
 

Embedded Systems Design: An Introduction to Processes, Tools, and 
Techniques 

by Arnold S. Berger ISBN: 1578200733 

CMP Books © 2002 (237 pages) 

An easy-to-understand guidebook for those embarking upon an embedded 
processor development project.  

 
 
Table of Contents  
 

 
Embedded Systems Design—An Introduction to Processes, Tools, and 
Techniques  

 Preface  

 Introduction  

 Chapter 1 - The Embedded Design Life Cycle 

 Chapter 2 - The Selection Process 

 Chapter 3 - The Partitioning Decision 

 Chapter 4 - The Development Environment 

 Chapter 5 - Special Software Techniques 

 Chapter 6 - A Basic Toolset 

 Chapter 7 - BDM, JTAG, and Nexus 

 Chapter 8 - The ICE — An Integrated Solution 

 Chapter 9 - Testing 

 Chapter 10 - The Future 

 Index  

 List of Figures  

 List of Tables  

 List of Listings  

 List of Sidebars  

 TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



Embedded Systems Design—An 
Introduction to Processes, Tools, and 
Techniques 
 
Arnold Berger  
CMP Books  
CMP Media LLC  
1601 West 23rd Street, Suite 200  
Lawrence, Kansas 66046  
USA  
www.cmpbooks.com  

Designations used by companies to distinguish their products are often claimed as 
trademarks. In all instances where CMP Books is aware of a trademark claim, the 
product name appears in initial capital letters, in all capital letters, or in 
accordance with the vendor’s capitalization preference. Readers should contact the 
appropriate companies for more complete information on trademarks and 
trademark registrations. All trademarks and registered trademarks in this book are 
the property of their respective holders. 

Copyright © 2002 by CMP Books, except where noted otherwise. Published by CMP 
Books, CMP Media LLC. All rights reserved. Printed in the United States of America. 
No part of this publication may be reproduced or distributed in any form or by any 
means, or stored in a database or retrieval system, without the prior written 
permission of the publisher; with the exception that the program listings may be 
entered, stored, and executed in a computer system, but they may not be 
reproduced for publication. 

The programs in this book are presented for instructional value. The programs 
have been carefully tested, but are not guaranteed for any particular purpose. The 
publisher does not offer any warranties and does not guarantee the accuracy, 
adequacy, or completeness of any information herein and is not responsible for 
any errors or omissions. The publisher assumes no liability for damages resulting 
from the use of the information in this book or for any infringement of the 
intellectual property rights of third parties that would result from the use of this 
information. 

 

Developmental 
Editor: 

Robert Ward 

Editors: Matt McDonald, Julie McNamee, Rita Sooby, and 
Catherine Janzen 

Layout 
Production: 

Justin Fulmer, Rita Sooby, and Michelle O’Neal 

Managing Editor: Michelle O’Neal 

Cover Art Design:  Robert Ward 
Distributed in the U.S. and Canada by:  
Publishers Group West  
1700 Fourth Street  
Berkeley, CA 94710  



1-800-788-3123  
www.pgw.com  
ISBN: 1-57820-073-3  
This book is dedicated to  
Shirley Berger.  



Preface 
Why write a book about designing embedded systems? Because my experiences 
working in the industry and, more recently, working with students have convinced 
me that there is a need for such a book.  

For example, a few years ago, I was the Development Tools Marketing Manager for 
a semiconductor manufacturer. I was speaking with the Software Development 
Tools Manager at our major account. My job was to help convince the customer 
that they should be using our RISC processor in their laser printers. Since I owned 
the tool chain issues, I had to address his specific issues before we could convince 
him that we had the appropriate support for his design team. 

Since we didn’t have an In-Circuit Emulator for this processor, we found it 
necessary to create an extended support matrix, built around a ROM emulator, 
JTAG port, and a logic analyzer. After explaining all this to him, he just shook his 
head. I knew I was in trouble. He told me that, of course, he needed all this stuff. 
However, what he really needed was training. The R&D Group had no trouble 
hiring all the freshly minted software engineers they needed right out of college. 
Finding a new engineer who knew anything about software development outside of 
Wintel or UNIX was quite another matter. Thus was born the idea that perhaps 
there is some need for a different slant on embedded system design.  

Recently I’ve been teaching an introductory course at the University of 
Washington-Bothell (UWB). For now, I’m teaching an introduction to embedded 
systems. Later, there’ll be a lab course. Eventually this course will grow into a full 
track, allowing students to earn a specialty in embedded systems. Much of this 
book’s content is an outgrowth of my work at UWB. Feedback from my students 
about the course and its content has influenced the slant of the book. My 
interactions with these students and with other faculty have only reinforced my 
belief that we need such a book. 

What is this book about? 
 
This book is not intended to be a text in software design, or even embedded 
software design (although it will, of necessity, discuss some code and coding 
issues). Most of my students are much better at writing code in C++ and Java 
than am I. Thus, my first admission is that I’m not going to attempt to teach 
software methodologies. What I will teach is the how of software development in 
an embedded environment. I wrote this book to help an embedded software 
developer understand the issues that make embedded software development 
different from host-based software design. In other words, what do you do when 
there is no printf() or malloc()? 

Because this is a book about designing embedded systems, I will discuss design 
issues — but I’ll focus on those that aren’t encountered in application design. One 
of the most significant of these issues is processor selection. One of my 
responsibilities as the Embedded Tools Marketing Manager was to help convince 
engineers and their managers to use our processors. What are the issues that 
surround the choice of the right processor for any given application? Since most 
new engineers usually only have architectural knowledge of the Pentium-class, or 
SPARC processors, it would be helpful for them to broaden their processor horizon. 
The correct processor choice can be a “bet the company” decision. I was there in a 
few cases where it was such a decision, and the company lost the bet.  
 



Why should you buy this book? 

If you are one of my students. 

If you’re in my class at UWB, then you’ll probably buy the book because it is on 
your required reading list. Besides, an autographed copy of the book might be 
valuable a few years from now (said with a smile). However, the real reason is that 
it will simplify note-taking. The content is reasonably faithful to the 400 or so 
lectures slides that you’ll have to sit through in class. Seriously, though, reading 
this book will help you to get a grasp of the issues that embedded system 
designers must deal with on a daily basis. Knowing something about embedded 
systems will be a big help when you become a member of the next group and start 
looking for a job!  

If you are a student elsewhere or a recent graduate.  
 
Even if you aren’t studying embedded systems at UWB, reading this book can be 
important to your future career. Embedded systems is one of the largest and 
fastest growing specialties in the industry, but the number of recent graduates 
who have embedded experience is woefully small. Any prior knowledge of the field 
will make you stand out from other job applicants.  
 
As a hiring manager, when interviewing job applicants I would often “tune out” the 
candidates who gave the standard, “I’m flexible, I’ll do anything” answer. However, 
once in while someone would say, “I used your stuff in school, and boy, was it ever 
a kludge. Why did you set up the trace spec menu that way?” That was the 
candidate I wanted to hire. If your only benefit from reading this book is that you 
learn some jargon that helps you make a better impression at your next job 
interview, then reading it was probably worth your the time invested.  

If you are a working engineer or developer. 

If you are an experienced software developer this book will help you to see the big 
picture. If it’s not in your nature to care about the big picture, you may be asking: 
“why do I need to see the big picture? I’m a software designer. I’m only concerned 
with technical issues. Let the marketing-types and managers worry about ‘the big 
picture.’ I’ll take a good Quick Sort algorithm anytime.” Well, the reality is that, as 
a developer, you are at the bottom of the food chain when it comes to making 
certain critical decisions, but you are at the top of the blame list when the project 
is late. I know from experience. I spent many long hours in the lab trying to 
compensate for a bad decision made by someone else earlier in the project’s 
lifecycle. I remember many times when I wasn’t at my daughter’s recitals because 
I was fixing code. Don’t let someone else stick you with the dog! This book will 
help you recognize and explain the critical importance of certain early decisions. It 
will equip you to influence the decisions that directly impact your success. You owe 
it to yourself. 

If you are a manager.  

Having just maligned managers and marketers, I’m now going to take that all back 
and say that this book is also for them. If you are a manager and want your 
project to go smoothly and your product to get to market on time, then this book 
can warn you about land mines and roadblocks. Will it guarantee success? No, but 
like chicken soup, it can’t hurt.  

 



I’ll also try to share ideas that have worked for me as a manager. For example, 
when I was an R&D Project Manager I used a simple “trick” to help to form my 
project team and focus our efforts. Before we even started the product definition 
phase I would get some foam-core poster board and build a box with it. The box 
had the approximate shape of the product. Then I drew a generic front panel and 
pasted it on the front of the box. The front panel had the project’s code name, like 
Gerbil, or some other mildly humorous name, prominently displayed. Suddenly, we 
had a tangible prototype “image” of the product. We could see it. It got us focused. 
Next, I held a pot-luck dinner at my house for the project team and their 
significant others.[2] These simple devices helped me to bring the team’s focus to 
the project that lay ahead. It also helped to form the “extended support team” so 
that when the need arose to call for a 60 or 80 hours workweek, the home front 
support was there.  

(While that extended support is important, managers should not abuse it. As an 
R&D Manager I realized that I had a large influence over the engineer’s personal 
lives. I could impact their salaries with large raises and I could seriously strain a 
marriage by firing them. Therefore, I took my responsibility for delivering the right 
product, on time, very seriously. You should too.) 

Embedded designers and managers shouldn’t have to make the same mistakes 
over and over. I hope that this book will expose you to some of the best practices 
that I’ve learned over the years. Since embedded system design seems to lie in 
the netherworld between Electrical Engineering and Computer Science, some of 
the methods and tools that I’ve learned and developed don’t seem to rise to the 
surface in books with a homogeneous focus.  

[2]I can't take credit for this idea. I learned if from Controlling Software Projects, by 
Tom DeMarco (Yourdon Press, 1982), and from a videotape series of his lectures. 

How is the book structured? 

For the most part, the text will follow the classic embedded processor lifecycle 
model. This model has served the needs of marketing engineers and field sales 
engineers for many years. The good news is that this model is a fairly accurate 
representation of how embedded systems are developed. While no simple model 
truly captures all of the subtleties of the embedded development process, 
representing it as a parallel development of hardware and software, followed by an 
integration step, seems to capture the essence of the process. 
 

What do I expect you to know? 

Primarily, I assume you are familiar with the vocabulary of application 
development. While some familiarity with C, assembly, and basic digital circuits is 
helpful, it’s not necessary. The few sections that describe specific C coding 
techniques aren’t essential to the rest of the book and should be accessible to 
almost any programmer. Similarly, you won’t need to be an expert assembly 
language programmer to understand the point of the examples that are presented 
in Motorola 68000 assembly language. If you have enough logic background to 
understand ANDs and ORs, you are prepared for the circuit content. In short, 
anyone who’s had a few college-level programming courses, or equivalent 
experience, should be comfortable with the content.  
 



Acknowledgments 

I’d like to thank some people who helped, directly and indirectly, to make this 
book a reality. Perry Keller first turned me on to the fun and power of the in-circuit 
emulator. I’m forever in his debt. Stan Bowlin was the best emulator designer that 
I ever had the privilege to manage. I learned a lot about how it all works from 
Stan. Daniel Mann, an AMD Fellow, helped me to understand how all the pieces fit 
together.  

The manuscript was edited by Robert Ward, Julie McNamee, Rita Sooby, Michelle 
O’Neal, and Catherine Janzen. Justin Fulmer redid many of my graphics. Rita 
Sooby and Michelle O’Neal typeset the final result. Finally, Robert Ward and my 
friend and colleague, Sid Maxwell, reviewed the manuscript for technical accuracy. 
Thank you all. 

Arnold Berger 
Sammamish, Washington 
September 27, 2001 



Introduction 
The arrival of the microprocessor in the 1970s brought about a revolution of 
control. For the first time, relatively complex systems could be constructed using a 
simple device, the microprocessor, as its primary control and feedback element. If 
you were to hunt out an old Teletype ASR33 computer terminal in a surplus store 
and compare its innards to a modern color inkjet printer, there’s quite a difference. 

Automobile emissions have decreased by 90 percent over the last 20 years, 
primarily due to the use of microprocessors in the engine-management system. 
The open-loop fuel control system, characterized by a carburetor, is now a fuel-
injected, closed-loop system using multiple sensors to optimize performance and 
minimize emissions over a wide range of operating conditions. This type of 
performance improvement would have been impossible without the microprocessor 
as a control element. 

Microprocessors have now taken over the automobile. A new luxury- class 
automobile might have more than 70 dedicated microprocessors, controlling tasks 
from the engine spark and transmission shift points to opening the window slightly 
when the door is being closed to avoid a pressure burst in the driver’s ear. 

The F-16 is an unstable aircraft that cannot be flown without on-board computers 
constantly making control surface adjustments to keep it in the air. The pilot, 
through the traditional controls, sends requests to the computer to change the 
plane’s flight profile. The computer attempts to comply with those requests to the 
extent that it can and still keep the plane in the air.  

A modern jetliner can have more than 200 on-board, dedicated microprocessors. 

The most exciting driver of microprocessor performance is the games market. 
Although it can be argued that the game consoles from Nintendo, Sony, and Sega 
are not really embedded systems, the technology boosts that they are driving are 
absolutely amazing. Jim Turley[1], at the Microprocessor Forum, described a 
200MHz reduced instruction set computer (RISC) processor that was going into a 
next-generation game console. This processor could do a four-dimensional matrix 
multiplication in one clock cycle at a cost of $25. 

Why Embedded Systems Are Different 

Well, all of this is impressive, so let’s delve into what makes embedded systems 
design different — at least different enough that someone has to write a book 
about it. A good place to start is to try to enumerate the differences between your 
desktop PC and the typical embedded system. 

 

 Embedded systems are dedicated to specific tasks, whereas PCs are 
generic computing platforms. 

 Embedded systems are supported by a wide array of processors and 
processor architectures. 

 Embedded systems are usually cost sensitive. 

 Embedded systems have real-time constraints. 
 



Note  You’ll have ample opportunity to learn about real time. For now, 
real- time events are external (to the embedded system) events that 
must be dealt with when they occur (in real time). 

 

 If an embedded system is using an operating system at all, it is most 
likely using a real-time operating system (RTOS), rather than Windows 
9X, Windows NT, Windows 2000, Unix, Solaris, or HP- UX. 

 The implications of software failure is much more severe in embedded 
systems than in desktop systems. 

 Embedded systems often have power constraints. 

 Embedded systems often must operate under extreme environmental 
conditions. 

 Embedded systems have far fewer system resources than desktop 
systems. 

 Embedded systems often store all their object code in ROM. 

 Embedded systems require specialized tools and methods to be 
efficiently designed. 

 Embedded microprocessors often have dedicated debugging circuitry.  

Embedded systems are dedicated to specific tasks, whereas PCs are 
generic computing platforms 
 
Another name for an embedded microprocessor is a dedicated microprocessor. It is 
programmed to perform only one, or perhaps, a few, specific tasks. Changing the 
task is usually associated with obsolescing the entire system and redesigning it. 
The processor that runs a mobile heart monitor/defibrillator is not expected to run 
a spreadsheet or word processor. 

Conversely, a general-purpose processor, such as the Pentium on which I’m 
working at this moment, must be able to support a wide array of applications with 
widely varying processing requirements. Because your PC must be able to service 
the most complex applications with the same performance as the lightest 
application, the processing power on your desktop is truly awesome. 

Thus, it wouldn’t make much sense, either economically or from an engineering 
standpoint, to put an AMD-K6, or similar processor, inside the coffeemaker on your 
kitchen counter. 

 
Note  That’s not to say that someone won’t do something similar. For 

example, a French company designed a vacuum cleaner with an 
AMD 29000 processor. The 29000 is a 32-bit RISC CPU that is far 
more suited for driving laser-printer engines. 

Embedded systems are supported by a wide array of processors and 
processor architectures 

Most students who take my Computer Architecture or Embedded Systems class 
have never programmed on any platform except the X86 (Intel) or the Sun SPARC 
family. The students who take the Embedded Systems class are rudely awakened 
by their first homework assignment, which has them researching the available 
trade literature and proposing the optimal processor for an assigned application. 



These students are learning that today more than 140 different microprocessors 
are available from more than 40 semiconductor vendors[2]. These vendors are in a 
daily battle with each other to get the design-win (be the processor of choice) for 
the next wide-body jet or the next Internet- based soda machine. 

 
In Chapter 2, you’ll learn more about the processor-selection process. For now, 
just appreciate the range of available choices.  

Embedded systems are usually cost sensitive 

I say “usually” because the cost of the embedded processor in the Mars Rover was 
probably not on the design team’s top 10 list of constraints. However, if you save 
10 cents on the cost of the Engine Management Computer System, you’ll be a hero 
at most automobile companies. Cost does matter in most embedded applications. 

 
The cost that you must consider most of the time is system cost. The cost of the 
processor is a factor, but, if you can eliminate a printed circuit board and 
connectors and get by with a smaller power supply by using a highly integrated 
microcontroller instead of a microprocessor and separate peripheral devices, you 
have potentially a greater reduction in system costs, even if the integrated device 
is significantly more costly than the discrete device. This issue is covered in more 
detail in Chapter 3. 

Embedded systems have real-time constraints 

I was thinking about how to introduce this section when my laptop decided to back 
up my work. I started to type but was faced with the hourglass symbol because 
the computer was busy doing other things. Suppose my computer wasn’t sitting on 
my desk but was connected to a radar antenna in the nose of a commercial jetliner. 
If the computer’s main function in life is to provide a collision alert warning, then 
suspending that task could be disastrous. 

 
Real-time constraints generally are grouped into two categories: time- sensitive 
constraints and time-critical constraints. If a task is time critical, it must take place 
within a set window of time, or the function controlled by that task fails. 
Controlling the flight-worthiness of an aircraft is a good example of this. If the 
feedback loop isn’t fast enough, the control algorithm becomes unstable, and the 
aircraft won’t stay in the air. 

A time-sensitive task can die gracefully. If the task should take, for example, 
4.5ms but takes, on average, 6.3ms, then perhaps the inkjet printer will print two 
pages per minute instead of the design goal of three pages per minute. 

If an embedded system is using an operating system at all, it is most 
likely using an RTOS 

Like embedded processors, embedded operating systems also come in a wide 
variety of flavors and colors. My students must also pick an embedded operating 
system as part of their homework project. RTOSs are not democratic. They need 
not give every task that is ready to execute the time it needs. RTOSs give the 
highest priority task that needs to run all the time it needs. If other tasks fail to 
get sufficient CPU time, it’s the programmer’s problem. 



Another difference between most commercially available operating systems and 
your desktop operating system is something you won’t get with an RTOS. You 
won’t get the dreaded Blue Screen of Death that many Windows 9X users see on a 
regular basis.  

The implications of software failure are much more severe in embedded 
systems than in desktop systems 

Remember the Y2K hysteria? The people who were really under the gun were the 
people responsible for the continued good health of our computer- based 
infrastructure. A lot of money was spent searching out and replacing devices with 
embedded processors because the #$%%$ thing got the dates all wrong. 

We all know of the tragic consequences of a medical radiation machine that 
miscalculates a dosage. How do we know when our code is bug free? How do you 
completely test complex software that must function properly under all conditions? 

 
However, the most important point to take away from this discussion is that 
software failure is far less tolerable in an embedded system than in your average 
desktop PC. That is not to imply that software never fails in an embedded system, 
just that most embedded systems typically contain some mechanism, such as a 
watchdog timer, to bring it back to life if the software loses control. You’ll find out 
more about software testing in Chapter 9. 

Embedded systems have power constraints 

For many readers, the only CPU they have ever seen is the Pentium or AMD K6 
inside their desktop PC. The CPU needs a massive heat sink and fan assembly to 
keep the processor from baking itself to death. This is not a particularly serious 
constraint for a desktop system. Most desktop PC’s have plenty of spare space 
inside to allow for good airflow. However, consider an embedded system attached 
to the collar of a wolf roaming around Wyoming or Montana. These systems must 
work reliably and for a long time on a set of small batteries. 

How do you keep your embedded system running on minute amounts of power? 
Usually that task is left up to the hardware engineer. However, the division of 
responsibility isn’t clearly delineated. The hardware designer might or might not 
have some idea of the software architectural constraints. In general, the processor 
choice is determined outside the range of hearing of the software designers. If the 
overall system design is on a tight power budget, it is likely that the software 
design must be built around a system in which the processor is in “sleep mode” 
most of the time and only wakes up when a timer tick occurs. In other words, the 
system is completely interrupt driven.  

Power constraints impact every aspect of the system design decisions. Power 
constraints affect the processor choice, its speed, and its memory architecture. 
The constraints imposed by the system requirements will likely determine whether 
the software must be written in assembly language, rather than C or C++, 
because the absolute maximum performance must be achieved within the power 
budget. Power requirements are dictated by the CPU clock speed and the number 
of active electronic components (CPU, RAM, ROM, I/O devices, and so on). 

Thus, from the perspective of the software designer, the power constraints could 
become the dominant system constraint, dictating the choice of software tools, 
memory size, and performance headroom.  

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



Speed vs. Power 

Almost all modern CPUs are fabricated using the Complementary Metal Oxide 
Silicon (CMOS) process. The simple gate structure of CMOS devices consists of two 
MOS transistors, one N-type and one P-type (hence, the term complementary), 
stacked like a totem pole with the N-type on top and the P-type on the bottom. 
Both transistors behave like perfect switches. When the output is high, or logic 
level 1, the P-type transistor is turned off, and the N-type transistor connects the 
output to the supply voltage (5V, 3.3V, and so on), which the gate outputs to the 
rest of the circuit. 

When the logic level is 0, the situation is reversed, and the P-type transistor 
connects the next stage to ground while the N-type transistor is turned off. This 
circuit topology has an interesting property that makes it attractive from a power- 
use viewpoint. If the circuit is static (not changing state), the power loss is 
extremely small. In fact, it would be zero if not for a small amount of leakage 
current inherent in these devices at normal room temperature and above. 

When the circuit is switching, as in a CPU, things are different. While a gate 
switches logic levels, there is a period of time when the N-type and P-type 
transistors are simultaneously on. During this brief window, current can flow from 
the supply voltage line to ground through both devices. Current flow means power 
dissipation and that means heat. The greater the clock speed, the greater the 
number of switching cycles taking place per second, and this means more power 
loss. Now, consider your 500MHz Pentium or Athlon processor with 10 million or so 
transistors, and you can see why these desktop machines are so power hungry. In 
fact, it is almost a perfect linear relationship between CPU speed and power 
dissipation in modern processors. Those of you who overclock your CPUs to wring 
every last ounce of performance out of it know how important a good heat sink 
and fan combination are.  

Embedded systems must operate under extreme environmental conditions 

Embedded systems are everywhere. Everywhere means everywhere. Embedded 
systems must run in aircraft, in the polar ice, in outer space, in the trunk of a 
black Camaro in Phoenix, Arizona, in August. Although making sure that the 
system runs under these conditions is usually the domain of the hardware designer, 
there are implications for both the hardware and software. Harsh environments 
usually mean more than temperature and humidity. Devices that are qualified for 
military use must meet a long list of environmental requirements and have the 
documentation to prove it. If you’ve wondered why a simple processor, such as the 
8086 from Intel, should cost several thousands of dollars in a missile, think 
paperwork and environment. The fact that a device must be qualified for the 
environment in which it will be operating, such as deep space, often dictates the 
selection of devices that are available. 

The environmental concerns often overlap other concerns, such as power 
requirements. Sealing a processor under a silicone rubber conformal coating 
because it must be environmentally sealed also means that the capability to 
dissipate heat is severely reduced, so processor type and speed is also a factor. 

Unfortunately, the environmental constraints are often left to the very end of the 
project, when the product is in testing and the hardware designer discovers that 
the product is exceeding its thermal budget. This often means slowing the clock, 
which leads to less time for the software to do its job, which translates to further 



refining the software to improve the efficiency of the code. All the while, the 
product is still not released. 

Embedded systems have far fewer system resources than desktop 
systems 

Right now, I’m typing this manuscript on my desktop PC. An oldies CD is playing 
through the speakers. I’ve got 256MB of RAM, 26GB of disk space, and assorted 
ZIP, JAZZ, floppy, and CD-RW devices on a SCSI card. I’m looking at a beautiful 
19-inch CRT monitor. I can enter data through a keyboard and a mouse. Just 
considering the bus signals in the system, I have the following: 

 Processor bus 

 AGP bus 

 PCI bus 

 ISA bus 

 SCSI bus 

 USB bus 

 Parallel bus 

 RS-232C bus 

An awful lot of system resources are at my disposal to make my computing chores 
as painless as possible. It is a tribute to the technological and economic driving 
forces of the PC industry that so much computing power is at my fingertips.  

Now consider the embedded system controlling your VCR. Obviously, it has far 
fewer resources that it must manage than the desktop example. Of course, this is 
because it is dedicated to a few well-defined tasks and nothing else. Being 
engineered for cost effectiveness (the whole VCR only cost $80 retail), you can’t 
expect the CPU to be particularly general purpose. This translates to fewer 
resources to manage and hence, lower cost and simplicity. However, it also means 
that the software designer is often required to design standard input and output 
(I/O) routines repeatedly. The number of inputs and outputs are usually so limited, 
the designers are forced to overload and serialize the functions of one or two input 
devices. Ever try to set the time in your super exercise workout wristwatch after 
you’ve misplaced the instruction sheet? 

Embedded systems store all their object code in ROM 

Even your PC has to store some of its code in ROM. ROM is needed in almost all 
systems to provide enough code for the system to initialize itself (boot-up code). 
However, most embedded systems must have all their code in ROM. This means 
severe limitations might be imposed on the size of the code image that will fit in 
the ROM space. However, it’s more likely that the methods used to design the 
system will need to be changed because the code is in ROM. 

As an example, when the embedded system is powered up, there must be code 
that initializes the system so that the rest of the code can run. This means 
establishing the run-time environment, such as initializing and placing variables in 
RAM, testing memory integrity, testing the ROM integrity with a checksum test, 
and other initialization tasks. 

 



From the point of view of debugging the system, ROM code has certain 
implications. First, your handy debugger is not able to set a breakpoint in ROM. To 
set a breakpoint, the debugger must be able to remove the user’s instruction and 
replace it with a special instruction, such as a TRAP instruction or software 
interrupt instruction. The TRAP forces a transfer to a convenient entry point in the 
debugger. In some systems, you can get around this problem by loading the 
application software into RAM. Of course, this assumes sufficient RAM is available 
to hold of all the applications, to store variables, and to provide for dynamic 
memory allocation. 
 
Of course, being a capitalistic society, wherever there is a need, someone will 
provide a solution. In this case, the specialized suite of tools that have evolved to 
support the embedded system development process gives you a way around this 
dilemma, which is discussed in the next section. 

Embedded systems require specialized tools and methods to be efficiently 
designed 
 
Chapters 4 through 8 discuss the types of tools in much greater detail. The 
embedded system is so different in so many ways, it’s not surprising that 
specialized tools and methods must be used to create and test embedded software. 
Take the case of the previous example—the need to set a break-point at an 
instruction boundary located in ROM.  

 

A ROM Emulator 

Several companies manufacture hardware-assist products, such as ROM emulators. 
Figure 1 shows a product called NetROM, from Applied Microsystems Corporation. 
NetROM is an example of a general class of tools called emulators. From the point 
of view of the target system, the ROM emulator is designed to look like a standard 
ROM device. It has a connector that has the exact mechanical dimensions and 
electrical characteristics of the ROM it is emulating. However, the connector’s job 
is to bring the signals from the ROM socket on the target system to the main 
circuitry, located at the other end of the cable. This circuitry provides high-speed 
RAM that can be written to quickly via a separate channel from a host computer. 
Thus, the target system sees a ROM device, but the software developer sees a 
RAM device that can have its code easily modified and allows debugger 
breakpoints to be set. 

 
Figure 1: NetROM.  



 
Note  In the context of this book, the term hardware-assist refers to 

additional specialized devices that supplement a software-only 
debugging solution. A ROM emulator, manufactured by companies 
such as Applied Microsystems and Grammar Engine, is an example 
of a hardware-assist device. 

Embedded microprocessors often have dedicated debugging circuitry 

Perhaps one of the most dramatic differences between today’s embedded 
microprocessors and those of a few years ago is the almost mandatory inclusion of 
dedicated debugging circuitry in silicon on the chip. This is almost counter-intuitive 
to all of the previous discussion. After droning on about the cost sensitivity of 
embedded systems, it seems almost foolish to think that every microprocessor in 
production contains circuitry that is only necessary for debugging a product under 
development. In fact, this was the prevailing sentiment for a while. Embedded-chip 
manufacturers actually built special versions of their embedded devices that 
contained the debug circuitry and made them available (or not available) to their 
tool suppliers. In the end, most manufacturers found it more cost-effective to 
produce one version of the chip for all purposes. This didn’t stop them from 
restricting the information about how the debug circuitry worked, but every device 
produced did contain the debug “hooks” for the hardware-assist tools. 

What is noteworthy is that the manufacturers all realized that the inclusion of on-
chip debug circuitry was a requirement for acceptance of their devices in an 
embedded application. That is, unless their chip had a good solution for embedded 
system design and debug, it was not going to be a serious contender for an 
embedded application by a product-development team facing time-to-market 
pressures. 
 

Summary 

Now that you know what is different about embedded systems, it’s time to see 
how you actually tame the beast. In the chapters that follow, you’ll examine the 
embedded system design process step by step, as it is practiced. 

The first few chapters focus on the process itself. I’ll describe the design life cycle 
and examine the issues affecting processor selection. The later chapters focus on 
techniques and tools used to build, test, and debug a complete system. 

I’ll close with some comments on the business of embedded systems and on an 
emerging technology that might change everything. 

Although engineers like to think design is a rational, requirements-driven process, 
in the real world, many decisions that have an enormous impact on the design 
process are made by non-engineers based on criteria that might have little to do 
with the project requirements. For example, in many projects, the decision to use 
a particular processor has nothing to do with the engineering parameters of the 
problem. Too often, it becomes the task of the design team to pick up the pieces 
and make these decisions work. Hopefully, this book provides some ammunition to 
those frazzled engineers who often have to make do with less than optimal 
conditions. 

 

 



 
 

Works Cited 
 

1. Turley, Jim. “High Integration is Key for Major Design Wins.” A paper 
presented at the Embedded Processor Forum, San Jose, 15 October 
1998. 

2. Levy, Marcus. “EDN Microprocessor/Microcontroller Directory.” EDN, 14 
September 2000. 



Chapter 1: The Embedded Design Life 
Cycle 
Unlike the design of a software application on a standard platform, the design of 
an embedded system implies that both software and hardware are being designed 
in parallel. Although this isn’t always the case, it is a reality for many designs 
today. The profound implications of this simultaneous design process heavily 
influence how systems are designed. 

Introduction 
 
Figure 1.1 provides a schematic representation of the embedded design life cycle 
(which has been shown ad nauseam in marketing presentations). 
 

 
Figure 1.1: Embedded design life cycle diagram.  
A phase representation of the embedded design life cycle.  

Time flows from the left and proceeds through seven phases: 

 

 Product specification 

 Partitioning of the design into its software and hardware components 

 Iteration and refinement of the partitioning 

 Independent hardware and software design tasks 

 Integration of the hardware and software components 

 Product testing and release 

 On-going maintenance and upgrading  



 
The embedded design process is not as simple as Figure 1.1 depicts. A 
considerable amount of iteration and optimization occurs within phases and 
between phases. Defects found in later stages often cause you to “go back to 
square 1.” For example, when product testing reveals performance deficiencies 
that render the design non-competitive, you might have to rewrite algorithms, 
redesign custom hardware — such as Application-Specific Integrated Circuits 
(ASICs) for better performance — speed up the processor, choose a new processor, 
and so on. 
 
Although this book is generally organized according to the life-cycle view in Figure 
1.1, it can be helpful to look at the process from other perspectives. Dr. Daniel 
Mann, Advanced Micro Devices (AMD), Inc., has developed a tool-based view of 
the development cycle. In Mann’s model, processor selection is one of the first 
tasks (see Figure 1.2). This is understandable, considering the selection of the 
right processor is of prime importance to AMD, a manufacturer of embedded 
microprocessors. However, it can be argued that including the choice of the 
microprocessor and some of the other key elements of a design in the specification 
phase is the correct approach. For example, if your existing code base is written 
for the 80X86 processor family, it’s entirely legitimate to require that the next 
design also be able to leverage this code base. Similarly, if your design team is 
highly experienced using the Green Hills© compiler, your requirements document 
probably would specify that compiler as well.  
 

 
Figure 1.2: Tools used in the design process.  
 
The embedded design cycle represented in terms of the tools used in the 
design process (courtesy of Dr. Daniel Mann, AMD Fellow, Advanced Micro 
Devices, Inc., Austin, TX).  

The economics and reality of a design requirement often force decisions to be 
made before designers can consider the best design trade-offs for the next project. 
In fact, designers use the term “clean sheet of paper” when referring to a design 
opportunity in which the requirement constraints are minimal and can be strictly 
specified in terms of performance and cost goals. 
 



Figure 1.2 shows the maintenance and upgrade phase. The engineers are 
responsible for maintaining and improving existing product designs until the 
burden of new features and requirements overwhelms the existing design. Usually, 
these engineers were not the same group that designed the original product. It’s a 
miracle if the original designers are still around to answer questions about the 
product. Although more engineers maintain and upgrade projects than create new 
designs, few, if any, tools are available to help these designers reverse-engineer 
the product to make improvements and locate bugs. The tools used for 
maintenance and upgrading are the same tools designed for engineers creating 
new designs. 
 
The remainder of this book is devoted to following this life cycle through the step-
by-step development of embedded systems. The following sections give an 
overview of the steps in Figure 1.1. 
 

Product Specification 

Although this book isn’t intended as a marketing manual, learning how to design 
an embedded system should include some consideration of designing the right 
embedded system. For many R&D engineers, designing the right product means 
cramming everything possible into the product to make sure they don’t miss 
anything. Obviously, this wastes time and resources, which is why marketing and 
sales departments lead (or completely execute) the product-specification process 
for most companies. The R&D engineers usually aren’t allowed customer contact in 
this early stage of the design. This shortsighted policy prevents the product design 
engineers from acquiring a useful customer perspective about their products.  

Although some methods of customer research, such as questionnaires and focus 
groups, clearly belong in the realm of marketing specialists, most projects benefit 
from including engineers in some market-research activities, especially the 
customer visit or customer research tour. 

The Ideal Customer Research Tour 

The ideal research team is three or four people, usually a marketing or sales 
engineer and two or three R&D types. Each member of the team has a specific role 
during the visit. Often, these roles switch among the team members so each has 
an opportunity to try all the roles. The team prepares for the visit by developing a 
questionnaire to use to keep the interviews flowing smoothly. In general, the 
questionnaire consists of a set of open-ended questions that the team members fill 
in as they speak with the customers. For several customer visits, my research 
team spent more than two weeks preparing and refining the questionnaire. 

(Considering the cost of a customer visit tour (about $1,000 per day, per person 
for airfare, hotels, meals, and loss of productivity), it’s amazing how often little 
effort is put into preparing for the visit. Although it makes sense to visit your 
customers and get inside their heads, it makes more sense to prepare properly for 
the research tour.) 

The lead interviewer is often the marketing person, although it doesn’t have to be. 
The second team member takes notes and asks follow-up questions or digs down 
even deeper. The remaining team members are observers and technical resources. 
If the discussion centers on technical issues, the other team members might have 
to speak up, especially if the discussion concerns their area of expertise. However, 
their primary function is to take notes, listen carefully, and look around as much as 
possible. 



After each visit ends, the team meets off-site for a debriefing. The debriefing step 
is as important as the visit itself to make sure the team members retain the 
following: 

 What did each member hear? 

 What was explicitly stated? What was implicit? 

 Did they like what we had or were they being polite? 

 Was someone really turned on by it? 

 Did we need to refine our presentation or the form of the questionnaire? 

 Were we talking to the right people? 

As the debriefing continues, team members take additional notes and jot down 
thoughts. At the end of the day, one team member writes a summary of the visit’s 
results. 

After returning from the tour, the effort focuses on translating what the team 
heard from the customers into a set of product requirements to act on. These 
sessions are often the most difficult and the most fun. The team often is 
passionate in its arguments for the customers and equally passionate that the 
customers don’t know what they want. At some point in this process, the 
information from the visit is distilled down to a set of requirements to guide the 
team through the product development phase. 

Often, teams single out one or more customers for a second or third visit as the 
product development progresses. These visits provide a reality check and some 
midcourse corrections while the impact of the changes are minimal.  

 

Participating in the customer research tour as an R&D engineer on the project has 
a side benefit. Not only do you have a design specification (hopefully) against 
which to design, you also have a picture in your mind’s eye of your team’s ultimate 
objective. A little voice in your ear now biases your endless design decisions 
toward the common goals of the design team. This extra insight into the product 
specifications can significantly impact the success of the project. 

A senior engineering manager studied projects within her company that were 
successful not only in the marketplace but also in the execution of the product-
development process. Many of these projects were embedded systems. Also, she 
studied projects that had failed in the market or in the development process.  

 

Flight Deck on the Bass Boat? 

Having spent the bulk of my career as an R&D engineer and manager, I am 
continually fascinated by the process of turning a concept into a product. Knowing 
how to ask the right questions of a potential customer, understanding his needs, 
determining the best feature and price point, and handling all the other details of 
research are not easy, and certainly not straightforward to number-driven 
engineers. 

One of the most valuable classes I ever attended was conducted by a marketing 
professor at Santa Clara University on how to conduct customer research. I 



learned that the customer wants everything yesterday and is unwilling to pay for 
any of it. If you ask a customer whether he wants a feature, he’ll say yes every 
time. So, how do you avoid building an aircraft carrier when the customer really 
needs a fishing boat? First of all, don’t ask the customer whether the product 
should have a flight deck. Focus your efforts on understanding what the customer 
wants to accomplish and then extend his requirements to your product. As a result, 
the product and features you define are an abstraction and a distillation of the 
needs of your customer. 

 

 
A common factor for the successful products was that the design team shared a 
common vision of the product they were designing. When asked about the product, 
everyone involved — senior management, marketing, sales, quality assurance, and 
engineering — would provide the same general description. In contrast, many 
failed products did not produce a consistent articulation of the project goals. One 
engineer thought it was supposed to be a low-cost product with medium 
performance. Another thought it was to be a high-performance, medium-cost 
product, with the objective to maximize the performance-to-cost ratio. A third felt 
the goal was to get something together in a hurry and put it into the market as 
soon as possible. 
Another often-overlooked part of the product-specification phase is the 
development tools required to design the product. Figure 1.2 shows the embedded 
life cycle from a different perspective. This “design tools view” of the development 
cycle highlights the variety of tools needed by embedded developers. 

When I designed in-circuit emulators, I saw products that were late to market 
because the engineers did not have access to the best tools for the job. For 
example, only a third of the hard-core embedded developers ever used in-circuit 
emulators, even though they were the tools of choice for difficult debugging 
problems. 

The development tools requirements should be part of the product specification to 
ensure that unreal expectations aren’t being set for the product development cycle 
and to minimize the risk that the design team won’t meet its goals.  
 
Tip  One of the smartest project development methods of which I’m 

aware is to begin each team meeting or project review meeting by 
showing a list of the project musts and wants. Every project 
stakeholder must agree that the list is still valid. If things have 
changed, then the project manager declares the project on hold until 
the differences are resolved. In most cases, this means that the 
project schedule and deliverables are no longer valid. When this 
happens, it’s a big deal—comparable to an assembly line worker in 
an auto plant stopping the line because something is not right with 
the manufacturing process of the car.  

In most cases, the differences are easily resolved and work continues, but not 
always. Sometimes a competitor may force a re-evaluation of the product features. 
Sometimes, technologies don’t pan out, and an alternative approach must be 
found. Since the alternative approach is generally not as good as the primary 
approach, design compromises must be factored in. 
 
 

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



Hardware/Software Partitioning 

Since an embedded design will involve both hardware and software components, 
someone must decide which portion of the problem will be solved in hardware and 
which in software. This choice is called the "partitioning decision." 

Application developers, who normally work with pre-defined hardware resources, 
may have difficulty adjusting to the notion that the hardware can be enhanced to 
address any arbitrary portion of the problem. However, they've probably already 
encountered examples of such a hardware/software tradeoff. For example, in the 
early days of the PC (i.e., before the introduction of the 80486 processor), the 
8086, 80286, and 80386 CPUs didn’t have an on-chip floating-point processing 
unit. These processors required companion devices, the 8087, 80287, and 80387 
floating-point units (FPUs), to directly execute the floating-point instructions in the 
application code. 

If the PC did not have an FPU, the application code had to trap the floating-point 
instructions and execute an exception or trap routine to emulate the behavior of 
the hardware FPU in software. Of course, this was much slower than having the 
FPU on your motherboard, but at least the code ran. 

As another example of hardware/software partitioning, you can purchase a modem 
card for your PC that plugs into an ISA slot and contains the 
modulation/demodulation circuitry on the board. For less money, however, you can 
purchase a Winmodem that plugs into a PCI slot and uses your PC’s CPU to directly 
handle the modem functions. Finally, if you are a dedicated PC gamer, you know 
how important a high-performance video card is to game speed.  

If you generalize the concept of the algorithm to the steps required to implement a 
design, you can think of the algorithm as a combination of hardware components 
and software components. Each of these hardware/software partitioning examples 
implements an algorithm. You can implement that algorithm purely in software 
(the CPU without the FPU example), purely in hardware (the dedicated modem 
chip example), or in some combination of the two (the video card example). 

Laser Printer Design Algorithm 

Suppose your embedded system design task is to develop a laser printer. Figure 
1.3 shows the algorithm for this project. With help from laser printer designers, 
you can imagine how this task might be accomplished in software. The processor 
places the incoming data stream — via the parallel port, RS-232C serial port, USB 
port, or Ethernet port — into a memory buffer. 
 



 
Figure 1.3: The laser printer design.  
 
A laser printer design as an algorithm. Data enters the printer and must 
be transformed into a legible ensemble of carbon dots fused to a piece of 
paper.  

Concurrently, the processor services the data port and converts the incoming data 
stream into a stream of modulation and control signals to a laser tube, rotating 
mirror, rotating drum, and assorted paper-management “stuff.” You can see how 
this would bog down most modern microprocessors and limit the performance of 
the system. 

You could try to improve performance by adding more processors, thus dividing 
the concurrent tasks among them. This would speed things up, but without more 
information, it’s hard to determine whether that would be an optimal solution for 
the algorithm. 

When you analyze the algorithm, however, you see that certain tasks critical to the 
performance of the system are also bounded and well-defined. These tasks can be 
easily represented by design methods that can be translated to a hardware-based 
solution. For this laser printer design, you could dedicate a hardware block to the 
process of writing the laser dots onto the photosensitive surface of the printer 
drum. This frees the processor to do other tasks and only requires it to initialize 
and service the hardware if an error is detected. 

This seems like a fruitful approach until you dig a bit deeper. The requirements for 
hardware are more stringent than for software because it’s more complicated and 
costly to fix a hardware defect then to fix a software bug. If the hardware is a 
custom application-specificc IC (ASIC), this is an even greater consideration 
because of the overall complexity of designing a custom integrated circuit. If this 
approach is deemed too risky for this project, the design team must fine-tune the 
software so that the hardware-assisted circuit devices are not necessary. The risk-
management trade-off now becomes the time required to analyze the code and 
decide whether a software-only solution is possible.  

The design team probably will conclude that the required acceleration is not 
possible unless a newer, more powerful microprocessor is used. This involves costs 
as well: new tools, new board layouts, wider data paths, and greater complexity. 
Performance improvements of several orders of magnitude are common when 



specialized hardware replaces software-only designs; it’s hard to realize 100X or 
1000X performance improvements by fine-tuning software. 

These two very different design philosophies are successfully applied to the design 
of laser printers in two real-world companies today. One company has highly 
developed its ability to fine-tune the processor performance to minimize the need 
for specialized hardware. Conversely, the other company thinks nothing of 
throwing a team of ASIC designers at the problem. Both companies have 
competitive products but implement a different design strategy for partitioning the 
design into hardware and software components.  

The partitioning decision is a complex optimization problem. Many embedded 
system designs are required to be 

 Price sensitive 

 Leading-edge performers 

 Non-standard 

 Market competitive 

 Proprietary 

These conflicting requirements make it difficult to create an optimal design for the 
embedded product. The algorithm partitioning certainly depends on which 
processor you use in the design and how you implement the overall design in the 
hardware. You can choose from several hundred microprocessors, microcontrollers, 
and custom ASIC cores. The choice of the CPU impacts the partitioning decision, 
which impacts the tools decisions, and so on.  
Given this n-space of possible choices, the designer or design team must rely on 
experience to arrive at an optimal design. Also, the solution surface is generally 
smooth, which means an adequate solution (possibly driven by an entirely 
different constraint) is often not far off the best solution. Constraints usually 
dictate the decision path for the designers, anyway. However, when the design 
exercise isn’t well understood, the decision process becomes much more 
interesting. You’ll read more concerning the hardware/software partitioning 
problem in Chapter 3. 
 
 

Iteration and Implementation 

(Before Hardware and Software Teams Stop Communicating) 
 
The iteration and implementation part of the process represents a somewhat 
blurred area between implementation and hardware/software partitioning (refer to 
Figure 1.1 on page 2) in which the hardware and software paths diverge. This 
phase represents the early design work before the hardware and software teams 
build “the wall” between them. 
 
The design is still very fluid in this phase. Even though major blocks might be 
partitioned between the hardware components and the software components, 
plenty of leeway remains to move these boundaries as more of the design 
constraints are understood and modeled. In Figure 1.2 earlier in this chapter, 
Mann represents the iteration phase as part of the selection process. The hardware 
designers might be using simulation tools, such as architectural simulators, to 
model the performance of the processor and memory systems. The software 
designers are probably running code benchmarks on self-contained, single-board 



computers that use the target micro processor. These single-board computers are 
often referred to as evaluation boards because they evaluate the performance of 
the microprocessor by running test code on it. The evaluation board also provides 
a convenient software design and debug environment until the real system 
hardware becomes available.  

You’ll learn more about this stage in later chapters. Just to whet your appetite, 
however, consider this: The technology exists today to enable the hardware and 
software teams to work closely together and keep the partitioning process actively 
engaged longer and longer into the implementation phase. The teams have a 
greater opportunity to get it right the first time, minimizing the risk that something 
might crop up late in the design phase and cause a major schedule delay as the 
teams scramble to fix it. 
 

Detailed Hardware and Software Design 

This book isn’t intended to teach you how to write software or design hardware. 
However, some aspects of embedded software and hardware design are unique to 
the discipline and should be discussed in detail. For example, after one of my 
lectures, a student asked, “Yes, but how does the code actually get into the 
microprocessor?” Although well-versed in C, C++, and Java, he had never faced 
having to initialize an environment so that the C code could run in the first place. 
Therefore, I have devoted separate chapters to the development environment and 
special software techniques. 

I’ve given considerable thought how deeply I should describe some of the 
hardware design issues. This is a difficult decision to make because there is so 
much material that could be covered. Also, most electrical engineering students 
have taken courses in digital design and microprocessors, so they’ve had ample 
opportunity to be exposed to the actual hardware issues of embedded systems 
design. Some issues are worth mentioning, and I’ll cover these as necessary. 

 
Hardware/Software Integration 

The hardware/software integration phase of the development cycle must have 
special tools and methods to manage the complexity. The process of integrating 
embedded software and hardware is an exercise in debugging and discovery. 
Discovery is an especially apt term because the software team now finds out 
whether it really understood the hardware specification document provided by the 
hardware team. 

 

Big Endian/Little Endian Problem 

One of my favorite integration discoveries is the “little endian/big endian” 
syndrome. The hardware designer assumes big endian organization, and the 
software designer assumes little endian byte order. What makes this a classic 
example of an interface and integration error is that both the software and 
hardware could be correct in isolation but fail when integrated because the 
“endianness” of the interface is misunderstood. 

Suppose, for example that a serial port is designed for an ASIC with a 16-bit I/O 
bus. The port is memory mapped at address 0x400000. Eight bits of the word are 
the data portion of the port, and the other eight bits are the status portion of the 
port. Even though the hardware designer might specify what bits are status and 



what bits are data, the software designer could easily assign the wrong port 
address if writes to the port are done as byte accesses (Figure 1.5). 

 
Figure 1.5: An example of the endianness problem in I/O addressing.  

If byte addressing is used and the big endian model is assumed, then the 
algorithm should check the status at address 0x400001. Data should be read from 
and written to address 0x400000. If the little endian memory model is assumed, 
then the reverse is true. If 16-bit addressing is used, i.e., the port is declared as 

unsigned short int * io_port ; 

then the endianness ambiguity problem goes away. This means that the software 
might become more complex because the developer will need to do bit 
manipulation in order to read and write data, thus making the algorithm more 
complex.  

The Holy Grail of embedded system design is to combine the first hardware 
prototype, the application software, the driver code, and the operating system 
software together with a pinch of optimism and to have the design work perfectly 
out of the chute. No green wires on the PC board, no “dead bugs,” no redesigning 
the ASICs or Field Programmable Gate Arrays (FPGA), and no rewriting the 
software. Not likely, but I did say it was the Holy Grail. 

 
Note  Here “dead bugs” are extra ICs glued to the board with their I/O 

pins facing up. Green wires are then soldered to their “legs” to patch 
them into the rest of the circuitry.  

 
You might wonder why this scenario is so unlikely. For one thing, the real-time 
nature of embedded systems leads to highly complex, nondeterministic behavior 
that can only be analyzed as it occurs. Attempting to accurately model or simulate 
the behavior can take much longer than the usable lifetime of the product being 
developed. This doesn’t necessarily negate what I said in the previous section; in 
fact, it is shades of gray. As the modeling tools improve, so will the designer’s 
ability to find bugs sooner in the process. Hopefully, the severity of the bugs that 
remain in the system can be easily corrected after they are uncovered. In 



Embedded Systems Programming[1], Michael Barr discusses a software 
architecture that anticipates the need for code patches and makes it easy to insert 
them without major restructuring of the entire code image. I devote Chapters 6, , 
and to debugging tools and techniques. 

 

Debugging an Embedded System 

 

In most ways, debugging an embedded system is similar to debugging a host- 
based application. If the target system contains an available communications 
channel to the host computer, the debugger can exist as two pieces: a debug 
kernel in the target system and a host application that communicates with it and 
manages the source database and symbol tables. (You’ll learn more about this 
later on as well.) Remember, you can’t always debug embedded systems using 
only the methods of the host computer, namely a good debugger and printf() 
statements. 

Many embedded systems are impossible to debug unless they are operating at full 
speed. Running an embedded program under a debugger can slow the program 
down by one or more orders of magnitude. In most cases, scaling all the real-time 
dependencies back so that the debugger becomes effective is much more work 
than just using the correct tools to debug at full speed. 

Manufacturers of embedded microprocessors also realize the difficulty of 
controlling these variables, so they’ve provided on-chip hooks to assist in the 
debugging of embedded systems containing their processors. Most designers won’t 
even consider using a microprocessor in an embedded application unless the 
silicon manufacturer can demonstrate a complete tool chain for designing and 
debugging its silicon. 

In general, there are three requirements for debugging an embedded or real-time 
system: 

 Run control — The ability to start, stop, peak, and poke the processor 
and memory. 

 Memory substitution — Replacing ROM-based memory with RAM for 
rapid and easy code download, debug, and repair cycles. 

 Real-time analysis — Following code flow in real time with real-time 
trace analysis. 

For many embedded systems, it is necessary also to integrate a commercial or in- 
house real-time operating system (RTOS) into the hardware and application 
software. This integration presents its own set of problems (more variables); the 
underlying behavior of the operating system is often hidden from the designers 
because it is obtained as object code from the vendor, which means these bugs 
are now masked by the RTOS and that another special tool must be used. 

This tool is usually available from the RTOS vendor (for a price) and is 
indispensable for debugging the system with the RTOS present. The added 
complexity doesn’t change the three requirements previously listed; it just makes 
them more complex. Add the phrase “and be RTOS aware” to each of the three 
listed requirements, and they would be equally valid for a system containing a 
RTOS. 



The general methods of debugging that you’ve learned to use on your PC or 
workstation are pretty much the same as in embedded systems. The exceptions 
are what make it interesting. It is an exercise in futility to try to debug a software 
module when the source of the problem lies in the underlying hardware or the 
operating system. Similarly, it is nearly impossible to find a bug that can only be 
observed when the system is running at full speed when the only trace capability 
available is to single-step the processor. However, with these tools at your disposal, 
your approach to debugging will be remarkably similar to debugging an application 
designed to run on your PC or workstation. 

Product Testing and Release 

Product testing takes on special significance when the performance of the 
embedded system has life or death consequences attached. You can shrug off an 
occasional lock-up of your PC, but you can ill-afford a software failure if the PC 
controls a nuclear power generating station’s emergency system. Therefore, the 
testing and reliability requirements for an embedded system are much more 
stringent than the vast majority of desktop applications. Consider the embedded 
systems currently supporting your desktop PC: IDE disk drive, CD-ROM, scanner, 
printer, and other devices are all embedded systems in their own right. How many 
times have they failed to function so that you had to cycle power to them?  

 
From the Trenches  For the longest time, my PC had a nagging problem of 

crashing in the middle of my word processor or graphics 
application. This problem persisted through Windows 95, 
95 Sr-1, 98, and 98 SE. After blaming Microsoft for 
shoddy software, I later discovered that I had a hardware 
problem in my video card. After replacing the drivers and 
the card, the crashes went away, and my computer is 
behaving well. I guess hardware/software integration 
problems exist on the desktop as well. 

However, testing is more than making sure the software doesn’t crash at a critical 
moment, although it is by no means an insignificant consideration. Because 
embedded systems usually have extremely tight design margins to meet cost goals, 
testing must determine whether the system is performing close to its optimal 
capabilities. This is especially true if the code is written in a high-level language 
and the design team consists of many developers. 

Many desktop applications have small memory leaks. Presumably, if the 
application ran long enough, the PC would run out of heap space, and the 
computer would crash. However, on a desktop machine with 64MB of RAM and 
virtual swap space, this is unlikely to be a problem. On the other side, in an 
embedded system, running continuously for weeks at a time, even a small 
memory leak is potentially disastrous. 

Who Does the Testing? 

In many companies, the job of testing the embedded product goes to a separate 
team of engineers and technicians because asking a designer to test his own code 
or product usually results in erratic test results. It also might lead to a “circle the 
wagons” mentality on the part of the design team, who view the testers as a 
roadblock to product release, rather than equal partners trying to prevent a 
defective product from reaching the customer.  

 



Compliance Testing 

Compliance testing is often overlooked. Modern embedded systems are awash in 
radio frequency (RF) energy. If you’ve traveled on a plane in the last five years, 
you’re familiar with the requirement that all electronic devices be turned off when 
the plane descends below 10,000 feet. I’m not qualified to discuss the finer points 
of RF suppression and regulatory compliance requirements; however, I have spent 
many hours at open field test sites with various compliance engineering (CE) 
engineers trying just to get one peak down below the threshold to pass the class B 
test and ship the product. 

I can remember one disaster when the total cost of the RF suppression hardware 
that had to be added came to about one-third of the cost of all the other hardware 
combined. Although it can be argued that this is the realm of the hardware 
designer and not a hardware/software design issue, most digital hardware 
designers have little or no training in the arcane art of RF suppression. Usually, the 
hotshot digital wizard has to seek out the last remaining analog designer to get 
clued in on how to knock down the fourth harmonic at 240MHz. Anyway, CE 
testing is just as crucial to a product’s release as any other aspect of the test 
program. 

CE testing had a negative impact on my hardware/software integration activities in 
one case. I thought we had done a great job of staying on top of the CE test 
requirements and had built up an early prototype especially for CE testing. The day 
of the tests, I proudly presented it to the CE engineer on schedule. He then asked 
for the test software that was supposed to exercise the hardware while the RF 
emissions were being monitored. Whoops, I completely forgot to write drivers to 
exercise the hardware. After some scrambling, we pieced together some of the 
turn-on code and convinced the CE engineer (after all, he had to sign all the forms) 
that the code was representative of the actual operational code. 

Referring to Figure 1.4, notice the exponential rise in the cost to fix a defect the 
later you are in the design cycle. In many instances, the Test Engineering Group is 
the last line of defense between a smooth product release and a major financial 
disaster. 

 
Figure 1.4: Where design time is spent.  
 
The percentage of project time spent in each phase of the embedded 
design life cycle. The curve shows the cost associated with fixing a defect 
at each stage of the process.  
Like debugging, many of the elements of reliability and performance testing map 
directly on the best practices for host-based software development. Much has been 



written about the correct way to develop software, so I won’t cover that again here. 
What is relevant to this subject is the best practices for testing software that has 
mission-critical or tight performance constraints associated with it. Just as with the 
particular problems associated with debugging a real-time system, testing the 
same system can be equally challenging. I’ll address this and other testing issues 
in Chapter 9. 
 

Maintaining and Upgrading Existing Products 

The embedded system tool community has made almost no effort to develop tools 
specifically targeted to products already in service. At first blush, you might not 
see this as a problem. Most commercially developed products are well documented, 
right? 

The majority of embedded system designers (around 60 percent) maintain and 
upgrade existing products, rather than design new products. Most of these 
engineers were not members of the original design team for a particular product, 
so they must rely on only their experience, their skills, the existing documentation, 
and the old product to understand the original design well enough to maintain and 
improve it. 

From the silicon vendor’s point of view, this is an important gap in the tool chain 
because the vendor wants to keep that customer buying its silicon, instead of 
giving the customer the chance to do a “clean sheet of paper” redesign. Clean 
sheets of paper tend to have someone else’s chip on them.  

 
From the 
Trenches  

One can hardly overstate the challenges facing some 
upgrade teams. I once visited a telecomm manufacturer 
that builds small office phone systems to speak to the 
product-support team. The team described the situation 
as: “They wheel the thing in on two carts. The box is on 
one cart, and the source listings are on the other. Then 
they tell us to make it better.” This usually translates to 
improving the overall performance of the embedded 
system without incurring the expense of a major 
hardware redesign. 

Another example features an engineer at a company that 
makes laser and ink-jet printers. His job is to study the 
assembly language output of their C and C++ source 
code and fine-tune it to improve performance by 
improving the code quality. Again, no hardware redesigns 
are allowed. 

Both of these examples testify to the skill of these 
engineers who are able to reverse-engineer and improve 
upon the work of the original design teams. 

This phase of a product’s life cycle requires tools that are especially tailored to 
reverse engineering and rapidly facilitating “what if …” scenarios. For example, it’s 
tempting to try a quick fix by speeding up the processor clock by 25 percent; 
however, this could cause a major ripple effect through the entire design, from 
memory chip access time margins to increased RF emissions. If such a possibility 
could be as easily explored as making measurements on a few critical code 
modules, however, you would have an extremely powerful tool on your hands. 



Sometimes, the solutions to improved performance are embarrassingly simple. For 
example, a data communications manufacturer was about to completely redesign a 
product when the critical product review uncovered that the processor was 
spending most of its time in a debug module that was erroneously left in the final 
build of the object code. It was easy to find because the support teams had access 
to sophisticated tools that enabled them to observe the code as it executed in real 
time. Without the tools, the task might have been too time-consuming to be 
worthwhile. 

 
Even with these test cases, every marketing flyer for every tool touts the tool’s 
capability to speed “time to market.” I’ve yet to hear any tool vendor advertise its 
tool as speeding “time to reverse-engineer,” although one company claimed that 
its logic analyzer sped up the “time to insight.” 
 
Embedded systems projects aren’t just “software on small machines.” Unlike 
application development, where the hardware is a fait accompli, embedded 
projects are usually optimization exercises that strive to create both hardware and 
software that complement each other. This difference is the driving force that 
defines the three most characteristic elements of the embedded design cycle: 
selection, partitioning, and system integration. This difference also colors testing 
and debugging, which must be adapted to work with unproven, proprietary 
hardware.  
 
While these characteristic differences aren’t all there is to embedded system 
design, they are what most clearly differentiate it from application development, 
and thus, they are the main focus of this book. The next chapter discusses the 
processor selection decision. Later chapters address the other issues.  
 

Work Cited 
 

1. Barr, Michael. “Architecting Embedded Systems for Add-on Software 
Modules.” Embedded Systems Programming, September 1999, 49. 

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



 

Chapter 2: The Selection Process 

Overview 

Embedded systems represent target platforms that are usually specific to a single 
task. This specificity means the system design can be highly optimized because the 
range of tasks the device must perform is well bounded. In other words, you 
wouldn’t use your PC to run your coffee machine (you might, but that’s beside the 
point). Unlike your desktop processor, the 4-bit microcontroller that runs your 
coffee machine costs less than $1 in large quantities. It does exactly what it’s 
supposed to do to — make your coffee. It doesn’t play Zelda, nor does it exchange 
data with an Internet service provider (ISP), although that might change soon. 
Because the functionality of the device is so narrowly defined, you must find the 
optimal processing element (CPU) for the design. Given the several hundred 
choices available and the many variations within those choices, choosing the right 
CPU can be a daunting task. 
Although choosing a processor is a complex task that defies simple “optimization” 
(see Figure 2.1) in all but the simplest projects, the final choice must pass four 
critical tests: 
 

 
Figure 2.1: Choosing the right processor.  
 
Considerations for choosing the right microprocessor for an embedded 
application.  
 

 Is it available in a suitable implementation? 

 Is it capable of sufficient performance? 

 Is it supported by a suitable operating system? 

 Is it supported by appropriate and adequate tools?  
 
Is the Processor Available in a Suitable Implementation? Cost-sensitive 
projects might require an off-the-shelf, highly integrated part. High-performance 
applications might require gate-to-gate delays that are only practical when the 
entire design is fabricated on a single chip. What good is choosing the highest 
performing processor if the cost of goods makes your product noncompetitive in 
the marketplace? For example, industrial control equipment manufacturers that 
commonly provide product support and replacement parts with a 20-year lifetime 
won’t choose a microprocessor from a vendor that can’t guarantee product 



availability over a reasonable span of time. Similarly, if a processor isn’t available 
in a military version, you wouldn’t choose it for a missile guidance system, no 
matter how good the specs are. In many cases, packaging and implementation 
technology issues significantly limit the choice of architecture and instruction set. 
 
Is the Processor Capable of Sufficient Performance? Ultimately, the 
processor must be able to do the job on time. Unfortunately, as embedded 
systems become more complex, characterizing “the job” becomes more difficult. 
As the mix of tasks managed by the processor becomes more diverse (not just 
button presses and motor encoding but now also Digital Signal Processor [DSP] 
algorithms and network processing), the bottlenecks that limit performance often 
have less to do with computational power than with the “fit” between the 
architecture and the device’s more demanding tasks. For this reason, it can be 
difficult to correlate benchmark results with how a processor will perform in a 
particular device.  
 
Is the Processor Supported by an Appropriate Operating System? With 
today’s 32-bit microprocessors, it’s natural to see an advantage in choosing a 
commercial RTOS. You might prefer one vendor’s RTOS, such as VxWorks or pSOS 
from Wind River Systems. Porting the RTOS kernel to a new or different 
microprocessor architecture and having it specifically optimized to take advantage 
of the low-level performance features of that microprocessor is not a task for the 
faint-hearted. So, the microprocessor selection also might depend on having 
support for the customer’s preferred RTOS. 
 
Is the Processor Supported by Appropriate and Adequate Tools? Good tools 
are critical to project success. The specific toolset necessary depends on the 
nature of the project to a certain extent. At a minimum, you’ll need a good cross-
compiler and good debugging support. In many situations, you’ll need far more, 
such as in-circuit emulators (ICE), simulators, and so on. 

Although these four considerations must be addressed in every processor- 
selection process, in many cases, the optimal fit to these criteria isn’t necessarily 
the best choice. Other organizational and business issues might limit your choices 
even further. For example, time-to-market constraints might make it imperative 
that you choose an architecture with which the design team is already familiar. A 
corporate commitment or industry preference for a particular vendor or family also 
can be an important factor. 

 
Packaging the Silicon 

Until recently, designers have been limited to the choice of microprocessor versus 
microcontroller. Recent advances in semiconductor technology have increased the 
designer’s choices. Now, at least for mass-market products, it might make sense 
to consider a system-on-a-chip (SOC) implementation, either using a standard 
part or using a semi-custom design compiled from licensed intellectual property. 
The following section begins the discussion of these issues by looking at the 
traditional microprocessor versus microcontroller trade-offs. Later sections explore 
some of the issues relating to more highly integrated solutions.  

Microprocessor versus Microcontroller 
 
Most embedded systems use microcontrollers instead of microprocessors. 
Sometimes the distinction is blurry, but in general, a microprocessor is the CPU 
without any additional peripheral or support devices. Microcontrollers are designed 



to need a minimum complement of external parts. Figure 2.2 illustrates the 
difference. The diagram on the left side of the figure shows a typical 
microprocessor system constructed of discrete components. The diagram on the 
right shows the same system but now integrated within a single package. 
 

 
Figure 2.2: Microcontrollers versus microprocessors.  
 
In a microprocessor-based system, the CPU and the various I/O functions 
are packaged as separate ICs. In a microcontroller-based system many, if 
not all, of the I/O functions are integrated into the same package with the 
CPU.  

The advantages of the microcontroller’s higher level of integration are easy to see: 

 

 Lower cost — One part replaces many parts. 

 More reliable — Fewer packages, fewer interconnects. 

 Better performance — System components are optimized for their 
environment. 

 Faster — Signals can stay on the chip. 

 Lower RF signature — Fast signals don’t radiate from a large PC board.  

Thus, it’s obvious why microcontrollers have become so prevalent and even 
dominate the entire embedded world. Given that these benefits derive directly 
from the higher integration levels in microcontrollers, it’s only reasonable to ask 
“why not integrate even more on the main chip?” A quick examination of the 
economics of the process helps answer this question. 



Silicon Economics 

For most of the major silicon vendors in the United States, Japan, and Europe, 
high-performance processors also mean high profit margins. Thus, the newest CPU 
designs tend to be introduced into applications in which cost isn’t the all-
consuming factor as it is in embedded applications. Not surprisingly, a new CPU 
architecture first appears in desktop or other high- performance applications. 

As the family of products continues to evolve, the newer design takes its place as 
the flagship product. The latest design is characterized by having the highest 
transistor count, the lowest yield of good dies, the most advanced fabrication 
process, the fastest clock speeds, and the best performance. Many customers pay 
a premium to access this advanced technology in an attempt to gain an advantage 
in their own markets. Many other customers won’t pay the premium, however. 

 
As the silicon vendor continues to improve the process, its yields begin to rise, and 
its profit margins go up. The earlier members of the family can now take 
advantage of the new process and be re-engineered in this new process (silicon 
vendors call this a shrink), and the resulting part can be sold at a reduced cost 
because the die size is now smaller, yielding many more parts for a given wafer 
size. Also, because the R&D costs have been recovered by selling the 
microprocessor version at a premium, a lower price becomes acceptable for the 
older members of the family. 

Using the Core As the Basis of a Microcontroller 

The silicon vendor also can take the basic microprocessor core and use it as the 
basis of a microcontroller. Cost-reducing the microprocessor core might inevitably 
lead to a family of microcontroller devices, all based on a core architecture that 
once was a stand-alone microprocessor. For example, Intel’s 8086 processor led to 
the 80186 family of devices. Motorola’s 68000 and 68020 CPUs led to the 68300 
family of devices. The list goes on.  

System-on-Silicon (SoS) 
 
Today, it’s common for a customer with reasonable volume projections to 
completely design an application-specific microcontroller containing multiple CPU 
elements and multiple peripheral devices on a single silicon die. Typically, the 
individual elements are not designed from scratch but are licensed (in the form of 
“synthesizable” VHDL[1] or Verilog specifications) from various IC design houses. 
Engineers connect these modules with custom interconnect logic, creating a chip 
that contains the entire design. Condensing these elements onto a single piece of 
silicon is called system-on- silicon (SoS) or SOC. Chapter 3 on hardware and 
software partitioning discusses this trend. The complexity of modern SOCs are 
going far beyond the relatively “simple” microcontrollers in use today. 

[1]VHDl stands for VHSIC (very high-speed IC) hardware description language 

Adequate Performance 

Although performance is only one of the considerations when selecting processors, 
engineers are inclined to place it above the others, perhaps because performance 
is expected to be a tangible metric both absolutely and relatively with respect to 
other processors. However, as you’ll see in the following sections, this is not the 
case. 



Performance-Measuring Tools 

For many professionals, benchmarking is almost synonymous with Dhrystones and 
MIPS. Engineers tend to expect that if processor A benchmarks at 1.5 MIPS, and 
Processor B benchmarks at 0.8 MIPS, then processor A is a better choice. This 
inference is so wrong that some have suggested MIPS should mean: Meaningless 
Indicator of Performance for Salesmen. 

MIPS were originally defined in terms of the VAX 11/780 minicomputer. This was 
the first machine that could run 1 million instructions per second (1 MIPS). An 
instruction, however, is a one-dimensional metric that might not have anything to 
do with the way work scales on different machine architectures. With that in mind, 
which accounts for more work, executing 1,500 instructions on a RISC architecture 
or executing 1,000 instructions on a CISC architecture? Unless you are comparing 
VAX to VAX, MIPS doesn’t mean much. 

The Dhrystone benchmark is a simple C program that compiles to about 2,000 
lines of assembly code and is independent of operating system services. The 
Dhrystone benchmark was also calibrated to the venerable VAX. Because a VAX 
11/70 could execute 1,757 loops through the Dhrystone benchmark in 1 second, 
1,757 loops became 1 Dhrystone. The problem with the Dhrystone test is that a 
crafty compiler designer can optimize the compiler to blast through the Dhrystone 
benchmark and do little else well.  

 

Distorting the Dhrystone Benchmark 

Daniel Mann and Paul Cobb[5] provide an excellent analysis of the shortcomings of 
the Dhrystone benchmark. They analyze the Dhrystone and other benchmarks and 
point out the problems inherent in using the Dhrystone to compare embedded 
processor performance. The Dhrystone often misrepresents expected performance 
because the benchmark doesn’t always use the processor in ways that parallel 
typical application use. For example, a particular problem arises because of the 
presence of on-chip instructions and data caches. If significant amounts (or all) of 
a benchmark can fit in an on-chip cache, this can skew the performance results. 

Figure 2.3 compares the performance of three microprocessors for the Dhrystone 
benchmark on the left side of the chart and for the Link Access Protocol-D (LAPD) 
benchmark on the right side. The LAPD benchmark is more representative of 
communication applications. LAPD is the signaling protocol for the D- channel of 
ISDN. The benchmark is intended to measure a processor’s capability to process a 
typical layered protocol stack. 
 



 
Figure 2.3: Dhrystone comparison chart.  
 
Comparing microprocessor performance for two benchmarks (courtesy of 
Mann and Cobb)[5].  

Furthermore, Mann and Cobb point out that developers usually compile the 
Dhrystone benchmark using the string manipulation functions that are part of the 
C run-time library, which is normally part of the compiler vendor’s software 
package. The compiler vendor usually optimizes these library functions as a good 
compromise between speed and code size. However, the compiler vendor could 
create optimized versions of these string-handling functions to yield more 
favorable Dhrystone results. This practice isn’t necessarily dishonest, as long as a 
full disclosure is made to the end user.  

A manufacturer can further abuse benchmark data by benchmarking its processor 
with a board that has fast static SRAM and then compare the results to a 
competitor’s board that contains slower, but more economical, DRAM.  

Meaningful Benchmarking 

Real benchmarking involves carefully balancing system requirements and variables. 
How a processor runs in your application might be very different from its 
performance in a different application. You must consider many things when 
determining how well or poorly a processor might perform in benchmarking tests. 

In particular, it’s important to analyze the real-time behavior of the processor. 
Because most embedded processors must deal with real-time events, you might 
assume that the designers have factored this into their performance requirements 
for the processor. This assumption might or might not be correct because, once 
again, how to optimize for real-time problems isn’t as obvious as you might expect. 
Real-time performance can be generally categorized into two buckets: interrupt 
handling and task switching. Both relate to the general problem of switching the 
context of the processor from one operation to another. Registers must be saved, 
variables must be pushed onto the stack, memory spaces must be swapped, and 
other housekeeping events must take place in both instances. How easy this is to 
accomplish, as well as how fast it can be carried out, are important in evaluating a 
processor that must be interfaced to events in the real world. 



Predicting performance isn’t easy. Many companies that blindly relied (sometimes 
with fervent reassurance from vendors) on overly simplistic benchmarking data 
have suffered severe consequences. The semiconductor vendors were often just as 
guilty as the compiler vendors of aggressively tweaking their processors to 
perform well in the Dhrystone tests.  

 
From the Trenches  When you base early decisions on simplistic measures, 

such as benchmarks and throughput, you risk disasterous 
late surprises, as this story illustrates: 

 
A certain embedded controller manufacturer, who shall remain nameless, was 
faced with a dilemma. The current product family was running out of gas, and it 
was time to do a re-evaluation of the current architecture. There was a strong 
desire to stay with the same processor family that they used in the previous design. 
The silicon manufacturer claimed that the newest member of the family 
benchmarked at twice the throughput of the previous version of the device (The 
clue here is benchmarked. What was the benchmark? How did it relate to the 
application code being used by this product team?). Since one of the design 
requirements was to double the throughput of the product, the design team opted 
to replace the existing embedded processor with the new one.  

At first, the project progressed rapidly, since the designers could reuse much of 
their C and assembly code, as well as many of the software tools they had already 
purchased or developed. The problems became apparent when they finally began 
to run their own performance metrics on the new prototype hardware. Instead of 
the expected two-fold performance boost, their new design gave them only a 15-
percent performance improvement, far less than what they needed to stay 
competitive in their market space.  

The post-mortem analysis showed that the performance boost they expected could 
not be achieved by simply doubling the clock frequency or by using a more 
powerful processor. Their system design had bottlenecks liberally sprinkled 
throughout the hardware and software design. The processor could have been 
infinitely fast, and they still would not have gotten much better than a 15-percent 
boost. 

EEMBC 
 
Clearly, MIPS and Dhrystone measurements aren’t adequate; designers still need 
something more tangible than marketing copy to use as a basis for their processor 
selection. To address this need, representatives of the semiconductor vendors, the 
compiler vendors, and their customers met under the leadership of Markus Levy 
(who was then the technical editor of EDN magazine) to create a more meaningful 
benchmark. The result is the EDN Embedded Microprocessor Benchmark 
Consortium, or EEMBC (pronounced “Embassy”). 
 
The EEMBC benchmark consists of industry-specific tests. Version 1.0 currently has 
46 tests divided into five application suites. Table 2.1 shows the benchmark tests 
that make up 1.0 of the test suite.  
 
Table 2.1: EEMBC tests list.  
 
The 46 tests in the EEMBC benchmark are organized as five industry-
specific suites.  
 



EEMBC Test 

Automotive/Industrial Suite  

Angle-to-time conversion Inverse discrete cosine 
transform 

Basic floating point Inverse Fast-Fourier transform 
(FFT) filter 

Bit manipulation Matrix arithmetic 

Cache buster Pointer chasing 

CAN remote data request Pulse-width modulation 

Fast-Fourier transform (FFT) Road speed calculation 

Finite Impulse Response (FIR) filter Table lookup and interpolation 

Infinite Impulse Response (IIR) filter Tooth-to-spark calculation 

Consumer Suite  

Compress JPEG RGB-to-CMYK conversion 

Decompress JPEG RGB-to-YIQ conversion 

High-pass grayscale filter   

Networking Suite  

OSPF/Dijkstra routing Packet Flow (1MB) 

Lookup/Patricia algorithm Packet Flow (2MB) 

Packet flow (512B)   

Office Automation Suite  

Bezier-curve calculation Image rotation 

Dithering Text processing 

Telecommunications Suite  

Autocorrelation (3 tests) Fixed-point complex FFT (3 
tests) 

Convolution encoder (3 tests) Viterbi GSM decoder (4 tests) 

Fixed-point bit allocation (3 tests)   

 

Unlike the Dhrystone benchmarks, the benchmarks developed by the EEMBC 
technical committee represent real-world algorithms against which the processor 
can be measured. Looking at the Automotive/Industrial suite of tests, for example, 
it’s obvious that any embedded microprocessor involved in an engine-management 
system should be able to calculate a tooth-to-spark time interval efficiently. 

The EEMBC benchmark produces statistics on the number of times per second the 
algorithm executes and the size of the compiled code. Because the compiler could 
have a dramatic impact on the code size and efficiency, each benchmark must 
contain a significant amount of information about the compiler and the settings of 
the various optimization switches. 



Tom Halfhill[3] makes the argument that for embedded applications, it’s probably 
better to leave the data in its raw form than to distill it into a single performance 
number, such as the SPECmark number used to benchmark workstations and 
servers. In the cost-sensitive world of the embedded designer, it isn’t always 
necessary to have the highest performance, only that the performance be good 
enough for the application. In fact, higher performance usually (but not always) 
translates to higher speeds, more power consumption, and higher cost. Thus, 
knowing that the benchmark performance on a critical algorithm is adequate might 
be the only information the designer needs to select that processor for the 
application. 

The source code used to develop the EEMBC benchmark suites was developed by 
various technical committees made up of representatives from the member 
companies. The EEMBC is on the right path and probably will become the industry 
standard for processor and compiler comparisons among embedded system 
designers. 

Membership in the EEMBC is a bit pricey ($10K) for the casual observer, but the 
fee gives the members access to the benchmarking suites and to the testing labs. 

Running Benchmarks 

Typically, to run a benchmark, you use evaluation boards purchased from the 
manufacturer, or, if you are a good customer with a big potential sales opportunity, 
you might be given the board(s). All semiconductor manufacturers sell evaluation 
boards for their embedded microprocessors. These boards are essentially single-
board computers and are often sold at a loss so that engineers can easily evaluate 
the processor for a potential design application. It’s not unusual to design “hot 
boards,” which are evaluation boards with fast processor-to-memory interfaces. 
These hot boards run small software modules, such as the Dhrystone benchmark, 
very quickly. This results in good MIPS numbers, but it isn’t a fair test for a real 
system design.  

When running benchmarks, especially comparative benchmarks, the engineering 
team should make sure it’s comparing similar systems and not biasing the results 
against one of the processors under consideration. However, another equally valid 
benchmarking exercise is to make sure the processor that has been selected for 
the application will meet the requirements set out for it. You can assume that the 
manufacturer’s published results will give you all the performance headroom you 
require, but the only way to know for sure is to verify the same data using your 
system and your code base. 

Equipping the software team with evaluation platforms early in the design process 
has some real advantages. Aside from providing a cross- development 
environment early on, it gives the team the opportunity to gain valuable 
experience with the debugging and integration tools that have been selected for 
use later in the process. The RTOS, debug kernel, performance tools, and other 
components of the design suite also can be evaluated before crunch time takes 
over. 

 

RTOS Availability 
 
Choosing the RTOS — along with choosing the microprocessor — is one of the 
most important decisions the design team or system designer must make. Like a 
compiler that has been fine-tuned to the architecture of the processor, the RTOS 



kernel should be optimized for the platform on which it is running. A kernel written 
in C and recompiled (without careful retargeting) for a new platform can 
significantly reduce the system performance. Table 2.2 is a checklist to help you 
decide which RTOS is appropriate. Most of the factors are self-explanatory, but 
you’ll find additional comments in the following sections. 

Language/Microprocessor Support 

Increasingly, RTOS vendors attempt to supply the design team with a “cradle-to-
grave solution,” which is also called “one-stop shopping.” This approach makes 
sense for many applications but not all. To provide an integrated solution, the 
RTOS vendor often chooses compatible tool vendors and then further custom 
recrafts their tools to better fit the RTOS requirements. This means you might 
have to select the RTOS vendor’s compiler, instead of your first choice. In other 
cases, to get the RTOS vendor’s tools suite, you must choose from that vendor’s 
list of supported microprocessors. Again, it depends on your priorities.  

 
Table 2.2: Real-time operating system checklist. [4]  
 
This checklist can help you determine which RTOS products are suitable 
for your project  
 

Real-Time Operating System Checklist 

　 Language/Microprocessing 
Support 

The first step in finding an RTOS for your project is to look at those vendors sup 
porting the language and microprocessor you’ll be using. 

 　  Tool Compatibility  

Make sure your RTOS works with your ICE, compiler, assembler, linker, and 
source code debugger. 

 　  Services  

Operating systems provide a variety of services. Make sure that your OS 
supports the services, such as queues, times, semaphores, etc., that you expect 
to use in your design. 

 　  Footprint  

RTOSs are often scalable, including only those services you end up needing for 
your application. Based on what services you’ll need, the number of tasks, sema 
phores, and everything else you expect to use, make sure your RTOS will work 
in the RAM space and ROM space you have allocated for your design. 

 　  Performance  

Can your RTOS meet your performance requirements? Make sure that you under 
stand the benchmarks the vendors give you and how they actually apply to the 
hardware you really will be using. 

 　  Software Components  

Are required components, such as protocol stacks, communication services, real- 
time databases, Web services, virtual machines, graphic libraries, and so on 

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



Real-Time Operating System Checklist 

avail able for your RTOS? How much effort will be required to integrate them? 

 　  Device Drivers  

If you’re using common hardware, are device drivers available for your RTOS? 

 　  Debugging Tools  

RTOS vendors may have debugging tools that help find defects that are much 
harder to find with standard source-level debuggers. 

 　  Standards 
Compatibility  

Are there safety or compatibility standards that your application demands? Make 
sure that your RTOS complies. 

 　  Technical Support  

Phone support is typically covered for a limited time after you purchase or on a 
year-to-year basis through a support contract. Sometimes application engineers 
are available. Additionally, some vendors provide training and consulting. 

 　  Source vs Object Code  

With some RTOSs, you get the source code when you buy a license. With others, 
you get only object code or linkable libraries. 

 　  Licensing  

Make sure that you understand how the RTOS vendor licenses their RTOS. With 
some vendors, run-time licenses are required for each board that you ship, and 
development tool licenses are required for each developer using the tools. 

 　  Reputation  

Make sure that you are dealing with a company with which you’ll be happy. 

 　  Services  

Real-time operation systems provide developers with a full complement of fea 
tures: several types of semaphores (counting, mutual exclusion), times, 
mailboxes, buffer managers, memory system managers, events, and more. 

Tool Compatibility 

To the RTOS vendors the world looks much like an archer’s target. The RTOS and 
its requirements are at the center, and all the other tools — both hardware and 
software — occupy the concentric rings around it. Therefore, the appropriate way 
to reformulate this issue is to ask whether the tools you want to use are 
compatible with the RTOS. This might not be a serious problem because the RTOS 
is typically selected at the same time the processor is selected. Thus, the RTOS 
vendor has the opportunity to influence which additional tools are chosen. The 
RTOS vendor also has an opportunity to collect most of the available budget that 
has been allocated for tools procurement. 

The developer should try, however, to create an environment in which all the 
development tool capabilities are leveraged to their maximum benefit. This does 
require cooperation between tool vendors, so the recommendation of the RTOS 
vendor is a good starting point but not the last word. 



For example, an RTOS vendor might make the argument that its tools are so 
powerful that you don’t need other specialized products, such as ICEs, real-time 
performance analyzers, and logic analyzers. This is a tempting thought because 
these more specialized development and debug tools usually are complex. 
However, plenty of hard evidence proves how subtle bugs can fall below the 
detection threshold of a software-only debug tool, and much time was wasted 
before the “big guns of debugging” were brought to bear on the problem.  

Performance 

Obviously, performance is a major issue that deserves a lot of research time up 
front. Most processor vendors have measured the context-switching times of 
various RTOS kernels with their silicon. Also, the silicon vendors try to appear 
“vendor-neutral” when it comes to recommending one RTOS vendor over another. 
They tend to let the data speak for itself. Also, because silicon vendors jealously 
guard the names of other customers, it’s hard to get recommendations from other 
satisfied customers. Fortunately, if you are part of a large corporation with many 
other product-development divisions, it’s relatively easy to find out what works 
and what doesn’t. 

Device Drivers 

The availability of device drivers often is tied to the need to develop a board 
support package (BSP). The BSP consists of the set of drivers and the integration 
of those drivers into the RTOS kernel so that the RTOS operates smoothly with 
your hardware during development and in the field. You must be experienced to 
create a BSP because it can be an extremely difficult, defect-prone, and time-
consuming activity. Many RTOS customers are influenced by the availability of a 
BSP for their hardware. This is particularly true if most of the processing hardware 
is a commercial off-the-shelf (COTS), single-board computer. Alternatively, the 
design team might choose to have the RTOS vendor’s engineering team develop 
the BSP. Although it’s an attractive alternative that can significantly reduce the 
development risks, it also can be costly (one BSP port cost a customer 
approximately $750K!).  

Debugging Tools 

Many debugging tool vendors believe the RTOS vendors have a “slash and burn, 
take no prisoners” attitude when it comes to the sale of debugging tools. Because 
the RTOS vendor is in the customer’s decision process at an early stage, they have 
the opportunity to influence strongly how the development budget is apportioned. 
Although this can be self-serving because the RTOS vendor realizes a significant 
portion of its revenue from the sale of debugging tools, it also can be good for the 
customer. Debugging real-time software running under a commercial RTOS is not 
an easy process. In most cases, the user doesn’t have visibility into the RTOS code 
itself, so the engineer must attempt to guess what’s going on in the system. 
Having RTOS- aware tools is a great help in debugging this class of problems. If an 
RTOS vendor recommends its tool as the tool of choice, it’s legitimate to question 
the assertion, but it’s also important to ask other vendors about their abilities to 
debug code running under this RTOS. 

Standards Compatibility 

Because many embedded systems control devices that are mission critical, it 
makes sense to be sure the RTOS software you choose has already gone through a 
certification process and is deemed safe. For example, one RTOS vendor 



prominently advertises that its RTOS was chosen for the Mars Rover. This fact 
might or might not be relevant for your application, but it does convey a certain 
message about the reliability of the vendor’s code base. 

Technical Support 

For most people, reading a technical manual is a painful experience. First, you’re 
not even sure the information is in there. If the information happens to be in the 
manual, it’s either hard to find or incredibly obtuse, so you phone the vendor. 
Don’t underestimate the need for first-class tech support. Your next project could 
be at risk of failure without it.  

 
Don’t overlook consulting engineers.  Many consultants have developed 

more expertise with an RTOS than 
the vendor’s internal engineering 
staff. I’ve worked with some who 
actually did much of the internal 
development for the RTOS vendor 
before seeking their fortune as an 
independent contractor. 
Consultants can be expensive, but 
they also can save your project. 

Source Code vs. Object Code 

Currently, a debate rages about using embedded Linux as a viable RTOS. Linux is 
freely available source code. Vendors who support this model sell you the support 
of the RTOS. They maintain versions, incorporate bug fixes as regular parts of 
their cycle, and sell consulting services to help you use it. They might also charge 
a licensing fee if you use their version of the code. It’s too early to tell what Linux 
will achieve in the embedded marketplace. Product development teams have been 
able to get products to market using commercially available RTOSs that came as 
linkable libraries. As long you have faith that the RTOS vendor’s code is defect free, 
that it supports your application needs, and that high-quality debugging tools exist 
that can work with it, you don’t need the source code. However, most engineers 
have a strong urge to peek under the hood. 

Services 

One of the key reasons you choose an RTOS is that it provides already tested and 
integrated services. So, if you expect your target system to have an Ethernet 
communications link, you would most likely choose an RTOS that already has the 
support for the appropriate Ethernet protocol stacks. Also, you need to examine 
the overall system design to determine some of the fundamental design support 
issues. For example, do you expect to require communication of information 
between different tasks in your system? Are the data transfer rates generally equal, 
or are there variations in the rate of data generation and the rate of information 
consumption. If the data transfer rates are seriously mismatched, then you might 
need a message queue structure and a first-in, first-out (FIFO) buffer to level the 
loads. Conversely, you don’t want to pay for complexity you don’t need so 
scalability is also important. 

Tool Chain Availability 

Choosing the embedded design and debug development tools is as important as 
choosing the processor and RTOS. In some ways, the tool choices are even more 



important. If you don’t select the right tools up front, when design decisions also 
are being made, debugging your design might take so long that the product will 
miss its market window. If you miss Comdex and are unable to show off your next 
generation of laser printer, for example, it might not be worth your while to 
continue the product development. 

Multiprocessor designs are perfect examples of the necessity for debug strategies. 
Some telecommunications switches today contain more than 200 independent 
microprocessors, happily sending terabytes of data per second back and forth to 
each other. An engineering team has no hope of debugging such a system if they 
didn’t design a debug strategy at the same time they designed the system. 

When evaluating the tool chain, you should look for good, integrated coverage of 
these three broad categories: 

 Compiler tools 

 Hardware and software debugging tools 

 Performance measuring tools 

 

 

My Ideal Compiler 

In an article written by Michael Barr[1], it’s clear that the correct choice of a cross-
compiler is more than just finding one that supports your target microprocessor. 
Your choice can be limited by hardware, RTOS, and debugging tool choices made 
by other team members. However, if you are able to choose without constraints, 
you should know how to compare cross compilers. 

Features that improve the usability of a cross compiler include the following: 

 In-line assembly — Although many cross compilers support the 
inclusion of assembly code as a separate “C-like” function, the best 
implementation is when in-line assembly code can be included in the 
compiler source file with the addition of the keyword asm. Whatever 
follows on that line or within the bracket-enclosed block that follows is 
assembled, not compiled. 

 Interrupt function — The inclusion of the nonstandard keyword 
interrupt when used as a type specifier tells the compiler that this 
function is an interrupt service routine (ISR). The compiler then 
generates the extra stack information and registers saves and restores 
that are part of any ISR you write in assembly language. 

 Assembly language list file generation — The assembly language list file 
contains C statements interspersed as comments with the assembly 
language instructions they generate, exactly as the processor would 
execute them. This feature is useful for manual code generation (and 
low-level debugging). 

 Standard libraries — Many of the standard library functions that you 
expect to be included with your compiler are not part of standard C or 
C++; they might not be included with your compiler. This is particularly 
true of cross compilers, which are designed to be used with embedded 
systems. You should also be particularly careful that library functions 
are re-entrant. 



 Startup code — Does the compiler include the assembly language code 
needed to establish the C run-time environment? This is the code that 
goes from RESET and ends with a JSR to main(). 

 RTOS support — Are your choices of compiler and RTOS compatible? 

 Tools integration — Is your compiler choice compatible with the other 
tools (make utility, debugger, and so on) that you plan to use? 

 Optimizations — Does the compiler support optimizations for speed and 
code size? 

 Support for Embedded C++ (EC++) — To lower the overhead of C++ 
and make it more attractive for embedded system applications, the 
cross compiler should know the proper subset of the language it is 
restricted to use. 

 The inclusion of nonstandard keywords, such as asm and interrupt, 
tends to make the code nonportable. However, portability in embedded 
systems is often a hit or miss proposition, so relaxing the portability 
required in exchange for an application that works is a fair trade-off.  

Compilers 

A compiler can have a big effect on the apparent performance of a microprocessor, 
although it’s not always obvious why. RISC processors are sensitive to the quality 
of object code generated by the compiler. To exploit the full potential of a RISC 
architecture, the compiler must know about the particular architecture. For 
example, the compiler might need to relocate instructions to follow delayed 
branches and certainly needs to be aware of the processor’s particular register 
structure. 

If you are coming to the field of embedded systems from the PC or workstation 
world, code-generating issues might be a new problem for you. Suddenly, you 
might be forced to look at the assembly language output of your C compiler and 
count processor cycles, looking for ways to shave off microseconds here and there. 
Being informed about design decisions that might affect you can only help the 
product and the team, as well as improve your job security. However, challenging 
the selection choices of the system architects can be a career-defining moment, so 
use your newly acquired knowledge judiciously.  

Choosing a compiler, however, is more than just a matter of choosing the best 
code generator. For embedded systems work, the compiler should support 
convenient access to particular features of the target hardware. 

 
From the 
Trenches  

One semiconductor manufacturer benchmarked three 
compilers — A, B, and C for this example — against each 
other with the same C code. The best and worst compiler 
differed by a factor of two. This is equivalent to running 
one processor with a clock speed of one-half the other 
processor! 

In this case, the best code generator portion of the best 
compiler was written especially for this manufacturer’s 
RISC architecture, while the worst compiler was a straight 
port from a classic CISC architecture. The CISC computer 
had 16 registers, and the RISC processor had 256 
registers. The RISC processor could make up for its 



simpler instructions by keeping many variables nearby in 
the general- purpose register set. Because the CISC-
based compiler did not take advantage of this feature, 
code generated by the compiler required many more 
memory accesses for the same code segment. External 
memory accesses require more clock cycles, so the code 
that it generated ran less efficiently than the optimized 
code. 

Hardware and Software Debugging Tools 
 
User preferences in software debugging tools tend to be highly personal. Some 
engineers must have the latest and greatest graphical user interface (GUI), 
whereas others like the speed and control of a text-based, command- line interface. 
Ideally, a modern debugger offers both types of interfaces, with the GUI 
automatically building and issuing the command-line interface as well. How the 
GUI connects to the target system, RTOS, and other debugging tools is covered in 
Chapter 6. Because it takes some amount of learning to gain experience with a 
debugger, embedded engineers (and their managers) put pressure on the tools 
manufacturers to port their debuggers to various “target agents.” The target agent 
is usually the remote debug kernel, which resides in the target and communicates 
with the debugger. However, the target agent also can be: 
 

 An ICE 

 An interface to on-chip hardware debugging resources 

 A ROM emulator 

 A logic analyzer 

 A performance analyzer  

The customer benefits because the same debugger front end (DFE), or GUI, can be 
used with a variety of tools. So, the investment an engineer makes in learning the 
DFE for a debugger can be leveraged among several tools. The worst situation 
occurs when each tool has its own GUI, with no similarity to any other GUI, even 
from the same manufacturer! 

The choice of the embedded design and debug development tools is every bit as 
important as the processor and RTOS choices. Perhaps, in some ways, the tool 
decisions are even more important. A case in point is the situation that exists 
today with multiprocessor designs. I am aware of some telecommunications 
switches containing over 200 independent microprocessors, happily sending 
terabytes of data per second back and forth to each other. How does an 
engineering team begin to debug this system? I would hope that they decided on a 
debug strategy at the same time as they designed the system.  

Another example of the importance of the tool chain is the design effort required to 
develop an ASIC. In a speech[2.] to the 1997 IP Forum in Tokyo, Wilf Corrigan, 
the Chairman of LSI Logic, Inc., reported that design teams were finding that the 
effort required to develop an ASIC was five times greater than they had 
anticipated. Many ASICs had multiple, embedded processor cores in the design. 
Today, the tools that are the most appropriate for debugging systems-on-a-chip 
with multiple processors have yet to be invented (although I am aware of several 
vendors who are currently working on the problem.) 

 



Other Issues in the Selection Process 

From the previous discussion, it’s obvious that many factors must be considered 
when choosing a specific microprocessor, microcontroller, or processor core for 
your application. Although implementation, performance, operating system support, 
and tool support impact the choice in nearly every project, certain other issues are 
frequently important. Three other issues frequently must be considered: 

 

 A prior commitment to a processor family 

 A prior restriction on language 

 Time-to-market factors  

A Prior Commitment to a Particular Processor Family 

For some, the company’s commitment to a specific family of devices might 
dominate the choice. For example, if your company has committed to using the 
680X0 family from Motorola, your product evolution will track that of Motorola. As 
Motorola introduces a new microprocessor with higher speeds and better 
performance, you might then leverage their investment and enhance the 
performance of your products. The relationship creates a close cooperation 
between vendor and customer. Just as your customer might ask you for a vision of 
your product’s life cycle, you ask the same question of your vendors. 

Ideally, as a family of microprocessors grows and newer devices supplant older 
ones, the newer devices will continue to maintain degrees of code and architectural 
compatibility with the older ones. The desire to reuse existing software, tools, and 
tribal knowledge might be the major determining factor in the selection of the 
microprocessor or microcontroller, instead of which device has the best 
price/performance ratio at that time. The MC680X0 family maintains code 
compatibility back to the original MC68000 microprocessor, although the later 
devices (CPU32) are a superset of the original instruction set. Perhaps the Intel 
X86 family is an even better example of this phenomenon. Today’s highest 
performance Pentium processor can still execute the object code of its 8086 
processor, the device in the original IBM PC. 

A Prior Restriction on Language 

The language choice is important; however, sometimes you have no choice. If you 
are doing defense-related development, for example, you will probably be using 
Ada as your development language. Certain other industries have a strong 
preference for a particular language. 

If your project is expected to leverage an existing body of source code written in 
language X, you’ll either have to work in X or find a compiler/linker combination 
that supports mixed linking of the new language and modules in language X. 

For many microprocessors — especially the more advanced, highly parallel 
architectures — some dialect of C and native assembler might be the only readily 
available languages. 

Time to Market 

Engineers tend to underestimate the business importance of market timing and 
often believe their design’s superior performance or rich feature set will make it 



more successful in the marketplace. However, if the design team can’t get the 
product to market fast enough to meet the competition because designing-in the 
selected processor took longer than anticipated, the processor selection was wrong. 
Some experts claim that just by missing your product’s market introduction by as 
little as a month, you can lose up to 30% of the profitability of that product. 

Members of Intel’s Embedded Processor Division call this time to money. Time to 
money is the time from the start of a design project to the time the design ships in 
large quantities to the end users. No matter how impressive the performance of 
the latest processor, if you cannot efficiently design with it, it’s a bad, or at least a 
risky, choice.  

 
From the 
Trenches  

I once managed a project that we designed using a large 
FPGA as a key element. The FPGA was a “bleeding edge” 
part, chosen for its speed, capacity, and number of I/O 
pins, which happened to be exactly the right amount for 
our design. Unlike an ASIC, an FPGA can be 
reprogrammed repeatedly without a $300K silicon-
development charge. We planned to reload the FPGA with 
different functionality, as necessary for our application. 
So, instead of needing separate pieces of hardware for 
each feature, we would load different software images 
into the FPGA and change its behavior. The problem was 
that we had just enough I/O pins and no extra. If extra 
pins were available, we could have used them to bring 
several key internal (to the FPGA) nodes to the outside 
world, so we could observe its internal behavior. 
Unfortunately, the debug strategy was just to redo the 
FPGA software image. However, we didn’t know what to 
change or why. I can remember watching several senior 
hardware designers standing around the board, staring at 
the FPGA as if they could determine whether the filament 
was lit. 

There are all sorts of disciplined ways our designers could 
have avoided this problem. They might have taken the 
lead of the ASIC designers and allotted 50% of their total 
design time to creating simulation scenarios (called test 
vectors) so they could fully exercise the FPGA design in 
simulation, rather than in the target board. The reason 
ASIC designers spend so much time testing is that one 
failure could mean an ASIC re-spin costing thousands of 
dollars and months of time. However, our design team, 
because they could easily reprogram the FPGA, took the 
fast-track approach (after all, “it’s only software”) and 
lost a month in the process. 

 
Additional Reading 
 

 “Diversity, Thy Name Is RISC.” EDN, 19 June 1997, S-25. 

 Bourekas, Phil. “Architecting Modern Embedded CPUs.” Computer 
Design, September 1998, 58. 



 Bursky, Dave. “Tuned RISC Devices Deliver Top 
Performance. ”Electronic Design, 3 March 1997 (supplement), 9. 

 Bursky, Dave. “16-Bit Embedded Controllers Open Up New Markets.” 
Electronic Design, 3 March 1997 (supplement), 31. 

 Bursky, Dave. “Novel Architectures, Parallelism Rule the Roost in Digital 
Circuits.” Electronic Design, 6 March 2000 (supplement), 142. 

 Cantrell, Tom. “Architecture Is Dead? Long Live Architecture!” 
Computer Design, September 1997, 108. 

 Giovino, Bill. “Overlaps Between Microcontrollers and DSPs.” Embedded 
Systems Programming, January 2000, 20. 

 Grehan, Rick. “8-bit Microcontrollers Grow Up … and Down.” Computer 
Design, May 1997, 72. 

 Grehan, Rick. “RISC Architects Address the Embedded World.” 
Computer Design, July 1997, 90. 

 Grehan, Rick. “DSPs No Longer on the Sidelines.” Computer Design, 
October 1997, 105. 

 Grehan, Rick. “16-bit: The Good, The Bad, Your Options.” Embedded 
Systems Programming, August 1999, 71. 

 Kohler, Mark. “NP Complete.” Embedded Systems Programming, 
November 2000, 45. 

 Leteinurier, Patrick and George Huba. “32-bit MCUs Gain Ground in 
Auto Control.” Electronic Engineering Times, 17 April 2000, 92. 

 Turley, Jim. “Choosing an Embedded Microprocessor.” Computer Design, 
March 1998, 6. 

 Turley, Jim. “Adapting to Bigger, Faster Embedded RISC.” Computer 
Design, May 1998, 81. 

 Turley, Jim. “Balancing Conflicting Requirements When Mixing RISC, 
DSPs.” Computer Design, October 1998, 46. 

 Turley, Jim. “32- and 64-Bit Processors: An Embarrassment of Riches.” 
Embedded System Programming, November 1998, 85. 

 Turley, Jim. “CPU Design Is Dead! Long Live CPU Design!.” Embedded 
System Programming, March 1999, 13. 

 Varhol, Peter. “Mainstream Processors Gain DSP Features.” Computer 
Design, September 1997, 29. 

 Yarlagadda, Krishna. “The Expanding World of DSPs.” Computer Design, 
March 1998, 77. 

 
Summary 
 
Clearly, the selection of the right microprocessor, microcontroller, or SOC is a 
complex issue with many variables that need to be balanced to arrive at a solution. 
The chapters that follow discuss some of the other implications of these choices, 
but a detailed discussion of all the issues would require a book unto itself. Related 
articles in “Additional Reading” will help you research specific issues. 

Two conclusions should be clear from just this chapter’s discussion, however. First, 
it’s important for those who are tasked with delivering the product to take an 



active interest in the selection process. Second, software and tool support must be 
an important part of the decision. The entire design team (including the software 
designers) must be involved in the selection because they are the ones who feel 
the pressure from upper management to “get that puppy out the door.” If the task 
of selecting the best processor for the job is left to the hardware designers with 
little consideration of the quality of the software and support tools, it might not 
matter that you had the best paper design if you missed your market window with 
a product that never got out of the lab. 

 

Works Cited 
 

1. Barr, Michael. “Choosing a Compiler: The Little Things.” Embedded 
Systems Programming, May 1999, 71. 

2. Corrigan, Wilfred J. A speech at 1997 IP Forum in Tokyo, Japan. 
Reported in EE Times, 24 November 1997. 

3. Halfhill, Tom R. “EEMBC Releases First Benchmarks.” Microprocessor 
Report, May 2000. 

4. Hawley, Greg. “Selecting a Real-Time Operating System.” Embedded 
Systems Programming, March 1999, 89. 

5. Mann, Daniel and Paul Cobb. “When Dhrystone Leaves You High and 
Dry.” EDN, 21 May 1998 

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



Chapter 3: The Partitioning Decision 

Overview 

Designing the hardware for an embedded system is more than just selecting the 
right processor and gluing it to a few peripherals. Deciding how to partition the 
design into the functionality that is represented by the hardware and the software 
is a key part of creating an embedded system. This decision is not just an 
academic exercise nor is it self-evident. You don’t just pick a processor, design the 
hardware, and then throw it over the wall to the software team. (Actually, many 
R&D labs still select a processor, design the hardware, and throw it over the wall, 
but the purpose of this chapter is to show you a better way.) The partitioning 
choice has significant impact on project cost, development time, and risk. 

This chapter will explore the following: 

 

 The hardware/software duality that makes the partitioning decision 
possible 

 How the separation of hardware and software design imposes 
development costs 

 How silicon compilation is making the partitioning decision more flexible 
but more risk-laden 

 How future trends might radically alter your view of the partitioning 
decision 

 
Hardware/Software Duality 

Partitioning is possible and necessary because of the duality between hardware 
and software. For example, prior to the introduction of the 80486 by Intel, the 
hottest processor around was the 80386. 

The 386 is an integer-only processor. To speed up your spreadsheet calculations, 
you purchased an 80387 numeric FPU processor. Systems without the FPU would 
detect that floating-point calculations were required and then simulate the 
presence of the FPU by branching to subroutines that performed the FPU functions, 
albeit much more slowly. The 387 performed floating-point calculations directly in 
hardware, rather than going through the much slower process of solving them in 
software alone. This difference often made the calculations 10 times faster. 

This is an example of the partitioning problem. The 387 is more expensive than 
the 386. A cost-sensitive design won’t include it because fast floating-point 
calculations are probably not a necessary requirement of a cost- conscious user. 
However, the absence of the 387 does not prevent the user from doing floating-
point calculations; it just means the calculations won’t be completed as rapidly as 
they could be if a FPU was available, either as a separate processor or as part of 
the processor itself (486). 

For a second example, consider that any serious “gamer” (PC games player) worth 
his salt has the hottest, baddest video accelerator chip in his PC. Without the chip, 
software is responsible for the scene rendering. With the video accelerator, much 
of the rendering responsibilities are moved to the hardware. Without the 
accelerator, PC games don’t have the same impact. They are slow and don’t 



execute smoothly, but they do execute. A faster CPU makes a big difference, as 
you would expect, but the big payback comes with the latest graphics accelerator 
chip. This is another example of a partitioning decision, this time based upon the 
need to accelerate image processing in real time. 

 
Recall Figure 1.3 of Chapter 1. It describes a laser printer as an algorithm. The 
algorithm is to take a digital data stream, a modulated laser beam, paper, and 
carbon-black ink (soot) as inputs and then output characters and graphics on a 
printed page. The algorithm’s description didn’t specify which parts were based on 
specialized hardware and which were under control of the software. 

Consider one aspect of this process. The data stream coming in must be 
transformed into a stream of commands to the laser system as it writes its beam 
on the surface of the photosensitive drum that transfers ink to paper. The beam 
must be able to be turned on and off (modulated) and be steered to create the 
1,200 dots per inch (dpi) on the page. Clearly, this can be accomplished in the 
software or in the hardware via a specialized ASIC.  

The complexity of the partitioning problem space is staggering. To fully describe 
the problem space, you would need dimensions for multiple architectures, target 
technologies, design tools, and more. Today, many systems are so complex that 
computer-aided partitioning tools are desperately needed. However, Charles H. 
Small describes the partitioning decision process like this: “In practice, the analysis 
of trade-offs for partitioning a system is most often an informal process done with 
pencil and paper or spreadsheets.”[1] 

Ideally, the partitioning decision shouldn’t be made until you understand all the 
alternative ways to solve the problem. The longer you can delay making the 
decision, the more likely you’ll know which parts of the algorithm need to be in 
hardware and which can be performed adequately in software. Adding hardware 
means more speed but at a greater cost. (It isn’t even that black and white, 
because adding more software functionality means more software to develop, 
more software in the system (bigger ROMs), and potentially a rippling effect back 
through the entire processor selection process.) Adding hardware also means that 
the design process becomes riskier because redesigning a hardware element is 
considerably more serious than finding a software defect and rebuilding the code 
image. 

The fundamental problem, however, is that usually you can’t debug your system 
until the hardware is available to work with. Moreover, if you delay the decision too 
long, the software team is left idle waiting for the hardware team to complete the 
board. 

 
Tip  You don’t literally need to have the hardware to begin testing. The software 

team always has a number of options available to do some early-stage 
testing. If the team is working in C or C++, it could compile and execute 
code to run on the team’s PCs or workstations. Interactions with the actual 
hardware — such as reading and writing to memory-mapped I/O registers 
— could be simulated by writing stub code. Stub code is a simple function 
that replaces a direct call to non- existent hardware with a function call that 
returns an acceptable value so that the controlling software can continue to 
execute. 

This method also works well with the evaluation boards that the semiconductor 
manufacturer might supply. Having the actual chip means that the code can be 



compiled for the target microprocessor and run in the target microprocessor’s 
environment. In both cases, some incremental amount of code must be written to 
take the place of the non-existent hardware. Generally, this subcode (also called 
throw- away code) is based on some published hardware specification, so the 
danger of human error exists as well. If the degree of realism must be high, a 
large quantity of this throw-away code is written to accurately exercise the 
software, thus driving up the cost of the project. If the team can afford to wait for 
the actual hardware, the stub code can be cursory and skeletal at best. 
 

Hardware Trends 

In some ways, the partitioning decision was simpler in the past because hardware 
implementations of all but the simplest algorithms were too costly to consider. 
Modern IC technology is changing that fact rapidly. 

Not too long ago, companies such as Silicon Graphics and Floating Point Systems 
made extremely expensive and complex hardware boxes that would plug into your 
DEC VAX or Data General Nova, and perform the hardware graphics and floating-
point support that is now taken for granted in every desktop computer. Today, you 
can put entire systems on a single IC large enough, quantities of which can cost 
only a few dollars. 

For example, AMD now produces a complete PC on a single chip, the SC520. The 
SC520 is designed around a 486 microprocessor “core” with all the peripheral 
devices that you might find in your desktop PC. Many of today’s amazingly small 
and powerful communication and computing devices — such as PDAs, cell phones, 
digital cameras, MPEG players and so on — owe their existence to ASIC technology 
and systems-on-silicon. 

 
Figure 3.1 shows how board-level designs are migrated to both a group of ASIC 
devices and discrete microprocessors or to complete systems on a single chip. This 
figure also shows a rough estimate of the number of equivalent hardware “gates” 
that are possible to design into the ASIC with the IC design geometries that are 
shown. Today, 0.18 micron geometries represent the mainstream IC fabrication 
capabilities. Soon, that number will be 0.13 micron geometries, and 0.08 micron 
technology is currently under development. Each “shrink” in circuit dimensions 
represents greater circuit density, roughly going as the inverse square of the 
geometry ratio. Thus, going from 0.35 micron to 0.18 micron represented a four-
fold increase in the total gate capacity of the chip design. Shrinking geometries 
mean greater speed because transistors are ever more closely packed, and smaller 
devices can switch their states faster than larger devices. (My apologizies to the 
electrical engineers who are cringing while they read this, but without a complete 
discussion of capacitance, this is as good as it gets.) 



 
Figure 3.1: Evolution of SoS.  
Board-level designs are migrating to processors plus ASICs and to 
complete systems on a single silicon die.  

Along with the shrinking geometries is the increasing size of the wafers on which 
the ASIC dies are placed. Because much of the cost of fabricating an IC can be 
attributed to processing a wafer, the larger the wafer, the more dies can be cut 
from the wafer and the lower the cost per die. Thus, the technology is rapidly 
building on itself. Advances in IC fabrication technology enable designers to create 
devices that run at even greater speeds with greater design complexity, thus 
providing even more opportunities for the design and deployment of SoS. 
Much of the technology leap can be traced back to the work of Carver Mead and 
Lynn Conway[2] on silicon compilation detailed in their book entitled Introduction 
to VLSI Design. Prior to their efforts, IC design was a laborious process. ICs were 
designed at the gate level, and building complex circuits required huge design 
teams. 

Silicon compilation changed all that. In a manner similar to the process used today 
for software development, a hardware design is created as source code, using C-
like languages, such as VHDL or Verilog. These source files are then compiled, just 
as a C or C++ program might be compiled. However, the output is not object code, 
rather, it’s a description language for how to build the IC, using the processes and 
design libraries of a particular IC vendor, or “silicon foundry.” Thus, just as a C 
compiler parses your source code down to the appropriate tokens and then 
replaces the tokens with the correct assembly language blocks, the silicon compiler 
creates a description of the circuit block and interconnects between those blocks so 
that a foundry can fabricate the masks and actually build the chip. All modern 
microprocessors are fabricated using Verilog or VHDL.  

“Coding” Hardware 
The simple example in Figure 3.2 illustrates how closely hardware description 
languages relate to traditional programming languages. A logical AND function is 
represented in three forms. In the first, familiar to most software engineers, you 
declare that A and B are Boolean input variables, and C is the resultant Boolean 
output variable, whose value is determined by the function C = AND (A,B). 
Because A, B, and C are Boolean, they represent a single digital value on a wire or 
printed circuit trace. 
 



 
Figure 3.2: Another view of hardware/software duality.  
 
The basic AND function is shown implemented as (2) a C construct, (3) a 
discrete hardware implementation using standard ICs, and (4) a hardware 
description language representation in Verilog.  
 
The hardware designer recognizes the function C = A AND B as a logical equation 
that can be implemented using a standard AND gate — such as the 7408 — which 
contains four, two-input AND gates in a single 14-pin package. Circuits such as the 
7408 have formed the "glue logic" in millions of digital systems over the past 25 
years. 
 
The Verilog representation of the same logical function is the last construct and is 
less familiar to most. A and B are signals on wires, and C represents the "register" 
that stores the result, A AND B. All three systems implement the same logical 
function, and C is always true if A and B are both true. However, the hardware 
implementations will be significantly faster, even in this simple-minded example. 
In the case of the C solution, A and B are perhaps local variables stored on the 
stack frame (local stack) of the function that is implementing the AND equation. 
Assuming a RISC processor with one operation per clock cycle and a cached stack 
frame, the processor must transfer both variables into separate registers (two 
instructions), perform the AND operation (one cycle), and then return the value in 
the appropriate register (more cycles). In the hardware implementation, the speed 
of the operation depends on either the propagation delay through the AND gate or, 
at worst, the arrival of the next clock signal.  

 

Merging Hardware and Software Design 

Because the hardware and the software design processes seem to be merging in 
their technology, you might wonder whether the traditional embedded design 
process is still the best approach. If the hardware design process and the software 
design process are basically identical, why separate the teams from each other? 
You’ve probably heard the phrase, “Throw it over the wall,” to describe how the 
hardware design is turned over to the firmware and application software 
developers. By the time the software developers start finding “anomalies,” the 
hardware designers have moved onto a new project. 



Recently, several commercial products have come to market that attempt to 
address this new reality in the design process. “Hardware/software co-verification” 
is the term given to the process of more tightly integrating the hardware and 
software design processes. In hardware/software co-verification, the hardware, 
represented by Verilog or VHDL code, becomes a virtual hardware platform for the 
software. For example: Suppose the hardware specification given to the software 
team represents one of the hardware elements as a memory-mapped register 
block consisting of 64 consecutive 32-bit wide registers. (Registers can consist of 
various fields of width from 1 bit to 32 bits. Registers can be read-only, write- only, 
or read/write.) 

In the absence of real hardware, the software developers write stub code functions 
to represent the virtual behavior of the hardware that isn’t there yet. The software 
team usually spends a minimal amount of time and energy creating this 
throwaway code. Extensive software-to-hardware interface testing doesn’t begin 
until real hardware is available, which is a lost opportunity. The later you are in a 
project when a defect is discovered, whether it is a hardware defect or a software 
defect, the more expensive it is to fix as illustrated in Figure 3.3.  

 
Figure 3.3: Where design time is spent.  
 
The percentage of project time spent in each phase of the embedded 
design life cycle. The curve shows the cost associated with fixing a defect 
at each stage of the process.  

Slightly over half the time is spent in the implementation and debug 
(hardware/software integration) phase of the project. Thus, you can save a lot in 
terms of the project’s development costs if you expose the hardware under 
development to the controlling software and the software under development to 
the underlying hardware as early as possible. Ideally, you could remove the “over 
the wall” issues and have a design process that continually exercises the hardware 
and software against each other from creation to release. 

Figure 3.4 shows how the earlier introduction of hardware/software integration 
shortens the design cycle time. Much of the software development time is spent 
integrating with the hardware after the hardware is available.  



 
Figure 3.4: Shortening the design cycle.  
 
Schematic representation of the embedded design cycle showing the 
advantage of earlier integration of the software under development with 
the virtual hardware also under development.  

 

 

The ASIC Revolution 

Silicon compilation provided much more than a way for CPU designers to design 
better microprocessors and microcontrollers. Everyone who wanted to design an IC 
for any purpose could do so. Suddenly, anyone could design an IC that was 
specific to a particular function. Thus was born the ASIC. ASICs are the modern 
revolution in embedded-systems design. The chipsets that support the processor in 
your PC — the sound chip, the graphics accelerator, the modem chip — are all 
examples of ASICs that are widely used today. ASICs are also the technology of 
the SoC revolution that is still being sorted out today. 

 
With silicon compilation, both hardware and software can be represented as 
compilable data files. Now, you can describe complete embedded systems in terms 
of a single software database. A portion of that software describes the fabrication 
of the hardware, and another portion of that software ultimately controls the 
hardware. The key point is that the distinction between what was once described 
as software and what was once described as hardware is blurring. Hardware design 
begins to look like software design that uses a different compiler (see Figure 3.5). 

 
Figure 3.5: Hardware/software distinction blurring.  
 



Hardware/software design flow. Notice the similarity between the 
activities followed by each design team.  

Finally, just as the software designer can purchase a software library from a third-
party vendor, the SoC designer can purchase hardware design elements, called 
intellectual property (IP) from third-party vendors as well. Several companies, 
such as Advanced RISC Machines, Ltd., sell the Verilog or VHDL description of their 
own RISC processors on a royalty basis. For example, you can’t, in general, 
purchase an ARM 7 TDMI processor from a local electronic distributor in the same 
way that you can buy a Pentium processor or get a free sample from ARM. ARM 
doesn’t manufacture the ARM 7 TDMI processor. ARM licenses the rights to 
fabricate the processor to several IC fabricators who can use the processor as part 
of an ASIC designed by (or for) their customer. 

With all these similar problems, representations, and processes, it’s reasonable to 
ask whether hardware and software design are really different creatures. Why 
can’t you translate C or some other high-level programming language directly into 
VHDL instead of machine code? For that matter, why not compile C to assembly 
language and then use some advanced form of “linker” to generate VHDL for the 
portions of the design that you want to fabricate as hardware? In fact, 
development products already are available that can generate VHDL directly from 
C. Although these tools are still very expensive and are not for everyone, the ideal 
of system design languages and tools that can start from a high-level design 
description of a real-time system and then automatically generate the appropriate 
C++ or VHDL code is a reality today.  

 

Fabless Chip Vendors 

ARM is one of a growing number of “fabless chip vendors.” These are traditional 
chip vendors in every way, except they lack the capacity to build their own 
products. ARM processors are designed to be included with other intellectual 
property to build entire embedded systems on a single silicon die. At the 1998 
Microprocessor Forum, one of the speakers mentioned a system-on-silicon (SoS) 
containing 64 RISC processors. The following articles discuss the current state-of-
the-art SoC technology: 

 Wolfe, Alexander. “Embedded ICs: Expanding the Possibilities.” 
Embedded System Programming, November 2000, 147. 

 Gott, Robert A. “M-Core Poses Challenge to ARM in Low-Power Apps.” 
Computer Design, June 1998, 14. 

 Turley, Jim. “Mcore: Does Motorola Need Another Processor Family?” 
Embedded System Programming, July 1998, 46. 

 Peters, Kenneth H. “Migrating to Single-Chip Systems.” Embedded 
System Programming, April 1999, 30. 

 Bursky. David. “Optimized Processor Blocks Eliminate the Gamble with 
RISC for SoC Designs.” Electronic Design, May 2000, 81. 

 Tuck, Barbara. “SoC Design: Hardware/Software Co-Design or a Java- 
Based Approach?” Computer Design, April 1998, 22. 

 Tuck, Barbara. “Formal Verification: Essential for Complex Designs.” 
Computer Design, June 1998, 55. 



 Small, Charles H. “Mixed-Signal Methods Shift Gears for Tomorrow’s 
Systems-on-a-Chip.” Computer Design, October 1997, 31. 

 Tuck, Barbara. “Integrating IP Blocks to Create a System-on-a-Chip.” 
Computer Design, November 1997, 49. 

 Kao, Warren. “Integrating Third-Party IP into the Design Process.” 
Embedded Systems Programming, January 1999, 52. 

  
 

ASICs and Revision Costs 

At first glance, it might seem that the ability to compile directly to silicon would 
greatly simplify the partitioning decision. Instead of deciding up- front how to 
partition the problem, just write and test the entire solution in an appropriate 
design language. Then, based on cost and performance, choose which portions you 
will compile to firmware and which portions you will compile to silicon. 
Unfortunately, it’s not that simple, primarily because it’s very expensive to revise 
an IC. Consider the consequences of discovering a bug in such a solution. Now, of 
course, the bug in the software can be a defect in the hardware design description, 
as well as a defect in the control code. However, consider the implications of a 
defect that is discovered during the hardware/software integration phase. If the 
defect was in the “traditional” software, you fix the source code, rebuild the code 
image, and try again. You expect this because it is software! Everyone knows there 
are bugs in software. 

 
From the Trenches  
 
About 20 years ago, the part of HP that is now Agilent was rapidly moving toward 
instrument designs based on embedded microprocessors. HP found itself with an 
oversupply of hardware designers and a shortage of software designers. So, being 
a rather enlightened company, HP decided to send willing hardware engineers off 
to software boot camp and retrain them in software design. The classes were 
rigorous and lasted about three months, after which time the former hardware 
engineers returned to their respective HP divisions to start their new careers as 
software developers. 

One “retread engineer” became a legend. His software was absolutely bulletproof. 
He never had any defects reported against the code he wrote. After several years, 
he was interviewed by an internal project team, chartered with finding and 
disseminating the best practices in the company in the area of software quality. 
They asked him a lot of questions, but the moment of truth came when he was 
bluntly asked why he didn’t have any defects in his code. His answer was 
straightforward: “I didn’t know that I was allowed to have defects in my code.” In 
hindsight, this is just basic Engineering Management 101. Although he was 
retrained in software methods, his value system was based on the hardware 
designer viewpoint that defects must be avoided at all costs because of the 
severity of penalty if a defect is found. A defect might render the entire design 
worthless, forcing a complete hardware redesign cycle, taking many months and 
costing hundreds of thousands of dollars. Because no one bothered to tell him that 
it’s okay to have bugs in his code, he made certain that his code was bug-free.  

On the other side of the wall, the hardware designers have compiled their portion 
of the program into silicon. Finally, they get their first prototype chips back and 
turn them on. So far, so good, they don’t cause the lights to dim in the lab. Even 
more exciting, you can see signals wiggling on the pins that you expect to see 



wiggling. With rising excitement, more tests are run, and the chip seems to be 
doing okay. Next, some test software is loaded and executed. Rats! It died. 

Without spending the next 20 pages on telling the story of this defect, assume that 
the defect is found in the code and fixed. Now what? Well, for starters, figure on 
$300,000 of nonrecoverable engineering (NRE) charges and about two months 
delay as a new chip is fabricated. Start-up companies generally budget for one 
such re-spin. A second re-spin not only costs the project manager his job but it 
often puts the company out of business. Thus, the cost penalty of a hardware 
defect is much more severe than the cost penalty of a software defect, even 
though both designers are writing software. 

(The difference between the hardware issues now and in the past is that board-
level systems could tolerate a certain amount of rework before the hardware 
designer was forced to re-spin the printed circuit board. If you’ve ever seen an 
early hardware prototype board, you know what I mean. Even if a revised board 
must be fabricated, the cost is still bearable — typically a few thousand dollars and 
a week of lost time. In fact, many boards went into production with “green wires” 
attached to correct last minute hardware defects. Usually the Manufacturing 
department had something like a “five green wire limit” rule to keep the boards 
from being too costly to manufacture. This kind of flexibility isn’t available when 
the traces on an IC are 180 billionths of a meter apart from each other.) 
Sometimes, you can compensate for a hardware defect by revising the partitioning 
decision; simply repartition the algorithm back towards the software and away 
from the defective hardware element. This might be a reasonable compromise, 
assuming the loss of performance associated with the transfer from hardware to 
software is still acceptable (or the Marketing department can turn it into a new 
feature) and the product is not permanently crippled by it. However, suppose that 
a software workaround is not acceptable, or worse yet, the defect is not a defect in 
the hardware design per se but is a defect in the interpretation of the 
hardware/software interface. In this case, you have the option of attempting to 
correct the defect in software if possible. However, if the defect is pervasive, you 
might lose just as much time, or more, trying to go back through thousands of 
lines of code to modify the software so that it will run with the hardware. Even 
though repartitioning can’t compensate for every hardware flaw, the cost penalty 
of a hardware re-spin is so great that every possible alternative is usually 
investigated before the IC design goes back to the vendor for another try.  

Managing the Risk 

Even though the hardware designer is writing software in silicon compilation, the 
expectations placed upon the hardware team are much greater because of what’s 
at stake if the hardware is defective. In fact, the silicon fabricators (foundry) won’t 
accept the design for fabrication unless a rather extensive set of “test vectors” is 
supplied to them along with the Verilog or VHDL code. The test vectors represent 
the ensemble of ones and zeros for as many possible input and output conditions 
as the engineer(s) can create. For a complex SoC, this can be thousands of 
possible combinations of inputs and outputs representing the behavior of the 
system for each clock cycle over many cycles of the system clock. The foundries 
require these vectors because they’ll ultimately need them to test the chips on 
their automated testers and because they want some assurance from the customer 
that the chip will work. The foundries don’t make profit from NRE charges; they 
want to sell the silicon that the customer has designed. This might be difficult for a 
software engineer to comprehend, but studies show that a hardware designer will 
spend 50 percent of the total project design time just in the process of design 
verification (creating test vectors). There are compelling arguments for investing a 

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



similar testing effort in software. At Microsoft, for example, the ratio of 
development engineers to test engineers is close to one. 

Before submitting the design to the foundry, the hardware designer uses the test 
vectors to run the design in simulation. Several companies in the business of 
creating the electronic design tools needed to build SoS provide Verilog or VHDL 
simulators. These simulators exercise the Verilog or VHDL design code and use the 
test vectors as the I/O stimulus for the simulation. With these powerful and 
expensive tools, the hardware design team can methodically exercise the design 
and debug it in much the same way as a software designer debugs code. 

Traditionally, these simulators are used by the hardware design team. Again, the 
question is what if hardware and software design are the same process? If the 
VHDL simulator was available during the entire development process, it could be 
used, together with the VHDL or Verilog representation of the hardware, to create 
a virtual test platform. This virtual hardware could be exercised by the actual 
embedded software, rather than artificially constructed test vectors. This would 
allow the traditional hardware/software integration phase to be moved earlier in 
the process (or even eliminated). 

For the hardware developer, this would certainly enhance the hardware/software 
integration process and provide an environment for better communications 
between the teams. Furthermore, uncertainties and errors in system specifications 
could be easily uncovered and corrected. For the software team, the gain is the 
elimination of the need to write stub code. In fact, the team could test the actual 
code under development against the virtual hardware under development at any 
point in the design process, testing hardware/software behavior at the module 
level instead of at the system level, which could be a big win for both teams.  

Co-Verification 

This vision of embedded system design in which the hardware and software teams 
work closely together throughout the design process is not especially new, but it 
has become much more important as SoCs have become more prevalent in 
embedded system design. The key has been the development of tools that form a 
bridge between the software realm (code) and the hardware realm (VHDL or 
Verilog simulation). The formal process is called co- design and co-verification. The 
names are often used interchangeably, but there is a formal distinction. Co-design 
is the actual process of developing the hardware and controlling software together. 
Co-verification tends to focus on the correctness of the hardware/software 
interface. 

 
To understand how the co-design system works consider Figure 3.6. 
 



 
Figure 3.6: Memory bus cycle of microprocessors.  
 
A memory bus cycle of a typical microprocessor. Each cycle of the clock, 
typically on a rising or falling edge, initiates different portions of the bus 
cycle.  

In this particular example, which is representative of a generalized microprocessor, 
each processor bus operation (such as read or write) can be further subdivided 
into one or more clock cycles, designated as T1, T2 and T3. A hardware designer 
tasked with interfacing an ASIC design to a system containing this microprocessor 
might construct a set of test vectors corresponding to each rising and falling edge 
of the clock. Each vector would consist of the state of all the microprocessor’s 
signals, all the address bits, all the data bits, and all the status bits, complete with 
any additional timing information. A set of these vectors could then be used to 
represent a bus cycle of the processor, reading from or writing to the ASIC.  

If you can do this, it would be easy to write a program that would convert a C or 
C++ assignment statement into the corresponding set of test vectors representing 
that bus cycle to the ASIC. Consider the following code snippet 

*(unsigned int* ) 0xFF7F00A6 = 0x4567ABFF; 

 
This instruction casts the address 0xFF7F00A6 as a pointer to an unsigned integer 
and then stores the data value 0x4567ABFF in that memory location. The 
equivalent assembly language instruction (68000) might be  

MOVE.L   #$4567ABFF, D0 

LEA      $FF7F00A6, A0 

MOVE.L   D0, (A0) 
From the hardware viewpoint, the actual code is irrelevant. The processor places 
the address, 0xFF7F00A6 on the address bus, places the data value 0x4567ABFF 
on the data bus at the appropriate point in the T states, and issues the WRITE 
command. If you construct a simulation model of this processor, you could then 
automatically generate a set of test vectors that would represent the data being 
written to the ASIC in terms of a series of I/O stimulus test vectors written to the 
VHDL or Verilog simulator. The program that does the translation from C or 
assembly code to test vectors is called a bus functional model and is the key 
element of any hardware/software co-design strategy. In theory, a bus functional 
model can be built for any commercially available microprocessor or 
microcontroller or for an embedded core, such as the ARM 7 TDMI processor that 
was discussed earlier. Figure 3.7 is a schematic representation of the entire 
process. 
 



 
Figure 3.7: Conversion process.  

To implement such a system, the C code snippets that actually access the 
hardware, such as in the example, must be replaced with a function call to the bus 
functional model. The function call contains all the information (read or write, 
address, data, bus width, and so on) necessary to construct a set of test vectors 
for the operation. On a read operation, the return value of the function is the result 
of the memory read operation. 

If an Instruction Set Simulator (ISS) is used, assembly language code also can be 
used. The ISS must be able to trap the address accesses and then send the 
information to the bus functional model. A number of companies now offer such 
tools for sale (Seamless from Mentor Graphics, Eaglei from Synopsys, V-CPU from 
Summit Design are representative co-design and co-verification tools).  

 
The conversion process from C or assembly language to VHDL or Verilog 
test vectors for ASIC simulation.  

It would seem like this could be a boon to the SoC-development process. However, 
a number of challenges, both technological and economic, have prevented co-
design and co-verification tools from achieving a broader market acceptance. For 
one, these tools are costly and complex to set up. For a team of software 
developers who are used to spending around $1,000 (or less) per user for a 
compiler and debugger, $50,000 per seat is a significant expense. Also, a VHDL 
simulator can cost $100,000 per seat; thus, it isn’t the type of tool that is used to 
equip a team of developers. 

 
Second, the throughput of an Hardware Description Language (HDL) simulator can 
be very slow relative to the execution speed of the software stimulus. Although the 
software might be able to run at 25 million instructions per second on the 
workstation, the speed can drop to under 100 instructions per second when 
communicating with the simulator. The HDL simulator is very computer intensive; 
it must recalculate the entire state of the system on each clock cycle, for each set 
of test vectors, including all timing delays and setups. For a complex design of a 
million gates or so, even a powerful workstation can be slowed to a relative crawl. 
So, how bad is it? Figure 3.8 gives some approximate values for the percentage of 
time that software actually communicates directly with the hardware for various 
types of software accesses.  
 



 
Figure 3.8: Instructions communicating directly.  
 
Percentage of instructions ( I/O density) that communicate directly with 
hardware (courtesy of Mike Stansbro, Synopsys Corporation, Beaverton, 
Oregon).  

As you might expect, the initialization of the hardware, typically at boot- up or 
reset, has the highest percentage — as many as one in four instructions directly 
access the hardware. Application software and RTOS calls are the lowest, between 
0.1 and 5 percent of the instructions. However, even if one instruction in a 1,000 
must communicate with the simulator, the average slowdown is dramatic because 
the simulator is running many orders of magnitude slower than the software. 

You might wonder whether any hard data indicates that co-verification is a viable 
technology. One case study[1] involves a manufacturer of telecomm and datacomm 
switching networks. The current design contained over one million lines of C source 
code. Prior to using the co-verification tools, the company’s previous design 
experience was disappointing. The predecessor was late to market and did not 
meet its original design specification. The company used a commercial co-
verification tool that was integrated with its RTOS of choice. The company focused 
its efforts on developing the hardware driver software while the ASICs were being 
designed and paid particular attention to verifying the correctness of the 
hardware/software interface specifications. As a result of this development 
strategy, product development time was cut from 16 months to 12 months, and 
the company realized a savings of $200,000–$300,000 in development costs. The 
company was so impressed with the results that it adopted hardware/software co-
verification as the corporate standard design practice.  

 

Co-Verification and Performance 

Figure 3.9 is a computer model that shows the expected performance of a co-
verification system. This simulation, an Excel spreadsheet model, assumes that the 
HDL simulator is running on a dedicated workstation, located remotely from the 
software being executed. Latency is five milliseconds for the round-trip time on the 
network. This is fairly typical of the use model for a co-verification environment. 
The simulator is running at 100Hz, and the instructions are plotted per second on 
the Y-axis (into the paper) over a range of 1,000 to 10,000,000 instructions per 
second. The X-axis (left to right across the paper) is the I/O density plotted over a 



range of 5 percent down to 0.1 percent. The Z-axis is the resultant total 
throughput (instructions per second) for the simulation. 
 

 
Figure 3.9: Throughput calculation.  
 
Throughput as a function of Software Clock Speed and I/O Density for 
Remote Call Latency = 0.005 Sec, where hardware simulation rate = 100 
Hz. Low I/O Density view.  

It is apparent from the model that after the I/O density rises above 1%, the 
throughput is entirely limited by the speed of the HDL simulator (lightest gray 
surface). Only when the I/O density drops below 0.2 percent does the throughput 
rise above 10,000 instructions per second. 

 

 

[1]Courtesy of Geoff Bunza, Synopsys Corporation. 

Additional Reading 

You can find more information about co-verification and co-design in the following 
sources: 

 

 Berger, Arnold. “Co-Verification Handles More Complex Embedded 
Systems.” Electronic Design, March 1998 (supplement), 9. 

 Leef, Serge. “Hardware and Software Co-Verification — Key to Co- 
Design.” Electronic Design, March 1998 (supplement), 18. 

 Morasse, Bob. “Co-Verification and System Abstraction Levels.” 
Embedded System Programming, June 2000, 90. 

 Nadamuni, Daya. “Co-Verification Tools: A Market Focus.” Embedded 
System Programming, September 1999, 119. 

 Sangiovanni-Vincentelli, Alberto, and Jim Rowson. “What You Need to 
Know About Hardware/Software Co-Design.” Computer Design, August 
1998, 63. 

 Tuck, Barbara. “The Hardware/Software Co-Verification Challenge.” 
Computer Design, April 1998, 49. 



 Tuck, Barbara. “Various Paths Taken to Accelerate Advances in 
Hardware/Software Co-Design.” Computer Design, September 1998, 24. 

 
Summary 

The advances made in ASIC fabrication technology have elevated the issue of 
system design to a much greater prominence. Previously, when systems were 
designed at the board level and hardware designers chose from the catalog pages 
of available devices, the portioning decisions were rather limited. New ASIC and 
SoC options have greatly complicated the partitioning decision and radically 
changed the risk associated with defects. 

The solution might evolve from the same force that generated this complexity. I 
believe in the near future, you’ll see a convergence of the hardware/software 
partitioning database with the hardware/software co- verification tools to form an 
integrated tool suite that will allow a complete design cycle from partition to 
integration in one continuous process. These tools will allow designers to delay 
many partitioning decisions until the impact can be explored using virtual 
hardware. 

Whether it’s sociological or traditional, embedded systems designers tend to draw 
a sharp distinction between the designers of hardware and the designers of 
software. Justified by this distinction, organizations have imposed varying degrees 
of separation between the teams. In an extreme case, the hardware might be built 
at a facility in another country and then shipped along with the hardware 
specification document to the software team for integration.  

As hardware and software representations, tools, and processes converge, the 
justification will dwindle for this distinction — or for any separation between the 
teams. 

 

Works Cited 
 

1. Small, Charles H. “Partitioning Tools Play a Key Role in Top-Down 
Design.” Computer Design, June 1998, 84. 

2. Mead, Carver, and Lynn Conway. Introduction to VLSI Systems. 
Reading, MA: Addison-Wesley, 1980. 



 

Chapter 4: The Development 
Environment 

Overview 

Modern desktop development environments use remarkably complex translation 
techniques. Source code is seldom translated directly into loadable binary images. 
Sophisticated suites of tools translate the source into relocatable modules, 
sometimes with and sometimes without debug and symbolic information. Complex, 
highly optimized linkers and loaders dynamically combine these modules and map 
them to specific memory locations when the application is executed. 

It’s amazing that the process can seem so simple. Despite all this behind- the-
scenes complexity, desktop application developers just select whether they want a 
free-standing executable or a DLL (Dynamic Link Library) and then click Compile. 
Desktop application developers seldom need to give their development tools any 
information about the hardware. Because the translation tools always generate 
code for the same, highly standardized hardware environment, the tools can be 
preconfigured with all they need to know about the hardware. 

Embedded systems developers don’t enjoy this luxury. An embedded system runs 
on unique hardware, hardware that probably didn’t exist when the development 
tools were created. Despite processor advances, the eventual machine language is 
never machine independent. Thus, as part of the development effort, the 
embedded systems developer must direct the tools concerning how to translate 
the source for the specific hardware. This means embedded systems developers 
must know much more about their development tools and how they work than do 
their application-oriented counterparts.  

Assumptions about the hardware are only part of what makes the application 
development environment easier to master. The application developer also can 
safely assume a consistent run-time package. Typically, the only decision an 
application developer makes about the run-time environment is whether to create 
a freestanding EXE, a DLL, or an MFC application. The embedded systems 
developer, by comparison, must define the entire run- time environment. At a 
minimum, the embedded systems developer must decide where the various 
components will reside (in RAM, ROM, or flash memory) and how they will be 
packaged and scheduled (as an ISR, part of the main thread, or a task launched by 
an RTOS). In smaller environments, the developer must decide which, if any, of 
the standard run-time features to include and whether to invent or acquire the 
associated code. 

Thus, the embedded systems developer must understand more about the 
execution environment, more about the development tools, and more about the 
run-time package. 
 

The Execution Environment 

Although you might not need to master all of the intricacies of a given instruction 
set architecture to write embedded systems code, you will need to know the 
following: 

 



 How the system uses memory, including how the processor manages 
its stack 

 What happens at system startup 

 How interrupts and exceptions are handled 

In the following sections, you’ll learn what you need to know about these issues to 
work on a typical embedded system built with a processor from the Motorola 
68000 (68K) family. Although the details vary, the basic concepts are similar on all 
systems. 
 

Memory Organization 
 
The first step in coming to terms with the execution environment for a new system 
is to become familiar with how the system uses memory. Figure 4.1 outlines a 
memory map of a generic microprocessor, the Motorola 68K (Even though the 
original 68K design is over 20 years old, it is a good architecture to use to explain 
general principles).  
 

 
Figure 4.1: Memory map of processor.  
Memory model for a 68K family processor.  

Everything to the left of I/O space could be implemented as ROM. Everything to 
the right of I/O space can only be implemented in RAM. 

System Space 

The Motorola 68K family reserves the first 1,024 memory locations (256 long 
words) for the exception vector tables. Exception vectors are “hard- wired” 
addresses that the processor uses to identify which code should run when it 
encounters an interrupt or other exception (such as divide by zero or overflow 
error). Because each vector consumes four bytes (one long word) on the 68K, this 
system can support up to 256 different exception vectors. 

Code Space 

Above the system space, the code space stores the instructions. It makes sense to 
make the system space and the code space contiguous because you would 
normally place them in the same physical ROM device. 

Data Space 

Above the code space, the ROM data space stores constant values, such as error 
messages or other string literals. 
Above the data space, the memory organization becomes less regular and more 
dependent on the hardware design constraints. Thus, the memory model of Figure 
4.1 is only an example and is not meant to imply that it should be done that way. 
Three basic areas of read/write storage (RAM) need to be identified: stack, free 
memory, and heap. 



The Stack 

The stack is used to keep track of the current and all suspended execution 
contexts. Thus, the stack contains all “live” local or automatic variables and all 
function and interrupt “return addresses.” When a program calls a function, the 
address of the instruction following the call (the return address) is placed on the 
stack. When the called function has completed, the processor retrieves the return 
address from the stack and resumes execution there. A program cannot service an 
interrupt or make a function call unless stack space is available.  
The stack is generally placed at the upper end of memory (see Figure 4.1) because 
the 68K family places new stack entries in decreasing memory addresses; that is, 
the stack grows downwards towards the heap. Placing the stack at the “right” end 
of RAM means that the logical bottom of the stack is at the highest possible RAM 
address, giving it the maximum amount of room to grow downwards.  

Free Memory 

All statically allocated read/write variables are assigned locations in free memory. 
Globals are the most common form of statically allocated variable, but C “statics” 
are also placed here. Any modifiable variable with global life is stored in free 
memory. 

The Heap 
All dynamically allocated (created by new or malloc()) objects and variables reside 
in the heap. Usually, whatever memory is "left over" after allocating stack and free 
memory space is assigned to the heap. The heap is usually a (sometimes complex) 
linked data structure managed by routines in the compiler’s run-time package. 
Many embedded systems do not use a heap. 
 

Unpopulated Memory Space 
 
The “break” in the center of Figure 4.1 represents available address space that 
isn’t attached to any memory. A typical embedded system might have a few 
megabytes of ROM-based instruction and data and perhaps another megabyte of 
RAM. Because the 68K in this example can address a total of 16MB of memory, 
there’s a lot of empty space in the memory map. 
 

I/O Space 
 
The last memory component is the memory-mapped peripheral device. In Figure 
4.1, these devices reside in the I/O space area. Unlike some processors, the 68K 
family doesn’t support a separate address space for I/O devices. Instead, they are 
assumed to live at various addresses in the otherwise empty memory regions 
between RAM and ROM. Although I’ve drawn this as a single section, you should 
not expect to find all memory-mapped devices at contiguous addresses. More 
likely, they will be scattered across various easy-to-decode addresses.  

 
Detecting Stack Overflow  
 
Notice that in Figure 4.1 on page 71, the arrow to the left of the stack space points 
into the heap space. It is common for the stack to grow down, gobbling free 
memory in the heap as it goes. As you know, when the stack goes too far and 
begins to chew up other read/write variables, or even worse, passes out of RAM 



into empty space, the system crashes. Crashes in embedded systems that are not 
deterministic (such as a bug in the code) are extremely difficult to find. In fact, it 
might be years before this particular defect causes a failure. 
In The Art of Embedded Systems, Jack Ganssle[1] suggests that during system 
development and debug, you fill the stack space with a known pattern, such as 
0x5555 or 0xAA. Run the program for a while and see how much of this pattern 
has been overwritten by stack operations. Then, add a safety factor (2X, perhaps) 
to allow for unintended stack growth. The fact that available RAM memory could be 
an issue might have an impact on the type of programming methods you use or an 
influence on the hardware design. 
 

System Startup 

Understanding the layout of memory makes it easier to understand the startup 
sequence. This section assumes the device’s program has been loaded into the 
proper memory space — perhaps by “burning” it into erasable, programmable, 
read-only memory (EPROM) and then plugging that EPROM into the system board. 
Other mechanisms for getting the code into the target are discussed later. 

The startup sequence has two phases: a hardware phase and a software phase. 
When the RESET line is activated, the processor executes the hardware phase. The 
primary responsibility of this part is to force the CPU to begin executing the 
program or some code that will transfer control to the program. The first few 
instructions in the program define the software phase of the startup. The software 
phase is responsible for initializing core elements of the hardware and key 
structures in memory.  

 
For example, when a 68K microprocessor first comes out of RESET, it does two 
things before executing any instructions. First, it fetches the address stored in the 
4 bytes beginning at location 000000 and copies this address into the stack pointer 
(SP) register, thus establishing the bottom of the stack. It is common for this value 
to be initialized to the top of RAM (e.g., 0XFFFFFFFE) because the stack grows 
down toward memory location 000000. Next, it fetches the address stored in the 
four bytes at memory location 000004–000007 and places this 32-bit value in its 
program counter register. This register always points to the memory location of 
the next instruction to be executed. Finally, the processor fetches the instruction 
located at the memory address contained in the program counter register and 
begins executing the program. 
 
At this point, the CPU has begun the software startup phase. The CPU is under 
control of the software but is probably not ready to execute the application proper. 
Instead, it executes a block of code that initializes various hardware resources and 
the data structures necessary to create a complete run-time environment. This 
“startup code” is described in more detail later. 
 

Interrupt Response Cycle 

Conceptually, interrupts are relatively simple: When an interrupt signal is received, 
the CPU “sets aside” what it is doing, executes the instructions necessary to take 
care of the interrupt, and then resumes its previous task. The critical element is 
that the CPU hardware must take care of transferring control from one task to the 
other and back. The developer can’t code this transfer into the normal instruction 
stream because there is no way to predict when the interrupt signal will be 
received. Although this transfer mechanism is almost the same on all architectures, 

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



small significant differences exist among how different CPUs handle the details. 
The key issues to understand are: 

 

 How does the CPU know where to find the interrupt handling code? 

 What does it take to save and restore the “context” of the main thread? 

 When should interrupts be enabled? 
 
As mentioned previously, a 68K CPU expects the first 1024 bytes of memory to 
hold a table of exception vectors, that is, addresses. The first of these is the 
address to load into SP during system RESET. The second is the address to load 
into the program counter register during RESET. The rest of the 254 long 
addresses in the exception vector table contain pointers to the starting address of 
exception routines, one for each kind of exception that the 68K is capable of 
generating or recognizing. Some of these are connected to the interrupts discussed 
in this section, while others are associated with other anomalies (such as an 
attempt to divide by zero) which may occur during normal code execution. 

When a device[1] asserts an interrupt signal to the CPU (if the CPU is able to accept 
the interrupt), the 68K will:  

 

 Push the address of the next instruction (the return address) onto the 
stack. 

 Load the ISR address (vector) from the exception table into the 
program counter. 

 Disable interrupts. 

Resume executing normal fetch–execute cycles. At this point, however, it is 
fetching instructions that belong to the ISR. 

 
This response is deliberately similar to what happens when the processor executes 
a call or jump to subroutine (JSR) instruction. (In fact, on some CPUs, it is 
identical.) You can think of the interrupt response as a hardware- invoked function 
call in which the address of the target function is pulled from the exception vector. 
To resume the main program, the programmer must terminate the ISR with a 
return from subroutine (RTS) instruction, just as one would return from a function. 
(Some machines require you to use a special return from interrupt [RTE, return 
from exception on the 68k] instruction.) 
 
ISRs are discussed in more detail in the next chapter. For now, it’s enough to think 
of them as hardware-invoked functions. Function calls, hardware or software, are 
more complex to implement than indicated here. 

[1]In the case of a microcontroller, an external device could be internal to the chip 
but exter nal to the CPU core. 

Function Calls and Stack Frames 
 
When you write a C function and assemble it, the compiler converts it to an 
assembly language subroutine. The name of the assembly language subroutine is 
just the function name preceded by an underscore character. For example, main() 



becomes _main. Just as the C function main() is terminated by a return statement, 
the assembly language version is terminated by the assembly language equivalent: 
RTS. 
 
Figure 4.2 shows two subroutines, FOO and BAR, one nested inside of the other. 
The main program calls subroutine FOO which then calls subroutine BAR. The 
compiler translates the call to BAR using the same mechanism as for the call to 
FOO. The automatic placing and retrieval of addresses from the stack is possible 
because the stack is set up as a last- in/first-out data structure. You PUSH return 
addresses onto the stack and then POP them from the stack to return from the 
function call. 
 

 
Figure 4.2: Subroutines.  
 
Schematic representation of the structure of an assembly-language 
subroutine.  
 
The assembly-language subroutine is “called” with a JSR assembly language 
instruction. The argument of the instruction is the memory address of the start of 
the subroutine. When the processor executes the JSR instruction, it automatically 
places the address of the next instruction — that is, the address of the instruction 
immediately following the JSR instruction — on the processor stack. (Compare this 
to the interrupt response cycle discussed previously.) First the CPU decrements the 
SP to point to the next available stack location. (Remember that on the 68K the SP 
register grows downward in memory.) Then the processor writes the return 
address to the stack (to the address now in SP). 

 
Hint  A very instructive experiment that you should be able to perform with any 

embedded C compiler is to write a simple C program and compile it with a 
“compile only” option. This should cause the compiler to generate an 
assembly language listing file. If you open this assembly file in an editor, 
you’ll see the various C statements along with the assembly language 
statements that are generated. The C statements appear as comments in 
the assembly language source file. 

Some argue that generating assembly is obsolete. Many modern compilers skip the 
assembly language step entirely and go from compiler directly to object code. If 
you want to see the assembly language output of the compiler, you set a compiler 
option switch that causes a disassembly of the object file to create an assembly 
language source file. Thus, assembly language is not part of the process.  



The next instruction begins execution at the starting address of the subroutine 
(function). Program execution continues from this new location until the RTS 
instruction is encountered. The RTS instruction causes the address stored on the 
stack to be automatically retrieved from the stack and placed in the program 
counter register, where program execution now resumes from the instruction 
following the JSR instruction. 
 
The stack is also used to store all of a function’s local variables and arguments. 
Although return addresses are managed implicitly by the hardware each time a 
JSR or RTS is executed, the compiler must generate explicit assembly language to 
manage local variable storage. Here, different compilers can choose different 
options. Generally, the compiler must generate code to 
 

 Push all arguments onto the stack 

 Call the function 

 Allocate storage (on the stack) for all local variables 

 Perform the work of the function 

 Deallocate the local variable storage 

 Return from the function 

 Deallocate the space used by the arguments 
 
The collection of all space allocated for a single function call (arguments, return 
addresses, and local variables) is called a stack frame. To simplify access to the 
arguments and local variables, at each function entry, the compiler generates code 
that loads a pointer to the current function’s stack frame into a processor register 
— typically called Frame Pointer (FP). Thus, within the assembly language 
subroutine, a stack frame is nothing more than a local block of RAM that must be 
addressed via one of the CPU’s internal address registers (FP). 
A complete description of a stack frame includes more than locals, parameters, 
and return addresses. To simplify call nesting, the old FP is pushed onto the stack 
each time a function is called. Also, the "working values" in certain registers might 
need to be saved (also in the stack) to keep them from being overwritten by the 
called function. Thus, every time the compiler encounters a function call, it must 
potentially generate quite a bit of code (called "prolog" and "epilogue") to support 
creating and destroying a local stack frame. Many CPUs include special instructions 
designed to improve the efficiency of this process. The 68K processor, for example, 
includes two instructions, link and unlink (LNK and UNLNK) that were created 
especially to support the creation of C stack frames. 

Run-Time Environment 

Just as the execution environment comprises all the hardware facilities that 
support program execution, the run-time environment consists of all the software 
structures (not explicitly created by the programmer) that support program 
execution. Although I’ve already discussed the stack and stack frames as part of 
the execution environment, the structure linking stack frames also can be 
considered a significant part of the run-time environment. For C programmers, two 
other major components comprise the run- time environment: the startup code 
and the run-time library.  



Startup Code 
Startup code is the software that bridges the connection between the hardware 
startup phase and the program’s main(). This bridging software should be 
executed at each RESET and, at a minimum, should transfer control to main(). 
Thus, a trivial implementation might consist of an assembly language file 
containing the single instruction:JMP _main  
 
To make this code execute at startup, you also need to find a way to store the 
address of this JMP into memory locations 000004–000007 (the exception vector 
for the first instruction to be executed by the processor.) I’ll explain how to 
accomplish that later in the section on linkers. 
 
Typically, however, you wouldn’t want the program to jump immediately to main(). 
A real system, when it first starts up, will probably do some system integrity 
checks, such as run a ROM checksum test, run a RAM test, relocate code stored in 
ROM to RAM for faster access, initialize hardware registers, and set up the rest of 
the C environment before jumping to _main. Whereas in a desktop environment, 
the startup code never needs to be changed, in an embedded environment, the 
startup code needs to be customized for every different board. To make it easy to 
modify the startup behavior, most embedded market C compilers automatically 
generate code to include a separate assembly language file that contains the 
startup code. Typically, this file is named crt0 or crt1 (where crt is short for C Run 
Time). This convention allows the embedded developer to modify the startup code 
separately (usually as part of building the board support package).  
 
Figure 4.3 shows the flowchart for the crt0 function for the Hewlett- Packard 
B3640 68K Family C Cross Compiler. 

 
Figure 4.3: crt0 function  
The crt0 program setup flowchart.[2]  

 

Why JMP_main Was Used 



You might be wondering why I used the instruction JMP_main and not the 
instruction JSR _main. First of all, JSR_main implies that after it’s done running 
main(), it returns to the calling routine. Where is the calling routine? In this case, 
main() is the starting and ending point. Once it is running, it runs forever. Thus, 
function main() might look like this pseudocode representation: 

main() 

 

{ 

   Initialize variables and get ready to run; 

   While(1) 

   { 

      Rest of the program here; 

   } 

   return 0; 

} 

After you enter the while loop, you stay there forever. Thus, a JMP _main is as 
good as a JSR _main. 

However, not all programs run in isolation. Just like a desktop application runs 
under Windows or UNIX, an embedded application can run under an embedded 
operating system, for example, a RTOS such as VxWorks. With an RTOS in control 
of your environment, a C program or task might terminate and control would have 
to be returned to the operating system. In this case, it is appropriate to enter the 
function main() with a JSR _main. 

This is just one example of how the startup code might need to be adjusted for a 
given project.  

The Run-Time Library 

In the most restrictive definition, the run-time library is a set of otherwise invisible 
support functions that simplify code generation. For example, on a machine that 
doesn’t have hardware support for floating-point operations, the compiler 
generates a call to an arithmetic routine in the run-time library for each floating-
point operation. On machines with awkward register structures, sometimes the 
compiler generates a call to a context-saving routine instead of trying to generate 
code that explicitly saves each register. 

For this discussion, consider the routines in the C standard library to be part of the 
run-time library. (In fact, the compiler run-time support might be packaged in the 
same library module with the core standard library functions.) 

The run-time library becomes an issue in embedded systems development 
primarily because of resource constraints. By eliminating unneeded or seldom used 
functions from the run-time library, you can reduce the load size of the program. 



You can get similar reductions by replacing complex implementations with simple 
ones. 
These kinds of optimizations usually affect three facilities that application 
programmers tend to take for granted: floating-point support, formatted output 
(printf()), and dynamic allocation support (malloc() and C++’s new). Typically, if 
one of these features has been omitted, the embedded development environment 
supplies some simpler, less code-intensive alternative. For example, if no floating-
point support exists, the compiler vendor might supply a fixed-point library that 
you can call explicitly. Instead of full printf() support, the vendor might supply 
functions to format specific types (for example, printIntAsHex(), printStr(), and so 
on).  
Dynamic allocation, however, is a little different. How, or even if, you implement 
dynamic allocation depends on many factors other than available code space and 
hardware support. If the system is running under an RTOS, the allocation system 
will likely be controlled by the RTOS. The developer will usually need to customize 
the lower level functions (such as the getmem() function discussed in the following) 
to adapt the RTOS to the particular memory configuration of the target system. If 
the system is safety critical, the allocation system must be very robust. Because 
allocation routines can impose significant execution overhead, processor-bound 
systems might need to employ special, fast algorithms. 

Many systems won’t have enough RAM to support dynamic allocation. Even those 
that do might be better off without it. Dynamic memory allocation is not commonly 
used in embedded systems because of the dangers inherent in unexpectedly 
running out of memory due to using it up or to fragmentation issues. Moreover, 
algorithms based on dynamically allocated structures tend to be more difficult to 
test and debug than algorithms based on static structures. 

 
Most RTOSs supply memory-management functions. However, unless your target 
system is a standard platform, you should plan on rewriting some of the malloc() 
function to customize it for your environment. At a minimum, the cross-compiler 
that might be used with an embedded system needs to know about the system’s 
memory model. 
 
For example, the HP compiler discussed earlier isolates the system-specific 
information in an assembly language function called _getmem(). In the HP 
implementation, _getmem() returns the address of a block of memory and the size 
of that block. If the size of the returned block cannot meet the requested size, the 
biggest available block is returned. The user is responsible for modifying this 
getmem() according to the requirements of the particular target system. Although 
HP supplies a generic implementation for getmem(), you are expected to rewrite it 
to fit the needs and capabilities of your system. 

 
Note  You can find more information about dynamic allocation in embedded 

system projects in these articles: 
 

 Dailey, Aaron. “Effective C++ Memory Allocation.” Embedded Systems 
Programming, January 1999, 44. 

 Hogaboom, Richard. “Flexible Dynamic Array Allocation.” Embedded 
Systems Programming, December 2000, 152. 

 Ivanovic, Vladimir G. “Java and C++: A Language Comparison.” Real 
Time Computing, March 1998, 75. 



 Lafreniere, David. “An Efficient Dynamic Storage Allocator.” Embedded 
Systems Programming, September 1998, 72. 

 Murphy, Niall. “Safe Memory Utilization.” Embedded Systems 
Programming, April 2000, 110. 

 Shaw, Kent. “Run-Time Error Checking,” Embedded Developers Journal, 
May 2000, 8. 

 Stewart, David B. “More Pitfalls for Real-Time Software Developers.” 
Embedded Systems Programming, November 1999, 74. 

 

Object Placement 

It should be clear by now that an embedded systems programmer needs to be able 
to control the physical position of code and data in memory. To create a table of 
exception vectors, for example, you must be able to create an array of ISR 
addresses and force it to reside at location zero. Similarly, embedded systems 
programmers must be able to force program instructions to reside at an address 
corresponding to EPROM and to force global data to reside at addresses 
corresponding to RAM. Startup code and ISRs pose similar challenges. 

The linker is the primary tool for controlling code placement. Generally, the 
assembler creates relocatable modules that the linker “fixes” at specific physical 
addresses. The following sections explain relocatable modules and how the 
embedded systems programmer can exercise control over the physical placement 
of objects. 

Relocatable Objects 
 
Figure 4.4 represents the classical development model. The C or C++ source file 
and include files are compiled into an assembly language source file and then the 
assembler creates a relocatable object file. 
 

 
Figure 4.4: Embedded software development process.  
A road map for the creation and design of embedded software.  

As the assembler translates the source modules, it maintains an internal counter — 
the location counter — to keep track of the instruction boundaries, relative to the 
starting address of the block. 

 



Figure 4.5 is a snippet of 68K assembly language code. The byte count 
corresponding to the current value of the location counter is highlighted in Figure 
4.5. The counter shows the address of the instructions in this block of code, 
although it could just as easily show the relative byte counts (offsets) for data 
blocks. In the simplest development environments, the developer uses special 
assembly language pseudo-instructions to place objects at particular locations 
(such as ORG 200H to start a module at address 512.) When working in a higher-
level language, you need some other mechanism for controlling placement.  
 

 
Figure 4.5: Assembly lafnguage snippet.  
 
In this snippet of 68K assembly-language code, the location counter is 
highlighted.  

The solution is to have the assembler generate relocatable modules. Each 
relocatable module is translated as if it will reside at location zero. When the 
assembler prepares the module, it also prepares a symbol table showing which 
values in the module will need to change if the module is moved to some location 
other than zero. Before loading these modules for execution, the linker relocates 
them, that is, it adjusts all the position-sensitive values to be appropriate for 
where the module actually will reside. Modern instruction sets often include 
instructions specifically designed to simplify the linker’s job (for example, “jump-
relative” instructions, which do not need adjusting). Often, the compilers and 
linkers for such machines can be instructed to generate position-independent code 
(PIC), which requires no adjustments, regardless of where the code will ultimately 
reside in memory. 

The relocatable modules (or files) typically reference functions in other modules, 
so, at first glance, you have a Pandora’s box of interconnected function calls and 
memory references. In addition to adjusting internal references for actual location, 
the linker is also responsible for resolving these inter-module references and 
creating a block of code that can be loaded into a specific location in the system.  

Advantages of Relocatable Modules 

Relocatable modules are important for many reasons. For the embedded systems 
programmer, relocatable modules simplify the physical placement of code 
generated from a high-level language and allow individual modules to be 
independently updated and recompiled. 

In general-purpose systems, relocatable modules have the added benefits of 
simplifying memory management (by allowing individual programs to be loaded 
into any available section of memory without recompilation) and facilitating the 
use of shared, precompiled libraries. 

 



 

Using the Linker 

The inputs to the linker are the relocatable object modules and the linker 
command file. The linker command file gives the software engineer complete 
control of how the code modules are linked together to create the final image. The 
linker command file is a key element in this process and is an important 
differentiator between writing code for an embedded system and a desktop PC. 
The linker command file is a user-created text file that tells the linker how the 
relocatable object modules are to be linked together. Linkers use program sections. 
A program section is a block of code or data that is logically distinct from other 
sections and can be described by its own location counter. 

Sections have various attributes that tell the linker how they are to be used. For 
example, a section might be: 

 

 Program code 

 Program data 

 Mixed code and data 

 ROMable data 
Listing 4.1 shows a typical Motorola 68K family linker command file. The meanings 
of the linker commands are explained in Table 4.1. 
 
Table 4.1: Linker commands.  

CHIP 

specifies the target microprocessor. It also determines how sections are aligned 
on memory address boundaries and, depending upon the microprocessor 
specified, how much memory space is available. Finally, it determines the 
behavior of certain processor-specific addressing modes. 

LISTMAP 

generates a symbol table listing both local and external definition symbols. It 
also causes these symbols to be placed in the output object module so that a 
debugger can associate symbols with memory addresses later on. The symbol 
table displays the symbols along with their final absolute address locations. You 
can look at the link map output and determine whether all the modules were 
linked properly and will reside in memory where you think they should be. If the 
linker was successful, all addresses are adjusted to their proper final values and 
all links between modules are resolved. 
COMMON; named COMSEC 

is placed at hexadecimal starting address 1000 ($ means hexadecimal). The 
linker places all COMMON sections from different modules with the same name 
in the same place in memory. COMMON sections are generally used for program 
variables that will reside in RAM, such as global variables. 

ORDER  

specifies the order that the sections are linked together into the executable 
image. 

PUBLIC 
specifies an absolute address, hexadecimal 2000, for the variable EXTRANEOUS. 
This is an interesting command, and I’ll return to it in Chapter 5, when I discuss 



using “casting” to assign absolute addresses to variables, as you might do for 
memory-mapped hardware peripheral devices. 

NAME TESTCASE 

specifies the filename of the final output module. 

PAGE 
specifies that the next section begins on a page (256-byte) boundary. After the 
PAGE command is read, each subsection, or module, of the specified section is 
aligned on page boundaries. In this example, SECT2 will be started on the next 
available page boundary. 

FORMAT 

specifies the output file format. In this case, it is IEEE-695, an industry-standard 
file format. Another file format could be Motorola S-Record files. S-Records are 
ASCII-based files and human readable. S-Records are typically used for loading 
the code into a ROM programming device. 

LOAD 

loads the next three specified object files. 

END 

signifies the end of the file. 

 
Listing 4.1: Example of a linker command file. (from Microtec Research, 
Inc.).[2]  

 

CHIP 68000 

LISTMAP INTERNALS,PUBLICS,CROSSREF 

COMMON COMSEC=$1000 

ORDER SECT2,SECT3,COMSEC 

PUBLIC EXTRANEOUS=$2000 

NAME TESTCASE 

PAGE SECT2 

FORMAT IEEE 

*Load first two modules 

LOAD Lnk68ka.obj, lnk68kb.obj 

*Load last module 

LOAD lnk68kc.obj 

END 

 

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



 

 

ROM Code Space as a Placeholder 

Another reasonable design practice is to use the ROM code space simply as a 
placeholder. When the system starts up the first set of instructions, it actually 
moves the rest of the operational code out of ROM and relocates it into RAM. This 
is usually done for performance reasons because RAM is generally faster than ROM. 
Thus, the system might contain a single 8-bit wide ROM, which it relocates into a 
32- bit wide RAM space on bootup. Thus, aside from the boot-loader code, the 
remainder of the code is designed and linked to execute out of the RAM space at 
another address range in memory. 

[2]Microtec Research, Inc., is now part of Mentor Graphics, Inc. 

Additional Reading 
 

 Ganssle, Jack G. “Wandering Pointers, Wandering Code.” Embedded 
Systems Programming, November 1999, 21. 

 Jones, Nigel. “A ‘C’ Test: The 0x10 Best Questions for Would-be 
Embedded Programmers." Embedded Systems Programming, May 2000, 
119. 

 Kernighan, Brian W. and Dennis M. Ritchie. The C Programming 
Language, 2nd ed. Englewood Clifs, NJ: Prentice-Hall, 1988. 

 Madau, Dinu. “Rules for Defensive Programming.” Embedded Systems 
Programming, December 1999, 24. 

 Murphy, Niall. “Watchdog Timers.” Embedded Systems Programming, 
November 2000, 112. 

 Saks, Dan. “Volatile Objects.” Embedded Systems Programming, 
September 1998, 101. 

 Saks, Dan. “Using const and volatile in Parameter Types." Embedded 
Systems Programming, September 1999, 77. 

 Silberschatz, Abraham, and Peter Baer Galvin. Operating System 
Concepts, 5th ed. Reading, MA: Addison Wesley Longman, 1998. 

 Simon, David E. An Embedded Software Primer. Reading, MA: Addison- 
Wesley, 1999, 149. 

 Stewart, Dave. “The Twenty-Five Most Common Mistakes with Real- 
Time Software Development.” A paper presented at the Embedded 
Systems Conference, San Jose, 26 September 2000. 

 Sumner, Scott A. “From PROM to Flash.” Embedded Systems 
Programming, July 2000, 75. 

Summary 

Because embedded systems developers must explicitly control the physical 
placement of code and data, they must have a more detailed understanding of the 
execution environment and their development tools. Developers whose prior work 



has been limited to the desktop-application domain need to pay special attention 
to the capabilities of their linker. 

 
Embedded systems developers also need a more detailed understanding of many 
system-level issues. The typical application developer can usually ignore the 
internal mechanisms of malloc() and free(), for example. Because embedded 
systems developers might need to write replacements for these services, they 
should become familiar with several allocation algorithms and their relative trade-
offs. Similarly, the embedded systems developer might need to understand the 
implications of using fixed-point arithmetic instead of floating-point arithmetic. 

Finally, embedded systems developers should expect to become intimately familiar 
with the details of their system’s hardware and run-time initialization needs. It is 
impossible to write reliable startup code without understanding the proper 
initialization of the relevant hardware. 

 
Although I can’t hope to explain how every kind of hardware works, I can show 
some of the tricks used to manipulate the hardware from C instead of assembly. 
The next chapter addresses this and other special techniques commonly used by 
embedded systems programmers. 
 

Works Cited 
 

1. Ganssle, Jack. The Art of Designing Embedded Systems. Boston, MA: 
Newnes, 2000, 61. 

2. Microtec Research. Assembler/Linker/Librarian User’s Guide, from the 
Software Development Tools Documentation Set for the 68000 Family, 
Document #100113-011. Santa Clara, CA: Microtec Research, Inc., 
1995, 4-1. 



 

Chapter 5: Special Software Techniques 
 
Chapter 4 looked at how the embedded systems software-development process 
differs from typical application development. This chapter introduces several 
programming techniques that belong in every embedded systems programmer’s 
toolset. The chapter begins with a discussion of how to manipulate hardware 
directly from C, then discusses some algorithms that aren’t seen outside the 
embedded domain, and closes with a pointer toward a portion of the Unified 
Modeling Language (UML) that has special significance for embedded systems 
programmers. 

Manipulating the Hardware 

Embedded systems programmers often need to write code that directly 
manipulates some peripheral device. Depending on your architecture, the device 
might be either port mapped or memory mapped. If your architecture supports a 
separate I/O address space and the device is port mapped, you have no choice but 
to “drop down” to assembly to perform the actual manipulation; this is because C 
has no intrinsic notion of “ports.” Some C compilers provide special CPU-specific 
intrinsic functions, which are replaced at translation time by CPU-specific assembly 
language operations. While still machine-specific, intrinsic functions do allow the 
programmer to avoid in-line assembly. Things are much simpler if the device is 
memory mapped.  

In-line Assembly 
 
If you only need to read or write from a particular port, in-line assembly is 
probably the easiest solution. In-line assembly is always extremely compiler 
dependent. Some vendors use a #pragma directive to escape the assembly 
instructions, some use special symbols such as _asm/_endasm, and some wrap 
the assembly in what looks like a function call.  

asm( "assembly language statements go here" ); 

The only way to know what a particular compiler expects (or if it even allows in-
line assembly) is to check the compiler documentation. 
Because in-line assembly is so compiler dependent, it’s a good idea to wrap all 
your assembly operations in separate functions and place them in a separate 
support file. Then, if you need to change compilers, you only need to change the 
assembly in one place. For example, if you needed to read and write from a device 
register located at port address 0x42, you would create access functions like these:  

int read_reg( )  

{ 

    asm( "in acc,0x42"); 

} 

 

void write_reg(int newval) 

{ 

    asm( " 

        mov acc,newval 



        out 0x42 

    "); 

} 
In this example, the instructions in and out are I/O access instructions and not 
memory access (read/write) instructions.  
 
Please note that these functions involve some hidden assumptions that might not 
be true for your compiler. First, read_reg() assumes that the function return value 
should be placed in the accumulator. Different compilers observe different 
conventions (sometimes dependent on the data size) about where the return value 
should be placed. Second, write_reg() assumes that the compiler will translate the 
reference to newval into an appropriate stack reference. (Remember, arguments 
to functions are passed on the stack.) Not all compilers are so nice!  

If your compiler doesn’t support in-line assembly, you’ll have to write similar 
read/write functions entirely in assembly and link them to the rest of your program. 
Writing the entire function in assembly is more complex, because it must conform 
to the compiler’s conventions regarding stack frames. You can get a “template” for 
the assembly by compiling a trivial C function that manipulates the right number of 
arguments directly to assembly 

int read_reg_fake( ) 

{ 

    return 0x7531; 

} 

Substituting the desired port read in place of the literal load instruction and 
changing the function name converts the generated assembly directly into a 
complete port read function. 

Memory-Mapped Access 
 
Manipulating a memory-mapped device is far simpler. Most environments support 
two methods, linker-based and pointer-based. The linker-based method uses the 
extern qualifier to inform the compiler that the program will be using a resource 
defined outside the program. The line  

extern volatile int device_register; 

 
tells the compiler that an integer-sized resource named device_register exists 
outside the program, in a place known to the linker. With this declaration available, 
the rest of the program can read and write from the device just as if it were a 
global variable. (The importance of volatile is explained later in this chapter.) 
Of course, this solution begs the question because it doesn’t explain how the linker 
knows about the device. To successfully link a program with this kind of external 
declaration, you must use a linker command to associate the “variable” name with 
the appropriate address. If the register in question was located at $40000000, the 
command might be something like  

PUBLIC _device_register = $40000000 

 
Tip  Be forewarned, the linker might not recognize long, lowercase names such 

as device_register. (Linkers are usually brain-dead compared to compilers.) 
One way to find out what name the linker is expecting is to compile the 



module before you add the PUBLIC linker command and see what name the 
linker reports as unresolvable.  

 
Those who prefer this method argue that you should use the linker to associate 
symbols with physical addresses. They also argue that declaring the device 
register as extern keeps all the information about the system’s memory map in 
one place: in the linker command file, where it belongs. 

The alternative is to access memory-mapped hardware through a C pointer. A 
simple cast can force a pointer to address any specific memory address. For 
example, a program can manipulate an Application-Specific Integrated Circuit 
(ASIC) device that appears to the software as 64, 16-bit, memory-mapped 
registers beginning at memory address 0x40000000 with code like this 

 

unsigned short x;                          /* Local variable   */ 

   volatile unsigned short *io_regs;       /* Pointer to ASIC */ 

   io_regs = (unsigned short* ) 0x40000000;/* Point to ASIC    */ 

   x = io_regs[10];                        /* Read register 10 */ 
 
This example declares io_regs to be a pointer to an unsigned, 16-bit (short) 
variable. The third assignment statement uses a cast to force io_regs to point to 
memory location 0x40000000. The cast operator directs the compiler to ignore 
everything it knows about type checking and do exactly what you say because you 
are the programmer and, best of all, you do know exactly what you are doing. 

Bitwise Operations 

Embedded programs often need to manipulate individual bits within hardware 
registers. In most situations, the best practice is to read the entire register, 
change the bit, and then write the entire register back to the device. For example, 
to change the third bit from the right 

const char status_mask=0x04; 

extern volatile char device_register; 

 

device_register = device_register | status_mask; 

     // force the third from the right bit to a one. 

device_register = device_register & (~status_mask); 

     // force the third from the right bit to a zero 

device_register = device_register ^ status_mask; 

     // change the state of the third from the right bit.  

You get the exact same result using the shorthand assignment operators: 

device_register |= status_mask; 

device_register &= (~status_mask); 

device_register ^= status_mask; 
 
The literal that corresponds to the bit to be changed is called a mask. Defining the 
constant to represent the mask (status_mask) insulates the rest of your code from 
unanticipated changes in the hardware (or in your understanding of the hardware). 



The constant also can greatly improve the readability of this kind of code. Not all 
embedded compilers support ANSI C’s const. If your compiler doesn’t support 
const, you can use the preprocessor to give the status mask a symbolic name, as 
in the following listing. The const form is preferred because it supports static type 
checking.  
 

#define STATUS_MASK 0x04 

device_register = device_register | STATUS_MASK; 

Although this read/modify/write method works in most cases, with some devices, 
the read can cause unwanted side-effects (such as clearing a pending interrupt). If 
the register can’t be read without causing a problem, the program must maintain a 
shadow register. A shadow register is a variable that the program uses to keep 
track of the register’s contents. To change a bit in this case, the program should: 

 

 Read the shadow register 

 Modify the shadow register 

 Save the shadow register 

 Write the new value to the device 

In its most compact form, the code would look something like this 

#define STATUS_MASK 0x04 

int shadow; 

device_register = (shadow |= STATUS_MASK;) 

Using the Storage Class Modifier Volatile 

Another important data modifying attribute is sometimes missed when interfacing 
C or C++ code to hardware peripheral devices: the storage class modifier, volatile. 
Most compilers assume that memory is memory and, for the purpose of code 
optimization, can make certain assumptions about that memory. The key 
assumption is that a value stored in memory is not going to change unless you 
write to it. However, hardware peripheral registers change all the time. Consider 
the case of a simple universal asynchronous receiver/transmitter (UART). The 
UART receives serial data from the outside world, strips away the extraneous bits, 
and presents a byte of data for reading. At 50 kilobaud, it takes 0.2 milliseconds to 
transmit one character. In 0.2 milliseconds, a processor with a 100MHz memory 
bus, assuming four clock cycles per memory write, can write to the UART output 
data register about 5,000 times. Clearly, a mechanism is needed to control the 
rate that the transmitted data is presented to the UART. 

 
The UART paces the data rate by having a status bit, typically called Transmitter 
Buffer Empty (TBMT). Thus, in the example case, the TBMT bit might go low when 
the first byte of data to be transmitted is sent to the UART and then stay low until 
the serial data has been sent and the UART is ready to receive the next character 
from the processor. The C code for this example is shown in Listing 5.1. 
 
Listing 5.1: UART code.  

 



/* Suppose that an I/O port is located at 0x4000  

I/O port status is located at 0x4001 

Transmitter buffer empty = DB0; DB0 = 1 when character may be sent */ 

 

 

void main(void) 

{ 

int *p_status;/* Pointer to the status port */ 

int *p_data;/* Pointer to the data port */ 

p_status = (int*) 0x4001  ;/* Assign pointer to status port */ 

p_data = ( int* ) 0x4000  ;/* Assign pointer to data port */ 

       do { } while (( *p_status & 0x01) == 0 );/* Wait */ 

        ….. 

        ….. 

}    

 

 
C code for a UART polling loop.  

Suppose your C compiler sees that you’ve written a polling loop to continuously 
read the TBMT status bit. It says, “Aha! I can make that more efficient by keeping 
that memory data in a local CPU register (or the internal data cache).” Thus, the 
code will be absolutely correct, but it won’t run properly because the new data in 
the memory location representing the UART is never updated. 

 
The keyword volatile[7,8] is used to tell the compiler not to make any assumptions 
about this particular memory location. The contents of the memory location might 
change spontaneously, so always read and write to it directly. The compiler will not 
try to optimize it in any way nor allow it to be assigned to the data cache. 

 
Note  Some compilers can go even further and have special keywords that allow 

you to specify that this is noncachable data. This forces the compiler to turn 
off caching in the processor.  

Speed and Code Density 

In many cases, the compiler generates much more efficient code, both in terms of 
space and speed, if an operation is performed through a pointer rather than 



through a normal variable reference. If a function manipulates the same variable 
several times or steps through the members of an array, forming the reference 
through a pointer might produce better code. 

Both time and RAM are usually in short supply in most embedded systems, so 
efficiency is key. For example, this snippet of C code 

void strcpy2(char dst[], char const src[]) 

} 

      int i; 

      for (i=0; src[i]; i+=1) 

      { 

            dst[i] = src[i]; 

      } 

} 

translates to the following sequence of assembly language instructions. 

void strcpy2(char dst[], char const src[]) 

{ 

      int i; 

00000000: 4E56 0000          link      a6,#0 

00000004: 226E 0008          movea.l   8(a6),a1 

00000008: 206E 000C          movea.l   12(a6),a0 

      for (i=0; src[i]; i+=1) 

      { 

0000000C: 7000               moveq     #0,d0 

0000000E: 6008               bra.s     *+10           ; 0x00000018 

            dst[i] = src[i]; 

00000010: 13B0 0800 0800     move.b    (a0,d0.l),(a1,d0.l) 

      } 

00000016: 5280               addq.l    #1,d0 

00000018: 4A30 0800          tst.b     (a0,d0.l) 

0000001C: 66F2               bne.s     *-12           ; 0x00000010 

 

0000001E: 4E5E               unlk      a6 

00000020: 4E75               rts 

00000022: 8773 7472 6370     dc.b      0x87,'strcpy2' 

          7932            

0000002A: 0000            

} 
When written with subscript references, the function requires 34 bytes. Notice that 
the repeatedly executed body of the loop (from move.b to bne.s) spans four 
instructions.  



Like many array operations, this loop can be written in terms of pointers instead of 
subscripted references: 

void strcpy(char *dst, char const *src) 

{ 

      while (( *dst++ = *src++ )){;} 

} 

(The double parentheses quiet a compiler warning about the assignment. The curly 
braces around the semi-colon quiet a compiler warning about the empty 
statement.) On the same compiler, this version translates to the following 
assembly: 

void strcpy(char *dst, char const *src) 

{ 

00000000: 4E56 0000          link      a6,#0 

00000004: 226E 0008          movea.l   8(a6),a1 

00000008: 206E 000C          movea.l   12(a6),a0 

      while (( *dst++ = *src++ )){;} 

0000000C: 12D8               move.b    (a0)+,(a1)+ 

0000000E: 66FC               bne.s     *-2            ; 0x0000000c 

 

00000010: 4E5E               unlk      a6 

00000012: 4E75               rts 

00000014: 8673 7472 6370     dc.b      0x86,'strcpy',0x00 

          7900 

0000001C: 0000 

} 
In this case, the compiled code occupies only 20 bytes and the loop body reduces 
to only two instructions: move.b, bne.s. 
Anyway, if the example $69 embedded system had 256Mb of RAM and a 700MHz 
Pentium-class processor, you could probably ignore the overhead issues and not 
use pointers. However, reality sometimes rears its ugly head and forces you to 
program in C with the same care that you would use if programming directly in 
assembly language. 
 

Interrupts and Interrupt Service Routines (ISRs) 

Interrupts are a fact of life in all computer systems. Clearly, many embedded 
systems would be severely hampered if they spent the bulk of the CPU cycles 
checking the state of a single status bit in a polling loop. 

Interrupts need to be prioritized in order of importance (or criticality) to the 
system. Taking care of a key being pressed on the keyboard is not as time critical 
as saving data when an impending power failure is detected. 

Conceptually, an ISR is a simple piece of code to write. An external device (for a 
microcontroller, an external device could be internal to the chip but external to the 
CPU core) asserts an interrupt signal to the interrupt input of the CPU. If the CPU 



is able to accept the interrupt, it goes through a hardwired ISR response cycle and 
typically: 

 

 Pushes the return address of the next instruction onto the stack 

 Picks up the address of the ISR (vector) from the exception table and 
goes to that address in memory to execute the next instruction 

After it has begun, the ISR should: 

 

 Decide when to disable and re-enable further interrupts (more about 
this later) 

 Save the state of any internal resources (registers) used in the ISR 

 Determine which device is causing the interrupt (especially with shared 
interrupts) 

 Execute the ISR code 

 Reset the external interrupting devices, if necessary 

 Restore the state of the system 

 Enable interrupts 

 Return from the interrupt 

From Polling Loop to Interrupt-Driven 
 
An example of an embedded application that doesn’t require any interrupts is a 
home burglar alarm. Figure 5.1 is a flow chart for a burglar alarm algorithm. Note 
that after the system has initialized itself, the processor continuously cycles 
through every sensor checking to see whether it has been triggered. Because it’s 
highly likely that the time required to check every sensor is extremely brief, the 
potential time delay from the time a sensor has been triggered to the time that the 
processor checks it would be short, perhaps a few milliseconds or less. Thus, the 
worst-case latency in servicing the hardware is just the transit time through the 
loop.  
 

 
Figure 5.1: Burglar alarm flowchart.  

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



 
Flowchart for a simple burglar alarm.  

 
Note  Flowcharts may be out of vogue in today’s world of object-oriented design, 

but they are still useful design tools to describe algorithms that require the 
control of systems rather than the manipulation of data within a system. 

Now, add some complexity. Perhaps the system includes a real-time clock and 
display panel. Add an automatic phone dialer for good measure, and you are 
beginning to reach a decision point in your design. Is it the system not behaving 
properly because the time required to poll each hardware device is a significant 
fraction of the available processing time? Is a delay between a hardware device 
needing servicing and the processor finally checking the device resulting in system 
failure? As soon as these issues require attention, your system probably needs to 
become interrupt driven.  

Nested Interrupts and Reentrancy 
 
If a higher-priority interrupt can preempt and interrupt a lower-priority interrupt, 
things get more complicated. For that reason, simple systems disable all other 
interrupts as soon as the program responds to the current interrupt. When the 
interrupt routine is finished, it re-enables interrupts. If instead interrupts are 
allowed to “nest,” the programmer must take special care to insure that all 
functions called during the interrupt service time are reentrant. A function that can 
be called asynchronously from multiple threads without concern for 
synchronization or mutual access is said to be reentrant. 
 
In An Embedded Software Primer, David Simon[10] gives three rules to apply to 
decide whether a function is reentrant: 
 

1. A reentrant function cannot use variables in a non-atomic way unless 
they are stored on the stack of the task that called the function or are 
otherwise the private variables of the task. (A section of code is atomic 
if it cannot be interrupted.) 

2. A reentrant function cannot call any other functions that are not 
themselves reentrant. 

3. A reentrant function cannot use the hardware in a non-atomic way. 

If an ISR were to call a function that was not reentrant, the program would 
eventually exhibit a mutual access or synchronization bug. Generally, this situation 
arises when an interrupt asynchronously modifies code that is being used by 
another task. Suppose that a real-time clock in the system wakes up every second 
and generates an interrupt, and the ISR updates a clock data structure in memory. 
If a task is in the middle of reading the clock when the clock interrupts and 
changes the value so that the task reads half of the old time and half of the new 
time, the time reported could easily be off by days, weeks, months, or years, 
depending on what counter was rolling over when the time was read.  

 
Simon gives this example of a non-reentrant function shown in Listing 5.2. 
 
Listing 5.2: Non-reentrant function.  

 



Bool fError;                          /* Someone else sets this */ 

 

void display( int j ) 

{ 

   if ( !fError ) 

   { 

      printf ( "\nValue:  %d", j ); 

      j = 0; 

      fError = TRUE; 

   } 

   else 

   { 

      printf ("\nCould not display value"); 

      fError = FALSE; 

   } 

} 

 

 
A non-reentrant function from Simon[10] (courtesy of Addison-Wesley).  
 
In Listing 5.2, the function is non-reentrant for two reasons. The Boolean variable 
fError is outside the function display() in a fixed location in memory. It can be 
modified by any task that calls display(). The use of fError is not atomic because a 
task switch can occur between the time that fError is tested and fError is set. Thus, 
it violates rule 1. The variable "j" is okay because it is private to display(). The 
next problem is that display() might violate rule 2 if the printf() function is non-
reentrant. Determining whether printf() is reentrant requires some research in the 
compiler’s documentation. 

If you’ve written all your own functions, you can make sure they meet the 
requirements for a reentrant function. If you are using library functions supplied by 
the compiler vendor, or other third-party sources, you must do some digging. 

Measuring Execution Time 

Although the trend is to insist that everything possible should be written in a high-
level language, in “The Art of Designing Embedded Systems,” Jack Ganssle[4] 
argues that ISRs and other tight timing routines should be written in assembly 
because it is straightforward — although somewhat tedious — to calculate the 



exact execution time for each instruction. Conversely, there is no easy way to tell 
what the eventual execution time will be for a routine that is coded in C. Of course, 
you could have the compiler produce the assembly language output file and then 
do a hand calculation with that code, but it defeats the purpose of coding in C in 
the first place.  

In many embedded applications, it is essential that the programmer knows exactly 
how long the routine will take. A time-critical ISR can be logically correct but fail 
because the execution time is too long. Assembly language routines can, 
theoretically, account for every machine cycle, though the accounting becomes 
more and more complex as architectures become more sophisticated. 

 
Modern tools, such as Instruction Set Simulators and Architectural Simulators, 
allow the designer to compile and run embedded code on the workstation and keep 
track of the actual machine cycle counts. The good tools also keep track of cache 
hits and miss penalties, Dynamic RAM(DRAM) access times, and wait cycles. So, 
even though you might not write your ISR in assembly language, you can certainly 
determine to high precision how much time it will take the ISR to execute. Of 
course, if you don’t have access to these tools or choose not to use them, you 
have only yourself, the hardware designer, or the intern to blame. 

An old software adage recommends coding for functionality first and speed second. 
Since 80 percent of the speed problems are in 20 percent of the code, it makes 
sense to get the system working and then determine where the bottlenecks are. 
Unfortunately, real-time systems by their nature don’t work at all if things are slow. 

 
Note  Having spent my productive years[1] designing hardware and firmware, 

writing ISRs always seemed straightforward to me. However, I was 
surprised to see how much trouble many of my students seemed to have 
getting their ISRs to work properly in lab experiments. The problem stems 
from a number of contributing factors, but the root cause is that it’s difficult 
to incrementally debug an ISR. It either works, or it doesn’t. 

My students also had problems with the chip manufacturer’s data book. Trying to 
decipher and dig through the various levels of indirection in the documentation to 
figure out how to set the appropriate bits in various registers has proven to be the 
defining task of writing an ISR. Having gone through it with several classes, I now 
provide a cookbook-like flow chart to explain how to set up the various registers so 
they can proceed with their experiments. In general, this is the student’s first 
experience with a microprocessor documentation, and it isn’t pretty. If the 
experience of my students is any indication of the state of affairs in the industry in 
general for new engineers, companies should seriously look at tools that 
automatically and painlessly generate device driver code (such as Driveway from 
Aisys Ltd).  

Real-Time Operating Systems (RTOS) 

Discussing real-time, interrupt-driven environments naturally leads to the topic of 
RTOSs. Managing a system of hardware resources with tight timing restrictions is a 
complex process, and commercially available RTOSs do an excellent job of easing 
the pain (for a price). 

This book doesn’t explain how to use and program for RTOSs. If you are interested 
in this subject, read An Embedded Software Primer by David E. Simon.[10] I use 



Simon’s book as the textbook for my Introduction to Embedded Systems class at 
the University of Washington–Bothell. Simon’s book is especially strong in 
describing writing software to be used under RTOSs. 

An RTOS isolates tasks from one another, allowing each developer on the team to 
write code as if they had exclusive use of the target system and its resources. 
While this is a big plus, the overall design must still properly address the issues of 
shared data and concurrency. Similarly, the programmers implementing that 
design must fully understand those issues and the use of correct use of critical 
sections, semaphores, interprocess communication, and more.  

Moreover, any RTOS must be customized, to some degree, for the target 
environment that it will be supervising. Typically, this involves developing the 
board support package (BSP) for the operating system and the target. This could 
be a minor task of several weeks or a major effort that is so complex it is 
contracted back to the RTOS vendor to create. 

At any rate, any software developer responsible for real-time code should have 
already taken a class in operating systems as part of their undergraduate 
education. I use Operating Systems Concepts by Abraham Silberschatz and Peter 
Baer Galvin[9] in my class on operating systems. 

 

 

[1]Defined as “prior to being promoted to management.” 

 

Watchdog Timers 
 
Particular to embedded system software, the watchdog timer is literally, a 
“watchdog.” If a fault occurs in the system and sends the system “into the weeds,” 
it’s the watchdog timer’s job bring the system back on line. The watchdog timer is 
a must in any high-reliability application. 
 
The basic idea is simple. Suppose the main loop of the software takes, on average, 
25 milliseconds to execute, and worst-case, 35 milliseconds to execute. Suppose 
you have a device (the watchdog timer) connected to a high- priority interrupt on 
your system, such as RESET or the non-maskable interrupt (NMI). Also, suppose 
after it’s triggered, the device waits 50 milliseconds and then yanks on the RESET 
pin, causing the processor to start over from RESET. The only way to prevent it 
from yanking on RESET is to send it a pulse causing it to start the 50-millisecond 
delay all over again. In technical terms, it is a retriggerable, one-shot multivibrator, 
but watchdog timer works just fine.  
 
In the example application, the code usually is cycled completely through the main 
loop in at least 35 milliseconds. Therefore, the last operation to perform in the 
main loop is to retrigger the watchdog timer for another 50- millisecond interval. If 
anything goes wrong with the software or hardware that can be recovered from — 
such as a power glitch — the software won’t execute properly, and the watchdog 
timer won’t be retriggered within the appropriate time window. Under these 
conditions, the timer times out and causes the system to restart itself. 
 



In his “Watchdog Timers” article, Niall Murphy[6] suggests that before resetting 
the timer, the system should perform some sanity checks. For example, he 
suggests checking stack depth, number of buffers allocated, and the state of 
mechanical components in the system before resetting the watchdog timer. He 
also suggests that a flag should be set at various points in the code indicating 
successful completion of that block of code. Just before the timer is reset (Murphy 
calls it “kicking the dog”), all flags are checked. If all flags have been set, the timer 
can be retriggered for another interval. If not, the failure mode is recorded, and 
the timer is allowed to time out as shown in Figure 5.2. 

 
Figure 5.2: Watchdog timer.  
 
Watchdog timer flow diagram (from Murphy[6]).  

Watchdog Timer: Debugging the Target System 
 
The next problem you face with a watchdog timer is debugging the target system. 
Because the watchdog timer runs independently of the rest of the system, if you 
suspend program execution, as you might do with a debugger, you’re done for. 
The watchdog timer times out and resets the system. Therefore, if your target 
system has a watchdog timer, and most embedded systems do, build an easy way 
to enable or disable the timer into your software and hardware, if possible. If the 
timer is external to the CPU, a simple solution is to put a jumper on the board that 
can break the connection between the timer and the CPU. In software, isolate the 
timer routines so that you can use conditional compilation (#if DEBUG) to remove 
the timer code. 

If the watchdog timer is to be used in the context of an RTOS, you must consider 
the control of the timer with respect to the rest of the system. Murphy suggests 
that one of the RTOS tasks be dedicated to operating the watchdog timer. This 
task has a higher priority than the other tasks it is monitoring. The RTOS task 
wakes up at regular intervals and checks the sanity of the other tasks. If all the 
checks pass, it retriggers the watchdog timer. 
 
 

Flash Memory 
 



If you have a digital camera or an MPEG music player, you’re already familiar with 
flash memory. Flash memory is rapidly replacing other nonvolatile memory 
technologies as the method of choice for storing firmware in embedded systems. 
At this writing, the demand for flash-memory devices has outpaced the silicon 
manufacturer’s production capacity, and the parts have been on allocation for 
several years. 
From the point of view of embedded systems, flash memories are attractive 
because they can be reprogrammed in the field. The most convenient versions 
feature in-circuit programmability, meaning they can be reprogrammed while in 
service, without the need for special power supplies. If you’ve ever “flashed the 
BIOS” in your PC or laptop, you’ve already gone through the drill. This has not only 
impacted how a customer takes advantage of field upgradability, it has also 
impacted the cost of development tools that an embedded design team needs. 

Upgradability isn’t the only use for flash, however. Using flash memory in an 
embedded design enables that design to have its performance parameters 
modified while the device is in service, allowing it to be optimized (tuned) for the 
current state of its operational environment. In all probability, your car uses flash 
memory in this way to adjust for wear on spark plugs, injectors, and other factors 
affecting combustion.  

 
The complicating factor in implementing a flash-based software architecture is that 
the code must be capable of self-modifying, and, perhaps even more restrictive, it 
must be able to recover from a fault in a way that doesn’t render the product 
inoperable. In “The How-To’s of Flash: Implementing Downloadable Firmware” 
presented at the Embedded Systems Conference in 2000, Bill Gatliff[5] discussed 
two possible strategies, the embedded programmer and the microprogrammer. 

The embedded programmer is code that is part of the firmware shipped with the 
product. The advantages of this approach are that it is straightforward to 
implement and doesn’t require sophisticated supporting programs. The 
disadvantages are that it must be right in the first release of the product, it might 
use RAM and ROM resources to the exclusion of the operational code of the device, 
and it generally lacks flexibility. 

The microprogrammer approach is to have only the absolute minimum code 
necessary on the chip (boot loader) to download the flash programming algorithm 
(the microprogrammer) and the new software image. The microprogrammer has 
the advantages that it’s flexible and requires minimal ROM overhead. The 
disadvantages are that it is more difficult to implement than the target-resident 
programming algorithm and that the supporting programs need to have more 
intelligence. 

In “From PROM to Flash,” Scott Sumner[11] discusses the design of his flash-
programming algorithm and stresses the need for protection against code 
corruption due to power interruption during the reprogramming phase. He 
suggests the system designer should reserve some sectors in the flash for a 
permanent recovery program capable of booting the system and restarting the 
programs should a programming cycle be interrupted. 

Sumner actually suggests placing three independent programs in the memory 
space of the flash chip. These programs each have a different memory map for 
code and data: 

 



 A boot loader program that executes on power-up and initializes the 
system in a rudimentary way, so that RAM and some I/O support is 
available. The boot loader then prompts the user to decide whether the 
normal application should be run or whether the flash reprogramming 
algorithm should be implemented. Because most people don’t want to 
answer this question each time a system is powered-up, this prompt 
also could be a switch on the back of the device or a jumper on the 
motherboard that is tested during the boot process. 

 The real application code that can be reprogrammed by the flash 
reprogramming algorithm. 

 A RAM resident reprogramming algorithm that does the actual 
reprogramming of the device. The code is located in a protected region 
of the flash and moved into RAM when the reprogramming option is 
chosen. Thus, Sumner has implemented the embedded programmer 
model, described by Gatliff. 

 

Design Methodology 

In the early ’90s, Dataquest (an industry-research company) studied the size of 
software projects over a period of several years. Each year, Dataquest surveyed a 
number of software projects and asked the managers to estimate the size of the 
code base for the last project they completed, the project on which they were 
currently working, and the next project they would do. Thus, the Dataquest 
researchers were able to compare the manager’s estimate of the size of the next 
project with the actual size of the same code base, because Dataquest came back 
a year or so later. Dataquest found that the growth of the size of the code image 
plotted nicely on a semi-log graph, indicating that the code base was growing 
exponentially each year. Also, the manager’s estimate of the size of the code 
versus the actual size of the code was consistently low by at least a factor of two. 

The message here is that developers can’t keep building systems with the same 
methods and processes they’ve used in the past. There just aren’t enough 
software developers in the world to keep staffing the design teams. Developers 
need a new way to build systems. 

 
That’s why you hear so much about various design methodologies. Even run-of-
the-mill projects have become so complex that you can’t hope to get predictable 
results without following some disciplined design practices. Interestingly enough, 
the exact practice might not be as important as the discipline. (See the “One 
Success Story” sidebar coming up.) 

Graphical descriptions of the system are a big part of nearly every design 
methodology. In the early 1990s, as many as 50 object-oriented methods were in 
use according to Carolyn Duby in her presentation of “Getting Started with the 
Unified Modeling Language.”[3] These methods had similar concepts but, as you 
might expect, used different notations for their graphical representations. Having 
different notations complicated communications and made the adoption process 
difficult because companies and developers did not want to adopt a design 
methodology that lacked industry-wide support. Work continued to make progress 
to unify the different methods, and, in 1996, the UML Consortium was formed. A 
year later, UML was standardized by the Object Management Group (OMG), thus 
giving UML the legitimacy it needed to be adopted across the industry. Today, UML 
has wide support across the industry with many tool vendors providing UML-based 
system-design tools. 



If you are familiar with C++ and object-oriented design, you are probably familiar 
with class and object diagrams from the UML. Class and object diagrams are 
powerful tools for describing relationships between data and types. However, 
another less known portion of the UML — statecharts — is probably more relevant 
to embedded systems design.  

One Success Story 

About 10 years ago, I was leading a large project with 15 hardware and software 
developers. We made the decision to follow the latest design methods of 
structured analysis and structured design. Two books by Tom DeMarco[1,2] — 
Structured Analysis and System Design and Controlling Software Projects — 
became required reading, and we were all anxious to see whether we could do it 
better this time. We even purchased the latest in Computer-Aided Software 
Engineering tools (CASE) to help us structure our design and documentation 
process. 

The design process we followed was by the book and rigorous. We developed 
volumes and volumes of data flow diagrams and system specifications. APIs were 
defined for all the functions and system abstraction layers. Then, when the design 
phase was completed, we put the books away and wrote code like we always did 
before. Gradually, as changes and corrections began to appear, the original design 
specification became out of synch with the current state of the design.  

Although we had the latest tools at our disposal, we lacked a way to “back 
annotate” our design so that corrections made downstream would be reflected in 
the higher-level design documents. Back annotation is a common practice in 
Electronic Design Automation (EDA) circles. Hardware designers, both IC and 
board- level, routinely back annotate their designs to reflect lower-level changes at 
the higher design layers. This capability, at least in an automated form, is still 
relatively rare in software engineering processes. 

Also, a major shortcoming of this method is that the CASE tool we used didn’t 
allow the designer to continue to drill down into the coding phase and stay in the 
design environment. Design and coding were separated from each other. 
Fortunately, today’s tools enable the designer to go to any level in the design and 
rapidly move between abstraction layers. 

Back in the example, because the software designers couldn’t stay in the CASE 
design environment as they progressed from design to coding, they just wrote 
code as usual. We took a lot of heat from management because progress was 
viewed as code being written, not time spent in design and specification. The big 
payback came when we integrated the hardware and the software. The process 
went incredibly well. Similar projects had spent two to six months in the HW/SW 
integration phase. We were essentially done in two weeks.  

 
Hardware designers are well-versed in finite state machines (FSMs); programmers 
familiar with compiler design have probably also seen FSMs but might have called 
them automata. Most digital logic systems can be described and designed using 
these tools. FSMs are powerful tools for representing systems that exhibit complex 
functional behavior, that is, exhibit a complex relationship between their inputs 
and outputs. 

Statecharts are a hierarchical extension of FSMs. Statecharts aren’t just nested 
FSMs. Statecharts allow the programmer to treat certain inputs as causing an 



immediate “shift in context” from the current statechart to its “parent.” This gives 
statecharts much of the same power as other object- oriented paradigms.  

 
From the Trenches  
 
During a customer research/sales visit to a large telecommunications customer, we 
were pitching a new simulation tool for software designers and were demonstrating 
how you could run your favorite debugger in one window and our simulation 
representation of the hardware in a second window. The customers were obviously 
interested because they stayed awake (always a good sign) even after our free 
pizza was gone. However, when we started our question-and-answer session at 
the tail end of the visit, their manager spoke up and told us they rarely use 
software debuggers any more. Almost all their design and debugging is done using 
a modern statechart design tool, and they do all their designs graphically. The tool 
itself creates the C++ code directly from the statecharts. His comments were 
surprising and indicative that the new paradigm shift is coming and that designers 
will be following a variant of the old axiom that “One picture is worth a thousand 
lines of code.” His team was designing a complex embedded system. Clearly they 
realized that they would not be able to compete in the market unless they could 
bring a better product to market in time. They opted to develop their software by 
the most modern method available, namely statechart design. 

Another reason for considering statechart-based methods is that many of today’s 
embedded systems designs can be expressed as message-passing architectures. 
In a message-passing architecture, the various elements of the system can be 
represented as loosely coupled, autonomous entities that interact by passing 
messages back and forth. These messages, or events, represent the transfer of 
data, such as a high-speed direct memory access (DMA) data transfer between 
two processors on a bus. Similarly, an event might be the receipt of an external 
interrupt. In each of these situations, it is the event, DMA, or interrupt that 
triggers the system to move to a new state in response to the event. Today, as 
you contemplate the future, which consists of great arrays of distributed 
embedded systems connected to each other and the users over the Internet spinal 
cord, the idea of system designs based upon loosely coupled autonomous entities 
is not only a convenient way to describe an embedded system design, it’s the 
correct way. 

This way of thinking about the system is natural for hardware designers; they’ve 
been doing state machine-based hardware designs for many years. However, it is 
a rather new way for the software designers to think about their designs, and it 
tends to lend itself to embedded systems due to the real- time, interrupt-driven 
nature of the environments inwhich they operate. Considering that embedded 
systems typically involve complex relationships among many inputs and various 
outputs, statecharts are an important embedded systems design tool for both 
hardware and software designers. 
 

Additional Reading 
 

 Douglass, Bruce Powel. “Designing Real-Time Systems with the Unified 
Modeling Language.” Supplement to Electronic Design, 9 March 1998, 
25. 

 Douglass, Bruce Powel. “UML for Systems Engineering.” Computer 
Design, November 1998, 44. 



 Douglass, Bruce Powel. “UML Statecharts.” Embedded Systems 
Programming, January 1999, 22. 

 Grehan, Rick. “Real-Time Design Goes Object-Oriented.” Computer 
Design, December 1997, 57. 

 McElroy, Jim. “The ABCs of Visual Programming.” Embedded 
Developers Journal, May 2000, 16. 

 Mellor, Stephen J. “UML Point/Counterpoint: Modeling Complex 
Behavior Simply.” Embedded Systems Programming, March 2000, 38. 

 Moore, Alan. “UML’s Shortfalls in Modeling Complex Real-Time 
Systems.” Computer Design, November 1998, 53. 

 Pacheco, Sylvia. “UML Delivers Real-Time Software Standardization.” 
Real Time Computing, March 2000, 87. 

 Varhol, Peter. “Front-End Design Automation for Building Complex 
Systems.” Computer Design, July 1998, 87. 

 Varhol, Peter. “New Designs Model Complex Behavior.” Electronic 
Design, 21 February 2000, 79. 

Summary 

More than anything else, the need to “work on the metal” differentiates embedded 
systems programming from other kinds of programming. Although many “big 
picture” programmers find direct interaction with the hardware distasteful at best, 
most embedded systems programmers take a certain amount of pride in getting 
their hands dirty. 

 
A willingness to get your hands dirty, however, shouldn’t translate into sloppy 
practice. Little things, like declaring a variable extern or packaging in-line 
assembly in a function wrapper, mark the difference between professionally 
written, maintainable code and sloppy work. The lessons of software engineering 
and good coding practice apply here just as much as anywhere else — they just 
have to be interpreted within the context. 
 
Although I have tried to mention some key factors that I think contribute to 
getting started with interrupts, I want to stress that this chapter does not teach 
how to write real-time code. Real-time programming requires a precise and 
complete understanding of the issues of mutual exclusion, synchronization, 
deadlock, and scheduling. On these issues, there can be no compromise. Errors 
are subtle and impossible to fix through standard debugging techniques. If you are 
not well-versed in these topics, don’t write real-time code. 
 

Works Cited 
 

1. DeMarco, Tom. Structured Analysis and System Specifications. New 
York: Yourdon, 1978. 

2. DeMarco, Tom. Controlling Software Projects (New York: Yourdon, 
1982). 

3. Duby, Carolyn. “Getting Started with the Unified Modeling Language.” A 
paper presented at the Embedded Systems Conference, San Jose, 26 
September 2000. 

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



4. Ganssle, Jack. “The Art of Designing Embedded Systems.” Boston, MA: 
Newnes, 2000, 61. 

5. Gatliff, Bill. “The How-To’s of Flash: Implementing Downloadable 
Firmware.” A paper presented at the Embedded Systems Conference, 
San Jose, 25 September 2000. 

6. Murphy, Niall. “Watchdog Timers.” Embedded Systems Programming, 
November 2000, 112. 

7. Saks, Dan. “Volatile Objects.” Embedded Systems Programming, 
September 1998, 101. 

8. Saks, Dan. “Using const and volatile in Parameter Types." Embedded 
Systems Programming, September 1999, 77. 

9. Silberschatz, Abraham, and Peter Baer Galvin. Operating System 
Concepts, 5th ed. Reading, MA: Addison Wesley Longman, 1998. 

10. Simon, David E. An Embedded Software Primer. Reading, MA: Addison-
Wesley, 1999, 149. 

11. Sumner, Scott A. “From PROM to Flash.” Embedded Systems 
Programming, July 2000, 75. 



Chapter 6: A Basic Toolset 

Overview 

Unlike host-based application developers, embedded systems developers seldom 
program and test on the same machine. Of necessity, the embedded system code 
must eventually run on the target hardware. Thus, at least some of the testing and 
debugging must happen while the system is running in the target. The target 
system seldom includes the file system storage or processor throughput necessary 
to support a typical development environment, and even when it does, it’s likely to 
be running a minimal (or even custom) operating system supported by few, if any, 
tool vendors. 

Thus, system integration requires special tools: tools that (mostly) reside on the 
development platform but that allow the programmer to debug a program running 
on the target system. At a minimum these tools must: 

 

 Provide convenient run control for the target 

 Support a convenient means to replace the code image on the target 

 Provide non-intrusive, real-time monitoring of execution on the target 

The lowest cost tool set that adequately addresses these needs is comprised of a 
debug kernel (usually in connection with a remote debugger) and a logic analyzer. 
Some targets also require a ROM emulator to allow quick code changes on the 
target. This chapter explains why these tools are necessary, how they work, and 
what they do. 
 

Host-Based Debugging 

Although you can do a certain amount of testing on your desktop PC, unless you 
are lucky enough to be programming for an embedded PC, eventually differences 
between the desktop hardware and the target hardware will force you to move the 
testing to the target. 

If you write your applications in C or C++, you should be able to debug an 
algorithm on the host (as long as you watch out for a few minor differences that 
tend to cause major bugs that I’ll discuss shortly). Even if you write in assembly 
(or have inherited a library of legacy code in assembly), you can execute the code 
on your desktop system using an Instruction Set Simulator (ISS) until you need to 
test the real-time interaction of the code and the target system’s special hardware. 

Aside from the availability of real working peripherals, the greatest source of 
problems for host-based debugging derives from two architectural characteristics: 
word size and byte order. 

Word Size 

Obviously, if your embedded processor has a 16-bit wide architecture and your 
host-based compiler is expecting a 32-bit data path, you can have problems. An 
integer data type on a PC can have a range of approximately ± 2 billion, whereas 
an integer in your target might have a range of approximately ± 32 thousand. 
Numbers bigger than the targeted range will cause bugs that you’ll never see on 
the PC. 



Byte Order 
 
Another problem is the “Little Endian, Big Endian” problem, which is legendary for 
the amount of money that’s been spent over the years finding and fixing this 
particular bug. Consider Figure 6.1.  
 
Figure 6.1 is a simple example of storing a C string data type in an 8-bit wide 
memory. Because a char is also eight bits wide, there’s no problem. Each character 
of the string occupies exactly one memory location. Now suppose that the 
processor has a 16-bit wide data bus, such as Motorola’s original 68000-based 
family of devices or Intel’s 80186-based family. Storing only eight bits of data (a 
char) in a memory location that is capable of holding 16 bits of data would be 
wasteful, so give the processors the capability of addressing individual bytes within 
the 16-bit word. Usually, the least significant bit (LSB) is used to designate which 
byte (odd or even) you are addressing. It’s not obvious that byte addressability 
causes a problem until you have a choice as to how the bytes are packed into 
memory. 

 
Figure 6.1: Storing a char type.  
 
Storing a type char in an 8-bit wide memory.  
 
Figure 6.2 shows the two different ways one can store a string of characters in a 
16-bit wide memory. You can align the even byte address with the high-order end 
of the 16-bit data word (Big Endian), or you can align it with the low-order end of 
the 16-bit data word (Little Endian). 



 
Figure 6.2: 16-bit wide memory storing the string.  
 
Storing bytes in 16-bit wide memory introduces an ambiguity with respect 
to the order in which these bytes are stored.  

This ambiguity can cause mischief. Fresh engineers trained on Little Endian 
systems, such as PCs, are suddenly reading the wrong half of memory words.  
The problem also extends to 32-bit data paths. Figure 6.3 shows the Big and Little 
Endians ordering for a 32-bit machine. In a 32-bit data word, the two least 
significant address bits — A0 and A1 — become the byte-selector bits, but the 
same ambiguity exists: “From which end of the 32-bit word do you count the 
address?” 

 
Figure 6.3: Big and Little Endians.  
 
Big and Little Endian organization in a 32-bit data word.  

 

Debug with ISS 

Another possible solution is for the software team to use Instruction Set Simula 
tors (ISS) to allow them to compile their target code for their chosen microproces 
sor but execute the code on their workstations. The ISS is a program that creates 
a virtual version of the microprocessor. Some ISS’s are very elaborate and main 
tain cycle-by-cycle accuracy of the target microprocessor, including cache behav 



ior, pipeline behavior, and memory interface behavior. My hardware architecture 
class at UWB uses an ISS for the Motorola MC68000 microprocessor, developed by 
Paul Lambert, Professor Alan Clements and his group at the University of Tee side, 
in Great Britain.  

Instruction set simulators can be very complex simulation programs. At AMD, we 
drew a distinction between the architectural simulator, which accurately mod eled 
the processor and memory interface behavior, and the instruction set simula tor, 
which was fast enough for code development but could not be used to accurately 
predict software execution times for given memory configurations. Today, you can 
purchase ISS’s that are both fast and cycle-accurate. Given the power of today’s 
workstations and PC’s, it is reasonable to expect an ISS to be able to have a 
throughput in the range of 1 to 25 million instructions per second, certainly fast 
enough to meet the needs of most software developers. 

Software developers can also build virtual representations of the target hardware 
(not just the processor) prior to the general availability of the real hardware. 
Ledin[3,4] describes a method based upon representing the hardware as a set of 
non-linear differential equations. Clearly, there is a considerable investment of 
time required to build these hardware models; however, the investment may well 
be worth it because they can provide an early indicator of relative task-timing 
requirements. If the embedded system is to be run under an RTOS, then it is 
important to know whether a task will be able to run to completion in its allotted 
time slot. It is better to know this sooner than later.  

Smith[5] describes another method of hardware simulation that uses the ability of 
some processors to execute an exception if an attempt is made to access illegal or 
non-existent memory. In Smith’s example, a single-board computer is used, and 
the simulated I/O is accessed through a memory fault exception handler. The vec 
tor transfers the application to the user’s simulation code. The assembly language 
code example, shown below (from Smith), is written for the Motorola 68332 
microcontroller. 

As I’ve discussed earlier, being able to integrate hardware and software sooner in 
the design process generates big advantages. Clearly, bugs found in the hardware 
before the hardware is “real” should be much less costly to repair, and design 
issues uncovered in the software will be simpler to analyze and correct because 
the hardware is still virtual.  

Remote Debuggers and Debug Kernels 
 
Typically, embedded platforms are too resource limited and specialized to support 
a full-featured debugger. Debuggers for embedded systems address this limitation 
by distributing the debugger; a portion of the debugger resides on the host 
computer, and a portion resides in the target system. The two elements of the 
debugger communicate with each other over a communications channel, such as a 
serial port or Ethernet port. The portion of the debugger that resides in the target 
is called the target agent or the debug kernel. The portion of the debugger that 
resides in the host computer is sometimes called the debugger front end or GUI. 
The same functionality that you expect from your host debugger is generally 
available in an embedded debugger, assuming that you have a spare 
communications channel available. Figure 6.4 shows a typical architectural block 
diagram for an embedded debugger. (The Wind River debug kernel is a bit more 
complex than most because it is integrated with VxWorks, Wind River’s RTOS.)  
 



 
Figure 6.4: Typical architectural block diagram.  
 
Schematic representation of the Wind River Systems debugger (courtesy 
of Wind River Systems).  

The debugger generally provides a range of run control services. Run control 
services encompass debugging tasks such as: 

 

 Setting breakpoints 

 Loading programs from the host 

 Viewing or modifying memory and registers 

 Running from an address 

 Single-stepping the processor 

The debugging features encompassed by run control are certainly the most 
fundamental debugging tools available. The combination of the functionality of the 
remote debug kernel with the capabilities of the user interface portion of the tool is 
the most important debugging requirement. 

 
The debug kernel requires two resources from the target. One is an interrupt 
vector, and the other is a software interrupt, which is discussed later. Figure 6.5 
shows how the debugger is integrated with the target system code. The interrupt 
vector for the serial port (assuming that this is the communications link to the host) 
forces the processor into the serial port ISR, which also becomes the entry point 
into the debugger. Again, this assumes that the serial port’s interrupt request will 
be taken by the target processor most, if not all, of the time. After the debug 
kernel is entered, the designer is in control of the system. The debug kernel 
controls whether other lower-priority interrupts are accepted while the debugger is 
in active control. In many situations, the target system crash as if the debugger 
does not re-enable interrupts. Obviously, this major compromise must be dealt 
with.  



 
Figure 6.5: Debug kernel in a target system.  
 
Schematic representation of a debug kernel in a target system. 
  
The debug kernel is similar to an ISR in many ways. An interrupt is received from 
a device, such as the serial port, which happens to be connected to the designer’s 
host computer. The interrupt is usually set at a high enough priority level — 
sometimes as high as the non-maskable interrupt (NMI) — that a debugger access 
interrupt is always serviced. If this were not the case, an errant ISR could disable 
any other interrupt and you wouldn’t be able to regain control of the system. Just 
like an ISR, the arrival of a command from the host computer stops the execution 
of the application code and can cause the processor to enter the debug kernel ISR. 
The machine context is saved, and the debugger is now in control of the target. 
You can see this schematically in Figure 6.5.  

 

Implementing Breakpoints 

 

To understand how you set a breakpoint in the first place, consider Figure 6.6. 
 

 
Figure 6.6: Breakpoints.  
How a debugger sets a breakpoint in read/write memory.  



Let’s consider the assembly case because it’s the most straightforward. The user 
wants to set a breakpoint at a certain instruction location in RAM. The breakpoint 
request is acted on by the host-based part of the debugger, and the address of 
that instruction’s memory location is sent to the debug kernel in the target. The 
debug kernel copies the instruction at that location into a safe place and replaces it 
with a software breakpoint or trap instruction, which forces control back into the 
debugger when the breakpoint is accessed. This way, you can single step, run to a 
breakpoint, and exercise the software while continually transitioning in and out of 
the debugger. 

However, most developers want to debug in C or C++, not assembly. Most likely, 
in these instances, you will need to enable debugging as a compiler switch so that 
the debugger and debug kernel can figure out where the breakpoint should be set 
in memory.  

Another obvious problem with this mechanism is that you need to be able to 
replace the user’s instruction code with the trap code, thus implying that you can 
read and write to this memory region. If the code you’re trying to debug is in true 
ROM or EPROM, you can’t get there from here. You’ll need to use a RAM-based 
ROM emulation device to give you the ability to replace user code with breakpoint 
traps. Several companies manufacture ROM emulators, which are devices that plug 
into a ROM socket on the target system and contain RAM rather than ROM. Thus 
your code couldn’t be in the traditional ROM (It’s possible to set trap codes in 
EPROM or flash memory). Depending on the architecture of the actual device, flash 
might not be so difficult with which to work. The debugger might have to erase an 
entire sector on the device (perhaps 16KB) and then reprogram the sector, but it’s 
possible. Response wouldn’t be instantaneous because programming these devices 
takes much longer than simply writing to a RAM device.  

If a software-only breakpoint mechanism isn’t possible, you must turn to the 
additional features that hardware has to offer. Many processors contain special 
breakpoint registers that can be programmed directly under software control or 
through the JTAG or BDM ports (See Chapter 7 for more details on these 
standards.). These registers provide a simple, yet extremely powerful, capability 
for the debugger. By placing the appropriate address into the breakpoint register, 
when the processor fetches an instruction from that address, the breakpoint is 
asserted, and the mechanism for entering the debugger becomes active. 

Having the breakpoint register mechanism on the processor itself yields another 
advantage. In a processor with an on-chip instruction cache, a potential problem 
exists with coherency between the instruction memory and cache memory. Usually, 
you don’t expect people to write self-modifying code, so you might not be able to 
detect that an instruction in external memory and an instruction in the cache are 
different. In that case, you are setting a breakpoint, but it’s not detected because 
the breakpoint in the cache was never changed. Thus, you might have to run the 
debug session with the caches turned off. An on-chip debug register doesn’t have 
this problem because it looks at the output of the program counter and not the 
physical memory location.  

Setting a breakpoint on a data value or range of values is also a necessary 
debugging capability. You might be able to break into the debugger on a data 
value that’s out of range by running the debugger in a virtual single-step mode. 
After every instruction executes, break in to the debugger and examine registers 
and memory for this data value. This will be extremely intrusive (read this as slow) 
but it would work. In this mode, your target system might not tolerate running this 



slowly because it’s closer to running as an instruction set simulator than to a 
processor running at speed.  

The venerable old 68000 microprocessor was among the first processors to include 
on-chip debug facilities. It includes a trace bit in the status register that, when set, 
forces a trap instruction to occur after every real instruction is processed. Using 
this mechanism, it’s not necessary to replace the actual instructions in memory 
with exception traps or software interrupts, but it is a hardware assist.  

The debugger and debug kernel must always remain synchronized with each other. 
Unexpected events in the target system, such as overwriting the debugger with an 
errant pointer, causes the whole debugging session to be lost, which forces you to 
RESET the system and reload the code. Sometimes, the debugger can be isolated 
from target mishaps by placing it in a protected region of memory (for example, in 
flash memory); generally, however, it has the same level of fragility as any other 
piece of software. 

 
Note  Debug kernels are extremely useful in field service applications, 

enabling a technician to plug into a target and learn something about 
what is going on inside. If you’ve ever seen a target system with a 
RESERVED switch on the back, there’s a good chance that switch can 
kick you into an embedded debug kernel when the target is powered 
up. 

 
Most embedded systems place their code into some kind of non-volatile memory, 
such as flash or EPROM. The debug kernel, however, needs to be able to modify 
the program, set breakpoints, and update the code image. These systems require 
some means of substituting RAM for the normal code memory, usually via some 
form of ROM emulator. As the next section explains, a ROM emulator offers many 
other advantages as well.  
 
The advantages and disadvantages of the debug kernel are summarized in Table 
6.1. 
 

Table 6.1: Advantages/disadvantages of the debug kernel.  

Advantages of the debug 
kernel   

Disadvantages of the debug 
kernel 

Low cost: $0 to < 
$1,000 

Same debugger can 
be used with remote kernel 
or on host 

Provides most of 
the services that software 
designer needs 

Simple serial link is 
all that is required 

Can be used with 
“virtual” serial port 

  Depends on a stable 
memory sub system in the 
target and is not suit able for 
initial hardware/software 
integration 

Not real time, so 
system performance will differ 
with a debugger present 

Difficulty in running 
out of ROM- based memory 
because you can’t sin gle step 
or insert breakpoints 

Requires that the 



Table 6.1: Advantages/disadvantages of the debug kernel.  

Advantages of the debug 
kernel   

Disadvantages of the debug 
kernel 

Can be linked with 
user’s code for ISRs and 
field service 

Good choice for 
code development when 
hardware is stable 

Can easily be 
integrated into a design 
team environmen 

target has addi tional 
services, which, for many tar 
get systems, is not possible to 
implement 

Debugger might not 
always have control of the 
system and depends on code 
being “well behaved” 

 

ROM Emulator 

The ROM emulator contains the following system elements: 

 

 Cabling device(s) to match the target system mechanical footprint of 
the target system ROM devices 

 Fast RAM to substitute for the ROM in the target system 

 Local control processor 

 Communications port(s) to the host 

 Additional features, such as trace memory and flash programming 
algorithms 

At the minimum, a ROM emulator allows you the luxury of quickly downloading 
new object code images to run in your target system. An important metric for any 
developer to consider is the change cycle time. The cycle time is the time duration 
from the point that you discover a bug with the debugger to going back through 
the edit–compile–assemble–link– download process until you can be debugging 
again. For a large code image, this can be hours (no kidding!). A ROM emulator 
with a TBase100 Ethernet channel to the host is an almost ideal method to quickly 
load large code images into target memory and decrease the cycle time to 
manageable proportions. Even if your target system uses flash memory, not 
having to reprogram the flash can be a major time-saver.  

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



 
Figure 6.7: ROM emulator.  
 
A functional block diagram of a typical ROM emulator. 
 
A ROM emulator is really RAM, so you’ll have no problem setting breakpoints in 
memory. Also, breakpoints can be set in two ways. If the debugger has been 
ported to work with the ROM emulator, the code substitution can be accomplished 
via the emulator control processor instead of by the target processor running in 
the debug kernel. This offers a distinct advantage because a breakpoint can be 
inserted into the emulation memory while the processor is still running the user 
code. It can be difficult to interface to the ROM emulator if the hardware designer 
didn’t connect a write signal to the ROM socket (After all, one doesn’t usually write 
to the ROM). Most ROM emulators have a method of writing to ROM by executing a 
sequence of ROM read operations. It’s an involved process, but it gets around the 
problem of needing a write signal. 

Although a ROM emulator is essential to get around the “write to ROM” problem, in 
many cases, the ROM emulator does much more than substitute RAM for ROM. For 
example, suppose your target system doesn’t have a communications port, or the 
communications port is already used by the embedded application and is not 
available to the debugger as communications channel to the host (The last 3.5-
inch hard disk drive I looked at didn’t have an RS232 port on it). The ROM 
emulator can deal with this shortcoming by creating a virtual UART port to the host 
computer.  

 
Some ROM emulators (see Figure 6.8) can emulate a virtual UART by replacing the 
communications driver in the debug kernel with a data write operation to a 
reserved area of the emulation memory. Writing to this region wakes up the 
control processor in the ROM emulator to send the data to the host, mimicking the 
behavior of the serial port. Of course, your debugger must be ported to the ROM 
emulator to take advantage of this feature, but many of the popular debuggers 
have been ported to the popular ROM emulators, so it’s not usually an issue. A 
little later, you’ll read about the advantages of real-time trace as a way to view 
code flow. Some ROM emulators also offer this feature so that you can take a 
snapshot of real-time code flow within your ROM. 



 
Figure 6.8: ROM emulators.  
 
Schematic representation of a ROM emulator.  

Limitations 
 
The ROM emulator also has some limitations. If your code is supposed to be 
transferred from ROM into RAM as part of the boot-up process, you might not need 
the features the ROM emulator provides. Also, like the debug kernel itself, the 
ROM emulator is not suitable for the earliest stages of hardware/software 
integration, when the target system’s memory interface might be suspect. The 
advantages and disadvantages of the ROM emulator are listed in Table 6.2.  
 

Table 6.2: Advantages/disadvantages of ROM emulator.  

Advantages of the ROM 
emulator   

Disadvantages of the 
ROM emulator 

 Very cost-effective 
($1,000– $5,000) 

 Generic tool, 
compatible with 
many different 
memory 
configurations 

 Can download large 
blocks of code to 
the target system 
at high- speed 

 Most cost-effective 
way to support 
large amounts of 
RAM substitution 
memory 

 Can trace ROM code 
activity in real time 

 Provides virtual 
UART function, 
eliminating need for 
additional services 
in target system 

 Can be integrated 

   Requires that 
the target 
system 
memory is in a 
stable 
condition 

 Feasible only if 
embedded 
code is 
contained in 
standard 
ROMs, rather 
than custom 
ASICs or 
microcontroller
s with on-chip 
ROM 

 Real-time trace 
is possible only 
if program 
executes 
directly out of 
ROM 

 Many targets 
transfer code 
to RAM for 



Table 6.2: Advantages/disadvantages of ROM emulator.  

Advantages of the ROM 
emulator   

Disadvantages of the 
ROM emulator 

with other 
hardware and 
software tools, such 
as commercially 
available debuggers 

 Can set breakpoints 
in ROM 

performance 
reasons 

 

Intrusiveness and Real-Time Debugging 
 
Although the debug kernel is an important part of the embedded system designer’s 
debugging tool kit, it clearly has shortcomings with respect to debugging 
embedded systems whose problems are related to real-time events. It’s easy to 
see why these shortcomings exist when you consider that the debug kernel is 
highly intrusive. Intrusion — the modification of behavior as a result of the 
presence of the tool — is a quantitative issue, a subjective issue, and all shades of 
gray in between. If your target system fails to work with a debug tool connected to 
it, the tool is too intrusive. If it does work, sort of, will you have to debug the 
debugger, and debug your target system at the same time?  

 

Signal Intrusion 

Anytime the testing tool has a hardware component, signal intrusion can become a 
problem. For example, a design team unable to use a particular ROM emulator in 
its target system complained long and hard to the vendor’s tech-support person. 
The target worked perfectly with the EPROMs inserted in the ROM sockets but 
failed intermittently with the ROM emulator installed. Eventually, after all the 
phone remedies failed, the vendor sent the target system to the factory for 
analysis. The application was a cost-sensitive product that used a two-sided 
printed circuit board with wide power and ground bus traces but without the power 
and ground planes of a more costly four-layer PC board. 

The ROM emulator contains high-current signal driver circuits to send the signals 
up and down the cables while preserving the fidelity of the signal edges. These 
buffer circuits were capable of putting into the target system large current pulses 
that the ground bus trace on the target couldn’t handle properly. The result was a 
“ground bounce” transient signal that was strong enough to cause a real signal to 
be misinterpreted by the CPU. 

The problem was solved by inserting some series termination resistors in the data 
lines to smooth out the effect of the current spike. The customer was happy, but 
this example makes a real point. Plugging any tool into a user’s target system 
implies that the target system has been designed to accommodate that tool. 
(“Designed” is probably too strong a term. In reality, most hardware designers 
don’t consider tool-compatibility issues at all when the hardware is designed, 
forcing some amazing kludges to the target system and/or tool to force them to 
work together.) For more information on this problem, see my article, in EDN.[2]  



 

 

Physical Intrusion 

Modern high-density packages make physical intrusion a serious design issue. 
Suppose your target system is one of several tightly packed PC boards in a chassis, 
such as a PC104 or VXI card cage. The hardware designer placed the ROM sockets 
near the card-edge connector, so when the card is inserted into the card cage, the 
ROM is far from sight inside the card cage. The software team wants to use a ROM 
emulator as its development tool but never communicates any particular 
requirements to the hardware designers. The ROM emulator cable is about one 
foot long, and the cables are standard 100-signal wide flat ribbon cable. The cards 
are spaced on three-quarter-inch centers in the card cage. For good measure, the 
socket is oriented so that the cable must go through two folds to orient the plug 
with the socket, leaving about four inches of available cable length. 

The obvious solution is to place the PC board on an extender card and move it out 
of the chassis, but the extender card is too intrusive and causes the system to fail. 
The problem was ultimately solved when the PC board was redesigned to 
accommodate the ROM emulator. The ultimate cost was two weeks of additional 
time to the project schedule and a large premium paid to the PC fabricator to 
facilitate a “rocket run” of the board. 

The tool was so intrusive that it was unusable, but it was unusable because the 
designers did not consider the tool requirements as part of their overall system 
design specification. They designed the tool out of their development process.  

Designing for Test 

Figure 6.9 shows the Motorola ColdFIRE MF5206eLITE Evaluation Board, which I 
use in the lab portion of my Embedded Systems class. By anticipating the 
connection to a logic analyzer during the project design phase, I was able to easily 
provide mechanical access points for connecting to the processor’s I/O pins.  

 
Figure 6.9: Evaluation board.  
 



Motorola ColdFIRE MF5206eLITE Evaluation Board. The I/O pins on the 
processor (large black square with three dots) are spaced 0.1mm apart, 
and the package has a total of 160 pins.  

The large chip with the three black dots in the lower portion of the figure is the 
Motorola ColdFIRE MF5206e microcontroller, which comes in a 160-pin package 
that is surface-mounted to the printed circuit board. The I/O pins are spaced 
approximately every 0.25 mm around the sides of the package. The spacing 
between the pins is 0.10 mm, or 0.004 inches. Obviously, without help, it will be 
impossible to connect 160 probes to this circuit. The help needed is located on the 
right side of the board. Two high-density connectors that connect to all the pins of 
the processor enable you to design a mechanical interface to the board so that you 
can use a logic analyzer. 

These connectors, however, won’t mate directly with our logic analyzers. To bridge 
the gap, I designed a “transition board” (see Figure 6.10), which interfaces to the 
ColdFIRE evaluation board through the two connectors shown in Figure 6.9.  
 

 
Figure 6.10: Transition board.  
 
Transition board for use with the ColdFIRE evaluation board. Eight 20-pin 
connectors along the top and bottom edges of the board provide direct 
connection to a logic analyzer.  
 

 The transition board has two purposes: 

 Provide a convenient connection point for a logic analyzer 

 Provide a simple way to bring the ColdFIRE I/O signals to other boards 
for lab experiments 

The transition board contains two mating connectors on the underside of the board 
that directly connect to the two expansion connectors on the evaluation board. The 
transition board’s eight 20-pin connectors were designed to match directly the 
cable specifications for the logic analyzers used. Thus, interconnecting the target 
system and the tool was relatively straightforward. The circuitry on the transition 
board also provides some signal-isolation and bus-driving capabilities so that the 
processor signals can be transmitted at high speed and fidelity to experimental 
boards through the five 60-pin connectors shown in the center of the photograph 
(labeled CONNECTOR 1 through CONNECTOR 5). 

 



 

Generally, intrusiveness encompasses all the aspects of embedded systems design 
and debug. The mechanical compatibility issue exists between external tools and a 
target system, with parametric (electrical) compatibility, with software 
compatibility, and finally with the realities imposed by real-time systems. 

To minimize intrusion, the tool must somehow be able to live outside of the direct 
relationship that exists between the processor, memory, application software, and 
real-time requirements. You can imagine that together these elements form the 
heart of your embedded system. To debug this system, you must somehow break 
the bonds of these dependencies and insert your tool. In the case of a debugger, 
inserting it between the processor and the real-time requirements will often mean 
that the system cannot be debugged because the tool itself breaks the part of the 
system that you are trying to debug. Therefore, we need to move up a level in 
debugging sophistication. Traditionally, this has meant applying specialized 
hardware to the problem.  

Other Kinds of Intrusion 

The issue of intrusion is one of the key reasons that the target system hardware, 
its operational software, and the tools that will be used as part of the design and 
debug process must be considered as a complete system, in other words, 
holistically. If you’ve ever thumbed through Embedded Systems Programming or 
Real Time Computing magazines, you’ve seen advertisements for tools that show 
some sort of tool plugged into a target system that consists of a single PC board 
sitting alone on a desktop, with not even a power supply in sight to spoil the view. 
The real situation is far less ideal. For example, a customer once hung our first 
generation in-circuit emulators (ICEs) by chains from the ceiling to get them close 
to the highest boards in a floor-to-ceiling equipment rack. These emulators 
weighed about 75 pounds each and were not designed for skyhook applications. 

Make your tool selection part of your system-planning exercise. Bring the software 
team into the discussion and make certain the overall system design is compatible 
with the team’s tool requirements. If a conflict arises, you’ll know about it sooner. 
It can be as simple as locating the ROM socket at the other end of the board, but, 
if this isn’t specified at the beginning of the project, you’ll end up having to live 
with what you get. 

Logic Analyzer 

If you need to see what the processor is doing in real time, without “significantly” 
perturbing the system, you need to move to the next level of embedded systems 
debugging power, the logic analyzer. The logic analyzer is an extremely powerful 
tool for examining digital systems. Even so, there are problems with using logic 
analyzers with today’s modern processors, which are discussed shortly. For now, 
let’s focus on how you might use a logic analyzer to debug the real-time problems 
you encounter with an embedded system. 

The logic analyzer has two basic modes of operation: timing and state. In timing 
mode, an internal high-speed clock determines when the memory of the logic 
analyzer takes a snapshot of the state of the processor, or processor and other 
digital signals in the system. A snapshot is just the voltage, or logic level, on every 
pin of the processor, taken at a sufficiently high capture rate so that you can see 
the timing relationships between the various processor bus signals.  

 



Note  In the previous paragraph, “every pin” really means “every pin of 
interest.” You would have no reason to probe the power supply voltage 
unless you thought it was noisy and causing problems.  

Timing Mode 
 
In Figure 6.11, the logic analyzer is driven by a high frequency internal clock, 
perhaps 400MHz or faster. The processor clock in this example is 100MHz. Thus, 
for each cycle of the processor clock, you can record four samples of each pin of 
interest of the microprocessor. Also, the logic analyzer clock allows you to measure 
the transition times of the various digital signals to ±2.5 nanoseconds (1/400MHz). 
To make this recording, you just assign each logic analyzer probe to one of the 
pins of the processor. Thus, probe0 is assigned to address line 0, probe1 to 
address line 1, and so on. It’s easy to see why a complex processor might require 
200 or more logic analyzer probes — each probe connected to a physical pin of the 
microprocessor — to completely determine what the processor is doing. Each logic 
analyzer probe can only measure if the corresponding digital signal is a “1” or a “0”. 
 

 
Figure 6.11: Logic analyzer display.  
 
Simplified timing diagram for a 32-bit microprocessor.  

If the logic analyzer has a memory that can store one sample every 2.5ns and the 
memory is 200 bits wide and 1 million states deep, you can capture 250,000 
processor bus cycles. Then, you can play this information back on the logic 
analyzer display as if it were a strip chart recorder. 

This information is invaluable for a hardware designer because the greater the 
logic analyzer clock speed, the finer the resolution with which the designer can 
measure the relative timing relationships between the system signals. Thus, given 
a memory with a maximum access time of 25ns, if the logic analyzer display shows 
that the processor expects the memory data to be ready in 20ns, it would clearly 
signal a very real timing problem. 

However, the information provided by the timing diagram is not particularly useful 
to the software developer. The software designer needs to see the instruction flow 
of the program, not the timing relationships between the various binary signals. 
The timing analysis point of view provides too much information (precise time 
durations) and too little information (processor instruction execution) at the same 



time. Also, the data presented in a timing diagram is useless for debugging 
software.  

State Mode 

You can change the operational mode of the logic analyzer by using the 
microprocessor clock to provide the signal to capture a state. Thus, each time the 
processor clock rises from low to high (0 to 1), you capture the state of the pins of 
the processor and write that to the logic analyzer memory. In this case, the 
relative timing information between the signals is lost, but you can see the value 
of the signals when they are relevant to the processor. 

 
Most logic analyzers are available with software — called disassemblers — that are 
capable of reducing the raw data recorded by the logic analyzer and representing it 
in tabular form as an assembly language mnemonic instruction, address 
information, operand reads and writes, and special status information, such as 
interrupt service instruction cycles. Figure 6.12 is an example of the logic analyzer 
data represented in state mode. 
 

 
Figure 6.12: Logic analyzer data table.  
 
Screen capture from a logic analyzer tracing execution on a Motorola 
68000 family processor.  
 
In Figure 6.12, you see that the disassembler software reduces the individual clock 
cycles to instructions and memory reads and writes. The logic analyzer inserts a 
time count so that the real-time instruction execution times can be easily 
determined. From the point of view of actual execution, the logic analyzer is totally 
non-intrusive. The processor runs at full speed, and the logic analyzer records a 
slice in time of the executed instructions, the accessed memory locations, and the 
read and written data values. 
 
If the address, data, and status signals for each instruction can be recorded, this 
flow can be related back to a higher-level language, such as C or C++. If a 
debugger can relate the C or C++ statements back to the memory locations that 
represent the corresponding machine language instruction in memory, one should 
be able to repeat the process with a recorded logic analyzer trace. Figure 6.13 
illustrates how — if the compiler’s symbol table is valid — a dissasembler can 
relate the C source statements to the program execution flow.  



 
Figure 6.13: Display with interleaved source code.  
 
Screen capture of a logic analyzer state trace with C source statements 
and the corresponding assembly language instructions inserted in the 
trace display.  

The trace now gets much busier than before, but at least you can raise the 
abstraction level of the debugging to something more appropriate than individual 
machine clock cycles. By post-processing the raw trace, either on the host or in 
the logic analyzer itself, the information is distilled from the state of all the 
processor pins on every clock cycle, to bus cycles, to assembly language 
instructions, and finally to C source statements. 

Triggers 

In state mode, sophisticated logic analyzers can trace every instruction executed 
and relate it directly to the associated line in the source. Although this information 
gives a powerful view into what is happening, a trace that reports every instruction 
executed quickly becomes overwhelming. Like any trace-based debugging, 
debugging with a logic analyzer trace is efficient only if the programmer can select 
which part of the trace to view. The key isn’t to trace every instruction but to trace 
and study the relevant instructions. Triggers are the basic mechanisms for 
selectively controlling which part of the execution history the logic analyzer reports.  

Typically, the trigger system is among the most complex hardware circuitry 
because the sequence of code execution states and data values that can lead to a 
trigger event of interest also can be extremely complex and convoluted. The 
trigger system also must be able to deal with various combinations of the address, 
data, and status information. 

 
Figure 6.14 is an example of symbolic triggering. Notice how in this example you 
can set trigger values based on their symbolic names from the C source file. 

 
Figure 6.14: Symbolic triggering.  
 
Symbolic trigger settings for a logic analyzer. Here fib is a symbolic name used in 
the source file. 

Specifying a Trigger 

One of the most difficult tasks for a software developer is to correctly set up the 
trigger condition for a logic analyzer so that the event of interest can be isolated 
and captured. The trigger system also can be used as a toggle switch. In this mode, 
a trigger event turns on the recording feature of a trace system, and another 
trigger event turns it off. This is particularly useful for debugging a single task in a 
RTOS. The trace system only is enabled during the execution of that task, thus 



saving the memory from recording uninteresting tasks. The logic analyzer’s trigger 
system is usually arranged around the concept of resources and state transitions. 

 
Tip  It’s helpful to record only several states before and after accesses to a 

certain memory location. In other words, every time a global variable is 
accessed, a limited number of states around it are recorded. This allows 
you to easily isolate why the global variable was being mysteriously 
clobbered by another task.  

Trigger Resources 
 
The logic analyzer’s trigger system is usually arranged around the concept of 
resources and state transitions. Think of the resources as logic variables. A 
resource might be assigned to a condition of the system, such as ADDRESS = 
0x5555AAAA. However, just as with C, you can assign a resource so that 
ADDRESS != 0x5555AAAA. In other words, trigger if the address doesn’t equal this 
value. You also can assign ranges to resources, so that if the address bus has a 
value in the range of  

0x50000000 <= ADDRESS <= 0x50000010 

the logic analyzer triggers. You can also trigger on addresses outside a specific 
range, as in 

(0x50000000 <= ADDRESS <= 0x50000010)! 

You also can save some resources by using a “don’t care” form of a resource. The 
“don’t care” just means that those bits are not used in the resource comparisons. 
Thus, if the trigger condition is 

ADDRESS = 0x500XXXXX 
the logic analyzer only uses address bits 20 through 31 in the comparison and 
ignores bits 0 through 19. In a way, this is similar to declaring a range trigger but 
without defining an explicit range. Most logic analyzers support a fixed number of 
resources that can be assigned to trigger conditions. To create a range resource, 
you must combine two resources so that the trigger occurs on the logical ANDing 
of RESOURCE1 (0x50000000 <= ADDRESS) and RESOURCE2 (ADDRESS <= 
0x50000010). 
You also can assign trigger resources to the data bus bits and to the status bus 
bits. Just as you can logically AND to address resources to create an address range 
trigger condition, you can create logical AND, OR, and NOT combinations of the 
processor’s buses or individual bits. Thus, one might form a complex trigger 
condition like this:  

IF (ADDRESS=0xAAAAAAAA) AND (DATA=0x0034) AND (STATUS=WRITE) THEN 
TRIGGER. 

 
Tip  Programmers often need to debug with loop problems present. Either the 

loop occurs an infinite number of times, one time too few, one time too 
many, or all of the above. If the loop is a polling loop waiting for a 
hardware event to occur, for example, just triggering on the address 
condition of entering the loop quickly fills up the logic analyzer memory 
buffer without capturing the event of interest. The logic analyzer can get 
around loop problems by providing an internal counter that keeps track of 
the number of times an address or data value occurs. The trace then 
triggers after the counter reaches the preset value. Thus, if you are 

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



interested in the exit value of a loop that should have occurred 500 times, 
you might set the counter to trigger on the address value after 495 times.  

How Triggers Work 

To understand a trigger, recall that the logic analyzer is a passive device. It 
records the signals that appear on the microprocessor busses while the processor 
runs normally. Because the processor might be executing 10 million or more 
instructions each second and the logic analyzer has finite memory, you need a 
mechanism to tell the trace memory when to start and stop storing state or timing 
information. By turning the recording on at the appropriate time, you can record 
(capture) the actions of the processor around the point of interest. So, just as you 
use a debugger to set breakpoints in your code, you can use the trigger 
capabilities of a logic analyzer to record the instruction and data flow at some point 
in the program execution flow. 

The schematic diagram in Figures 6.15 represents a memory system that is one 
million states deep and 200 bits wide. It is arranged as a circular buffer so that no 
special significance to memory location 0x00000 or 0xFFFFF exists; they just are 
adjacent to each other in the buffer. Each time the processor clock is asserted — 
usually on a rising edge — 200 bits are recorded in the memory, and the address 
is automatically incremented to the next location. 

This process goes on continuously, whether the logic analyzer is supposed to 
record any information or not. After it records one million states, the logic analyzer 
just records over what it previously recorded. The key contribution of the trigger 
circuitry is to tell the logic analyzer trigger when to stop recording information. 
This simple concept has some powerful debugging implications. With the logic 
analyzer set up this way, you can see backward in time, up to 1 million states 
before the trigger signal occurs. 

 
Figure 6.15: Memory system diagram.  
 
Schematic representation of a logic analyzer trace and trigger system.  

 

 



State Transitions 
 
Recall that one of the real problems with debugging code is isolating and capturing 
the event of interest among a complex array of possible pathways. Sometimes 
specifying address, data, and status values, even with the capability of defining 
complicated patterns, is just not enough. This is where the state transition trigger 
capability can be used (see Figure 6.16). With trigger sequencing, the resources 
have been combined to provide a triggering capability that depends on the path 
taken through the code. 
 

 
Figure 6.16: Triggers.  
Triggering a logic analyzer after a sequence of trigger states.  

Each match that occurs takes you to a new level in the trigger-sequencing system. 
Eventually, if all the transition conditions are met, the logic analyzer triggers. 
Setting up such a complex combination of trigger conditions isn’t a task for the 
faint of heart. It usually takes a lot of trial and error before you get the trigger 
system working properly. Unfortunately, your ability to get the most out of the 
logic analyzer’s triggering capability is often greatly diminished by the logic 
analyzer’s user interface, documentation, or both. It is extremely frustrating when 
you know exactly what you want to do, but can’t figure out how to make your tool 
do it. 

With a logic analyzer, this often means that you set it up to trigger on some 
complex, low-occurrence fault — occurring perhaps once a day — and you miss the 
event because your trigger sequence was set incorrectly. The sad reality is that 
most engineers hardly ever take advantage of the logic analyzer’s complex 
triggering capabilities because it is just too difficult to set up the logic analyzer 
with any confidence that you’ll be successful the first time you try it.  

 
From the Trenches  
I visited a customer once to learn more about how our products were being used. 
Our logic analyzer had extremely powerful triggering capabilities, a rich set of 
resources, and eight levels of trigger sequencing. Referring back to Figure 6.16, 
imagine up to eight of those logical conditions with various kinds of looping back to 
prior states. The logic analyzer did not have a particularly deep memory and could 
store a maximum of 1,024 states, which was a source of constant complaint by the 
customers we visited. The memory was just not deep enough. We would counter 
their argument by saying that the complex triggering capability made a deep 
memory unnecessary. Just dial in the trigger condition that you need to isolate the 



fault, and then you won’t need to search through a deep memory buffer for the 
event, which you have to do if your trigger condition is too simple. 

Most, if not all, the customers wanted a simple trigger to capture the event, and 
then they were willing to search manually through the trace buffer for the event of 
interest. Several, in fact, were proud of some utilities they wrote to post-process 
the trace file from the logic analyzer. Because they could upload it as an ASCII text 
file, they wrote software to find the trace event that they were interested in. 

Customer research shows that 90 percent of users triggered their logic analyzer 
(or ICE) on simple Boolean combinations of address, data, and status information, 
with perhaps a count qualifier added for loop unrolling. 

This apparent disconnect between what the user needs (simple triggering with a 
deep trace and post-processing) and what the tool vendor supplies (complex 
triggering with shallow memory) reflects the logic analyzer’s roots as a hardware 
designer’s tool. State sequencing is a common algorithm for a hardware designer 
but less well known for a software developer. Tools such as oscilloscopes and logic 
analyzers are created by hardware designers for hardware designers. Thus, it’s 
easy to understand the focus on state sequencing as the triggering architecture. In 
any case, the logic analyzer is a powerful tool for debugging real-time systems. 
Although this chapter has concentrated on the processor’s busses, the logic 
analyzer easily can measure other signals in your digital system along with the 
processor so you can see what peripheral devices are doing as the processor 
attempts to deal with them. 

Limitations 

By now, you might think the logic analyzer is the greatest thing since sliced bread. 
What’s the down side? The first hurdle is the problem of mechanical connections 
between the logic analyzer and the target system. If you’ve every tried to measure 
a voltage in a circuit, you know that to measure one voltage, you need two probes. 
One probe connects to the source of the voltage and the other connects to the 
circuit ground to bring your voltmeter and the circuit to the same reference point. 
If your processor has 200 I/O pins, which is reasonably common today, you need 
to be able to make 201 connections to the processor to capture all its I/O signals. 

The second problem is that meaningful interpretation of a logic analyzer trace 
assumes you can relate the addresses and data observed on the bus to sequences 
of instruction executions. Unfortunately, the on-chip cache and other performance 
enhancements (such as out-of-order instruction dispatch) interfere with this 
assumption.  

Physical Connections 

Logic analyzer manufacturers are painfully aware of the difficulty associated with 
connecting several hundred microscopic I/O pins to their tools and have built 
interconnecting systems that enable the logic analyzer and a surface-mounted 
microprocessor to make a reasonable electrical and mechanical connection. These 
interconnecting devices are often called preprocessors. For relatively simple pin-
grid array packages, where the I/O pins of the processor are designed to plug into 
a socket with a two-dimensional array of holes located on 0.1 inch centers, the 
preprocessor plugs into the socket on the target system, and the target 
microprocessor plugs into the preprocessor. This arrangement is also referred to as 
an interposer because the preprocessor sits between the target and the processor. 



Figure 6.17 shows an example of a preprocessor. The preprocessor can contain 
some additional circuitry (such as the transition board shown in Figure 6.10) to 
provide some signal isolation because of the added electrical load created by the 
preprocessor and the logic analyzer. If you’re unlucky and your embedded 
processor is more like the ColdFIRE chip shown in Figure 6.17, the preprocessor 
could be a rather fragile and expensive device. In one design, a threaded bolt is 
glued to the top of the plastic IC package using a special alignment jig and cyano-
acrylic glue. The rest of the connector then attaches to this stud and positions the 
mini-probes on the I/O pins of the processor. It takes a bit of trial and error to get 
all the preprocessor connections made, but the preprocessor is reliable after it’s 
installed. However, this is not something that you want to attach and remove from 
the chip at regular intervals.  

 
Figure 6.17: Preprocessor connection sequence.  
The preprocessor provides over 100 reliable electrical and mechanical 
connections to the target processor and to the logic analyzer. Drawing 
courtesy of Agilent Technologies, Inc.  

 
From the Trenches  
One company keeps these expensive connectors in a locked cabinet. The group’s 
manager has the key, and engineers are allowed one free replacement. After that, 
each subsequent replacement requires more and more in-depth analysis of the 
engineer’s design and debugging methods. 

Logic Analyzers and Caches 

Now that you have this expensive preprocessor probe connected to the 
microprocessor and you’re ready to debug, you might be out of the woods. 
Suppose your embedded microprocessor has an input pipeline or an on-chip 
instruction cache (I-cache), data cache (D-cache), or both. It definitely makes 
triggering a logic analyzer and capturing a trace a much more problematic task. 



Remember that the logic analyzer is passively “sniffing” the processor’s I/O pins on 
every clock cycle. If every state that is visible on the bus corresponds to what the 
processor is doing with that instruction, the logic analyzer will accurately capture 
the instruction and data flow sequence of the processor.  

However, if the activity on the bus does not have a 1:1 correspondence to the 
instructions being executed and the data being accessed, the logic analyzer’s 
usefulness begins to diminish. Most on-chip caches are generally refilled from main 
memory in bursts. Even if only one byte of data is not available in the cache, the 
bus control logic of the processor generally fetches anywhere from 4 to 64 bytes of 
data, called a refill line, from main memory and places the refill line in the cache. 
The logic analyzer records a burst of memory reads taking place. Where’s the data 
of interest? 

If the caches are small, clever post-processing software can sometimes figure out 
what the processor is actually doing and display the real flow. You might still have 
a problem with triggering, but it’s possible to circumvent it. With small caches, 
branches in the code generally have at least one possible branch destination 
located outside the cache. Thus, clever software might be able to use basic block 
information from the compiler and the address of memory fetches to reconstruct 
what happened at various branch points. If the caches are large enough to 
normally hold both possible destinations of a branch, a logic analyzer, with only 
external bus information available to it, has no way to determine what instructions 
are being executed by the processor. Of course, most processors allow you to set a 
bit in a register and turn off the caches. However, as with the debug kernel 
discussed earlier, the performance degradation caused by the intrusion of the logic 
analyzer might cause your embedded system to fail or to behave differently than it 
would if the caches were enabled. 

Trace Visibility 

Most manufactures of embedded systems understand the importance of real-time 
traces and add on-chip circuitry to help logic analyzers or other tools decode what 
is actually going on inside of the processor. Over the years, several different 
approaches have been taken. National Semiconductor Corporation and Intel 
Corporation created special versions of their embedded processors called “bond-
outs” because additional signals that were available on the integrated circuit die 
were bonded out to extra I/O pins on these special packages. Thus, a normal 
package might have 100 pins, but the bond-out version has 140 pins. These extra 
pins provided additional information about the program counter and cache 
behavior. With this information, it becomes feasible to post-process the logic 
analyzer trace to uncover the processor program flow. 

 
Traceable Cache™  
AMD took another approach called Traceable Cache™. Rather than create a bond-
out version of the chip, certain AMD 29K family processors could be put into a 
slave mode through the JTAG port. The master processor and slave processor are 
mounted together on a preprocessor module, and both have their data lines 
connected to the system data bus. Only the master processor has its address lines 
connected to the address bus. The two microprocessors then run in lockstep. The 
unconnected address pins of the slave processor output the current value of the 
program counter on every instruction cycle. These additional states are captured 
by the logic analyzer, and, by post-processing the resulting trace, the actual 
instruction flow can be reconstructed, even though the processor is running out of 
the cache.  



Today, the generally accepted method of providing trace information is to output 
the program counter value when a non-sequential fetch occurs. A non-sequential 
fetch occurs whenever the program counter is not incremented to point to the 
address of the next instruction in memory. A branch, a loop, a jump to subroutine, 
or an interrupt causes non-sequential fetches to occur. If the debug tools record all 
the non-sequential fetches, they should be able to reconstruct the instruction flow, 
but not the data flow, of the processor. Non-sequential fetch information can be 
output when the bus is idle, so it usually has a minimal impact on the processor’s 
performance; however, tight loops can often cause problems if the data is coming 
too fast. Some sort of an on-chip FIFO for the non-sequential fetch data usually 
helps here, but even that can get overrun if the branch destination is being output 
every few clock cycles. 

Caches and Triggering 
As noted earlier, triggering might still be a problem. Traditional triggering methods 
also fail when caches are present, so the semiconductor manufacturers place 
triggering resources on-chip, as part of their debug circuitry. Often, these 
resources are called breakpoint registers because they are also available to 
debuggers for setting breakpoints in the code. A breakpoint register might be set 
to cause a special code to be output on several status pins whenever the internal 
breakpoint conditions are met. The code is then interpreted by the logic analyzer 
as a trigger signal, and the logic analyzer takes the appropriate action, such as 
starting to capture a trace. Chapter 7 discusses the IEEE ISTO-5001 embedded 
debug standard, including the various dynamic debugging modes defined in the 
standard. 

In these examples, you’ve seen that as the processor speed and complexity 
increases, the type of information that you must record to understand what the 
processor is doing necessarily changes as well. Today, attempting to capture the 
external bus states on every clock cycle is generally not possible or necessary. By 
effectively using the on-chip dynamic debug resources, such as the address 
information about non-sequential fetched and internal trigger resources, you 
usually can record enough information from the processor to reconstruct the real-
time instruction flow of the processor.  

Compiler Optimizations 

With optimizations turned on, a good C or C++ compiler can generate code that, 
at the assembly language level, is almost impossible to relate to the original 
source code. Even with the C source statements interspersed with the assembly 
code, critical events might not show up in the trace where you expect them to be. 
Of course, turning off the optimizations can have the same effect as turning off the 
caches to gain visibility. The tool becomes intrusive, and performance is 
compromised, perhaps so much as to cause the embedded system to fail. 

Cost Benefit 
Even with all the limitations of logic analysis as a debugging tool, the negatives 
don’t outweigh the positives. Although high-performance logic analyzers can be 
expensive (over $20,000), excellent units are available below $10,000 that will 
meet your needs for a long time to come. Magazines, such as Electronic Design 
and EDN, regularly do feature articles surveying the latest in logic analyzers. One 
interesting new offering is a logic analyzer on a PCI card that can plug into your 
desktop PC. Although the performance is modest, compared with the standalone 
units, this type of a logic analyzer offers a reasonable amount of performance for a 
modest investment. 



Other Uses 
Up to now I’ve been considering the logic analyzer to be a specialized type of 
debugging tool. The developers define a trigger event that hopefully is related to 
the fault they are investigating, wait for the trigger event to occur, examine the 
resultant trace, and fix the problem. This seems to imply that all data is contained 
within a single trace. However, a logic analyzer also can be used as a key tool for 
processor-performance measuring and code- quality testing. These topics are 
discussed in more detail in Chapter 9, so they are only introduced here. 

Statistical Profiling 

Suppose that instead of waiting for a trigger event, you tell the logic analyzer to 
capture one buffer full of data. If the logic analyzer is connected to a PC, you can 
write a fairly simple C program that randomly signals the logic analyzer to start 
immediately and capture one trace buffer full of data. You’re not looking for 
anything in particular, so you don’t need a trigger. You are interested in following 
the path of the microprocessor as it runs through its operation code under fairly 
normal conditions. 

Each time you tell it to capture a trace buffer full of data, you wait for it to 
complete and then upload the buffer to a disk file on your PC. After uploading the 
trace buffer, you start a random time generator, and, when the timer times out, 
you repeat the process.  

 
Note  
The random time generator is necessary because the possibility exists that the 
time loop from taking and uploading a trace is somehow related to the time it 
takes to execute a fraction of code in the target system. If the logic analyzer were 
continuously restarted without the random time delay, you might never see blocks 
of code executing, or you might get the inverse situation so that all you ever see is 
the same block of code executing. 

Each time you take a trace and upload it to the PC, you get a brief snapshot of 
what the program has been doing for the last 1 million or so bus cycles. The 
snapshot includes: 

 What instructions were executed and how often they were executed 
 What functions were being accessed and how long each function took 

to run 
 What memory locations (instructions, data, stack, and heap) were 

being accessed 
 How big the stack grew 
 What global variables were being accessed and by which functions 

Because the uploaded trace buffer is an ASCII text file, you can use the standard 
file-manipulation tools that come with the C or C++ library to gradually build 
statistics about your program. The longer you allow the embedded program to run 
with the logic analyzer attached and gathering data, the more accurate the 
information that you gather will be. From the linker map and symbol tables, you 
can relate the memory address to your variables, data structures, and functions. 
For example, you can easily build a graph that shows what percentage of the time 
is spent in each function. 

 
Importance of Execution Profiling  



Most software designers have no idea how long it takes for the various functions in 
their code to execute. For example, a company thought it would have to do a 
complete redesign of its hardware platform because the performance of the system 
wasn’t up to standard and the software team adamantly claimed the code had 
been fine- tuned as much as humanly possible. Fortunately, someone decided to 
make some performance measurements of the type discussed here and found that 
a large fraction of the time was spent in a function that shouldn’t have even been 
there. Somehow, the released code was built with the compiler switch that installs 
the debug support software because it was erroneously included in the final make 
file. The processor in the released product was spending half its time in the debug 
loops! 

In “The Twenty-Five Most Common Mistakes with Real-Time Software 
Development,” David Stewart[6] notes that the number one mistake made by real-
time software developers is the lack of measurements of execution time. Follow his 
steps to avoid the same trap: 

 First, design your system so that the code is measurable! 
 Measure execution time as part of your standard testing. Do not only 

test the functionality of the code! 
 Learn both coarse-grain and fine-grain techniques to measure 

execution time. 
 Use coarse-grain measurements for analyzing real-time properties. 
 Use fine-grain measurements for optimizing and fine-tuning. 

One of the logic analyzer’s shortcomings is that it performs a sampling 
measurement. Because it must capture a discrete buffer each time and then stop 
recording while it is being uploaded, it might take a long time to gain accurate 
statistics because extremely short code sections, such as ISRs, might be missed. 
Chapter 9 discusses other methods of dealing with this problem. For now, it’s easy 
to see that because the logic analyzer often can operate non-intrusively, using it as 
a quality assurance tool makes good sense.  

The logic analyzer can be used to show what memory locations are being accessed 
by the processor while it runs the embedded program code. If code quality is 
important to you, knowing how thoroughly your testing is actually exercising your 
code (i.e., code coverage) is valuable. Code-coverage measurements are 
universally accepted as one of the fundamental measurements that should be 
performed on embedded code before it is released. If your coverage results 
indicate that 35 percent of your code has been “touched” by your test suite, that 
means that 65 percent of the code you’ve written has not been accessed by your 
tests.  

 

Experiment Design 

I’m convinced that debugging is the lost art of software development. In the 
introductory C++ class that I teach, I actually devote class time to discussions and 
demonstrations on how to debug and use a debugger. What I see is that students 
(and many practicing engineers) have not a clue as to how you should approach 
the problem of finding a flaw in a system. Of course, sometimes a bug can be so 
obscure and infrequent as to be almost impossible to find, even for the best 
deductive minds. I can vividly remember a scene from my R&D lab days when a 
group of senior engineers were standing around for hours staring at an FPGA in a 
complex embedded system. It wasn’t working properly, and they could not conjure 
up an experiment that they could use to test the various hypotheses that they had 
as to why they were seeing this failure. What was so striking about this scene was 



I saw them standing there at about 10 A.M., and, when I went by again at around 
3:30 P.M. everyone was in exactly the same position with the same expressions on 
their faces. I assume they had gone to lunch, the restroom, etc., but you couldn’t 
tell from my before and after vignettes. 

I think that part of the difficulty of debugging is the amount of time you need to 
commit to finding the problem. If faced with a choice between trying something 
“quick and dirty” or setting up a detailed sequence of experiments and 
observations, most engineers will opt for the quick and dirty approach. This isn’t 
meant to be a criticism, it’s just the way people are. Another popular debugging 
technique is to “shotgun” the problem. Shotgunning the problem means changing 
everything in sight with the hope that one of the things that you try will fix it. You 
do this even though you know from your high school geometry proofs that you 
should progress one step at a time. You should postulate a reason for the failure, 
based upon careful observations of your system under test. You then design an 
experiment to test your hypothesis, if it works, you are then able to explain what 
went wrong, and you have high confidence that you actually fixed the problem. We 
all do that. Right? 

With my students, I often see the antithesis of any attempt at logical thinking. If it 
doesn’t work, they just write their code all over again! It is frustrating for the 
student, and for me, to try to single-step a timer ISR when the timer ticks every 
150 microseconds. What is even more frustrating for me is that I even taught 
them how to use a logic analyzer.[1]  

So what are we trying to accomplish here? The answer lies at the heart of what we 
are trying to do in debugging an embedded system, and I believe that in many 
ways it is fundamentally different from how we debug host-based programs. The 
embedded system is often a complex mix of external stimuli and system responses, 
controlled by one or more processors and dedicated hardware. Just getting an 
accurate picture of what’s going on is often the crux of the problem. A product 
marketing manager with whom I once worked summarized it quite succinctly. He 
referred to this problem of just trying to understand what is going on as, Time to 
Insight. In other words, how long will it take me to figure out what is going on with 
this !#%$*$#&* embedded system? The problem that you face is akin to the 
problem face by an electrical engineer trying to debug the hardware without an 
oscilloscope. You can measure some DC voltages with a digital voltmeter, but that 
won’t tell you if you have serious overshoot or undershoot problems with your bus 
signals. 

 

 
 

Summary 

The debug kernel is a powerful part of the embedded system designer’s toolkit. In 
fact, it’s arguably the most important tool of all. With a debug kernel, you have a 
degree of control and an observation window into the behavior of your system, 
with only moderate overhead demands on the target. 

As the complexity (and cost) increases, these hardware tools are asked to address 
the issue of intrusiveness in their own particular way. With an embedded system, 
you need the run control feature set that the debugger provides because 
examining and modifying memory and registers, single- stepping, and running to 
breakpoints is fundamental to debugging software of any kind. You can use these 



debug kernel features to trace program execution but not without intruding on the 
real-time behavior of the system. The logic analyzer, although more expensive, 
provides a less intrusive means of tracing program execution. 

This chapter has considered the three fundamental tool requirements for 
integrating hardware and software: 

 A debug kernel for controlling the processor during code development 
 Substitution memory as a way to rapidly download and replace code 

images in non-volatile memory 
 A non-intrusive way to follow code execution in real time 

In the next chapter, you’ll learn how to benefit even more by tightly coupling these 
three tools. In short, you’ll examine the in-circuit emulator. 

Works Cited 
1. Berger, Arnold S. “A New Perspective on Teaching Embedded Systems 

Design.” http://www.embedded.com/story/OEG20010319S0092, 20 March 
2001. 

2. Berger, Arnold S. “Following Simple Rules Lets Embedded Systems 
Work With uP Emulators.” EDN, 13 April 1989, 171. 

3. Ledin, Jim A. “Hardware-in-the-Loop Simulation.” Embedded Systems 
Programming, February 1999, 42. 

4. Ledin, Jim A. “Modeling Dynamic Systems.” Embedded Systems 
Programming, August 2000, 84. 

5. Smith, M. “Developing a Virtual Hardware Device.” Circuit Cellar Inc., 
November 1995, 36–45. 

6. Stewart, Dave. “The Twenty-Five Most Common Mistakes with Real- 
Time Software Development.” A paper presented at the Embedded Systems 
Conference, San Jose, 26 September 2000. 

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



 

Chapter 7: BDM, JTAG, and Nexus 

Overview 

Traditionally, the debug kernel has been implemented in firmware. Thus, for the 
kernel to execute correctly on new hardware, the new design must at least get the 
processor–memory interface correct. Unfortunately, as clock speeds increase and 
memory systems grow in size and complexity, this interface has become more and 
more demanding to engineer, which raises a question “how you can debug the 
system when you can’t rely on the system to execute even the debug kernel?” 

Increasing levels of integration create a related problem: How do you modify 
firmware when it’s embedded on a chip in which you can’t use a ROM emulator? 

To address these and other related issues, chip vendors are beginning to supply 
hardware implementations of the debug kernel as part of the chip circuitry. When 
the functionality of the debug kernel is part of the chip circuitry, debugging tools 
can continue to deliver run control and to monitor system resources even if the 
processor chip isn’t able to communicate with the rest of the board. This 
robustness makes it much easier to determine whether intermittent “glitches” are 
hardware or software problems. 

Putting debug control directly in the processor solves other problems, too. In chips 
with sophisticated pipelines and complex caches, integral debug circuitry can 
report processor state without concern for the cache and pipeline visibility 
problems that limit logic analyzers. Well-designed debug interfaces can reduce the 
overall package pin count. Also, when implemented in silicon, the debug core can’t 
be accidentally destroyed by software that has run amok and has written over a 
debug kernel located in the target system. (Not only is this a nice convenience, it 
can be a major time-saver if the debug kernel has to be downloaded to the target 
system every time the system crashes.) As processors and embedded systems 
become faster and more complex, on-chip debug support becomes more critical. 

Finally, when the debug kernel is implemented as a fixed, standard part of the 
processor, hosted tool vendors can’t communicate with the “debug kernel” via a 
proprietary protocol any longer. Thus, moving the debug kernel into hardware has 
contributed to the emergence of new standard interface protocols. Three major 
debug protocols are used today: BDM (Background Debug Mode), IEEE 1149.1 
JTAG (Joint Test Action Group), and IEEE-5001 ISTO (Nexus).  

 

Hardware Instability 

In general, you will be integrating unstable hardware with software that has never 
run on the hardware. The instability of the hardware means that the interface 
between the processor and the memory might be faulty, so that any code, even a 
debugger, cannot possibly run reliably in the target system. 

With today’s processors running at frequencies over 1GHz and bus speeds in 
excess of 200MHz, circuit designers must take into account the dreaded analog 
effects. A printed circuit board that checks out just fine at DC might fail completely 
at normal bus speeds. 



An embedded system that has a marginal timing problem or a cross-talk problem 
can appear to work correctly for long stretches of time and then just die. When the 
right combination of 1s and 0s appears on the right bus at the right time, a glitch 
occurs, and a bit flips where it shouldn’t, taking the system down with it. Until 
recently, these kinds of problems could wreck a project. Unless the proces sor-to-
memory system was stable, the system could not be turned on. The only tool that 
could overcome this problem was the ICE. 

 

Background Debug Mode 
BDM is Motorola’s proprietary debug interface. Motorola was the first embedded 
processor vendor to place special circuitry in the processor core with the sole 
function of processor debugging. Thus, BDM began the trend to on-chip debug 
resources. Today, embedded processors or microcontrollers are expected to have 
some kind of dedicated, on-chip debugging circuitry. The hardware design need 
only bring the processor’s debug pins out to a dedicated connector and the debug 
tool, called an n-wire or wiggler. Figure 7.1 is a schematic representation showing 
an n-wire tool connected to an embedded system. 

 
Figure 7.1: n-Wire tool.  
Embedded system connection to a host computer using an n-wire 
connection to the processor debug core.  

 
Note  
The hardware module that interfaces to the embedded system’s n-wire debug port 
is sometimes called a wiggler because it wiggles several pins on the processor to 
implement the protocol of the debug core being used. 

Compared to the cost of a traditional ICE, a wiggler is an incredible bargain. For 
example, I purchased 10 wigglers for use with the Motorola MF5206e ColdFire 
processor for about $40 each (including an educational discount). The wiggler, 
from P&E Micro, connects through the parallel port of a PC and includes a basic 
debugger that runs on the PC and communicates with the BDM core in the 
processor. The wiggler is inexpensive because the complex portions of the 
functionality have been moved into the chip, where circuitry is cheap. The wiggler 
does little else other than implement the debug core’s timing and protocol 
interface to the CPU. 
BDM was first implemented with the 683XX family and is used with the ColdFire 
processor family. BDM connects to a 26-pin connector that is mounted on the 
target PC board. Figure 7.2 shows the pinout for the BDM debug interface. 



 
Figure 7.2: Pinout for the Motorola BDM debug interface.  
Pinout for the Motorola BDM debug interface. The connection is 
implemented using a standard 26-pin connector to a third-party BDM tool.  
BDM is noteworthy because it supports both processor control and a form of real-
time trace monitoring. The four bits — DDATA0–DDATA3 — output debug data, 
and the four bits — PST0–PST3 — output processor status while the processor is 
running at full speed. Thus, a third-party tool equipped to analyze the information 
flow from the BDM port can provide the developer with important information 
about the execution flow of the processor core. Figure 7.3 shows the processor 
codes output through pins PST0–PST3. 
The 14 possible processor status output codes shown in Figure 7.3 are designed to 
be used in conjunction with a user’s or debugger’s knowledge of the program’s 
memory image in order to completely track the real-time execution of the code. 
Notice how codes are provided for change-of-flow instructions, such as 0101 for 
the execution the first instruction after a taking branch and 1100 for entry into an 
exception handler.  

A complete discussion of the behavior of the PST3-PST0 pins would quickly drive 
all but the most dedicated readers into “geek overload”, so I’ll end my discussion 
here. If you are interested, you can find the details in the Motorola MCF5206e 
User’s Manual.  
The ColdFire instruction set also includes special instructions, PULSE and WDDATA. 
These instructions were specially created to better integrate the debug core 
operation with the instruction execution flow. PULSE causes the binary code 0100 
to be output on the PST pins. This signal might be accepted as a trigger signal by a 
hardware debug tool, such as a logic or performance analyzer. Similarly, the 
WDDATA instruction enables the processor to write a byte, word, or long word 
operand directly to the DDATA port. Thus, the user might want to insert the PULSE 
instruction at function entry and exit points to perform execution time 
measurements.  



 
Figure 7.3: Processor codes output.  
Status signals output through the BDM debug core.  
For example, suppose a certain function normally wouldn’t cause a problem. That 
is, its execution meets the needs of the real-time service it performs. Occasionally, 
an interrupt occurs while this function is executing, however, and the resulting 
execution time for this function plus the ISR (interrupt service routine) is now over 
the allotted time budget. This situation might be impossible to analyze statically, 
but a tool that can perform a series of time-duration measurements, keyed by the 
PULSE instruction, would provide a high-accuracy data set for the designer to use. 
Figure 7.4 is summary of the BDM command set.  
Referring to Figure 7.4, it’s striking how similar these commands are to the 
commands that you might issue to any debugger. However, remember that these 
commands are going directly into the CPU core and operate independently of any 
program code the user might be trying to execute. 

 
Figure 7.4: BDM command set.  
BDM command set for the Motorola ColdFire processor family.  
The debug core of the ColdFire processor directly supports real-time debugging by 
providing additional resources for gathering information and providing some user 
control without the need to halt the processor. This assumes that some slight 
intrusion is permitted but halting the CPU core, as is required by some of the BDM 
commands discussed in Figure 7.4, is not acceptable. This support comes in the 



form of additional registers that can be programmed via the BDM port to cause 
breakpoints to occur under various conditions. The breakpoint can cause the 
processor to HALT execution or can be treated as a high-priority interrupt to the 
processor. This forces the CPU to enter a user-defined debug ISR. The processor 
continues to execute instructions when it receives this breakpoint.  

Joint Test Action Group (JTAG) 
The JTAG (IEEE 1149.1) protocol evolved from work in the PC-board test industry. 
It represented a departure from the traditional way of doing board tests. PC boards 
were (and still are) tested on complex machines that use dense arrays of point 
contacts (called a bed of nails) to connect to every node on the board. A node is a 
shared interconnection between board components. Thus, the output of one device, 
a clock driver, for example, might connect to five or six inputs on various other 
devices on the board. This represents one node of the board. Connecting a pin 
from the board tester to this node (typically a trace on the board) allows the tester 
to determine whether this node is operating correctly. If not, the tester can usually 
deduce whether the node is short-circuited to power or to ground, whether it’s 
improperly connected (open-circuited), or whether it’s accidentally connected to 
another node in the circuit. 

JTAG was designed to supplement the board tester by connecting all the nodes in 
the board to individual bits of a long shift register. Each bit represents a node in 
the circuit. 

 
Note  
A shift register is a type of circuit that receives or transmits a serial data stream. A 
COM port, Ethernet port, FireWire, and USB are examples of serial data streams. 
Usually, the serial data stream is keyed to a multiple of a standard data width. 
Thus, an Ethernet port can accept a data packet of 512 bytes. RS232C transmits 1 
byte at a time. In contrast, a JTAG serial data stream might be hundreds, or 
thousands, of bits in length. 

For JTAG to work, the integrated circuit devices used in the design must be JTAG-
compliant. This means that each I/O pin of a circuit component should contain a 
companion circuit element the interfaces that pin to the JTAG chain. When enabled, 
the state of each pin is sampled, or “sniffed,” by the companion JTAG cell. Thus, 
by properly reconstructing the serial bit stream in the correct order, the entire 
state of the circuit can be sampled at one instance (see Figure 7.5). 

Figure 7.5 is a simple schematic representation of a JTAG loop for three circuit 
elements. The loop consists of an entry point to a device and a separate exit point. 
Connecting the exit points to the entry points allows you to create a continuous 
loop that winds through the entire circuit. 

A JTAG loop can be active, as well as passive. An I/O pin in the circuit can be 
forced to a given state by writing the desired bit value to the corresponding JTAG 
location in the serial data stream. Because the serial data stream can be 
thousands of bits in length, the algorithms for managing JTAG loops tend to 
become very complex, very fast. By their nature, JTAG loops can become rather 
slow as well, because many bits must be shifted each time a value is read or 
changed.  

JTAG gave board test people an alternative to expensive board testers, and, 
perhaps more significantly, a device equipped with a JTAG loop could be easily 



tested under field service conditions. Thus, it became a good tool for field 
maintenance personnel to use when equipment needed to be serviced. 

 
Figure 7.5: JTAG loop.  
Schematic representation of a JTAG loop for three circuit elements on a PC 
board.  
Embedded processor manufacturers quickly realized that if you can use JTAG on a 
printed circuit board, you could use it inside a processor core to sample and modify 
register values, peek and poke memory, and generally do whatever a standard 
debugger could do. 
Early JTAG implementations, such as that used on AMD’s 29K family, were simple 
implementations of the JTAG protocol. With the processor’s internal clock stopped, 
the JTAG loop could be used to modify the processor internals. Accessing external 
memory was slow because a bus cycle was reconstructed by manually changing all 
the single bit values for the address, data, and status busses. Figure 7.6 shows a 
simplified schematic of a debug core implemented using the JTAG protocol.  

 
Figure 7.6: Debug core using JTAG.  
JTAG-based debug core. The JTAG loop sniffs the state of the processor’s 
internal registers.  
Other semiconductor companies also began to use the JTAG protocol, or JTAG-like 
protocols, to connect to their own debug core implementations. Two noteworthy 
improvements were the addition of addressable loops and JTAG-based commands. 
The JTAG-based command uses the standard JTAG protocol for moving the serial 



bit stream but then controls the core through debug commands, rather than by 
directly jamming in new values. Thus, instead of a serial loop with 10,000 bits, a 
bit stream of several hundred bits could be sent to the debug core. The bit stream 
would be interpreted as a command to the core (such as, “change the value of 
register R30 to 0x55555555"). 

The other improvement — addressable loops — replaces one long loop with a 
number of smaller loops. A short JTAG command is sent out to set up the proper 
loop connection. Then, the smaller loop can be manipulated instead of a single 
long loop. Addressable loops have another compelling application: multiple 
processor debugging. For example, suppose you are trying to debug an ASIC with 
eight embedded RISC processor cores. One long JTAG loop could take tens of 
milliseconds per command. With a small JTAG steering block added to the design, 
the user can send a short command to some JTAG steering logic to then direct the 
loop to the appropriate processing element.  

 
Note  
he ColdFire family is unique in that it supports both BDM and JTAG protocols. The 
JTAG function shares several of the BDM pins, so the user can enable either JTAG 
or BDM debug operations. 

Because the JTAG implementation is a serial protocol, it requires relatively few of 
the microprocessor’s I/O pins to support a debugger connection. This is a definite 
plus because I/O pins are a precious resource on a cost-sensitive device, such as 
an embedded microprocessor. Note that the JTAG pin definition includes both TDI 
and TDO pins. Thus, the data stream can enter the CPU core and then exit it to 
form a longer loop with another JTAG device. Also, unlike BDM, the JTAG interface 
is an open standard, and any processor can use it. However, the JTAG standard 
only defines the communications protocol to use with the processor. How that 
JTAG loop connects to the elements of the core and what its command set does as 
a run control or observation element are specific to a particular manufacturer and 
might be a closely guarded secret, given only to a relatively few tool support 
vendors. For example, several companies, such as MIPS and AMD have chosen to 
define an “extended JTAG” (eJTAG) command set for several of their embedded 
microprocessors. However, these are proprietary interfaces, and the full extent of 
their capabilities might only be given to a select few partners. 

 
Figure 7.7: Pin descriptions.  
Pin descriptions for the IEEE 1149.1 (JTAG) interface.  

 
Note  
Although the previous remarks were a bit ominous, working closely with one, or at 
most a few, tool vendors can be a good thing. With such a wide spectrum of 
embedded processors, the number of design starts for a particular device, or 
family of devices, can be small. In fact, it can be too small a number to support 
the large number of tool vendors that might want to support it. The dilemma that 
the semiconductor vendor often faces is how to guarantee high-quality, long-term 



support for its past and future products. Often, it’s better to keep a small number 
of partners healthy, rather than allow a large number to starve.  

Nexus 
The automobile industry provided the motivation for the next attempt at bringing 
some form of standardization for on-chip debugging. Several of the largest 
automobile manufacturers conveyed to their semiconductor vendors a simple 
message: Either standardize your on-chip debugging technology so we can 
standardize our development tools, or we’ll specify you out of consideration for 
future automobile designs. 

The automobile manufacturers were tired of having to re-supply their embedded 
development teams every time they chose a new microprocessor for a new 
application. Not only is there a steep learning curve for the design engineers to 
become proficient with yet another processor and another debugging tool, but 
there is also the reality that the modern automobile contains dozens of embedded 
microcontrollers. Thus, the variety of development tools in use was becoming a 
major design and support nightmare and a major impediment to improved 
productivity. 

In 1998, the Global Embedded Processor Debug Interface Standard (GEPDIS) was 
organized by tool providers Bosch ETAS and HP Automotive Solutions Division and 
by embedded microcontroller providers Hitachi Semiconductor, Motorola Vehicle 
Systems Division, and Infineon Technologies. The group’s original working name 
was the Nexus Consortium (“Nexus: a connected group”), but it is now known as 
the 5001 Forum, in recognition of its affiliation with the IEEE-ISTO. The standard 
was assigned the designation ISTO-5001, Global Embedded Microprocessor Debug 
Standard. The standard was formally approved by the IEEE Industry Standards 
and Technology Organization (ISTO) in early 2000. 

 
Note  
Just so you know, at the time of this writing (April 2001), I am a member of the 
Nexus 5001 Steering Committee and the secretary/treasurer of the organization. 
The complete definition of the standard is about 160 pages of rather detailed 
information, so I’ll only touch on some highlights here. The standard is readily 
accessible from the IEEE-ISTO Web site at http://www.ieee-
isto.org/Nexus5001/standard.html. 

The Nexus standard introduces several new concepts to embedded processor 
debugging. The first is scalability. A processor can comply with the Nexus standard 
at several levels of compliance. The first level provides for simple run control 
commands. Each successive level adds more capabilities and requires more pins on 
the processor to implement. These additional pins allow real-time trace data to be 
output by the processor without stalling the processor core. Thus, a manufacturer 
of an 8-bit embedded controller might only need to implement the first level of 
compliance because I/O pins are precious commodities for a low-cost device. 
Manufacturers of high- performance 32-bit embedded processors would probably 
want to implement a higher level of compliance to provide real-time trace and 
other capabilities. 

Also, Nexus used the JTAG protocol (IEEE 1149.1) as the standard protocol for the 
lowest level of compliance. This means a well-accepted standard protocol, with a 
rich set of existing tools and software support, is usable for the Nexus 
methodology. 
Figure 7.8 shows the basic structure of the Nexus interface.  



 
Figure 7.8: Nexus interface.  
Schematic representation and summary of the Nexus GEPDIS. Note that 
the interface is scalable from the basic run control feature set through to 
dynamic debugging (real-time trace).  
Figure 7.9 shows compliance Classes 1 through Class 4. The matrix shows the 
various run control features available at each compliance level. The boxes with an 
“A” mean that this feature must be implemented according to the APIs defined in 
section five of the standard. The boxes marked with a “V” mean that the silicon 
vendor must define the implementation due to the differences in the various 
processor architectures; however, accessing these features must be in accordance 
with the defined APIs. Notice that for static debugging — features similar to 
running under a standard debugger — all compliance classes support the same set 
of debug behaviors.  

 
Figure 7.9: Compliance classes 1 through 4.  
Static debug features of the Nexus interface. Note that certain features, 
such as reading and writing to the processor registers, are vendor-defined 
implementations because different processors have different registers.  
The Nexus standard also provides for instruction jamming. As the name implies, 
instructions are “jammed” into the processor via the Nexus port, rather than 
fetched from memory. Although slow when compared with full- speed operation, 
instruction jamming is a cost-effective way to edit, compile, assemble, link, 
download, and debug the embedded code without first having to program a ROM 
or flash memory chip. For single stepping, jamming is just as efficient as a resident 
debugger. Figure 7.10 shows the extensive dynamic debugging features available 
via the Nexus interface. In particular, the Nexus feature called Memory 
Substitution implements the instruction-jamming feature just discussed. As you 
can see, this is available only at Class 4-compliance level.  



 
Figure 7.10: Nexus dynamic debugging features.  
Dynamic debugging features of the Nexus interface (from the Nexus Web 
site).  

Finally, the Nexus standard provides an innovative solution to a real problem, 
namely, if everything is standardized, how can you differentiate between different 
manufacturer and vendor tools and debug solutions? The answer is the concept of 
private messages. In effect, the Nexus standard allows for a semiconductor 
manufacturer and a particular tool vendor to develop a partnership that is mutually 
beneficial to both companies. Suppose for example, tool company ABC has 
developed a novel algorithm for measuring code performance in a real-time 
system. ABC asks a semiconductor company, DEF, to add several special registers 
that record certain statistics as the processor runs normally. Periodically, these 
statistics are sent out the Nexus port and analyzed by ABC’s software. Perhaps the 
results are fed to ABC’s C++ compiler and used to optimize the code running on 
the processor. 

In this scenario, ABC and DEF want to keep a proprietary control of the link 
between the information being generated internally by the processor and the 
compiler optimizations. Nexus allows a private message to be defined to which 
only ABC and DEF are privy. Other Nexus-based tools from other vendors that 
might be connected to the Nexus port see these messages as private messages 
and ignore them.  
The concept of a private message is a significant innovation. Until now, debug 
tools have been closely coupled with the remote debug kernels with which they 
communicate. Messages that can’t be interpreted generally result in the system 
aborting the debug session. However, as long as all the tools are able to deal with 
the possibility that private messages might be outputed by the processors’ debug 
core, the messages themselves won’t cause the tools to lose synchronization and 
abort the communications. Tools that understand the messages can interpret them 
and act on the results. Thus, the private message allows for uniqueness and added 
functionality within the overall context of an industry-wide standard. Private 
messaging is the Nexus feature called Data Acquisition in Figure 7.10, shown 
earlier. 
Considering that high-performance processors can generate a large quantity of 
debugging information in a short time period, it’s important to determine how 
intrusive some of the dynamic debugging features in Figure 7.10 are. In other 

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



words, does the generation of the debugging information affect the real-time 
operation of the processor? With a single IEEE 1149.1 port on the processor, the 
dynamic data flowing out from the port can’t keep up with the processor, and it’s 
likely that the CPU core would have to periodically stop (stall) to allow the JTAG 
port to catch up. The Nexus developers anticipated this by defining scalability in 
terms of features and the I/O hardware necessary to support those features. Thus, 
by adding additional I/O pins to the processor to add “debugging bandwidth,” 
dynamic debugging features can be accommodated with minimal intrusion. 
(However, “minimal” is a loaded word. What is acceptable for one user might 
cause unpredictable results in another user’s target system.) Figure 7.8 shows this 
auxiliary I/O port as a schematic representation. Figure 7.11 shows the number of 
dedicated I/O pins that are necessary for each compliance class. Notice that as 
many as 16 pins might be necessary for full compliance at Class 4. 

 
Figure 7.11: I/O pins.  

 
Note  
The decision to add extra pins to an embedded processor package is not a simple 
one. Pins are valuable commodities in terms of chip area and package costs.  
Nexus port I/O pin requirements.  

The driving force to create the Nexus 5001 standard came from the automobile 
industry, but the standard is not limited to automotive applications. The original 
working group of five companies were heavily involved in supplying 
semiconductors or development tools to the automotive industry; however, that 
group has now grown to over 25 semiconductor and development-tool support 
companies that have products supporting a wide range of industrial applications of 
embedded processors. At the same time, several prominent semiconductor 
manufacturers are not members of the Nexus 5001 group. These companies might 
choose to remain outside of the standards group because they view their on-chip 
debug circuitry as a “market differentiator” for them, as well as a competitive 
advantage. 
 

Summary 

The designers of the Nexus standard did several key things correctly. From a 
technical point of view, this should make the adoption of the standard fairly 
straightforward. Eventually, members of the Nexus 5001 group will be able to 
access suggested interface tool designs, representative implementations in Verilog 
or VHDL, and a standard set of software APIs. 

Nexus is a good thing for the industry and will enable both silicon developers and 
tool developers to bring better debug systems to the market. This, in turn, will 
help their common customers bring products to market in a timely manner. As 
former Hewlett-Packard CEO John Young once said, “Standards by themselves are 
not particularly interesting, but they allow you to do very interesting things.” 



 

Chapter 8: The ICE — An Integrated 
Solution 

Overview 
Chapter 6 introduced the three key capabilities necessary to hardware/software 
(HW/SW) integration: 

 Microprocessor run control 
 Memory substitution 
 Real-time trace 

So far, you’ve learned how to address these capabilities using separate tools, 
namely a debugging kernel, a ROM emulator, and a logic analyzer. In this chapter, 
you’ll see what happens when you design a tool system that addresses these 
needs in a more integrated fashion. 
Traditionally, an in-circuit emulator (ICE) is a single-test instrument that integrates 
all these functions and more. (Modern on-chip debugging support has changed this 
somewhat, as the later sidebar “Distributed Emulators” explains.) Emulators are 
the premier tools for HW/SW integration. An emulator’s close coupling of run 
control, memory substitution, and trace facilities generates a synergism that 
significantly increases the power of each component. 
Even so, the ICE is widely underused. Only about one-third of the embedded 
system designers, principally firmware developers, use ICE tools. Hopefully, after 
reading this and the next chapter, you’ll appreciate how important the ICE is to 
HW/SW integration. 

 
Note  
In the language of embedded systems, a firmware developer is someone who 
writes the low-level driver code that interfaces the software directly to the 
hardware. Because the ICE has been primarily designated as a HW/SW integration 
tool, firmware designers have been the people most closely associated with it. 
 
 

Bullet-Proof Run Control 
In the most general case, an ICE uses a debug kernel for run-time control but with 
a difference that eliminates dependence on the target’s untested 
memory/processor interface. Instead of relying on the target’s processor and 
memory, the ICE supplies its own processor and memory. A cable or special 
connector (see the “Making the Connection” sidebar on page 170) allows the ICE 
processor to substitute for the target’s processor. 

The target program remains in the target memory, but the debug kernel is hosted 
in the ICE memory. When in normal run mode, the ICE processor reads 
instructions from the target memory; however, when the debug kernel needs 
control, the ICE switches to its own local memory. This arrangement ensures that 
the ICE can maintain run control, even if the target memory is faulty, and also 
protects the debug kernel from being damaged by bugs in the target. 
Figure 8.1 shows a straightforward, generic implementation. The key blocks are 
labeled: 



 
Figure 8.1: General emulator design.  
Schematic representation of the architecture of a run control system for a 
general emulator design.  

 NMI control logic 
 Memory steering logic 
 Shadow ROM and RAM 

When the user or emulator decides to stop processing the user’s code and enter 
the debugger, the NMI signal is asserted, and the NMI control logic responds as 
follows: 

 The NMI signal from the target system is blocked by the NMI control 
logic, so that no further NMI-based interrupts are detected by the processor 
while it’s executing the code in the debug kernel. 

 The memory steering logic switches off the address and data bus 
buffers to the target system and enables the emulator’s local, or “shadow,” 
memory to connect to the processor. In effect, the context switch occurs by 
swapping the memory space of the processor. 

 The processor then takes the interrupt vector that directs it into the 
debugger entry point, now located in the shadow ROM. 

Thus, with this generic emulation system, the only requirement for processor 
debug support is that the processor has an external NMI capability.  

 
Note  
Most processors have a processor input pin called a non-maskable interrupt (NMI). 
This interrupt signal cannot be ignored (masked) by the processor. It differs from a 
RESET signal in that the context of the processor can be saved with an NMI but is 
lost with a RESET. What they have in common is that when either is asserted, the 
processor must respond to it. In embedded systems, the NMI signal is reserved for 
catastrophic events, such as a watchdog timer time out or imminent power failure.  

 

Why Emulators Aren’t Used More 

In many labs, the entire lab has only one emulator. It sits on a mobile cart and has 
a long, thin wooden pole attached to it. On the top of the pole is a blaze orange, 
triangular flag that some engineer purchased in a bike shop for his kid’s bike a few 



years ago. Whenever a gnarly problem arises, someone looks for the flag and 
grabs the emulator. Next, they try to find Joe or Susan — the one or two engineers 
in the place who actually know how to use it — and hope they can find and fix the 
problem. The other engineers have been playing with this bug for a week now, and 
they’ve finally thrown in the towel and want to bring in the big gun. Up to now, 
they’ve resisted the urge to get the ICE because they figured it would take them 
the better part of a morning to get it hooked up and running. They always had one 
other quick-and-dirty test to try that would only take 20 minutes or so. This goes 
on for a few days until the call goes out to send in the cavalry. 

It isn’t always that bad. But I’ve heard that exact scenario enough times and seen 
enough of those flags to know that I’m on to something. What are they really 
saying? 

 Emulators are hard to use. (They certainly can be.) 
 Emulators are too fragile. (There is also some truth to this but not 

universally.) 
 Emulators are too expensive. (Compared to what? What did the lost 

weeks cost in terms of engineering expenses and time-to-market?) 
 Emulators won’t run in my target system. (This is rarely true but is an 

excuse that usually covers up all kinds of system design flaws.) 
 Emulators don’t fit in my process. 
 I’ve been getting by without it, and, now that I really do need it, my 

development process presents a much too closed environment for the ICE to 
be used effectively. (This can certainly be the case.) 

Because of these prevailing perceptions, for many embedded systems developers, 
the ICE becomes the tool of last resort, rather than an integral part of the tool 
suite. Unfortunately, that attitude just perpetuates a self-fulfilling prophecy: The 
ICE isn’t used because it’s too hard to use, which means it will never be under 
stood well enough to make it easy to use. 

 
 

Real-Time Trace 

After the generic emulator has been attached to the target, acquiring real- time 
trace information is almost trivial. The emulator already has connections to the 
necessary address, data, and status busses. To add real-time trace, you just 
piggy-back a logic analyzer onto the same connection. Thus, without too much 
additional complexity, you can use the same target system connection that you 
used for the logic analyzer to concentrate both run control and trace in one target 
connection instead of in two. 

With your new emulation/trace tool, you can control the processor and observe its 
behavior in real time. Wait, there’s more. Remember that logic analyzers have all 
this complex circuitry to detect when to begin capturing a trace. Why not use this 
trigger signal for more than just starting and stopping the trace? Why not also 
connect it to the NMI control logic so that you can cause the processor to stop 
program execution and enter the debug monitor program exactly at the place in 
the code where the event of interest occurs? 
Figure 8.2 shows this schematically. The logic analyzer has been added to show 
how the system functions. The address, data, and status busses are connected to 
the trace memory and to the trigger system. The trigger system determines when 
the trace memory should start capturing a trace and when it should stop capturing 
a trace. It also connects to the NMI control logic block so that you can define 



trigger conditions that function independently of the trace system. These other 
trigger conditions control when the processor stops executing user code and enters 
the debug kernel (also called the monitor program).  

 
Figure 8.2: Emulation control system.  
Block diagram of the core of an emulation control system with real-time 
trace.  

 

Making the Connection 

The emulator’s steering circuitry must be interposed between the pins of the 
processor and the target system. This can be done in one of two ways: 

 Remove the target microprocessor from the target (unplug it from its 
socket) 

 Disable it in a way that all the pins become open-circuited as far as the 
target system is concerned (called tri-stated) 
If the Target Can Be Socketed Easily  

If the footprint of the socket matches the footprint of the microprocessor, it’s sim 
ple to replace the microprocessor with the appropriate socket and then plug the 
replacement system into the socket. Of course, the replacement “emulator” must 
also have some kind of communication port on the board so you can communi cate 
with your emulation debug kernel, but this is easy to implement. Thus, you can 
easily add a simple RS232 port to this board and connect the interrupt output 
signal from the port to the NMI control logic of your emulation circuitry. When a 
new character is received at the serial port, the NMI is asserted, and you’re into 
the debug kernel. 

If the Target Can’t Be Socketed Easily  



Some processors have a dedicated input pin that, when asserted, turns the chip 
completely off. You can plug the replacement chip (with the emulator signals) into 
the target system as an overlay. You can do this several wayssome ways are easy, 
some are not so easy, some are costly, and some are fragile. For example, 
suppose the target processor is a surface-mounted part with 300 extremely deli 
cate pins mounted around its periphery. This is typical of what you might expect to 
find today. If the target system has room, the hardware designers might be able to 
place some high-density sockets on the target PC board so that each pin of the 
socket intercepts one of the I/O pins of the target processor. Two or three high- 
density sockets easily can cover the 300 pins of the target processor. If you get 
the mechanical design just right, you should be able to plug the connectors on the 
emulator board into the matching sockets of the target system. 

If the target processor has a “disable everything” pin, you can turn it off. If it 
doesn’t, you must remove the processor from the target and depend on the emula 
tion processor, mounted on the generic emulation board, to become the target 
processor. You probably won’t have the luxury of sockets on the target system, so 
go to plan B. 

In this situation, you need to find a manufacturer of specialized connection devices 
(such as Ironwood Electronics Corporation at www.ironwoodelectron ics.com or 
Emulation Technology, Inc., at www.emulation.com) so you can solder an interface 
connector to the 300-pin footprint on your target printed circuit board and provide 
a mating socket into which ou can plug your emulator. This is shown schematically 
in Figure 8.3, in which a mechanical adapter can be soldered to the target system 
PC board to replace the embedded microprocessor that you are trying to 
emulate/control.  

With this socket adapter mounted to the PC board, you can plug in the target pro 
cessor (by mounting it to a small PC board with an SMT footprint on the top side 
and mating PGA pins on the bottom), or you can plug in your emulator. Adapters 
such as this cost anywhere from $1 per pin to $5 per pin, so one very fragile 
adapter might set you back $1,000. Also, because these sockets add some addi 
tional length to the electrical interconnections of the target system, some distor 
tion of the waveforms might occur at high bus rates. How this impacts your target 
system is generally impossible to predict in advance. 

Another advantage of this technique is that it’s generally usable with many minia 
ture and crowded target systems. That’s not to say that it’s universal because 
some perverse mechanical designs are out there that absolutely defy physical 
access, but, at least in this situation, it’s not taking up any more space at the 
board-level than the actual footprint of the microprocessor itself. 



 
Figure 8.3: Mechanical adapter.  
An adapter for converting a surface-mounted package into a pin-grid 
array style socket.  
 
 
 

Hardware Breakpoints 

Now you can let the trigger system of the logic analyzer take over some of the 
functionality that was previously supplied by the debug kernel. You can set a 
breakpoint, or a complex break condition, in the trigger system and let it signal the 
breakpoint in real time as the program executes at full speed.  

 
Note  
Many discrete logic analyzers have the capability to output a trigger pulse. Often, 
you can use this pulse as an input to your BDM or JTAG interface to force the 
debug core to stop execution. However, a large number of instructions might get 
executed after the break condition occurs (called skew), so, if you really want to 
stop on a dime, this method forces some compromises. 

This looks pretty good. Using the combination of the run control functionality of a 
debugger with the capability to set a breakpoint lets the user halt execution of the 
code without slowing the processor down the way a real debugger would. Also, you 
can still set your breakpoint even if the code you are running is located in ROM. As 
a bonus, the trace capability of the logic analyzer allows you to see what’s 
happening, or what’s happened, in real time. If you have an ISR that comes on 
0.000000001% of the time, the logic analyzer can capture it when it happens and 
show you what it’s doing. 

 

So what’s a good trigger signal? 

How you set up the trigger signal depends upon what you’re looking for. Let’s say 
that you’re interested in debugging a very short and infrequent ISR. In this exam 
ple system, the interrupt causes the processor to read automatically from memory 



location 0x00000078 and use the data valued stored there as the memory loca 
tion of the first instruction of the ISR. This is normally referred to as an exception 
vector. The vector in this case is a term used for an indirect memory access. In 
this example, we could set the trigger to be asserted when the processor does a 
read from memory location 0x00000078. Thus, our trigger condition in this 
situation is a specific address and a processor-read cycle. In this example, we 
don’t care what the data value happens to be, so we’ll only assert the trigger on 
the address and status bits. Also, we want the system to begin recording states 
after the trig ger occurs and stop recording before we overwrite the states we 
recorded begin ning from the trigger point. Thus, no matter how infrequently the 
ISR occurs or how short it is, the logic analyzer will continue recording and 
overwriting until the trigger condition is met, and the logic analyzer captures a 
trace buffer full of states.  

Let’s consider a different situation. Suppose that the exception vector is caused by 
a program fault, such as an illegal op-code, but when the exception processing 
occurs, it also seems to be failing. In this case, you would want to set the trigger 
point so that the trigger point occurs in the middle of the trace buffer. In this way, 
you can see all of the states of the system leading up to the failure and then see 
what the processor executed once the exception vector is taken. Most logic ana 
lyzers allow you to set the trigger event to occur anywhere in the buffer memory.  

Thus, you can record all the states that occurred leading up to the trigger event, 
all of the states following the trigger event, and everything in between.  

Our previous example shows that we can easily specify an address as a trigger 
condition. As a C or C++ programmer, it’s usually not convenient to have to find 
out where the addresses of variables are located. The compiler takes care of those 
details so we don’t have to. Therefore, just as with a source-level debugger, we 
should be able to use the same logic analyzer soft ware that provides us with sym 
bolic trace information to allow us to create trigger conditions without having to 
know the low-level details. Thus, if I write a simple function foo():  

int foo( int, bar) 

{ 

 int embedded =  15; 

 bar++; 

 return embedded+bar ; 

 } 

Let’s assume that for some very strange reason the function that calls foo() some 
times gets an erroneous return value back. When you single-stepped your pro 
gram on the host, it worked just fine. You suspect that an ISR is overwriting your 
local variable on the stack. You could look up the symbol table and link map and 
figure out where the function is located, or, if your LA is suitably appointed, you 
could tell it to trigger on foo() and have the software figure out where foo() hap 
pens to be in memory. 
 
 
 
 



Overlay Memory 
Even though triggered breakpoints work on code located in ROM, you still need 
some kind of substitution memory, if for no other reason than to speed up the 
edit–compile–link–load–debug cycle. Chapter 6 covered the ROM emulator, a 
device that plugs into the ROM sockets and replaces the ROM, while providing an 
easy method of downloading code through an Ethernet or serial port. You could do 
that here as well. This is called substitution memory because it’s used to substitute 
one form of memory, RAM, for another form, ROM. The substitution memory lives 
in the same space as the ROM that would normally be plugged into the socket.  
Today, most emulators don’t use substitution memory, although they certainly 
could. Because the emulator already has steering logic to determine which 
memory space from which it grabs the next instruction (the target memory or the 
shadow memory as shown previously in Figure 8.2), it wouldn’t be much more 
complicated to design an emulation memory system that could overlay the target 
memory system. Thus, for certain memory operations, you could go to the target 
system to read or write memory. For other operations, such as fetching 
instructions, you could activate this other memory that is connected to the 
emulator and is presumably easy to download to with new instructions or data. 
This other type of memory is called overlay memory because it can cover broad 
areas of the processor’s address space, rather than look at the target system 
through the ROM socket. 

Overlay memory is extremely useful. In fact, it’s much more useful than 
substitution memory. Overlay memory uses the same trick that is used with 
shadow memory. On a bus cycle-by-bus cycle basis, fast buffers and steering logic 
are used to decide to which block of memory the processor actually connects. The 
block of memory can exist on the target, in shadow memory, or in overlay memory. 
In a way, the memory steering logic functions much like an on-chip Memory 
Management Unit (MMU). The circuitry maps the physical address being output by 
the processor to various external memories. 
Figure 8.4 shows how you can set up an overlay memory system. Suppose your 
processor has a 32-bit address bus and the smallest block of overlay memory you 
can map in or out is 16KB. Also, assume that you have a total of 1MB of emulation, 
or overlay memory. If you divide this memory into 16KB chunks, you have a total 
of 64 16KB blocks that can be used to overlay or to replace any one of the 256KB 
blocks in the target memory space. Assuming you have some magical way of 
programming the memory- mapper RAM, you can then program each 18-bit data 
value in the mapper RAM to translate the 18-bit input address from the target 
microprocessor to another value on the output. One address goes in; another goes 
out as data. If you program every memory location in the mapper RAM with the 
corresponding address value, the mapper has no apparent effect, other than using 
up some valuable time that might otherwise be available to the target system’s 
memory.  



 
Figure 8.4: Emulation control system.  
Schematic diagram of a memory-mapper circuit, in which 18 address bits 
map the 18 high-order address bits from the microprocessor to the 
addresses of physical memory, either target-system memory or emulation 
memory. The remaining six bits are used to assign unique personalities to 
each of the 16KB blocks.  
Because you only have 1MB of emulation memory, you can’t map more than you 
have. The emulation control system limits you to how many unique mapping 
situations (called mapping terms) you can create. Obviously, you can assign 
several 16KB blocks to consecutive addresses to form larger blocks of emulation 
memory. 

 
Note  
It is certainly possible to design the memory-mapping system in other ways. The 
emulator with which I’m most familiar actually used a different scheme with 
custom integrated circuits to build the mapper system. Rather than using a 
memory block as a logical element, as shown earlier in Figure 8.4, you can design 
the system around address comparator circuits. These circuits do a hardware 
comparison between the address coming from the target microprocessor and the 
address range assigned, for example, to a particular 16KB block. The advantage of 
this method is that it doesn’t require a large, fast memory array, as is required in 
Figure 8.4. In fact, a comparator-based design is very much like the trigger circuit 
that you use in the logic analyzer to compare the address, data, and status states 
to your trigger condition. The disadvantage is that it’s harder to explain in a simple 
picture how this kind of a memory-mapper system works, so this discussion uses 
the RAM-based architecture.  

The mapper memory is actually wider than it needs to be to perform the memory-
mapping function. The extra memory bits assign “personalities” to each of the 
16KB memory blocks. Thus, you can map memory as emulation RAM or target 
RAM. This means that the memory system steering logic sends the address, data, 
and status information to the appropriate memory space, either in the target 
system or in emulation memory. The other bits allow you to detect error conditions 
in the code flow. If, for example, you assign an emulation ROM attribute to a 16KB 
memory block, you can cause the emulation system to stop execution, trigger a 
trace, or both, if a write signal is asserted to a memory address in that block. 
However, because each block of emulated ROM really is RAM memory located 
within the emulator, each block can be easily loaded with new software, much like 
the ROM emulator. 

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



Figure 8.4 points out an important difference between overlay memory and 
substitution memory. Because overlay memory is mappable and can be assigned a 
personality, it can be given precedence over memory in the target system by 
assigning the selected block of address space to emulation memory instead of the 
target memory. Substitution memory can be used only to replace a block of 
memory in the target system that is accessed through the ROM socket. 
The two other personality bits of interest in Figure 8.4 allow you to protect a 
region of memory from being written to, even though it’s assigned to be target or 
emulation RAM. This feature allows you to track any attempts to overwrite a 
variable defined as const, as usually happens when a pointer goes haywire. The 
coverage bit is discussed in the next chapter with coverage testing. For now, the 
coverage bit enables you to gather statistics about what distinct memory locations 
in that 16KB block have been accessed by the user’s program code. 

aOverlay memory completes the design of the generic emulator. In contrast to the 
individual tools described in earlier chapters, the emulator offers: 

 A single connection to the target board 
 Reliable run control even in unreliable systems 
 Cross-triggering of the run control system, allowing trace and 

breakpoint facilities to work together 
 Real-time monitoring of illegal memory accesses 

Despite these advantages, the emulator is only slightly more complex than a logic 
analyzer. 

 

Timing Constraints 
Unfortunately, emulators can’t be used with every system. The two main obstacles 
are timing constraints and physical constraints. The physical constraints are similar 
to those limiting the use of logic analyzers and were discussed in the “Making the 
Connection” sidebar. The timing constraints, however, are a direct consequence of 
the emulator’s steering logic. 

The fact that a RAM circuit is needed to map the memory regions has a serious 
implication for the target system’s capability to work properly with the emulator. If 
the target system is designed with very little timing margin between the processor 
and the target memory, or other memory-mapped I/O devices in the target, you 
could have a problem. 

 
Note  
Hardware designers aren’t wrong to design very close to the edge with respect to 
timing constraints. For example, according to the data book, a particular memory 
chip might have a minimum access time of 45ns, a typical access time of 55ns, 
and a maximum access time of 70ns. This data represents a statistical sampling by 
the manufacturer that, over the appropriate temperature range for that version of 
the device, most of the devices would be able to work at 55ns, and almost all of 
them (six sigma) would work at 70ns. This also implies that almost none of them 
would work at access times less than 45ns. 

However, it would be possible to get a lot of parts and painstakingly sort through 
them until you find some that actually worked reliably below 45ns. Alternatively, if 
you could guarantee that the part never got warmer than room temperature, then 
a processor with an access time of 41ns might actually work with a memory chip 
that had a maximum access time of 70ns. Thus, you could save some money by 



buying a part that is less costly but slower than the part that a conservatively 
designed system might demand. 

Recall that the hardware designer is trying to do the right thing and not overdesign 
the hardware. Thus, if the processor-to-memory-system-interface timing 
specification calls for a minimum of 55ns and you use a memory chip with a typical 
specification of 50ns, you should be safe. The design might not pass a stringent 
hardware design review, but it will most likely work. However, your emulator 
might need to steal 10ns from the 50ns because the memory-mapper RAM needs 
10ns to do the address translation. After all, it’s RAM memory as well. Suddenly, 
the 55ns access time becomes 45ns, and the system stops working when the 
emulator is substituted for the actual processor. 
Several possible solutions exist. If the hardware designer added the capability to 
the design or the feature was already built into the microcontroller, you could add 
one or more wait states to the memory access time. Another possibility is to slow 
down the processor clock so that the access times increase. This might work, but it 
probably won’t. 

 
Note  
A wait state is a method of stretching the memory access time by one or more 
clock cycles. For example, the Motorola MF5206e ColdFire processors that are used 
in my Embedded Systems class have an on- chip wait state generator that can add 
from one to 16 wait states onto a memory access. This is convenient because the 
experiment boards and cables tend to mess things up a bit, and three wait states 
are required for reliable access to the experiment boards. 

aLast, you might be able to use faster parts in your development boards and go 
with the slower ones in the released product. Of course, the downside is that 
you’ve started on a slippery slope. Your emulator now has intruded upon your 
target system by forcing it to run slower (a wait state takes time). Your target 
system might not run properly because the time to execute critical code segments 
has increased beyond some critical threshold. The emulator designers are aware of 
this, and they can sometimes choose processors that have been selected for speed 
to compensate for the access time used up by the mapping memory. However, 
sometimes it just won’t work. 

 

Distributed Emulators 

Earlier in this chapter, I mentioned the concept of constructing an emulator from 
these separate pieces: 

 Run control 
 Real-time instruction and data trace 
 Memory substitution 

The generic emulator used a debug kernel instead of a debug core. You can still 
build the ICE and integrate the three functions even if you have a debug core. In 
this case, much of the run control circuitry is simplified, but the three elements 
pretty much function in the same relative way. 

A JTAG or BDM debugger, a ROM emulator, and a logic analyzer can be brought 
together and used to provide similar functionality to an ICE. When properly 



interconnected, these generic tools can do a lot of what a full-function ICE does, 
but they don’t do everything. They have the following limitations: 

 Cross-triggering is difficult to do with distributed emulation because the 
logic analyzer must be able to output a signal that the trigger event has 
occurred, the JTAG or BDM debugger must be able to accept that 
asynchronous signal, and the code execution must halt. Some JTAG devices 
can accept these signals, but some can’t. 

 ROM emulators provide substitution memory, but that memory is 
limited to what can be seen through the ROM socket. You can’t assign 
personality bits to the ROM emulator, so you might not be able to detect a 
write-to-ROM error unless you program the logic analyzer to look for it. 

 Distributed systems often take time for a “break” signal to flow from 
the logic analyzer to the debug core. This results in the processor continuing 
to run on past the breakpoint, which is called skew. It might or might not be a 
problem in your application.  

All ICEs suffer from the same limitations that logic analyzers have with respect to 
modern microprocessors and microcontrollers. They need some kind of window 
into the processor busses, or they lose a significant amount of their effectiveness. 
The behavior of a processor with on-chip instruction and data caches is just as 
invisible to an ICE as it is to a logic analyzer, so most emulators are designed to 
take advantage of all the on-chip trace and breakpoint circuitry provided by the 
chip manufacturer. Fortunately for the user, the postprocessing of the data is 
taken care of by the emulator manufacturer, so the trace that you see has already 
been cooked to fill in the information that has to be inferred, rather than directly 
measured. 

Thus, if the processor has several on-chip breakpoint registers, you might be able 
to set up a simple combination of address, data, and status in these resisters, so 
the trace receives a trigger signal through an I/O pin on the processor or the 
processor stops code execution. If you really want to set up a complex breakpoint, 
however, you will probably have to turn off the on-chip caches and take the 
performance hit that goes along with it. 

(In 1995, Larry Ritter and I[1] wrote an article discussing the concept of 
“distributed emulation.” Our premise was that the complexity of the ICE is, in part, 
a result of the fact that it integrates the functions of run control, substitution 
memory, and real-time trace to such an extent that the result ant tool becomes 
expensive, fragile, complex, and processor-specific. As in Chapter 6, we argued 
that the real need is to be able to perform these three tasks, and the ICE happens 
to be a tightly inte grated method of doing just that. Suppose, we argue, you 
break the ICE apart into its component pieces and then use them independently. 
By doing that, you lose the tight integration but gain because you can use more 
generic and cost-effective tools in place of the ICE. This argument cer tainly has 
merit. In fact, devious to fault, I made that argument in the previous chapter. 
However, as with most engineering endeavors, we have trade-offs that must be 
evaluated. Hopefully, this chapter will explain some of these trade-offs.) 

 

Usage Issues 

Despite the fact that the emulator implements much of the same functionality as 
the more commonly used combination of a debug kernel, ROM emulator, and logic 



analyzer, the ICE still has a reputation for being hard to use. It isn’t difficult to 
teach someone to use an emulator as they would use any kind of debugger. The 
difficult part is the initial exercise of setting up the emulator to run in a specific 
target system. 

In part, emulators are difficult to set up because they are designed to be adaptable 
to a wide range of use models and target situations. If all the emulator ever had to 
do was plug into a compact PCI card cage or VXI card cage, its design would be 
much simpler than it is. However, because we didn’t know how it would be used, it 
had to be designed with a lot of flexibility. The flexibility meant the user would 
have to make many functional decisions to make the emulator run in the target. 
Overall, most engineers are reluctant to use ICEs because of the difficulty in 
setting them up to work properly in a particular target system. 

Another difficulty is the need to know the memory map of the system to correctly 
overlay emulation memory onto your target system. It’s a relatively easy thing to 
do, but, surprisingly, it’s often ignored. 

Setting the Trigger 

The last setup barrier to overcome is setting up and using the trigger and trace 
capability of the emulator. Much of this discussion applies equally to a logic 
analyzer. 

Perhaps the most exasperating experience that you can have is to try to set up the 
trace tool to capture an extremely infrequent event and then learn that you killed 
the day because the trigger condition wasn’t set right. It’s happened to me more 
times than I want to admit. Sometimes, I try to get around the problem by setting 
a general trigger condition — such as trigger on a read operation from a certain 
address — and hope that the event I was looking for occurred within that window. 
This situation usually results in the logic analyzer triggering on the wrong event 
and then filling the trace buffer so that the real event is never observed.  

Some emulators or logic analyzers allow you to use one trigger condition to turn 
on the trace and another to turn it off. With this feature, you can set up a trace so 
that only a few states are captured each time the trigger event occurs. Then you 
have to search through 50,000 events to find the one for which you’re looking. 
Thus, you have either to set up the trace specification as a complex sequence that 
has a high probability of not capturing the event of interest or to set up a simple 
tracespec and manually search the trace buffer for the event of interest. 

 
Tip  
One technique that has worked for me is to write a simple test program and load it 
into the target system as a test program for the trace system. The test program 
can use different address locations and data values, but the logical flow should 
approximate the real situation that you want to track and set the trigger on. It’s 
extra work to write and debug your test program, but it lowers the risk that you’ll 
miss a once-a-week failure with an erroneous tracespec. 

 

Additional Reading 

This list is representative of recent articles on the state of in-circuit emulation. 
With great modesty, I’ve decided not to include my own articles. I’ll simply liberally 
sprinkle the ideas throughout this chapter, and you’ll never know the difference. 



 Ganssle, Jack G. “Debugging Modern Embedded Systems.” Embedded 
Systems Programming, March, 2000 87. 

 Ganssle, Jack G. “ICE Technology Unglugged.” Embedded Systems 
Programming, October, 1999 103. 

 Ganssle, Jack G. “In-Circuit Emulators.” Embedded Systems 
Programming, October, 1998 75. 

 Ganssle, Jack G. “Trends in Debugging.” Embedded Systems 
Programming, September, 1999,34. 

 Mann, Daniel. “The State of Embedded Software Debug.” Microsoft 
Embedded Review, 1998 8. 

 Laengrich, Norbert. “New Concepts Required for Debugging Embedded 
Software.” Computer Design, Septermber, 1997 55. 

 

Summary 

The emulator is a powerful tool for HW/SW emulation, but it imposes enough 
demands on the target physical layout, the memory timing margin, and the user’s 
skills that some advance planning is warranted. The worst scenario is to be in a 
time crunch and have a bug that you can’t figure out, only to discover that it’s 
another one-or-two week project just to modify your target system so you can use 
an emulator to find the problem. 

Even if you don’t plan to make the emulator a primary integration tool, you should 
design for the possibility. That way, when you encounter that project-killing bug, 
you’ll at least have the option of “bringing in the big guns.” These are my 
suggestions: 
Design for emulation. In other words, design with your development tools in 
mind. If you anticipate a need for an emulator, even if you don’t plan to use it as a 
primary design tool, make sure it is mechanically and electrically compatible with 
your target. This might be as simple as putting a socket adapter on your 
development boards or as involved as locating the processor in a particular spot 
and orientation on the target. 
Design with worst-case timing margins. Designing with typical parameters 
might be more economical, but you might get erratic results when the emulator 
steals some of your valuable cycle time. 
Take the time to understand your target hardware. Talk to the hardware 
designers. They can help you understand what parameters need to be set in the 
emulator for it to work reliably. For example, when the emulator is running in its 
internal debug monitor (shadow memory), do you want the bus cycles to be visible 
to the target system? Some target systems need to see bus activity, or they will 
generate an NMI or RESET signal. Others use dynamic RAM (DRAM) memory and 
need to see these signals to retain their memory contents. 
Understand the real-time constraints. Do you have watchdog timers or other 
real-time events that must be serviced for the system to run? The emulator might 
work just fine, but it can crash the target if it isn’t used in the proper mode. 
Research the software compatibility issues. Can the emulator download your 
file format? Is it RTOS aware? 
Learn to use it before you need it. Don’t wait until you are in a time crunch to 
become familiar with the tool. 

Work Cited 
1. Berger, Arnold and Larry Ritter. “Distributed Emulation: A Design Team 

Strategy for High-Performance Tools and MPUs.” Electronic News, 22 May 
1995, 30. 



 

Chapter 9: Testing 
Embedded systems software testing shares much in common with application 
software testing. Thus, much of this chapter is a summary of basic testing 
concepts and terminology. However, some important differences exist between 
application testing and embedded systems testing. Embedded developers often 
have access to hardware-based test tools that are generally not used in application 
development. Also, embedded systems often have unique characteristics that 
should be reflected in the test plan. These differences tend to give embedded 
systems testing its own distinctive flavor. This chapter covers the basics of testing 
and test case development and points out details unique to embedded systems 
work along the way. 

Why Test? 

Before you begin designing tests, it’s important to have a clear understanding of 
why you are testing. This understanding influences which tests you stress and 
(more importantly) how early you begin testing. In general, you test for four 
reasons: 

 To find bugs in software (testing is the only way to do this) 
 To reduce risk to both users and the company 
 To reduce development and maintenance costs 
 To improve performance  

To Find the Bugs 

One of the earliest important results from theoretical computer science is a proof 
(known as the Halting Theorem) that it’s impossible to prove that an arbitrary 
program is correct. Given the right test, however, you can prove that a program is 
incorrect (that is, it has a bug). It’s important to remember that testing isn’t about 
proving the “correctness” of a program but about finding bugs. Experienced 
programmers understand that every program has bugs. The only way to know how 
many bugs are left in a program is to test it with a carefully designed and 
measured test plan. 

To Reduce Risk 

Testing minimizes risk to yourself, your company, and your customers. The 
objectives in testing are to demonstrate to yourself (and regulatory agencies, if 
appropriate) that the system and software works correctly and as designed. You 
want to be assured that the product is as safe as it can be. In short, you want to 
discover every conceivable fault or weakness in the system and software before 
it’s deployed in the field. 

 

Developing Mission-Critical Software Systems 

Incidents such as the Therac-25 radiation machine malfunction — in which several 
patients died due to a failure in the software monitoring the patients — should 
serve as a sobering reminder that the lives of real people might depend on the 
quality of the code that you write. I’m not an expert on writing safety-critical code, 



but I’ve identified some interesting articles on mission-critical software 
development: 

 Brown, Doug. “Solving the Software Safety Paradox.” Embedded 
Systems Programming, December 1998, 44. 

 Cole, Bernard. “Reliability Becomes an All-Consuming Goal.” Electronic 
Engineering Times, 13 December 1999, 90. 

 Douglass, Bruce Powel. “Safety-Critical Embedded Systems.” 
Embedded Systems Programming, October 1999, 76. 

 Knutson, Charles and Sam Carmichael. “Safety First: Avoiding Software 
Mishaps.” Embedded Systems Programming, November 2000, 28. 

 Murphy, Niall. “Safe Systems Through Better User Interfaces.” 
Embedded Systems Programming, August 1998, 32. 

 Tindell, Ken. “Real-Time Systems Raise Reliability Issues.” Electronic 
Engineering Times, 17 April 2000, 86.  

 

 

To Reduce Costs 
The classic argument for testing comes from Quality Wars by Jeremy Main. 

In 1990, HP sampled the cost of errors in software development during the year. 
The answer, $400 million, shocked HP into a completely new effort to eliminate 
mistakes in writing software. The $400M waste, half of it spent in the labs on 
rework and half in the field to fix the mistakes that escaped from the labs, 
amounted to one-third of the company’s total R&D budget…and could have 
increased earnings by almost 67%.[5] 
The earlier a bug is found, the less expensive it is to fix. The cost of finding errors 
and bugs in a released product is significantly higher than during unit testing, for 
example (see Figure 9.1). 

 
Figure 9.1: The cost to fix a problem.  
Simplified graph showing the cost to fix a problem as a function of the 
time in the product life cycle when the defect is found. The costs 
associated with finding and fixing the Y2K problem in embedded systems 
is a close approximation to an infinite cost model.  

To Improve Performance 

Testing maximizes the performance of the system. Finding and eliminating dead 
code and inefficient code can help ensure that the software uses the full potential 
of the hardware and thus avoids the dreaded “hardware re-spin.” 



When to Test? 
It should be clear from Figure 9.1 that testing should begin as soon as feasible. 
Usually, the earliest tests are module or unit tests conducted by the original 
developer. Unfortunately, few developers know enough about testing to build a 
thorough set of test cases. Because carefully developed test cases are usually not 
employed until integration testing, many bugs that could be found during unit 
testing are not discovered until integration testing. For example, a major network 
equipment manufacturer in Silicon Valley did a study to figure out the key sources 
of its software integration problems. The manufacturer discovered that 70 percent 
of the bugs found during the integration phase of the project were generated by 
code that had never been exercised before that phase of the project.  

Unit Testing 

Individual developers test at the module level by writing stub code to substitute for 
the rest of the system hardware and software. At this point in the development 
cycle, the tests focus on the logical performance of the code. Typically, developers 
test with some average values, some high or low values, and some out-of-range 
values (to exercise the code’s exception processing functionality). Unfortunately, 
these “black-box” derived test cases are seldom adequate to exercise more than a 
fraction of the total code in the module. 

Regression Testing 
It isn’t enough to pass a test once. Every time the program is modified, it should 
be retested to assure that the changes didn’t unintentionally “break” some 
unrelated behavior. Called regression testing, these tests are usually automated 
through a test script. For example, if you design a set of 100 input/output (I/O) 
tests, the regression test script would automatically execute the 100 tests and 
compare the output against a “gold standard” output suite. Every time a change is 
made to any part of the code, the full regression suite runs on the modified code 
base to insure that something else wasn’t broken in the process. 

 
From the Trenches  
I try to convince my students to apply regression testing to their course projects; 
however, because they are students, they never listen to me. I’ve had more than a 
few projects turned in that didn’t work because the student made a minor change 
at 4:00AM on the day it was due, and the project suddenly unraveled. But, hey, 
what do I know? 
 
 

When to Test? 
It should be clear from Figure 9.1 that testing should begin as soon as feasible. 
Usually, the earliest tests are module or unit tests conducted by the original 
developer. Unfortunately, few developers know enough about testing to build a 
thorough set of test cases. Because carefully developed test cases are usually not 
employed until integration testing, many bugs that could be found during unit 
testing are not discovered until integration testing. For example, a major network 
equipment manufacturer in Silicon Valley did a study to figure out the key sources 
of its software integration problems. The manufacturer discovered that 70 percent 
of the bugs found during the integration phase of the project were generated by 
code that had never been exercised before that phase of the project.  



Unit Testing 

Individual developers test at the module level by writing stub code to substitute for 
the rest of the system hardware and software. At this point in the development 
cycle, the tests focus on the logical performance of the code. Typically, developers 
test with some average values, some high or low values, and some out-of-range 
values (to exercise the code’s exception processing functionality). Unfortunately, 
these “black-box” derived test cases are seldom adequate to exercise more than a 
fraction of the total code in the module. 

Regression Testing 
It isn’t enough to pass a test once. Every time the program is modified, it should 
be retested to assure that the changes didn’t unintentionally “break” some 
unrelated behavior. Called regression testing, these tests are usually automated 
through a test script. For example, if you design a set of 100 input/output (I/O) 
tests, the regression test script would automatically execute the 100 tests and 
compare the output against a “gold standard” output suite. Every time a change is 
made to any part of the code, the full regression suite runs on the modified code 
base to insure that something else wasn’t broken in the process. 

 
From the Trenches  
I try to convince my students to apply regression testing to their course projects; 
however, because they are students, they never listen to me. I’ve had more than a 
few projects turned in that didn’t work because the student made a minor change 
at 4:00AM on the day it was due, and the project suddenly unraveled. But, hey, 
what do I know? 
 
 

Which Tests? 
Because no practical set of tests can prove a program correct, the key issue 
becomes what subset of tests has the highest probability of detecting the most 
errors, as noted in The Art of Software Testing by Glen Ford Myers[6]. The 
problem of selecting appropriate test cases is known as test case design. 
Although dozens of strategies exist for generating test cases, they tend to fall into 
two fundamentally different approaches: functional testing and coverage testing. 
Functional testing (also known as black-box testing) selects tests that assess how 
well the implementation meets the requirements specification. Coverage testing 
(also known as white-box testing) selects cases that cause certain portions of the 
code to be executed. (These two strategies are discussed in more detail later.) 
Both kinds of testing are necessary to test rigorously your embedded design. Of 
the two, coverage testing implies that your code is stable, so it is reserved for 
testing a completed or nearly completed product. Functional tests, on the other 
hand, can be written in parallel with the requirements documents. In fact, by 
starting with the functional tests, you can minimize any duplication of efforts and 
rewriting of tests. Thus, in my opinion, functional tests come first. Everyone agrees 
that functional tests can be written first, but Ross[7], for example, clearly believes 
they are most useful during system integration … not unit testing. 

The following is a simple process algorithm for integrating your functional and 
coverage testing strategies: 

1. Identify which of the functions have NOT been fully covered by the 
functional tests. 

2. Identify which sections of each function have not been executed. 
3. Identify which additional coverage tests are required. 
4. Run new additional tests. 



5. Repeat. 

 

Infamous Software Bugs 

The first known computer bug came about in 1946 when a primitive computer 
used by the Navy to calculate the trajectories of artillery shells shut down when a 
moth got stuck in one of its computing elements, a mechanical relay. Hence, the 
name bug for a computer error.[1] 

In 1962, the Mariner 1 mission to Venus failed because the rocket went off course 
after launch and had to be destroyed at a project cost of $80 million.[2] The 
problem was traced to a typographical error in the FORTRAN guidance code. The 
FORTRAN statement written by the programmer was 

DO 10 I=1.5 

This was interpreted as an assignment statement, DO10I = 1.5. 

The statement should have been 

DO 10 I=1,5. 

This statement is a DO LOOP. Do line number 10 for the values of I from one to 
five. 

Perhaps the most sobering embedded systems software defect was the deadly 
Therac-25 disaster in 1987. Four cancer patients receiving radiation therapy died 
from radiation overdoses. The problem was traced to a failure in the software 
responsible for monitoring the patients’ safety.[4] 

When to Stop? 
The algorithm from the previous section has a lot in common with the instructions 
on the back of every shampoo bottle. Taken literally, you would be testing (and 
shampooing) forever. Obviously, you’ll need to have some predetermined criteria 
for when to stop testing and to release the product. 

If you are designing your system for mission-critical applications, such as the 
navigational software in a commercial jetliner, the degree to which you must test 
your code is painstakingly spelled out in documents, such as the FAA’s DO-178B 
specification. Unless you can certify and demonstrate that your code has met the 
requirements set forth in this document, you cannot deploy your product. For most 
others, the criteria are less fixed. 

The most commonly used stop criteria (in order of reliability) are: 
 When the boss says 
 When a new iteration of the test cycle finds fewer than X new bugs 
 When a certain coverage threshold has been met without uncovering 

any new bugs 

Regardless of how thoroughly you test your program, you can never be certain you 
have found all the bugs. This brings up another interesting question: How many 
bugs can you tolerate? Suppose that during extreme software stress testing you 
find that the system locks up about every 20 hours of testing. You examine the 

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



code but are unable to find the root cause of the error. Should you ship the 
product? 

How much testing is “good enough”? I can’t tell you. It would be nice to have 
some time-tested rule: “if method Z estimates there are fewer than X bugs in Y 
lines of code, then your program is safe to release.” Perhaps some day such 
standards will exist. The programming industry is still relatively young and hasn’t 
yet reached the level of sophistication, for example, of the building industry. Many 
thick volumes of building handbooks and codes have evolved over the years that 
provide the architect, civil engineer, and structural engineer with all the 
information they need to build a safe building on schedule and within budget. 
Occasionally, buildings still collapse, but that’s pretty rare. Until programming 
produces a comparable set of standards, it’s a judgment call. 

Choosing Test Cases 
In the ideal case, you want to test every possible behavior in your program. This 
implies testing every possible combination of inputs or every possible decision path 
at least once. This is a noble, but utterly impractical, goal. For example, in The Art 
of Software Testing, Glen Ford Myers[6] describes a small program with only five 
decisions that has 1014 unique execution paths. He points out that if you could 
write, execute, and verify one test case every five minutes, it would take one 
billion years to test exhaustively this program. Obviously, the ideal situation is 
beyond reach, so you must use approximations to this ideal. As you’ll see, a 
combination of functional testing and coverage testing provides a reasonable 
second-best alternative. The basic approach is to select the tests (some functional, 
some coverage) that have the highest probability of exposing an error. 

Functional Tests 

Functional testing is often called black-box testing because the test cases for 
functional tests are devised without reference to the actual code — that is, without 
looking “inside the box.” An embedded system has inputs and outputs and 
implements some algorithm between them. Black-box tests are based on what is 
known about which inputs should be acceptable and how they should relate to the 
outputs. Black-box tests know nothing about how the algorithm in between is 
implemented. Example black-box tests include: 

 Stress tests: Tests that intentionally overload input channels, memory 
buffers, disk controllers, memory management systems, and so on. 

 Boundary value tests: Inputs that represent “boundaries” within a 
particular range (for example, largest and smallest integers together with –1, 
0, +1, for an integer input) and input values that should cause the output to 
transition across a similar boundary in the output range. 

 Exception tests: Tests that should trigger a failure mode or exception 
mode. 

 Error guessing: Tests based on prior experience with testing software 
or from testing similar programs. 

 Random tests: Generally, the least productive form of testing but still 
widely used to evaluate the robustness of user-interface code. 

 Performance tests: Because performance expectations are part of the 
product requirement, performance analysis falls within the sphere of functional 
testing.  

Because black-box tests depend only on the program requirements and its I/O 
behavior, they can be developed as soon as the requirements are complete. This 
allows black-box test cases to be developed in parallel with the rest of the system 
design. 



Like all testing, functional tests should be designed to be destructive, that is, to 
prove the program doesn’t work. This means overloading input channels, beating 
on the keyboard in random ways, purposely doing all the things that you, as a 
programmer, know will hurt your baby. As an R&D product manager, this was one 
of my primary test methodologies. If 40 hours of abuse testing could be logged 
with no serious or critical defects logged against the product, the product could be 
released. If a significant defect was found, the clock started over again after the 
defect was fixed. 

Coverage Tests 

The weakness of functional testing is that it rarely exercises all the code. Coverage 
tests attempt to avoid this weakness by (ideally) ensuring that each code 
statement, decision point, or decision path is exercised at least once. (Coverage 
testing also can show how much of your data space has been accessed.) Also 
known as white-box tests or glass-box tests, coverage tests are devised with full 
knowledge of how the software is implemented, that is, with permission to “look 
inside the box.” White-box tests are designed with the source code handy. They 
exploit the programmer’s knowledge of the program’s APIs, internal control 
structures, and exception handling capabilities. Because white-box tests depend on 
specific implementation decisions, they can’t be designed until after the code is 
written. 

From an embedded systems point of view, coverage testing is the most important 
type of testing because the degree to which you can show how much of your code 
has been exercised is an excellent predictor of the risk of undetected bugs you’ll be 
facing later. 

Example white-box tests include: 
 Statement coverage: Test cases selected because they execute every 

statement in the program at least once. 
 Decision or branch coverage: Test cases chosen because they cause 

every branch (both the true and false path) to be executed at least once. 
 Condition coverage: Test cases chosen to force each condition (term) 

in a decision to take on all possible logic values. 

Theoretically, a white-box test can exploit or manipulate whatever it needs to 
conduct its test. Thus, a white-box test might use the JTAG interface to force a 
particular memory value as part of a test. More practically, white-box testing might 
analyze the execution path reported by a logic analyzer.  

Gray-Box Testing 

Because white-box tests can be intimately connected to the internals of the code, 
they can be more expensive to maintain than black-box tests. Whereas black-box 
tests remain valid as long as the requirements and the I/O relationships remain 
stable, white-box tests might need to be re-engineered every time the code is 
changed. Thus, the most cost-effective white-box tests generally are those that 
exploit knowledge of the implementation without being intimately tied to the 
coding details. 

Tests that only know a little about the internals are sometimes called gray-box 
tests. Gray-box tests can be very effective when coupled with “error guessing.” If 
you know, or at least suspect, where the weak points are in the code, you can 
design tests that stress those weak points. These tests are gray box because they 
cover specific portions of the code; they are error guessing because they are 



chosen based on a guess about what errors are likely. This testing strategy is 
useful when you’re integrating new functionality with a stable base of legacy code. 
Because the code base is already well tested, it makes sense to focus your test 
efforts in the area where the new code and the old code come together. 

Testing Embedded Software 

Generally the traits that separate embedded software from applications software 
are: 

 Embedded software must run reliably without crashing for long periods 
of time. 

 Embedded software is often used in applications in which human lives 
are at stake. 

 Embedded systems are often so cost-sensitive that the software has 
little or no margin for inefficiencies of any kind. 

 Embedded software must often compensate for problems with the 
embedded hardware. 

 Real-world events are usually asynchronous and nondeterministic, 
making simulation tests difficult and unreliable. 

 Your company can be sued if your code fails. 

Because of these differences, testing for embedded software differs from 
application testing in four major ways. First, because real-time and concurrency 
are hard to get right, a lot of testing focuses on real-time behavior. Second, 
because most embedded systems are resource-constrained real-time systems, 
more performance and capacity testing are required. Third, you can use some real-
time trace tools to measure how well the tests are covering the code. Fourth, you’ll 
probably test to a higher level of reliability than if you were testing application 
software.  

 

Dimensions of Integration 

Most of our discussion of system integration has centered on hardware and soft 
ware integration. However, the integration phase really has three dimensions to it: 
hardware, software, and real-time. To the best of my knowledge, it’s not common 
to consider real time to be a dimension of the hardware/software integration phase, 
but it should be. The hardware can operate as designed, the software can run as 
written and debugged, but the product as a whole can still fail because of real-time 
issues.  

Some designers have argued that integrating a real-time operating system (RTOS) 
with the hardware and application software is a distinct phase of the development 
cycle. If we accept their point of view, then we may further subdivide the integra 
tion phase to account for the non-trivial task of creating a board support package 
(BSP) for the hardware. Without a BSP, the RTOS cannot run on the target plat 
form. However, if you are using a standard hardware platform in your system, 
such as one of the many commercially available single-board computers (SBC), 
your BSP is likely to have already been developed for you. Even with a well- 
designed BSP, there are many subtle issues to be dealt with when running under 
an RTOS.  

Simon[8] does an excellent job of covering many of the issues related to running 
an application when an interrupt may occur at any instant. I won’t attempt to 
cover the same ground as Simon, and I recommend his book as an essential vol 
ume in any embedded system developer’s professional library. 



Suffice to say that the integration of the RTOS, the hardware, the software and the 
real-time environment represent the four most common dimensions of the 
integration phase of an embedded product. Since the RTOS is such a central ele 
ment of an embedded product, any discussion about tools demands that we dis 
cuss them in the context of the RTOS itself. A simple example will help to illustrate 
this point. 

Suppose you are debugging a C program on your PC or UNIX workstation. For 
simplicity’s sake, let’s assume that you are using the GNU compiler and debugger, 
GCC and GDB, respectively. When you stop your application to examine the value 
of a variable, your computer does not stop. Only the application being debugged 
has stopped running; the rest of the machine is running along just fine. If your 
program crashes on a UNIX platform, you may get a core dump, but the computer 
itself keeps on going 

Now, let’s contrast this with our embedded system. Without an RTOS, when a 
program dies, the embedded system stops functioningtime to cycle power or press 
RESET. If an RTOS is running in the system and the debugging tools are 
considered to be “RTOS aware,” then it is very likely that you can halt one of the 
running processes and follow the same debugging procedure as on the host com 
puter. The RTOS will keep the rest of the embedded system functioning “mostly 
normally” even though you are operating one of the processes under the control of 
the debugger. Since this is a difficult task to do and do well, the RTOS vendor is 
uniquely positioned to supply its customers with finely tuned tools that support 
debugging in an RTOS environment. We can argue whether or not this is benefi 
cial for the developer, certainly the other tool vendors may cry, “foul,” but that’s 
life in the embedded world.  

Thus, we can summarize this discussion by recognizing that the decision to use an 
RTOS will likely have a ripple effect through the entire design process and will 
manifest itself most visibly when the RTOS, the application software, and the 
hardware are brought together. If the tools are well designed, the process can be 
minimally complex. If the tools are not up to the task, the product may never see 
the light of day. 

 

 

Real-Time Failure Modes 

What you know about how software typically fails should influence how you select 
your tests. Because embedded systems deal with a lot of asynchronous events, the 
test suite should focus on typical real-time failure modes. 

At a minimum, the test suite should generate both typical and worst case real-time 
situations. If the device is a controller for an automotive application, does it lock 
up after a certain sequence of unforeseen events, such as when the radio, 
windshield wipers, and headlights are all turned on simultaneously? Does it lock up 
when those items are turned on rapidly in a certain order? What if the radio is 
turned on and off rapidly 100 times in a row? 
In every real-time system, certain combinations of events (call them critical 
sequences) cause the greatest delay from an event trigger to the event response. 
The embedded test suite should be capable of generating all critical sequences and 
measuring the associated response time. 



For some real-time tasks, the notion of deadline is more important than latency. 
Perhaps it’s essential that your system perform a certain task at exactly 5:00P.M. 
each day. What will happen if a critical event sequence happens right at 5:00P.M.? 
Will the deadline task be delayed beyond its deadline? 

Embedded systems failures due to failing to meet important timing deadlines are 
called hard real-time or time-critical failures. Likewise, poor performance can be 
attributed to soft real-time or time-sensitive failures. 
Another category of failures is created when the system is forced to run at, or near, 
full capacity for extended periods. Thus, you might never see a malloc() error 
when the system is running at one-half load, but when it runs at three-fourths load, 
malloc() may fail once a day. 

Many RTOSs use fixed size queues to track waiting tasks and buffer I/O. It’s 
important to test what happens if the system receives an unusually high number of 
asynchronous events while it is heavily loaded. Do the queues fill up? Is the 
system still able to meet deadlines? 

Thorough testing of real-time behavior often requires that the embedded system 
be attached to a custom hardware/simulation environment. The simulation 
environment presents a realistic, but virtual, model of the hardware and real world. 
Sometimes the hardware simulator can be as simple as a parallel I/O interface that 
simulates a user pressing switches. Some projects might require a full flight 
simulator. At any rate, regression testing of real- time behavior won’t be possible 
unless the real-time events can be precisely replicated. 

Unfortunately, budget constraints often prohibit building a simulator. For some 
projects, it could take as much time to construct a meaningful model as it would to 
fix all the bugs in all the embedded products your company has ever produced. 
Designers do not spend a lot of time developing “throw-away” test software 
because this test code won’t add value to the product. It will likely be used once or 
twice and then deleted, so why waste time on it? 
In Chapter 3, I discussed HW/SW co-verification and the way that a VHDL 
simulator could be linked to a software driver through a bus functional model of 
the processor. Conceptually, this could be a good test environment if your 
hardware team is already using VHDL- or Verilog-based design tools to create 
custom ASICs for your product. Because a virtual model of the hardware already 
exists and a simulator is available to exercise this model, why not take advantage 
of it to provide a test scaffold for the software team? This was one of the great 
promises of co-verification, but many practical problems have limited its adoption 
as a general-purpose tool. Still, from a conceptual basis, co-verification is the type 
of tool that could enable you to build a software-test environment without having 
to deploy actual hardware in a real-world environment.  

Measuring Test Coverage 

Even if you use both white-box and black-box methodologies to generate test 
cases, it’s unlikely that the first draft of the test suite will test all the code. The 
interactions between the components of any nontrivial piece of software are just 
too complex to analyze fully. As the earlier “shampoo” algorithm hinted, we need 
some way to measure how well our tests are covering the code and to identify the 
sections of code that are not yet being exercised. 

The following sections describe several techniques for measuring test coverage. 
Some are software-based, and some exploit the emulators and integrated device 
electronics (IDE) that are often available to embedded systems engineers. 



Because they involve the least hardware, I’ll begin with the software- based 
methods. Later I’ll discuss some less intrusive, but sometimes less reliable, 
hardware-based methods. Despite the fact that the hardware-based methods are 
completely nonintrusive, their use is in the minority. 

Software Instrumentation 
Software-only measurement methods are all based on some form of execution 
logging. Statement coverage can be measured by inserting trace calls at the 
beginning of each “basic block” of sequential statements. In this context, a basic 
block is a set of statements with a single entry point at the top and one or more 
exits at the bottom. Each control structure, such as a goto, return, or decision, 
marks the end of a basic block. The implication is that after the block is entered 
every statement in the block is executed. By placing a simple trace statement, 
such as a printf(), at the beginning of every basic block, you can track when the 
block — and by implication all the statements in the block — are executed. This 
kind of software-based logging can be an extremely efficient way to measure 
statement coverage. 
Of course, printf() statements slow the system down considerably, which is not 
exactly a low-intrusion test methodology. Moreover, small, deeply embedded 
systems might not have any convenient means to display the output (many 
embedded environments don’t include printf() in the standard library). 

If the application code is running under an RTOS, the RTOS might supply a low-
intrusion logging service. If so, the trace code can call the RTOS at the entry point 
to each basic block. The RTOS can log the call in a memory buffer in the target 
system or report it to the host. 
An even less-intrusive form of execution logging might be called low- intrusion 
printf(). A simple memory write is used in place of the printf(). At each basic block 
entry point, the logging function "marks" a unique spot in excess data memory. 
After the tests are complete, external software correlates these marks to the 
appropriate sections of code. 

Alternatively, the same kind of logging call can write to a single memory cell, and 
a logic analyzer (or other hardware interface) can capture the data. If, upon entry 
to the basic block, the logging writes the current value of the program counter to a 
fixed location in memory, then a logic analyzer set to trigger only on a write to 
that address can capture the address of every logging call as it is executed. After 
the test suite is completed, the logic analyzer trace buffer can be uploaded to a 
host computer for analysis.  

Although conceptually simple to implement, software logging has the disadvantage 
of being highly intrusive. Not only does the logging slow the system, the extra calls 
substantially change the size and layout of the code. In some cases, the 
instrumentation intrusion could cause a failure to occur in the function testing — or 
worse, mask a real bug that would otherwise be discovered. 

Instrumentation intrusion isn’t the only downside to software-based coverage 
measurements. If the system being tested is ROM-based and the ROM capacity is 
close to the limit, the instrumented code image might not fit in the existing ROM. 
You are also faced with the additional chore of placing this instrumentation in your 
code, either with a special parser or through conditional compilation. 
Coverage tools based on code instrumentation methods cause some degree of 
code intrusion, but they have the advantage of being independent of on-chip 
caches. The tags or markers emitted by the instrumentation can be coded as 
noncachable writes so that they are always written to memory as they occur in the 



code stream. However, it’s important to consider the impact of these code markers 
on the system’s behavior. 

All these methods of measuring test coverage sacrifice fine-grained tracing for 
simplicity by assuming that all statements in the basic block will be covered. A 
function call, for example, might not be considered an exit from a basic block. If a 
function call within a basic block doesn’t return to the calling function, all the 
remaining statements within the basic block are erroneously marked as having 
been executed. Perhaps an even more serious shortcoming of measuring 
statement coverage is that the measurement demonstrates that the actions of an 
application have been tested but not the reasons for those actions. 

You can improve your statement coverage by using two more rigorous coverage 
techniques: Decision Coverage (DC) and Modified Condition Decision Coverage 
(MCDC). Both of these techniques require rather extensive instrumentation of the 
decision points at the source code level and thus might present increasingly 
objectionable levels of intrusion. Also, implementing these coverage test methods 
is best left to commercially available tools.  

 

Measuring More than Statement Execution 

DC takes statement coverage one step further. In addition to capturing the entry 
into the basic blocks, DC also measures the results of decision points in the code, 
such as looking for the result of binary (true/false) decision points. In C or C++, 
these would be the if, for, while, and do/while constructs. DC has the advantage 
over statement coverage of being able to catch more logical errors. For example, 
suppose you have an if statement without an else part  

if (condition is true) 

{ 

< then do these statements>; 

} 

< code following elseless if > 

You would know whether the TRUE condition is tested because you would see that 
the then statements were executed. However, you would never know whether the 
FALSE condition ever occurred. DC would allow you to track the number of times 
the condition evaluates to TRUE and the number of times it evaluates to FALSE. 
MCDC goes one step further than DC. Where DC measures the number of times 
the decision point evaluates to TRUE or to FALSE, MCDC evaluates the terms that 
make up the decision criteria. Thus, if the decision statement is  

if (A || B) 

{ 

< then do these statements>; 

} 



DC would tell you how many times it evaluates to TRUE and how many times it 
evaluates to FALSE. MCDC would also show you the logical conditions that lead to 
the decision outcome. Because you know that the if statement decision condi tion 
would evaluate to TRUE if A is TRUE AND B is also TRUE, MCDC would also tell you 
the states of A and B each time the decision was evaluated. Thus, you would know 
why the decision evaluated to TRUE or FALSE not just that it was TRUE or FALSE. 

 

 

Hardware Instrumentation 

Emulation memories, logic analyzers, and IDEs are potentially useful for test-
coverage measurements. Usually, the hardware functions as a trace/ capture 
interface, and the captured data is analyzed offline on a separate computer. In 
addition to these three general-purpose tools, special-purpose tools are used just 
for performance and test coverage measurements.  

Emulation Memory 
Some vendors include a coverage bit among the attribute bits in their emulation 
memory. When a memory location is accessed, its coverage bit is set. Later, you 
can look at the fraction of emulation memory “hits” and derive a percent of 
coverage for the particular test. By successively “mapping” emulation memory 
over system memory, you can gather test-coverage statistics. 
One problem with this technique is that it can be fooled by microprocessors with 
on-chip instruction or data caches. If a memory section, called a refill line, is read 
into the cache but only a fraction of it is actually accessed by the program, the 
coverage bit test will be overly optimistic in the coverage values it reports. Even so, 
this is a good upper-limit test and is relatively easy to implement, assuming you 
have an ICE at your disposal. 

Logic Analyzer 

Because a logic analyzer also can record memory access activity in real time, it’s a 
potential tool for measuring test coverage. However, because a logic analyzer is 
designed to be used in “trigger and capture” mode, it’s difficult to convert its trace 
data into coverage data. Usually, to use a logic analyzer for coverage 
measurements, you must resort to statistical sampling. 

For this type of measurement, the logic analyzer is slaved to a host computer. The 
host computer sends trigger commands to the logic analyzer at random intervals. 
The logic analyzer then fills its trace buffer without waiting for any other trigger 
conditions. The trace buffer is uploaded to the computer where the memory 
addresses, accessed by the processor while the trace buffer was capturing data, 
are added to a database. For coverage measurements, you only need to know 
whether each memory location was accessed; you don’t care how many times an 
address was accessed. Thus, the host computer needs to process a lot of 
redundant data. For example, when the processor is running in a tight loop, the 
logic analyzer collects a lot of redundant accesses. If access behavior is sampled 
over long test runs (the test suite can be repeated to improve sampling accuracy), 
the sampled coverage begins to converge to the actual coverage. 

Of course, memory caches also can distort the data collected by the logic analyzer. 
On-chip caches can mask coverage holes by fetching refill lines that were only 
partly executed. However, many logic analyzers record additional information 



provided by the processor. With these systems, it’s sometimes possible to obtain 
an accurate picture of the true execution coverage by post-processing the raw 
trace. Still, the problem remains that the data capture and analysis process is 
statistical and might need to run for hours or days to produce a meaningful result. 

In particular, it’s difficult for sampling methods to give a good picture of ISR test 
coverage. A good ISR is fast. If an ISR is infrequent, the probability of capturing it 
during any particular trace event is correspondingly low. On the other hand, it’s 
easy to set the logic analyzer to trigger on ISR accesses. Thus, coverage of ISR 
and other low-frequency code can be measured by making a separate run through 
the test suite with the logic analyzer set to trigger and trace just that code.  

Software Performance Analyzers 
Finally, a hardware-collection tool is commercially available that facilitates the low-
intrusion collection method of hardware assist without the disadvantage of 
intermittent collection of a logic analyzer. Many ICE vendors manufacture 
hardware-based tools specifically designed for analyzing test coverage and 
software performance. These are the “Cadillac™” tools because they are 
specifically designed for gathering coverage test data and then displaying it in a 
meaningful way. By using the information from the linker’s load map, these tools 
can display coverage information on a function or module basis, rather than raw 
memory addresses. Also, they are designed to collect data continuously, so no 
gaps appear in the data capture, as with a logic analyzer. Sometimes these tools 
come already bundled into an ICE, others can be purchased as hardware or 
software add-ons for the basic ICE. These tools are described in more detail later 
in the following section: “Performance Testing.” 

 

Performance Testing 

The last type of testing to discuss in this chapter is performance testing. This is the 
last to be discussed because performance testing, and, consequently, performance 
tuning, are not only important as part of your functional testing but also as 
important tools for the maintenance and upgrade phase of the embedded life cycle. 
Performance testing is crucial for embedded system design and, unfortunately, is 
usually the one type of software characterization test that is most often ignored. 
Dave Stewart, in “The Twenty-Five Most Common Mistakes with Real-Time 
Software Development,”[9] considers the failure to measure the execution time of 
code modules the number one mistake made by embedded system designers. 

Measuring performance is one of the most crucial tests you need to make on your 
embedded system. The typical response is that the code is “good enough” because 
the product works to specification. For products that are incredibly cost sensitive, 
however, this is an example of engineering at its worst. Why overdesign a system 
with a faster processor and more and faster RAM and ROM, which adds to the 
manufacturing costs, lowers the profit margins, and makes the product less 
competitive, when the solution is as simple as finding and eliminating the hot spots 
in the code? 

On any cost-sensitive embedded system design, one of the most dramatic events 
is the decision to redesign the hardware because you believe you are at the limit of 
performance gains from software redesign. Mostly, this is a gut decision rather 
than a decision made on hard data. On many occasions, intuition fails. Modern 
software, especially in the presence of an RTOS, is extremely difficult to fully 
unravel and understand. Just because you can’t see an obvious way to improve the 
system throughput by software-tuning does not imply that the next step is a 



hardware redesign. Performance measurements made with real tools and with 
sufficient resources can have tremendous payback and prevent large R&D outlays 
for needless redesigns.  

How to Test Performance 

In performance testing, you are interested in the amount of time that a function 
takes to execute. Many factors come into play here. In general, it’s a 
nondeterministic process, so you must measure it from a statistical perspective. 
Some factors that can change the execution time each time the function is 
executed are: 

 Contents of the instruction and data caches at the time the function is 
entered 

 RTOS task loading 
 Interrupts and other exceptions 
 Data-processing requirements in the function 

Thus, the best you can hope for is some statistical measure of the minimum, 
maximum, average, and cumulative execution times for each function that is of 
interest. Figure 9.3 shows the CodeTEST performance analysis test tool, which 
uses software instrumentation to provide the stimulus for the entry-point and exit-
point measurements. These tags can be collected via hardware tools or RTOS 
services.  

 

Dynamic Memory Use 

Dynamic memory use is another valuable test provided by many of the commercial 
tools. As with coverage, it’s possible to instrument the dynamic memory allocation 
operators malloc() and free() in C and new and delete in C++ so that the 
instrumentation tags will help uncover memory leakages and fragmentation 
problems while they are occurring. This is infinitely preferable to dealing with a 
nonreproducible system lock-up once every two or three weeks. Figure 9.2 shows 
one such memory management test tool. 

 
Figure 9.2: Memory management test tool.  
The CodeTEST memory management test program (courtesy of Applied 
Microsys tems Corporation).  

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



 
Figure 9.3: CodeTEST test tool.  

 

 
CodeTEST performance analysis tool display showing the minimum, 
maximum, average, and cumulative execution times for the functions 
shown in the leftmost column (courtesy of Applied Microsystems 
Corporation).  

 
From the Trenches  
Performance testing and coverage testing are not entirely separate activities. 
Coverage testing not only uncovers the amount of code your test is exercising, it 
also shows you code that is never exercised (dead code) that could easily be 
eliminated from the product. I’m aware of one situation in which several design 
teams adapted a linker command file that had originally been written for an earlier 
product. The command file worked well enough, so no one bothered to remove 
some of the extraneous libraries that it pulled in. It wasn’t a problem until they 
had to add more functionality to the product but were limited to the amount of 
ROM space they had. Thus, you can see how coverage testing can provide you with 
clues about where you can excise code that does not appear to be participating in 
the program. Although removing dead code probably won’t affect the execution 
time of the code, it certainly will make the code image smaller. I say probably 
because on some architectures, the dead code can force the compiler to generate 
more time-consuming long jumps and branches. Moreover, larger code images and 
more frequent jumps can certainly affect cache performance. 

Conceptually, performance testing is straightforward. You use the link map file to 
identify the memory addresses of the entry points and exit points of functions. You 
then watch the address bus and record the time whenever you have address 
matches at these points. Finally, you match the entry points with the exit points, 
calculate the time difference between them, and that’s your elapsed time in the 
function. However, suppose your function calls other functions, which call more 
functions. What is the elapsed time for the function you are trying to measure? 
Also, if interrupts come in when you are in a function, how do you factor that 
information into your equation? 

Fortunately, the commercial tool developers have built in the capability to unravel 
even the gnarliest of recursive functions. 

Hardware-based tools provide an attractive way to measure software performance. 
As with coverage measurements, the logic analyzer can be programmed to capture 
traces at random intervals, and the trace data — including time stamps — can be 
post-processed to yield the elapsed time between a function’s entry and exit points. 
Again, the caveat of intermittent measurements applies, so the tests might have to 
run for an extended period to gather meaningful statistics. 



Hardware-only tools are designed to monitor simultaneously a spectrum of 
function entry points and exit points and then collect time interval data as various 
functions are entered and exited. In any case, tools such as these provide 
unambiguous information about the current state of your software as it executes in 
real time. 

Hardware-assisted performance analysis, like other forms of hardware- assisted 
measurements based on observing the processor’s bus activity, can be rendered 
less accurate by on-chip address and data caches. This occurs because the 
appearance of an address on the bus does not necessarily mean that the 
instruction at that address will be executed at that point in time, or any other point 
in time. It only means that the address was transferred from memory to the 
instruction cache.  

Tools based on the instrumentation of code are immune to cache-induced errors 
but do introduce some level of intrusion because of the need to add extra code to 
produce an observable tag at the function’s entry points and exit points. Tags can 
be emitted sequentially in time from functions, ISRs, and the RTOS kernel itself. 
With proper measurement software, designers can get a real picture of how their 
system software is behaving under various system-loading conditions. This is 
exactly the type of information needed to understand why, for example, a 
functional test might be failing. 

 
From the Trenches  
From personal experience, the information, which these tools provide a design 
team, can cause much disbelief among the engineers. During one customer 
evaluation, the tool being tested showed that a significant amount of time was 
being spent in a segment of code that none of the engineers on the project could 
identify as their software. 

Upon further investigation, the team realized that in the build process the team 
had inadvertently left the compiler switch on that included all the debug 
information in the compiled code. Again, this was released code. The tool was able 
to show that they were taking a 15-percent performance hit due to the debug code 
being present in the released software. I’m relatively certain that some heads were 
put on the block because of this, but I wasn’t around to watch the festivities. 

Interestingly, semiconductor manufacturers are beginning to place additional 
resources on-chip for performance monitoring, as well as debugging purposes. 
Desktop processors, such as the Pentium and AMD’s K series, are equipped with 
performance-monitoring counters; such architectural features are finding their way 
into embedded devices as well. These on-chip counters can count elapsed time or 
other performance parameters, such as the number of cache hits and cache misses. 

Another advantage of on-chip performance resources is that they can be used in 
conjunction with your debugging tools to generate interrupts when error conditions 
occur. For example, suppose you set one of the counters to count down to zero 
when a certain address is fetched. This could be the start of a function. The 
counter counts down; if it underflows before it’s stopped, it generates an interrupt 
or exception, and processing could stop because the function took too much time. 
The obvious advantages of on- chip resources are that they won’t be fooled by the 
presence of on-chip caches and that they don’t add any overhead to the code 
execution time. The downside is that you are limited in what you can measure by 
the functionality of the on-chip resources. 
 
 



Maintenance and Testing 
Some of the most serious testers of embedded software are not the original 
designers, the Software Quality Assurance (SWQA) department, or the end users. 
The heavy-duty testers are the engineers who are tasked with the last phases of 
the embedded life cycle: maintenance and upgrade. Numerous studies (studies by 
Dataquest and EE Times produced similar conclusions) have shown that more than 
half of the engineers who identify themselves as embedded software and firmware 
engineers spend the majority of their time working on embedded systems that 
have already been deployed to customers. These engineers were not the original 
designers who did a rotten job the first time around and are busy fixing residual 
bugs; instead, these engineers take existing products, refine them, and maintain 
them until it no longer makes economic sense to do so. 

One of the most important tasks these engineers must do is understand the 
system with which they’re working. In fact, they must often understand it far more 
intimately than the original designers did because they must keep improving it 
without the luxury of starting over again. 

 
From the Trenches  
I’m often amused by the expression, “We started with a clean sheet of paper,” 
because the subtitle could be, “And we didn’t know how to fix what we already 
had.” When I was an R&D Project Manager, I visited a large telecomm vendor who 
made small office telephone exchanges (PBX). The team I visited was charged with 
maintaining and upgrading one of the company’s core products. Given the income 
exposure riding on this product, you would think the team would have the best 
tools available. Unfortunately, the team had about five engineers and an old, tired 
PBX box in the middle of the room. In the corner was a dolly with a four-foot high 
stack of source code listings. The lead engineer said someone wheeled that dolly in 
the previous week and told the team to “make it 25 percent better.” The team’s 
challenge was to first understand what they had and, more importantly, what the 
margins were, and then they could undertake the task of improving it 25 percent, 
whatever that meant. Thus, for over half of the embedded systems engineers 
doing embedded design today, testing and understanding the behavior of existing 
code is their most important task. 

It is an unfortunate truth of embedded systems design that few, if any, tools have 
been created specifically to help engineers in the maintenance and upgrade phases 
of the embedded life cycle. Everyone focuses on new product development. Go to 
any Embedded Systems Conference™, and every booth is demonstrating 
something to help you improve your time to market. What if you’re already in the 
market? I’ve been to a lot of Embedded System Conferences™ and I’ve yet to 
have anyone tell me his product will help me figure out what I’m already shipping 
to customers. Today, I’m aware of only one product idea that might come to 
market for a tool specifically focusing on understanding and categorizing existing 
embedded software in a deployed product. 

Additional Reading 
 Barrett, Tom. “Dancing with Devils: Or Facing the Music on Software 

Quality.” Supplement to Electronic Design, 9 March 1998, 40. 
 Beatty, Sean. “Sensible Software Testing.” Embedded Systems 

Programming, August 2000, 98. 
 Myers, Glenford J. The Art of Software Testing. New York: Wiley, 1978. 
 Simon, David. An Embedded Software Primer. Reading, MA: Addison- 

Wesley, 1999. 
 



Summary 

In a way, it’s somewhat telling that the discussion of testing appears at the end of 
this book because the end of the product development cycle is where testing 
usually occurs. It would be better to test in a progressive manner, rather than 
waiting until the end, but, for practical reasons, some testing must wait. The 
principal reason is that you have to bring the hardware and software together 
before you can do any kind of meaningful testing, and then you still need to have 
the real-world events drive the system to test it properly. 

Although some parts of testing must necessarily be delayed until the end of the 
development cycle, the key decisions about what to test and how to test must not 
be delayed. Testability should be a key requirement in every project. With modern 
SoC designs, testability is becoming a primary criterion in the processor-selection 
process. 

Finally, testing isn’t enough. You must have some means to measure the 
effectiveness of your tests. As Tom DeMarco[3], once said, “You can’t control what 
you can’t measure.” 

If you want to control the quality of your software, you must measure the quality 
of your testing. Measuring test coverage and performance are important 
components but for safety critical projects, even these aren’t enough. 

Works Cited 
1. Hopper, Grace Murray. “The First Bug.” Annals of the History of 

Computing, July 1981, 285. 
2. Horning, Jim. ACM Software Engineering Notes. October 1979, 6.  
3. DeMarco, Tom. Controlling Software Projects. New York: Yourdon, 1982. 
4. Leveson, Nancy and Clark S. Turner. “An Investigation of the Therac-25 

Accidents.” IEEE Computer, July 1993, 18–41. 
5. Main, Jeremy. Quality Wars: The Triumphs and Defeats of American 

Business. New York: Free Press, 1994. 
6. Myers, Glenford J. The Art of Software Testing. New York: Wiley, 1978. 
7. Ross, K.J. & Associates. 

http://www.cit.gu.edu.au/teaching/CIT2162/991005.pdf , p. 43. 
8. Simon, David. An Embedded Software Primer. Reading, MA: Addison- 

Wesley, 1999. 
9. Stewart, Dave. “The Twenty-Five Most Common Mistakes with Real- 

Time Software Development.” A paper presented at the Embedded Systems 
Conference, San Jose, 26 September 2000. 



 

Chapter 10: The Future 
The previous chapters have focused on tools and techniques that you need to do 
your job today. This chapter looks beyond the job as it is today to the future. First, 
I want to describe a new technology — reconfigurable hardware — that has the 
potential to completely redefine the process of creating an embedded system. 

The closing half of this chapter is devoted not so much to what might come, as to 
what I heartily wish would come. 

Reconfigurable Hardware 
The ultimate solution to the partitioning problem might be a new technology 
known as reconfigurable hardware. Reconfigurable hardware might be the future of 
computing systems in general, whether they are desktop PCs or embedded 
systems. Reconfigurable hardware is circuitry that can be changed dynamically so 
that its very structure changes at run time. 

Imagine, for example, a microcontroller that consists of a standard microprocessor 
core, a big block of this reconfigurable hardware, and nothing else. Unlike current 
SoC solutions, this imaginary part wouldn’t include any dedicated peripheral 
devices, such as timers, parallel ports, serial ports, Ethernet ports, and so on. 
Instead, when the application calls for a parallel port, part of the reconfigurable 
logic would be configured to be a parallel port. If a serial port is needed, the same 
thing happens. If the design requires high-speed data steering logic, as you might 
find in a telecommunications application, the hardware block is reconfigured to be 
a steering block.  
What is this magic hardware? The basis of this “brave new world” of computing 
hardware is a device that has been around for more than 10 years, the Field 
Programmable Gate Array (FPGA). Figure 10.1 shows a conceptual model of an 
FPGA. The device consists of the following: 

 
Figure 10.1: FPGA.  
Conceptual diagram of an FPGA.  

 A “sea of gates,” such as general purpose AND gates, OR gates, NOT 
gates, and EXCLUSIVE OR gates 

 A matrix of programmable interconnection elements 
 General-purpose memory 
 General-purpose registers 
 A configuration memory that, when programmed, connects the devices 

into the desired circuit blocks 



In Figure 10.1 each element from the sea of gates is represented by a traditional 
logic gate. In actuality, FPGAs do not implement the logic function as traditional, 
dedicated gates. Instead each individual logic element is actually a small 
read/write memory array that is programmed directly with the desired function’s 
truth table.  
Figure 10.2 shows how this structure can be used to implement a simple AND gate. 
In this representation, a and b are the address bits to the memory cells. The 
output, x, is just the data bit stored in each memory cell. Thus, the AND gate can 
be generated by a simple, four-cell memory that contains the following stored data:  

ADDR(0,0) = 0ADDR(0,1) = 0ADDR(1,0) = 0ADDR(1,1) = 1 

 
Figure 10.2: Gates.  
Representing an AND function in a logic design.  
With the logic table stored directly in the memory array, the output is TRUE, or 1, 
if and only if both inputs are TRUE. Of course, this structure easily can be 
expanded to functions with more than just two inputs. For example, you could 
have an n-input AND gate, and output would be TRUE if, and only if, all n-input 
variables were TRUE. 

In real life, these memory arrays have five or six input variables each and two or 
more independent output variables. The advantage of this approach is that any 
logical expression that can be represented as a function of five or six independent 
input variables can be programmed into each logic cell array.  
Figure 10.3 shows the pieces in more detail. The unlabeled, small gray squares are 
programmable cross-point switches, the key elements of the interconnection 
matrix of Figure 10.1. Each switch can be programmed to connect a vertical signal 
wire to a horizontal signal wire by programming the corresponding control bit in 
the configuration memory. The circuit block labeled “D Latch or FF” is the 
elemental version of a register. Sending the appropriate clock signal or logic level 
to the block causes the output of the logic cell array to be stored in the register. 
Thus, as every electrical engineering student must realize by now, you have all the 
elements that are necessary to build hardware state machines. 



 
Figure 10.3: Interconnecting Elements of FPGA.  
Interconnecting elements of the FPGA.  

FPGA technology is not particularly new to hardware design. FPGAs have been 
used for more than 10 years as a prototype part in the design of ASICs and other 
custom-made integrated circuits (ICs). The advantage was that an FPGA could be 
substituted for the actual IC until the correct hardware performance could be 
verified, and then the FPGA-based design would be transferred to the silicon 
manufacturer for production. Some silicon manufacturers were even able to read 
the FPGA configuration files and generate the ASIC directly from that. 

The early use of FPGAs was limited because the algorithms used to route the 
device were slow and computationally intensive. It would commonly take a week of 
computer time to find a route (correct configuration file) for a particularly dense 
FPGA design. As the use of the FPGA’s resources rose above 50 to 60 percent, the 
routing time began to increase dramatically. So even if an FPGA has a theoretical 
capacity of 1,000 gates, perhaps a real design of less than 700 gates would 
actually be able to fit into the device. 

Another problem was cost. FPGAs were five to 10 times more costly than an 
equivalent size ASIC, so production use was prohibitively expensive. However, 
many applications were found that were not particularly cost sensitive, and the use 
of the devices increased rapidly. Several new companies formed that arranged 
large matrices of individual FPGAs to create equivalent FPGAs of much larger 
capacity, in one case, over a million equivalent gates[3]. 
This imaginary processor plus reconfigurable hardware isn’t all imaginary. In 1998, 
a new company called Triscend[2] introduced a microcontroller based on the 
industry-standard 8032 that contained an array of reconfigurable elements. At the 
September 2000, Embedded Systems Conference, the leading FPGA manufacturer, 
Xilinx (www.xilinx.com), announced that standard RISC cores would be available 
for its FPGAs.  

Today, we are just at the threshold of finding new and exciting ways to use the 
concepts of reconfigurable hardware. Almost all modern embedded processors 
contain dedicated blocks of circuitry for debugging the application and for 
performance measurements in some cases. This circuitry is carried by every 
processor that is shipped to a customer, even if the design was completed many 
thousands of shipments ago. If the debug core was implemented in reconfigurable 
hardware, the chip real-estate now “wasted” on debug logic could become 
available for “soft” field hardware upgrades. There would be a limitless opportunity 
to load specialized hardware into the arrays as needed. 
In Chapter 3, I discussed partitioning an embedded system between hardware 
(fast but inflexible) and software (slower but flexible). The technology of 
reconfigurable hardware now blurs this distinction even further. Researchers at HP 
Laboratories[1] have shown that specialized computational hardware, even 



running at modest speeds, such as 1MHz, can often outperform the capabilities of 
supercomputers running thousands of times faster. 

Now, factor in the reality that in the near future most embedded systems will be 
attached to some distributed system, such as the Internet. Suppose you have 
thousands of Internet appliances on a network. You want to measure various types 
of performance parameters of your system as it runs during actual use. For a given 
node in the system, there might be 20 separate and distinctive measurements that 
you want to make at various times. Rather than design the specialized hardware 
for each of these separate measurements, you could simply download 
measurement configurations to the appliance via the Internet and then collect the 
data locally. After the data is uploaded, you could then download another 
measurement configuration. 

Finally, really let your mind expand. With reconfigurable hardware, the entire 
embedded system is designed and controlled as a software image. Today, several 
vendors of IP-based microprocessor cores have parameterized their designs so 
that much of the architecture of the microprocessor is user configurable. Why not 
use the flexibility of reconfigurable hardware to enable a next-generation compiler 
to compile a source file into the traditional software image and into the optimal 
hardware configuration to execute the code most efficiently? 

In today’s press, one can read article after article discussing the advantages of 
DSPs and RISC in embedded applications. SoC designers are combining multiple 
DSP and RISC cores in their latest designs. With reconfigurable hardware, the 
distinctions among RISC, CISC, and DSP can go away completely. Just load the 
correct hardware configuration that is needed at that point in time. It’s easy to do 
because it’s only software.  

Some Comments on the Tool Business 

As someone involved in the development tool side of embedded systems for many 
years I’ve had my share of frustrations trying to build tool chains that benefited 
both the customers, the tool vendors and semiconductor manufacturers. It is clear 
that the semiconductor vendors don’t always supply the quality of development 
tools that they could. This is not meant as a criticism of the semiconductor 
companies per se. For the semiconductor vendors, support tools represent the cost 
of doing business. Tools exist to sell silicon. Without support tools you can’t sell 
your silicon to the embedded designers who design your silicon into their products.  

However, if you bear with me for a few pages and indulge me a little trip into the 
land of fiction, I’ll try to paint you a picture of how it could be if tools really did 
become a competitive edge. I should also give credit to the semiconductor 
companies and tool vendors because almost all of the products that I’ll describe in 
my little story already exist in one form or another. 

Our story opens in a small, windowless conference room at ComDelta, a leading 
supplier of LAN communications hardware and software for the rapidly growing 
wireless-network industry. Sue Mason, one of the founders of ComDelta and its 
chief hardware designer/system architect, is meeting with her design team to 
discuss the requirements for ComDelta’s next-generation product. The model 
CD700 is going to be ComDelta’s flagship wireless LAN bridge, servicing 100 
simultaneous users. 

The team is at a major decision point. Should they move to a higher performance 
RISC processor from Integrated Micro Everything (IME) or attempt to squeeze 
their existing 68060 design one more time? Clearly, using the Im46880 would 



enable them to easily meet their feature set goals but as Ralph, the software team 
leader, says, “Trying to do a software schedule with a 46880 processor would be a 
joke. Garbage in, garbage out. We spent years getting to know the best way to 
design for the 68K architecture. We know all the tools and their warts. And, to top 
it off, we’ve got to have a prototype running by the Wireless World conference 
next spring. No way!”  

Sue had to admit that Ralph was right. In fact, as the only hardware designer 
supporting a team of nine computer scientists and firmware engineers (EE 
retreads), she wasn’t so sure that she could learn enough about the Im46K family 
to have hardware for them when they needed it. 

The uneasy silence was broken by Chin Lei, the newest employee of ComDelta and 
a Cornell graduate with an MS/CS degree, who says, “I did my Master’s thesis on a 
graphics engine design that used a bunch of Im46840s tied together. I was really 
impressed with the way IME supported our efforts. Here we were, a bunch of 
university geeks, and they treated us like we were some big laser printer company. 
Not only that, their embedded design tools are first-rate, and their application 
literature helped us understand the chip and design requirements. I wrote the 
multiprocessor OS, and there was this IME software performance superguru, Jerry 
Flemming, who wouldn’t let me screw up. I didn’t always understand him, but he 
meant well. Those guys really have their act together.” 

Sue went for a walk around the building, thinking about their dilemma. After about 
an hour, she went back inside and spent the rest of the afternoon doing 
administrivia. As she peddled home, she continued to think about Chin’s obvious 
enthusiasm for IME. 

The next morning, Sue called the local IME sales office. When Sue identified her 
company, the IME Sales Administrator for the region checked it against her online 
database of IME’s targeted accounts. ComDelta was one of the hot new companies 
that IME wanted to penetrate. Her call was put through to the field sales engineer 
for that account, and an automatic request was transmitted to IME’s headquarters 
in Oregon for the ComDelta company profile. 

As Ed Rosen spoke with Sue, he entered her data onto his computer. He focused 
his questions on her knowledge of the Im46K product family and ComDelta’s time-
to-market needs. He clicked on the box that caused a Im46K Knowledge Box and 
an Im46880 Evaluation Kit to be rushed to Sue and several other members of her 
design team. It also started a chain of events in Portland and the IME Field Sales 
Office. These events culminated in a presentation that Ed hoped to make at 
ComDelta in the near future. 
At work the following day, when Sue opened the Knowledge Box, some clever 
packaging caused a DVD to rise to the top. “Watch me first” it said in bold letters. 
Sue slipped the DVD into her drive. It presented an overview of how a team of 
designers, new to the Im46K, could become proficient in a minimum amount of 
time. It went through the tool chain, recommending certain vendors for particular 
embedded applications. Sue was impressed. “No hype. Just facts,” she thought. 
The presentation suggested a path to follow to specify the design and identify key 
areas. It also contained a set of metrics taken from other Im46880 designs. 

Sue was particularly intrigued by the System Design Assistant (SDA) software 
package in the Knowledge Box. SDA is a program based on some of the latest 
work in expert systems technology. Through a set of questions about her design 
requirements, SDA provided Sue with some general design parameters, system 



trade-offs, and references to several specific articles in IME’s extensive library of 
applications notes.  

The next day at work, Ralph blasted into her cubicle. “Sue, you’ve got to try out 
this evaluation kit; it is awesome. In about an half hour, I was running 
benchmarks of my data packet compression algorithm. They have this piece of 
software that analyzed the routine and told me how long it would run on a 66MHz 
68060. I didn’t believe it, so I ran it on the ’060 VXI card. Dead on! And, get this, 
it includes a graphical analysis package that knows about real-time operating 
systems. Oh, by the way, the RISC chip ran it 105.8 percent faster, give or take a 
little.” 

Ralph’s enthusiasm was catching. Sue phoned the IME office and asked if someone 
could come out and discuss her project in more depth. IME was ready; the hook 
was about to be set. 

The next day, Ed and his field application engineer (FAE), Jon Turner, came out 
loaded for bear. Ed casually suggested that he could make a brief presentation 
that ComDelta might find valuable. Sue agreed to get the right people together. 
Ed’s presentation was the sum total of IME’s research about the ComDelta project. 
Ed presented a market analysis of ComDelta and its competitors. He showed how 
designing with the Im46K family provided a code-compatible upgrade path. He 
outlined the services IME provided and its support plan for its tool chain. Finally, 
he gave ComDelta the pricing and availability information that he had prepared. In 
short, he concluded, “You will not fail in your market because IME has failed to 
meet your needs.” 

While Ed’s presentation was going on, Jon was meeting with the rest of the design 
team. He showed them how to best analyze the throughput requirements for their 
project. Together, their analysis showed that as long as their product specs stayed 
close to what it was, they could avoid doing a custom ASIC. This alone could save 
them several months in their schedule. However, just to be sure, Jon brought 
along a demo version of the RTOS- check evaluation package. This software, which 
Ralph had briefly played with a few days earlier, allowed Jon to model the RTOS 
behavior of the project trying different RTOSs, processors, and real-time user data 
loads. Because the team was basically keeping the same architectural structure for 
the project, the only variables that they needed to consider were the maximum 
number of users that could be accommodated before data-packet integrity began 
to fall off too rapidly. 

Jon also spent time going through the IME tool chain. The team was 
understandably concerned about committing to an aggressive schedule with a 
brand-new tool chain. Jon covered the various elements of IME’s Blend3D tool 
strategy. He went over the philosophy of System Debug Interface (SDI) and how it 
allowed a seamless integration of tools for the design team. Mike, a graying hippie-
type with a long ponytail was particularly acerbic. “I’ve seen that story a bazillion 
times already. It’s the holy grail of embedded design. Why should I believe that 
you guys got it when every booth at the Embedded Systems Conference has a 
bunch of Marketing types in Polo™ shirts telling me that they have the inside track 
on time to market?” 

Jon smiled and told Mike that he had every right to be skeptical. He then told the 
team about IME’s commitment to the tool chain through the Interoperability Lab 
(IO Lab) support team back at the factory. John said, “The IO Lab can replicate 
any problem that you can wring out of the tools.”  

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



He told them of one IME customer in Asia who was having problems optimizing a 
compression algorithm for a photographic-image scanner. The algorithm was sent 
to IME for analysis by the IO Lab. Their simulations showed that it should be 
running in one-fifth of the time. IME shipped out a loaner software performance 
analyzer with real-time profiling capability built-in. The IME-Singapore FAE flew out 
to the plant and set up the analyzer to gather software performance data on that 
algorithm. In one hour, they had the answer. 

The object code for this algorithm filled about 75 percent of the cache. With both 
caches and interrupts enabled, the OS task switch, which occurred with each clock 
tick, was just large enough to cause a full cache flush and refill. The system was 
thrashing. The scanner design team then split the algorithm into two parts, which 
stopped the thrash situation, and re-ran the tests. Performance improved by 600 
percent. 

Mike said, “IME really did that? No bull?” Jon smiled. They were his. 

The next day Sue called Ed and asked for quantity pricing information. Informally, 
she told him that IME was awarded the contract. 

About a week later, a big IME box appeared on Sue’s desk. In it, were three sets of 
videotapes entitled, “Designing with the Im46K Family.” There were four tapes in 
the series. Also included was a set of CD-ROMs with the following titles: 

 Online Im46K Help 
 Communications Algorithms for Im46K Designers 
 Conversion Software for RISC-Based Systems 
 Im46K Design and Integration Tools, for Evaluation 
 CASE Tools for Embedded Systems Design 
 Im46K Hardware Design Guide 

A full set of traditional manuals was included, as well as six sets of volumes I, II, 
and III of Dr. Jerry Flemming’s book, Programming the Im46K RISC Family. Sue 
also found a book of coupons for free pizzas from ComDelta’s favorite take-out 
shop with a little note from Ed wishing the team good luck and thanking them for 
their confidence in IME. 

The next week, Jon came by and met with the design team. Together they 
undertook an in-depth analysis of the design tools that ComDelta already had in 
their possession and suggested additional tools that would help their productivity. 
They debated the purchase of an in-circuit emulator (ICE). They had done their 
previous designs without one. Why should they incur the additional expense? Jon 
showed how one emulator, with real-time software performance analysis, would be 
good insurance for the problems that might crop up.  
Jon also demonstrated the new software on CD-ROM, Conversion Software for 
RISC-Based Systems, which had come in the developer’s kit the previous week. 
This was a package that IME had developed with ComSoftSys, Ltd., a small 
software company from Israel. The main program, CISC2RISC46K, was a C and 
C++ source code browser that scanned a source listing written for 68K processors 
and found code segments that could be modified to take advantage of superior 
RISC constructs. 

Just for fun, they scanned some of ComDelta’s packet-switching algorithms 
through CISC2RISC46K. It highlighted several data structures and suggested that 
these could be modified to take advantage of the Im46K’s rich register set. It also 
keyed on several interrupt service routines (ISRs) and, using its hyperlink and 
code generation facility, created some alternative code segments for the old CISC 
code. 



With Sue’s permission, the list of tool vendors that Jon suggested were given 
information about the ComDelta project. Each arranged for an on-site 
demonstration. Each demonstration was professionally done and focused on the 
unique problems of the ComDelta project. Obviously, everyone had done their 
homework on this one. IME shared their ComDelta information with the key 
partners, and it showed. Each vendor’s presentation echoed and reinforced a 
consistent theme, “We won’t let you fail. IME stands behind the performance of 
these tools. All the tools in the recommended tool chain work together with 
seamless integration through SDI. We are fully SDI-compliant.” 

Three months later 

The pizza coupons were finally used up. Ralph joked that they needed another IME 
presentation to refresh their coupon supply. 

The first cut of PC boards had come back, and Sue was busy powering them up. 
The software team had ported most of the code that they wanted to re-use, 
stubbed-out the new code, and were waiting for real hardware to run it on. They 
found the development environment to be everything that IME had promised. 
Using the software simulator, along with the evaluation boards, they had most of 
the new software ready for real hardware. The OS had been configured using the 
RTOS-check software, and the team was pretty confident that the integration 
phase was under control.  

They were right. Two weeks after the hardware and software were brought 
together, the team did a full software build and downloaded 33MB of code into 
their target through their sysROM ROM Emulator. Sue fired up the CD700. It went 
through its self-test and announced to the world that it was ready (a green light 
came on). Sue sat down with her laptop and attempted to log on to their network 
through the CD700. 

What happened then was almost anticlimactic: she logged on. Not wanting to 
tempt fate any further, Sue declared a team holiday. The CD700 development 
team headed out in all directions. 

Over the course of the next several weeks, the CD700 came closer to its design 
goals. The ComDelta testing lab was able to simulate 78 users before the system 
would bog down. Then all progress seemed to stop. Sue called Jon and asked for 
some help. Jon suggested a one-month rental of the tool systems ICE to do some 
performance analysis. He also asked if they would be willing to beta test the 
newest revision of the IME C++ Im46K software tool chain. This revision featured 
ActiveAlgorithm technology. ActiveAlgorithm is IME’s exclusive real-time algorithm 
analysis compiler technology, jointly patented by Twenty-First Century Compilers 
Corporation and IME. 

ActiveAlgorithm compilation allows an emulator or logic analyzer to act as a real-
time, traceable cache instruction-flow probe into a target system. The output of 
the analyzer feeds back to the compiler, which can then call upon several 
optimization techniques to tune the performance of the compiled code. 

With the hardware in place, the CD700 was run at a 78-user level for about three 
hours. The tool systems ICE gathered the trace statistics and the compiler 
preprocessor chewed on the results. A new object file was built on the feedback 
data and the system was restarted. The system bogged down again, but this time 
at 107 users. This time, Sue treated Jon and the team to Caribbean pizza at their 
favorite dine-in restaurant. 



With one week to go until the Wireless World show, the team felt pretty good. 
Then disaster struck. Phase7 Systems, ComDelta’s chief competitor, planned to 
pre-announce its latest product. Their HyperX80 serviced 80 users at half the cost 
of the CD700. The team huddled. Desperate phone calls went to IME. The team 
decided to try to wring every last ounce of performance out of the Im46880 
processor. Jerry Flemming flew out from Portland to assist in fine-tuning the code. 

Now improvements came in little chunks, but they came. Using the tool systems 
Sys46K as a software performance analyzer, they were able to fine- tune module 
after module. They reached 175 users but felt they needed more. Then Ed stepped 
back into the picture. He had been in contact with IME’s . WCG had a two-channel, 
wireless LAN chip in development which was nearly pin-compatible with the 
existing part that ComDelta was already using. As ever, IME delivered. The chip 
appeared the next day. The team kludged-up a second channel in record time. 
Jerry helped integrate the ISR and add the additional tasks to the OS. 

The next problem that the team faced was a pleasant one. Their simulation lab 
hardware could not simulate more than 200, users and the ComDelta was still 
chugging away. 

The CD700 won the Best New Product Award at the Wireless World exhibition. Sue 
Mason was so pleased with IME’s program execution that she volunteered to 
appear on any future marketing or sales video that IME might produce.  

Tool/Chip Tension 

Why don’t we have the kind of comprehensive, integrated tool support and 
customer support illustrated by this story? You would think that with such a co-
dependency, the tool vendors and chip vendors would be the model of cooperation 
and collaboration. In fact, the relationship between tool and chip vendors is more 
akin to a family with working parents, five teenagers, two dogs, a cat, and one 
bathroom. 

A number of basic differences exist between the semiconductor manufacturers and 
the tool vendors that support their chips. These differences tend to weigh heavily 
on the world-views of both groups and create tension between them. 
The semiconductor manufacturer wishes that every new processor would hit it big 
with in a few major accounts with incredible volumes (the vertical singularity in 
Figure 10.4). It is the dream of every semiconductor salesperson to win any of the 
following: 



 
Figure 10.4: Worldviews.  
The world view of chip vendors and development tool vendors.  

 An inkjet printer 
 Automobile engine management computer 
 Video game box 

With a few customers, the semiconductor manufacturer can lavish attention and 
make sure the tools for that customer are the best. In the semiconductor 
manufacturer’s view, the desirable metric is known as time to money. This is the 
point that product shipments begin and volume purchases of microprocessors 
begin to take place. It is in the semiconductor manufacturer’s best interest to help 
the big volume customer (design team) get the product designed, debugged, 
tested, and shipped in quantity. Problems with the development tools usually 
translate to delays in realizing volume shipments of processors. That’s the reason I 
was hired. It was my responsibility to make sure the design process ran smoothly. 
If almost the entire volume of shipments of a microprocessor goes to a few mega-
VIP customers, my job was straightforward. However, under these ideal conditions, 
my real problem became the tool vendors.  

 

It’s the Fabs 

Shortly after arriving at my new employer, I was asked to present an informal 
seminar on the state of tool development as I saw it. Being basically naïve and 
honest, I proceeded to describe how I could design a pretty credible laser printer 
with anybody’s embedded processor. Furthermore, in my opinion, the 
differentiating factor was how quickly I could bring a new design to market. I 
remember making the point that it wouldn’t do any good if my hot, new laser 
printer is almost ready to go when Comdex rolled around. If I missed the Comdex 
introduction, I might as well kill the project. 

The conclusion of my talk was met with stony silence. Afterwards, my supervisor 
explained that I completely missed the point. In short, my mantra was to become: 

It’s the fabs, stupid! 

The goal of any major semiconductor manufacturer, such as one that builds high- 
performance microprocessors for the embedded market, is to keep silicon flowing 



through the foundry. That was the focus, not the quality of the tools. The tools had 
to be good enough to support the new design wins. I had to be able to go to a 
customer with a list of tools that supported our embedded microprocessors. It was 
not my province to expound on improving the state of embedded-tool development. 
As long as I had all the boxes on my product support matrix appropriately checked 
off, life was good. 

It took me about two years of effort, but I think that I finally changed some minds, 
although it was probably wishful thinking on my part. Unfortunately, we did have 
some real situations in which the quality of our development-support tools were 
not up to the requirements of our customers, and my group had to step in and 
help. If some of the chip folks did eventually see the wisdom in my words, they 
never admitted it to my face.  

 

 

From the perspective of the tool vendor, the semiconductor manufacturer’s ideal 
situation is a bad business arrangement. 

 
Note  
Coming from a background in tool development, I tend to think of processors as a 
necessary evil. Each new processor brings its own quirks to the task of designing 
the best development tools. Having a deep pipeline on the bus interface unit 
means that the tool vendor must design a clever state machine to mimic the 
pipeline behavior in the emulator so that the tool can accurately display real-time 
trace information. 

For a tool vendor to develop a new product, such as a compiler, debugger, or ICE, 
to support a new processor, there must be a good probability of return on 
investment (ROI). Suppose the tool vendor invests $750,000 to develop several 
enhancements to existing products to support the new processor. (Although 
$750,000 might seem like a lot, good engineers don’t come cheap these days. This 
represents the cost of about five engineers for six to 12 months, depending on 
how you do your bookkeeping.) 

The tool vendor might sell 50 seats of the debugger, if they are lucky, to the two 
big volume customers using this processor. At $5,000 per seat, their expected ROI 
is all of $250,000, leaving the tool vendor in the hole for $500,000. Therefore, in 
the tool vendor’s view, targeting a few big customers is a bad business plan. They 
aren’t going to risk their company’s money on a brand-new processor with only 
two or three design wins. A better strategy for them would be to wait a few 
months to see how well the new processor is accepted by the broader market. If 
their field sales offices get many phone calls from potential customers asking if 
they support the XYZ6000, the engineering team will crank up pretty quickly.  

 
Note  
A design win is a customer making a firm commitment to use a specific processor. 

This wait-and-see attitude is not what the semiconductor manufacturer wants. 
Unless tools are available significantly before the first silicon reaches the general 
marketplace, they will not be available to the mega-VIP customers who want to be 
far into their development cycle. 



Figure 10.4 show how these two players have conflicting goals. The tools vendor 
wants to see many design starts. (These design starts could be within the same 
company. A major telecommunication vendor buying 1,000 seats of a new 
debugger wouldn’t be too bad for business, but that’s usually rare.) The 
semiconductor manufacturer is primarily interested in a few critical, high-volume 
design wins. 

The ideal solution is for the semiconductor manufacturer to provide the tool vendor 
additional funding to remove some or all of the riskof developing a new tool before 
there is good marketing data supporting the project. 

Basically, the semiconductor manufacturer ends up giving the tool vendor non-
refundable engineering (NRE) payments to help balance the risk versus reward 
analysis that would normally tell them to stay away from this project. The size of 
this subsidy is heavily dependent on the customers and whether they already like 
the other products enough to require them for this new design. If you are a tool 
vendor, getting “spec’d in” by the customer is the only way to travel. 

Anyway, all this behind-the-scenes intrigue is usually invisible to the customers, 
who have their own problems. If you are interested in which tools will support 
which processors, the way to find out is to see who is lunching together at the 
Embedded Systems Conference™.  

 
Note  
Today, most semiconductor vendors provide you with incredibly attractive data in 
the form of slick PowerPoint™ presentations describing in vague terms the large 
number of design starts forecast for this processor. However, if you ask them to 
name one, you are often told that this is proprietary information and they must 
protect their customer’s privacy. 

 
From the Trenches  
I once had the uncomfortable task of speaking to the Tool Support Group of a 
large telecommunications company that was in the process of evaluating a new 
processor (my company’s new embedded chip). The Tool Support Group had to 
evaluate the availability and the quality of the supporting tool suite that backed 
our processor. I was trying to convince them that, of the available compilers that 
supported our processor, their compiler of choice came out a distant third place 
out of three compilers that we evaluated. The compiler they preferred to use had 
performed satisfactorily with their old design, but the code generator section was a 
simple port from the old processor, with 16 registers, to our RISC processor, with 
many more registers. In our tests, their old compiler took about twice as long to 
run comparable sections of code as the best compiler. Naturally, I wanted them to 
switch to the new compiler. 

I was politely, but firmly, informed that they had several million lines of code that 
they knew would compile with their current compiler, and they also owned several 
thousand seats of the old compiler. Furthermore, if my company and I really 
wanted them to switch to our processor, it was our job to improve the 
performance of their compiler to the point that it was reasonably close to the 
performance of the best compiler. I went back to the factory with the 
recommendation that we fund their compiler vendor’s improvement of the code- 
generator section of their compiler. 

 



Summary 

Especially when coupled with pervasive network connectivity, reconfigurable 
hardware has the potential to revolutionize the industry. I’ve described 
reconfigurable hardware in terms of a processor coupled to a sea of gates, but, as 
Xilinx has demonstrated, the processor itself can be implemented within the sea of 
gates. What happens to the “processor selection” issue if the processor is just 
downloadable IP? If the entire program can be compiled directly to VHDL and then 
downloaded to an FPGA, will anyone care about the processor instruction set? 
Doesn’t the existence of a processor just become a cost optimization issue that can 
be solved by the silicon compiler? The compiler identifies the low performance 
portions of the algorithm and implements them as firmware executed by a 
processor, where the microcode for the processor is generated using something 
akin to a compression algorithm: most frequent operations in shortest opcode. 
Perhaps that’s far flung, but it’s not too far from what happens now in some 
resource scheduling tools available to IC designers. 

If nothing else, widespread use of reconfigurable hardware could improve the 
likelihood of getting some good development tools. After all, FPGAs are pretty 
much a commodity product; one looks pretty much like another. Widespread use 
of commodity-class reconfigurable hardware would create a market in which tool 
vendors could focus on refining a small set of tools instead of continuously working 
to retarget their tool for the latest and greatest processor. 

Unfortunately, the intrinsic difference between FPGA and other IC process costs 
might always favor fixed logic solutions. Still, if the toolset for reconfigurable 
hardware became refined and standardized enough, the promise of reduced 
development costs and improved time-to-market would be more than enough to 
offset the differential in hardware costs for projects with small-to-medium 
production runs. It could be that a few standard reconfigurable designs will 
eventually dominate the low-volume end of embedded systems (much as ARM and 
PowerPC now dominate the IP market). Who knows, perhaps some new process 
discovery will remove even the cost barrier. 

At any rate, reconfigurable hardware is a technology to watch in the future. 

Works Cited 
1. Culbertson, W. Bruce et al. “Exploring Architectures for Volume 

Visualization on the Teramac Custom Computer,” in Proceedings of the 1996 
IEEE Symposium on FPGA’s for Custom Computing Machines. Napa Valley, CA, 
1996, 80–88. 

2. Gott, Robert A. “Reconfigurable Processor Reincarnates the Venerable 
8032.” Computer Design, October 1998, 38. 

3. Snider, Greg et al. “The Teramac Configurable Computer Engine,” in 
Will Moore and Wayne Luk, editors, Field Programmable Logic and Applications. 
Berlin: Springer-Verlag, 1995, 44.  



Index 

Symbols  
#pragma 90  
_asm 90  
_getmem() 81  
_main 75, 78  

Numerics  
5001 Forum 
See Nexus  

A  
absolute address 86  
access time 178  
address spaces 
code 71  
data 71  
I/O 72  
system 71  
unpopulated 72  
addressing mode 86  
algorithm 
laser printer 8, 48  
partitioning 8  
allocation 
dynamic 71  
architectural simulator 101, 115  
arguments 
passing 90  
ARM 56  
ASIC 50, 55, 62, 92  
revision cost 58  
assembly 
generating 76  
inline 38, 90  
pseudo-instruction 83  
atomic code 99  
automata 
See statechart  
automatic variables 71  

B  
back annotation 107  
background debug mode 
See BDM  
BDM 118, 149–155  
command set 154  
pinout 152  
bed of nails 155  
benchmarks 26–32  
Dhrystone 26  
distortions 27  



EEMBC 29  
LAPD 27  
MIPS 26  
big endian 
See endian  
bitwise operation 92  
black-box tests 189, 191–192  
board support package 
See BSP  
board tester 155  
bond-outs 140  
boot loader 105  
boundary value tests 191  
breakpoint xxiv, 116, 118–119, 122  
hardware 173  
register 119  
BSP 35, 102  
bugs 
See also testing  
cost 53, 58, 187  
historical 189  
realtime 195  
synchronization 99  
burglar alarm 98  
byte order 12, 112–114  
See also endian  

C  
C run-time 78  
cache 95, 139–140  
D-cache 139  
hit 101  
I-cache 139  
performance 204  
traceable 140  
triggering 141  
CASE tools 107  
cast 92  
checksum 
ROM 78  
chip vendors 
and tools 220–224  
CMOS xxii  
code 
coverage 144  
density vs speed 95  
generation 39  
optimization 80, 93  
patches 14  
placement 82  
quality 144  
section 84  
size 
bloat 106  
reducing size 80  



space 71  
placeholder 85  
codesign 
See co-verification  
CodeTEST 203  
ColdFIRE 127, 151–152, 154  
command file 
linker 84–85  
COMMON 86  
communications port 121, 123  
compiler 39–40  
benchmarking 40  
choosing 39  
code 
generation 39  
compile only 76  
embedded C++ 39  
features 38  
libraries 39  
optimization 39, 142  
RTOS support 39  
startup code 39  
VHDL 51  
compliance testing 17  
condition coverage 193  
constant storage 71  
context 
saving 74, 80  
core 25  
corruption 105  
cost xx  
coverage 144, 189  
See also testing and white-box tests  
cache 200  
decision 198  
hardware instrumentation 199  
ISR 201  
logic analyzer 200  
measuring 197–201  
modified condition 198  
software instrumentation 197  
tools 198  
co-verification 61, 196  
critical 
sequence 195  
cross compiler 38  
cross-triggering 177, 180  
crt0 78–79  
customer interviews 4, 6  

D  
data 
section 84  
space 71  
Dataquest 106  

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



D-cache 139  
dead bugs 13  
dead code 204  
deadline 196  
debugger xxiv  
entry point 166  
front end 116  
remote 115–121  
debugging 14, 120, 149  
See also BDM  
See also intrusion  
See also JTAG  
See also Nexus  
and overlay memory 177  
and watchdog 104  
breakpoint 116  
circuitry xxvi, 141  
core 154  
execution time 132  
experiment deisgn 145  
host-based 112  
importance of strategy 38  
information 69, 205  
ISR 174  
ISS 114  
kernel 14, 111, 115, 117–121, 166, 169  
loop problems 134  
multiple processors 157  
on-chip support xxvi, 41, 120, 141  
real-time 154  
RTOS aware 195  
RTOS task 133  
run control 116, 166  
single-step 116  
source level 132  
stub code 49  
support 140  
tools 36, 40  
trace facilities 169  
with cache 139  
write to const 177  
write to ROM 177  
decision 
coverage 192, 198  
path 192  
point 192  
design 
methodology 106  
verification 60  
design cycle 
See life cycle  
development environment 69  
Dhrystone 26–27  
direct memory access (DMA) 108  
disable interrupt 75, 97–98  
disassembler 76  



distributed emulator 165, 180  
divide by zero 71  
DMA 
See direct memory access  
download 
and flash memory 105  
program 121, 124  
DSP 213  
duality 
hardware/software 48  
dynamic 
allocation 71, 80  
memory use 202  
RAM 101  

E  
EEMBC 29–30  
eJTAG 
See JTAG  
electronic design tools 60  
embedded C++ 39  
emulator 168, 179  
distributed 165, 180  
port 123  
ROM xxv, 41, 111, 120–125, 165  
See also ICE  
END 87  
endian 112–114  
engineer 
retread 58  
environmental conditions xviii, xxiii  
error guessing 191, 193  
evaluation board 126  
exception 70  
table 75, 97  
tests 191  
vector 71, 82, 173  
execution environment 70–77  
extender card 126  
external 91  
external symbol 86  

F  
fabless chip vendors 57  
fabrication 
See also IC  
FCC regulations 17  
fetch–execute cycle 75  
finite state machine 
See FSM  
fixed-point library 80  
flash memory 104–105  
floating-point 80  
emulation 7  
floating-point unit 48  



See also FPU  
flowcharts 98  
FORMAT 87  
FP 77  
FPGA 43, 210–213  
FPU 48  
frame pointer See FP  
free memory 72  
FSM 107–108  
See statechart  
function 77  
linkage 71, 75, 77  
preamble 77  
reentrant 99–100  
functional tests 
See also testing  
See black-box tests  

G  
geometries 50  
GEPDIS 
See Nexus  
glass-box tests 
See also white-box tests  
global 86  
storage 71  
graphics accellerators 50  
gray-box testing 193  
green wires 13, 59  

H  
HALT 154  
Halting Theorem 186  
hard real-time 196  
hardware 
breakpoint 173  
instability 150  
manipulating 89  
reconfigurable 209, 212–213, 225  
simulation 60  
trends 50  
hardware/simulation 196  
hardware/software 
duality 48  
partition 2, 7  
hardware-assist xxvi  
heap 72  
hazzards 81  
host-based debugging 112  

I  
I/O 
address space 89  
in C 89  



limitations xxiv  
memory-mapped 91  
port-mapped 90  
space 72  
IC 
design 60  
fabrication 50  
I-cache 139  
See also cache  
ICE 41, 165–183  
connecting 170  
coverage bit 200  
cross triggering 177, 180  
overlay memory 175  
timing constraints 178  
triggers 181  
usability 181  
IEEE 1149.1 
See JTAG  
IEEE ISTO-5001 
See Nexus  
IEEE-695 87  
in-circuit emulator 
See ICE  
in-circuit programmability 
See flash memory  
initialization system xxiv  
inline assembly 38, 90  
Instruction 62  
instruction set simulator 
See ISS  
integration 
testing 194  
intellectual property 56  
internal symbol 86  
interrupt 70, 97–98, 166  
context 74  
disabling 75, 97–98  
function 38  
latency 97  
linkage 71  
nested 98  
response 74–76  
vector 71, 116, 166  
interrupt service routine 
See ISR  
interviews, customer 4, 6  
intrusion 
compiler 142  
coverage tools 198  
physical 125  
realtime 125  
signal 125  
ISR 75, 97–99, 101, 117, 121, 153, 173  
See also interrupt  
coverage 201  



execution time 101  
time-critical 101  
ISS 62, 112  
debugging with 114  
ISTO-5001 
See Nexus  
iteration and implementation 2  

J  
JSR 75–76  
JTAG 118, 140, 149, 155–156, 158–160  
addressable loops 157  
commands 157  
pin definition 158  

K  
kernel 
debug 115, 117–121 

L  
LAPD benchmark 27  
laser printer algorithm 8, 48  
latency 
interrupt 97  
library 39  
precompiled 84  
run-time 80  
shared 84  
life cycle 1–19  
detailed design phase 11  
integration phase 12–15, 54  
iteration and implementation phase 10  
maintenance and upgrade phase 17–19  
partitioning 7, 47  
processor selection 2, 21  
product specification phase 4–7  
shortening 55  
test phase 15–17  
tool view 2  
limitations 138  
Link Access Protocol-D 
See LAPD  
linker 69, 82–87, 91  
linker commands 84–85, 91–92  
COMMON 86  
END 87  
FORMAT 87  
LISTMAP 86  
LOAD 87  
NAME 86  
ORDER 86  
PAGE 86  
PUBLIC 86  
TESTCASE 86  



listing file 39, 76  
little endian 
See endian  
LNK 77  
loaders 69  
loading program 116, 121–122  
local variable 
and stack frame 77  
logging 
See trace  
logic analyzer 41–144, 165, 169, 198  
See also state transitions  
See also triggers  
and profiling 142  
cache 139  
physical connection 138  
preprocessor 138  
source display 132  

M  
main() 75, 78  
maintenance 206  
malloc() 72, 80–81  
manufacturer 
semiconductor 
See chip vendor  
mapper memory 177  
market research 4, 6  
mechanical access 126–127  
memory 
access time 178  
constants 71  
coverage bit 200  
flash 104  
free 72  
management 81, 84  
management unit 175  
map 70, 72, 92, 176  
mapping 176  
modifying 116  
nonvolatile 104  
organization 70  
overlay 
See also shadow  
substitution xxv, 15, 179  
wait states 178  
memory-mapped I/O 72, 91  
message-passing architecture 108  
MF5206e 127, 151  
microprocessor core 25  
microprocessor vs. microcontroller 24  
microprogrammer 105  
MIPS 26  
modified condition decision coverage 198  
modifying memory 116  



module testing 
See testing  
monitor programs 169  
mutual access 99  

N  
NAME 86  
nested interrupts 98  
NetROM xxv  
new 72, 80  
Nexus 149, 159  
IEEE ISTO-5001 141  
levels of compliance 160  
NMI 102, 117, 166–167  
noncachable data 95  
non-maskable interrupt 
See NMI  
NRE charge 60  
n-wire 150–151  

O  
object file 82  
object management group (OMG) 106  
object module 
relocatable 84  
on-chip circuitry 
performance counters 205  
optimization 39  
and pointers 95  
code 80  
compiler 142  
ORDER 86  
ORG 83  
overclocking xxii  
overflow 71  
overlay memory 174–175  
See also shadow memory and substitution memory  

P  
package 126  
PAGE 86  
parameters 
stack frame 77  
partitioning 47  
decision 7  
hardware/software 7  
HW/SW convergence 52–58  
problem space 49  
revising 59  
tools 49  
PBX 206  
performance 
analyzer 41  
cache 204  



improving 18  
measurements 26–32, 143  
measuring 142  
on-chip circuitry 205  
processor 22  
testing 192, 201–206  
physical 
connection 138  
intrusion 125  
pointer 
and code optimization 95  
polling loop 94, 97  
POP 75  
port 
communication 121, 123  
emulator 123  
port-mapped I/O 90  
POST 78  
post-processing 
trace data 132  
power 
constraints xviii  
consumption xxii  
failure 167  
power-up 105  
precompiled library 84  
preprocessor 138  
printf() 80  
for debugging 14  
printIntAsHex() 80  
printStr() 80  
priority 
See interrupt  
probe effect 
See intrusion  
processor 
availability 22  
family 42  
military specs 22  
O/S support 23  
performance 22, 26  
selection xix, 2, 21  
tool support 23  
product 
specification 2, 4–7  
testing 15  
profiling 142  
See also performance  
program 
counter 74, 77, 140  
loading 116, 121, 124  
sections 84  
programming techniques 89–106  
project management 6  
pseudo-instruction 83  
PUBLIC 86  



PULSE 152  
PUSH 75  

Q  
queue size 196  

R  
RAM 
shadow 166  
random tests 192  
real-time 
and benchmarks 28  
constraints xx  
time-critical xx  
time-sensitive xx  
deadlines 196  
debugging 154  
failure modes 195  
response time 195  
system integration 14  
trace 15, 152, 169  
reconfigurable hardware 209, 212–213, 225  
reentrancy 98–99  
function 99–100  
register 
debug 154  
frame pointer 77  
program counter 74, 77  
stack pointer 74  
viewing 116  
regression testing 188, 196  
regulatory compliance 17  
relative byte count 83  
relocatable 
module 69, 82–84  
remote debugger 111, 115–121  
reprogramming 105  
research 4  
market 4, 6  
RESET 73–74, 78, 102, 120, 167  
resource constraints xxiii  
respin 58–59  
response time 195  
RETI 75  
retread engineer 58  
return 
from main() 75  
return address 71, 75–76  
and stack frame 77  
reverse engineering 18  
RF suppression 17  
risk 60, 186  
ROM 71  
breakpoint xxiv  
checksum 78  



emulator xxv, 41, 111, 120–125, 165  
See also emulator,ROM  
shadow 166  
space xxiv  
RTE 75  
RTOS xx, 23, 32–37, 64–65, 80, 102, 116, 133, 197, 202  
and performance 202  
and watchdog 104  
availability 32  
checklist 33  
debugging tools 36  
device drivers 35  
integration testing 195  
performance 35  
services 37  
support 39  
technical support 36  
RTS 75, 77  
run control 15, 116, 166, 173, 179  
run-time environment 70, 77–81  
run-time library 80  

S  
safety critical 81  
safety factor 73  
sampling 144  
sanity check 103  
selection process 21, 41  
self-test 78, 103  
semiconductor 
manufacturer 
See chip vendor  
shadow 
memory 175  
RAM 166  
register 93  
ROM 166  
shared library 84  
shift register 155  
shrink 25  
side-effect 93  
signal intrusion 125  
signature words 73  
silicon compilation 
See VHDL  
simulation 60  
bus functional model 62  
hardware 60  
simulator 
architectural 115  
instruction 
See ISS  
VHDL 196  
single-step 116, 119  
skew 173, 180  

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



sleep mode xxi  
SoC 55, 60, 209  
socket adapter 172  
software 
architecture 14  
interrupt xxiv, 116  
mission-critical 186  
safety-critical 186  
SOS 
See SoC  
source module 83  
SP 73–74  
specifications 
product 4–7  
timing 178  
SPECmark 31  
speed vs density 95  
S-Record 87  
stack 70–71, 73, 75, 90  
depth checking 103  
frame 71, 77, 91  
location 71  
overflow 73  
pointer 73  
protocol 90  
startup 
code 39, 78–80  
vector 78  
state 
modes 131  
transition 133, 136  
statechart 106, 108–109  
statement coverage 192, 198  
See also testing  
static storage 71  
statistical profiling 142  
status bits 94  
stress tests 191  
structured analysis 107  
stub code 49, 61  
substitution memory xxv, 15, 180  
See also overlay memory  
symbol 
external 86  
internal 86  
symbol table 69, 83, 86, 132  
symbolic trigger 133  
synchronization 99  
system 
integrity check 78  
recovery 105  
startup xxiv, 70, 73–80  
system integration 194  
system space 71  
system-on-silicon 
See SoC  



T  
TESTCASE 86  
testing 185, 194–208  
See also Chapter 9  
See also intrusion  
and cache 205  
and maintenance 206  
benefits 187  
black-box 191–192  
See also black-box tests  
boundry value 191  
cases 191  
coverage 189  
error guessing 191  
evaluating 197  
exception 191  
glass-box 
See white-box testing  
intrusion 198  
memory use 202  
mission-critical 186  
objectives 186  
performance 192  
power constraint xxi  
random 192  
regression 188  
safety-critical 186  
stress 191  
stub code 49  
unit 188  
vectors 60  
white-box 189, 192  
See also white-box tests  
threads 99  
time 
to insight 19  
to market 19, 42, 207  
to money 43, 220  
time-critical ISR 101  
timer 
watchdog 
See watchdog timer  
timing 
margin 178  
specification 178  
tools 38  
business issues 214, 220–224  
debugging 36, 40  
partitioning 49  
product specification 6  
RTOS compatibility 34  
trace 
buffer 143  
low-intrusion 197  
post-processing 132  



printf() 197  
real-time 169  
statements 14  
techniques 140  
visibility 140  
traceable cache 140  
transistors xxii  
transition board 127  
translation sequence 83  
transmitter buffer empty (TBMT) 94  
TRAP instruction xxiv  
trap vector 119  
trigger 132–133, 135–137, 181  
cache 141  
in ICE 169  
resources 133  
symbolic 133  

U  
UART 94  
virtual 123  
UML 89, 106  
Unified Modeling Language 
See UML  
unit testing 188  
universal asynchronous receiver/transmitter 
See UART  
UNLNK 77  
upgrade 18  

V  
variable 
global 86  
vector 97  
exception 173  
interrupt 166  
startup 78  
table 82  
VHDL 51, 53, 56–57, 62  
compiler 51, 56  
example 52  
HW/SW convergence 52–58  
simulator 60, 196  
test vectors 60  
video accelerator 48  
volatile 91, 93, 95  
VxWorks 116  

W  
wait states 178  
watchdog timer xxi, 102, 104, 167  
WDDATA 152  
white-box tests 189, 192  
branch coverage 192  



condition coverage 193  
decision coverage 192  
statement coverage 192  
wiggler 150–151  
word size 112  



List of Figures 
Introduction  
Figure 1: NetROM.  

Chapter 1: The Embedded Design Life Cycle 
Figure 1.1: Embedded design life cycle diagram.  
Figure 1.2: Tools used in the design process.  
Figure 1.3: The laser printer design.  
Figure 1.5: An example of the endianness problem in I/O addressing.  
Figure 1.4: Where design time is spent.  

Chapter 2: The Selection Process 
Figure 2.1: Choosing the right processor.  
Figure 2.2: Microcontrollers versus microprocessors.  
Figure 2.3: Dhrystone comparison chart.  

Chapter 3: The Partitioning Decision 
Figure 3.1: Evolution of SoS.  
Figure 3.2: Another view of hardware/software duality.  
Figure 3.3: Where design time is spent.  
Figure 3.4: Shortening the design cycle.  
Figure 3.5: Hardware/software distinction blurring.  
Figure 3.6: Memory bus cycle of microprocessors.  
Figure 3.7: Conversion process.  
Figure 3.8: Instructions communicating directly.  
Figure 3.9: Throughput calculation.  

Chapter 4: The Development Environment 
Figure 4.1: Memory map of processor.  
Figure 4.2: Subroutines.  
Figure 4.3: crt0 function  
Figure 4.4: Embedded software development process.  
Figure 4.5: Assembly lafnguage snippet.  

Chapter 5: Special Software Techniques 
Figure 5.1: Burglar alarm flowchart.  
Figure 5.2: Watchdog timer.  

Chapter 6: A Basic Toolset 
Figure 6.1: Storing a char type.  
Figure 6.2: 16-bit wide memory storing the string.  
Figure 6.3: Big and Little Endians.  
Figure 6.4: Typical architectural block diagram.  
Figure 6.5: Debug kernel in a target system.  
Figure 6.6: Breakpoints.  
Figure 6.7: ROM emulator.  
Figure 6.8: ROM emulators.  
Figure 6.9: Evaluation board.  
Figure 6.10: Transition board.  
Figure 6.11: Logic analyzer display.  
Figure 6.12: Logic analyzer data table.  
Figure 6.13: Display with interleaved source code.  
Figure 6.14: Symbolic triggering.  
Figure 6.15: Memory system diagram.  
Figure 6.16: Triggers.  
Figure 6.17: Preprocessor connection sequence.  

Chapter 7: BDM, JTAG, and Nexus 
Figure 7.1: n-Wire tool.  



Figure 7.2: Pinout for the Motorola BDM debug interface.  
Figure 7.3: Processor codes output.  
Figure 7.4: BDM command set.  
Figure 7.5: JTAG loop.  
Figure 7.6: Debug core using JTAG.  
Figure 7.7: Pin descriptions.  
Figure 7.8: Nexus interface.  
Figure 7.9: Compliance classes 1 through 4.  
Figure 7.10: Nexus dynamic debugging features.  
Figure 7.11: I/O pins.  

Chapter 8: The ICE — An Integrated Solution 
Figure 8.1: General emulator design.  
Figure 8.2: Emulation control system.  
Figure 8.3: Mechanical adapter.  
Figure 8.4: Emulation control system.  

Chapter 9: Testing 
Figure 9.1: The cost to fix a problem.  
Figure 9.2: Memory management test tool.  
Figure 9.3: CodeTEST test tool.  

Chapter 10: The Future 
Figure 10.1: FPGA.  
Figure 10.2: Gates.  
Figure 10.3: Interconnecting Elements of FPGA.  
Figure 10.4: Worldviews.  



List of Tables 
Chapter 2: The Selection Process 
Table 2.1: EEMBC tests list.  
Table 2.2: Real-time operating system checklist. [4]  

Chapter 4: The Development Environment 
Table 4.1: Linker commands.  

Chapter 6: A Basic Toolset 
Table 6.1: Advantages/disadvantages of the debug kernel.  
Table 6.2: Advantages/disadvantages of ROM emulator.  

List of Listings 
Chapter 4: The Development Environment 
Listing 4.1: Example of a linker command file. (from Microtec Research, Inc.).  

Chapter 5: Special Software Techniques 
Listing 5.1: UART code.  
Listing 5.2: Non-reentrant function.  

List of Sidebars 
Introduction  
Speed vs. Power  
A ROM Emulator  

Chapter 1: The Embedded Design Life Cycle 
The Ideal Customer Research Tour  
Flight Deck on the Bass Boat?  
Laser Printer Design Algorithm  
Big Endian/Little Endian Problem  
Debugging an Embedded System  
Compliance Testing  

Chapter 2: The Selection Process 
Distorting the Dhrystone Benchmark  
My Ideal Compiler  

Chapter 3: The Partitioning Decision 
Merging Hardware and Software Design  
Fabless Chip Vendors  
Co-Verification and Performance  

Chapter 4: The Development Environment 
Why JMP_main Was Used  
Advantages of Relocatable Modules  
ROM Code Space as a Placeholder  

Chapter 5: Special Software Techniques 
Real-Time Operating Systems (RTOS)  
One Success Story  

Chapter 6: A Basic Toolset 
Debug with ISS  
Implementing Breakpoints  
Signal Intrusion  
Physical Intrusion  
Designing for Test  
Other Kinds of Intrusion  
How Triggers Work  
Experiment Design  



Chapter 7: BDM, JTAG, and Nexus 
Hardware Instability  

Chapter 8: The ICE — An Integrated Solution 
Why Emulators Aren’t Used More  
Making the Connection  
So what’s a good trigger signal?  
Distributed Emulators  

Chapter 9: Testing 
Developing Mission-Critical Software Systems  
Infamous Software Bugs  
Dimensions of Integration  
Measuring More than Statement Execution  
Dynamic Memory Use  

Chapter 10: The Future 
It’s the Fabs  

 


	Senza nome



