 256
interrupts, the starting addresses of the corresponding interrupt routines are arranged in the interrupt vector table.

When an interrupt occurs, the processor automatically retrieves the starting address of the interrupt routine from the interrupt
vector table. The starting address of each interrupt routine is specified in the table in terms of the offset address and segment
address. Both addresses are 16 bits (2 bytes) wide. So each table entry occupies 4 bytes. The total length of the table is 256x4
or 1024 bytes (1K). Because the interrupt vector table is in RAM, any program can change it. However, TSR programs and
device drivers use the table the most. (See Chapter 35 for more information.)

Starting
addresses of the Interrupt
routines are - B
arranged in the -
interrupt vector 0000:003FE CS
table | 255 Free
0000:003FC P
\/—\ %)
[%]
o
g
0000:000E CSs ®
} 3 \ Break point g
0000:000C |P g
IS
0000:000A CS o
2] NMI £
0000:0008 P é
0000:0006 CS g
} 1 \ Single-step £
0000:0004 |P
0000:0002 CS
) Division by 0
0000:0000 IP

22

The following table shows the addresses of the various interrupt vectors, as well as the utilities from which they can be reached.
This layout applies to all PCs and is an essential component of the PC standard. A program that uses these interrupts will find
these utilities on all PCs. Most of these interrupts and their functions are mentioned throughout this book.

Many of these interrupt vectors are only allocated when the corresponding hardware has also been installed. For example,
this applies to interrupt 33H (mouse driver functions) and interrupt SCH (network functions).

The term "reserved" indicates the interrupt is called by a certain system component (usually DOS), but the interrupt's use was

1. System Programming Basics

never documented. In other words, we know who is using it, but we don't know why.

General
B No.* Address* Purpose

interrupts
& 00

01
02
03
04
05
06
07
08
09
0A
0B
oC
oD
OE
OF
10
11
12
13
14
15
16

000 - 003
004 - 007
008 - 00B
00C - 00F
010 - 013
014 - 017
018 - 01B
01D - 01F
020 - 023
024 - 027
028 - 02B
02C - 02F
030 - 033
034 - 037
038 - 03B
03C - 03F
040 - 043
044 - 047
048 - 04B
04C - 04F
050 - 053
054 - 057
058 - 05B

Processor: Division by zero
Processor: Single step

Processor: NMI (Error in RAM chip)
Processor: Breakpoint reached
Processor: Numeric overflow
Hardcopy

Unknown instruction (80286 only)
Reserved

IRQO: Timer (Call 18.2 times/sec.)
IRQ1: Keyboard

IRQ2: 2nd 8259 (AT only)

IRQ3: Serial port 2

IRQ4: Serial port 1

IRQ5: Hard drive

IRQ6: Diskette

IRQ7: Printer

BIOS: Video functions

BIOS: Determine configuration
BIOS: Determine RAM memory size
BIOS: Diskette/hard drive functions
BIOS: Access to serial port

BIOS: Cassettes/extended function

BIOS: Keyboard inquiry

1. System Programming Basics

General
overview of
interrupts
(continued)

17
18
19
1A
1B
1C
1D
1E
1F
20
21
22
23
24
25
26
27
28
29-2E
2F
30-32
33
34-40
41
42-45
46
47-49
4A
4B-5B

Address*

05C - 05F
060 - 063
064 - 067
068 - 06B
06C - 06F
070 - 073
074 - 077
078 -07B
07C - 07F
080 - 083
084 - 087
088 - 08B
08C - 08F
090 - 093
094 - 097
098 - 09B
09C - 09F
OAO - 0A3
0A4 - 0BB
0BC - OBF
0CO - 0CB
0CC - OCF
0DO - OFF
104 - 107
108 - 117
118 -11B
11C - 127
128 - 12B
12C - 16F

Purpose

BIOS: Access to parallel printer
Call ROM BASIC

BIOS: Boot system (Ctrl+Alt+Del)
BIOS: Prompt time/date

Break key (not Ctrl-C) pressed
Called after each INT 08

Address of video parameter table
Address of diskette parameter table
Address of character bit pattern
DOS: Quit program

DOS: Call DOS function

Address of DOS quit program routine
Address of DOS Ctrl-Break routine
Address of DOS error routine
DOS: Read diskette/hard drive
DOS: Write diskette/hard drive
DOS: Quit program, stay resident
DOS: DOS is unoccupied

DOS: Reserved

DOS: Multiplexer

DOS: Reserved

Mouse driver functions

DOS: Reserved

Address of hard drive table 1
Reserved

Address of hard drive table 2

Can be used by programs

Alarm time reached (AT only)

Free: can be used by programs

23

24 1. System Programming Basics

General

P S Address* Purpose
(conted) 5C [170-173 | NETBIOS functions

5D-66 |174-19B Free: can be used by programs
67 19C - 19F EMS memory manager functions

68-6F |1A0- 1BF Free: can be used by programs

70 1C0 - 1C3 IRQO08: Realtime clock (AT only)
71 1C4-1C7 | IRQO9: (AT only)

72 1C8-1CB |[IRQ10: (AT only)

73 1CC-1CF |IRQ11: (AT only)

74 1D0-1D3 |IRQ12: (AT only)

75 1D4 - 1D7 | IRQ13: 80287 NMI (AT only)

76 1D8 - 1DB | IRQ14: Hard drive (AT only)

77 1DC - 1DF | IRQ15: (AT only)

78-7TF | 1EO - 1FF Reserved
80-FO |200-3C3 Used within the BASIC interpreter
F1-FF [3C4-3CF |Reserved

Hardware interrupts

Hardware interrupts are produced by various hardware components and passed, by the interrupt controller, to the processor.
In this section we'll explain the steps involved in this process and the differences between PC/XTs and ATs.

PC/XT hardware interrupts

Hardware interrupts 8 to 15 are called by the interrupt controller. Up to eight devices (interrupt sources) can be connected
to the PC interrupt controller using interrupt lines IRQO to IRQ7. The device on line IRQO has the highest priority. The device
connected with IRQ7 has the lowest priority. For example, if two interrupt requests arrive on lines IRQ3 and IRQS, IRQ3
is addressed first. The number of the interrupt results from adding 8 to the IRQ number (in this case, it's interrupt 11).

Disabling hardware interrupts

It's possible for a program to prevent the execution of hardware interrupts. This is useful when program execution shouldn't
be interrupted. The processor will release a hardware interrupt, upon request from the interrupt controller, only if the interrupt
flag is set in the processor's flag register. If the software has cleared the flag, the interrupt controller won't receive the requested
interrupt.

You can also block single interrupts by programming the interrupt mask register in the interrupt controller.

1. System Programming Basics 25

PC interrupt
requests and

priorities P C

Decreasing priority

-
Bit|[7] 6[5]4]3]2]1]0]

H T

Diskette Timer
Keyboard

Interrupt controller
at Port 20H

2nd serial interface
1st serial interface

Parallel interface

XT interrupt
requests and

priorities XT

Decreasing priority

-y
Bt |[7] 6 [5] 4]3]2]1]0]

H T

Interrupt Controller
at port 20H

Diskette Timer
Keyboard
Hard drive 2nd serial interface

1st serial interface

Parallel interface

AT hardware interrupts

ATshave two 8259 interrupt controllers, which provide 16 interrupt sources. The eight additional interrupts are labeled IRQ08
to IRQ15. When an interrupt request addresses the second interrupt controller, it emulates an IRQ2 from the first interrupt
controller. All the interrupt requests of the second interrupt controller are assigned a higher priority than lines IRQ4 to IRQ7
of the first interrupt controller.

26 1. System Programming Basics

AT interrupts

and priorities
AT

Decreasing priorit
- g p y

Bit|[7] 6 [5] 4]3]2]1]0]

H T

Diskette Timer
Keyboard

1. Interrupt controller
at port 20H

i} Serial interface

i} Parallel interface

(7]16[5[4[3[]2]1]o0] [Bit]

2. Interrupt controller

at port AOH
Hard drive j ?

Realtime clock

Math coprocessor

_ Free for expansion boards such as mouse,
~ streamer, CD-ROM drives, etc.

If a request for IRQ?2 is granted, the interrupt handler of interrupt 10 is executed. This interrupt handler first reads some of
the registers of the second interrupt controller to determine the number of the IRQ. Based on the IRQ number, one of interrupts
70H to 77H is called as a software interrupt. It doesn't matter the call was actually initiated by the hardware because the device
is waiting for execution of "its" interrupt handler.

However, as a result of this procedure, the IRQ2 is unavailable to the first interrupt controller. So 15 interrupt sources are
supported instead of 16.

1. System Programming Basics 27

System Interaction

Now that we've discussed the essentials of system programming, let's see how DOS, BIOS, and the different levels of hardware
communicate to give programs easy access to PC hardware. We'll use the keyboard as an example, since hardware interrupts,
DOS, and BIOS functions are all involved. Let's follow the path of a character from the keyboard hardware to the program
that reads the entered character and displays it on the screen.

Keyboard hardware

The keyboard hardware consists of the keyboard's processor. It's connected to the PC's processor by a cable. The keyboard
processor monitors the keyboard and reports each key that is pressed or released to the system. The keyboard processor assigns
a number instead of a character to each key. Control keys, such as or (Shift), are treated like any other key.

When the user presses a key, the keyboard processor passes the key number to the processor as a make code. (See Chapter
5 for more information on make codes.) When the user releases the key, the processor passes a break code. There is a minor
difference between these codes. Although both use numbers between 0 and 127 for the key, the break code includes bit 7.

To initiate the transfer, the keyboard controller first sends an interrupt signal to the interrupt controller, which arrives at line
IRQ2. If hardware interrupts are enabled and a higher priority interrupt request doesn't exist, the processor then executes
interrupt 09H.

BIOS keyboard handler

Interrupt 09H is a BIOS routine called the keyboard handler. The keyboard processor passes the key code to port 60H using
the keyboard cable, then calls the interrupt handler. From there, the BIOS handler reads the number of the key that was pressed
or released. The rest of the system cannot use the key number because different keyboards generate different numbers. So,
the keyboard handler must convert the code into a character from the ASCII character set, which is a form the system can
understand.

When you press a key, this key code is passed to the CPU as a byte. When you release the key, the processor passes the code
tothe CPU again, along with an added 128. This is the same as setting bit 7 in the byte. The keyboard instructs the 8259 interrupt
controller the CPU should activate interrupt 9H. If the CPU responds, we reach the next level because a BIOS routine is
controlled through interrupt 9H. While this routine is being called, the keyboard processor sends the key code to port 60H
of the main circuit board using the asynchronous transmission protocol. The BIOS routine checks this port and obtains the
number of the depressed or released key. This routine then generates an ASCII code from this key code.

This task is more complicated than it first appears because the BIOS routine must test for a control key, such as(Shift) or (Alt).
Depending on the key or combination of keys, either a normal ASCII code or an extended keyboard code may be required.
The extended key codes include any keys that don't input characters (e.g., cursor keys).

Keyboard buffer

Once BIOS determines the correct code, this code is passed to the 16-byte BIOS keyboard buffer, which is located in the lower
area of RAM. Ifit's full, the routine sounds a beep that informs the user of an overflow in the keyboard buffer. The processor
returns to the other tasks that were in progress before the call to interrupt 09H.

BIOS keyboard interrupt

The next level, BIOS interrupt 16H, reads the character in the keyboard buffer and makes it available to a program. This
interrupt includes three BIOS routines for reading characters, as well as the keyboard status (e.g., which control keys were
pressed), from the keyboard buffer. These routines can be called with an INT assembly language instruction.

DOS level

The keyboard's device driver routines represent the DOS level. These DOS routines read a character from the keyboard and
store the character in a buffer using the BIOS functions from interrupt 16H. In some instances, the DOS routines may clear
the BIOS keyboard buffer. If the system uses the extended keyboard driver ANSIL.SYS, this keyboard driver can translate

28

Keyboard
access using
the three-layer
model

1. System Programming Basics

(DOS routine)

Application program I:
Interrupt 21H 1 .

~

| DOS keyboard driver

~

Interrupt 16H

(BIOS - Keyboard - Interrupt)

~

| Keyboard buffer

Y ;

Interrupt 9H

(BIOS - Keyboard - Handler)

Y ;

AN

Keyboard with 8042 or 8048
processor

certain codes (e.g., function key(F1_J) into
other codes or strings. For example, it's
possible to program the(F10) key to display
the DIR command on the screen. Although,
theoretically, you can call device driver
functions from within a program, DOS
functions usually address these functions.

DOS is the highest level you can go. Here
you'll find the keyboard access functions
in DOS interrupt 21H. These functions
call the driver functions, transmit the
results, and perform many other tasks. For
example, characters and strings can be
read and displayed directly on the screen
until the user presses the key. These
strings are called by a program and
complete a long process.

The Pentium Processor

With the Pentium processor, which was
introduced by Intel in 1993, the technical
possibilities of a PC have changed again.
The Pentium features 100 MIPS (Million
Instructions Per Second) at a clock speed
of 66 MHz. This makes the Pentium almost

twice as fastas a486 DX2/66 in integer performance. The differences are even more significant in floating-point performance.
Depending on the instruction mix, the Pentium beats its predecessor by three to seven times. Also, it's completely binary
compatible with the 486, 386, 286, and even the 8086.

When asked about the performance of the Pentium, Intel has a very simple answer: 567. This measurement is a result of the
ICOMP test developed by Intel for its own processors. This test, geared entirely to Intel's own processors, flows into the
ICOMP index. As the following illustration shows, the measured value for the 66 MHz Pentium surpasses that of an equally
fast 486 by almost double.

The Intel
ICOMP index

Pentium-CPU 100 MHz
Pentium-CPU 90 MHz
Pentium-CPU 66 MHz
Pentium-CPU 60 MHz
486 DX4-100

486 DX2-66

486 DX2-50
486-SX-33

136

231

297

435

567
510

815
735

Better

However, be careful when interpreting absolute data, such as the information returned by the ICOMP index. After all,
selecting the processor test for such a benchmark is a subjective process, even if the manufacturers claim to be simulating

1. System Programming Basics 29

real application conditions. Also remember, each manufacturer is eager to show its product is the best. So, they may downplay
the performance areas in which its chip suffers compared to the competition or simply omit these performance areas.

On the whole, however, the direction in which this index is moving compared to the previous Intel processors might be correct,
although you can't assume that doubling processor performance from the 486 to the Pentium could be duplicated at the user
and software levels. There are numerous hardware and software components between the CPU and the user. These
components either benefit only partially from the processor's performance, or they don't benefit at all. For example, this
applies to all expansion boards. However, the Pentium has definitely advanced the PC world to previously unattainable
dimensions. You're probably wondering what makes the Pentium so fast. Three components are responsible for the Pentium's
speed: Superscalar integer execution unit, the first level processor cache, and the superscalar floating-point execution unit.
We'll discuss these features in detail in this chapter.

Block diagram
of the Pentium
processor

Branch Prediction
Buffer (BTB)

Code cache

64 Bit fmmmmmmeaa- .

Prefetch buffer

Floating point

U- plpellne U- plpellne Pipeline

@ @ Multiplication
Addition

64 Bit Bus unit — Registers

Division

Data cache

First, let's review the most important facts about Intel's new "miracle chip":

>

The Pentium is manufactured in 0.8-micron BiCMOS submicron technology. The traces or signal paths are only 0.8
millionths of a meter wide, or eight thousands of a millimeter wide.

The processor is completely binary compatible with its predecessors in relation to instruction set, register, addressing
modes, and operating modes.

The processor still works with 32-bit registers and 32-bit addressing, but can be connected to a 64-bit data bus, enabling
faster communication with memory.

A superscalar architecture based on two parallel integer pipelines. In ideal circumstances, this would allow
simultaneous execution of 2 machine language instructions in one cycle.

30 1. System Programming Basics
» The chip has a total of 3.1 million transistors.

Two separate 8K data and code caches, in conjunction with the 64-bit bus interface (port), provide fast and continuous
memory access.

» A special protocol called MESI (Modified, Exclusive, Shared, Invalid) ensures that a Pentium processor will work
smoothly with other processors in a multiprocessor system.

» An improved floating-point unit executes commands significantly faster than the 486 and even provides the option
of simultaneous execution of two instructions, although this happens on a limited scale.

Program execution

Program execution through the Pentium processor is based on a superscalar architecture with two parallel, five-stage integer
pipelines that are connected with the processor cache and a branch target buffer (BTB).

Execution in the pipeline procedure

To understand this efficient, expensive mechanism of program execution, you must first know how a microprocessor
executes programs and machine language instructions. Although this process appears as a monolithic block from the outside,
in the interior of the processor it is divided into five stages. The 486 and Pentium both have five stages that each instruction
undergoes during its execution in a set sequence. These stages are abbreviated to PF, D1, D2, EX and WB. The following
table shows the five stages of instruction execution on the 486 and the Pentium:

PF |Prefetch |D1 |Decodel |[D2 |[Decode2 |EX |Execute |WB |Writeback

The execution of an instruction begins in the PF stage, the "instruction prefetch". In this stage, the machine language
instruction is fetched from memory to the processor for execution. Once the instruction reaches the processor, it enters D1
stage, the first phase of instruction decoding. In this phase, the objective is to evaluate (analyze) the instruction, thus
determining what kind of action it is supposed to trigger. Depending on the type of instruction, the next job is to determine
the operands of the instruction (e.g., for a displacement memory address). This is the task of the second stage of instruction
decoding, called D2. In the next pipeline stage, called EX, the execution of the instruction takes place, along with the
associated memory accesses. In the WB stage, execution of the instruction concludes, with the contents of the processor
register and the internal status register being updated.

The processor requires one cycle per stage to run these stages, while stages D2 and EX can also require one extra cycle,
depending on the type of instruction. This provides a minimum of five cycles. However, if you check the Intel manuals, you'll
discover that many instructions are executed in significantly fewer cycles. Some instructions even require only one or two
cycles. Now we must determine how this is possible, if all the stages of the pipeline are necessary.

%%Lgﬁ,’-zyiogf Program in Processor Pipeline
several memory PF D1 D2 EX wB
/nsfrqct/ons ~ Prefetch Decode 1 Decode 2 Execute Write Back
within the
plpellne MOV AX,1 MOV AX,1 Cycle 1
ADD AX,BX ADD AX,BX | MOV AX,1 2
CMP AX,15 CMP AX,15 | ADD AX,BX | MOV AX,1 3
INT 123 INT 123 | CMP AX,15 | ADD AX,BX | MOV AX,1 4
SHL AX,1 SHLAX,1 | INT123 |CMP AX,15 | ADD AX,BX | MOV AX,1 [finished 5
. . SHLAX,1 | INT123 |CMP AX,15 | ADD AX,BX [finished 6
. . . SHLAX,1 | INT123 |CMP AX,15 [finished 7

1. System Programming Basics 31

The solution is found in a principle used in assembly line production. Instead of only one instruction, as many instructions
as the pipeline has stages runs through the various stages of the pipeline. So the subsequent instruction isn't processed after
the preceding instruction leaves the last stage of the pipeline. Instead, it is processed immediately after the first stage of the
pipeline. This means the different stages of the pipeline are busy at all times, always executing their function on a different
instruction.

The instructions still require a minimum of five cycles to run through the complete pipeline, but because the pipeline finishes
executing an instruction with each cycle, the instructions seem to require only one cycle for execution.

Superscalar pipelines

While the pipeline procedure of the 486 is already extremely fast, the Pentium multiplies this procedure by setting up a second,
parallel pipeline. This is where the phrase "superscalar pipeline architecture" comes from. To keep the two pipelines separate,
the first is called the "U pipeline" and the second one is called the "V pipeline."

With the help of these two pipelines, the Pentium should theoretically be able to execute two instructions simultaneously and,
as aresult, double the execution speed. However, in reality, this process isn't that easy. Frequently two sequential instructions
can only be executed in sequence because they are dependent on each other. A simple example of this would be two machine
language instructions, the first one describing a processor register on which the second instruction performs a read access.
There are many other rules that make simultaneous execution of two sequential commands seem impossible. One such rule
is the limitation of parallel execution to "simple" machine language instructions. Some examples of simple machine language
instructions are MOV instructions, integer addition and subtraction, PUSH and POP instructions, and others. Only these
instructions are actually "threaded" in the processor; all others are executed by Microcode, which is a type of processor
operating system. It controls execution of complex machine language instructions through different execution units of the
processor.

The second stage of the pipeline, D1, determines whether a parallel execution of both instructions is possible. In the PF stage,
the current instruction to be executed and its successor are loaded into two parallel decoding units. This establishes the exact
sequence. The current instruction goes to the decoding unit of the U pipeline and its successor goes to the decoding unit of
the V pipeline.

Ifitis determined in D1 that simultaneous execution of the two instructions is possible, each of the two instructions then passes
the various stages of its pipeline in parallel. If parallel execution is not possible, the instruction from the U pipeline goes to
the next stage, while the instruction from the V pipeline is executed in the U pipeline as the instruction following the current
instruction.

So the program code determines whether two instructions can be executed simultaneously or whether they have to pass the
various stages of the U pipeline in sequence. Optimizing compilers for the Pentium consider this by organizing the machine
code in such a way the sequential machine language instructions permit simultaneous execution as often as possible.

Branch Target Buffer

The efficiency of the pipeline principle is based upon the constant provision of new instructions to the pipeline. Only when
the various stages of the pipeline are permanently filled does it seem possible the various instructions can be executed in one
cycle. That is why two prefetch buffers are preset to the first stage of both pipelines. These prefetch buffers load the next
instruction for the pipeline from memory or the processor-specific cache.

However, even these aren't helpful when the processor has to execute a jump instruction. In this case, instead of continuing
with the following instruction, program execution continues with an entirely different instruction. As a result, execution of
the following instructions, which are already in the pipeline, must be canceled and the pipeline must be loaded with new
instructions. It takes a few cycles before the first instruction leaves the pipeline after the jump instruction.

Pentium uses a Branch Target Buffer (BTB) to avoid the problem of jump instructions. This buffer is used in the D1 stage
of instruction execution for all types of NEAR jump instructions (i.e., for conditional and unconditional jumps, as well as for
procedure references). If the processor encounters such an instruction in the D1 stage, it uses the address of the instruction
in memory to search the BTB for the instruction. Every time the processor executes one of these jump instructions, it stores

32 1. System Programming Basics

both the instruction's address and the jump destination's address in the BTB. If the instruction is registered there because it
has already been executed, the processor assumes the jump should be executed again. Instead of loading the successor of the
jump instruction into the pipeline, the processor loads the command to the target address.

However, if the jump instruction isn't registered in the BTB, the subsequent instruction is loaded in the pipeline. During the
EX stage (at the latest), the processor will determine whether to execute the jump. If the processor predicted accurately with
the address from the BTB, the instruction that follows the jump instruction will already be in the pipeline. So program
execution can immediately continue. Even execution of a conditional jump will only take one cycle in this case.

However, if the processor's prediction is incorrect, this means the wrong commands are in the pipeline. So the pipeline must
be "flushed." This involves canceling the execution of the commands currently in the pipeline and completely reloading the
pipeline. As a result, instead of only one cycle, at least three cycles are needed to execute the jump command.

The Cache

The Pentium processor has two separate 8K caches: One for data and one for program code. Both of these caches are two-
way set-associative caches. Each path consists of 128 entries with a cache line size 0of 32 bytes. The data cache can be operated
in Writethrough and in Copyback mode, and is capable of responding to two accesses from the U and V pipeline of the
processor simultaneously. To guarantee this, each cache line of 32 bytes is divided into eight 4-byte blocks.

If you're a computer expert, the previous explanation reveals the most important information about the cache structure of the
Pentium processor. However, the explanation is extremely confusing to average computer users. You've probably never
encountered the terms "cache lines", "two-way associativity", and "Copyback mode." Therefore, in the following sections
we'll discuss how a processor cache operates and discuss Pentium cache in detail. This information may not improve your
programming skills. However, if you want to know what makes the Pentium so fast, you must understand the cache.

Also, since the on-chip cache was first used with the 486, we'll also briefly discuss the processor cache of the 1486.

Processor cache, hard drive cache, font cache, and CD-ROM cache are different devices that use the term "cache." A cache
accelerates access to specific data and information by holding a portion of the data in a reserved section of memory. This
process provides faster access than the actual storage device. This means that, for example, a hard drive cache reserves sectors
of'a hard drive, which have already been read in RAM memory, to deliver the sectors directly from this memory to the caller
for a new read request instead of getting the sectors from the hard drive. Because a hard drive is several hundred times slower
in access time than RAM, you can use this method to save a great deal of time.

While hard drive, CD-ROM, and font caches use RAM memory as "high-speed memory", this doesn't apply to the processor
cache. From the processor's view, it requires a cache because RAM doesn't supply data and program instructions fast enough
for its purposes. This cache stores the memory locations the processor addressed during the last memory accesses. As aresult,
the next time the processor needs to access these memory locations, it doesn't have to get them from RAM. Instead, the
processor can take the memory locations directly from high-speed cache memory.

However, not all processor caches are the same. It makes a big difference whether you are dealing with a primary or secondary
processor cache. These are sometimes also called "first level cache" and "second level cache."

Currently 128K or 256K caches always refer to secondary cache. This is the cache that is between the processor and RAM
and usually consists of SRAM (a form of high-speed RAM). The main memory is equipped with lower-priced DRAM chips,
which are three to four times slower in supplying data to the processor than SRAM chips. This is where the speed advantage
of a secondary cache becomes important. For comparison, consider that while SRAM is able to produce response times
between 20 and 25 nanoseconds (millionths of a second), most PCs use 70ns, 80ns, or 100ns DRAM chips as main memory.

While secondary cache memory is located outside the CPU, the primary cache refers to the memory located directly on the
CPU. The CPU can read from primary cache memory just as fast as from its registers. This is why it would be best to place
the entire cache memory of a system directory on the processor, or better still, all the RAM memory. However, considering
the current status of processor technology, this is impossible.

1. System Programming Basics 33

First level, -
second level Pentum-cPU
and third level oo i
caches | Branch Code Cache | i
! Prediction (8KByte) 1
' 256 Bit !
! 64 '
E Prefetch Puffer 2l E
E IT:II‘i)ee:![?negd 64 Bi o 8 : S d
! it Bit Bit) Lo econ | .
E Point Unit] ‘ ALU ‘ ‘ ALU ‘ Buselﬁtzgace E Level MIeré:g
: 7| cache || Y
: 32 32 :
' Bit Bit 64 .
; Bit !
I ‘ Register Set ‘ !
! ivisi 32 32 1
i | Division Bit Bit -
! Multiply Data Cache | |
' | Addition 64 Bit (GEEVCIN |
LevelO Levell Level2 Level3

There is also a third level cache, which refers to normal main memory (RAM). This serves cache memory for hard drives and
other peripherals. The numbering sequence is intentional, because the higher the number, the farther the cache is from the
processor. As the number increases, the cache memory speed decreases, as does the price for 1K of the cache memory.

Cache effectiveness

The quality and effectiveness of a cache is measured from the ratio of cache hits and cache misses. A cache hit occurs when
the data requested by the processor is already in a cache. So, the processor doesn't have to access slower memory. A cache
miss means the data is not reserved in the cache, so first it must be loaded from memory into the cache, before it can be passed
on to the processor. The greater the number of cache hits in comparison with cache misses, the more often the processor can
be served from high-speed memory, ultimately causing it to work faster.

The ratio between cache hits and misses mainly depends on three factors: Organization of the cache, the type of program code
being executed, and, obviously, the size of the cache. The third factor can be checked off quickly, because a growing cache
size also increases the probability the information, for which the processor is searching, is already in the cache.

For the second factor, the type of program code, the "locality" of this code is very important. First, remember that a process
cache not only caches the data that a program reads from memory during its execution, but also the executed program code.
Regardless of whether the processor reads a variable or the next machine language instruction, they both must be furnished
from memory. Also, in both cases, the cache first checks whether the address has already "been there" once.

This is why self-contained program sections, especially loops, that fit in the cache can be executed so quickly. Ifthe execution
of programs mainly occurs in blocks that aren't bigger than the cache, the existence of the cache will increase the speed of
program execution. However, if a program continually jumps back and forth between different program sections, the cache
won't be as noticeable.

There are two other factors that are basic prerequisites for the efficient use of cache memory. These two factors fall into the
category of "Cache Organization". The first factor is cache strategy, in relation to read and write accesses, while the second
factor is cache architecture, i.e., the way cached information is stored in the cache.

34 1. System Programming Basics
Cache strategies

Writethrough and WriteBack caches are related to the read and write accesses of the CPU. Writethrough is the simpler type,
because the cache is addressed only for read accesses of the CPU. The cache transfers write accesses directly to main memory
(RAM). Before doing this, however, the cache checks whether the specified memory location is already stored in the cache
as a result of a read access. If this is the case, the new value of the memory location must also be entered in the cache.

If this doesn't happen, the cache contents and the contents of conventional memory may be inconsistent, which is the worst
thing that can happen to a cache. Because of this inconsistency, the next time you read access the cache, it will return the old
contents of the memory location, while conventional memory already contains a completely different value.

Along with the pure Writethrough procedure, Intel 80486 processors and above support a slightly modified procedure called
"buffered writethrough." To speed up write accesses to memory, the first-level cache of the processor is equipped with
additional write buffers. The 486 has four of these buffers. When data must be written to memory, the cache first places the
data in one of these write buffers. This lets the CPU continue working immediately, because this memory can be addressed
very quickly, similar to cache memory. While the CPU works, the cache writes the contents of the write buffer to conventional
memory on its own, as soon as the bus is free. As long as this buffer doesn't fill up because the CPU is attempting to write
data to memory faster than the data can be transported from the write buffer, the CPU's write operations to conventional
memory won't be affected.

The Writeback procedure competes with the Writethrough procedure. For read operations, a Writeback cache acts just like
a Writethrough cache. However, the two caches handle write operations differently. If the information to be written to
conventional memory is already in the cache, it is first updated only in the cache. The information doesn't go to memory until
the cache is forced to remove the memory location from cache memory because it needs space for new entries as a result of
aread access by the CPU. If a memory location is written over and over again, this saves you the trouble of relatively slow
write accesses to conventional memory until the time the memory location has to leave the cache. To keep this from taking
too long, a type of write buffer called a castoff buffer is installed. The data are first stored in this buffer and then transferred
to conventional memory in parallel with the work of the CPU.

Cache architecture

Cache memory is usually organized into cache lines; each line can receive information from conventional memory that is
cached during aread or write operation. The size of a cache line depends on the internal data capacity of the CPU or the capacity
of'its primary cache. On the 80386 the cache lines are 32-bit (one DWord = 4 bytes), on the 486 they are 128-bit (4 DWord
= 16 bytes), and on the Pentium the cache lines are 256-bit (4 QWord = 32 bytes).

For a read access to memory, the entire cache line is always filled, even when the processor requested only a single byte.
Modern processors support "burst mode", which dramatically speeds up access to byte sequences in memory. Usually the
CPU must place the address on the bus before reading out the desired memory location. However, in a burst access, the data
are read as a block. The CPU only has to place the address for the first byte on the bus; the memory automatically furnishes
all subsequent memory locations upon request.

For example, the 486 usually requires 2 clock cycles to read a DWord from memory, so 4*2 clock cycles are necessary to
fill a cache line. In burst mode, two cycles are required only for the first DWord; the three following words will be furnished
in one cycle. That's why burst mode is also called a 2-1-1-1 burst; it takes only five cycles instead of the normal eight. The
same procedure can also be used for write accesses.

Along with cached data, the cache must also store the memory addresses for the data. Each cache line is connected with a
tag. This is where the cache stores the address of the data, as well as additional status information. (We'll talk about this
information later in this chapter.) In secondary caches, the tags are not included with the cache lines. Instead, they are housed
in separate memory components, which work even faster than the actual cache memory. In searching the cache for a memory
location, the address not only has to be read out from the tag, but also must be compared with the address of the particular
access by using a comparator. Naturally, this is time-consuming but is compensated for by speedier SRAM memory.

Along with cache lines and tags, a cache also always has a cache controller. A secondary cache usually has a microcontroller
on the motherboard, while on a primary cache the controller is part of the processor. The controller controls communication

1. System Programming Basics 35

with the CPU as well as the comings and goings of the cached information in the cache lines. It is the controller that translates
the cache strategy into action and manages the pool of cache lines in accordance with a specific pattern.

Cache line organization

To determine the best possible cache line organization, first you must understand the cached information cannot be saved in
any cache line you choose. Otherwise, in a read access the cache controller would be forced to run through all the tags in search
of'the correct address and compare the addresses stored there with the CPU address. This process would take more time than
loading the information directly from conventional memory.

For this reason, cache controllers always connect the addresses of the cached memory locations with the cache lines, in which
the addresses are stored. In the simplest type of cache organization, called "direct mapping", each byte from conventional
memory has only one cache line in which it can be stored.

The cache controller checks this cache line when the CPU performs a read access. If the address is not listed there, it isn't in
the cache.

In a direct mapped cache, mapping between the address and the cache line, in which it is stored, takes place via the memory
address. The address is broken down into various components. To describe this process, we'll use a 256K secondary cache
for a 486 system as an example.

Direct mapped secondary cache for the 486

Secondary caches for the 486 work with a cache line size of 128 bits (16 bytes). So, a 256K cache provides 16,384 cache lines.
The cache controller's task is to clearly map the CPU address to one of the 16,384 cache lines. Since 16,384 is 2 to the 14th
power, the lower 14 bits of the CPU address determine the number of the cache line. However, instead of bits 0 to 13, these
are bits 4 to 17. Bits 0 to 3 are needed to form the offset in the cache line; these four bits contain precisely the value between
0 and 15 that is needed for addressing the desired byte within the specific cache line.

Bits 0 to 3 make up the index in the cache line and

Starting

addresses of the [A0-A32 A18-A25 bits 4 to 17 are used as an index in the cache line
interrupt { } pool. So bits 18 to 31 remain. Actually, these bits
routines are Tag 16383 are supposed to be stored in the tag of a cache line.
arranged in the e 8Bt —» However, instead of the 14 bits, frequently only
Interrupt vector A4ﬁ eight bits (bits 18 to 25) are stored there. This
12 — /| Tag-RAM means the cache can manage only the lower 64
Meg (2*°) of RAM memory, since there usually
Tag 2 ! h sockets provided on the
Tag 1 aren't even enoug. p
Tag 0 motherboard for this much memory.
<} While its simplicity makes this procedure
‘ Comparator appealing, it does have abig disadvantage. Because
the 64 Meg of RAM are mapped only to 16,384
Data 16383 cache lines, 256 memory locations share the same
] cache line. These memory locations are always
A4ﬁk 1288 == jatch 256K apart. However, once an address is loaded
Data -RAM into the cache, whose cache line is already loaded
with another one of these 256 addresses, it forces
Data 2 the old address out of the cache.
Data 1
Data 0 Associative caches

To prevent memory addresses from excluding
Data-Bus each other in advance, associative cache memory
refines the direct mapping process. Instead of
assigning a single cache line to each memory

36 1. System Programming Basics

location, it assigns each memory location two, four, or even eight possible cache lines. These are also called twofold, fourfold,
or eightfold associative caches. An example of such a cache is the primary, fourfold associative cache of the 486, which holds
8K.

An associative cache requires much more circuitry than a direct mapped cache. In searching for a memory location, the cache
controller must read two, four, or eight tags (depending on associativity), rather than one tag. Then the controller uses a
comparator to compare them with the specific CPU address (or part of it).

The four-way

associative 8K [A0-A3L ALL-ASL ALL-A3L ALLASL ALLA3L ALL-ASL ALL-A3L AILASL ALL-A3L
first level cache
Of the 486 Tag 127 Tag 127 Tag 127 Tag 127
21 Bit 21 Bit 21 Bit 21 Bit
AA—E\O‘/ Tag- Am@ Tag- Ami\o/ Tag- AAVE\O‘/ Tag- Am@

RAM 0 RAM 1 RAM 2 RAM 3 Control Unit
Tag 2 Tag 2 Tag 2 Tag 2

Tag 1 Tag 1 Tagl Tag 1

Tag 0 Tag 0 Tag 0 Tag 0

‘ Comparator 0 ‘ ‘ Comparator 1 ‘ ‘ Comparator 2 ‘ ‘ Comparator 3 ‘

Data 127 Data 127 Data 127 Data 127 L3|L2|L1]LO 4’_’“ B1|BO

128 Bit 128 Bit 128 Bit 128 Bit | ﬁ» |
AeAIDY Data- A Data- A Data- AeAIDY Data- A
RAM 0 RAM 1 RAM 2 RAM 3 Hitt | LRU-
Record | Record

Data 2 Data 2 Data 2 Data 2

Data 1 Data 1 Data 1 Data 1

Data 0 Data 0 Data 0 Data 0

‘ Databus ‘
‘ FIU Buffer ‘ ‘ Read Buffer ‘

7]

In addition, for a read access, the cache controller must choose which of the potential cache lines it will place the memory
location(s) in, since it can be assumed that all imaginable cache lines are already occupied. Instead of randomly forcing one
of the filled cache lines out of the cache, most cache controllers implement an LRU (Last Recently Used) algorithm. LRU
means the cache line which hasn't had a read hit for the longest time is removed from the cache. Next to the address in the
tag, a couple of bits are also stored; the bits contain the sequence of the last accesses. On the whole, these measures
significantly increase the effectiveness of an associative cache compared to a direct mapped cache.

Paging and interleaving

Paging or interleaving are other terms that are frequently used to describe the architecture of a cache. Both terms refer to the
same concept, describing the distribution of the contents of various cache lines to different pages in memory. A page is a
continuous block of memory; it's not the different cache lines that are divided, but their contents.

For example, the first level data cache of the Pentium is interleaved eightfold, meaning that eight DWords of a 256-bit cache
line are also placed in eight separate pages. The first DWords from all cache lines are stored in the first page, the second
DWords are stored in the second page, etc. This is done on the Pentium to enable simultaneous access to the cache from the
U and V pipeline of the processor. As long as the U and V pipeline want to read different DWords from one of the cache lines,
they access different pages so they can both be operated at the same time.

1. System Programming Basics 37

MESI protocol

The cache's greatest difficulties are caused by external memory accesses that bypass the processor and cache controller. What
is written to memory during such accesses could destroy the consistency of the cache (i.e., the information stored in the cache
would no longer match the actual contents of RAM). DMA controllers can cause such inconsistencies by bypassing the
processor to write data to memory from an external device, such as a hard drive controller. However, bus masters on bus
systems, such as EISA and MCA, can also destroy the consistency of a cache. In the bus mastering design, the CPU briefly
passes bus control to the bus master. Usually the bus master is a component of an add-in board and it uses the control over
the bus to shift data within RAM as quickly as possible, or to transfer data from its own memory to RAM.

To eliminate inconsistencies resulting from such accesses in advance, the cache controllers of secondary caches are linked
to the system in such a way they handle DMA transfers and bus master accesses. However, in multiprocessor systems, which
will become more important in the era of the Pentium and Windows NT, this is not possible, because the CPUs are directly
on the bus. Therefore, they cannot be connected to the bus from the cache controller.

Also, with multiprocessor systems, each processor has its own first level cache and consistency between these different caches
(and RAM) must be preserved. INTEL solves this problem with the Pentium processor by using Pentium:MESI protocol,
which the Pentium supports for synchronization of caches in a multiprocessor system. MESI protocol has a feature called bus
snooping, which is a procedure that helps a processor and other system components prompt for and manipulate the status of
cached information in the caches of other processors.

We'll use the following example to illustrate this:

Two Pentium processors running in parallel cache a specific memory location simultaneously. One of the two processors
modifies this memory location. Since the cache is operating in write-back mode, the memory location doesn't get updated
in RAM until later. This makes the memory location in the cache of the second processor invalid, since it still has the old value.
If the processor doesn't realize this, it will inevitably result in a conflict if the processor continues processing this memory
location.

However, when the different processors communicate with each other by using MESI protocol, such inconsistencies are
avoided. The acronym MESI stands for the four different states that a cache line of the processor cache can have, M, E, S and
I. Each cache line has a tag containing the appropriate flags for identifying this state. The following is an explanation of each
letter:

M - Modified

The cache line is only in this cache, but it has been modified and not yet written back to RAM. As a result, the contents in
RAM no longer match the current contents of the memory location.

E - Exclusive

The cache line is exclusively in this one cache and hasn't been modified. The contents of RAM and the contents of the cache
line still match.

S - Shared

The cache line may still be in other caches and hasn't been modified. A write access must take place in write-through mode
(i.e, must be passed on directly to RAM). All other caches containing this cache line will recognize the change and
automatically update the contents of their cache lines.

1 - Invalid

The contents of the cache line are invalid; it is empty and free to receive new data.

38 1. System Programming Basics
First level cache of the Pentium

Now that we've discussed the principle and structure of first and second level caches, you may better understand the
information presented at the beginning of this chapter. Now we'll discuss how a first level cache is implemented in the
Pentium. Actually the Pentium has two separate first level caches: One for data and one for code. Both caches are 8K and
two-way associative. Each path contains 128 cache lines of 32 bytes each (2 paths * 128 cache lines * 32 bits = 8K).

Both caches can be prompted at the same time, while the data cache is capable of responding simultaneously to two requests
from the U and V pipeline of the processors. To achieve this purpose, its cache lines are eight-fold interleave, permitting
simultaneous access to each DWord in the cache. The tags in the data cache are even triple-ported, which means they can
be addressed by three sources at the same time. Two of these sources are the U pipeline and the V pipeline, while the third
source is used for bus snooping when it is necessary to determine whether a specific address is in the cache.

You can switch each cache line in the data cache to Writethrough or Writeback mode using software or hardware. While
operating the cache in Writeback mode makes sense from a performance standpoint, it can lead to problems with specific
memory areas. For example, consider the video RAM on a graphics card. If this memory area is cached in Writeback mode,
the cached information takes quite a while to get to video RAM, which, in turn, slows down composition of the screen.

Overall, the cache architecture in the Pentium is much more complicated than that of its predecessor, the 486. The double
integer pipeline and the concept of using the Pentium in multiprocessing systems contribute to this factor. Nevertheless, the
cache is an important driving force behind the outstanding performance of the Pentium.

Floating-point unit

The floating-point unit of the Pentium is integrated on the chip, just like the 486. However, the performance of this unit has
been significantly improved compared to its predecessor. The following table demonstrates this by showing a comparison
of execution times for floating-point instructions on a 486 and on a Pentium. Intel claims the execution of floating-point
instructions on the Pentium is up to seven times faster than the 486, enabling the Pentium to compete with workstation
processors.

The table on the left compares execution times for floating point instructions on
Command 486 Pentium a 486 and a Pentium. The FCXH command has a special position, since it is
frequently used in floating-point programming. The reason for this has to do

FXCH 4 1 with the organization of the eight floating-point registers for all Intel processors

and numerical coprocessors. These registers are handled like a stack; most
FLD 3 1

floating-point instructions use the top of the stack as one of their arguments and
EST 3 2 also place their result there. As a result, a program must always take values to

the top of the floating-point stack or move the values from there. Because the
FADD 10 3 FXCH instruction handles this task, it is executed more frequently than all other
FSUB 10 3 floating-point instructions.

That is also why developers increased the speed of executing this instruction on
FMUL 16 3 . L7 . . .

the Pentium significantly over the 486's execution speed. The Pentium requires
EDIV 73 39 only one cycle, and sometimes doesn't even need any cycle at all. What makes

this possible is the floating-point unit's ability to run the FXCH command
parallel to another floating-point instruction. However, this is also the only case
in which both floating-point pipelines can be occupied simultaneously with the execution of two floating-point instructions.

The superscalar, eight-stage floating-point pipeline forms the foundation for parallel execution of an FXCH instruction and
any other floating-point instruction. Like an integer pipeline, the floating-point pipeline consists of two pipelines working
in parallel. Actually, the floating-point pipeline shares its first five stages with the integer pipeline, but also requires three
additional stages to complete execution of a floating-point instruction.

1. System Programming Basics 39

The table on the left shows the eight stages of the floating-point pipeline.

PF Prefetch The first three stages are identical to the execution of an integer command,

D1 Decodel because this is when the CPU finds out that it is dealing with a floating-
point instruction. In the fourth pipeline stage (EX), in which the integer
D2 Decode2 commands are executed, depending on the command, the floating-point

unit first fetches the operands of the floating-point instruction from
memory or a register and converts them into a special floating-point
X1 Floating-point Execution Stage 1 format, with which the floating-point operates internally. The actual
execution of the instruction takes place in stages X1 and X2. In the WF
X2 | Floating-point Execution Stage 2 stage, the result of the floating-point operation is then rounded off and
WE | Write Eile transferred to the target register on the floating-point stack. Execution of
the floating-point is completed in the ER stage, in which any errors that
ER Error Report may have occurred in the operation are reported and the floating-point
status register is updated.

EX Execute

Other features

In addition to its superscalar architecture, first level cache, and floating-point unit, the Pentium has several other features that
distinguish it from its predecessors. They are:

» Paging in Protected and Virtual 86 mode is no longer limited to 4K pages, but can also operate with a page size of 2
Meg or 4 Meg. This should help reduce the management time necessary for paging in multitasking systems.

» The Pentium has a system management mode, as already implemented in special versions of the 486. It helps integrate
a Pentium processor in programs designed to save power.

» The "Function Redundancy Check" allows parallel operation of two Pentium processors that check up on each other
to ensure correct operation. This should spur the development of error-tolerant systems.

Improvements in debugging support searching for complex errors and debugging with hardware add-ons.

» In Performance monitoring, the Pentium measures the progress of program execution.

Chapter 2

System Programming In Practice

Now that you know some fundamentals, we can look at the practical side of system programming: Program development in
BASIC, Pascal and C. Each language has its own commands, procedures, and functions for addressing memory, reading ports,
or calling interrupts.

QuickBASIC

QuickBASIC isn't the best language to use for system programming because it's more limited than Pascal or C. However,
system programming in BASIC is possible even if you cannot do everything that you can in Pascal or C. For example, BASIC
doesn't have direct pointer access. In this book, you'll find fewer demonstration programs in BASIC than in Pascal and C.
We included any programs that could be translated into BASIC.

The BASIC demonstration programs we list and include on the companion CD-ROM run under the QuickBASIC interpreter
Version 4.5. However, these programs don't run under Microsoft's QBasic interpreter (QBasic isn't able to call interrupts).
Most of these programs require that you run the QuickBASIC environment while loading a library named QB.LIB:

QB/L QB
QUuIickBASIC data types

When you call interrupt functions, you must be familiar with the processor data types. Interrupt functions are written in
assembly language and no other data types are available at that level of programming. So, if you want to perform system

_ programming in QuickBASIC, you must copy the QuickBASIC data types
QuickBASIC Type Stored as to the data types of the processor. The table on the left shows which types

String * 1 BYTE correspond.

Unlike Pascal and C (the char type), QuickBASIC doesn't recognize single
characters. The String * 1 type compensates for this limitation. String * 1 is
Long DWORD a string the length of a byte. The QuickBASIC compiler views this string in
memory as a single byte.

Integer WORD

However, it's more difficult to operate one of these strings than a normal byte. The reason for this is that a numeric value can
only be loaded into a variable declared in this way using the CHR$() function, as the following example shows:

DIM byte AS STRING * 1
byte = CHR$(5) 'Thisis O.K. - Program runs if you enter this
byte =5 ‘Error: Type mismatch - Program does not run

You can derive the value of such a byte only by using the ASC function:

DIM byte AS STRING * 1
byte = CHR$(13)
IF ASC(byte) = 13 THEN PRINT 13 'Thisis O.K. - Program runs if you
' enter this
IF byte =13 THEN PRINT 13 ‘Error: Type mismatch - Program does not run

41

42 2. System Programming In Practice

Working with the integer and long data types is also difficult if you use them to reproduce words and dwords. QuickBASIC
views the highest bit as the type of number (positive or negative) and views the number as negative when that bit is set. For
example, if you receive a word after the interrupt call and bit 15 is set in this word (indicating that the value is greater than
32,768), QuickBASIC views the number as negative. The same problem occurs with dwords, only less frequently. (A number
with bit 31 set is much larger than you'd normally see in system programming.)

You can manage integer types by converting them into floating point numbers with a function. Check the sign bit, make the
conversion, and continue processing. The following MakeWord function listed appears under different names, such as
GetWord, in some of the BASIC demonstration programs listed on the companion CD-ROM:

FUNCTION MakeWord& (ANum AS INTEGER)

IF ANum < 0 THEN
MakeWord = 65536& + ANum
ELSE
MakeWord = ANum
END IF
END FUNCTION

You pass the integer, which may have a set bit 15, to the function. The function returns a positive long data type because the
function assumes that bit 31 specifies the sign.

Strings

Most DOS and BIOS functions expect strings as a sequence of bytes containing the ASCII codes of the individual characters
and terminated by a null byte (a byte consisting of the value 0). System programming books often call this type of string an
ASCIIZ string (ASCII-Zero) string.

BASIC stores strings in a different format, from which you must distinguish between variable length strings and fixed length
strings. System programming always uses fixed length strings because it's easier to calculate their addresses in memory than
variable length strings. You need the string addresses to pass them to a DOS or BIOS function (more on this later). If you
declare a string of fixed length in your programs, QuickBASIC reserves that many bytes of the string. The following reserves
20 bytes, whose contents are undefined:

DIM S as STRING * 20

Adding the following loads the contents of the array S in these 20 bytes, padding the remainder of the allocated string with
spaces:

S ="PC Intern"

Adding the null byte to create an ASCIIZ string requires special handling. We need a WHILE+WEND loop to locate the last
character of the string, then we must add the null byte to the string using the MID$ statement:

DIM S AS STRING * 20
DIM | AS INTEGER

g=m
INPUT "Please enter a string"; s

I=LEN(S)- 1

WHILE (I > 0) AND (MID$(S, 1, 1) = ™)
I=1-1

WEND

IFI=0THENI=1

MID$(S, 1) = CHR$(0)

2. System Programming In Practice 43

However, if you know the string and don't want the user to enter it, you can include the null byte in the string allocation:

S ="PC Intern" + CHR$(0)

Structures and arrays

Similar to applications and other programs, DOS and the BIOS manage much information using structures and arrays. The
following table shows an example of a structure returned to the caller by DOS. This information occurs when you browse
through directories looking for files.

Directory entry structure as returned by DOS functions 4EH and 4FH
Address Contents Type
O00H Reserved 21 bytes
15H Attribute byte of the file 1 byte
16H Time of last modification 1 word
18H Date of last modification 1 word
1AH File size 1 dword
1EH Filen_a_me_and extens?on separated by a period but without a path 13 bytes
specification (ends with a null byte)
Length: 43 bytes

The following program listing excerpt shows how this structure can be recreated in QuickBASIC (you'll find this structure
in the DIRB.BAS program discussed later in this book):

TYPE DirStruct
Reserved AS STRING * 21
Attrib AS STRING * 1
Time AS INTEGER
Date AS INTEGER
Size AS LONG
DatName AS STRING * 13
END TYPE

As you can see, the Reserved element at the beginning of the DirStruct structure is represented by a fixed length string. This
is the easiest way to reserve a specific number of bytes. The rest of the elements in the DirStruct structure refer to the various
components of the DOS structure in their data types. Bytes are reproduced as String * 1, words as INTEGERs, and dwords
as LONGs. The names of the individual fields are unimportant. You can choose any name you want because the names don't

affect the structure. Obtaining a correct

7 6 5 4 3 2 10 Structure of the attribute fields in a reproduction of the structure is important.
directory structure Accessing bit fields

Instructures, fields often represent bit fields,
in which individual bits or groups of bits
have a specific meaning. The attribute byte
in the previous directory structure also
represents a bit field. As the illustration on

\—b Read-only write accesses are illegal
—— P Hidden file
———® Systemfile

—— - Volume name

Subdirectory

P Archive bit the left shows, each single bit represents a

44 2. System Programming In Practice

certain file attribute. For example, a bit might provide information about whether the file is write/protected, is a system file,
or even is a file (a subdirectory). You must know how to read the individual bits.

If you want to read a certain bit, first you must know its value. You know that bit 0 has a value of 1, bit 1 a value of 2, bit
2 a value of 4 and so on, until you reach bit 7, which has a value of 128. To determine whether you're dealing with a
subdirectory, you must use the value of bit 4, which is 16.

Youwantto setall the attribute byte's other bits to 0. From there you can then determine whether bit4 is set. The AND operator
masks all bits not in the AND mask. The following expression unsets all bits except bit 4 (bit 4 = 16):

AttributeByte AND 16

If bit 4 is set, a result of 16 is returned. Otherwise, the result is 0.
We can apply this expression using [F+THEN+ELSE:

IF ((AttributeByte AND 16) <> 0) THEN
'If the result <> 0 it's a subdirectory
ELSE
'If the result = 0 there's no subdirectory
ENDIF

Unfortunately, checking more than one bit at a time complicates this process. The values of the different bits must be added
together. For example, suppose that you want to determine whether the file is both hidden and a system file. The corresponding
flags are stored in bits 1 and 2, and have a value of 6 when added together. The following expression returns the contents of
both bits:

AttributeByte AND 6

This time, however, the expression used in the previous example cannot be directly applied to this example:

(AttributeByte AND 6) <> 0

This expression is already TRUE if one of the two bits is set and the result of the AND operation doesn't equal 0. However,
if you want to know whether both flags were set, you must modify the process to something similar to the following:

IF ((AttributeByte AND 6) = 6) THEN
'Hidden and System

ELSE
'‘Not Hidden, not System

ENDIF

Often you'll want to set bits to pass a bit field to a DOS or BIOS function. Again, the main focus is on the values of the bits,
but the OR operator performs this task instead of the AND operator. The following statement sets bit 3 of the attribute byte:

AttributeByte = AttributeByte OR 8

Again, to set multiple bits, the values must be added:

AttributeByte = AttributeByte OR (8 + 16)

Both of these expressions set the desired bit to 1. Suppose that you want to set a bit to 0. To do this, use an AND operation
in a different arrangement to mask the bit you want set to 0. According to the laws of binary logic, you must then invert the
value using the NOT operator to achieve the desired result. To set bit 5 to 0, use the following statement:

AttributeByte = AttributeByte AND NOT(32)

2. System Programming In Practice 45

Once again, you can mask more than one bit at a time using the following:

AttributeByte = AttributeByte AND NOT(32 + 8);

However, bit fields don't always consist of

separate bits. Often they are comprised of

bit groups, whose individual bits form a

15141312 11 10 9 8 7 6 5 4 3 2 1 0 certain value when added together. An

‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ example of this is the date field in the

directory entry of a file. This field contains

Day of the month three bit groups that specify the day, month,

Month (1-12) and year the particular file was created or

last modified. So, to analyze this

information, you must determine the value

the three bit groups represent instead of
checking the status of given bits.

\J

\

Year (relative to 1980)

You can easily determine the day by using the described procedure with an AND operator:

Day = DateField AND (1+2+4+8)

When you want to determine the month, the AND operation is no longer sufficient because the isolated bit group must also
be shifted to the right by five bits to obtain the number of the month. In BASIC, the only way to do this is by dividing the
value by 2 raised exponentially by the number of bit positions (by which the value is to be shifted to the right). You can
determine the month and the year by using the following statements:

Month = (DateField AND (32 + 64 + 128 + 256)) \ 32 '2"5 power = 32
Year = (DateField AND (512+1024+2048+4096+8192+16384+32768)) \ 512

However, you'll encounter problems again, at least with the second statement, because of the sign bit. This is why you should
use the MakeWord function described earlier in this section:

Year = (MakeWord(DateField) AND 65024&)\ 512

To shift bits to the left instead of to the right, use multiplication instead of division. For example, the following will make
a DateField out of a given day, month, and year:

DateField = Day + (Month * 32) + (Year * 512))

Calling interrupts from QuickBASIC

The QuickBASIC QB.QLB quick library provides the INTERRUPT and INTERRUPTX statements for calling software
interrupts. You can call all 256 Intel processor interrupts with these statements. To access this library, you must start
QuickBASIC with the /L QB switch.

INTERRUPT and INTERRUPTX can also access interrupt 21 H, which lets you call the DOS API(DOS Application Program
Interface) functions. There are more than 200 of these functions, which refer to functions provided by DOS applications. The
QB.Bl include file lets you access DOS API functions. You must include this file in your programs by using the following:

REM $INCLUDE: 'QB.BI

The syntax for both statements is:

CALL INTERRUPT (Interruptnum, InReg, OutReg)
CALL INTERRUPTX(Interruptnum, InReg, OutReg)

46 2. System Programming In Practice

Accessing the processor registers

The InReg and OutReg parameters used by the INTERRUPT statement are of type RegType, which represents a structure
defined within QB.BI. The RegType structure makes the various processor registers available to a BASIC program. From
the InReg structure, the INTERRUPT command loads the processor registers with the specified values from the InReg
structure. After the interrupt call, the OutReg structure contains the contents of the processor registers.

From the definition of RegType you may conclude that the different variables within this structure reflect the processor
registers of the same name.

TYPE RegType
ax AS INTEGER
bx AS INTEGER
CX AS INTEGER
dx AS INTEGER
bp AS INTEGER
si AS INTEGER
di AS INTEGER

flags AS INTEGER

END TYPE

RegType accesses only the 16-bit registers instead of the 8-bit registers. So, to access an 8-bit register, you must use a 16-
bit register. For example, the following lines load the value 1BH (&h1B) into the AH register by multiplying that register's
value by 256, and then moving the value eight bit positions to the left:

DIM Regs AS RegType
Regs.AX = &h1B * 256
CALL INTERRUPT(&hxyz, Regs, Regs) 'The result of the interrupt call

However, this also sets AL to 0. If you don't want this to happen, set the desired value with OR:

DIM Regs AS RegType
Regs.AX = Regs.AX OR (&h1B * 256)
CALL INTERRUPT(&hxyz, Regs, Regs) 'The result of the interrupt call

Write the desired value to the AX register (and ensure that the AH register is empty) to access the AL register. However, if
there is already a value in AH, you should use the OR operator to avoid destroying the contents of AH.

DIM Regs AS RegType

Regs.AX = &h1B '‘Load AL with 1BH (&h1B), assume AH =0
Regs.AX = Regs.AX OR &h1B '‘AH remains unchanged

CALL INTERRUPT(&hxyz, Regs, Regs) 'The result of the interrupt call

You could also use the same principle with all the other general registers. For example, it's just as easy to determine the
contents of the various 8-bit registers after an interrupt call. If you're interested in the high byte, simply divide the contents
of the 16-bit register by 256. If you're interested in the low byte, you can mask the high byte with an AND operator.

DIM Regs AS RegType

CALL INTERRUPT(&hxyz, Regs, Regs) 'Interrupt call (replace &hxyz with
‘the interrupt of your choice

PRINT "AH = "; MakeWord(Regs.AX) \ 256

PRINT "AL ="; Regs.AX AND &HFF

2. System Programming In Practice 47

Including the segment register

Maybe you've already noticed that the segment register is ignored in RegType. Numerous DOS and BIOS functions expect
parameters in the DS and ES segment registers or return information to these registers. Because of this, there is a command
called INTERRUPTX, which works exactly like INTERRUPT except that it works with structures of the RegTypeX type.
Although RegTypeX is similar in structure to RegType, it also contains two fields for the ES and DS registers.

TYPE RegTypeX
ax AS INTEGER
bx AS INTEGER
CX AS INTEGER
dx AS INTEGER
bp AS INTEGER
si AS INTEGER
di AS INTEGER

flags AS INTEGER
ds AS INTEGER
es AS INTEGER

END TYPE

Reading the flags in the flag register

In many cases, the flag registers can also return information to the calling program. DOS functions extensively use the carry
flag, which is set after the function is called and when the function call fails.

You can also access the various processor flags after calling INTERRUPT or

Flag Bit Pos. Value INTERRUPTX using the FLAGS variable in the OutReg structure. You can
Carry 0 1 calculate the contents of each flag using an AND operator, with the value of the
flag, as the table on the left shows.
Parity 2 4

So, a test for the carry flag could look like the following:
Auxiliary 4 16

DIM Regs AS RegType
Zero 6 64 CALL INTERRUPT(&hxyz, Regs, Regs) 'The interrupt

. call

Sign ! 128 IF (Regs.Flags AND 1) <> 0 THEN PRINT "Error”
Overflow 11 2048

Buffers and QuickBASIC

Many functions expect pointers to buffers when they are called. The functions either take information from the buffers or
place information in the buffers (e.g., file contents). These pointers are always FAR; they consist of a segment address and
an offset address. This FAR pointer data can be anywhere in memory, not necessarily in the current program's memory
segment.

Passing pointers to interrupt functions

DOS function 09H is an example of a function that takes pointers. This function displays a string on the screen beginning
at the current cursor position. Like all DOS functions, it expects the function number in the AH register and the address of
the buffer containing the string to be displayed in the DS:DX register pair. DS takes the segment address of the buffer, and
DX takes the offset address.

Although creating a string is easy in QuickBASIC, you may also want to know how to pass the buffer address. QuickBASIC
provides the VARSEG and VARPTR functions, which supply the segment and offset addresses of the specified variable. The
following program demonstrates how to use these functions with DOS function 09H (&HO09) as an example. Unlike other
DOS functions, function 09H looks for a $ character, instead of a null byte, at the end of the buffer.

48 2. System Programming In Practice
'9HDEMOB.BAS
'SINCLUDE: 'QB.BI' 'Include file for interrupt call

DIM S AS STRING * 20
DIM RegsX AS RegTypeX

CLS

S ="PC Intern" + "$"

RegsX.AX = &H900 'Function number 09H
RegsX.DS = VARSEG(S) 'Segment address
RegsX.DX = VARPTR(s) 'Offset address

CALL InterruptX(&H21, RegsX, RegsX)

Receiving pointers from interrupt functions

The following program calls DOS function 1BH, which returns a pointer in the DS:BX register pair. This pointer points to
abyte containing the media code of the current drive. DOS uses the media code to describe the different types of drives, with
codes between FOH and FFH. The value F8H (248) characterizes all types of hard drives.

Since QuickBASIC doesn't recognize FAR pointers, you must use the PEEK() command to read the media ID. Although this
command can be used to read the contents of any memory location, it accepts only one offset address and always accesses
the "current" segment. Fortunately, you can define this segment with the help of the DEF SEG command, as the following
program demonstrates.

'MEDIAIDB.BAS
'$SINCLUDE: 'QB.BI' ‘Include file for interrupt call

DIM RegsX AS RegTypeX
DIM MedialD AS INTEGER

CLS

RegsX.AX = &H1B0O 'Function number
CALL interruptx(&H21, RegsX, RegsX)

DEF SEG = RegsX.DS 'Define segment
MedialD = PEEK(RegsX.BX) 'Read media ID

PRINT "Media ID = "; MedialD

Turbo Pascal

Our discussion of Pascal is based on Borland's Turbo Pascal. Although Turbo Pascal compatible Pascal compilers (e.g.,
Pascal+ from Stony Brook Software) are available, we'll concentrate on Turbo Pascal. All the Pascal programs we describe
were developed using Turbo Pascal Version 5.5, but they will also run under the succeeding versions of Turbo Pascal or
Borland Pascal. Since the demonstration programs illustrate system programming, we omitted all the OOP (Object Oriented
Programming) enhancements that are available in Turbo. Once you understand the logic of each demonstration program, you
can add any extras, such as OOP objects, to suit your own needs.

Turbo Pascal data types

Similar to other compilers, Turbo Pascal's data types mostly correspond with processor data types, which allow fast and easy
processing. The table at the top of the following page shows how Turbo Pascal stores the different data types.

In Turbo Pascal, pointers are always FAR, regardless of whether they point at data or are procedural pointers, which refer
to program code.

2. System Programming In Practice 49

Pascal Type Stored as Strings

CHAR BYTE Most DOS and BIOS functions expect strings as a sequence of bytes, containing the
ASCIIcodes ofthe individual characters, and terminated by a null byte (a byte consisting
BYTE BYTE of'the value 0). In system programming, this type of string is called an ASCIIZ (ASCII-
Zero) string. Pascal also saves a string as a sequence of bytes, with each byte representing
BOOLEAN BYTE the ASCII codes of the characters. However, unlike ASCIIZ strings, the first byte
indicates the string's length instead of the string null byte at the end of the string.
INTEGER WORD Although this method is more practical for processing strings, it's incompatible with
WORD WORD DOS and BIOS functions.
LONGINT DWORD The following program listing shows how Pascal strings can be easily converted into
ASCIIZ strings by simply adding a null byte. However, when passing such a string to
POINTER DWORD a DOS or BIOS function using its address, you must specify the address of the first

character (string[1]), instead of the address of the length byte (string[0]). We'll discuss
this in detail after the program listing.

{* ASZDEMO.PAS *}
program ASZDemo;

var ASCIIZ : string[100];
i : integer;

begin
write ('String: ');
readin(ASCIIZ);
ASCIIZ := ASCIIZ + chr(0);
fori:=0to ord(ASCIIZ[0]) do
begin
write(i:2," ', ord(ASCIIZ][i]):3);
if (ASCIIZ[i] >"") then
write(" ', ASCIIZ][i]);
writeln;
end;
end.

The following shows the screen output that's created by the previous program after it's compiled and called. The program
prompted the user for a string. After the user typed the string and pressed (Enter), the program added a null byte and displayed
the string on the screen, including the length byte and null byte.

output of the (e . : . N\
String: ASCIIZ string <---- Prompt and input
ASZDEMO 14 <---- Length byte

program 65 A

83

©CONOUIRWNRFO
~
w

\14 0 <---- Added null byte /

50 2. System Programming In Practice
Structures and arrays

Similar to applications and other programs, DOS and the BIOS manage much information using structures and arrays. The
most important factor lies in the compiler's creating the information in the sequence specified, aligning each field on a word
boundary. Although Turbo Pascal has a compiler directive foraligning data (the { A$} directive), this directive usually doesn't
work on structures and arrays.

The following table shows an example of a structure returned to the caller by DOS.

Directory entry structure as returned by DOS functions 4EH and 4FH
Address Contents Type
O00H Reserved 21 bytes
15H Attribute byte of the file 1 byte
16H Time of last modification 1 word
18H Date of last modification 1 word
1AH File size 1 dword
1EH FiIen_a_me_and extens?on separated by a period but without a path 13 bytes
specification (ends with a null byte)
Length: 43 bytes

The following program listing excerpt shows how this structure can be recreated in Pascal (you'll find this structure in the
DIRP1.PAS program which we'll discuss later):

type DirBufTyp =record { Data structures of functions 4EH and 4FH }
Reserved : array [1..21] of char;

Attr : byte;

Time : integer;

Date . integer;

Size : longint;

Name :array [1..13] of char
end;

As you can see, the Reserved element at the beginning of the DOS structure is represented by an array. This can be either a
char or byte array. The fields within this structure must have the same offset address, which means that these elements are
the same distance from the beginning of the structure as in the DOS structure.

The rest of the elements in the DirBufType structure refer to the various components of the DOS structure in their data types.
Bytes are reproduced as bytes, words as integers, and dwords as longints. The individual field names are unimportant. You
can choose any name you want because the names don't affect the structure. Obtaining a correct reproduction of the structure
is all that matters.

Accessing bit fields

In structures, fields often represent bit fields, in which individual bits or groups of bits have a specific meaning. The attribute
byte in the previous directory structure also represents a bit field. As the following illustration shows, each single bit
represents a certain file attribute. For example, a bit may provide information about whether the file is write/protected, is a
system file, or even is a file (a subdirectory). You must know how to read the individual bits.

2. System Programming In Practice 51

If you want to read a certain bit, first you

7 6 543 210 Structure of the attribute fields in a must know its value. You know that bit 0
directory structure has a value of 1, bit 1 a value of 2, bit 2 a

value of 4, and so on until you reach bit 7,

\—b Read-only write accesses are illegal which has a value of 128. To determine

————» Hidden file whether you're dealing with asubdirectory,

-—————————® System file youmust use the value of bit4, whichis 16.
———» Volume name

Subdirectory You want to set all the attribute byte's other

» Archive bit bitsto 0. From there you can then determine

whether bit 4 is set. The AND operator
masks all bits not in the AND mask. The

following expression unsets all bits except bit 4 (bit 4 = 16):

AttributeByte and 16

If bit 4 is set, a result of 16 is returned. Otherwise, the result is 0.
This expression can be used as follows within an if loop:

If AttributeByte and 16 <> 0 then

{ If the result <> 0 it's a subdirectory }
else

{ If the result = 0 there's no subdirectory }

Checking more than one bit at a time complicates this process. The values of the different bits must be added together. For
example, suppose that you want to determine whether the file is both hidden and a system file. The corresponding flags are
stored in bits 1 and 2, and have a value of 6 when added together. The following expression returns the contents of both bits:

AttributeByte and 6

This time, however, the expression used in the previous example cannot be directly applied to this example:

AttributeByte and 6 <> 0

This expression is already TRUE if one of the two bits is set and the result of the AND operation doesn't equal 0. However,
if you want to know whether both flags were set, you must modify the process to something similar to the following:

If AttributeByte and 6 = 6 then
{ Hidden and System }

else
{ not Hidden, not System }

Often you'll want to set bits to pass a bit field to a DOS or BIOS function. Again, the main focus is on the values of the bits,
but the OR operator performs this task instead of the AND operator. The following statement sets bit 3 of the attribute byte:

AttributeByte := AttributeByte or 8;
Again, to set multiple bits, the values must be added:
AttributeByte := AttributeByte or (8 + 16);

Both expressions set the desired bit to 1. Suppose that you want to set a bit to 0. Use an AND operation in a different
arrangement to mask the bit you want set to 0. According to the laws of binary logic, you must then invert the value using
the NOT operator to achieve the desired result. To set bit 5 to 0, use the following statement:

52 2. System Programming In Practice
AttributeByte := AttributeByte and not(32);

Once again, you can mask more than one bit at a time using the following:

AttributeByte := AttributeByte and not(32 + 8);

However, bit fields don't always consist of separate bits. Often they are comprised of bit groups, whose individual bits form
a certain value when added together. An example of this is the date field in the directory entry of a file. This field contains
three bit groups that specify the day, month, and the year the particular file was created or last modified. So, to analyze this
information, you must determine the value the three bit groups represent instead of checking the status of given bits.

You can easily determine the day by using
Date field format in the directory entry of a file the described procedure with an AND

operator:
1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0

‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Day :=DateFieldand (1 +2

+4+8);
Day of the month

» Month (1-12) When you want to determine the month,
the AND operation is no longer sufficient
because the isolated bit group must also be
shifted to the right by five bits to obtain the
number of the month. The SHR operator
in Turbo Pascal shifts an expression to the right by any number of bits. You can determine the month and the year by using
the following statements:

» Year (relative to 1980)

Month := (DateField and (32 + 64 + 128 + 256)) shr 5;
Year := (DateField and (512+1024+2048+4096+8192+16384+32768) shr 9;

The SHL operator, which is the opposite of the SHR operator, shifts a value to the left bit by bit. For example, you can use
this operator to create a date field from a given day, month, and year:

DateField := Day + (Month shl5) + (Year shl 9);

Calling interrupts from Turbo Pascal

Turbo Pascal provides the Intr and MsDos procedures, which are defined in the DOS unit. This unit also contains some type
and constant declarations that are needed for calling types and constants.

The syntax for Intr is as follows:

Intr(InterruptNumber : byte, Regs : Registers);

The InterruptNumber parameter specifies the number of the interrupt to be called. Since every value between 0 and 255 is
accepted for this parameter, you can call all available interrupts, including hardware interrupts.

The MsDos procedure is a special form of the Intr procedure. You can call it the same way you call Intr:

MsDos(Regs : Registers);

Notice that unlike Intr, MsDos doesn't have an InterruptNumber parameter. MsDos accesses interrupt 21H, which lets you
call the DOS API (DOS Application Program Interface) functions. There are over 200 of these functions, which refer to
functions provided by DOS applications.

2. System Programming In Practice 53
Accessing the processor registers

As you may conclude from the definition of RegType, the different variables within this structure reflect the processor
registers of the same name.

Both procedures expect a variable of type Registers, which is defined in the DOS unit. Registers accepts the values loaded
in the processor registers before the interrupt call. Then these values are supposed to be passed to the called interrupt. After
returning from MsDos or Intr, these variables contain the values that were in the various processor registers after the called
interrupt function ends.

To simplify register addressing, Registers provides a variant record, in which the registers are listed with their normal names.
Registers is defined as follows in the DOS unit:

type Registers = record
case integer of
0: (AX, BX, CX, DX, BP, SI, DI, DS, ES, Flags : word);
1: (AL, AH, BL, BH, CL, CH, DL, DH : byte);
end;

The 16-bit processor registers AX to ES are represented by the word variables of the same name. The 8-bit processor registers
AL to DH are represented by variables of type byte.

The divisions of 8-bit and 16-bit registers into half registers results in overlapping between both register groups in memory
(i.e., two 8-bit variables overlap the corresponding 16-bit variable). So, AL and AH share the same memory space as AX BL
and BH share the same memory space of BX. This also applies to the CL/CH and DL/DH variables.

Notice the order in which 8-bit registers are specified. This order must mirror the format in which the 16-bit register is placed
inmemory above them. Since, inmemory, the low byte of a word precedes the high byte, the L register must be declared before
the corresponding H register.

If Regs is a variable of type Registers, you can easily address the single processor registers by the different components of
this variable:

Regs.ax, Regs.bx, Regs.cx,
Regs.ah, Regs.dl etc.
To pass the value D3H to the DL register during an interrupt call, do the following:

Regs.DL := $D3;

Before calling an interrupt using Intr or MsDos, load the registers, which are used by the function you'll call, with the
information you want passed to the function. The interrupt ignores all registers except those on which it directly relies.

Reading the flags in the flag register

In many cases, the flag registers can also return information to the calling [E®lelaijelgly Bit Pos. Bit Value
program. DOS functions extensively use the carry flag, which is set after the EC 0 1
function is called and when the function call fails. arry

To simplify checking the flags, the DOS unit defines different constants, which FParity 2 4

reflect the bit values of the processor flags: FAuxiliary |4 16

You can use an AND operator to check whether one of these bits is set. The | Fzgrg 6 64
following expression sets the Boolean variable to TRUE when the carry flag is

set. FSign 7 128
Error := ((Regs.Flags and FCarry) <> 0); FOverflow |11 2048

54 2. System Programming In Practice

Buffers and Turbo Pascal

Many functions expect pointers to buffers when they're called. The functions either take information from or place
information in the buffers (e.g., file contents). These pointers are always FAR; they consist of a segment address and an offset
address. This FAR pointer data can be anywhere in memory, not necessarily in the current program's memory segment.

Passing pointers to interrupt functions

DOS function 09H is an example of a function that takes pointers. This function displays a string on the screen, beginning
at the current cursor position. Like all DOS functions, it expects the function number in the AH register and the address of
the buffer containing the string to be displayed in the DS:DX register pair. DS takes the segment address of the buffer and
DX takes the offset address.

Although creating a string in Pascal is easy, you may also want to know how to pass the buffer address. Turbo Pascal provides
the Seg() and Ofs() functions, which supply the segment and offset addresses of any memory object. It doesn't matter whether
you're working with a local or global variable or a typed constant.

The following program demonstrates how to use these functions with DOS function 09H ($09) as an example. The program
uses DOS function 09H to display the string from the Message variable on the screen. Unlike other DOS functions, function
09H looks for a $ character, instead of a null byte, at the end of the buffer.

'OHDEMOP.PAS
program 9HDemoP;
uses DOS;

var Regs : Registers;
Message : string[20];

begin
Message := 'DOSPrint' +'$';

Regs.AH := $09;
Regs.DS := seg(Message[1]);
Regs.DX := ofs(Message[1]);
MsDos(regs);

end.

Receiving pointers from interrupt functions

The following program calls DOS function 1BH, which returns a pointer in the DS:BX register pair. This pointer points to
abyte containing the media code of the current drive. DOS uses the media code to describe the different types of drives, with
codes between FOH and FFH. The value F8H (248) characterizes all types of hard drives.

To determine the media ID from the returned pointer, the MediaPtr type is defined as a pointer to a byte at the beginning of
the program. Since pointers are always FAR in Turbo Pascal, you can be certain that you've created a FAR pointer. The
program defines MP as a variable of this type. After calling the DOS $1B function, the program loads MP with the returned
pointer from the register pair DS:BX. The program uses Turbo Pascal's Ptr function to do this. This function receives a
segment and offset address and forms a generic pointer from them.

This pointer can be used to access the referenced information as in any normal pointer operation. The Writeln statement at
the end of the program demonstrates this.

2. System Programming In Practice 55

{* MEDIAIDP.PAS *}

program MedialdP;

uses Dos; { Add Dos unit }
type MediaPtr = "byte; { Create a byte pointer }
var Regs : Registers; { Processor registers for interrupt call }
MP : MediaPtr; { Variable for media pointer }
begin
Regs.AH := $1B; { Pass 1BH to AH register }
MsDos(Regs); { Call DOS interrupt 1BH }
MP := ptr(Regs.DS, Regs.BX); { Read pointer }
writeln('‘Media ID ="', MP"); { Display media ID }
end.

Accessing memory with Mem, MemW, and MemL

Turbo Pascal has three predefined arrays, called Mem, MemW, and MemL, that are used to access bytes, words, and longints
(dwords). A special syntax is used to access these arrays within brackets and the segment address is separated from the offset
address by a colon.

You could have accessed the media ID using the following in the MEDIAIDP.PAS program:
mem[Regs.DX : Regs.BX];

When accessing multiple pointers, Mem, MemW, and MemL will need a more complex syntax than the one previously
shown.

Port access in Turbo Pascal

Turbo Pascal recognizes PC ports as a predefined array. However, Turbo Pascal also supports two arrays for port access: Port
(for 8-bit ports) and PortW (for 16-bit ports). PortW allows you to send 16-bit values to ports, while Port only accepts 8-bit
values. The array you select will depend on the expansion board or support chip you want to access. If the board or chip is
16-bits, you can use PortW; otherwise, you must use Port for access.

You can read information from ports and write information to ports using normal array syntax. For example, both of the
following statements dump the contents of port 3C4H, which is part of the graphics controller on an EGA/VGA card:

XByte := port[$3C4 |;
XWord := portw[$3C4 |,

The following statements allow you to send a byte or word just as easily:

port[$3C4] := XByte;
portw[$3C4] := XWord;

Examples of these statements are located in Chapter 4.

56 2. System Programming In Practice

The C Language

Unlike Pascal, the market for C compilers is characterized by the rivalry between Microsoft and Borland. Both companies
have several products on the market: Microsoft QuickC and Microsoft C 6.0, Borland Turbo C++ and Borland C++. Both
C++ compilers preserve the compatibility with the standard (Turbo C) implementation.

The C programs in this book can be compiled under all the compilers we just named, although some warning messages may
appear on the screen. All the programs were compiled under Microsoft C 6.00, with warning levels changed as needed. We
also test-compiled programs using Borland's Turbo C++ and the default settings of the Turbo C++ environment.

These programs are affected by the differences between the libraries found in the Microsoft and Borland compilers. Because
of'this, some programs contain constructs like the following, which is taken from the DIRC2.C demonstration program listed
later in this book. The differences between the two libraries are intercepted by defining macros.

#ifdef _ TURBOC___ /* Turbo C Compiler? */
#define DIRSTRUCT struct ffblk
#define FINDFIRST(path, buf, attr) findfirst(path, buf, attr)
#define FINDNEXT(buf) findnext(buf)
#define NAME ff_name
#define ATTRIBUTE ff_attrib
#define TIME ff_ftime
#define DATE ff_fdate
#define SIZE ff_fsize

#else /* No --> Microsoft C */
#define DIRSTRUCT struct find_t
#define FINDFIRST(path, buf, attr) _dos_findfirst(path, attr, buf)
#define FINDNEXT(buf) _dos_findnext(buf)
#define NAME name
#define ATTRIBUTE attrib
#define TIME wr_time
#define DATE wr_date
#define SIZE size

#endif

Since the demonstration programs in this book illustrate system programming, we omitted all the OOP (Object Oriented
Programming) enhancements available in Turbo C++. Once you see the logic of each demonstration program, you can add
any extras, such as OOP objects, to suit your own needs.

C data types

Like all compilers, the C data types mainly correspond with processor data types, which
allows fast and easy processing. The table on the right shows how various C compilers
store the different data types. unsignedchar BYTE
Since C doesn't have a byte type or word type, you'll find typedef functions, similar to | sp5r BYTE
the following, at the beginning of many of the C programs we use:

int WORD
typedef unsigned char BYTE;
typedef unsigned int WORD; unsigned int WORD
These lines define the two types that are very important to system programming. In C, | N€ar *void WORD
the memory model that's used governs the use of NEAR and FAR pointers. The programs long DWORD
inthisbook were developed using the SMALL memory model. So they work exclusively
with NEAR pointers. When FAR pointers are needed for system programming, the far | far *void DWORD

modifier is used in the variable declaration:

2. System Programming In Practice 57
int far *p; /* P is a FAR pointer */

We found that Microsoft QuickC doesn't like working with FAR pointers while the Options/Compiler Flags/Pointer Check
option is enabled. Disable this option to avoid problems while executing the demonstration programs from this book.

Strings

Most DOS and BIOS functions expect strings as a sequence of bytes, containing the ASCII codes of the individual characters,
and terminated by anull byte (a byte consisting of the value 0). In system programming, this type of string is called an ASCIIZ
(ASCII-Zero) string. Since C stores strings in ASCIIZ format, they don't have to be converted.

Structures and arrays

Similar to applications and other programs, DOS and the BIOS manage much information using structures and arrays. The
most important factor lies in the compiler's creating the information in the sequence specified, aligning each field on a word
boundary.

All C compilers are familiar with compiler directives that can influence this structure. Microsoft C compilers support the /
Zp directive, which ensures that the fields within structures aren't separated. Borland compilers have an option called Word
alignment in the Options/Compiler.../Code generation... dialog box within the integrated development environment. Ensure
that this option is disabled; otherwise the compiler will separate the fields.

The following table shows an example of a structure returned to the caller by DOS:

Directory entry structure as returned by DOS functions 4EH and 4FH
Addr. Contents Type
O00H Reserved 21 bytes
15H Attribute byte of the file 1 byte
16H Time of last modification 1 word
18H Date of last modification 1 word
1AH File size 1 dword
1EH Filen_a_me_and extens?on separated by a period but without a path 13 bytes
specification (ends with a null byte)
Length: 43 bytes

The following excerpt from a program listing (DIRC1.C) which we'll describe later demonstrates how this structure can be
reproduced in C.

typedef unsigned char BYTE; /* Create a byte */
typedef struct { I* DIR structure for functions 4EH and 4FH */
BYTE Reserved[21];
BYTE Attribute;

unsigned int Time;
unsigned int Date;
unsigned long Size;
char Name[13];
} DIRSTRUCT;

58 2. System Programming In Practice

As you can see, the Reserved element at the beginning of the DOS structure is represented by an array. You can use either
a CHAR array or BYTE array. The various fields within the C structure must have the same offset addresses so they are the
same distance from the beginning of the structure as in the DOS structure.

The remaining elements in the DIRSTRUCT structure correspond to the various components of the DOS structure in
reference to their data types. Bytes are reproduced as bytes, words as unsigned ints, and dwords as unsigned longs. The names
of the individual fields are unimportant. Since the names don't affect the structure, you can choose any name you want.
Obtaining a correct reproduction of the structure is all that matters.

Accessing bit fields

In structures, fields often represent bit fields, in which individual bits or groups of bits have a specific meaning. The attribute
byte in the previous directory structure also represents a bit field. As the following illustration shows, each single bit
represents a certain file attribute. For example, a bit may provide information about whether the file is write/protected, is a
system file, or even is a file (a subdirectory). You must know how to read the individual bits.

If you want to read a specific bit, first you must know its value. You know that bit 0 has a value of 1, bit 1 a value of 2, bit
2 a value of 4, etc., until you reach bit 7,

7 6 5 4 3 2 10) 5 5 which has a value of 128. To determine
Structure of the attribute fields in a whether you're working with a subdirectory
directory structure youmust use the value of bit4, whichis 16.

Youwant to set all the attribute byte's other
bits to 0. Then you can then determine
whetherbit4 is set. The AND operator (the
& character in C) masks all bits that aren't
inthe AND mask. The following expression
unsets all bits except bit 4 (bit 4 = 16):

\—b Read-only write accesses are illegal
—— - Hidden file
—— P Systemffile
———» Volume name

Subdirectory

- Archive bit

AttributeByte & 16

If bit 4 is set, a result of 16 is returned. Otherwise, the result is 0. This expression can be used within an if loop as follows:

if ((AttributeByte & 16)!=0)

[* If the result <>0 it's a subdirectory */
else

[* If the result = 0 there's no subdirectory */

Checking more than one bit at a time complicates this process. The values of the different bits must be added together. For
example, suppose that you want to determine whether the file is both hidden and a system file. The corresponding flags are
stored in bits 1 and 2, and have a value of 6 when added together. The following expression returns the contents of both bits:

AttributeByte & 6

This time, however, the expression used in the previous example cannot be directly applied to this example:

(AttributeByte & 6) =0

This expression is already TRUE if one of the two bits is set and the result of the AND operation doesn't equal 0. However,
if you want to know whether both flags were set, you must modify the process to something similar to the following:

If ((AttributeByte & 6)==6)
/* Hidden and System */

else
/* Not Hidden, Not System) */

2. System Programming In Practice 59

Frequently you'll want to set bits to pass a bit field to a DOS or BIOS function. Again, the main focus is on the values of the
bits, but the OR operator (the | character in C), instead of the AND operator, performs this task. The following statement sets
bit 3 of the attribute byte:

AttributeByte = AttributeByte | 8;
AttributeByte |= 8; /* Abbreviated version */

Again, to set multiple bits, the values must be added:

AttributeByte = AttributeByte | (8 + 16);

Both of these expressions set the desired bit to 1. Suppose you want to set a bit to 0. Use an AND operation in a different
arrangement to mask the bit you want set to 0. According to the laws of binary logic, you must then invert the value using
the NOT operator (the ! character in C) to achieve the desired result. To set bit 5 to 0, use the following statement:

AttributeByte = AttributeByte & 132;

Once again, you can mask more than one bit at a time using the following statement:

AttributeByte = AttributeByte & !(32 + 8);

However, bit fields don't always consist of separate bits. Often they are comprised of bit groups, whose individual bits form
a certain value when added together. An example of this is the date field in the directory entry of a file. This field contains
three bit groups that specify the day, month, and year the particular file was created or last modified. So, to analyze this
information, you must determine the value the three bits represent instead of checking the status of the given bits.

Date field format in the directory entry of a file

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

\—LF Day of the month

Month (1-12)

\J

\

Year (relative to 1980)

You can easily determine the day by using the described procedure with an AND operator:
Day = DateField & (1 +2+4 + 8);
However, when determining the month, the AND operation is no longer sufficient because the isolated bit group must also

be shifted to the right by five bits to get the number of the month. In C, the >> operator shifts an expression to the right by
any number of bits. You can determine the month and the year by using the following statements:

Month = (DateField & (32 + 64 + 128 + 256)) >> 5;
Year = (DateField & (512+1024+2048+4096+8192+16384+32768)) >> 9;

The << operator, which is the opposite of the >> operator, shifts a value to the left bit by bit. For example, you can use this
operator to create a date field from a given day, month, and year:

DateField = Day + (Month << 5) + (Year << 9);

60 2. System Programming In Practice

Calling interrupts from C

Both Borland and Microsoft compilers provide the int86(), int86x(), intdos(), and intdosx() functions for calling software
interrupts. While the int86() and int86x() functions can call all 256 interrupts of the Intel processor, the intdos() and intdosx()
functions direct their attention to interrupt 2 1H (0x21), which lets you call the DOS API(DOS Application Program Interface)
functions. There are over 200 of these functions, which refer to functions provided by DOS applications.

The declarations of these functions are in the DOS.H include files of both compilers, which must be linked to a C program
to work with these functions. These declarations are as follows:

int intdos(union REGS *inregs, union REGS *outregs);

int intdosx(union REGS *inregs, union REGS *outregs, struct SREGS *sreg);
int int86(int, union REGS *inregs, union REGS *outregs);

int int86x(int, union REGS *inregs, union REGS *outregs, struct SREGS *sreq);

Accessing processor registers

All four procedures expect pointers to structures of type REGS, while the two functions that end with "x" expect a variable
of type SREGS. These are structures that reproduce the processor registers.

From the first passed structure (inregs), the functions load the various processor registers before the interrupt call, while they
load the contents of the processor registers in the second passed structure (outregs) after the call.

To make it easier to address both the 8-bit and the 16-bit registers, REGS represents a union in which two structures of
WORDREGS and BYTEREGS type can be placed on top of each other:

union REGS {
struct WORDREGS x;
struct BYTEREGS h;

h

struct WORDREGS {
unsigned int ax;
unsigned int bx;
unsigned int cx;
unsigned int dx;
unsigned int si;
unsigned int di;

unsigned int cflag;

I3

struct BYTEREGS {
unsigned char al, ah;
unsigned char bl, bh;
unsigned char cl, ch;
unsigned char dl, dh;

I3

The 16-bit processor registers AX to ES are represented by the unsigned int variables of the same name in the WORDREGS
structure. The 8-bit processor registers AL to DH are represented by the variables in the BYTEREGS structure.

The variant record applies to the 8-bit registers, which are as important as the 16-bit registers for carrying information during
the interrupt call. Dividing the 8-bit and 16-bit registers into two variants results in an overlapping of both register sets in
memory, with two 8-bit variables overlapping "their" 16-bit variable. So, AL and AH share the same memory space as AX
BL, and BH share the same memory space of BX. This also applies to the CL/CH and DL/DH variables.

2. System Programming In Practice 61

Notice the order in which 8-bit registers are specified. This order must mirror the format in which the 16-bit register is placed
inmemory above them. Since, in memory, the low byte of a word precedes the high byte, the L register must be declared before
the corresponding H register.

If pregs is a variable of the REGS type, you can easily address the processor registers from the various components of this
variable:

» pregs.x.ax, » pregs.x.bx, » pregs.x.cx,

» pregs.h.ah, » pregs.h.dl, etc.
If you want to pass the value D3H (0xD3) to the DL register during an interrupt call, do the following:
pregs.h.dl = 0xD3;

Before calling an interrupt using Intr or MsDos, load the registers, which are used by the function you'll call, with the
information you want passed to the function. The interrupt ignores all other registers except those on which it directly relies.

Including the segment register

Asthe definitions of BY TEREGS and WORDREGS show, these structures ignore the various segment registers and duplicate
only the general registers. This occurs because segment registers aren't needed in most function calls. Ifa function call requires
a segment register, use the int86x() and intdosx() functions, which expect a pointer to a variable of the SREGS type, as well
as two pointers to variables of the REGS type. The two functions load the various segment registers from this variable before
the interrupt call, and save their contents there after the interrupt call.

Here's the definition of SREGS:

struct SREGS {
unsigned int es;
unsigned int cs;
unsigned int ss;

unsigned int ds;

b

Reading the flags in the flag register

In many cases, the flag registers can also return information to the calling program. DOS functions extensively use the carry
flag, which is set after the function is called and when the function call fails.

To simplify checking the flags, the WORDREGS structure contains a field named CFLAG, which is loaded with the contents
of the carry flag after a function call. This field shows a value of 1 if the carry flag is set and a value of 0 if it isn't set. Before
the function call, the contents of this variable are ignored because the carry flag isn't important for working with interrupt
functions until after the interrupt call.

The following program excerpt shows that after the interrupt call it's easy to determine whether the carry flag is set. This
program also demonstrates that it's definitely possible to specify a single variable for the inregs and outregs parameters, which
will be loaded before the interrupt call with the desired parameters, and accept the contents of the processor register
afterwards.

#include <dos.h>

void test(void)

{

union REGS pregs;

pregs.h.ah = 0x13; /* Function number */
pregs.h.dl = 0; I* Any value */

62 2. System Programming In Practice

intdos(&pregs, &pregs);

if (pregs.x.cflag)

; /* Carry flag set */
else
; [* Carry flag unset */

}

However, you'll encounter problems if you want to read other flags because some BIOS functions use the zero flag for
returning information. In these instances, you can't accomplish anything on Microsoft compilers with the int...() functions.
However, the developers at Borland were clever enough to expand the WORDREGS structure by a FLAGS variable, which
reflects the contents of the entire flag register after the function call.

struct WORDREGS { /* Borland only! */
unsigned int ax, bx, cx, dx, si, di, cflag, flags;

2

With Borland compilers, you can determine whether one of the flags is set in the

Constant Bit Pos. Bit Value flag register. This is done after calling an int...() function through a binary

Carry 0 1 combination of the flags variable with the value of the particular flag.

Parity 2 4 The table on the left shows the values of the various processor flags.

Auxiliary 4 16 Buffers and the C language

Zero 6 64 Many functions expect pointers to buffers when they're called. The functions
- either take information from the buffers or place information in the buffers (e.g.,

Sign 7 128 file contents). These pointers are always FAR; they consist of a segment address

Overflow 11 2048 and an offset address. This FAR pointer data can be anywhere in memory; it

doesn't have to be in the current program's memory segment.

Passing pointers to interrupt functions

DOS function 09H (0x09) is an example of a function that takes pointers. This function displays a string on the screen
beginning at the current cursor position. Like all DOS functions, it expects the function number in the AH register and the
address of the buffer containing the string to be displayed in the DS:DX register pair. DS takes the segment address of the
buffer, and DX takes the offset address.

Although creating a string is easy in C, you may also want to know how to pass the buffer address. At first this may seem
quite simple because both the Borland and the Microsoft compilers define two macros named FP_SEG() and FP_OFF(),
which help determine a segment and offset address. However, because these manufacturers define FP_OFF() and FP_SEG()
differently, there are some problems:

Borland.:

#define FP_SEG(fp) ((unsigned)(void _seg *)(void far *)(fp))
#define FP_OFF(fp) ((unsigned)(fp))

Microsoft:

#define FP_SEG(fp) (*((unsigned _far *)&(fp)+1))
#define FP_OFF(fp) (*((unsigned _far *)&(fp)))

Although the Borland definition's macros can contain the variables whose segment or offset addresses you want to determine,
the Microsoft macros must be passed a FAR pointer that refers to the appropriate variable.

2. System Programming In Practice 63

The following programs also show the differences. Both programs use DOS function 09H (0x09) to display the string from
the Message variable on the screen. Unlike other DOS functions, function 09H looks for a $ character, instead of a null byte,
at the end of the buffer. The Borland version is as follows:

/***************** 9H D E M O BC C ********************/

#include <dos.h> /* Borland Version */

void main(void)

{

union REGS pregs;

struct SREGS sregs;

char Message[20] = "PC Intern$";

pregs.h.ah = 0x09;

sregs.ds = FP_SEG(Message); /* Get the var. */
pregs.x.dx = FP_OFF(Message); /* addresses */
intdosx(&pregs, &pregs, &sregs);

}

As you can see, the FP_SEG() and FP_OFF() functions specify the address at which the message can be found. However,
the Microsoft version of the same program requires a FAR pointer that points to the string:

/***************** gHDEMOMCC /
#include <dos.h> /* Microsoft Version */

void main(void)

{

union REGS pregs;

struct SREGS sregs;

char Message[20] = "PC Intern$";

void far *mesptr = Message; /* FAR pntr to string */

pregs.h.ah = 0x09;

sregs.ds = FP_SEG(mesptr); /* Pass address to */
pregs.x.dx = FP_OFF(mesptr); /* FAR pointer */
intdosx(&pregs, &pregs, &sregs);

}

Receiving pointers from interrupt functions

The following program calls DOS function 1BH (0x1B), which returns a pointer in the DS:BX register pair. This pointer
points to a byte containing the media code of the current drive. DOS uses the media code to describe the different types of
drives, with codes between FOH (0xF0) and FFH (0xFF). The value F8H (248) characterizes all types of hard drives.

A FAR pointer, from which the media ID can be read, must be generated. Borland implementations of C provide the MK_FP()
macro defined in the DOS.H include file. This macro expects two parameters describing the segment and offset addresses
to which the desired pointer should refer. This pointer results from this macro and the void far type *.

Although the Microsoft compilers don't define this type of macro, you could easily make your own MK_FP, as shown in the
following program listing. MK_FP is defined here, in case it hasn't already been defined by the include files.

After the interrupt call, a FAR pointer is formed by MK_FP() and assigned the mp variable. In the printf() call at the end of
the program, this pointer "de-references" the media ID so it can be displayed on the screen.

64 2. System Programming In Practice

/ * MEDIAIDC.C*** * /

#include <dos.h>
#include <stdio.h>

#ifndef MK_FP /* Macro MK_FP already defined */
#define MK_FP(seg,ofs) ((void far *) ((unsigned long) (seg)<<16](ofs)))
#endif

void main(void)

{

union REGS pregs;
struct SREGS sregs;
unsigned char far *mp;

pregs.h.ah = 0x1B;

intdosx(&pregs, &pregs, &sregs);
mp = MK_FP(sregs.ds, pregs.x.bx);
printf("Media ID = %d\n ", *mp);

}

If you examine the definition of the MK_FP() macro, you'll notice that it's quite simple despite the many parentheses and
keywords. Within the definition, the segment is cast into a long type, shifted to the left by 16 bits and the offset address is
then set in the lower 16 bits of the resulting new long type. The result corresponds exactly to the desired FAR pointer in its
composition, so it only has to be accessed by a cast.

Port access in C

Both the Microsoft and Borland compilers offer various functions for accessing ports. However, they have different names
and are declared in different include files. Borland has its declarations in DOS.H, while Microsoft has its declarations in
CONIO.H. Port Access:C language

The following shows the different routines and declarations of the two compiler manufacturers:

Microsoft: Include file <conio.h>

int inp(unsigned port);

unsigned inpw(unsigned port);

int outp(unsigned port, int databyte);

unsigned outpw(unsigned port, unsigned dataword);

Borland: Include file <dos.h>

int inport (int __portid);

unsigned char inportb(int __portid);

void outport (int __portid, int __value);

void outportb(int __portid, unsigned char __value);

#define inp(portid) inportb(portid)
#define outp(portid,v) outportb(portid,v)

As you can see, theoretically the same functions are available from both manufacturers. Each has two functions for reading
and writing to ports; one is for 8-bit ports and one is for 16-bit ports.

2. System Programming In Practice 65

The Borland compiler demonstrates some cooperation with Microsoft with its inp() and outp() macros, which the Borland
functions copied from the names of the two Microsoft functions. Unfortunately, Borland did this only for the two 8-bit
functions. However, it's easy to do the same for the two 16-bit functions within a program:

#ifdef _ TURBOC__ [* Compiling with Turbo C? */
#define inpw(portid) inport(portid)
#define outpw(portid,v) outport(portid,v)

#endif

This enables you to use the names ofthe Microsoft functions in your programs even if you're working with a Borland compiler.
For example, the following statements read the contents of port 3C4H (0x3C4), which is part of the graphics controller on
an EGA/VGA card:

XByte = inp(0x3C4);
XWord = inpw(0x3C4);

The following statements allow you to send a byte or word as easily:

outp(0x3C4, XByte);
outpw(0x3C4 XWord);

You'll find examples of these statements in Chapter 4.

Chapter 3

The BIOS (Basic Input/Output System)

Most users associate the term operating system with DOS. However, DOS isn't the only operating system on a PC. Before
hard drives became standard equipment, the PC searched the BIOS (Basic Input/Output System (BIOS)) for the basic input
and output routines needed for communicating between software and hardware. The BIOS can be found on a ROM chip,
which is usually placed on the PC's main circuit board. The BIOS is accessed every time you switch on your PC.

This BIOS contains all the essential routines needed by the PC for communication between hardware and peripheral devices.
These routines include instructions for handling screen output, printed output, fonts, date, and time.

Why the BIOS is important

Since these routine calls are standardized, the programmer doesn't have to fit programs to one particular PC hardware
configuration. This means you can develop a program on one PC or compatible, and run it on another compatible PC without
errors, although neither the hardware nor the individual BIOS routines are completely compatible.

The BIOS is an integral part of the PC. It doesn't matter whether a system contains a 20 megabyte hard drive or a 20 gigabyte
hard drive or whether the system is made by IBM or a smaller manufacturer, the BIOS hard drive functions are identical in
both instances. This hardware independent concept is mainly responsible for the PC's popularity. It enables computer
manufacturers to develop PCs that aren't identical to a true IBM PC, but can still run popular software. Except for additions
to accommodate the AT system, few changes have been made to the BIOS since the PC's introduction on the market.

Over adozen companies manufacture BIOS chips. (These companies include AMI, Phoenix, Award, and Quadtel.) Although
there are differences in each BIOS, they all perform the same essential tasks.

The BIOS Standard

Let's begin with the basics of BIOS: How it works, its ground level functions and how it contributes to starting your PC.

IBM defined the types of different BIOS functions and parameters needed in a PC. There are 256 BIOS interrupts, which are

divided into functions. This provides a wider selection
than that provided by one function per interrupt. These

functions provide the communication with the hardware.
10H Video card access The table on the left shows the different BIOS interrupts.

BIOS views some interrupts as variables, such as video
and hard drive functions. (We'll discuss these in more

11H Configuration test

12H RAM test detail later.)

13H BIOS disk functions BIOS architecture

14H Serial interface functions The BIOS itself is located in PC ROM, which makes it
resident even after the computer has been switched off.

15H Cassette and extended AT functions It's stored very high in the processor's address space.

The ROM chip that contains the BIOS code is always
located in the highest area of memory segment FOOOH.
17H Parallel interface functions The exact starting location of BIOS varies depending
on the BIOS, the system, and sometimes the memory

16H Keyboard functions

1AH Date/time/realtime clock functions

67

68 3. The BIOS (Basic Input/Output System)

capacity. For example, the original IBM BIOS started at offset address EOO0H, while Phoenix BIOS may start at offset address
COOOH.

The starting point of the BIOS ROM varies with the size of the BIOS ROM. It usually ends at the last memory location of
the F segment, at offset address FFFFH. This is the last memory address accessible to Intel processors running in real mode.
Some manufacturers add little extras to their BIOS designs so they can beat their competition. For example, VGA cards often
bypass ROM-BIOS. These cards include such features as shadow RAM, hard drive parameters, independent setup, and
password protection. Let's examine these items individually.

Shadow RAM

Shadow RAM is hidden at the same memory addresses as ROM-BIOS. Since double memory allocation isn't permitted in
RAM, the ROM-BIOS keeps this shadow RAM hidden from the operating system and applications. Many BIOS systems copy

their ROM-BIOS code to shadow RAM, from which BIOS data is accessed. This generally improves execution speed in the
PC, because the shadow RAM data bus is 16 bits wide, and the ROM-BIOS data bus is only 8 bits wide. NEAT chips from

Chips & Technologies support shadow RAM.

Hard drive parameters

BIOS often has trouble communicating with the many hard drives on the market. This problem is caused by the different type
numbers assigned to each hard drive. Before BIOS can communicate with a hard drive, it must know the number of tracks
and sectors available, the number of sectors per track, and other hard drive data.

The original solution to this problem was a table of hard drives from which the user could select the drive information using

a SETUP program. This information would then be passed to the ROM-BIOS. However, because of the numerous hard drives
currently on the market, this solution has become obsolete. Instead, with the SETUP program, the user can manually enter
the hard drive parameters. This information is then passed to battery operated RAM (sometimes called CMOS) for access
from BIOS.

SETUP

The SETUP program enables the user to configure elements of the ROM-BIOS according to his/her own needs. These
elements include date, time, and drive types. Some BIOS systems offer the option of configuring part of RAM as expanded
memory, if the PC supports EMS. Laptop computers include an option for blanking LCD screens and disabling hard drives

after a period of keyboard inactivity. This saves battery power on the laptop.

Most SETUP programs support adjustments to the processor's timer frequency. The user can make this adjustment by holding
the(At) key, and pressing tlig) and(Z) keys on the numeric keypad.

Password entry

ROM-BIOS is the best place to include BIOS:password protection. Password access can then be requested before the system
starts, and before DOS is loaded. Many BIOS manufacturers permit password entry through the SETUP program. The
password is then stored in battery operated RAM (CMOS) or on the hard drive.

POST

Program execution in a computer based on the Intel 8088 (or one of its successors) starts after the computer is switched on
at memory location FOOO:FFFO. This memory location is part of the ROM-BIOS and contains a jump instruction to a BIOS
routine, which takes system testing and hardware component initialization. This routine is called the POST (Power-On Self-
Test).

The tests

The POST consists of many tests for checking onboard PC hardware (the processor, memory, the interrupt controller, DMA,
etc.), as well as the ability to initialize expansion cards (e.g., video cards). If an error occurs during these tests, the POST
displays an error message or error number on the screen and instructs the computer to beep.

3. The BIOS (Basic Input/Output System) 69

The following list shows the different tests performed by the POST and the sequence in which these tests are executed. This
sequence isn't absolute and can change depending on the manufacturer.

» Function check of CPU (coprocessor, real mode, protected mode, etc.)
» BIOS ROM checksum

CMOS RAM (battery operated RAM) checksum

Test/initialize DMA controller

Test/initialize keyboard controller

Check first 64K of RAM

vV V V VYV VY

Test/initialize interrupt controller
» Testlinitialize cache controller (AT only)

First, the POST tests individual functions of the processor, its registers, and some instructions. If an error occurs during this
test, the system stops without displaying an error message (since the processor is defective, screen display would be
impossible). If the processor passes the test, a checksum is computed for each of the BIOS ROM's contents and compared
with the various ROMs to determine whether a defect exists there. Each chip on the main circuit board (such as the 8259
interrupt controller, the 8237 DMA controller, and the RAM chips) undergoes tests and initialization.

» Video controller » RAM above 64K
» Serial and parallel interfaces » Disk and hard drive controllers
Peripheral testing

After determining that the main circuit board is fully functional, the POST tests the peripherals (keyboard, disk drives, etc.).
In addition to these hardware related tasks, the BIOS variables and the interrupt vector table must be initialized.

Searching for ROM extensions

Once these tests are completed, the search for ROM extensions begins. These ROM extensions originate either from the main
circuit board or an expansion card, and augment or replace onboard BIOS functions. For example, EGA, VGA, and Super
VGA cards have their own BIOS functions to replace the old BIOS interrupt 10H, which was designed specifically for
handling MDA and CGA cards. Also, SCSI controllers, which are used for controlling hard drives, don't use BIOS disk
interrupt 13H.

e The POST tests for ROM extensions by checking
Initialization of ROM Module offset 00H and 01H in the memory range allocated
" T for BIOS functions. A BIOS extension exists if the

Offset Contents ype contents of these two bytes are 55H and AAH
OOH ID byte #1 (55H) 1 byte respectively. Qﬁset 02H indicates the size of the
ROM modulein blocks of 512 bytes. The module's

01H ID byte #2 (AAH) 1 byte initialization routine begins at offset 03H.

02H Module length in 512-byte blocks |1 byte ROM modules

Initialization routine ce These ROM modules have the option of replacing

existing BIOS routines with their own routines,
and integrating these new routines with the system. The module routines must be placed in memory ranges specifically
allocated for such routines.

70 3. The BIOS (Basic Input/Output System)

COOOH:0000H - COO0H: 7FFFH: EGA and VGA BIOS extensions

This range is usually reserved for the BIOS extensions provided by EGA, VGA, and Super VGA cards. BIOS divides this
range into 2K increments because most extensions accept this division.

COOOH:8000H - DOOOH: FFFFH: Hard drive extensions

This range is usually reserved for the BIOS extensions provided by many hard disk controllers. BIOS divides this range into
2K increments. The D segment of this range (DOO0H:0000H - DOOOH:FFFFH) is often used for the page frame by EMS cards.
If an EMS card is being used, this range is unavailable for ROM extensions.

EOOOH:0000H - EOOOH: FFFFH: Miscellaneous

This range is reserved for BIOS systems that require more memory than is provided by memory segment F. Few BIOS
extensions recognize this range.

After POST

Once ROM initialization ends, the boot process directly applying to BIOS also ends. Interrupt 19H, known as the bootstrap
loader, tries to load some form of the basic operating system on startup or on system reset (when yolaigfes3(tg
key combination), from a predetermined place on the diskette.

This bootstrap process may fail for various reasons:
» There is no disk in the disk drive.

» There is a non system disk in the drive (the DOS files are not available on the diskette). If this occurs, the bootstrap
routine attempts to find the routine on the other disk drives connected to the PC, or on a predetermined location on
an existing hard disk.

If the system still cannot find the bootable system disk, there are two other reasons that may be causing the problem:

» Some older systems switch to ROM BASIC, a BASIC interpreter stored in PC ROM directly beneath the BIOS,
starting at memory location FOOOH:6000H. Newer PCs display a message on the screen requesting that the user insert
a system diskette and press a key.

» BIOS doesn't care what operating system it loads, so it may attempt to load a non-DOS operating system if one exists
on the disk. This makes it possible to load other operating systems, such as XENIX.

Determining BIOS Version

Next to the BIOS code and some static variables (e.g., the hard drive parameter table), you'll find information describing the
BIOS brand and the type of PC. You can access this information.

The previous section described memory location FOOOH:FFFOH with the system startup and POST. A 5-byte-long jump
instruction to the POST routine is usually found at this location. After this instruction, an additional 11 bytes are available
(to FOOO:FFFF) in the ROM chip normally used to store the BIOS version or release date. You can examine the contents of
these memory locations to determine which BIOS version your PC uses. Call the DEBUG program from the DOS prompt:

debug

Enter the following line to display the bytes at the end of the ROM-BIOS (the character following the memory location is
a lowercase "I", not the number "1"):

d f000:fff0 | 10

The next line displays the contents of this memory location as a hexadecimal number; the characters to the right of the hex
display are the corresponding ASCII codes. Day, month, and year appear as two digits separated by "/" characters.

3. The BIOS (Basic Input/Output System) 71

BIOS date

{ ; C>debug

display in -d f000:fff0 | 10

DEBUG FO00:FFFO EA 5B EO 00 FO 30 32 2F-30 36 2F 38 36 00 FC 00 [...02/06/86...
C>_

Determining the PC Type

Certain BIOS functions are used more for model identification than for BIOS version identification. They indicate the type

of PC being used. They also indicate when the BIOS has additional functions (e.g., AT BIOS is better equipped than the PC
and XT BIOS). These extra functions essentially handle string output on the screen, realtime clock access (standard on the
AT), and additional RAM beyond the 1 megabyte memory limit (also standard on the AT).

PR A program that calls these functions must first ensure that the computer being used is
il entélcatlon i actually an AT, and that the functions addressed are available. The programmer can use the
fodes model identification byte located in the last memory location of the ROM-BIOS at address

Code Meaning FOOO0:FFFE. This byte can contain the codes listed in the table on the left.

FCH AT Note: These values aren'tentirely accurate. Many PC/XT compatibles indicate completely
different values in the model identification byte. Use the following guideline: A model

FEH XT identification byte of FCH identifies an AT; any other number indicates a PC/XT.

FBH Only IBM computers have guaranteed reliable model identification numbers at memory
location FOOO:FFFE. This may not apply to compatibles because the BIOS varies slightly

FFH PC with each manufacturer. Chapter 14 discusses processor types in more detail.

BIOS Variables

The preceding sections described different BIOS interrupts and their functions. These functions require a segment of memory
for storing variables and data. Therefore, the BIOS variable memory reserves over 256 bytes of memory, starting at address
0040H:0000H, for storing internal variables. This range is calleBl{b8 variable range or BIOS variable segment.

This memory range's allocation is standardized because many DOS programs directly access the BIOS variables and BIOS
manufacturers don't provide alternate ways of accessing these variables. This standardization refers to the BIOS variables
developed for the PC and PC/XT models, which stands in this range up to offset address 0071H. Memory beyond this point
is used by EGA and VGA cards, as well as AT and PS/2 systems. The contents change after 0071H depending on the BIOS,
PC type, and video card available.

The following list describes the individual variables, their purposes, and addresses. The address indicated is the offset address
of segment address 0040H. For example, a variable with the offset address 10H has the address 0040H:0010H or 10H.

O0H Serial interface port addresses 4words INT 14H

During the POST (Power On Self Test), a BIOS routine determines the configuration of its PC. Among other things, this
routine determines the number of installed serial (RS-232) interfaces. These interface numbers are stored as four words in
memory. Each word represents one of the four cards that can be installed for asynchronous data transmission. First the low
byte is stored, followed by the high byte. Since few PCs have four serial cards at their disposal, the words that represent a
missing card contain the value 0.

08H Parallel interface port addresses 4words INT 17H

During the POST (Power On Self Test), a BIOS routine determines the configuration of its PC. It determines the number of
installed parallel interfaces. These card numbers are stored as four words in memory. Each word represents one of the four
cards that can be installed for parallel data transmission. First the low byte is stored, followed by the high byte. Since few
PCs have four parallel cards at their disposal, the words that represent a missing card contain the value 0.

72 3. The BIOS (Basic Input/Output System)

10H Configuration 1word INT11H

This word represents the hardware configuration of the PC as called through BIOS interrupt 11H. Similar to the previous
two words, this configuration is determined during the booting process. The purposes of individual bits of this word are
standardized for the PC and the XT, but can differ in other computers.

Configuration Word (ATs)

1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0

L> 1 = At least 1 disk drive connected
L—» 1= Math coprocessor installed

» \/ideo mode at system startup

00b = EGA/VGA

01b = 40x25 characters (COLOR)
10b = 80x25 characters (COLOR)
11b = 80x25 characters (MONO)

» Number of disk drives if bit = 0
00b = 1 disk drive
01b = 2 disk drives
10b = 3 disk drives
11b = 4 disk drives

\j

Number of serial interfaces

\j

1 = Math coprocessor installed

Configuration Word (PCs and XTs)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

L> 1 = At least one disk drive in configuration
» RAM on main circuit board

00b = 16K 01b = 32K
10b = 48K 11b = 64K

Video mode on system startup
00b = Unused
01b = 40x25 characters (COLOR)
10b = 80x25 characters (COLOR)
11b = 80x25 characters (MONO)

Number of disk drives if bit 0 = 1
00b = 1 disk drive 01b = 2 disk drives
10b = 3 disk drives 11b = 4 disk drives

\J

\j

1 = No DMA controller
Number of serial interfaces

1 = Game port connected
Number of parallel interfaces

Yvyyy

12H POST status#1 ~ 1byte POST

This byte provides storage for information gathered during the POST, and executed during the booting process and after a
warm start. BIOS routines also use this byte for recognizing active keys. It has no practical use for the programmer.

3. The BIOS (Basic Input/Output System) 73

13H RAM size1word INT 12H

This word indicates the RAM capacity of the system in kilobytes (not counting expanded memory). This information is also
gathered during the booting process, and can be read using BIOS interrupt 12H.

15H POST status #2 l1word POST

These two bytes test the hardware during the booting process. How this test is performed varies with the BIOS.

17H Keyboard status byte lbyte INT 16H

This is called the keyboard status byte because it contains the status of the keyboard and different keys. Function 02H of
BIOS keyboard interrupt 16H reads this byte. Accessing this byte allows the user to togelpa key on
or off. The upper four bits of this byte may be changed by the user; the lower four bits must remain undisturbed.

76543210

\—> 1 = Right key pressed
P 1 =Left key pressed
P 1= key pressed
—— - 1 =(A) key pressed
——®» 1 =SCROLL LOCK on
1 =NUMLOCK on
1=CAPS LOCK on

P 1 = INSERT on

18H Extended keyboard status byte lbyte INT 16H

This byte is similar to byte 17H above, except that this byte indicates the active stat&ofdand(Break) keys. Bit 3
indicates the status of pause mode.

76 543210 Extended keyboard status byte

\—> il= key pressed

—» 1= key pressed

—— - 1 = SYSREQ key pressed (AT only)
1 = Pause mode active

—P» 1= key pressed

——» 1=NUMLOCK on

P 1 = CAPS LOCK on

P 1 = INSERT on

19H AClI codeentry 1byte INT 16H

This byte isn't used in older systems. Newer systems use this byte for storing ASCII codes produced from the numeric keypad
and theAl) key.

1AH Next character in keyboard buffer l1word INT 16H

This word contains the offset address of the next character to be read in the keyboard buffer (see also 1EH).

74 3. The BIOS (Basic Input/Output System)

1CH Last character in keyboard buffer 1word INT 16H
This word contains the offset address of the last character in the keyboard buffer (see also 1EH).
1EH Keyboard buffer 16 words INT 16H

These 16 words contain the actual keyboard buffer. Since every character stored in the keyboard buffer requires 2 bytes, its
32-byte capacity provides space for a maximum of 16 characters. For a normal ASCII character, the buffer stores the ASCII
code and then the character's scan code (the number of the key that generated the ASCII character). If the character in the
keyboard buffer uses an extended code (e.g., a cursor key), then the first byte contains the value 0 and the second byte contains
the extended key code.

The computer constantly reads characters from the keyboard buffer. If the buffer isn't full, characters can be added. The
address of the next character to be read from the keyboard buffer is stored in the word at offset address 001AH. When a
character is read, the character moves 2 bytes toward the end of the buffer in memory. When a character was read from the
last memory location of the buffer, this pointer resets to the beginning of the buffer. This also applies to the pointer in offset
address 001CH, which indicates the end of the keyboard buffer. If you add a new character, it is stored in the keyboard buffer
at the location indicated by this pointer. Then the pointer is incremented by 2, moving toward the end of the buffer. If a new
character is stored at the last memory location of the buffer, this pointer resets to the beginning of the buffer.

The relationship between the two pointers is an indication of the buffer's status. Two conditions are especially important. In
one condition, both pointers contain the same address (no characters are currently available in the keyboard buffer). In the
other condition, a character should be appended to the end of the keyboard buffer, but adding 2 to the end pointer would point
it to the start pointer. This means the keyboard buffer is full, (no other characters can be accepted).

Keyboard buffer
with start, end
pointers and
ring buffer

0040:001E 0040:003D
1 12 13 14 15 Bit

0040:001A

[]

Next character

0040:001C

Last character

1514131211109 8 76 543210
Normal character ‘ ‘ ‘

$dah pddp | | Afciicode

Ffmﬂﬂw9876

Keyboard 100000000

Extended character
(function keys and cursor keys, etc.)

3EH Disk driverecalibration lbyte INT13H

The lowest four bits correspond to the number of installed PC disk drives specified by BIOS (you can use a maximum of four
drives). These bytes also indicate whether the connected drives must be calibrated. Usually this is necessary after an error
occurs during read, write, or search access. Bit 7 is set to 1 when a disk drive releases the disk hardware interrupt.

3. The BIOS (Basic Input/Output System) 75

76543210

\—b 1 = Recalibrate drive #0

—® 1 = Recalibrate drive #1
——® 1 = Recalibrate drive #2
——— ¥ 1 = Recalibrate drive #3

- 1 = Disk hardware interrupt released

3FH Disk drive motor status lbyte INT 13H

The four lower bits of this byte indicate whether the current disk drive motor is running. A 1 in the corresponding bit indicates
this. Bit 7 is always set during write access or formatting, and unset during read access or a search.

76543210

\—b 1 = Drive #0 running

—» 1 = Drive #1 running
——® 1 = Drive #2 running
——— 9 1 = Drive #3 running

- 1 = Write access or formatting
0 = Read access or search

40H Disk drive motor timer lbyte INT 13H

This byte contains a numerical value that indicates the number of calls made to the timer (interrupt 08H) until a disk drive
motor switches off. Since BIOS can only access one disk drive at a time, this value refers to the last drive that was accessed.
Following access to this drive, BIOS places the value 37 (25H) into this register, indicating a duration of about two seconds.
During each timer interrupt (which occurs about 18.2 times per second), the value in this byte is decremented by 1. When
it finally reaches 0, the disk motor is switched off. This occurs after about two seconds.

41H Diskerror status 1byte INT 13H

This byte contains the status of the last disk access. When the byte contains the value 0, the last disk operation was performed
in an orderly manner. Another value signals that an error code was transmitted by the disk controller.

42H Disk controller status 7 bytes INT 13H

These seven bytes indicate the status of the disk controller. They also indicate hard disk controller status on hard disk systems.

76 3. The BIOS (Basic Input/Output System)

76543210

\—‘—> Error code

OOH = No errors

01H = Unknown function

02H = Address mark not found

03H = Write protect error

04H = Sector not found

06H = Drive not found

08H = DMA overflow

09H = DMA segment overflow

0OCH = Unknown format

10H = CRC error during read operation

L g 1 =Controller error
L 1 =Search error

p 1 = Drive not ready

49H Current video mode lbyte INT10H

This byte contains the current video mode as reported by the BIOS. This is the same value indicated when the user activates
a video mode through function OH of BIOS video interrupt 10H.

4AH Number of screen columns 1word INT 10H
This word contains the number of text columns per display line in the current display mode.
4CH Screenpagesize 1word INT 10H

This word contains the number of bytes required for the display of a screen page in the current display mode, as reported by
the BIOS. In the 80x25 character text mode, this is 4,000 bytes.

4EH Offset address of current screen page 1word INT 10H
This word contains the address of the current screen page now on the monitor, relative to the beginning of video RAM.
50H Cursor position in eight screen pages 8words INT 10H

These 8 words contain the current cursor position for each screen page. BIOS can control a maximum of 8 screen pages and
reserves two bytes for each screen page. The low byte indicates the screen column; the high byte indicates the screen line.

60H Sarting line of screen cursor 1 byte INT 10H

This byte contains the starting line of the blinking cursor, which can have values ranging from 0 to 7 (color card) or from 0
to 14 (monochrome card). Changing the contents of this byte doesn't change the cursor's appearance, because first it must
be transmitted by BIOS to the video controller.

61H Ending line of screen cursor 1 byte INT 10H

This byte contains the ending line of the blinking cursor, which can have values ranging from 0 to 7 (color card) or from 0
to 14 (monochrome card). Changing the contents of this byte doesn't change the cursor's appearance, since it must first be
transmitted by BIOS to the video controller.

62H Current screen page number 1 byte INT 10H

This byte contains the number of the currently displayed screen page.

3. The BIOS (Basic Input/Output System) 77

63H Port address of video controller 1word INT 10H

This word contains the address of the video card port. If a PC contains several video cards, the value stored will be the address
of the currently active video card's port. This address is 3B4H in monochrome video cards, and 3D4H on CGA, EGA, and
VGA video cards.

65H Mode selector register contents lbyte INT10H

The contents of a video controller card's mode selector determines the current video mode. The current value is stored in this
memory location.

66H Palette register contents lbyte INT10H

A color card in medium-resolution CGA compatible graphic mode can display 320x200 pixels in four different colors. This
byte indicates the currently active color palette.

67H Miscellaneous 5bytes POST

The early PC BIOS versions could use a cassette recorder for data storage. Those early versions of BIOS used these five bytes
for cassette access when storing data. XT and AT models, which don't have this interface, use these memory locations for
other purposes.

6CH Timer 1dword INT 1AH

These four bytes act as a 32-bit counter for both BIOS and DOS. The counter is incremented by 1 on each of the 18.2 timer
interrupts per second. This permits time measurement and time display. The value of this counter can be read and set with
BIOS interrupt 1AH. If 24 hours have elapsed, it resets to 0 and counts up from there.

70H 24-hour flag lbyte INT1AH

This byte contains a 0 when the timer routine is between 0 and 24 hours. Byte 70H changes to 1 when the time counter routine
exceeds its 24-hour limit. If the BIOS timer interrupt 1AH is used to set the time, this byte resets to 0.

71H CTRL-Breakflag 1byte INT 16H

This byte indicates whether a keyboard interrupt occurs after the user [Eefglsr(Cti)Break). If bit 7 of this byte contains
the value 1, a keyboard interrupt has occurred.

XT BIOS variables

The hardware configurations of the XT permit the introduction of additional variables. The following is a list of BIOS
variables found in the XT and AT.

72H POST test l1word POST

During the POST, a reset command is sent to the keyboard controller, whether a cold or warm start has occurred. For the
duration of this reset, this location assumes the value 1234H. No memory test occurs when a warm start is executed.

74H Last hard drive operation (AT) lbyte INT13H

This byte indicates the status of the last hard drive operation.

78 3. The BIOS (Basic Input/Output System)

01H Function not available, or invalid drive specification

02H Address marker not found

04H Sector not found

05H Controller reset error

07H Controller initialization error

09H DMA transfer error: Segment overflow

OAH Bad sector

OBH Bad track

0D Invalid number of sectors in track

OEH Address mark not found

OFH DMA overflow

10H Read error

11H Corrected ECC read error

20H Controller defect

40H Seek failed

80H Drive time out

AA Drive not ready

CC Write error

75H Number of hard drives (AT) 1byte INT 13H

This byte indicates the number of hard drives connected to the system.

76H Hard drive control byte (AT) 1byte INT 13H

This byte controls the hard drive from BIOS interrupt 13H. Its exact purpose is unknown.
77H Hard drive port (AT) lbyte INT17H

This byte contains the base address of the hard drive controller.

78H Parallel interface time out counter 4bytes INT 14H

These 4 bytes correspond to the time out counters for the four parallel interfaces. Each byte indicates the number of times
a parallel time out error occurs.

7CH Serial interface time out counter 4 bytes INT 16H

These 4 bytes correspond to the time out counters for the four serial interfaces. Each byte indicates the number of times a serial
time out error occurs.

3. The BIOS (Basic Input/Output System) 79

80H Keyboard buffer starting address (AT) 1word INT 16H

This word contains the beginning of the keyboard buffer as the offset address to segment address 0040H. Since the keyboard
buffer normally starts at address 0040H:001EH, this memory location usually contains the value 1EH.

82H Keyboard buffer ending address (AT) 1word INT 10H

This word contains the end of the keyboard buffer as the offset address to the segment address 0040H.
84H Number of screen lines (EGA/VGA) 1byte INT 10H

This byte contains the number of screen lines being used by the EGA or VGA card.

85H Character height (EGA/VGA)1word INT 10H

This byte indicates EGA/VGA character height in pixels, as well as the number of visible text lines.
87H EGA/VGA statusrange (EGA/VGA) 4 bytes INT 10H

These 4 bytes indicate the status of the EGA or VGA card.

8BH Disk drive/hard drive parameters (PS2) 11 bytesINT 13H

These bytes describe PS/2 disk drive and hard drive information.

96H MF Il status (AT) 1lbyte INT 16H

This byte indicates the status of an MF || model keyboard. Bit 4 of this byte indicates whether the system includes an MF
Il American (101-key) or European (102-key) keyboard. Applications that use the additional keys found on the MF Il
keyboard (e.g(E11] and(i2)) check 96H and adjust to the keyboard.

97H LED status(AT) 1byte INT 16H

This byte indicates the status of the keyboard LEDs. MF |l keyboards include three LEDs, which correspond to the three
toggled keyboard modes (Num Lock, Caps Lock, and Scroll Lock). Function 02H returns keyboard status without reading
characters from the keyboard.

76543210

\—> 1 = LED Scroll Lock on

——» 1 =LED Num Lock on
— P 1 =LED Caps Lock on

P 1 = Bits vary with each BIOS manufacturer

98H Wait flag pointer (AT) 1dword INT 15H

You can define a BYTE variable whose bit 7 will be set to 1 after a specific amount of time has elapsed (see the description
of interrupt 15H, function 83H in the Appendices for more information). The address of the BYTE variable is stored at this
location in the BIOS variable segment.

9CH Timer (AT) 1dword INT 15H

This dword represents the variable in which the timer duration can be placed before passing the duration to the caller (see
the descriptions of interrupt 15H, functions 83H and 86H in the Appendices for more information).

80 3. The BIOS (Basic Input/Output System)
AOH Wait status (AT) 1byte INT 15H

This variable states whether the system is waiting, and whether interrupt 15H, function 86H is active.

76543210

\—> 1 = Int 15H, function 86H is active

P 1 = Waiting

AlH Reserved 95 bytes ---------
This range is reserved for BIOS extensions and programs.
100H Hardcopy recursion flag lbyte INTO5H

All PC types have a variable in common, at memory location 0050H:0000H. This location is used by the hardcopy routine
(interrupt 05H) as a recursion flag. The recursion flag prevents the user from printing more than one hardcopy at atime. When
the hardcopy routine is executing, this flag is set to 1; otherwise it is set to 0. Output errors set this flag to 255.

Chapter 4

A Closer Look At Video Cards

Since there are several graphic standards (MDA, CGA, EGA, VGA and Hercules), a single standard hasn't been established
for video cards. Even the new Super VGA and TIGA card types don't have a single standard. We'll describe all these video
graphic cards in this chapter.

History And Highlights

Let's begin with an overview of the history of the different video standards used in PCs. Significant advancements have been
made in two areas of computer hardware technology. Processor speeds have increased and video cards have been improved.
The video card improvements have resulted in higher resolutions and a larger spectrum of colors.

A few years ago, advancements in video cards dramatically improved the capabilities and performance of video displays. The
original idea was to take the burden of drawing lines and figures away from the 80x86 processor.

As you probably already know, graphical user interfaces have become the preferred way to interact with the computer.

Therefore, video technology has become even more important because software places more demands on the processor. If

the application seems to operate quickly, the video card is probably sharing some of the work with the 80x86 processor.Most

modern graphic cards with the popular S3 chip or a different graphic processor perform especially well in these situations.
(We'll discuss these cards later.)

In the following sections we'll discuss the history of hardware development and describe the highlights of various types of
video cards.

Monochrome Display Adapter (MDA)

Besides the CGA card, the IBM Monochrome Display Adapter or MDA, is the oldest graphics adapter available for the PC.
The MDA was the standard when IBM released the first PCs in 1981. The MDA card supports only one operating mode. This
is a text mode consisting of 80 screen columns and 25 screen rows. Unlike other graphics cards, the MDA contains very little
video RAM. So, it can store only one screen page in RAM.

Although this card cannot display graphics, many users preferred the MDA over the CGA card because it was the only
alternative at the time. Compared to CGA, the MDA actually has a higher screen resolution, which reduces eye-strain. Few
PCsuse MDA cards today and IBM stopped manufacturing them years ago. The Hercules Graphics Card (HGC) has replaced
the MDA. The Hercules card has all the attributes of the MDA but can also display graphics.

Color/Graphics Adapter (CGA)

The CGA (Color/Graphics Adapter) standard was also introduced in 1981. This card, which can display graphics, offered
users an alternative to the MDA card. Users who could afford a CGA card could actually save money. Instead of using a
monitor, these users could connect a standard television set to a special connector on the CGA card. Also, a CGA card can
produce RGB output, in which electrical lines send different signals for the colors red, green and blue. However, the CGA
graphics quality wasn't as good as the MDA's because of the larger three color pixels that were generated.

Similar to the MDA card, the CGA card also has a text mode consisting of 80 columns and 25 rows. The individual characters
are based on a smaller pixel matrix. However, a CGA card can also display graphics with a resolution of 320x200 pixels, in
four colors. Color suppressed mode produces graphics with a resolution of 600x200 pixels, in only two colors.

81

82 4. A Closer Look At Video Cards
Although CGA and MDA differ, they are based upon the same video controller (the Motorola MC6485).
Hercules Graphics Card (HGC)

A year after the PC was introduced, a company called Hercules released a new graphics card that immediately made them
famous. The Hercules Graphics Card (HGC), which is based on the Motorola MC6485, is completely MDA compatible. This
card can display two 720x348 graphic screen pages. The Hercules card combines the readability of the MDA card and the
graphic output of the CGA card. However, it also has the resolution to display high quality graphics and text.

The Hercules card is still considered the standard among monochrome graphics cards. Whenever monochrome cards must
be used instead of the more popular color cards, the Hercules card is used. Although today only a few firms manufacture CGA
or MDA cards, many firms produce Hercules Graphics Cards.

Unfortunately both the original HGC and its clones have a flaw. Since IBM won't support third party video cards, Hercules
cards have incomplete BIOS support. However, the system tolerates Hercules cards because they are compatible with the old
MDA card and because of ROM BIOS support in text mode.

When discussing the graphics mode on this card, you must remember that it doesn't support BIOS. This applies to graphics
mode initialization and screen pixel access. This isn't actually a problem because the BIOS would only slow down screen
display. As you'll see in this chapter, it's easy to access Hercules pixel information.

Since the Hercules Graphics Card represents a fixed standard in the ever-changing PC market, the card has undergone the
miniaturization applied to many PC components. While the first Hercules cards required a full card's length and 40 ICs, newer
Hercules cards now require half a card and use as few as 10 ICs. Some of these cards also include a parallel printer interface.

Although the Hercules Corporation has manufactured new video cards (the Hercules Graphics Card Plus and the Hercules
InColor Card), they haven't achieved the success of the original Hercules Graphics Card.

Enhanced Graphics Adapter (EGA)

After the release of the Hercules Graphics Card, IBM tried to design a card to replace the CGA card and surpass the capabilities
of the Hercules card. The result was the EGA (Enhanced Graphics Adapter), which was released in 1985.

Due to the many technological advances that occurred between 1981 and 1985, the EGA started a minor revolution in PC
computing. Since the EGA was more powerful than the CGA and MDA cards combined, it set a new standard for screen
resolution and price. This card placed high resolution graphics in a price range most users could afford.

The EGA card has its own video modes, as well as fully compatible MDA and CGA modes. This is useful for programs that
support multiple video modes. Because of its ability to display monochrome graphics on a monochrome monitor, the EGA
is similar to the Hercules card. The EGA card was the first graphics card for the PC that could handle both monochrome and
color screens.

The EGA is most effective when it's combined with an EGA monitor. This monitor is similar to a CGA monitor except the
graphics mode resolution is much higher (640x350 pixels) and more color options are available (16 colors at a time, from
a total palette of 64 colors). Also, the EGA card contains increased video RAM (some EGA cards can hold up to 256K of
video RAM) for displaying different graphic screen pages.

Instead of the MC6845 video controller, the EGA card uses highly integrated VLSI chips for handling video display. All
screen information is stored in video RAM, which makes this standard dramatically different from earlier methods.

Because of its smaller pixel size, the EGA's screen resolution is sharper than the CGA's resolution. Also, the EGA offers more
options for generating custom fonts than the earlier cards. The EGA card also gives users the power needed to create computer
animation and other applications, such as arcade-style games.

Unlike MDA and CGA cards, the EGA isn't supported by the IBM ROM BIOS. So, the EGA has its own ROM BIOS. The
EGA ROM BIOS replaces the original BIOS and allows access to all the features of the EGA card.

4. A Closer Look At Video Cards 83

As the EGA became more popular, manufacturers began developing compatible cards with additional video modes, which
weren't supported by many programs. Even though IBM sued manufacturers for marketing EGA compatible cards, it couldn't
stop the flow of compatible cards from the Far East.

Many EGA cards are still being used although VGA cards have replaced EGA cards as the standard for video display.
However, many VGA cards include EGA modes.

Video Graphics Array (VGA)

The VGA (Video Graphics Array) card was released in 1987, which was the same year IBM introduced its PS/2 systems. This
card combines new technology and the features found in the EGA card. So, it maintains compatibility with all predecessors
and offers more colors, higher resolution and better text display.

Although today most VGA cards are inexpensive, the monitor needed for VGA graphics is expensive. Although users may
not want to view VGA display in monochrome, many computer systems are equipped with only VGA monochrome monitors.
The VGA standard was originally designed for IBM's PS/2 machines and the Micro Channel bus. However, since many
manufacturers sell VGA cards for the ISA bus, almost any system can use a VGA card.

The VGA's advantages over EGA is its higher integration density and an entire control logic that's packed into a single chip.
Unlike the EGA card, the VGA card sends analog color signals to its monitor instead of digital signals. This means that VGA
cards can generate more than 260,000 different colors when modes 2, 4, 16 or 256 are active.

The highest resolution VGA mode provides 640x480 pixels, with either 2, 4 or 16 colors, depending on the mode selected.
The extended 320x200 pixel mode is more versatile, offering up to 256 colors on the screen at a time. Higher resolution or
more colors means that some video RAM will be needed to handle screen information. So, VGA cards frequently contain
a minimum of 256K of video RAM; this can easily be increased to 512K.

Like an EGA card, a VGA card has its own BIOS, which replaces the standard BIOS video output functions. The VGA
hardware is often downwardly compatible with EGA BIOS. So, all the programs intended for the EGA BIOS will also operate
without problems under the VGA card.

Third party VGA cards encounter the same problems faced by the EGA cards (added video modes and different color
capabilities). Although it may be tempting for the system programmer to use one of these additional modes or color sets, we'll
concentrate on standard VGA modes in this book. An extended VGA standard will make it possible to standardize the
extended video modes with access to any program.

Super VGA

Super VGA cards have the same hardware as normal VGA cards, but they display pixels faster, in more colors and with higher
resolutions than their predecessors. These cards support all VGA modes.

While a normal VGA card can display 256 colors in 320x200 mode, Super VGA cards can display the same amount of colors
in three other modes (640x200, 640x350 and 640x480 pixels). Other graphics modes can display 800x600 and 1024x768
pixels on a compatible VGA or multiscan monitor, if sufficient video RAM is available.

Again, different manufacturers have added their own extended modes and hardware registers to Super VGA cards. The largest
VGA chip manufacturers (Tseng, Paradise and Video Seven) formed a consortium, called Video Electronic Standard
Association (VESA). Its goal was to present a standard for Super VGA modes and video BIOS that was based on the chips
developed by these three manufacturers. TSR programs can be used to add the new BIOS functions to older Super VGA cards.

Unfortunately, this consortium wasn't formed until 1990, so a lot of time passed before the VESA standard became effective.
Until then, every program had to directly access the hardware of different Super VGA cards to use the extended VGA modes.

Memory Controller Gate Array (MCGA)

While VGA cards were designed for the IBM's upscale PS/2 models, the MCGA; (Memory Controller Gate Array) cards were
designed for the lower end PS/2 machines. This card was intended to replace almost every previous standard.

84 4. A Closer Look At Video Cards

The MCGA's text mode, which is similar to the CGA card's, provides a 80x24 character display. The foreground and
background colors can be selected from a 16 color palette. Unlike the CGA card, the MCGA's palette can be selected from
a group 0f 262,000 colors (similar to VGA). The MCGA's vertical resolution in text mode is 400 pixels rather than 200 pixels,
which provides a higher quality display.

For a hybrid, the MCGA card handles various graphics modes. In addition to two VGA compatible modes, the MCGA
supports both CGA modes (320x200 and 640x200 pixels). Because the card uses a vertical resolution 0f 400 pixels, the vertical
pixels in the CGA modes are doubled. Otherwise, the image on the screen would appear in only half its height.

A major disadvantage of the VGA modes on this card is the color selection. Although the MCGA can display the necessary
VGA resolution, the card is limited in its color palette because of the small amount of video RAM that's available (only 64K).

MCGA cards are so named because they will operate only on Micro Channel systems. This means that only low end PS/2
systems can use the MCGA.

8514/A

Still trying to set video standards, IBM presented a successor to the VGA standard in 1987. This card, ambiguously named
the 8514/A video card, caused a revolution in video cards. While earlier video controllers relied upon the main processor for
information (i.e., they were "dumb" controllers), this video card had its own processor.

With this feature, graphics functions could be delegated to the graphics processor on the card, instead of requiring the PC's
80x86 processor to calculate these functions. So the graphics are drawn from the video card itself, which frees the PC's
processor for other tasks.

So far, the 8514/A hasn't been able to replace the VGA. This may have been caused by poor development and marketing
decisions. For instance, this graphic standard was intended for only the PS/2 models and Micro Channel. This immediately
reduced the market share. Also, IBM kept the technical details of this card confidential, so third party manufacturers couldn't
build compatible copies of the card. This strategy is quite different from IBM's earlier "open system" attitude. Finally, this
video card requires a software interface developed by IBM, which developers have avoided. Although this software interface
is powerful, sometimes it hinders the hardware's performance. Consequently, the 8514/A has a small following.

The Video BIOS

The PC's ROM BIOS performs many actions for different screen display tasks. These actions are grouped as functions of
interrupt 10H (video interrupt functions). Although there are other interrupt 10H functions, we'll discuss only the video BIOS
functions.

In this section, we'll describe the video BIOS functions, how you can access them and why direct access to video hardware
is usually the best method.

The video BIOS and its extensions

Originally, the functions of interrupt 10H applied only to MDA and CGA cards. These functions also support Hercules cards
in text mode because the Hercules cards are fully compatible with the MDA standard. The original BIOS doesn't support EGA
and VGA cards or their extended features in text and graphics modes. So, EGA and VGA cards include their own BIOS
extensions on a ROM chip. These extensions are enabled when you boot the system.

This set of BIOS extensions interact with interrupt 10H to add EGA and VGA functions to the existing BIOS. Although they
contain the same extensions, the EGA BIOS has fewer capabilities than the VGA BIOS. EGA and VGA cards are
manufactured by several manufacturers, but they have the same BIOS extensions as IBM's EGA and VGA cards. Only a few
cards are incompatible with these functions.

Some top-of-the-line PCs are packaged with VGA cards directly on the motherboard. In these instances, the VGA and EGA
BIOS functions are added to the ROM BIOS, which eliminates the extensions. However, this doesn't change how the cards
are programmed.

4. A Closer Look At Video Cards 85

Speed and BIOS functions

Using the video BIOS functions isn't the only way to handle tasks such as positioning the cursor or drawing characters on
the screen. The DOS screen output functions and any BIOS functions used for direct video hardware programming can also
be used. If listed according to effectiveness, the BIOS functions would be located between the DOS functions and direct
hardware programming. These functions are used when execution speed, compatibility, device independence and flexibility
are important to program development.

The DOS functions offer the most device independence because the output can be sent to the screen, the printer or a disk as
a file. However, DOS functions execute slowly and aren't very flexible. Direct hardware programming provides the highest
possible execution speed and flexibility because the programmer has absolute control over execution. However, direct
hardware programming is extremely hardware dependent. For example, a character output routine written for a CGA won't
work when on an MDA.

The BIOS functions aren't as fast as direct access routines, but they will work with the currently installed video card. So, the
programmer doesn't have to make a distinction between cards; the BIOS always performs the tasks. You may be wondering
why the BIOS functions are slower than direct hardware access. There are two reasons for this. First, the mechanism used
to call these BIOS functions is slow. Second, the call to an interrupt takes much longer than a routine within a program. All
BIOS routines use this latest technique, called the interrupt programmer.

Many video cards are 8-bit cards, which slow down access to the ROM BIOS. Remember, 80286, 80386 and 80486 processors
"think" in 16-bit and 32-bit units. If you consider the PC must execute every assembly language instruction in the BIOS
routines as an 8-bit instruction, you can see why the routines are so slow.

With many PCs, you can relocate their ROM BIOS to a range of RAM between video RAM and the 1 Meg memory limit,
called shadow ROM. This makes the BIOS routines run considerably faster since the processor can make 16 and 32-bit
accesses. However, the disadvantages of direct hardware programming also apply in this instance.

While the BIOS functions perform many useful services, most PC applications use a combination of BIOS functions and direct
access routines, especially for fast screen output in text and graphics modes. Control tasks, such as video mode initialization,
text cursor placement and screen page selection should be handled by the BIOS.

The video BIOS services

In this section we'll describe the most important control functions and the services used in text output. We'll discuss other
functions in later chapters and in the Appendix. Let's begin with an overview of the different services available from the BIOS
video interrupts and their sub-functions.

Video BIOS functions and support from EGA, VGA and standard BIOS

OOH Determine video mode SEV OEH Terminal character output SEV
01H Define cursor size SEV OFH Determine video mode SEV
02H Set cursor position SEV 10H EGA/VGA color options EV
03H Read cursor position SEV 11H Character generator access EV
04H Read light pen SEV 12H Set/read video configuration EV
O5H Define current screen page SEV 13H Write string (AT only) SEV
06H Scroll screen up SEV 14H Reserved

* S = Standard BIOS E = EGA BIOS V = VGA BIOS

86

4. A Closer Look At Video Cards

Video BIOS functions and support from EGA, VGA and standard BIOS (continued from previous page)

07H Scroll screen down SEV 15H Reserved ---
08H Read character and attribute SEV 16H Reserved
09H Write character and attribute SEV 17H Reserved
OAH Write character to cursor position SEV 18H Reserved
OBH Set color palette for graphics mode SEV 19H Reserved
OCH Set screen pixel in graphics mode SEV 1BH Toggle between video cards \%
ODH Read screen pixel in graphics mode SEV 1CH Save/restore video card status Vi

* S = Standard BIOS E = EGA BIOS

V = VGA BIOS

The first step in calling these functions is to load the AH register with the function number. Ifa sub-function exists, this number
is loaded into the AL register. However, we will mention exceptions to this rule in this book. One exception to the rule are
the functions that alter the contents of the registers because most functions usually change registers.

7 6 54 3 2 10

Attribute byte structure Monochrome
Display Adapter (MDA)
\—‘—b Character color

——— P Character color intensity
0 = normal
1 = high intensity

p Background color

p Blinking (or background intensity)

0 = off
1=o0n

Selecting character and background
colors

Some character display functions expect
foreground and background colors from
the caller. Some video cards have separate
systems for setting foreground and
background colors.

Unfortunately, monochrome and color
video cards determine these colors
differently. In both cases, each character
has a color or attribute byte divided into
two nibbles. The least significant nibble

(bits 0-3) defines the foreground color, while the most significant nibble (bits 4-7) defines the background color.

MDA cards divide the nibbles into bits for foreground intensity and character blinking, as you can see in the illustration above.
The following illustration shows how the intensity bits for foreground and background colors interact through bit

combination:

7 6 5 43 210

7 6 5 43 210

7 6 5 43 210

?/0[{0|0|?|0|0|O0

?/0/0]0?1|1]|1

?/0/0]0]?1]|1]|1

No character (black on black)

White character on black

?/0[{0|0|?|0|0|1

?/1/1]1(?|0|0]|0

Underline character (white on black)

Black character on white (inverse)

No character (white on white)

Character and
background color
combinations (MDA)

4. A Closer Look At Video Cards 87

Frequently selected monochrome video
76543210 NG LIRS (T VRN O/ B card colors are 07H (light text on dark

Graphics Adapter (CGA) background) and 70H (dark text on a light
background). These codes also work with

\—‘_> Character color color cards for color combinations such as

» Background color light gray on black and black on light gray.
= Blci)m:ig% (@ B el sty Selecting 0 or 7 as text or background color
1=on changes the status of bit 7 in the attribute

byte. This byte determines whether the
character blinks or the background appears
in high intensity color. The illustration above shows the structure of the color attribute bytes.

The color card lets you specify colors for foreground and background from a palette of 16 colors. The following shows the
structure of the color palette.

Color/Graphics Adapter color palette

0 OOH 0000(b) Black 8 08H 1000(b) Dark gray
1 01H 0001(b) Blue 9 09H 1001(b) Light blue
2 02H 0010(b) Green 10 OAH 1010(b) Light green
3 03H 0011(b) Cyan 11 0BH 1011(b) Light cyan
4 04H 0100(b) Red 12 OCH 1100(b) Light red
5 O5H 0101(b) Purple 13 ODH 1101(b) Light purple
6 06H 0110(b) Brown 14 OEH 1110(b) Yellow
7 07H 0111(b) Light gray 15 OFH 1111(b) White

The ASCII character set

The PC uses a character set based on 256 symbols, numerals, letters and special characters. Many of these special characters
are foreign language characters, mathematical symbols and linedrawing characters.

For more information and examples of these characters, refer to the Appendix. We've included a complete ASCII table which
displays these codes.

The screen coordinate system

Many BIOS functions require screen coordinates as a parameter. These coordinates specify the location on the screen where
you want to display the character. You must understand this coordinate system before you can call many of the functions.

Whether in text or graphics mode, the origin of this coordinate system is the upper-left corner of the screen. Moving to the
right increments the X-coordinate, while moving down increments the Y-coordinate. In 80x25 character text mode, the lower-
right screen corner is coordinate 79/24, while the lower-right corner of a CGA card's 640x200 pixel graphics mode is
coordinate 639/199.

88 4. A Closer Look At Video Cards

Screen row and
column
numbering

Rows 0245 91135 7o Columns]

/

‘
P
| - [Ty

Initializing a video mode

Using function 00H initializes the video mode of a graphics card. Placing O0H in the AH register and a sub-function code
in the AL register initializes the standard video mode in text or graphics mode (except graphics mode on the Hercules card).

Initializing a video mode assumes the corresponding video card is installed. If you initialize a video card or mode that doesn't
exist, the system may crash. When you call function 00H, the contents of video RAM are cleared and the selected video mode
is initialized. The contents can be retained on EGA and VGA cards by adding 128 to the mode number (i.e., by setting bit
7 in the mode number). Calling function 00H in this way keeps the contents of video RAM intact and displays these contents
on the screen after initialization.

You can immediately set 80x25 character text mode as active when a program starts. This is mode 7 on MDAs and mode
3 on CGAs. You don't need to call function 00H when you want your program to operate in 80x25 text mode. Function 0FH
reads the current video mode. Call this function by passing OFH in the AH register. After you call the function, the AL register
returns a value. Use the table previously listed to determine the currently active video mode. The number of columns per
screen line is returned in the AH register (if this mode is a text mode). The number of current screen pages, if applicable, is
returned in the BH register.

Video mode sub-functions from video BIOS function O0OH

OOH 40x25 character text, 16 colors, no color display CEV
01H 40x25 character text, 16 colors CEV
02H 80x25 character text, 16 colors, no color display CEV
03H 80x25 character text, 16 colors CEV
04H 320x200 pixel graphics, 4 colors CEV

EGA card on MDA monitor
M=MDA H=Hercules C=CGA E=EGA V =VGA

4. A Closer Look At Video Cards 89

Video mode sub-functions from video BIOS function 00H (continued)

05H 320x200 pixel graphics, 4 colors, no color display CEV
06H 640x200 pixel graphics, 2 colors CEV
07H 80x25 character text, mono MHE*
08H Reserved

0CH Reserved

ODH 320x200 pixel graphics, 16 colors EV
OEH 640x200 pixel graphics, 16 colors EV
OFH 640x350 pixel graphics, mono E*
10H 640x350 pixel graphics, 16 colors EV
11H 640x480 pixel graphics, 2 colors

12H 640x480 pixel graphics, 16 colors

13H 320x200 pixel graphics, 256 colors

* EGA card on MDA monitor
M=MDA H=Hercues C=CGA E=EGA V=VGA

Programming the text cursor

In text mode, every video card from MDA to VGA has a blinking cursor. This cursor indicates the current input or output
position. The video BIOS controls both the appearance and screen position of this cursor.

Function 02H handles cursor positioning. Place the function number (02H) in the AH register. Place the row where you want
to locate the cursor in the DH register and place the column where you want to locate the cursor in the DL register. Also, place
the number of the screen page, at which you want the cursor located, in the BH register. This is applicable only if each page
has its own cursor available. The blinking cursor only appears when the value in the BH register corresponds to the current
screen page.

This function call determines the next location at which screen input and output will occur. Refer to the Appendix for more
information about this function.

Function 03H reads the current cursor position in a specified screen page and returns this position to the program that called
the function. Place the function number (03H) in the AL register and the screen page that should be read in the BH register.
This function returns the cursor position in the CH register (starting pixel line of the cursor) and the Cl register (ending pixel
line of the cursor), instead of the actual position.

To understand these values, remember that a character in text mode on a color card is eight pixels high and that a character
in text mode on a monochrome card is 14 pixels high (not screen rows). These values tell the programmer where the blinking
cursor begins and ends.

These values also provide information about the height of the character matrix, from which you can determine the sizes of
the characters. Since the CGA card generates characters that are eight pixels high, the starting and ending lines should be from
0to 7. Since a Hercules and an MDA card generate characters that are 14 pixels high, the cursor values range from 0 to 13.

90

4. A Closer Look At Video Cards

Starting and

The EGA and VGA cards use even higher

ending line of a

values, but the CGA measurement of 0 to 7 is

text cursor

used here. The actual character matrix can be

recalculated from these values.

Greater values for the starting and ending lines

O, WNPE

Start line

can occur when the cursor disappears from the
screen.

Function 01H defines the appearance of the
cursor. To do this, place 1 in the AH register,
the starting line in the CH register and the
ending line in the CL register. Be sure the

Cursor

starting line is less than or equal to the ending
line; otherwise the cursor will no longer be

visible.

Selecting the screen page

End line
=/

Although we've mentioned the current screen
page, we haven't explained how to activate a

screen page. Function 05H of the video BIOS performs this task. Place the value 05H in the AH register and the number of
the screen page you want activated in the AL register. The screen page number will vary depending on the number of pages
available in the video card. For example, since the MDA has only one page, calling this function for an MDA card is useless.

Number of available screen pages depends on
video card and video mode

7 80x25 MDA/Hercules 1
0/1 40x25 CGA 8
2/3 80x25 CGA 4
0/1 40x25 EGA/VGA 16
2/3 80x25 EGA/VGA 8

PC ASCII control characters

The table on the left show values apply to the video cards that
support multiple screen pages with their video modes. Screen
page numbering always begins at 0. So, an EGA or VGA card
in mode 2 can access screen pages 0 to 7.

Character output and BIOS

The video BIOS contains various character output functions.
Each function handles control codes differently. These control
codes consist of ASCII codes 7, 8, 10 and 13. Although the
IBM system views them as normal characters, data processing
history considers these characters text controls (see the table
on the lower left).

Some functions view these codes as normal ASCII
characters and display them as such. Other functions
execute the controls specified by these codes. For

ASCII example, code 7 instructs the computer to sound a beep.
code The function you select determines the actions performed
7 Bell Sounds beep by these codes.

8 Backspace Deletes character left of cursor Remember, all text output functions operate in both text

and moves cursor right

character

10 Linefeed Moves cursor to next line

13 Carriage

Return current line

one

Moves cursor to beginning of

mode and graphics mode. Character output in graphics
mode isn't directly accessible because a character set
isn't available. However, BIOS compensates for this
limitation by setting the ASCII character patterns as
graphic pixels. While the character patterns for ASCII
codes 0 to 127 are already stored in ROM, codes 128 to
255 are taken from a table in RAM, which is installed by
the GRAFTABL command from MS-DOS.

4. A Closer Look At Video Cards 91

BIOS removes the address of this table as a FAR pointer (you'll find the table starting at 0000:007C). Although these memory
addresses lie within the interrupt vector table, interrupt 1FH, which normally uses this address, cannot be used.

The condition that stores this table in RAM enables you to design your own table. With a user-defined table, special characters,
which aren't found in the standard character table, can be displayed on the screen. Each character requires eight bytes. The
first eight bytes in the table define ASCII code 128, the second eight bytes define ASCII code 129, etc. Each byte represents
the bit pattern for one of the eight lines used in each character. Bit 0 represents the right border of each character matrix, while
bit 7 represents the left border of each character matrix. If a bit is set as 1, the corresponding pixel appears on the screen.

Although functions 09H and 0AH both display characters, there is a difference between them. Function 0AH displays the
character in the color established for that position on the screen and function 09H displays the color (the attribute) set by the
character itself. After character output, both functions keep the cursor at the same cursor position so the next call of either
function places character output at that same location.

Function 02H moves the cursor to the next screen position.

Both functions interpret control codes as normal characters and display these characters as such. Place the function number
in the AH register and the ASCII code you want displayed in the AL register. The BH register contains the screen page, on
which the character should be displayed (where applicable). The CX register contains a number that indicates how often the
output should follow. This enables you to display a single character several times in one function call. If the character in the
AL register should be displayed only once, the CX register should contain the value 1.

Because of an error in BIOS, the repeat factor during the call of this function in graphics mode should be limited to the
maximum number of characters that can be displayed in one line.

Function 09H passes the character and its color. Place the character color number in the BL register.

Both functions have a disadvantage. The cursor remains at the same cursor position, unlike function 0EH, which increments
the cursor to the next screen position. It simulates a terminal; this process is often referred to as the TTY routine (teletype
routine) routine. Calling function OEH displays the character and increments the cursor to the next character. If the cursor
reaches the end of a screen line, the cursor jumps to the beginning of the next screen line.

If the cursor reaches the lower-right corner of the screen (column 79, line 24), the entire contents of the screen scroll up one
line and the cursor moves to the first column of line 24.

Unlike functions 09H and 0AH, the TTY function handles the control codes as control codes instead of as normal ASCII
characters. The TTY function displays the character in the color previously defined for that screen locat