


So, You Wanna Be an
Embedded Engineer



This Page Intentionally Left Blank



So, You Wanna Be an
Embedded Engineer

The Guide to Embedded Engineering,
from Consultancy to the Corporate Ladder

by Lewin A.R.W. Edwards

AMSTERDAM • BOSTON • HEIDELBERG • LONDON

NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Newnes is an imprint of Elsevier



Newnes is an imprint of Elsevier
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA
Linacre House, Jordan Hill, Oxford OX2 8DP, UK

Copyright © 2006, Elsevier Inc.  All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted 
in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, 
without the prior written permission of the publisher. 

Permissions may be sought directly from Elsevier’s Science & Technology Rights  
Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, 
e-mail: permissions@elsevier.com.uk. You may also complete your request on-line via the 
Elsevier homepage (http://elsevier.com), by selecting “Support & Contact,” then 
“Copyright and Permission” and then “Obtaining Permissions.”

 Recognizing the importance of preserving what has been written, 
 Elsevier prints its books on acid-free paper whenever possible.

Library of Congress Cataloging-in-Publication Data

Edwards, Lewin A. R. W.
  So, you wanna be an embedded engineer : the guide to embedded engineering,
from consultancy to the corporate ladder / Lewin A.R.W. Edwards.
       p.      cm.
  Includes index.
  ISBN-13: 978-0-7506-7953-4 (pbk. : alk. paper)
  ISBN-10: 0-7506-7953-0 (pbk. : alk. paper)  1. Embedded computer
systems—Programming—Vocational guidance.   I. Title. 
  TK7895.E42E378 2006
  004.16--dc22                                                                                2006015867

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN-13: 978-0-7506-7953-4
ISBN-10: 0-7506-7953-0

For information on all Newnes publications 
visit our Web site at www.books.elsevier.com

06  07  08  09  10     10  9  8  7  6  5  4  3  2  1

Printed in the United States of America



This book is dedicated 

to the philosophy of 

making what you need 

out of what you can get.



This Page Intentionally Left Blank



Contents

Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1  About This Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2  What Is an Embedded Engineer? . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Chapter 2: Education . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1  Traditional Education Paths into Embedded Engineering . . . . . . . . 5

2.2  Getting in Without Traditional Education (and Acquiring It 

 Thereafter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3  I Write Software—How Much Electronics Must I Learn?  . . . . . . . 23

2.4  Educational Traps, Dead-Ends, and Scams to Avoid . . . . . . . . . . . 27

2.5  Practical Skills You’ll Want to Acquire  . . . . . . . . . . . . . . . . . . . . . 32

Chapter 3: Teaching Yourself, Bottom-Up
(Small Embedded Systems)  . . . . . . . . . . . . . . . . . . 37

3.1  Target Audience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2  Intel (Et al.) 8051 Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3  Atmel AVR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4  Texas Instruments MSP430 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5  Microchip PICmicro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.6  Less Common Architectures for Special Needs . . . . . . . . . . . . . . . . 77

3.7 What Programming Languages Should I Learn? 

 C++ vs. C vs. Assembly Language in Small Embedded Systems  . . . 82

3.8  Brief Ravings on Copy-Protected Development Tools . . . . . . . . . . . 87

3.9  An Example 8-Bit Project Using AVR and Free Tools  . . . . . . . . . . 91

Chapter 4: Teaching Yourself, Top-Down 
(Large Embedded Systems)  . . . . . . . . . . . . . . . . . 125

4.1  Target Audience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.2  Embedded x86 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.3  ARM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.4  PowerPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

4.5  Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

4.6  eCos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165



viii Contents

4.7  What Programming Languages Should I Learn for 

 Large Embedded Systems? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

4.8  A Final Word on Part Selection . . . . . . . . . . . . . . . . . . . . . . . . . 169

Chapter 5: Working for Yourself as an Embedded Engineer 173

5.1  Is Self-Employment for You? Risks and Benefits . . . . . . . . . . . . . . 173

5.2  From Moonlighting to Full-Time Consultant Status—

 Bookkeeping, Taxes and Workload . . . . . . . . . . . . . . . . . . . . . . . 175

5.3  Ways to Find and Keep Customers . . . . . . . . . . . . . . . . . . . . . . . 182

5.4  Iterative Projects: Never-Ending Horror?  . . . . . . . . . . . . . . . . . . 187

5.5  Pricing Your Services Appropriately  . . . . . . . . . . . . . . . . . . . . . . 191

5.6  Establishing Your Own Working Best Practices . . . . . . . . . . . . . . 194

5.7  More Than a Handshake: The Importance of Contracts . . . . . . . . 197

Chapter 6: Working for a Small Company . . . . . . . . . . . . . . . 201

6.1  Analyze Your Goals: Benefits and Downsides of the 

 Small Company . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

6.2  How to Get the Job . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

6.3  Responsibilities and Stresses in a Small Company  . . . . . . . . . . . . 206

6.4  Personal Dynamics in Small Companies . . . . . . . . . . . . . . . . . . . 208

6.5  Managing Tightly Limited Resources  . . . . . . . . . . . . . . . . . . . . . 211

6.6  Task Breakdown: A Typical Week . . . . . . . . . . . . . . . . . . . . . . . . 215

Chapter 7: Working for a Larger Company . . . . . . . . . . . . . . 217

7.1  Analyze Your Goals: Benefits and Downsides of the 

 Large Company  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

7.2  How to Get the Job . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

7.3  Globalization: Outsourcing and Temporary Worker Visas  . . . . . . 222

7.4  Procedures and You: Keeping Your Head Above Water . . . . . . . . . 228

7.5  Managing Relationships with Marketing . . . . . . . . . . . . . . . . . . 236

7.6  Task Breakdown: A Typical Week . . . . . . . . . . . . . . . . . . . . . . . . 239

Chapter 8: Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

 Go Forth and Conquer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241



1

1.1  About This Book

Both online and in real life, nearly every day I see people asking what they need 

to do in order to become embedded engineers. Some are new graduates; some 

are still college students; a few are teenagers in high school; and a large minority 

are hobbyists, hardware technicians, or application-level programmers looking 

to improve their salary prospects and/or diversify their skills in order to avoid 

the 21st century plague of white-collar commoditization.

Why do so many people want to become embedded gurus? The obvious 

explanation is that young (and not-so-young) programmers and technicians are 

being lured by the glamorous, high-profile work, easy conditions, relaxed lifestyle 

and limitless wealth, delivered by adoring crowds, that only embedded engineer-

ing can provide. Since none of that last sentence is remotely true, however (I’ve 

been working in the field full time for somewhat more than ten years, and I 

don’t clearly recall the last time I was pelted with cash by an adoring crowd), I 

can only assume that there is some major marketing campaign in progress and 

it is drawing people to the embedded field.

This, of course, leads to an intractable moral dilemma. Should existing embed-

ded engineers steer these young hopefuls toward other fields, thereby keeping the 

pool of fresh embedded talent small, and consulting rates correspondingly lucrative? 

Or, should we beckon these poor innocents in the door to work on the bottom 

level, thereby pushing all of us embedded guys one step up the pyramid?

Humor aside, it is a generally accepted fact that the number of new graduate 

engineers of all types is shrinking (at least in the United States). Various  theories 

are posited to explain this phenomenon. In the specific case of  embedded 

Introduction

1



2 Chapter 1

engineering, I see several factors causing the decline. One such factor is the 

unavailability in this day and age of well-documented home computers of the 

style my generation enjoyed—Acorn BBC, Commodore VIC-20, Sinclair ZX 

Spectrum, and so on. Modern personal computers are black boxes designed to 

run shrink-wrapped software. They are shipped without programming tools1

and with no technical documentation whatsoever. These times in which we 

live are dark indeed. Operating system vendors are actively working to confine 

third-party software development to an exclusive club of paid-up licensees (in the 

same way that video game console development is controlled), and lower-level 

programming at the direct hardware-access layer is at best very difficult due to 

the unavailability of chipset documentation—in many cases, due to the manu-

facturers’ contractual obligations to preserve trade secret information related to 

intellectual property protection mechanisms. In addition to this, we are faced 

with the mere complexity and heterogeneity of PC hardware. Back in the good 

old days, we could develop a homebrew program on our Commodore 64, fine-

tune it to the last instruction cycle, and show it to other people with pride. This 

type of  skill set is a vital component of embedded engineering, and it is more or 

less impossible to practice on mainstream home computers of the current era.

There are other factors that raise the bar or discourage people from becoming 

an embedded engineer, too—and I’ll deal with them in the appropriate sections 

of this book—but the point I’m making here is that it’s simply more difficult 

these days for kids to experiment with what they have at home; their opportuni-

ties to do so are, at best, constrained.

The good news is that a decline in the supply of engineering talent leads—

inevitably—to an increased price to meet demands. Despite the specters of 

outsourcing and high-tech worker visas (more on these topics in Chapter 7, if 

you’re the chapter-skipping type), right now it’s a great time to be looking for work 

in this field. There are of course cycles and cataclysms in everything—there was 

an enormous crash in  telecommunications engineering jobs not so long ago, for 

example—but over time, the trend for total employed hours and  investment dol-

lars going into high-tech engineering projects is headed relentlessly upward.

1 Apple’s Mac OS is the only mainstream retail exception to this rule. While some PC vendors do 
offer Linux as a preload option, the people who would choose this are, in the main, people who 
would have installed it themselves anyway.



 Introduction 3

Note, by the way, that this book is something of a work of management 

heresy, almost to the point where I considered publishing it under a pseud-

onym. It’s written for embedded engineers, or people who want to be embedded 

engineers, not people who are counting the days until the moment when they 

can put “manager” at the end of their job title. Although many engineers will 

one day deservedly graduate to management (and it’s certainly not a door you 

should close arbitrarily), I’m assuming that right now you, dear reader, are an 

“individual contributor”—one of the rudely carved faces grimacing at the bottom 

of the totem pole. Someday I may well regret sowing these seeds of discontent 

in my future direct reports, but in the meantime, please make the most of the 

advice I’m offering.

A final note: Sprinkled throughout this book you’ll find occasional humor 

breaks. Although most of the snippets are of my own creation, they are to a cer-

tain degree representative of engineering humor in that a fairly large percentage 

of engineers would find them humorous.2 I hope that you find them funny on 

your first reading; if not, I encourage you to read this book again when you reach 

your goal of engineerhood.

1.2  What Is an Embedded Engineer?

Before I embark on a description of how you can become an embedded engineer, 

it is valuable to describe what the term encompasses (at least with respect to this 

book). To put it succinctly, embedded engineers work on the hardware and/or 

software of embedded control systems. In today’s world, this practically always 

means systems built around a microprocessor core running executive control 

software,3 although this software and its microprocessor aren’t necessarily the 

main meat of the system.

Although most embedded engineers lean toward one or the other side of the 

software-versus-hardware developer equation, there is less rigidity to this divi-

sion of labor than there is in other specialized branches of engineering. A good 

2 I’ll hide behind this statement any time you wince at some particularly execrable piece of levity.
3 For the purpose of this book, I’ll consider exotic scenarios, such as pure FPGA systems (without a 

microcontroller core), to fall within this description.



4 Chapter 1

 embedded engineer is part software engineer, part digital designer, part analog 

designer, with at least a rudimentary understanding of radio frequency (RF)—at 

least as far as mitigating interference is concerned. Like a medical specialist, the 

embedded engineer is a general practitioner first, with additional experience 

that allows him or her to work with particular confidence on certain classes of 

problems.

This   job description covers a great deal of territory—even more than you 

might realize from the previous broad description. A simple throwaway toy 

containing a speaking chip, a few LEDs, and a handful of switches; a cruise 

control mechanism in a car; an ultra high-speed cryptographic engine carrying 

a communications link between a guided missile and its operator—all these are 

the province of the embedded engineer. This makes it quite difficult to generalize 

broadly about the field without being ludicrously off-base for some significant 

number of readers. Perhaps more important, it makes it difficult for a newcomer 

who asks the question, “How do I enter the field?” to make sense of the answers 

that are proffered. This book tries to present several answers to many common 

questions, with enough background information for you to be able to decide 

which answer is most relevant to your skills, ambitions, and needs.



5

2.1  Traditional Education Paths 
 into Embedded Engineering

In October 2005, I attended an engineering  job fair at Columbia University in 

New York, mainly to see who was hiring and what they were looking for. It’s 

most instructive to do a reconnaissance mission like this occasionally, because 

corporations spend a large amount of money on these sorts of events and the 

internship and co-op programs to which they often lead. An observer can glean 

valuable information about the state of the industry merely from a list of who’s 

hiring and what sort of positions they are trying to fill. I left this  job fair, as I 

have left other similar events recently, with the following two facts in mind:

1. Domestic U.S. hiring for engineers of all types is picking up pace.

2. The traditional path of college, then internship (a polite word for apprentice-

ship, really), then a regular nine-to-five job with a 401(k) and dental care as 

the major perks is far from dead, despite what you might read about trendy 

companies picking résumés off the Internet and challenging job applicants 

to a game of foosball in order to prove their employment-worthiness.

Most of the people reading this book will probably be somewhat off the beaten 

path already as far as the second point is concerned. My goal is to discuss this 

normal path, and indicate how you can either rejoin it or work in parallel with 

it to the same goal.

Before you start constructing an educational plan, please be quite clear about 

what you’re trying to achieve. Embedded work covers an unusually wide gamut 

Education

2



6 Chapter 2

of project complexities compared with most other branches of engineering. It is 

utterly impractical to attempt to become an all-around expert on all these things, 

and any prospective employer is likely to be gravely suspicious (with good reason) 

of such a claim, anyway. At the opposite extreme, spending ten years specializing 

in some arcane branch of signal processing, to the exclusion of all other knowl-

edge, isn’t a particularly useful way to spend your time either. Standards and 

best-practice methods evolve constantly, and design priorities shift with changes 

in both the supply and demand sides of the marketplace. An almost universally 

relevant example of this is the trend toward moving functionality—especially 

complex signal decomposition and waveform generation—into firmware, as 

digital signal processors (DSPs) and high-speed conventional microcontrollers 

become cheaper and more power-efficient. There is a prevailing attitude nowadays 

of “get these nasty analog signals into the  digital domain as quickly as possible.”1

In times of yore, when micros were expensive, breathtaking (and frequently gro-

tesque) analog, digital and hybrid front ends were assembled to avoid the need 

for complex firmware. Nowadays, we all need to brush up on our math skills 

and learn fairly complex programming techniques to work with DSPs.

The upshot of this is that you need to narrow down your   goals somewhat—but 

not too far—before you start intensive study. It’s perfectly acceptable to be some-

what unfocused while you’re deciding where your interests lie—that’s the only 

way to try new things, after all. An   undergraduate degree is designed to give you 

some basic skills and enough generalized knowledge to use as a base to build a 

detailed understanding of a particular field of specialty in   postgraduate study. If 

you’re totally new to the field of engineering, I’d suggest that you structure your 

first year or two of undergraduate study to get all the miscellaneous mandatory 

subjects—mathematics, physics, chemistry, and so on—out of the way, while 

you converse with your professors and senior students to decide what general 

slice of electronics interests you the most. For example, RF engineering might 

appeal to you more than all the other options—in which case, you can direct 

your last year or two toward acquiring solid analog skills. After you earn your 

bachelor’s degree, you can then select a field in which to specialize (preferably 

after experiencing this field in the real workforce).

1 “Fully digital!” has the same meaning now that “Transistorized!” had in the era of tubes (valves). It 
has also created approximately the same number of curmudgeons mourning the death of the old 
technology.



 Education 7

The traditional route into embedded engineering (in the United States) is a 

four-year   bachelor’s degree at an institution accredited by   ABET, Inc.  ABET is 

the official  accreditor of tertiary programs in science and engineering; it is actu-

ally a consortium of twenty-eight assorted professional and technical societies. 

The homepage for this consortium is <http://www.abet.org/>, although there’s 

not much interest there for a casual reader.

The typical (but far from universal) degree for embedded engineers would be 

a Bachelor of Science in Electrical Engineering (    BSEE). Here is an example of 

the curriculum you can expect to cover in such a degree2:

Subject Matter Credit-Hours

Chemistry 4

Physics 4

English 6

Mathematics 20

General electronics 24

Electromagnetics and electromechanics 7

Analog design 4

Digital logic and/or signal processing 12

Technical electives and projects 21

Economics or accounting 4

General courses teaching design and analysis skills 8

Liberal arts subjects for “academic rounding” 16

If you’re not accustomed to the credit system used by colleges in the United 

States, the rule of thumb is that a “credit-hour” means one hour’s classroom time 

per week for a semester. You can get some idea of the workload involved in all 

this by considering that a full-time course load is four courses per semester. This 

2 This table is an amalgamation from published 2005 curricula for several U.S. colleges. I generated it by 
categorizing the subjects in curricula from various institutions and averaging the credit-hour weighting 
for each category; I then rounded it out to obtain nice integers. This information is intended only to be 
representative of the relative course load weighting of various subject matter in a typical  BSEE degree.



8 Chapter 2

translates to somewhere between twelve and sixteen credits. A  BSEE degree is 

approximately eight full-time semesters. If you’re willing to spend the money 

to attend summer and winter classes in addition to the normal spring and fall 

sessions, and you’ve got the motivation, it’s possible to complete this program 

in somewhere between two and three years. Although you’ll probably be close 

to insanity at the end of such an intensive study program, and when you come 

home, your dog will assume you’re a burglar and try to bite you.

Note that there is a surprisingly wide variation in course work offered or 

required by  BSEE degree programs at various colleges. In particular, quite a 

few schools are much heavier on computer science than the simulated curricu-

lum I provided on the previous page. Degrees that mandate a large number of 

computer science courses (more than eight credits or thereabouts) tend to be 

  hybrid qualifications with names such as “Bachelor of Science in Computer 

and Electronic Engineering.” People who get these sorts of degrees might have 

a very slight head start (versus holders of standard BSEEs) working on the firm-

ware in relatively   high-end embedded systems. Regular  BSEE holders might be 

very slightly advantaged in dealing with fine-tuned systems that have significant 

hardware issues to be solved, and perhaps a lot of hand-massaged, time-critical 

assembly language to tweak.3

This possible difference is, however, really only going to affect your first job 

when you get out of school.4 After a year or two in the workforce, your useful and 

marketable    skill set will be determined almost exclusively by the field in which 

you work unless you make a determined and objectively demonstrable effort at 

self-improvement (for example, by publishing technical articles) in some other 

field. There are two major reasons for this. First, and most important, once you 

start working in a “real” field, your learning and experience will obviously be 

focused into that field. You’ll find that the skills you exercise in the pursuit of 

your day job will improve exponentially over the baseline competence level you 

learned in school. Skills that you aren’t using will inevitably atrophy. (This will 

to some degree be offset by the fact that your general problem-solving abilities 

will increase dramatically.)

3 Note that I’m not considering whether a prospective employer will see a difference between the two 
qualifications.

4 Of course, it can affect your   postgraduate study path, but I’m assuming you thought about that 
when you were selecting undergraduate course work.



 Education 9

Second, while your attention is focused on your field of choice, not only is 

your memory of those general college courses fading, but the practical state of the 

art in those other topics is moving ahead without you. For example, if you took 

any college-level computer science courses in the 1990s, you probably learned 

Pascal. If you then went away and took a ten-year sabbatical working on a farm, 

you’d have come back to the engineering workforce to find Pascal almost dead 

and buried,5 even as a teaching language. This is perhaps a silly example, but it 

should illustrate to you that if you spend any significant time—two or three years 

at most—away from an engineering topic, you’ll have to put in an appreciable 

effort to reclimb the learning curve when you come back to that topic.

On the topic of work experience and how to obtain it, you should give seri-

ous consideration to an internship if you’re currently following the “normal” life 

progression from high school to college to day job. Note that by far the easiest 

way to get an internship is through your school. Make sure you’re on the mailing 

lists for all the job fairs and internship opportunities. Most faculties regularly 

receive   internship offers from corporations; these offers are sent out by email 

or posted on bulletin boards in the faculty buildings. Likewise, if you’re on the 

faculty mailing list, you’ll receive regular invitations to job fairs and similar 

events. If you’re not at school, or your school for some reason doesn’t attract 

recruiters of this sort, you can find internships directly on the websites of most 

large companies. To find out what’s available in your area, a simple technique is 

to search job-related sites for local permanent positions, then go directly to the 

website of the employers your search uncovered and see what internships they 

have listed. (Although most job websites do carry listings for internships as well 

as regular jobs, it’s been my experience that these sorts of positions are mostly 

advertised through direct means only.)

One or two years as an intern (even just a couple of summers will help) will not 

only provide the real-world experience your résumé needs in order to stand out 

from the pack of recent graduates, but also as a practical matter you will probably 

have used this time to identify your key interests and areas of strong competency. 

This will go a long way toward ensuring that your next job application will be for 

5 No hate mail, please. I’m well aware that Delphi still exists, for example. However, Pascal’s primary 
purpose was as a teaching language—in which role it has been almost completely overthrown, 
mostly by Java.



10 Chapter 2

something you’re good at and will enjoy. As almost a side benefit, being in the 

industry for a couple of years will also provide you with some networking oppor-

tunities that can be very useful when you’re looking for a permanent position.

Unfortunately, if you’re already in the workforce, it is probably not practical for 

you to cut off your regular income and go back to the internship stage. If you fall 

into this category, I encourage you to manufacture your own relevant experiences. 

The object here is to build up a   portfolio of devices you’ve built that are relevant 

to a future employer looking for an embedded engineer. Pick a field that interests 

you on a  hobby basis—model aircraft, pets, cars, laser shows—almost anything is 

a good example. Develop some hardware that’s relevant to this field, and keep it 

in your   portfolio. This assignment sounds almost ridiculous when stated so baldly, 

but if you think about it for a little while, you’ll be able to see an embedded proj-

ect in almost any  hobby or interest. You might develop an autopilot for a model 

aircraft, a doggy door that uses machine vision to recognize your dog and opens 

only for it, an electronic ignition module for your 1960s car with its points-based 

ignition, and so on. By the way, local amateur radio groups are a positive hive of 

people who can help you learn about electronics—not just RF stuff, but all kinds 

of analog and digital material. Even if you don’t have much interest in   amateur 

radio for its own sake, it’s worth joining one of these clubs for access to your local 

technical wizards. Visit the American Radio Relay League at <http://www.arrl.org/>

to find out more about what’s available in your neighborhood.

Now, if you’re on the large corporation ladder,  promotions beyond a certain 

point are generally much harder to obtain if you lack higher (  postgraduate) 

study. You should think very carefully about this issue when selecting an under-

graduate degree. For example, there are some schools now offering bachelor’s 

degrees in something called electrical engineering technology (the qualification is 

called a   BSEET). This sounds superficially like it’s the right kind of course, and 

if you were to skim through the syllabus, you might think you see all the right 

buzzwords— ABET, hardware, firmware, software, programming, circuit design, 

and so on. However, the   BSEET is a highly empirical course that is not designed 

to lead to further study—it’s sort of the engineering equivalent of trade school. 

I’d advise strongly that you steer clear of this degree program; at the institutions 

I’ve examined that offer the   BSEET, it is no cheaper than the  BSEE, it takes 

approximately the same length of time to complete, and it offers significantly 

less in terms of employability and   postgraduate study options.



 Education 11

One parenthetical note about   postgraduate study: The utility of higher educa-

tion with respect to landing a good position is not merely asymptotic; it actually 

has a turning point. It’s a good thing to have a bachelor’s degree. It’s a great thing 

to have a master’s degree. Technical certificates, industry-specific qualifications 

and other addenda are fine (although not usually very valuable by themselves). 

However, it can actually be slightly harder to get practical engineering jobs if you 

have a PhD—even to the point where some people intentionally leave them off 

their résumés. The stated reasons for this odd prejudice vary, but they include 

pay scale requirements (PhDs are expensive), perceptions about PhD holders 

being best suited for pure research and development positions, and the belief 

that PhDs are “professional students.”

2.2  Getting in Without Traditional Education 
 (and Acquiring It Thereafter)

As I started work on this chapter in early 2005, the NBC reality television series 

The Apprentice was running a contest titled “Book Smarts vs. Street Smarts.” 

The purpose of this set of episodes was to determine (as far as televised popular 

entertainment can really be said to “determine” anything) whether it is college 

graduates or the street-savvy   nondegreed who are truly best equipped to survive 

in the corporate world. I must confess I didn’t watch the last couple of episodes, 

but during the time I was watching, those with street smarts were ahead by quite 

a large margin. This reflects a popular belief in America that a person trained 

in the “school of hard knocks” is more persistent, tougher and smarter than any 

mere bookworm. The cynic in me is quite sure that it also reflects the nondegreed 

target demographic of this particular genre of television programming.6

There is a corresponding school of thought to argue that   self-taught engineers 

are more motivated, more flexible, and/or more creative than traditionally edu-

cated personnel. I am at best ambivalent about this viewpoint. I think it would 

6 An interesting and enjoyable read—though I’m not endorsing its philosophies—is Proving You’re 
Qualified: Strategies for Competent People Without College Degrees by Charles D. Hayes ( Autodidactic 
Press, June 1995, ISBN 0-9662-1201-0). There is a surprisingly large number of books covering this 
particular topic.



12 Chapter 2

be more correct, if somewhat redundant, to say that among people without 

engineering-related degrees, those who are motivated enough to develop engineer-

ing skills on their own are likely to be unusually strong self-starters. This has its 

productivity and management advantages, but doesn’t imply that these people 

are necessarily better engineers. Whatever the underlying justification, however, 

there is certainly no reason to assume that all engineering jobs are closed to you 

simply because you don’t have a college degree in an obviously appropriate field 

(or indeed any degree at all). Similarly, there is almost no such thing as a degree 

that is completely irrelevant to embedded engineering, simply because virtually 

everything in our daily existence is controlled or at least affected by embedded 

control systems.

Before I go on, however, you should note that I don’t recommend you take 

any of these nonstandard paths by choice. I’m providing the advice in this chapter 

because I realize—having lived through this exact path myself—that it sometimes 

happens that you migrate into a full-time career before you have a chance to obtain 

the “  prerequisite” formal qualifications. A large number of people do pursue 

very successful and lucrative embedded engineering careers all across America 

without ever obtaining a degree in this field—or any other, for that matter. If 

you want to emulate their example, it’s certainly possible. However, I strongly 

advise that you enroll in a suitable degree program at the earliest opportunity; 

it is the path of least resistance for future advancement and will definitely make 

your life considerably easier, besides increasing your earning potential.

Now, if you lack the standard  BSEE or equivalent qualification, your 

employment options will be constrained but not entirely extinguished. You will, 

however, have to put in significantly more effort than your traditionally educated 

colleagues to get a good position. How do you start? 

To begin with, I would advise you not even to bother submitting your résumé 

for positions advertised on job-related websites unless you have exactly the quali-

fications, experience, and other requirements spelled out in the advertisements. 

There are two reasons for this: first, these job postings attract a staggering number 

of applicants and your details are very likely to be lost in the noise. More impor-

tant however, as of February 2006, new and exceedingly irritating “promotion 

of diversity” legislation went into effect in the United States.7 The net effect of 



 Education 13

this legislation is that you will need to tailor your résumé to the job for which 

you’re applying, and make sure that you address each posted requirement point 

for point. If the job requires three years of telecoms experience and you have 

two, your résumé will be tossed, even if your two years of experience involved 

completely redesigning and  singlehandedly rewiring the telecoms infrastructure 

of a small European nation using only your teeth and a roll of twine, and you 

were awarded the Nobel Prize for your efforts. (Yes, this system is fully as insane 

as it sounds. It will naturally result in a mediocre applicant who checks the right 

boxes on the checklist winning out over the person who’s best for the job. As if 

Human Resources needed yet another utterly arbitrary reason to take applicants 

out of the candidate pool!)

Note that the aforementioned bureaucratic irritation will only affect you when 

applying for jobs at mid-size to large companies (more than 50 employees). This 

fact alone is a good reason to focus your search on smaller companies. However, 

you might prefer to direct your search in this direction anyway, because smaller 

companies will practically always pay much more attention to your experience, 

your    portfolio, and other tangibles than to your formal qualifications. I discuss 

life in a small company in more detail in Chapter 6, but by way of summary: 

in a small company, you’re constantly (from first interview to retirement) going 

to be dealing at a close face-to-face level with the principals in charge of hiring 

and firing. Hence, you have a much better opportunity in the small-company 

interview to impress someone with immediate decision-making power. Make 

a good impression, and you can be hired more or less on the spot because the 

interviewer doesn’t need to refer the decision upward and/or to justify it to any 

other stakeholder.

In contrast, during the large-company   hiring process, you need to satisfy a 

chain of people. HR’s paperwork checklist (or even an automated software process; 

see the following) comes first, then you need to impress the hiring manager, and 

finally you need to provide enough satisfying information for the hiring manager 

to write up a convincing argument for upper management as to why you should 

be hired. Plus, if all that wasn’t enough, you will probably have to face many more 

7 A good summary of the situation was published in Anne Fisher’s CNNmoney column 
under the title “Job hunting online gets trickier”; at the time of this writing, it is viewable at
<http://money.cnn.com/2006/02/06/news/economy/annie/annie_0206/index.htm>.



14 Chapter 2

competitors, if only because jobs in large companies are advertised more widely 

than small-company positions. Of course, you may feel that the healthcare, tuition 

reimbursement, 401(k) plan, stock options, in-chair  massages, and other perks of 

the big company8 are absolutely necessary to your happiness at work, in which 

case you don’t have a choice. I’m not saying it’s impossible for a nondegreed or at 

least nontraditionally educated engineer to get a Fortune 500 job—I managed 

it twice, in fact—but it’s not easy. You’ll have to show that you bring some very 

unusual talent to the party in order to stay in the running for the position.

Regardless of whether you aim for a position with a large or a small com-

pany, it is my experience that the best way to get a good placement is through 

a   recruiter who will work on your behalf from inside the target employer. This 

is particularly true for people with a nontraditional educational background. I 

have obtained by far the best results through small recruiters who service rela-

tively few corporate clients and give a high level of personal attention to these 

clients and their prospective candidates. The large national clearinghouse type 

recruiters make heavy use of automatic filtering software to match résumés 

against positions, with exceedingly poor results overall. If I may be permitted 

the luxury of a sweeping generalization, the boiler room recruiters who work at 

these big   recruitment agencies are also utterly ignorant of the technical details of 

any of the industries they represent. Consequently, they are almost completely 

incapable of intelligently matching résumé bullet points to the requirements of 

a particular job vacancy.

One technique I have used myself, and recommended with good results to 

others, is to search the usual online job databases9—not for positions per se, but 

for recruiters. The majority of posted openings are listed by third-party recruit-

ers, not directly by the hiring companies. These listings generally include the 

recruiter’s contact details. Instead of using the automatic “Apply for this job now!” 

button on the website, contact the recruiter directly—by telephone is generally 

best, with an email follow-up—and provide your résumé. State which job you 

were looking at, but specify that you would like your résumé to be placed on 

file for consideration for other positions.

8 If you find a company still offering all this stuff, please drop me a line.
9 HotJobs, Monster, BrassRing, CyberCoders, and so on—there are literally hundreds of employment 

websites that cater partially or entirely to high-tech positions.



 Education 15

While you’re visiting these job sites, of course it’s also worth posting your 

résumé as publicly searchable—I’ve received some excellent   employment leads 

from recruiters who trawl the online candidates’ databases looking for talent. 

Don’t be too disappointed if you don’t get anything worthwhile by this route, 

though—it’s very hit or miss.

I’ve been asked, on occasion, if it is a good investment to pay for subscription-

type employer referral agencies and services that, for a fee, submit your résumé for 

job openings in numerous different forums. My opinion is that these services are 

an unmitigated waste of money for the average engineer, and this is doubly true 

for anyone who doesn’t have a normal educational background. These services 

simply take your résumé, and use automatic software to submit it to dozens of 

different jobs on websites. This is in my view the least efficient, least likely to suc-

ceed method you could possibly use to look for a job. Your first clue to this should 

be the fact that these agencies advertise primarily by means of spam email.

By the way, the algorithmic candidate-to-position matching software systems I 

mentioned earlier, although doubtless operating precisely as designed, are utterly 

incapable of placing employees with nonstandard educational histories. This is 

because they almost invariably give filter priority to formal   qualifications. For 

instance, while I was employed as a design engineer at one large U.S. company, I 

regularly received automated emails from their recruiting system offering me posi-

tions at a repair technician level working in Iraq (at less than half my then-current 

salary, even counting the danger money bonus for working in a Middle Eastern war 

zone). This sort of behavior is utterly typical of automated recruitment software.

Working for a   pittance repairing electronic equipment among the sands of 

the Middle East is possibly something of an extreme case. However, you might 

find it necessary to take a less-than-ideal position, or a less-than-hoped-for   salary 

point, in order to reach your ultimate employment goal. Even if you’ve managed 

to convince the hiring manager that you will make a perfect addition to the 

team, they still have to justify the decision upward. It’s easier for the manager 

to hire you at a lower level than you deserve and then ensure you’re promoted 

or get a salary raise later, once you have proved your worth to the company. So, 

I’d advise you to be willing to take something less than you actually want, with 

the view to being rewarded for short-term performance.



16 Chapter 2

This does put the onus on you for two things. First, you must obviously be 

capable of demonstrating good performance within a reasonable   review period—

say, six months. The duration of this review period should be something you 

negotiate explicitly with the manager during the interview process. Second, you 

must be willing to initiate contact with the manager after the evaluation period 

expires. This doesn’t need to be confrontational; you are merely reminding them 

that you mutually agreed to review your performance after a given time period, 

which has now elapsed. By the way, I suggest you keep at least a weekly log of 

what you get done during this time; it will help you assemble a strong argument 

when it comes to review time.

Once you score the plush engineering job of your dreams, you should imme-

diately begin planning for your future career path and ensuring that you keep 

your options as wide open as possible. If you’re in a large company, you’ll need to 

normalize your educational background in order to increase your job security and 

progress up the management ziggurat.10 If you’re in a smaller company, tidying 

up your credentials will help you if the company falls on hard times or is acquired 

and you have to search for a new position. The bottom line here: Given that 

you have a modicum of financial stability in a job that is earning you valuable 

“experience points” in the field where you want to work, I strongly advise that 

you invest the time and effort to complete an engineering-related degree.

A brief word is due at this point about undergraduate study for those who 

didn’t recently exit high school. If you fall in the target demographic I had in 

mind for this book, you are probably already in mid-career, albeit probably not 

as an engineer. This means that you qualify as what the universities used to call a 

“ mature-age” student. (This term has definitely fallen into some disfavor, but no 

clear replacement has emerged.) You may therefore have some trepidation about 

embarking on a new course of undergraduate study, and I’d like to dispel this 

feeling and provide a few real-world experiences to help you with this step.

The first thing you need to do is simply overcome the inertia required to 

apply. Miscellaneous tasks that fall into this heading are choosing an institution, 

10 This is true even if you don’t specifically desire to be a manager. See Chapter 6 for more information 
on why this is the case.



 Education 17

obtaining your high school (and college, if any) transcripts, vaccination records, 

and filling in the application form. Actually getting in is not likely to be a prob-

lem unless you set your sights really high when you were choosing a college. 

The experience I’ve had in my own endeavors, and when discussing the matter 

with others similarly placed, is that it’s substantially easier to get into college as 

a mature-age student than it is for a high school graduate. At worst, you might 

have to do a semester or two as a   nonmatriculated student, in order to establish 

a respectable grade point average. Again, my own experience, shared with sev-

eral of my colleagues, is that practically all I had to do was write a convincing 

500-word essay describing what I had been doing in my day job for the past few 

years. I also pointed out that my employer’s reimbursement policy was contingent 

on good results—thereby implying to the college admissions department that I 

would be highly motivated to achieve excellent grades.

You also need to consider how you’re going to pay for this degree.11 Tertiary 

education in the United States is flabbergastingly expensive.   Tuition fees for four-

year degree programs (excluding books and other supplies, and of course not 

including accommodations and other optional extras either) fall into essentially 

three tiers: approximately $5,000 per full-time year for a public institution, 

$21,000 per year for a mid-range private college, $40,000 per year and upward 

for an Ivy League school. Unquestionably, your first port of call to pay for this 

should be your employer—most large U.S. companies and many small ones 

offer at least some educational assistance, and many larger companies will pay 

the entire cost of your degree, often even including books and other supplies.12

All you have to pay out of your own pocket is tax on this additional bonus 

income, and a certain amount will be tax-free depending on your income level 

and eligibility for certain credits.

If the employer   reimbursement avenue is not available, the next best option is 

to work out a pace of study that will allow you to pay for school with a portion 

11 I intentionally put this point after the “choose a college and apply” stage, because the pure-earnings 
return on investment for a good degree is so enormous (compared to the risk)—easily the best guar-
anteed investment you’ll ever make, barring a lucky break in real estate—that the tuition price of a 
college should not be the primary reason for selection.

12 This is yet another excellent reason why you should go back to school. In this age of dwindling or 
nonexistent bonuses and stock options, you can potentially write yourself what amounts to a bonus 
check of $10,000 or even more per year just by taking advantage of your employer’s reimbursement 
plan. Frankly, it is insanity not to grab large fistfuls of this   free money, if offered the opportunity.



18 Chapter 2

of your regular salary (as opposed to using cash out of your savings account). 

Depending on where you are in your career path (earlier is better), you might 

consider diverting contributions out of your 401(k) or other retirement fund 

into your education program. Not all financial advisers would agree with that 

suggestion, by the way—the reason I believe it’s sound advice is that the effec-

tive return on investment for your first degree is quite substantial. A frequently 

quoted statistic from the Census Bureau states that the average    lifetime income 

for a high school graduate is $1.2 million; the average lifetime income for holders 

of bachelors’ degrees is $2.1 million. Assuming the degree costs you $80,000, 

that’s an APY of approximately 5.5%,13 which is respectable but not amazing.

To get to the amazing part, I’d like you to observe that those crude figures are 

averaged across all professions and locations. If we consider a 45-year working 

lifespan, the Census Bureau figures average out to $26,667 per year for the high 

school graduate, or $46,667 per year for the college graduate. Now, $45,000 or 

thereabouts is an average ballpark starting salary for a recent graduate electronic 

engineer in most parts of the United States.14 Assuming a regular annual raise of 

3.5%,15 if you were to get an engineering job right out of college, you’ll be above 

that $46,667 baseline after just two years. Over the nominal 45-year lifespan, 

you would actually earn $4.2 million. At that rate, the effective APY on your 

investment is around 8.4%, which is significant by anyone’s measure. It can get 

even better than that: if you consider the ideal case where your employer pays 

for the degree (let’s assume that you’re in a 35% tax bracket), you’ll actually only 

pay something like $20,000 in taxes16 for the degree.

For an entertaining discussion of the cost of tertiary education and how 

you should prioritize it, as well as numerous financial tips that can be useful to 

13 Over a 45-year working life.
14 I obtained this figure by averaging salary.com query data for various ZIP codes, looking for entry-

level embedded engineering titles.
15 This doesn’t necessarily represent an actual raise, of course; it’s merely (hopefully) keeping pace with 

cost-of-living increases. A 3.5% raise happens to be the “industry average” of what is issued by large 
corporations for engineering-type professions in 2005. In private industry, 4.5% to 5.5% is probably 
a better figure to shoot for. One-time bonuses aren’t included in this figure.

16 I’m well aware that $20,000 is not 35% of $80,000. It’s very hard to estimate the actual post-tax 
cost of a reimbursed degree sensibly because it depends, among other things, on how quickly you 
study—there’s a fixed dollar amount of tuition expenses you can deduct each tax year. If you restrict 
yourself to spending only this amount, you can actually get your employer-sponsored degree totally 
tax free, but it will take something like sixteen years of study!



 Education 19

people making the kind of career switches I’m discussing in this book, you may 

enjoy reading The Money Book for the Young, Fabulous & Broke by Suze Orman 

(Riverhead Hardcover, March 2005, ISBN 1-5732-2297-6). Note that there is a 

paperback edition as well, but it doesn’t seem to be cataloged properly; the book 

catalogs I have checked say it’s due for release in 2025!

Depending on your immigration status, income level and other eligibility 

criteria, you should also investigate the possibility of federal grants and student 

loans. Of course, it goes without saying that you should apply for any appropriate 

  scholarships, if available. It’s always worth asking your school’s bursar and/or a 

course adviser about scholarship options at the end of every semester, particularly 

if you’re getting good grades. Scholarships seem to be like major league baseball 

records17; there’s a unique one available for every participant. The extraordinary 

cost of education in the United States is, to a small degree, offset by the odd fact 

that almost everybody at school is paying something less than full price.

The least preferable payment option—again, in my opinion only—is to dip 

into your savings accounts. Paying out of saved funds is not a bad choice if you 

only have a few credits left to earn your degree. However, if you’re just starting out 

in your degree program, I would advise against depleting your savings accounts 

unless it’s the last option available to you. Remember that a middle-of-the-road 

engineering degree can cost in the vicinity of $80,000; if losing that much out 

of your savings accounts will seriously affect your financial security, then you 

need to look at other options.

So much, then, for getting in and paying your way. What is the educational 

experience like for mature-age engineering students? A common worry—I felt 

it myself—is that when you get in among all these freshmen, you’ll feel like a 

kid who was held down in sixth grade for three years. What is it going to be like 

sitting in a class full of people half your age?

As it turns out, it’s not so bad. In particular, if you’re attending night classes, 

you’ll find that a significant proportion of your classmates are also   mature-age 

students who will quite likely have a lot in common with you. Some classes that 

aren’t offered at night may be populated only by the straight-from-high-school 

17 For example, Most Home Runs Hit While Man Wearing Purple Cap Sits in Back Row.



20 Chapter 2

breed of student, but this isn’t really as terrible as you might think. You’ll prob-

ably find that most of the students will simply focus on forming their own social 

cliques to the exclusion of all else. Remember, these kids are straight out of high 

school; college was their first major uprooting from home and high school friends; 

hence, it is much more stressful for them than it is for you, no matter what you 

might think. You don’t need to interact with them very much, but it is helpful to 

do so—these people will, after all, be doing all the same exams and assignments 

as you, so it’s helpful to build some study-pal relationships if you can.

While we’re on the topic of night classes, you should give very careful thought 

to how much   academic workload you can handle. If you have the slightest doubt 

about your ability to estimate this (particularly if you’ve been out of school for a 

long time), I strongly suggest that you start off slowly. For your first semester back 

at school, just take one course—in a subject area where you’re not expecting any 

nasty surprises—as a confidence-builder. You’ll probably be amazed at just how 

easy these undergraduate studies are for someone who has been in the workforce 

(particularly the white-collar one) for a few years. The workload of these degree 

programs is, after all, dimensioned for youths straight out of high school. Despite 

this, it’s important not to dive in and take more credits than you can find time 

to handle; overstretching yourself will damage your academic record and, more 

important, discourage you from continuing with the program.

If you have a family, you obviously also need to balance time spent at school 

with family responsibilities. It’s definitely grueling to put in a 40-hour work week, 

plus school, and then have to come home and handle all the normal duties of 

family life. Additionally, severe relationship stresses can be created when night 

classes make your arrival at home late several nights a week. This situation is 

especially difficult if you choose to attend intensive semesters with a lot of con-

centrated class time (summer and winter, and other accelerated class options). 

The best advice I can give you here is to sit down with your spouse and other 

immediate family before you register for classes, and decide what kind of school 

schedule your family life can handle.

One final note on being a   part-time student: Since it isn’t possible for you to 

complete the degree program at the same rate as a full-time student, I suggest you 

choose your courses strategically to maximize your ability to learn  incrementally. 

Some course advisers will recommend that you take the “standard” published 



 Education 21

 program and complete the courses on it in the recommended order, half a 

semester’s worth at a time. This is, in my opinion, a dangerous and grossly inef-

ficient way of completing the course requirements. For example, you’re going to 

have at least two semesters of calculus for an engineering degree. Typically, one 

of these is normally in the first freshman semester and the second one is imme-

diately after it, in the second freshman semester. If you follow the “standard” 

program at half rate, you are going to end up with an entire semester’s dead time 

in between those two closely related subjects—during which time, you’ll forget 

a lot, thereby impairing your performance in the second course.

Hence, my advice to you is to group together subjects that rely on   incremental 

learning and pursue each set of courses to the end before picking up another 

thread. In other words, pick two major course work areas (say, mathematics 

and English) and focus on completing all the required work for those areas of 

study before proceeding to the next major area. This does mean you’ll probably 

be polishing off some miscellaneous leftover freshman courses like Chemistry 1 

and Physics 1 in your last couple of semesters at school, but this is simply your 

opportunity to be on the dean’s list for the last couple of semesters!

Observe, by the by, that there are other reasons besides mere career advance-

ment to catch up on your formal education. If you are working in an engineering 

capacity without an appropriate degree, you need to be very mindful of profes-

sional   licensure issues and tread carefully to avoid falling afoul of any legislation. 

While this doesn’t affect embedded engineers as directly as it does, say, architects 

or civil engineers, every state in the U.S. has specific licensure requirements 

for the engineering profession. You should check the current laws in your own 

area; I don’t intend to summarize them here, but in general it is prohibited to 

advertise your services as an “engineer” for hire18 unless you have the appropriate 

local license, which in turn requires a formal qualification, some years of work 

experience, and successful completion of two sets of written examinations. In 

the United States, the engineering license is called the    Professional Engineer (PE) 

license and the requirements, fees, examinations, and other paperwork vary 

somewhat from jurisdiction to jurisdiction.

18 This is very much a semantic sort of issue. If you advertise yourself as a “programmer,” you avoid the 
letter of the law in every jurisdiction I’ve studied. What the practical difference might be is a moot 
point. You might even raise a legitimate argument that you’re an artist.



22 Chapter 2

There are, of course, numerous holes that will allow you to work as an engi-

neer without obtaining a PE license. The most obvious of these is that all sins 

are forgiven (more or less)19 if you have a real, live PE as a significant partner in 

your business; they can review, seal, and sign off on documents you provide to 

the public. There is also an “ industry exemption” clause in many areas, which 

can mean one of two things depending on where you are: either it exempts you 

from the licensure requirements if you don’t offer services to the general public, 

or it exempts you if you are under the umbrella of an employer who assumes 

responsibility for what you do. Finally, it is possible to tinker with the wording 

of your advertising materials in such a way as to avoid specific trigger words and 

phrases in local legislation.

It’s interesting to note that relatively few engineers, particularly embedded 

engineers, are actually licensed PEs. It’s equally interesting—and more than a little 

humorous—to observe that the National Council of Examiners for Engineer-

ing and Surveying explicitly acknowledges this fact20 by stating that “Licensure 

[...] Sets you apart from others in your profession.” I have to admit that I share 

the viewpoint of many others (including some PEs), viz. that the PE licensing 

program is a  boondoggle—and an expensive one at that.

On a closely related note, you should be mindful of the  politics of the situa-

tion if you are hired into a large company as an engineer with a nontraditional 

educational background. I would advise keeping your status to yourself as much 

as possible; there will be a few people who need to know it, but don’t bring the 

topic up in casual conversation. The   credentials issue can easily explode into a 

big problem if, for example, you perform well and get a good review (and raise 

or bonus) while one of your traditionally educated colleagues doesn’t get much 

of a reward and consequently becomes disgruntled. You should also be prepared, 

if necessary, to accept a job title that isn’t the one you applied for. (For example, 

you may be hired into a research engineering position, but for political reasons 

your official title might be “electronics programmer.”)

19 Again, please don’t take my statement here as gospel. This is emphatically not legal advice; it is 
merely a warning to let you know that there are complications ahead. You should research local laws 
before embarking on any course of action.

20 As of the time of writing, this quotation could be found at <http://www.ncees.org/licensure/licensure_
for_engineers/>.



 Education 23

In summary of all the previous text: It’s possible to avoid most or all of the 

state’s paperwork requirements if you either play word games, or you live inside 

the shield of a person or entity who can keep you out of harm’s way with respect 

to licensing. Nondegreed engineers, however, simply won’t be welcome at the 

country club. Since anyone who is competent to do an engineer’s job will most 

likely have very little difficulty with the academic requirements of a bachelor’s 

degree, it’s well worth the effort to go back to school and fill in your background 

if you have the opportunity. If your employer will pay tuition, you have no rea-

sonable excuse not to go back to school. Becoming a PE is optional, but might 

increase your marketability in certain respects.

2.3  I Write Software—How Much Electronics 
 Must I Learn?

Before we embark on this topic, it’s time for a short humor break illustrating the 

potential silliness of embedded software development.

The 999,999th Monkey Theorem

Emile Borel’s 1909 book on probability stated that a   monkey hitting random keys 

on a typewriter would eventually type every book in France’s national library. You’re 

probably much more familiar with an anglicized restatement of the theorem, com-

monly put this way: “A million monkeys at a million typewriters will eventually 

produce the complete works of Shakespeare.” (There are numerous other ways of 

saying the same thing, of course, and many people prefer to assign infinite monkeys 

to the task—however, this presents us with the intractable Infinite Banana Paradox, 

so we will consider only finite monkeys.)

 A frightening amount of software is clearly generated using the million- monkey 

 approach, which is sufficient evidence to account for the fact that almost every 

software release since the first set of cards for the Jacquard loom has been delivered 

late. (We’re sorry, Sweater 1.1 has been delayed due to problems with the cable stitch 

subroutine.) Now, the difficult part about the monkey method is not setting the 

monkeys to work, but filtering the results. Scanning random text for Shakespeare 

is relatively easy, because the desired output is well-defined; you simply compare 

the output against the known works of Shakespeare and there you have the answer. 



24 Chapter 2

 Scanning the output of a million monkeys for software that meets the design specifi-

cation is a much harder task, because you don’t know exactly what you’re looking for.

 The 999,999th   Monkey Theorem goes like this: Given a desired output and 

a functioning monkey engine, there will be a finite set of “correct” answers (i.e., 

 answers that satisfy all the constraints for “perfect” output—“To be or not to be, that 

is the question.”). There will also be an infinite set of answers that are useless gib-

berish (“Thabahq892a qw[t980q324[!”). However, for any correct answer, there are 

an infinite number of possible variants of that answer, all of which are SLIGHTLY 

incorrect but SUPERFICIALLY appear to be correct (“To be or not to be that, is 

the question.”). Since the infinite number is infinitely larger than any finite number, 

there is a negligible probability that any answer that merely appears to be correct 

actually will be. Unfortunately, this also means that the discriminator logic on our 

monkey-driven code engine can only, at best, decide “gibberish” versus “possible solu-

tion”—it can’t pick the correct solutions out of the set of possibles, and the odds are 

against it happening onto a perfect answer.

 Therefore, we conclude that any functional software generated using the  million-

monkey approach is practically certain not to be working correctly, and we can say 

this with confidence even if we have no idea how it’s supposed to work or what it 

actually does. 

A corollary of this is that the only form of transportation I trust is a horse, which 

was admittedly designed through random processes, but has had a much longer beta 

test period than any man-made vehicle. The real worry is, of course, that the rewards 

for being the 999,999th monkey regularly are much larger than the rewards for being 

the millionth monkey once.

For sample output from a real monkey cluster (albeit with somewhat fewer than 

a million nodes), visit the following URL: <http://www.vivaria.net/experiments/notes/

documentation/>.

Among many fiercely argued religious questions is the issue of how much 

electronics knowledge an embedded engineer needs to have in order to work 

effectively. Some people maintain that for pure firmware engineers, no   hardware 

knowledge is necessary beyond a simple understanding of register-level system 

behavior. At the other end of the continuum, some people argue that they would 

never hire an engineer, even for a wholly software role, unless he or she has a 

good practical grasp of both analog and digital design.



 Education 25

The real answer to this question is, of course, somewhere in the middle—and 

highly dependent on what sorts of projects you intend to do. To a certain extent, 

the size of the company you’re aiming to work for is also a factor; if you’re work-

ing for a small company or in a small team within a bigger company, you’ll be 

under increased pressure to be self-reliant and able to solve problems that are 

“across the divide” from your job description (for more on this topic, see Chap-

ter 6). You don’t need to be a guru, but you do need to be able to understand 

the behavior of the other parts of your system so that you can predict how the 

system will behave given a certain stimulus from your software. As you get down 

close to the bare metal (writing device drivers, for instance), it can be practically 

impossible to develop relevant debugging skills unless you’re able to hook up 

a scope or logic analyzer and understand what the actual hardware is doing in 

response to your code.

While I’m on this point, let me take a moment to state most vehemently that 

the idea of either software that’s independent of hardware or hardware that’s 

independent of software is dangerous and silly. Neither component can oper-

ate in a vacuum; you can design a fabulously complex and powerful piece of 

embedded hardware, but until it becomes a platform supporting an operational 

piece of software, it’s just a piece of laboratory junk. Likewise, you can develop 

embedded software in some non-native simulation environment, but until it’s 

loaded onto real hardware, it’s a computer science project, not a product. (This 

does not altogether disparage  simulation, by the way, but the premise of soft-

ware simulation is that the simulation environment emulates salient features of 

the actual hardware on which the final product is expected to run.) As a design 

engineer in a large company, it irks me no end to see the hardware team build 

something “perfect” and toss it over the wall to a software group. Of course, 

the software group has developed “perfect” software that runs just fine on the 

emulator and maybe even the first prototype PCB. Naturally, when the perfect 

software meets the perfect hardware, unforeseen problems arise.

So what, exactly, should you know? Here is a short list of the skills and 

knowledge that I would consider essential but which might not be obvious to a 

newcomer. Observe that not all of this is explicitly included in a  BSEE degree.



26 Chapter 2

• At least a rudimentary understanding of how to route power planes and the 

consequences of poor layout on power quality. Even if you never personally 

lay out a board, you need to be able to debug problems caused by  PCB 

layout snafus. Your  BSEE courses will most likely not teach you anything 

terribly practical about  PCB layout techniques. A very useful book—with 

much more information than you’re ever likely to need—is High-Speed 

Digital Design: A Handbook of Black Magic by Howard Johnson (Prentice 

Hall PTR, April 1993, ISBN 0-1339-5724-1).

• In the same vein, you should have a basic understanding of how PCB 

routing can affect  signal propagation.

• The ability to read a schematic.

• An introductory-level understanding of the DC characteristics of diodes, 

bipolar transistors, FETs, op-amps, and comparators.

• Comprehension of the different types of I/O configurations on digital 

parts such as microcontrollers; open-source, open-drain, full totem-pole, 

the presence or absence of protection diodes, and so forth. You particularly 

need to understand issues related to level shifting (today’s systems often 

have mixed I/O voltages) and driving different sorts of loads. I’ve seen 

far too many systems that (for example) drive inductive loads like relays 

with no attention to the nature of the load, leading to all sorts of bizarre 

occurrences as relays open and close.

• Some simple techniques for mitigating  ESD susceptibility; placement of 

spark gaps, series resistors and capacitors to ground where appropriate.

• The ability to operate a  SPICE simulator is frequently helpful, but not 

absolutely essential.

• Practical hardware debugging skills (see Section 2.5).

Having said all that, if you have absolutely no electronics knowledge at all, 

and no desire to acquire any, then I recommend you set your sights for embedded 

jobs high in the software abstraction hierarchy. In terms of this book, that means 

you should probably skip to Chapter 4. Such systems do, of course, require the 

involvement of people who are knowledgeable in both software and hardware; 

however, the scale of these systems is so large that the hardware-savvy people are 



 Education 27

likely to be concentrated in the operating system and device driver development 

layers. In such enormous projects, there is usually a place for people working 

in the application layer who never need to know anything about the hardware 

except how to use the abstraction APIs supplied by the operating system team.

2.4  Educational Traps, Dead-Ends, 
 and Scams to Avoid

When I read my morning’s junk mail and see the usual plethora of offers for 

fake or meaningless degrees, the grandiose claims and untrammeled avarice of 

the authors always remind me irresistibly of Charles Dickens’ tirade against 

Yorkshire schools of his age.

Of the monstrous neglect of education in England, and the disregard of it by the State as a 

means of forming good or bad citizens, and miserable or happy men, private schools long 

afforded a notable example. Although any man who had proved his unfitness for any other 

occupation in life, was free, without examination or qualification, to open a school any-

where; although preparation for the functions he undertook, was required in the surgeon 

who assisted to bring a boy into the world, or might one day assist, perhaps, to send him 

out of it; in the chemist, the attorney, the butcher, the baker, the candlestick maker; the 

whole round of crafts and trades, the schoolmaster excepted; and although schoolmasters, as 

a race, were the blockheads and impostors who might naturally be expected to spring from 

such a state of things, and to flourish in it; these Yorkshire schoolmasters were the lowest 

and most rotten round in the whole ladder. Traders in the avarice, indifference, or imbe-

cility of parents, and the helplessness of children; ignorant, sordid, brutal men, to whom 

few considerate persons would have entrusted the board and lodging of a horse or a dog; 

they formed the worthy cornerstone of a structure, which, for absurdity and a magnificent 

high-minded laissez-aller neglect, has rarely been exceeded in the world.

—Charles Dickens, from the preface to Nicholas Nickleby

EDUCATION—At Mr Wackford Squeers’s Academy, Dotheboys Hall, at the delightful 

village of Dotheboys, near Greta Bridge in Yorkshire, Youth are boarded, clothed, booked, 

furnished with pocket-money, provided with all  necessaries, instructed in all languages liv-

ing and dead, mathematics, orthography, geometry, astronomy, trigonometry, the use of the 



28 Chapter 2

globes, algebra, single stick (if required), writing, arithmetic, fortification, and every other 

branch of classical literature. Terms, twenty guineas per annum. No extras, no vacations, 

and diet unparalleled.

—Charles Dickens, Nicholas Nickleby

In Section 2.1, I already made passing reference to the   BSEET program and 

its inadvisability for people considering a long-term career in embedded engi-

neering. However, there are numerous other bear traps lurking for the unwary 

student. These traps range from courses that simply aren’t as useful as they appear, 

to so-called       life experience degree programs that are downright fraud (more on 

this later). The problem of choosing a   degree program in the United States is 

exceptionally difficult to unravel because the tertiary education system in this 

country operates on an apparently unique free-market principle with no central 

government regulation. Practically anybody can collect fees and issue “degrees.” 

A third party (say, a prospective employer) can theoretically judge the value of 

a degree by whether the issuing institution is accredited by someone reputable. 

However, this becomes something of a chicken and egg situation, because any 

  fraudster who can open a degree-issuing “school” can also create a private accredit-

ing agency to “accredit” that school.21 So, to evaluate the worth of a degree, you 

really need to know both by whom the issuing institution is accredited and the 

bona fides of the accrediting authority.

Because of this, combined with the plethora of different curricula and perfor-

mance claims made by various institutions, it can be excruciatingly difficult to 

evaluate the relative merits of different higher education programs. Obviously, 

an Ivy League degree is (usually) easy to distinguish from a “print your own 

diploma, pay only for paper!” sort of operation, but in between those extremes 

there is a very broad spectrum of cost and utility. Let’s not forget, also, that once 

you finish your degree, you have to be able to convince an employer or another 

college of the utility of this qualification.

As a general heuristic, I’d say that the closer you can approximate a “normal” 

educational program (simulating the progression of courses and events that would 

21 An interesting article on this topic, with some historical background, can be found at <http://www.
degree.net/guides/accreditation_guide.html>.



 Education 29

have occurred if you had gone into this program immediately after high school), 

the easier your life will be. College bureaucracies are relatively ill-equipped to 

deal with out-of-the-box situations, especially at the undergraduate level. If you 

need to  transfer credits or—worse still—get your degree recognized in a different 

country or evaluated by a licensing authority or employer, you will have a much 

smoother time if your paperwork is simple to understand.

Many people contemplating a career change turn to  distance learning programs 

by mail or Internet so that they can more easily fit school into a busy work and 

home schedule. The first problem to consider, then, is how to evaluate   distance 

learning programs. Now, what I’m about to say here is a rather unfair generaliza-

tion, but in general I would advise extreme suspicion and caution when looking 

for an electrical engineering degree that’s offered entirely by   distance education. 

Engineering is a practical discipline—lab work is an important part of the degree, 

and this is difficult to do by mail or Internet.

If we exclude “colleges” that are generally known to be   degree mills,22 there are 

very few institutions indeed that offer a completely online electrical engineering 

degree program, and you could spend a long time trying to find them. Engineer-

ing, as a practical discipline, has a laboratory component that is very difficult to 

provide by way of distance education. (Note, by the way, that doing a legitimate 

online program of this sort will require the assistance of an engineer or other 

qualified professional—perhaps your manager—local to you. This person will 

be the   proctor who oversees your exams and other graded, timed work. Different 

schools set different criteria for what constitutes an acceptable proctor.) If you’re 

evaluating such programs, make sure you check that the program specifies that it 

is  ABET accredited, and cross-check this by visiting  ABET’s site and searching 

for the institution.  ABET schools should all be regionally accredited by one of 

the six major regional accrediting agencies that operate across the United States,23

so you don’t need to worry about that aspect of school legitimacy.

22 An enjoyable read from respected authors on this topic is Degree Mills: The Billion-Dollar Industry 
That Has Sold Over a Million Fake Diplomas by Allen Ezell and John Bear (Prometheus Books, 
 January 2005, ISBN 1-5910-2238-X).

23 The Department of Education’s Office of Postsecondary Education maintains a handy searchable 
database of accredited institutions (read their definition to understand what this means in context) 
at <http://www.ope.ed.gov/accreditation/>.



30 Chapter 2

Be aware that there are several institutions—I can’t say authoritatively whether 

they are generally recognized as degree mills or not—that have invented engineer-

ing “accreditations” for themselves. One of these institutions, at least until quite 

recently, advertised its “National Siciety (sic) of Accredited Engineers” laurels on its 

website. Other institutions make vague statements, such as “licensed by the State 

of Wyoming, about licensure or accreditation.”24 Such a license, if it even exists, 

simply refers to a license to operate as a secondary or post-secondary school; it has 

nothing to do with regional accreditation for the school and absolutely nothing to 

do with the one accreditation, which is  ABET, you’re really interested in.

Given all this complexity, you might be sorely tempted to wonder whether 

it really matters which college you choose to attend. After all, most employ-

ers probably won’t even check to see whether your alma mater exists, let alone 

verify whether it’s regionally accredited. There are certainly thousands of people 

in the workforce with meaningless diploma-mill qualifications. Unfortunately 

for them—and for you, if you take this path—this is rather like sitting on a 

hand-grenade with the pin pulled. All it takes is one disgruntled work colleague 

asking questions, and you could be fired for cause. It’s definitely not worth the 

risk, and it’s not even necessarily cost-effective—many   diploma mills charge the 

same sort of fees that you would pay at a reputable school.25

One well-respected reference on the topic of  distance learning is Bear’s Guide 

to Earning Degrees by Distance Learning by Mariah P. Bear and Thomas Nixon 

(Ten Speed Press, January 2006, ISBN 1-5800-8653-5). This book is updated 

regularly (currently in its sixteenth edition) and should be considered an essential 

starting point if you are considering  distance learning. As a companion to their 

books, Bear et al. also run an informative website at <http://www.degree.net/>.

Now, this should be self-evident, but never fall into the trap of believing that 

any educational offer you receive by email is in any way above suspicion; in fact, 

24 I use Wyoming as my example advisedly since this state is notorious for having lax standards for 
issuing licenses to schools. You can read the relevant legislation at <http://legisweb.state.wy.us/statutes/
titles/title21/c02a04.htm> if you’re interested. However, the whole legislative issue is a whack-a-mole 
game at best—once you tighten the rules in one jurisdiction, the scam operators just jump across the 
border to the next least stringent area.

25 I must shamefacedly confess that when I started to look at distance education programs, I didn’t 
understand the U.S. accreditation system, so I didn’t ask the right questions of the right people. As 
a result, I wasted substantial sums on an institution that is, while not classified as a diploma mill, 
definitely a borderline case. You won’t find it on my resume.



 Education 31

I would take the opposite stance and assume that any offer thus received is bogus. 

All the job-hunting websites (and other sites, for that matter) in the known uni-

verse will sell your contact details to anybody willing to pay for them. They will 

also sell “targeted” email campaigns to anyone with the wherewithal to finance 

the operation. As a result, if you have ever posted a résumé or applied for a job 

online (and even if you haven’t), you will certainly receive regular junk email 

touting “   life experience degrees.” While most colleges will in fact grant some 

undergraduate credits for life (read: work) experience, no legitimate  institution 

will give you a diploma purely on the basis of experience. Getting credits for    life 

experience at a real college can be quite a chore; the requirements range from 

simply obtaining a letter from your manager stating what it is you do in your day 

job, to writing a 5,000- to 10,000-word essay on the subject matter in question 

and/or possibly taking an examination.

Finally, there is a range of      IT qualifications, such as  MCSE,  CNE,  CNA and 

so forth, which are advertised quite heavily and frequently offered as internal 

training options inside a corporate environment. All too often, people who express 

an interest in migrating into “programming” or “engineering” jobs will receive a 

recommendation to take one of these courses. This is quite mystifying to me; I 

can only conclude that in the mind of a nonengineer, all job titles containing the 

word “engineer” are inseparably conflated. Please don’t waste your time or money 

on such studies; they are strictly industrial qualifications that pertain to IT jobs (a 

“network engineer” is not an engineer in the sense that we mean it in this book, 

and is certainly not an embedded engineer by any stretch of the phrase). Worse, 

most of these certifications need to be renewed annually, at some considerable 

cost. As a side note, I’d also like to point out that the sorts of jobs to which such 

qualifications pertain are precisely the category of high-tech positions that have 

been migrating en masse to offshore support centers in recent years.

So much for the things you definitely don’t want to study. On the other hand, 

there are skills available from formal education that engineering students appear 

to regard as irrelevant but are actually of great importance. The next section 

discusses some of them in detail.



32 Chapter 2

2.5  Practical Skills You’ll Want to Acquire

Regardless of how far you eventually intend to specialize, there is a small core of 

baseline skills that will benefit you greatly in any sector of embedded engineering. 

Some of these skills are taught explicitly in college, some of them are mentioned 

peripherally but not examined in any great detail, and the remainder are acquired 

and honed exclusively through practical experience.

I hope the fact that you’re reading this book—and presumably somebody 

paid to buy it—helps to demonstrate that one of the most important skills you 

can acquire is to learn the lost art of effective reading and writing in the appar-

ently dead language known as  English. Most engineers will probably not author 

full-length books, but any good engineer will write many thousands of words of 

     technical documents in their careers, including the following:

•  Product specifications, explaining to marketing and the people who write 

your product manuals exactly what the product will do

• Protocol specifications, explaining to other engineers how to talk to your 

product

•  White papers, describing to other engineers what you’ve been working on 

and useful discoveries you’ve made

•  Patent disclosures

• Instructions to subordinates

• Articles for technical journals (Being published in this way can substan-

tially improve your visibility within an organization—think raises and 

 promotions.)

• Debugging information, communicating with vendors, quality assurance 

technicians and engineering colleagues to solve complex problems

• Justifications (dare I say it) for taking a specific course of action (When 

things get out of control and the recriminations start to fly, the one with 

the best  paper trail usually wins.)



 Education 33

Most engineering students—in fact, I can generalize wildly and say most 

science students—regard language skills as a mere waste of time, required by an 

idiotic college bureaucracy. Unfortunately for these students, it has been my expe-

rience—very rarely contradicted26—that engineers who can write intelligible and 

concise documents are precisely the same engineers whose specifications are com-

plete and easy to understand, whose code is well-structured and simple to read, 

and who have little difficulty communicating effectively with co- workers.

You’ll note that the  BSEE breakdown I gave in Section 2.1 only shows six 

credits of English. This is more or less representative of the average  BSEE degree; 

you can add a little more writing and speaking experience in the   liberal arts elec-

tives, but no matter how you wiggle your course schedule, a bachelor’s degree in 

engineering is only going to give you the barest possible taste of formally taught 

language skills. You need to practice this. Voracious reading—not just technical 

books, but fiction and nonfiction by good authors—is essential; reserve time 

for it in your week (hints: the bath is a great place to relax and read, and   Project 

Gutenberg has numerous free electronic texts you can download to your PDA 

and read anywhere). Practice writing wherever you can; before I was ever pub-

lished, I honed my skills largely in banter—technical and otherwise—on  Usenet 

and, previously,  Fidonet.27 Good language skills can float a competent engineer 

significantly above their colleagues.

Another essential    skill set on which you will not touch significantly in formal 

education is  PCB layout and an understanding of   DFM (design for manufac-

turing) concepts. Both of these are specialties in their own right, but from the 

perspective of the embedded engineer, they’re closely related and can be learned 

at the same time. Although a design engineer in a company of even modest size 

probably won’t spend any significant time working on layouts, there’s a great deal 

of practical value in understanding at least the basics of what is involved in the 

processes of designing, laying out, and populating ( stuffing) PCBs. 

26 I’m not counting people for whom English is a second language in this statement. Wherever I write 
“English” in this section, you can substitute “the engineer’s native language.” It’s language skill, not 
specifically English skill, that I’m talking about. However, if only because the majority of scientific 
and technical publications are in English, it would be prudent to study this language if you don’t 
speak it natively. 

27 A pre-Internet worldwide network of bulletin board systems; my system was ZWSBBS, 3:634/396. 
Fidonet still exists (though greatly shrunken since my days there) and is connected to the Internet at 
various points—see <http://www.fidonet.org/> for more information.



34 Chapter 2

If you work at a large company, you’ll have opportunities to talk to the manu-

facturing engineers and  PCB layout artists and glean a lot of useful wisdom; 

you should seize these opportunities when available. You don’t necessarily need 

to annoy people with incessant questions; merely listening carefully at design 

reviews will greatly improve your understanding of the issues. There’s a very 

large body of succulent information tidbits that seem intuitively obvious once 

you hear them, but which you might never think of yourself; for example, the 

need to keep ceramic surface-mount capacitors away from the edges of PCBs to 

avoid cracking them during  depanelization; ensuring that you leave sufficient 

clearance around a surface-mounted  microcontroller to allow use of a test clip; 

understanding how components drift and/or self-align on their pads when they 

go through the infrared reflow oven; and so on.

You’ll also need a lot of practical software debugging experience. A good start-

ing point for this is simply your college courses—if you work at the computer 

science and other programming-related course work with sufficient assiduity, 

you’ll have a reasonable start on the methodology of software debugging by the 

time you graduate. However, one issue for which school will leave you almost 

completely unprepared is how to jump in at the deep end and start maintaining 

someone else’s large code project. 28

It is practically guaranteed that your first job (and every subsequent job, 

for that matter) is going to involve maintaining some legacy code. You can be 

very lucky and find code that is accurately documented and well-commented, 

or you can encounter code (as I have) that contains no comments at all and is 

 structured in such a complex and bizarre fashion that adding or removing a single 

comment line can cause the compiler to abort with an internal error. The most 

useful learning technique I have found for this is to take an open-source project 

and add specific simple functionality to it. For instance, you might set yourself 

the goal of modifying the IDE driver in the Linux kernel so that it turns on a 

28 A general disadvantage of learning in the school context is that you know that the problem you’ve 
been assigned has a solution, you know that you have been given the skills and the time to find 
that solution, and you can make inferences (from where your class is up to in the curriculum) as to 
which specific skills are likely to be relevant to the problem. Real-world problems don’t have any of 
these guarantees or hints; you’re on your own with a clock (and budget) steadily ticking away and 
management breathing down your neck. Enjoy your time at school; these are the easiest problems 
you will ever be asked to solve.



 Education 35

red LED whenever a write operation is requested from the application layer, or 

a green LED for read operations. A more challenging project might be to take 

an open-source operating system, such as NetBSD or eCos, and port it to a new 

board. In any case, the goal is to understand enough of the existing code to know 

where to insert your changes and modify the code as nonintrusively as possible 

to avoid creating bugs.

Finally, most embedded engineers are going to need at least rudimentary 

laboratory skills. This includes being able to solder up prototypes and operate 

an oscilloscope, signal generator, and spectrum analyzer. The introduction you’ll 

receive in college is probably adequate grounding in this; you’ll gain much greater 

facility with experience, of course. In this day and age, it’s also very useful to be 

able to work with surface-mount components. You can practice this very inex-

pensively on any junked piece of hardware—an old PC motherboard, a DVD 

player, or any similar board with lots of parts on it.

I’m sure you’ve noted the recurring theme here: even if you learn some skills 

theoretically at school, I’m exhorting you to find opportunities to keep working 

at example problems requiring those skills in real life. Furthermore, a lot of what 

you need to know can only be acquired through dealing with actual problems. 

Engineering is a practical discipline. Steep yourself in  homebrew projects to keep 

your skills fresh and ready for action; you’re also demonstrating self-motivation 

to future employers.



This Page Intentionally Left Blank



37

3.1  Target Audience

One of the most frequently asked “newbie” questions asked in embedded engi-

neering forums is (paraphrased), “Which  microcontroller should I learn about 

in order to have directly marketable embedded skills?” This question is fairly 

commonly posed by technicians and engineers with circuit design experience, 

who are looking to extend their  skill set upward into firmware. This chapter will 

provide such people with some idea why the newbie question can’t be answered 

in any simple way, and some useful recommendations as to which platforms you 

might choose for experimentation and learning purposes.

This is an appropriate moment to make a very important point to those people 

who work primarily in hardware design: Not only is it practically mandatory for 

a latter-day hardware engineer to understand, at least partially, the software layer 

above their head, but having a good understanding of what can be achieved in 

firmware will make your circuit designs more   efficient. There are problems that 

are much easier to solve in firmware than in hardware, and a good design engi-

neer—software or hardware—will keep this in mind so that the overall design 

can be tuned with respect to the features that will be implemented in software 

versus those that are dealt with in hardware.

To take a trivial example—most microcontrollers that implement a hardware 

UART expect to be connected to an off-the-shelf RS-232-compatible line driver/

receiver chip (the MAX232 is a common candidate, and it’s available from several 

sources). If you’re connecting a  microcontroller to something else on-board via 

the UART, and you don’t intend to shift the signal to RS-232 levels, the software 

Teaching Yourself, Bottom-Up
(Small Embedded Systems)

3



38 Chapter 3

will be simpler and much more cycle-efficient if you design the other end of the 

communications link to accept inverted input.

In any case, the short answer to the “Which micro should I learn for fortune 

and glory?” question is that learning how to work with any one particular micro-

controller won’t lead you directly to a job.1 When you come to a new job, you’re 

going to find a certain body of  legacy technology implemented on some micro 

or other (probably some hoary old device you would never choose in your wild-

est nightmare2), and perhaps a newer generation based on a different family of 

micros—and when you start working on your own completely new designs, you 

may choose a different family yet again. All sorts of factors will affect your  choice 

of micro; future availability, pricing, contract terms with distributors, power sup-

ply limitations, performance requirements, peripheral requirements . . . and so 

the list goes on.

You might occasionally see people asking if there is any reason to learn how 

to develop on   8-bit cores, since the   32-bit cores are getting cheaper every day. 

These people don’t take account of the fact that for high-volume consumer appli-

cations like VCRs and CD players (which don’t benefit at all from a high-end 

microcontroller), a few pennies in cost translates to massive annualized savings. 

These applications will not migrate from 8-bit to 32-bit cores until there is no 

cost difference at all.

Note that this is not quite the same thing as saying “never,” and it’s worth 

explaining some of the issues so that you can understand the factors at work 

here. As   die sizes shrink, the packaging and   bonding costs (bonding wires from 

the silicon to pins that go out to the real world) start to dominate the cost of the 

device. Raw 8-bit   dice will always be cheaper than raw 32-bit dice due to their 

lower transistor count, but by the time the chips are packaged for sale, the price 

difference may be almost invisible. For some applications, it is already  foreseeable 

1 Sometimes, a particular job will “require” experience with a specific  microcontroller. Job descrip-
tions constrained in this way indicate a lack of understanding on the part of the job poster. For any 
competent engineer, learning a new microcontroller is a trivial exercise; learning the system is the 
time-consuming part, and this training time can’t be reduced significantly by mere familiarity with a 
few of the component parts.

2 This has been the case with every day job and contract job I have ever taken. Existing code and 
hardware are, to the new hire, like arranged marriages—they might work out for the best, but trepi-
dation and caution are the prudent approach.



 Teaching Yourself, Bottom-Up 39

that there will be no real cost benefit to be realized by staying with an 8-bit 

architecture. There is a complicated and rather interesting set of simultaneous 

equations at work here. Individual chip dice (raw unpackaged chips sliced off 

the   wafer) are priced mostly according to the number of processing steps in the 

“recipe” and the number of good dice yielded by each wafer. As   chip geometries 

get smaller, the number of dice per wafer goes up. Additionally, the absolute

cost differential between an 8-bit core and a physically larger 32-bit core goes 

down, since the absolute size of each is shrinking. (The relative size difference is 

still the same; if the 32-bit core was 30% larger before the shrink, it will still be 

30% larger afterwards. However, since each feature costs less after a die-shrink, 

the financial impact of that size difference is reduced.) On the flip side, however, 

smaller geometries can lead to reduced yield, since a single defect in the wafer is 

likely to affect a larger number of dice; this factor puts upward pressure on the 

cost of small-geometry chips. The net result of all this banter is that as manufac-

turing processes improve, the cost of a core—of either flavor—is asymptotically 

approaching zero. As both 8-bit and 32-bit cores get closer to that magic spot, 

the cost of the core is starting to disappear behind other factors.

For parts with a lot of   on-chip memory, for example, the core cost is more 

or less irrelevant compared with the cost of the memory array. However, this 

question becomes more complicated still because the processes used to make 

memory are not the same as the processes used to make microprocessor cores. A 

microprocessor requires several layers of   interconnects due to its complexity—it 

needs to route large buses around multiple peripherals, and in many cases needs 

additional special handling to meet mixed-signal requirements. A memory array, 

on the other hand, is simply a two-dimensional matrix; it doesn’t need so many 

layers. Since all areas of a chip have to go through every process required by any 

single part of the chip, this means it is much more expensive (dollar per kilobyte) 

to put memory on the same die as the processor. At a certain size cut-off, there-

fore, you will find that manufacturers switch to a   stacked-die configuration—the 

memory array is a separate chip, and the microcontroller is mounted on top of 

it.3 Bond wires connect the two. 

3 For any chip where this issue is a consideration, the memory section will be geographically much 
larger than the microcontroller core.



40 Chapter 3

The principal downsides here are (a) the cost of bonding the two parts, (b) 

vulnerability to   vibration damage, (c) reduced speed, and (d) increased   RF 

emissions. It is very instructive, when comparing the prices of different (large) 

micros with similar features, to drill down into the details like this and deter-

mine exactly what disdavantages you’re going to experience from choosing the 

cheaper part. Some applications might not be affected, but anything with tight 

RF requirements (a GPS receiver or cellular phone, for instance) needs to think 

very carefully about the cost/benefit equation of choosing stacked-die parts.

Leaving this interesting digression to one side, if you’ve got a solid practical 

electronics background—and I’m speaking here particularly to hardware design 

engineers, but also to technicians—you’ve got a big advantage over software-only 

people in the sorts of applications where 8-bit processors are commonly used. 

The reason for this is that you’re already used to extracting   state information 

out of a complex system using hardware tools that typically only allow you to 

look at the system through a tiny window. You’ve also gained a comfortable level 

of familiarity with what can go wrong with the system on the outside, from a 

voltage/time perspective.

Hence, if you can drive an   oscilloscope or   logic analyzer competently, you’ve 

already acquired one of the most important skills you’re going to use in firmware 

development: being able to infer a great deal about the system being debugged by 

peering through a relatively small aperture. Although it’s nice to have a full sym-

bolic   debugger, this luxury is often not available. Sometimes it’s too  expensive to 

justify purchasing the necessary hardware and software, and sometimes you simply 

can’t reproduce the problem(s) in your code when it’s running on an emulator.

In the remainder of this chapter, I’m going to introduce you to a few popular 

microcontroller cores, and describe some of their features, both enjoyable and 

execrable. This chapter is not, of course, an up-and-running guide to using any 

of these parts. It is a high-level overview of what’s inside these parts, where you 

might use some of these device families, and where their design strengths lie. 

Where possible, I’ll also provide you with pointers to places where you can obtain 

hardware and software to do your own development and experimentation.

On a related note: In this chapter, I mention several specific vendors and 

products by name, and I quote some approximate prices. I’m not endorsing these 

vendors in the same sense that an athlete might endorse a sports shoe company 



 Teaching Yourself, Bottom-Up 41

(“Buy Fred’s Sneakers! Their check to me cashed really fast!”). I am explicitly not 

exhorting you to buy anything in particular; I’m merely providing these specifics 

as a convenience feature so that you can quickly find and read about the products 

that I’ve used and found well-suited to unprogrammed learning on a budget. 

3.2  Intel® (Et al.) 8051 Variants

Intel’s 8051 architecture is an industry-standard platform referenced in almost 

every engineering course since the beginning of the microprocessor era. When 

spoken of in polite company (and even in books like this one), you’ll generally 

see the number 8051 prefixed with the adjective “venerable” or a synonym. 

Personally, I would much rather describe it as “decrepit,” but it’s a solid fact that 

the 8051 is still the world’s bestselling 8-bit microprocessor core. Barring some 

major religious uprising, this is likely to remain true for as long as the world is 

still manufacturing and using 8-bit micros.

I’m including a discussion of the 8051 in this book for two main reasons and 

one minor reason:

1. It pops up in all sorts of apparently unrelated applications—many  applica-

tion-specific standard products ( ASSPs), for instance, have an 8051 core. 

The chance that you’ll run across an 8051 variant in your career is thus 

very good indeed. Being familiar with the core’s capabilities, if nothing 

else, will help you decide how to put together your design.

2. If you can work efficiently with the 8051, you can work with anything, 

so it’s not a terrible architecture to learn on. 

3. (Minor reason)—The 8051 happens to be very efficient at tasks that involve 

 bit-level data manipulation. Clock for clock, it is faster at these operations 

than many 32-bit microcontrollers. You may find this fact useful, since 

the 8051 is also very cheap.

For educational purposes, the principal advantage of the 8051 family is its 

ubiquity. From the point of view of real, commercial projects, the principal 

stated advantage of the 8051 is its availability from multiple sources. It is widely 

claimed that this makes the 8051 a truly  multisourced part, and that you have 



42 Chapter 3

something approximating a guarantee that you will have a migration path to 

another vendor if a particular source is giving you problems.

This conventional wisdom is, for the most part, not strictly true, and it irritates 

me somewhat when people make this comment without sufficient qualification. 

While it is certainly true that a few exceedingly vanilla standard parts are avail-

able in pretty nearly identical forms from several vendors, all of those vendors 

also offer more specialized parts. Some of them feature optimized  microcode 

with fewer machine cycles per instruction; some have higher maximum clock 

speeds, more RAM, on-chip debugging capabilities, extra UARTs, and so on. 

Once you start looking at ASSPs4 like digital camera ICs, USB keyboard and 

mouse controllers, USB-to-Flash-media interface chips and so on, there is no 

standardization at all beyond the bare instruction set; certainly, there are no 

drop-in replacements from different vendors. As a result, the 8051 is really only 

a true multisource part (in the sense of drop-in pin-for-pin replacement) if you 

take great care to avoid using any vendor-specific special features—in which case, 

why should you pay for them?

For the purpose of giving you a quick introduction to the 8051 family, I’ll 

describe the basic Intel 80C51 automotive part.5 This microcontroller is  available 

in either 40-pin DIP or 44-pin PLCC packaging (the pinout of both is industry-

standardized). It offers 4 KB of on-chip EPROM or ROM, 128 bytes of RAM, 

two 16-bit timer/counters, five interrupt sources, one UART, and a clock speed 

of up to 16 MHz. For development purposes, you would normally use either an 

 ICE, or the 87C51, which is the EPROM variant. (Note that 8051 part number-

ing, for vanilla parts anyway, works similarly to nonvolatile memory parts—as a 

rule, 87xxx parts are EPROM, 89xxx parts are Flash.) Figure 3.1 shows the pinout 

of the 40-pin DIP 87C51; numerous other variants are identical, or almost so.

4 Application Specific Standard Product—for example, digital camera ICs, USB memory stick drive 
ICs, CompactFlash controllers, infrared remote control chips, dedicated CD-ROM servo control 
chips, printer controllers, and so forth.

5 Information in this section is redacted principally from various reference circuit designs, as well 
as “80C31BH/80C51BH/87C51 MCS® 51 CHMOS SINGLE-CHIP 8-BIT MICROCON-
TROLLER” (Intel, 2004), and “MCS® 51 MICROCONTROLLER FAMILY USER’S  MANUAL” 
(Intel, 1994).



 Teaching Yourself, Bottom-Up 43

Figure 3.1  40-DIP 8051 pinout.

The pin count is dominated, as you see, by the   general-purpose I/O (GPIO) 

ports. There are four 8-bit ports in the standard 8051, providing up to 32 avail-

able I/O lines. Ports 0, 2 and 3 are, however, multiplexed with other functions, 

shown in parentheses. (Note that there are still other alternative uses of some 

pins when the part is being programmed in a suitable burner; those uses are not 

shown here. The baseline 8051 series parts are not in-system programmable.)

Be aware that not all of these GPIOs behave identically, even when their asso-

ciated multiplexed peripherals are not enabled! It is a rookie mistake in an 8051 

design to assume that the the drive characteristics of all GPIOs are identical. In 

particular, you must note that port 0, when being used as a general-purpose port, 

has open-drain outputs with no internal   pullup resistors. (The behavior of port 

0 is different when external memory is being accessed; see the following for more 

details on that.) Ports 1, 2, and 3 all have on-chip pullups; if you are using them as 

inputs, and an external device pulls the pin low, the 87C51 will source current.

The following are other miscellaneous pin functions.

• RXD, TXD – Receive and transmit data for the on-chip UART, 

respectively.



44 Chapter 3

• _INT0, _INT1 – External interrupt request lines.

• T0, T1 – External clock signal inputs for timers 0 and 1.

• _RD, _WR – Read and write strobes, respectively, for off-chip RAM.

• _PSEN (Program Store ENable) – Read strobe for off-chip program 

memory.

• ALE/_PROG – Address Load Enable pin, used by multiplexed address/

data bus when accessing external memory. Also used when EPROM 

parts are being programmed in a specialized burner.

• RESET – Resets the microcontroller (note that it is active high, which is 

slightly unusual).

• _EA/Vpp – If this pin is strapped low, the micro will boot off exter-

nal program memory instead of  on-chip memory. This is a supremely 

useful feature if you’ve come across a boxload of used OTP or ROM 

8051s; just tie this low and use the part in ROMless mode. I’ve come 

across commercial appliances—particularly cheap modems, and cer-

tain aftermarket automotive accessories—that used all sorts of recycled 

scrap/surplus  8051 parts in this way. If you intend to let the device run 

off internal memory, you should strap this pin high. Note that some 

8051 variants may disable this function partly or entirely if code read-

out protection is enabled.

• XTAL1, XTAL2 – Crystal oscillator amplifier input and output.

In addition to the features previously described, the 8051 has a multiplexed 

address/data bus allowing the device to access up to 64K of external static RAM 

(SRAM) and 64K of external program memory. These two memory types live 

in different address spaces, since the 8051 is a  Harvard-architecture device.6

The method by which each of these external memories is accessed is basically 

similar but slightly different in the details. First, here’s the process by which the 

6 In case you don’t remember Computer Science 101, in brief: von Neumann architectures put code 
and data in a single address space, and Harvard architectures put code and data in separate address 
spaces. This has all sorts of implications to the embedded programmer—particularly to the inexperi-
enced embedded programmer using a high-level language that hides some of this detail.



 Teaching Yourself, Bottom-Up 45

8051 accesses external program memory, either using the MOVC instruction 

(more on this later) or by jumping to a location in off-chip memory.

• The micro brings ALE and _PSEN high.

• The low 8 bits of the desired fetch address are output on port 0. In this 

mode, the port uses strong internal pullups; you don’t need external  pullups 

if you are only using port 0 as the address/data bus.

• ALE is brought low.

• _PSEN is brought low and simultaneously, Port 0 switches to input mode 

to read the instruction. (Port 2 is still outputting the high byte of the 

desired address.)

In a typical 8051 circuit employing external memory, ALE is routed to the 

clock input of an octal flip-flop such as a 74HC373, and P0.0..P0.7 are routed 

to the D0..D7 inputs of that chip. The Q0..Q7 outputs of the 74HC373 form 

the low 8 bits of the memory address bus (A0..A7); the high 8 bits (A8..A15) 

come directly from P2.0..P2.7 on the 8051.

The A0-A15 lines are routed directly to the address inputs of your memory 

or memories. The _PSEN signal goes to the _OE (Output Enable) line of your 

EPROM or Flash memory chip, and _RD and _WR should be run to the _OE 

and _WE (Write Enable) lines, respectively, on your SRAM. Separate chip selects 

(if any) on the memory devices should be tied to their active states. All of this 

sounds rather complex, and looks quite impressive if you draw it on paper, but 

if you look closely you’ll see that in a large number of cases you can implement 

external RAM and ROM with no additional components besides the 74HC373 

latch. In fact, some manufacturers even sell SRAM and/or EPROM chips (and 

exotic combined SRAM/EPROM or SRAM/Flash devices, in some cases!) that 

already have the address  demultiplexer latch built in, so that 8051 users can 

reduce the surface area of their boards.

Addressing external RAM via the data pointer ( DPTR; see the following) works 

almost exactly the same way, except that instead of _PSEN being asserted during the 

memory access cycle, either _RD or _WR is asserted depending on whether this is 

a memory read or write operation. (In the case of a write operation, Port 0, rather 

than being an input, outputs the desired data during the _WR active period.)



46 Chapter 3

An extremely common 8051 reference circuit configuration, particularly 

for hobbyist experimentation boards, is to have a socket for a 28-pin Flash or 

EPROM (usually a 27256 32 KB or 27512 64 KB device), a jumper to enable 

booting off that external memory device, and a single 62256 or equivalent 32 KB 

static RAM. Another fairly common configuration is similar, but has a single 

32 KB Flash configured so that it can be written via the “SRAM side” and read 

via the “code side” of the external memory interface. By this means, you can 

have a small bootloader inside the 8051, and a user program inside the Flash 

memory. The user program can easily be updated using a serial link or some 

other convenient mechanism.

Of course, you are not limited to connecting just memory devices in this way; 

you can connect external buffers and latches to expand your I/O capability, or 

you can add a peripheral expansion IC such as the 82C55. Common practice in 

such cases is to use external logic; for example, a 74HC138 one-of-eight decoder, 

to decode a few bits of the demultiplexed address bus and generate the required 

chip select signals.

The program memory map of the 8051 is relatively simple. There is a single 

64 KB program address space from 00000h to 0FFFFh. Depending on the state 

of the _EA pin, this is either a single external 64 KB space, or a 4 KB internal 

space and a 60 KB external space (in which case, the lowest 4 KB of the external 

memory device is not used). Note that code protection features can cause odd 

results if you’re using external code memory. For instance, some 8051 variants, 

when code protection is enabled, disable the MOVC instruction while the 

program counter is pointing into external RAM. The rationale is to prevent an 

attacker from writing a program that reads the low code memory area and outputs 

it to a port—assuming your design already uses some external code memory, the 

attacker could simply pull out the device containing the unprotected portion 

of your program, insert their attack code, and grab the read-out version of your 

secret code.

Data memory is more complicated. The internal data memory space stretches 

from 000h to 0FFh. At the bottom of this area, from 000h-01Fh, reside four 

banks of eight scratch registers. These registers are named R0 through R7; accord-

ing to the currently selected bank, R0 refers either to location 000h, 008h, 010h 

or 018h, and so on.



 Teaching Yourself, Bottom-Up 47

The area from 020h through 02Fh is user-available scratch memory, but 

has the interesting and useful property that it is addressable at the bit level in a 

single instruction. The bits in this area are logically numbered from 000h (bit 0 

of location 020h) through 07Fh (bit 7 of location 02Fh). When using an assem-

bler that employs standard Intel syntax, you can refer to each location either 

by its 7-bit address or as “20.0”, “2E.4” and so on. It’s extremely code size- and 

speed-efficient to put your program’s flags and other bitwise-accessible data in 

this area, and indeed this is one of the 8051’s key strengths.

The remaining area from 030h through 07Fh (the top of internal memory in 

an 8051) is scratch RAM available for the stack and other user purposes.

Above the internal data memory, from 080h to 0FFh, lives the special func-

tion register (SFR) area. These registers control the various hardware features 

in the microcontroller; the following table shows their functions. Observe that 

many of these registers are directly bit-addressable. Also note that the SFR area 

consists mainly of empty holes; these spaces are used to control other hardware in 

enhanced 8051 variants. For example, since the  DPTR is a scarce resource, many 

8051 vendors implement an additional  DPTR—or even more than one—to 

speed up operations such as bulk memory copy or to allow the user to maintain 

state in more than one thread without needing to save and reload the  DPTR.

Address Bit? Name Function

080h Y P0 Port 0

081h SP Stack pointer

082h DPL  DPTR (data pointer) low byte

083h DPH  DPTR (data pointer) high byte

087h PCON Power Control

088h Y TCON Timer/Counter Control

089h TMOD Timer/Counter Mode Control

08Ah TL0 Timer/Counter 0 low byte

08Bh TL1 Timer/Counter 1 low byte

08Ch TH0 Timer/Counter 0 high byte

08Dh TH1 Timer/Counter 1 high byte



48 Chapter 3

Address Bit? Name Function

090h Y P1 Port 1

098h Y SCON Serial control

099h SBUF Serial data buffer

0A0h Y P2 Port 2

0A8h Y IE Interrupt enable control

0B0h Y P3 Port 3

0B8h Y IP Interrupt priority control

0D0h Y PSW
Program Status Word (among other things, this 
contains flags indicating which register bank is 
 currently being addressed)

0E0h Y ACC Accumulator

0F0h Y B B Register

Note that the SFRs can only be accessed by direct addressing modes. For 

example, “MOV 080H, #012H” will write 012H to the SFR at address 080H, 

which is to say Port 0. However, “MOV R0, #080H” followed by “MOV @R0, 

#012H” will not change the state of Port 0.

The reason for this seemingly odd behavior is that 8051 variants with larger 

internal RAM space—the 8052, for instance—implement RAM “underneath” 

the SFR area. If you want to access the SFRs, you use direct addressing; if you 

want to access the RAM with the same nominal address, you use indirect address-

ing modes.

The final type of memory accessible by the 8051 is “ XRAM”, which is accessed 

indirectly using the 16-bit  DPTR register and the MOVX instruction (e.g., 

“MOVX @ DPTR,A” stores the accumulator at the external address referenced 

by  DPTR). Just pause here to take stock of all the different address spaces; we 

have program memory (MOVC, read-only), data/SFR memory, and external 

data memory (MOVX, read/write).

If you’re reading this and beginning to feel that the 8051’s architecture is a bit 

on the rococo side, you’re not alone. The 8051’s separate ( Harvard-architecture) 



 Teaching Yourself, Bottom-Up 49

address spaces and, to a lesser extent, the instruction set, are not very friendly to 

the apprentice embedded developer. (The special 8051s built into ASICs can be 

even weirder to work with, particularly when you start looking at systems with 

more than 64K of code memory or  XRAM.) The architecture is also significantly 

unattractive to compilers for high-level languages.

Assuming you need or want to work with the 8051, how do you get started 

with this core? The usual low-cost method of learning how to use these chips is 

to buy a single-board computer based on one of the standard parts. In times of 

yore, it was also necessary to have an  EPROM burner, either to burn EPROM-

variant microcontrollers directly, or to burn external EPROMs. These days, we 

have a lot more flexibility in terms of device selection, and the overall cost of 

entry is much lower.

The lowest-cost method to start working on the 8051 is to build your own 

development system using a Flash-based microcontroller that doesn’t require 

special programming hardware. In practical terms, this means selecting a part 

that supports in-system serial programming; these interfaces are usually very 

simple and easily connected to a PC with simple hardware (in some cases, just a 

passive cable). I personally enjoy working with the Atmel® AT89S series parts; 

these are enhanced 8051s running at up to 33 MHz. Atmel provides free in-

 system programming software (either AT89ISP, or the newer  FLIP software) 

and the schematics for a simple programming cable; you most likely have all the 

required parts for this in your junkbox.7 The total cost of building the cable and 

a homebrew development board is in the neighborhood of $20.

As far as commercial 8051 hardware development tools go, there is a positive 

cornucopia of choices available to you. The luxury limousine of development 

hardware is an  in-circuit emulator ( ICE) such as the Nohau EMUL51-PC. This 

costly piece of equipment allows you to emulate the target device in real time, 

trigger breakpoints or other behaviors on a variety of conditions, and more. If you 

have trace memory installed, you can stop the program execution when a problem 

is encountered and trace back the program counter to see what your program was 

7 The “official” Atmel programming cable schematic is currently viewable at <http://www.atmel.com/
dyn/resources/prod_documents/isp_C_v5.PDF>—however, these deep links tend to move around. 
Note that this is the same ISP cable Atmel makes/recommends for their ATF15xx family reprogram-
mable Flash-based CPLDs, although Atmel doesn’t presently make that fact clear to the reader.



50 Chapter 3

doing before it went weird. In general, an  ICE of this sort gives you unparalleled 

visibility into your program’s state, and it can save you a lot of time.

If a full-speed hardware  ICE is beyond your means, some 8051s now have 

on-chip  JTAG interfaces. This sort of interface permits you to perform at least 

rudimentary debugging using a simple, inexpensive  JTAG adapter pod, and 

appropriate software on the PC side.  JTAG solutions are much slower than a 

full hardware  ICE, and by no means as flexible. (For instance, with most  JTAG 

on-chip debugger implementations it’s not usually possible to break on accesses 

to a specific memory address. This is probably the single most useful feature I 

employ when I have access to an  ICE, because it lets me know exactly when a 

RAM location got corrupted.) However, the  JTAG method is inexpensive and 

undeniably adequate for many applications.

At the bottom of the ease-in-debugging pyramid are the familiar burn-and-pray 

solutions—either using an EPROM emulator (this is basically a battery-backed-

up static RAM, loadable from your PC, that plugs in where you would otherwise 

insert your external code EPROM), or a reprogrammable Flash-based 8051 device; 

for instance, the Atmel AT89S family, as I mentioned earlier. If you’re heading 

down that latter path, study carefully exactly what is required to program each 

chip before you decide what part to use. The Atmel part I just mentioned, for 

instance, is programmable in-system using a simple hardware interface you can 

build in a few minutes, and either Atmel’s Flash utilities, or the free  PonyProg 

software (available from <http://www.lancos.com/prog.html>).

Some other 8051 variants require special, relatively expensive programming 

adapters. If you don’t see “serial ISP” programmability on the device’s feature list, 

chances are you might need to put it in an expensive external parallel programmer 

in order to reflash it. Some vendors provide low-cost evaluation boards for 8051 

type micros; for instance, Keil’s list of boards at <http://www.keil.com/boards> is

quite impressive. The MCB900, for instance, allows you to work on a variety 

of Philips 8051-type Flash micros, and it retails for around $70. The MCBX51 

board works with several vendors’ vanilla 44-pin 8051 parts, but it’s rather more 

expensive at just under $300.

In a similar vein, there exists a wide variety of different software development 

environments available for the 8051. Commercial software packages are avail-

able from Keil, IAR, Avocet, Hi-Tech, Raisonance, and others; in most cases, 



 Teaching Yourself, Bottom-Up 51

there are free demo versions with various restrictions; Raisonance’s evaluation 

is particularly useful, having a general limit of 4K of object code but otherwise 

being more or less fully functional.

I personally prefer to use the free compiler package,  sdcc (available from 

<http:// sdcc.sourceforge.net/>). This is unquestionably the poor man’s choice of 

8051 C compilers, and it’s probably a borderline decision as to whether you’d 

want to use it in a commercial product due to its relatively inefficient code out-

put (both in terms of size and speed). For large-volume production, a prudent 

calculation of development tool cost versus the additional per-unit cost of a 

larger microcontroller will probably lead you away from  sdcc. However, most 

of the 8051 projects I have worked on were written in pure assembly language 

anyway, so I’m not greatly affected by  sdcc’s relatively primitive state compared 

to the commercial C compilers; and in any case,  sdcc is perfectly adequate for 

hobbyist, low-volume and/or educational projects.

Unfortunately, because of the wide variety of special enhancements that various 

manfacturers choose to add to their 8051 variants, high-level language compilers 

for the 8051 need to have a lot of detailed knowledge about the target micro-

controller. This requires a substantial amount of ongoing support work on the 

part of the compiler vendor. For this reason (among others), free compilers such 

as  sdcc are unlikely to achieve anything close to the efficiency of a commercial 

compiler, if only because they won’t necessarily “know” about all the different 

enhanced chip types. For example, simply knowing about the existence of a 

second  DPTR in the target chip could allow a compiler to do a lot of significant 

time- and space-optimization. Since 8051s tend to find their way into exceed-

ingly cost-constrained applications, unfortunately the limitations of free compiler 

solutions tend to argue in favor of commercial development tools, which are not 

cheap. (This commentary doesn’t apply to assembly language, of course; if you’re 

hand-writing all your code, then use whatever assembler is convenient.)

In closing, I’ll share an interesting point, which you might find to be food for 

thought: One of the most respected manufacturers of 8051 development tools is 

Keil. In 2005, Keil was acquired by ARM. There has been rampant speculation 

about the possible ramifications of this. Some people point to the fact that Keil 

has experience developing very sophisticated compilers for 8051, and theorize that 

ARM will exploit this to develop ARM compilers of greatly improved efficiency. 

Others point out that 8051 is a very mature product, and the cost-performance 



52 Chapter 3

curves of high-end 8051 and low-end ARM almost overlap. There are an awfully 

large number of 8051 applications that are starting to creak at the seams as the 

list of mandatory “fashionable” features (wired Ethernet, WiFi®, Bluetooth® and 

Web-enabled control functions, to name a few of the most popular) becomes 

more convoluted. These big applications are ripe for migration to single-chip 

ARM parts. Hence, there is some speculation that ARM might conceivably 

reconfigure Keil’s product line in order to encourage people to migrate up to 

ARM-cored parts. This could be the thin end of the wedge; ARM might sweep 

downward through product portfolios, starting at the biggest and most complex, 

but eventually supplanting 8051 in even the simpler applications.

3.3     Atmel AVR®

Although technically in the same genus as the 8051, the Atmel AVR is a con-

siderably friendlier architecture. Before going any further in this section, I had 

better come clean about my addiction; I really love the AVR family. It is defi-

nitely my favorite 8-bit platform. I’ve found that it is both easy to work with 

and inexpensive to get tooled up for this micro. It’s very well-suited for  hobby 

projects and the low-volume commercial applications with which I occupy my 

spare time. (You will notice that large-scale commercial applications are miss-

ing from that list. I’ve been trying to find an excuse to use AVRs in my day job; 

although management is cautiously enthusiastic, the sole factor that has precluded 

a migration to AVR so far is the existence of large amounts of legacy assembly 

language for other cores.)

Now that all these virtues have been extolled, full disclosure requires me to 

point out some downsides. The first, obvious downside is that AVR is a propri-

etary core, and hence all AVR parts are  single-sourced from Atmel. By itself, this 

is not such a terrifying prospect; virtually every microcontroller is a single-source 

part. However, attached to this comment is the fact that Atmel has a less than 

perfect track record for dealing with small customers. If you browse through the 

archives of  comp.arch.embedded, you’ll find periodic complaints from people 

about Atmel’s vaporware products, strange and arbitrary product discontinua-

tion decisions, the utter impossibility of obtaining samples of any new part (I’ve 

experienced this problem firsthand, and can vouch for it), difficulty with sudden 



 Teaching Yourself, Bottom-Up 53

jumps in product lead time, and inaccurate estimates on delivery schedules. As a 

result of this, it is prudent to eschew brand-new parts for a while after they appear 

on the Atmel product linecard. It is also a wise idea to design out parts as soon 

as they migrate to the “not recommended for new designs” status unless you’re a 

big enough buyer to merit a last time buy letter. If you’re relying on low-volume 

distribution and you don’t keep track of the product lifecycle, you might have 

an unpleasant surprise next time you go to order parts. As a general rule, if you 

stick with high-volume variants that are readily available at retail from stockists 

like Digi-Key, you are fairly unlikely to have a problem.

As a specific example of the AVR’s capabilities, let’s consider the   ATmega32L 

in DIP-40 packaging illustrated in Figure 3.2.8 The ATmega32 is one of the 

higher-end AVRs, though not the largest part by any means. (Note that there are 

a few slightly different flavors of AVR; very small parts, mid-range parts, and large 

parts. The mega32 is one of the large parts. The larger cores have an enhanced 

instruction set that is a superset of that found in the smaller cores.)

Figure 3.2  40-DIP ATmega32L.

8 Information in this section is taken from the ATmega32/ATmega32L datasheet, document #2503F-
AVR-12/03.



54 Chapter 3

As with most other micros, the pinout is again dominated by   GPIOs; ports A 

through D are 8-bit general-purpose ports, each pin of which can be individually 

programmed as inputs or outputs. The following are the other pin functions 

(including those multiplexed onto GPIO ports).

• XTAL1, XTAL2 – Crystal or ceramic resonator connections. The AVR can 

use an internal RC oscillator clock source, an external RC, or an external 

resonator.

• AVCC, AREF – Vcc and reference voltage for the on-chip ADC.

• ADC0 through ADC7 – Analog-to-digital channels. Each line can be 

individually assigned to the ADC module.

• XCK – External clock input for the USART module. This is used if you 

are implementing a synchronous serial protocol with the clock sourced 

from some external device.

• T0 – Timer/Counter 0 external input.

• T1 – Timer/Counter 1 external input.

• AIN0 – Positive input for on-chip analog comparator.

• INT0, INT1, INT2 – External interrupt 0, 1 and 2 inputs.

• AIN1 – Negative input for on-chip analog comparator.

• OC0, OC2 – Timer/Counter 0 and output compare match (used for 

PWM drive applications).

• SS – SPI Slave Select input (when operating as a SPI slave device).

• MOSI, MISO – SPI bus master out/slave in and master in/slave out 

pins.

• SCK – SPI serial data clock.

• SCL, SDA – Two-wire bus (I2C by another name) clock and data lines.

• TCK, TMS, TDO, TDI –  JTAG debugging interface pins.

• TOSC1, TOSC2 – Timer Oscillator crystal resonator lines. Timer/Coun-

ter 2 can be operated in an asynchronous clocking mode where the clock 

source is provided by an external resonator connected to these pins.



 Teaching Yourself, Bottom-Up 55

• RXD, TXD – USART receive and transmit data lines, respectively.

• OC1A, OC1B – Timer/Counter 1 Output Compare A and B match 

outputs.

• ICP – Timer/Counter 1 Input Capture Pin.

Note the rich peripheral set on this part. If you’re contrasting it against the 

8051 I discussed in the previous section, be advised that it is not a fair apples-to-

apples comparison. The 8051 I described earlier is strictly a basic, generic part; I 

chose it specifically because this is a lowest-common-denominator chip available 

from several vendors. There are certainly 8051 variants with every peripheral 

you’ll find in the AVR family; you just need to shop around. Much like the AVR, 

these more enticing chips will be single-source parts, or nearly so.

Power consumption on the AVR family is in the middle to low end of 

8-bit parts. Most devices offer selectable power consumption options. The exact 

power-management features available depend on the device, of course, but most 

of them center around keeping the device in sleep until an interrupt occurs. As 

an interesting side note, in order to obtain the clearest possible results in ADC 

samples taken by the device, it’s absolutely necessary to use these power-down 

modes so the CPU core isn’t injecting noise into the analog reading.

At the time of writing, Atmel has just announced the impending release of a 

new “  picoPower” series of AVR devices. These are standard AVRs with a reduced 

power requirement, identified by a P suffix on the part number; the first to be 

offered is the Atmega169P. Operating at 1.8V, this device draws 330 µA at 1 MHz, 

or as little as 10 µA when operating from a 32.768 kHz watch crystal.9 Even 

with an active LCD display, this number only rises to 25µA. These devices are 

aimed very clearly at the MSP430’s market space, and in fact Atmel’s marketing 

literature makes direct comparisons.

AVR is a  Harvard architecture, with two main address spaces—program 

and data memory. Program memory stretches from $0000 to $3FFF (32K 

of space); data memory stretches from $0000 to $085F. The data space from 

9 These numbers are 350µA and 20µA respectively for the older non-picoPower ATmega169; with 
LCD active, the part draws 40µA.



56 Chapter 3

$0000–$001F is reserved for general-purpose registers; $0020–$005F is occupied 

by I/O  registers. The 2K of on-chip RAM resides from $0060–$085F. From a 

superficial look at the instruction set, you might be led to believe that there is 

a separate I/O space, since there are dedicated IN and OUT instructions that 

operate on the I/O register area. This isn’t the case; IN and OUT are just con-

venience features.

The ATmega32 also has a third address space,   EEPROM memory—this is, 

however, not directly addressable by the core. In a similar fashion to most other 

parts with on-chip EEPROM, this memory is accessed through an 8-bit window; 

you write the desired EEPROM address to a pointer register and access data 

through another register.

Speaking of address spaces, observe that this particular AVR variant does not 

have   external address or data buses (although some do). Since AVR cannot execute 

code out of on-chip RAM, this means that you can’t attach external removable 

code modules (software cartridges) and have them directly mapped into the code 

space as an executable program. You also can’t add more directly addressable 

RAM. If either of these functions is going to be important to your application, 

you should either look at one of the larger AVRs that does offer external buses, 

or (in the expansion cartridge example) consider writing an interpreter that can 

load and execute programs off external serially accessed Flash chips.

The AVR core has 32 8-bit general purpose registers, named R0 through 

R31. These registers live in the bottom 32 bytes of the data address space. The 

  instruction set is not entirely orthogonal with respect to these registers; registers 

R16 through R31 are treated slightly differently than R0 through R15. Apart 

from this detail, however, the instruction set operates more or less equally on all 

the general-purpose registers.

The top six registers have an additional special function; they can be treated 

as three 16-bit registers for the purpose of certain instructions involving indirect 

addressing modes and 16-bit arithmetic. When you are taking advantage of this 

capability, these 16-bit registers are named X (R26, R27), Y (R28, R29) and Z 

(R30, R31). In each case, the lower-numbered register contains the lower-order 

bits of the 16-bit concatenation. (Observe that this is just a nomenclature detail. 

You can access the individual 8-bit registers at any time and they will contain 

valid data.) From the point of view of high-level language usage, observe that 



 Teaching Yourself, Bottom-Up 57

the limited number of 16-bit registers acts something like the  DPTR restriction 

in the 8051 family; it’s something of a bottleneck.

There are a couple of slightly odd things about the AVR family, and both of 

them relate to programming the parts. The first strange thing is that you have to 

program the device’s three memory areas—program memory, EEPROM and fuse 

bits—separately. There is no universally recognized way to combine all this data 

into a single file for one-step programming. The way I usually work around this is 

by using a command-line programming tool (  avrdude, to be exact; the homepage 

for this open-source tool is <http://savannah.nongnu.org/projects/avrdude/>); I can 

then embed a one-step programming option into my project’s makefile.

The second oddity is that the internal   RC oscillator requires some device-

specific calibration in order to operate exactly on its nominal frequency. This is 

not, of itself, terribly odd for on-chip RC oscillators in microcontrollers. What 

is unusual is that the factory calibration bytes are stored in such a way that they 

can’t be used directly; they are located in the device signature area, which can only 

be read by external programming hardware.10 You can select RC clock speeds of 

1, 2, 4 or 8 MHz in the fuse bits; your software then needs to load the correct 

device-specific calibration byte into the OSCCAL register at powerup. 

This process is handled automatically for the 1 MHz case; at reset, OSCCAL 

is automatically initialized with the 1 MHz calibration value. If you’re using one 

of the faster speeds, Atmel has thoughtfully provided the correct calibration 

constants for you in the chip, but there’s no way your software can get at them 

directly.11 The recommended workaround for this is to read out the signature area 

with your programming hardware, retrieve the appropriate calibration byte for the 

speed of interest, and write it into a spare byte of software-accessible EEPROM. 

This has to be done individually for each chip you program; the calibration con-

stants are dependent on process variations. Your software then needs to read the 

relevant EEPROM byte at power-on reset, and write that value into OSCCAL. 

This is really quite annoying; I wish Atmel had either made the part auto-load 

the correct calibration byte for each RC oscillator mode, or at least provided a 

method for software to access the factory calibration area.

10 The device signature area appears to be merely a reserved area of EEPROM cells. It contains factory 
calibration values and the device signature bytes used by programming hardware to determine the 
chip version.

11 As this book was going to press, Atmel was working to eliminate this particular oddity.



58 Chapter 3

There are quite a few different development hardware options for working 

with the AVR. Atmel’s very lowest-end development board (really, more of a 

demonstration than a development board) is the   AVR Butterfly, which sells for 

about $20 but is frequently given away as a freebie at Atmel seminars and “lunch 

and learn” events. The Butterfly consists of an ATmega169 microcontroller with 

a small alphanumeric segmented LCD, lithium coin cell, a 4-way miniature 

joystick of the type found on cellphones, 4 Mbits of off-chip Flash memory, a 

temperature sensor (thermistor), a light sensor (CdS cell) and a piezo speaker 

element. The board has a lapel clip so you can attach it to your clothing and 

use it as a name-tag badge. It is shipped preloaded with some demo software, 

including a bootloader—so it can be reprogrammed over a regular serial port; 

you don’t need to own Atmel-specific programming hardware. However, the 

board does have a  JTAG connector and you can use it as a low-cost evaluation 

platform for the ATmega169.

The next step up from the Butterfly is the   STK500 development board, again 

direct from Atmel, which retails for about $79. This is the recommended entry-

level evaluation board for the AVR series, and it’s the board I’d recommend you 

acquire if you’re just starting out with these parts. The STK500 connects to your 

PC over a standard serial interface.12 It has sockets for most of the DIP-package 

AVR variants, and you can run some simple applications directly on the board. 

Note that plug-in adapters are also available so that you can use the STK500 to 

work with some of the larger AVR parts that don’t come in DIP packaging.

The STK500 has eight LEDs and eight pushbuttons, as well as headers to 

allow you to connect to all of the I/O lines of the micro. You can simply put your 

chip in the appropriate socket and connect the rest of your circuit to the headers. 

Using a (supplied) 6-pin cable, you can also use the STK500 to perform in-system 

programming of AVR devices on your own custom boards. The STK500 sup-

ports serial (SPI) programming as well as parallel programming; the advantage 

of this is that if you accidentally switch off the SPI programming mode in the 

fuse bits of your target device, you can use the STK500 to recover and reprogram 

the chip, as long as you can remove the device from your circuit.

12 The STK500 board plays well with most of the USB-to-serial adapters I have tried under Windows, 
Linux and Mac OS X. This is an important point in these dark days of legacy-free PCs. Most of the 
homebrew serial-connected device programmers don’t work properly over USB converters.



 Teaching Yourself, Bottom-Up 59

The one thing the STK500 doesn’t do for you is offer debugging support. It’s 

strictly useful for burn-and-pray type development. If you want to debug your 

code, you need either a full  ICE (for the low-end parts) or a  JTAG  ICE for the 

higher-end parts that feature  JTAG interfaces. Atmel’s    JTAG- ICE is a serial-

connected device, and fairly expensive; it’s significantly cheaper to buy  Olimex’s 

 JTAG- ICE clones, which are available in both serial and USB flavors. (The USB 

flavor is simply the serial version with an FTDI USB-to-serial converter chip 

built into the housing.)   Olimex can be found at <http://www.olimex.com/>—they 

make all sorts of inexpensive evaluation hardware, as well as offering low-cost 

PCB prototyping services. Their off-the-shelf products are distributed in the 

U.S. by Spark Fun Electronics.

Atmel’s newer parts also feature an exceedingly nifty one-wire debugging 

interface called   debugWire; this interface allows you to debug your code using 

only the ground and reset lines, thereby allowing you to use the  JTAG pins as 

I/O ports. debugWire is supported by the  JTAG- ICE Mk. II, which has replaced 

the original  JTAG- ICE.

From a software perspective, it’s easy to get started on the AVR in assembly 

language using Atmel’s free AVR Studio® software (available for Windows® only). 

There are actually three different assemblers available under Windows; Atmel’s own, 

Tom’s Linux AVR Assembler “tavrasm” (available from <http://www.tavrasm.org/>;

despite the name, you can build and run this assembler happily on Windows using 

Cygwin) and the AVR-targeted flavor of gas, the GNU assembler. If you’re going 

to do your programming in assembly language, I’d advise either tavrasm or the 

Atmel assembler; although gas is perfectly functional, it won’t directly assemble 

off-the-shelf code that was written for Atmel’s environment. tavrasm, on the other 

hand, is specifically designed to work exactly like the Atmel assembler. 

Note also that AVR Studio is a fully integrated IDE comprised of a source 

editor, assemblers, and software to talk to AVR programming and debugging 

hardware. (A software simulator is also included.) If you use a different assem-

bler—for instance, if you’re working inside Linux or Mac OS®—you’ll need 

separate software to burn chips. The best choice right now is avrdude, which I 

mentioned earlier. From time to time, Atmel issues updated firmware for their 

hardware such as the STK500, the  JTAG- ICE and the AVRISP programming 

cable. These updates are shipped inside newer versions of AVR Studio; when 



60 Chapter 3

you connect to the development hardware, the IDE checks the firmware ver-

sion and automatically updates older boards. Sometimes, these updates involve 

radical protocol changes that completely break all older software. avrdude is the 

most up-to-date open-source programming utility; it’s well-supported and won’t 

remain broken for long if Atmel change something. Other alternatives, such as 

the once-popular uisp program (<http://savannah.nongnu.org/projects/uisp/>), 

have fallen behind in their updates and no longer work with current develop-

ment hardware.

The AVR’s fairly neat architecture and relatively tidy instruction set make 

it reasonably friendly to C compilers; certainly much more friendly than the 

8051. In fact, the basic architecture was designed (by two Norwegian university 

students) with the specific goal of efficient C code execution. Runtime perfor-

mance is good, but compiled object size is generally not fantastic, particularly 

when dealing with 16- and 32-bit arithmetic. There are several extant C compiler 

packages targeting the AVR; the two with which I am most familiar are gcc and a 

commercial product from   Rowley Associates <http://www.rowley.co.uk/>. Rowley’s 

product is a full IDE-style compiler/debugger which is simple to use and provides 

turnkey operation. It is available for both Windows and Linux.

A gcc installation is, of course, composed of several components; GNU binutils, 

gcc itself, a C runtime library for the AVR (avr-libc, available from <https://

savannah.nongnu.org/projects/avr-libc/>), perhaps the GNU debugger gdb, and a 

programming tool such as avrdude, not to mention a sourcecode editor. I prefer 

to use Eclipse <http://www.eclipse.org/> as my sourcecode editor, as it provides me 

with a consistent user interface for building all my projects—Linux, Mac OS, 

AVR, ARM, and so on. Note that there is a prepackaged suite of ready-to-run 

GNU tools, referred to as   WinAVR, available from <http://winavr.sourceforge.net/>.

I would normally download the individual components and build them myself 

rather than relying on a prepackaged installer, but this is to a large extent a matter 

of individual taste.

Out of the available build environments, I generally prefer gcc, although it 

does not yield the smallest or fastest code. Since I work with gcc on numerous 

platforms, I have less porting work to do if I standardize on gcc wherever it is 

available. This is important to me, because time is valuable; I need to be able to 



 Teaching Yourself, Bottom-Up 61

write code on (say) AVR and use it on (say) ARM with the minimum possible 

effort. By using the GNU toolchain throughout, in a best case all I need to do 

is change the makefile.

A final note on development environments: If you’re a Mac OS user by pref-

erence (OSX only, on Intel or PowerPC), you should be aware that the AVR 

is by far the easiest microcontroller family for you to use as a learning tool. All 

the open-source software tools compile and run on OS X without any sort of 

drama. The inexpensive hardware development tools are connected either over 

serial ports or internal USB-to-serial converter chipsets; at most, all you’ll need 

to do is find a $10 USB-to-serial cable in order to get up and running. For most 

other microcontrollers, you’ll have difficulties of one kind or another working 

on Mac OS. Getting a working toolchain built is not usually a problem, but 

finding a way to get your compiled code into the evaluation board or your own 

circuit can be annoyingly difficult since a Mac has no parallel ports, and Linux 

drivers for USB-hosted emulators can’t be used in Mac OS.

3.4  Texas Instruments   MSP430

It’s slightly cheating to lump the MSP430 in with 8-bit microcontrollers, since 

it’s a pure 16-bit device, but it’s sold into the same sorts of applications as 

8-bit micros, and hence belongs in this chapter despite the fact that the part’s 

 classification is not completely semantically aligned with the other products in 

the lineup.

Compared with, say, the 8051, the MSP430 is a relatively young family—it’s 

only about ten years old. The early variants were developed for low-cost, low-

power measurement applications. The design goals for these applications have 

been carried into the current range of products: the MSP430 is a low-power-

consumption family with the usual selection of interrupt-woken low-power 

snooze and sleep modes, and it has a very flexible programmable analog-to-digital 

converter module. Some parts also feature on-chip LCD controllers. The parts 

feature a programmable DCO-based clock generation module that can clock all 

sections of the chip from a standard 32.768 kHz crystal.



62 Chapter 3

Now, it’s an obscure but well-recognized ritual among engineers and computer 

scientists to gauge the architecture of any new device on the basis of its similar-

ity to the  PDP-11.13 The strongest term of approbation you can use for a CPU 

design is to say “It’s just like a PDP-11!” Exactly why this is universally regarded 

as a Good Thing is not exactly clear, but in any case, this epithet is frequently 

applied to the MSP430. (I’ve always felt that this is the same sort of statement 

as saying “My 2007 Mercedes convertible is just like a 1965 International Har-

vester Scout light truck. They both have pneumatic tires and a removable roof!”) 

What I think these people probably mean is that the MSP430 has a very nice 

orthogonal instruction set and simple memory addressing scheme.

Flash programming and software debugging for most MSP430 parts is carried 

out using an on-chip  JTAG interface. TI sells a relatively low-cost kit containing 

their “  FET” (Flash Emulation Tool, a simple parallel-port-based  JTAG pod), and 

a free version of the IAR toolchain. Other vendors have cloned this  JTAG pod; 

 Olimex, for instance, sells a completely compatible third-party version for even 

less than the cost of the FET. Texas Instruments and  Olimex, as well as Rowley, 

all offer USB-connected  JTAG debuggers, which operate much faster than the 

cheap and nasty parallel port units.

As a breaking-news item, just as this book was going to press, TI released an 

ultra-low-cost USB-connected demo/development board called the eZ430. This 

is a tiny device, looking very much like a USB Flash drive. An even smaller target 

board is connected to a header on the end opposite the USB connector. Cur-

rently, TI only sells the eZ430 as part of the eZ430-F2013 kit, which contains 

the eZ430 emulator and a target board with an MSP430F2013 processor, space 

for a 14-pin, 100 mil header to bring out all the F2013’s pins to your prototype, 

and a single LED. (By the way, the USB Flash Emulation Tool built into the 

eZ430 supports all MSP430F20xx series parts; the MSP430F2013 is simply the 

highest-end member of that family, with 2K Flash, 256 bytes of info memory 

and 128 bytes of RAM.) The retail price of this kit is $20, though as with Atmel’s 

Butterfly, the kit is a free giveaway at Texas Instruments seminars. If you want to 

learn the MSP430 instruction set and experiment with the platform in general, 

13 If I ever design a microprocessor, I am going to print a line drawing of a complete PDP-11/20 front 
panel on the top of the package.



 Teaching Yourself, Bottom-Up 63

the eZ430 is probably the best turnkey solution currently available. Note that it 

is not a generic  JTAG tool; it uses the two-wire “ Spy Bi-Wire” debug protocol 

and it currently only works with a few select devices.  Spy Bi-Wire is clearly an 

attempt by TI to respond to Atmel’s two-wire debugWire protocol; it’s very useful 

not to have to waste numerous I/Os on the  JTAG interface, and I look forward 

to  Spy Bi-Wire being offered on all of TI’s parts someday.

There are a couple of disadvantages of the MSP430 from the point of view 

of the hobbyist or one-person contract shop. The first is that the parts have a 

3.3V I/O voltage with no 5V tolerance; not entirely unexpected, since this fam-

ily is specifically aimed at low-power applications. This low I/O voltage is not 

an utterly terrifying fact, but it does mean that interfacing to typical hobbyist 

projects (motor controllers, for instance) is potentially a little bit more compli-

cated than it would be for a 5V device. Of course, this low-voltage design stems 

from the fact that the MSP430 is intended for   battery-powered or otherwise 

  power-constrained applications.

A much more irritating issue for someone trying to get up and running 

quickly is that the entire range of MSP430 family devices (it’s not a particularly 

large range, by the way) is only available in fine-pitch surface-mount and leadless 

package variants. This makes it difficult to put together a hand-built prototype 

on matrix board. The only real answer to this is either to build a custom PCB 

for your application, or buy off-the-shelf evaluation hardware. Fortunately, this 

is not as expensive as you might think;  Olimex sells two flavors of bare-bones 

evaluation boards for several different MSP430 devices. 

The devices that  Olimex calls proto boards (presently available for 

MSP430F1121, 123, 1232, 149, 169, 1611 and 2131) consist of the MSP430 

device in question, a fairly generous prototyping area with plated-through holes 

on 0.100" centers, and some useful infrastructure such as a power supply, serial 

driver and standard 9-pin D connector, 32.768 kHz clock crystal,  JTAG header 

and reset button. The so-called header boards are simply the chip by itself on a 

tiny board with 0.100" headers around the edge bringing out all the pins. You 

can plug this header board directly into a prototyping board, wire-wrap to it, or 

solder it onto a piece of matrix board (although I’d prefer to socket it for reuse, 

myself ). The header board also contains a 32.768 kHz crystal, a  JTAG header, and 

a socket for a high-frequency crystal, if you wish to use one. The price  difference 



64 Chapter 3

between the header boards and the bare chips in single-piece quantities is about 

2x to 2.5x, which is really very reasonable.

Let’s look a little closer at a specific part, the MSP430F169, shown in Figure 

3.3. This is one of the highest-end parts in the family, with 60K of Flash memory, 

2K of RAM and 48 I/O pins in a 64-pin package, either LQFP or QFN. We’ll 

begin, as before, by looking at the pinout.

Due to the high pin count, I won’t break down all the functions here; I’d just 

like you to observe the major features of the microcontroller:

• Six 8-bit   GPIO ports, with other functions multiplexed in the usual way. 

Ports 1 and 2 have selectable-polarity interrupt capability.

Figure 3.3  MSP430F169 pinout.

17 18 19

P5.4/MCLK

P5.3/UCLK1

P5.2/SOMI1

P5.1/SIMO1

P5.0/STE1

P4.7/TBCLK

P4.6/TB6

P4.5/TB5

P4.4/TB4

P4.3/TB3

P4.2/TB2

P4.1/TB1

P4.0/TB0

P3.7/URXD1

P3.6/UTXD1

P3.5/URXD0

48

47

46

45

44

43

42

41

40

39

38

37

36

35

34

33

20

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

DVCC

P6.3/A3

P6.4/A4

P6.5/A5

P6.6/A6/DAC0

P6.7/A7/DAC1/SVSIN

VREF+

XIN

XOUT

VeREF+

VREF−/VeREF−

P1.0/TACLK

P1.1/TA0

P1.2/TA1

P1.3/TA2

P1.4/SMCLK
21 22 23 24

63 62 61 60 5964 58 56 55 5457

25 26 27 28 29

53 52 51 50 49

30 31 32

A
V
C
C

D
V
S
S

A
V
S
S

P
6
.2
/A
2

P
6
.1
/A
1

P
6
.0
/A
0

R
S
T
/N
M
I

T
C
K

T
M
S

T
D
I/
T
C
L
K

T
D
O
/T
D
I

X
T
2
IN

X
T
2
O
U
T

P
5
.7
/T
B
O
U
T
H
/S
V
S
O
U
T

P
5
.6
/A
C
L
K

P
5
.5
/S
M
C
L
K

P
1
.5
/T
A
0

P
1
.6
/T
A
1

P
1
.7
/T
A
2

P
2
.0
/A
C
L
K

P
2
.1
/T
A
IN
C
L
K

P
2
.2
/C
A
O
U
T
/T
A
0

P
2
.3
/C
A
0
/T
A
1

P
2
.4
/C
A
1
/T
A
2

P
2
.5
/R
O
S
C

P
2
.6
/A
D
C
1
2
C
L
K
/D
M
A
E
0

P
2
.7
/T
A
0

P
3
.0
/S
T
E
0

P
3
.1
/S
IM
O
0
/S
D
A

P
3
.2
/S
O
M
I0

P
3
.3
/U
C
L
K
0
/S
C
L

P
3
.4
/U
T
X
D
0



 Teaching Yourself, Bottom-Up 65

• Hardware multiplier for 16x16, 8x8, and 16x8/8x16 operations in a single 

instruction cycle. This allows some simple DSP type MAC operations to 

be implemented in a speed- and power-efficient manner. Not all MSP430s 

have this feature; it’s a peripheral, not part of the basic processor core.

• Two USARTs. Both USARTs support SPI and regular asynchronous serial 

communications. USART0 also supports high-speed I2C (real, officially 

licensed, Philips-compatible I2C at that), over DMA if desired.

• One 16-bit timer_A3 module (more on this later) with three capture/com-

pare registers.

• One 16-bit timer_B7 module with seven capture/compare registers.

• One comparator_A analog comparator module.

• ADC12 (12-bit ADC) module supporting eight external analog channels 

as well as an on-chip temperature sensor. You can also sample the external 

voltage reference pins. TI’s ADC module is quite extraordinary in terms 

of the flexibility it offers you; it can be connected to the DMA module 

to sample without CPU intervention (the CPU can even be sleeping to 

reduce power consumption) and the actual conversion mechanism can 

be tweaked to an amazing level in software. This can save you external 

level-matching components.

So, what are all these names like timer_A3, comparator_A, and so forth? 

The MSP430 family is very modular internally, and Texas Instruments makes 

this very clear in their documentation. Each possible peripheral module that 

can be attached to an MSP430 core has a name representing its function; the 

datasheet for an individual chip tells you what modules the chip contains, and 

the cores themselves are documented in a generic manual that’s not specific to 

any one MSP430 device. (This generic manual is Texas Instruments’ document 

#SLAS368D, “MSP430x15x, MSP430x16x, MSP430x161x MIXED SIGNAL 

MICROCONTROLLER.”) Because of this explicit similarity, it’s unusually easy 

to move your code between different members of the MSP430 family. As long as 

the device to which you’re migrating contains the peripheral you want, all you need 

to do is make sure the I/O mapping is up-to-date and recompile the code.14

14 AVR’s intra-family similarity is quite good, but MSP430’s is really excellent.



66 Chapter 3

The internal architecture of the MSP430 core is beautifully neat and tidy, 

as I hinted previously (though some people do complain that the instruction 

set architecture is billed as   RISC, but implemented as   CISC). There are sixteen 

general-purpose 16-bit registers, named R0 through R15, which are all treated 

identically from an instruction set perspective. Although I call them “general-

purpose” (since the datasheet does so), the first four have defined functions; R0 

is the program counter, R1 is the stack pointer, R2 is the status register and R3 

is the constant generator. This whole system is very C-friendly and enjoyable 

from a programming standpoint.

The MSP430 core has a traditional   von Neumann architecture. Some refer-

ences quote this as a disadvantage, which is rather incomprehensible since there’s 

no obvious characteristic of the micro, compatible with its design goals as a low-

power device, that would be improved by switching to a  Harvard architecture. 

Source Dest Name Syntax Meaning

Yes Yes Register mode Rn Contents of Rn is operand.

Yes Yes Indexed mode X(Rn) Memory at (Rn + X) is operand.

Yes Yes Symbolic mode ADDR Memory at (ADDR) is operand, 
with relative addressing. Note that 
this is actually encoded as X(PC).

Yes Yes Absolute mode &ADDR Memory at (ADDR) is operand, 
with absolute addressing. Note 
that this is actually encoded as 
X(SR) (i.e., a constant offset from 
the zero constant generator).

Yes No Indirect register 
mode

@Rn Memory at (Rn) is operand.

Yes No Indirect regis-
ter mode with 
autoincrement

@Rn+ Memory at (Rn) is operand. Rn is 
incremented after instruction (by 
1 for byte-wide operations, by 2 
for word-wide operations).

Yes No Immediate mode #N Immediate 16-bit constant is 
source. This is implemented as @
PC+ (i.e., a special case of indirect 
register mode with autoincrement).



 Teaching Yourself, Bottom-Up 67

Code memory, data RAM, “info memory” (two small, identical-length in-appli-

cation-programmable Flash blocks used for storage of parameters in the same 

way you would use the  EEPROM module on other microcontrollers) and I/O 

all reside in a single 16-bit address space. The orthogonality of the instruction 

set is quite amazing; is a list of the addressing modes is shown in the preceding 

table.

Any instruction can use any valid combination of addressing modes. For 

instance, it’s perfectly legal to use a register’s contents as the destination of a 

CALL instruction, as in CALL R5. Even better, you can use CALL X(R5) to 

route program execution flow through a jump table. All this flexibility does 

take some getting used to if you’re coming from other microprocessors with 

a more traditional (i.e., less flexible) programming model, especially bizarrely 

constrained architectures such as PIC®. The memory map is likewise laid out 

in a very tidy manner.

Range Contents

0x0000–0x000F 8-bit special function registers.

0x0010–0x00FF 8-bit peripherals.

0x0100–0x01FF 16-bit peripherals.

0x0200–0x09FF 2 Kbytes of RAM.

0x0C00–0x0FFF 1 Kbyte bootloader memory (ROM).

0x1000–0x10FF
256 bytes of information memory, in two 128-byte blocks. 
This is software-programmable nonvolatile memory used 
for storing calibration constants and similar data.

0x1100–0xFFDF 60 Kbytes (less 32 bytes) code Flash space.

0xFFE0–0xFFFF Interrupt vector area (code Flash).



68 Chapter 3

“Information memory” works a little differently from the nonvolatile storage 

peripherals available in most other 8-bit micros, and you might find it a little 

irksome for some applications. It’s implemented as two 128-byte Flash blocks15

named segment A and segment B. Erasure can only be performed with block 

granularity. Reads and writes can be performed with either byte or word granu-

larity, with the caveats that (a) you can only turn “1” bits to “0”, not the reverse; 

and (b) each time you write to any location in a block, it eats into that block’s 

accumulated programming voltage time. If this cumulative programming time 

gets too large, you’ll need to erase and rewrite the entire block. Of course, there 

is an overall erase-write lifetime for the memory array, also. The downside of 

this system is that it’s relatively annoying to implement   nonvolatile data that are 

updated frequently (vending machine audit counters, powerup lifetime timers, 

and so forth), because you need to read the entire segment into RAM, update the 

value you wish to change, erase the Flash version, and write the entire segment 

back out. The reason that information memory is divided into two blocks is so 

that you can implement redundant storage schemes to guard against a power 

failure or other glitch during the erase or write operations.

Contrast this with the traditional on-chip  EEPROM found on most other 

parts in the same application space; the traditional method allows you to read, 

erase and write bytes individually (though it’s not quite as easy to work with those 

devices, since they don’t usually map the entire storage array into the processor’s 

address space). If your application needs to store both frequently updated data 

(such as audit counters) and infrequently updated data (serial numbers, passwords 

and so forth), design your storage algorithm with great care, taking the MSP430’s 

limitations into account. Also look very closely at the Flash write endurance for 

your selected part and compare it with the frequency with which you’re erasing 

and rewriting the information memory.

The on-chip  bootstrap loader (BSL) is a handy ROM-based feature allowing 

you to reprogram the Flash memory using a three-wire serial interface; P1.1, 

P2.2 and ground. Using the BSL is documented in Texas Instruments  document 

15 Some MSP430s split info memory into 64-byte blocks. Most devices have the dual 128-byte banks, 
however.



 Teaching Yourself, Bottom-Up 69

#SLAA089, “Features of the MSP430 Bootstrap Loader”; in brief, you can repro-

gram the chip a block at a time using a simple 9600bps serial protocol, which 

can be controlled from a host PC or another external embedded device. The 

MSP430 bootloader can also be password-protected to prevent random people 

from peeking into your code.

If you’re going to program the MSP430 in assembly language, then the limited 

IAR Workbench provided for free by Texas Instruments is more than adequate 

for smaller projects. As long as you’re working in assembly language and using 

Windows as your development platform, I can’t see any obvious reason why you 

would want to upgrade to anything more advanced.

However, several C compilers are available for the MSP430, and there are 

significant differences between them. There is obviously a full-version product 

from IAR; if you have been using the limited version, then upgrading to this 

full version will leverage your toolchain-specific experience as much as possible. 

I have to say, however, that I’ve had nothing but disappointing experiences with 

IAR; almost everything negative I have to say in Section 3.8 is applicable to my 

history with IAR’s products, so I couldn’t recommend that you go this route.

Alternatively, similar to their product for the AVR family,   Rowley has a ver-

sion of their CrossWorks assembler/C compiler/IDE that targets MSP430. It’s 

quite intuitive to use once you spend a day or two familiarizing yourself with 

all the options, and the price and licensing conditions are much less onerous 

than IAR’s product; the code that’s generated is comparable between these two 

packages. Furthermore, there’s not a lot of work you need to do in order to port 

IAR-specific sourcecode to CrossWorks; the syntax for accessing compiler-specific 

features is very similar. CrossWorks supports the Texas Instruments FET (and 

the third-party clones from various vendors) as well as several other pieces of 

debugging hardware. Rowley also offers their own USB debugger.

For my personal projects, however, once again I prefer to use gcc. The MSP430 

flavor of gcc (and associated tools) is available from <http://mspgcc.sourceforge.net/>.

You should make sure to read the FAQs for this product at <http://mspgcc.sourceforge.net/

faq/>—there are some subtleties that you might not immediately appreciate, 

especially if you’re not accustomed to using a high-level language in an embedded 

environment.



70 Chapter 3

To summarize, then: MSP430 is an easy-to-understand, very flexible and fairly 

high-performance architecture designed specifically for power-critical applica-

tions. The main downsides are that the device family is not particularly large 

(meaning you might have to buy more micro than you want, simply in order to 

get a specific feature) and the parts are not perfectly suited to hobbyists because 

of the relative difficulty of prototyping. However, the parts are popular in both 

commercial and  hobby applications, particularly where battery- or solar-powered 

operation is essential.

3.5   Microchip® PICmicro®

Microchip’s PICmicro16 microcontroller offerings are many and varied. At the low 

end, they offer tiny six-pin SOT23-package PIC10F devices for applications like 

glue logic replacement or generating reset signals; at the high end, they have the 

forthcoming 16-bit PIC24 series parts. (Somewhere in the mix are the   dsPIC DSP 

devices, but these aren’t really pure PICs so we won’t consider them here.)

Many embedded codehounds, myself included, have worked extensively with 

PICs on both  hobby and commercial projects. In fact, I worked with PICs before I 

ever touched MSP430 or AVR devices; you can still see archived pages for a couple 

of my ancient  hobby PIC projects (Picxie and Picxie 2) at <http://www.zws.com/

products/>. Besides making their way into high-volume appliances (Visteon,17

for instance, was at one time reputedly a big consumer of PICs; several variants 

are widely used in remote-entry wireless keyfob transmitters), Microchip’s PIC 

offerings are also used fairly extensively for teaching purposes.

Let’s look at an exemplar PIC part and contrast it against the others we’ve 

examined so far. Figure 3.4 is the pinout for the PIC16F84A18 in 18-pin DIP 

or SOIC package.

16 PIC is an acronym for Programmable Interface Controller or Programmable Intelligent Computer, 
depending on how far back in history you go. Microchip doesn’t actually talk about the name being 
an acronym, however. Although everyone calls them PICs, they are technically PICmicros per 
Microchip’s official terminology.

17 A spinoff from the Ford Motor Company. Visteon develops automotive electronics, mostly focusing 
on entertainment and navigation equipment.

18 Please note that this specific part is not recommended for new designs. The PIC16F627 or 
PIC16F628 are more modern choices; however, most of what I say here still applies. Besides, the 
PIC16F84A was so amazingly popular that it simply refuses to die!



 Teaching Yourself, Bottom-Up 71

RA1

RA0

OSC1/CLKIN

OSC2/CLKOUT

VDD

RB7

RB6

RB5

RB4

RA2

RA3

RA4/T0CKI

MCLR

VSS

RB0/INT

RB1

RB2

RB3

•1

2

3

4

5

6

7

8

9

18

17

16

15

14

13

12

11

10

P
IC

1
6

F
8

4
A

Figure 3.4  PIC16F84A 18-DIP pinout.

The pin descriptions are simple enough:

• RA0 through RA4 are the five accessible bits of an 8-bit   GPIO port.

• T0CKI, multiplexed on RA4, is an external clock input for Timer 0.

• RB0 through RB7 form a second 8-bit GPIO port with a programmable 

weak pullup feature. The top four bits of this port have interrupt-on-change 

capability. RB6 and RB7 are also used for in-system programming; RB6 

is the clock line, and RB7 is the data line.

• The INT input, multiplexed on RB0, can be used as a general-purpose 

external hardware interrupt line.

• _MCLR is the external active-low reset input.

• OSC1 and OSC2 are used to attach an external crystal or ceramic resona-

tor, an RC oscillator, or an external digital clock source.

Obviously, this is a much smaller part, both in terms of program size and I/O 

budget, than the others I’ve discussed so far. It also doesn’t offer terribly much 

in the way of on-chip peripherals. I chose this chip partly because I’m familiar 

with it, but mostly because it has historically been one of the most popular PIC 

devices used by hobbyists. You’ll find quite literally thousands of projects based 

around this microcontroller! Also note that the comparisons I’ll make here 

should not be dismissed completely as an artificial apples-to-oranges fabrica-

tion, because the other three core families I’ve discussed in this chapter all scale 

down to approximately the size of the PIC16F84A (or even smaller) without 

exhibiting the same oddities. For example, 8051s go down to 1K of code in an 



72 Chapter 3

8-pin SOIC package (Philips P89LPC903, for example) and still keep almost 

exactly the same programming model. The MSP430F2001 is a 1K Flash part 

in a 14-pin package, and it still has the full, elegant MSP430 core and memory 

architecture. Thus, small size alone does not excuse weirdness.

So, what oddities does PIC exhibit, you ask? There’s quite a list. To begin 

with, most of the “8-bit” PIC variants, including this one, actually have a 14-bit 

instruction word. (There are several 8-bit cores available; a 12-bit-word core, a 

14-bit-word core, and two 16-bit-word cores, the PIC17 and PIC18 series. The 

idiosyncrasies are different among these families.) Microchip always quotes their 

code size in words, so a 1K 14-bit PIC is actually 1.75 kilobytes of actual Flash 

space. This isn’t really a big deal unless you’re trying to parse the raw HEX file, 

but it is slightly unusual and can lead to confusion, particularly because a lot of 

documentation (mostly from third parties) is horrifically sloppy about “bytes” ver-

sus “words,” to the point where you often can’t tell what they are talking about.

There are a couple of immediate limitations we can get out of the way now: 

This PIC variant has only one 8-bit general-purpose register, referred to as W 

(the Working register). In times of yore, this register would have been called “A” 

for “accumulator”). Every byte of data you will ever process on the micro has to 

be funneled through this register. Also, the instruction set doesn’t, strictly speak-

ing, have any   conditional jump instructions; it only has “skip next instruction 

if condition” instructions. While not exactly unprecedented—the AVR family 

has these instructions too, for example—this is a significant source of bugs from 

programmers who are not experienced with this style of programming, because 

the logic is backwards from the way most people are accustomed to think of 

binary decisions.

The PIC is a blindingly   Harvard-architecture microcontroller, with four

distinct address spaces: program memory, data memory and peripheral registers 

(Microchip refers to the on-chip RAM as the “register file,” implying that it’s really 

just a special case of on-chip registers), EEPROM and stack. More on the stack 

in just a moment; for now, let’s look at the other two spaces. Program memory 

is simple enough; the reset vector is at 0000h, and the peripheral interrupt vec-

tor is at 0004h. The main code space stretches from 0008h to 03FFh. Note that 

all those addresses are word addresses. Each one refers to a 14-bit location, not a 

byte. This can be a little hard to come to grips with if you’re used to working 



 Teaching Yourself, Bottom-Up 73

on larger architectures where, say, the middle of a 16-bit instruction at address 

0000h can be accessed at address 0001h. You might be better off just pretending 

that each PIC instruction is a byte, in fact; words in the code space are atomic 

entities and can’t directly be accessed by your software anyway.

The program counter in the PIC16F84A consists of two parts; the lower 8 bits 

are read/write-accessible in the PCL register, and the upper 5 bits are write-only 

through the PCLATH register. Simply writing to PCLATH doesn’t immedi-

ately cause the CPU to start executing at a new spot—it’s a kind of holding area 

(Program Counter LATcH, in fact) for the upper bits of the program counter. 

The CALL and GOTO opcodes only give you 11 bits of space for the destina-

tion address. If you’re jumping to someplace far away, you need to save the W 

register, load W with the new desired value for PCLATH, store it in PCLATH, 

restore W, then CALL or GOTO wherever you wanted to go. If this sounds 

complicated, it is! The issue doesn’t even directly affect the PIC16F84 (since it 

only has 1024 words of program space to begin with) but it is a real annoyance 

in larger parts of the same ilk. 

The next oddity relates to the   data memory space, which is 256 bytes in size 

and is banked into two 128-byte chunks on the PIC16F84A (there are more 

banks on the larger devices). The data memory bank currently in use is selected 

by means of two bits in the status register (RP0 and RP1; RP1 is not actually used 

for anything in the PIC16F84A and should be left zero at all times, although it 

is physically implemented in the core—some code uses this bit as a scratch flag). 

The following table shows the data memory map.

Bank 0 Name Name Bank 1

00h INDF INDF 80h

01h TMR0 OPTION_REG 81h

02h PCL PCL 82h

03h STATUS STATUS 83h

04h FSR FSR 84h

05h PORTA TRISA 85h

06h PORTB TRISB 86h

07h Not implemented Not implemented 87h

08h EEDATA EECON1 88h



74 Chapter 3

Bank 0 Name Name Bank 1

09h EEADR EECON2 89h

0Ah PCLATH PCLATH 8Ah

0Bh INTCON INTCON 8Bh

0Ch–4Fh 68 bytes of scratch RAM Mirrors 0Ch–4Fh 8Ch–CFh

I’ve highlighted with a gray background those registers that are mirrored in 

both banks. I did not highlight the scratch RAM area, because it is merely a 

happy accident—due to incomplete address decoding—that this area happens 

to be accessible in both banks on the PIC16F84A. On PICs with larger RAM 

space, you cannot rely on this mirroring behavior.

Whenever you use immediate addressing (MOVWF and MOVF, which move 

a byte from W to a data memory location and vice versa, respectively), you specify 

exactly which “register file” address (to use Microchip’s term) is the source or des-

tination; the banking bits are ignored. The bank only becomes important when 

you use indirect addressing. On the PIC,   indirect addressing is handled by the FSR 

(File Select Register) and INDF (INDex File) registers. You load a pointer into 

FSR, and this sets the target for indirect read/write operations. You actually access 

the indexed data through INDF, which is a dummy register; it refers to the RAM 

location wherever FSR, in conjunction with the register page bits, is pointing.

Implementing   lookup tables in code memory is also significantly unusual in 

this family of microcontrollers. There is no instruction or addressing mode that 

permits you to read data directly out of code memory. Instead, the PIC16F84A 

offers an alternative version of the RETURN [from subroutine] instruction called 

RETLW (Return and Load W). This single-word instruction loads an 8-bit literal 

into the W register and returns to the caller. Any data table you need to have in 

ROM is thus actually a long string of RETLW instructions. In order to access the 

table, you have to calculate and load PCLATH, then calculate the low-order 8 bits 

of the address of the desired entry, and write this into PCL to perform a long jump 

into the data table. This is quite bizarre, not to mention terribly inefficient.

Next on the list of unusual behaviors, we come to the PIC’s stack. I have almost 

nothing good to say about this system. In pretty nearly every other  microprocessor 

architecture you will ever encounter, the stack pointer, if any, is a register that 



 Teaching Yourself, Bottom-Up 75

through some mechanism or other (occasionally quite convoluted), points into 

the device’s general scratch RAM area. Often there are special rules about where 

the stack can reside and how large it can grow, usually caused by limits on the 

number of bits available for the pointer register, but nevertheless the actual data 

on the stack almost always reside in normal data memory.

The PIC16F84 is completely different from the norm—it has an 8-level x 

13-bit   hardware stack (13 bits are necessary because this is the size of the program 

counter), and the stack pointer is completely inaccessible to your code. All you 

can do is push and pop data using call and return instructions—interrupts also 

use the stack, of course. Since there is no exception thrown or flag set if you try to 

grow the stack below the hardware limit (it simply wraps around from location 8 

to location 1, and there is no way to read the current stack pointer in software, 

it is impossible for your code to avoid, detect or trap stack overflow problems. 

The one “advantage” of this highly unusual system, if I can call it such, is that it 

is impossible for a runaway stack to blow away your data or program space, but 

this is something of a moot point if your program jumps off into hyperspace as 

a result of trying to pop a bogus return address.

While the larger PICs aren’t quite as bizarre as the small parts, there is nev-

ertheless a pervading feeling, even in the larger parts, that you’re working on a 

really tiny micro that has had big RAM and Flash grafted onto it through hor-

rific quasi-Frankensteinian operations. I can’t help but think that somewhere in 

Microchip’s design labs is an engineer who spent a few days too many packing 

ten-pound loads of product into five-pound bags, and went a little insane as a 

result. While it is perfectly possible to implement robust applications on a PIC, 

it’s sufficiently annoying that I would greatly prefer to work on a different core 

unless there are significant factors (price, algorithm licensing, application-specific 

suitability or something else) that pull me toward a specific PIC device.

As I’m griping about the parts, let me raise another complaint—relatively few 

of the PIC family have an on-chip debugging interface. (Some of the very recent 

parts do have  JTAG, and other parts support a sort of   bond-out19  debugging 

19 Bond-out chips are special debugging versions of a microcontroller. They have additional pins 
brought out to external contacts. These pins are not normally led to the outside world in retail ver-
sions of the chip. Microchip’s debugging interface operates on the same GPIO pins used for in- circuit 
programming; you can’t use it if you’re using those pins for other functions. However, the bond-out 
chip has extra physical pins that bring out the debugging lines to dedicated connection points.



76 Chapter 3

feature using the MPLAB ICD 2 in-circuit debug module.) This means that 

usually the only available methods for code development are burn-and-pray or 

the purchase of a full in-circuit emulator. This might not be a huge burden to 

the home hobbyist (except for the expense of a full  ICE), but it can be very irk-

some to use these parts in commercial applications where development time is 

money. Some applications—particularly radio devices, which is where I work at 

the moment—are very difficult to debug when you have to attach an enormous 

emulator spewing RF interference.  JTAG is bad enough, but it’s easier to mitigate 

this noise somewhat. Your  ICE, on the other hand, needs to be physically close 

to the board to avoid undesirable parasitic effects from long cables stretched from 

the  ICE into the location where the microcontroller should be.

From the development hardware perspective, there are numerous third-party 

PIC burners on the market, ranging from simple homebrew devices connected to 

a parallel or serial port to high-end multigang programmers. (  PonyProg, which 

I mentioned earlier, also supports several PIC variants.) The entry-level burner 

from Microchip is the   PICstart Plus. This is a small, inexpensive, serial-con-

nected device with a DIP ZIF socket on it; you can burn most of the popular 

PIC variants with this hardware, though you’ll need to make a homebrew adapter 

to do in-circuit programming. Microchip also makes several other burners of 

various capabilities, as well as full-speed in-circuit emulators like the   ICE2000 

and   ICE4000. Third parties such as Vikon <http://www.vikon.com/> also make 

ICEs, slightly cheaper than Microchip’s product.

On the development software side, the PIC is possibly the least high-level-

language-friendly architecture ever devised. This range of parts is best programmed 

in assembly language, particularly if you’re tight for code space or looking for 

optimum real-time performance. However, commercial PIC C compilers are 

available from Byte Craft Limited <http://www.bytecraft.com>, CCS Inc. <http://

www.ccsinfo.com/>, Hi-Tech Software <http://www.htsoft.com/> among others. 

Hi-Tech also has a freeware product, PICC Lite, which supports ten commonly 

used hobbyist PICs with some limitations (depending on which device you’re 

using, there may be either no limits, or RAM/ROM usage limits).

For free tools, your best jumping-off point is <http://www.gnupic.org/>—this

site links to numerous ongoing open-source toolchain development projects. 

You’ll find several C compiler projects (of which two are at a usable state at the 



 Teaching Yourself, Bottom-Up 77

moment) as well as three Forth compilers, a Python compiler and more. There 

is even a Java-to-PIC-assembly translator, called Aino, available from <http://

personal.eunet.fi/pp/jokinen/>. While I was discussing this latter product with a 

nonnative English-speaking colleague, he made the comment that “tattoos do 

not make the pig.” This statement is cryptic and slightly bizarre, and completely 

summarizes my reaction to the idea of Java code inside a PIC.

All this leads me to summarize that (strictly in my personal opinion, of 

course), the PIC family is best suited for relatively small projects, preferably 

in assembly language.20 While I’m aware that some quite amazing things have 

been done in PICs, I would say these efforts are misspent unless there are some 

very special circumstances that make a PIC the right choice—price, some very 

specific combination of features, and so on. While the PIC family is not terrible

for educational purposes, there are other options that are easier for a beginner 

to deal with. Hence, I wouldn’t recommend this family as your starting point 

into embedded engineering, despite its apparent ubiquity.

Oddly enough, there are clones of a few PIC products—the “big name” in 

this field is   Ubicom™, formerly   Scenix. Every now and then, a small Far East 

company will come out with a few parts that are suspiciously similar to some 

PIC variant, but these vendors always seem to fade out of existence in fairly 

short order.

3.6  Less Common Architectures for Special Needs

As you’ll appreciate, the sections preceding this one have barely scratched the 

surface of enumerating what sorts of 8-bit (and smaller) architectures are avail-

able. In no particular order, here are a few other architectures that you might 

encounter in real life:

• DSPs of all flavors.

• Rabbit Semiconductor®’s high-end “kinda Z80” processors.

20 This comment doesn’t apply to a few very special-purpose parts like the dsPIC family and the rfPIC 
devices.



78 Chapter 3

• 68HC09 from Freescale™, nee Motorola.

• Embedded Z80 variants from Zilog®.

• COP® from National Semiconductor®.

• NEC’s 78K series.

• Special-purpose parts for speaking toys and low-end LCD or video games 

(many of these are based on variants of the 65C02 or 65C81621 core).

There are various special considerations and heuristics that might lead you 

immediately to select or reject a particular microcontroller family. Since all of 

these rules represent application-specific factors, it’s more or less impossible 

to present them as a coherent Grand Theory of Microcontroller Selection; it’s 

simply a set of questions you have to ask yourself, then weigh the answers to 

reach a conclusion.

–  Have you used this architecture before? It seems obvious, but people all too 

often under-weight this consideration. If you already have experience 

working with the basic architecture, you should give strong preference to 

leveraging that experience.

– Is the published technical information enough for you to estimate accurately if 

the part actually meets your needs? (If not, can pre-sales support fill in the 

gaps for you?) It is a very unpleasant thing to discover, eight months into 

a project, that the microcontroller you selected isn’t quite fast enough, or 

generates just a little too much RF noise for your application.

– Are there   drop-in variants of the part you’re considering with more resources 

(ROM, RAM, faster clock, and so on)? With the best will in the world, 

you can’t always estimate your software requirements accurately—plus, 

marketing is always pleading with you to add just one more feature. It’s 

a nice safety net to know that if you run out of RAM or code space, you 

can simply upgrade to a bigger,   pin-compatible version of the chip.

21 The 65C816 is a backwards-compatible, 16-bit version of the 6502. It was used in the Super Nintendo 
video game, the Apple IIgs, and a few other pieces of home computer and/or video gaming hardware.



 Teaching Yourself, Bottom-Up 79

– Are other people using this family in varied applications? Some microcon-

trollers are designed specifically for a particular narrow application (say, 

CD player servo control). You might look at one of these chips and think 

it’s an ideal fit for your new laser-guided golf club widget—and it’s cheap, 

too, because they’re making ten million CD players a day in China. Prob-

lems will, however, arise when the primary users of the chip migrate to 

something else due to technology changes in their industry—volumes 

from the secondary general-purpose users like yourself will probably not 

be sufficient for the manufacturer to continue production. At the very 

least, you can expect the family size to be reduced as unpopular parts are 

shed; prices will likely jump, too.

– Has this device been generally available for a number of years? Somebody 

has to be on the bleeding edge, trying out new parts on the day they’re 

released. Unless you’re paid to research these things, you don’t want to be 

that somebody.

– Are there multiple sources for development tools? Single-source development 

tools are a red flag that the chip vendor had to contract out development 

of the toolchain, or (which is often worse) the sole tool support may have 

been developed in-house. This is rarely a positive sign unless the part 

you’re looking at is really, really new. And if it is that new, shame on you 

for thinking about using this part unless there is literally nothing else on 

the market that will do the job.

– Is this a Far East part intended for their domestic market? All too frequently, 

Far East silicon vendors will look at their lineup of domestic-sales-only 

devices and decide that it’s time to start selling some of these parts in the 

United States. They’ll use some arbitrary process to decide which specific 

parts should be sent across the sea, and all of a sudden your local rep will 

call trying to sell you some “brand new” chips. I’ve been burned by this 

sort of thing on more than one occasion. The English documentation and 

development tools are often barely ready for primetime, and your local field 

applications engineer will most likely know nothing about these devices.

Note that I’m not making these complaints about   Far East parts in general; 

I’m very specifically referring here to parts that have historically been available 



80 Chapter 3

only to domestic customers in Japan and China. It’s hard to guess at the reasons 

these parts are so abominably poorly supported in the United States,22 but my 

surmise is that the engineers who are using these parts in the geographical region 

where they originate have much better contact with the chip designers. Hence, 

there’s a lot of tribal knowledge that is communicated orally between the semi 

manufacturer and their domestic customers, and this information simply never 

gets written into the datasheets or errata, and certainly is never translated into 

English. As for the development tools, the most charitable explanation I have 

is that the English versions might not be kept as up-to-date as the Japanese/ 

Chinese versions.

– Is this a special-purpose part explicitly made for carrying out your application 

at minimum cost? The microcontrollers used in toys, with which I have 

some intimate experience, are rather unique; they generally have very 

limited capabilities, and toolchain support that is little short of shock-

ing. As you might guess, the instruction set of these chips is not very 

rich. They typically have instructions to load a register with a constant, 

increment/ decrement a register, set the state of the output pins, jump 

unconditional, jump unconditional through a register, and make various 

conditional jumps based on input pin state. These chips, at least at the low 

end, often have no RAM at all except for a few registers. There is no stack 

and the only way to implement a subroutine is to store a return address 

in a register. If you’re programming these devices, ignore everything your 

computer science professor taught you; the only way to write a program 

is to use a forest of GOTOs and, for any nontrivial project, usually a lot 

of almost-redundant code. However, they still represent the best choice 

for the application, because toys typically don’t require much in the way 

of complex logic (hence, you won’t be spending much time programming 

and debugging), and toys are extraordinarily price-sensitive.

–  Is this part a proprietary core from a small, fabless vendor? While it’s not an 

instant disqualifier, it should be a yellow flag to you if a device is both 

22 European readers should note that I’m being very specific about the U.S. market here. The com-
ments I’m making in this paragraph do not always generalize well to the European markets; some 
distributors there provide very good support.



 Teaching Yourself, Bottom-Up 81

completely proprietary and from a small   fabless company. If the design 

company has problems with their fabrication partner, you’ll have supply 

issues.23 This factor needs careful attention if you’re designing a product for 

consumer-scale mass-production, particularly over the long term (HVAC 

equipment, for instance, might fall into this category). If you’re building 

something for small-scale or short-term production, you will probably 

pay more attention to convenience; how easily you can get a part that 

contains all the functionality you need, preferably with pre-built driver 

libraries. Rabbit Semiconductor’s products are an example of a family 

that you probably wouldn’t choose for a high-volume application. They’re 

well-supported for rapid development, and they offer a package of features 

that would require significant engineering effort on your part to assemble 

around a different micro. However, intellectual property reusability and 

scalability across a broad product range is hard to achieve with these parts 

(the family is very small and the primary development environment is 

basically proprietary). The chips are also relatively expensive.

– Is the core sole-sourced, or is it licensed to multiple vendors? Not many micro-

controllers have drop-in second-source replacements in this day and age. 

Even in corporations that have strict rules about not specifying sole-source 

parts, the rules are usually waived for microcontrollers. However, even if 

you’re not looking for an exact replacement, there is some utility in choosing 

a core that is available from multiple vendors. If you have a falling-out with 

vendor A, or they discontinue your pet part, and the same core is available 

from vendor B, you will probably have less difficulty designing out vendor 

A than if you need to do a complete port to a new, unknown core.

Hopefully by this point, you have a reasonably good idea of why there is no 

single microcontroller that you MUST learn in order to get into the embed-

ded field. You should also have some idea of the pros and cons that go into 

selecting a part for a real project, and I’ve also done my best to give you a quick 

23 A fairly recent example of this is the debacle surrounding ZF Micro Solution’s parts. These are 
x86-compatible system-on-chip devices formerly made at National Semiconductor’s fabs. There are 
several stories about why this relationship went bad, but the net result is that all of ZF’s customers 
were out in the cold for quite some time until a new fabrication deal was inked. When you design in 
a specialty part like this, you tie your fortunes to those of your supplier—like it or not.



82 Chapter 3

thumbnail of the features and oddities of a few of the most popular learning 

platforms. If you’re just getting started with embedded programming, your best 

path to employability is to take any one of these architectures (or another part 

that captures your interest) and start building real projects with it. As long as 

you meet the design requirements of the project,24 the particular chip you use 

to build it is unimportant.

3.7 What Programming Languages Should I Learn?  
 C++ vs. C vs. Assembly Language in Small 

 Embedded Systems

I’d like to open this section with an illustrative piece of text that I originally posted 

to the Usenet group  comp.arch.embedded (c.a.e) early in 2006. I’ve edited it 

just a little; you can find the original in Usenet archives if you’re curious. Note, 

for the record, that this posting is very much tongue-in-cheek on my part, and 

I’m quoting it here with the same spirit.

(Original poster, a fellow Elsevier author in fact: “Most everyone uses C or C++ these 

days.” 25)

I take a bit of exception to the idea that “everyone uses C++,” especially in the em-

bedded arena. I guess it’s been a few months since this particular chestnut was sizzled 

on the coals in c.a.e., so maybe we should just cut and paste the last argument thread 

to save everyone’s time.

I’m starting to see an approach that approximates sanity with regards to the use of 

Java in high-end embedded projects, rather than C++ (a language which is abhorred 

on any architecture by all right-thinking embedded engineers—and of course, only 

an exceptionally jaded  masochist who has lost the phone number of his dungeon mis-

tress or can no longer afford her fees would contemplate C++ on an 8-bit micro).

If you’re prepared to live with the overhead of C++, and you’re convinced that 

there is something to be gained in your application from a language that has OO 

24 In the real world, this would include price and time-to-market, of course.
25 Please note that I was intentionally subjecting the original poster to selective quoting in order to con-

struct a humorous response.



 Teaching Yourself, Bottom-Up 83

syntactic elements (like C++) rather than merely OO capability (like C), using Java 

instead can be a pleasant surprise. Among other advantages of Java over C++, it is 

 occasionally possible to find someone who can answer a Java question both exactly 

and correctly. Furthermore, positively several Java questions do not have as their 

“real” answer a 5,000 word argument among five  language lawyers. No C++ question 

can be answered without either:

a)  employing several language lawyers of opposing viewpoints, and/or

b)  developing a new draft standard defining a version of the language with the 

desired functionality.

Dogma is a wonderful thing, isn’t it?

Commerce degrees used to include a subject called  creative accounting. The core of 

this subject is: Your company bought $X, sold $Y and received $Z over the past year. 

Your CEO, stockbroker or anonymous penpal wants the company to show a profit of 

$F. Obtain this result in a GAAP26-compliant way.

In the past, I’ve seen vast practical use for this course work in terms of justifying 

(or killing) value engineering projects, obfuscating projected bill-of-materials costs, 

and demonstrating that a department has or has not met its budgetary goals. But 

the single most useful fact it taught me is that all metrics not directly derived from 

underlying measurable physical phenomena are nonsense—and cost/productivity/

reliability savings realized by moving to C++ are at the extreme bad end of this spec-

trum. Moving from assembly to C at a certain [fuzzy] size/complexity point can be 

justified merely in terms of the number of people that are comfortable programming 

in the language (though I am quite convinced that there’s more gain than merely this 

one point, and most c.a.e readers would agree with this).

Moving to C++ in embedded projects* requires justifications that typically end in 

the words “MY GOD! A MAUVE DOLPHIN ON A BICYCLE IS FLYING PAST 

THE WINDOW!” (Alt-F4 your PowerPoint drivel while everyone looks out the 

 window.) “This concludes the presentation; in summary, you should do what I say.”

* Special exceptions apply. These are mostly ludicrous; for example,  designing a project that is not a 

PDA around Windows CE.

26 Generally Accepted Accounting Principles. You can’t break the rules until you know what they are.



84 Chapter 3

Engineers are a contentious lot, as the preceding snippet should amply demon-

strate. The issue of which programming language represents the One True Faith 

of embedded software development has been the cause of literally millions of 

words of finely reasoned technical arguments sprinkled with sample sourcecode, 

and not infrequently interspersed with bitter wrangling. I’ll give you a sneak peek 

at the truth right here in this first paragraph by stating up-front that there is, in 

fact, no One True Faith, and that the correct programming language to use for 

an embedded application is a situation-specific decision. (Naturally, there are 

plenty of people who would argue this statement, just as there are people who 

would defend it to the death. In fact, merely by omitting [insert name of any 

computer language here] from the title of this section, I’ve invited flames down 

on my head.)

The decision as to which programming language to use for a project rests on 

the following legs, in no particular order:

• The complexity of the project, which usually translates more or less directly 

into code size.

• The project manager’s preferences, experience and, unfortunately, arbitrary 

whim.

• Company policies.

• The availability within your organization of experienced programmers for 

a given language or tool. Though this is clearly not universal advice, it has 

been my experience that outsourced programmers have a predilection for 

high-level languages even when other aspects of the project are decidedly 

in favor of assembly language.

• Availability of trusted tools for the hardware platform in question.

• The resources (ROM, RAM, CPU horsepower) available in the hardware 

platform. As resources become tighter and tighter, hand-tweaked assembly 

language starts to become the only viable option.

• Functional requirements of the system; in particular, real-time responsive-

ness. The further your language abstracts you from the hardware, the more 

difficult it is to guarantee overall system real-time behavior.



 Teaching Yourself, Bottom-Up 85

• Reliability and safety requirements enforced by a regulatory body (in par-

ticular, certifications that might be required, and documentation that may 

have to be generated in order to prove that a system exhibits, by design, 

a given level of reliability). For example, it might be necessary to show 

simulation results to prove system robustness.

• The embedded operating system, if any, in use. This point can often be 

the force driving all other considerations. If your application has rela-

tively complex requirements (for example, support for exotic networking 

protocols), vast engineering time savings can be realized by using an off-

the-shelf operating system with ready-rolled support for the functionality 

you require. You are then, however, usually constrained to use the preferred 

language for the operating system.

Most of us are not designing spacecraft, defibrillators or automobile airbag 

control systems. People who do work on such systems have many design deci-

sions made for them up-front, in the form of regulatory agencies and company 

policymakers publishing a list of commandments stating “thou shalt use toolchain 

X and code style ABC.” At the risk of generalizing very unfairly, I’d say that the 

vast majority of embedded engineers work at the other end of the spectrum, on 

projects that have few or no regulatory requirements and very little in the way 

of  safety implications.27 Therefore, it is necessary for the engineer to be able to 

select a toolchain intelligently, or at least understand the issues involved.

Most of my midsize to large projects, just like the majority of other embedded 

projects in the world, are written in a mixture of assembly language and C. My 

small projects are generally written in pure assembly language. As an extremely

rough rule of thumb, I tend to see the cutoff point between “assembly only” and 

“maybe go to C” as lying somewhere between 4K and 8K of object code. This rule 

is so heavily laced with caveats, however, that I’m very reluctant to offer it.

The space that C++ should occupy in the embedded systems arena is a fiercely 

debatable topic, as the start of this chapter probably demonstrated to you. My 

27 By this I don’t mean that most systems wilfully neglect safety considerations; I mean that most of 
these systems are of such a nature that the most catastrophic programming failure imaginable has no 
conceivable safety consequences. If your Furby doesn’t speak to you one morning, there are unlikely 
to be serious, life- or property-threatening repercussions.



86 Chapter 3

own view (and this time I’m not speaking tongue in cheek) is that C++ has no 

place at all in 8-bit development. Despite what computer scientists would have 

us believe, the  object-oriented programming approach does not lead to signifi-

cant or even merely measurable productivity, maintainability or reliability gains 

in the closed environment of a low-end embedded system. This is true, in my 

opinion, even when the object-oriented features of the language are employed 

consistently and correctly, which is almost never. Others clearly share my point 

of view, as this quotation illustrates.

[. . .] reuse and integration of independently developed embedded C++ components is 

difficult for a variety of reasons. First, the C++ standard makes specific provisions for 

implementation-dependent and implementation-defined language features where an inte-

ger might be 32 bits on one processor and 64 bits on another. Second, the C++ standard 

does not fully specify the behavior of the standard template libraries (STLs) or underlying 

operating-system services, nor does it standardize the collections of services needed from the 

operating system. Third, both the C++ language and the STLs are large, complex, and 

quite difficult to understand. Fourth, C++ does not offer automatic garbage collection. If 

the integration of components shares memory references between components, the system 

integrator must determine when those shared objects can be discarded and which compo-

nent must reclaim memory.

A typical C++ component has buried within it hundreds of implicit dependencies 

on the target processor, C++ compiler, host operating system, and STLs. Assumptions are 

rarely documented, and most C++ programmers do not realize that the validity of their 

code depends on assumptions not necessarily valid in all execution environments. The typi-

cal C++ programmer simply tests and refines code until it works in the test environment.

—Kevin Nilsen, “Java Sounds the Death Knell for C++,” Electronic 

 Design, May 26, 2005. Original article available on the Web at 

<http://www.elecdesign.com/Articles/ArticleID/10274/10274.html>.

As a result, if you ask the question “which languages should I learn?”, I would 

say that it is essential to learn C really thoroughly, and at least one assembly 

language to a reasonable level of competence—in the 8-bit field, it’s advisable to 

get as good as you can with assembly language, even though in this day and age 



 Teaching Yourself, Bottom-Up 87

a lot of your code may be written in C. In these sorts of systems, you’re almost 

always going to need at least the skill to read your compiler’s assembly output 

and understand what it’s doing. Compiler bugs are more frequent in these low-

volume compilers; you need to be able to detect them, report them and work 

around them—but even more important, you need to be able to hand-optimize 

your code, where necessary. You might also have to write your own startup code, 

or modify the compiler-provided startup code, for some applications; it’s really 

not possible to get away with absolutely zero knowledge of assembly language 

(despite what compiler vendors may try to tell you!).

While it’s useful to have some familiarity with the assembly languages of 

several different microcontrollers (simply so that you know some of the different 

ways in which particular things can be done on different parts), it isn’t usually 

a go/no-go issue as far as employment goes. Certainly, I wouldn’t worry about 

listing 50 different microcontrollers on your résumé. The reason for this is simply 

that once you have experience with a few different architectures, learning the 

assembly language for a new processor is just a couple of days’ work with the 

datasheet, unless perhaps the part in question is radically unusual and/or not 

adapted for programming by hand (such as a VLIW architecture). If you list 

four dozen different cores on your résumé, employers are likely to think that 

you just gathered a list of everything you could think of and stuck it on there. 

Confine your résumé to discussing parts on which you’ve actually carried out 

major projects; prospective employers want to see achievements, not waffle.

3.8  Brief Ravings on Copy-Protected 
 Development Tools

The issue of whether it is generally preferable to use closed source commercial 

development tools or open source tools is an exceedingly knotty one, and the 

subject of numerous arguments. Since I hopefully have you glued to the page 

and hanging on my every word by this point, I’m going to take the opportunity 

to instill into you the doctrines of the One True Faith.

The underlying premise of what I’m about to say is as follows: Code in 

embedded systems tends to last a very long time. Once an investment is made 

in a particular microcontroller and/or a certain internal software architecture, 



88 Chapter 3

changes from that point tend to be incremental, and in many cases driven only 

by explicit customer requests. Moreover, embedded systems are mostly self-

contained, sealed code ecosystems. In the vast majority of cases, your user will 

never add code to your system, upgrade the operating system or interact with 

the microprocessor in any way except via the inputs and outputs you provided 

in your design. Furthermore, many embedded systems are devices that have an 

indefinite lifespan; they do not have a perceived “coolness” factor that, when 

dissipated, makes the device worthless. (Contrast a computer game—which your 

kids will throw away once they want the next great thing—against the powertrain 

control module computer in your car, which will go on doing its prosaic thing 

until it meets the crusher.)

One consequence of these facts is that embedded code can lie dormant for a 

long time between initial release and subsequent revision. Product lifecycles are 

typically in the neighborhood of two years in most of the consumer electronics 

arena. So you may release a product, tuck away the sourcecode and development 

software and hardware into a bottom drawer, and move on—only to have mar-

keting come back to you a couple of years later saying they want some revisions 

so that the product will better fit into this year’s lineup of widgets.

If you’re cursed with  copy-protected development tools, this is usually the 

point at which you find that the new PC you were issued last year doesn’t have 

the right sort of ports to talk to the hardware  dongle that came with your old 

compiler. Or perhaps the new operating system you were forced to accept runs 

the compiler software in a virtual-machine sandbox where it can’t access the hard-

ware enough to fulfil its copy protection requirements. Maybe you simply need 

a new magic authorization code to reinstall the software on your new computer, 

or maybe the dongle was eaten by your dog. Whatever the case, this is the point 

at which you call the compiler vendor and they either don’t exist (in which case, 

you have the wonderful choice of either heading off to an Eastern European 

cracks’n’virus emporium for a crack, or buying a totally different toolchain), or 

they say that the version you’re running is too old for the modern day (shame 

on you!). By the way, of course, your free support period has expired.

In these situations, you’ll typically be required to buy the latest version 

of the compiler, because of course the vendor can’t be expected to fix all the 

copy-protection-related bugs in old compilers. So, not only will you be losing 



 Teaching Yourself, Bottom-Up 89

a significant wad of cash, but you’ll also have the joy of porting your code into 

a new and untried compiler version. The first step when recompiling old code 

is normally to compile it unmodified and compare the binary with what you 

wound up with when you built it years ago, in order to make sure you have all 

the settings, paths and files correctly configured. This kind of sanity check is 

going to be impossible with a new compiler, so you won’t even know if you have 

successfully replicated the build environment. Extra overtime all round for all 

of engineering and QA—and all because of an explicit act on the part of the 

compiler vendor.

I see this kind of thing happening around me all the time, and I have diffi-

culty comprehending why more people don’t complain about it more loudly. If 

I buy a license for XYZ software, and the license doesn’t EXPLICITLY say that 

my right to use the software ends in a year,28 then I should be able to run the 

software for as long as I have fingers with which to type and a machine that is 

capable of running the program. I should not be barred from using the software 

just because of a failure or obsolescence of an otherwise useless piece of gatekeeper 

hardware or software.

In order from most to least hateful, here are the types of copy-protection and 

license schemes you will see on embedded development software:

• Hardware-based copy protection schemes; dongles, mostly. It’s particularly 

annoying when these sorts of amazingly intrusive and trouble-prone copy 

protection systems are applied to software that requires special hardware 

to run anyway.

• Live authentication schemes that require a real-time communication link 

between your PC and the software vendor’s home base every time you run 

the program (and often periodically while you’re using it).

• Challenge-response schemes where the software generates a new, random 

challenge every time you install it—you need to call or email the vendor 

for a new response code every time the software is reinstalled, even if it’s 

on the same machine.

28 Software like this—restricted by an annual service contract—does exist, of course. Run screaming if 
someone tries to rope you into a deal of this sort.



90 Chapter 3

• Challenge-response installation schemes where the challenge is fixed, based 

on some aspect of your hardware. If you reinstall the software on the same 

machine, you will not need to contact the vendor; you only need a new 

key if your hardware changes.

• “Branded” software that requires a key file containing your name and other 

details in encrypted form. Any copies made of this software will operate 

correctly, but will show your contact details onscreen so everyone knows 

where the software was copied.

• Closed-source, but unprotected software—can be installed anywhere at 

any time.

• Open-source software, where you get to choose when and where you 

install the program. If necessary, you can rebuild it under a new operating 

system.

If you read any of the previous sections in this chapter at all, you’ll know I 

am a strong advocate of open-source tools. Tying up intellectual property inside 

software that you might not be able to run on your next PC just doesn’t make 

sense. Open-source tools are ideal because not only can you archive them (and 

give a copy to your customer, if necessary), but you can rebuild them on new 

and alien operating systems in the future.

Of course, in some cases, open-source just won’t do the job. Sometimes you 

have to use existing code libraries in proprietary formats, and sometimes you 

need a special optimization capability found only in a commercial product. The 

free compilers are not supported by a raft of cash and free device samples, so 

they don’t have the same update priorities as commercial products (though this 

doesn’t always mean that they have poorer performance).

When you get out in the workforce and need to select development tools, 

you’ll read a lot of argument on both sides of this issue. I strongly suggest that 

you think forward to the time when you’re going to need to support legacy code 

built with an ancient compiler, and select open-source tools by preference. Ven-

dors who use outrageous copy-protection technologies on their tools are playing 

games with your future profitability.



 Teaching Yourself, Bottom-Up 91

3.9  An Example 8-Bit Project 
 Using AVR and Free Tools

In this section, I’m going to illustrate a relatively small educational AVR project. 

Much of the text in this section was first published on IBM’s  developerWorks 

site. You can see links to the original articles, along with downloadable source-

code, at <http://www.larwe.com/technical.html>. I chose this project because it 

demonstrates a lot of the thinking you’ll have to do when building   portfolio 

projects of your own.

I started by defining, at a block level, what the overall system is supposed 

to do. This design is for a  robotic submarine project called E-2, based around 

a PowerPC network attached storage (NAS) appliance called a   Kuro Box. The 

Kuro Box is a Japanese invention; essentially, it’s a little PowerPC single-board 

computer running Linux. 

It was originally sold as a   NAS device under the name  LinkStation; how-

ever, it proved so popular for hacking purposes that the manufacturer now sells 

the Kuro Box (essentially a   LinkStation without a hard drive in the box) as a 

separate product. The name means “expert box,” reflecting the hacker target 

demographic.

Kuro is based around a 200 MHz MPC8241 (PPC603e core). It has 4 MB 

of linear boot Flash, 64 MB SDRAM, 10/100 wired Ethernet, a USB 2.0 port 

(host-side), and an IDE interface. It was available locally in the United States from 

Revolution, <http://www.revogear.com/>, for $160, but has now been superseded 

by the $149 Kuro Box HG WR. This price buys you something that approximates 

a turnkey system. You merely have to install a standard 3.5 inch IDE hard disk 

and run the vendor-supplied Windows® setup utility, which partitions, formats 

and loads the drive contents over a telnet connection.

Since you’re probably not familiar with this device, Figure 3.5 shows a 

block diagram of the Kuro Box. Note that it does not show all the MPC8241’s 

peripherals; it only shows those parts of the chip that are involved in using the 

interfaces I used for this text.



92 Chapter 3

J1 Debug

Console

4MB

FLASH

64MB

SDRAM

AN9838

Ethernet

M
P

C
8
2
4
1

Supervisor

micro
D720101 USB 2.0 controller

ATA hard

drive

 SII0680

ATA
200 MHz

PPC603e
Serial 1

FLASH/ROM

controller
SDRAM

controller PCI

bridge

Serial 0

Figure 3.5  Kuro Box block diagram.

The MPC8241 microcontroller provides (among other features) an on-chip 

PCI bridge, SDRAM and Flash controllers, and two serial ports. The first serial 

port is connected to J1, the debug console port. The signal swing here is from 0V 

to +3.3V, and it is inverted for compatibility with RS-232 level shifters. The second 

serial port is connected to the slave microcontroller (an AT90S2313). This micro 

handles power sequencing and fan tachometer feedback, and also provides a master 

watchdog for the MPC8241. The software bundle preloaded on the Kuro Box 

includes a daemon that kicks this watchdog periodically. CN1 on the motherboard 

is a standard 6-pin Atmel AVR ISP port connected to the slave microcontroller. 

The board also offers a normal COP/ JTAG debug port, although the connec-

tor is not populated as shipped from Buffalo. In order to use this port, you should 

add the 10K series VIO resistor R67 and a 4-way 1K resistor pack at RA11. The 

least expensive route to using the COP port is through a “wiggler” connected to 

your PC’s parallel port; the cheapest commercially available product for accessing 

the MPC8241’s on-chip debugging facilities is the Macraigor Wiggler.

In this text, I’m going to use a lot of acronyms specific to the E-2 project. I’m docu-

menting these on my personal website at <http://www.larwe.com/sub/glossary.html>,

but the first two acronyms I’d like you to remember are VCM (Vehicle Control 

Module) and SCM (Science Control Module). In the context of this text, the 

SCM is the Kuro Box, and the VCM is the small real-time board I’m describ-



 Teaching Yourself, Bottom-Up 93

ing in this chapter. Figure 3.6 shows a block diagram of the system as a whole. 

The VCM is essentially everything that’s not inside the Kuro Box, excluding 

the power systems. 

Temperature

sensors

Pressure

sensors

Ambient light

sensors

GPS

receiver Cameras

RS232 USB

Tachometers

MEMS

accelerometers

Drive

motors

Lamps

Compressor

Solenoid

valves

24V SLA

battery array

Solar array
Step-up

converter

Power controller and

lobat monitor
Kuro

regulation

Servo board

regulation

External host for preflight setup 

and post-mission data offload

ATmega32

Ethernet

Kuro Box

Science data log

Servo module

interface
Navigation

Mission

control

Engineering

data log

Image

capture

Image

analysis

Comms
Power

control

RS232

Figure 3.6  Robot submarine block diagram.

The screen coding in this image is as follows:  storage  software 

 component  power system component  actuator/output component 

 sensor/input component. 

In the special version I built for developerWorks, I’m using a 7Ah battery 

pack (specifically, two Powersonic PS-1270 12V/7Ah batteries) and a solar panel 

with nominally 36W of output. This is a convenient test setup that I have on 

my workbench at home; it’s essentially a scale model of the power systems on 

the actual E-2 vehicle. I find it inconvenient to have hundreds of pounds of 

lead-acid batteries sitting next to my lab bench!



94 Chapter 3

For those who are really interested, here are some more details on how this 

technology is applied in my submarine project. If you’re not building a vehicle 

of your own, you can skip the next few paragraphs. Although the hardware you 

see here is very similar to the control system in the sub, there’s an important 

architectural difference. In the sub, the heavy processing iron (currently an 

Advantech PCM-5820 single-board x86 computer based on the AMD  Geode™

processor) doesn’t do the navigation tasks; it is powered down almost all of the 

time in order to conserve energy. In fact, for the daylight hours, the submarine 

is configured in a minimum-power mode with practically everything switched 

off, so that the batteries can reach the maximum possible charge level. The actual 

mission is carried out at night—the rationale for this being that underwater you’ll 

need lights to see anything interesting regardless of what time it is, so you may 

as well spend the daytime just collecting energy.

As a result, the block diagram of the E-2 is slightly different from what you 

see in this text; it has all the same blocks, but the  GPS receiver goes directly into 

the ATmega32. Through a little software and hardware cunning, a single UART 

on the ATmega32 services both the GPS and the SCM. From a conceptual stand-

point, the other main differences are that all the software feedback loops (depth 

control, for instance) are closed within the ATmega32, and the engineering data 

log (EDL) is connected directly to that micro as well. The EDL is implemented 

on a standard SD or MMC card in SPI mode.

This architectural decision, by the way, is why I don’t need to worry very much 

about security on the Linux side of the equation (the Kuro Box runs a standard 

edition of Hard Hat Linux without special security extensions). During normal 

operation, the outside world simply cannot communicate with the Linux box. 

The only field communications interface during mission time is with the VCM, 

which is as secure as it needs to be.

Note that there are also a couple of additional function blocks in the E-2, 

designed to communicate with the device and help with recovering it if lost, which 

this article series doesn’t get into. These modules will eventually be described in 

detail in the E-2 public information area on larwe.com; one of them is an emer-

gency recovery beacon similar to an aircraft flight data recorder’s “pinger,” and 

the other is an off-the-shelf satellite transceiver. E-2 can be contacted and com-

manded using satellite Short Message Service (SMS) strings; telemetry data can be 

uplinked over a moderate-bandwidth commercial satellite phone subsystem.



 Teaching Yourself, Bottom-Up 95

Enough digression; back to the task at hand. First, let’s get acquainted with 

a few of the design requirements for the board: Many of the actuators (solenoid 

valves, motors, and so on) needed in this project are most readily available in 

24V flavors, so the board should be designed to operate off a 24V battery sup-

ply. This raises the first interesting question of how to regulate the bus voltage 

down to a micro-friendly 5V.

Being a lazy sort, I’d usually take the easy way out and dump a simple  linear 

regulator into an application like this, but dropping 24V down to 5V is just 

too big a step, as it would mean throwing away about 5W in that regulator for 

a relatively modest 250mA load. Use of a switcher is therefore mandatory, and 

if you refer to the schematic you’ll see that I’ve used the dirt-cheap MC34063A 

in a direct crib of its step-down application note. There is nothing at all special 

about this circuit, and if you’re trying to throw together a quick hack to experi-

ment with the code I’m talking about here, feel free to use a 7805, or just power 

your board off a lab power supply. Substantial heatsinking and a TO-3 package 

on the regulator is necessary if you use a 7805 with a 24V input voltage.

Fulfilling Step 3 in the goals previously mentioned requires choosing a sen-

sible hardware interface, and overlying software protocol, between the VCM and 

SCM. There are many ways to achieve this, but the method I’ve chosen is an 

asynchronous serial interface with RS-232-compatible levels. Please note that this 

probably wouldn’t be the ideal choice for a real integrated application that you 

were building from scratch. If you were using a bare MPC8241 part, for instance, 

the right thing to do would be simply to put some 3.3V-5V level shifting in place 

and connect directly to one of the MPC8241’s serial ports. Unfortunately, we’re 

fighting the Kuro design a bit here; one serial port is reserved for debug output, 

and the other is connected to the supervisor/watchdog chip.

The great thing about async serial connections, however, is that they can be 

plugged into almost any hardware platform on the planet. In the case of the 

Kuro Box, you can either go in through the debugging serial port, or you can 

put a standard level-shifter on the micro and attach it to the Kuro Box through 

a USB-to-serial converter.

This discussion follows the latter route, partly because the debug port is con-

stantly in use by the kernel, but mostly because this way you can use the same 

VCM hardware to talk to a Microsoft® Windows® machine running Cygwin, 



96 Chapter 3

or a regular PC running Linux, or indeed almost anything else with a standard 

serial port.

I’m using a Keyspan USA-19W  USB-to-serial adapter in this project, because I 

happen to have it lying around; there are numerous other such adapters supported 

by Linux and the standard kernel has modules for the Keyspan adapters, among 

others (Belkin adapters as well as FTDI USB-serial solutions). The only thing 

you might need to do is to create the necessary /dev/ttyUSB* device nodes.

By the way, the debug serial port, J1, is an essential route into the Kuro Box, 

since it is the default console for kernel messages and bootloader communica-

tions, and it is the easiest device to use for kernel bring-up and debug. For 

inscrutable reasons, Buffalo neither documents nor fully implements this port. 

The pinout of J1 is as follows (the pads are drilled for a standard 100 mil SIL 

header, which is rather a relief as most of the other connectors in the appliance 

are on 2 mm pitch):

Pin Function

1 TxD (data out of the Kuro Box)

2 RxD (data into the Kuro Box)

3 3.3V power out of the Kuro Box

4 Ground

As is fairly standard with debug ports on embedded boards, the serial port is 

NOT at RS-232C levels; it is driven at the CPU’s I/O ring voltage (3.3V) and it 

is inverted relative to RS-232C. This means that you need a charge-pump type 

inverting serial transceiver IC in order to interface it to a normal PC. In turn, 

this usually means breadboarding something quick and dirty. 

However, there is an easier route, which also gives you a one-stop solution to 

the problem of having a legacy-free PC. Most USB-to-serial converters consist 

of a microcontroller that does the USB interface, and a separate, off-the-shelf 

 transceiver chip doing the level translation. As a rule the I/O voltage in these devices 

is 3.3V, which is conveniently compatible with the MPC8241’s I/O ring. 



 Teaching Yourself, Bottom-Up 97

I chose to use a PalmConnect® USB adapter, originally intended to adapt a 

Palm III™ or m100™ cradle to USB. Figure 3.7 shows the component side of 

the PCB of this adapter.

Figure 3.7  Serial adapter, before modification.

If you have a different adapter, you’ll certainly see a different layout and  different 

micro, but it is likely that the transceiver part is something very similar to the Analog 

Devices ADM3311 used in the Palm® adapter, if not the exact same device. 

The first step you should take after opening your serial adapter is to check that 

it uses 3.3V logic levels internally. (If it uses 5V internally, the current-limiting 

resistors and 5V-tolerant I/Os in the Kuro Box will protect it, but you might not 

see any output on the PC side.) To determine the internal logic voltage, simply 

plug the adapter into a USB port, wait for it to be recognized by the host PC, 

then use a multimeter or oscilloscope to probe the supply pins on the transceiver 

chip—pins 23 (GND) and 2 (Vcc) in the case of the ADM3311. 

Now you need to desolder that transceiver chip. The method I use is to put 

a bead of solder down all the pins on one side, then get an Exacto blade under 

the chip to lever up that side while keeping the entire bead melted with my iron. 



98 Chapter 3

Repeat on the other side. You’ll very rapidly seesaw the chip off the board this 

way; just be careful not to break any traces. Practice on some junked appliance 

if necessary. Figure 3.8 shows the board after desoldering the transceiver.

Figure 3.8  Serial adapter, after removing chip.

Now you need to determine where to feed the Kuro Box signals. To do this, 

you must establish which gates in the transceiver handle RxD and TxD, and 

connect to the “other” side of those gates. This involves tracing back pins from 

the DB9 to pads of the IC you just desoldered, then referring to the datasheet 

for the transceiver chip to work out where the other side of that gate lies.

Pin 3 of the DB9 is TxD, and the prior example runs to pin 22 (T1OUT) 

of the transceiver. The corresponding input pin (T1IN) on the transceiver is pin 7, 

so we run a wire from pin 2 (RxD) of the Kuro Box’s J1 to pin 7 of the space 

where the transceiver used to be. Remember that we’re effectively implementing 

a nullmodem here, which is why we route TxD to RxD and vice versa.

Similarly, pin 2 of the DB9 is RxD, and in the previous example runs to pin 19 

(R1IN) of the ADM3311. The corresponding output pin (R1OUT) is 10, so 



 Teaching Yourself, Bottom-Up 99

we run a wire from pin 1 (TxD) of the Kuro Box debug port to pad 10 of the 

transceiver’s space.

Finally, we connect pin 4 (GND) of the Kuro Box debug port to any con-

venient ground point on the USB-to-serial adapter. The 3.3V supply line from 

the Kuro box isn’t needed, so don’t connect it to anything.

Figure 3.9 shows a suggested way of routing the cable: Connect it to the 

solder side of the Kuro mainboard, use regular 50 mil ribbon cable, and route 

the cable out of the fan exhaust hole. Obviously, do not route it through the 

fan itself! There is a gap between the fan and rear bezel; it is ample space for the 

cable to exit without touching the fan blades.

Figure 3.9  Serial cable routing.



100 Chapter 3

Figure 3.10 is a close-up of the patched PalmConnect board. Tweezers are 

necessary when installing these patch wires. Also observe that I kept the  converter 

chip; it’s taped inside the plastic housing (you can see it as a black lump in the 

picture).

Figure 3.10  Patched serial adapter board.

Note that I left the DB9 on the board, even though it isn’t connected to any-

thing any more. The reason for this is that I have jammed the board back into 

its original housing and tightly wound it in insulation tape to keep the halves 

together. The DB9 acts as a strain relief and friction grip for the ribbon cable, 

as shown in Figure 3.11.



 Teaching Yourself, Bottom-Up 101

Figure 3.11  Reassembled serial adaptor.

There is one further thing you need to do: As previously described, the inter-

face will let you see kernel messages, but it will not let you type anything in. 

There is a series resistor on the receive line, which Buffalo left off the PCB for 

some reason. Buffalo used a 10K resistor in the other serial line (R75), so that’s 

what I used for R76, and it works very well. The package size is 0603; you should 

be able to salvage one off a junked appliance or PC peripheral if you don’t keep 

reels of SMD parts in your lab.

 Figure 3.12 is a photo of the J1 area on the component side of the Kuro PCB, 

showing where you need to install the resistor; it’s space R76 in the photo.



102 Chapter 3

Figure 3.12  Unpopulated resistor.

Now you’re up and running, connect your terminal program to the USB 

adapter at 57600bps, 8 data bits, no parity, 1 stop bit, with no flow control. You 

should see all the kernel messages while the unit is booting or shutting down 

(and also on events such as USB hotplug). There is a getty process running on 

that port, so you can log in locally. The port can also be used for general-purpose 

communications; it is accessible as /dev/ttyS0.

With that digression out of the way, on to the design of our actual circuit. I 

have chosen to use an Atmel ATmega32 microcontroller as the core of the VCM. 

This happens to be an ideal choice for me, because I’m very comfortable with 

programming this micro, it’s 5V-compatible (and hence easily interfaced to all the 

power electronics; it can be a bit irksome using 3.3V micros in projects like this), 

and it operates over a wide temperature range. It’s also supported very well by 

free or low-cost hardware and software tools, and most of those tools work within 

Linux. Most of the same things, except for the voltage comment, are also true for 

the MSP430 series—if you’re more familiar with that microcontroller, then you 

can probably port 75% of the circuit and code across without much difficulty.

Figure 3.13 shows a schematic of the circuit we’ll be working with.



 Teaching Yourself, Bottom-Up 103

The ATmega32 offers a rich set of peripherals useful for this sort of project, 

but inevitably once you start to use those peripherals, the availability of general-

purpose I/O pins shrinks.

To realize the maximum amenity from the ATmega32’s peripheral set, you 

therefore need to categorize your  I/O requirements, first according to whether 

a hardware feature of the microcontroller can carry out or accelerate the desired 

function, and second (in the case of functions that you will be implementing 

entirely in software), according to the specific timing limits for implementing the 

function. For example, something like a radio receiver input, with tight timing 

requirements, would be best connected directly to a micro input pin (preferably 

a pin with interrupt-on-change capability).

You then need to build enough  I/O expansion to get around the shortage 

of I/O pins on the microcontroller. You can achieve this goal in many ways, of 

which these are the top three:

• Use external flip-flops (for example, 74HC373) to latch expansion output 

data and external tristatable buffers (for example, 74HC244) to scan in 

expansion inputs.

• Use the ATmega32’s on-chip SPI module to drive external I/O expanders.

• Use the ATmega32’s on-chip I2C (TWI, see sidebar1) module to drive 

external I/O expanders.

Each of these methods has its own distinct advantages and disadvantages that 

are worth exploring.

Using external logic is a simple route. It also offers the lowest possible latencies. 

However, the difficulty is that it directly consumes a relatively large number of 

I/Os. For example, if you wanted to add 24 I/Os to your device, you could add 

three 74HC373s and three 74HC244s. The inputs of the 373s and the outputs 

of the 244s would form a common data bus, routed to eight pins on the micro. 

But you would also need a read/write strobe line and at least three addressing 

pins—bringing the total required I/O count up to 12.



104 Chapter 3

Figure 3.13  Schematic of our application.



 Teaching Yourself, Bottom-Up 105



106 Chapter 3

The simple external logic method also can’t give you an interrupt when input 

states change; in some applications, that might be important. Of course, you 

could structure external interfaces with  jellybean logic in many other ways, but 

it’s a headache to design and debug and is often difficult to route on the printed 

circuit board (PCB) as well.

Serial-connected I/O expanders utilize CPU pins much more effectively, 

and these chips also provide interrupt-on-change capabilities on the inputs, if 

you should require it—they are also generally programmable, so you can remap 

inputs and outputs as necessary with software changes rather than needing to 

mess with physical wiring. All things considered, serial I/O expansion is defi-

nitely the way to go.

The two most popular low-bandwidth synchronous serial buses for intra-board 

communications are   I2C (Inter-IC Communication) and   SPI (Serial Peripheral 

Interface). However, some slightly confusing nomenclature is in use: Atmel calls 

its I2C interface   TWI (Two-Wire Interface), and many other vendors refer to 

I2C as   2-Wire, and SPI as   3-Wire. The reason for this is intellectual property 

rights—I2C is trademarked by Philips, and SPI is trademarked by Motorola. 

Everybody who implements a compatible interface without paying licensing 

fees has to hide behind an alternate name. Once in a while you will encounter 

a truly proprietary serial bus, but it’s far from common.

Now. SPI is usually described in fashionable literature as a three-wire inter-

face, but in any system with more than one peripheral this is a bit of a smoke 

and mirrors act—it really requires four lines: clock, data in, data out, and select. 

All SPI peripherals are connected to common clock, data in, and data out lines, 

and each peripheral has its own dedicated select line. (The two data lines are 

referred to as MOSI and MISO, acronyms for Master Out, Slave In; and Master 

In, Slave Out, respectively.) To address an SPI device, you assert its _SS (Slave 

Select) pin and start clocking data out of your MOSI pin. The same clock signal 

pulls data out of the peripheral into your MISO pin, so after eight clocks you’ve 

simultaneously sent a byte and received a byte. The transaction ends when you 

deassert the _SS pin.

SPI is very easy to use (especially if you have to implement it in pure soft-

ware), but the requirement for individual _SS (Slave Select) lines means that you 

need to add extra wiring—and an extra I/O—for every peripheral, rather than 



 Teaching Yourself, Bottom-Up 107

having a true “bus” architecture. It is therefore slightly harder to route complex 

SPI buses over a PCB.

 I2C gets over this limitation and allows you to add extra peripherals to the 

bus simply by wiring them in parallel with existing devices. It achieves this at 

the expense of some implementation complexity. I2C is a two-wire interface; the 

signals are named SCL (Serial CLock) and SDA (Serial DAta). I2C peripherals 

have a 7-bit address—generally, some of the address is fixed for a given part, and 

a few bits are configurable by means of resistor strapping or EEPROM setup. 

The protocol is, unfortunately, quite involved, with numerous meaningful 

states and state transitions. Luckily for us, practically all of the requisite magic is 

implemented in hardware inside the ATmega32’s TWI module; this is a case of 

hardware support really saving you a lot of design and debug time. All you need 

to do is add two pull-up resistors selected according to the load capacitance of 

your I2C bus and the desired maximum data rate, and wire up all your devices 

in parallel.

The principal disadvantage of I2C is that it’s difficult to propagate over long 

distances through noisy environments. Because the data line (and, in multimas-

ter systems, also the clock line) is bidirectional, you can’t shape up the signals 

with a simple buffer. I2C was designed for, and works best in, communications 

on a single board or within a subassembly. It’s commonly used in TV sets, 

PC  motherboards, laptop batteries (and other smart battery types), and other 

 consumer equipment.

I have an ulterior motive for using I2C—namely, the rich variety of peripherals 

available with I2C buses. Practically any sensor you can think of that might be 

of interest in an embedded application is available with an I2C-flavored inter-

face—for example (and this list is far from exhaustive), temperature sensors, 

pressure sensors, battery charge controllers, control interfaces for image sensors, 

television on-screen display chips, and even complex subassemblies like flux gate 

compasses, gyroscopes, and GPS receivers. Although some of these sensors are 

available with SPI-style interfaces, I2C is more widely supported.

As you see from the schematic, I’ve chosen to use the Microchip MCP23008 

8-bit I/O expander. This chip supports the three standard I2C data rates of 

100 kHz, 400 kHz, and 1.7 MHz. Note that there are other expander ICs, such 

as the Philips PCA95xx series parts, that offer more bits of I/O for roughly the 



108 Chapter 3

same price as the MCP23008. I’m using the Microchip device in this demonstra-

tion project because it’s available in a dual inline package (DIP) and is therefore 

easier to hand-prototype; the PCA95xx parts are only available in SOIC and 

(T)SSOP. Moving to one of the higher pin-count devices is, however, a trivial 

modification, both in terms of hardware and code.

The MCP23008’s outputs drive the inputs of a ULN2803A octal  Darlington 

driver, which I use to drive two four-phase  stepper motors. Excellent background 

reading on stepper motors can be found at <http://www.doc.ic.ac.uk/~ih/doc/stepper/>,

along with some handy hints on how to identify steppers scavenged from com-

puter peripherals. By the way, I have amassed a huge collection of stepper motors 

simply by picking up my neighbors’ unwanted inkjet printers and flatbed scan-

ners off the curb on trash day. Because it is now cheaper to buy an entire new 

printer with fresh ink cartridges than to buy a set of replacement cartridges, I 

usually see two or three junked printers per week, each one a trove of motors 

and mechanical parts suitable for miscellaneous experiments.

For more formal projects, you can buy new, documented steppers from 

numerous industrial supply sources. eBay is also a rich source of brand new 

steppers, usually with documentation—although you often have to buy them 

a tray at a time.

Note that the ATmega32 allows you to perform I2C operations asynchro-

nously, using interrupts (though it can be quite complex to write an interrupt 

service routine (ISR) that covers all the bases if you’re using several different I2C

peripherals that have radically different protocols). The code I’m presenting here 

uses a simpler polled method. Note that this I2C code is not reentrant! If you 

plan to use the TWI module from an interrupt routine as well as main process 

code, you must erect suitable barriers to prevent an interrupt from attempting 

to use I2C in the middle of a main process I2C transaction. The firmware I’ve 

built is carefully designed to avoid this sort of contention.

Observe that the VCM talks to the SCM over a serial link. The packet format 

for this link is as follows.



 Teaching Yourself, Bottom-Up 109

Name Size Description

STRT Byte Start character, ‘!’

CSUM Byte
Unsigned checksum of all bytes in packet from CSUM+1 
to end of BODY (or, all bytes except STRT and CSUM)

TXSN Byte Serial number of transmission (see the following)

IRSN Byte ‘In Response To’ serial number (see the following)

CMND Byte Command or data ID

BLEN Byte Number of bytes in BODY or zero if no BODY

BODY Variable Additional data, if required

Each end waits for a “!” character to begin buffering data. The packet is deemed 

complete when the requisite number of BODY bytes has been received. Bytes 

received beyond the capacity of the serial-receive buffer are discarded. Since the 

start character might occur in the middle of real data, the CSUM field is used 

to verify that the data block just received was in fact a complete packet.

But what are these “serial numbers” I mention? They are a means of identify-

ing specific question-answer pairs in a transmission stream, as well as for spotting 

dropped packets. At power up, both the VCM and the Kuro Box initialize their 

internal serial number counter to 1 (0 is a reserved value). When one end of the 

link wants to send a packet, it sets the TXSN field to the current serial number 

value, then increments the serial number counter (if the counter overflows to 

0, it is reset to 1). If the packet being sent requires a response, when the other 

end replies, it sets the IRSN field to the TXSN from the packet to which it is 

responding. An “originated” packet, or, one that is not a response to a request 

from the other side of the link, has the IRSN field set to 0.

This very simple system allows either end to keep a history of pending data 

requests and track which responses belong to which outstanding requests (as 

well as, if necessary, implementing time-outs and retries on packets that simply 

don’t get a response).

An example illustrates this most easily. Suppose you defined command #99 to 

be “Get current vehicle attitude,” and command #100 to be “Get current vehicle 

position from GPS.” Furthermore, suppose that the current serial number in 



110 Chapter 3

the VCM was 56 and the serial number in the Kuro Box was 80. Then say the 

Kuro Box wants to know the vehicle’s current attitude and position as soon as 

possible. It might send the following packets in quick succession:

• A packet with CMND=100 (get GPS position), TXSN=80, IRSN=0, and 

no BODY

• A packet with CMND=99 (get attitude), TXSN=81, IRSN=0, and no 

BODY

 The GPS position can take some time for the VCM to acquire, so the attitude 

could easily be ready for transmission before the position data. Assuming this 

scenario takes place, the VCM would respond with:

• A packet with CMD=99 (get attitude), TXSN=56, IRSN=81, and attitude 

data in the BODY. Note that the nonzero IRSN implicitly indicates that 

this is a response rather than a request.

• (Later, when data is available) A packet with CMD=100 (get position), 

TXSN=57, IRSN=80, and the position data in the BODY.

 If for some reason the VCM didn’t respond to one of these packets, the Kuro 

Box could keep a record of which serial numbers are outstanding, and after some 

time-out period, reissue the request. (Note that this system breaks down if the 

serial number wraps and comes back to the same number as the earliest pending 

request. For this reason, your time-out code should also trigger if TXSN wraps 

to the earliest pending serial number.)

Before you run the code, you should understand what it does and how to wire 

up your stepper motor(s). The link I mentioned previously describes in detail 

how a stepper motor (synchronous DC motor) is constructed and driven, but 

here’s a thumbnail: A stepper motor has fixed coils and a permanent magnet 

rotor. The types of motors I designed the VCM to use have four coils (phases), 

each of which has one line run to a common wire and the other wire run to the 

outside world. (The common wire is also run to the outside world.) When a given 

phase is energized, it pulls the rotor toward a certain position. The four phases 

are physically positioned so that if you energize them in repeated sequence (1, 2, 

3, 4, 1, 2, 3, 4, 1, ...) the motor will turn continuously in a given direction.



 Teaching Yourself, Bottom-Up 111

The stepper outputs on the VCM board are labeled SAP1 through 4 (Step-

per A Phase 1 through 4) and SBP1 through 4 (Stepper B Phase 1 through 4). 

You should connect the phase lines up to the SxPx lines as appropriate, and the 

common line(s) from your motor(s) to the +24V line. On the VCM, I use a 

9-position terminal block to take these signals off-board.

Attention! Observe the series resistors on the stepper drive lines. The zero ohm 

resistors I’ve specified are strictly placeholders; you should substitute suitable 

current-limiting resistors based on your drive voltage and the stepper motor’s 

coil resistance and rated current.

This code and hardware are designed to provide very simple control of two 

four-phase unipolar stepper motors, Stepper A and Stepper B. The step functions 

are driven, by default, off a 100 Hz software timer. This is a moderate speed for 

junkbox steppers, and a fairly safe arbitrary choice on my part. The hardware is 

capable of considerably higher step rates, however. You should be aware of the 

following two issues as you increase step rates:

• Without going into the detailed mechanics of it, a stepper can’t start from 

zero and instantly begin operating at its maximum rated step frequency. 

You need to implement “ acceleration profiles” if you intend to get the 

most out of your motors. In brief, this means that if you need to make 

a speed change on the motor, instead of just jumping to a new step rate, 

you ramp the step rate toward the target speed. Acceleration profiles need 

to be calibrated for the motor and the mechanical load being driven.

• As you increase step rates, torque decreases. Cunning hardware designs are 

necessary to squeeze the maximum possible performance out of a given 

motor.

 This particular design is nowhere near to pushing the envelope in either of these 

respects—you have plenty of headroom to increase step rates, for instance.

Referring to stepper.c, you’ll see that the software keeps track of the absolute 

position of each stepper, checking it at the step speed interval. If the position 

ordered by the Kuro Box is not the same as the current position, the appropriate 

motor is stepped either forwards or backwards. The serial interface code listens 

for “seek to...” packets and updates the target values appropriately.



112 Chapter 3

The VCM code assumes that the power-up position of each stepper motor is 

its known absolute zero position. Finding the zero reference is normally accom-

plished by having a hardware zero position detector attached to the motor’s drive 

shaft (or the mechanism it operates). For example, in floppy disk drives, the track 

0 sensor is an opto-interrupter gate, or (in older drives) sometimes a microswitch 

that the head engages when it is stepped to the track 0 position.

The two packet types supported by the VCM firmware in the vcm_399 

directory are CMD_STEP_A and CMD_STEP_B (defined in vcmpacket.h). If you 

build the Kuro Box demo program in the scmd directory, you’ll see the Kuro 

Box printing out status info from the VCM and, once every four status packets, 

sending the VCM commands to seek both stepper motors to random locations. 

Please note that the Kuro Box side of the code is quick and dirty; it’s a proof of 

concept applet, as we’re focused on the VCM side of the design here.

Here’s some sample output from the scmd program:

root@KURO-BOX:/mnt/share/article8/scmd# ./scmd
IBM developerWorks Kuro Box to VCM Demo Applet #2—Stepper Demo
Waiting for VCM to start sending...
Rx packet (TXSN 0x01, BLEN 0x05)—MTIME 0x000005b8, FLAGS1 0x00
Rx packet (TXSN 0x02, BLEN 0x05)—MTIME 0x00000b70, FLAGS1 0x00
Rx packet (TXSN 0x03, BLEN 0x05)—MTIME 0x00001128, FLAGS1 0x00
Rx packet (TXSN 0x04, BLEN 0x05)—MTIME 0x000016e0, FLAGS1 0x00
Tx 2 packets: CMD_STEP_A->00000167, CMD_STEP_B->FFFFFF97
Rx packet (TXSN 0x05, BLEN 0x05)—MTIME 0x00001c98, FLAGS1 0x00
Rx packet (TXSN 0x06, BLEN 0x05)—MTIME 0x00002250, FLAGS1 0x00
Rx packet (TXSN 0x07, BLEN 0x05)—MTIME 0x00002808, FLAGS1 0x00
Rx packet (TXSN 0x08, BLEN 0x05)—MTIME 0x00002dc0, FLAGS1 0x00
Tx 2 packets: CMD_STEP_A->FFFFFFAF, CMD_STEP_B->0000004A
Rx packet (TXSN 0x09, BLEN 0x05)—MTIME 0x00003378, FLAGS1 0x01
Rx packet (TXSN 0x0a, BLEN 0x05)—MTIME 0x00003930, FLAGS1 0x00
Rx packet (TXSN 0x0b, BLEN 0x05)—MTIME 0x00003ee8, FLAGS1 0x00
Rx packet (TXSN 0x0c, BLEN 0x05)—MTIME 0x000044a0, FLAGS1 0x00
Tx 2 packets: CMD_STEP_A->FFFFFED7, CMD_STEP_B->FFFFFF46
Rx packet (TXSN 0x0d, BLEN 0x05)—MTIME 0x00004a58, FLAGS1 0x00
Rx packet (TXSN 0x0e, BLEN 0x05)—MTIME 0x00005010, FLAGS1 0x00
Rx packet (TXSN 0x0f, BLEN 0x05)—MTIME 0x000055c8, FLAGS1 0x00
Rx packet (TXSN 0x10, BLEN 0x05)—MTIME 0x00005b80, FLAGS1 0x00
Tx 2 packets: CMD_STEP_A->FFFFFE0E, CMD_STEP_B->000001E3
Rx packet (TXSN 0x11, BLEN 0x05)—MTIME 0x00006138, FLAGS1 0x02
Rx packet (TXSN 0x12, BLEN 0x05)—MTIME 0x000066f0, FLAGS1 0x00
Rx packet (TXSN 0x13, BLEN 0x05)—MTIME 0x00006ca8, FLAGS1 0x00



 Teaching Yourself, Bottom-Up 113

Observe that the VCM informs the Kuro Box if it’s busy stepping every 

time the VCM sends status; this information is contained in FLAGS1 in the 

CMD_ STATUS_REPORT packet. FLAGS1 bit 0 set means that Stepper A was 

running when the status packet was generated; likewise, bit 1 means that  

Stepper B was running.

So now you have most of the makings for a set of dive planes and a rudder. 

But in order for this device to be very useful, it also needs  sensors.

We will start with the humblest of sensors: a simple switch. You might need a 

couple of these to delimit the travel of your rudder, or if you’re making something 

other than a robot, maybe you want some front-panel buttons (though if that’s all 

you want, you can attach these to the PowerPC® in better ways). Switches are so 

simple that in fact the only reason I’m bringing them into the discussion here is so 

I can gently lead into a slightly more complex I2C configuration than the circuit 

you met last time. I’m going to assume that these switches will need to be read 

relatively infrequently (say, in the neighborhood of 50–60 Hz). In keeping with 

the I/O usage philosophy I espoused earlier, this slow rate can safely be marooned 

on the other side of an I2C I/O expander. However, we used up an entire expander 

on the stepper motors. How can you add another block of I/O?

Fortunately, all you need to do is wire another MCP23008 onto the I2C bus. 

The chip has a seven-bit I2C address; four bits of this address are fixed, and the 

remaining three can be configured in your external circuit by means of external 

strapping resistors on the A0, A1, and A2 lines. This allows you to connect up 

to eight MCP23008s to a single I2C bus without any ugly complexities. (This 

is a very common sort of arrangement on I2C peripherals, by the way—for cost 

reasons, manufacturers will very rarely bring out more than a few address pins.) 

The expander that drives the stepper motors is at address 0 (its full binary address 

is 01000000, where the bottom bit is actually the read/write flag). We’ll add a 

second expander at address 1 (again, the full binary address byte for this second 

chip is 01000010). The code in i2c.c handles the translation from logical address 

(0–7) to physical address byte for you.

In the interest of full disclosure, if you look at the way I scan these switches, 

you’ll see a rather large cheat in my debouncing algorithm. I simply scan at 

periodic intervals, and check for a change in input state. If there is a change, the 

new data remains pending until the next scan interval. At that time, if the change 



114 Chapter 3

in state is still the same, the new data is latched into a status buffer. This is not 

a very advanced debouncing method by any stretch of the imagination, but it 

performs adequately in lab conditions (at least, with reasonably well-behaved 

switches). If you’re interested, look at <http://www.ganssle.com/debouncing.pdf>,

where you can read a very detailed article on debouncing techniques, accompanied 

by reams of actual real-world data. If you want to implement a more advanced 

debouncing method, I’ve wired the interrupt request line from the MCP23008 

into one of the GPIOs on the microcontroller. Since this line can be configured 

as an open-drain output, you can add more I/O expanders and simply connect 

all their interrupt lines to the same point for a wired-AND configuration. An 

external pullup is not necessary, as the ATmega32 has on-chip pullups.

One further subtlety I’ve added to this circuit is optical isolation of the input 

lines, accomplished very easily with a standard six-pin optocoupler and a couple 

of resistors. This additional circuitry serves two purposes: first, it protects the 

microcontroller from outrageous external events such as miswired connectors or 

electrostatic discharge, and it also provides a kind of level-shifting capability; you 

can interface practically anything to the input side of the optoisolators. You’ll be 

very grateful of this isolation circuitry if you ever accidentally tap an unregulated 

battery line onto one of the inputs; it’s much easier and cheaper to desolder an 

optocoupler than to replace the micro! Please note that if you want to get the full 

amenity of the ESD isolation, you will need to ensure that whatever you have 

outside the VCM box has a separate (or at least, isolated) power supply from 

the VCM. Otherwise an ESD event on your external hardware will propagate 

into the VCM through the common power rail, largely negating the benefit of 

the optocouplers. Note also that the series resistor I selected for the optocoupler 

LEDs is correct for a +12V external supply; you will need to tweak this if you 

run the common anode line to a different voltage.

Next, you probably want to monitor some temperature points in the vehicle. 

In the real E-2 submarine, I’m interested in several temperatures—the two drive 

motors have a  temperature sensor apiece, as does each battery. Another tempera-

ture sensor is thermally connected to the external environment so I can have an 

idea of what the water temperature is like. For the purposes of this article, I’ll only 

implement two of these sensors. I’m using the Microchip MPC9801 12-bit I2C

temperature sensor for this application; adding more measuring points is simply 



 Teaching Yourself, Bottom-Up 115

a matter of mounting the sensors where you need them, and wiring them onto 

the I2C bus. As with the MPC23008, there are three bits of user-configurable 

address; the overall device address byte is 1001xxxR, where xxx are address pins 

A2 through A0, and R is the R/W bit. Observe that there is no possibility of 

address collision with the MCP23008s, no matter what A2/A0 combinations 

you select for either. As a matter of interest, if you refer to the datasheet for the 

MCP9800 series, you’ll see that the part is also offered in a couple of flavors that 

are packaged in a five-pin SOT23 (surface mount transistor) form factor. This tiny 

package doesn’t have space for external address select pins, so Microchip offers 

one flavor that’s hardwired at address 000 and another at address 101 (binary). 

Again, this practice is quite common with I2C sensors.

The MCP9801 also features a thermostat mode (this option is frequently 

provided on digital temperature sensor devices). This feature consists of a single 

open-drain output that goes active if the sensed temperature falls outside pro-

grammable limits, and it operates completely independently of the I2C logic, so 

you can use it as a hardware fail-safe even if the microcontroller crashes. Perhaps 

more important, you can even shut the micro down completely to save power, 

and leave the temperature sensor IC running to shut things down and wake the 

micro back up if unreasonable temperature excursions occur.

In the real E-2, I use the MCP9801’s thermostat feature to kill charge current 

if the batteries get too warm, to stop the drive and compressor motors if any of 

them exceeds a nominal temperature threshold, to pause the compressor while 

filling the high-pressure air bottle, and to turn off some high-intensity halogen 

lamps if the temperature of the hull area surrounding the lamp’s reflector rises 

too high (this might indicate heavily sedimented water, but the situation I’m 

most concerned with is turning on a lamp facing straight down into mud—those 

lamps generate an incredible amount of heat). Note, however, that although this 

feature is usually described as a “thermostat” in other vendors’ datasheets, and 

I use the word freely in this text, this part is not really suited to drive a thermal 

load without external intelligent assistance. The temperature alert feature, as 

Microchip terms it, is designed to provide a cutoff or warning signal, rather than 

a completely unsupervised process control input.

Next, you need to be able to sense a couple of pressures. The part I’ve selected 

for this is a Freescale MPXH6400AC6T1, which can measure from three to 



116 Chapter 3

58 PSIA and has an integrated hose barb. It is intended for automotive applica-

tions, but works well in the moderate pressure ranges encountered in the E-2 

project. Again, in the real submarine quite a few spots need to be sampled; I’m 

interested in ambient pressure as a way to gauge the vessel’s depth, as well as 

various pressures in the air lines leading from the high-pressure air bottle to the 

ballast tanks, as well as a couple of pneumatic linear actuators. The preceding 

circuit only implements two sensors, but again this can easily be extended to 

any number your application might require.

Note that the MPXH6400A series is only characterized for dry air use. You 

can, however, use it to measure external water pressure by using an air bubble 

behind a flexible diaphragm. That phrasing sounds really scientific and technical, 

so I’ll freely admit that the “flexible diaphragm” in question is actually a plastic 

soda bottle. I drilled a hole in the bottom and epoxied a tube into the hole. I 

also glued the cap on tightly with more epoxy, after first removing the rubber 

seal. This arrangement has been tested at pressures up to two atmospheres, and 

it would probably withstand quite a bit more.

These  pressure sensors provide analog outputs. We read them at a fairly low 

sample rate using the analog-to-digital channels of the ATMega32L. Some basic 

software filtering removes noise; we don’t expect the values here to change very 

rapidly. You can find the relevant code in main.c.

The last and most complex sensor we’ll use is an Analog Devices ADXL322 

 MEMS (Micro Electromechanical Systems) accelerometer. MEMS is an exciting 

technology that straddles the border between “really, really small machines” and 

nanotechnology. The most common MEMS devices you’ll encounter in robot-

ics work are accelerometers and gyroscopes; various vendors including Analog 

Devices, Freescale, ST, and Kionix® (among others) offer these sorts of parts. (By 

the way, the pressure sensor we’re using is also a MEMS device.) If you browse the 

Resources in depth, you’ll see quite a few other very interesting MEMS devices 

on the market, both sensors and actuators. I’m particularly intrigued by the 

possibility of building an electric motor the diameter of a human hair, though I 

can’t yet think of a use for this device in any project I’m working on.

The ADXL322 is a two-axis ±2G accelerometer. This means that it can 

measure acceleration in two dimensions, and these two dimensions are at right 

angles to each other. The sensor output saturates at ±2G. Other typical ratings 



 Teaching Yourself, Bottom-Up 117

for accelerometers are ±5G and ±10G. Parts with higher acceleration ratings are 

used in applications such as car airbags, which need to be able to discriminate 

between high-speed and low-speed collisions. (Second-generation and later car 

airbags have different firing behavior depending on the severity and direction 

of the collision.)

The 2G accelerometer I’m discussing here is typically used for measuring 

roll and pitch of a vehicle or perhaps a video game controller. For example, you 

might use it in an auto-leveling circuit for a model aircraft. The accelerometer 

would be mounted with one axis—the X axis, without loss of generality—parallel 

to the stern-to-bow line of the craft, and the other axis (Y, in this case) running 

from port to starboard. (See Figure 3.14.)

Accelerometer

−X

−Y +Y

+X

Figure 3.14  Accelerometer mounting.

The ADXL322 provides you with two analog voltage outputs corresponding 

to the X and Y acceleration vectors. When the device is parallel to the Earth’s 

surface, both analog outputs are mid-scale. As you tilt the device toward the X+

direction, the X output gets closer to rail voltage; tilt it back toward the X– direc-

tion and the output heads toward 0V; similarly for the Y axis. In general, the roll 



118 Chapter 3

and pitch (when the sensor is mounted as previously described) are given by the 

relations:

 pitch = sin–1 (X)

  roll = sin–1 (Y)

where X and Y are numbers scaled from the voltage ranges provided by the chip 

to a –1.0 to +1.0 scale. Due to motion or noise, X or Y can exceed 1.0; you need 

to allow for this possibility.

An important point that might not immediately be obvious: A two-axis 

 accelerometer can only tell you your vehicle’s acute angle off vertical in the X

and Y directions. It cannot completely resolve this information into a unique 

vehicle orientation. Consider the two situations in Figure 3.15, where I roll a 

vehicle through 15 degrees and then through a further 150 degrees (note that 

these diagrams represent a stern view of the vehicle).

Waterline

15° starboard roll 165° starboard roll

sin 15° = sin 165°

Positions cannot be differentiated

without additional information.

Figure 3.15  2D accelerometer limitations.

As you can see, the roll axis output is the same for both situations. The z-axis, 

if I had a way to measure it, would have changed sign, but the two-axis device 

simply cannot differentiate between the two possibilities.

Another point that sometimes seems very difficult to communicate is the fol-

lowing: An accelerometer only measures a single  acceleration vector (in this case, 

I have the vector decomposed into two components; a three-axis accelerometer 

would give a third component, but the net result is still a single vector). Gravity 

is one component of this acceleration. Your hand pushing the device across the 



 Teaching Yourself, Bottom-Up 119

table might be another. A rocket motor launching you, the table, and the device 

into space would just be another component of the acceleration. You cannot

separate out these components just by looking at the output of the accelerometer. 

In other words, if you have the accelerometer mounted as I previously described, 

the best you can do—even with a three-axis accelerometer—is to obtain a single 

vector that summarizes all linear acceleration forces acting on the vehicle.

Due to this fact, and also the lack of a z-dimension and the low-maximum-G 

sensor being used, the circuit I’m discussing here is totally unsuitable for inertial 

navigation. Building so-called  dead reckoning inertial guidance circuits and 

developing the software for them is very challenging. To establish the motion 

vector of an object from a historical record of its acceleration vector, you need 

to sample rapidly and (numerically) integrate over time. To calculate the net 

displacement (position) of the object, you need to integrate the motion vector 

again. Errors in these processes are cumulative.

The consumer application where you are most likely to encounter such circuits 

is in very high-end GPS receivers. These devices try to keep track of their posi-

tion using the GPS signals as far as possible. When the satellites are temporarily 

occluded (for example, when you drive into a tunnel), the device keeps your 

position up to date, with reduced accuracy, using inertial navigation.

The MEMS device is read through the Analog/Digital Converter (ADC) chan-

nels, just like the pressure sensor. A slight nuance here is that due to impedance 

matching issues, you need to use an op-amp configured as a simple voltage follower 

between the sensor and the micro. You’ll observe a few calibration constants in the 

code; you need to calibrate the zero reference (flat on the table) and the ±1.0G 

voltages for both outputs. These constants will vary from unit to unit, due to dif-

ferences in wafer orientation of the MEMS sensor inside its  packaging, different 

mounting angles of the package on the PCB, and other random factors. The usual 

way of calibrating these devices is with a reference platform. (A piece of plywood 

with adjustable-height feet—or, large bolts—in each corner and a spirit bubble 

on it, is an adequate reference platform.) You calibrate the zero position with the 

vehicle on the table; you then roll the vehicle through ±90 degrees and pitch it 

through ±90 degrees to calibrate the range limits. You can store the constants thus 

measured in EEPROM; they will be valid unless the device is serviced and the 

orientation of the accelerometer with respect to the vehicle exterior is altered.



120 Chapter 3

We’ve talked a lot about the hardware; what about the firmware? To flash new 

code into the AVR, you will need an in-system programmer such as the Atmel 

AVR-ISP cable, the  STK500 development board, or a third-party tool. You’ll also, 

obviously, need a compiler and linker, for which I chose to use avrgcc. Although I 

work in Linux, you can equally easily build the AVR GNU tools in Windows using 

the cygwin emulation environment, available freely from <http://sourceware.org/

cygwin/>. Cygwin runs under Windows 95/98/Me/NT/2000 and XP (and pre-

sumably Vista, though I haven’t tried this). It emulates most of a Linux system 

and makes it possible to run a large amount of UNIX® software (including X11 

software) directly within Windows. If you wish, you can also use the precom-

piled WinAVR tools; I generally prefer to build my own toolchain, but if you’re 

looking to get started quickly, WinAVR is the speedy route.

If you’re rolling your own, your first step is to download  gcc and  binutils

from ftp.gnu.org, and avr-libc from <http://www.nongnu.org/avr-libc/>. First, 

unpack build and install binutils (assuming you’re using version 2.16, which 

is the version I am currently using for AVR development):

tar zxvf binutils-2.16.tar.gz
cd binutils-2.16
./configure --target=avr --program-prefix="avr-"
make
make install

Next, unpack, configure and install gcc (again, assuming you’re using 4.0.2):

tar zxvf gcc-4.0.2.tar.gz
mkdir gcc-build
cd gcc-build
../gcc-4.0.2/configure --target=avr --program-prefix="avr-" --
enable-languages=c
make
make install

Finally, unpack, configure and install the avr-libc runtime library (I’m using 

version 1.4.4):



 Teaching Yourself, Bottom-Up 121

tar z6xvf avr-libc-1.4.4.tar.gz
./configure --build='./config.guess' --host=avr
make
make install

(Note: The ' character is the single quote, not the apostrophe. This character is found under the tilde (~) 
on a standard U.S. 104-key keyboard.)

By the way, if you downloaded the .bz2 versions of these files, then instead 

of using the syntax:

tar zxvf filename.tar.gz

you should use:

bunzip2 -c filename.bz2 | tar xvf -

What you just went through is merely a quick HOWTO-style thumbnail of 

how to build and install the GNU toolchain components; for more information, 

please refer to the online documentation or simply obtain a copy of my first 

book. (I promise you that I’m not trying to shill that book. I just get very tired 

of rewriting the material that I put in that volume—it’s much easier for me just 

to write it once and point people to where I put the information!)

You might also want to install a command-line programming utility. However, 

take warning! From time to time, Atmel changes the communication protocol 

used by its serial programming tools. When you download and run a new version 

of AVR Studio for Windows, it will often prompt you to update your STK500’s 

firmware without warning you of the consequences. One of these “flag days” 

occurred very recently, and it has completely broken third-party support for the 

STK500. The only open-source program I’m aware of that’s currently capable 

of using this new STK500 protocol is the latest beta of avrdude; older programs 

such as uisp are effectively useless. If you have a working system based on third-

party tools, I advise that you never run AVR Studio when your STK500 (or 

AVRISP cable) is connected!

To build the firmware for the AVR, assuming you already have avrgcc prop-

erly installed, simply extract the source tarball (available at <http://www.zws.com/

publications/downloads/ibm-article9.tar.gz>—it’s not an efficient use of space for 

me to print it here) and run make in the vcm_399 directory. Take a moment 



122 Chapter 3

to examine the structure of the program. In particular, note how the interrupt 

syntax works. The avrlibc library by default vectors all the AVR interrupts to a do-

nothing handler. To revector an interrupt, rather than writing a normal  function 

name, you use the SIGNAL macro with an argument naming the  interrupt to be 

vectored—followed immediately by the code block to be inserted. For instance, 

in serial.c you’ll see the serial receive interrupt declared as:

SIGNAL(SIG_USART_RECV)
{
         // code goes here
}

WARNING: The signal name definitions are not 100% identical between 

different AVR variants, and sometimes their meanings can be a little confusing. 

Therefore, C code that uses interrupts is not guaranteed to be portable, even if 

both AVRs in question share the interrupt-generating hardware feature you’re 

interested in. If your interrupts are inexplicably not firing, look at the appropriate 

header file in /usr/local/avr/include/avr (assuming you used the default 

install location for everything) and verify that you used the correct interrupt 

name for the particular chip you’re using.

Because of this potential for confusion, when you’re bringing up a new design, 

I strongly advise using a spare I/O as an interrupt flag. Before you start puzzling 

out obscure interrupt priority questions, just do a quick sanity check—force 

your interrupts to fire, and verify on the scope that you’re reaching the correct 

code point.

Another interesting feature you might want to look at is the EEPROM han-

dling code in eeconf.c. Although nothing is stored in there for this little demo 

applet, in the final product the EEPROM is used for some important calibration 

constants (accelerometer zero roll/pitch values, for instance). The code in eeconf.c 

implements a simple checksummed redundant configuration scheme. The avrlibc 

library provides a convenient framework for polled EEPROM read/write code. 

If you have higher performance requirements and want to use interrupt-driven 

writes, you have to roll your own.



 Teaching Yourself, Bottom-Up 123

A handy hint: To get a quick look at ROM and RAM utilization in your 

avrgcc program, use avr-objdump to look at the section headers—in this case, 

avr-objdump -h 399.elf will show you what you need to know (look at the 

Size column, and ignore .stab and .stabstr, which are symbol tables that don’t 

get uploaded to the chip).

Speaking of memory, you should be aware that avrlibc isn’t very efficient size-

wise. For instance, if you use printf, you’ll pull in a huge amount of code (this 

is a common problem in embedded systems). There are various stripped-down 

printf functions you can use, or you can simply implement by hand the bare 

functionality you need. Since my application doesn’t need to transmogrify much 

output into human-readable formats, I chose the latter route; look at utils.c for 

examples of that code. (These functions are not used by the code; I just include 

them by way of completeness.)

If you’ve followed along in this section (and hopefully looked at the sample 

sourcecode and Makefile), you’ll have a good idea of the kind of thought and 

design process that goes into a fairly well-specified, but informal project. Adding 

work like this to your   portfolio will greatly enhance your employability.



This Page Intentionally Left Blank



125

4.1  Target Audience

The previous chapter dealt with people who have hardware experience and 

want to start learning about microcontroller programming, or a “bottom-up” 

approach to embedded engineering. At the other end of the spectrum, we find 

people who have considerable experience programming application software in 

high-level languages, and who now want to extend their reach into embedded 

systems. These people will typically have what I would describe as “IT” qualifica-

tions ( database programming,  HTML design,  Java development and so forth), 

rather than engineering experience. Computer science majors quite frequently 

fall into this category.

There is an immediate difficulty in adapting these people to embedded 

environments, and this is that pure software projects for mass-market operat-

ing systems (Windows, Mac OS, and so forth) are typically designed with an 

acceptance of enormous variations in performance margins due to variations in 

customer hardware. Furthermore, PC hardware is sufficiently expandable and 

inexpensive that it is realistic for an application software developer to require 

that the user provide special hardware features such as additional memory, 3D 

accelerated graphics, and so on. Neither of these two assumptions are remotely 

acceptable in embedded environments.

The embedded software developer must be able to:

a) characterize and control the resource utilization of the software exactly. 

This includes being able to specify how much RAM and secondary storage 

space the software will require under all conceivable execution conditions, 

with explicit safeguards in place to prevent the software from overrunning 

Teaching Yourself, Top-Down 
(Large Embedded Systems)

4



126 Chapter 4

those limits under unusual input circumstances. In most cases, it is also 

necessary to provide some guarantee of real-time performance (though the 

limits here are often loose enough that people don’t need to take explicit 

notice of them).

b) develop the software in such a way that it utilizes available system resources 

efficiently, and

c) design the software to perform deterministically under specified input 

 conditions.

None of these skills are apparently in great demand in modern consumer appli-

cations software development;1 hence, they are not well taught in computer 

science degree programs. Also observe that the scope of the word “software” 

in this context explicitly includes the operating system running on the target 

device; by contrast it isn’t normal for application developers on PCs to have to 

guarantee the behavior of the underlying operating system.

Ten or twelve years ago (as I complained in the introduction to this book), 

this gulf between embedded development and mass-market software development 

was considerably smaller; programmers who cut their teeth writing games and 

other software for the  Commodore Amiga or (even more so) its 8-bit antecedents 

such as the Sinclair  ZX Spectrum and  Commodore 64 were well-prepared for 

life developing real-time embedded software.

This chapter will introduce you to several of the options for developing high-

end, 32-bit (or even 64-bit) embedded systems. Pay attention to the “high-end” 

qualifier there. Some 32-bit microcontrollers (ARM and SuperH, for example) 

are available in exceedingly cut-down variants, usually with no external memory 

buses, intended for low-cost single-chip systems. Other 32-bit cores, many of 

them proprietary, are built into ASSPs such as those used in DVD players. Both 

these categories of parts and applications more properly fall into the province of 

Chapter 3. In this chapter I’m very specifically focusing on complex embedded 

systems where the application layer is considerably abstracted from the hardware. 

1 Engineers generally have a very special view of the deplorable state of consumer software develop-
ment. This is one reason why you’ll find a disproportionately high number of engineers running 
open-source operating systems. They’ve got bugs, just like commercial software, but at least there’s 
the opportunity for a user to fix the bugs (even though most engineers would never have enough free 
time to start tinkering with that code).



 Teaching Yourself, Top-Down 127

These applications would typically involve complex user interface code, often with 

a GUI. Examples of such systems might include an ATM, an electronic storefront 

sign driven by an embedded PC, a PDA, an automated movie ticket vending 

machine, or a computer-driven airport/railway station destination board. Note 

that I am specifically excluding hard real-time systems that simply happen to have 

such high performance requirements that they need a 32-bit microprocessor.

In a similar fashion to the previous chapter, I’m going to give you a brief 

taste of the capabilities of a few popular high-end platforms. Again, this is not 

supposed to be an introduction to actually developing for these systems. The 

goal is to elucidate for you some of the strengths and weaknesses of these more 

powerful microcontroller families. This will help you to make an informed choice 

as to where you can begin experiments of your own.

4.2  Embedded x86 Solutions

Developers who are most comfortable with application development under 

Windows or Linux will quite likely gravitate toward Intel-compatible x86 sys-

tems out of sheer familiarity. While  x86 has some distinct disadvantages in many 

embedded applications, it is not to be despised when used in environments that 

benefit from compatibility with off-the-shelf PC hardware and software.

Let me digress here for a moment to explain why I selected the previous phras-

ing; it wasn’t arbitrary. Simply put, x86 is not a very good candidate for many 

embedded systems. The x86-compatible extended family is (with a few exceptions 

that you can safely ignore) only employed as part of a more or less wholly PC-

compatible hardware architecture. These processors and their support chips are 

large and extremely energy-hungry;   active cooling is almost universally required 

in x86 designs, and mains power is preferable. The dominant engineering factor 

steering x86-based designs is the baggage required by backwards compatibility 

(both in the CPU core and other support circuitry on the motherboard), and 

most of the people reading this text are doubtless aware of the history behind 

this statement. Vast efforts have been invested—some uncharitable folk might 

say “squandered”—to modernize the CPU and overall system architecture, but 

even the current 64-bit architectures are constrained to some degree by legacy 

considerations. There are relatively few true system-on-chip offerings based 



128 Chapter 4

around an x86-compatible core, and thus significant external circuitry is always 

required in x86 systems.2 It should also be noted that, unlike the vast majority 

of embedded devices, x86 chips lack on-chip JTAG or other hardware debug-

ging interface support. This makes debugging critical low-level functionality 

relatively difficult.

x86 shines, for the embedded developer, in a few situations:

1. You need to hit an extremely aggressive  price-performance point for a very 

complex high-performance hardware design in low production volumes. 

Because most of the parts in an embedded x86 system are off-the-shelf 

consumer PC parts, the unit pricing is lower than it would be for parts 

specifically designed for niche markets. Your 100-piece order of single-

board computers enjoys lower overall component pricing by riding the 

massive volumes purchased by Dell, Gateway, and so forth.

2. You’re building your product around a bunch of functionality that is available 

ready to run in an off-the-shelf operating system like Windows XP, and your 

end product doesn’t need to have extremely tight real-time characteristics.

3. You need to have a very  quick design cycle time—you want to develop a 

mockup of your code on a regular PC, then transfer it across to the target 

system with the minimal possible amount of porting and debugging time. 

This positive factor is enhanced considerably if you have access to a stable 

of competent application-level programmers.

Embedded x86 systems take a variety of forms. The most easily recognizable 

method of embedding an x86 processor is simply to take an off-the-shelf PC 

and put it inside a cabinet containing whatever it is you want to control. The 

self-service photo scanning and printing stations often found in pharmacies and 

department stores are built this way, and they are perfectly legitimate embed-

ded systems. One of the principal advantages of this approach is that you can 

keep your application—both from the software perspective and the mechanical 

 assembly perspective—more or less entirely isolated from the specific piece of 

2 There are exceptions to this rule. The i386EX and some 80186 variants, for instance, are not terribly 
difficult to design around. For the purpose of this chapter, however, I’m discussing strictly higher-
end x86 systems. At the performance level occupied by those low-end processors, there are much 
better non-x86 alternatives.



 Teaching Yourself, Top-Down 129

hardware in your box. This is a Good Thing, because consumer PC components 

tend to have very short production lifecycles compared to parts specifically 

intended for embedded applications.

At the opposite end of the scale, it is of course possible to build your own 

entirely custom board around an x86-compatible processor. The difficulty level 

of such a task is depressingly formidable, however—it’s a job really best left to 

companies that specialize in this sort of design work. Even just to take a semicon-

ductor vendor’s cookie-cutter reference schematic and lay it out on a PCB shaped 

to fit your own space requirements is assuredly not a simple task. At the very least, 

you need to license a BIOS and tweak it to initialize the memory controller cor-

rectly for your board. There are subtle timing parameters that must be adjusted to 

account for layout-specific issues in high-speed memory subsystems—essentially, 

you need to skew the timing on each data line to account for the fact that the trace 

lengths and delays are different. Testing this and finding a set of timing values 

that works with all the memory configurations you intend to support is quite 

challenging; it’s difficult to get something that works at all, and extremely difficult 

to certify that your design is going to work correctly across all combinations of 

temperature, installed memory type, ambient RF noise, and so forth.

In between these extremes, there are a variety of off-the-shelf x86-compat-

ible single-board computers, backplane-based systems and processor/logic core 

modules designed for integration with custom mainboards.

The most popular mainstream x86-compatible processors come from   Intel, 

  AMD and   Via Technologies. (National Semiconductor used to build a range 

of Pentium-like processors collectively called   Geode, but this product line was 

sold to AMD. You’ll still see chips with the National Semiconductor logo on 

them.) The other main contender is   Transmeta™, which makes some innovative 

low-power-requirement x86 emulator chips (Crusoe™ and Efficeon™) used in 

some consumer laptops and single-board computers. AMD’s and Intel’s range 

of consumer chips (of the type you’d find in normal desktop and portable PCs) 

are the best performers; as a brutal generalization, the more oddball parts such 

as Geode, and the CPUs from Via™ and Transmeta, are designed with specific 

goals in mind; power efficiency (Via Eden™, Transmeta), low embedded system 

cost for set-top box and Internet Appliance (IA) applications (this is where Geode 

was originally intended to find its niche), and so on. Be prepared to test your 



130 Chapter 4

application on several hardware mixes before committing to a hardware ven-

dor. It can be close to impossible to gauge how well a particular requirement will 

be met on a specific PC-compatible platform; consumer benchmarks are naturally 

skewed toward consumer activities such as office applications and games, which 

probably don’t accurately reflect most embedded application needs.

The cheapest and in some ways most flexible method of embedding an x86, 

assuming that you’re not just going to dump a complete PC into your appliance, 

is to use a PC motherboard with a standard form factor as the system core. Mod-

ern motherboards, in case you haven’t disassembled a PC recently, bring all their 

external connectors for onboard peripherals (video, serial, USB, audio, and so 

forth) to the back of the housing. The motherboard ships with a layout-specific 

connector plate that fits into a standardized hole on the back of the case, and 

seals the connector area against RF leakage. Since the mounting screw positions 

and the size and shape of this connector plate area are standardized,3 you can 

easily develop a housing that will accept almost any modern motherboard.

The disadvantages of this method are, however, show-stoppers for many appli-

cations. Possibly the worst downside is that in order to drive a PC motherboard 

you need a relatively complicated and expensive power supply. The smallest 

readily available power supplies that have all the standard PC motherboard con-

nections are intended for 1U rack-mount server cases (approximately 16.8" × 

25.6" × 1.7" W × D × H); the power supplies are typically in the region of 5.5" × 

10" × 1.5" with some protrusions. This immediately sets a lower boundary on the 

overall size and shape of your product; couple in the relatively large size of a standard 

PC motherboard and your housing design is going to wind up not too radically 

different from a normal  slimline PC case. You also have to deal with a host of other 

issues: Cooling can be a problem in these confined spaces; fans on the CPU and in 

the power supply are noisy and constitute potential failure points; and as supplies 

of a particular motherboard fluctuate, you’ll need to keep altering your software 

bundle so your driver set matches all the different hardware you’re shipping. This 

can also make end-user upgrades problematic, since it can be difficult to keep your 

upgrader totally generic while you’re making all these hardware changes under the 

3 Visit and bookmark <http://www.formfactors.org/> for all the details. You’ll need it if you’re building 
PC-based appliances; they have specifications on everything from power supply requirements to 
screw hole sizes.



 Teaching Yourself, Top-Down 131

hood. It’s really irksome to have to ask users what flavor of hardware they have 

and keep separate upgrades available for those different versions.

The next most flexible option is to pick a specific motherboard that is still 

fairly generic, but is intended for or at least widely used in embedded applications. 

Via’s motherboard arm <http://www.viavpsd.com/> is probably the industry leader 

here; they led the wave by pioneering the   Mini-ITX form factor with their Epia 

series of motherboards, and they now have several different form factors specifi-

cally designed for embedding. (The   Epia range virtually invented the category 

of homebrewed PC-based media players and similar embedded applications.) 

The downside to choosing these boards is that you’re definitely locking yourself 

into one vendor, albeit one with a fairly strong commitment to keeping their 

old boards in production for a reasonable lifespan. The advantage is that these 

boards are smaller than most normal   PC motherboards, so you can make your 

housing smaller; you can also calculate the power requirements more finely and 

potentially use a smaller, lower-current custom-designed power supply, since 

you don’t have to worry about the possibility of switching in a much greedier 

motherboard at the next production run. Some boards based around the Via 

Eden CPU don’t even require active cooling on the processor.

The big advantage of going with the “consumer embedded motherboard” route 

is that you don’t need to worry about your motherboard being discontinued; 

you can buy whatever board is cheapest at the time you do your production run 

(physical dimensions and cooling requirements permitting). You’ve got insurance 

against the nightmare of trying to source an obsolete board while you frantically 

redesign your housing to match the next best choice.

The next step beyond the consumer grade is to use a   single-board computer. 

These are available in a wide variety of form factors. The vendors with which 

I have the most experience are     Advantech <http://www.advantech.com/>,  BCM 

Advanced Research <http://www.bcmcom.com/> and  ICP America, Inc. <http://

www.icpamerica.com/>; there are numerous others, of course. Note that many of 

these vendors are simply labeling and reselling products from other people.

Common form factors you’ll encounter in this market space include:

• CPU cards (ISA or PCI, usually) intended for connection to a backplane. 

Note that a frequently asked question is “Can I build a multiprocessor 



132 Chapter 4

system by putting several CPUs onto one backplane?” The answer to this 

question is “probably not”—many of these cards are designed to be the 

sole master of the backplane; the other slots have to be empty, or occupied 

by standard PC peripherals such as network cards and so forth. Sometimes 

the backplane is only for power distribution, in which case you can put in 

several processors—but you need to network them somehow (Ethernet, 

usually) and develop your own multiprocessing communications software 

if you want to use the whole thing as a number-crunching engine. A very 

few CPU cards are designed to fit into a multimaster environment and 

talk to each other over the backplane; again, however, special software 

is required to get it all to work. These cards aren’t usually intended for 

distributed processing applications, though; they’re typically meant for 

telecommunications and network routing, where you have a bunch of 

low-bandwidth interfaces leading into each individual CPU card, and 

bulk traffic being routed between interfaces using the fast backplane.

• 2.5"  biscuit PCs. These are designed to have the same footprint as a 2.5" hard 

disk. Due to the extremely confined space, these boards usually require custom 

cable harnesses for all of the connectors. They are also usually built around 

fairly cool-running (i.e., slow) processors to avoid thermal problems.

• 3.5" biscuit PCs, designed to match the footprint of a 3.5" hard drive 

or floppy drive. The sweet spot for price versus performance appears to 

lie in this form factor. Boards are available from the i486-class through 

midrange Pentium® class. These boards will typically have one or two 

Ethernet MACs, VGA output, one or two IDE channels, DiskOnChip®

or CompactFlash® boot capability, and various other interfaces. The 3.5" 

form factor is not really large enough for a normal ISA or PCI expansion 

bus, so most 3.5" SBCs have a PC/104 interface (this is essentially ISA, 

brought out to a pattern of 0.100" headers in such a way that you can stack 

peripheral boards on top of the CPU to achieve various combinations of 

functionality). RAM in these boards is almost always provided by way of 

a laptop-style SODIMM socket.

• 5.25" biscuit PCs. This form factor appears to be in decline, though prod-

ucts are certainly still available. The functionality you’ll find in these boards 

is similar to what you’ll find in 3.5" SBCs, except that due to the larger 



 Teaching Yourself, Top-Down 133

board area you’ll typically find a PCI slot and perhaps some integrated 

RAM onboard.

There are several advantages to using, say, a “biscuit” PC. The first of these is 

the power requirements. Most of these boards run off a single +5V rail, though 

some require +12V as well. You can provide this with a relatively inexpensive 

single- or dual-voltage open-frame power supply, or you can design your own 

supply if necessary. This also simplifies the job of maintaining battery backed-up 

operation, if your system design requires it. Second, the form factor is obviously 

much more amenable than a standard PC motherboard to integration inside a 

nice small box. Third, vendors of   industrial PCs typically provide things you won’t 

find in the consumer PC market, including: guaranteed operational temperature 

ranges, explicit support for Linux, longer product lifecycles with advance end-of-

life notifications (lifespans of these boards are often four to eight years compared 

with as little as six months for consumer products), onboard watchdog timers, 

RS-422/RS-485 interfaces as well as regular RS-232, and more.

If you choose to build your application around an  embedded PC of any 

description, you will still have some learning curves to climb as far as designing 

software for this closed-box environment. At the very least, you probably want 

to have a  watchdog timer (WDT) in your box to prevent lockups (especially if 

you’re using an operating system that isn’t specifically intended for embedded 

use). Most single-board computers already have a hardware watchdog on-board, 

but if you’re using a consumer-grade motherboard you’ll probably have to build 

your own. The simplest sort of watchdog is just a   dead man’s switch that expects 

to be poked periodically—perhaps by receiving a character over a serial port, or 

perhaps by regular toggling of a status line. If it doesn’t get the required input 

for some period of time, the watchdog interrupts power for a few seconds and 

thereby hard-resets the system. More advanced WDTs—available as plug-in 

cards for common buses such as PCI, and usually integrated directly on indus-

trial single-board computers—listen for special writes to an I/O port, or port 

range4 and assert the master system reset line for a period of time if the timeout 

4 One vendor of watchdog cards for PC applications is Berkshire Products, Inc., at <http://www.
berkprod.com/>. Their PCI watchdog card provides all kinds of goodies including an A/D input, 
DIP-switch and/or software-configurable WDT timeout, eight digital I/O ports, two relays, tem-
perature trip points, and various other features.



134 Chapter 4

fires. These products usually incorporate other handy system health functions 

as well, such as temperature zone monitoring. In some cases, you might want to 

implement your own custom WDT hardware, particularly if you have external 

mechanical hardware—a sawmill, for instance—that needs to be brought to a 

safe condition immediately if the software in the control computer is determined 

to have failed.

Be aware that WDTs on single-board computers tend to have amazingly 

long timeouts (seconds or minutes) compared to the values you’d find in small 

microcontroller systems (milliseconds). In some extreme cases, the WDT will 

be set—in hardware—to fire after as much as five minutes. This long delay is 

necessary if the WDT is always live; it allows time for a big operating system 

and application set to load after power-cycling the system. It’s a better idea to 

choose a WDT that is only armed by some explicit software action, and/or has 

a one-time programmable timeout; that way, you can minimize the worst-case 

length of downtime after a glitch.

You should also be cognizant of the fact that the sudden-death power cycling 

approach to watchdog timer behavior is definitely not healthy for some types 

of hardware. In particular, CompactFlash cards (commonly used in x86 designs 

based around single-board computers) are not designed to handle power inter-

ruption elegantly. If you cut power to a CompactFlash card during a write 

operation, the entire card may be rendered unusable. This situation could easily 

happen if, for instance, you’ve got a log file open for writing and you happen to 

be committing a change at the moment the WDT fires.

You will also need to consider how your application will interface to the real 

world. In these modern days of  legacy-free PCs, it’s harder than it used to be to 

lash home-made peripherals onto the side of the computer. The easiest way to 

attach digital peripherals such as pushbuttons and relays used to be to wire them 

to the PC’s parallel port. The easiest way to interface a slave controller board to 

your computer used to be over a serial (RS-232) link. Since both these interfaces 

are dying out in the consumer PC market, you may need to investigate other 

methods. Note, by the way, that the SBC market is considerably more embedded-

friendly, as you might expect; parallel and serial ports are still standard features 

on practically all of these boards. However, it might be a wise future-proofing 

idea to avoid those older interfaces if you can; it will make it easier for you to 

bring your application over to a different board.



 Teaching Yourself, Top-Down 135

There are various exotic things you can do to attach external custom peripher-

als to a PC, but the “easiest” route is to go in via USB. (Nothing in  USB is truly 

easy; it’s a complicated interface to use. If you’re very cautious about what you 

attempt to do, you can hopefully avoid most of the pain, however.) If you just 

need a few external pushbuttons and your product is a low-volume device, you 

can cannibalize a USB mouse or keyboard and wire your own buttons to the 

appropriate points on the microcontroller in those devices; you won’t need to 

write any device drivers or build any complex hardware. For higher production 

volumes, or if you need something more complex than just a couple of buttons, 

more drastic solutions are called for.

Now, I’m a big fan of keeping things as simple as possible, particularly where 

USB is concerned. In particular, I never want to be in the position of having to 

write and maintain USB driver code for the host operating system, especially if 

that host operating system happens to be a rapidly changing consumer operat-

ing system like Windows or Mac OS. Therefore, I prefer to use a USB interface 

solution that has fully debugged, vendor-provided drivers.

From a practical design standpoint, this means that I still use regular 

RS-232-style asynchronous serial as my external interface of choice. In between 

the PC and the external hardware, I use USB-to-serial converter chips from FTDI 

<http://www.ftdichip.com/>. These devices are a boon to embedded developers, 

because FTDI provides completely free drivers for Windows, Windows CE and 

Mac OS. (Linux has had  FTDI support built into the kernel for a while; if you’re 

using an older kernel, FTDI provides a driver for your use.) All you need to do 

is plug the device in, install the driver, and you’re communicating.

You don’t even need to put the FTDI chip on your board; you can use the 

pre-assembled “ChiPi” cable (UC232R) which is available direct from FTDI for 

about $20. The only real downside to this is that you’ll need to put an RS-232 level 

matcher on the other end of the cable; if you use the bare FTDI chip then you can 

avoid shifting from CMOS to RS-232 levels and back again. Of course, you can 

hack the ChiPi so that it outputs inverted CMOS signal levels, if you so desire.

Unfortunately, some applications can’t be implemented using the serial over 

USB method due to tight timing requirements or simply because they involve 

large data transfers to or from the external hardware. At this point you need to 

bite the bullet and build some custom USB hardware to talk to the outside world. 



136 Chapter 4

There are basically two routes you could take here; either graft a USB interface 

onto an existing design (the Philips PDIUSBD12 is an example of one low-cost 

part you can use for this purpose) or use a microcontroller with built-in USB 

device-side hardware. In general, I prefer the latter approach, and the specific 

devices I like are the  USB microcontrollers from Cypress.5 The device I would 

design in today is the EZ-USB FX1™ (CY7C67413); in the past I’ve used the 

older EZ-USB parts (AN21xx).6

The FX1 part is a high-speed 8051 microcontroller with a USB interface, I2C

interface, 16 Kb of code memory, up to 40 GPIO pins, two DPTRs, and various 

other goodies. The truly nifty part about this chip is that the code memory is 

actually RAM. On powerup, the chip can load that RAM area with code from 

an external I2C EEPROM. If your design doesn’t include the EEPROM, the chip 

will sit around doing nothing until you connect it to a USB port. It will then 

identify itself to the computer as a generic Cypress device. Cypress provides a 

driver that will download your custom code to the chip while it is in this state. 

The driver then simulates a disconnect and reconnect, but this time around it’s 

running your code, so Windows loads a different driver to talk to it. Exactly 

which driver is loaded depends on how your device identifies itself; it could be 

a standard Windows driver such as a human interface device or storage class 

driver, or it could be something completely custom.

The reason this is so exciting is partly because it makes developing and 

debugging the device side of the code nice and fast, even if you don’t have the 

wherewithal for real in-circuit debugging hardware. The burn-test-pray cycle is 

accelerated by making the burn phase very fast. A more important fact, however, 

is that you can reprogram the device simply by updating the host-side driver so it 

downloads new firmware to the device. This allows you to upgrade the firmware 

in the field without requiring any special hardware, and without taking any risk 

that a self-updating micro might lose power during the upgrade process and 

leave you with a brick.

5 Other vendors have microcontrollers with on-chip USB, of course. PICs are quite popular for this 
type of application, too, though they don’t have the nifty RAM-based architecture Cypress offers.

6 The reason I mention this older part at all is that DeVaSys <http://www.devasys.com/> still offers 
a relatively inexpensive ($79) evaluation board with the AN2131QC chip on it and all the I/Os 
brought out to a handy header. This is the cheapest way to get up and running with the EZ-USB 
parts. I couldn’t recommend you use the AN21xx family in a new design, since it is approaching the 
end of its life; but you can certainly use the part to get a lot of good experience developing embed-
ded USB code.



 Teaching Yourself, Top-Down 137

Unfortunately, regardless of what path you take, if things come to a pass where 

you’re designing your own USB microcontroller code, you’ll almost certainly have 

to write a custom driver on the PC side as well. If you’re looking for a relatively 

low-stress introduction to USB from the embedded developer’s perspective, an 

excellent book is USB Complete: Everything You Need to Develop Custom USB 

Peripherals (3rd edition) by Jan Axelson (Lakeview Research, August 2005, ISBN 

1-9314-4802-7). There are numerous tutorials and other information available 

online, of course, and the full specifications can be downloaded from the USB 

Implementers Forum, Inc. <http://www.usb.org>.

By the way, if your only interface need is a few analog channels or some-

thing of that kind, you don’t need to build custom hardware of any sort. Several 

vendors—National Instruments™ <http://www.ni.com/>, Dataq® Instruments 

<http://www.dataq.com/> and IOTech <http://www.iotech.com> for example, 

sell   data acquisition kits that can be used as the interface core of an embedded 

PC-based system. Some of these kits are very inexpensive; Dataq’s entry-level 

8-channel serial data acquisition device, for instance, is only $25. The equivalent 

USB product is $50.

The other big decision you’ll have to make in your x86 project is what  oper-

ating system will be used. Later in this chapter I discuss a couple of popular 

embedded operating systems, but I don’t mention  Windows, which is the OS 

you probably think of most readily when x86 is mentioned. The reason for this 

is that standard consumer Windows is emphatically not an embedded operating 

system. Also, it is only available for the x86 environment, whereas most embed-

ded operating systems are portable to other architectures.

For this section—and only for this section—I’ll give you some valid reasons 

that might argue for building your system around Windows. Some people—par-

ticularly at Microsoft—would argue that my list is excessively cautious, but for 

what it’s worth, here are the “should have” criteria that I suggest you look for 

before deciding to design around Windows:

• You are already an experienced Win32 programmer, and/or you have 

access to an experienced Win32 programming staff. This criterion might 

override all others in some cases; if you need to deliver a product quickly, 

and all your in-house talent is Win32-based, it can make reasonably good 

sense to use what you have.



138 Chapter 4

•  Speed of application development is more important than optimizing the 

bill-of-materials cost and fine-tuning overall device performance. Note 

that building your application as a Win32 program means you can test 

it on a regular PC—and, if necessary, show it to customers—while the 

hardware team is still arguing the details and assembling prototypes of 

your hardware platform. It’s smoke and mirrors, but it’s also the reality of 

modern marketing campaigns.

• Your application has no significant  real-time requirements except, perhaps, 

embedded  multimedia functionality (MP3 audio playback, video playback, 

and so forth). Windows was not designed to provide guaranteed real-time 

performance, although it’s possible to fake it in some cases.

• A significant proportion of your application is   GUI user-interface code. 

If this is the case, you can take advantage of numerous well-tested GUI 

libraries and development tools for the Windows environment.

• Your application will never be connected directly to an open network 

such as the  Internet. Consumer Windows is constantly phoning home 

for updates to protect it against new and improved security threats. It’s 

very difficult to lock the operating system down tight enough that these 

updates aren’t necessary (especially if you need to have Microsoft-provided 

network services of any sort running on the box). On the other hand, it’s a 

bad idea to allow an unattended device to be downloading and installing 

third-party software updates; you have no idea if one of these automatic 

updates is either going to require user intervention, or adversely affect the 

performance of your real application.

• You have no real need to hide the underlying “PC-ness” of the device.

• You need to include functionality that’s provided only by proprietary 

third-party software. A good example of this is support for Flash movies. 

Although at least one group has made surprisingly good progress at reverse-

engineering Flash and providing a third-party playback utility, if you want 

to advertise Flash capability without getting end-user complaints, you really 

need to be running the Adobe® plugin or standalone player. Adobe, for all 

practical purposes, only supports Windows, Mac OS and Windows CE; 

although there is a Linux player, it’s not well-supported and it’s certainly 

not open-source, so you can’t recompile it for non-Intel platforms.



 Teaching Yourself, Top-Down 139

4.3  ARM

ARM is a fantastically popular embedded core with a most interesting pedigree. 

 ARM is so popular, in fact, that if you learn this one 32-bit core and no others, 

you’ll likely be employable for a long time to come. The name is an acronym 

that originally stood for “ Acorn RISC Machine” but is now generally accepted 

to mean “Advanced RISC Machine.”

I won’t delve into the history of the ARM core too deeply, but it’s too fasci-

nating to skip entirely, so here is a quick thumbnail sketch: In the early 1980s, 

a British company called Acorn Computers was manufacturing a range of 8-bit 

computers based around the 6502. These machines included the Acorn Atom, 

British Broadcasting Corporation Microcomputer7 models A and B, Acorn 

Electron, and BBC Master. (British and Australian readers, among others, may 

remember the BBC Micro fondly, as it was widely used in primary and second-

ary schools in the late 1980s. The machines didn’t make it to the United States 

in any significant number due to RF emissions problems causing difficulty with 

FCC approval.) 

In 1983, Acorn began developing their own proprietary RISC microprocessor 

as an upward migration path away from the 6502, and in 1987 they released the 

Acorn Archimedes, a powerful personal computer (designed to replace the BBC 

Micro), based around this new architecture. The Archimedes and its descendants 

never saw enormous commercial success, and the RiscPC that followed the Archi-

medes went out of production last century,8 but the ARM microprocessor was 

adopted by Apple® as the core of its Newton PDA product line.

Between then and now, the ARM core has enjoyed sales growth that is noth-

ing short of staggering. Today, ARM cores are realized into silicon by dozens 

of vendors; they are found inside ASSPs in all sorts of products from PDAs to 

handheld games to mobile phones to rack-mounted networking gear. Intel even 

practically abandoned its home-grown i960 RISC product line (the principal 

applications for which included laser printers and cached disk controllers) in favor 

7 Generally referred to as the “BBC Micro”. However, the BBC acronym is owned by the Brown 
Boveri Corporation, which was the cause of some legal action. The formal name of the computer is 
therefore the British Broadcasting Corporation Microcomputer.

8 There is, however, an ARM-based RISC OS PC still on sale from Castle Technology under the 
 Iyonix brand <http://www.iyonix.com/>. This machine is, however, quite thrillingly expensive—
 comparable in cost to the evaluation boards for the high-end XScale parts.



140 Chapter 4

of an ARM-based design. This product family is called   XScale, and it is based 

on the   StrongARM variant originally developed by Digital Equipment Corpora-

tion and passed on to Intel as part of a legal settlement during DEC’s breakup. 

The first XScale parts were basically a process migration of the old StrongARM 

SA1110 part; modern devices are quite different, with considerably faster clock 

speeds and more flexible peripherals.

The principal interesting characteristics of the ARM core are:

• small size on the chip die,

• low power requirements (in MIPS/mW terms) and,

• available (as prepackaged intellectual property) as both a hard core and 

synthesizable soft IP. Hence, if you’re willing to pay the appropriate licenses, 

you can even synthesize an ARM into your own FPGA.

Observe, by the way, that ARM (per se) does not manufacture chips—they 

simply develop the intellectual property relating to the core. It is a frequent 

neophyte question to ask “Is ARM available from other vendors?” The answer to 

this question is that there is no such thing as “an ARM”—there are merely chips 

that contain an ARM core, and such chips are indeed available from numerous 

vendors. There are no drop-in-replacement, generic multisourced ARM parts 

in the same sense that there are generic 8051 parts. In fact, as a general rule, 

many of the ARM parts we see as general-purpose devices now were at one time 

application-specific products custom-designed for one customer or one particular 

market space. After such parts have been in production for some time, the chip 

vendor starts to look for other customers, and if the demand seems to be present, 

the device will be offered to the public.

The earliest ARM-cored parts (from companies such as VLSI) were micro-

processors, rather than microcontrollers. They did not generally have on-chip 

RAM (except perhaps for caches) or ROM; it was not possible to build a single-

chip system using these devices. It was not until about 2003 or thereabouts 

that we began to see commercially fielded, generally available single-chip ARM 

products. Possibly the first such product family to the general retail market was 

the LPC2xxx series from Philips. As of 2006, there are several other vendors 

with single-chip products; Atmel and ST would appear to be the most popular, 



 Teaching Yourself, Top-Down 141

though there are other vendors in the field as well. These single-chip parts are 

very inexpensive, and they are aimed very clearly at usurping the upper end of 

the 8-bit market. A significant number of high-end 8-bit applications are moving 

up to ARMs, with a substantial jump in performance for very little additional 

bill-of-materials cost. For more information on this topic, refer to Section 3.1 

and the end of Section 3.2.

To the best of my knowledge, there is no ARM-cored general-purpose part 

presently manufactured in a package that lends itself to hand-prototyping with-

out a custom PCB. Hence, there are essentially four routes to building a system 

around these devices:

1. Buy the chip vendor’s evaluation board and do your initial development 

on that. This is usually quite expensive.

2. Buy a third-party evaluation platform for the device. This is usually much 

cheaper than the first option, but you might be somewhat restricted by what-

ever other hardware the third-party vendor chose to put on the board.

3. Repurpose an off-the-shelf device that happens to use the chip of interest. 

As a somewhat relevant example, a lot of people have built interesting things 

out of the Linksys® WRT54G (now WRT54GL) wireless router—for 

example, see the information page at: <http://www.seattlewireless.net/

index.cgi/LinksysWrt54g> and the homepage of Sveasoft at <http://

www.sveasoft.com/>, where you can obtain a commercial set of replacement 

firmware for this device (among others). This particular device happens 

to be based on a MIPS processor, not ARM, but the same principle 

applies. The problem is, of course, that consumer hardware is a moving 

target; manufacturers often change the innards of their appliances without 

changing the model number or packaging—so you can’t be assured of a 

continued supply of whatever version you’ve chosen to hack.

4. Develop your own circuit from scratch and build your own custom board. 

This is, needless to say, a high-risk path if you’re not already experienced 

with the particular chip you’ve chosen to use. I would not go down this path 

unless your desired application can be achieved by a fairly simple modi-

fication of a known-good reference application schematic. (Don’t assume 

that the schematics on a vendor’s website are accurate, by the way—I have 



142 Chapter 4

almost never encountered a vendor’s schematic that exactly matched the 

evaluation board; nearly all of them contain errata that have been patched 

on the real board but not in the downloadable documentation!)

For the remainder of this chapter, I’m going to discuss the Sharp®   BlueStreak 

LH79520, a representative midrange ARM720T part intended for applications 

such as low-end PDAs, GPS devices and so on. You should, however, be aware 

that the ARM family covers a great deal more territory than just this one core; for 

more information, consult the official reference documentation for ARM’s various 

cores at <http://www.arm.com/documentation/ARMProcessor_Cores/index.html>.

I’m going to start by talking about under-the-hood details, and then move on 

to some higher-level application-layer material. Please note that this description 

barely scratches the surface of what’s in an ARM part; it is the material of an 

entire book to discuss this processor architecture.

The Sharp LH79520 is a 176-pin LQFP device containing an  ARM720T 

core (more on this later) and the following major peripherals:

• Flash/SRAM controller.

• SDR (single data rate) SDRAM controller.

• DMA controller supporting the on-chip LCD controller as well as external 

DMA devices.

• Vectored Interrupt Controller (VIC).

• Color, bitmapped   LCD controller. Note that this controller is intended 

to drive STN and TFT panels with integral row/column drivers; it is not 

designed to drive the LCD segments directly.

• 32K of on-chip SRAM.

• Synchronous serial port intended for peripherals such as audio codecs.

• Two PWM outputs.

• Three UARTs, one of which has infrared decode capability.

• Four on-chip timers. The output from one of these timers is routed to an 

external pin.



 Teaching Yourself, Top-Down 143

• Up to 64 pins of GPIO, multiplexed with the peripherals as previously 

described.

• A watchdog timer.

• A real-time clock (RTC) module with alarm function. The RTC is clocked 

by a separate 32.768 kHz watch crystal, and it continues to run while the 

CPU core is asleep; the alarm function can be used to wake up the core.

• JTAG debugging interface.

Sharp does have an official evaluation board for this microcontroller; however, 

it’s rather expensive (several thousand dollars). There are less expensive solutions 

available in the third-party market, including the LH79520 Card Engine from 

Logic Product Development <http://www.logicpd.com/> and the   mARMalade 

from EarthLCD <http://www.earthlcd.com/>. The latter product is a rather 

complex but relatively inexpensive single-board computer with Ethernet, a touch 

screen interface, serial ports, an LCD interface (the board is available in a kit with 

a color LCD module), a CompactFlash slot and various other goodies. It has the 

blob bootloader and Linux preinstalled, so you don’t even need to fiddle with 

JTAG adapters and so forth to get the board working; you can do everything 

over a serial connection.

Most ARM devices, including the LH79520, have several selectable physical 

memory maps. This feature isn’t absolutely necessary on parts, like the LH79520, 

which have a memory-management unit but, nevertheless, the chip has three 

memory mapping modes (shown in the following table) selected by the REMAP 

bits of the RCPCRemapCtrl register.

Range 0b00 (default) or 0b11 0b01 0b10

0xFFFF0000–
0xFFFFFFFF

AHB peripherals AHB peripherals AHB peripherals

0xFFFC0000–
0xFFFEFFFF

APB peripherals APB peripherals APB peripherals

0x80000000–
0xFFFBFFFF

Not implemented Not implemented Not implemented



144 Chapter 4

Range 0b00 (default) or 0b11 0b01 0b10

0x60000000–
0x7FFFFFFF

Internal SRAM 
 (repeated)

Internal SRAM 
(repeated)

Internal SRAM 
(repeated)

0x40000000–
0x5FFFFFFF

External static memory External static 
memory

External static 
memory

0x20000000–
0x3FFFFFFF

SDRAM SDRAM SDRAM

0x00000000–
0x1FFFFFFF

External static memory SDRAM Internal SRAM

Note: AHB is the Advanced High-Speed Bus, used for “important” peripherals; APB is the slower Advanced 
Peripheral Bus, used for peripherals with lower bandwidth such as the UARTs.

The only substantive difference between these modes is what lies at the bottom 

of the physical memory map. At power-on reset, the ARM core begins execution 

at location 0x00000000. Hence, the POR default setting for the remap register 

is to put external static memory (which would normally be Flash or EPROM) 

in this location. For the LH79520, the default is to assume rather slow 16-bit 

memory from 0x00000000 to 0x04000000. Actually, the chip has seven static 

memory banks, each of which has a dedicated chip select line coming out of 

the micro. 

Each bank is uniquely configurable as to width and speed, except that in order 

to meet the LH79520’s boot requirements, you’ll want to have 16-bit Flash or 

other nonvolatile memory connected to chip select 0. The default bank assign-

ments are shown in the next table (note that these addresses are offsets from 

the start of the static memory area; add 0x40000000 if you want to access the 

“permanent” location of static memory, or use these addresses directly if you’re 

in remap mode 0b00 or 0b11):

Range Width

0x00000000–0x03FFFFFF 16-bit

0x04000000–0x07FFFFFF 16-bit

0x08000000–0x0BFFFFFF 16-bit



 Teaching Yourself, Top-Down 145

Range Width

0x0C000000–0x0FFFFFFF 8-bit

0x10000000–0x13FFFFFF 32-bit

0x14000000–17FFFFFF 32-bit

0x18000000–0x1BFFFFFF 16-bit

The normal sequence of events at powerup would be as follows:

• A small bootstrap program at 0x00000000 (in physical memory) jumps 

to a location in the 0x40000000–0x5FFFFFFF range. Note that this is 

still executing out of the same physical memory device, since those two 

locations are mirrored; it’s merely a change in the program counter.

• The remainder of the bootstrap program initializes static memory controller 

and SDRAM controller to match the product’s physical memory map and 

the attached devices. Note, by the way, that memory-mapped peripherals 

are attached to the static memory controller.

• The main program image is copied to SDRAM or on-chip RAM.

• The remap register is set to either 0b01 or 0b10 (0b01 would generally 

be more usual).

• The bootstrap program jumps to location 0x00000000, which is now 

pointing at high-speed RAM, usually 32 bits wide.

• Main program image execution begins. Observe, by the way, that the ARM 

vector area at 0x00000000 is now in RAM.

Now, an important point: The ARM core operates with 32-bit words. It 

expects to have external hardware manage the byte lanes for unaligned accesses 

and memories that are less than 32 bits wide. Therefore, it is absolutely critical 

that you take care to program the static memory controller for the correct width 

of the device you’re accessing, and (particularly in the case of memory-mapped 

I/O devices) that you use the correct instructions to access memories that are 

narrower than 32 bits. If you don’t heed that last warning, you’ll experience some 

very odd behavior, because the static memory controller (SMC) will select the 



146 Chapter 4

wrong byte lane(s) and may generate additional, unwanted read and write cycles. 

For instance, if you have a 16-bit peripheral on the bus, and you configured the 

SMC correctly, a 32-bit read or write will cause the SMC to issue two read or 

write cycles to the lower 16 data bits. Conversely, if you have an 8-bit peripheral 

on the bus, and you accidentally configured the SMC for 32-bit operation on 

that bank, reads and writes for addresses that are not an integer multiple of 4 

will be routed to the wrong data bus lines.

While we’re on the topic of memory, a brief word about the memory man-

agement unit (MMU). The ARM720T has an 8K on-chip cache memory area. 

In order to use this, you must enable the MMU, since the cache enable bits are 

set on a per-page basis in the MMU page tables. The MMU operates with two 

data structures; a table of “section” entries that describe memory in 1 MB blocks, 

and (optionally) one or more tables of “page” entries that describe memory with 

finer granularity, in either 4 KB or 64 MB blocks. The MMU translation table 

must reside on a 16 KB boundary in memory.

Each entry in either of these tables is a 32-bit word. You’ll find the address 

translation process, and how to create the page tables, described in detail in sec-

tion 6 of the ARM720T Rev 3 Technical Reference Manual, but in brief: When 

the processor attempts to read or write a given address, the address is divided 

by 1 MB and the result is used as an offset into the level 1 (section) descriptor 

table. The 32-bit entry thus fetched either describes fully the handling to be 

given to this 1 MB zone, or it references a page table (level 2 descriptor). Bits in 

the table entry control whether the area is cached and/or write-buffered, which 

privilege domain the area belongs to, and where it should be mapped in physical 

memory (with 1 MB granularity in the case of the section table). The simplest 

way to deal with the   MMU is to create a set of section entries that maps all of 

your memory into a contiguous area starting at 0x00000000, with cache and 

buffer enabled where appropriate. (Since the size of the table is directly depen-

dent on how large your addresses get, cramming everything down to the bottom 

of the section table minimizes the number of entries the table needs to create.) 

Advanced operating systems, particularly those that implement virtual memory, 

will need to implement page tables so they can have finer-grained control over 

memory permissions. As with practically all MMUs, the ARM720T’s contains 

a translation lookaside buffer (  TLB) that caches 64 sections’ worth of mappings, 

so they don’t need to be looked up.



 Teaching Yourself, Top-Down 147

From an assembly language programmer’s standpoint, the ARM720T is a 

von Neumann, highly orthogonal RISC architecture with a 32-bit instruction 

word. The “T” suffix indicates that this part also supports the Thumb mode. In 

Thumb mode, the instruction word is only 16 bits in size, offering an improve-

ment in code density and potentially an improvement in speed if the code is being 

executed out of a 16-bit memory device. However, while Thumb mode is active, 

not all the general-purpose registers can be accessed, some other functionality is 

unavailable, and algorithm execution is therefore slower, all other things being 

equal. For the remainder of this discussion, unless otherwise specified, I am 

talking about ARM mode (the 32-bit mode), not 16-bit Thumb mode. Note 

that all instructions in ARM mode can be given a conditional override; this is 

not available in Thumb mode.

The ARM core has sixteen general-purpose registers named r0 through r15 (in 

Thumb mode, r8 through r12 are not directly accessible). R15 is reserved for use 

as the program counter (PC), r14 is used as a link register for branch instructions 

(ARM assemblers give it the alias “lr”), and r13 is the stack pointer (SP). There is 

also a status register, CPSR (current program status register). This status register 

is active for conditional branches and so forth while the processor is executing 

in the unprivileged “user” and “system” mode. When the core is kicked into 

the privileged modes—FIQ, Supervisor, Abort, IRQ or Undefined—dedicated 

SPSR, LR and SP registers are mapped in, so that each of these modes can have 

its own link register, stack pointer and status word (these don’t need to be saved 

when you exit the privileged mode; they are kept separately in the core).

If you’re not familiar with high-performance   RISC architectures, you might 

find the idea of the   link register a bit alien, by the way.   CISC devices typically 

execute a call instruction by pushing the current program counter onto the stack 

and jumping to the new destination address; the matching return instruction 

automatically pops the return address off the stack into the program counter. 

RISC devices, on the other hand, typically have a link register and a special form 

of branch instruction that is usually called branch with link, or something similar 

(the mnemonic in ARM assembly language is “bl”). The branch with link instruc-

tion operates by copying the return address into the link register—however that 

is defined in the processor’s instruction set architecture—and jumping to the 

destination address. To return to the called program, you use an instruction that 

copies the link register back into the program counter; on the ARM, this would 



148 Chapter 4

be either “bx lr” (unconditional branch to link register) or “mov pc, lr” (copy 

link register to program counter)—note that the two are not quite identical.

The advantage of this system is that you can avoid touching memory when 

making nonnested calls inside the inner loop of a function; it can be a significant 

performance enhancement. The called function also doesn’t necessarily need to 

mess around with stack arithmetic if it created some local variables on the stack; 

it can jump directly back to the caller using the link register, the caller can simply 

restore the stack pointer to what it was before the function call, and all local 

variables and passed parameters would be cleaned up automatically. (The usual 

ABI for ARM specifies that r0–r3 are used to pass the first four parameters to C 

functions; any remaining parameters are passed on the stack.) You can think of 

the link register as, conceptually, a high-speed cache of the last return address on 

the stack. It only needs to be written out to actual RAM when making a nested 

function call. Additionally, when the link register is not being used as such, it 

can be employed as a general-purpose register.

I’ve spent some time talking about how nifty ARM is; so, what are the down-

sides? Not many, really. There are three principal downsides. First, the interrupt 

architecture is a bit unusual—the core only directly supports two interrupt 

modes, IRQ and FIQ. IRQ (Interrupt ReQuest) is the “lower priority” interrupt; 

FIQ (Fast Interrupt reQuest) is a high-priority interrupt that doesn’t need to 

save quite so much processor state, but guarantees lower latency than IRQ. FIQ 

is supported by shadow registers covering r8–r14 and SPSR (the status word); 

you don’t need to save these registers during the interrupt, and as a result your 

latency is reduced. Since there is effectively only one interrupt level in the core, 

interrupts from multiple sources have to be vectored using software techniques; 

this is accomplished by effectively jumping into the register contents of the 

Vectored Interrupt Controller. It works, but it’s a bit strange.

Second, on a closely related note,   interrupt latency on ARM is relatively poor 

(potentially tens of clock cycles) compared with the 8-bit parts we all know and 

love. When an interrupt occurs, the CPU has to complete the current instruc-

tion—this could be as much as 15 clock cycles for a multiword store instruction to 

32-bit memory in ARM mode (potentially worse for narrow memory situations). 

The interrupt also causes a mode switch, which requires finite time—and the 

pipeline is flushed, which delays completion of the first instruction in the ISR.



 Teaching Yourself, Top-Down 149

Finally, ARM doesn’t handle bitwise data access very efficiently compared with 

some 8-bit cores (8051, for instance). This makes implementing fast proprietary 

serial protocols and similar algorithms (decoding Manchester data, for example) 

less efficient in ARM than on those 8-bit cores.

Both hardware and software tool support on ARM are very good, as you’d 

expect for such a popular core. Practically all modern ARM parts have on-chip 

JTAG debugging capability, and many vendors have low-cost wiggler type JTAG 

adapters. The cheapest of these used to be Macraigor’s   Wiggler, but an even less 

expensive version is now available from   Olimex. They don’t specifically call out 

support for parts like the BlueStreak, since Olimex doesn’t make any evaluation 

boards around this family of chips, but the ARM core is more or less generic, so 

if it works with one, it should work with most of them.

Speaking of software, most of the architectural stuff I’ve discussed previously is 

really of greatest interest to the low-level guys working on system startup code and 

perhaps some timing-critical device driver code. In many ARM environments, you’ll 

be working with a bootloader—blob <http://sourceforge.net/projects/blob/> is one 

such bootloader,9 and another popular candidate is   U-Boot <http://sourceforge.net/

projects/u-boot>. Still another choice might be   RedBoot <http://sourceware.org/

redboot/>. All of these programs have the same basic functionality: they load the 

operating system image and jump into it. In addition, the bootloader provides 

a user interface over a serial port (or perhaps a telnet interface) allowing you to 

override the normal boot process and load new operating system images onto the 

device’s internal storage device, whatever that may be. You can also select among 

different boot images on the device, if more than one is offered—in some cases, 

you can also select to have the device look on the network for a tftp boot server 

and load its operating system off that, if possible.

For the majority of ARM applications, your bootloader will configure the 

initial system environment and load your operating system image from secondary 

storage (this might be a location in boot Flash, or something in   NAND Flash, 

or an image on a hard drive or even over a network). Hence, by the time your 

code gets to run, most of the boot-time details I previously discussed are taken 

9 Note that the website describes blob as a StrongARM bootloader—in fact, it is used on other ARM 
parts as well.



150 Chapter 4

care of already—the most you might have to do is set up the memory manage-

ment unit.

As far as software tools go, you have several options: Microsoft makes a set 

of software tools for Windows CE development support, Keil makes their own 

ARM C compiler (you can expect this to be the best game in town, since ARM 

actually owns Keil). Rowley Associates also has a good package, although at the 

time of writing their product is simply a frontend and nice IDE wrapper around 

the standard GNU toolchain. As with the other cores I’ve discussed so far, my 

preference is to use the GNU tools for this part. Probably the best support for 

“raw” ARM programming is available from <http://www.gnuarm.com/>—here 

you will find prebuilt toolchains for Cygwin (Windows), Linux and Mac OS. 

Another prebuilt toolchain is WinARM, <http://www.siwawi.arubi.uni-kl.de/

avr_projects/arm_projects/#winarm>, and still another is provided directly by 

Macraigor at <http://www.macraigor.com/>.

The reason I said “raw” programming there is that the commonly available 

prebuilt toolchains are linked with newlib, the embedded C runtime library. If 

you’re working with an operating system, you probably want a toolchain built 

with the correct startup code and runtime library for your operating system. 

For example, if you’re working with ARM Linux, you want to visit <http://

www.arm.linux.org.uk/> for more information on the correct cross-compiling 

toolchain.

Note that you are certainly not restricted to using C on these powerful micros; 

C++, Java and numerous other languages are directly supported by the GNU 

tools and others. (Some ARM variants—not the LH79520, however—even 

have hardware acceleration for Java bytecode interpretation. This coprocessor is 

called   Jazelle.) The language you choose for your application layer will depend 

to a large degree on what you’re trying to do.

Shameless advertisement: If you’re looking for an introduction on how to get 

started with the ARM processor core and GNU tools, you might want to check 

out my first book, Embedded System Design on a Shoestring (Newnes, 2003, ISBN 

0-7506-7609-4). This book will guide you through building the GNU ARM 

tools in Windows or Linux (the same instructions should work for Mac OS, 

although I haven’t actually tested it). It will also show you how to write make-

files, and guide you step by step through creating the startup code necessary to 



 Teaching Yourself, Top-Down 151

get a working C environment on a small ARM processor. The book is targeted 

at an older evaluation board, the Atmel AT91EB40, but the principles can be 

migrated to almost any evaluation platform. This book is intended to help you 

get up and running on a bare board with no operating system at all; you might 

not find it very useful if you’re starting with an ARM platform that has, say, 

Linux or Windows CE preloaded.

Speaking of this, I should point out that, obviously, proprietary home-rolled 

operating systems and Linux are certainly not your only choices. Many operating 

systems are available for ARM parts; Symbian (used in many cellphones), eCos, 

Windows CE, the Palm OS®, VxWorks, uCos-II, NetBSD, . . . the list is very 

long. Later in this section, I’ll give you a brief introduction to eCos and Linux 

in the context of embedded products. The reason I suggest these is that they’re 

good learning tools (as well as being perfectly viable tools in their own right), 

they’re open-source and they’re entirely royalty-free. If you’re preparing yourself 

for an entry into professional embedded development, a good grounding in these 

two operating systems will prepare you to work with other operating systems at 

a detailed level; of course, there are plenty of jobs working on embedded Linux 

outright, too. (eCos isn’t used as widely, but it is out there—you just won’t see 

it in a job posting very often.)

If you buy a pre-built ARM single-board computer of any type, it is likely to 

come with your choice of either ARM-Linux or Windows CE. In order to get up 

and running with the ARM-Linux variant, you are going to have to learn at least 

a little about Linux’s startup process, so that you can at least get your application 

installed and launched; see Section 4.5 for more detail on this. However, you will 

probably not need (at least initially) to learn how to rebuild and install a new 

kernel, or how to set up an entire Linux root filesystem from scratch.

4.4  PowerPC

The  PowerPC family, manufactured by IBM® and Freescale, is a high-end 32- or 

64-bit platform used primarily in applications where performance is the most 

important factor. The latter half of that statement is, of course, a generaliza-

tion, but it fairly accurately reflects the situations where you’re likely to find 

PowerPC. Historically, the part originated from an experimental IBM chipset 



152 Chapter 4

created as essentially a research project during the late 1970s. This eventually 

metamorphosed into the   POWER architecture used in the RS/6000 range of 

UNIX workstations and servers. RS/6000 has been through some nomencla-

ture changes, and the current incarnation of these machines is known as the 

eServer p5—it runs both AIX and Linux. The PowerPC architecture is derived 

from POWER; you can read a very detailed and quite fascinating history of the 

parts at <http://www-128.ibm.com/developerworks/power/library/pa-powerppl/>.

The most recent step in the evolution of the PowerPC family is the immensely 

powerful   Cell Broadband Engine used in the new PlayStation console; this chip 

surrounds a high-performance PowerPC core with several coprocessors, all on 

the one die. It’s hard to overstate just how amazing this chip is; it can perform 

highly complicated graphical transforms, process an incoming compressed digi-

tal video stream in real time, and run complex artificial intelligence algorithms 

controlling your onscreen enemies.

PowerPC’s consumer visibility suffered something of a blow in 2005, as 

Apple, one the highest-profile customers of PowerPC devices, announced plans 

to migrate their computers to Intel x86 cores.10 This event, however newsworthy, 

is more or less irrelevant to embedded developers; most of the PowerPC devices 

sold are not part of general-purpose desktop computers, but are rather embed-

ded processors used in communications, telematics and other applications. As an 

interesting data point, it should be noted that PowerPC is used in all the high-end 

video game consoles currently on the market; these applications swamp Apple’s 

output of personal computers by a couple of orders of magnitude.

As an interesting counterpoint to Apple’s migration from PowerPC to x86, in 

2005 I began a series of articles for IBM’s   developerWorks resource, describing 

how to migrate a complex embedded application the other way—from x86 to 

PowerPC. A little while later, I began another series describing how to build a mul-

timedia appliance around a PowerPC (having previously been in the industry of 

building similar appliances around the National Semiconductor   Geode platform). 

10 It’s the prerogative of authors and prophets to make public predictions that are either shockingly true 
or hilariously wrong. Here’s mine: Apple’s decision to move to the x86 core, and particularly the release 
of Boot Camp (a utility that allows you to run Windows on Intel-based Apple machines) has capped 
the lifespan of Mac OS at somewhere in the region of five to ten years. It remains to be seen if Apple 
can continue to sell boutique-priced computers once they become just another Windows OEM. Of 
course, by the time this happens, they may already be selling nothing but iPods and similar appliances.



 Teaching Yourself, Top-Down 153

You can find links to all these articles at my index page, <http://www.larwe.com/

technical/current.html>; they are freely accessible on the developerWorks site, and 

no registration is required to view them.

Getting started with embedded PowerPC development is rather more expen-

sive than working with most of the other architectures mentioned in this chapter. 

The reason for this is that it’s a fairly costly and complex proposition to design 

your own PowerPC-based hardware platform; it’s much easier to start with an 

off-the-shelf reference board. Unfortunately, the pricing of PowerPC boards is, 

in general significantly more expensive than for the other architectures we’ve 

discussed here; it seems that not many people make really generic single-board 

computers based around these parts, and the chip vendors’ evaluation boards 

are quite costly.

In the article series previously mentioned, I discussed using a product called 

the   Kuro Box as your development platform. This is a Japanese-made Network 

Attached Storage (NAS) device with an MPC8241 processor (a “G2” core, if 

you’re familiar with that nomenclature), an internal hard disk (not actually sup-

plied with the Kuro Box unit; you have to provide your own), Ethernet, USB 

2.0, 4 Mb Flash and 64 Mb RAM, running Linux. It’s a slightly unusual prod-

uct in that it was originally a consumer device—the   Buffalo Linkstation, to be 

precise—until consumers started hacking it to do other things. Buffalo thought 

about this for a while, then decided to release the device in special packaging, 

specifically aimed at highly technical people who aren’t afraid of Linux and want 

to build a custom appliance attached to their LAN. This device is the cheapest 

way to get into PowerPC development at the moment; it’s available in the United 

States from Revolution, <http://www.revogear.com/>.

Another vendor of PPC hardware you might want to consider is   Genesi USA, 

Inc. This company makes several PPC workstation devices under the   Pegasos 

brand name; you can see their product range at <http://www.pegasosppc.com/>.

(Interestingly, Genesi used to advertise a forthcoming laptop called the 4U2,

based around the MPC5200 chip and closely related to the EFIKA 5K2 design. 

The 4U2 has, however, disappeared off the roadmap.) The Genesi devices are 

unfortunately quite expensive for what they contain; simply buying a PowerPC 

Apple Macintosh® is still by far the cheapest way to get into PowerPC develop-

ment, particularly if you’re developing at the high end.



154 Chapter 4

I’d suggest that the best compiler to use for PowerPC is gcc—end of story. The 

reason for this is that IBM is heavily invested in Linux and open source technologies 

in general, and they are providing significant input into the compiler development 

as well as the operating system. The only two PowerPC operating systems with 

a relatively large installed consumer base—Linux and Mac OS—both use gcc as 

their build environment. There is, however, an alternative in the form of Altium’s 

TASKING C/C++ compiler and debugging environment; for more information, 

view <http://www.tasking.com/products/32_bit/ppc/>. This compiler is only sup-

ported for use with the CMX-RTX and RTXC operating systems, however.

Speaking of compilers, it’s not likely you will spend much time working 

with PowerPC assembly language. The instruction set architecture is sufficiently 

complex that it’s definitely best optimized by your compiler. Even the relatively 

simple G2 core in the MPC8241 is strikingly difficult to understand. It has 32 

general-purpose registers (GPR0-31) and 32 floating-point registers (FPR0-31), 

a condition register (CR), floating point control register (FPSCR), link register 

(LR), and almost a thousand documented special-purpose registers. And that’s 

just the core—not counting the peripherals in the rest of the chip! It’s very dif-

ficult to wring out better performance than you’ll see from a good C compiler; 

you need to take account of pipeline state, cache behavior, branch prediction 

(each conditional branch instruction has a “hint” in it that tells the core which 

way you think the branch is more likely to go—the pipeline will start filling 

from that destination). Of course, it’s possible to program this part in assembly 

language—and necessary for low-level developers to at least read the assembly 

language fairly fluently—but there is simply too much to learn about the core 

for me to present a meaningful insight into it for you here, so I’ll refer you to 

the G2 PowerPC Core Reference Manual,   Freescale document #G2CORERM/D, 

which is downloadable from the product information page for the MPC8241 

chip at <http://www.freescale.com/>.

Operating systems you are likely to consider for homebrewed PowerPC 

systems include Linux (the homepage for the PowerPC variant is <http://

www.penguinppc.org/>), NetBSD, VxWorks and similar UNIX-based offerings. 

Microsoft used to offer a version of Windows NT for PowerPC systems, but 

support for this was dropped (and in any case, it wasn’t intended for embedded 

systems). There are some more specialized operating systems available (such as 

the aforementioned CMX-RTX and RTXC) but these aren’t really products for 



 Teaching Yourself, Top-Down 155

which you’d just buy the CD and start coding. Similarly as for ARM, you’ll prob-

ably buy your PPC platform with an operating system support package already 

ported and ready to run; you can start building your application on top of that 

without getting into too many gory details from the start.

Working with PPC at a high-level application level is, frankly, almost indistin-

guishable from working with x86, a fact that I demonstrate in some detail in my 

Kuro Box article series. The interfaces you’ll use—PCI, USB and so forth—work 

much the same way, and in fact oftentimes you’ll have regular PC peripheral 

chips connected to a PowerPC processor, so you can use existing driver code 

verbatim (or nearly so). The only concrete difference you’re likely to see is better 

MIPS/mW numbers and, in some cases, better clock-for-clock performance on 

tasks such as software DSP algorithms. Unless you’re doing something particularly 

hairy, porting (say) a Linux program from x86 to PowerPC is simply a matter 

of recompiling. This is particularly handy for the small development team on a 

tight budget, because it means you can develop and demonstrate your applica-

tion entirely on a regular desktop PC running Linux, and rebuild it on the real 

hardware once it’s ready for primetime.

4.5  Linux

Almost everyone who would be reading this book knows at least some of the 

history of  Linux and how it was designed by Linus Torvalds, so I won’t dig deeply 

into that topic—if you want more information, the Wikipedia entry for Linux 

<http://en.wikipedia.org/wiki/Linux> is probably as good a place as any to learn 

about it. Linux is unarguably the world’s most popular open-source operating 

system. It’s available for numerous platforms, and in its current incarnations 

includes (where supported by hardware) a complete turnkey GUI windowing 

environment, XFree86. Linux is used on desktops, in Web servers, TiVo digital 

video recorders, and in PDAs, among many other things.

Architecturally, Linux consists of a modular, multitasking kernel (this is the 

actual operating system per se) and numerous support programs such as the com-

mand line shell. Most of the time you’re working with Linux, you’re interacting 

with these support programs, not the actual operating system, so some people 

get confused and think that, for instance, the shell is Linux.



156 Chapter 4

The basic Linux kernel can be downloaded from <http://www.kernel.org/>.

Some architecture-specific ports also exist, such as ucLinux (a special version of 

the OS for microcontrollers that lack a memory-management unit), arm-linux 

(Linux with patches for various ARM-based platforms), and others. In order to 

build any of these kernel source distributions into an actual Linux system, you 

need a considerable amount of support magic, ranging from a bootloader to get 

the kernel into RAM off secondary storage, to an init program that will manage 

system startup and shutdown. Also, of course, you need your own application, 

which is just another program as far as Linux is concerned (even though it may 

consume 100% of your system’s resources!).

The fantastic thing about Linux is the vast array of hardware support in the ker-

nel and various add-on packages such as    XFree86 (the GUI windowing system). 

This is a great boon to the embedded developer, because you can immediately 

get up and running with all sorts of heterogeneous hardware without having the 

tedium of writing your own drivers.

 Linux is licensed under the GNU General Public License (GPL), which fact is 

the cause of much unnecessary angst—mostly due to falsehoods and half-truths 

disseminated by vendors of proprietary software. Simply put, the GPL requires 

that if you modify a GPL’d piece of software and distribute it to anyone, your code 

is covered by the GPL also and you must supply the sourcecode to your modifica-

tions on request. However, there is an exception, which is that if your program 

only accesses GPL’d code through documented interfaces, it does not need to be 

GPL’d itself. What this means, as a practical matter, is that you will need to disclose 

sourcecode if you modify the kernel or any of the other GPL’d programs that form 

part of the typical Linux install, but if you simply write a Linux application, you 

won’t be pulled into that requirement. Speaking of GNU, by the way, note that 

the only “safe” tool to use for building Linux is the gcc toolchain.

Linux has been embraced by both vendors and customers in the embedded 

arena; there are literally hundreds of ports, and almost any 32-bit embedded 

platform you look at these days will probably come with Linux as a build option. 

A happy side-effect of this is that “porting” Linux to a new platform is often no 

work at all—if the microcontroller is supported at all, chances are that all you’ll 

have to do is set the right kernel options, possibly include some additional driv-

ers for hardware that you’ve put on your board, and build it.



 Teaching Yourself, Top-Down 157

In the remainder of this section, I’ll introduce you to some of the details of 

the Linux startup process to illustrate what’s involved in embedding Linux. Most 

of this text was first published on IBM’s developerWorks website in an article I 

wrote in 2005; it has been edited for coherence with this book. If you’re interested 

in Linux development on PowerPC, I suggest you read the entire series of articles, 

which you can access through an index page I maintain: <http://www.larwe.com/

technical/current.html>.

By the time a system has booted to the point where it can run your applica-

tion-level code, any one variant of Linux is, practically by definition, largely 

similar to another. However, there are several different methodologies that you 

can use to get the system from power-on reset to a running kernel, and beyond 

that point, you can construct the filesystem in which your application will run 

in different ways.

Each approach has its own distinct advantages and disadvantages, and a defi-

nite, two-way relationship exists between the hardware you choose to implement 

and the way you will structure the power-up and Initial Program Load (IPL) 

process. Understanding the software options available to you is a critical part of 

the research you must do before designing or selecting hardware.

The most fundamental and obvious difference between x86 boards and 

embedded systems based on PPC, ARM, and others is that the x86 board will 

ship with one or more layers of manufacturer-supplied “black box” firmware 

that helps you with power-on initialization and the task of loading the operating 

system out of secondary storage. This firmware takes the system from a cold start 

to a known, friendly software environment ready to run your operating system. 

Figure 4.1 is a diagram of the typical PC boot process, with considerably more 

detail than you tend to find in PC-centric literature.



158 Chapter 4

RAM controller
initialized

Boot sector
loaded

Boot sector
loads stage 2

BIOS decompressed
into shadow RAM

Shadow RAM
write-protected

Peripherals
enumerated + POST

Boot candidates
scanned for signature

State 2 loads
kernel and RAMdisk

Potential boot
devices evaluated

Expansion ROM
hooks installed

Kernel re-enumerates
hardware

RAM disk
mounted

Device driver
modules loaded

Filesystem mounted
(flash, hard disk, ...)

Device driver
modules loaded

Run startup
scripts and user apps

Figure 4.1  A diagram of the typical PC boot process.

For cost reasons, modern PC mainboard   BIOS code is always stored com-

pressed in Flash. The only directly executable code in that chip is a tiny boot 

stub. Therefore, the first task on power-up is to initialize the mainboard chipset 

enough to get the DRAM controller working so that the main BIOS code can 

be decompressed out of Flash into a mirror area in RAM, referred to as shadow 

RAM. This area is then write-protected and control is passed to the RAM-resident 

code.   Shadow RAM is permanently stolen by the mainboard chipset; it cannot 

later be reclaimed by the operating system. For legacy reasons, special hardware 

mappings are set up so that the shadow RAM areas appear in the CPU’s real-

mode memory map at the locations where old operating systems like MS-DOS 

would expect to find them.

Keep in mind that the PC is an open architecture. This openness even extends 

down to firmware modules within the BIOS. Once the power-on initializa-

tion (POI) code has run, the next step it takes is to enumerate peripherals, and 

optionally install hooks provided by expansion ROMs in those peripherals. 

(Some of those expansion ROMs—for instance, the video BIOS in a system 

that has onboard integrated video hardware—will physically reside in the main 

BIOS image, but conceptually they are separate entities.) The following are the 

reasons the BIOS has to do this redundant initialization.

1. The main BIOS needs basic console services to announce messages and 

allow the user to override default start-up behavior and configure system-

specific parameters.



 Teaching Yourself, Top-Down 159

2. Historical issues limit the size of a user-supplied bootloader program to 

slightly less than 512 bytes. Since this isn’t enough space to implement 

all the possible device drivers that might be required to access different 

displays and storage devices, it’s necessary for the BIOS to install standard-

ized software interfaces for all installed, recognized hardware that might 

be required by the bootloader.

Once all the BIOS-supported system peripherals are initialized, the main 

BIOS code will run through candidate boot devices (in accordance with a user-

configurable preference list) looking for a magic signature word. Storage devices 

for IBM®-compatible PCs have historically used a sector size of 512 bytes, and 

therefore the BIOS only loads the first 512 bytes from the selected boot device. 

The operating system’s installation program is responsible for storing sufficient 

code in that zone to bootstrap the remainder of the IPL process.

Although it would be possible to write a minimalist Linux bootloader that would 

fit into such a space, practical Linux bootloaders for the PC consist of two stages: a 

small stub that lives in the boot sector, and a larger segment that lives somewhere 

else on the boot medium, usually inside the partition that contains the root file-

system.    LILO and    grub are the best-known bootloaders for mainstream Linux 

installations, and   SYSLINUX is a popular choice for embedded distributions.

The primary purpose of the bootloader is to load the operating system kernel 

from secondary storage into RAM. In a Linux system (x86 or otherwise), the 

bootloader can also optionally load an initial RAMdisk image. This is a small 

filesystem that resides entirely in RAM. It contains a minimal set of modules 

to get the operating system off the ground before mounting the primary root 

filesystem. The original design purpose for initial RAMdisk support in the ker-

nel was to provide a means whereby numerous optional device drivers could be 

made available at boot time (potentially drivers that needed to be loaded before 

the root filesystem could be mounted).

You can get an idea of the original usage scenario for the   RAMdisk by consider-

ing a bootable Linux installation CD-ROM. The disk needs to contain drivers for 

many different hardware types, so that it can boot properly on a wide variety of 

different systems. However, it’s desirable to avoid building an enormous kernel with 

every single option statically linked (partly for memory space reasons, but also to a 



160 Chapter 4

lesser degree because some drivers “fight” and shouldn’t be loaded simultaneously). 

The solution to this problem is to link the bare minimum of drivers statically in the 

kernel, and to build all the remaining drivers as separately loadable modules, which 

are then placed in the RAMdisk. When the unknown target system is booted, the 

kernel (or start-up script) mounts the RAMdisk, probes the hardware, and loads 

only those modules appropriate for the system’s current configuration.

Having said all that, many embedded Linux applications run entirely out of 

the initial RAMdisk. As long as you can spare the memory—8 MB is usually 

more than enough—it’s a very attractive way of organizing your system. Gener-

ally speaking, this is the boot architecture I favor, for a few reasons:

1. The root filesystem is always writeable. It’s much less work to have a write-

able root than it is to coerce all your other software to put its temporary 

files in special locations.

2. There is no danger of exhausting Flash memory erase-modify-write life-

times or of corrupting the boot copy of the root filesystem, because the 

system executes entirely out of a volatile RAM copy.

3. It is easy to perform integrity-checking on the root filesystem at boot time. 

If you calculate a CRC or other check value when you first install the root 

filesystem, that same value will be valid on all subsequent boots.

4. (Particularly interesting to applications where the root filesystem is stored 

in Flash.) You can compress the boot copy of the root filesystem, and there 

is no run time performance hit. Although it’s possible to run directly out 

of a compressed filesystem, there’s obviously an overhead every time your 

software needs to access that filesystem. Compressed filesystems also have 

other annoyances, such as the inability to report free space accurately (since 

the estimated free space is a function of the anticipated compression ratio 

of whatever data you plan to write into that space).

Notice a few other points from Figure 4.1. The first is that the grayscale 

coding is meaningful. In the light gray boxes, the system is running BIOS code 

and accessing all system resources through BIOS calls. In the mid-gray boxes, 

the system is running user-provided code out of RAM, but all resources are still 

accessed through BIOS calls. In the slightly darker boxes, the system is running 



 Teaching Yourself, Top-Down 161

Linux kernel code out of RAM and operating out of a RAM disk. Hardware is 

accessed through the Linux device driver architecture. The darkest boxes are like 

the slightly lighter boxes, except that the system is running out of some kind of 

secondary storage rather than a RAMdisk. The rules being followed in the white 

box are system-specific.

You’ll observe from this that there are two possible boot routes (actually, more) 

once the kernel has been loaded. You can load an initial RAMdisk and run entirely 

out of that, you can use the initial RAMdisk and then switch over to a main root 

filesystem on some other storage medium, or you can skip the initial RAMdisk 

altogether and simply tell the kernel to mount a secondary storage device as root. 

Desktop Linux distributions tend to use the latter design model.

Also note that there is an awful lot of redundant code here. The BIOS performs 

system tests and sets up a fairly complex software environment to make things 

cozy for operating systems like MS-DOS. The Linux kernel has to duplicate 

much of the hardware discovery process. As a rule, once the kernel loads, none 

of the ROM-resident services are used again (although there are some exceptions 

to this statement), yet you still have to waste a bunch of RAM shadowing that 

useless BIOS code.

In contrast to the x86’s complex boot process, an embedded device based on 

a PowerPC®, ARM or other embedded processor jumps as directly as possible 

into the operating system. Although there are extant standards for implementing 

firmware interfaces (equivalent to the PC ROM-BIOS) in PowerPC® systems, 

these standards are rarely implemented in embedded appliances. The general 

firmware construction in such a system (assuming that it is based on Linux) is 

that the operating system kernel, a minimal filesystem, and a small bootloader 

all reside in linearly accessible Flash memory.

At power-up, the bootloader initializes the RAM controller and copies the 

kernel and (usually) the initial RAMdisk into RAM. Flash memory is typically 

slow and often has a narrower data bus than other memories in the system, so 

it’s practically unheard of to execute the kernel directly out of Flash memory, 

although it’s theoretically possible with an uncompressed kernel image.

Most bootloaders also give the user some kind of recovery interface, whereby 

the kernel and initial RAMdisk can be reloaded from some external interface 

if the Flash copies are bad or missing. Off-the-shelf bootloaders used in these 



162 Chapter 4

applications include blob, U-Boot and RedBoot, although there are others—and 

there are many applications that use utterly proprietary bootloaders. Figure 4.2 

illustrates a typical start-up flow for a non-x86 embedded Linux device.

Observe that, as for the preceding x86 startup process, you have the same 

possible different routes once the kernel has been loaded. Also note that once 

control passes to the kernel, the boot process is identical to what it was on the 

x86. This is to be expected: the further you get in the boot process, the more 

the software environment is defined by the operating system’s API specification 

rather than the vagaries of the underlying hardware.

The exact layout of such a system in Flash memory depends on two principal 

factors: the Flash device sector size (usually in the neighborhood of 64 KB), and 

the processor’s power-on-reset behavior. A core like ARM, which starts execution 

at address 0, will put the bootloader at the bottom of Flash. A core like x86 will 

need to put the bootloader at the top.

There are at least two, and generally four, entities that need to be installed 

in Flash: the bootloader (mandatory), an optional parameter block providing 

nonvolatile storage for boot options, calibration data and other information, the 

Linux kernel (again, mandatory), and almost always an intial RAMdisk image. 

For example, a layout for a 4 MB Flash chip with a 64 KB sector size might be 

as follows:

000000–01FFFF Bootloader (128 KB)

020000–02FFFF Parameter block (64 KB, probably mostly unused)

030000–1FFFFF Kernel (1.8 MB)

200000–3FFFFF Initial RAMdisk image (2 MB)

Figure 4.2  A typical start-up flow for a non-x86 embedded Linux device.

RAM controller
initialized

Copy kernel and
RAM disk to RAM

Validate kernel
and RAMdisk

Check for startup
override request

Device driver
modules loaded

RAM disk
mounted

Kernel enumerates
hardware

Run startup
scripts and user apps

Device driver
modules loaded

Filesystem mounted
(flash, hard disk, ...)



 Teaching Yourself, Top-Down 163

While it is possible to write these various segments across sector boundaries 

(and it is especially tempting in the case of the parameter block, which will likely 

be more than 99% empty), this is an extremely unwise practice and should be 

avoided unless you are under terribly severe Flash space constraints. It is par-

ticularly vital that the bootloader should reside in a private segment that can be 

left write-protected. Otherwise, a failed   firmware upgrade operation may leave 

the system entirely inoperable. Good system engineering should provide a safe 

fallback position from any possible user-initiated upgrade process.

The only part of this software bundle that absolutely must be preloaded at the 

factory is the bootloader. Once the system is startable from that boot code, you can 

use other (end-user-accessible) interfaces to load the kernel and RAMdisk image.

By the way, at this point the attentive reader may be wondering why embedded 

PC applications can’t use a special boot ROM that simply loads the operating 

system kernel directly off disk (or some other medium).

The answer to this is that while it’s possible to write a custom cut-down boot-

strap program for a PC motherboard (see, for example, the LinuxBIOS project), 

the types of applications that use PC hardware tend to be using the board as a 

black box. Typically, the system integrator will not even have access to datasheets 

or schematics for the board; they can’t write a bootstrap program even if they 

want to. Furthermore, PC operating systems are built on the assumption that 

lowest-common-denominator   BIOS services are available, at least at boot time. 

In other words, it’s a simple fact that the path of least resistance is so much easier 

than a fully custom alternative that practically nobody tries to do it the “smart” 

way. The inefficiencies of the multilayer BIOS approach are lost in the noise (as 

it were) compared with the overall system specifications.

Having digested all the previous information, assuming you understand 

approximately how large your various software modules will be, you are well 

prepared to select Flash and RAM sizes and layouts for a custom embedded 

system. Many devices use a very uncomplicated memory architecture; they will 

have a single linear Flash chip (NOR Flash, i.e., bootable) large enough to hold 

the bootloader and compressed operating system kernel, and a relatively large area 

of SRAM or SDRAM, typically between 16–64 MB. While this is the simplest 

design, it is not necessarily the cheapest, and you may wish to consider other 

alternatives if you are designing your own system.



164 Chapter 4

One hardware architecture that I have used with some success, and which I 

have also seen in a few other commercial products, is to use a very small, cheap 

(generally narrow-bus) OTP EPROM as the primary boot device. This chip is 

factory-programmed with just enough bootstrap code to load the main firmware 

image off a secondary storage device and check its integrity. It is very useful if you 

can also include a little additional intelligence so that the secondary storage device 

can be reloaded from some external source—removable media, a serial port, Eth-

ernet, USB or something else—if the main firmware image becomes corrupted.

An attractive choice of storage device for the main image is   NAND Flash, 

which is cheaper than the linear   NOR Flash used for boot purposes. NAND Flash 

is produced in vast quantities for removable storage devices: CompactFlash cards, 

USB “pen disks,” Secure Digital (SD) cards, MP3 players, and so on. Although 

it is possible, with a minimal amount of external logic, to graft NAND Flash 

onto a normal Flash/ROM/SRAM controller, there are a couple of reasons why 

you can’t simply boot directly out of the NAND Flash. The first is that NAND 

is not guaranteed error-free; it’s the host’s responsibility to maintain ECC and 

bad sector mapping information. The second reason is that NAND Flash is 

addressed serially; you send the chip a block number, then read the block out 

into RAM. Hence, you need a little boot firmware on a normal random-access 

PROM to do the physical-level management of the NAND.

Note that some microcontrollers provide hardware NAND controllers that 

obviate the need for the little boot PROM I discussed previously. The disad-

vantage of relying entirely on that sort of hardware is that you lose the failsafe 

system-recovery features that can easily be implemented in the boot PROM. 

However, if you’re working against space or cost constraints, and your micro has 

the NAND control hardware, you may want to avail yourself of it. SoCs sold 

for cellphone applications use this sort of technology.

Hopefully you’ve found this to be illustrative of some of the initial things 

you’ll need to consider when embedding Linux. One of the great points in favor 

of this operating system is the excellent community support; whether you’re an 

individual trying to bring the OS up on a new platform (and do some learning 

in the process) or simply writing some application software, there is very good 

support available on Usenet and message boards. There are so many people using 

Linux in so many different ways that you’re almost certain to find someone who 

can help you answer your questions.



 Teaching Yourself, Top-Down 165

4.6  eCos

 eCos is an embedded operating system designed for smaller applications than 

Linux. (For some reason, people seem to have a lot of mental trouble separating 

these two operating systems.) If you’re working on a small hardware platform, 

or you don’t wish to get into the GPL-ness of Linux, eCos might be the right 

open-source choice for you. Much like Linux, eCos is supported by the gcc 

toolchain, so it doesn’t cost anything to start experimenting with this operating 

system. Although it doesn’t support anything approaching the massive range of 

hardware covered by Linux, eCos has been ported to a respectable number of 

(larger) cores, including x86, ARM, PowerPC and several others.

The eCos homepage is <http://ecos.sourceware.org/>. Probably the first thing 

you’ll want to read there is the license—eCos is royalty-free, and covered by a 

license that does not require that you disclose your modifications to the general 

public. As you will see from the list of supported hardware, eCos has been ported 

to about a hundred different hardware platforms, with all the major CPU cores 

you’re likely to use covered—there’s a good chance that you won’t need to do 

much porting work to get it operational on your own hardware.

In a nutshell, eCos is a POSIX-compliant multithreaded operating system 

with strong real-time capabilities, networking support and various other useful 

features such as USB (slave), serial and Ethernet support. Some ports also include 

the code to initialize a display device (for example, the port to the evaluation 

board for the Cirrus Logic Maverick EP7312 evaluation board), although the 

core OS does not have any GUI support built into it.

eCos is not Linux, though the two are frequently confused—since Red Hat 

supplies flavors of both, people somehow assume that eCos is derived from 

Linux. This is explicitly not the case; the eCos maintainers are careful to keep 

Linux code out of the source tree, to avoid having to put eCos under the GPL. 

The main advantage of eCos over Linux (and many other operating systems) 

is greatly superior real-time characteristics.11 eCos is also configurable to a very 

fine level of granularity; merely by selecting a few configuration options at 

build time, you can prune the operating system’s driver set down to the bare 

11 When compared with standard Linux. Linux with real-time extensions is, of course, much better 
than regular Linux at meeting real-time requirements.



166 Chapter 4

minimum required for your application. While the Linux kernel is, of course, 

configurable—and you can pull some functionality out of the base kernel image 

and put it in  dynamically loaded modules if necessary—the baseline memory 

requirement for Linux is still much higher than for eCos.

Note also that eCos is a multithreaded operating system, not a multitasking 

operating system. Your application is not “loaded” in the same way that Linux 

loads external programs off a hard disk or out of Flash. In eCos, your applica-

tion is directly linked in with the operating system; the operating system is 

actually a library and a body of startup code that is statically linked with and 

hence inextricably welded to your code. The possible downside to this is that, 

unlike in Linux, in eCos you can’t directly spawn an external program to do 

some function for you, since the operating system has no concept of “loading” 

a program (and even if it did, there is no defined API for such an externally 

loaded program to access operating system services). If you want to include the 

functionality of some external utility, you will therefore need to integrate the 

sourcecode of that utility directly into your own code and statically link it into 

your operating system image.

From a commercial standpoint, another advantage of eCos over Linux is the 

license agreement. Some investors in particular might be leery of using Linux 

in a commercial application because of the GPL (though there are certainly 

many precedents for it, many of them from very large names indeed; there’s no 

accounting for irrational fears). With eCos, you get all the license advantages of 

a payware commercial embedded operating system without the price tag—and 

you get a powerful, multiplatform, open-source operating system to boot.

There are a few reasons why I bring up eCos in this book. The first reason 

is that it is really an excellent teaching platform for migrating consumer-type 

programming skills into an embedded environment. I can think of almost no 

exercise better suited to the development of these skills than porting eCos to 

a new hardware platform. Second, eCos is more or less a superset of RedBoot, 

RedHat’s highly flexible bootloader. RedBoot is a really useful product to have 

on your system, because it lets you load software from a variety of different 

interfaces and write it to Flash or other internal storage. It’s worth learning how 

to develop for eCos (which uses the same hardware abstraction layer) merely in 

order to be able to get RedBoot running on your hardware—it’s one of the two 



 Teaching Yourself, Top-Down 167

most powerful open-source bootloaders available (the other being U-Boot, which 

I mentioned in the section on PowerPC). Although RedBoot is often mentioned 

in conjunction with eCos, it can be used to load any embedded operating system 

you care to name—Linux, eCos, or something proprietary you write yourself.

Finally, eCos is a powerful and viable operating system in its own right—per-

fectly acceptable for fielded consumer products, as you’ll see from Red Hat’s list 

of design-in success stories. It has a very swift boot time (especially compared to 

Linux), relatively small memory requirements, and overall it makes an excellent 

choice as the operating system for a 32-bit project, particularly a network-con-

nected project.

The only book on eCos that I’m aware of is Anthony Massa’s Embedded 

Software Development with eCos (Prentice Hall, November 2002, ISBN 0-1303-

5473-2). This book is an excellent reference, and I do recommend it, but it’s 

getting rather old now—you will definitely want to seek further support in the 

eCos discussion forums.

If you’re an experienced C/C++ programmer and you want to build a really 

impressive 32-bit embedded application, then I suggest that eCos will let you 

reach this goal quickly and easily. In almost every aspect (except perhaps GUI 

development), you will find eCos easier to port than Linux, and also consider-

ably more scalable to small devices. If you do need that GUI support, then you 

should look at MiniGUI, <http://www.minigui.org/>—this product has explicit 

support for eCos. It’s not the only option for implementing a GUI on eCos, but 

at present it seems to be one of the best-supported paths.

4.7  What  Programming Languages Should I 
 Learn for Large Embedded Systems?

When the phrase “ large embedded system” is employed according to the definition 

I’ve had in mind throughout this chapter, all large embedded systems will use an 

operating system of one kind or another. The custom software bundle loaded on 

such a system is not usually monolithic, either—there will likely be an application 

layer that is quite distantly abstracted from the hardware, some device drivers for 

your custom hardware, and probably some software in between that isn’t exactly 



168 Chapter 4

application code but doesn’t live in the driver layer either. (If you’ve read my pre-

vious book, Open-Source Robotics and Process Control Cookbook, you would have 

seen me talking about lircd, the daemon that decodes incoming infrared remote 

control signals from the infrared hardware driver on Linux systems, and translates 

the codes into developer-defined strings. Lircd is an example of the sort of “in the 

middle” software I’m talking about here. If you’re unfamiliar with how it works, 

you can read all about it—and download it—at <http://www.lirc.org/>.)

As a result of all these layers, it is likely that any such system will contain 

significant amounts of code written in several different languages. On the other 

hand, however, the sheer size of the project is such that the  software team will 

often be large and not necessarily  cross-functional. Consequently, the exact   skill 

set you’ll need depends on where in the abstraction hierarchy you wish to work. 

Very generally: if you want to work in the lowest level of device drivers and boot-

loaders, you’ll need good assembly language and C skills. You’ll also need to know 

how to operate the hardware debugging tools; JTAG adapters and so forth.

If you’re working in the middle layers, the skill set is potentially quite fuzzy. 

Some of these applications are written in relatively exotic languages like perl 

and Tcl; many of them are simple C programs. In this part of the hierarchy, 

your most important skill will be an intimate knowledge of how the operating 

system’s skeleton is constructed and what services the applications upstream of 

you require. You might also need to be able to drive an oscilloscope and/or some 

kind of protocol analysis tools in order to debug what’s going on with your code, 

since you might be poking some device drivers and/or tinkering with arcane 

aspects of the operating system’s state.

At the upper level of the hierarchy, the required skills are dictated by the nature 

of the end product. You might be working in Adobe Flash, or Java, or C++—it 

depends entirely on the product. Skills you’ve learned programming consumer 

operating systems in the application layer will be very useful here. You probably 

won’t be debugging your program using hardware tools as such; possibly you’ll 

run a debugger stub on the target and talk to it over a serial or Ethernet link 

to see what it’s doing. It is quite unlikely that you’ll need to use any hardware 

debugging skills.

By the way, you shouldn’t take all this talk of large teams and programmers 

working inside insulated cocoons as being unalterable gospel by any means. I 



 Teaching Yourself, Top-Down 169

can tell you from personal experience that some high-end 32-bit systems for 

consumer products are developed entirely by a single engineer. The reason I’m 

focusing on the big-team picture here is because of the target demographic I 

announced at the start of this chapter—people who are most experienced in the 

application layer. I’m trying to point out how these enormously complex systems 

can be made accessible to the one-person team with Java experience but not much 

understanding of real-time systems. If you have—or want to gain—experience 

with the lower levels of the software hierarchy, there’s no reason why you can’t 

build your own completely custom 32-bit system, and some of the resources I’ve 

mentioned in this chapter will be useful for you in your pursuit of that goal. 

However, in addition to all the high-level stuff I discuss in this chapter, you’ll 

need to have a good understanding of the lower-level details, as well as the sorts 

of selection criteria that I mentioned in the previous chapter, where I was talking 

about much more “down-to-the-metal” systems.

4.8  A Final Word on Part Selection

In this section, I’ll try to give you a little taste of the joys of selecting a high-end 

microcontroller for an embedded application. The challenges and choices here 

are often quite different from the process you’ll follow when selecting an 8-bit 

microcontroller. The stakes are also higher, because the design effort invested 

into a 32-bit circuit is likely to be significantly larger than the design effort in 

most 8-bit designs.

The issue that makes 32-bit device selection potentially so difficult is that if 

you’re considering these high-end parts, you quite likely have a fairly complex 

application to implement. You’re then faced with the task of deciding from a 

datasheet whether or not a particular part can do whatever you need, and this is 

often very difficult, particularly because at the pre-prototype stage, everything 

is up in the air and the requirements themselves are subject to change. Often, 

what you’ll be given is a be-all-end-all wishlist that can’t possibly be achieved in a 

single design while remaining cost-effective. Hence, you’ll generally be expected 

to present a few options to the marketing staff, who will then pick the one that 

they think will sell the best.



170 Chapter 4

By the way, there’s just one not-quite-so-rare exception to this situation: in 

a few lucky cases, your reason for choosing a 32-bit part is simply for the extra 

address space, if your application requires lots of directly addressable memory 

for some reason. If your device falls into this category, thank your lucky stars!

I’ll illustrate the point of this section with a practical example from my own 

career. Some years ago, I was asked to design a new, greatly enhanced version of 

a multimedia appliance. The bluesky wishlist was amazingly long, and included 

the following items:

• High-resolution still image display with fast decoding time and the ability 

to apply special effects and animation as the new image was being placed 

onscreen.

• DVD playback.

• Support for MPEG-1, MPEG-2, MPEG-4 and QuickTime movie files, 

as well as MP3 audio.

• Data CD and video DVD burning support.

• Internal hard disk.

• Wired and wireless Ethernet.

• The ability to receive pictures over Bluetooth.

• Infrared remote control.

• The ability to play Macromedia Flash movies.

• Fully scriptable operation.

• Support for all the popular digital camera Flash media cards.

• The ideal circuit should be able to drive all sizes of LCD panel from about 

5.7" diagonal, QVGA resolution (320x240) to 23", SXGA resolution 

(1280x1024) at 24bpp.

• Ideally it should be possible for the small-screen versions to be battery-

powered.



 Teaching Yourself, Top-Down 171

As you can doubtless see, there are numerous demands here, some of them 

conflicting. Thus, I started the quest by looking at the most obvious user-visible 

feature, viz. the video hardware. As it turned out, this was a good choice for first 

examination, because this feature channels the entire design of a product of this 

type. The difficulties were manifold: To drive small displays (up to about VGA 

resolution, 640x480), the most cost-effective solution is to use a highly integrated 

System-on-Chip (SoC) microcontroller with on-chip LCD controller. Several 

vendors offered us parts that would work reasonably well for low resolutions. 

However, these devices almost all employ a unified memory architecture; RAM 

bandwidth is shared between code execution and DMA peripherals such as the 

LCD controller. As you increase resolution and color depth of the video output, 

you drastically reduce the bandwidth available for executing code. This meant 

that for anything larger than about QVGA size, the CPU would be so starved 

for RAM bandwidth that it wouldn’t be able to handle the video decoding tasks 

(even a more modest subset, like MPEG-1 at VideoCD resolution, let alone 

trying to do a full software decode of DVD-resolution MPEG-2). Furthermore, 

there wasn’t a single SoC-type device that would handle the higher resolutions 

desired for the large-screen models.

In order to support those higher resolutions, therefore, it was necessary to 

use an external video chip. Unfortunately, all of the suitable parts are designed 

for use in laptop computers. Not only does this mean that it’s very difficult to 

get technical documentation on these parts, but they’re also virtually impossible 

to buy in small quantities (where “small” is defined as “less than a few hundred 

thousand per year”). Perhaps worst of all, they all require PCI or AGP bus sup-

port; none of them are designed to be tied easily to microcontrollers. Relatively 

few micros support PCI natively, since it’s not required for the vast majority of 

embedded devices. You can buy various PCI-to-“other” bus interface parts, and 

you can also roll your own out of an FPGA (some vendors provide FPGAs with 

PCI support explicitly built in on one end, specifically for this application), but 

it’s a real bear to implement this.

Additionally, all of the laptop video chipsets of the present day are shipped 

in BGA packages, which we couldn’t prototype (a complete set of assembly and 

inspection equipment is rather expensive)—so the prototype manufacture would 

have to be outsourced. In order to support the large panels on the same hardware 



172 Chapter 4

as small screens, we were going to have to commit to a high-end, power-hungry 

microcontroller (implying short battery life for the models with battery power), with 

on-chip PCI interface. We were also going to have to design in a hard-to-source 

laptop video chip with a very short lifespan driven by the consumer PC market.

We eventually decided to use a  single-board computer with most of the desired 

functionality on-board rather than trying to design our own circuit, mainly due 

to the prototyping and sourcing difficulties. However, when trying to select 

an appropriate SBC, we ran into a benchmarking problem with respect to the 

full-motion video. We had some approximate metrics gathered on PCs, but 

benchmarking video performance is rather unique; you really need to evaluate, 

simultaneously, the CPU, memory subsystem, disk or network interface (depend-

ing on how the compressed video stream is going to reach you), the acceleration 

support provided by the video chip, and the device driver’s ability to exploit those 

features (in other words, just how well does your operating system support the 

hardware you intend to use?). We were going to run Linux on the device; some 

SBCs had very powerful CPUs, but their video chipsets weren’t well-supported 

by Linux, others had great Linux support all around but their CPUs were a bit 

too slow for the required still-image animation tasks. We never found a board 

that would properly support the large 17" panels directly (these panels use mul-

tichannel, multipixel-per-clock LVDS interfaces, which aren’t well-supported on 

laptop chipsets; they’re intended for desktop monitor applications).

As a matter of interest, we wound up compromising on a lot of features—we 

temporarily shelved the idea of the really small models and decided to focus on 

larger devices using an analog video path to avoid the utter incompatibility of the 

laptop video chips with the larger panels. The product was, ultimately, commer-

cially successful. However, the initial idea we had had—namely, that we would 

take a StrongARM microcontroller and meld on an ASIC or DSP to handle the 

video decompression—was totally discarded. In fact, we built something that very 

closely resembled a panel PC, with an x86-compatible single-board computer 

inside it. Hopefully this illustrates to you to at least a small degree how a high-

end requirement can lead to “you can’t get there from here” design problems.



173

5.1  Is  Self-Employment for You? 
 Risks and Benefits

More or less once every quarter, I get together with a group of engineers and mis-

cellaneous IT workers (website designers, database programmers, fuzzily named 

“technology consultants,” and so on). We have dinner and swap stories of manag-

ers, contracts and customers. Once in a while, a newbie visits the group to network 

and hear tales of the real world while they decide whether to start moonlighting. 

Most of these newbies subsequently decide to stick with their day jobs.

Working as a full-time consulting embedded engineer is a difficult job. If 

you’ve only worked in a company environment before—even a relatively small 

company—you probably have no idea just how much infrastructure helps you 

through every hour of the day. If you’re tired of process and procedure, if your 

day job leaves you exhausted and you’re and looking for a life of freedom through 

self-employment, I’m afraid I have some very harsh news for you. It’s substantially 

more work and (at least intermittently) more stressful to be successfully self-employed 

than to hold down a day job. Furthermore, if you don’t organize yourself and work to 

an established procedure, you’ll lose customers because of silly omissions or mistakes.

The key difference between working for “the man” versus working for yourself 

is that self-employment lets you make your own choices about which opportuni-

ties to pursue. Here are some good reasons to start working for yourself.

• You are currently earning at least twice your day-job hourly rate doing 

contract work as a moonlighter, and you want to focus all of your atten-

tion on where the money is. (More on this important topic later.)

Working for Yourself 
as an Embedded Engineer

5



174 Chapter 5

• There are occupational health concerns (for example, too much overtime 

work) or insurmountable personal conflicts at your day job. Working for 

yourself is far from stress-free, believe me, but at least you’ll find it hard 

to argue with the company.

• Your day-job employer is in poor financial health, is moving out of the 

marketplace for the products you engineer, or is progressively outsourcing 

more and more of your department or division.

• You’re bored with working on maintenance of legacy code and circuits 

and you want to work in a job where you’ll be exposed to more diverse 

projects.

• You like being involved in the entire product development cycle from 

concept to implementation to marketing.

Here are some fundamentally bad reasons to start working for yourself (and 

by “bad,” I mean in the sense that you’re probably not going to achieve your 

stated goals):

• You dislike a structured approach to product development.

• You like building prototypes for quick demonstrations but hate the 

I-dotting and T-crossing details of designing something that’s reliable and 

manufacturable. There’s a big difference between hand-building a single 

prototype and designing the same type of product to be manufactured by 

automated machinery, or by semiskilled labor.

• You want to work shorter hours.

• You hate paperwork.

As with any other major life decision, becoming a full-time consultant is a 

complex choice. On the plus side, you will have about as much control over your 

professional destiny as it is possible to have. You’ll be able to set your own policies, 

enforce your own design style, and select precisely which projects you want to pick 

up and which you want to leave on the curb. You will also have unlimited access 

to the (after-tax) profits of your labors; there will be no management layers or 

investors getting a slice of the pie. Being a consultant can feed some very interesting 



 Working for Yourself as an Embedded Engineer 175

projects your way, full of enjoyable technical challenges and—ultimately—often 

considerable profits. It can be an end in itself (many engineers “retire” into con-

sultancy as supplemental income and to keep their brains in top condition), or 

it can simply be a way of looking around you and keeping your skills honed and 

the bills paid while you decide what your next full-time job should be. Consult-

ing is a great way to network, by the way. People who are looking today for a 

consultant to work on their first electronic project will be looking tomorrow for 

someone to work full-time on their range of electronic products.

The downside to being a one-person show is that almost every decision you 

make when you’re working for yourself can mean the difference between life and 

death. This is frightening, and with good reason. If you’re working for yourself, 

you won’t have anybody with the same personal investment as yourself to help 

you with the myriad of decisions and tasks that are needed to make a business of 

any size function as a going concern. If you’re working as a  sole proprietorship 

(as opposed to an incorporated company), you might also have to worry about 

personal liability if one of your projects doesn’t turn out favorably. You’ll have 

to balance the cost of advertising, installing a fax line, and/or buying a piece of 

equipment against the profits you expect to get. It is inevitable that you will make 

some mistakes here, and those mistakes will cost you some money.

If all of this hasn’t scared you off yet, congratulations, and please continue 

reading.

5.2  From Moonlighting to Full-Time Consultant 
 Status—Bookkeeping, Taxes and Workload

Keeping track of your finances, ensuring that you’re actually turning a profit, and 

paying your income tax in a legally acceptable manner can be one of the most 

difficult and frustrating tasks of being a freelancer. What I’m about to say here 

is structured around tax terminology and laws in effect in the United States, but 

most developed countries have very similar laws. Please be aware of the obvious 

disclaimer: I am not an accountant, and this text does not constitute formal tax 

advice in any way. Furthermore, tax law is a very complicated, specialized field 

and it’s constantly changing. You should consult a CPA or other tax professional 

for detailed recommendations about your specific situation; these people are paid 



176 Chapter 5

to have an up-to-date understanding of tax rules. Shelling out for a few hours 

of your CPA’s time four or five times a year (once per quarter, and perhaps an 

additional visit during tax season) is a much better value than spending consid-

erably more of your own time trying to learn about the topic—not to mention 

the fact that if you make a mistake, you can dig yourself into a deep, expensive 

hole with a huge tax bill and penalties on top of it.

The statements I’m making here are redacted from several references, primar-

ily IRS publications for the 2005 financial year. Before we go any further, you’ll 

find the following glossary helpful (particularly if you’ve never filed a tax return 

in the United States).

• 1040 – This is the form (actually, a family of forms) on which you sub-

mit your annual tax return.

• 1099 – This is a form that is mailed to you at the end of every tax year 

by each person that has paid you more than $600. Again, there are in 

fact several different flavors of Form 1099, including 1099-DIV for 

dividend income, 1099-MISC for miscellaneous income, and so on. 

Clients for freelance jobs will generally send you 1099-MISCs, if they 

send you anything at all. When a 1099 is generated by a person who 

paid you nonsalary income during the year, one copy is sent to you and 

another goes to the IRS. You don’t need to include these forms with 

your tax return, since the IRS already has the information; you merely 

need to declare the totals in the correct lines on your tax return.

• AGI – Adjusted Gross Income. This is essentially your gross income less 

allowable deductions; i.e., it’s the actual “income” number on which 

your tax bill is calculated.

• FICA – Acronym for Federal Insurance Contribution Act. This term is 

most commonly used when referring to withholding for Medicare and 

Social Security.

• IRS – Internal Revenue Service, the body responsible for collecting fed-

eral taxes.

• W-2 – This is the standard form issued annually by regular (“day job”) 

employers stating, among other things, how much was paid to you and 



 Working for Yourself as an Embedded Engineer 177

how much Medicare, federal, state, and local taxes were withheld from 

your salary. Forms W-2 must be included when you submit your tax 

return.

I’ll assume for the moment that you’re going to follow the usual route of 1099 

income—either doing some moonlighting contract jobs or full-time freelancing 

(as distinct from setting up your own corporation and having that corporation 

pay you a salary). Freelance work is almost always offered on a 1099 basis because 

it’s less expensive for the person who hires you; there is no employer–employee 

relationship. Employers who contract with too many W-2 employees—even if 

they’re all part-time semi-freelancers—start to appear on the radar of various 

industrial relations legislation that can be quite irksome to deal with.

Important warning: There are an astonishingly large number of resources 

available—especially online—that discuss ways to structure a home business so 

that it runs permanently at a loss that can be offset against your normal W-2 

income. The underlying plan here is, in a nutshell, to make your hobby a tax-

deductible expense.

Unfortunately for you, these methods are questionably legal, since at best 

they severely stretch the definition of what constitutes a “business” expense. 

They are definitely not sustainable in the long term—the IRS has various rules 

of thumb to classify  home businesses as nondeductible hobby activities, but the 

primary criterion is summarized by the questions “Does this activity generate 

a profit? If not, is it being carried out in a manner that implies the expectation 

of future profits?” If the answer to the second question is “no,” your deductions 

will be disallowed and you’ll be on the hook for a hefty tax bill, with penalties. 

Since a consultant engineer’s primary raw material is work hours (rather than 

paid-for physical raw materials), it can be amazingly difficult to make a freelance 

engineering business run at a net loss anyway, so you might not even be able to 

make it work on paper, let alone pass IRS scrutiny.

If you really want your pet project to be   tax deductible, I’ve got a suggestion 

that sounds flippant but really isn’t: Find someone who will pay you to do this 

pet project. One excellent way to do this is to write about it and get the articles 

published—that way, your raw materials become necessary research expenses.

The long and short of all this is that you should assume that your freelance 

business is going to turn a profit, and work on that basis from the beginning. 



178 Chapter 5

Of course, if you make a loss, you’re entitled to all the tax “benefits” of such a 

loss—but be prepared to answer questions if your business doesn’t start to run 

in the black within a couple of years. Don’t throw out a single scrap of paper!

With these factors in mind, we immediately run into something of a financial 

difficulty: the IRS doesn’t want to wait until the end of the year to get their cut 

of your earnings. They want to be sure that you’ve paid at least 90% of your tax 

bill by the end of the year. For “day job” (W-2) income, you don’t have to worry 

about this—your employer withholds the correct amount from your paycheck 

and distributes it to the IRS and your state government’s tax department (oh 

yes—you have to pay state income tax too, I’m afraid). Self-employment income, 

however, is not subject to withholding; the person who hires you just writes you 

a check for the amount you agreed to charge for the job, and paying the tax on 

that is your responsibility.

There’s a second, related issue to worry about with taxes on freelance income, 

and that’s   FICA. The federal government wants 12.4% of your AGI, up to a 

certain limit, for Social Security. They want another 2.9% of your AGI for Medi-

care (and there’s no cap on the Medicare tax). On   W-2 income, your employer 

pays half of this amount; for self-employment income, you have to pay all of it. 

That’s one reason why freelance income needs to be relatively large if it’s intended 

to replace regular day-job earnings—you don’t get to keep as much of it. Note, 

however, that you do get a slight break—if you have to pay the full FICA amount 

(  self-employment tax), you can claim the half that would normally have been 

paid by your employer as a business expense.

If you’re earning any significant amount from activities that don’t withhold 

income tax, you need to pay quarterly   estimated tax using form 1040-ES. The 

worksheet on this form is, to my mind, obscenely complex, because it basically 

requires you to guesstimate most of what will be on your tax return at the end 

of the year just now beginning, without the benefit of any of the paperwork that 

you’ll receive during the year. Note that there is an exception to the requirement 

to file income taxes: if you expect that your withholding for this year is going to 

be at least as much as you paid, total, in tax for the previous year, you won’t be 

penalized for failing to pay estimated tax on time.

There are numerous strategies you can use to manage the problem of estimated 

taxes. The method that’s best for you will depend, among other things, on how 



 Working for Yourself as an Embedded Engineer 179

much you expect to earn from freelancing, how accurate those predictions are, 

whether or not you have a day job as well, and how finely tuned (or strained) 

your week-to-week finances are.

It’s easiest to manage withholding versus 1099 income if you have a W-2 job 

that earns you enough to live on with a reasonable margin. If this is the case, you 

can simply get your employer to withhold more from your paycheck so that at the 

end of the year you’re approximately up to date with your tax payments. You can 

roughly estimate how much has to be withheld by using the following method:

• Estimate the net amount you expect to earn from 1099 activities over the 

year (estimated income minus estimated 100%-deductible items such as 

parts for prototypes, telephone expenses, and so forth). This can be tricky 

unless you have your entire year’s work planned out in advance, which is 

rare.

• Work out your  marginal tax rate. The IRS publishes marginal tax tables at 

the start of the year; you can read the table for 2006 at <http://www.irs.gov/

formspubs/article/0,,id=150856,00.html> but in essence there are six 

 brackets; 0%, 15%, 25%, 28%, 33% and 35%. Which bracket your 

income belongs to depends on how much you earn and your filing status 

(single, married filing jointly, married filing separately, or head of house-

hold); the details are provided by the IRS. Work out how much federal 

tax (we’ll call it $T) you owe on the extra income by multiplying the 

percentage rate by your estimate of additional income.

• Work out how much   FICA you owe on the additional income, by multi-

plying the estimated dollar amount of 1099 income by 15.3%. We’ll call 

this amount $F.

• The total additional tax you owe for the year is going to be very approxi-

mately $T + $F,1 so you can work out how much additional tax your 

employer should withhold per paycheck by dividing (T + F)/(number of 

pay periods in a year).

1 This is a very rough estimate, of course, and doesn’t take into account all sorts of potential deduc-
tions, but it’s close enough for our purpose. More important, it’s a very conservative number that’s 
likely to result in overpaying the IRS. The goal here is to avoid a tax bill at the end of the year.



180 Chapter 5

Example: Suppose you’re single for tax purposes, and you earn $50,000 per 

year in your day job, which pays you on a biweekly basis. Further suppose that 

you believe you’re going to get contracts worth $10,000 and you’re not going 

to spend anything on supplies or other deductible items in order to make that 

money. According to the 2006 tables, you’re in the 28% marginal tax bracket, so 

you are going to owe an additional $2,800 in federal tax on that bonus income. 

You will also owe $1,530 in FICA costs, for a grand total of $4,330. Since 

there are 26 pay periods in the year, you should ask your employer to withhold 

approximately an additional $167 per paycheck.

The pain of paying   self-employment tax is by this means reduced to a chronic 

ache spread evenly throughout the year rather than an acute attack in April 

(assuming you predict your annual income with reasonable accuracy, of course). 

This method doesn’t work very well, however, if your expenses are already very 

close to your take-home W-2 pay, because if there’s a fluctuation in the stream 

of incoming 1099 cash, you might not be able to meet daily expenses. In such 

cases, you’re better off going the traditional route of filing estimated taxes on a 

quarterly basis. Again, the simplest way of doing this is to sidestep the 1040-ES 

worksheet and simply to take your gross “extra” income, subtract the deduct-

ible expenses from the quarter, and calculate the tax and FICA you owe on the 

remainder. You’ll be overpaying up-front, but if you compare the lost potential 

interest on that money with the cost of calculating the “right” amount of estimated 

tax, you might still be ahead of the game. If your tax situation is even slightly 

more complex than this, however—for example, if you have incorporated your 

business—you really need professional assistance.

If, in addition to  freelancing, you’re working at a day job with a    401(k) 

plan (variously referred to as a superannuation account or retirement fund in 

countries other than the United States), one of the most important things you 

can do with your additional   moonlighting revenue is to maximize your pre-tax 

401(k) contribution by increasing the contribution percentage taken out of your 

paycheck and making up the shortfall in your day-to-day living expenses using 

your 1099 income. You get two benefits from this. First, if your employer has 

a matching scheme, you literally get extra free money. Second, you get to sock 

this extra income tax-free away into a location where it’s going to grow interest 

for you on money that you would otherwise be paying out in up-front taxes.



 Working for Yourself as an Embedded Engineer 181

Note that for 2006, the maximum pre-tax 401(k) contribution is $15,000. If 

you’re over 50, you can make an extra “catch-up” contribution of up to $5,000. 

If you’re getting close to those limits, you’ll need to look for other investment 

vehicles to store the extra money; it’s a nice problem to have.

In order for any of these suggestions to work, you need to keep very good 

records of how much money you bring in and how much you spend on business-

related expenses (and also what those expenses are). The reason it’s particularly 

important to keep track of your income is because you will VERY frequently 

not receive all your 1099-MISCs in time to use them to calculate your taxes, 

especially from small customers—or at least, that has been my experience.

My surmise is that this occurs because many small businesses leave tax prepa-

ration right down to the wire. In early April, they visit their CPA and show the 

CPA records saying they paid you so many thousand dollars during the year 

(which, of course, they want to claim as a deductible expense). The CPA gener-

ates    1099-MISC forms while preparing your customer’s tax return, and then 

hands the whole bundle to your customer. The tax return is mailed in urgently; 

the 1099-MISCs are mailed out on a more leisurely schedule, if at all. Techni-

cally, all that paperwork is supposed to be in the mail by January 31, but this 

rule seems to be more or less routinely ignored.

Although the previous paragraph is admittedly conjecture on my part, the 

fact remains that you need to keep your own records of income received and not 

rely on getting everything in the mail before mid-April. This brings me neatly to 

my next major point: You need to have good records of everything. There are a 

myriad excellent reasons why it might be very important to find out exactly what 

you charged for a job three years ago, or to locate the first version of a schematic 

for a project you did six months ago.

You can only keep all this information at your fingertips if you put in the 

time to create and actively use a functional filing system. This can be primarily 

electronic, primarily paper, or a hybrid of the two. Since you’ll inevitably be 

receiving paperwork from customers, suppliers and other people, the hybrid 

system is probably easiest to manage. Some people really like to keep everything 

in electronic format, so they scan their phone bills and other correspondence, 

shred the paper originals or stuff them in boxes into storage, and convert the 

scanned copies into Adobe PDFs or some other convenient format. Some people, 



182 Chapter 5

on the other hand, are paper-lovers; if they receive an electronic invoice, they’ll 

print it and file the printed copy.

I personally favor the hybrid approach. All my correspondence is generated 

electronically, as you might expect, so it’s archived electronically. Check stubs, 

incoming letters and bills are archived on paper, as are signed contracts and vari-

ous important drawings, schematics and so forth (although I do, of course, keep 

the original electronic CAD files as softcopy). I use the free   GnuCash software 

<http://www.gnucash.org/> to keep track of my finances (it’s a simple double-entry 

  bookkeeping system). However, at the end of the day it doesn’t matter a whole lot 

if you go electronic, paper or some route in between the two. What’s important 

is that you put everything into your filing system, and you do so in a coherent 

way so that you can find filed items again when you need them.

In fact, I advise you think about how your  filing system works and write down 

a document describing it. You’ll be able to use this document to train a secretary, 

if you get to the point of needing one—and formalizing the manner in which 

your business operates will greatly help you to follow your own procedures con-

sistently. It’s also the underlying core of—dare I say it—ISO9000 certification, 

if you ever need to travel that route.

5.3  Ways to Find and Keep Customers

One of the reasons it’s easier to start your working life with a day job and tran-

sition into consultancy (assuming that’s your ultimate goal, of course) is that 

it’s very difficult to build instantaneously a sufficient base of clients to sustain 

a business. For this reason, if you’re contemplating a life of full-time embedded 

consulting work, I advise you to give serious consideration to holding at least a 

part-time job to help you through the lean times, especially while you’re getting 

started. Additionally, I would advise you not to consider consulting work, even 

part-time, until you have had at least two or three years’ experience working in 

the industry. Preferably you should get this experience at the engineering level, 

but it’s an acceptable second best to have experience from the manufacturing 

side, since you’ll be exposed to a lot of the same learning curve.



 Working for Yourself as an Embedded Engineer 183

You can feel free to ignore that last piece of advice, of course—some people 

do get lucky, and jump straight into successful consulting positions right out 

of school. However, even after you have fully imbibed and taken to heart every 

word in the invaluable book you are now reading, you will not be fully cognizant 

of just how frequently, and how spectacularly, things can go wrong in one-man 

embedded projects.2 School can give you the basic rules for designing circuits 

and writing code, but (in my experience of working with   fresh graduates) it does 

not teach realistic   project management skills. Project management includes all 

sorts of problems you won’t encounter at school; dealing with technical sup-

port for the chips you’ve designed in, doing PCB layouts (many EE grads have 

never laid out a board; as a consultant, you’ll probably want to do this yourself 

for profitability reasons), making sure that all the parts you’ve specified in are 

available and poring through catalogs to get the exact part numbers and pricing, 

and a myriad other tasks.

Nor does a course of schoolwork leave the average student with enough com-

pleted projects under their belt to have an intuitive feeling for where the project 

should be overengineered for future expansion, and where it can be designed 

down to the last millivolt.3 As a result, when you’re new to the field, you will find 

yourself chronically underestimating the time and cost of the work you’re asked 

to perform. Customers want results—delivered projects—not merely activity. 

If your food budget relies on the income from this work, you’re potentially in a 

bad situation if you’re unable to make accurate estimates of how many projects 

you can get completed in a given time period. You can partially compensate for 

this by making sure you charge by the hour (see Section 5.5 for more details on 

this), but you won’t be making good long-term friends out of your customers if 

60% of your billed hours are spent correcting problems you created by under-

specifying the original hardware.

2 I don’t just mean in the sense of encountering bugs that are difficult to fix. The kinds of problems 
I’m talking about are issues like your client deciding that some new feature is a must-have, right 
after you spent a week of effort laying out a PCB around a microcontroller that doesn’t have enough 
RAM to implement the feature, or finding out immediately before production is due to start that 
your PCB layout is just a shade too noisy to pass CE emissions requirements.

3 As a prime example of this, all other things being equal, it is preferable to choose a microcontroller 
that is available in pin-compatible variants with differing amounts of ROM and RAM. This way, 
when you find yourself five bytes short, you can simply upgrade to the next micro without needing 
to create a new PCB.



184 Chapter 5

Given that you have all the requisite experience, how can you find people 

to buy your services? The usual way of selling anything is through   advertising, 

but you won’t sell much in the way of embedded engineering services by buy-

ing a full-page advertisement in the New York Times. There are a few obvious 

methods of advertising this type of service, and I suggest you try a combination 

of them.

• Build a  website detailing your capabilities and keep it up to date. In this day 

and age, it costs practically nothing to host such a site (and the cost is tax 

deductible, anyway). While simply having a website won’t spontaneously 

generate business, it’s important to have a place where you can direct 

people to read more about what you do. Having a reasonably attractive 

website with all the pertinent content customers are going to want to see 

also helps to create a professional appearance for your operation. On the 

subject of attractiveness vis-á-vis websites by the way, my overarching advice 

is: Don’t go crazy. I suggest using plain HTML with no frames, no ani-

mated graphics, and of course you should never bury any of your content 

inside Flash movies or Java applets. 4 I’d also suggest eschewing embedded 

scripting content, particularly in the navigation aspect of the site. Having 

a few rollover graphics that change color via Javascript is not a mortal sin, 

but forcing the user to use Javascript-powered drop-down menus to get 

off the homepage is an extremely bad idea. You want your website to be 

quickly navigable by visitors; you want it to look good without requiring 

any plugins or magic browser features; and perhaps most important, you 

want it to be easily indexable by search engines. Make sure you include 

pictures and descriptions of projects you’ve completed. (Personal and 

school projects are fine, though once you have a significant  portfolio of 

actual customer work, you will probably want to deemphasize the older 

material.) If the numbers won’t embarrass you, it’s helpful to show people 

how long each project took to complete.

4 This is partly the engineer in me speaking. These animated graphics tools are designed for style, 
not substance. Hiding content inside these binary files is a very silly choice, if only because it will 
exasperate most of the engineers who will look at it. You’re not selling lipstick to teenage girls, so you 
don’t need singing cartoon ferrets on your website. You’re selling professional services to people who 
have limited time to read, understand, and evaluate their options. Don’t make it difficult or annoy-
ing for them to read about what you have to offer.



 Working for Yourself as an Embedded Engineer 185

• Publish as much as possible. There are a large number of specialized engi-

neering publications5 that are distributed free (in both paper and electronic 

form) to practically anyone who fills out a survey and is willing to endure 

endless junk email. At the risk of sounding unkind, the publishers of 

these materials need a modicum of actual content to wrap around their 

advertising. If you have the ability to write an interesting article about 

something relevant to your industry segment (typical article lengths are in 

the region of 2500 words), being published in these magazines is excellent 

free exposure. You’ll also usually be paid a small amount for the article; not 

typically enough to match normal consultancy rates for the same number 

of hours, but the bulk of the value in the transaction is the free advertising 

you get, and the actual cash is just a pleasant bonus.

• Release free project information. Wherever possible, release code and 

schematics for your personal projects (put it up on your website). You’re 

improving your visibility in all sorts of ways here—as people link to your 

projects, your search engine ranking increases, for instance. You’re also 

increasing the probability that someone looking for help with a particular 

sort of widget is going to find their way to you.

• Solicit local small businesses that might benefit from your services. In particular, 

if you have a personal or school project that will demonstrate experience 

with a particular industry, it’s a great idea to include details of that project 

with your letter.

• Attend conferences for networking purposes. Because of the broad scope of 

embedded engineering, there are literally hundreds of conferences where 

you might meet people that can use your talents. You’ll get advance notice 

of many of these conferences (perhaps obliquely) if you sign up for news-

letters from the various semiconductor vendors that attend these events. 

Some others, like the annual Toy Fair in Manhattan, might require a bit 

more research on your part.

• Create an unusual electronic promotional item and send it out. This approach 

should only be used on very good prospects, because it’s usually quite 

5 Advertising circulars with a little content added in order to get people to open them, mainly. A 
kinder phrase for them is “industry publications.” I’m not the only one to hold this cynical attitude; 
industry news in the Internet age arrives faster than the leadtimes for these print publications.



186 Chapter 5

expensive. A typical example of the sort of thing I mean would be to make 

an electronic business card with, say, LEDs and a small microcontroller 

on it; maybe a piezo speaker as well.

So much for acquiring new customers. Retaining existing customers is an 

interesting problem for the consulting embedded engineer. Quite often, the 

reason a company goes hunting for a   consultant in this field is to make a one-

off project that is outside their normal field of operations. For example, due to 

my former involvement in the toy industry and a magazine article I wrote on 

the topic several years ago, I get a lot of phone calls from wannabe  inventors 

needing expert help to make a prototype for submission to a big company. I also 

get a fair number of calls from marketing people who are building flashing or 

speaking in-store displays, and have no idea where to start with the electronics 

of such a device. Since I don’t work in the industry any more, I refer all those 

sorts of calls to colleagues, but I suspect that relatively few of them lead to much 

repeat business; they’re one-time things.

Unfortunately, there’s not a lot of advice I can offer that will help you persuade 

people to start new projects. Your best course of action is very simple: complete 

your work in a timely and professional manner, following the suggestions in 

Section 5.6 along the way. During the course of the project, offer intelligent 

commentary and advice for improving the end-user experience for whatever 

device it is you’re making. This sort of useful engineering advice is precisely the 

sort of value-added bonus that will keep your name at the top of your customer’s 

Rolodex.

It certainly doesn’t hurt to follow up with your customer a few months after 

delivering the completed product. By this time, the device will have been in 

production for a while, and if the customer hasn’t called you already, you can be 

fairly sure there are no show-stopping problems. A couple of months’ real field 

experience will quite likely, however, have exposed some rough edges; things 

that can be improved, or accessories that can be created, and these are additional 

business opportunities for you.

Some people even advocate calling through your client database whenever 

things are a bit quiet, to see if there’s any business to be captured. I’m slightly 

uncomfortable with this approach; in my view, it’s bordering on the  unprofessional. 



 Working for Yourself as an Embedded Engineer 187

However, if you do decide to go down this route, try to keep the conversation 

from becoming a blatant  sales call. Ask your customer how their older projects 

are behaving in the field, and ask them if they have anything new coming down 

the line by all means. You’ll quite likely have to spend some time discussing the 

pros and cons of various ideas they are mulling over at the moment. Anything 

much beyond this is begging. The bottom line is that your customer either does 

have some new project ideas, or they don’t. If they do have something in mind, 

then simply by calling and talking for a while, you’ve reminded them that you 

exist and you’ve given a strong hint that you’re available to work. If, at that point, 

they don’t want to hire you for the job, then their quite likely unhappy with your 

past performance for some reason. Trying to repair that situation can be difficult, 

especially if your customer doesn’t want to talk to you about it.

5.4  Iterative Projects: Never-Ending Horror?

Debugging is not an exact science; it’s an art form. Unfortunately, the patrons 

and practitioners of this art both live in a very complex universe, as the follow-

ing will illustrate:

   Suicide Squirrel Syndrome

Sometimes, a bad day in the lab can become a really bad day in the lab, and then an 

amazingly bad day in the lab. Picture it: You’re working to an (expired) deadline. You 

observe a problem with your system, and you form a theory about its causes. You 

assume that a few things are impossible, and spend a few hours investigating the re-

maining possible causes, frustration building all the while. Just when you’re about to 

tear your hair out, you notice some small piece of evidence proving that your original 

cause-and-effect theory was wrong, and leading you to a second underlying problem. 

The theorize-investigate-hit a brick wall cycle then repeats itself.

A peculiarly apposite example of this happened to a colleague of mine a few 

months ago. He was debugging a piece of code known to be infested with problems. 

After removing some particularly egregious coding error, he tested the resulting build 

and found that it was completely nonfunctional. The engineer spent about a day and 

a half debugging code; breakpointing at different places, checking flags and ADC 

readings, and so forth. The code in question involved reading the output of an analog 

circuit and performing some timing calculations (among other things). After making 



188 Chapter 5

some measurements, he concluded that the reason for the code’s weird post-bugfix 

behavior was that the analog circuit wasn’t working quite right. (He had previously 

assumed that this was impossible, because the unit in question was from production, 

not a prototype—it was fully tested in the factory. How could it be malfunctioning?) 

Measuring some voltages on the board, he soon found that the power rails were rather 

low. After spending another half-day poking around the board looking for a prob-

lem in power regulation, or perhaps a miswired part pulling down the rail (note the 

implicit assumption here as well!), he realized that the 5V DC input to the board was 

low. Tracing back, it transpired that the lab power supply was reading normal on the 

front-panel (digital) output meter but the actual output was low. The root cause of 

this was that on that one particular outlet, the actual AC line voltage was only about 

86V! A combination of extremely unusual root causes and assumptions that would 

normally be valid (but weren’t in this case) wasted more than two entire days of effort.

In Australia, power glitches and transformer blowouts are fairly often caused by 

possums shorting out power wires while climbing among the insulators. Note that 

the    possum in question is typically Trichosurus vulpecula vulpecula; this is an arbo-

real animal, not very much like the Didelphis marsupialis opossum that Americans 

 associate with the word “possum.” The closest American animal, in terms of climbing 

abilities and propensity for exploration, would probably be a squirrel. Hence, when 

a situation like this appears to be developing, we now refer to the probability that a 

suicide squirrel attack is in progress.

  Customers—internal or external—practically never tell engineers what they 

really want. This is a universal truth that applies equally to large companies, small 

companies and one-person consulting businesses. The problem is exacerbated by 

the fact that every engineering decision has implications that are not always obvi-

ous even to the engineer responsible for the design. These implications are almost 

certainly totally opaque to the customer. It’s often very hard merely to explain 

the nature of these problems to nontechnical customers; tragically, you can often 

proceed quite a long distance down a given design path before the implications 

of that path become apparent to the customer, at which time it’s too late.

You’ll begin to notice difficulties of this sort from the very outset of a 

project, during the   specifications development phase. It’s almost completely 

unheard of for a customer to call you and say “I need a widget designed; here 

are all my requirements.” The way small consulting projects generally begin is 



 Working for Yourself as an Embedded Engineer 189

that the customer calls you to describe a problem that they need to solve with 

custom hardware and/or software. The problem statement will be presented in 

terms relevant to the customer’s field of business, not necessarily to embedded 

engineering. At this point, you’re facing a choice: educate the customer about 

electronics and embedded programming so they can provide you with a detailed 

specification, or educate yourself about the customer’s field of business so that 

you can develop such a specification for yourself; pragmatism dictates that the 

latter path is preferable.

Since it’s difficult to absorb all the details of an industry in a few moments, 

this process is generally iterative. Your customer will state the problem, and 

you’ll respond with a preliminary suggestion as to how the desired solution can 

be implemented. In this response, you should include as much detail as possible 

covering issues such as:

• Development time

• Bill-of-materials cost,

• A list of what can and cannot be achieved with the system in question, 

since the customer probably gave you an endless laundry list of desired 

features

• Special issues the customer might not have considered

 Regulatory issues frequently fall into the last category; for instance, I’ve 

been asked to develop software for gambling machines, despite the fact that it 

is not legal to own these machines6 in my state nor the state where the other 

party resided. On a more practical note, almost any electronic appliance sold 

in the United States needs to comply with FCC Part 15 rules on RF emissions; 

customers usually don’t think of this, and most consultants (myself included) 

don’t have the equipment to perform official FCC testing, so the contract for 

something that will eventually be a consumer appliance has to include wording 

to the effect that it’s the customer’s responsibility to have the product tested and 

certified, and your only responsibility is to provide engineering support during 

the test process. (Remember to budget all the possible issues into your quota-

tion, by the way.)

6 Exceptions apply, but they weren’t relevant in this case.



190 Chapter 5

Delivering the initial  specification document will trigger another round of 

discussion with the customer, and another round of specifications, and this pro-

cess can go on for quite a while. Hopefully, you are spiraling in and converging 

on a solution that’s acceptable to the customer, but this doesn’t always happen. 

Be very aware of this possibility; you can waste a terrible amount of time going 

backwards and forwards researching all the issues surrounding a project like 

this, and that’s time that would be better spent on more profitable work. (It’s at 

moments like these that you can really appreciate the people in a big company 

whose full-time job it is to work on negotiating these details with suppliers and 

customers, so that engineering gets at least a fairly accurate specification with 

most of this iterative stuff filtered out of it.)

Once you nail down the specification and start working, unfortunately you’ll 

find that customers almost invariably start to throw in additional last-minute 

changes. It’s a basic and practically inviolate rule of engineering—hardware or 

software—that the later these changes are introduced, the more expensive they are 

to implement. You really can’t do anything about this problem except to keep 

the customer informed, as accurately as possible, what these change requests are 

going to cost in time and money terms. (Experience is a great help here.) Unfor-

tunately it takes a lot of discipline to prevent these changes from interfering with 

the overall integrity of the system design. There’s a horrible temptation to patch 

the new feature in quickly in software or hardware, and this almost invariably 

results in a loss of overall design integrity.

Be very cautious, then, about these  last-minute changes. Merely by virtue of 

the fact that they are indeed last-minute, they will not have received the same 

scrutiny as all the other features that you and the customer discussed before 

“finalizing” the specification. It’s here that you’re going to find the lurking bear 

traps; the things that can’t quite be done in software, the feature that doesn’t 

quite match the way the rest of the system is supposed to work, and the func-

tionality that’s going to be just a little bit more than your hardware platform 

can handle. Changes that are truly minor—switching the red LED for a green 

one, or changing the default volume setting on a device with audio output—are 

not a cause for worry, but more complex changes should, if necessary, trigger a 

requote for the entire project, and development of an entirely new specification 

and delivery schedule. Patching a project just as it’s going out the door is a recipe 

for expensive disasters.



 Working for Yourself as an Embedded Engineer 191

5.5   Pricing Your Services Appropriately

It is a capital mistake—frequently made, and extraordinarily hard to undo—to 

underprice your services or to set payment terms that are excessively liberal. If you 

overprice yourself, you will simply not attract many clients. You can observe this 

fact and start to reduce your pricing as appropriate. If you underprice yourself, 

however, you’ll get into a much worse situation. You’ll start to build relationships 

with people based on your lowball price, you’ll start to rely on the income stream 

coming from this work, and if you try to adjust your pricing upward at a later 

date, you may find that the resulting drop-off in business affects your financial 

survival. Note that I don’t mean by this that your customers will say you’re not 

worth paying extra. What I’m warning you against is that if you underprice your-

self, you may be building your future financial stability on a raft of customers 

who simply can’t afford industry standard rates for your expertise. 

The most rational way to judge how much to charge for your time—par-

ticularly if you’re  moonlighting—is by analyzing the opportunity cost of doing 

freelance work. The opportunity cost of an activity is a piece of economics jargon 

meaning the potential returns foregone by choosing that activity instead of the 

most profitable alternative. To give an example, let’s say you have been offered 

the chance to give an hour-long lecture one evening, in return for a speaker’s 

fee of $5,000. You estimate that the lecture will take you four hours to prepare, 

and that there will be perhaps two more hours of travel to and from the venue, 

and an hour of question time involved.

If you don’t give the lecture, let’s say your next most profitable activity would 

be working on a contract job at $100 per hour. Giving the lecture would consume 

eight of these billable hours, so the  opportunity cost of giving the lecture is $800 

(assuming that you actually have contract work lined up, that you would have 

to decline if you give the lecture).

The situation isn’t really as clear-cut as I have presented it, by the way. A 

creative accountant looking at the same situation would undoubtedly point out 

that giving a lecture counts as advertising your services, so the lecture really earns 

you more than $5,000. Assessing how much this sort of advertising or  goodwill 

might be worth in dollar terms is a specialized art; experience will teach you what 

business you can expect to come out of a session of this sort.



192 Chapter 5

There’s another very simple heuristic for working out what your  hourly rate 

should be (short of asking colleagues working in the same arena, of course): 

Study a few  salary research engines such as salary.com to learn what the going 

day-job rates are in your geographical area and field of expertise. Calculate the 

effective hourly rate from the quoted annual baseline salary (don’t include stock 

options, 401(k), medical plans and so on), and double it. This is a surprisingly 

useful rule of thumb; doubling the nominal hourly rate covers self-employment 

tax, health insurance, personal liability insurance (if you carry it), utilities and 

all the other miscellaneous expenses that a day-job employer would normally 

carry for you.

So much for working out your hourly rate. Projects that require you to buy 

special tools or unique, expensive parts—or even simply projects that require you 

to ship the customer a prototype built from parts you normally keep on your lab 

shelves—are a little more complex. One method of handling contract work of 

this type is to assemble a bill of materials up-front and send it to the customer, 

along with a suggested supplier list. The customer should then order the parts 

for delivery directly to you. The benefit of this system is that you have no out-

of-pocket expenses, and the customer has a very clear understanding that you’re 

not marking up any of the parts—you simply bill for hours of work.

There are two major downsides to this approach. Very few nontrivial projects 

are fortunate enough go from schematic to fully functional prototype in one step, 

especially when the underlying specification is changing. One practically always 

has to tune the device—tweak a resistor value here, choose a meatier transistor 

there, or switch to a less noisy op-amp elsewhere. As a result, you find yourself 

held up waiting for the customer to approve additional expenses for the prototypes 

and get the parts in-house. You also risk annoying the customer, who might not 

understand that some aspects of engineering are a little speculative; some things 

are hard to develop analytically, so a little trial-and-error can creep in.

For this reason, it’s a better idea to charge the  raw materials costs to the cus-

tomer on project completion (or at a major milestone) and simply keep the parts 

you’re likely to require on hand in your lab, replenishing when necessary. In order 

to avoid being out of pocket, you need to structure your terms in such a way 

that the initial project-start payment will cover all the anticipated raw materials 

costs, as well as whatever you need to pay the bills while you’re working on the 



 Working for Yourself as an Embedded Engineer 193

project. A very typical sort of arrangement for smaller projects would be 50% of 

estimated costs up-front (before commencing work) with the remainder due net 

30 after project completion. For a larger project, you might split the billing up 

further; for example a third of estimated costs up-front, the next third due when 

the first prototype is delivered, and the remainder due net 30 after delivering the 

final software and/or hardware.

Another cost to you is the time you spend developing software and hardware. 

It is clearly going to be a big savings to you if you can re-use design elements 

from project A in project B. However, if these two projects are being carried 

out for different customers, you might have a potential conflict. Rather than 

just ignore this matter and reuse code and circuit blocks from your old designs, 

I suggest you specifically acknowledge this matter by stating in your terms and 

conditions that the customer is purchasing a nonexclusive right to use the design. 

Exactly how you word this depends on how much you normally release to the 

customer; my preference (and customers’ preference too, if they know what they’re 

doing) is to release all source materials including sourcecode, precompiled binary, 

schematics, simulation models (if any), Gerbers to make the PCB, a sample bill 

of materials with orderable part numbers, and anything else that another person 

would require to take over the project from you. Some people, however, prefer 

to release only the binary files and Gerbers; that way, the customer has to come 

back to you if they want any changes made. I’d rather not lock people in this 

way; I’m so busy that I can’t guarantee I’ll have time to look at the next version 

of a project. It’s more ethical of me to release everything and give the customer 

the option of going somewhere else for maintenance.

While we’re on the subject of  billing and  quoting, a word to the wise: Charge by 

the hour. Avoid the temptation to quote a fixed dollar amount on a project basis. 

Even with the best customer in the world, you’ll find yourself being nibbled to 

death with little feature requests if you quote a blanket cost for the whole project. 

Remember that your time costs money—if you’re working to a fixed quote, then 

any additional feature request from the customer either requires requoting or you 

need to accept that working on that additional feature is effectively a cash gift 

from you to the customer. Project quotes work well only when you have a full 

specification up-front. (I’ve never seen one of these, either in industry or in private 

contract work, by the way; every specification from which I’ve ever built a product 



194 Chapter 5

was changed by the maintainer of that specification during the implementation 

process.) The only exception to this general rule is that it’s not usual to charge 

for the hours spent on a quotation. I would, however, advise you to charge for 

quoting on a project that involves significant research; the exact cutoff point for 

what you consider “significant” depends on your own preferences. As a rule of 

thumb, if you’re spending more than two to three hours on a quotation, or if you 

need to call suppliers or component manufacturers to research the feasibility of 

the project, you should probably charge for the quotation. Otherwise you run a 

risk that the customer will look at your quote and then give it to someone else 

to implement. That other person will be riding the research effort you put into 

preparing the quote; in other words, you’re paying your own competitors!

5.6  Establishing Your Own Working   Best Practices

I cannot possibly overstress the need for freelance one-person engineering con-

sultancies to be both ethical and well-organized. There are a huge number of 

things that need to be managed in such a business, and if you don’t pay due care 

to these issues, you will present a very chaotic appearance to the outside world. 

This is not something that is calculated to draw in future customers. It is impera-

tive, therefore, that you create a system for carrying out your business, and that 

you stick to it consistently. In fact, it’s preferable to have a primitive system that 

you use consistently than an advanced system that you don’t often follow; given 

the potential complexity of migrating a business from one operating method 

to another, it’s also usually preferable to stick with an existing system until it is 

absolutely impossible to delay migrating to something new. You’ve got engineer-

ing to do; you don’t have time to be re-sorting files, scanning documents and so 

forth. On the other hand, if you just break off from one system and start a new 

one, you’ll have a lot of annoyance (at least in the first year or so), because you’ll 

constantly be looking for data that are not in the new system.

To begin with the easy part: As I intimated earlier, there’s an unavoidable 

slug of  bookkeeping that you’ll need to do if you’re running your own business. 

This paperwork is like a bacterial colony; it grows slowly at first, but if left unre-

strained, exponential growth will bring it to a really terrifying size in short order. 

The only way you can keep this monster reined in is to schedule time to work on 



 Working for Yourself as an Embedded Engineer 195

it, preferably daily. I like to reserve between half an hour to an hour at the end 

of the day to fire up my financial management software and enter any bills paid 

or checks received. I then file any paperwork—invoices, correspondence, and 

so forth—in hanging files. Finally, I update my journal with notes about things 

achieved during the day and what I expect to get done tomorrow.

On the topic of  journals, it’s a very prudent idea to buy  laboratory notebooks 

and keep a running  diary of what you’re doing from day to day. There are all 

sorts of occasions where such a document can be useful. For instance, you may 

discover something  patentable, and these laboratory notebooks will be excellent 

proof of the date you made this discovery, should the matter ever come to court.7

If there’s a problem with one of your fielded projects, you might conceivably also 

have to document and justify how much time you spent on a particular client’s 

project, and what specific analyses you performed while designing the device. 

On a less legalistic note, you’ll find it very handy to be able to look back over 

the years and look up old designs, ideas and notes you made. Be liberal in your 

use of sketches and descriptive text, and don’t be afraid to include jottings such 

as mathematical notes and so forth.

Another type of document you’ll need to create and file is project  specifica-

tions. You need to have a consistent method of filing your projects so that all 

required data (sourcecode, build tools, and so on) are together in one place. That 

way you can deliver copies of the entire project to the customer, should this be 

necessary. Having all these materials filed coherently also helps you look up old 

designs if you need to reuse something. I prefer to do this archiving electroni-

cally; I number each project I work on (personal projects included) and create 

a top-level directory with the project number. Under that directory, I create a 

separate subdirectory for every version of the software and hardware released to 

the customer (I don’t generally archive internal revisions, only revisions that left 

my hands and went to someone else). I also archive the complete set of tools used 

to build the software, along with instructions on how to build or install them, 

and all the datasheets for the parts used in the design. (Remember that when a 

7 There’s rather more to it than what I’ve written here, if you’re worried about patentability issues. For 
an example of the sorts of things you will need to do in order to establish these books as standalone 
legal documents, visit the Scientific Notebook Company’s instructions page at <http://www.snco.com/
instruction.htm>. For definitive answers, you should consult an intellectual property lawyer.



196 Chapter 5

part goes obsolete, the datasheet vanishes off the manufacturers’ website, and 

since nobody creates printed databooks any more, it can be very hard to locate 

datasheets for long-obsolete devices.) When the project is complete, I burn the 

project folder to a CD or DVD and send it to the customer; this is how I define 

project completion, in fact.

Managing your stocks of components and other supplies (solder, wire, and 

so forth) in the face of constant vendor reshuffles is another annoying task. 

Most major companies manage this sort of thing by maintaining a database of 

in-house part numbers for every part they have ever used. Each part number 

has a specification, and a number of approved vendors attached to it. When you 

order, say, a reel of 10K 0603 5% 1/16W surface-mount thick-film resistors, it 

might be coming from any of three different vendors, but when it arrives, you 

dump it in a bin—literally and from an administrative standpoint—with parts 

from all the other approved vendors. This sort of system ensures that you can 

always order parts “a la carte” without needing to worry about changing vendor 

part numbers; your schematics only show in-house part numbers. Unfortunately, 

it’s usually too much work for the average one-person shop to maintain such a 

database, so you just have to be prepared to do quite a bit of research when you 

go to order a complete bill of materials for a project. Some distributors—Mouser, 

for instance—have handy website features that allow you to upload a  bill of 

materials for a project and save it on their site. Next time you need to build ten 

of that project, you can just look up that BOM on the distributor’s website, say 

you need ten sets, and the order will be automatically prepopulated for you.

Part of your best practices should also involve a plan for keeping your custom-

ers happy with your progress. Cargo carriers such as UPS and FedEx determined 

long ago that it is a key selling point to allow customers visibility into the parcel 

delivery process. As a rule, it’s a bad thing if a New York-bound parcel you’re 

carrying has been accidentally misdirected to Tecumseh, Alabama. However, if 

this unfortunate circumstance should occur, it is preferable that your customer 

should know where the article is and the expected delivery delay rather than 

simply having the parcel show up a week late with nary a word of explanation. 

The engineering analogy is that your customers will be happier with you the 

more visibility they have into the process. Exactly what this means depends on 

the size and nature of the project. At the very least, I’d make sure you email the 



 Working for Yourself as an Embedded Engineer 197

customer each time a major event occurs; arrival of the first PCBs, assembly of 

the first prototype, and so forth. Once you’ve shipped working hardware to the 

customer, it’s also good to keep supplying them with interim versions of the 

firmware as you develop it; that way, they can help you test it and any design 

issues in the user interface can be worked out during the development cycle.

On a closely related note, it is critically important to customer satisfaction 

that your clients be able to contact you when they need to. This can present some 

challenges if you’re working a day job in addition to carrying out contract work. 

I’ve experimented with various forms of electronic communication, and I find 

that the best solution right now is a   BlackBerry device. There are various other 

appliances that offer cellphone service and email access, but I keep coming back 

to the BlackBerry because it’s fast, widely supported and easy to use. With this 

type of device, you can keep in touch via email and view some critical attachment 

types (PDFs and Microsoft Word documents, for instance). The appliance has 

a long standby life and it’s simultaneously physically small, robust and easy to 

use. Although most regular cellphones can now access email, it’s very irksome 

to read and reply to normal text emails with the tiny screen and weird keyboard 

entry method of a normal cellphone.

Speaking of phones, remember that it’s good for you to answer the phone when 

a customer calls, but it’s much better for you to pick up the phone and initiate 

contact proactively. If there’s something the customer needs to know—even bad 

news—it’s much better for the business relationship if you make the phone call 

as soon as you find out, rather than waiting for the customer to call you.

5.7  More Than a Handshake: The Importance 
 of Contracts

It’s a common misconception that you can do business with friends and family 

without needing any formal documentation of the work. Many people also feel 

that insisting on   contracts, due dates, and specific  terms of sale will imply a lack 

of trust on one or both sides, and undermine personal relationships with the 

aforementioned friends and family.



198 Chapter 5

This attitude is about as far from reality as you could possibly get. If I could 

brand just one succinct maxim onto your brain in this section, I’d like it to be 

this: “Friends don’t let friends do vague projects.” Contracts do not create acri-

mony and ill-feeling—they prevent it! Frankly, if you think your customer is 

going to cheat you in the contract, or if you’re looking for ways to cheat them 

in writing, you shouldn’t be doing this job anyway. Furthermore, if you can’t 

come to a written agreement with somebody, this is a priori evidence that you 

will not be able to reach—and adhere to—a verbal agreement either. You might 

shake hands and agree over coffee at the start of the project, but it is absolutely 

certain that you will be arguing come the end of the project.

The first fundamental reason why you need to have a contract in place is to 

avoid causing surprises to either party. If you have a contract that says “Party A 

shall pay next-day air shipping to send the first working prototype to Mount 

Everest,” Party A knows this in advance and can plan for it. If a detail like this 

isn’t specified up front, Party A may expect the finished widget to arrive on-site 

in a week, with no extra money payable—and Party B may be expecting to send 

it by four-week slow boat at Party A’s expense.

The second fundamental reason why you absolutely must have a contract is 

because the contract—probably by way of an engineering specification—defines 

when the project is finished, both in terms of time and  deliverables. This has all 

sorts of important ramifications:

• Your client knows exactly what they are going to receive for their money. 

This is especially important if you’ve quoted on a whole-project basis 

(though I don’t recommend this; see Section 5.5).

• You and your client both understand what stages trigger responsibilities 

on either end.

• You have a clear idea—assuming you can meet your due dates, of course!—

as to when you will be free to take the next job from someone else.

Speaking of contracts, you’ll be asked from time to time to sign   nondisclosure 

agreements (NDAs). Not infrequently, the person asking you to sign the  NDA 



 Working for Yourself as an Embedded Engineer 199

wants you to do so before divulging anything at all about the item it covers. My 

blanket advice to you is not even to read the NDA, much less sign it, unless 

you are already interested in the project. Some people—on both sides of the 

client/contractor fence—treat NDAs as a kind of initial courtship ritual in the 

process of establishing a business relationship, with no real meaning and no risk 

on either side. 

Make no mistake, though: executing an NDA for a project about which you 

know absolutely nothing is potentially very dangerous. This is doubly true if 

you are already bound by NDAs to other clients, or (even worse!) to your day 

job. Consider what might happen if you sign the NDA, and then the customer 

tells you about the project—which just happens to be in direct competition with 

your day job. Even if your day job allows   moonlighting, it would be exceedingly 

unethical to work on both projects.

In a similar vein, consider what might happen if you sign an NDA for (and 

receive disclosures concerning) a project that turns out to be in competition 

with, or even just related to, contract work you’re doing for someone else under 

a separate NDA. Even if you never work on this second project, you’re still in 

trouble. When the first project is completed, the person who wanted to hire you 

for the second project can sue both you and the company that hired you for 

pilfering  trade secrets. In short, therefore, signing NDAs willy nilly is digging 

yourself into a legal hole, getting out of which can be very expensive.

Of course, simply having a client ask you for paperwork of this sort is no 

reason to be discourteous, and it’s not necessarily a show-stopper to working on 

the project, either. If I’m asked to sign an NDA up-front, my standard response 

is that my policy is not to sign NDAs for any project except as part of the quota-

tion process (since this process is the first formal transaction in an engineering 

relationship that involves exchanging of detailed specifications). I then encourage 

the other party to provide further information on the project so I can decide if I’m 

competent to carry it out and interested in doing it. If you follow this method, 

be sure to stipulate that the other person should not disclose any proprietary 

information to you. The test I ask people to apply is: don’t tell me anything you 

wouldn’t tell a stranger in a bar.



200 Chapter 5

As a side note, I’ve worked in companies that deal with a lot of external inven-

tors. The toy industry, for example, garners a lot of its original ideas this way. 

To avoid both the Scylla of letting a good idea get away to the competition and 

the Charybdis8 of being sued by an inventor who visits, shows off something the 

company is already working on, then starts a lawsuit when the company’s own, 

independently developed product comes onto the market, at least a couple of 

large toy companies simply buy up ideas in bulk and archive them. 

My own experience with external inventors is that the ones who insist on 

draconian agreements up-front are usually inexperienced  inventors just getting 

into the field; I’ve almost never seen an inspiring idea presented under these 

conditions. Some of these people in fact are simply hobbyists who have been 

lured into one of those widely advertised “ invention promotion” scams. You can 

read a great deal about these scams on the FTC’s website at <http://www.ftc.gov/

bcp/conline/pubs/services/invent.htm>, and you might also want to look at the 

National Inventor Fraud Center, Inc., at <http://www.inventorfraud.com/>.

Briefly, there are many companies that advertise the ability to help you turn 

your idea into a marketable invention and make millions.9 What they actually 

do, of course, is employ the usual sorts of con artist lures to inveigle you into 

parting with more and more of your money.

8 Mythical creatures from Homer’s Odyssey; they guarded the Straits of Messina. Scylla was a six-
headed monster; ships that sailed too close would lose six of their crew. Charybdis created a whirl-
pool and a fountain three times a day; ships that came too close to her risked being destroyed utterly. 
Both creatures were originally beautiful nymphs; Charybdis was sentenced to her fate by Zeus for 
stealing sheep, and Scylla was enchanted by the wicked witch Circe.

9 Alpaca farming was the big home-industry scam during the last century. Invention promotion may 
be the corresponding cottage industry scam of the twenty-first century.



201

6.1  Analyze Your Goals: Benefits and 
 Downsides of the Small Company

In this chapter, I’ll be talking about life in a “small” company. By this, I mean a 

corporation with a single place of business (possibly with a few work-from-home 

offices attached to it), which is not usually dominant in the markets where it sells 

its goods or services. There also exists a special class of small engineering business 

where the second criterion doesn’t apply, viz. the company (often a   startup) with 

a truly innovative product, a   niche product for   vertical markets, or a product 

consisting primarily of   IP (intellectual property) that is heavily protected by 

patents and copyrights. This type of company is “dominant” in its market by 

default, since it is the only significant player in that market.

As you’d expect, life in a   small company has both advantages and disadvantages 

that are more or less in the middle between freelance work and working for a 

big corporation. Whether it’s right for you or not depends mostly on individual 

preference. Working in a small company is, at the very least, excellent preparation 

for working in a larger company. Possibly the biggest advantage (some people 

would feel that it’s a disadvantage) of working in the small-company environment 

is that every member of the team has  cross-functional abilities. The great thing 

about this is that you’ll get to learn a lot about how to run a business, and you’ll 

also be exposed to challenges at a variety of levels in the organization. At the 

same time, however, you’ll have other people to lean on for the “infrastructure” 

work—paying bills, ordering supplies, and so on—and a bigger financial cushion 

to sit on than you would otherwise have as a freelance consultant.

Working for a Small Company

6



202 Chapter 6

You’ll also be happy to learn that the   procedural workload at a small company 

is at the absolute minimum level you’ll find in an engineering job. Freelancers 

need to do a fairly large amount of procedural stuff because there’s nobody else 

to keep the lights burning and bills paid, and engineers at big companies need 

to spend even more time on procedures because there are company policies that 

force them to. Working at a small company, you avoid both these pressures; 

it’s entirely possible in many small companies for an engineer to get away with 

virtually no procedural workload at all.

Whether this is a Good Thing or not is an interesting question; engineers and 

professors both complain constantly about the “  code cowboys” who work, unsu-

pervised, at small companies. Regardless of what you can get away with in terms 

of paperwork, design reviews and similar irritations, it’s important to deliver an 

objectively high-quality product at the end. While it may be the case that your 

management will reward you based on delivering a product that boots up and 

works, regardless of how hairy the design might be under the hood, remember 

that every project you work on is a potential addition to your portfolio, to be 

shown to another employer. Also contemplate for a moment that the highest 

goal of many small companies is to develop some highly saleable technology 

and be acquired by a large company. When that big integration day arrives, your 

design will be subject to scrutiny by real engineers evaluating the value of your 

company. If you did an amateurish job, you’ll not only look bad, but you might 

jeopardize the sale. Since acquisitions like this frequently1 result in large payouts 

to the engineers concerned, you’re doing yourself a big disservice.

Small companies offer a broad spectrum of salary ranges and nonsalary 

compensation. In general, you can expect a reasonable salary range and an 

employer-sponsored healthcare plan. Many small companies also offer profit-

sharing schemes and a retirement plan of some kind. Beyond that, the benefits 

start to get fuzzy. You shouldn’t expect to find tuition reimbursement, a pen-

sion plan,2 employee discount program and so on at a small company, although 

1 Not always, of course. After you’ve been with the company for a while, try to secure some equity. 
This is your surest path to a big payout come acquisition day.

2 Note the difference between a pension plan (this is a specified payment awarded to you on retire-
ment based on years of tenure) and a retirement plan (this is a fixed balance, accrued during your 
working years, and distributed according to your preferences after you reach retirement age).



 Working for a Small Company 203

some companies do offer this sort of incentive, of course. The good news is that 

small companies are much more likely than large companies to offer you a cash 

bonus at the end of the year; average raises are also usually more directly tied 

to profits. The flip side of this can be quite bleak—since your salary is directly 

linked to the company’s ability to make sales, and the cash cushion is usually 

fairly small, any more-than-momentary interruption in sales can mean you’re 

not getting a paycheck.

The strengths of a small organization lie in rapid adaptation and immediate 

flexibility. Because a lot of processes are not formally documented and regi-

mented, employees are free to modify their behavior on a case-by-case basis to 

match changing circumstances. Besides allowing the company to provide better 

short-term customer satisfaction, this results in a feeling of   self-empowerment 

for the employee which can be very good for morale. The negative side is that 

such a high level of flexibility introduces an unavoidable level of chaos into the 

daily operations of the business.

Regardless of this downside, properly handled, the time you spend at a smaller 

organization can help you develop a solid work ethic and start you on the way 

to building a network of vendors and colleagues who will work with you in later 

life. Perhaps most important of all, you’ll acquire a broad spectrum of experience 

in the lifecycle of engineering a product.

6.2  How to Get the Job

While hiring decisions are, of course, individual, there are some general rules that 

you’ll find useful when looking for a job in a small company. First, consider that 

the person who is going to read your résumé and interview you is almost certainly 

one of the principals of the company, with sole responsibility for hiring you. 

Contrast this against the large-company situation, where the  gatekeeper who first 

reads and potentially rejects your résumé is a computer program, and the person 

who interviews you is merely going to make an upward  recommendation to hire 

you. As a closely related fact, the person who interviews you will have a direct 

interest in the value proposition (what will this person earn me versus what I will 

have to pay them); this is definitely not always the case in a large company.



204 Chapter 6

Getting to the point of being offered an interview, then, requires demonstrat-

ing (in your   résumé and   cover letter) a track record of concrete work achieved, 

preferably with rapid and impressive results. The easiest way to do this is to check 

off specific projects you’ve accomplished. Unless there is some particularly amaz-

ing personal project you’ve worked on, you should give precedence to commercial 

projects, and (if applicable) emphasize what cross-functional responsibilities you 

had in the project. For example, if you were the lead engineer on a widget and 

your responsibilities included developing the code, supervising another engineer 

to develop the hardware, and working with a Far East factory to get the PCB laid 

out and the product built and tested properly, this should all be in your cover 

letter. If you can include details about the development time (time to working 

prototype and time to release), it’s a good idea to do so. By the way, my sugges-

tion is to put pointers to the really employer-specific stuff (projects that relate 

directly to your   target industry, for instance) in your cover letter as well as the 

résumé. Some guides advise you to keep the cover letter terse and rely on the 

interviewer reading the entire résumé to learn about your career to date; for the 

case where the result is to be processed by a real human, I don’t agree with this at 

all. The cover letter is like the first chapter of a book; you need to persuade the 

reader here that the remainder of the text is of interest. Cover letters have a dif-

ferent importance for the large-company hiring process; see Section 7.2 for more 

information on this topic. I suspect that people who advise a short “please, thank 

you” cover letter are influenced heavily by the large-company hiring process.

This part of the hiring process is more difficult, of course, if you’re fresh out 

of school (or if you haven’t completed school yet); you won’t have any com-

mercial projects under your belt. However, you can still pique an interviewer’s 

interest by showing off personal and school projects that you’ve worked on. You 

will set yourself apart from the pack by including evidence that you devoted 

some thought to the issues that affect real production but are often neglected in 

personal projects; for example, future availability of the parts you designed in, 

expansion possibilities, ease of manufacturing, ability to be tested automatically, 

and bill-of-materials costs. It’s also generally less impressive to show a project 

built out of custom parts bolted to a surplus widget than a project you engineered 

yourself from the ground up.

Once you actually get an interview, you have a chance to amplify on the 

materials you submitted in the application. (I’d suggest you also bring some 



 Working for a Small Company 205

physical samples of your portfolio projects with you, so you can demonstrate 

them if you wish.) You also have a chance to learn if the person who’ll be hiring 

you is addicted to some specific  buzzword technology or design methodology; 

generally speaking, that’s something of a red flag hinting at future micro-manage-

ment, particularly if the interviewer doesn’t have practical experience with the 

technology in question. It’s stressful to work for someone who is going to keep 

their fingers in the design unnecessarily, and doubly so if the person in question 

has less experience in the field than you do. On the other hand, if you’re really 

desperate for the job, you may contemplate simply buckling under and going 

with the manager’s view of how things should be done. There is a finite pos-

sibility that you will find that the manager was right, and the technology they 

selected is, in fact, a great fit for the job. In my experience, however, this rarely 

happens; it is much more likely that your  frustration level will steadily build 

until it outweighs the pleasure of a regular paycheck, at which time you will find 

yourself looking for another job again.

Competition is (relatively) not very intense for small-company positions. 

They are often not advertised nationally; you’ll find listings in newspapers but 

not always online. (As a side effect of this, when applying for a small-company 

job it is unlikely, though definitely NOT impossible, that you will be competing 

against outsourced workers and  high-tech visa holders.)

How do you find these positions, though? You can certainly check the online 

job listings; many of these are trawled from local newspapers. Unfortunately, 

though, jobs that are listed online attract a lot of low-quality applications. It’s 

simply far too easy for someone browsing a website to click “Send my résumé!” 

and blast a résumé out to hundreds of people; your application will be in a sea 

of noise. Therefore, I suggest the very best way to find a small-company job is 

through a real, live  headhunter.3 The comments I made in Chapter 2 about how 

to find headhunters are entirely relevant to this process.

The next best method to find a small-company job is  networking. If you’re 

at school, ask your professors and course advisers about local businesses that are 

 relevant to your field of study. If you’ve already been in the industry for a while, talk 

3 A book you might find interesting, if a little dated, is A Big Splash in a Small Pond: Finding a Great 
Job in a Small Company by Linda Resnick (Fireside, January 1994, ISBN 0-6717-9807-3).



206 Chapter 6

to your colleagues; many of them will have friends who run small businesses that 

might be hiring. Failing that, you can potentially glean some ideas from the local 

Yellow Pages listings and Chambers of Commerce. As a handy hint, you can look 

up your local chamber of commerce at <http://www.chamberofcommerce.com/>.

Many local  chambers of commerce maintain positions vacant listings online for 

their members (usually offered through third-party job posting services such as 

quietagent.com); however, don’t restrict yourself to those postings since many 

openings, particularly from smaller employers, won’t make it into those systems. 

If you see a company whose profile interests you, contact them directly and ask 

about potential vacancies.

6.3   Responsibilities and Stresses 
 in a Small Company

During my career to date, I’ve been involved full time with two very different 

small companies that went  out of business. One, a software company, was driven 

out of business essentially because technology advances made its primary products 

irrelevant. They did not develop a strategy for dealing with new competing or 

complementary features built into consumer operating systems until it was too 

late (and, to make things worse, the specific product they were offering was a 

feature that is best implemented by the operating system vendor anyway). The 

other, a hardware company, fell victim to a series of unwise marketing decisions 

and unfavorable component price fluctuations; they over-extended themselves 

and died as a result. Both of these positions were, at times, extremely stressful, 

but perhaps not for the reasons you might think.

It can be terribly lonely working at a small company. By this I don’t mean 

that your co-workers will shun you, but that you may be the only one who is in 

a position to make engineering decisions about a project. This can be extremely 

stressful. In personal projects, you can show the design to your professors or 

friends, or simply publish them on the Internet, and solicit comments about the 

design. In a large company, your work is subject to design reviews from people 

who (at least theoretically) will look it over and spot the stupid mistakes before you 

commit to copper or ship code to the unsuspecting public. In a small company, 

you may not have any safety net of this type at all, beyond perhaps discussing 



 Working for a Small Company 207

the project with some close acquaintances. Couple this with the fact that a small 

company can’t afford very many large, expensive engineering mistakes without 

folding, and you’ll see that an awful lot of responsibility rests on your shoulders. 

The principal factor that differentiates this from working as a freelancer is that 

your personal assets are not directly at risk when you’re working for a corporation 

(though the loss of a paycheck can, of course, affect them indirectly). There’s still 

plenty of  stress to go around, though.

In a closely related vein, one responsibility you need to think about, from an 

ethical standpoint, is your replaceability. In a small company, it is very easy to 

become  indispensable. The question is, do you really want to get into this posi-

tion? Particularly if the company falls on hard times, you may want to explore 

other opportunities. Depending on where your sense of ethics lies, you may 

not feel good about simply giving two weeks’ notice in the knowledge that the 

company will not be able to replace you. Technically, it is your manager’s job to 

make sure that you are not irreplaceable; it’s their duty to put processes in place 

that ensure that everything you do is sufficiently well-documented that if you’re 

hit by a bus—or recruited by Microsoft4—tomorrow, your niche can be filled 

by someone new. 

In practice, few small-company managers understand the embedded engi-

neering position well enough to know how much documentation is necessary, 

or what form this documentation should take—and that’s assuming they even 

take time to think about the problem (again, most do not pay much attention 

to the issue). If you organize your work carefully, it will be that much easier for 

you to train a replacement, should the time come for you to move on to some-

thing else. It will also be that much easier for you to train a subordinate if the 

company grows and needs to hire someone under you. Sure, you can probably 

scrape along in many companies by scribbling notes on the back of an envelope 

and making sourcecode backups on a stack of dusty floppies that you throw 

into the back of an old file cabinet, but you can measure your competence as an 

engineer to some degree by how easily the next person to park himself in your 

seat can pick up your work and continue developing it.

As for the   freelancer case, I suggest a structure approach to organizing the 

deliverables you create in a working day. Of course, your first step should be 

4 Given the choice, many engineers wouldn’t pick the path you might expect.



208 Chapter 6

to find out if the company has already published  best practices for this sort of 

thing; if not, develop your own—and don’t forget to document them! One day, 

your manager is going to walk in and say “We need to hire a new engineer. Show 

me what they’ll need to know.” Or possibly the manager may say “XYZ Corp is 

negotiating to buy us. Their lawyers want to go over our intellectual property. 

Show me what I have to give them.” In either case, your life will be much sim-

pler if you can just hand your manager a set of backup CDs or point them to a 

location on the network and give them a document that will explain how to find 

what they’re looking for. It’s simply professional to document what you do and 

how you do it; your work will be all the better for being consistent, as well.

In a small company—particularly one that’s not presently doing very well 

financially—you’ll sometimes have a positively uncomfortable level of visibility 

into the company’s sales performance. In the worst case, you’ll find yourself 

listening for the phones to ring with orders (even if it’s not your responsibility 

to answer them) so you can know whether a paycheck will be forthcoming this 

week or not. Under these circumstances, it is easy for engineers to get distracted 

from longterm project development into making quick patches and hacks for 

specific customers in order to secure a particular sale. On the other hand, how-

ever, the good side about the strong sales-to-paycheck link is that engineering is 

keenly interested in the end-user’s perception of the product. This can, in ideal 

circumstances, lead to extremely usable and well-engineered devices, built with 

the needs of real customers in mind.

The other enormous stress you’ll encounter in a small company is dealing 

with shortages of manpower, cash and time. This topic is so important, and will 

color so much of your work effort, that I’ve broken it out into a separate section; 

see Section 6.5 for a discussion of the issues involved here.

6.4  Personal Dynamics in Small Companies

This section might seem a little out of place in a book about engineering, but 

you’re going to spend an awful lot of time with your co-workers, and it’s help-

ful to remember that they are live human beings. A few words are appropriate, 

therefore, about personalities in the small company. When you’re a freelance 

agent, you have relatively little exposure to the vagaries of the human psyche. 



 Working for a Small Company 209

Clients are mostly courteous, and if you don’t like a particular customer for 

whatever reason, you can simply choose to be busy whenever they call to offer 

you a job. The situation is quite different in a small company; you’ll see quite a 

lot of human nature at work!

If you’re looking for a job where you can spend your time squirreled away 

in a cubicle banging on a keyboard and an oscilloscope, and never have to poke 

your head out to talk to real-meat people, you’re actually better off working in a 

large company. In the small company environment, you absolutely cannot avoid 

interacting with lots of people. You’ll be a required attendee when vendors come 

by, because you’re the only one who can competently evaluate their parts. You’ll 

be pulled into customer meetings because nobody else will be able to answer 

the technical questions. Above all, you’ll be dealing with most or all of your co-

workers every day, because in a small company there are no “in-between people” 

(department heads, and so forth) to act as the interface between different special-

ties in the company. You will have to deal with the mechanical engineer who is 

designing your housing. You will have to deal with the person in purchasing who 

is buying the parts for your next build. You will have to deal with the marketing 

person who is preparing to dash off for a presentation. Worst of all, perhaps, 

you will quite likely have to deal with end-users of your product, and talk them 

through problems they’re having. I always dread this part of a small-company 

job—not because I’m such a misanthrope, but because in my experience, very 

little tech support time is actually spent debugging your own product. Particularly 

for devices that connect to a computer in some fashion, almost all the time you’ll 

spend on the phone to customers will be wasted explaining how to drive the 

customer’s operating system, router or some other hardware or software product 

that you’re not directly responsible for maintaining; it’s a very poor investment 

of engineering time. Unfortunately, in most small companies, the engineers are 

the only staff with detailed (usually formal) education on these hi-tech topics.

As a result of all this face time, you’ll get to see a spectrum of moods from 

your managers and other co-workers. Small companies are often compared with 

families; well, in a close environment like a family, it is easy for a mere irritation 

to develop into a massive, career-threatening conflict. It sounds glib, but the 

best policy you can have when tempers flare is to back down courteously before 

things get out of hand. Even if you have strong views on a topic, remember 

that you’re only at work; you can keep your personal opinion separate from the 



210 Chapter 6

consensus of your colleagues about what is “right” without sacrificing any sort 

of personal integrity. (I’m referring here primarily to arguments about techni-

cal issues, but the same principle applies to general discussions about the entire 

gamut of human thinking.)

Small companies are, of course, bound by the same laws about  harassment 

and  workplace safety as large companies. The difference is that small companies 

don’t hire people specifically to go around checking for violations of those laws; 

nor do they usually have published policies on the topic. Hence, people usually 

don’t have the possible repercussions foremost in their mind when they get into 

an argument.5 It’s not impossible, therefore, that an argument can devolve into 

a shouting match, or even a physical altercation; needless to say, this is about 

the worst possible outcome. It even has the potential to haunt the rest of your 

working life.

Think of it this way: If you’re arguing with your manager about something, 

what are you trying to achieve? They write your paycheck and expect you to do 

as you’re told. If your professional opinion is that what they told you to do is not 

the best course of action, then your duty is to tell them this, and explain why. 

Once you’ve gone on record with your comments, your manager can choose 

to override your views. That’s their prerogative; they’re in charge. While it is 

possible that their decision will affect your financial well-being (if they run the 

company into the ground pursuing a dead-end technology, for instance), you 

can console yourself with the thought that your manager is constantly making 

decisions with the same potential impact on your life, and this particular issue 

you’re arguing about is just one tiny part of that. A good manager makes the 

right decisions most of the time. A bad manager makes a significant number of 

bad decisions. If you’re working for a bad manager, you should be looking for 

another job already, because the business is almost certainly doomed.

Finally, it doesn’t happen all the time (hey, we’re talking about engineers here, 

remember!), but occasionally an opportunity for  romance presents itself at work. 

My opinion is that availing yourself of such an opportunity is unequivocally a 

Bad Thing in a small-company environment. While the potential repercussions 

5 I’m not saying it’s necessarily healthier to work in an environment where everyone’s constantly look-
ing over their shoulder for the thought police. It is definitely quieter, though, and probably safer.



 Working for a Small Company 211

of a quarrel between yourself and a workplace significant other can be worked 

around with some effort, it’s usually unreasonably hard to do so in a small com-

pany. If you work for a large company, you can be moved to another department 

or at least put under a different manager. In a small company, your only way out 

may be to leave your job, or persuade the other person to do so; in either case, 

you’re creating an unfavorable impression in the mind of the manager who now 

has to go out and hire a replacement for the missing person.

6.5  Managing Tightly  Limited Resources

Here’s a short quotate from This New Ocean—A History of Project Mercury, a book 

about the Mercury capsule program that put the first American in space.6

The manufacturer of the RCS [reaction control system—part of the spacecraft’s on-orbit 

maneuvering apparatus], Bell Aerosystems Company, ran its qualification test program 

from August through October 1960 and reported all phases of the testing satisfactorily 

completed. Subsequent tests by McDonnell, STG, other NASA engineers, the preflight 

teams at the Cape, and eventually by the workers on Project Orbit revealed innumerable 

electrochemical and electromechanical problems in simulated environments that required 

small changes here and there and eventually everywhere. The thrust chambers, metering 

orifices, solenoid valves, expulsion bladder, and relief valves each presented developmental 

flaws that were “solved” more often by improvisations than by scientific redesign. Karl F. 

Greil, a thermodynamicist who was working for Grand Central Rocket Company in 1960 

to perfect the escape pyrotechnology for Mercury, joined STG and its reaction controls test 

team in 1961 and tried in vain to apply the same perfectionistic standards to this vastly 

more complicated and inherently less reliable system of moving parts. 

This is the irony: the results that counted in Mercury’s RCS were due to changes of the 

screen, heat barrier, and orifices, all of which were made upon simple first thought. On 

the other hand, the large amount of experimentation on the valve resulted merely in the 

assurance that nothing needed to be changed so far as valve design was  concerned. This 

irony, that the simple approach did the entire job while the sophisticated approach merely 

resulted in an “Amen”, is indeed worthy of reflection, because it has in store both a risk 

6 This publication is by Loyd S. Swenson Jr. et al. (online edition dated 1996, though it also carries a 
date of 1989, NASA publication SP-4201). At the time of writing, you can read the full text of this 
book at <http://www.hq.nasa.gov/office/pao/History/SP-4201/cover.htm>.



212 Chapter 6

and a lesson: a lesson because there is so much glamor cast on sophisticated pretense and so 

much disregard for the profane causes of all kinds of trouble; a risk because the simple rem-

edy which did the job once without ever having become clear just how it really worked, 

such success without perspiration is likely to remain confined to its own historical case. But 

having established a precedent, it is bound to seduce us into relying on it, if it is not even 

bound to become a myth and a dogma.

The small-company engineer is used to running short of almost everything—

mostly time. Every engineer with any significant experience at all is familiar with 

the  zen state of deep thought that accompanies their most productive moments. 

Those are the days when you sit down at your desk and the code and circuits 

just flow magically out of your fingertips. This time is extremely valuable, and 

it’s rendered almost useless by interruptions. (For some light reading on this 

topic, refer to Jack Ganssle’s Embedded Muse #53, October 23, 2000, and spe-

cifically the references he sites—you can find this edition of the newsletter at 

<http://www.ganssle.com/tem/tem53.pdf>.) The occasions when you can reach this 

peak of achievement are the times when you’ll do your best code. Outside these 

times, you’ll almost always be in a rush. This can lead to carelessness, and (less 

destructively) to a large number of solutions “which did the job once without 

ever having become clear just how it really worked” as in the preceding quotation. 

Be aware of when you’re creating magic answers like this, and consciously try to 

avoid the temptation. Reusing existing work is the key to continued  productivity, 

and it’s very hard to reuse magical solutions.

Many small companies keep their employees working in open-plan spaces 

without private offices. As a result, you may need a method of manufacturing 

your own privacy to avoid interruptions. During crunch times, while working 

in an environment like this, I obtained a good set of noise-canceling headphones 

and used them to listen to relaxation sound-effect CDs. (I find that listening 

to almost any kind of music is a distraction when I’m trying to concentrate 

deeply; you may feel differently about it. The point is to censor out as much of 

the random stuff going on in your surroundings as possible, and replace it with 

something unobtrusive so you can focus on the task at hand.)

Techniques like this will improve the amount you get done between today 

and the scheduled release date of your hardware or software project, but it won’t 



 Working for a Small Company 213

actually create man-hours to help you get the job done. You can pull  late nights 

and  all-nighters, but I generally wouldn’t advise it—besides the fact that you’re 

putting yourself under tremendous  physical stress working like this, you’re also 

establishing an expectation in the rest of the company that you’re the guy who will 

always be there to burn the midnight oil when it’s needed. It isn’t worth it, even if 

you’re being paid overtime—which I’m sure you won’t be. If there is a very good, 

short-term reason for working late, then by all means do it (though I’d suggest that 

you tell your manager beforehand that you would like to make up the hours with 

a bonus vacation day or two after the crunch is over). Very good reasons include a 

manufacturing problem that’s going to sink the company, or a design problem that 

is causing safety issues in the field. Anything of smaller magnitude than this doesn’t 

cut it. Simply wanting to meet marketing’s promised delivery date on a widget isn’t 

a good enough reason unless the customer that’s waiting is actually going to cancel 

their order and that cancellation is big enough to affect the company’s viability 

seriously.  Burnout is a very real problem—don’t let it happen to you.

Because of the constant time pressure, exacerbated by the fact that most of 

the company is nonengineering and doesn’t understand a good design flow, it is 

excruciatingly difficult to follow a rigorous design process in most small-company 

environments. As a result of this, as I indicated previously, it’s easy to wind up 

with code and circuits that “just work” without being well-understood—hence 

the quotation with which I began this section. If you can achieve a documented, 

standards-compliant design flow in the small-company world, then kudos to 

you—but you should plan for the probability of a short-circuited  design cycle. It 

often happens that you have no time even to breadboard a circuit before building 

it in the factory. You may then wind up having a technician trial-and-erroring 

with resistor and capacitor values on the first run of prototype boards while you 

work feverishly on the code or other aspects of the hardware. This is of course 

more haste, less speed—but that is very hard to explain to management.

Working with limited financial resources also significantly affects the way 

engineers make design decisions. (My first book went into some detail about 

this topic; you might find it useful reading.) For one random example, you’ll 

probably prefer to design in chips that are in packages you can hand-solder, 

since this means you can construct your prototypes in-house. However, it closes 

the door to a whole range of parts that are only shipped in BGA packages and 

similar leadless beasts.



214 Chapter 6

Having these  constrained resources also shifts the value equation for purchas-

ing tools (both hardware and software). For example, my preferred CAD package 

for some years has been EAGLE, from Cadsoft <http://www.cadsoftusa.com/>.

This is undoubtedly the best value-for-money PCB CAD package available, and 

it happens to be an excellent choice for a small company or freelance contractor 

who doesn’t want to buy several tens of thousands of dollars worth of software. 

However, EAGLE files are not directly interchangeable with the CAD systems 

used by most Asian CMs and ODMs.7 This results in the possibility of transcrip-

tion errors when you send the schematics to an overseas manufacturer; it also 

increases the setup time for the production line.

Observe that as your target system becomes more and more complex, given 

that you don’t hire any additional engineering staff, it becomes concomitantly 

less feasible to develop internal system components in-house. The ultimate end of 

this curve is that for a really difficult high-speed design approximating a desktop 

PC in complexity, you will be reduced to buying an actual PC as the core of the 

project, since there will simply not be enough resources in-house to develop a 

custom solution. In between, you have various intermediate steps, but in gen-

eral as you get more complex, your system contains more and more black box 

subassemblies purchased from external vendors. As this “evolution” occurs, your 

system develops rough edges because the interfaces between all these components 

aren’t exactly matched. Furthermore, your ability to change  low-level behavior 

is significantly restricted; if you buy an 802.11(g) wireless chipset and integrate 

it onto your own board, you can make it do anything it’s electrically capable of 

doing, but if you buy a module and simply connect it to an existing board, you 

are restricted to the features offered by the module’s firmware.

Finally, on the topic of constrained finances, you should be aware that most 

semiconductor vendors will (understandably) not pay much attention to small 

companies.8 They will be happy to visit on a sales call, but in general you can’t 

expect a great deal of support unless there are special circumstances. As an 

7 Contract Manufacturer and Original Design Manufacturer, respectively. A CM takes your schematic 
and other engineering data and builds a product for you. An ODM designs a product to your speci-
fications and puts your brand name on it.

8 There are exceptions to this. Three vendors that have provided excellent support for my small-
company activities are Sharp, Cirrus Logic and Microchip. The support you get will depend on the 
region you’re in and how your activities match up against the vendor’s target design demographic.



 Working for a Small Company 215

example of what might constitute special circumstances, if you’re lucky enough 

to ask about a new part that hasn’t had any major design wins yet, you can get 

some extra-special first-time support out of the chip vendor so they can take your 

widget to trade shows as a demonstration that the part has been designed into 

real, saleable product. Given that you won’t normally get stellar support from 

the manufacturer, then, you’re going to have to rely a lot more on peer support. 

Usenet is your friend here, but remember that it’s a shared resource. If you use 

it to ask questions about your projects, please remember to “give back” to the 

community by taking time to read and answer other peoples’ questions.

6.6  Task Breakdown: A Typical Week

You might find it instructive to look at this representative breakdown of a week’s 

tasks carried out by an engineer working in a small company. This assumes a 

40-hour work week. In a “crunch time,” with customers clamoring for updated 

product, factories churning out a defect rate of 90%, or some other engineering 

emergency, you might see this number of hours double; you might also have to 

come in on a weekend. Of course, this little timetable doesn’t directly represent 

anybody’s real-world schedule, but it illustrates the sort of percentage of your 

time you’re likely to spend on particular tasks.

• Monday

– 1 hour – Responding to email from Far East manufacturing.

– 2 hours – Providing end-user technical support via email and 

 telephone.

– 4 hours – Combined circuit and software development.

– 1 hour – Miscellaneous (conversations with vendors, co-workers, 

etc.). These tasks generally occupy more time on Mondays and 

 Fridays than other days of the week.

• Tuesday

– 1 hour – Providing end-user technical support.

– 2 hours – Meeting with customers.



216 Chapter 6

– 4.5 hours – Combined circuit and software development.

– 0.5 hours – Miscellaneous.

• Wednesday

– 1 hour – Providing end-user technical support.

– 2 hours – Meeting with vendor.

– 1 hour – Drafting notes for end-user documentation.

– 3.5 hours – Combined circuit and software development.

– 0.5 hours – Miscellaneous.

• Thursday

– 1 hour – Dealing with Far East manufacturing issues.

– 1 hour – Strategy meeting with management.

– 5.5 hours – Combined circuit and software development.

– 0.5 hours – Miscellaneous.

• Friday

– 1 hour – Providing end-user technical support.

– 2 hours – Reviewing PCB layout.

– 4 hours – Combined circuit and software development.

– 1 hour – Miscellaneous.



217

Most  large companies have rules that require anyone at a given level of manage-

ment to have a certain minimum number of direct reports. After some thought, 

I have realized that this is because there is a staggeringly exact analogy between 

the task of  engineering management and the problem of thermal management 

on spacecraft. A stationary spacecraft will freeze on its shadow side and boil on 

its sunward side. A spacecraft wholly in the umbra of some other object needs 

to have its own source of heat to replace radiated losses. All temperature-sensi-

tive equipment needs to be mounted and monitored with careful thought to 

internally generated heat. The spacecraft is covered in foils, paints and blankets 

designed to reject solar radiation. Complex arrangements of fins, heatsinks and 

sometimes circulated coolant liquids are required to dump internally generated 

heat, plus whatever solar radiation leaks in, out the night-side of the craft.

Replace the concept of “solar heat” with “unfavorable attention from upper 

management” and the analogy is clear. A successful manager spins gently at all times, 

like the Apollo Command and Service Module in lunar coast mode, so that no 

single surface receives 100% of incident radiation. The attention wattage decreases 

exponentially as the manager moves further away from upper management.

Direct reports are a manager’s heatsinks; they cling to the main body of the 

craft and increase the surface area available for radiating attention away from the 

craft. Under some circumstances, they also form the basis of a sublimation cooling 

system; the coolant absorbs as much heat as possible, then is boiled into space. You 

want to avoid, at all costs, becoming one of these sublimed coolant particles.

Since incident attention from above is directly proportional to the manager’s 

stature in the company, the heatsink area required to dissipate that anger naturally 

Working for a Larger Company

7



218 Chapter 7

also has to increase as the manager is promoted. Company policies about the 

number of direct reports necessary for a manager to hold a specific title reflect 

the amount of attention that title is required to dissipate.

7.1  Analyze Your Goals: Benefits and 
 Downsides of the Large Company

Roughly half of all Americans work in large companies,1 and approximately one 

third of all new jobs created are generated by these large companies. Working for 

a large corporation is the traditional career path that engineers have been follow-

ing for years, and it’s not a path that is likely to disappear any time soon.

Developing complex electronic systems can be very expensive, requiring 

costly tools and a significant investment in prototypes and regulatory testing 

requirements. Furthermore, in today’s environment, most new products are built 

incrementally on existing platforms and protocols, which means (unfortunately) 

that they’re built on other peoples’   patents. Barriers to entry are therefore distress-

ingly high. Only large companies have the financial clout to penetrate some of 

these markets. For this reason, if you want to work on really major projects—the 

twenty-first century equivalent to the Apollo program, for instance—or mass-

market consumer appliances—you’ll absolutely have to go to a large company.

This isn’t entirely bad news. Large companies offer  financial stability (as long 

as you work in a department that is making good profits for the company, and as 

long as you’re pulling your weight enough to keep your manager happy). You’ll 

also have access to good laboratory facilities and the best equipment, as long as 

you can persuade your manager that there’s a sound business case to purchase 

them. Finally, the very best benefits (though not necessarily base pay, and cer-

tainly not cash bonuses) can generally be found at large companies—401(k) 

programs, cash payouts for patent disclosures, premium   healthcare and dental 

plans,  tuition reimbursement,  employee discount plans with other companies, 

guaranteed vacation time, and more.

1 This is defined negatively; a “large company” for the purposes of this statistic is any company that 
isn’t covered by the rules of the Small Business Administration.



 Working for a Larger Company 219

The major downside to large companies is, commonly, a loss of individual 

 creativity and freedom. Employees in the large-company environment are usu-

ally specialized and pigeonholed for efficiency reasons; they are not exposed to 

 cross-functional requirements except when the hear their teammates reporting 

on other aspects of the project. 

Most large companies also have onerous development procedures designed 

to fit a theoretical general case; in many cases, these procedures have all kinds 

of inbuilt requirements that are more or less orthogonal to the idea of develop-

ing a quality product and releasing it quickly. Design cycles, even for simple 

products like toys, are typically long in the large-company world (two years or 

more) compared with the 6–9 month cycle typical in small companies. All this 

can be very irksome to a creative employee.

Because most large companies sit on significant cash reserves, there is also a 

distinction between “my” money and “company” money. Employees therefore 

often become complacent about development costs. (In many cases, engineers 

ar the “individual contributor” level will not even have enough information to 

estimate development costs—they can be amazed when they see the numbers.) 

Time, in particular, becomes an easy commodity to spend. There is also little clear 

link between the product’s palatability to end-users and the engineer’s paycheck; 

as a result, human factors are all too frequently neglected in large-company prod-

ucts. At other times, internal company politics can cripple an otherwise good 

product; for example, a desire for the cheap home-user version of a product not 

to compete with some more expensive commercial or industrial version.

Choosing to work at a large corporation is, for many people, a compromise 

between financial certainty2 and freedom. Where you sit on this topic is a mat-

ter of individual preference; you should simply be aware that it is most unlikely 

that you will ever find a large-company position that involves the same broad 

task exposure and opportunity for individual achievement that can be found in 

the small-company arena.

2 This is a bit of an illusion, of course. Every day, we read of layoffs and closures that affect the 
employees of large companies.



220 Chapter 7

7.2  How to Get the  Job

Hiring a new employee at the engineer level is a significantly expensive and 

complicated process for a large company. Simply hunting for the right candidate, 

paying a  recruiter’s fees, potentially paying for  relocation expenses and the other 

setup costs for the hire (plus, potentially, a  signing bonus) can easily add up to 

$15,000 or even more for an engineering position. It doesn’t have to be a high-

level position, either—big companies will even spend this much recruiting the 

right person for a mid-level position.

Partly because of this complication, and partly because of the unavoidable 

large-corporation love of procedure, landing an engineering job at a large com-

pany is a highly structured process, divided into phases. The first phase is simply 

to get into your target company’s  human resources system. This is superficially 

easy—almost every large company has a website with an easily located careers 

section where you can submit your résumé. It’s worth doing this even if you plan 

to use an alternate route into the company, because the hire process will probably 

require you to enter your résumé in the standard manner anyway. Once you have 

your résumé in the system, you’ll be in a position to use the application tools on 

the employer’s website (and you’ll also probably start receiving automated emails 

with positions that match some of the keywords in your résumé).

Now, you just need to get someone to read your   résumé. This is really difficult 

if the résumés are pre-filtered by “intelligent” software. You’re really not in with 

much of a chance if you go in through this standard route but you don’t exactly 

match the required qualifications word for word. In Section 2.2, I discussed 

how it’s easiest if you have a recruiter working for you on the inside; this advice 

is generically true for large-company jobs regardless of your qualifications. As a 

result, I strongly recommend you concentrate your search through professional 

headhunters. It doesn’t actually hurt to apply for random jobs online, of course, 

but don’t be overly disappointed if you don’t land the job of your dreams imme-

diately by this means.

I’ll reiterate here that the large recruiters are not really recruiters so much as 

clearinghouses for résumés and jobs. They compare pieces of paper, then mail 

notification to apparent matches out to the protagonists. It’s vastly preferable 

to work with a real live person who knows the hiring manager personally (and 

preferably knows your industry as well). You might also get an interview by virtue 



 Working for a Larger Company 221

of networking. For example, if you did an internship at the company, you can 

call the manager and tell them that you applied for a particular position; that can 

be enough to get your résumé pulled into the active file for that position.

Having been granted an  interview, prepare carefully! Many large compa-

nies will administer some kind of test before deciding that you’ve got what it 

takes for the position. These tests can range from the difficult to the irritating. 

Microsoft’s interview questions, for instance, are quite legendary throughout the 

industry (search on Google for “Microsoft interview question” and you’ll find 

a lot of personal websites listing the questions people have been asked in their 

Microsoft interviews). More traditionally, you will be asked specific technical 

questions about some aspect of interest to the target company. For example, 

when I was being telephone-interviewed by a West Coast console game devel-

opment company, I was asked to describe how I would debug a problem with 

a piece of embedded filesystem code. When I was interviewing for the position 

where I currently work, the interviewing manager gave me five minutes to study 

a moderately complex schematic of a product containing two microcontrollers 

and various communications hardware, then asked me to describe the function 

of the circuit as best I could. He then gave me a snippet of sourcecode from the 

same product and went through the same sort of procedure.

Those tests I just mentioned are very normal sorts of assessment techniques 

that shouldn’t cause you undue worry. The weird and wacky questions, however, 

can be a real bear to deal with. I’m not sure I would want to work for a company 

that bases its hire decisions on these “creative” questions—it’s a management 

fad, and not a good one. However, you have to be prepared to deal with them. 

If you’re interviewing with a big name, you should Google for relevant search 

terms to see if other people are reporting odd or frightening behavior at job 

interviews with this big company.

I advise you to go into the interview with an idea of what your long-term 

plans would be if you are accepted to work with the company. In other words, 

you should be able to state clearly if you want to spend the rest of your life as a 

frontline engineer, if you aspire to management, or if you want to branch out 

into the forward-looking research and development side of the company.

The next step, assuming the company likes you, is to receive an offer let-

ter. This will be a physical piece of paper stating your salary and expected start 



222 Chapter 7

date, which you might not actually receive until the day you start work. Once 

you’ve accepted the employment offer, most large American corporations will 

then require you to take a  drug test; continued employment is contingent on 

passing this test. (Some companies require you to take these tests repeatedly at 

random intervals; others merely require you to be retested if you’re involved in 

a workplace accident.) Many people feel this to be an unwarrantable invasion of 

privacy. While I basically agree with that viewpoint, my primary concern about 

drug testing is that some of the methods used can give false positives.3 The two 

main sampling methods used are urinalysis and hair analysis; the former can be 

analyzed in a couple of different ways, and it is purportedly fairly vulnerable 

to false positives from various prescription and over-the-counter medications. 

The hair sample method is supposedly more reliable (and, as a bonus to your 

employer, it reveals data about a longer period of the recent past than urinalysis). 

If you have a choice, which some employers do offer you, I’d suggest you go with 

the hair method. Naturally, I’m assuming you have nothing to hide here—if you 

do, you’re on your own.

7.3  Globalization: Outsourcing and Temporary 
 Worker Visas

This section is aimed most directly at readers in the United States of America, but 

it is also relevant to European, Australian and other “first-world” engineers. In 

all of the developed world, there is a growing terror in professional communities 

that their jobs, formerly believed to be immobile, can be outsourced to foreign 

engineers who have a much lower cost of living and therefore work for much 

less. There is a somewhat less acrimonious, but nevertheless perceptible body of 

ill-will toward companies that employ skilled foreigners using temporary work 

visas like the     H-1B program in place in the United States.

The main reason I included this section in the book you’re reading is that 

I hear a lot of doom and gloom on these topics from embittered engineers.4

3 I’d feel differently about this if the testing required blood samples. At least the methods currently in 
use are reasonably noninvasive.

4 I also hear a lot of perky nonsense from bean-counting types about how outsourcing lets the really 
skilled employees back home work on the important forward-looking projects. Nobody who pro-
mulgates this idea seriously believes it.



 Working for a Larger Company 223

 Specifically, when young engineering hopefuls ask about their prospects in public 

forums, they are often handed a diatribe about how engineering is a dead end, 

and the student of today should become a lawyer, doctor or nurse instead, since 

those jobs can’t easily be    outsourced. (By the way, this is no longer entirely true 

for lawyers, at least—foreign legal companies are often used, for instance, in 

intellectual property research and patent filings.)

Note that I’m also writing this chapter from an interesting perspective, since 

I presently work for a company that has considerable overseas interests in India 

and other popular    offshoring destinations, so my job is more or less permanently 

at risk of moving to one of those locations. I also originally came to the U.S. 

as an H-1B skilled worker—and though I’m not one of those any more, it was 

certainly a very educational experience about U.S. immigration laws.

There are two competing viewpoints about the end result of the offshoring 

trend. For want of an official term to describe either, I’ll call one the Malthusian5

theory and the other the Utopian theory. Each of these theories really represents 

a continuum of beliefs, of course, with the extreme Malthusians lying at one 

end, the extreme Utopians lying at the other, and a considerable spectrum of 

different opinions in between.

Malthusians predict a gloomy downward spiral. Overseas engineers are cheaper 

than American or European workers, therefore corporations will move all their 

design work to offshore facilities. Even those corporations that want to “do the 

right thing” and employ local talent will be forced by simple price competition 

to abandon local development or go out of business. There will ultimately be no 

jobs left for design engineers in the developed world, except for a tiny handful 

of positions working on military projects critical to national security. In short, 

engineering will go the way of many industrial jobs. The pool of experienced 

engineering teachers in America will evaporate, and we will become totally 

dependent on foreign countries for our engineering needs.

Another common line of Malthusian thought is that personal wealth will 

seesaw; engineers in foreign climes will get richer, engineers in America will get 

5 From Thomas Malthus (1766–1834), who predicted a doomsday global famine based on overpro-
duction of human offspring and the inability of linearly growing resource supplies (particularly food) 
to keep up with exponential population growth. His ultimate recommendation was that the family 
size of the lower classes should be regulated so that these people would not produce more children 
than they could support. China’s one-child policy is a latter-day example of Malthusian planning.



224 Chapter 7

poorer, and eventually they will achieve equilibrium. The corollary to this latter 

line of thought is that enrollment rates in engineering courses will plummet, 

because people will see that it’s not a profitable career option. In turn, this will 

lead to a dearth of teachers and again eventually the extinction of the engineering 

profession in the developed world. A more extreme variant of the same viewpoint 

is that the economies of America and its trading partners will act like connected 

vessels of water, and seek a common level; everyone in America will get poorer, 

while everyone gets richer in China, India, and so on. Some particularly dedicated 

Socialists regard this as an inevitable and in fact desirable outcome.

The Utopian theory is vaguer, and has several branches. One popular line of 

thinking says simply that American minds will dream up the “next great thing,” 

whatever that might be, and engineers will stop doing what they do today and 

start working in the myriad of jobs generated by that “next great thing” while 

the foreign workers scramble futilely to catch up with this new technology. The 

other most popular Utopian dream is that employers will eventually find out 

that offshore workers aren’t as cost-effective as they appeared to be, and there 

will be a huge wave of   renationalization of those jobs. Every press release about a 

failed offshoring venture is seized upon by these people as being the first trickle 

of an assumed tidal wave.

When all is said and done, there’s no such thing as a true utopia, and Malthus 

himself was empirically wrong (since, among other things, he failed to predict 

technology’s impact on food production, and the fact that population growth 

declines as the population becomes richer and better-educated). So the real results 

of offshoring, free-trade agreements and    temporary worker visas are almost cer-

tainly not going to follow any of the preceding theories directly.

One of the flaws with the Malthusian viewpoint is that it’s simply not possible 

to sustain a world-class engineering community within a country if that commu-

nity consists only of a thousand (or so) eggheads scattered across the continent 

working on secret military projects. Your military geniuses are supposed to be 

the cream of the crop—if they comprise the entire crop, then you have a rather 

large problem, because you’re essentially telling your tertiary institutions “Turn 

us out one hundred guaranteed geniuses per year, with a zero defect rate.” Apart 

from anything else, who’s going to teach these proto-geniuses and how are they 

going to ensure that supply and demand are balanced? Keeping a program like 

this running would require unbelievably tight control and good organization 



 Working for a Larger Company 225

from a set of government entities that are presently unable to ensure even that 

a randomly selected nondisabled adult is sufficiently literate to read the instruc-

tions on a microwave dinner.6

As far as the issue of salary equilibrium across international borders goes, in 

December 2004 the IEEE-USA published a frightening press release7 entitled 

“Incomes of Technical Professionals Decline, IEEE-USA Salary Survey Reveals.” 

This article is representative of materials generated by the anti-foreign-worker 

lobby (if you’ll pardon the rather coarse phrase; I synthesized it in order to cover 

antipathy to both offshoring and temporary worker visas).

The problem with statistics like this is that the numbers are redacted to a 

point where they admit of many possible explanations. To take just the examples 

that spring immediately to mind:

• Income wasn’t broken down exactly by source; it was simply limited to 

“primary sources,” which were defined as “base pay, plus any self-employ-

ment income, commissions or bonuses.” There is considerable wiggle room 

here—perhaps engineers are spending more time at home instead of moon-

lighting. Or perhaps there has been a hiring explosion, and people who 

were formerly deriving their income from self-employment have moved 

into full-time jobs. Cash-in-hand income is lower when you move to a 

full-time job, because the employer includes benefits such as healthcare, 

401(k) contributions, and also because the amount of Social Security and 

Medicare tax a regular employee pays is half what a self-employed person 

pays (your employer covers the other half; see Chapter 5).

• There was no information given about experience levels versus income. It’s 

entirely plausible, given only the bare medians to compare, that what we’re 

actually seeing is a huge wave of new professionals entering the job market. 

As entry-level employees in a glut year, they would obviously have lower 

starting salaries than their experienced counterparts, thereby pulling down 

the median. It’s not obvious why this should be a portent of doom.

6 An oft-cited statistic from “Adult Literacy in America,” U.S. Department of Education, 1993: In 
the United States, 40 million adults are functionally illiterate (i.e., cannot read above the third-grade 
level). Among other things, this means that they are unable to read the directions on a medicine 
bottle or microwave dinner.

7 The full text is available on the Web at <http://www.ieeeusa.org/communications/releases/2004/
122204pr.asp>.



226 Chapter 7

• IEEE-USA’s definition of technical professionals for the purpose of this 

article includes “electrical and electronics engineers, computer hardware 

and software engineers, and computer scientists and system analysts, among 

others.” This is very broad.

Offshoring is not necessarily the instant and long-term cost saver it has been 

advertised to be, either. Rough, anecdotal information I have been given indicates 

that in the late 1990s, the cost of hiring offshore engineers in    India was a tenth 

the cost of “equivalent” talent in the United States. However, as of early 2005, this 

ratio has narrowed to approximately one third the cost.8 While it’s possible that 

some of this is due to    earnings declining in the United States (although frankly 

I’m not even slightly convinced that this is really happening), most of it is due 

to the fact that the top talent in India is sought-after and highly mobile—and 

those offshore engineers are jockeying around between jobs to get better salaries, 

just like their counterparts in the United States. In fact, India is now trying to 

compete harder in order to avoid losing work to still cheaper centers of skilled 

labor, such as    China.

What of temporary skilled worker visas? There are numerous lobby groups on 

the Internet denouncing the H-1B9 program as spelling the death of American 

engineering (<http://www.zazona.com/> is a good example). Again, it’s not easy 

to ascertain just what effect these programs have on the average local worker.

Before we go any further, here’s a thumbnail sketch of how the H-1B visa 

process is structured.10 Please note that this is not     immigration advice by any 

stretch of the imagination; I’m just describing the process in the broadest possible 

terms so you understand roughly how it works. Needless to say, there are abstruse 

legal and bureaucratic complications possible at every step along the way.

• The employer decides, on whatever criteria, that a particular foreign person 

is an essential hire.

8 It’s very difficult to get quotable numbers on this, hence the hand-waving. Contract engineering 
companies don’t break down their fees in such a way as to permit easy comparisons.

9 This is the visa type that allows “highly qualified” aliens to work in the United States.
10 A very good reference on the H-1B visa process, along with some discussion of how it might be used 

to depress local wages, can be found in “The Bottom of the Pay Scale: Wages for H-1B Computer 
Programmers” <http://www.cis.org/articles/2005/back1305.html>.



 Working for a Larger Company 227

• The employer advertises in local media to obtain a U.S. person with 

equivalent skills.

• If no such person is forthcoming, the employer can file a   labor condition 

application (LCA) as the first step toward sponsoring the foreign worker. 

Part of this application process involves demonstrating to the Department 

of Labor that the employee will be paid at least 95% of the prevailing rate 

for workers of this type in the area where they will be working.

• Once the  LCA is approved, the company then files a petition to sponsor 

the temporary foreign worker.

• Once the petition is granted, the worker can apply for the actual visa.

• The   visa application process involves showing that the applicant has at least 

a bachelor’s degree, or equivalent work experience. There are third-party 

companies that evaluate these credentials in accordance with   USCIS11 rules. 

Observe that simply lacking a bachelors’ degree is not automatic grounds 

for rejection; the general rule of thumb being four years’ work experience 

counting for one year of education.

• If the employee is fired, or the employing company goes out of business, 

the employee cannot work for another employer without first filing a new 

H-1B application or other request for legal employment status.

• An   H-1B visa is good for three years, and it can be renewed once (for another 

three years). After this time, the H-1B holder must apply for permanent 

resident status (a “green card”). They are permitted to live and work in the 

United States while the permanent residency application is pending.

• The H-1B visa allows re-entry to the United States; the holder is able to 

travel outside the country and return while the visa is valid.

• H-1B visas are now somewhat portable; if you’re working as an H-1B, you 

can apply for another job in the United States, and you will be permitted 

to work for that new employer while their H-1B application for you is 

pending.

11 United States Citizenship and Immigration Services, formerly the Department of Immigration 
and Naturalization Services (INS). Due to various reshuffles after the creation of the Department 
of Homeland Security, you will find this department referred to almost interchangeably as USCIS, 
BCIS (Bureau of Citizenship and Immigration Services), or INS.



228 Chapter 7

As you can see, the process is structured in such a way as to avoid depress-

ing local wages, and to give employment to U.S. residents preferentially before 

authorizing an imported worker to fill the position. A few laws have also been 

tweaked—see particularly my last point—to avoid some of the stress this process 

causes on the H-1B holder. Being an H-1B, especially if your employer isn’t 

doing very well financially, is very frightening.

That’s how it all works in theory; there are various abuses that are reported 

to occur. The most commonly reported abuse is that shell companies will bring 

H-1B talent in at a low rate (based on prevailing wages wherever the shell com-

pany is based) and hire them out to companies located elsewhere at a massive 

hourly rate. Sometimes the H-1B is not even paid the amount that was speci-

fied in the LCA. The H-1B is paid a pittance; the   shell company pockets the 

difference. Purportedly, these companies also treat their employees virtually like 

slaves; they’re threatened with withdrawal of sponsorship (which means an end 

to their eligibility for U.S. employment) if they complain.

At the end of the day, I can judge the availability of embedded jobs in America 

largely by the recruitment activity I see, and that activity is formidable and grow-

ing. Ignore the doom and gloom; outsourcing and worker visas are not going to 

preclude you from finding work in the United States. I would, however, advise 

you to keep ascending the management track if this option is offered to you; out-

sourcing does occur, and it’s usually happening to “individual contributors.” On 

the other hand, the need for competent project managers is growing enormously. 

Being able to assume either role makes it easier for you to avoid the need to look 

for a job with a new company if your engineering role is outsourced.

7.4  Procedures and You: Keeping Your 
 Head Above Water

At least in America, few (if any) large corporations are the monolithic entities 

they pretend to be. Although they may be unified under a single brand name, 

with a single corporate philosophy on paper, in practice, most large corpora-

tions are like Chinese dragons at the lunar new year. In other words, they’re a 

bunch of potentially self-sufficient individual units draped in something opaque 

to make them look like a single organism. These units don’t necessarily share a 



 Working for a Larger Company 229

common philosophy, and they usually have a widely disparate array of   internal 

procedures, some of which may be fundamentally incompatible with the “big 

picture” methods and goals of the parent corporation.

This situation is pretty much unavoidable; it’s extremely expensive (in terms 

of cash and customer satisfaction, among other things) just to dump an entirely 

new set of procedures and goals on every employee of a newly acquired subsidiary 

and force an overnight switchover. In fact, the cost is approximately the same 

as it would be to fire and rehire everyone from the subsidiary into the parent 

company.

In a large-corporation job, you’re inevitably going to be exposed to many 

more procedural requirements than you would be in a small company. Speaking 

from the worm’s-eye view of a frontline engineer, we can break these procedures 

down into the following broad categories.

– Type 1: Tasks which are clearly necessary or useful in order to perform 

engineering functions effectively; for example, a  standardized process for 

handling electronic CAD symbols, procedures for issuing engineering 

change notifications to existing products, and so on.

–  Type 2: Tasks which are not, strictly speaking, engineering necessities, but 

are practically important in some way and hence can’t be ignored. ISO 

procedures, government required test data, etc. fall into this category. 

Almost all of these tasks are directly a result of customer requirements, 

and hence have an unambiguous bottom-line effect.

–  Type 3: Tasks which are designed to generate metrics or other outputs that 

don’t directly impact engineering functions in any way. Sometimes, these 

metrics exist only so that engineering functions can be measured using 

the same units as, say, marketing. This is a bit like trying to measure the 

acidity of orange juice in inches.

(There’s also a fourth category of tasks—things that are really somebody else’s 

job but somehow seem to wind up becoming your responsibility. These are obvi-

ously the most irritating of all.)

Tasks of Types 1 and 2 are simply things you’re going to have to live with; 

they’re part of the job you’re taking and although you might tactfully suggest 



230 Chapter 7

improvements where appropriate,12 at the end of the day you’re just going to 

have to knuckle under and do the legwork to satisfy the requirements of these 

procedures.

The third category is the interesting one. Generally, most of your “wasted” 

time is going to be spent on these tasks. Engineers almost always have a strong 

antipathy toward these sorts of jobs, and with excellent reason—they don’t gen-

erate “useful” output and the only reason you’re required to do them is because 

they provide a means of measuring your compliance with company policies. As 

a side note, many waste tasks are generated by the need   ISO9000 compliance. 

It isn’t actually difficult to be ISO900x compliant—all you really need to do is 

document a process, and prove that you follow it.13 It’s nominally a compliant 

system if you say “Our process for forecasting sales is to throw chicken bones 

on a calculator keypad,” as long as you can prove that you actually did it for 

projects in progress.

The problem with ISO9000 is that somebody in management will want to 

see some piece of  paperwork generated for a particular step in the development 

cycle. In order to ensure that this piece of paperwork is generated, they’ll add it 

to the list of ISO9000 deliverables. Much like a body of laws, the list of ISO9000 

deliverables rarely shrinks—so the burden of keeping the paperwork up to date 

expands relentlessly.

So, how do these “waste” tasks insinuate themselves into the engineering 

process? From personal observation, a large proportion of these tasks derive from 

an inappropriate application of management tools. For example, there are some 

very reliable, well-established techniques for analyzing the outputs of an ongoing 

process and using this information to adjust input parameters or process steps 

in order to improve output quality. These tools break down for many engineer-

ing projects, because, at least in theory, engineering’s output is a design that is 

bounded entirely by the product specification. In other words, marketing says 

“Design us a widget that generates ten megathingies of output and lasts five years,” 

and once engineering has achieved that, their task is nominally over. There is no 

12 Needless to say, your first day on the job is probably not a good time for such suggestions.
13 The purpose of this certification is to establish that you have a documented way of doing business. 

It really has nothing to do with quality per se.



 Working for a Larger Company 231

ongoing process that can be tuned to improve that specific result (although the 

product can, of course, be improved, that would be a separate project. Obviously 

there are also manufacturing improvements that could be made, but again these 

aren’t in the scope of the original engineering task).

Before I get thousands of complaint letters, please note an important semantic 

point: Process tools can, with perfect validity, be used to analyze and improve 

the process of developing products (including the engineering phase). They just 

don’t work very well for a large percentage of individual engineering projects, 

particularly new product development. Anything that has a defined endpoint 

doesn’t lend itself to effective analysis with tools oriented toward ongoing pro-

cesses. Imagine the MBAs at Ford looking at a defective car coming off the 

production line and trying to develop a procedure that would magically go back 

in time and retroactively fix that particular car, and you’ve got an idea of what 

I’m talking about.

Another large chunk of Type 3 tasks originate from company-global technolo-

gies that aren’t appropriate for all types of engineering. The way this usually comes 

about is that one slice of the business introduces a new technology and shows a 

big productivity increase. Managers of the other business units obviously want 

similar increases, so they import the technology into totally unrelated fields. This 

isn’t always a resounding success; Procrustean14 techniques are usually necessary 

and the result is often appropriately painful.

As a prime example of this, compare the engineering flow of designing a car 

door handle versus designing a radio receiver. The door handle can be modeled 

with near-perfect accuracy in software. Knowing what kind of resin will be 

used to cast the part, the mechanical engineer can generate extremely reliable 

estimates of weight, strength and other important parameters. They can also put 

the virtual part into a functional 3D software model of the car and test it for fit 

and function without even spending a dime on stereolithographic prototypes 

or other tangibles. On the other hand, once the engineer declares “This part is 

14 Procrustes was a legendary inkeeper, of sorts. He would hospitably invite people to stay the night at 
his house, but if they were the wrong length for the bed he would either stretch them on the rack or 
cut off their feet so they would fit exactly. The adjective Procrustean is sometimes used in computer 
science when talking about string-handling functions. Procrustes was given a taste of his own bed-
making technique by Theseus, a hero whose achievements many engineers aspire to emulate.



232 Chapter 7

good,” that instantly triggers an expense of several tens of thousands of dollars 

to make an injection mold. Engineering departments designed around these 

sorts of tasks—easy to simulate, expensive to prototype—tend to have complex, 

multilevel approval processes with a distinctly one-way flow. Each step will gen-

erate required paperwork—often, detailed  simulation results that verify specific 

properties of the part being designed. The assumption, based on the high cost 

of going to the prototype stage, is that engineering time inspecting, reinspecting 

and approving drawings and simulations is always less costly than wasted tooling. 

In these sorts of systems, it is usually a difficult special-case event to demote a 

design from “finished” to “design work in progress” if rework is required due to 

problems discovered with the prototype. It’s generally also impossible to bypass 

irrelevant process steps if you do somehow manage to demote a design.

Building a radio receiver is a very different sort of problem. Although there is 

software commercially available that can model the various effects at work on the 

circuit board, it’s fantastically difficult to include all the required variables and as 

a result, it’s a time-consuming and often inaccurate job to generate simulations. 

Trying to simulate a product of this kind to the level of accuracy necessary to 

make irrevocable design decisions is amazingly difficult. As a result, the typical 

process for developing a product like this is as follows:

1. The circuit design engineers develop a schematic. Where possible, this 

will often consist of pre-verified design elements borrowed from other 

products. Individual elements may be simulated at a circuit level.

2. The schematic is reviewed and approved by the entire engineering team. 

Typically the only required approval will be the project leader, since the 

tooling for this project is not a major capital investment.

3. The schematic passes to the PCB layout team. Accompanying the schematic 

will be a list of verbal rules specific to this particular product; e.g., “Keep 

U5 and Q1 as far away as possible” or “Ensure signals D0-D7 are routed 

far away from U12.”

4. The PCB layout team does a first cut at the layout, and passes a (paper) 

copy back to the engineering team.



 Working for a Larger Company 233

5. The engineering team will inspect the critical areas of the layout. If sub-

optimal copper structures are noticed, these will be bounced back to the 

PCB layout team and the process will iterate again. Usually one or two 

passes, at most, will resolve all the obvious issues.

6. The PCB engineering department will then perform a manufacturability 

review on the design, to ensure that the component layout is compatible 

with the assembly process being used. This step rarely requires further 

input from the circuit design engineers.

7. Prototype PCBs are ordered. The cost of a small validation prototype run 

is typically well under $1,000 in cash terms, but may be somewhat higher 

than this depending on special circumstances such as the urgency of the 

order, the PCB vendor’s panelization rules and the requirements of the 

equipment used to place and solder components onto the board.

8. The RF engineer performs laboratory and field tests on the prototypes to 

determine receiver performance. This step almost always involves tweaking 

some component values.

9. If performance is adequate with the first-cut PCB layout, the process is 

complete. Otherwise, the circuit design team will sit down with the layout 

and brainstorm it again. The entire process iterates back to the third step, 

as shown above.

Is this technique efficient? An approximate ballpark figure for engineering 

time in the United States is $100/hour.15 This number is obviously very rough, 

but it’s useful for simple analyses like this. If we estimate that our PCB prototype 

run will cost $1,000 (equivalent to 1.25 person-days of engineering time), and 

the associated layout tweaking and performance testing will take three person-

days, we have a total cost of 4.25 person-days, or a cash equivalent of $3,400 

per design spin. Compare this to the fact that you could easily spend a week 

15 This is a crude budgetary number, reflecting the miscellaneous costs of having a person on payroll; 
health insurance, payroll taxes, electricity, IT support, toilet paper, coffee and numerous other small 
factors are built into this figure. The actual salary of the engineer will sometimes be about 50% of 
this number, often less.



234 Chapter 7

or two weeks building a really accurate software simulation of the design (even 

assuming you can gather all the parameters), and $3,400 plus some risk looks 

like rather good value.

Back to the question at hand, which is to survive and prosper in your new 

job. For the moment, I’ll assume that your primary goal is to be a good employee 

and march up the normal raise-and-promotion ladder in your chosen company. 

Clearly, you want to do as much useful work as possible. Since Type 3 tasks steal 

time that you could otherwise be using to perform that useful work, you obvi-

ously want to minimize the number of Type 3 tasks that you carry out. Here’s 

how to do that and still look like a friend of the corporation. Considering only 

Type 3 tasks, first carry out these steps:

1. Establish on what you are going to be assessed.

2. Establish by whom you are going to be assessed.

3. Determine how much personal buy-in your assessor has for each procedure 

listed in step 1.

4. Find out if any of your required outputs are already being generated by 

other people.

Step 1 is fairly obvious. If nobody is ever going to look at your output for a 

given task, there is no good reason to do that task. Quite possibly the  process 

evangelists at your company will faint if they hear that you’re skipping a task 

with some religious significance to the corporate mantra, but this really isn’t 

your problem. The key here—and I’m not being flippant when I say this—is to 

minimize your contact with those evangelists, and hence minimize the amount 

of time they spend scrutinizing how you dot your i’s and cross your t’s.

Step 2 is also obvious. Your assessor is most likely your immediate supervisor. 

In cases where this isn’t true, you should be able to identify the relevant person 

quite readily.

Step 3 is a tricky one, and can only be carried out successfully by maintaining a 

good two-way dialog with your assessor. The reason you need to know how much 

buy-in your assessor has is because you need to know how much  enthusiasm to 



 Working for a Larger Company 235

show when you’re carrying out these waste tasks. If your supervisor is a staunch 

supporter of the time-wasting process you’re trying to avoid, you need to be 

diligent. However, if they don’t have a strong personal interest in this piece of 

paperwork (or whatever it is), then you can safely ascertain the bare minimum 

requirements and do just that, nothing more.

Possibly the worst case you have to deal with is where the official corporate 

manual tells you to use procedure ABC, but your assessor actively discourages 

that procedure in favor of some other technique XYZ. This XYZ is typically a 

 “legacy” procedure left over from your business unit’s preacquisition life as an 

independent corporation. If your supervisor absolutely refuses to let you do 

things the “corporate way,” you’re in a sticky situation. Although you’re poten-

tially covered by the argument that you were ordered to do things in a certain 

way, this argument has failed spectacularly for soldiers many times in the past 

and could easily fail for you too. I would suggest you obey your supervisor, but 

email them and ask for clarification on how the way you are doing things matches 

with published company policy. The email is an audit trail that can be used to 

cover your rear if problems arise later.

Step 4 has great potential to save you time, especially for tasks that consist 

primarily of establishing an audit trail; ISO documents in particular. You’ll prob-

ably find that most of the requirements are already being generated in the form of 

meeting minutes, signed authorizations to purchase tooling, and so forth. Make 

sure you learn where these “free” outputs are generated, and you won’t need to 

run around chasing signatures and suchlike.

In summary: Although what I’m about to say is rank heresy, it’s a view com-

monly held by engineers, and one to which I personally subscribe. Procedures, 

no matter how well-designed, cannot create quality; they can, at best, only 

provide a standardized way of measuring it. You cannot avoid learning and 

using your company’s procedures, but you can try to minimize the negative work 

these procedures generate for you.



236 Chapter 7

7.5  Managing Relationships with Marketing

The lines of communication among and division of responsibilities between 

departments of a large company often follow very similar patterns, no matter 

what the company might be. 

Teleology (n.)

1. The study of design or purpose in natural phenomena.

2. The use of ultimate purpose or design as a means of explaining  phenomena.

3. Belief in or the perception of purposeful development toward an end, as in nature 

or history.

—The American Heritage Dictionary of the 
 English Language, Fourth Edition

Some might argue teleologically; the reason corporate behaviors evolve this way 

is because they are destined to evolve this way.

In almost any organization—even very small companies consisting of only 

two or three persons—product features, release schedules and so on are driven, 

or perhaps herded, by marketing. This is a normal and, believe it or not, a desir-

able state of affairs.   Marketing people—if they’re doing their job properly—have 

their finger on the pulse of what the customers want, when they want it, and 

how much they can be inveigled into paying for it. Like it or not, in a for-profit 

company, these factors are the primary constraints within which you, the engineer, 

need to shape your design. Even in a pure research environment—and there are 

precious few of those jobs—“marketing” pressure comes from the people who 

direct funding toward specific research goals.

In a hypothetical    perfect company, marketing should hand down a wishlist of 

features. Engineering then responds, after due analysis, with reasonably accurate 

estimates of the development cost, development time, and per-unit costs for the 

various features under discussion. Marketing will forecast the likely sales for the 

product and present all this information to upper management, who will then 

make the requisite profit-and-loss decision as to whether this particular widget 

is profitable enough to produce. In some cases they might also assess if it’s worth 

producing, even if not profitable, in order to achieve some other business goal. 



 Working for a Larger Company 237

Sony, for instance, makes a bunch of showcase gadgets that aren’t necessarily 

intended to be profitable, simply because its corporate strategy includes a desire 

to be perceived as leading its competitors in innovative designs.

It’s also relatively common for products to be introduced as loss leaders for either 

other, more profitable products, or for IP licensing deals. As an illustration of this, 

Sony’s proprietary Memory Stick storage card format was promoted very heavily 

on its initial introduction; Sony was virtually paying other companies to develop 

products that would use the Memory Stick. Now, the shoe’s on the other foot—it’s 

relatively expensive to become part of the Memory Stick club, and presumably 

Sony is now starting to see actual revenue from the development effort.

Real life, of course, is considerably woollier than my highly idealized previous 

description. For instance, it’s an unfortunate but utterly inescapable fact that 

many if not all engineering projects have a certain seasoning of   theoretical research 

about them. Keep in mind that I don’t use that phrase “theoretical research” in 

quite the way a scientist would; I use it to mean the process whereby you take a 

list of proposed features—usually quite vague—and decide what sort of hardware 

will be required to implement them. This process is a delicate balance, and is 

much more of an art form than a science. It seeks a solution that is bounded by 

the following limits:

– How much time do we have to spend on   early analysis? The range of parts 

available to us is approximately infinite.16 The more time we spend scour-

ing the earth for new microcontrollers, ASICs and ASSPs, the more likely 

we are to find a “better” solution than the current best proposal.

– How much money can we spend acquiring test equipment? If we can actu-

ally build a quick and dirty prototype, or at least port some of our critical 

firmware onto a reference board for the chip under consideration, we can 

gauge rapidly whether the part is adequate or not. This kind of spending 

is scientific research funding, though—not actual product engineering. 

16 By this I mean that the only condition effectively limiting the resources we can spend searching 
is that point at which it is no longer worth continuing the search. In other words, we can find a 
“good” solution and continue searching for a “better” solution, but we can never find the “best” 
solution. It usually isn’t even possible to define what the “best” solution might be, although most 
attempts at such a definition normally begin by assuming a hypothetical custom device that contains 
exactly the features we need and no more.



238 Chapter 7

Upper management generally doesn’t like these sorts of expenditures. 

There is a critical danger here, too, that the quick and dirty technology 

demonstration prototype may seem like a tempting foundation for the 

real product.

– What is the cost of overestimating a particular part’s capabilities? In other words, 

what will be the consequences if we look at all the datasheets, run some 

calculations, and decide that part XYZ will be suitable and has an optimal 

price point, but it later transpires that it’s just a shade under-powered for the 

task at hand? A large company will be able to swallow six months of wasted 

development time and, say, ten thousand dollars worth of platform-specific 

development tools. (The individual engineer who chose to go down that 

path might not survive, of course.)

– What are the anticipated product volumes and margins? This information 

will probably be included in the product request from marketing (though 

it is quite normal for it to be wildly inaccurate, particularly for a project 

that has a whiff of anything new and untried in it—marketing simply 

doesn’t have the information to predict what the bill of materials cost will 

be). The reason these data figure into your solution set is because if you’re 

only going to sell five hundred units at a profit of, say, ten dollars each, 

it’s not worth spending very much time optimizing those designs.

Unfortunately, most engineers don’t have a good enough intuitive grasp on 

the issues to estimate all this stuff accurately up front. There are many unknowns, 

and any off-the-cuff answer is dangerous. Worse, many engineers have a terrible 

propensity to make promises that can’t be fulfilled.

The technique which I have found to work best for me is to limit my contact, 

and in fact my whole team’s contact, with marketing. In particular, it is vitally 

important for engineers to avoid discussing speculative or forward-looking proj-

ects with marketing personnel in an unstructured way. If you have team members 

who can’t resist talking about the latest new cool thing they’re working on, these 

people need to be silenced or sequestered at all costs. This remark is even appli-

cable for features you believe to be minor changes to existing projects.

In short, when dealing with marketing, I advise you to live your life by Bo 

 Diddley’s maxim: “Don’t let your mouth write no check that your tail can’t cash.”



 Working for a Larger Company 239

7.6  Task Breakdown: A Typical Week

Similarly to Section 6.6, this section breaks down a representative week in the 

life of an engineer working in a large company. The goal in this section is to 

illustrate approximately what proportion of your time you’ll be spending in dif-

ferent tasks. I encourage you to take a look back at Section 6.6 and compare the 

two schedules; they illustrate quite accurately how the task mix differs between 

small and large company engineering positions.

• Monday

– 2 hours – Weekly team planning meeting.

– 1 hour – Maintaining schedules and ISO9000 paperwork for 

current projects.

– 1 hour – Researching second sources for parts, validating speci-

fications of cheaper substitute parts submitted by component 

engineering, and so forth.

– 1 hour – Reviewing schematic from PCB engineering group.

– 2 hours – Developing code and/or circuit design.

– 1 hour – Miscellaneous (conversations with vendors, answering 

co-workers’ questions, dealing with technical queries from other 

departments, and so on).

• Tuesday

– 1 hour – Researching second sources for parts, validating speci-

fications of cheaper substitute parts submitted by component 

engineering, and so forth.

– 6 hours – Combined circuit and software development.

– 1 hour – Miscellaneous.

• Wednesday

– 2 hours – Weekly group/department project planning meeting.

– 1 hour – Meeting with vendor.



240 Chapter 7

– 2 hours – Auditing circuit design against regulatory standards 

 document.

– 2 hours – Combined circuit and software development.

– 1 hour – Miscellaneous.

• Thursday

– 1 hour – Researching second sources for parts, validating speci-

fications of cheaper substitute parts submitted by component 

engineering, and so forth.

– 1 hour – Maintaining schedules and ISO9000 documentation for 

current projects.

– 2 hours – Reviewing PCB layout from PCB engineering group.

– 2 hours – Strategy/planning meeting with marketing.

– 1 hour – Combined circuit and software development.

– 1 hour – Miscellaneous.

• Friday

– 0.5 hours – Preparing timesheet for week just completed.

– 1 hour – Dealing with manufacturing issues.

– 2 hours – Design review for project (either software or hardware; 

you wouldn’t normally hold both at the same time, as different teams 

need to be present).

– 2 hours – Working with quality assurance on projects currently being 

tested.

– 1.5 hours – Combined circuit and software development.

– 1 hour – Miscellaneous.



241

 Go Forth and Conquer

Congratulations—you made it to the end of the book! Hopefully, by this time 

you have at least the initial answers to some of the questions most frequently 

asked by people seeking a toehold in the embedded world. To recap where you 

should be after reading through this book in its entirety:

• You’ve had a peek at the normal educational requirements to become an 

embedded engineer.

• I’ve described how to handle nontraditional paths into the field, including 

information on how to survive if you don’t (yet) have a degree.

• I’ve highlighted some of the educational paths you definitely don’t want 

to take.

• Chapters 3 and 4 painted a broad-stroke picture of several popular low-end 

and high-end embedded architectures, and gave you some selection criteria 

to help you decide which languages and architectures to use when you’re 

starting the learning process. I’ve tried to describe where you might want 

to start if you’re currently an electronics guru without much programming 

experience, and where you might want to direct your attention if you’re 

a computer science whiz who doesn’t have much experience designing 

hardware and real-time software. I also illustrated a typical sort of 8-bit 

project and provided links to the sourcecode if you’re interested in that 

specific circuit.

Conclusion

8



242 Chapter 8

• You’ve had a brief introduction to the challenges, pleasures, sillinesses, and 

rewards of life as a freelance consultant, as an engineer (perhaps the sole 

engineer) in a small company, and as one of a large stable of engineers in 

a big company.

I’m always interested in hearing from my readers. If you have comments 

or questions about the material in this book—particularly if you feel I didn’t 

explain some issue that’s vital to your own situation, please feel free to email me at 

sysadm@zws.com. Questions and answers that come up frequently, or that seem 

to be of interest to a variety of people, will be posted in my publications support 

area at <http://www.zws.com/publications/>.



Index

Symbols

1099-MISC 181
2-Wire interface 106
3-Wire interface 106
32-bit core 38
401(k) 180
8-bit core 38
8051 parts, surplus 44

A

ABET 7, 10, 29–30
academic workload 20
acceleration profiles 111
acceleration vector 118
Acorn 139
active cooling 127
Advantech 131
advertising 184
amateur radio 10
AMD 129
application-specific standard 

product (ASSP) 41
ARM 139

BlueStreak 142
CISC 147
interrupt latency 148
Jazelle 150
LCD controller 142
link register 147
mARMalade 143
MMU 146
NAND 149
Olimex 149
RedBoot 149

RISC 147
StrongARM 140
TLB 146
U-Boot 149
Wiggler 149
XScale 140

ARM720T 142
ASSP 41
ATmega32L 53
Atmel AVR 52

ATmega32L 53
AVR Butterfly 58
avrdude 57
comp.arch.embedded 52
debugWire 59
EEPROM 56
external buses 56
GPIO 54
instruction set 56
JTAG-ICE 59
picoPower 55
RC oscillator 57
Rowley Associates 60
single-sourced 52
STK500 58
WinAVR 60

avr-libc 120
AVR Butterfly 58
avrdude 57

B

bachelor degree 7
battery-powered 63
BCM 131

binutils 120
BIOS 158, 163
bit-level 41
BlackBerry 197
BlueStreak 142
bond-out 75
bonding 38
boondoggle 22
bootstrap loader (BSL) 68
BSEE 7, 8, 10, 12, 25–26, 33

curriculum 7
BSEET 10, 28
Buffalo Linkstation 153

C

candidate-to-position
matching software 15

C++ 82
masochist 82

Cell Broadband Engine 152
Charles Dickens 27
China, skilled labor in 226
chip geometries 39
circuit design, efficient 37
CISC 66, 147
CNA 31
CNE 31
code cowboys 202
Commodore 64 126
Commodore Amiga 126
comp.arch.embedded 52, 82
conditional jump 72
consultant 186
contracts 197

243



244 Index

copy-protected development 
tools 88

cover letter 204
creative accounting 83
credentials 22

D

Darlington driver 108
data acquisition 137
database programming 125
data memory 73
dead man’s switch 133
dead reckoning 119
debugger 40
debugWire 59
degree mills 29
degree program 28
demultiplexer 45
depanelization 34
developerWorks 91, 152
DFM 33
dice 38
Dickens, Charles 27
die sizes 38
digital domain 6
diploma mills 30
distance education 29
distance learning 29–30
dongle 88
DPTR 45, 47–48, 51, 57
drop-in variants 78
dsPIC 70

E

early analysis 237
earnings, declining 226
eCos 165
education

ABET 7
academic workload 20
accreditor 7
bachelor’s degree 7
BSEE 7

curriculum 7
BSEET 10, 28
degree mills 29
degree program 28
DFM 33

diploma mills 30
distance education 29

proctor 29
distance learning 29
employer reimbursement 17
fraudster 28
free money 17
goals 6
hybrid qualifications 8

high-end embedded 
systems 8

incremental learning 21
internship 9
IT qualifications 31

CNA 31
CNE 31
MCSE 31

liberal arts 33
life experience 28, 31
lifetime income 18
mature-age student 16, 19
nondegreed 11
nonmatriculated student 17
part-time student 20
portfolio 10, 13, 91, 123
postgraduate 6, 8, 10–11
prerequisite 12
Project Gutenberg 33
scholarships 19
self-taught 11
skill set 8, 33
transfer credits 29
tuition fees 17
undergraduate 6

EEPROM 56, 66, 68
embedded PC 133
embedded software development

monkey 23–24
employer reimbursement 17
employment leads 15
employment search

credentials 22
employment leads 15
hardware knowledge 24
hiring process 13
licensure 21

Professional Engineer 
(PE) 21

life experience 28, 31
lifetime income 18
pittance 15
politics 22
portfolio 13
qualifications 15
recruiter 14
recruitment agencies 14
review 16
salary 15

English, as dead language 32
Epia 131
EPROM burner 49
ESD 26
estimated taxes 178
external buses 56

F

fabless company 81
Far East parts 79
FET 62
FICA 178–179
Fidonet 33
firmware upgrade 163
FLIP 49
fraudster 28
freelancing 180

401(k) 180
free money 17
Freescale 154
FTDI 135

G

gcc 120
general-purpose I/O (GPIO) 43
Genesi USA 153
Geode 94, 129, 152
globalization

China 226
declining earnings 226
H-1B 227
H-1B program 222
immigration 226

and India 226
labor condition application 

(LCA) 227
offshoring 223
outsourced 223



 Index 245

renationalization 224
shell company 228
temporary worker visas 224
USCIS 227
visa application 227

GnuCash 182
bookkeeping system 182

goals 6
GPIO 43, 54, 64, 71
GPS 94
grub 159
GUI 138

H

H-1B 222, 227
hardware knowledge 24
hardware stack 75
Harvard-architecture 44, 48, 

55, 66, 72
healthcare 218
high-end 8
hiring process 13
hobby 10, 52, 70

amateur radio 10
homebrew 35
home business 177
HTML design 125
hybrid qualifications 8

I

I/O expansion 103
I/O requirements 103
I2C 106, 107

2-Wire 106
I2C (Inter-IC Communica-

tion) 106
ICE 42, 49–50, 59, 76

ICE2000 76
ICE4000 76

ICP 131
immigration 226
in-circuit emulator (ICE) 49
incremental learning 21
India, and globilization 226
indirect addressing 74
industrial PCs 133
instruction set 56
Intel 129

interconnects 39
interfaces

2-Wire 106
3-Wire 106

internal procedures 229
internship 9
interrupt latency 148
invention promotion 200
inventors 186, 200
investment 2
IP (intellectual property) 201
ISO9000 230
IT qualifications 31

J

Java 125
Jazelle 150
jellybean logic 106
job description 4
job fair 5
JTAG 50, 54, 58–59, 62–63, 

75–76, 92
JTAG-ICE 59

K

Kuro Box 91, 153

L

labor condition application 
(LCA) 227

language lawyers 83
large company 217

H-1B program 222
looking for a job 220

drug tests 222
human resources 220
interview 221
recruiter 220
relocation expenses 220
résumé 220
signing bonus 220

perfect company, hypotheti-
cal 236

working for
“legacy” procedure 235
creativity 219
cross-functional 219
declining earnings 226

early analysis 237
employee discount 

plans 218
engineering manage-

ment 217
financial stability 218
H-1B program 222
healthcare 218
immigration 226
internal procedures 229
ISO9000 230
marketing 236
paperwork 230
patents 218
perfect company, hypo-

thetical 236
process evangelists 234
renationalization 224
simulation 232
standardized process 229
teleology 236
temporary worker 

visas 224
theoretical research 237
tuition reimburse-

ment 218
large embedded system 167

programming languages 167
software team 168

cross-functional 168
skill set 168

LCA 227
LCD controller 142
legacy-free PCs 134
legacy technology 38
liberal arts 33
licensure 21

industry exemption 22
Professional Engineer 

(PE) 21
life experience 28, 31
lifetime income 18
LILO 159
linear regulator 95
link register 147
LinkStation 91
Linux 155, 156

BIOS 158, 163



246 Index

firmware upgrade 163
grub 159
LILO 159
NAND Flash 164
NOR Flash 164
RAMdisk 159
Shadow RAM 158
SYSLINUX 159
XFree86 156

logic analyzer 40
lookup tables 74

M

marketing 236
mARMalade 143
masochist 82
massages 14
mature-age student 19
MCSE 31
MEMS accelerometer 116
Microchip PICmicro 70

bond-out 75
conditional jump 72
data memory 73
dsPIC 70
GPIO 71
hardware stack 75
Harvard-architecture 72
ICE2000 76
ICE4000 76
indirect addressing 74
lookup tables 74
PICstart Plus 76
PonyProg 76
Scenix 77
Ubicom 77

microcode 42
microcontroller 34, 37–38

32-bit core 38
8-bit core 38
bonding 38
chip geometries 39
choice of micro 38
debugger 40
dice 38
die sizes 38
drop-in variants 78

fabless company 81
Far East parts 79
interconnects 39
logic analyzer 40
on-chip memory 39
oscilloscope 40
pin-compatible 78
RF emissions 40
stacked-die 39
state information 40
vibration 39
wafer 39

Mini-ITX 131
MMU 146
monkey 23–24
moonlighting 180, 199
MSP430 61

battery-powered 63
CISC 66
FET 62
GPIO 64
nonvolatile 68
power-constrained applica-

tions 63
RISC 66
Rowley Associates 69
von Neumann 66

multisourced 41

N

NAND 149
NAND Flash 164
NAS 91
NDA 198
niche product 201
nondegreed, as target 

 demographic 11
nondisclosure agreements 

(NDAs) 198
nonmatriculated student 17
nonvolatile 68
NOR Flash 164

O

object-oriented  programming 86
offshoring 223
Olimex 59, 62–63, 149

on-chip memory 39, 44
oscilloscope 40
outsourced 223

P

paper trail 32
part-time student 20
patents 32, 218
PCB layout 26, 33–34
PC motherboards 131
PDP-11 62
Pegasos 153
perfect company, hypotheti-

cal 236
picoPower 55
PICstart Plus 76
pin-compatible 78
pittance 15
PonyProg 50, 76
portfolio 10, 13, 91, 123
possums, and power 

 interruption 188
postgraduate 6, 8, 10–11
power-constrained applica-

tions 63
POWER architecture 152
PowerPC 151

Buffalo Linkstation 153
Cell Broadband Engine 152
developerWorks 152
Freescale 154
Genesi USA 153
Geode 152
Kuro Box 153
Pegasos 153
POWER architecture 152

prerequisite 12
pressure sensor 116
procedural workload 202
proctor 29
product specifications 32
Professional Engineer (PE) 21
Project Gutenberg 33
project management 183
promotions, and higher 

 education 10
pullup resistors 43



 Index 247

Q

qualifications, formal 15

R

RAMdisk 159
RC oscillator 57
recruiter 14
recruitment agencies 14
RedBoot 149
résumé 204, 220
review 16
RF emissions 40
RISC 66, 147
robotic submarine 91

Kuro Box 91
NAS 91

Rowley Associates 60, 69

S

safety implications 85
salary 15
Scenix 77
scholarships 19
sdcc 51
self-employment 173

1099-MISC 181
401(k) 180
advertising 184
best practices 194

bill of materials 196
bookkeeping 194
diary 195
journals 195
laboratory notebooks 195
patentable 195
specifications 195

BlackBerry 197
bookkeeping 194
consultant 186
contracts 197

deliverables 198
nondisclosure agree-

ments 198
terms of sale 197
trade secrets 199

customers 188
FICA 178, 179

filing system 182
fresh graduates 183
GnuCash 182

bookkeeping system 182
moonlighting 180, 199
portfolio 184
possums, and power 

 interruption 188
pricing 191

billing 193
goodwill 191
hourly rate 192
moonlighting 191
opportunity cost 191
quoting 193
raw material costs 192
salary research 192

project management 183
projects

last-minute changes 190
regulatory issues 189
requirements 188
specifications 188, 190

sales call 187
self-employment tax 178, 180

1099-MISC 181
marginal tax rate 179

Suicide Squirrel 
 (possum) 187, 188

tax deductible 177
W-2 income 178
website, capabilities of 184

self-employment tax 178, 180
estimated tax 178

self-empowerment 203
self-taught 11
sensors 113
shadow RAM 158
shell company 228
signal propagation 26
simulation 25
single-board computer 131, 172

Advantech 131
BCM 131
biscuit PCs 132
ICP 131
industrial PCs 133

single-sourced 52
skill set 2, 8, 33, 37, 168
small company 201

code cowboys 202
cross-functional abilities 201
freelancer 207

best practices 208
deliverables 207

frustration 205
harassment 210
IP (intellectual property) 201
limited resources 211, 214

all-nighters 213
burnout 213
design cycle 213
late nights 213
low-level behavior 214
physical stress 213
productivity 212
zen state 212

looking for a job
buzzword 205
chambers of 

 commerce 206
cover letter 204
gatekeeper 203
headhunter 205
high-tech visa 

 holders 205
networking 205
résumé 204

niche product 201
procedural workload 202
responsibilities and 

stresses 206, 207
indispensable 207
out of business 206

romance, as bad thing 210
self-empowerment 203
startup 201
target industry 204
vertical markets 201
working for 201
workplace safety 210

sole proprietorship 175
SPI 106

3-Wire interface 106



248 Index

SPI (serial peripheral inter-
face) 106

SPICE 26
Spy Bi-Wire 63
stacked-die 39
startup 201
state information 40
stepper motors 108
STK500 58, 120
StrongARM 140
stuffing 33
Suicide Squirrel (possum) 187

T

target industry 204
tax deductible 177
technical documents 32

paper trail 32
patent 32
specifications 32
white papers 32

telecommunications 2
teleology 236
temperature sensor 114
temporary worker visas 224
theoretical research 237
TLB 146
Transmeta 129
tuition fees 17

TWI (2-Wire interface) 106
TWI (3-Wire interface)

U

U-Boot 149
Ubicom 77
undergraduate 6
USB 135
USB-to-serial 96
USB microcontrollers 136
USCIS 227
Usenet 33

V

vertical markets 201
Via Technologies 129
vibration 39
visa application 227
von Neumann 66

W

W-2 income 178
wafer 39
watchdog timer (WDT) 133

dead man’s switch 133
white papers 32
Wiggler 149
WinAVR 60
Windows 137

GUI 138

Internet 138
multimedia  functionality 138
real-time requirements 138
speed of application develop-

ment 138

X

x86 127
active cooling 127
AMD 129
data acquisition 137
Epia 131
Geode 129
Intel 129
Mini-ITX 131
operating system 137
PC motherboards 131
price-performance 128
quick design cycle 128
single-board computer 131
slimline PC 130
Transmeta 129
Via Technologies 129

XFree86 156
XRAM 48, 49
XScale 140

Z

ZX Spectrum 126


