

Essent ia l Linux Device Dr ivers
by Sreekrishnan Venkateswaran

Publisher: Prent ice Hall
Pub Date: March 2 7 , 2 0 0 8
Print I SBN-10: 0 - 1 3 - 2 3 9 6 5 5 - 6
Print I SBN-13: 9 7 8 - 0 - 1 3 - 2 3 9 6 5 5 - 4
Pages: 7 4 4

Table of Contents
| I ndex

Overview

"Probably the m ost wide ranging and com plete Linux device dr iver book I 've read."

- -Alan Cox, Linux Guru and Key Kernel Developer

"Very com prehensive and detailed, covering alm ost every single Linux device dr iver type."

- - Theodore Ts'o, First Linux Kernel Developer in North Am erica and Chief Plat form St rategist of the Linux
Foundat ion

The Most Pract ica l Guide to W r it ing Linux Device Dr ivers

Linux now offers an except ionally robust environm ent for dr iver developm ent : with today's kernels, what once
required years of developm ent t im e can be accom plished in days. I n this pract ical, exam ple-driven book, one of
the world's m ost experienced Linux dr iver developers system at ically dem onst rates how to develop reliable Linux
drivers for vir tually any device. Essent ia l Linux Device Dr ivers is for any program m er with a working
knowledge of operat ing system s and C, including program m ers who have never writ ten dr ivers before.
Sreekrishnan Venkateswaran focuses on the essent ials, br inging together all the concepts and techniques you
need, while avoiding topics that only m at ter in highly specialized situat ions. Venkateswaran begins by reviewing
the Linux 2.6 kernel capabilit ies that are m ost relevant to dr iver developers. He int roduces sim ple device
classes; then turns to serial buses such as I 2C and SPI ; external buses such as PCMCI A, PCI , and USB; video,
audio, block, network, and wireless device dr ivers; user-space drivers; and drivers for em bedded Linux–one of
today's fastest growing areas of Linux developm ent . For each, Venkateswaran explains the technology, inspects
relevant kernel source files, and walks through developing a com plete exam ple.

• Addresses drivers discussed in no other book, including dr ivers for I 2C, video, sound, PCMCI A, and different
types of flash m em ory

• Dem yst ifies essent ial kernel services and facilities, including kernel threads and helper interfaces

• Teaches polling, asynchronous not ificat ion, and I/ O cont rol

• I nt roduces the I nter- I ntegrated Circuit Protocol for em bedded Linux dr ivers

• Covers m ult im edia device dr ivers using the Linux-Video subsystem and Linux-Audio fram ework

• Shows how Linux im plem ents support for wireless technologies such as Bluetooth, I nfrared, WiFi, and cellular
networking

• Describes the ent ire dr iver developm ent lifecycle, through debugging and m aintenance

• I ncludes reference appendixes covering Linux assem bly, BI OS calls, and Seq files

Essent ia l Linux Device Dr ivers
by Sreekrishnan Venkateswaran

Publisher: Prent ice Hall
Pub Date: March 2 7 , 2 0 0 8
Print I SBN-10: 0 - 1 3 - 2 3 9 6 5 5 - 6
Print I SBN-13: 9 7 8 - 0 - 1 3 - 2 3 9 6 5 5 - 4
Pages: 7 4 4

Table of Contents
| I ndex

Overview

"Probably the m ost wide ranging and com plete Linux device dr iver book I 've read."

- -Alan Cox, Linux Guru and Key Kernel Developer

"Very com prehensive and detailed, covering alm ost every single Linux device dr iver type."

- - Theodore Ts'o, First Linux Kernel Developer in North Am erica and Chief Plat form St rategist of the Linux
Foundat ion

The Most Pract ica l Guide to W r it ing Linux Device Dr ivers

Linux now offers an except ionally robust environm ent for dr iver developm ent : with today's kernels, what once
required years of developm ent t im e can be accom plished in days. I n this pract ical, exam ple-driven book, one of
the world's m ost experienced Linux dr iver developers system at ically dem onst rates how to develop reliable Linux
drivers for vir tually any device. Essent ia l Linux Device Dr ivers is for any program m er with a working
knowledge of operat ing system s and C, including program m ers who have never writ ten dr ivers before.
Sreekrishnan Venkateswaran focuses on the essent ials, br inging together all the concepts and techniques you
need, while avoiding topics that only m at ter in highly specialized situat ions. Venkateswaran begins by reviewing
the Linux 2.6 kernel capabilit ies that are m ost relevant to dr iver developers. He int roduces sim ple device
classes; then turns to serial buses such as I 2C and SPI ; external buses such as PCMCI A, PCI , and USB; video,
audio, block, network, and wireless device dr ivers; user-space drivers; and drivers for em bedded Linux–one of
today's fastest growing areas of Linux developm ent . For each, Venkateswaran explains the technology, inspects
relevant kernel source files, and walks through developing a com plete exam ple.

• Addresses drivers discussed in no other book, including dr ivers for I 2C, video, sound, PCMCI A, and different
types of flash m em ory

• Dem yst ifies essent ial kernel services and facilities, including kernel threads and helper interfaces

• Teaches polling, asynchronous not ificat ion, and I/ O cont rol

• I nt roduces the I nter- I ntegrated Circuit Protocol for em bedded Linux dr ivers

• Covers m ult im edia device dr ivers using the Linux-Video subsystem and Linux-Audio fram ework

• Shows how Linux im plem ents support for wireless technologies such as Bluetooth, I nfrared, WiFi, and cellular
networking

• Describes the ent ire dr iver developm ent lifecycle, through debugging and m aintenance

• I ncludes reference appendixes covering Linux assem bly, BI OS calls, and Seq files

Essent ia l Linux Device Dr ivers
by Sreekrishnan Venkateswaran

Publisher: Prent ice Hall
Pub Date: March 2 7 , 2 0 0 8
Print I SBN-10: 0 - 1 3 - 2 3 9 6 5 5 - 6
Print I SBN-13: 9 7 8 - 0 - 1 3 - 2 3 9 6 5 5 - 4
Pages: 7 4 4

Table of Contents
| I ndex

Copyright
Prent ice Hall Open Source Software Developm ent Series
Foreword
Preface
Acknowledgm ents
About the Author
Chapter 1. I nt roduct ion

Evolut ion
The GNU Copyleft
Kernel.org
Mailing Lists and Forum s
Linux Dist r ibut ions
Looking at the Sources
Building the Kernel
Loadable Modules
Before Start ing

Chapter 2. A Peek I nside the Kernel
Boot ing Up
Kernel Mode and User Mode
Process Context and I nterrupt Context
Kernel Tim ers
Concurrency in the Kernel
Process Filesystem
Allocat ing Mem ory
Looking at the Sources

Chapter 3. Kernel Facilit ies
Kernel Threads
Helper I nterfaces
Looking at the Sources

Chapter 4. Laying the Groundwork
I nt roducing Devices and Drivers
I nterrupt Handling
The Linux Device Model
Mem ory Barr iers
Power Managem ent
Looking at the Sources

Chapter 5. Character Drivers
Char Driver Basics
Device Exam ple: System CMOS
Sensing Data Availabilit y
Talking to the Parallel Port
RTC Subsystem
Pseudo Char Drivers
Misc Drivers
Character Caveats
Looking at the Sources

Chapter 6. Serial Drivers
Layered Architecture
UART Drivers
TTY Drivers
Line Disciplines

Looking at the Sources
Chapter 7. I nput Drivers

I nput Event Drivers
I nput Device Drivers
Debugging
Looking at the Sources

Chapter 8. The I nter- I ntegrated Circuit Protocol
What 's I 2C/ SMBus?
I 2C Core
Bus Transact ions
Device Exam ple: EEPROM
Device Exam ple: Real Tim e Clock
I 2C-dev
Hardware Monitor ing Using LM-Sensors
The Serial Peripheral I nterface Bus
The 1-Wire Bus
Debugging
Looking at the Sources

Chapter 9. PCMCI A and Com pact Flash
What 's PCMCI A/ CF?
Linux-PCMCI A Subsystem
Host Cont roller Drivers
PCMCI A Core
Driver Services
Client Drivers
Tying the Pieces Together
PCMCI A Storage
Serial PCMCI A
Debugging
Looking at the Sources

Chapter 10. Peripheral Com ponent I nterconnect
The PCI Fam ily
Addressing and I dent ificat ion
Accessing PCI Regions
Direct Mem ory Access
Device Exam ple: Ethernet -Modem Card
Debugging
Looking at the Sources

Chapter 11. Universal Serial Bus
USB Architecture
Linux-USB Subsystem
Driver Data St ructures
Enum erat ion
Device Exam ple: Telem et ry Card
Class Drivers
Gadget Drivers
Debugging
Looking at the Sources

Chapter 12. Video Drivers
Display Architecture
Linux-Video Subsystem
Display Param eters
The Fram e Buffer API
Fram e Buffer Drivers
Console Drivers
Debugging
Looking at the Sources

Chapter 13. Audio Drivers
Audio Architecture
Linux-Sound Subsystem
Device Exam ple: MP3 Player
Debugging
Looking at the Sources

Chapter 14. Block Drivers

Storage Technologies
Linux Block I / O Layer
I / O Schedulers
Block Driver Data St ructures and Methods
Device Exam ple: Sim ple Storage Cont roller
Advanced Topics
Debugging
Looking at the Sources

Chapter 15. Network I nterface Cards
Driver Data St ructures
Talking with Protocol Layers
Buffer Managem ent and Concurrency Cont rol
Device Exam ple: Ethernet NI C
I SA Network Drivers
Asynchronous Transfer Mode
Network Throughput
Looking at the Sources

Chapter 16. Linux Without Wires
Bluetooth
I nfrared
WiFi
Cellular Networking
Current Trends

Chapter 17. Mem ory Technology Devices
What 's Flash Mem ory?
Linux-MTD Subsystem
Map Drivers
NOR Chip Drivers
NAND Chip Drivers
User Modules
MTD-Ut ils
Configuring MTD
eXecute I n Place
The Firm ware Hub
Debugging
Looking at the Sources

Chapter 18. Em bedding Linux
Challenges
Com ponent Select ion
Tool Chains
Em bedded Boot loaders
Mem ory Layout
Kernel Port ing
Em bedded Drivers
The Root Filesystem
Test I nfrast ructure
Debugging

Chapter 19. Drivers in User Space
Process Scheduling and Response Tim es
Accessing I / O Regions
Accessing Mem ory Regions
User Mode SCSI
User Mode USB
User Mode I 2C
UI O
Looking at the Sources

Chapter 20. More Devices and Drivers
ECC Report ing
Frequency Scaling
Em bedded Cont rollers
ACPI
I SA and MCA
FireWire
I ntelligent I nput / Output

Am ateur Radio
Voice over I P
High-Speed I nterconnects

Chapter 21. Debugging Device Drivers
Kernel Debuggers
Kernel Probes
Kexec and Kdum p
Profiling
Tracing
Linux Test Project
User Mode Linux
Diagnost ic Tools
Kernel Hacking Config Opt ions
Test Equipm ent

Chapter 22. Maintenance and Delivery
Coding Style
Change Markers
Version Cont rol
Consistent Checksum s
Build Scripts
Portable Code

Chapter 23. Shut t ing Down
Checklist
What Next?

Appendix A. Linux Assem bly
Debugging

Appendix B. Linux and the BI OS
Real Mode Calls
Protected Mode Calls
BI OS and Legacy Drivers

Appendix C. Seq Files
The Seq File Advantage
Updat ing the NVRAM Driver
Looking at the Sources

I ndex

Copyr ight

Many of the designat ions used by m anufacturers and sellers to dist inguish their products are claim ed as
t radem arks. Where those designat ions appear in this book, and the publisher was aware of a t radem ark claim ,
the designat ions have been printed with init ial capital let ters or in all capitals.

The author and publisher have taken care in the preparat ion of this book, but m ake no expressed or im plied
warranty of any kind and assum e no responsibilit y for errors or om issions. No liabilit y is assum ed for incidental
or consequent ial dam ages in connect ion with or ar ising out of the use of the inform at ion or program s contained
herein.

The publisher offers excellent discounts on this book when ordered in quant ity for bulk purchases or special
sales, which m ay include elect ronic versions and/ or custom covers and content part icular to your business,
t raining goals, m arket ing focus, and branding interests. For m ore inform at ion, please contact :

U.S. Corporate and Governm ent Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact :

I nternat ional Sales
internat ional@pearson.com

Visit us on the Web: www.inform it .com / ph

Library of Congress Cataloging- in-Publicat ion Data:

Venkateswaran, Sreekrishnan, 1972-
 Essent ial Linux device drivers / Sreekrishnan Venkateswaran.- - 1st ed.
 p. cm .
 I SBN 0-13-239655-6 (hardback : alk. paper) 1. Linux device drivers (Com puter program s)
I . Tit le.
 QA76.76.D49V35 2008
 005.4'32- -dc22
 2008000249

Copyright © 2008 Pearson Educat ion, I nc.

All r ights reserved. Printed in the United States of Am erica. This publicat ion is protected by copyright , and
perm ission m ust be obtained from the publisher pr ior to any prohibited reproduct ion, storage in a ret r ieval
system , or t ransm ission in any form or by any m eans, elect ronic, m echanical, photocopying, recording, or
likewise. For inform at ion regarding perm issions, write to:

Pearson Educat ion, I nc
Rights and Cont racts Departm ent
501 Boylston St reet , Suite 900
Boston, MA 02116
Fax (617) 671 3447

This m aterial m ay be dist r ibuted only subject to the term s and condit ions set forth in the Open Publicat ion
License, v1.0 or later (the latest version is present ly available at ht tp: / / www.opencontent .org/ openpub/) .

I SBN-13: 978-0-132-39655-4

http://www.opencontent.org/openpub/

Text pr inted in the United States on recycled paper at RR Donnelly in Crawfordsville, I N.

First pr int ing March 2008

Editor- in- Chief
Mark Taub

Execut ive Editor
Debra William s Cauley

Managing Editor
Gina Kanouse

Project Edito
Anne Goebel

Copy Editor
Keith Cline

I ndexer
Erika Millen

Proofreader
San Dee Phillips

Technica l Editors
Vam si Krishna
Jim Lieb

Publishing Coordinator
Heather Fox

I nter ior Designer
Laura Robbins

Cover Designer
Alan Clem ents

Com positor
Molly Sharp

Dedicat ion

This book is dedicated to the ten m illion visually challenged cit izens of I ndia. All author proceeds will go to
their cause.

Prent ice Hall Open Source Softw are Developm ent Ser i es

Arnold Robbins, Ser ies Editor

"Real w or ld code from rea l w or ld applicat ions"

Open Source technology has revolut ionized the com put ing world. Many large-scale projects are in product ion
use worldwide, such as Apache, MySQL, and Postgres, with program m ers writ ing applicat ions in a variety of
languages including Perl, Python, and PHP. These technologies are in use on m any different system s, ranging
from proprietary system s, to Linux system s, to t radit ional UNI X system s, to m ainfram es.

The Prent ice Hall Open Source Softw are Developm ent Ser i es is designed to br ing you the best of these
Open Source technologies. Not only will you learn how to use them for your projects, but you will learn from
them . By seeing real code from real applicat ions, you will learn the best pract ices of Open Source developers
the world over.

Tit les current ly in the ser ies include:

Linux® Debugging and Perform ance Tuning
Steve Best
0131492470, Paper, © 2006

C+ + GUI Program m ing with Qt 4
Jasm in Blanchet te, Mark Sum m erfield
0132354160, Hard, © 2008

The Definit ive Guide to the Xen Hypervisor
David Chisnall
013234971X, Hard, © 2008

Understanding AJAX
Joshua Eichorn
0132216353, Paper, © 2007

The Linux Program m er's Toolbox
John Fusco
0132198576, Paper, © 2007

Em bedded Linux Prim er
Christopher Hallinan
0131679848, Paper, © 2007

The Apache Modules Book
Nick Kew
0132409674, Paper, © 2007

SELinux by Exam ple
Frank Mayer, David Caplan, Karl MacMillan
0131963694, Paper, © 2007

UNI X to Linux® Port ing
Alfredo Mendoza, Chakarat Skawratananond,
Art is Walker
0131871099, Paper, © 2006

Rapid Web Applicat ions with TurboGears
Mark Ramm, Kevin Dangoor, Gigi Sayfan
0132433885, Paper, © 2007

Linux Program m ing by Exam ple
Arnold Robbins
0131429647, Paper, © 2004

The Linux ® Kernel Prim er
Claudia Salzberg, Gordon Fischer,
Steven Sm olski
0131181637, Paper, © 2006

Rapid GUI Program m ing with Python and Qt
Mark Sum m erfield
0132354187, Hard, © 2008

Essent ial Linux Device Drivers
Sreekrishnan Venkateswaran
0132396556, Hard, © 2008

New to the ser ies: Digita l Shor t Cuts

Short Cuts are short , concise, PDF docum ents designed specifically for busy technical professionals like you.
Each Short Cut is t ight ly focused on a specific technology or technical problem . Writ ten by indust ry experts and
best selling authors, Short Cuts are published with you in m ind — get t ing you the technical inform at ion that you
need — now.

Understanding AJAX:
Consum ing the Sent Data with XML and JSON
Joshua Eichorn
0132337932, Adobe Acrobat PDF, © 2007

Debugging Em bedded Linux
Christopher Hallinan
0131580132, Adobe Acrobat PDF, © 2007

Using BusyBox
Christopher Hallinan
0132335921, Adobe Acrobat PDF, © 2007

Forew ord

I f you're holding this book, you m ay be asking yourself: Why "yet another" Linux device dr iver book? Aren't
there already a bunch of them ?

The answer is: This book is a quantum leap ahead of the others.

First , it is up- to-date, covering recent 2.6 kernels. Second, and m ore im portant , this book is thorough. Most
device dr iver books just cover the topics described in standard Unix internals books or operat ing system books,
such as serial lines, disk dr ives, and filesystem s, and, if you're lucky, the networking stack.

This book goes m uch further; it doesn't shy away from the hard stuff that you have to deal with on m odern PC
and em bedded hardware, such as PCMCI A, USB, I 2C, video, audio, flash m em ory, wireless com m unicat ions, and
so on. You nam e it , if the Linux kernel talks to it , then this book tells you about it .

No stone is left unturned; no dark corner is left unillum inated.

Furtherm ore, the author has earned his st r ipes: I t 's a thr ill r ide just to read his descript ion of put t ing Linux on a
wristwatch in the late 1990s!

I 'm pleased and excited to have this book as part of the Prent ice Hall Open Source Software Developm ent
Series. I t is a shining exam ple of the excit ing things happening in the Open Source world. I hope that you will
find here what you need for your work on the kernel, and that you will enjoy the process, too!

Arnold Robbins
Series Editor

Preface

I t was the late 1990s, and at I BM we were put t ing the Linux kernel on a wristwatch. The target device was t iny,
but the task was turning out to be tough. The Mem ory Technology Devices subsystem didn't exist in the kernel,
which m eant that before a filesystem could start life on the watch's flash m em ory, we had to develop the
necessary storage driver from scratch. I nterfacing the watch's touch screen with user applicat ions was
com plicated because the kernel's input event dr iver interface hadn't been conceived yet . Get t ing X Windows to
run on the watch's LCD wasn't easy because it didn't work well with fram e buffer dr ivers. Of what use is a
waterproof Linux wristwatch if you can't st ream stock quotes from your bathtub? Bluetooth integrat ion with
Linux was several years away, and m onths were spent port ing a proprietary Bluetooth stack to I nternet -enable
the watch. Power m anagem ent support was good enough only to squeeze a few hours of juice from the watch's
bat tery; hence we had work cut out on that front , too. Linux- I nfrared was st ill unstable, so we had to coax the
stack before we could use an I nfrared keyboard for data ent ry. And we had to com pile the com piler and cross-
com pile a com pact applicat ion-set because there were no accepted dist r ibut ions in the consum er elect ronics
space.

Fast forward to the present : The baby penguin has grown into a healthy teenager. What took thousands of lines
of code and a year in developm ent back then can be accom plished in a few days with the current kernels. But to
becom e a versat ile kernel engineer who can m agically weave solut ions, you need to understand the m yriad
features and facilit ies that Linux offers today.

About the Book

Am ong the various subsystem s residing in the kernel source t ree, the dr ivers/ directory const itutes the single
largest chunk and is several t im es bigger than the others. With new and diverse technologies arr iving in popular
form factors, the developm ent of new device dr ivers in the kernel is accelerat ing steadily. The latest kernels
support m ore than 70 device dr iver fam ilies.

This book is about writ ing Linux device dr ivers. I t covers the design and developm ent of m ajor device classes
supported by the kernel, including those I m issed during m y Linux-on-Watch days. The discussion of each driver
fam ily starts by looking at the corresponding technology, m oves on to develop a pract ical exam ple, and ends by
looking at relevant kernel source files. Before foraying into the world of device dr ivers, however, this book
int roduces you to the kernel and discusses the im portant features of 2.6 Linux, em phasizing those port ions that
are of special interest to device dr iver writers.

Audience

This book is intended for the interm ediate- level program m er eager to tweak the kernel to enable new devices.
You should have a working knowledge of operat ing system concepts. For exam ple, you should know what a
system call is and why concurrency issues have to be factored in while writ ing kernel code. The book assum es
that you have downloaded Linux on your system , poked through the kernel sources, and at least skim m ed
through som e related docum entat ion. And you should be pret ty good in C.

Sum m ary of Chapters

The first 4 chapters prepare you to digest the rest of the book. The next 16 chapters discuss dr ivers for different
device fam ilies. A chapter that describes device driver debugging techniques com es next . The penult im ate
chapter provides perspect ive on m aintenance and delivery. We shut down by walking through a checklist that
sum m arizes how to set forth on your way to Linux-enablem ent when you get hold of a new device.

Chapter 1 , " I nt roduct ion," starts our t ryst with Linux. I t hurr ies you through downloading the kernel sources,
m aking t r iv ial code changes, and building a bootable kernel im age.

Chapter 2 , "A Peek I nside the Kernel," takes a br isk look into the innards of the Linux kernel and teaches you
som e m ust -know kernel concepts. I t first takes you through the boot process and then describes kernel services
part icular ly relevant to dr iver developm ent , such as kernel t im ers, concurrency m anagem ent , and m em ory
allocat ion.

Chapter 3 , "Kernel Facilit ies," exam ines several kernel services that are useful com ponents in the toolbox of
dr iver developers. The chapter starts by looking at kernel threads, which is a way to im plem ent background
tasks inside the kernel. I t then m oves on to helper interfaces such as linked lists, work queues, com plet ion
funct ions, and not ifier chains. These helper facilit ies sim plify your code, weed out redundancies from the kernel,
and help long- term m aintenance.

Chapter 4 , "Laying the Groundwork," builds the foundat ion for m astering the art of writ ing Linux device dr ivers.
I t int roduces devices and drivers by giving you a bird's-eye view of the architecture of a typical PC-com pat ible
system and an em bedded device. I t then looks at basic dr iver concepts such as interrupt handling and the
kernel's device m odel.

Chapter 5 , "Character Drivers," looks at the architecture of character device dr ivers. Several concepts
int roduced in this chapter, such as polling, asynchronous not ificat ion, and I / O cont rol, are relevant to
subsequent chapters, too, because m any device classes discussed in the rest of the book are "super" character
devices.

Chapter 6 , "Serial Drivers," explains the kernel layer that handles serial devices.

Chapter 7 , " I nput Drivers," discusses the kernel's input subsystem that is responsible for servicing devices such
as keyboards, m ice, and touch-screen cont rollers.

Chapter 8 , "The I nter- I ntegrated Circuit Protocol," dissects dr ivers for devices such as EEPROMs that are
connected to a system 's I2C bus or SMBus. This chapter also looks at other serial interfaces such as SPI bus and
1-wire bus.

Chapter 9 , "PCMCI A and Com pact Flash," delves into the PCMCI A subsystem . I t teaches you to write dr ivers for
devices having a PCMCI A or Com pact Flash form factor.

Chapter 10, "Peripheral Com ponent I nterconnect ," looks at kernel support for PCI and its derivat ives.

Chapter 11, "Universal Serial Bus," explores USB architecture and explains how you can use the services of the
Linux-USB subsystem to write dr ivers for USB devices.

Chapter 12, "Video Drivers," exam ines the Linux-Video subsystem . I t finds out the advantages offered by the
fram e buffer abst ract ion and teaches you to write fram e buffer dr ivers.

Chapter 13, "Audio Drivers," describes the Linux-Audio fram ework and explains how to im plem ent audio dr ivers.

Chapter 14, "Block Drivers," focuses on drivers for storage devices such as hard disks. I n this chapter, you also
learn about the different I / O schedulers supported by the Linux-Block subsystem .

Chapter 15, "Network I nterface Cards," is devoted to network device dr ivers. You learn about kernel networking
data st ructures and how to interface network dr ivers with protocol layers.

Chapter 16, "Linux Without Wires," looks at dr iving different wireless technologies such as Bluetooth, I nfrared,
WiFi, and cellular com m unicat ion.

Chapter 17, "Mem ory Technology Devices," discusses flash m em ory enablem ent on em bedded devices. The
chapter ends by exam ining dr ivers for the Firm ware Hub found on PC system s.

Chapter 18, "Em bedding Linux," steps into the world of em bedded Linux. I t takes you through the m ain
firm ware com ponents of an em bedded solut ion such as boot loader, kernel, and device dr ivers. Given the soaring
popular ity of Linux in the em bedded space, it 's m ore likely that you will use the device dr iver skills that you

acquire from this book to enable em bedded system s.

Chapter 19, "Drivers in User Space," looks at dr iving different types of devices from user space. Som e device
drivers, especially ones that are heavy on policy and light on perform ance requirem ents, are bet ter off residing
in user land. This chapter also explains how the Linux process scheduler affects the response t im es of user
m ode drivers.

Chapter 20, "More Devices and Drivers," takes a tour of a potpourr i of dr iver fam ilies not covered thus far, such
as Error Detect ion And Correct ion (EDAC) , FireWire, and ACPI .

Chapter 21, "Debugging Device Drivers," teaches about different types of debuggers that you can use to debug
kernel code. I n this chapter, you also learn to use t race tools, kernel probes, crash-dum p, and profilers. When
you develop a dr iver, be arm ed with the dr iver debugging skills that you learn in this chapter.

Chapter 22, "Maintenance and Delivery," provides perspect ive on the software developm ent life cycle.

Chapter 23, "Shut t ing Down," takes you through a checklist of work item s when you em bark on Linux-enabling
a new device. The book ends by pondering What next?

Device dr ivers som et im es need to im plem ent code snippets in assem bly, so Appendix A, "Linux Assem bly,"
takes a look at the different facets of assem bly program m ing on Linux. Som e device dr ivers on x86-based
system s depend direct ly or indirect ly on the BI OS, so Appendix B, "Linux and the BI OS," teaches you how Linux
interacts with the BI OS. Appendix C, "Seq Files," describes seq files, a kernel helper interface int roduced in the
2.6 kernel that device dr ivers can use to m onitor and t rend data points.

The book is generally organized according to device and bus com plexity, coupled with pract ical reasons of
dependencies between chapters. So, we start off with basic device classes such as character, serial, and input .
Next , we look at sim ple serial buses such as I 2C and SMBus. External I / O buses such as PCMCI A, PCI , and USB
follow. Video, audio, block, and network devices usually interface with the processor via these I / O buses, so we
look at them soon after. The next port ions of the book are or iented toward em bedded Linux and cover
technologies such as wireless networking and flash m em ory. User-space drivers are discussed toward the end of
the book.

Kernel Version

This book is generally up to date as of the 2.6.23/ 2.6.24 kernel versions. Most code list ings in this book have
been tested on a 2.6.23 kernel. I f you are using a later version, look at Linux websites such as lwn.net to learn
about the kernel changes since 2.6.23/ 24.

Book W ebsite

I 've set up a website at elinuxdd.com to provide updates, errata, and other inform at ion related to this book.

Convent ions Used

Source code, funct ion nam es, and shell com m ands are writ ten like this . The shell prom pt used is bash> .
Filenam e are writ ten in italics, like this. I talics are also used to int roduce new term s.

Som e chapters m odify or iginal kernel source files while im plem ent ing code exam ples. To clearly point out the
changes, newly inserted code lines are prefixed with +, and any deleted code lines with - .

Som et im es, for sim plicity, the book uses generic references. So if the text points you to the arch/ your-arch/
directory, it should be t ranslated, for exam ple, to arch/ x86/ if you are com piling the kernel for the x86
architecture. Sim ilar ly, any m ent ion of the include/ asm -your-arch/ directory should be read as include/ asm -
arm / if you are, for instance, building the kernel for the ARM architecture. The * sym bol and X are occasionally
used as wildcard characters in filenam es. So, if a chapter asks you to look at include/ linux/ t im e* .h, look at the

header files, t im e.h, t im er.h, t im es.h, and t im ex.h residing in the include/ linux/ directory. I f a sect ion talks
about / dev/ input / eventX or / sys/ devices/ plat form / i8042/ serioX/ , X is the interface num ber that the kernel
assigns to your device in the context of your system configurat ion.

The sym bol is som et im es inserted between com m and or kernel output to at tach explanat ions.

Sim ple regular expressions are occasionally used to com pact ly list funct ion prototypes. For exam ple, the sect ion
"Direct Mem ory Access" in Chapter 10, "Peripheral Com ponent I nterconnect ," refers to
pci_[map|unmap|dma_sync]_single() instead of explicit ly cit ing pci_map_single() , pci_umap_single() , and
pci_dma_sync_single() .

Several chapters refer you to user-space configurat ion files. For exam ple, the sect ion that describes the boot
process opens / etc/ rc.sysinit , and the chapter that discusses Bluetooth refers to / etc/ bluetooth/ pin. The exact
nam es and locat ions of such files m ight , however, vary according to the Linux dist r ibut ion you use.

Acknow ledgm ents

First , I raise m y hat to m y editors at Prent ice Hall: Debra William s Cauley, Anne Goebel, and Keith Cline.
Without their support ing work, this book would not have m aterialized. I thank Mark Taub for his interest in this
project and for init iat ing it .

Several sources have cont r ibuted to m y learning in the past decade: the m any team m ates with whom I worked
on Linux projects, the m ighty kernel sources, m ailing lists, and the I nternet . All these have played a part in
helping m e write this book.

Mart in St reicher of Linux Magazine changed m e from a full- t im e coder to a spare- t im e writer when he offered
m e the m agazine's "Gearheads" kernel colum n. I gratefully acknowledge the m any lessons in technical writ ing
that I 've learned from him .

I owe a special debt of grat itude to m y technical reviewers. Vam si Krishna pat ient ly read through each chapter
of the m anuscript . His num erous suggest ions have m ade this a bet ter book. Jim Lieb provided valuable
feedback on several chapters. Arnold Robbins reviewed the first few chapters and provided insight ful com m ents.

Finally, I thank m y parents and m y wife for their love and support . And thanks to m y baby daughter for
constant ly rem inding m e to spend cycles on the book by her wobbly walk that bears an uncanny resem blance to
that of a penguin.

About the Author

Sreekr ishnan Venkatesw aran has a m aster 's degree in com puter science from the I ndian I nst itute of
Technology, Kanpur, I ndia. During the past 12 years that he has been working for I BM, he has ported Linux to
various em bedded devices such as a wristwatch, handheld, m usic player, VoI P phone, pacem aker program m er,
and rem ote pat ient m onitor ing system . Sreekrishnan was a cont r ibut ing editor and kernel colum nist to the Linux
Magazine for m ore than 2 years. Current ly, he m anages the em bedded solut ions group at I BM I ndia.

Chapter 1 . I nt roduct ion

I n This Chapter

Evolut ion
2

The GNU Copyleft
3

Kernel.org
4

Mailing Lists and
Forum s

4

Linux Dist r ibut ions
5

Looking at the Sources
6

Building the Kernel
10

Loadable Modules
12

Before Start ing
14

Linux lures. I t has the ent icing arom a of an internat ionalist project where people of all
nat ionalit ies, creed, and gender collaborate. Free availabilit y of source code and a well-understood
UNI X- like applicat ion program m ing environm ent have cont r ibuted to its runaway success. High-
quality support from experts available instant ly over the I nternet at no charge has also played a
m ajor role in st itching together a huge Linux com m unity.

Developers get incredibly excited about working on technologies where they have access to all the
sources because that lets them create innovat ive solut ions. You can, for exam ple, hack the
sources and custom ize Linux to boot in a few seconds on your device, a feat that is hard to achieve
with a proprietary operat ing system .

Evolut ion

Linux started as the hobby of a Finnish college student nam ed Linus Torvalds in 1991, but quickly m etam orphed
into an advanced operat ing system popular all over the planet . From its first release for the I ntel 386 processor,
the kernel has gradually grown in com plexity to support num erous architectures, m ult iprocessor hardware, and
high-perform ance clusters. The full list of supported CPUs is long, but som e of the m ajor supported
architectures are x86, I A64, ARM, PowerPC, Alpha, s390, MI PS, and SPARC. Linux has been ported to hundreds
of hardware plat form s built around these processors. The kernel is cont inuously get t ing bet ter, and the
evolut ion is progressing at a frant ic pace.

Although it started life as a desktop-operat ing system , Linux has penet rated the em bedded and enterprise
worlds and is touching our daily lives. When you push the but tons on your handheld, flip your rem ote to the
weather channel, or visit the hospital for a physical checkup, it 's increasingly likely that som e Linux code is
being set into m ot ion to com e to your service. Linux's free availabilit y is helping its evolut ion as much as its
technical superior ity. Whether it 's an init iat ive to develop sub-$100 com puters to enable the world's poor or
pr icing pressure in the consum er elect ronics space, Linux is today's operat ing system of choice, because
proprietary operat ing system s som et im es cost m ore than the desired pr ice of the com puters them selves.

Chapter 1 . I nt roduct ion

I n This Chapter

Evolut ion
2

The GNU Copyleft
3

Kernel.org
4

Mailing Lists and
Forum s

4

Linux Dist r ibut ions
5

Looking at the Sources
6

Building the Kernel
10

Loadable Modules
12

Before Start ing
14

Linux lures. I t has the ent icing arom a of an internat ionalist project where people of all
nat ionalit ies, creed, and gender collaborate. Free availabilit y of source code and a well-understood
UNI X- like applicat ion program m ing environm ent have cont r ibuted to its runaway success. High-
quality support from experts available instant ly over the I nternet at no charge has also played a
m ajor role in st itching together a huge Linux com m unity.

Developers get incredibly excited about working on technologies where they have access to all the
sources because that lets them create innovat ive solut ions. You can, for exam ple, hack the
sources and custom ize Linux to boot in a few seconds on your device, a feat that is hard to achieve
with a proprietary operat ing system .

Evolut ion

Linux started as the hobby of a Finnish college student nam ed Linus Torvalds in 1991, but quickly m etam orphed
into an advanced operat ing system popular all over the planet . From its first release for the I ntel 386 processor,
the kernel has gradually grown in com plexity to support num erous architectures, m ult iprocessor hardware, and
high-perform ance clusters. The full list of supported CPUs is long, but som e of the m ajor supported
architectures are x86, I A64, ARM, PowerPC, Alpha, s390, MI PS, and SPARC. Linux has been ported to hundreds
of hardware plat form s built around these processors. The kernel is cont inuously get t ing bet ter, and the
evolut ion is progressing at a frant ic pace.

Although it started life as a desktop-operat ing system , Linux has penet rated the em bedded and enterprise
worlds and is touching our daily lives. When you push the but tons on your handheld, flip your rem ote to the
weather channel, or visit the hospital for a physical checkup, it 's increasingly likely that som e Linux code is
being set into m ot ion to com e to your service. Linux's free availabilit y is helping its evolut ion as much as its
technical superior ity. Whether it 's an init iat ive to develop sub-$100 com puters to enable the world's poor or
pr icing pressure in the consum er elect ronics space, Linux is today's operat ing system of choice, because
proprietary operat ing system s som et im es cost m ore than the desired pr ice of the com puters them selves.

The GNU Copyleft

The GNU project (GNU is a recursive acronym for GNU's Not UNI X) predates Linux and was launched to develop
a free UNI X- like operat ing system . A com plete GNU operat ing system is powered by the Linux kernel but also
contains com ponents such as librar ies, com pilers, and ut ilit ies. A Linux-based com puter is hence m ore
accurately a GNU/ Linux system . All com ponents of a GNU/ Linux system are built using free software.

There are different flavors of free software. One such flavor is called public dom ain software. Software released
under the public dom ain is not copyrighted, and no rest r ict ions are im posed on its usage. You can use it for
free, m ake changes to it , and even rest r ict the dist r ibut ion of your m odified sources. As you can see, the "no
rest r ict ions" clause int roduces the power to int roduce rest r ict ions downst ream .

The Free Software Foundat ion, the pr im ary sponsor of the GNU project , created the GNU Public License (GPL) ,
also called a copyleft, to prevent the possibilit y of m iddlem en t ransform ing free software into proprietary
software. Those who m odify copylefted software are required to also copyleft their derived work. The Linux
kernel and m ost com ponents of a GNU system such as the GNU Com piler Collect ion (GCC) are released under
the GPL. So, if you m ake m odificat ions to the kernel, you have to return your changes back to the com m unity.
Essent ially, you have to pass on the r ights vested on you by the copyleft .

The Linux kernel is licensed under GPL version 2. There is an ongoing debate in the kernel com m unity
about whether the kernel should m ove to GPLv3, the latest version of the GPL. The current t ide seem s to
be against relicensing the kernel to adopt GPLv3.

Linux applicat ions that invoke system calls to access kernel services are not considered derived work, however,
and won't be rest r icted by the GPL. Sim ilar ly, librar ies are covered by a less-st r ingent license called the GNU
Lesser General Public License (LGPL) . Proprietary software is perm it ted to dynam ically link with librar ies
released under the LGPL.

Kernel.org

The prim ary repository of Linux kernel sources is www.kernel.org. The website contains all released kernel
versions. A num ber of websites around the world m irror the contents of kernel.org.

I n addit ion to released kernels, kernel.org also hosts a set of patches m aintained by front - line developers that
serve as a test bed for future stable releases. A patch is a text file containing source code differences between a
developm ent t ree and the or iginal snapshot from which the developer started work. A popular patch-set
available at kernel.org is the -mm patch periodically released by Andrew Morton, the lead m aintainer of the Linux
kernel. You will find experim ental features in the -mm patch that have not yet m ade it to the m ainline source
t ree. Another patch-set periodically released on kernel.org is the –rt (real t im e) patch m aintained by I ngo
Molnar. Several –rt features have been m erged into the m ainline kernel.

Mailing Lists and Forum s

The Linux Kernel Mailing List (LKML) is the forum where developers debate on design issues and decide on
future features. You can find a real- t im e feed of the m ailing list at www.lkm l.org. The kernel now contains
several m illion lines of code cont r ibuted by thousands of developers all over the world. LKML acts as the thread
that t ies all these developers together.

LKML is not for general Linux quest ions. The basic rule is to post only quest ions pertaining to kernel
developm ent that have not been previously answered in the m ailing list or in popular ly available documentat ion.
I f the C com piler crashed while com piling your Linux applicat ion, you should post that quest ion elsewhere.

Discussions in som e LKML threads are m ore interest ing than a New York Tim es bestseller. Spend a few hours
browsing LKML archives to get an insight into the philosophy behind the Linux kernel.

Most subprojects in the kernel have their own specific m ailing lists. So, subscribe to the linux-m td mailing list if
you are developing a Linux flash m em ory dr iver or init iate a thread in the linux-usb-devel m ailing list if you
think you have found a bug in the USB m ass storage driver. We refer to relevant m ailing lists at the end of
several chapters.

I n various forum s, kernel experts from around the globe gather under one roof. The Linux Sym posium held
annually at Ot tawa, Canada, is one such conference. Others include the Linux Kongress that takes place in
Germ any and linux.conf.au organized in Aust ralia. There are also num erous com m ercial Linux forum s where
indust ry leaders m eet and share their insights. An exam ple is the LinuxWorld Conference and Expo held yearly
in North Am erica.

For the latest news from the developer com m unity, check out ht tp: / / lwn.net / . I f you want to glean the
highlights of the latest kernel release without m any crypt ic references to kernel internals, this m ight be a good
place to look. You can find another web com m unity that discusses current kernel topics at
ht tp: / / kernelt rap.org/ .

With every m ajor kernel release, you will see sweeping im provem ents, be it kernel preem pt ion, lock- free
readers, new services to offload work from interrupt handlers, or support for new architectures. Stay in constant
touch with the m ailing lists, websites, and forum s, to keep yourself in the thick of things.

http://lwn.net/
http://kerneltrap.org/

Linux Dist r ibut ions

Because a GNU/ Linux system consists of num erous ut ilit ies, program s, librar ies, and tools, in addit ion to the
kernel, it 's a daunt ing task to acquire and correct ly install all the pieces. Linux dist r ibut ions com e to the rescue
by classifying the com ponents and bundling them into packages in an orderly fashion. A typical dist r ibut ion
contains thousands of ready-m ade packages. You need not worry about downloading the r ight program versions
or fix ing dependency issues.

Because packaging is a way to m ake a lot of m oney within the am bit of the GNU license, there are several Linux
dist r ibut ions in the m arket today. Dist r ibut ions such as Red Hat / Fedora, Debian, SuSE, Slackware, Gentoo,
Ubuntu, and Mandriva are pr im arily m eant for the desktop user. MontaVista, Tim eSys, and Wind River
dist r ibut ions are geared toward em bedded developm ent . Em bedded Linux dist r ibut ions also include a
dynam ically configurable com pact applicat ion-set to tailor the system 's footpr int to suit resource const raints.

I n addit ion to packaging, dist r ibut ions offer value-adds for kernel developm ent . Many projects start
developm ent based on kernels supplied by a dist r ibut ion rather than a kernel released officially at kernel.org.
Reasons for this include the following:

Linux dist r ibut ions that com ply with standards relevant to your device's indust ry dom ain are often bet ter
start ing points for developm ent . Special I nterest Groups (SI Gs) have taken shape to prom ote Linux in
various dom ains. The Consum er Elect ronics Linux Forum (CELF) , hosted at www.celinuxforum .org, focuses
on using Linux on consum er elect ronics devices. The CELF specificat ion defines the support level of
features such as scalable footpr int , fast boot , execute in place, and power m anagem ent , desirable on
consum er elect ronics devices. The efforts of the Open Source Developm ent Lab (OSDL) , hosted at
www.osdl.org, centers on character ist ics dist inct to carr ier-grade devices. OSDL's Carr ier Grade Linux
(CGL) specificat ion codifies value addit ions such as reliabilit y, high availabilit y, runt im e patching, and
enhanced error recovery, im portant in the telecom space.

The m ainline kernel m ight not include full support for the em bedded cont roller of your choice even if the
cont roller is built around a kernel-supported CPU core. A Linux dist r ibut ion m ight offer device dr ivers for
all the peripheral m odules inside the cont roller, however.

Debugging tools that you plan to use during kernel developm ent m ay not be part of the m ainline kernel.
For exam ple, the kernel has no built - in debugger support . I f you want to use a kernel debugger during
developm ent , you have to separately download and apply the corresponding patches. You have to endure
m ore hassles if tested patches are not readily available for your kernel version. Dist r ibut ions prepackage
m any useful debugging features, so you can start using them r ight away.

Som e dist r ibut ions provide legal indem nificat ion so that your com pany won't be liable for lawsuits ar ising
out of kernel bugs.

Dist r ibut ions tend to do a lot of test ing on the kernels they release. [1]

[1] Because this necessitates freezing the kernel to a version that is not the latest , dist r ibut ion-supplied kernels often contain back-
ports of som e features released in later official kernels.

You can purchase service and support packages from dist r ibut ion vendors for kernels that they supply.

Look ing at the Sources

Before we start wet t ing our toes in the kernel, let 's download the sources, learn to apply a patch, and look at
the layout of the code t ree.

First , go to www.kernel.org and get the latest stable t ree. The sources are archived as tar files com pressed in
both gzip (.gz) and bzip2 (.bz2) form ats. Obtain the source files by uncom pressing and untarr ing the zipped tar
ball. I n the following com m ands, replace X.Y.Z with the latest kernel version, such as 2.6.23:

bash> cd /usr/src

bash> wget www.kernel.org/pub/linux/kernel/vX.Y/linux-X.Y.Z.tar.bz2

...
bash> tar xvfj linux-X.Y.Z.tar.bz2

Now that you have the unpacked source t ree in / usr/ src/ linux-X.Y.Z/ on your system , let 's enable som e
experim ental test features into the t ree by get t ing a corresponding -mm (Andrew Morton) patch:

Code View:
bash> cd /usr/src

bash> wget www.kernel.org/pub/linux/kernel/people/akpm/patches/X.Y/X.Y.Z/X.Y.Z-

mm2/X.Y.Z-mm2.bz2

Apply the patch:

bash> cd /usr/src/linux-X.Y.Z/

bash> bzip2 -dc ../X.Y.Z-mm2.bz2 | patch -p1

The -dc opt ion asks bzip2 to uncom press the specified files to standard output . This is piped to the patch ut ilit y,
which applies changes to each m odified file in the code t ree.

I f you need to apply m ult iple patches, do so in the r ight sequence. To generate a kernel enabled with the
X.Y.Z-aa-bb patch, first download the full X.Y.Z kernel sources, apply the X.Y.Z-aa patch, and then apply the
X.Y.Z-aa-bb patch.

Patch Subm ission

To generate a kernel patch out of your changes, use the diff com m and:

Code View:
bash> diff –Nur /path/to/original/kernel /path/to/your/kernel > changes.patch

Note that the or iginal kernel precedes the changed version in the diff - ing order. As per 2.6 kernel
patch subm ission convent ions, you also need to add a line at the end of the patch that says this:

Signed-off-by: Name <Email>

With this, you cert ify that you wrote the code yourself and that you have the r ight to cont r ibute it .

You are now all set to post your patch to the relevant m ailing list , such as LKML.

Look at Docum entat ion/ Subm it t ingPatches for a guide on creat ing patches for subm ission and at
Docum entat ion/ applying-patches.txt for a tutor ial on applying patches.

Now that your patched / usr/ src/ linux-X.Y.Z/ t ree is ready for use, let 's take a m om ent to observe how the
source layout is organized. Go to the root of the source t ree and list it s contents. The director ies branching out
from the root of the code t ree are as follows:

arch. This directory contains architecture-specific files. You will see separate subdirector ies under arch/
for processors such as ARM, Motorola 68K, s390, MI PS, Alpha, SPARC, and I A64.

1 .

block . This pr im arily contains the im plem entat ion of I / O scheduling algorithm s for block storage devices.2 .

crypto. This directory im plem ents cipher operat ions and the cryptographic API , used, for exam ple, by
som e WiFi device dr ivers for im plem ent ing encrypt ion algorithm s.

3 .

Docum entat ion. This directory has br ief descript ions of various kernel subsystem s. This can be your first
stop to dig for answers to kernel- related queries.

4 .

dr ivers. Device dr ivers for num erous device classes and peripheral cont rollers reside in this directory. The
device classes include character, serial, I nter- I ntegrated Circuit (I2C) , Personal Com puter Mem ory Card
I nternat ional Associat ion (PCMCI A) , Peripheral Com ponent I nterconnect (PCI) , Universal Serial Bus (USB) ,
video, audio, block, I ntegrated Drive Elect ronics (I DE) , Sm all Com puter System I nterface (SCSI) , CD-
ROM, network adapters, Asynchronous Transfer Mode (ATM) , Bluetooth, and Mem ory Technology Devices
(MTD) . Each of these classes live in a separate subdirectory under dr ivers/ . You will, for instance, find
PCMCI A driver sources inside the dr ivers/ pcm cia/ directory and MTD drivers inside the dr ivers/ m td/
directory. The subdirector ies present under dr ivers/ const itute the pr im ary subjects for this book.

5 .

6 .

fs. This directory contains the im plem entat ion of filesystem s such as EXT3, EXT4, reiserfs, FAT, VFAT,
sysfs, procfs, isofs, JFFS2, XFS, NTFS, and NFS.

6 .

include. Kernel header files live here. Subdirector ies prefixed with asm contain headers specific to the
part icular architecture. So the directory include/ asm -x86/ contains header files pertaining to the x86
architecture, whereas include/ asm -arm / holds headers for the ARM architecture.

7 .

in it . This directory contains high- level init ializat ion and startup code.8 .

ipc. This contains support for I nter-Process Com m unicat ion (I PC) m echanism s such as m essage queues,
sem aphores, and shared m em ory.

9 .

kernel. The architecture- independent port ions of the base kernel can be found here.1 0 .

lib. Library rout ines such as generic kernel object (kobject) handlers and Cyclic Redundancy Code (CRC)
com putat ion funct ions stay here.

1 1 .

m m . The m em ory m anagem ent im plem entat ion lives here.1 2 .

net . Networking protocols reside under this directory. Protocols im plem ented include I nternet Protocol
version 4 (I Pv4) , I Pv6, I nternetwork Protocol eXchange (I PX) , Bluetooth, ATM, I nfrared, Link Access
Procedure Balanced (LAPB) , and Logical Link Cont rol (LLC) .

1 3 .

scr ipts. Scripts used during kernel build reside here.1 4 .

secur it y. This directory contains the fram ework for security.1 5 .

sound. The Linux audio subsystem is based in this directory.1 6 .

usr . This current ly contains the init ram fs im plem entat ion.1 7 .

Unified x86 Architecture Tree

Start ing with the 2.6.24 kernel release, the i386 and the x86_64 (the 64-bit cousin of the 32-bit
i386) architecture-specific t rees have been unified into a com m on arch/ x86/ directory. I f you are
using a pre-2.6.24 kernel, replace references to arch/ x86/ in this book with arch/ i386/ . Sim ilar ly,
change any occurrence of include/ asm -x86/ to include/ asm - i386/ . Som e filenam es within these
director ies have also changed.

Wading through these large director ies in search of sym bols and other code elem ents can be a tough task. The
tools in Table 1.1 are worthy aids as you navigate the kernel source t ree.

Table 1 .1 . Tools That Aid Source Tree Navigat ion

Tool Descr ipt ion

lxr The Linux cross- referencer, lxr, downloadable from
ht tp: / / lxr.sourceforge.net / , lets you t raverse the kernel t ree using
a web browser by providing hyperlinks to connect kernel sym bols
with their definit ions and uses.

cscope cscope, hosted at ht tp: / / cscope.sourceforge.net / , builds a sym bolic
database from all files in a source t ree, so you can quickly locate
declarat ions, definit ions, regular expressions, and m ore. Cscope
m ight not be as versat ile as lxr, but it gives you the flexibilit y of
using the search features of your favorite text editor rather than a
browser. From the root of your kernel t ree, issue the cscope -qkRv
com m and to build the cross- reference database. The -q opt ion
generates m ore indexing inform at ion, so searches becom e
not iceably faster at the expense of ext ra init ial startup t im e. The –k
opt ion requests cscope to tune its behavior to suit kernel sources,
-R asks for recursive subdirectory t raversal, and –v appeals for
verbose m essages. You can obtain the detailed invocat ion syntax
from the m an page.

ctags/ etags The ctags ut ilit y, downloadable from ht tp: / / ctags.sourceforge.net / ,
generates cross- reference tags for m any languages, so you can
locate sym bol and funct ion definit ions in a source t ree from within
an editor such as vi. Do make tags from the root of your kernel
t ree to ctag all source files. The etags ut ilit y generates sim ilar
indexing inform at ion understood by the em acs editor. I ssue make
TAGS to etag your kernel source files.

Ut ilit ies Tools such as grep, find, sdiff, st race, od, dd, m ake, tar, file, and
objdum p.

GCC opt ions You m ay ask GCC to generate preprocessed source code using the
-E opt ion. Preprocessed code contains header file expansions and
reduces the need to hop-skip through nested include files to
expand m ult iple levels of m acros. Here is a usage exam ple to
preprocess dr ivers/ char/ m ydrv.c and produce expanded output in
m ydrv.i:
bash> gcc -E drivers/char/mydrv.c -D__KERNEL__ -Iinclude

-Iinclude/asm-x86/mach-default > mydrv.i

The include paths specified using the -I opt ion depend on the
header files included by your code.

GCC generates assem bly list ings if you use the -S opt ion. To
generate an assem bly list ing in m ydrv.s for dr ivers/ char/ m ydrv.c,
do this:
bash> gcc -S drivers/char/mydrv.c -D__KERNEL__ -Iinclude

-Ianother/include/path

http://lxr.sourceforge.net/
http://cscope.sourceforge.net/
http://ctags.sourceforge.net/

Building the Kernel

Now that you have an idea of the source t ree layout , let 's m ake a t r iv ial code change, com pile, and get it
running. Go to the top- level init / directory and venture to m ake a sm all code change to the init ializat ion file
m ain.c. Add a pr int statem ent to the beginning of the funct ion, start_kernel() , declar ing your love for polar
bears:

asmlinkage void __init start_kernel(void)
{
 char *command_line;
 extern struct kernel_param __start___param[],
 __stop___param[];

+ printk("Penguins are cute, but so are polar bears\n");

 /* ... */

 rest_init();
}

You're now ready to kick off the build process. Go to the root of the source t ree and start with a clean slate:

bash> cd /usr/src/linux-X.Y.Z/

bash> make clean

Configure the kernel. This is when you pick and choose the pieces that form part of the operat ing system . You
m ay specify whether each desired com ponent is to be stat ically or dynam ically linked to the kernel:

bash> make menuconfig

menuconfig is a text interface to the kernel configurat ion m enu. Use make xconfig to get a graphical interface.
The configurat ion inform at ion that you choose is saved in a file nam ed .config in the root of your source t ree. I f
you don't want to weave the configurat ion from scratch, use the file arch/ your-arch/ defconfig (or arch/ your-
arch/ configs/ your-m achine_defconfig if there are several supported plat form s for your architecture) as the
start ing point . So, if you are com piling the kernel for the 32-bit x86 architecture, do this:

bash> cp arch/x86/configs/i386_defconfig .config

Com pile the kernel and generate a com pressed boot im age:

bash> make bzImage

The kernel im age is produced in arch/ x86/ boot / bzI m age. Update your boot part it ion:

bash> cp arch/x86/boot/bzImage /boot/vmlinuz

You m ight need to alert your boot loader about the arr ival of the new boot im age. I f you are using the GRUB
boot loader, it figures this out autom at ically; but if you are using LI LO, raise a flag:

bash> /sbin/lilo

Added linux *

Finally, restart the m achine and boot in to your new kernel:

bash> reboot

The first m essage in the boot sequence launches your cam paign for polar bears.

Loadable Modules

Because Linux runs on a variety of architectures and supports zillions of I / O devices, it 's not feasible to
perm anent ly com pile support for all possible devices into the base kernel. Dist r ibut ions generally package a
m inim al kernel im age and supply the rest of the funct ionalit ies in the form of kernel m odules. During runt im e,
the necessary m odules are dynam ically loaded on demand.

To generate m odules, go to the root of your kernel source t ree and build:

bash> cd /usr/src/linux-X.Y.Z/

bash> make modules

To install the produced m odules, do this:

bash> make modules_install

This creates a kernel source directory st ructure under / lib/ m odules/ X.Y.Z/ kernel/ and populates it with loadable
m odule objects. This also invokes the depm od ut ility that generates m odule dependencies in the file
/ lib/ m odules/ X.Y.Z/ m odules.dep.

The following ut ilit ies are available to m anipulate m odules: insm od, rm m od, lsm od, m odprobe, m odinfo, and
depm od. The first two are ut ilit ies to insert and rem ove m odules, whereas lsm od lists the m odules that are
current ly loaded. m odprobe is a cleverer version of insm od that also inserts dependent m odules after exam ining
the contents of / lib/ m odules/ X.Y.Z/ m odules.dep. For exam ple, assum e that you need to m ount a Virtual File
Allocat ion Table (VFAT) part it ion present on a USB pen drive. Use m odprobe to load the VFAT filesystem
driver: [2]

[2] This exam ple assum es that the m odule is not autoloaded by the kernel. I f you enable Autom at ic Kernel Module Loading (CONFIG_KMOD)
during configurat ion, the kernel autom at ically runs m odprobe with the appropriate argum ents when it detects m issing subsystem s. You'll learn
about m odule autoloading in Chapter 4 , "Laying the Groundwork."

bash> modprobe vfat

bash> lsmod

Module Size Used by
vfat 14208 0
fat 49052 1 vfat
nls_base 9728 2 vfat, fat

As you see in the lsm od output , m odprobe inserts three m odules rather than one. m odprobe first figures out
that it has to insert / lib/ m odules/ X.Y.Z/ kernel/ fs/ vfat / vfat .ko. But when it peeks into the dependency file
/ lib/ m odules/ X.Y.Z/ m odules.dep, it finds the following line and realizes that it has to load two other dependent
m odules first :

/lib/modules/X.Y.Z/kernel/fs/vfat/vfat.ko:
/lib/modules/X.Y.Z/kernel/fs/fat/fat.ko
/lib/modules/X.Y.Z/kernel/fs/nls/nls_base.ko

I t then proceeds to load fat .ko and nls_base.ko before at tem pt ing to insert vfat .ko, thus autom at ically loading
all the m odules you need to m ount your VFAT part it ion.

Use the m odinfo ut ilit y to ext ract verbose inform at ion about the m odules you just loaded:

bash> modinfo vfat

filename: /lib/modules/X.Y.Z/kernel/fs/vfat/vfat.ko
license: GPL
description: VFAT filesystem support
...
depends: fat, nls_base

To com pile a kernel dr iver as a m odule, toggle the corresponding m enu choice but ton to <M> while configuring
the kernel. Most of the device dr iver exam ples in this book are im plem ented as kernel m odules. To build a
m odule m ym odule.ko from its source file m ym odule.c, create a one- line Makefile and execute it as follows:

bash> cd /path/to/module-source/

bash> echo "obj-m += mymodule.ko" > Makefile

bash> make –C /path/to/kernel-sources/ M=`pwd` modules

make: Entering directory '/path/to/kernel-sources'
 Building modules, stage 2.
 MODPOST
 CC /path/to/module-sources/mymodule.mod.o
 LD [M] /path/to/module-sources/mymodule.ko
make: Leaving directory '/path/to/kernel-sources'
bash> insmod ./mymodule.ko

Kernel m odules render the kernel footpr int sm aller and the develop-build- test cycle shorter. You only need to
recom pile the part icular m odule and reinsert it to effect a change. We look at m odule debugging techniques in
Chapter 21, "Debugging Device Drivers."

There are also som e downsides if you choose to design your dr iver as a kernel m odule. Unlike built - in dr ivers,
m odules cannot reserve resources during boot t im e, when success is m ore or less guaranteed.

Before Star t ing

Linux has t rekked m any a terrain and is now state of the art , so you can use it as a vehicle to understand
operat ing system concepts, processor architectures, and even indust ry dom ains. When you learn a technique
used by a device dr iver subsystem , look one level deeper and probe the underlying reasons behind that design
choice.

Wherever not explicit ly stated, the text assum es the 32-bit x86 architecture. The book is, however, m indful of
the fact that you are m ore likely to write device dr ivers for em bedded devices than for convent ional PC-
com pat ible system s. The chapter on serial dr ivers, for exam ple, exam ines two devices: a touch cont roller on a
PC derivat ive and a UART on a cell phone. Or the chapter on I2C device dr ivers looks at an EEPROM on a PC
system and a Real Tim e Clock on an em bedded device. The book also teaches you about the core infrast ructure
that the kernel provides for m ost dr iver classes, which hides architecture dependencies from device drivers.

Device dr iver debugging techniques are discussed near the end of the book in Chapter 21, so you m ight find it
worthwhile to forward to that chapter as you develop dr ivers while reading the book.

This book is based on the 2.6 kernel, which has substant ial changes across the board from 2.4, touching all
m ajor subsystem s. Hopefully, you have installed a 2.6-based Linux on your system by now and started
experim ent ing with the kernel sources. Each chapter takes the liberty of profusely point ing you to relevant
kernel source files for two m ain reasons:

Because each driver subsystem in the kernel is tens of thousands of lines long, it 's only possible to take a
relat ively sim plist ic view in a book. Looking at real dr ivers in the sources along with the exam ple code in
this book will give you the bigger picture.

1 .

Before developing a dr iver, it 's a good idea to zero in on an exist ing dr iver in the dr ivers/ directory that is
sim ilar to your requirem ent and m ake that your start ing point .

2 .

So, to derive m axim um benefit from this book, fam iliar ize yourself with the kernel by frequent ly browsing the
source t ree and star ing hard at the code. And in tandem with your code explorat ions, follow the goings-on in the
kernel m ailing list .

Chapter 2 . A Peek I nside the Kernel

I n This Chapter

Boot ing Up
18

Kernel Mode and User Mode
30

Process Context and I nterrupt
Context

30

Kernel Tim ers
31

Concurrency in the Kernel
39

Process Filesystem
49

Allocat ing Mem ory
49

Looking at the Sources
52

Before we start our journey into the m yst ical world of Linux device dr ivers, let 's fam iliar ize
ourselves with som e basic kernel concepts by looking at several kernel regions through the lens of
a dr iver developer. We learn about kernel t im ers, synchronizat ion m echanism s, and m em ory
allocat ion. But let 's start our expedit ion by get t ing a view from the top; let 's skim through boot
m essages em it ted by the kernel and hit the breaks whenever som ething looks interest ing.

Boot ing Up

Figure 2.1 shows the Linux boot sequence on an x86-based com puter. Linux boot on x86-based hardware is set
into m ot ion when the BI OS loads the Master Boot Record (MBR) from the boot device. Code resident in the MBR
looks at the part it ion table and reads a Linux boot loader such as GRUB, LI LO, or SYSLI NUX from the act ive

part it ion. The final stage of the boot loader loads the com pressed kernel im age and passes cont rol to it . The
kernel uncom presses itself and turns on the ignit ion.

Figure 2 .1 . Linux boot sequence on x8 6 - based hardw a re.

x86-based processors have two m odes of operat ion, real m ode and protected m ode. I n real m ode, you can
access only the first 1MB of m em ory, that too without any protect ion. Protected m ode is sophist icated and lets
you tap into m any advanced features of the processor such as paging. The CPU has to pass through real m ode
en route to protected m ode. This road is a one-way st reet , however. You can't switch back to real m ode from
protected m ode.

The first - level kernel init ializat ions are done in real m ode assem bly. Subsequent startup is perform ed in
protected m ode by the funct ion start_kernel() defined in init / m ain.c, the source file you m odified in the
previous chapter. start_kernel() begins by init ializing the CPU subsystem . Mem ory and process m anagem ent
are put in place soon after. Peripheral buses and I / O devices are started next . As the last step in the boot
sequence, the init program , the parent of all Linux processes, is invoked. I nit executes user-space scripts that
start necessary kernel services. I t finally spawns term inals on consoles and displays the login prom pt .

Each following sect ion header is a m essage from Figure 2.2 generated during boot progression on an x86-based

laptop. The sem ant ics and the m essages m ay change if you are boot ing the kernel on other architectures. I f
som e explanat ions in this sect ion sound rather crypt ic, don't worry; the intent here is only to give you a picture
from 100 feet above and to let you savor a first taste of the kernel's flavor. Many concepts m ent ioned here in
passing are covered in depth later on.

Figure 2 .2 . Kernel boot m essages.

Code View:
Linux version 2.6.23.1y (root@localhost.localdomain) (gcc version 4.1.1 20061011 (Red
Hat 4.1.1-30)) #7 SMP PREEMPT Thu Nov 1 11:39:30 IST 2007
BIOS-provided physical RAM map:
 BIOS-e820: 0000000000000000 - 000000000009f000 (usable)
 BIOS-e820: 000000000009f000 - 00000000000a0000 (reserved)
 ...
758MB LOWMEM available.
...
Kernel command line: ro root=/dev/hda1
...
Console: colour VGA+ 80x25
...
Calibrating delay using timer specific routine.. 1197.46 BogoMIPS (lpj=2394935)
...
CPU: L1 I cache: 32K, L1 D cache: 32K
CPU: L2 cache: 1024K
...
Checking 'hlt' instruction... OK.
...
Setting up standard PCI resources
...
NET: Registered protocol family 2
IP route cache hash table entries: 32768 (order: 5, 131072 bytes)
TCP established hash table entries: 131072 (order: 9, 2097152 bytes)
...
checking if image is initramfs... it is
Freeing initrd memory: 387k freed
...
io scheduler noop registered
io scheduler anticipatory registered (default)
...
00:0a: ttyS0 at I/O 0x3f8 (irq = 4) is a NS16550A
...
Uniform Multi-Platform E-IDE driver Revision: 7.00alpha2
ide: Assuming 33MHz system bus speed for PIO modes; override with idebus=xx
ICH4: IDE controller at PCI slot 0000:00:1f.1
Probing IDE interface ide0...
hda: HTS541010G9AT00, ATA DISK drive
hdc: HL-DT-STCD-RW/DVD DRIVE GCC-4241N, ATAPI CD/DVD-ROM drive
...
serio: i8042 KBD port at 0x60,0x64 irq 1
mice: PS/2 mouse device common for all mice
...
Synaptics Touchpad, model: 1, fw: 5.9, id: 0x2c6ab1, caps: 0x884793/0x0
...
agpgart: Detected an Intel 855GM Chipset.
...
Intel(R) PRO/1000 Network Driver - version 7.3.20-k2
...
ehci_hcd 0000:00:1d.7: EHCI Host Controller
...

Yenta: CardBus bridge found at 0000:02:00.0 [1014:0560]
...
Non-volatile memory driver v1.2
...
kjournald starting. Commit interval 5 seconds
EXT3 FS on hda2, internal journal
EXT3-fs: mounted filesystem with ordered data mode.
...
INIT: version 2.85 booting
...

BI OS- Provided Physica l RAM Map

The kernel assem bles the system m em ory m ap from the BI OS, and this is one of the first boot m essages you
will see:

BIOS-provided physical RAM map:
BIOS-e820: 0000000000000000 - 000000000009f000 (usable)
...
BIOS-e820: 00000000ff800000 - 0000000100000000 (reserved)

Real m ode init ializat ion code uses the BI OS int 0x15 service with funct ion num ber 0xe820 (hence the st r ing
BIOS-e820 in the preceding m essage) to obtain the system m emory m ap. The m em ory m ap indicates reserved
and usable m em ory ranges, which is subsequent ly used by the kernel to create its free m em ory pool. We
discuss m ore on the BI OS-supplied m em ory m ap in the sect ion "Real Mode Calls" in Appendix B, "Linux and the
BIOS."

7 5 8 MB LOW MEM Available

The norm ally addressable kernel m em ory region (< 896MB) is called low m em ory. The kernel m em ory allocator,
kmalloc() , returns m em ory from this region. Mem ory beyond 896MB (called high m em ory) can be accessed
only using special m appings.

During boot , the kernel calculates and displays the total pages present in these m em ory zones. We take a
deeper look at m em ory zones later in this chapter.

Kernel Com m and Line: ro root= / dev/ hda1

Linux boot loaders usually pass a com m and line to the kernel. Argum ents in the com m and line are sim ilar to the
argv[] list passed to the main() funct ion in C program s, except that they are passed to the kernel instead. You
m ay add com m and- line argum ents to the boot loader configurat ion file or supply them from the boot loader
prom pt at runt im e. [1] I f you are using the GRUB boot loader, the configurat ion file is either / boot / grub/ grub.conf
or / boot / grub/ m enu.lst depending on your dist r ibut ion. I f you are a LI LO user, the configurat ion file is
/ etc/ lilo.conf. An exam ple grub.conf file (with com m ents added) is listed here. You can figure out the genesis of
the preceding boot m essage if you look at the line following title kernel 2.6.23 :

[1] Boot loaders on em bedded devices are usually "slim " and do not support configurat ion files or equivalent m echanism s. Because of this,
m any non-x86 architectures support a kernel configurat ion opt ion called CONFIG_CMDLINE that you can use to supply the kernel com m and line
at build t im e.

default 0 #Boot the 2.6.23 kernel by default

timeout 5 #5 second to alter boot order or parameters

title kernel 2.6.23 #Boot Option 1
 #The boot image resides in the first partition of the first disk
 #under the /boot/ directory and is named vmlinuz-2.6.23. 'ro'
 #indicates that the root partition should be mounted read-only.
 kernel (hd0,0)/boot/vmlinuz-2.6.23 ro root=/dev/hda1

 #Look under section "Freeing initrd memory:387k freed"
 initrd (hd0,0)/boot/initrd

#...

Com m and- line argum ents affect the code path t raversed during boot . As a sim ple exam ple, assum e that the
com m and- line argum ent of interest is called bootmode . I f this param eter is set to 1, you would like to pr int
som e debug m essages during boot and switch to a runlevel of 3 at the end of the boot . (Wait unt il the boot
m essages are pr inted out by the init process to learn the sem ant ics of runlevels.) I f bootmode is instead set to
0, you would prefer the boot to be relat ively laconic, and the runlevel set to 2. Because you are already fam iliar
with init / m ain.c, let 's add the following m odificat ion to it :

Code View:
static unsigned int bootmode = 1;
static int __init
is_bootmode_setup(char *str)
{
 get_option(&str, &bootmode);
 return 1;
}

/* Handle parameter "bootmode=" */
__setup("bootmode=", is_bootmode_setup);

if (bootmode) {
 /* Print verbose output */
 /* ... */
}

/* ... */

/* If bootmode is 1, choose an init runlevel of 3, else
 switch to a run level of 2 */
if (bootmode) {
 argv_init[++args] = "3";
} else {
 argv_init[++args] = "2";
}

/* ... */

Rebuild the kernel as you did earlier and t ry out the change. We discuss m ore about kernel com m and- line
argum ents in the sect ion "Mem ory Layout" in Chapter 18, "Em bedding Linux."

Calibrat ing Delay...1 1 9 7 .4 6 BogoMI PS (lpj= 2 3 9 4 9 3 5)

During boot , the kernel calculates the num ber of t im es the processor can execute an internal delay loop in one
j iffy, which is the t im e interval between two consecut ive t icks of the system t im er. As you would expect , the
calculat ion has to be calibrated to the processing speed of your CPU. The result of this calibrat ion is stored in a
kernel variable called loops_per_jiffy . One place where the kernel m akes use of loops_per_jiffy is when a
device dr iver desires to delay execut ion for sm all durat ions in the order of m icroseconds.

To understand the delay- loop calibrat ion code, let 's take a peek inside calibrate_delay() , defined in
init / calibrate.c. This funct ion cleverly derives float ing-point precision using the integer kernel. The following
snippet (with som e com m ents added) shows the init ial port ion of the funct ion that carves out a coarse value for
loops_per_jiffy :

loops_per_jiffy = (1 << 12); /* Initial approximation = 4096 */
printk(KERN_DEBUG "Calibrating delay loop... ");
while ((loops_per_jiffy <<= 1) != 0) {
ticks = jiffies; /* As you will find out in the section, "Kernel
 Timers," the jiffies variable contains the
 number of timer ticks since the kernel
 started, and is incremented in the timer
 interrupt handler */

 while (ticks == jiffies); /* Wait until the start
 of the next jiffy */
 ticks = jiffies;
 /* Delay */
 __delay(loops_per_jiffy);

 /* Did the wait outlast the current jiffy? Continue if
 it didn't */
 ticks = jiffies - ticks;
 if (ticks) break;
}

loops_per_jiffy >>= 1; /* This fixes the most significant bit and is
 the lower-bound of loops_per_jiffy */

The preceding code begins by assum ing that loops_per_jiffy is greater than 4096 , which t ranslates to a
processor speed of roughly one m illion inst ruct ions per second (MI PS) . I t then waits for a fresh j iffy to start and
executes the delay loop, __delay(loops_per_jiffy) . I f the delay loop out lasts the j iffy, the previous value of
loops_per_jiffy (obtained by bitwise r ight -shift ing it by one) fixes its m ost significant bit (MSB) . Otherwise,
the funct ion cont inues by checking whether it will obtain the MSB by bitwise left -shift ing loops_per_jiffy .
When the kernel thus figures out the MSB of loops_per_jiffy , it works on the lower-order bits and fine- tunes
its precision as follows:

loopbit = loops_per_jiffy;

/* Gradually work on the lower-order bits */
while (lps_precision-- && (loopbit >>= 1)) {
 loops_per_jiffy |= loopbit;
 ticks = jiffies;
 while (ticks == jiffies); /* Wait until the start
 of the next jiffy */
ticks = jiffies;

 /* Delay */
 __delay(loops_per_jiffy);

 if (jiffies != ticks) /* longer than 1 tick */
 loops_per_jiffy &= ~loopbit;
}

The preceding snippet figures out the exact com binat ion of the lower bits of loops_per_jiffy when the delay
loop crosses a j iffy boundary. This calibrated value is used to derive an unscient ific m easure of the processor
speed, known as BogoMI PS. You can use the BogoMI PS rat ing as a relat ive m easurem ent of how fast a CPU can
run. On a 1.6GHz Pent ium M-based laptop, the delay- loop calibrat ion yielded a value of 2394935 for
loops_per_jiffy as announced by the preceding boot m essage. The BogoMI PS value is obtained as follows:

BogoMI PS = loops_per_jiffy * Num ber of j iff ies in 1 second * Num ber of
inst ruct ions consum ed by the internal delay loop in units of 1 m illion

 = (2394935 * HZ * 2) / (1 m illion)

 = (2394935 * 250 * 2) / (1000000)

 = 1197.46 (as displayed in the preceding boot m essage)

We further discuss jiffies , HZ, and loops_per_jiffy in the sect ion "Kernel Tim ers" later in this chapter.

Check ing HLT I nst ruct ion

Because the Linux kernel is supported on a variety of hardware plat form s, the boot code checks for
architecture-dependent bugs. Verifying the sanity of the halt (HLT) inst ruct ion is one such check.

The HLT inst ruct ion supported by x86 processors puts the CPU into a low-power sleep m ode that cont inues unt il
the next hardware interrupt occurs. The kernel uses the HLT inst ruct ion when it wants to put the CPU in the idle
state (see funct ion cpu_idle() defined in arch/ x86/ kernel/ process_32.c) .

For problem at ic CPUs, the no-hlt kernel com m and- line argum ent can be used to disable the HLT inst ruct ion. I f
no-hlt is turned on, the kernel busy-waits while it 's idle, rather than keep the CPU cool by put t ing it in the HLT
state.

The preceding boot m essage is generated when the startup code in init / m ain.c calls check_bugs() defined in
include/ asm-your-arch/ bugs.h.

NET: Registered Protocol Fam ily 2

The Linux socket layer is a uniform interface through which user applicat ions access various networking
protocols. Each protocol registers itself with the socket layer using a unique fam ily num ber (defined in
include/ linux/ socket .h) assigned to it . Fam ily 2 in the preceding m essage stands for AF_INET (I nternet Protocol) .

Another registered protocol fam ily often found in boot m essages is AF_NETLINK (Fam ily 16) . Net link sockets
offer a m ethod to com m unicate between user processes and the kernel. Funct ionalit ies accom plished via net link
sockets include accessing the rout ing table and the Address Resolut ion Protocol (ARP) table (see
include/ linux/ net link.h for the full usage list) . Net link sockets are m ore suitable than system calls to accom plish
such tasks because they are asynchronous, sim pler to im plem ent , and dynam ically linkable.

Another protocol fam ily com m only enabled in the kernel is AF_UNIX or UNI X-dom ain sockets. Program s such as
X Windows use them for interprocess com m unicat ion on the sam e system .

Freeing I n it rd Mem ory: 3 8 7 k Freed

I nit rd is a m em ory- resident vir tual disk im age loaded by the boot loader. I t 's m ounted as the init ial root
filesystem after the kernel boots, to hold addit ional dynam ically loadable m odules required to m ount the disk
part it ion that holds the actual root filesystem . Because the kernel runs on different hardware plat form s that use
diverse storage cont rollers, it 's not feasible for dist r ibut ions to enable device dr ivers for all possible disk dr ives
in the base kernel im age. Drivers specific to your system 's storage device are packed inside init rd and loaded
after the kernel boots, but before the root filesystem is m ounted. To create an init rd im age, use the mkinitrd
com m and.

The 2.6 kernel includes a feature called init ram fs that br ing several benefits over init rd. Whereas the lat ter
em ulates a disk (hence called init ram disk or init rd) and suffers the overheads associated with the Linux block
I / O subsystem such as caching, the form er essent ially gets the cache itself m ounted like a filesystem (hence
called init ram fs) .

I nit ram fs, like the page cache over which it 's built , grows and shrinks dynam ically unlike init rd and, hence,
reduces m em ory wastage. Also, unlike init rd, which requires you to include the associated filesystem driver
(e.g., EXT2 drivers if you have an EXT2 filesystem on your init rd) , init ram fs needs no filesystem support . The
init ram fs code is t iny because it 's just a sm all layer on top of the page cache.

You can pack your init ial root filesystem into a com pressed cpio archive [2] and pass it to the kernel com m and
line using the initrd= argum ent or build it as part of the kernel im age using the INITRAMFS_SOURCE m enu
opt ion during kernel configurat ion. With the lat ter, you m ay either provide the filenam e of a cpio archive or the
path nam e to a directory t ree containing your init ram fs layout . During boot , the kernel ext racts the files into an
init ram fs root filesystem (also called root fs) and executes a top- level / init program if it finds one. This m ethod
of obtaining an init ial root fs is especially useful for em bedded plat form s, where all system resources are at a
prem ium . To create an init ram fs im age, use mkinitramfs . Look at Docum entat ion/ filesystem s/ ram fs- root fs-
init ram fs.txt for m ore docum entat ion.

[2] cpio is a UNI X file archival form at . You can download it from www.gnu.org/ software/ cpio.

I n this case, we are using init ram fs by supplying a com pressed cpio archive of the init ial root filesystem to the
kernel using the initrd= com m and- line argum ent . After unpacking the contents of the archive into root fs, the
kernel frees the m em ory where the archive resides (387K in this case) and announces the above boot m essage.
The freed pages are then doled out to other parts of the kernel that request m em ory.

As discussed in Chapter 18, init rd and init ram fs are som et im es used to hold the actual root filesystem on
em bedded devices during developm ent .

I O Scheduler Ant icipatory Registered (Default)

The m ain goal of an I / O scheduler is to increase system throughput by m inim izing disk seek t im es, which is the
latency to m ove the disk head from its exist ing posit ion to the disk sector of interest . The 2.6 kernel provides
four different I / O schedulers: Deadline, Ant icipatory, Com plete Fair Queuing, and Noop. As the preceding kernel
m essage indicates, the kernel sets Ant icipatory as the default I / O scheduler. We look at I / O scheduling in
Chapter 14, "Block Drivers."

Set t ing Up Standard PCI Resources

The next phase of the boot process probes and init ializes I / O buses and peripheral cont rollers. The kernel
probes PCI hardware by walking the PCI bus, and then init ializes other I / O subsystem s. Take a look at the boot
m essages in Figure 2.3 to see announcem ents regarding the init ializat ion of the SCSI subsystem , the USB
cont roller, the video chip (part of the 855 North Bridge chipset in the m essages below) , the serial port (8250
UART in this case) , PS/ 2 keyboard and m ouse, floppy dr ives, ram disk, the loopback device, the I DE cont roller

(part of the I CH4 South Bridge chipset in this example) , the touchpad, the Ethernet cont roller (e1000 in this
case) , and the PCMCI A cont roller. The ident ity of the corresponding I / O device is labeled against .

Figure 2 .3 . I n it ia liz ing buses and per iphera l cont r ollers dur ing boot .

Code View:
SCSI subsystem initialized SCSI
usbcore: registered new driver hub USB
agpgart: Detected an Intel 855 Chipset. Video
[drm] Initialized drm 1.0.0 20040925
PS/2 Controller [PNP0303:KBD,PNP0f13:MOU]
at 0x60,0x64 irq 1,12 serio: i8042 KBD port Keyboard
serial8250: ttyS0 at I/O 0x3f8 (irq = 4)
is a NS16550A Serial Port
Floppy drive(s): fd0 is 1.44M Floppy
RAMDISK driver initialized: 16 RAM disks
of 4096K size 1024 blocksize Ramdisk
loop: loaded (max 8 devices) Loop back
ICH4: IDE controller at PCI slot
0000:00:1f.1 Hard Disk
...
input: SynPS/2 Synaptics TouchPad as
/class/input/input1 Touchpad
e1000: eth0: e1000_probe: Intel® PRO/1000
Network Connection Ethernet
Yenta: CardBus bridge found at
0000:02:00.0 [1014:0560] PCMCIA/CardBus
...

This book discusses m any of these driver subsystem s in separate chapters. Note that som e of these m essages
m ight m anifest only later on in the boot process if the dr ivers are dynam ically linked to the kernel as loadable
m odules.

EXT3 - fs: Mounted Filesystem

The EXT3 filesystem has becom e the de facto filesystem on Linux. I t adds a journaling layer on top of the
veteran EXT2 filesystem to facilitate quick recovery after a crash. The aim is to regain a consistent filesystem
state without having to go through a t im e-consum ing filesystem check (fsck) operat ion. EXT2 rem ains the work
engine, while the EXT3 layer addit ionally logs file t ransact ions on a m em ory area called journal before
com m it t ing the actual changes to disk. EXT3 is backward-com pat ible with EXT2, so you can add an EXT3 coat ing
to your exist ing EXT2 filesystem or peel off the EXT3 to get back your or iginal EXT2 filesystem .

EXT4

The latest version in the EXT filesystem series is EXT4, which has been included in the m ainline
kernel start ing with the 2.6.19 release, with a tag of "experim ental" and a nam e of ext4dev. EXT4
is largely backward-com pat ible with EXT3. The hom e page of the EXT4 project is at
www.bullopensource.org/ ext4.

EXT3 starts a kernel helper thread (we will have an in-depth discussion on kernel threads in the next chapter)

called kjournald to assist in journaling. When EXT3 is operat ional, the kernel m ounts the root filesystem and
gets ready for business:

EXT3-fs: mounted filesystem with ordered data mode
kjournald starting. Commit interval 5 seconds
VFS: Mounted root (ext3 filesystem).

I N I T: Version 2 .8 5 Boot ing

I nit , the parent of all Linux processes, is the first program to run after the kernel finishes its boot sequence. I n
the last few lines of init / m ain.c, the kernel searches different locat ions in its at tem pt to locate init :

if (ramdisk_execute_command) { /* Look for /init in initramfs */

 run_init_process(ramdisk_execute_command);
}

if (execute_command) { /* You may override init and ask the kernel
 to execute a custom program using the
 "init=" kernel command-line argument. If
 you do that, execute_command points to the

 specified program */
 run_init_process(execute_command);
}

/* Else search for init or sh in the usual places .. */

run_init_process("/sbin/init");
run_init_process("/etc/init");
run_init_process("/bin/init");
run_init_process("/bin/sh");
panic("No init found. Try passing init= option to kernel.");

I nit receives direct ions from / etc/ init tab. I t first executes system init ializat ion scr ipts present in / etc/ rc.sysinit .
One of the im portant responsibilit ies of this scr ipt is to act ivate the swap part it ion, which t r iggers a boot
m essage such as this:

Adding 1552384k swap on /dev/hda6

Let 's take a closer look at what this m eans. Linux user processes own a vir tual address space of 3GB (see the
sect ion "Allocat ing Mem ory") . Out of this, the pages const itut ing the "working set " are kept in RAM. However,
when there are too m any program s dem anding m em ory resources, the kernel frees up som e used RAM pages
by stor ing them in a disk part it ion called swap space. According to a rule of thum b, the size of the swap
part it ion should be twice the am ount of RAM. I n this case, the swap space lives in the disk part it ion / dev/ hda6
and has a size of 1552384K bytes.

I nit then goes on to run scr ipts present in the / etc/ rc.d/ rcX.d/ directory, where X is the runlevel specified in
init tab. A runlevel is an execut ion state corresponding to the desired boot m ode. For exam ple, m ult iuser text
m ode corresponds to a runlevel of 3, while X Windows associates with a runlevel of 5. So, if you see the
m essage, INIT: Entering runlevel 3 , init has started execut ing scr ipts in the / etc/ rc.d/ rc3.d/ directory.
These scripts start the dynam ic device-nam ing subsystem udev (which we discuss in Chapter 4 , "Laying the
Groundwork") and load kernel m odules responsible for dr iving networking, audio, storage, and so on:

Starting udev: [OK]
Initializing hardware... network audio storage [Done]
...

I nit finally spawns term inals on vir tual consoles. You can now log in.

Chapter 2 . A Peek I nside the Kernel

I n This Chapter

Boot ing Up
18

Kernel Mode and User Mode
30

Process Context and I nterrupt
Context

30

Kernel Tim ers
31

Concurrency in the Kernel
39

Process Filesystem
49

Allocat ing Mem ory
49

Looking at the Sources
52

Before we start our journey into the m yst ical world of Linux device dr ivers, let 's fam iliar ize
ourselves with som e basic kernel concepts by looking at several kernel regions through the lens of
a dr iver developer. We learn about kernel t im ers, synchronizat ion m echanism s, and m em ory
allocat ion. But let 's start our expedit ion by get t ing a view from the top; let 's skim through boot
m essages em it ted by the kernel and hit the breaks whenever som ething looks interest ing.

Boot ing Up

Figure 2.1 shows the Linux boot sequence on an x86-based com puter. Linux boot on x86-based hardware is set
into m ot ion when the BI OS loads the Master Boot Record (MBR) from the boot device. Code resident in the MBR
looks at the part it ion table and reads a Linux boot loader such as GRUB, LI LO, or SYSLI NUX from the act ive

part it ion. The final stage of the boot loader loads the com pressed kernel im age and passes cont rol to it . The
kernel uncom presses itself and turns on the ignit ion.

Figure 2 .1 . Linux boot sequence on x8 6 - based hardw a re.

x86-based processors have two m odes of operat ion, real m ode and protected m ode. I n real m ode, you can
access only the first 1MB of m em ory, that too without any protect ion. Protected m ode is sophist icated and lets
you tap into m any advanced features of the processor such as paging. The CPU has to pass through real m ode
en route to protected m ode. This road is a one-way st reet , however. You can't switch back to real m ode from
protected m ode.

The first - level kernel init ializat ions are done in real m ode assem bly. Subsequent startup is perform ed in
protected m ode by the funct ion start_kernel() defined in init / m ain.c, the source file you m odified in the
previous chapter. start_kernel() begins by init ializing the CPU subsystem . Mem ory and process m anagem ent
are put in place soon after. Peripheral buses and I / O devices are started next . As the last step in the boot
sequence, the init program , the parent of all Linux processes, is invoked. I nit executes user-space scripts that
start necessary kernel services. I t finally spawns term inals on consoles and displays the login prom pt .

Each following sect ion header is a m essage from Figure 2.2 generated during boot progression on an x86-based

laptop. The sem ant ics and the m essages m ay change if you are boot ing the kernel on other architectures. I f
som e explanat ions in this sect ion sound rather crypt ic, don't worry; the intent here is only to give you a picture
from 100 feet above and to let you savor a first taste of the kernel's flavor. Many concepts m ent ioned here in
passing are covered in depth later on.

Figure 2 .2 . Kernel boot m essages.

Code View:
Linux version 2.6.23.1y (root@localhost.localdomain) (gcc version 4.1.1 20061011 (Red
Hat 4.1.1-30)) #7 SMP PREEMPT Thu Nov 1 11:39:30 IST 2007
BIOS-provided physical RAM map:
 BIOS-e820: 0000000000000000 - 000000000009f000 (usable)
 BIOS-e820: 000000000009f000 - 00000000000a0000 (reserved)
 ...
758MB LOWMEM available.
...
Kernel command line: ro root=/dev/hda1
...
Console: colour VGA+ 80x25
...
Calibrating delay using timer specific routine.. 1197.46 BogoMIPS (lpj=2394935)
...
CPU: L1 I cache: 32K, L1 D cache: 32K
CPU: L2 cache: 1024K
...
Checking 'hlt' instruction... OK.
...
Setting up standard PCI resources
...
NET: Registered protocol family 2
IP route cache hash table entries: 32768 (order: 5, 131072 bytes)
TCP established hash table entries: 131072 (order: 9, 2097152 bytes)
...
checking if image is initramfs... it is
Freeing initrd memory: 387k freed
...
io scheduler noop registered
io scheduler anticipatory registered (default)
...
00:0a: ttyS0 at I/O 0x3f8 (irq = 4) is a NS16550A
...
Uniform Multi-Platform E-IDE driver Revision: 7.00alpha2
ide: Assuming 33MHz system bus speed for PIO modes; override with idebus=xx
ICH4: IDE controller at PCI slot 0000:00:1f.1
Probing IDE interface ide0...
hda: HTS541010G9AT00, ATA DISK drive
hdc: HL-DT-STCD-RW/DVD DRIVE GCC-4241N, ATAPI CD/DVD-ROM drive
...
serio: i8042 KBD port at 0x60,0x64 irq 1
mice: PS/2 mouse device common for all mice
...
Synaptics Touchpad, model: 1, fw: 5.9, id: 0x2c6ab1, caps: 0x884793/0x0
...
agpgart: Detected an Intel 855GM Chipset.
...
Intel(R) PRO/1000 Network Driver - version 7.3.20-k2
...
ehci_hcd 0000:00:1d.7: EHCI Host Controller
...

Yenta: CardBus bridge found at 0000:02:00.0 [1014:0560]
...
Non-volatile memory driver v1.2
...
kjournald starting. Commit interval 5 seconds
EXT3 FS on hda2, internal journal
EXT3-fs: mounted filesystem with ordered data mode.
...
INIT: version 2.85 booting
...

BI OS- Provided Physica l RAM Map

The kernel assem bles the system m em ory m ap from the BI OS, and this is one of the first boot m essages you
will see:

BIOS-provided physical RAM map:
BIOS-e820: 0000000000000000 - 000000000009f000 (usable)
...
BIOS-e820: 00000000ff800000 - 0000000100000000 (reserved)

Real m ode init ializat ion code uses the BI OS int 0x15 service with funct ion num ber 0xe820 (hence the st r ing
BIOS-e820 in the preceding m essage) to obtain the system m emory m ap. The m em ory m ap indicates reserved
and usable m em ory ranges, which is subsequent ly used by the kernel to create its free m em ory pool. We
discuss m ore on the BI OS-supplied m em ory m ap in the sect ion "Real Mode Calls" in Appendix B, "Linux and the
BIOS."

7 5 8 MB LOW MEM Available

The norm ally addressable kernel m em ory region (< 896MB) is called low m em ory. The kernel m em ory allocator,
kmalloc() , returns m em ory from this region. Mem ory beyond 896MB (called high m em ory) can be accessed
only using special m appings.

During boot , the kernel calculates and displays the total pages present in these m em ory zones. We take a
deeper look at m em ory zones later in this chapter.

Kernel Com m and Line: ro root= / dev/ hda1

Linux boot loaders usually pass a com m and line to the kernel. Argum ents in the com m and line are sim ilar to the
argv[] list passed to the main() funct ion in C program s, except that they are passed to the kernel instead. You
m ay add com m and- line argum ents to the boot loader configurat ion file or supply them from the boot loader
prom pt at runt im e. [1] I f you are using the GRUB boot loader, the configurat ion file is either / boot / grub/ grub.conf
or / boot / grub/ m enu.lst depending on your dist r ibut ion. I f you are a LI LO user, the configurat ion file is
/ etc/ lilo.conf. An exam ple grub.conf file (with com m ents added) is listed here. You can figure out the genesis of
the preceding boot m essage if you look at the line following title kernel 2.6.23 :

[1] Boot loaders on em bedded devices are usually "slim " and do not support configurat ion files or equivalent m echanism s. Because of this,
m any non-x86 architectures support a kernel configurat ion opt ion called CONFIG_CMDLINE that you can use to supply the kernel com m and line
at build t im e.

default 0 #Boot the 2.6.23 kernel by default

timeout 5 #5 second to alter boot order or parameters

title kernel 2.6.23 #Boot Option 1
 #The boot image resides in the first partition of the first disk
 #under the /boot/ directory and is named vmlinuz-2.6.23. 'ro'
 #indicates that the root partition should be mounted read-only.
 kernel (hd0,0)/boot/vmlinuz-2.6.23 ro root=/dev/hda1

 #Look under section "Freeing initrd memory:387k freed"
 initrd (hd0,0)/boot/initrd

#...

Com m and- line argum ents affect the code path t raversed during boot . As a sim ple exam ple, assum e that the
com m and- line argum ent of interest is called bootmode . I f this param eter is set to 1, you would like to pr int
som e debug m essages during boot and switch to a runlevel of 3 at the end of the boot . (Wait unt il the boot
m essages are pr inted out by the init process to learn the sem ant ics of runlevels.) I f bootmode is instead set to
0, you would prefer the boot to be relat ively laconic, and the runlevel set to 2. Because you are already fam iliar
with init / m ain.c, let 's add the following m odificat ion to it :

Code View:
static unsigned int bootmode = 1;
static int __init
is_bootmode_setup(char *str)
{
 get_option(&str, &bootmode);
 return 1;
}

/* Handle parameter "bootmode=" */
__setup("bootmode=", is_bootmode_setup);

if (bootmode) {
 /* Print verbose output */
 /* ... */
}

/* ... */

/* If bootmode is 1, choose an init runlevel of 3, else
 switch to a run level of 2 */
if (bootmode) {
 argv_init[++args] = "3";
} else {
 argv_init[++args] = "2";
}

/* ... */

Rebuild the kernel as you did earlier and t ry out the change. We discuss m ore about kernel com m and- line
argum ents in the sect ion "Mem ory Layout" in Chapter 18, "Em bedding Linux."

Calibrat ing Delay...1 1 9 7 .4 6 BogoMI PS (lpj= 2 3 9 4 9 3 5)

During boot , the kernel calculates the num ber of t im es the processor can execute an internal delay loop in one
j iffy, which is the t im e interval between two consecut ive t icks of the system t im er. As you would expect , the
calculat ion has to be calibrated to the processing speed of your CPU. The result of this calibrat ion is stored in a
kernel variable called loops_per_jiffy . One place where the kernel m akes use of loops_per_jiffy is when a
device dr iver desires to delay execut ion for sm all durat ions in the order of m icroseconds.

To understand the delay- loop calibrat ion code, let 's take a peek inside calibrate_delay() , defined in
init / calibrate.c. This funct ion cleverly derives float ing-point precision using the integer kernel. The following
snippet (with som e com m ents added) shows the init ial port ion of the funct ion that carves out a coarse value for
loops_per_jiffy :

loops_per_jiffy = (1 << 12); /* Initial approximation = 4096 */
printk(KERN_DEBUG "Calibrating delay loop... ");
while ((loops_per_jiffy <<= 1) != 0) {
ticks = jiffies; /* As you will find out in the section, "Kernel
 Timers," the jiffies variable contains the
 number of timer ticks since the kernel
 started, and is incremented in the timer
 interrupt handler */

 while (ticks == jiffies); /* Wait until the start
 of the next jiffy */
 ticks = jiffies;
 /* Delay */
 __delay(loops_per_jiffy);

 /* Did the wait outlast the current jiffy? Continue if
 it didn't */
 ticks = jiffies - ticks;
 if (ticks) break;
}

loops_per_jiffy >>= 1; /* This fixes the most significant bit and is
 the lower-bound of loops_per_jiffy */

The preceding code begins by assum ing that loops_per_jiffy is greater than 4096 , which t ranslates to a
processor speed of roughly one m illion inst ruct ions per second (MI PS) . I t then waits for a fresh j iffy to start and
executes the delay loop, __delay(loops_per_jiffy) . I f the delay loop out lasts the j iffy, the previous value of
loops_per_jiffy (obtained by bitwise r ight -shift ing it by one) fixes its m ost significant bit (MSB) . Otherwise,
the funct ion cont inues by checking whether it will obtain the MSB by bitwise left -shift ing loops_per_jiffy .
When the kernel thus figures out the MSB of loops_per_jiffy , it works on the lower-order bits and fine- tunes
its precision as follows:

loopbit = loops_per_jiffy;

/* Gradually work on the lower-order bits */
while (lps_precision-- && (loopbit >>= 1)) {
 loops_per_jiffy |= loopbit;
 ticks = jiffies;
 while (ticks == jiffies); /* Wait until the start
 of the next jiffy */
ticks = jiffies;

 /* Delay */
 __delay(loops_per_jiffy);

 if (jiffies != ticks) /* longer than 1 tick */
 loops_per_jiffy &= ~loopbit;
}

The preceding snippet figures out the exact com binat ion of the lower bits of loops_per_jiffy when the delay
loop crosses a j iffy boundary. This calibrated value is used to derive an unscient ific m easure of the processor
speed, known as BogoMI PS. You can use the BogoMI PS rat ing as a relat ive m easurem ent of how fast a CPU can
run. On a 1.6GHz Pent ium M-based laptop, the delay- loop calibrat ion yielded a value of 2394935 for
loops_per_jiffy as announced by the preceding boot m essage. The BogoMI PS value is obtained as follows:

BogoMI PS = loops_per_jiffy * Num ber of j iff ies in 1 second * Num ber of
inst ruct ions consum ed by the internal delay loop in units of 1 m illion

 = (2394935 * HZ * 2) / (1 m illion)

 = (2394935 * 250 * 2) / (1000000)

 = 1197.46 (as displayed in the preceding boot m essage)

We further discuss jiffies , HZ, and loops_per_jiffy in the sect ion "Kernel Tim ers" later in this chapter.

Check ing HLT I nst ruct ion

Because the Linux kernel is supported on a variety of hardware plat form s, the boot code checks for
architecture-dependent bugs. Verifying the sanity of the halt (HLT) inst ruct ion is one such check.

The HLT inst ruct ion supported by x86 processors puts the CPU into a low-power sleep m ode that cont inues unt il
the next hardware interrupt occurs. The kernel uses the HLT inst ruct ion when it wants to put the CPU in the idle
state (see funct ion cpu_idle() defined in arch/ x86/ kernel/ process_32.c) .

For problem at ic CPUs, the no-hlt kernel com m and- line argum ent can be used to disable the HLT inst ruct ion. I f
no-hlt is turned on, the kernel busy-waits while it 's idle, rather than keep the CPU cool by put t ing it in the HLT
state.

The preceding boot m essage is generated when the startup code in init / m ain.c calls check_bugs() defined in
include/ asm-your-arch/ bugs.h.

NET: Registered Protocol Fam ily 2

The Linux socket layer is a uniform interface through which user applicat ions access various networking
protocols. Each protocol registers itself with the socket layer using a unique fam ily num ber (defined in
include/ linux/ socket .h) assigned to it . Fam ily 2 in the preceding m essage stands for AF_INET (I nternet Protocol) .

Another registered protocol fam ily often found in boot m essages is AF_NETLINK (Fam ily 16) . Net link sockets
offer a m ethod to com m unicate between user processes and the kernel. Funct ionalit ies accom plished via net link
sockets include accessing the rout ing table and the Address Resolut ion Protocol (ARP) table (see
include/ linux/ net link.h for the full usage list) . Net link sockets are m ore suitable than system calls to accom plish
such tasks because they are asynchronous, sim pler to im plem ent , and dynam ically linkable.

Another protocol fam ily com m only enabled in the kernel is AF_UNIX or UNI X-dom ain sockets. Program s such as
X Windows use them for interprocess com m unicat ion on the sam e system .

Freeing I n it rd Mem ory: 3 8 7 k Freed

I nit rd is a m em ory- resident vir tual disk im age loaded by the boot loader. I t 's m ounted as the init ial root
filesystem after the kernel boots, to hold addit ional dynam ically loadable m odules required to m ount the disk
part it ion that holds the actual root filesystem . Because the kernel runs on different hardware plat form s that use
diverse storage cont rollers, it 's not feasible for dist r ibut ions to enable device dr ivers for all possible disk dr ives
in the base kernel im age. Drivers specific to your system 's storage device are packed inside init rd and loaded
after the kernel boots, but before the root filesystem is m ounted. To create an init rd im age, use the mkinitrd
com m and.

The 2.6 kernel includes a feature called init ram fs that br ing several benefits over init rd. Whereas the lat ter
em ulates a disk (hence called init ram disk or init rd) and suffers the overheads associated with the Linux block
I / O subsystem such as caching, the form er essent ially gets the cache itself m ounted like a filesystem (hence
called init ram fs) .

I nit ram fs, like the page cache over which it 's built , grows and shrinks dynam ically unlike init rd and, hence,
reduces m em ory wastage. Also, unlike init rd, which requires you to include the associated filesystem driver
(e.g., EXT2 drivers if you have an EXT2 filesystem on your init rd) , init ram fs needs no filesystem support . The
init ram fs code is t iny because it 's just a sm all layer on top of the page cache.

You can pack your init ial root filesystem into a com pressed cpio archive [2] and pass it to the kernel com m and
line using the initrd= argum ent or build it as part of the kernel im age using the INITRAMFS_SOURCE m enu
opt ion during kernel configurat ion. With the lat ter, you m ay either provide the filenam e of a cpio archive or the
path nam e to a directory t ree containing your init ram fs layout . During boot , the kernel ext racts the files into an
init ram fs root filesystem (also called root fs) and executes a top- level / init program if it finds one. This m ethod
of obtaining an init ial root fs is especially useful for em bedded plat form s, where all system resources are at a
prem ium . To create an init ram fs im age, use mkinitramfs . Look at Docum entat ion/ filesystem s/ ram fs- root fs-
init ram fs.txt for m ore docum entat ion.

[2] cpio is a UNI X file archival form at . You can download it from www.gnu.org/ software/ cpio.

I n this case, we are using init ram fs by supplying a com pressed cpio archive of the init ial root filesystem to the
kernel using the initrd= com m and- line argum ent . After unpacking the contents of the archive into root fs, the
kernel frees the m em ory where the archive resides (387K in this case) and announces the above boot m essage.
The freed pages are then doled out to other parts of the kernel that request m em ory.

As discussed in Chapter 18, init rd and init ram fs are som et im es used to hold the actual root filesystem on
em bedded devices during developm ent .

I O Scheduler Ant icipatory Registered (Default)

The m ain goal of an I / O scheduler is to increase system throughput by m inim izing disk seek t im es, which is the
latency to m ove the disk head from its exist ing posit ion to the disk sector of interest . The 2.6 kernel provides
four different I / O schedulers: Deadline, Ant icipatory, Com plete Fair Queuing, and Noop. As the preceding kernel
m essage indicates, the kernel sets Ant icipatory as the default I / O scheduler. We look at I / O scheduling in
Chapter 14, "Block Drivers."

Set t ing Up Standard PCI Resources

The next phase of the boot process probes and init ializes I / O buses and peripheral cont rollers. The kernel
probes PCI hardware by walking the PCI bus, and then init ializes other I / O subsystem s. Take a look at the boot
m essages in Figure 2.3 to see announcem ents regarding the init ializat ion of the SCSI subsystem , the USB
cont roller, the video chip (part of the 855 North Bridge chipset in the m essages below) , the serial port (8250
UART in this case) , PS/ 2 keyboard and m ouse, floppy dr ives, ram disk, the loopback device, the I DE cont roller

(part of the I CH4 South Bridge chipset in this example) , the touchpad, the Ethernet cont roller (e1000 in this
case) , and the PCMCI A cont roller. The ident ity of the corresponding I / O device is labeled against .

Figure 2 .3 . I n it ia liz ing buses and per iphera l cont r ollers dur ing boot .

Code View:
SCSI subsystem initialized SCSI
usbcore: registered new driver hub USB
agpgart: Detected an Intel 855 Chipset. Video
[drm] Initialized drm 1.0.0 20040925
PS/2 Controller [PNP0303:KBD,PNP0f13:MOU]
at 0x60,0x64 irq 1,12 serio: i8042 KBD port Keyboard
serial8250: ttyS0 at I/O 0x3f8 (irq = 4)
is a NS16550A Serial Port
Floppy drive(s): fd0 is 1.44M Floppy
RAMDISK driver initialized: 16 RAM disks
of 4096K size 1024 blocksize Ramdisk
loop: loaded (max 8 devices) Loop back
ICH4: IDE controller at PCI slot
0000:00:1f.1 Hard Disk
...
input: SynPS/2 Synaptics TouchPad as
/class/input/input1 Touchpad
e1000: eth0: e1000_probe: Intel® PRO/1000
Network Connection Ethernet
Yenta: CardBus bridge found at
0000:02:00.0 [1014:0560] PCMCIA/CardBus
...

This book discusses m any of these driver subsystem s in separate chapters. Note that som e of these m essages
m ight m anifest only later on in the boot process if the dr ivers are dynam ically linked to the kernel as loadable
m odules.

EXT3 - fs: Mounted Filesystem

The EXT3 filesystem has becom e the de facto filesystem on Linux. I t adds a journaling layer on top of the
veteran EXT2 filesystem to facilitate quick recovery after a crash. The aim is to regain a consistent filesystem
state without having to go through a t im e-consum ing filesystem check (fsck) operat ion. EXT2 rem ains the work
engine, while the EXT3 layer addit ionally logs file t ransact ions on a m em ory area called journal before
com m it t ing the actual changes to disk. EXT3 is backward-com pat ible with EXT2, so you can add an EXT3 coat ing
to your exist ing EXT2 filesystem or peel off the EXT3 to get back your or iginal EXT2 filesystem .

EXT4

The latest version in the EXT filesystem series is EXT4, which has been included in the m ainline
kernel start ing with the 2.6.19 release, with a tag of "experim ental" and a nam e of ext4dev. EXT4
is largely backward-com pat ible with EXT3. The hom e page of the EXT4 project is at
www.bullopensource.org/ ext4.

EXT3 starts a kernel helper thread (we will have an in-depth discussion on kernel threads in the next chapter)

called kjournald to assist in journaling. When EXT3 is operat ional, the kernel m ounts the root filesystem and
gets ready for business:

EXT3-fs: mounted filesystem with ordered data mode
kjournald starting. Commit interval 5 seconds
VFS: Mounted root (ext3 filesystem).

I N I T: Version 2 .8 5 Boot ing

I nit , the parent of all Linux processes, is the first program to run after the kernel finishes its boot sequence. I n
the last few lines of init / m ain.c, the kernel searches different locat ions in its at tem pt to locate init :

if (ramdisk_execute_command) { /* Look for /init in initramfs */

 run_init_process(ramdisk_execute_command);
}

if (execute_command) { /* You may override init and ask the kernel
 to execute a custom program using the
 "init=" kernel command-line argument. If
 you do that, execute_command points to the

 specified program */
 run_init_process(execute_command);
}

/* Else search for init or sh in the usual places .. */

run_init_process("/sbin/init");
run_init_process("/etc/init");
run_init_process("/bin/init");
run_init_process("/bin/sh");
panic("No init found. Try passing init= option to kernel.");

I nit receives direct ions from / etc/ init tab. I t first executes system init ializat ion scr ipts present in / etc/ rc.sysinit .
One of the im portant responsibilit ies of this scr ipt is to act ivate the swap part it ion, which t r iggers a boot
m essage such as this:

Adding 1552384k swap on /dev/hda6

Let 's take a closer look at what this m eans. Linux user processes own a vir tual address space of 3GB (see the
sect ion "Allocat ing Mem ory") . Out of this, the pages const itut ing the "working set " are kept in RAM. However,
when there are too m any program s dem anding m em ory resources, the kernel frees up som e used RAM pages
by stor ing them in a disk part it ion called swap space. According to a rule of thum b, the size of the swap
part it ion should be twice the am ount of RAM. I n this case, the swap space lives in the disk part it ion / dev/ hda6
and has a size of 1552384K bytes.

I nit then goes on to run scr ipts present in the / etc/ rc.d/ rcX.d/ directory, where X is the runlevel specified in
init tab. A runlevel is an execut ion state corresponding to the desired boot m ode. For exam ple, m ult iuser text
m ode corresponds to a runlevel of 3, while X Windows associates with a runlevel of 5. So, if you see the
m essage, INIT: Entering runlevel 3 , init has started execut ing scr ipts in the / etc/ rc.d/ rc3.d/ directory.
These scripts start the dynam ic device-nam ing subsystem udev (which we discuss in Chapter 4 , "Laying the
Groundwork") and load kernel m odules responsible for dr iving networking, audio, storage, and so on:

Starting udev: [OK]
Initializing hardware... network audio storage [Done]
...

I nit finally spawns term inals on vir tual consoles. You can now log in.

Kernel Mode and User Mode

Som e operat ing system s, such as MS-DOS, always execute in a single CPU m ode, but UNI X- like operat ing
system s use dual m odes to effect ively im plem ent t ime-sharing. On a Linux m achine, the CPU is either in a
t rusted kernel m ode or in a rest r icted user m ode. All user processes execute in user m ode, whereas the kernel
itself executes in kernel m ode.

Kernel m ode code has unrest r icted access to the ent ire processor inst ruct ion set and to the full m em ory and I / O
space. I f a user m ode process needs these privileges, it has to channel requests through device dr ivers or other
kernel m ode code via system calls. User m ode code is allowed to page fault , however, whereas kernel m ode
code isn't .

I n 2.4 and earlier kernels, only user m ode processes could be context switched out and replaced by other
processes. Kernel m ode code could m onopolize the processor unt il either

I t voluntar ily relinquished the CPU.

or

An interrupt or an except ion occurred.

With the int roduct ion of kernel preem pt ion in the 2.6 release, m ost kernel m ode code can also be context
switched.

Process Context and I nterrupt Context

The kernel accom plishes useful work using a com binat ion of process contexts and interrupt contexts. Kernel
code that services system calls issued by user applicat ions runs on behalf of the corresponding applicat ion
processes and is said to execute in process context . I nterrupt handlers, on the other hand, run asynchronously
in interrupt context . Processes contexts are not t ied to any interrupt context and vice versa.

Kernel code running in process context is preem pt ible. An interrupt context , however, always runs to com plet ion
and is not preem pt ible. Because of this, there are rest r ict ions on what can be done from interrupt context . Code
execut ing from interrupt context cannot do the following:

Go to sleep or relinquish the processor

Acquire a m utex

Perform t im e-consum ing tasks

Access user space vir tual m em ory

Look at sect ion " I nterrupt Handing" in Chapter 4 for a full discussion of the interrupt context .

Kernel Tim ers

The working of m any parts of the kernel is cr it ically dependent on the passage of t im e. The Linux kernel m akes
use of different t im ers provided by the hardware to provide t im e-dependent services such as busy-wait ing and
sleep-wait ing. The processor wastes cycles while it busy-waits but relinquishes the CPU when it sleep-waits.
Naturally, the form er is done only when the lat ter is not feasible. The kernel also facilitates scheduling of
funct ions that desire to run after a specified t im e durat ion has elapsed.

Let 's first discuss the sem ant ics of som e im portant kernel t im er variables such as jiffies , HZ, and xtime . Next ,
let 's m easure execut ion t im es on a Pent ium -based system using the Pent ium Tim e Stam p Counter (TSC) . Let 's
also see how Linux uses the Real Tim e Clock (RTC) .

HZ and Jif f ies

System t im ers interrupt the processor (or "pop") at program m able frequencies. This frequency, or the num ber
of t im er t icks per second, is contained in the kernel variable HZ. Choosing a value for HZ is a t rade-off. A large
HZ results in finer t im er granular ity, and hence bet ter scheduling resolut ion. However, bigger values of HZ also
result in larger overhead and higher power consum pt ion, because m ore cycles are burnt in the t im er interrupt
context .

The value of HZ is architecture-dependent . On x86 system s, HZ used to be set to 100 in 2.4 kernels by
default . With 2.6, this value changed to 1000, but with 2.6.13, it was lowered to 250. On ARM-based
plat form s, 2.6 kernels set HZ to 100. With current kernels, you can choose a value for HZ at build t im e
through the configurat ion m enu. The default set t ing for this opt ion depends on your dist r ibut ion.

The 2.6.21 kernel int roduced support for a t ickless kernel (CONFIG_NO_HZ) , which dynam ically t r iggers
t im er interrupts depending on system load. The t ickless system im plem entat ion is outside the scope of
this chapter.

jiffies holds the num ber of t im es the system t im er has popped since the system booted. The kernel
increm ents the jiffies var iable, HZ t im es every second. Thus, on a kernel with a HZ value of 100, a j iffy is a
10-m illisecond durat ion, whereas on a kernel with HZ set to 1000, a j iffy is only 1-m illisecond long.

To bet ter understand HZ and jiffies , consider the following code snippet from the I DE driver
(dr ivers/ ide/ ide.c) that polls disk dr ives for busy status:

unsigned long timeout = jiffies + (3*HZ);
while (hwgroup->busy) {
 /* ... */
 if (time_after(jiffies, timeout)) {
 return -EBUSY;
 }
 /* ... */
}
return SUCCESS;

The preceding code returns SUCCESS if the busy condit ion gets cleared in less than 3 seconds, and -EBUSY
otherwise. 3*HZ is the num ber of jiffies present in 3 seconds. The calculated t im eout , (jiffies + 3*HZ) , is
thus the new value of jiffies after the 3-second t im eout elapses. The time_after() m acro com pares the
current value of jiffies with the requested t im eout , taking care to account for wraparound due to overflows.
Related funct ions available for doing sim ilar com parisons are time_before() , time_before_eq() , and
time_after_eq() .

jiffies is defined as volat ile, which asks the com piler not to opt im ize access to the variable. This ensures that
jiffies , which is updated by the t im er interrupt handler during each t ick, is reread during each pass through
the loop.

For the reverse conversion from jiffies to seconds, take a look at this snippet from the USB host cont roller
dr iver, dr ivers/ usb/ host / ehci-sched.c:

if (stream->rescheduled) {
 ehci_info(ehci, "ep%ds-iso rescheduled " "%lu times in %lu
 seconds\n", stream->bEndpointAddress, is_in? "in":
 "out", stream->rescheduled,
 ((jiffies – stream->start)/HZ));

}

The preceding debug statem ent calculates the am ount of t im e in seconds within which this USB endpoint st ream
(we discuss USB in Chapter 11, "Universal Serial Bus") was rescheduled stream->rescheduled t im es.
(jiffies-stream->start) is the num ber of jiffies that elapsed since the rescheduling started. The division by
HZ converts that value into seconds.

The 32-bit jiffies var iable overflows in approxim ately 50 days, assum ing a HZ value of 1000. Because system
upt im es can be m any t im es that durat ion, the kernel provides a variable called jiffies_64 to hold 64-bit (u64)
jiffies . The linker posit ions jiffies_64 such that its bot tom 32 bits collocate with jiffies . On 32-bit
m achines, the com piler needs two inst ruct ions to assign one u64 var iable to another, so reading jiffies_64 is
not atom ic. To get around this problem , the kernel provides a funct ion, get_jiffies_64() . Look at
cpufreq_stats_update() defined in dr ivers/ cpufreq/ cpufreq_stats.c for a usage exam ple.

Long Delays

I n kernel term s, delays in the order of jiffies are considered long durat ions. A possible, but nonopt im al, way
to accom plish long delays is by busy- looping. A funct ion that busy-waits has a dog- in- the-m anger at t itude. I t
neither uses the processor for doing useful work nor lets others use it . The following code hogs the processor for
1 second:

unsigned long timeout = jiffies + HZ;
while (time_before(jiffies, timeout)) continue;

A bet ter approach is to sleep-wait , instead of busy-wait . Your code yields the processor to others, while wait ing
for the t im e delay to elapse. This is done using schedule_timeout() :

unsigned long timeout = jiffies + HZ;
schedule_timeout(timeout); /* Allow other parts of the
 kernel to run */

The delay guarantee is only on the lower bound of the t im eout . Whether from kernel space or from user space,
it 's difficult to get m ore precise cont rol over t im eouts than the granular ity of HZ because process t im e slices are
updated by the kernel scheduler only during t im er t icks. Also, even if your process is scheduled to run after the

specified t im eout , the scheduler can decide to pick another process from the run queue based on prior it ies. [3]

[3] These scheduler propert ies have changed with the advent of the CFS scheduler in the 2.6.23 kernel. Linux process schedulers are discussed
in Chapter 19, "Drivers in User Space."

Two other funct ions that facilitate sleep-wait ing are wait_event_timeout() and msleep() . Both of them are
im plem ented with the help of schedule_timeout() . wait_event_timeout() is used when your code desires to
resum e execut ion if a specified condit ion becom es t rue or if a t im eout occurs. msleep() sleeps for the specified
num ber of m illiseconds.

Such long-delay techniques are suitable for use only from process context . Sleep-wait ing cannot be done from
interrupt context because interrupt handlers are not allowed to schedule() or sleep. (See "I nterrupt Handling"
in Chapter 4 for a list of do's and don'ts for code execut ing in interrupt context .) Busy-wait ing for a short
durat ion is possible from interrupt context , but long busy-wait ing in that context is considered a m ortal sin.
Equally taboo is long busy-wait ing with interrupts disabled.

The kernel also provides t im er API s to execute a funct ion at a point of t im e in the future. You can dynam ically
define a t im er using init_timer() or stat ically create one with DEFINE_TIMER() . After this is done, populate a
timer_list with the address and param eters of your handler funct ion, and register it using add_timer() :

#include <linux/timer.h>

struct timer_list my_timer;

init_timer(&my_timer); /* Also see setup_timer() */
my_timer.expire = jiffies + n*HZ; /* n is the timeout in number
 of seconds */
my_timer.function = timer_func; /* Function to execute
 after n seconds */
my_timer.data = func_parameter; /* Parameter to be passed
 to timer_func */
add_timer(&my_timer); /* Start the timer */

Note that this is a one-shot t im er. I f you want to run timer_func() periodically, you also need to add the
preceding code inside timer_func() to schedule itself after the next t im eout :

static void timer_func(unsigned long func_parameter)
{
 /* Do work to be done periodically */
 /* ... */

 init_timer(&my_timer);
 my_timer.expire = jiffies + n*HZ;
 my_timer.data = func_parameter;
 my_timer.function = timer_func;
 add_timer(&my_timer);
}

You m ay use mod_timer() to change the expirat ion of my_timer, del_timer() to cancel my_timer , and
timer_pending() to see whether my_timer is pending at the m om ent . I f you look at kernel/ t im er.c, you will
f ind that schedule_timeout() internally uses these sam e API s.

User-space funct ions such as clock_settime() and clock_gettime() are used to access kernel t im er services
from user space. A user applicat ion m ay use setitimer() and getitimer() to cont rol the delivery of an alarm
signal when a specified t im eout expires.

Short Delays

I n kernel term s, sub- j iffy delays qualify as short durat ions. Such delays are com m only requested from both
process and interrupt contexts. Because it is not possible to use j iffy-based m ethods to im plem ent sub- j iffy
delays, the m ethods discussed in the previous sect ion to sleep-wait cannot be used for sm all t im eouts. The only
solut ion is to busy-wait .

Kernel API s that im plem ent short delays are mdelay() , udelay() , and ndelay() , which support m illisecond,
m icrosecond, and nanosecond delays, respect ively. The actual im plem entat ions of these funct ions are
architecture-specific and m ay not be available on all plat form s.

Busy-wait ing for short durat ions is accom plished by m easuring the t im e the processor takes to execute an
inst ruct ion and looping for the necessary num ber of iterat ions. As discussed earlier in this chapter, the kernel
perform s this m easurem ent during boot and stores the value in a variable called loops_per_jiffy . The short -
delay API s use loops_per_jiffy to decide the num ber of t im es they need to busy- loop. To achieve a 1-
m icrosecond delay during a handshake process, the USB host cont roller dr iver, dr ivers/ usb/ host / ehci-hcd.c,
calls udelay() , which internally uses loops_per_jiffy :

do {
 result = ehci_readl(ehci, ptr);
 /* ... */
 if (result == done) return 0;
 udelay(1); /* Internally uses loops_per_jiffy */

 usec--;
} while (usec > 0);

Pent ium Tim e Stam p Counter

The Tim e Stam p Counter (TSC) is a 64-bit register present in Pent ium -com pat ible processors that counts the
num ber of clock cycles consum ed by the processor since startup. Because the TSC gets increm ented at the rate
of the processor cycle speed, it provides a high- resolut ion t im er. The TSC is com m only used for profiling and
inst rum ent ing code. I t is accessed using the rdtsc inst ruct ion to m easure execut ion t im e of intervening code
with m icrosecond precision. TSC t icks can be converted to seconds by dividing by the CPU clock speed, which
can be read from the kernel variable, cpu_khz .

I n the following snippet , low_tsc_ticks contains the lower 32 bits of the TSC, while high_tsc_ticks contains
the higher 32 bits. The lower 32 bits overflow in a few seconds depending on your processor speed but is
sufficient for m any code inst rum entat ion purposes as shown here:

unsigned long low_tsc_ticks0, high_tsc_ticks0;
unsigned long low_tsc_ticks1, high_tsc_ticks1;
unsigned long exec_time;
rdtsc(low_tsc_ticks0, high_tsc_ticks0); /* Timestamp
 before */
printk("Hello World\n"); /* Code to be
 profiled */
rdtsc(low_tsc_ticks1, high_tsc_ticks1); /* Timestamp after */
exec_time = low_tsc_ticks1 - low_tsc_ticks0;

exec_time m easured 871 (or half a m icrosecond) on a 1.8GHz Pent ium box.

Support for high- resolut ion t im ers (CONFIG_HIGH_RES_TIMERS) has been m erged with the 2.6.21 kernel.
I t m akes use of hardware-specific high-speed t im ers to provide high-precision capabilit ies to API s such
as nanosleep() . On Pent ium -class m achines, the kernel leverages the TSC to offer this capabilit y.

Real Tim e Clock

The RTC t racks absolute t im e in nonvolat ile m em ory. On x86 PCs, RTC registers const itute the top few locat ions
of a sm all chunk of bat tery-powered[4] com plem entary m etal oxide sem iconductor (CMOS) m em ory. Look at
Figure 5.1 in Chapter 5 , "Character Drivers," for the locat ion of the CMOS in the legacy PC architecture. On
em bedded system s, the RTC m ight be internal to the processor, or externally connected via the I2C or SPI
buses discussed in Chapter 8 , "The I nter- I ntegrated Circuit Protocol."

[4] RTC bat ter ies last for m any years and usually out live the life span of com puters, so you should never have to replace them .

You m ay use the RTC to do the following:

Read and set the absolute clock, and generate interrupts during clock updates.

Generate periodic interrupts with frequencies ranging from 2HZ to 8192HZ.

Set alarm s

Many applicat ions need the concept of absolute t im e or wall t im e. Because jiffies is relat ive to the t im e when
the system booted, it does not contain wall t im e. The kernel m aintains wall t im e in a variable called xtime .
During boot , xtime is init ialized to the current wall t im e by reading the RTC. When the system halts, the wall
t im e is writ ten back to the RTC. You can use do_gettimeofday() to read wall t im e with the highest resolut ion
supported by the hardware:

#include <linux/time.h>
static struct timeval curr_time;
do_gettimeofday(&curr_time);
my_timestamp = cpu_to_le32(curr_time.tv_sec); /* Record timestamp */

There are also a bunch of funct ions available to user-space code to access wall t im e. They include the following:

time() , which returns the calendar t im e, or the num ber of seconds since Epoch (00: 00: 00 on January 1,
1970)

localtime() , which returns the calendar t im e in broken-down form at

mktime() , which does the reverse of localtime()

gettimeofday() , which returns the calendar t im e with m icrosecond precision if your plat form supports it

Another way to use the RTC from user space is via the character device, / dev/ rtc. Only one process is allowed to
access this device at a t im e.

We discuss m ore about RTC drivers in Chapter 5 and Chapter 8 . I n Chapter 19, we develop an exam ple user
applicat ion that uses / dev/ rtc to perform periodic work with m icrosecond precision.

Concurrency in the Kernel

With the arr ival of m ult icore laptops, Sym m etr ic Mult i Processing (SMP) is no longer confined to the realm of hi-
tech users. SMP and kernel preem pt ion are scenarios that generate m ult iple threads of execut ion. These threads
can sim ultaneously operate on shared kernel data st ructures. Because of this, accesses to such data st ructures
have to be serialized.

Let 's discuss the basics of protect ing shared kernel resources from concurrent access. We start with a sim ple
exam ple and gradually int roduce com plexit ies such as interrupts, kernel preem pt ion, and SMP.

Spinlocks and Mutexes

A code area that accesses shared resources is called a cr it ical sect ion. Spinlocks and m utexes (short for m utual
exclusion) are the two basic m echanism s used to protect cr it ical sect ions in the kernel. Let 's look at each in
turn.

A spinlock ensures that only a single thread enters a cr it ical sect ion at a t im e. Any other thread that desires to
enter the cr it ical sect ion has to rem ain spinning at the door unt il the first thread exits. Note that we use the
term thread to refer to a thread of execut ion, rather than a kernel thread.

The basic usage of spinlocks is as follows:

#include <linux/spinlock.h>
spinlock_t mylock = SPIN_LOCK_UNLOCKED; /* Initialize */

/* Acquire the spinlock. This is inexpensive if there
 * is no one inside the critical section. In the face of
 * contention, spinlock() has to busy-wait.
 */
spin_lock(&mylock);

/* ... Critical Section code ... */

spin_unlock(&mylock); /* Release the lock */

I n cont rast to spinlocks that put threads into a spin if they at tem pt to enter a busy cr it ical sect ion, m utexes put
contending threads to sleep unt il it 's their turn to occupy the cr it ical sect ion. Because it 's a bad thing to
consum e processor cycles to spin, m utexes are m ore suitable than spinlocks to protect cr it ical sect ions when the
est im ated wait t im e is long. I n m utex term s, anything m ore than two context switches is considered long,
because a m utex has to switch out the contending thread to sleep, and switch it back in when it 's t im e to wake
it up.

I n m any cases, therefore, it 's easy to decide whether to use a spinlock or a m utex:

I f the cr it ical sect ion needs to sleep, you have no choice but to use a m utex. I t 's illegal to schedule,
preem pt , or sleep on a wait queue after acquir ing a spinlock.

Because m utexes put the calling thread to sleep in the face of content ion, you have no choice but to use
spinlocks inside interrupt handlers. (You will learn m ore about the const raints of the interrupt context in
Chapter 4 .)

Basic m utex usage is as follows:

#include <linux/mutex.h>

/* Statically declare a mutex. To dynamically
 create a mutex, use mutex_init() */
static DEFINE_MUTEX(mymutex);

/* Acquire the mutex. This is inexpensive if there
 * is no one inside the critical section. In the face of
 * contention, mutex_lock() puts the calling thread to sleep.
 */
mutex_lock(&mymutex);

/* ... Critical Section code ... */

mutex_unlock(&mymutex); /* Release the mutex */

To illust rate the use of concurrency protect ion, let 's start with a cr it ical sect ion that is present only in process
context and gradually int roduce com plexit ies in the following order:

Crit ical sect ion present only in process context on a Uniprocessor (UP) box running a nonpreem pt ible
kernel.

1 .

Crit ical sect ion present in process and interrupt contexts on a UP m achine running a nonpreem pt ible
kernel.

2 .

Crit ical sect ion present in process and interrupt contexts on a UP m achine running a preem pt ible kernel.3 .

Crit ical sect ion present in process and interrupt contexts on an SMP m achine running a preem pt ible
kernel.

4 .

The Old Sem aphore I nterface

The m utex interface, which replaces the older sem aphore interface, or iginated in the –rt t ree and
was m erged into the m ainline with the 2.6.16 kernel release. The sem aphore interface is st ill
around, however. Basic usage of the sem aphore interface is as follows:

#include <asm/semaphore.h> /* Architecture dependent
 header */

/* Statically declare a semaphore. To dynamically
 create a semaphore, use init_MUTEX() */
static DECLARE_MUTEX(mysem);

down(&mysem); /* Acquire the semaphore */

/* ... Critical Section code ... */

up(&mysem); /* Release the semaphore */

Sem aphores can be configured to allow a predeterm ined num ber of threads into the cr it ical sect ion
sim ultaneously. However, sem aphores that perm it m ore than a single holder at a t im e are rarely
used.

Case 1 : Process Context , UP Machine, No Preem pt ion

This is the sim plest case and needs no locking, so we won't discuss this further.

Case 2 : Process and I nterrupt Contexts, UP Machine, No Preem pt ion

I n this case, you need to disable only interrupts to protect the cr it ical region. To see why, assum e that A and B
are process context threads, and C is an interrupt context thread, all vying to enter the sam e cr it ical sect ion, as
shown in Figure 2.4.

Figure 2 .4 . Process and interrupt context threads i nside a cr it ica l sect ion.

Because Thread C is execut ing in interrupt context and always runs to com plet ion before yielding to Thread A or
Thread B, it need not worry about protect ion. Thread A, for its part , need not be concerned about Thread B (and
vice versa) because the kernel is not preem pt ible. Thus, Thread A and Thread B need to guard against only the
possibilit y of Thread C stom ping through the cr it ical sect ion while they are inside the sam e sect ion. They
achieve this by disabling interrupts pr ior to entering the cr it ical sect ion:

Point A:
 local_irq_disable(); /* Disable Interrupts in local CPU */
 /* ... Critical Section ... */
 local_irq_enable(); /* Enable Interrupts in local CPU */

However, if interrupts were already disabled when execut ion reached Point A, local_irq_enable() creates the
unpleasant side effect of reenabling interrupts, rather than restor ing interrupt state. This can be fixed as
follows:

unsigned long flags;

Point A:
 local_irq_save(flags); /* Disable Interrupts */
 /* ... Critical Section ... */
 local_irq_restore(flags); /* Restore state to what
 it was at Point A */

This works correct ly irrespect ive of the interrupt state at Point A.

Case 3 : Process and I nterrupt Contexts, UP Machine, Preem pt ion

I f preem pt ion is enabled, m ere disabling of interrupts won't protect your cr it ical region from being t ram pled
over. There is the possibilit y of m ult iple threads sim ultaneously enter ing the cr it ical sect ion in process context .
Referr ing back to Figure 2.4 in this scenario, Thread A and Thread B now need to protect them selves against
each other in addit ion to guarding against Thread C. The solut ion apparent ly, is to disable kernel preem pt ion
before the start of the cr it ical sect ion and reenable it at the end, in addit ion to disabling/ reenabling interrupts.

For this, Thread A and Thread B use the irq variant of spinlocks:

unsigned long flags;

Point A:
 /* Save interrupt state.
 * Disable interrupts - this implicitly disables preemption */
 spin_lock_irqsave(&mylock, flags);

 /* ... Critical Section ... */

 /* Restore interrupt state to what it was at Point A */
 spin_unlock_irqrestore(&mylock, flags);

Preem pt ion state need not be explicit ly restored to what it was at Point A because the kernel internally does
that for you via a variable called the preem pt ion counter. The counter gets increm ented whenever preem pt ion is
disabled (using preempt_disable()) and gets decrem ented whenever preem pt ion is enabled (using
preempt_enable()) . Preem pt ion kicks in only if the counter value is zero.

Case 4 : Process and I nterrupt Contexts, SMP Machine , Preem pt ion

Let 's now assum e that the cr it ical sect ion executes on an SMP m achine. Your kernel has been configured with
CONFIG_SMP and CONFIG_PREEMPT turned on.

I n the scenarios discussed this far, spinlock pr im it ives have done lit t le m ore than enable/ disable preem pt ion and
interrupts. The actual locking funct ionality has been com piled away. I n the presence of SMP, the locking logic
gets com piled in, and the spinlock pr im it ives are rendered SMP-safe. The SMP-enabled sem ant ics is as follows:

unsigned long flags;

Point A:
 /*
 - Save interrupt state on the local CPU
 - Disable interrupts on the local CPU. This implicitly disables
 preemption.
 - Lock the section to regulate access by other CPUs
 */
 spin_lock_irqsave(&mylock, flags);

 /* ... Critical Section ... */

 /*
 - Restore interrupt state and preemption to what it
 was at Point A for the local CPU
 - Release the lock
 */
 spin_unlock_irqrestore(&mylock, flags);

On SMP system s, only interrupts on the local CPU are disabled when a spinlock is acquired. So, a process
context thread (say Thread A in Figure 2.4) m ight be running on one CPU, while an interrupt handler (say
Thread C in Figure 2.4) is execut ing on another CPU. An interrupt handler on a nonlocal processor thus needs to
spin-wait unt il the process context code on the local processor exits the cr it ical sect ion. The interrupt context
code calls spin_lock() /spin_unlock() to do this:

spin_lock(&mylock);

/* ... Critical Section ... */

spin_unlock(&mylock);

Sim ilar to the irq variants, spinlocks also have bot tom half (BH) flavors. spin_lock_bh() disables bot tom halves
when the lock is acquired, whereas spin_unlock_bh() reenables bot tom halves when the lock is released. We
discuss bot tom halves in Chapter 4 .

The –rt t ree

The real t im e (-rt) t ree, also called the CONFIG_PREEMPT_RT patch-set , im plem ents low- latency
m odificat ions to the kernel. The patch-set , downloadable from
www.kernel.org/ pub/ linux/ kernel/ projects/ r t , allows m ost of the kernel to be preem pted, part ly by
replacing m any spinlocks with m utexes. I t also incorporates high- resolut ion t im ers. Several -rt
features have been integrated into the m ainline kernel. You will find detailed docum entat ion at the
project 's wiki hosted at ht tp: / / r t .wiki.kernel.org/ .

The kernel has specialized locking pr im it ives in its repertoire that help im prove perform ance under specific
condit ions. Using a m utual-exclusion schem e tailored to your needs m akes your code m ore powerful. Let 's take
a look at som e of the specialized exclusion m echanism s.

Atom ic Operators

Atom ic operators are used to perform lightweight one-shot operat ions such as bum ping counters, condit ional
increm ents, and set t ing bit posit ions. Atom ic operat ions are guaranteed to be serialized and do not need locks
for protect ion against concurrent access. The im plem entat ion of atom ic operators is architecture-dependent .

To check whether there are any rem aining data references before freeing a kernel network buffer (called an
skbuff) , the skb_release_data() rout ine defined in net / core/ skbuff.c does the following:

if (!skb->cloned ||
 /* Atomically decrement and check if the returned value is zero */
 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 :
 1,&skb_shinfo(skb)->dataref)) {
 /* ... */
 kfree(skb->head);
}

While skb_release_data() is thus execut ing, another thread using skbuff_clone() (defined in the sam e file)
m ight be sim ultaneously increm ent ing the data reference counter:

/* ... */
/* Atomically bump up the data reference count */
atomic_inc(&(skb_shinfo(skb)->dataref));
/* ... */

The use of atom ic operators protects the data reference counter from being t ram pled by these two threads. I t

http://rt.wiki.kernel.org/

also elim inates the hassle of using locks to protect a single integer variable from concurrent access.

The kernel also supports operators such as set_bit() , clear_bit() , and test_and_set_bit() to atom ically
engage in bit m anipulat ions. Look at include/ asm -your-arch/ atom ic.h for the atom ic operators supported on
your architecture.

Reader- W riter Locks

Another specialized concurrency regulat ion m echanism is a reader-writer variant of spinlocks. I f the usage of a
cr it ical sect ion is such that separate threads either read from or write to a shared data st ructure, but don't do
both, these locks are a natural fit . Mult iple reader threads are allowed inside a cr it ical region sim ultaneously.
Reader spinlocks are defined as follows:

rwlock_t myrwlock = RW_LOCK_UNLOCKED;

read_lock(&myrwlock); /* Acquire reader lock */
/* ... Critical Region ... */
read_unlock(&myrwlock); /* Release lock */

However, if a writer thread enters a cr it ical sect ion, other reader or writer threads are not allowed inside. To use
writer spinlocks, you would write this:

rwlock_t myrwlock = RW_LOCK_UNLOCKED;

write_lock(&myrwlock); /* Acquire writer lock */
/* ... Critical Region ... */
write_unlock(&myrwlock); /* Release lock */

Look at the I PX rout ing code present in net / ipx/ ipx_route.c for a real- life exam ple of a reader-writer spinlock. A
reader-writer lock called ipx_routes_lock protects the I PX rout ing table from sim ultaneous access. Threads
that need to look up the rout ing table to forward packets request reader locks. Threads that need to add or
delete ent r ies from the rout ing table acquire writer locks. This im proves perform ance because there are usually
far m ore instances of rout ing table lookups than rout ing table updates.

Like regular spinlocks, reader-writer locks also have corresponding irq variants—nam ely, read_lock_irqsave() ,
read_lock_irqrestore() , write_lock_irqsave() , and write_lock_irqrestore() . The sem ant ics of these
funct ions are sim ilar to those of regular spinlocks.

Sequence locks or seqlocks, int roduced in the 2.6 kernel, are reader-writer locks where writers are favored over
readers. This is useful if write operat ions on a variable far outnum ber read accesses. An exam ple is the
jiffies_64 var iable discussed earlier in this chapter. Writer threads do not wait for readers who m ay be inside
a cr it ical sect ion. Because of this, reader threads m ay discover that their ent ry inside a cr it ical sect ion has failed
and m ay need to ret ry:

u64 get_jiffies_64(void) /* Defined in kernel/time.c */

{
 unsigned long seq;
 u64 ret;
 do {
 seq = read_seqbegin(&xtime_lock);
 ret = jiffies_64;
 } while (read_seqretry(&xtime_lock, seq));
 return ret;
}

Writers protect cr it ical regions using write_seqlock() and write_sequnlock() .

The 2.6 kernel int roduced another m echanism called Read-Copy Update (RCU) , which yields im proved
perform ance when readers far outnum ber writers. The basic idea is that reader threads can execute without
locking. Writer threads are m ore com plex. They perform update operat ions on a copy of the data st ructure and
replace the pointer that readers see. The original copy is m aintained unt il the next context switch on all CPUs to
ensure com plet ion of all ongoing read operat ions. Be aware that using RCU is m ore involved than using the
prim it ives discussed thus far and should be used only if you are sure that it 's the r ight tool for the job. RCU data
st ructures and interface funct ions are defined in include/ linux/ rcupdate.h. There is am ple docum entat ion in
Docum entat ion/ RCU/ * .

For an RCU usage exam ple, look at fs/ dcache.c. On Linux, each file is associated with directory ent ry
inform at ion (stored in a st ructure called dent ry) , m etadata inform at ion (stored in an inode) , and actual data
(stored in data blocks) . Each t im e you operate on a file, the com ponents in the file path are parsed, and the
corresponding dent r ies are obtained. The dent r ies are kept cached in a data st ructure called the dcache, to
speed up future operat ions. At any t im e, the num ber of dcache lookups is m uch m ore than dcache updates, so
references to the dcache are protected using RCU prim it ives.

Debugging

Concurrency- related problem s are generally hard to debug because they are usually difficult to reproduce. I t 's a
good idea to enable SMP (CONFIG_SMP) and preem pt ion (CONFIG_PREEMPT) while com piling and test ing your
code, even if your product ion kernel is going to run on a UP m achine with preem pt ion disabled. There is a kernel
configurat ion opt ion under Kernel hacking called Spinlock and rw- lock debugging (CONFIG_DEBUG_SPINLOCK)
that can help you catch som e com m on spinlock errors. Also available are tools such as lockm eter
(ht tp: / / oss.sgi.com / projects/ lockm eter/) that collect lock- related stat ist ics.

A com m on concurrency problem occurs when you forget to lock an access to a shared resource. This results in
different threads "racing" through that access in an unregulated m anner. The problem , called a race condit ion,
m ight m anifest in the form of occasional st range code behavior.

Another potent ial problem arises when you m iss releasing held locks in certain code paths, result ing in
deadlocks. To understand this, consider the following exam ple:

spin_lock(&mylock); /* Acquire lock */

/* ... Critical Section ... */

if (error) { /* This error condition occurs rarely */
 return -EIO; /* Forgot to release the lock! */
}

spin_unlock(&mylock); /* Release lock */

After the occurrence of the error condit ion, any thread t rying to acquire mylock gets deadlocked, and the kernel
m ight freeze.

I f the problem first m anifests m onths or years after you write the code, it ' ll be all the m ore tough to go back
and debug it . (There is a related debugging exam ple in the sect ion "Kdum p" in Chapter 21, "Debugging Device
Drivers.") To avoid such unpleasant encounters, concurrency logic should be designed when you architect your
software.

http://oss.sgi.com/projects/lockmeter/

Process Filesystem

The process filesystem (procfs) is a vir tual filesystem that creates windows into the innards of the kernel. The
data you see when you browse procfs is generated by the kernel on- the- fly. Files in procfs are used to configure
kernel param eters, look at kernel st ructures, glean stat ist ics from device dr ivers, and get general system
inform at ion.

Procfs is a pseudo filesystem . This m eans that files resident in procfs are not associated with physical storage
devices such as hard disks. I nstead, data in those files is dynam ically created on dem and by the corresponding
ent ry points in the kernel. Because of this, file sizes in procfs get shown as zero. Procfs is usually m ounted
under the / proc directory during kernel boot ; you can see this by invoking the mount com m and.

To get a first feel of the capabilit ies of procfs, exam ine the contents of / proc/ cpuinfo, / proc/ m em info,
/ proc/ interrupts, / proc/ t ty/ dr iver/ serial, / proc/ bus/ usb/ devices, and / proc/ stat . Certain kernel param eters can
be changed at runt im e by writ ing to files under / proc/ sys/ . For exam ple, you can change kernel printk log
levels by echoing a new set of values to / proc/ sys/ kernel/ pr intk. Many ut ilit ies (such as ps) and system
perform ance m onitor ing tools (such as sysstat) internally derive inform at ion from files residing under / proc.

Seq files, int roduced in the 2.6 kernel, sim plify large procfs operat ions. They are described in Appendix C, "Seq
Files."

Allocat ing Mem ory

Som e device dr ivers have to be aware of the existence of m em ory zones. I n addit ion, m any drivers need the
services of m em ory-allocat ion funct ions. I n this sect ion, let 's br iefly discuss both.

The kernel organizes physical m em ory into pages. The page size depends on the architecture. On x86-based
m achines, it 's 4096 bytes. Each page in physical m em ory has a struct page (defined in
include/ linux/ m m _types.h) associated with it :

struct page {
 unsigned long flags; /* Page status */
 atomic_t _count; /* Reference count */
 /* ... */
 void * virtual; /* Explained later on */
};

On 32-bit x86 system s, the default kernel configurat ion splits the available 4GB address space into a 3GB vir tual
m em ory space for user processes and a 1GB space for the kernel, as shown in Figure 2.5. This im poses a 1GB
lim it on the am ount of physical m em ory that the kernel can handle. I n reality, the lim it is 896MB because
128MB of the address space is occupied by kernel data st ructures. You m ay increase this lim it by changing the
3GB/ 1GB split during kernel configurat ion, but you will incur the displeasure of m em ory- intensive applicat ions if
you reduce the vir tual address space of user processes.

Figure 2 .5 . Default address space split on a 3 2 - bit PC system .

Kernel addresses that m ap the low 896MB differ from physical addresses by a constant offset and are called
logical addresses. With "high m em ory" support , the kernel can access m em ory beyond 896MB by generat ing
vir tual addresses for those regions using special mappings. All logical addresses are kernel vir tual addresses,
but not vice versa.

This leads us to the following kernel m em ory zones:

ZONE_DMA (< 16MB) , the zone used for Direct Mem ory Access (DMA) . Because legacy I SA devices have 24
address lines and can access only the first 16MB, the kernel t r ies to dedicate this area for such devices.

1 .

ZONE_NORMAL (16MB to 896MB) , the norm ally addressable region, also called low m em ory. The "vir tual"
field in struct page for low m em ory pages contains the corresponding logical addresses.

2 .

ZONE_HIGH (> 896MB) , the space that the kernel can access only after m apping resident pages to regions
in ZONE_NORMAL (using kmap() and kunmap()) . The corresponding kernel addresses are vir tual and not
logical. The "vir tual" field in struct page for high m em ory pages points to NULL if the page is not
km apped.

3 .

kmalloc() is a m em ory-allocat ion funct ion that returns cont iguous m em ory from ZONE_NORMAL. The prototype is
as follows:

void *kmalloc(int count, int flags);

Where count is the num ber of bytes to allocate, and flags is a m ode specifier. All supported flags are listed in
include/ linux./ gfp.h (gfp stands for get free pages) , but these are the com m only used ones:

GFP_KERNEL Used by process context code to allocate m em ory. I f this flag is specified, kmalloc() is
allowed to go to sleep and wait for pages to get freed up.

1 .

GFP_ATOMIC Used by interrupt context code to get hold of m em ory. I n this m ode, kmalloc() is not
allowed to sleep-wait for free pages, so the probabilit y of successful allocat ion with GFP_ATOMIC is lower
than with GFP_KERNEL.

2 .

Because m em ory returned by kmalloc() retains the contents from its previous incarnat ion, there could be a
security r isk if it 's exposed to user space. To get zeroed km alloced m em ory, use kzalloc() .

I f you need to allocate large m em ory buffers, and you don't require the m em ory to be physically cont iguous,
use vmalloc() rather than kmalloc() :

void *vmalloc(unsigned long count);

Here count is the requested allocat ion size. The funct ion returns kernel vir tual addresses.

vmalloc() enjoys bigger allocat ion size lim its than kmalloc() but is slower and can't be called from interrupt
context . Moreover, you cannot use the physically discont iguous m em ory returned by vmalloc() to perform
Direct Mem ory Access (DMA) . High-perform ance network dr ivers com m only use vmalloc() to allocate large
descriptor r ings when the device is opened.

The kernel offers m ore sophist icated m em ory allocat ion techniques. These include look aside buffers, slabs, and
m em pools, which are beyond the scope of this chapter.

Look ing at the Sources

Kernel boot starts with the execut ion of real m ode assem bly code liv ing in the arch/ x86/ boot / directory. Look at
arch/ x86/ kernel/ setup_32.c to see how the protected m ode kernel obtains inform at ion gleaned by the real
m ode kernel.

The first boot m essage is pr inted by code residing in init / m ain.c. Dig inside init / calibrate.c to learn m ore about
BogoMI PS calibrat ion and include/ asm-your-arch/ bugs.h for an insight into architecture-dependent checks.

Tim er services in the kernel consist of architecture-dependent port ions that live in arch/ your-arch/ kernel/ and
generic port ions im plem ented in kernel/ t im er.c. For related definit ions, look at the header files,
include/ linux/ t im e* .h.

jiffies is defined in linux/ j iffies.h. The value for HZ is processor-dependent and can be found in include/ asm -
your-arch/ param .h.

Mem ory m anagem ent sources reside in the top- level mm / directory.

Table 2.1 contains a sum m ary of the m ain data st ructures used in this chapter and the locat ion of their
definit ions in the source t ree. Table 2.2 lists the m ain kernel program m ing interfaces that you used in this
chapter along with the locat ion of their definit ions.

Table 2 .1 . Sum m ary of Data St ructures

Data St ructure Locat ion Descr ipt ion

HZ include/ asm-your-arch/ param.h Num ber of t im es the system t im er t icks
in 1 second

loops_per_jiffy init / m ain.c Num ber of t im es the processor executes
an internal delay- loop in 1 j iffy

timer_list include/ linux/ t im er.h Used to hold the address of a rout ine
that you want to execute at som e point
in the future

timeval include/ linux/ t im e.h Tim estam p

spinlock_t include/ linux/ spinlock_types.h A busy- locking m echanism to ensure that
only a single thread enters a cr it ical
sect ion

semaphore include/ asm -your-
arch/ semaphore.h

A sleep- locking m echanism that allows a
predeterm ined num ber of users to enter
a cr it ical sect ion

mutex include/ linux/ mutex.h The new interface that replaces
semaphore

rwlock_t include/ linux/ spinlock_types.h Reader-writer spinlock

page include/ linux/ m m _types.h Kernel's representat ion of a physical
m em ory page

Table 2 .2 . Sum m ary of Kernel Program m ing I nter faces

Kernel I nter face Locat ion Descr ipt ion

time_after()
time_after_eq()
time_before()
ime_before_eq()

include/ linux/ j iffies.h Com pares the current value of jiffies with a
specified future value

schedule_timeout() kernel/ t im er.c Schedules a process to run after a specified
t im eout has elapsed

wait_event_timeout() include/ linux/ wait .h Resum es execut ion if a specified condit ion
becom es t rue or if a t im eout occurs

DEFINE_TIMER() include/ linux/ t im er.h Stat ically defines a t im er

init_timer() kernel/ t im er.c Dynam ically defines a t im er

add_timer() include/ linux/ t im er.h Schedules the t im er for execut ion after the
t im eout has elapsed

mod_timer() kernel/ t im er.c Changes t im er expirat ion

timer_pending() include/ linux/ t im er.h Checks if a t im er is pending at the m om ent

udelay() include/ asm -your-
arch/ delay.h arch/ your-
arch/ lib/ delay.c

Busy-waits for the specified num ber of
m icroseconds

rdtsc() include/ asm-x86/ msr.h Gets the value of the TSC on Pent ium -com pat ible
processors

do_gettimeofday() kernel/ t im e.c Obtains wall t im e

local_irq_disable() include/ asm -your-
arch/ system .h

Disables interrupts on the local CPU

local_irq_enable() include/ asm -your-
arch/ system .h

Enables interrupts on the local CPU

local_irq_save() include/ asm -your-
arch/ system .h

Saves interrupt state and disables interrupts

local_irq_restore() include/ asm -your-
arch/ system .h

Restores interrupt state to what it was when the
m atching local_irq_save() was called

spin_lock() include/ linux/ spinlock.h
kernel/ spinlock.c

Acquires a spinlock.

spin_unlock() include/ linux/ spinlock.h Releases a spinlock

spin_lock_irqsave() include/ linux/ spinlock.h
kernel/ spinlock.c

Saves interrupt state, disables interrupts and
preem pt ion on local CPU, and locks their cr it ical
sect ion to regulate access by other CPUs

spin_unlock_irqrestore() include/ linux/ spinlock.h
kernel/ spinlock.c

Restores interrupt state and preem pt ion and
releases the lock

DEFINE_MUTEX() include/ linux/ mutex.h Stat ically declares a m utex

mutex_init() include/ linux/ mutex.h Dynam ically declares a m utex

mutex_lock() kernel/ m utex.c Acquires a m utex

Kernel I nter face Locat ion Descr ipt ion

mutex_unlock() kernel/ m utex.c Releases a m utex

DECLARE_MUTEX() include/ asm -your-
arch/ semaphore.h

Stat ically declares a sem aphore

init_MUTEX() include/ asm -your-
arch/ semaphore.h

Dynam ically declares a sem aphore

up() arch/ your-
arch/ kernel/ sem aphore.c

Acquires a sem aphore

down() arch/ your-
arch/ kernel/ sem aphore.c

Releases a sem aphore

atomic_inc()
atomic_inc_and_test()
atomic_dec()
atomic_dec_and_test()
clear_bit()
set_bit()
test_bit()
test_and_set_bit()

include/ asm -your-
arch/ atom ic.h

Atom ic operators to perform lightweight
operat ions

read_lock()
read_unlock()
read_lock_irqsave()
read_lock_irqrestore()
write_lock()
write_unlock()
write_lock_irqsave()
write_lock_irqrestore()

include/ linux/ spinlock.h
kernel/ spinlock.c

Reader-writer variant of spinlocks

down_read()
up_read()
down_write()
up_write()

kernel/ rwsem .c Reader-writer variant of sem aphores

read_seqbegin()
read_seqretry()
write_seqlock()
write_sequnlock()

include/ linux/ seqlock.h Seqlock operat ions

kmalloc() include/ linux/ slab.h
m m / slab.c

Allocates physically cont iguous m em ory from
ZONE_NORMAL

kzalloc() include/ linux/ slab.h
m m / ut il.c

Obtains zeroed km alloced m em ory

kfree() m m / slab.c Releases km alloced m em ory

vmalloc() m m / vm alloc.c Allocates vir tually cont iguous m em ory that is not
guaranteed to be physically cont iguous.

Chapter 3 . Kernel Facilit ies

I n This Chapter

Kernel Threads
56

Helper I nterfaces
65

Looking at the
Sources

85

I n this chapter, let 's look at som e kernel facilit ies that are useful com ponents in a dr iver
developer 's toolbox. We start this chapter by looking at a kernel facilit y that is sim ilar to user
processes; kernel threads are program m ing abst ract ions or iented toward concurrent processing.

The kernel offers several helper interfaces that sim plify your code, elim inate redundancies,
increase code readabilit y, and help in long- term m aintenance. We will look at linked lists, hash
lists, work queues, not ifier chains, com plet ion funct ions, and error-handling aids. These helpers
are bug free and opt im ized, so your dr iver also inherits those benefits for free.

Kernel Threads

A kernel thread is a way to im plem ent background tasks inside the kernel. The task can be busy handling
asynchronous events or sleep-wait ing for an event to occur. Kernel threads are sim ilar to user processes, except
that they live in kernel space and have access to kernel funct ions and data st ructures. Like user processes,
kernel threads have the illusion of m onopolizing the processor because of preem pt ive scheduling. Many device
drivers ut ilize the services of kernel threads to im plem ent assistant or helper tasks. For exam ple, the khubd
kernel thread, which is part of the Linux USB driver core (covered in Chapter 11, "Universal Serial Bus")
m onitors USB hubs and configures USB devices when they are hot -plugged into the system .

Creat ing a Kernel Thread

Let 's learn about kernel threads with the help of an exam ple. While developing the exam ple thread, you will also
learn about kernel concepts such as process states, wait queues, and user m ode helpers. When you are
com fortable with kernel threads, you can use them as a test vehicle for carrying out various experim ents within
the kernel.

Assum e that you would like the kernel to asynchronously invoke a user m ode program to send you an em ail or
pager alert , whenever it senses that the health of certain key kernel data st ructures is deter iorat ing. (For
instance, free space in network receive buffers has dipped below a low waterm ark.)

This is a candidate for being im plem ented as a kernel thread for the following reasons:

I t 's a background task because it has to wait for asynchronous events.

I t needs access to kernel data st ructures because the actual detect ion of events is done by other parts of
the kernel.

I t has to invoke a user m ode helper program , which is a t im e-consum ing operat ion.

Built - I n Kernel Threads

To see the kernel threads (also called kernel processes) running on your system , run the ps
com m and. Nam es of kernel threads are surrounded by square brackets:

bash> ps -ef

UID PID PPID C STIME TTY TIME CMD
root 1 0 0 22:36 ? 00:00:00 init [3]
root 2 0 0 22:36 ? 00:00:00 [kthreadd]
root 3 2 0 22:36 ? 00:00:00 [ksoftirqd/0]
root 4 2 0 22:36 ? 00:00:00 [events/0]
root 38 2 0 22:36 ? 00:00:00 [pdflush]
root 39 2 0 22:36 ? 00:00:00 [pdflush]
root 29 2 0 22:36 ? 00:00:00 [khubd]
root 695 2 0 22:36 ? 00:00:00 [kjournald]
...
root 3914 2 0 22:37 ? 00:00:00 [nfsd]
root 3915 2 0 22:37 ? 00:00:00 [nfsd]
...
root 4015 3364 0 22:55 tty3 00:00:00 -bash
root 4066 4015 0 22:59 tty3 00:00:00 ps -ef

The [ksoft irqd/ 0] kernel thread is an aid to im plement soft irqs. Soft irqs are raised by interrupt
handlers to request "bot tom half" processing of port ions of the handler whose execut ion can be
deferred. We take a detailed look at bot tom halves and soft irqs in Chapter 4 , "Laying the
Groundwork," but the basic idea here is to allow as lit t le code as possible to be present inside
interrupt handlers. Having sm all interrupt handlers reduces interrupt -off t im es in the system ,
result ing in lower latencies. Ksoft irqd's job is to ensure that a high load of soft irqs neither starves
the soft irqs nor overwhelm s the system . On Sym m etr ic Mult i Processing (SMP) m achines where
m ult iple thread instances can run on different processors in parallel, one instance of ksoft irqd is
created per CPU to im prove throughput (ksoft irqd/ n, where n is the CPU num ber) .

The events/ n threads (where n is the CPU num ber) help im plem ent work queues, which are
another way of deferr ing work in the kernel. Parts of the kernel that desire deferred execut ion of
work can either create their own work queue or m ake use of the default events/ n worker thread.
Work queues are also dissected in Chapter 4 .

The task of the pdflush kernel thread is to flush out dir ty pages from the page cache. The page
cache buffers accesses to the disk. To im prove perform ance, actual writes to the disk are delayed
unt il the pdflush daem on writes out dir t ied data to disk. This is done if the available free m em ory
dips below a threshold, or if the page has rem ained dir ty for a sufficient ly long t im e. I n 2.4
kernels, these two tasks were respect ively perform ed by separate kernel threads, bdflush and

kupdated. You m ight have not iced two instances of pdflush in the ps output . A new instance is
created if the kernel senses that exist ing instances have their hands full, servicing disk queues.
This im proves throughput , especially if your system has m ult iple disks and m any of them are busy.

As you saw in the preceding chapter, kjournald is the generic kernel journaling thread, which is
used by filesystem s such as EXT3.

The Linux Network File System (NFS) server is im plem ented using a set of kernel threads nam ed
nfsd.

Our exam ple kernel thread relinquishes the processor unt il it gets woken up by parts of the kernel responsible
for m onitor ing the data st ructures of interest . When awake, it invokes a user m ode helper program and passes
appropriate ident ity codes in its environm ent .

To create a kernel thread, use kernel_thread() :

ret = kernel_thread(mykthread, NULL,
 CLONE_FS | CLONE_FILES | CLONE_SIGHAND | SIGCHLD);

The flags specify the resources to be shared between the parent and child threads. CLONE_FILES specifies that
open files are to be shared, and CLONE_SIGHAND requests that signal handlers be shared.

List ing 3.1 shows the exam ple im plem entat ion. Because kernel threads usually act as helpers to device dr ivers,
they are created when the dr iver is init ialized. I n this case, however, the exam ple thread can be created from
any suitable place, for instance, init / m ain.c.

The thread starts by invoking daemonize() , which perform s init ial housekeeping and changes the parent of the
calling thread to a kernel thread called kthreadd. Each Linux thread has a single parent . I f a parent process dies
without wait ing for its child to exit , the child becom es a zom bie process and wastes resources. Reparent ing the
child to kthreadd, avoids this and ensures proper cleanup when the thread exits. [1]

[1] I n 2.6.21 and earlier kernels, daemonize() reparents the calling thread to the init task by calling reparent_to_init() .

Because daemonize() blocks all signals by default , use allow_signal() to enable delivery if your thread
desires to handle a part icular signal. There are no signal handlers inside the kernel, so use signal_pending()
to check for signals and take appropriate act ion. For debugging purposes, the code in List ing 3.1 requests
delivery of SIGKILL and dies if it 's received.

kernel_thread() is depreciated in favor of the higher- level kthread API , which is built over the form er. We will
look at kthreads later on.

List ing 3 .1 . I m plem ent ing a Kernel Thread

Code View:
static DECLARE_WAIT_QUEUE_HEAD(myevent_waitqueue);
rwlock_t myevent_lock;
extern unsigned int myevent_id; /* Holds the identity of the
 troubled data structure.
 Populated later on */
static int mykthread(void *unused)
{
 unsigned int event_id = 0;
 DECLARE_WAITQUEUE(wait, current);
 /* Become a kernel thread without attached user resources */
 daemonize("mykthread");

 /* Request delivery of SIGKILL */
 allow_signal(SIGKILL);

 /* The thread sleeps on this wait queue until it's
 woken up by parts of the kernel in charge of sensing
 the health of data structures of interest */
 add_wait_queue(&myevent_waitqueue, &wait);

 for (;;) {
 /* Relinquish the processor until the event occurs */
 set_current_state(TASK_INTERRUPTIBLE);
 schedule(); /* Allow other parts of the kernel to run */
 /* Die if I receive SIGKILL */
 if (signal_pending(current)) break;
 /* Control gets here when the thread is woken up */
 read_lock(&myevent_lock); /* Critical section starts */
 if (myevent_id) { /* Guard against spurious wakeups */
 event_id = myevent_id;
 read_unlock(&myevent_lock); /* Critical section ends */
 /* Invoke the registered user mode helper and
 pass the identity code in its environment */
 run_umode_handler(event_id); /* Expanded later on */
 } else {
 read_unlock(&myevent_lock);
 }
 }

 set_current_state(TASK_RUNNING);
 remove_wait_queue(&myevent_waitqueue, &wait);
 return 0;
}

I f you com pile and run this as part of the kernel, you can see the newly created thread, m ykthread, in the ps
output :

bash> ps -ef

 UID PID PPID C STIME TTY TIME CMD
 root 1 0 0 21:56 ? 00:00:00 init [3]
 root 2 1 0 22:36 ? 00:00:00 [ksoftirqd/0]
 ...
 root 111 1 0 21:56 ? 00:00:00 [mykthread]

 ...

Before we delve further into the thread im plem entat ion, let 's write a code snippet that m onitors the health of a
data st ructure of interest and awakens m ykthread if a problem condit ion is detected:

/* Executed by parts of the kernel that own the
 data structures whose health you want to monitor */
/* ... */

if (my_key_datastructure looks troubled) {
 write_lock(&myevent_lock); /* Serialize */
 /* Fill in the identity of the data structure */
 myevent_id = datastructure_id;

 write_unlock(&myevent_lock);

 /* Wake up mykthread */
 wake_up_interruptible(&myevent_waitqueue);
}

/* ... */

List ing 3.1 executes in process context , whereas the preceding snippet runs from either process or interrupt
context . Process and interrupt contexts com m unicate via kernel data st ructures. Our exam ple uses myevent_id
and myevent_waitqueue for this com m unicat ion. myevent_id contains the ident ity of the data st ructure in
t rouble. Access to myevent_id is serialized using locks.

Note that kernel threads are preem pt ible only if CONFIG_PREEMPT is turned on at com pile t im e. I f
CONFIG_PREEMPT is off, or if you are st ill running a 2.4 kernel without the preem pt ion patch, your thread will
freeze the system if it does not go to sleep. I f you com m ent out schedule() in List ing 3.1 and disable
CONFIG_PREEMPT in your kernel configurat ion, your system will lock up.

You will learn how to obtain soft real- t im e responses from kernel threads when we discuss scheduling policies in
Chapter 19, "Drivers in User Space."

Process States and W ait Queues

Here's the code region from List ing 3.1 that puts m ykthread to sleep while wait ing for events:

add_wait_queue(&myevent_waitqueue, &wait);
for (;;) {

 /* ... */
 set_current_state(TASK_INTERRUPTIBLE);
 schedule(); /* Relinquish the processor */
 /* Point A */

 /* ... */
}
set_current_state(TASK_RUNNING);
remove_wait_queue(&myevent_waitqueue, &wait);

The operat ion of the preceding snippet is based on two concepts: wait queues and process states.

Wait queues hold threads that need to wait for an event or a system resource. Threads in a wait queue go to
sleep unt il they are woken up by another thread or an interrupt handler that is responsible for detect ing the
event . Queuing and dequeuing are respect ively done using add_wait_queue() and remove_wait_queue() , and
waking up queued tasks is accom plished via wake_up_interruptible() .

A kernel thread (or a norm al process) can be in any of the following process states: running, interrupt ible,
uninterrupt ible, zom bie, stopped, t raced, or dead. These states are defined in include/ linux/ sched.h:

A process in the running state (TASK_RUNNING) is in the scheduler run queue and is a candidate for
get t ing CPU t im e allot ted by the scheduler.

A task in the in terrupt ible state (TASK_INTERRUPTIBLE) is wait ing for an event to occur and is not in the
scheduler run queue. When the task gets woken up, or if a signal is delivered to it , it re-enters the run
queue.

The uninterrupt ible state (TASK_UNINTERRUPTIBLE) is sim ilar to the in terrupt ible state except that
receipt of a signal will not put the task back into the run queue.

A stopped task (TASK_STOPPED) has stopped execut ion due to receipt of certain signals.

I f an applicat ion such as st race is using the pt race support in the kernel to intercept a task, it ' ll be in the
t raced state (TASK_TRACED) .

A task in the zom bie state (EXIT_ZOMBIE) has term inated, but its parent did not wait for the task to
com plete. An exit ing task is either in the EXIT_ZOMBIE state or the dead (EXIT_DEAD) state.

You can use set_current_state() to set the run state of your kernel thread.

Let 's now turn back to the preceding code snippet . m ykthread sleeps on a wait queue (myevent_waitqueue) and
changes its state to TASK_INTERRUPTIBLE, signaling its desire to opt out of the scheduler run queue. The call to
schedule() asks the scheduler to choose and run a new task from its run queue. When code responsible for
health m onitor ing wakes up m ykthread using wake_up_interruptible(&myevent_waitqueue) , the thread is put
back into the scheduler run queue. The process state also gets sim ultaneously changed to TASK_RUNNING, so
there is no race condit ion even if the wake up occurs between the t im e the task state is set to
TASK_INTERRUPTIBLE and the t im e schedule() is called. The thread also gets back into the run queue if a
SIGKILL signal is delivered to it . When the scheduler subsequent ly picks m ykthread from the run queue,
execut ion resum es from Point A.

User Mode Helpers

Mykthread invokes run_umode_handler() in List ing 3.1 to not ify user space about detected events:

Code View:
/* Called from Listing 3.1 */
static void
run_umode_handler(int event_id)
{
 int i = 0;
 char *argv[2], *envp[4], *buffer = NULL;

 int value;

 argv[i++] = myevent_handler; /* Defined in
 kernel/sysctl.c */

 /* Fill in the id corresponding to the data structure
 in trouble */
 if (!(buffer = kmalloc(32, GFP_KERNEL))) return;
 sprintf(buffer, "TROUBLED_DS=%d", event_id);

 /* If no user mode handlers are found, return */
 if (!argv[0]) return; argv[i] = 0;

 /* Prepare the environment for /path/to/helper */

 i = 0;
 envp[i++] = "HOME=/";
 envp[i++] = "PATH=/sbin:/usr/sbin:/bin:/usr/bin";
 envp[i++] = buffer; envp[i] = 0;

 /* Execute the user mode program, /path/to/helper */

 value = call_usermodehelper(argv[0], argv, envp, 0);

 /* Check return values */
 kfree(buffer);
}

The kernel supports a m echanism for request ing user m ode program s to help perform certain funct ions.
run_umode_handler() uses this facilit y by invoking call_usermodehelper() .

You have to register the user m ode program invoked by run_umode_handler() v ia a node in the / proc/ sys/
directory. To do so, m ake sure that CONFIG_SYSCTL (files that are part of the / proc/ sys/ directory are
collect ively known as the sysct l interface) is enabled in your kernel configurat ion and add an ent ry to the
kern_table array in kernel/ sysct l.c:

{
 .ctl_name = KERN_MYEVENT_HANDLER, /* Define in
 include/linux/sysctl.h */

 .procname = "myevent_handler",
 .data = &myevent_handler,
 .maxlen = 256,
 .mode = 0644,
 .proc_handler = &proc_dostring,
 .strategy = &sysctl_string,
},

This creates the node / proc/ sys/ kernel/ m yevent_handler in the process filesystem . To register your user m ode
helper, do the following:

bash> echo /path/to/helper > /proc/sys/kernel/myevent_handler

This results in / path/ to/ helper get t ing executed when m ykthread invokes run_umode_handler() .

Mykthread passes the ident ity of the t roubled kernel data st ructure to the user m ode helper through the
environm ent variable TROUBLED_DS. The helper can be a sim ple scr ipt like the following that sends you an em ail
alert containing the inform at ion it gleaned from its environm ent :

bash> cat /path/to/helper

#!/bin/bash
echo Kernel datastructure $TROUBLED_DS is in trouble | mail -s Alert root

call_usermodehelper() has to be executed from process context and runs with root pr ivileges. I t 's
im plem ented using a work queue, which we will soon discuss.

Chapter 3 . Kernel Facilit ies

I n This Chapter

Kernel Threads
56

Helper I nterfaces
65

Looking at the
Sources

85

I n this chapter, let 's look at som e kernel facilit ies that are useful com ponents in a dr iver
developer 's toolbox. We start this chapter by looking at a kernel facilit y that is sim ilar to user
processes; kernel threads are program m ing abst ract ions or iented toward concurrent processing.

The kernel offers several helper interfaces that sim plify your code, elim inate redundancies,
increase code readabilit y, and help in long- term m aintenance. We will look at linked lists, hash
lists, work queues, not ifier chains, com plet ion funct ions, and error-handling aids. These helpers
are bug free and opt im ized, so your dr iver also inherits those benefits for free.

Kernel Threads

A kernel thread is a way to im plem ent background tasks inside the kernel. The task can be busy handling
asynchronous events or sleep-wait ing for an event to occur. Kernel threads are sim ilar to user processes, except
that they live in kernel space and have access to kernel funct ions and data st ructures. Like user processes,
kernel threads have the illusion of m onopolizing the processor because of preem pt ive scheduling. Many device
drivers ut ilize the services of kernel threads to im plem ent assistant or helper tasks. For exam ple, the khubd
kernel thread, which is part of the Linux USB driver core (covered in Chapter 11, "Universal Serial Bus")
m onitors USB hubs and configures USB devices when they are hot -plugged into the system .

Creat ing a Kernel Thread

Let 's learn about kernel threads with the help of an exam ple. While developing the exam ple thread, you will also
learn about kernel concepts such as process states, wait queues, and user m ode helpers. When you are
com fortable with kernel threads, you can use them as a test vehicle for carrying out various experim ents within
the kernel.

Assum e that you would like the kernel to asynchronously invoke a user m ode program to send you an em ail or
pager alert , whenever it senses that the health of certain key kernel data st ructures is deter iorat ing. (For
instance, free space in network receive buffers has dipped below a low waterm ark.)

This is a candidate for being im plem ented as a kernel thread for the following reasons:

I t 's a background task because it has to wait for asynchronous events.

I t needs access to kernel data st ructures because the actual detect ion of events is done by other parts of
the kernel.

I t has to invoke a user m ode helper program , which is a t im e-consum ing operat ion.

Built - I n Kernel Threads

To see the kernel threads (also called kernel processes) running on your system , run the ps
com m and. Nam es of kernel threads are surrounded by square brackets:

bash> ps -ef

UID PID PPID C STIME TTY TIME CMD
root 1 0 0 22:36 ? 00:00:00 init [3]
root 2 0 0 22:36 ? 00:00:00 [kthreadd]
root 3 2 0 22:36 ? 00:00:00 [ksoftirqd/0]
root 4 2 0 22:36 ? 00:00:00 [events/0]
root 38 2 0 22:36 ? 00:00:00 [pdflush]
root 39 2 0 22:36 ? 00:00:00 [pdflush]
root 29 2 0 22:36 ? 00:00:00 [khubd]
root 695 2 0 22:36 ? 00:00:00 [kjournald]
...
root 3914 2 0 22:37 ? 00:00:00 [nfsd]
root 3915 2 0 22:37 ? 00:00:00 [nfsd]
...
root 4015 3364 0 22:55 tty3 00:00:00 -bash
root 4066 4015 0 22:59 tty3 00:00:00 ps -ef

The [ksoft irqd/ 0] kernel thread is an aid to im plement soft irqs. Soft irqs are raised by interrupt
handlers to request "bot tom half" processing of port ions of the handler whose execut ion can be
deferred. We take a detailed look at bot tom halves and soft irqs in Chapter 4 , "Laying the
Groundwork," but the basic idea here is to allow as lit t le code as possible to be present inside
interrupt handlers. Having sm all interrupt handlers reduces interrupt -off t im es in the system ,
result ing in lower latencies. Ksoft irqd's job is to ensure that a high load of soft irqs neither starves
the soft irqs nor overwhelm s the system . On Sym m etr ic Mult i Processing (SMP) m achines where
m ult iple thread instances can run on different processors in parallel, one instance of ksoft irqd is
created per CPU to im prove throughput (ksoft irqd/ n, where n is the CPU num ber) .

The events/ n threads (where n is the CPU num ber) help im plem ent work queues, which are
another way of deferr ing work in the kernel. Parts of the kernel that desire deferred execut ion of
work can either create their own work queue or m ake use of the default events/ n worker thread.
Work queues are also dissected in Chapter 4 .

The task of the pdflush kernel thread is to flush out dir ty pages from the page cache. The page
cache buffers accesses to the disk. To im prove perform ance, actual writes to the disk are delayed
unt il the pdflush daem on writes out dir t ied data to disk. This is done if the available free m em ory
dips below a threshold, or if the page has rem ained dir ty for a sufficient ly long t im e. I n 2.4
kernels, these two tasks were respect ively perform ed by separate kernel threads, bdflush and

kupdated. You m ight have not iced two instances of pdflush in the ps output . A new instance is
created if the kernel senses that exist ing instances have their hands full, servicing disk queues.
This im proves throughput , especially if your system has m ult iple disks and m any of them are busy.

As you saw in the preceding chapter, kjournald is the generic kernel journaling thread, which is
used by filesystem s such as EXT3.

The Linux Network File System (NFS) server is im plem ented using a set of kernel threads nam ed
nfsd.

Our exam ple kernel thread relinquishes the processor unt il it gets woken up by parts of the kernel responsible
for m onitor ing the data st ructures of interest . When awake, it invokes a user m ode helper program and passes
appropriate ident ity codes in its environm ent .

To create a kernel thread, use kernel_thread() :

ret = kernel_thread(mykthread, NULL,
 CLONE_FS | CLONE_FILES | CLONE_SIGHAND | SIGCHLD);

The flags specify the resources to be shared between the parent and child threads. CLONE_FILES specifies that
open files are to be shared, and CLONE_SIGHAND requests that signal handlers be shared.

List ing 3.1 shows the exam ple im plem entat ion. Because kernel threads usually act as helpers to device dr ivers,
they are created when the dr iver is init ialized. I n this case, however, the exam ple thread can be created from
any suitable place, for instance, init / m ain.c.

The thread starts by invoking daemonize() , which perform s init ial housekeeping and changes the parent of the
calling thread to a kernel thread called kthreadd. Each Linux thread has a single parent . I f a parent process dies
without wait ing for its child to exit , the child becom es a zom bie process and wastes resources. Reparent ing the
child to kthreadd, avoids this and ensures proper cleanup when the thread exits. [1]

[1] I n 2.6.21 and earlier kernels, daemonize() reparents the calling thread to the init task by calling reparent_to_init() .

Because daemonize() blocks all signals by default , use allow_signal() to enable delivery if your thread
desires to handle a part icular signal. There are no signal handlers inside the kernel, so use signal_pending()
to check for signals and take appropriate act ion. For debugging purposes, the code in List ing 3.1 requests
delivery of SIGKILL and dies if it 's received.

kernel_thread() is depreciated in favor of the higher- level kthread API , which is built over the form er. We will
look at kthreads later on.

List ing 3 .1 . I m plem ent ing a Kernel Thread

Code View:
static DECLARE_WAIT_QUEUE_HEAD(myevent_waitqueue);
rwlock_t myevent_lock;
extern unsigned int myevent_id; /* Holds the identity of the
 troubled data structure.
 Populated later on */
static int mykthread(void *unused)
{
 unsigned int event_id = 0;
 DECLARE_WAITQUEUE(wait, current);
 /* Become a kernel thread without attached user resources */
 daemonize("mykthread");

 /* Request delivery of SIGKILL */
 allow_signal(SIGKILL);

 /* The thread sleeps on this wait queue until it's
 woken up by parts of the kernel in charge of sensing
 the health of data structures of interest */
 add_wait_queue(&myevent_waitqueue, &wait);

 for (;;) {
 /* Relinquish the processor until the event occurs */
 set_current_state(TASK_INTERRUPTIBLE);
 schedule(); /* Allow other parts of the kernel to run */
 /* Die if I receive SIGKILL */
 if (signal_pending(current)) break;
 /* Control gets here when the thread is woken up */
 read_lock(&myevent_lock); /* Critical section starts */
 if (myevent_id) { /* Guard against spurious wakeups */
 event_id = myevent_id;
 read_unlock(&myevent_lock); /* Critical section ends */
 /* Invoke the registered user mode helper and
 pass the identity code in its environment */
 run_umode_handler(event_id); /* Expanded later on */
 } else {
 read_unlock(&myevent_lock);
 }
 }

 set_current_state(TASK_RUNNING);
 remove_wait_queue(&myevent_waitqueue, &wait);
 return 0;
}

I f you com pile and run this as part of the kernel, you can see the newly created thread, m ykthread, in the ps
output :

bash> ps -ef

 UID PID PPID C STIME TTY TIME CMD
 root 1 0 0 21:56 ? 00:00:00 init [3]
 root 2 1 0 22:36 ? 00:00:00 [ksoftirqd/0]
 ...
 root 111 1 0 21:56 ? 00:00:00 [mykthread]

 ...

Before we delve further into the thread im plem entat ion, let 's write a code snippet that m onitors the health of a
data st ructure of interest and awakens m ykthread if a problem condit ion is detected:

/* Executed by parts of the kernel that own the
 data structures whose health you want to monitor */
/* ... */

if (my_key_datastructure looks troubled) {
 write_lock(&myevent_lock); /* Serialize */
 /* Fill in the identity of the data structure */
 myevent_id = datastructure_id;

 write_unlock(&myevent_lock);

 /* Wake up mykthread */
 wake_up_interruptible(&myevent_waitqueue);
}

/* ... */

List ing 3.1 executes in process context , whereas the preceding snippet runs from either process or interrupt
context . Process and interrupt contexts com m unicate via kernel data st ructures. Our exam ple uses myevent_id
and myevent_waitqueue for this com m unicat ion. myevent_id contains the ident ity of the data st ructure in
t rouble. Access to myevent_id is serialized using locks.

Note that kernel threads are preem pt ible only if CONFIG_PREEMPT is turned on at com pile t im e. I f
CONFIG_PREEMPT is off, or if you are st ill running a 2.4 kernel without the preem pt ion patch, your thread will
freeze the system if it does not go to sleep. I f you com m ent out schedule() in List ing 3.1 and disable
CONFIG_PREEMPT in your kernel configurat ion, your system will lock up.

You will learn how to obtain soft real- t im e responses from kernel threads when we discuss scheduling policies in
Chapter 19, "Drivers in User Space."

Process States and W ait Queues

Here's the code region from List ing 3.1 that puts m ykthread to sleep while wait ing for events:

add_wait_queue(&myevent_waitqueue, &wait);
for (;;) {

 /* ... */
 set_current_state(TASK_INTERRUPTIBLE);
 schedule(); /* Relinquish the processor */
 /* Point A */

 /* ... */
}
set_current_state(TASK_RUNNING);
remove_wait_queue(&myevent_waitqueue, &wait);

The operat ion of the preceding snippet is based on two concepts: wait queues and process states.

Wait queues hold threads that need to wait for an event or a system resource. Threads in a wait queue go to
sleep unt il they are woken up by another thread or an interrupt handler that is responsible for detect ing the
event . Queuing and dequeuing are respect ively done using add_wait_queue() and remove_wait_queue() , and
waking up queued tasks is accom plished via wake_up_interruptible() .

A kernel thread (or a norm al process) can be in any of the following process states: running, interrupt ible,
uninterrupt ible, zom bie, stopped, t raced, or dead. These states are defined in include/ linux/ sched.h:

A process in the running state (TASK_RUNNING) is in the scheduler run queue and is a candidate for
get t ing CPU t im e allot ted by the scheduler.

A task in the in terrupt ible state (TASK_INTERRUPTIBLE) is wait ing for an event to occur and is not in the
scheduler run queue. When the task gets woken up, or if a signal is delivered to it , it re-enters the run
queue.

The uninterrupt ible state (TASK_UNINTERRUPTIBLE) is sim ilar to the in terrupt ible state except that
receipt of a signal will not put the task back into the run queue.

A stopped task (TASK_STOPPED) has stopped execut ion due to receipt of certain signals.

I f an applicat ion such as st race is using the pt race support in the kernel to intercept a task, it ' ll be in the
t raced state (TASK_TRACED) .

A task in the zom bie state (EXIT_ZOMBIE) has term inated, but its parent did not wait for the task to
com plete. An exit ing task is either in the EXIT_ZOMBIE state or the dead (EXIT_DEAD) state.

You can use set_current_state() to set the run state of your kernel thread.

Let 's now turn back to the preceding code snippet . m ykthread sleeps on a wait queue (myevent_waitqueue) and
changes its state to TASK_INTERRUPTIBLE, signaling its desire to opt out of the scheduler run queue. The call to
schedule() asks the scheduler to choose and run a new task from its run queue. When code responsible for
health m onitor ing wakes up m ykthread using wake_up_interruptible(&myevent_waitqueue) , the thread is put
back into the scheduler run queue. The process state also gets sim ultaneously changed to TASK_RUNNING, so
there is no race condit ion even if the wake up occurs between the t im e the task state is set to
TASK_INTERRUPTIBLE and the t im e schedule() is called. The thread also gets back into the run queue if a
SIGKILL signal is delivered to it . When the scheduler subsequent ly picks m ykthread from the run queue,
execut ion resum es from Point A.

User Mode Helpers

Mykthread invokes run_umode_handler() in List ing 3.1 to not ify user space about detected events:

Code View:
/* Called from Listing 3.1 */
static void
run_umode_handler(int event_id)
{
 int i = 0;
 char *argv[2], *envp[4], *buffer = NULL;

 int value;

 argv[i++] = myevent_handler; /* Defined in
 kernel/sysctl.c */

 /* Fill in the id corresponding to the data structure
 in trouble */
 if (!(buffer = kmalloc(32, GFP_KERNEL))) return;
 sprintf(buffer, "TROUBLED_DS=%d", event_id);

 /* If no user mode handlers are found, return */
 if (!argv[0]) return; argv[i] = 0;

 /* Prepare the environment for /path/to/helper */

 i = 0;
 envp[i++] = "HOME=/";
 envp[i++] = "PATH=/sbin:/usr/sbin:/bin:/usr/bin";
 envp[i++] = buffer; envp[i] = 0;

 /* Execute the user mode program, /path/to/helper */

 value = call_usermodehelper(argv[0], argv, envp, 0);

 /* Check return values */
 kfree(buffer);
}

The kernel supports a m echanism for request ing user m ode program s to help perform certain funct ions.
run_umode_handler() uses this facilit y by invoking call_usermodehelper() .

You have to register the user m ode program invoked by run_umode_handler() v ia a node in the / proc/ sys/
directory. To do so, m ake sure that CONFIG_SYSCTL (files that are part of the / proc/ sys/ directory are
collect ively known as the sysct l interface) is enabled in your kernel configurat ion and add an ent ry to the
kern_table array in kernel/ sysct l.c:

{
 .ctl_name = KERN_MYEVENT_HANDLER, /* Define in
 include/linux/sysctl.h */

 .procname = "myevent_handler",
 .data = &myevent_handler,
 .maxlen = 256,
 .mode = 0644,
 .proc_handler = &proc_dostring,
 .strategy = &sysctl_string,
},

This creates the node / proc/ sys/ kernel/ m yevent_handler in the process filesystem . To register your user m ode
helper, do the following:

bash> echo /path/to/helper > /proc/sys/kernel/myevent_handler

This results in / path/ to/ helper get t ing executed when m ykthread invokes run_umode_handler() .

Mykthread passes the ident ity of the t roubled kernel data st ructure to the user m ode helper through the
environm ent variable TROUBLED_DS. The helper can be a sim ple scr ipt like the following that sends you an em ail
alert containing the inform at ion it gleaned from its environm ent :

bash> cat /path/to/helper

#!/bin/bash
echo Kernel datastructure $TROUBLED_DS is in trouble | mail -s Alert root

call_usermodehelper() has to be executed from process context and runs with root pr ivileges. I t 's
im plem ented using a work queue, which we will soon discuss.

Helper I nter faces

Several useful helper interfaces exist in the kernel to m ake life easier for device dr iver developers. One exam ple
is the im plem entat ion of the doubly linked list library. Many drivers need to m aintain and m anipulate linked lists
of data st ructures. The kernel's list interface rout ines elim inate the need for chasing list pointers and debugging
m essy problem s related to list m aintenance. Let 's learn to use helper interfaces such as lists, hlists, work
queues, com plet ion funct ions, not ifier blocks, and kthreads.

There are equivalent ways to do what the helper facilit ies offer. You can, for exam ple, im plem ent your own list
m anipulat ion rout ines instead of using the list library, or use kernel threads to defer work instead of subm it t ing
it to work queues. Using standard kernel helper interfaces, however, sim plifies your code, weeds out
redundancies from the kernel, increases code readabilit y, and helps long- term m aintenance.

Because the kernel is vast , you can always find parts that do not yet take advantage of these helper
m echanism s, so updat ing those code regions m ight be a good way to start cont r ibut ing to kernel
developm ent .

Linked Lists

To weave doubly linked lists of data st ructures, use the funct ions provided in include/ linux/ list .h. Essent ially,
you em bed a struct list_head inside your data st ructure:

#include <linux/list.h>

struct list_head {
 struct list_head *next, *prev;
};

struct mydatastructure {
 struct list_head mylist; /* Embed */
 /* ... */ /* Actual Fields */
};

mylist is the link that chains different instances of mydatastructure . I f you have m ult iple list_head s
em bedded inside mydatastructure , each of them const itutes a link that renders mydatastructure a m em ber of
a new list . You can use the list library to add or delete m em bership from individual lists.

To get the lay of the land before the detail, let 's sum m arize the linked list program m ing interface offered by the
list library. This is done in Table 3.1.

Table 3 .1 . Linked List Manipula t ion Funct ions

Funct ion Purpose

INIT_LIST_HEAD() I nit ializes the list head

list_add() Adds an elem ent after the list head

Funct ion Purpose

list_add_tail() Adds an elem ent to the tail of the list

list_del() Deletes an elem ent from the list

list_replace() Replaces an elem ent in the list with another

list_entry() Loops through all nodes in the list

list_for_each_entry()/
list_for_each_entry_safe()

Sim pler list iterat ion interfaces

list_empty() Checks whether there are any elem ents in the list

list_splice() Joins one list with another

To illust rate list usage, let 's im plem ent an exam ple. The exam ple also serves as a foundat ion to understand the
concept of work queues, which is discussed in the next sect ion. Assum e that your kernel dr iver needs to perform
a heavy-duty task from an ent ry point . An exam ple is a task that forces the calling thread to sleep-wait .
Naturally, your dr iver doesn't like to block unt il the task finishes, because that slows down the responsiveness of
applicat ions relying on it . So, whenever the dr iver needs to perform this expensive work, it defers execut ion by
adding the corresponding rout ine to a linked list of work funct ions. The actual work is perform ed by a kernel
thread, which t raverses the list and executes the work funct ions in the background. The driver subm its work
funct ions to the tail of the list , while the kernel thread ploughs its way from the head of the list , thus ensuring
that work queued first gets done first . Of course, the rest of the dr iver needs to be designed to suit this schem e
of deferred execut ion. Before understanding this exam ple, however, be aware that we will use the work queue
interface in List ing 3.5 to im plem ent the sam e task in a sim pler m anner.

Let 's first int roduce the key dr iver data st ructures used by our exam ple:

static struct _mydrv_wq {
 struct list_head mydrv_worklist; /* Work List */
 spinlock_t lock; /* Protect the list */
 wait_queue_head_t todo; /* Synchronize submitter
 and worker */
} mydrv_wq;

struct _mydrv_work {
 struct list_head mydrv_workitem; /* The work chain */
 void (*worker_func)(void *); /* Work to perform */
 void *worker_data; /* Argument to worker_func */
 /* ... */ /* Other fields */
} mydrv_work;

mydrv_wq is global to all work subm issions. I ts m em bers include a pointer to the head of the work list , and a
wait queue to com m unicate between driver funct ions that subm it work and the kernel thread that performs the
work. The list helper funct ions do not protect accesses to list m em bers, so you need to use concurrency
m echanism s to serialize sim ultaneous pointer references. This is done using a spinlock that is also a part of
mydrv_wq . The driver init ializat ion rout ine mydrv_init() in List ing 3.2 init ializes the spinlock, the list head, and
the wait queue, and kick starts the worker thread.

List ing 3 .2 . I n it ia lize Data St ructures

static int __init
mydrv_init(void)
{
 /* Initialize the lock to protect against
 concurrent list access */
 spin_lock_init(&mydrv_wq.lock);

 /* Initialize the wait queue for communication
 between the submitter and the worker */
 init_waitqueue_head(&mydrv_wq.todo);

 /* Initialize the list head */
 INIT_LIST_HEAD(&mydrv_wq.mydrv_worklist);

 /* Start the worker thread. See Listing 3.4 */
 kernel_thread(mydrv_worker, NULL,
 CLONE_FS | CLONE_FILES | CLONE_SIGHAND | SIGCHLD);
 return 0;
}

Before exam ining the worker thread that executes subm it ted work, let 's look at work subm ission itself. List ing
3.3 im plem ents a funct ion that other parts of the kernel can use to subm it work. I t uses list_add_tail() to
add a work funct ion to the tail of the list . Look at Figure 3.1 to see the physical st ructure of the work list .

Figure 3 .1 . Linked list of w ork funct ions.

[View full size im age]

List ing 3 .3 . Subm it t ing W ork to Be Executed Later

int
submit_work(void (*func)(void *data), void *data)
{
 struct _mydrv_work *mydrv_work;

 /* Allocate the work structure */
 mydrv_work = kmalloc(sizeof(struct _mydrv_work), GFP_ATOMIC);
 if (!mydrv_work) return -1;

 /* Populate the work structure */
 mydrv_work->worker_func = func; /* Work function */
 mydrv_work->worker_data = data; /* Argument to pass */
 spin_lock(&mydrv_wq.lock); /* Protect the list */

 /* Add your work to the tail of the list */
 list_add_tail(&mydrv_work->mydrv_workitem,
 &mydrv_wq.mydrv_worklist);

 /* Wake up the worker thread */
 wake_up(&mydrv_wq.todo);

 spin_unlock(&mydrv_wq.lock);
 return 0;
}

To subm it a work funct ion void job(void *) from a dr iver ent ry point , do this:

submit_work(job, NULL);

After subm it t ing the work funct ion, List ing 3.3 wakes up the worker thread. The general st ructure of the worker
thread shown in List ing 3.4 is sim ilar to standard kernel threads discussed in the previous sect ion. The thread
uses list_entry() to work its way through all nodes in the list . list_entry() returns the container data
st ructure inside which the list node is em bedded. Take a closer look at the relevant line in List ing 3.4:

mydrv_work = list_entry(mydrv_wq.mydrv_worklist.next,
 struct _mydrv_work, mydrv_workitem);

mydrv_workitem is em bedded inside mydrv_work , so list_entry() returns a pointer to the corresponding
mydrv_work st ructure. The param eters passed to list_entry() are the address of the em bedded list node, the
type of the container st ructure, and the field nam e of the em bedded list node.

After execut ing a subm it ted work funct ion, the worker thread rem oves the corresponding node from the list
using list_del() . Note that mydrv_wq.lock is released and reacquired in the t im e window when the subm it ted
work funct ion is executed. This is because work funct ions can go to sleep result ing in potent ial deadlocks if
newly scheduled code t r ies to acquire the sam e spinlock.

List ing 3 .4 . The W orker Thread

Code View:
static int
mydrv_worker(void *unused)
{

 DECLARE_WAITQUEUE(wait, current);
 void (*worker_func)(void *);
 void *worker_data;
 struct _mydrv_work *mydrv_work;

 set_current_state(TASK_INTERRUPTIBLE);

 /* Spin until asked to die */
 while (!asked_to_die()) {
 add_wait_queue(&mydrv_wq.todo, &wait);

 if (list_empty(&mydrv_wq.mydrv_worklist)) {
 schedule();
 /* Woken up by the submitter */
 } else {
 set_current_state(TASK_RUNNING);
 }
 remove_wait_queue(&mydrv_wq.todo, &wait);

 /* Protect concurrent access to the list */
 spin_lock(&mydrv_wq.lock);

 /* Traverse the list and plough through the work functions
 present in each node */
 while (!list_empty(&mydrv_wq.mydrv_worklist)) {

 /* Get the first entry in the list */
 mydrv_work = list_entry(mydrv_wq.mydrv_worklist.next,
 struct _mydrv_work, mydrv_workitem);
 worker_func = mydrv_work->worker_func;
 worker_data = mydrv_work->worker_data;

 /* This node has been processed. Throw it
 out of the list */
 list_del(mydrv_wq.mydrv_worklist.next);
 kfree(mydrv_work); /* Free the node */

 /* Execute the work function in this node */
 spin_unlock(&mydrv_wq.lock); /* Release lock */
 worker_func(worker_data);
 spin_lock(&mydrv_wq.lock); /* Re-acquire lock */
 }
 spin_unlock(&mydrv_wq.lock);
 set_current_state(TASK_INTERRUPTIBLE);
 }

 set_current_state(TASK_RUNNING);
 return 0;
}

For sim plicity, the exam ple code does not perform error handling. For exam ple, if the call to kernel_thread()
in List ing 3.2 fails, you need to free m em ory allocated for the corresponding work st ructure. Also,
asked_to_die() in List ing 3.4 is left unwrit ten. I t essent ially breaks out of the loop if it either detects a
delivered signal or receives a com m unicat ion from the release() ent ry point that the m odule is about to be
unloaded from the kernel.

Before ending this sect ion, let 's take a look at another useful list library rout ine, list_for_each_entry() . With
this m acro, iterat ion becom es sim pler and m ore readable because you don't have to use list_entry() inside
the loop. Use the list_for_each_entry_safe() var iant if you will delete list elem ents inside the loop. You can
replace the following snippet in List ing 3.4:

while (!list_empty(&mydrv_wq.mydrv_worklist)) {
 mydrv_work = list_entry(mydrv_wq.mydrv_worklist.next,
 struct _mydrv_work, mydrv_workitem);
 /* ... */
}

with:

struct _mydrv_work *temp;
list_for_each_entry_safe(mydrv_work, temp,
 &mydrv_wq.mydrv_worklist,
 mydrv_workitem) {
 /* ... */
}

You can't use list_for_each_entry() in this case because you are rem oving the ent ry pointed to by
mydrv_work inside the loop in List ing 3.4. list_for_each_entry_safe() solves this problem using the
tem porary variable passed as the second argum ent (temp) to save the address of the next ent ry in the list .

Hash Lists

The doubly linked list im plem entat ion discussed previously is not opt im al for cases where you want to
im plem ent linked data st ructures such as hash tables. This is because hash tables need only a list head
containing a single pointer. To reduce m em ory overhead for such applicat ions, the kernel provides hash lists (or
hlist s) , a variat ion of lists. Unlike lists, which use the sam e st ructure for the list head and list nodes, hlists have
separate definit ions:

struct hlist_head {
 struct hlist_node *first;
};

struct hlist_node {
 struct hlist_node *next, **pprev;
};

To suit the schem e of a single-pointer hlist head, the nodes m aintain the address of the pointer to the previous
node, rather than the pointer itself.

Hash tables are im plem ented using an array of hlist_head s. Each hlist_head sources a doubly linked list of
hlist_node s. A hash funct ion is used to locate the index (or bucket) in the hlist_head array. When that is
done, you m ay use hlist helper rout ines (also defined in include/ linux/ list .h) to operate on the list of
hlist_nodes linked to the chosen bucket . Look at the im plem entat ion of the directory cache (dcache) in

fs/ dcache.c for an exam ple.

W ork Queues

Work queues are a way to defer work inside the kernel.[2] Deferr ing work is useful in innum erable situat ions.
Exam ples include the following:

[2] Soft irqs and tasklets are two other m echanism s available for deferr ing work inside the kernel. Table 4.1 of Chapter 4 com pares soft irqs,
tasklets, and work queues.

Triggering restart of a network adapter in response to an error interrupt

Filesystem tasks such as syncing disk buffers

Sending a com m and to a disk and following through with the storage protocol state m achine

The funct ionality of work queues is sim ilar to the exam ple described in List ings 3.2 to 3.4. However, work
queues can help you accom plish the sam e task in a sim pler m anner.

The work queue helper library exposes two interface st ructures to users: a workqueue_struct and a
work_struct . Follow these steps to use work queues:

1 . Create a work queue (or a workqueue_struct) with one or m ore associated kernel threads. To create a
kernel thread to service a workqueue_struct , use create_singlethread_workqueue() . To create one
worker thread per CPU in the system , use the create_workqueue() var iant . The kernel also has default
per-CPU worker threads (events/ n, where n is the CPU num ber) that you can t im eshare instead of
request ing a separate worker thread. Depending on your applicat ion, you m ight incur a perform ance hit if
you don't have a dedicated worker thread.

2 . Create a work elem ent (or a work_struct) . A work_struct is init ialized using INIT_WORK() , which
populates it with the address and argum ent of your work funct ion.

3 . Subm it the work elem ent to the work queue. A work_struct can be subm it ted to a dedicated queue using
queue_work() , or to the default kernel worker thread using schedule_work() .

Let 's rewrite List ings 3.2 to 3.4 to take advantage of the work queue interface. This is done in List ing 3.5. The
ent ire kernel thread, as well as the spinlock and the wait queue, vanish inside the work queue interface. Even
the call to create_singlethread_workqueue() goes away if you are using the default kernel worker thread.

List ing 3 .5 . Using W ork Queues to Defer W ork

Code View:
#include <linux/workqueue.h>

struct workqueue_struct *wq;

/* Driver Initialization */
static int __init
mydrv_init(void)
{
 /* ... */
 wq = create_singlethread_workqueue("mydrv");
 return 0;
}
 /* Work Submission. The first argument is the work function, and
 the second argument is the argument to the work function */
 int
 submit_work(void (*func)(void *data), void *data)
 {
 struct work_struct *hardwork;

 hardwork = kmalloc(sizeof(struct work_struct), GFP_KERNEL);

 /* Init the work structure */
 INIT_WORK(hardwork, func, data);

 /* Enqueue Work */
 queue_work(wq, hardwork);
 return 0;
}

I f you are using work queues, you will get linker errors unless you declare your m odule as licensed under
GPL. This is because the kernel exports these funct ions only to GPLed code. I f you look at the kernel
work queue im plem entat ion, you will see this rest r ict ion expressed in statem ents such as this:

EXPORT_SYMBOL_GPL(queue_work);

To announce that your m odule is copyleft-ed under GPL, declare the following:

MODULE_LICENSE("GPL");

Not if ier Chains

Not ifier chains are used to send status change m essages to code regions that request them . Unlike hard-coded
m echanism s, not ifiers offer a versat ile technique for get t ing alerted when events of interest are generated.
Not ifiers were or iginally added for passing network events to concerned sect ions of the kernel but are now used
for m any other purposes. The kernel im plem ents predefined not ifiers for significant events. Exam ples of such
not ificat ions include the following:

Die not if ica t ion , which is sent when a kernel funct ion t r iggers a t rap or a fault , caused by an "oops,"
page fault , or a breakpoint hit . I f you are, for exam ple, writ ing a device dr iver for a m edical grade card,
you m ight want to register yourself with the die not ifier so that you can at tem pt to turn off the m edical
elect ronics if a kernel panic occurs.

Net device not if ica t ion , which is generated when a network interface goes up or down.

CPU frequency not if ica t ion , which is dispatched when there is a t ransit ion in the processor frequency.

I nternet address not if ica t ion , which is sent when a change is detected in the I P address of a network
interface.

An exam ple user of not ifiers is the High- level Data Link Cont rol (HDLC) protocol dr iver dr ivers/ net / wan/ hdlc.c,
which registers itself with the net device not ifier chain to sense carr ier changes.

To at tach your code to a not ifier chain, you have to register an event handler with the associated chain. An
event ident ifier and a not ifier-specific argum ent are passed as argum ents to the handler rout ine when the
concerned event is generated. To define a custom not ifier chain, you have to addit ionally im plem ent the
infrast ructure to ignite the chain when the event is detected.

List ing 3.6 contains exam ples of using predefined and user-defined not ifiers. Table 3.2 contains a br ief
descript ion of the not ifier chains used by List ing 3.6 and the events they propagate, so look at the list ing and
the table in tandem .

Table 3 .2 . Not if ier Chains and the Events They Prop agate

Not if ier Chain Descr ipt ion

Die Not if ier Chain (die_chain) my_die_event_handler() at taches to the die not ifier chain,
die_chain , using register_die_notifier() . To t r igger invocat ion
of my_die_event_handler() , int roduce an invalid dereference
som ewhere in your code, such as the following:
int *q = 0;
*q = 1;

When this code snippet is executed, my_die_event_handler() gets
called, and you will see a m essage like this:

my_die_event_handler: OOPs! at EIP=f00350e7

The die event not ifier passes the die_args st ructure to the
registered event handler. This argum ent contains a pointer to the
regs st ructure, which carr ies a snapshot of processor register
contents when the fault occurred. my_die_event_handler() pr ints
the contents of the inst ruct ion pointer register.

Netdevice Not if ier
Chain (netdev_chain)

my_dev_event_handler() at taches to the net device not ifier chain,
netdev_chain , using register_netdevice_notifier() . You can
generate this event by changing the state of a network interface
such as Ethernet (ethX) or loopback (lo) :
bash> ifconfig eth0 up

Not if ier Chain Descr ipt ion

This results in the execut ion of my_dev_event_handler() . The
handler is passed a pointer to struct net_device as argum ent ,
which contains the nam e of the network interface.
my_dev_event_handler() uses this inform at ion to produce the
following m essage:

my_dev_event_handler: Val=1, Interface=eth0

Val=1 corresponds to the NETDEV_UP event as defined in
include/ linux/ not ifier.h.

User- Defined Not if ier Chain List ing 3.6 also im plem ents a user-defined not ifier chain,
my_noti_chain . Assum e that you want an event to be generated
whenever a user reads from a part icular file in the process
filesystem . Add the following in the associated procfs read rout ine:
blocking_notifier_call_chain(&my_noti_chain, 100, NULL);

This results in the invocat ion of my_event_handler() whenever
you read from the corresponding / proc file and results in the
following m essage:

my_event_handler: Val=100

Val contains the ident ity of the generated event , which is 100 for
this exam ple. The funct ion argum ent is left unused.

You have to unregister event handlers from not ifier chains when your m odule is released from the kernel. For
exam ple, if you up or down a network interface after unloading the code in List ing 3.6, you will be rankled by an
"oops," unless you perform an unregister_netdevice_notifier(&my_dev_notifier) from the m odule's
release() m ethod. This is because the not ifier chain cont inues to think that the handler code is valid, even
though it has been pulled out of the kernel.

List ing 3 .6 . Not if ier Event Handlers

Code View:
#include <linux/notifier.h>
#include <asm/kdebug.h>
#include <linux/netdevice.h>
#include <linux/inetdevice.h>

/* Die Notifier Definition */
static struct notifier_block my_die_notifier = {
 .notifier_call = my_die_event_handler,
};
/* Die notification event handler */
int
my_die_event_handler(struct notifier_block *self,
 unsigned long val, void *data)
{
 struct die_args *args = (struct die_args *)data;

 if (val == 1) { /* '1' corresponds to an "oops" */
 printk("my_die_event: OOPs! at EIP=%lx\n", args->regs->eip);

 } /* else ignore */
 return 0;
}

/* Net Device notifier definition */
static struct notifier_block my_dev_notifier = {
 .notifier_call = my_dev_event_handler,
};

/* Net Device notification event handler */
int my_dev_event_handler(struct notifier_block *self,
 unsigned long val, void *data)
{
 printk("my_dev_event: Val=%ld, Interface=%s\n", val,
 ((struct net_device *) data)->name);
 return 0;
}

/* User-defined notifier chain implementation */
static BLOCKING_NOTIFIER_HEAD(my_noti_chain);

static struct notifier_block my_notifier = {
 .notifier_call = my_event_handler,
};

/* User-defined notification event handler */
int my_event_handler(struct notifier_block *self,
 unsigned long val, void *data)
{
 printk("my_event: Val=%ld\n", val);
 return 0;
}
/* Driver Initialization */
static int __init
my_init(void)
{
 /* ... */

 /* Register Die Notifier */
 register_die_notifier(&my_die_notifier);

 /* Register Net Device Notifier */
 register_netdevice_notifier(&my_dev_notifier);

 /* Register a user-defined Notifier */
 blocking_notifier_chain_register(&my_noti_chain, &my_notifier);

 /* ... */
}

my_noti_chain in List ing 3.6 is declared as a blocking not ifier using BLOCKING_NOTIFIER_HEAD() and is
registered via blocking_notifier_chain_register() . This m eans that the not ifier handler is always invoked
from process context . So, the handler funct ion, my_event_handler() , is allowed to go to sleep. I f your not ifier

handler can be called from interrupt context , declare the not ifier chain using ATOMIC_NOTIFIER_HEAD(), and
register it v ia atomic_notifier_chain_register() .

The Old Not ifier I nterface

Kernel releases earlier than 2.6.17 supported only a general-purpose not ifier chain. The not ifier
regist rat ion funct ion notifier_chain_register() was internally protected using a spinlock, but
the rout ine that walked the not ifier chain dispatching events to not ifier handlers
(notifier_call_chain()) was lockless. The lack of locking was because of the possibilit y that the
handler funct ions m ay go to sleep, unregister them selves while running, or get called from
interrupt context . The lockless im plem entat ion int roduced race condit ions, however. The new
not ifier API is built over the or iginal interface and is intended to overcom e its lim itat ions.

Com plet ion I nter face

Many parts of the kernel init iate certain act ivit ies as separate execut ion threads and then wait for them to
com plete. The com plet ion interface is an efficient and easy way to im plem ent such code pat terns.

Som e exam ple usage scenarios include the following:

Your dr iver m odule is assisted by a kernel thread. I f you rm m od the m odule, the release() m ethod is
invoked before rem oving the m odule code from kernel space. The release rout ine asks the thread to kill
it self and blocks unt il the thread com pletes its exit . List ing 3.7 im plem ents this case.

You are writ ing a port ion of a block device dr iver (discussed in Chapter 14, "Block Drivers") that queues a
read request to a device. This t r iggers a state m achine change im plem ented as a separate thread or work
queue. The driver wants to wait unt il the operat ion com pletes before proceeding with another act ivity.
Look at dr ivers/ block/ floppy.c for an exam ple.

An applicat ion requests an Analog- to-Digital Converter (ADC) dr iver for a data sam ple. The driver init iates
a conversion request waits, unt il an interrupt signals com plet ion of conversion, and returns the data.

List ing 3 .7 . Synchronizing Using Com plet ion Funct io ns

Code View:
static DECLARE_COMPLETION(my_thread_exit); /* Completion */
static DECLARE_WAIT_QUEUE_HEAD(my_thread_wait); /* Wait Queue */
int pink_slip = 0; /* Exit Flag */

/* Helper thread */
static int
my_thread(void *unused)
{
 DECLARE_WAITQUEUE(wait, current);

 daemonize("my_thread");
 add_wait_queue(&my_thread_wait, &wait);

 while (1) {
 /* Relinquish processor until event occurs */

 set_current_state(TASK_INTERRUPTIBLE);
 schedule();
 /* Control gets here when the thread is woken
 up from the my_thread_wait wait queue */

 /* Quit if let go */
 if (pink_slip) {
 break;
 }
 /* Do the real work */
 /* ... */

 }

 /* Bail out of the wait queue */
 __set_current_state(TASK_RUNNING);
 remove_wait_queue(&my_thread_wait, &wait);

 /* Atomically signal completion and exit */
 complete_and_exit(&my_thread_exit, 0);
}

/* Module Initialization */
static int __init
my_init(void)
{
 /* ... */

 /* Kick start the thread */
 kernel_thread(my_thread, NULL,
 CLONE_FS | CLONE_FILES | CLONE_SIGHAND | SIGCHLD);

 /* ... */
}

/* Module Release */
static void __exit
my_release(void)
{
 /* ... */
 pink_slip = 1; /* my_thread must go */
 wake_up(&my_thread_wait); /* Activate my_thread */
 wait_for_completion(&my_thread_exit); /* Wait until my_thread
 quits */
 /* ... */
}

A com plet ion object can be declared stat ically using DECLARE_COMPLETION() or created dynam ically with
init_completion() . A thread can signal com plet ion with the help of complete() or complete_all() . A caller
can wait for com plet ion via wait_for_completion() .

I n List ing 3.7, my_release() raises an exit request flag by set t ing pink_slip before waking up my_thread() . I t
then calls wait_for_completion() to wait unt il my_thread() com pletes its exit . my_thread() , on its part ,
wakes up to find pink_slip set , and does the following:

Signals com plet ion to my_release()1 .

Kills itself2 .

my_thread() accom plishes these two steps atom ically using complete_and_exit() . Using
complete_and_exit() shuts the window between m odule exit and thread exit that opens if you separately
invoke complete() and exit() .

We will use the com plet ion API when we develop an exam ple telem et ry dr iver in Chapter 11.

Kthread Helpers

Kthread helpers add a coat ing over the raw thread creat ion rout ines and sim plify the task of thread
m anagem ent .

List ing 3.8 rewrites List ing 3.7 using the kthread helper interface. my_init() now uses kthread_create()
rather than kernel_thread() . You can pass the thread's nam e to kthread_create() rather than explicit ly call
daemonize() within the thread.

The kthread interface provides you free access to a built - in exit synchronizat ion m echanism im plem ented using
the com plet ion interface. So, as my_release() does in List ing 3.8, you m ay direct ly call kthread_stop()
instead of laboriously set t ing pink_slip , waking up my_thread() , and wait ing for it to com plete using
wait_for_completion() . Sim ilar ly, my_thread() can m ake a neat call to kthread_should_stop() to check
whether it ought to call it a day.

List ing 3 .8 . Synchronizing Using Kthread Helpers

Code View:
/* ' +' and '-' show the differences from Listing 3.7 */

#include <linux/kthread.h>

/* Assistant Thread */
static int
my_thread(void *unused)
{
 DECLARE_WAITQUEUE(wait, current);
- daemonize("my_thread");

- while (1) {
+ /* Continue work if no other thread has
+ * invoked kthread_stop() */
+ while (!kthread_should_stop()) {
 /* ... */
- /* Quit if let go */
- if (pink_slip) {
- break;
- }
 /* ... */
 }
 __set_current_state(TASK_RUNNING);
 remove_wait_queue(&my_thread_wait, &wait);

- complete_and_exit(&my_thread_exit, 0);
+ return 0;
 }

+ struct task_struct *my_task;

 /* Module Initialization */
 static int __init
 my_init(void)
 {
 /* ... */
- kernel_thread(my_thread, NULL,
- CLONE_FS | CLONE_FILES | CLONE_SIGHAND |
 SIGCHLD);
+ my_task = kthread_create(my_thread, NULL, "%s", "my_thread");
+ if (my_task) wake_up_process(my_task);

 /* ... */
 }

 /* Module Release */
 static void __exit
 my_release(void)
 {
 /* ... */
- pink_slip = 1;
- wake_up(&my_thread_wait);
- wait_for_completion(&my_thread_exit);
+ kthread_stop(my_task);

 /* ... */
 }

I nstead of creat ing the thread using kthread_create() and act ivat ing it via wake_up_process() as done in
List ing 3.8, you m ay use the following single call:

kthread_run(my_thread, NULL, "%s", "my_thread");

Error- Handling Aids

Several kernel funct ions return pointer values. Whereas callers usually check for failure by com paring the return
value with NULL, they typically need m ore inform at ion to decipher the exact nature of the error that has
occurred. Because kernel addresses have redundant bits, they can be overloaded to encode error sem ant ics.
This is done with the help of a set of helper rout ines. List ing 3.9 im plem ents a sim ple usage exam ple.

List ing 3 .9 . Using Error- Handling Aids

Code View:
#include <linux/err.h>

char *
collect_data(char *userbuffer)
{

 char *buffer;

 /* ... */
 buffer = kmalloc(100, GFP_KERNEL);
 if (!buffer) { /* Out of memory */
 return ERR_PTR(-ENOMEM);
 }

 /* ... */
 if (copy_from_user(buffer, userbuffer, 100)) {
 return ERR_PTR(-EFAULT);
 }
 /* ... */

 return(buffer);
}

int
my_function(char *userbuffer)
{
 char *buf;

 /* ... */
 buf = collect_data(userbuffer);
 if (IS_ERR(buf)) {
 printk("Error returned is %d!\n", PTR_ERR(buf));
 }
 /* ... */

}

I f kmalloc() fails inside collect_data() in List ing 3.9, you will get the following m essage:

Error returned is -12!

However, if collect_data() is successful, it returns a valid pointer to a data buffer. As another exam ple, let 's
add error handling using IS_ERR() and PTR_ERR() to the thread creat ion code in List ing 3.8:

 my_task = kthread_create(my_thread, NULL, "%s", "mydrv");

+ if (!IS_ERR(my_task)) {

+ /* Success */

 wake_up_process(my_task);
+ } else {

+ /* Failure */

+ printk("Error value returned=%d\n", PTR_ERR(my_task));

+ }

Look ing at the Sources

The ksoft irqd, pdflush, and khubd kernel threads live in kernel/ soft irq.c, m m / pdflush.c, and
drivers/ usb/ core/ hub.c, respect ively.

The daemonize() funct ion can be found in kernel/ exit .c. For the im plem entat ion of user m ode helpers, look at
kernel/ km od.c.

The list and hlist library rout ines reside in include/ linux/ list .h. They are used all over the kernel, so you will find
usage exam ples in m ost subdirector ies. An exam ple is the request_queue st ructure defined in
include/ linux/ blkdev.h, which holds a linked list of disk I / O requests. We look at this data st ructure in Chapter
14.

Go to www.ussg.iu.edu/ hyperm ail/ linux/ kernel/ 0007.3/ 0805.htm l and follow the discussion thread in the
m ailing list for an interest ing debate between Linus Torvalds and Andi Kleen about the pros and cons of
com plem ent ing the list library with hlist helper rout ines.

The kernel work queue im plem entat ion lives in kernel/ workqueue.c. To understand the real-world use of work
queues, look at the PRO/ Wireless 2200 network dr iver, dr ivers/ net / wireless/ ipw2200.c.

The kernel not ifier chain im plem entat ion lives in kernel/ sys.c and include/ linux/ not ifier.h. Look at kernel/ sched.c
and include/ linux/ com plet ion.h for the guts of the com plet ion interface. kernel/ kthread.c contains the source
code for kthread helpers, and include/ linux/ err.h includes definit ions of error handling aids.

Table 3.3 contains a sum m ary of the m ain data st ructures used in this chapter and the locat ion of their
definit ions in the source t ree. Table 3.4 lists the m ain kernel program m ing interfaces that you used in this
chapter along with the locat ion of their definit ions.

Table 3 .3 . Sum m ary of Data St ructures

Data St ructure Locat ion Descr ipt ion

wait_queue_t include/ linux/ wait .h Used by threads that desire to wait for
an event or a system resource

list_head include/ linux/ list .h Kernel st ructure to weave a doubly
linked list of data st ructures

hlist_head include/ linux/ list .h Kernel st ructure to im plem ent hash
tables

work_struct include/ linux/ workqueue.h I m plem ents work queues, which are a
way to defer work inside the kernel

notifier_block include/ linux/ not ifier.h I m plem ents not ifier chains, which are
used to send status changes to code
regions that request them

completion include/ linux/ com plet ion.h Used to init iate act ivit ies as separate
threads and then wait for them to
com plete

Table 3 .4 . Sum m ary of Kernel Program m ing I nter faces

Kernel I nter face Locat ion Descr ipt ion

DECLARE_WAITQUEUE() include/ linux/ wait .h Declares a wait queue.

add_wait_queue() kernel/ wait .c Queues a task to a wait queue.
The task goes to sleep unt il it 's
woken up by another thread or
interrupt handler.

remove_wait_queue() kernel/ wait .c Dequeues a task from a wait
queue.

wake_up_interruptible() include/ linux/ wait .h
kernel/ sched.c

Wakes up a task sleeping inside
a wait queue and puts it back
into the scheduler run queue.

schedule() kernel/ sched.c Relinquishes the processor and
allows other parts of the kernel
to run.

set_current_state() include/ linux/ sched.h Sets the run state of a process.
The state can be one of
TASK_RUNNING,
TASK_INTERRUPTIBLE,
TASK_UNINTERRUPTIBLE,
TASK_STOPPED, TASK_TRACED,
EXIT_ZOMBIE, or EXIT_DEAD.

kernel_thread() arch/ your-
arch/ kernel/ process.c

Creates a kernel thread.

daemonize() kernel/ exit .c Act ivates a kernel thread
without at taching user resources
and changes the parent of the
calling thread to kthreadd.

allow_signal() kernel/ exit .c Enables delivery of a specified
signal.

signal_pending() include/ linux/ sched.h Checks whether a signal has
been delivered. There are no
signal handlers inside the kernel,
so you have to explicit ly check
whether a signal has been
delivered.

call_usermodehelper() include/ linux/ km od.h
kernel/ km od.c

Executes a user m ode program .

Linked list library functions include/ linux/ list .h See Table 3.1.

register_die_notifier() arch/ your-
arch/ kernel/ t raps.c

Registers a die not ifier.

register_netdevice_notifier() net / core/ dev.c Registers a netdevice not ifier.

register_inetaddr_notifier() net / ipv4/ devinet .c Registers an inetaddr not ifier.

BLOCKING_NOTIFIER_HEAD() include/ linux/ not ifier.h Creates a user-defined blocking
not ifier.

blocking_notifier_chain_register() kernel/ sys.c Registers a blocking not ifier.

Kernel I nter face Locat ion Descr ipt ion

blocking_notifier_call_chain() kernel/ sys.c Dispatches an event to a
blocking not ifier chain.

ATOMIC_NOTIFIER_HEAD() include/ linux/ not ifier.h Creates an atom ic not ifier.

atomic_notifier_chain_register() kernel/ sys.c Registers an atom ic not ifier.

DECLARE_COMPLETION() include/ linux/ com plet ion.h Stat ically declares a com plet ion
object .

init_completion() include/ linux/ com plet ion.h Dynam ically declares a
com plet ion object .

complete() kernel/ sched.c Announces com plet ion.

wait_for_completion() kernel/ sched.c Waits unt il the com plet ion object
com pletes.

complete_and_exit() kernel/ exit .c Atom ically signals com plet ion
and exit .

kthread_create() kernel/ kthread.c Creates a kernel thread.

kthread_stop() kernel/ kthread.c Asks a kernel thread to stop.

kthread_should_stop() kernel/ kthread.c A kernel thread can poll on this
funct ion to detect whether
another thread has asked it to
stop via kthread_stop() .

IS_ERR() include/ linux/ err.h Finds out whether the return
value is an error code.

Chapter 4 . Laying the Groundw ork

I n This Chapter

I nt roducing Devices and Drivers
90

I nterrupt Handling
92

The Linux Device Model
103

Mem ory Barr iers
114

Power Managem ent
114

Looking at the Sources
115

We are now within whispering distance of writ ing a device dr iver. Before doing that , however, let 's
equip ourselves with som e driver concepts. We start the chapter by get t ing an idea of the book's
problem statem ent ; we will look at the typical devices and I / O interfaces present on PC-com pat ible
system s and em bedded com puters. I nterrupt handling is an integral part of m ost dr ivers, so we
next cover the art of writ ing interrupt handlers. We then turn our at tent ion to the new device
m odel int roduced in the 2.6 kernel. The new m odel is built around abst ract ions such as sysfs,
kobjects, device classes, and udev, which dist ill com m onalit ies from device dr ivers. The new device
m odel also weeds policies out of kernel space and pushes them to user space, result ing in a total
revam p of features such as / dev node m anagem ent , hotplug, coldplug, m odule autoload, and
firm ware download.

I nt roducing Devices and Dr ivers

User applicat ions cannot direct ly com m unicate with hardware because that entails possessing pr ivileges such as
execut ing special inst ruct ions and handling interrupts. Device dr ivers assum e the burden of interact ing with
hardware and export interfaces that applicat ions and the rest of the kernel can use to access devices.
Applicat ions operate on devices via nodes in the / dev directory and glean device inform at ion using nodes in the
/ sys directory. [1]

[1] As you'll learn later, networking applicat ions route their requests to the underlying dr iver using a different m echanism .

Figure 4.1 shows the hardware block diagram of a typical PC-com pat ible system . As you can see, the system
supports diverse devices and interface technologies such as m em ory, video, audio, USB, PCI , WiFi, PCMCI A, I 2C,
I DE, Ethernet , serial port , keyboard, m ouse, floppy dr ive, parallel port , and I nfrared. The m em ory cont roller and
the graphics cont roller are part of a North Bridge chipset in the PC architecture, whereas peripheral buses are
sourced out of a South Bridge.

Figure 4 .1 . Hardw are block diagram of a PC- com pat ib le system .

Figure 4.2 illust rates a sim ilar block diagram for a hypothet ical em bedded device. This diagram contains several
interfaces not typical in the PC world such as flash m em ory, LCD, touch screen, and cellular m odem .

Figure 4 .2 . Hardw are block diagram of an em bedded s ystem .

[View full size im age]

Naturally, the capabilit y to access peripheral devices is a crucial part of a system 's funct ioning. Device dr ivers
provide the engine to achieve this. The rest of the chapters in this book will zoom in on a device interface and
teach you how to im plem ent the corresponding device dr iver.

Chapter 4 . Laying the Groundw ork

I n This Chapter

I nt roducing Devices and Drivers
90

I nterrupt Handling
92

The Linux Device Model
103

Mem ory Barr iers
114

Power Managem ent
114

Looking at the Sources
115

We are now within whispering distance of writ ing a device dr iver. Before doing that , however, let 's
equip ourselves with som e driver concepts. We start the chapter by get t ing an idea of the book's
problem statem ent ; we will look at the typical devices and I / O interfaces present on PC-com pat ible
system s and em bedded com puters. I nterrupt handling is an integral part of m ost dr ivers, so we
next cover the art of writ ing interrupt handlers. We then turn our at tent ion to the new device
m odel int roduced in the 2.6 kernel. The new m odel is built around abst ract ions such as sysfs,
kobjects, device classes, and udev, which dist ill com m onalit ies from device dr ivers. The new device
m odel also weeds policies out of kernel space and pushes them to user space, result ing in a total
revam p of features such as / dev node m anagem ent , hotplug, coldplug, m odule autoload, and
firm ware download.

I nt roducing Devices and Dr ivers

User applicat ions cannot direct ly com m unicate with hardware because that entails possessing pr ivileges such as
execut ing special inst ruct ions and handling interrupts. Device dr ivers assum e the burden of interact ing with
hardware and export interfaces that applicat ions and the rest of the kernel can use to access devices.
Applicat ions operate on devices via nodes in the / dev directory and glean device inform at ion using nodes in the
/ sys directory. [1]

[1] As you'll learn later, networking applicat ions route their requests to the underlying dr iver using a different m echanism .

Figure 4.1 shows the hardware block diagram of a typical PC-com pat ible system . As you can see, the system
supports diverse devices and interface technologies such as m em ory, video, audio, USB, PCI , WiFi, PCMCI A, I 2C,
I DE, Ethernet , serial port , keyboard, m ouse, floppy dr ive, parallel port , and I nfrared. The m em ory cont roller and
the graphics cont roller are part of a North Bridge chipset in the PC architecture, whereas peripheral buses are
sourced out of a South Bridge.

Figure 4 .1 . Hardw are block diagram of a PC- com pat ib le system .

Figure 4.2 illust rates a sim ilar block diagram for a hypothet ical em bedded device. This diagram contains several
interfaces not typical in the PC world such as flash m em ory, LCD, touch screen, and cellular m odem .

Figure 4 .2 . Hardw are block diagram of an em bedded s ystem .

[View full size im age]

Naturally, the capabilit y to access peripheral devices is a crucial part of a system 's funct ioning. Device dr ivers
provide the engine to achieve this. The rest of the chapters in this book will zoom in on a device interface and
teach you how to im plem ent the corresponding device dr iver.

I nterrupt Handling

Because of the indeterm inate nature of I / O, and speed m ism atches between I / O devices and the processor,
devices request the processor 's at tent ion by assert ing certain hardware signals asynchronously. These hardware
signals are called interrupts. Each interrupt ing device is assigned an associated ident ifier called an interrupt
request (I RQ) num ber. When the processor detects that an interrupt has been generated on an I RQ, it abrupt ly
stops what it 's doing and invokes an interrupt service rout ine (I SR) registered for the corresponding I RQ.
I nterrupt handlers (I SRs) execute in interrupt context .

I nterrupt Context

I SRs are cr it ical pieces of code that direct ly converse with the hardware. They are given the pr ivilege of instant
execut ion in the larger interest of system perform ance. However, if I SRs are not quick and lightweight , they
cont radict their own philosophy. VI Ps are given preferent ial t reatm ent , but it 's incum bent on them to m inim ize
the result ing inconvenience to the public. To com pensate for rudely interrupt ing the current thread of execut ion,
I SRs have to politely execute in a rest r icted environm ent called interrupt context (or atom ic context) .

Here is a list of do's and don'ts for code execut ing in interrupt context :

I t 's a jailable offense if your interrupt context code goes to sleep. I nterrupt handlers cannot relinquish the
processor by calling sleepy funct ions such as schedule_timeout() . Before invoking a kernel API from
your interrupt handler, penet rate the nested invocat ion t rain and ensure that it does not internally t r igger
a blocking wait . For exam ple, input_register_device() looks harm less from the surface, but tosses a
call to kmalloc() under the hood specifying GFP_KERNEL as an argum ent . As you saw in Chapter 2 , "A
Peek I nside the Kernel," if your system 's free m em ory dips below a waterm ark, kmalloc() sleep-waits for
m em ory to get freed up by the swapper, if you invoke it in this m anner.

1 .

For protect ing cr it ical sect ions inside interrupt handlers, you can't use m utexes because they m ay go to
sleep. Use spinlocks instead, and use them only if you m ust .

2 .

I nterrupt handlers cannot direct ly exchange data with user space because they are not connected to user
land via process contexts. This br ings us to another reason why interrupt handlers cannot sleep: The
scheduler works at the granular ity of processes, so if interrupt handlers sleep and are scheduled out , how
can they be put back into the run queue?

3 .

I nterrupt handlers are supposed to get out of the way quickly but are expected to get the job done. To
circum vent this Catch-22, interrupt handlers usually split their work into two. The slim top half of the
handler flags an acknowledgm ent claim ing that it has serviced the interrupt but , in reality, offloads all the
hard work to a fat bot tom half. Execut ion of the bot tom half is deferred to a later point in t im e when all
interrupts are enabled. You will learn to develop bot tom halves while discussing soft irqs and tasklets later.

4 .

You need not design interrupt handlers to be reent rant . When an interrupt handler is running, the
corresponding I RQ is disabled unt il the handler returns. So, unlike process context code, different
instances of the sam e handler will not run sim ultaneously on m ult iple processors.

5 .

I nterrupt handlers can be interrupted by handlers associated with I RQs that have higher pr ior ity. You can
prevent this nested interrupt ion by specifically request ing the kernel to t reat your interrupt handler as a

6 .

fast handler. Fast handlers run with all interrupts disabled on the local processor. Before disabling
interrupts or labeling your interrupt handler as fast , be aware that interrupt -off t im es are bad for system
perform ance. More the interrupt -off t im es, m ore is the interrupt latency, or the delay before a generated
interrupt is serviced. I nterrupt latency is inversely proport ional to the real t im e responsiveness of the
system .

A funct ion can check the value returned by in_interrupt() to find out whether it 's execut ing in interrupt
context .

Unlike asynchronous interrupts generated by external hardware, there are classes of interrupts that arr ive
synchronously. Synchronous interrupts are so called because they don't occur unexpectedly—the processor itself
generates them by execut ing an inst ruct ion. Both external and synchronous interrupts are handled by the kernel
using ident ical m echanism s.

Exam ples of synchronous interrupts include the following:

Except ions, which are used to report grave runt im e errors

Software interrupts such as the int 0x80 inst ruct ion used to im plem ent system calls on the x86
architecture

Assigning I RQs

Device dr ivers have to connect their I RQ num ber to an interrupt handler. For this, they need to know the I RQ
assigned to the device they're dr iving. I RQ assignments can be st raight forward or m ay require com plex probing.
I n the PC architecture, for exam ple, t im er interrupts are assigned I RQ 0, and RTC interrupts answer to I RQ 8.
Modern bus technologies such as PCI are sophist icated enough to respond to queries regarding their I RQs
(assigned by the BI OS when it walks the bus during boot) . PCI dr ivers can poke into earm arked regions in the
device's configurat ion space and figure out the I RQ. For older devices such as I ndust r ies Standard Architecture
(I SA) -based cards, the dr iver m ight have to leverage hardware-specific knowledge to probe and decipher the
I RQ.

Take a look at / proc/ interrupts for a list of act ive I RQs on your system .

Device Exam ple: Roller W heel

Now that you have learned the basics of interrupt handling, let 's im plem ent an interrupt handler for an exam ple
roller wheel device. Roller wheels can be found on som e phones and PDAs for easy m enu navigat ion and are
capable of three m ovem ents: clockwise rotat ion, ant iclockwise rotat ion, and key-press. Our im aginary roller
wheel is wired such that any of these m ovem ents interrupt the processor on I RQ 7. Three low order bits of
General Purpose I / O (GPI O) Port D of the processor are connected to the roller device. The waveform s
generated on these pins corresponding to different wheel m ovem ents are shown in Figure 4.3. The job of the
interrupt handler is to decipher the wheel m ovem ents by looking at the Port D GPI O data register.

Figure 4 .3 . Sam ple w ave form s generated by the roll er w heel.

The driver has to first request the I RQ and associate an interrupt handler with it :

#define ROLLER_IRQ 7
static irqreturn_t roller_interrupt(int irq, void *dev_id);

if (request_irq(ROLLER_IRQ, roller_interrupt, IRQF_DISABLED |
 IRQF_TRIGGER_RISING, "roll", NULL)) {
 printk(KERN_ERR "Roll: Can't register IRQ %d\n", ROLLER_IRQ);
 return -EIO;
}

Let 's look at the argum ents passed to request_irq() . The I RQ num ber is not queried or probed but hard-coded
to ROLLER_IRQ in this sim ple case as per the hardware connect ion. The second argum ent , roller_interrupt() ,
is the interrupt handler rout ine. I ts prototype specifies a return type of irqreturn_t , which can be IRQ_HANDLED
if the interrupt is handled successfully or IRQ_NONE if it isn't . The return value assum es m ore significance for I / O
technologies such as PCI , where m ult iple devices can share the sam e I RQ.

The IRQF_DISABLED flag specifies that this interrupt handler has to be t reated as a fast handler, so the kernel

has to disable interrupts while invoking the handler. IRQF_TRIGGER_RISING announces that the roller wheel
generates a r ising edge on the interrupt line when it wants to signal an interrupt . I n other words, the roller
wheel is an edge-sensit ive device. Som e devices are instead level-sensit ive and keep the interrupt line asserted
unt il the CPU services it . To flag an interrupt as level-sensit ive, use the IRQF_TRIGGER_HIGH flag. Other possible
values for this argum ent include IRQF_SAMPLE_RANDOM (used in the sect ion, "Pseudo Char Drivers" in Chapter 5 ,
"Character Drivers") and IRQF_SHARED (used to specify that this I RQ is shared am ong m ult iple devices) .

The next argum ent , "roll" , is used to ident ify this device in data generated by files such as / proc/ interrupts.
The final param eter, set to NULL in this case, is relevant only for shared interrupt handlers and is used to
ident ify each device sharing the I RQ line.

Start ing with the 2.6.19 kernel, there have been som e changes to the interrupt handler interface.
I nterrupt handlers used to take a third argum ent (struct pt_regs *) that contained a pointer to CPU
registers, but this has been rem oved start ing with the 2.6.19 kernel. Also, the IRQF_xxx fam ily of
interrupt flags replaced the SA_xxx fam ily. For exam ple, with earlier kernels, you had to use
SA_INTERRUPT rather than IRQF_DISABLED to m ark an interrupt handler as fast .

Driver init ializat ion is not a good place for request ing an I RQ because that can hog that valuable resource even
when the device is not in use. So, device dr ivers usually request the I RQ when the device is opened by an
applicat ion. Sim ilar ly, the I RQ is freed when the applicat ion closes the device and not while exit ing the dr iver
m odule. Freeing an I RQ is done as follows:

free_irq(int irq, void *dev_id);

List ing 4.1 shows the im plem entat ion of the roller interrupt handler. roller_interrupt() takes two
argum ents: the I RQ and the device ident ifier passed as the final argum ent to the associated request_irq() .
Look at Figure 4.3 side by side with this list ing.

List ing 4 .1 . The Roller I nterrupt Handler

Code View:
spinlock_t roller_lock = SPIN_LOCK_UNLOCKED;
static DECLARE_WAIT_QUEUE_HEAD(roller_poll);

static irqreturn_t
roller_interrupt(int irq, void *dev_id)
{
 int i, PA_t, PA_delta_t, movement = 0;

 /* Get the waveforms from bits 0, 1 and 2
 of Port D as shown in Figure 4.3 */
 PA_t = PORTD & 0x07;

 /* Wait until the state of the pins change.
 (Add some timeout to the loop) */
 for (i=0; (PA_t==PA_delta_t); i++){
 PA_delta_t = PORTD & 0x07;
 }

 movement = determine_movement(PA_t, PA_delta_t); /* See below */

 spin_lock(&roller_lock);

 /* Store the wheel movement in a buffer for
 later access by the read()/poll() entry points */
 store_movements(movement);

 spin_unlock(&roller_lock);

 /* Wake up the poll entry point that might have
 gone to sleep, waiting for a wheel movement */
 wake_up_interruptible(&roller_poll);

 return IRQ_HANDLED;
}
int
determine_movement(int PA_t, int PA_delta_t)
{
 switch (PA_t){
 case 0:
 switch (PA_delta_t){
 case 1:
 movement = ANTICLOCKWISE;
 break;
 case 2:
 movement = CLOCKWISE;
 break;
 case 4:
 movement = KEYPRESSED;
 break;
 }
 break;
 case 1:
 switch (PA_delta_t){
 case 3:
 movement = ANTICLOCKWISE;
 break;
 case 0:
 movement = CLOCKWISE;
 break;
 }
 break;
 case 2:
 switch (PA_delta_t){
 case 0:
 movement = ANTICLOCKWISE;
 break;
 case 3:
 movement = CLOCKWISE;
 break;
 }
 break;
 case 3:
 switch (PA_delta_t){
 case 2:
 movement = ANTICLOCKWISE;
 break;
 case 1:
 movement = CLOCKWISE;
 break;

 }
 case 4:
 movement = KEYPRESSED;
 break;
 }
}

Driver ent ry points such as read() and poll() operate in tandem with roller_interrupt() . For exam ple,
when the handler deciphers wheel m ovem ent , it wakes up any wait ing poll() threads that m ay have gone to
sleep in response to a select() system call issued by an applicat ion such as X Windows. Revisit List ing 4.1 and
im plem ent the com plete roller dr iver after learning the internals of character dr ivers in Chapter 5 .

List ing 7.3 in Chapter 7 , " I nput Drivers," takes advantage of the kernel's input interface to convert this roller
wheel into a roller m ouse.

Let 's end this sect ion by int roducing som e funct ions that enable and disable interrupts on a part icular I RQ.
enable_irq(ROLLER_IRQ) enables interrupt generat ion when the roller wheel m oves, while
disable_irq(ROLLER_IRQ) does the reverse. disable_irq_nosync(ROLLER_IRQ) disables roller interrupts but
does not wait for any current ly execut ing instance of roller_interrupt() to return. This nosync flavor of
disable_irq() is faster but can potent ially cause race condit ions. Use this only when you know that there can
be no races. An exam ple user of disable_irq_nosync() is dr ivers/ ide/ ide- io.c, which blocks interrupts during
init ializat ion, because som e system s have t rouble with that .

Soft irqs and Task lets

As discussed previously, interrupt handlers have two conflict ing requirem ents: They are responsible for the bulk
of device data processing, but they have to exit as fast as possible. To bail out of this situat ion, interrupt
handlers are designed in two parts: a hurr ied and harr ied top half that interacts with the hardware, and a
relaxed bot tom half that does m ost of the processing with all interrupts enabled. Unlike interrupts, bot tom
halves are synchronous because the kernel decides when to execute them . The following m echanism s are
available in the kernel to defer work to a bot tom half: soft irqs, tasklets, and work queues.

Soft irqs are the basic bot tom half m echanism and have st rong locking requirem ents. They are used only by a
few perform ance-sensit ive subsystem s such as the networking layer, SCSI layer, and kernel t im ers. Tasklets are
built on top of soft irqs and are easier to use. I t 's recom m ended to use tasklets unless you have crucial
scalabilit y or speed requirem ents. A pr im ary difference between a soft irq and a tasklet is that the form er is
reent rant whereas the lat ter isn't . Different instances of a soft irq can run sim ultaneously on different processors,
but that is not the case with tasklets.

To illust rate the usage of soft irqs and tasklets, assum e that the roller wheel in the previous exam ple has
inherent hardware problem s due to the presence of moving parts (say, the wheel gets stuck occasionally)
result ing in the generat ion of out -of-spec waveforms. A stuck wheel can cont inuously generate spurious
interrupts and potent ially freeze the system . To get around this problem , capture the wave st ream , run som e
analysis on it , and dynam ically switch from interrupt m ode to a polled m ode if the wheel looks stuck, and vice
versa if it 's unstuck. Capture the wave st ream from the interrupt handler and perform the analysis from a
bot tom half. List ing 4.2 im plem ents this using soft irqs, and List ing 4.3 uses tasklets. Both are sim plified variants
of List ing 4.1. This reduces the handler to two funct ions: roller_capture() that obtains a wave snippet from
GPI O Port D, and roller_analyze() that runs an algorithm ic analysis on the wave and switches to polled m ode
if required.

List ing 4 .2 . Using Soft irqs to Off load W ork from I n terrupt Handlers

Code View:
void __init
roller_init()
{
 /* ... */

 /* Open the softirq. Add an entry for ROLLER_SOFT_IRQ in
 the enum list in include/linux/interrupt.h */

 open_softirq(ROLLER_SOFT_IRQ, roller_analyze, NULL);
}

/* The bottom half */
void
roller_analyze()
{
 /* Analyze the waveforms and switch to polled mode if required */
}
/* The interrupt handler */
static irqreturn_t
roller_interrupt(int irq, void *dev_id)
{
 /* Capture the wave stream */
 roller_capture();

 /* Mark softirq as pending */
 raise_softirq(ROLLER_SOFT_IRQ);

 return IRQ_HANDLED;
}

To define a soft irq, you have to stat ically add an ent ry to include/ linux/ interrupt .h. You can't define one
dynam ically. raise_softirq() announces that the corresponding soft irq is pending execut ion. The kernel will
execute it at the next available opportunity. This can be during exit from an interrupt handler or via the
ksoft irqd kernel thread.

List ing 4 .3 . Using Task lets to Off load W ork from I n terrupt Handlers

Code View:
struct roller_device_struct { /* Device-specific structure */
 /* ... */
 struct tasklet_struct tsklt;
 /* ... */
}

void __init roller_init()
{
 struct roller_device_struct *dev_struct;
 /* ... */

 /* Initialize tasklet */
 tasklet_init(&dev_struct->tsklt, roller_analyze, dev);
}

/* The bottom half */
void
roller_analyze()
{
/* Analyze the waveforms and switch to
 polled mode if required */
}
/* The interrupt handler */
static irqreturn_t
roller_interrupt(int irq, void *dev_id)
{
 struct roller_device_struct *dev_struct;

 /* Capture the wave stream */
 roller_capture();

 /* Mark tasklet as pending */
 tasklet_schedule(&dev_struct->tsklt);

 return IRQ_HANDLED;
}

tasklet_init() dynam ically init ializes a tasklet . The funct ion does not allocate m em ory for a tasklet_struct ,
rather you have to pass the address of an allocated one. tasklet_schedule() announces that the
corresponding tasklet is pending execut ion. Like for interrupts, the kernel offers a bunch of funct ions to cont rol
the execut ion state of tasklets on system s having m ult iple processors:

tasklet_enable() enables tasklets.

tasklet_disable() disables tasklets and waits unt il any current ly execut ing tasklet instance has exited.

tasklet_disable_nosync() has sem ant ics sim ilar to disable_irq_nosync() . The funct ion does not wait
for act ive instances of the tasklet to finish execut ion.

You have seen the differences between interrupt handlers and bot tom halves, but there are a few sim ilar it ies,
too. I nterrupt handlers and tasklets are both not reent rant . And neither of them can go to sleep. Also, interrupt
handlers, tasklets, and soft irqs cannot be preem pted.

Work queues are a third way to defer work from interrupt handlers. They execute in process context and are
allowed to sleep, so they can use drowsy funct ions such as m utexes. We discussed work queues in the
preceding chapter when we looked at various kernel helper facilit ies. Table 4.1 com pares soft irqs, tasklets, and
work queues.

Table 4 .1 . Com par ing Soft irqs, Task lets, and W ork Q ueues

 Soft irqs Task lets W ork Queues

Execut ion
context

Deferred work runs in
interrupt context .

Deferred work runs in
interrupt context .

Deferred work runs in
process context .

Reent rancy Can run sim ultaneously
on different CPUs.

Cannot run
sim ultaneously on
different CPUs. Different
CPUs can run different
tasklets, however.

Can run sim ultaneously
on different CPUs.

Sleep
sem ant ics

Cannot go to sleep. Cannot go to sleep. May go to sleep.

Preem pt ion Cannot be
preem pted/ scheduled.

Cannot be
preem pted/ scheduled.

May be
preem pted/ scheduled.

Ease of use Not easy to use. Easy to use. Easy to use.

W hen to use I f deferred work will not
go to sleep and if you
have crucial scalabilit y
or speed requirem ents.

I f deferred work will not
go to sleep.

I f deferred work m ay go
to sleep.

There is an ongoing debate in LKML on the feasibilit y of get t ing r id of the tasklet interface. Tasklets
enjoy m ore pr ior ity than process context code, so they present latency problem s. Moreover, as you
learned, they are const rained not to sleep and to execute on the sam e CPU. I t 's being suggested that all
exist ing tasklets be converted to soft irqs or work queues on a case-by-case basis.

The –rt patch-set alluded to in Chapter 2 m oves interrupt handling to kernel threads to achieve wider
preem pt ion coverage.

The Linux Device Model

The new Linux device m odel int roduces C+ + - like abst ract ions that factor out com m onalit ies from device dr ivers
into bus and core layers. Let 's look at the different com ponents const itut ing the device m odel such as udev,
sysfs, kobjects, and device classes and their effects on key kernel subsystem s such as / dev node m anagem ent ,
hotplug, firm ware download, and m odule autoload. Udev is the best vantage point to view the benefits of the
device m odel, so let 's start from there.

Udev

Years ago when Linux was young, it was not fun to adm inister device nodes. All the needed nodes (which could
run into thousands) had to be stat ically created under the / dev directory. This problem , in fact , dated all the
way back to or iginal UNI X system s. With the advent of the 2.4 kernels cam e devfs, which int roduced dynam ic
device node creat ion. Devfs provided services to generate device nodes in an in-m em ory filesystem , but the
onus of nam ing the nodes st ill rested with device dr ivers. Device nam ing policy is adm inist rat ive and does not
m ix well with the kernel, however. The place for policy is in header files, kernel m odule param eters, or user
space. Udev arr ived on the scene to push device m anagem ent to user space.

Udev depends on the following to do its work:

Kernel sysfs support , which is an im portant part of the Linux device m odel. Sysfs is an in-m em ory
filesystem m ounted under / sys at boot t im e (look at / etc/ fstab for the specifier) . We will look at sysfs in
the next sect ion, but for now, take the corresponding sysfs file accesses for granted.

1 .

A set of user-space daem ons and ut ilit ies such as udevd and udevinfo.2 .

User-specified rules located in the / etc/ udev/ rules.d/ directory. You m ay fram e rules to get a consistent
view of your devices.

3 .

To understand how to use udev, let 's look at an exam ple. Assum e that you have a USB DVD drive and a USB
CD-RW drive. Depending on the order in which you hotplug these devices, one of them is assigned the nam e
/ dev/ sr0, and the other gets the nam e / dev/ sr1. During pre-udev days, you had to figure out the associated
nam es before you could use the devices. But with udev, you can consistent ly view the DVD (as say,
/ dev/ usbdvd) and the CD-RW (as say, / dev/ usbcdrw) irrespect ive of the order in which they are plugged in or
out .

First , pull product at t r ibutes from corresponding files in sysfs. Assum e that the (Targus) DVD drive has been
assigned the device node / dev/ sr0 and that the (Addonics) CD-RW drive has been given the nam e / dev/ sr1. Use
udevinfo to collect device inform at ion:

Code View:
bash> udevinfo -a -p /sys/block/sr0

...
looking at the device chain at
'/sys/devices/pci0000:00/0000:00:1d.7/usb1/1-4':
 BUS=»usb»
 ID=»1-4»
 SYSFS{bConfigurationValue}=»1»
 ...

 SYSFS{idProduct}=»0701»
 SYSFS{idVendor}=»05e3»
 SYSFS{manufacturer}=»Genesyslogic»
 SYSFS{maxchild}=»0»
 SYSFS{product}=»USB Mass Storage Device»
 ...

bash> udevinfo -a -p /sys/block/sr1

 ...
 looking at the device chain at
 '/sys/devices/pci0000:00/0000:00:1d.7/usb1/1-3':
 BUS=»usb»
 ID=»1-3»
 SYSFS{bConfigurationValue}=»2»
 ...
 SYSFS{idProduct}=»0302»
 SYSFS{idVendor}=»0dbf»
 SYSFS{manufacturer}=»Addonics»
 SYSFS{maxchild}=»0»
 SYSFS{product}=»USB to IDE Cable»
 ...

Next , let 's use the product inform at ion gleaned to ident ify the devices and add udev nam ing rules. Create a file
called / etc/ udev/ rules.d/ 40-cdvd.rules and add the following rules to it :

BUS="usb", SYSFS{idProduct}="0701", SYSFS{idVendor}="05e3",
KERNEL="sr[0-9]*", NAME="%k", SYMLINK="usbdvd"

BUS="usb", SYSFS{idProduct}="0302", SYSFS{idVendor}="0dbf",
KERNEL="sr[0-9]*", NAME="%k", SYMLINK="usbcdrw"

The first rule tells udev that whenever it finds a USB device with a product I D of 0x0701, vendor I D of 0x05e3,
and a nam e start ing with sr, it should create a node of the sam e nam e under / dev and produce a sym bolic link
nam ed usbdvd to the created node. Sim ilar ly, the second rule orders creat ion of a sym bolic link nam ed usbcdrw
for the CD-RW drive.

To test for syntax errors in your rules, run udevtest on / sys/ block/ sr* . To turn on verbose m essages in
/ var/ log/ m essages, set udev_log to "yes" in / etc/ udev/ udev.conf. To repopulate the / dev directory with newly
added rules on- the- fly, restart udev using udevstart . When this is done, your DVD drive consistent ly appears to
the system as / dev/ usbdvd, and your CD-RW drive always appears as / dev/ usbcdrw. You can determ inist ically
m ount them from shell scr ipts using com m ands such as these:

mount /dev/usbdvd /mnt/dvd

Consistent nam ing of device nodes (and network interfaces) is not the sole capabilit y of udev. I t has
m etam orphed into the Linux hotplug m anager, too. Udev is also in charge of autom at ically loading m odules on
dem and and downloading m icrocode onto devices that need them . But before digging into those capabilit ies,
let 's obtain a basic understanding of the innards of the device m odel.

Sysfs, Kobjects, and Device Classes

Sysfs, kobjects, and device classes are the building blocks of the device m odel but are publicity shy and prefer
to rem ain behind the scenes. They are m ost ly in the usage dom ain of bus and core im plem entat ions, and hide
inside API s that provide services to device dr ivers.

Sysfs is the user-space m anifestat ion of the kernel's st ructured device m odel. I t 's sim ilar to procfs in that both
are in-m em ory filesystem s containing inform at ion about kernel data st ructures. Whereas procfs is a generic
window into kernel internals, sysfs is specific to the device m odel. Sysfs is, hence, not a replacem ent for procfs.
I nform at ion such as process descriptors and sysct l param eters belong to procfs and not sysfs. As will be
apparent soon, udev depends on sysfs for m ost of its extended funct ions.

Kobjects int roduce an encapsulat ion of com m on object propert ies such as usage reference counts. They are
usually em bedded within larger st ructures. The following are the m ain fields of a kobject , which is defined in
include/ linux/ kobject .h:

A kref object that perform s reference count m anagement . The kref_init() interface init ializes a kref,
kref_get() increm ents the reference count associated with the kref, and kref_put() decrem ents the
reference count and frees the object if there are no rem aining references. The URB st ructure (explained in
Chapter 11, "Universal Serial Bus") , for exam ple, contains a kref to t rack the num ber of references to it . [2]

[2] The usb_alloc_urb() interface calls kref_init() , usb_submit_urb() invokes kref_get() , and usb_free_urb() calls
kref_put() .

1 .

A pointer to a kset , which is an object set to which the kobject belongs.2 .

A kobj_type, which is an object type that describes the kobject .3 .

Kobjects are intertwined with sysfs. Every kobject instant iated within the kernel has a sysfs representat ion.

The concept of device classes is another feature of the device m odel and is an interface you're m ore likely to
use in a dr iver. The class interface abst racts the idea that each device falls under a broader class (or category)
of devices. A USB m ouse, a PS/ 2 keyboard, and a joyst ick all fall under the input class and own ent r ies under
/ sys/ class/ input / .

Figure 4.4 shows the sysfs hierarchy on a laptop that has an external USB m ouse connected to it . The top- level
bus, class, and device director ies are expanded to show that sysfs provides a view of the USB m ouse based on
its device type as well as its physical connect ion. The m ouse is an input class device but is physically a USB
device answering to two endpoint addresses, a cont rol endpoint ep00, and an interrupt endpoint , ep81. The USB
port in quest ion belongs to the USB host cont roller on bus 2, and the USB host cont roller itself is br idged to the
CPU via the PCI bus. I f these details are not m aking m uch sense at this point , don't worry; rewind to this
sect ion after reading the chapters that teach input dr ivers (Chapter 7) , PCI dr ivers (Chapter 10, "Peripheral
Com ponent I nterconnect ") , and USB drivers (Chapter 11) .

Figure 4 .4 . Sysfs hierarchy of a USB m ouse.

Code View:
[/sys]
 +[block]
 -[bus]—[usb]—[devices]—[usb2]—[2-2]—[2-2:1.0]-[usbendpoint:usbdev2.2-ep81]
 -[class]-[input]—[mouse2]—[device]—[bus]—[usbendpoint:usbdev2.2-ep81]
 -[usb_device]—[usbdev2.2]—[device]—[bus]
 -[usb_endpoint]—[usbdev2.2-ep00]—[device]
 —[usbdev2.2-ep81]—[device]
 -[devices]—[pci0000:00]—[0000:00:1d:1]—[usb2]—[2-2]—[2-2:1.0]
 +[firmware]
 +[fs]
 +[kernel]
 +[module]
 +[power]

Browse through / sys looking for ent r ies that associate with another device (for exam ple, your network card) to
get a bet ter feel of its hierarchical organizat ion. The sect ion "Addressing and I dent ificat ion" in Chapter 10
illust rates how sysfs m irrors the physical connect ion of a CardBus Ethernet -Modem card on a laptop.

The class program m ing interface is built on top of kobjects and sysfs, so it 's a good place to start digging to
understand the end- to-end interact ions between the com ponents of the device m odel. Let 's turn to the RTC
driver for an exam ple. The RTC driver (dr ivers/ char/ r tc.c) is a m iscellaneous (or "m isc") dr iver. We discuss m isc
drivers in detail when we look at character device dr ivers in Chapter 5 .

I nsert the RTC driver m odule and look at the nodes created under / sys and / dev:

bash> modprobe rtc

bash> ls -lR /sys/class/misc

drwr-xr-x 2 root root 0 Jan 15 01:23 rtc
/sys/class/misc/rtc:
total 0
-r--r--r-- 1 root root 4096 Jan 15 01:23 dev
--w------- 1 root root 4096 Jan 15 01:23 uevent
bash> ls -l /dev/rtc

crw-r--r-- 1 root root 10, 135 Jan 15 01:23 /dev/rtc

/ sys/ class/ m isc/ rtc/ dev contains the m ajor and m inor num bers (discussed in the next chapter) assigned to this
device, / sys/ class/ m isc/ rtc/ uevent is used for coldplugging (discussed in the next sect ion) , and / dev/ rtc is used
by applicat ions to access the RTC driver.

Let 's understand the code flow through the device model. Misc dr ivers ut ilize the services of misc_register()
during init ializat ion, which looks like this if you peel off som e code:

/* ... */
dev = MKDEV(MISC_MAJOR, misc->minor);

misc->class = class_device_create(misc_class, NULL, dev,
 misc->dev,
 "%s", misc->name);
if (IS_ERR(misc->class)) {
 err = PTR_ERR(misc->class);
 goto out;

}
/* ... */

Figure 4.5 cont inues to peel off m ore layers to get to the bot tom of the device m odeling. I t illust rates the
t ransit ions that r ipple through classes, kobjects, sysfs, and udev, which result in the generat ion of the / sys and
/ dev files listed previously.

Figure 4 .5 . Tying the pieces of the device m odel.

[View full size im age]

Look at the parallel port LED driver (List ing 5.6 in the sect ion "Talking to the Parallel Port " in Chapter 5) and the
vir tual m ouse input dr iver (List ing 7.2 in the sect ion "Device Exam ple: Vir tual Mouse" in Chapter 7) for
exam ples on creat ing device cont rol files inside sysfs.

Another abst ract ion that is part of the device m odel is the bus-device-driver program m ing interface. Kernel
device support is cleanly st ructured into buses, devices, and drivers. This renders the individual dr iver
im plem entat ions sim pler and m ore general. Bus im plem entat ions can, for exam ple, search for dr ivers that can
handle a part icular device.

Consider the kernel's I 2C subsystem (explored in Chapter 8 , "The I nter- I ntegrated Circuit Protocol") . The I 2C
layer consists of a core infrast ructure, device dr ivers for bus adapters, and drivers for client devices. The I2C

core layer registers each detected I 2C bus adapter using bus_register() . When an I 2C client device (say, an
Elect r ically Erasable Program m able Read-Only Mem ory [EEPROM] chip) is probed and detected, its existence is
recorded via device_register() . Finally, the I 2C EEPROM client dr iver registers itself using
driver_register() . These regist rat ions are perform ed indirect ly using service funct ions offered by the I 2C
core.

bus_register() adds a corresponding ent ry to / sys/ bus/ , while device_register() adds ent r ies under
/ sys/ devices/ . struct bus_type , struct device , and struct device_driver are the m ain data st ructures
used respect ively by buses, devices, and drivers. Take a peek inside include/ linux/ device.h for their definit ions.

Hotplug and Coldplug

Devices connected to a running system on- the- fly are said to be hotplugged, whereas those connected prior to
system boot are considered to be coldplugged. Earlier, the kernel used to not ify user space about hotplug
events by invoking a helper program registered via the / proc filesystem . But when current kernels detect
hotplug, they dispatch uevents to user space via net link sockets. Net link sockets are an efficient m echanism to
com m unicate between kernel space and user space using socket API s. At the user-space end, udevd, the
daem on that m anages device node creat ion and rem oval, receives the uevents and m anages hotplug.

To see how hotplug handling has evolved recent ly, let 's consider progressive levels of udev
running different versions of the 2.6 kernel:

With a udev-039 package and a 2.6.9 kernel, when the kernel detects a hotplug event , it
invokes the user space helper registered with / proc/ sys/ kernel/ hotplug. This defaults to
/ sbin/ hotplug, which receives at t r ibutes of the hotplugged device in its environm ent .
/ sbin/ hotplug looks inside the hotplug configurat ion directory (usually
/ etc/ hotplug.d/ default /) and runs, for exam ple, / etc/ hotplug.d/ default / 10-udev.hotplug, after
execut ing other scr ipts under / etc/ hotplug/ .

bash> ls -l /etc/hotplug.d/default/

...
lrwcrwxrwx 1 root root 14 May 11 2005 10-udev.hotplug -> /sbin/udevsend
...

When / sbin/ udevsend thus gets executed, it passes the hotplugged device inform at ion to
udevd.

1 .

With udev-058 and a 2.6.11 kernel, the story changes som ewhat . The udevsend ut ilit y
replaces / sbin/ hotplug:

bash> cat /proc/sys/kernel/hotplug

/sbin/udevsend

2 .

With the latest levels of udev and the kernel, udevd assum es full responsibilit y of m anaging
hotplug without depending on udevsend. I t now pulls hotplug events direct ly from the kernel
via net link sockets (see Figure 4.4) . / proc/ sys/ kernel/ hotplug contains nothing:

bash> cat /proc/sys/kernel/hotplug

bash>

3 .

Udev also handles coldplug. Because udev is part of user space and is started only after the kernel boots, a
special m echanism is needed to em ulate hotplug events over coldplugged devices. At boot t im e, the kernel
creates a file nam ed uevent under sysfs for all devices and em its coldplug events to those files. When udev
starts, it reads all the uevent files from / sys and generates hotplug uevents for each coldplugged device.

Microcode Dow nload

You have to feed m icrocode to som e devices before they can get ready for act ion. The m icrocode gets executed
by an on-card m icrocont roller. Device dr ivers used to store m icrocode inside stat ic arrays in header files. But
this has becom e untenable because m icrocode is usually dist r ibuted as proprietary binary im ages by device
vendors, and that doesn't m ix hom ogeneously with the GPL-ed kernel. Another reason against m ixing firmware
with kernel sources is that they run on different release t im e lines. The solut ion apparent ly is to separately
m aintain m icrocode in user space and pass it down to the kernel when required. Sysfs and udev provide an
infrast ructure to achieve this.

Let 's take the exam ple of the I ntel PRO/ Wireless 2100 WiFi m ini PCI card found on several laptops. The card is
built around a m icrocont roller that needs to execute externally supplied m icrocode for norm al operat ion. Let 's
walk through the steps that the Linux dr iver follows to download m icrocode to the card. Assum e that you have
obtained the required m icrocode im age (ipw2100-1.3.fw) from ht tp: / / ipw2100.sourceforge.net / firm ware.php
and saved it under / lib/ firm ware/ on your system and that you have inserted the dr iver m odule ipw2100.ko:

1 . During init ializat ion, the dr iver invokes the following:

request_firmware(..,"ipw2100-1.3.fw",..);

2 . This dispatches a hotplug uevent to user space, along with the ident ity of the requested m icrocode im age.

3 . Udevd receives the uevent and responds by invoking / sbin/ firm ware_helper. For this, it uses a rule sim ilar
to the following from a file under / etc/ udev/ rules.d/ :

ACTION=="add", SUBSYSTEM=="firmware", RUN="/sbin/firmware_helper"

4 . / sbin/ firm ware_helper looks inside / lib/ firm ware/ and locates the requested m icrocode im age ipw2100-
1.3.fw. I t dum ps the im age to / sys/ class/ 0000: 02: 02.0/ data. (0000: 02: 02 is the PCI bus: device: funct ion
ident ifier of the WiFi card in this case.)

5 . The driver receives the m icrocode and downloads it onto the device. When done, it calls
release_firmware() to free the corresponding data st ructures.

6 . The driver goes through the rest of the init ializat ions and the WiFi adapter beacons.

Module Autoload

Autom at ically loading kernel m odules on dem and is a convenient feature that Linux supports. To understand
how the kernel em its a "m odule fault " and how udev handles it , let 's insert a Xircom CardBus Ethernet adapter
into a laptop's PC Card slot :

http://ipw2100.sourceforge.net/firmware.php

1 . During com pile t im e, the ident ity of supported devices is generated as part of the dr iver m odule object .
Take a peek at the dr iver that supports the Xircom CardBus Ethernet com bo card
(dr ivers/ net / tulip/ xircom _cb.c) and find this snippet :

static struct pci_device_id xircom_pci_table[] = {
 {0x115D, 0x0003, PCI_ANY_ID, PCI_ANY_ID,},
 {0,},
};

/* Mark the device table */
MODULE_DEVICE_TABLE(pci, xircom_pci_table);

This declares that the dr iver can support any card having a PCI vendor I D of 0x115D and a PCI device I D of
0x0003 (m ore on this in Chapter 10) . When you install the dr iver m odule, the depm od ut ilit y looks inside
the m odule im age and deciphers the I Ds present in the device table. I t then adds the following ent ry to
/ lib/ m odules/ kernel-version/ m odules.alias:

alias pci:v0000115Dd00000003sv*sd*bc*sc*i* xircom_cb

where v stands for VendorI D, d for DeviceI D, sv for subvendorI D, and * for wildcard m atch.

2 . When you hotplug the Xircom card into a CardBus slot , the kernel generates a uevent that announces the
ident ity of the newly inserted device. You m ay look at the generated uevent using udevm onitor:

bash> udevmonitor --env
 ...
 MODALIAS=pci:v0000115Dd00000003sv0000115Dsd00001181bc02sc00i00
 ...

3 . Udevd receives the uevent via a net link socket and invokes m odprobe with the above MODALI AS that the
kernel passed up to it :

modprobe pci:v0000115Dd00000003sv0000115Dsd00001181bc02sc00i00

4 . Modprobe finds the m atching ent ry in / lib/ m odules/ kernel-version/ m odules.alias created during Step 1,
and proceeds to insert xircom _cb:

bash> lsmod
Module Size Used by
xircom_cb 10433 0
...

The card is now ready to surf.

You m ay want to revisit this sect ion after reading Chapter 10.

Udev on Em bedded Devices

One school of thought deprecates the use of udev in favor of stat ically created device nodes on
em bedded devices for the following reasons:

Udev creates / dev nodes during each reboot , com pared to stat ic nodes that are created only
once during software install. I f your em bedded device uses flash storage, flash pages that
hold / dev nodes suffer an erase-write cycle on each boot in the case of the form er, and this
reduces flash life span. (Flash m em ory is discussed in detail in Chapter 17, "Mem ory
Technology Devices.") You do have the opt ion of m ount ing / dev over a RAM-based
filesystem , however.

Udev cont r ibutes to increased boot t im e.

Udev features such as dynam ic creat ion of / dev nodes and autoloading of m odules create a
degree of indeterm inism that som e solut ion designers prefer to avoid on special-purpose
em bedded devices, especially ones that do not interact with the outside world via
hotpluggable buses. According to this point of view, stat ic node creat ion and boot - t im e
insert ion of any m odules provide m ore cont rol over the system and m ake it easier to test .

Mem ory Barr iers

Many processors and com pilers reorder inst ruct ions to achieve opt im al execut ion speeds. The reordering is done
such that the new inst ruct ion st ream is sem ant ically equivalent to the or iginal one. However, if you are, for
exam ple, writ ing to m em ory m apped registers on an I / O device, inst ruct ion reordering can generate unexpected
side effects. To prevent the processor from reordering inst ruct ions, you can insert a barr ier in your code. The
wmb() funct ion inserts a road block that prevents writes from m oving through it , rmb() provides a read
barr icade that disallows reads from crossing it , and mb() results in a read-write barr ier.

I n addit ion to the CPU- to-hardware interact ions referred to previously, m em ory barr iers are also relevant for
CPU- to-CPU interact ions on SMP system s. I f your CPU's data cache is operat ing in write-back m ode (in which
data is not copied from cache to m em ory unt il it 's absolutely necessary) , you m ight want to stall the inst ruct ion
st ream unt il the cache- to-m em ory queue is drained. This is relevant , for exam ple, when you encounter
inst ruct ions that acquire or release locks. Barr iers are used in this scenario to obtain a consistent percept ion
across CPUs.

We revisit m em ory barr iers when we discuss PCI dr ivers in Chapter 10 and flash m ap drivers in Chapter 17. I n
the m eanwhile, stop by Docum entat ion/ m em ory-barr iers.txt for an explanat ion of different kinds of m em ory
barr iers.

Pow er Managem ent

Power m anagem ent is cr it ical on devices running on bat tery, such as laptops and handhelds. Linux dr ivers need
to be aware of power states and have to t ransit ion across states in response to events such as standby, sleep,
and low bat tery. Drivers ut ilize power-saving features supported by the underlying hardware when they switch
to m odes that consum e less power. For exam ple, the storage driver spins down the disk, whereas the video
driver blanks the display.

Power-aware code in device dr ivers is only one piece of the overall power m anagem ent fram ework. Power
m anagem ent also features part icipat ion from user space daem ons, ut ilit ies, configurat ion files, and boot
firm ware. Two popular power m anagem ent m echanism s are APM (discussed in the sect ion, "Protected Mode
Calls" in Appendix B, "Linux and the BI OS") and Advanced Configurat ion and Power I nterface (ACPI) . APM is
get t ing obsolete, and ACPI has em erged as the de facto power m anagem ent st rategy on Linux system s. ACPI is
further discussed in Chapter 20, "More Devices and Drivers."

Look ing at the Sources

The core interrupt handling code is generic and is in the kernel/ irq/ directory. The architecture-specific port ions
can be found in arch/ your-arch/ kernel/ irq.c. The funct ion do_IRQ() defined in this file is a good place to start
your journey into the kernel interrupt handling m echanism .

The kernel soft irq and tasklet im plem entat ions live in kernel/ soft irq.c. This file also contains addit ional funct ions
that offer m ore fine-grained cont rol over soft irqs and tasklets. Look at include/ linux/ interrupt .h for soft irq vector
enum erat ions and prototypes required to im plem ent your interrupt handler. For a real- life exam ple of writ ing
interrupt handlers and bot tom halves, start from the handler that is part of dr ivers/ net / lib8390.c and follow the
t rail into the networking stack.

The kobject im plem entat ion and related program m ing interfaces live in lib/ kobject .c and
include/ linux/ kobject .h. Look at dr ivers/ base/ sys.c for the sysfs im plem entat ion. You will find device class API s
in dr ivers/ base/ class.c. Dispatching hotplug uevents via net link sockets is done by lib/ kobject_uevent .c. You
m ay download udev sources and docum entat ion from www.kernel.org/ pub/ linux/ ut ils/ kernel/ hotplug/ udev.htm l.

For a fuller understanding of how APM is im plem ented on x86 Linux, look at arch/ x86/ kernel/ apm _32.c,
include/ linux/ apm _bios.h, and include/ asm -x86/ m ach-default / apm .h in the kernel t ree. I f you are curious to
know how APM is im plem ented on BI OS- less architectures such as ARM, look at include/ linux/ apm -em ulat ion.h
and its users. The kernel's ACPI im plem entat ion lives in dr ivers/ acpi/ .

Table 4.2 contains a sum m ary of the m ain data st ructures used in this chapter and the locat ion of their
definit ions in the source t ree. Table 4.3 lists the m ain kernel program m ing interfaces that you used in this
chapter along with the locat ion of their definit ions.

Table 4 .2 . Sum m ary of Data St ructures

Data St ructure Locat ion Descr ipt ion

tasklet_struct include/ linux/ interrupt .h Manages a tasklet , which is a m ethod to
im plem ent bot tom halves

kobject include/ linux/ kobject .h Encapsulates com m on propert ies of a
kernel object

kset include/ linux/ kobject .h An object set to which a kobject belongs

kobj_type include/ linux/ kobject .h An object type that describes a kobject

class include/ linux/ device.h Abst racts the idea that a dr iver falls
under a broader category

bus device
device_driver

include/ linux/ device.h St ructures that form the pillars under the
Linux device m odel

Table 4 .3 . Sum m ary of Kernel Program m ing I nter faces

Kernel I nter face Locat ion Descr ipt ion

request_irq() kernel/ irq/ m anage.c Requests an I RQ and associates an
interrupt handler with it

free_irq() kernel/ irq/ m anage.c Frees an I RQ

Kernel I nter face Locat ion Descr ipt ion

disable_irq() kernel/ irq/ m anage.c Disables the interrupt associated with
a supplied I RQ

disable_irq_nosync() kernel/ irq/ m anage.c Disables the interrupt associated with
a supplied I RQ without wait ing for
any current ly execut ing instances of
the interrupt handler to return

enable_irq() kernel/ irq/ m anage.c Re-enables the interrupt that has
been disabled using disable_irq()
or disable_irq_nosync()

open_softirq() kernel/ soft irq.c Opens a soft irq

raise_softirq() kernel/ soft irq.c Marks the soft irq as pending
execut ion

tasklet_init() kernel/ soft irq.c Dynam ically init ializes a tasklet

tasklet_schedule() include/ linux/ interrupt .hkernel/ soft irq.c Marks a tasklet as pending execut ion

tasklet_enable() include/ linux/ interrupt .h Enables a tasklet

tasklet_disable() include/ linux/ interrupt .h Disables a tasklet

tasklet_disable_nosync() include/ linux/ interrupt .h Disables a tasklet without wait ing for
act ive instances to finish execut ion

class_device_register() drivers/ base/ class.c Fam ily of funct ions in the Linux
device m odel that create/ dest roy a
class, device class, and associated
kobjects and sysfs files

kobject_add() lib/ kobject .c

sysfs_create_dir() lib/ kobject_uevent .c

class_device_create() fs/ sysfs/ dir .c

class_device_destroy()
class_create()
class_destroy()
class_device_create_file()
sysfs_create_file()
class_device_add_attrs()
kobject_uevent()

fs/ sysfs/ file.c

This finishes our explorat ion of device dr iver concepts. You m ight want to dip back into this chapter while
developing your dr iver.

Chapter 5 . Character Dr ivers

I n This Chapter

Char Driver Basics
120

Device Exam ple: System CMOS
121

Sensing Data Availabilit y
139

Talking to the Parallel Port
145

RTC Subsystem
156

Pseudo Char Drivers
157

Misc Drivers
160

Character Caveats
166

Looking at the Sources
167

You are now all set to m ake a foray into writ ing sim ple, albeit real-world, device dr ivers. I n this
chapter, let 's look at the internals of a character (or char) device dr iver, which is kernel code that
sequent ially accesses data from a device. Char dr ivers can capture raw data from several types of
devices: pr inters, m ice, watchdogs, tapes, m em ory, RTCs, and so on. They are however, not
suitable for m anaging data residing on block devices capable of random access such as hard disks,
floppies, or com pact discs.

Char Dr iver Basics

Let 's start with a top-down view. To access a char device, a system user invokes a suitable applicat ion program .
The applicat ion is responsible for talking to the device, but to do that , it needs to elicit the ident ity of a suitable
driver. The contact details of the dr iver are exported to user space via the / dev directory:

bash> ls -l /dev

total 0
crw------- 1 root root 5, 1 Jul 16 10:02 console
...
lrwxrwxrwx 1 root root 3 Oct 6 10:02 cdrom -> hdc
...
brw-rw---- 1 root disk 3, 0 Oct 6 2007 hda
brw-rw---- 1 root disk 3, 1 Oct 6 2007 hda1
...
crw------- 1 root tty 4, 1 Oct 6 10:20 tty1
crw------- 1 root tty 4, 2 Oct 6 10:02 tty2

The first character in each line of the ls output denotes the dr iver type: c signifies a char dr iver, b stands for a
block dr iver, and l denotes a sym bolic link. The num bers in the fifth colum n are called m aj or num bers, and
those in the sixth colum n are m inor num bers. A m ajor num ber broadly ident ifies the dr iver, whereas a m inor
num ber pinpoints the exact device serviced by the dr iver. For exam ple, the I DE block storage driver / dev/ hda
owns a m ajor num ber of 3 and is in charge of handling the hard disk on your system , but when you further
specify a m inor num ber of 1 (/ dev/ hda1) , that narrows it down to the first disk part it ion. Char and block dr ivers
occupy different spaces, so you can have sam e m ajor num ber assigned to a char as well as a block dr iver.

Let 's take a step further and peek inside a char dr iver. From a code- flow perspect ive, char dr ivers have the
following:

An init ializat ion (or init()) rout ine that is responsible for init ializing the device and seam lessly tying the
driver to the rest of the kernel via regist rat ion funct ions.

A set of ent ry points (or m ethods) such as open() , read() , ioctl() , llseek() , and write() , which
direct ly correspond to I / O system calls invoked by user applicat ions over the associated / dev node.

I nterrupt rout ines, bot tom halves, t im er handlers, helper kernel threads, and other support infrast ructure.
These are largely t ransparent to user applicat ions.

From a data- flow perspect ive, char dr ivers own the following key data st ructures:

A per-device st ructure. This is the inform at ion repository around which the dr iver revolves.1 .

struct cdev , a kernel abst ract ion for character dr ivers. This st ructure is usually em bedded inside the per-
device st ructure referred previously.

2 .

struct file_operations , which contains the addresses of all dr iver ent ry points.3 .

struct file , which contains inform at ion about the associated / dev node.4 .

Chapter 5 . Character Dr ivers

I n This Chapter

Char Driver Basics
120

Device Exam ple: System CMOS
121

Sensing Data Availabilit y
139

Talking to the Parallel Port
145

RTC Subsystem
156

Pseudo Char Drivers
157

Misc Drivers
160

Character Caveats
166

Looking at the Sources
167

You are now all set to m ake a foray into writ ing sim ple, albeit real-world, device dr ivers. I n this
chapter, let 's look at the internals of a character (or char) device dr iver, which is kernel code that
sequent ially accesses data from a device. Char dr ivers can capture raw data from several types of
devices: pr inters, m ice, watchdogs, tapes, m em ory, RTCs, and so on. They are however, not
suitable for m anaging data residing on block devices capable of random access such as hard disks,
floppies, or com pact discs.

Char Dr iver Basics

Let 's start with a top-down view. To access a char device, a system user invokes a suitable applicat ion program .
The applicat ion is responsible for talking to the device, but to do that , it needs to elicit the ident ity of a suitable
driver. The contact details of the dr iver are exported to user space via the / dev directory:

bash> ls -l /dev

total 0
crw------- 1 root root 5, 1 Jul 16 10:02 console
...
lrwxrwxrwx 1 root root 3 Oct 6 10:02 cdrom -> hdc
...
brw-rw---- 1 root disk 3, 0 Oct 6 2007 hda
brw-rw---- 1 root disk 3, 1 Oct 6 2007 hda1
...
crw------- 1 root tty 4, 1 Oct 6 10:20 tty1
crw------- 1 root tty 4, 2 Oct 6 10:02 tty2

The first character in each line of the ls output denotes the dr iver type: c signifies a char dr iver, b stands for a
block dr iver, and l denotes a sym bolic link. The num bers in the fifth colum n are called m aj or num bers, and
those in the sixth colum n are m inor num bers. A m ajor num ber broadly ident ifies the dr iver, whereas a m inor
num ber pinpoints the exact device serviced by the dr iver. For exam ple, the I DE block storage driver / dev/ hda
owns a m ajor num ber of 3 and is in charge of handling the hard disk on your system , but when you further
specify a m inor num ber of 1 (/ dev/ hda1) , that narrows it down to the first disk part it ion. Char and block dr ivers
occupy different spaces, so you can have sam e m ajor num ber assigned to a char as well as a block dr iver.

Let 's take a step further and peek inside a char dr iver. From a code- flow perspect ive, char dr ivers have the
following:

An init ializat ion (or init()) rout ine that is responsible for init ializing the device and seam lessly tying the
driver to the rest of the kernel via regist rat ion funct ions.

A set of ent ry points (or m ethods) such as open() , read() , ioctl() , llseek() , and write() , which
direct ly correspond to I / O system calls invoked by user applicat ions over the associated / dev node.

I nterrupt rout ines, bot tom halves, t im er handlers, helper kernel threads, and other support infrast ructure.
These are largely t ransparent to user applicat ions.

From a data- flow perspect ive, char dr ivers own the following key data st ructures:

A per-device st ructure. This is the inform at ion repository around which the dr iver revolves.1 .

struct cdev , a kernel abst ract ion for character dr ivers. This st ructure is usually em bedded inside the per-
device st ructure referred previously.

2 .

struct file_operations , which contains the addresses of all dr iver ent ry points.3 .

struct file , which contains inform at ion about the associated / dev node.4 .

Device Exam ple: System CMOS

Let 's im plem ent a char dr iver to access the system CMOS. The BI OS on PC-com pat ible hardware (see Figure
5.1) uses the CMOS to store inform at ion such as startup opt ions, boot order, and the system date, which you
can configure via the BI OS setup m enu. Our exam ple CMOS driver lets you access the two PC CMOS banks as
though they are regular files. Applicat ions can operate on / dev/ cm os/ 0 and / dev/ cm os/ 1, and use I / O system
calls to access data from the two banks. Because the BI OS assigns sem ant ics to the CMOS area at bit - level
granular ity, the dr iver is capable of bit - level access. So, a read() obtains the specified num ber of bits and
advances the internal file pointer by the num ber of bits read.

Figure 5 .1 . CMOS on a PC- com pat ible system .

The CMOS is accessed via two I / O addresses, an index register and a data register, as shown in Table 5.1. You
have to specify the desired CMOS m em ory offset in the index register and exchange inform at ion via the data
register.

Table 5 .1 . Register Layout on the CMOS

Register Nam e Descr ipt ion

CMOS_BANK0_INDEX_PORT Specify the desired CMOS bank 0 offset in this register.

CMOS_BANK0_DATA_PORT Read/ write data from / to the address specified in
CMOS_BANK0_INDEX_PORT.

CMOS_BANK1_INDEX_PORT Specify the desired CMOS bank 1 offset in this register.

CMOS_BANK1_DATA_PORT Read/ write data from / to the address specified in
CMOS_BANK1_INDEX_PORT.

Because each driver m ethod has a system call counterpart that applicat ions use, we will look at the system calls
and the m atching dr iver m ethods in tandem .

Driver I n it ia lizat ion

The driver init() m ethod is the bedrock of the regist rat ion m echanism . I t 's responsible for the following:

Request ing allocat ion of device m ajor num bers.

Allocat ing m em ory for the per-device st ructure.

Connect ing the ent ry points (open() , read() , and so on) with the char dr iver 's cdev abst ract ion.

Associat ing the device m ajor num ber with the dr iver 's cdev .

Creat ing nodes under / dev and / sys. As discussed in Chapter 4 , "Laying the Groundwork," / dev
m anagem ent has m eandered from stat ic device nodes in the 2.2 kernels, to dynam ic nam es in 2.4, and
further to a user-space policy daem on (udevd) in 2.6.

I nit ializing the hardware. This is not relevant for our sim ple CMOS.

List ing 5.1 im plem ents the CMOS driver 's init() m ethod.

List ing 5 .1 . CMOS Dr iver I n it ia lizat ion

Code View:
#include <linux/fs.h>

/* Per-device (per-bank) structure */
struct cmos_dev {
 unsigned short current_pointer; /* Current pointer within the
 bank */
 unsigned int size; /* Size of the bank */
 int bank_number; /* CMOS bank number */
 struct cdev cdev; /* The cdev structure */
 char name[10]; /* Name of I/O region */
 /* ... */ /* Mutexes, spinlocks, wait
 queues, .. */
} *cmos_devp;

/* File operations structure. Defined in linux/fs.h */

static struct file_operations cmos_fops = {
 .owner = THIS_MODULE, /* Owner */
 .open = cmos_open, /* Open method */
 .release = cmos_release, /* Release method */
 .read = cmos_read, /* Read method */
 .write = cmos_write, /* Write method */
 .llseek = cmos_llseek, /* Seek method */
 .ioctl = cmos_ioctl, /* Ioctl method */
};

static dev_t cmos_dev_number; /* Allotted device number */
struct class *cmos_class; /* Tie with the device model */

#define NUM_CMOS_BANKS 2
#define CMOS_BANK_SIZE (0xFF*8)
#define DEVICE_NAME "cmos"
#define CMOS_BANK0_INDEX_PORT 0x70
#define CMOS_BANK0_DATA_PORT 0x71
#define CMOS_BANK1_INDEX_PORT 0x72
#define CMOS_BANK1_DATA_PORT 0x73

unsigned char addrports[NUM_CMOS_BANKS] = {CMOS_BANK0_INDEX_PORT,
 CMOS_BANK1_INDEX_PORT,};

unsigned char dataports[NUM_CMOS_BANKS] = {CMOS_BANK0_DATA_PORT,
 CMOS_BANK1_DATA_PORT,};

/*
 * Driver Initialization
 */
int __init
cmos_init(void)
{
 int i;

 /* Request dynamic allocation of a device major number */
 if (alloc_chrdev_region(&cmos_dev_number, 0,
 NUM_CMOS_BANKS, DEVICE_NAME) < 0) {
 printk(KERN_DEBUG "Can't register device\n"); return -1;
 }

 /* Populate sysfs entries */
 cmos_class = class_create(THIS_MODULE, DEVICE_NAME);

 for (i=0; i<NUM_CMOS_BANKS; i++) {
 /* Allocate memory for the per-device structure */
 cmos_devp = kmalloc(sizeof(struct cmos_dev), GFP_KERNEL);
 if (!cmos_devp) {
 printk("Bad Kmalloc\n"); return 1;
 }

 /* Request I/O region */
 sprintf(cmos_devp->name, "cmos%d", i);
 if (!(request_region(addrports[i], 2, cmos_devp->name)) {
 printk("cmos: I/O port 0x%x is not free.\n", addrports[i]);
 return –EIO;
 }
 /* Fill in the bank number to correlate this device
 with the corresponding CMOS bank */
 cmos_devp->bank_number = i;

 /* Connect the file operations with the cdev */
 cdev_init(&cmos_devp->cdev, &cmos_fops);
 cmos_devp->cdev.owner = THIS_MODULE;

 /* Connect the major/minor number to the cdev */
 if (cdev_add(&cmos_devp->cdev, (dev_number + i), 1)) {
 printk("Bad cdev\n");
 return 1;
 }

 /* Send uevents to udev, so it'll create /dev nodes */

 class_device_create(cmos_class, NULL, (dev_number + i),
 NULL, "cmos%d", i);
 }

 printk("CMOS Driver Initialized.\n");
 return 0;
}

/* Driver Exit */
void __exit
cmos_cleanup(void)
{
 int i;

 /* Remove the cdev */
 cdev_del(&cmos_devp->cdev);

 /* Release the major number */
 unregister_chrdev_region(MAJOR(dev_number), NUM_CMOS_BANKS);

 /* Release I/O region */
 for (i=0; i<NUM_CMOS_BANKS; i++) {
 class_device_destroy(cmos_class, MKDEV(MAJOR(dev_number), i));
 release_region(addrports[i], 2);
 }
 /* Destroy cmos_class */
 class_destroy(cmos_class);
 return();
}

module_init(cmos_init);
module_exit(cmos_cleanup);

Most steps perform ed by cmos_init() are generic, so if you rem ove references to CMOS data st ructures, you
m ay use List ing 5.1 as a tem plate to develop other char dr ivers, too.

First , cmos_init() invokes alloc_chrdev_region() to dynam ically request an unused m ajor num ber.
dev_number contains the allot ted m ajor num ber if the call is successful. The second and third argum ents to
alloc_chrdev_region() specify the start m inor num ber and the num ber of supported m inor devices,
respect ively. The last argum ent is the device nam e used to ident ify the CMOS in / proc/ devices:

bash> cat /proc/devices | grep cmos

253 cmos

253 is the dynam ically allocated m ajor num ber for the CMOS device. During pre-2.6 days, dynam ic device node
allocat ion was not supported, so char dr ivers m ade calls to register_chrdev() to stat ically request specific
m ajor num bers.

Before proceeding further down the code path, let 's take a peek at the data st ructures used in List ing 5.1.
cmos_dev is the per-device data st ructure referred to earlier. cmos_fops is the file_operations st ructure that
contains the address of dr iver ent ry points. cmos_fops also has a field called owner that is set to THIS_MODULE,

the address of the dr iver m odule in quest ion. Knowing the ident ity of the st ructure owner enables the kernel to
offload from the dr iver the burden of som e housekeeping funct ions such as t racking the use-count when
processes open or release the device.

As you saw, the kernel uses an abst ract ion called cdev to internally represent char devices. Char dr ivers usually
em bed their cdev inside their per-device st ructure. I n our exam ple, cdev sits inside cmos_dev . cmos_init()
loops over each supported m inor device (CMOS bank in this case) allocat ing m em ory for the associated per-
device st ructure and, hence, for the cdev st ructure liv ing inside it . cdev_init() associates the file operat ions
(cmos_fops) with the cdev , and cdev_add() connects the m ajor/ m inor num bers allocated by
alloc_chrdev_region() to the cdev .

class_create() populates a sysfs ent ry for this device, and class_device_create() results in the generat ion
of two uevents: cm os0 and cm os1. As you learned in Chapter 4 , udevd listens to uevents and generates device
nodes after consult ing its rules database. Add the following to the udev rules directory (/ etc/ udev/ rules.d/) to
produce device nodes corresponding to the two CMOS banks (/ dev/ cm os/ 0 and / dev/ cm os/ 1) on receiving the
respect ive uevents (cm os0 and cm os1) :

KERNEL="cmos[0-1]*", NAME="cmos/%n"

Device dr ivers that need to operate on a range of I / O addresses stake claim to the addresses via a call to
request_region() . This regulatory m echanism ensures that requests by others for the sam e region fail unt il
the occupant releases it via a call to release_region() . request_region() is com m only invoked by I / O bus
drivers such as PCI and I SA to m ark ownership of on-card m em ory in the processor 's address space (m ore on
this in Chapter 10, "Peripheral Com ponent I nterconnect ") . cmos_init() requests access to the I / O region of
each CMOS bank by calling request_region() . The last argum ent to request_region() is an ident ifier used by
/ proc/ ioports, so you will see this if you peek at that file:

bash> grep cmos /proc/ioports

0070-0071 : cmos0
0072-0073 : cmos1

This com pletes the regist rat ion process, and cmos_init() pr ints out a m essage signaling its happiness.

Open and Release

The kernel invokes the dr iver 's open() m ethod when an applicat ion opens the corresponding device node. You
can t r igger execut ion of cmos_open() by doing this:

bash> cat /dev/cmos/0

The kernel calls the release() m ethod when an applicat ion closes an open device. So when cat closes the file
descriptor at tached to / dev/ cm os/ 0 after reading the contents of CMOS bank 0, the kernel invokes
cmos_release() .

List ing 5.2 shows the im plem entat ion of cmos_open() and cmos_release() . Let 's take a closer look at
cmos_open() . There are a couple of things worthy of note here. The first is the ext ract ion of cmos_dev . The
inode passed as an argum ent to cmos_open() contains the address of the cdev st ructure allocated during
init ializat ion. As shown in List ing 5.1, cdev is em bedded inside cmos_dev . To elicit the address of the container
st ructure cmos_dev, cmos_open() uses the kernel helper funct ion, container_of() .

The other notable operat ion in cmos_open() is the usage of the private_data field that is part of struct file ,
the second argum ent . You can use this field (file->private_data) as a placeholder to convenient ly correlate
inform at ion from inside other dr iver m ethods. The CMOS driver uses this field to store the address of cmos_dev .

Look at cmos_release() (and the rest of the m ethods) to see how private_data is used to direct ly obtain a
handle on the cmos_dev st ructure belonging to the corresponding CMOS bank.

List ing 5 .2 . Open and Release

Code View:
/*
 * Open CMOS bank
 */
int
cmos_open(struct inode *inode, struct file *file)
{
 struct cmos_dev *cmos_devp;

 /* Get the per-device structure that contains this cdev */
 cmos_devp = container_of(inode->i_cdev, struct cmos_dev, cdev);

 /* Easy access to cmos_devp from rest of the entry points */
 file->private_data = cmos_devp;

 /* Initialize some fields */
 cmos_devp->size = CMOS_BANK_SIZE;
 cmos_devp->current_pointer = 0;

 return 0;
}

/*
 * Release CMOS bank
 */
int
cmos_release(struct inode *inode, struct file *file)
{
 struct cmos_dev *cmos_devp = file->private_data;

 /* Reset file pointer */
 cmos_devp->current_pointer = 0;

 return 0;
}

Exchanging Data

read() and write() are the basic char dr iver m ethods responsible for exchanging data between user space and
the device. The extended read() /write() fam ily contains several other m ethods, too: fsync() , aio_read() ,
aio_write() , and mmap() .

The CMOS driver operates on a sim ple m em ory device and does not have to work through som e of the
com plexit ies faced by usual char dr ivers:

CMOS data access rout ines do not need to sleep-wait for device I / O to com plete, whereas read() and
write() m ethods belonging to m any char dr ivers have to support both blocking and nonblocking m odes of
operat ion. Unless a device file is opened in the nonblocking (O_NONBLOCK) m ode, read() and write() are
allowed to put the calling process to sleep unt il the corresponding operat ion com pletes.

CMOS driver operat ions com plete synchronously and do not depend on interrupts. However, data access
m ethods belonging to m any drivers depend on interrupts for data collect ion and have to com m unicate
with interrupt context code via data st ructures such as wait queues.

List ing 5.3 contains the read() and write() m ethods belonging to the CMOS driver. You cannot direct ly access
user buffers from kernel space and vice versa, so to copy CMOS m em ory contents to user space, cmos_read()
uses the services of copy_to_user() . cmos_write() does the reverse using copy_from_user() . Because
copy_to_user() and copy_from_user() m ay fall asleep on the job, you cannot hold spinlocks while calling
them .

As you saw earlier, accessing CMOS m em ory is accom plished by operat ing on a pair of I / O addresses. To read
different sizes of data from an I / O address, the kernel provides a fam ily of architecture- independent funct ions:
in[b|w|l|sb|sl]() . Sim ilar ly, a cluster of rout ines, out[b|w|l|sb|sl]() , are available for writ ing to I / O
regions. port_data_in() and port_data_out() in List ing 5.3 use inb() and oub() for data t ransfer.

List ing 5 .3 . Read and W rite

Code View:
/*
 * Read from a CMOS Bank at bit-level granularity
 */
ssize_t
cmos_read(struct file *file, char *buf,
 size_t count, loff_t *ppos)
{
 struct cmos_dev *cmos_devp = file->private_data;
 char data[CMOS_BANK_SIZE];
 unsigned char mask;
 int xferred = 0, i = 0, l, zero_out;
 int start_byte = cmos_devp->current_pointer/8;
 int start_bit = cmos_devp->current_pointer%8;

 if (cmos_devp->current_pointer >= cmos_devp->size) {
 return 0; /*EOF*/
 }

 /* Adjust count if it edges past the end of the CMOS bank */
 if (cmos_devp->current_pointer + count > cmos_devp->size) {
 count = cmos_devp->size - cmos_devp->current_pointer;
 }

 /* Get the specified number of bits from the CMOS */
 while (xferred < count) {
 data[i] = port_data_in(start_byte, cmos_devp->bank_number)
 >> start_bit;
 xferred += (8 - start_bit);
 if ((start_bit) && (count + start_bit > 8)) {
 data[i] |= (port_data_in (start_byte + 1,
 cmos_devp->bank_number) << (8 - start_bit));
 xferred += start_bit;
 }
 start_byte++;
 i++;
 }
 if (xferred > count) {

 /* Zero out (xferred-count) bits from the MSB
 of the last data byte */
 zero_out = xferred - count;
 mask = 1 << (8 - zero_out);
 for (l=0; l < zero_out; l++) {
 data[i-1] &= ~mask; mask <<= 1;
 }
 xferred = count;
 }

 if (!xferred) return -EIO;

 /* Copy the read bits to the user buffer */
 if (copy_to_user(buf, (void *)data, ((xferred/8)+1)) != 0) {
 return -EIO;
 }

 /* Increment the file pointer by the number of xferred bits */
 cmos_devp->current_pointer += xferred;
 return xferred; /* Number of bits read */
}

/*
 * Write to a CMOS bank at bit-level granularity. 'count' holds the
 * number of bits to be written.
 */
ssize_t
cmos_write(struct file *file, const char *buf,
 size_t count, loff_t *ppos)
{
 struct cmos_dev *cmos_devp = file->private_data;
 int xferred = 0, i = 0, l, end_l, start_l;
 char *kbuf, tmp_kbuf;
 unsigned char tmp_data = 0, mask;
 int start_byte = cmos_devp->current_pointer/8;
 int start_bit = cmos_devp->current_pointer%8;

 if (cmos_devp->current_pointer >= cmos_devp->size) {
 return 0; /* EOF */
 }
 /* Adjust count if it edges past the end of the CMOS bank */
 if (cmos_devp->current_pointer + count > cmos_devp->size) {
 count = cmos_devp->size - cmos_devp->current_pointer;
 }

 kbuf = kmalloc((count/8)+1,GFP_KERNEL);
 if (kbuf==NULL)
 return -ENOMEM;

 /* Get the bits from the user buffer */
 if (copy_from_user(kbuf,buf,(count/8)+1)) {
 kfree(kbuf);
 return -EFAULT;
 }

 /* Write the specified number of bits to the CMOS bank */
 while (xferred < count) {
 tmp_data = port_data_in(start_byte, cmos_devp->bank_number);

 mask = 1 << start_bit;
 end_l = 8;
 if ((count-xferred) < (8 - start_bit)) {
 end_l = (count - xferred) + start_bit;
 }

 for (l = start_bit; l < end_l; l++) {
 tmp_data &= ~mask; mask <<= 1;
 }
 tmp_kbuf = kbuf[i];
 mask = 1 << end_l;
 for (l = end_l; l < 8; l++) {
 tmp_kbuf &= ~mask;
 mask <<= 1;
 }

 port_data_out(start_byte,
 tmp_data |(tmp_kbuf << start_bit),
 cmos_devp->bank_number);
 xferred += (end_l - start_bit);

 if ((xferred < count) && (start_bit) &&
 (count + start_bit > 8)) {
 tmp_data = port_data_in(start_byte+1,
 cmos_devp->bank_number);
 start_l = ((start_bit + count) % 8);
 mask = 1 << start_l;
 for (l=0; l < start_l; l++) {
 mask >>= 1;
 tmp_data &= ~mask;
 }
 port_data_out((start_byte+1),
 tmp_data |(kbuf[i] >> (8 - start_bit)),
 cmos_devp->bank_number);
 xferred += start_l;
 }

 start_byte++;
 i++;
 }

 if (!xferred) return -EIO;

 /* Push the offset pointer forward */
 cmos_devp->current_pointer += xferred;
 return xferred; /* Return the number of written bits */
}

/*
 * Read data from specified CMOS bank
 */
unsigned char
port_data_in(unsigned char offset, int bank)
{
 unsigned char data;

 if (unlikely(bank >= NUM_CMOS_BANKS)) {
 printk("Unknown CMOS Bank\n");

 return 0;
 } else {
 outb(offset, addrports[bank]); /* Read a byte */
 data = inb(dataports[bank]);
 }
 return data;

}
/*
 * Write data to specified CMOS bank
 */
void
port_data_out(unsigned char offset, unsigned char data,
 int bank)
{
 if (unlikely(bank >= NUM_CMOS_BANKS)) {
 printk("Unknown CMOS Bank\n");
 return;
 } else {
 outb(offset, addrports[bank]); /* Output a byte */
 outb(data, dataports[bank]);
 }
 return;
}

I f a char dr iver 's write() m ethod returns successfully, it im plies that the dr iver has assum ed responsibilit y for
the data passed down to it by the applicat ion. However it does not guarantee that the data has been
successfully writ ten to the device. I f an applicat ion needs this assurance, it can invoke the fsync() system call.
The corresponding fsync() dr iver m ethod ensures that applicat ion data is flushed from driver buffers and
writ ten to the device. The CMOS driver does not need an fsync() m ethod because, in this case, dr iver-writes
are synonym ous with device-writes.

I f a user applicat ion has data sit t ing on m ult iple buffers that it needs to send to a device, it can request m ult iple
driver writes, but that is inefficient for the following reasons:

The overhead of m ult iple system calls and related context switches.1 .

The driver is the one who knows the device int im ately, so it can probably do a m ore clever job of
efficient ly gathering data from different buffers and dispatching it to the device.

2 .

Because of this, vectored versions of read() and write() are supported on Linux and other UNI X flavors. The
Linux char dr iver infrast ructure used to offer two dedicated m ethods to perform vector operat ions: readv() and
writev() . Start ing with the 2.6.19 kernel release, these two m ethods have been folded into the generic Linux
Asynchronous I / O (AI O) layer, however. Linux AI O is a broad topic and is outside the scope of this discussion,
so we just concent rate on the synchronous vector capabilit ies offered by AI O.

The prototypes of the vector dr iver m ethods are as follows:

ssize_t aio_read(struct kiocb *iocb, const struct iovec *vector,
 unsigned long count, loff_t offset);
ssize_t aio_write(struct kiocb *iocb, const struct iovec *vector,
 unsigned long count, loff_t offset);

The first argum ent to aio_read()/aio_write() describes the AI O operat ion, and the second argum ent is an
array of iovecs . The lat ter is the pr incipal data st ructure used by the vector funct ions and contains the
addresses and lengths of buffers that hold the data. I n fact , this m echanism is the user space equivalent of
scat ter-gather DMA discussed in Chapter 10. Look at include/ linux/ uio.h for the definit ion of iovecs and at
dr ivers/ net / tun.c[1] for an exam ple im plem entat ion of vectored char dr iver m ethods.

[1] Discussed in the sidebar " TUN/ TAP Driver" in Chapter 15, "Network I nterface Cards."

Another data access m ethod is mmap() , which associates device m em ory with user vir tual m em ory. Applicat ions
m ay call the corresponding system call, also called mmap() , and direct ly operate on the returned m em ory region
to access device- resident m em ory. Not m any drivers im plem ent mmap() , so we won't delve into that here.
I nstead, have a look at dr ivers/ char/ m em .c for an exam ple mmap() im plem entat ion. The sect ion "Accessing
Mem ory Regions" in Chapter 19, "Drivers in User Space," illust rates how applicat ions use mmap() . Our exam ple
CMOS driver does not im plem ent mmap() .

You m ight have not iced that port_data_in() and port_data_out() envelop the bank num ber sanity check
within a m acro called unlikely() . Two m acros, likely() and unlikely() , inform GCC about the probabilit y of
success of the associated condit ional evaluat ion. This inform at ion is used by GCC while predict ing branches.
Because we m ark it unlikely that the bank sanity check will fail, GCC generates intelligent code that gels the
else{} clause sequent ially with the code flow. Branching is done for the if{} clause. The reverse happens if
you use likely() rather than unlikely() .

Seek

The kernel uses an internal pointer to keep t rack of the current file access posit ion. Applicat ions use the
lseek() system call to request reposit ioning of this internal file pointer. Using the services of lseek() , you can
reset the file pointer to any offset within the file. The char dr iver counterpart of lseek() is the llseek()
m ethod. cmos_llseek() im plem ents this m ethod in the CMOS driver.

As we saw previously, the internal file pointer for the CMOS m oves bit -wise rather than byte-wise. I f a byte of
data is read from the CMOS driver, the file pointer has to be m oved by 8, so applicat ions have to seek
accordingly. cmos_llseek() also im plem ents end-of- file sem ant ics depending on the size of the CMOS bank.

To understand the sem ant ics of llseek() , let 's start by looking at the com m ands supported by the lseek()
system call:

SEEK_SET, which sets the file pointer to a supplied fixed offset .1 .

SEEK_CUR, which calculates the offset relat ive to the current locat ion.2 .

SEEK_END, which calculates the offset relat ive to the end-of- file. This com m and can m aneuver the file
pointer beyond the end of the file, but does not change the file size. Reads beyond the end-of- file m arker
return naught if no data is explicit ly writ ten. This technique is often used to create big files. The CMOS
driver does not support SEEK_END.

3 .

Look at cmos_llseek() in List ing 5.4 and co- relate with the preceding definit ions.

List ing 5 .4 . Seek

Code View:
/*
 * Seek to a bit offset within a CMOS bank
 */
static loff_t
cmos_llseek(struct file *file, loff_t offset,
 int orig)
{
 struct cmos_dev *cmos_devp = file->private_data;

 switch (orig) {
 case 0: /* SEEK_SET */
 if (offset >= cmos_devp->size) {
 return -EINVAL;
 }
 cmos_devp->current_pointer = offset; /* Bit Offset */
 break;

 case 1: /* SEEK_CURR */
 if ((cmos_devp->current_pointer + offset) >=
 cmos_devp->size) {
 return -EINVAL;
 }
 cmos_devp->current_pointer = offset; /* Bit Offset */
 break;

 case 2: /* SEEK_END - Not supported */
 return -EINVAL;

 default:
 return -EINVAL;
 }

 return(cmos_devp->current_pointer);
}

Cont rol

Another com m on char dr iver m ethod is called I / O Cont rol (or ioct l) . This rout ine is used to receive and
im plem ent applicat ion com m ands that request device-specific act ions. Because CMOS m em ory is used by the
BI OS to store crucial inform at ion such as the boot device order, it 's usually protected via cyclic redundancy
check (CRC) algorithm s. To detect data corrupt ion, the CMOS driver supports two ioct l com m ands:

Adjust checksum, which is used to recalculate the CRC after the CMOS contents have been m odified. The
calculated checksum is stored at a predeterm ined offset in CMOS bank 1.

1 .

2 .

Verify checksum, which is used to check whether the CMOS contents are healthy. This is done by
com paring the CRC of the current contents with the value previously stored.

2 .

Applicat ions send these com m ands down to the dr iver via the ioctl() system call when they want to request it
to perform checksum operat ions. Look at cmos_ioctl() in List ing 5.5 for the im plem entat ion of the CMOS
driver 's ioctl m ethod. adjust_cmos_crc(int bank, unsigned short seed) im plem ents the standard CRC
algorithm and is not shown in the list ing.

List ing 5 .5 . I / O Cont rol

Code View:
#define CMOS_ADJUST_CHECKSUM 1
#define CMOS_VERIFY_CHECKSUM 2

#define CMOS_BANK1_CRC_OFFSET 0x1E

/*
 * Ioctls to adjust and verify CRC16s.
 */
static int
cmos_ioctl(struct inode *inode, struct file *file,
 unsigned int cmd, unsigned long arg)
{
 unsigned short crc = 0;
 unsigned char buf;

 switch (cmd) {
 case CMOS_ADJUST_CHECKSUM:
 /* Calculate the CRC of bank0 using a seed of 0 */
 crc = adjust_cmos_crc(0, 0);

 /* Seed bank1 with CRC of bank0 */
 crc = adjust_cmos_crc(1, crc);

 /* Store calculated CRC */
 port_data_out(CMOS_BANK1_CRC_OFFSET,
 (unsigned char)(crc & 0xFF), 1);
 port_data_out((CMOS_BANK1_CRC_OFFSET + 1),
 (unsigned char) (crc >> 8), 1);
 break;

 case CMOS_VERIFY_CHECKSUM:
 /* Calculate the CRC of bank0 using a seed of 0 */
 crc = adjust_cmos_crc(0, 0);

 /* Seed bank1 with CRC of bank0 */
 crc = adjust_cmos_crc(1, crc);

 /* Compare the calculated CRC with the stored CRC */
 buf = port_data_in(CMOS_BANK1_CRC_OFFSET, 1);
 if (buf != (unsigned char) (crc & 0xFF)) return -EINVAL;

 buf = port_data_in((CMOS_BANK1_CRC_OFFSET+1), 1);
 if (buf != (unsigned char)(crc >> 8)) return -EINVAL;
 break;
 default:

 return -EIO;
 }

 return 0;
}

Sensing Data Availabilit y

Many user applicat ions are sophist icated and are not sat isfied with the vintage open() / read() /write() /close()
calls. They desire synchronous or asynchronous not ificat ions that alert them when new data is available from
the device or when the dr iver is ready to accept new data. I n this sect ion, we exam ine two char dr iver m ethods
that sense data availabilit y: poll() and fasync() . The form er is synchronous, whereas the lat ter is
asynchronous. Because these m echanism s are relat ively advanced, let 's first understand how applicat ions use
these features before finding out how the underlying dr iver im plem ents them . Sensing data availabilit y is not
relevant for the sim ple CMOS m em ory device discussed previously, so let 's take a few usage scenarios from a
popular user space applicat ion: the X Windows server.

Poll

Consider the following code snippet from the X Windows source t ree (downloadable from www.xfree86.org) that
handles m ice events:

xc/programs/Xserver/hw/xfree86/input/mouse/mouse.c:

case PROT_THINKING: /* ThinkingMouse */
 /* This mouse may send a PnP ID string, ignore it. */
 usleep(200000); xf86FlushInput(pInfo->fd);
 /* Send the command to initialize the beast. */
 for (s = "E5E5"; *s; ++s) {
 xf86WriteSerial(pInfo->fd, s, 1);
 if ((xf86WaitForInput(pInfo->fd, 1000000) <= 0))
 break;
 xf86ReadSerial(pInfo->fd, &c, 1);
 if (c != *s) break;
 }
 break;

Essent ially, the code sends an init ializat ion com m and to the m ouse, polls unt il it senses input data, and reads
the response from the device. I f you peel the envelope off Xf86WaitForInput() used previously, you will find a
call to the select() system call:

Code View:
xc/programs/Xserver/hw/xfree86/os-support/shared/posix_tty.c:

int
xf86WaitForInput(int fd, int timeout)
{
 fd_set readfds;
 struct timeval to;
 int r;

 FD_ZERO(&readfds);
 if (fd >= 0) {
 FD_SET(fd, &readfds);
 }

 to.tv_sec = timeout / 1000000;
 to.tv_usec = timeout % 1000000;

 if (fd >= 0) {

 SYSCALL (r = select(FD_SETSIZE, &readfds, NULL, NULL, &to));
 } else {
 SYSCALL (r = select(FD_SETSIZE, NULL, NULL, NULL, &to));
 }

 if (xf86Verbose >= 9)
 ErrorF ("select returned %d\n", r);

 return (r);
}

You m ay supply a bunch of file descriptors to select() and ask it to keep an eye on them unt il there is a change
in the associated data state. You m ay also request a t im eout to overr ide data availabilit y. I f you ask for a
t im eout of NULL, select() blocks forever. Refer to the m an or info pages of select() for detailed
docum entat ion. The call to select() in the preceding snippet induces the X server to poll for data from a
connected m ouse within a t im eout .

Linux supports another system call, poll() , which has sem ant ics sim ilar to select() . The 2.6 kernel
supports a new non-POSI X system call nam ed epoll() that is a m ore scalable superset of poll() . All
these system calls rely on the sam e underlying char dr iver m ethod, poll() .

Most I / O system calls are POSI X-com pliant and are not Linux-specific (program s such as X Windows after all,
run on m any UNI X flavors, not just on Linux) , but the internal dr iver m ethods are operat ing system -specific. On
Linux, the poll() dr iver m ethod is the pillar under the select() system call. I n the previous X server scenario,
the m ouse driver 's poll() m ethod looks like this:

static DECLARE_WAIT_QUEUE_HEAD(mouse_wait); /* Wait Queue */

static unsigned int
mouse_poll(struct file *file, poll_table *wait)
{
 poll_wait(file, &mouse_wait, wait);
 spin_lock_irq(&mouse_lock);

 /* See if data has arrived from the device or
 if the device is ready to accept more data */
 /* ... */
 spin_unlock_irq(&mouse_lock);

 /* Availability of data is detected from interrupt context */
 if (data_is_available()) return(POLLIN | POLLRDNORM);

 /* Data can be written. Not relevant for mice */
 if (data_can_be_written()) return(POLLOUT | POLLWRNORM);

 return 0;
}

When Xf86WaitForInput() invokes select() , the generic kernel poll im plem entat ion (defined in fs/ select .c)
calls mouse_poll() . mouse_poll() takes two argum ents, the usual file pointer (struct file *) and a pointer
to a kernel data st ructure called the poll_table . The poll_table is a table of wait queues owned by device
drivers that are being polled for data.

mouse_poll() uses the library funct ion, poll_wait() , to add a wait queue (mouse_wait) to the kernel
poll_table and go to sleep. As you saw in Chapter 3 , "Kernel Facilit ies," device dr ivers usually own several
wait queues that block unt il they detect a change in a data condit ion. This condit ion can be the arr ival of new
data from the device, willingness of the dr iver to pass new data to the applicat ion, or the readiness of the
device (or the dr iver) to accept new data. Such condit ions are usually (but not always) detected by the dr iver 's
interrupt handler. When the m ouse driver 's interrupt handler senses m ouse m ovem ent , it calls
wake_up_interruptible(&mouse_wait) to wake up the sleeping mouse_poll() .

I f there is no change in the data condit ion, the poll() m ethod returns 0. I f the dr iver is ready to send at least
one byte of data to the applicat ion, it returns POLLIN|POLLRDNORM. I f the dr iver is ready to accept at least a byte
of data from the applicat ion, it returns POLLOUT|POLLWRNORM.[2] Thus, if there is no m ouse m ovem ent ,
mouse_poll() returns 0, and the calling thread is put to sleep. The kernel invokes mouse_poll() again when
the m ouse interrupt handler senses device data and wakes up the mouse_wait queue. This t im e around,
mouse_poll() returns POLLIN|POLLRDNORM, so the select() call and hence Xf86WaitForInput() return
posit ive values. The X server 's m ouse handler (xc/ program s/ Xserver/ hw/ xfree86/ input / m ouse/ m ouse.c) goes
on to read data from the m ouse.

[2] The full list of return codes is defined in include/ asm-generic/ poll.h. Som e of them are used only by the networking stack.

User applicat ions that poll a dr iver are usually m ore interested in dr iver character ist ics than device
character ist ics. For exam ple, depending on the health of its buffers, a dr iver m ight be ready to accept
new data from the applicat ion before the device itself is.

Fasync

Som e applicat ions, for perform ance reasons, desire asynchronous not ificat ions from the device dr iver. Assum e
that an applicat ion on a Linux pacem aker program m er device is busy perform ing com plex com putat ions but
wants to be not ified as soon as data arr ives from an im planted pacem aker via a telem et ry interface. The
select()/poll() m echanism is not of use in this case because it blocks the com putat ions. What the applicat ion
needs is an asynchronous event report . I f the telemet ry dr iver can asynchronously dispatch a signal (usually
SIGIO) as soon as it detects data from the pacem aker, the applicat ion can catch it using a signal handler and
accordingly steer the code flow.

For a real-world exam ple of asynchronous not ificat ion, let 's revert to a region of the X server that requests
alerts when data is detected from input devices. Take a look at this snippet from the X server sources:

Code View:
xc/programs/Xserver/hw/xfree86/os-support/shared/sigio.c:

int xf86InstallSIGIOHandler(int fd, void (*f)(int, void *),
 void *closure)
{
 struct sigaction sa;
 struct sigaction osa;

 if (fcntl(fd, F_SETOWN, getpid()) == -1) {
 blocked = xf86BlockSIGIO();

 /* O_ASYNC is defined as SIGIO elsewhere by the X server */
 if (fcntl(fd, F_SETFL, fcntl(fd, F_GETFL) | O_ASYNC) == -1) {
 xf86UnblockSIGIO(blocked); return 0;
 }
 sigemptyset(&sa.sa_mask);
 sigaddset(&sa.sa_mask, SIGIO);
 sa.sa_flags = 0;
 sa.sa_handler = xf86SIGIO;
 sigaction(SIGIO, &sa, &osa);
 /* ... */
 return 0;
}

static void
xf86SIGIO(int sig)
{
 /* Identify the device that triggered generation of this
 SIGIO and handle the data arriving from it */
 /* ... */
}

As you can decipher from the above snippet , the X server does the following:

Calls fcntl(F_SETOWN) . The fcntl() system call is used to m anipulate file descriptor behavior. F_SETOWN
sets the ownership of the descriptor to the calling process. This is required since the kernel needs to know
where to send the asynchronous signal. This step is t ransparent to the device dr iver.

I nvokes fcntl(F_SETFL) . F_SETFL requests the dr iver to deliver SIGIO to the applicat ion whenever there
is data to be read, or if the dr iver is ready to receive m ore applicat ion data. The invocat ion of
fcntl(F_SETFL) results in the invocat ion of the fasync() dr iver m ethod. I t 's this m ethod's responsibilit y
to add or rem ove ent r ies from the list of processes that are to be delivered SIGIO . To this end, fasync()
ut ilizes the services of a kernel library funct ion called fasync_helper() .

I m plem ents the SIGIO signal handler, xf86SIGIO() , as per its code architecture and installs it using the
sigaction() system call. When the underlying input device dr iver detects a change in data status, it
dispatches SIGIO to registered requesters and this t r iggers execut ion of xf86SIGIO() .[3] Char dr ivers call
kill_fasync() to send SIGIO to registered processes. To not ify a read event , POLLIN is passed as the
argum ent to kill_fasync() . To not ify a write event , the argum ent is POLLOUT.

[3] I f your signal handler services asynchronous events from m ult iple devices, you will need addit ional mechanism s, such as a
select() call inside the handler, to figure out the ident ity of the device responsible for the event .

To see how the dr iver-side of the asynchronous not ificat ion chain is im plem ented, let 's look at a fict it ious

fasync() m ethod belonging to the dr iver of an input device:

Code View:
/* This is invoked by the kernel when the X server opens this
 * input device and issues fcntl(F_SETFL) on the associated file
 * descriptor. fasync_helper() ensures that if the driver issues a
 * kill_fasync(), a SIGIO is dispatched to the owning application.
 */
static int
inputdevice_fasync(int fd, struct file *filp, int on)
{
 return fasync_helper(fd, filp, on, &inputdevice_async_queue);
}
/* Interrupt Handler */
irqreturn_t
inputdevice_interrupt(int irq, void *dev_id)
{
 /* ... */
 /* Dispatch a SIGIO using kill_fasync() when input data is
 detected. Output data is not relevant since this is a read-only
 device */
 wake_up_interruptible(&inputdevice_wait);
 kill_fasync(&inputdevice_async_queue, SIGIO, POLL_IN);
 /* ... */
 return IRQ_HANDLED;
}

To see how SIGIO delivery can be com plex, consider the case of a t ty dr iver (discussed in Chapter 6 , "Serial
Drivers") . I nterested applicat ions get not ified under different scenarios:

I f the underlying dr iver is not ready to accept applicat ion data, it puts the calling process to sleep. When
the driver interrupt handler subsequent ly decides that the device can accept m ore data, it wakes the
applicat ion and invokes kill_fasync(POLLOUT) .

I f a newline character is received, the t ty layer calls kill_fasync(POLLIN) .

When the dr iver wakes up a sleeping reader thread after detect ing that sufficient data bytes beyond a
threshold have arr ived from a device, it sends that inform at ion to stakeholder processes by invoking
kill_fasync(POLLIN) .

Talk ing to the Para lle l Por t

The parallel port is a ubiquitous 25-pin interface popular ly found on PC-com pat ible system s. The capabilit y of a
parallel port (whether it 's unidirect ional, bidirect ional, supports DMA, and so on) depends on the underlying
chipset . Look at Figure 4.1 in Chapter 4 to find out how the PC architecture supports parallel ports.

The drivers/ parport / directory contains code (called parport) that im plem ents I EEE 1284 parallel port
com m unicat ion. Several devices that connect to the parallel port such as pr inters and scanners use parport 's
services. Parport has an architecture- independent module called parport .ko and an architecture-dependent one
(parport_pc.ko for the PC architecture) that provide program m ing interfaces to dr ivers of devices that interface
via the parallel port .

Let 's take the exam ple of the parallel pr inter dr iver, dr ivers/ char/ lp.c. These are the high- level steps needed to
print a file:

1 . The printer dr iver creates char device nodes / dev/ lp0 to / dev/ lpN, one per connected printer.

2 . The Com m on UNI X Print ing System (CUPS) is the fram ework that provides pr int capabilit ies on Linux. The
CUPS configurat ion file (/ etc/ pr inters.conf on som e dist r ibut ions) m aps printers with their char device
nodes (/ dev/ lpX) .

3 . CUPS ut ilit ies consult this file and st ream data to the corresponding device node. So, if you have a pr inter
connected to the first parallel port on your system and you issue the com m and, lpr m yfile, it 's st ream ed
via / dev/ lp0 to the pr inter 's write() m ethod, lp_write() , defined in dr ivers/ char/ lp.c.

4 . lp_write() uses the services of parport to send the data to the pr inter.

Apple I nc. has acquired ownership of CUPS software. The code cont inues to be licensed under GPLv2.

A char dr iver called ppdev(drivers/ char/ ppdev.c) exports the / dev/ parportX device nodes that let user
applicat ions direct ly com m unicate with the parallel port . (We talk m ore about ppdev in Chapter 19.)

Device Exam ple: Para lle l Por t LED Board

To learn how to use the services offered by parport , let 's write a sim ple dr iver. Consider a board that has eight
light -em it t ing diodes (LEDs) interfaced to a standard 25-pin parallel port connector. Because the 8-bit parallel
port data register on the PC is direct ly m apped to pins 2 to 9 of the parallel port connector, those pins are wired
to the LEDs on the board. Writ ing to the parallel port data register cont rols the voltage levels of these pins and
turns the LEDs on or off. List ing 5.6 im plem ents a char dr iver that com m unicates with this board over the
system parallel port . Em bedded com m ents explain the parport service rout ines that List ing 5.6 uses.

List ing 5 .6 . Dr iver for the Para lle l LED Board (led .c)

Code View:
#include <linux/fs.h>
#include <linux/cdev.h>

#include <linux/parport.h>
#include <asm/uaccess.h>
#include <linux/platform_device.h>

#define DEVICE_NAME "led"

static dev_t dev_number; /* Allotted device number */
static struct class *led_class; /* Class to which this device
 belongs */
struct cdev led_cdev; /* Associated cdev */
struct pardevice *pdev; /* Parallel port device */

/* LED open */
int
led_open(struct inode *inode, struct file *file)
{
 return 0;
}

/* Write to the LED */
ssize_t
led_write(struct file *file, const char *buf,
 size_t count, loff_t *ppos)
{
 char kbuf;

 if (copy_from_user(&kbuf, buf, 1)) return -EFAULT;

 /* Claim the port */
 parport_claim_or_block(pdev);

 /* Write to the device */
 parport_write_data(pdev->port, kbuf);

 /* Release the port */
 parport_release(pdev);

 return count;
}
/* Release the device */
int
led_release(struct inode *inode, struct file *file)
{
 return 0;
}

/* File Operations */
static struct file_operations led_fops = {
 .owner = THIS_MODULE,
 .open = led_open,
 .write = led_write,
 .release = led_release,
};

static int
led_preempt(void *handle)
{
 return 1;
}

/* Parport attach method */

static void
led_attach(struct parport *port)
{
 /* Register the parallel LED device with parport */

 pdev = parport_register_device(port, DEVICE_NAME,
 led_preempt, NULL,
 NULL, 0, NULL);
 if (pdev == NULL) printk("Bad register\n");
}

/* Parport detach method */

static void
led_detach(struct parport *port)
{
 /* Do nothing */
}

/* Parport driver operations */

static struct parport_driver led_driver = {
 .name = "led",
 .attach = led_attach,
 .detach = led_detach,
};
/* Driver Initialization */
int __init
led_init(void)
{
 /* Request dynamic allocation of a device major number */
 if (alloc_chrdev_region(&dev_number, 0, 1, DEVICE_NAME)
 < 0) {
 printk(KERN_DEBUG "Can't register device\n");
 return -1;
 }

 /* Create the led class */
 led_class = class_create(THIS_MODULE, DEVICE_NAME);
 if (IS_ERR(led_class)) printk("Bad class create\n");

 /* Connect the file operations with the cdev */
 cdev_init(&led_cdev, &led_fops);

 led_cdev.owner = THIS_MODULE;

 /* Connect the major/minor number to the cdev */
 if (cdev_add(&led_cdev, dev_number, 1)) {
 printk("Bad cdev add\n");
 return 1;
 }

 class_device_create(led_class, NULL, dev_number,
 NULL, DEVICE_NAME);

 /* Register this driver with parport */

 if (parport_register_driver(&led_driver)) {
 printk(KERN_ERR "Bad Parport Register\n");
 return -EIO;
 }

 printk("LED Driver Initialized.\n");
 return 0;
}

/* Driver Exit */
void __exit
led_cleanup(void)
{
 unregister_chrdev_region(MAJOR(dev_number), 1);
 class_device_destroy(led_class, MKDEV(MAJOR(dev_number), 0));
 class_destroy(led_class);
 return;
}

module_init(led_init);
module_exit(led_cleanup);

MODULE_LICENSE("GPL");

led_init() is sim ilar to cmos_init() developed in List ing 5.1, but for a couple of things:

As you saw in Chapter 4 , the new device m odel dist inguishes between drivers and devices. led_init()
registers the LED driver with parport via a call to parport_register_ driver () .When the kernel finds the
LED board during led_attach() , it registers the device by invoking parport_register_ device () .

1 .

led_init() creates the device node / dev/ led, which you can use to cont rol the state of individual LEDs.2 .

Com pile and insert the dr iver m odule into the kernel:

bash> make –C /path/to/kerneltree/ M=$PWD modules

bash> insmod ./led.ko

LED Driver Initialized

To select ively dr ive som e parallel port pins and glow the corresponding LEDs, echo the appropriate value to
/ dev/ led:

bash> echo 1 > /dev/led

Because ASCI I for 1 is 31 (or 00110001) , the first , fifth, and sixth LEDs should turn on.

The preceding com m and t r iggers invocat ion of led_write() . This dr iver m ethod first copies user m em ory (the
value 31 in this case) to kernel buffers via copy_from_user() . I t then claim s the parallel port , writes data, and
releases the port , all using parport interfaces.

Sysfs is a bet ter place than / dev to cont rol device state, so it 's a good idea to ent rust LED cont rol to sysfs files.
List ing 5.7 contains the dr iver im plem entat ion that achieves this. The sysfs m anipulat ion code in the list ing can

serve as a tem plate to achieve device cont rol from other dr ivers, too.

List ing 5 .7 . Using Sysfs to Cont rol the Para lle l LE D Board

Code View:
#include <linux/fs.h>
#include <linux/cdev.h>
#include <linux/parport.h>
#include <asm/uaccess.h>
#include <linux/pci.h>

static dev_t dev_number; /* Allotted Device Number */
static struct class *led_class; /* Class Device Model */
struct cdev led_cdev; /* Character dev struct */
struct pardevice *pdev; /* Parallel Port device */

struct kobject kobj; /* Sysfs directory object */

/* Sysfs attribute of the leds */
struct led_attr {
 struct attribute attr;
 ssize_t (*show)(char *);
 ssize_t (*store)(const char *, size_t count);
};

#define glow_show_led(number) \
static ssize_t \
glow_led_##number(const char *buffer, size_t count) \
{ \
 unsigned char buf; \
 int value; \
 \
 sscanf(buffer, "%d", &value); \
 \
 parport_claim_or_block(pdev); \
 buf = parport_read_data(pdev->port); \
 if (value) { \
 parport_write_data(pdev->port, buf | (1<<number)); \
 } else { \
 parport_write_data(pdev->port, buf & ~(1<<number)); \
 } \
 parport_release(pdev); \
 return count; \
} \
 \
static ssize_t \
show_led_##number(char *buffer) \
{ \
 unsigned char buf; \
 \
 parport_claim_or_block(pdev); \
 \
 buf = parport_read_data(pdev->port); \
 parport_release(pdev); \
 \
 if (buf & (1 << number)) { \
 return sprintf(buffer, "ON\n"); \
 } else { \
 return sprintf(buffer, "OFF\n"); \

 } \
} \
 \
static struct led_attr led##number = \
__ATTR(led##number, 0644, show_led_##number, glow_led_##number);

glow_show_led(0); glow_show_led(1); glow_show_led(2);
glow_show_led(3); glow_show_led(4); glow_show_led(5);
glow_show_led(6); glow_show_led(7);

#define DEVICE_NAME "led"

static int
led_preempt(void *handle)
{
 return 1;
}

/* Parport attach method */
static void
led_attach(struct parport *port)
{
 pdev = parport_register_device(port, DEVICE_NAME,
 led_preempt, NULL, NULL, 0,
 NULL);
 if (pdev == NULL) printk("Bad register\n");
}
/* Parent sysfs show() method. Calls the show() method
 corresponding to the individual sysfs file */
static ssize_t
l_show(struct kobject *kobj, struct attribute *a, char *buf)
{
 int ret;
 struct led_attr *lattr = container_of(a, struct led_attr,attr);

 ret = lattr->show ? lattr->show(buf) : -EIO;
 return ret;
}

/* Sysfs store() method. Calls the store() method
 corresponding to the individual sysfs file */
static ssize_t
l_store(struct kobject *kobj, struct attribute *a,
 const char *buf, size_t count)
{
 int ret;
 struct led_attr *lattr = container_of(a, struct led_attr, attr);

 ret = lattr->store ? lattr->store(buf, count) : -EIO;
 return ret;
}

/* Sysfs operations structure */
static struct sysfs_ops sysfs_ops = {
 .show = l_show,
 .store = l_store,
};

/* Attributes of the /sys/class/pardevice/led/control/ kobject.

 Each file in this directory corresponds to one LED. Control
 each LED by writing or reading the associated sysfs file */
static struct attribute *led_attrs[] = {
 &led0.attr,
 &led1.attr,
 &led2.attr,
 &led3.attr,
 &led4.attr,
 &led5.attr,
 &led6.attr,
 &led7.attr,
 NULL
};

/* This describes the kobject. The kobject has 8 files, one
 corresponding to each LED. This representation is called the
 ktype of the kobject */

static struct kobj_type ktype_led = {
 .sysfs_ops = &sysfs_ops,
 .default_attrs = led_attrs,
};

/* Parport methods. We don't have a detach method */
static struct parport_driver led_driver = {
 .name = "led",
 .attach = led_attach,
};

/* Driver Initialization */
int __init
led_init(void)
{
 struct class_device *c_d;

 /* Create the pardevice class - /sys/class/pardevice */

 led_class = class_create(THIS_MODULE, "pardevice");
 if (IS_ERR(led_class)) printk("Bad class create\n");

 /* Create the led class device - /sys/class/pardevice/led/ */

 c_d = class_device_create(led_class, NULL, dev_number,
 NULL, DEVICE_NAME);

 /* Register this driver with parport */
 if (parport_register_driver(&led_driver)) {
 printk(KERN_ERR "Bad Parport Register\n");
 return -EIO;
 }

 /* Instantiate a kobject to control each LED
 on the board */

 /* Parent is /sys/class/pardevice/led/ */

 kobj.parent = &c_d->kobj;
 /* The sysfs file corresponding to kobj is
 /sys/class/pardevice/led/control/ */

 strlcpy(kobj.name, "control", KOBJ_NAME_LEN);

 /* Description of the kobject. Specifies the list of attribute

 files in /sys/class/pardevice/led/control/ */

 kobj.ktype = &ktype_led;

 /* Register the kobject */
 kobject_register(&kobj);

 printk("LED Driver Initialized.\n");
 return 0;
}

/* Driver Exit */
void
led_cleanup(void)
{
 /* Unregister kobject corresponding to
 /sys/class/pardevice/led/control */

 kobject_unregister(&kobj);

 /* Destroy class device corresponding to
 /sys/class/pardevice/led/ */

 class_device_destroy(led_class, MKDEV(MAJOR(dev_number), 0));

 /* Destroy /sys/class/pardevice */

 class_destroy(led_class);

 return;
}

module_init(led_init);
module_exit(led_cleanup);

MODULE_LICENSE("GPL");

The m acro definit ion of glow_show_led() in List ing 5.7 uses a technique popular in kernel source files to
com pact ly define several sim ilar funct ions. The definit ion produces read() and write() m ethods (called show()
and store() in sysfs term inology) at tached to eight / sys files, one per LED on the board. Thus,
glow_show_led(0) at taches glow_led_0() and show_led_0() to the / sys file corresponding to the first LED.
These funct ions are respect ively responsible for glowing/ ext inguishing the first LED and reading its status. ##
glues a value to a st r ing, so glow_led_##number t ranslates to glow_led_0() when the com piler processes the
statem ent , glow_show_led(0) .

This sysfs-aware version of the dr iver uses a kobject to represent a "cont rol" abst ract ion, which em ulates a
software knob to cont rol the LEDs. Each kobject is represented by a directory nam e in sysfs, so
kobject_register() in List ing 5.7 results in the creat ion of the / sys/ class/ pardevice/ led/ cont rol/ directory.

A ktype describes a kobject . The "cont rol" kobject is described via the ktype_led st ructure, which contains a
pointer to the at t r ibute array, led_attrs[] . This array contains the addresses of the device at t r ibutes of each
LED. The at t r ibutes of each LED are t ied together by the statem ent :

static struct led_attr led##number =
__ATTR(led##number, 0644, show_led_##number, glow_led_##number);

This results in instant iat ing the cont rol file for each LED, / sys/ class/ pardevice/ led/ cont rol/ ledX, where X is the
LED num ber. To change the state of ledX, echo a 1 (or a 0) to the corresponding cont rol file. To glow the first
LED on the board, do this:

bash> echo 1 > /sys/class/pardevice/led/control/led0

During m odule exit , the dr iver unregisters the kobjects and classes using kobject_unregister() ,
class_device_destroy() , and class_destroy() .

List ing 7.2 in Chapter 7 , " I nput Drivers," uses another route to create files in sysfs.

Writ ing a char dr iver is no longer as sim ple as it used to be in the days of the 2.4 kernel. To develop the sim ple
LED driver above, we used half a dozen abst ract ions: cdev, sysfs, kobjects, classes, class device, and parport .
The abst ract ions, however, br ing several advantages to the table such as bug- free building blocks, code reuse,
and elegant design.

RTC Subsystem

RTC support in the kernel is architected into two layers: a hardware- independent top- layer char dr iver that
im plem ents the kernel RTC API , and a hardware-dependent bot tom - layer dr iver that com m unicates with the
underlying bus. The RTC API , specified in Docum entat ion/ rtc.txt , is a set of standard ioct ls that conform ing
applicat ions such as hwclock leverage by operat ing on / dev/ rtc. The API also specifies at t r ibutes in sysfs
(/ sys/ class/ rtc/) and procfs (/ proc/ dr iver/ r tc) . The RTC API guarantees that user space tools are independent of
the underlying plat form and the RTC chip. The bot tom - layer RTC driver is bus-specific. The em bedded device
discussed in the sect ion "Device Exam ple: Real Tim e Clock" in Chapter 8 , "The I nter- I ntegrated Circuit
Protocol," has an RTC chip connected to the I 2C bus, which is dr iven by an I 2C client dr iver.

The kernel has a dedicated RTC subsystem that provides the top- layer char dr iver and a core infrast ructure that
bot tom - layer RTC drivers can use to t ie in with the top layer. The m ain com ponents of this infrast ructure are the
rtc_class_ops st ructure and the regist rat ion funct ions, rtc_device_[register|unregister]() . Bot tom - layer
RTC drivers scat tered under different bus-specific director ies are being unified with this subsystem under
drivers/ rtc/ .

The RTC subsystem allows the possibilit y that a system can have m ore than one RTC. I t does this by export ing
m ult iple interfaces, / dev/ rtcN and / sys/ class/ rtc/ r tcN, where N is the num ber of RTCs on your system . Som e
em bedded system s, for exam ple, have two RTCs: one built in to the m icrocont roller to support sophist icated
operat ions such as periodic interrupt generat ion, and another no- fr ills low-power bat tery-backed external RTC
for t im ekeeping. Because RTC-aware applicat ions operate over / dev/ rtc, set up a sym bolic link so that one of
the created / dev/ rtcX nodes can be accessed as / dev/ rtc.

To enable the RTC subsystem , turn on CONFIG_RTC_CLASS during kernel configurat ion.

The Legacy PC RTC Driver

On PC system s, you have the opt ion of bypassing the RTC subsystem by using the legacy RTC
driver, dr ivers/ char/ r tc.c. This dr iver provides top and bot tom layers for the RTC on PC-com pat ible
system s and exports / dev/ rtc and / proc/ dr iver/ r tc to user applicat ions. To enable this dr iver, turn
on CONFIG_RTC during kernel configurat ion.

Pseudo Char Dr ivers

Several com m only used kernel facilit ies are not connected with any physical hardware, and these are elegant ly
im plem ented as char devices. The null sink, the perpetual zero source, and the kernel random num ber
generator are t reated as vir tual devices and are accessed using pseudo char device dr ivers.

The / dev/ null char device sinks data that you don't want to display on your screen. So if you need to check out
source files from a Concurrent Versioning System (CVS) repository without spewing filenam es all over the
screen, do this:

bash> cvs co kernel > /dev/null

This redirects com m and output to the write ent ry point belonging to the / dev/ null dr iver. The driver 's read()
and write() m ethods sim ply return success ignoring the contents of the input and output buffers, respect ively.

I f you want to fill an im age file with zeros, call upon / dev/ zero to com e to your service:

bash> dd if=/dev/zero of=file.img bs=1024 count=1024

This sources a st ream of zeros from the read() m ethod belonging to the / dev/ zero dr iver. The driver has no
write() m ethod.

The kernel has a built - in random num ber generator. For the benefit of kernel users who desire to use random
sequences, the random num ber generator exports API s such as get_random_bytes() . For user m ode program s,
it exports two char interfaces: / dev/ random and / dev/ urandom . The quality of random ness is higher for reads
from / dev/ random com pared to that from / dev/ urandom . When a user program reads from / dev/ random , it gets
st rong (or t rue) random num bers, but reads from / dev/ urandom yield pseudo random num bers. The
/ dev/ random driver does not use form ulae to generate st rong random num bers. I nstead, it gathers
"environm ental noise" (interval between interrupts, key clicks, and so on) for m aintaining a reservoir of disorder
(called an ent ropy pool) that seeds the random st ream . To see the kernel's input subsystem (discussed in
Chapter 7) cont r ibut ing to the ent ropy pool when it detects a keyboard press or m ouse m ovem ent , look at
input_event() defined in dr ivers/ input / input .c:

void
input_event(struct input_dev *dev, unsigned int type,
 unsigned int code, int value)
{
 /* ... */
 add_input_randomness(type, code, value); /* Contribute to entropy
 pool */
 /* ... */
}

To see how the core interrupt handling layer cont r ibutes inter- interrupt periods to the ent ropy pool, look at
handle_IRQ_event() defined in kernel/ irq/ handle.c:

irqreturn_t handle_IRQ_event(unsigned int irq,
 struct irqaction *action)
{
 /* ... */
 if (status & IRQF_SAMPLE_RANDOM)

 add_interrupt_randomness(irq); /* Contribute to entropy pool */
 /* ... */
}

The generat ion of st rongly random num bers depends on the size of the ent ropy pool:

bash> od –x /dev/random

0000000 7331 9028 7c89 4791 7f64 3deb 86b3 7564
0000020 ebb9 e806 221a b8f9 af12 cb30 9a0e cc28
0000040 68d8 0bbf 68a4 0898 528e 1557 d8b3 57ec
0000060 b01d 8714 b1e1 19b9 0a86 9f60 646c c269

The output stops after a few lines, signaling that the ent ropy pool is exhausted. To replenish the ent ropy pool
and restart the random st ream , jab the keyboard several t im es after switching to an unused term inal or push
the m ouse around the screen.

A dum p of / dev/ urandom , however, produces a cont inuous pseudo random st ream that never stops.

/ dev/ m em and / dev/ km em are classic pseudo char devices that are tools that let you peek inside system
m em ory. These char nodes export raw interfaces connected to physical m em ory and kernel vir tual m em ory,
respect ively. To m anipulate system m em ory, you m ay mmap() these nodes and operate on the returned regions.
As an exercise, change the hostnam e of your system by accessing / dev/ m em.

All the char devices discussed in this sect ion (null, zero, random , urandom , m em , and km em) have different
m inor num bers but the sam e stat ically assigned m ajor num ber, 1. Look at dr ivers/ char/ m em .c and
drivers/ char/ random .c for their im plem entat ion. Two other pseudo drivers belong to the sam e m ajor num ber
fam ily: / dev/ full, which em ulates an always full device; and / dev/ port , which peeks at system I / O ports. We use
the lat ter in Chapter 19.

Misc Dr ivers

Misc (or m iscellaneous) dr ivers are sim ple char dr ivers that share certain com m on character ist ics. The kernel
abst racts these com m onalit ies into an API (im plem ented in dr ivers/ char/ m isc.c) , and this sim plifies the way
these drivers are init ialized. All m isc devices are assigned a m ajor num ber of 10, but each can choose a single
m inor num ber. So, if a char dr iver needs to dr ive mult iple devices as in the CMOS exam ple discussed earlier, it 's
probably not a candidate for being a m isc dr iver.

Consider the sequence of init ializat ion steps that a char dr iver perform s:

Allocates m ajor/ m inor num bers via alloc_chrdev_region() and fr iends

Creates / dev and / sys nodes using class_device_create()

Registers itself as a char dr iver using cdev_init() and cdev_add()

A m isc dr iver accom plishes all this with a single call to misc_register() :

static struct miscdevice mydrv_dev = {
 MYDRV_MINOR,
 "mydrv",
 &mydrv_fops
};

misc_register(&mydrv_dev);

I n the preceding exam ple, MYDRV_MINOR is the m inor num ber that you want to stat ically assign to your m isc
driver. You m ay also request a m inor num ber to be dynam ically assigned by specifying MISC_DYNAMIC_MINOR
rather than MYDRV_MINOR in the mydrv_dev st ructure.

Each m isc dr iver autom at ically appears under / sys/ class/ m isc/ without explicit effort from the dr iver writer.
Because m isc dr ivers are char dr ivers, the earlier discussion on char dr iver ent ry points hold for m isc dr ivers,
too. Let 's now look at an exam ple m isc dr iver.

Device Exam ple: W atchdog Tim er

A watchdog's funct ion is to return an unresponsive system to operat ional state. I t does this by periodically
checking the system 's pulse and issuing a reset[4] if it can't detect any. Applicat ion software is responsible for
register ing this pulse (or "heartbeat ") by periodically st robing (or "pet t ing") the watchdog using the services of
a watchdog device dr iver. Most em bedded cont rollers support internal watchdog m odules. External watchdog
chips are also available. An exam ple is the Netwinder W83977AF chip.

[4] A watchdog m ay issue audible beeps rather than a system reset . An exam ple scenario is when a t im eout occurs due to a power supply
problem , assum ing that the watchdog circuit is backed up using a bat tery or a super capacitor.

Linux watchdog drivers are im plem ented as m isc dr ivers and live inside dr ivers/ char/ watchdog/ . Watchdog
drivers, like RTC drivers, export a standard device interface to user land, so conform ing applicat ions are
rendered independent of the internals of watchdog hardware. This API is specified in
Docum entat ion/ watchdog/ watchdog-api.txt in the kernel source t ree. Program s that desire the services of a

watchdog operate on / dev/ watchdog, a device node having a m isc m inor num ber of 130.

List ing 5.9 im plem ents a device dr iver for a fict it ious watchdog m odule built in to an em bedded cont roller. The
exam ple watchdog contains two m ain registers as shown in Table 5.2: a service register
(WD_SERVICE_REGISTER) and a cont rol register (WD_CONTROL_REGISTER) . To pet the watchdog, the dr iver writes
a specific sequence (0xABCD in this case) to the service register. To program watchdog t im eout , the dr iver
writes to specified bit posit ions in the cont rol register.

Table 5 .2 . Register Layout on the W atchdog Module

Register Nam e Descr ipt ion

WD_SERVICE_REGISTER Write a specific sequence to this register to pet the
watchdog.

WD_CONTROL_REGISTER Write the watchdog t im eout to this register.

St robing the watchdog is usually done from user space because the goal of having a watchdog is to detect and
respond to both applicat ion and kernel hangs. A cr it ical applicat ion [5] such as the graphics engine in List ing 5.10
opens the watchdog driver in List ing 5.9 and periodically writes to it . I f no write occurs within the watchdog
t im eout due to an applicat ion hang or a kernel crash, the watchdog t r iggers a system reset . I n the case of
List ing 5.10, the watchdog will reboot the system if

[5] I f you need to m onitor the health of several applicat ions, you m ay im plem ent a m ult iplexer in the watchdog device dr iver. I f any one of the
processes that open the dr iver becom es unresponsive, the watchdog at tem pts to self-correct the system .

The applicat ion hangs inside process_graphics()

The kernel, and consequent ly the applicat ion, dies

The watchdog starts t icking when an applicat ion opens / dev/ watchdog. Closing this device node stops the
watchdog unless you set CONFIG_WATCHDOG_NOWAYOUT during kernel configurat ion. Set t ing this opt ion helps you
t ide over the possibilit y that the watchdog m onitor ing process (such as List ing 5.10) gets killed by a signal while
the system cont inues running.

List ing 5 .9 . An Exam ple W atchdog Dr iver

Code View:
#include <linux/miscdevice.h>
#include <linux/watchdog.h>

#define DEFAULT_WATCHDOG_TIMEOUT 10 /* 10-second timeout */
#define TIMEOUT_SHIFT 5 /* To get to the timeout field
 in WD_CONTROL_REGISTER */
#define WENABLE_SHIFT 3 /* To get to the
 watchdog-enable field in
 WD_CONTROL_REGISTER */

/* Misc structure */
static struct miscdevice my_wdt_dev = {
 .minor = WATCHDOG_MINOR, /* defined as 130 in
 include/linux/miscdevice.h */

 .name = "watchdog", /* /dev/watchdog */

 .fops = &my_wdt_dog /* Watchdog driver entry points */
};

/* Driver methods */
struct file_operations my_wdt_dog = {
.owner = THIS_MODULE,
.open = my_wdt_open,
.release = my_wdt_close,
.write = my_wdt_write,
.ioctl = my_wdt_ioctl
}

/* Module Initialization */
static int __init
my_wdt_init(void)
{
 /* ... */
 misc_register(&my_wdt_dev);
 /* ... */
}
/* Open watchdog */
static void
my_wdt_open(struct inode *inode, struct file *file)
{
 /* Set the timeout and enable the watchdog */
 WD_CONTROL_REGISTER |= DEFAULT_WATCHDOG_TIMEOUT << TIMEOUT_SHIFT;
 WD_CONTROL_REGISTER |= 1 << WENABLE_SHIFT;
}

/* Close watchdog */
static int
my_wdt_close(struct inode *inode, struct file *file)
{
 /* If CONFIG_WATCHDOG_NOWAYOUT is chosen during kernel
 configuration, do not disable the watchdog even if the
 application desires to close it */
#ifndef CONFIG_WATCHDOG_NOWAYOUT
 /* Disable watchdog */
 WD_CONTROL_REGISTER &= ~(1 << WENABLE_SHIFT);
#endif
 return 0;
}

/* Pet the dog */
static ssize_t
my_wdt_write(struct file *file, const char *data,
 size_t len, loff_t *ppose)
{
 /* Pet the dog by writing a specified sequence of bytes to the
 watchdog service register */
 WD_SERVICE_REGISTER = 0xABCD;
}

/* Ioctl method. Look at Documentation/watchdog/watchdog-api.txt

 for the full list of ioctl commands. This is standard across
 watchdog drivers, so conforming applications are rendered
 hardware-independent */
static int

my_wdt_ioctl(struct inode *inode, struct file *file,
 unsigned int cmd, unsigned long arg)
{
 /* ... */
 switch (cmd) {
 case WDIOC_KEEPALIVE:
 /* Write to the watchdog. Applications can invoke
 this ioctl instead of writing to the device */
 WD_SERVICE_REGISTER = 0xABCD;
 break;
 case WDIOC_SETTIMEOUT:
 copy_from_user(&timeout, (int *)arg, sizeof(int));

 /* Set the timeout that defines unresponsiveness by
 writing to the watchdog control register */
 WD_CONTROL_REGISTER = timeout << TIMEOUT_BITS;
 break;
 case WDIOC_GETTIMEOUT:
 /* Get the currently set timeout from the watchdog */
 /* ... */
 break;
 default:
 return –ENOTTY;
 }
}

/* Module Exit */
static void __exit
my_wdt_exit(void)
{
 /* ... */
 misc_deregister(&my_wdt_dev);
 /* ... */
}

module_init(my_wdt_init);
module_exit(my_wdt_exit);

List ing 5 .1 0 . A W atchdog User

#include <fcntl.h>
#include <asm/types.h>
#include <linux/watchdog.h>

int
main()
{
 int new_timeout;

 int wfd = open("/dev/watchdog", O_WRONLY);

 /* Set the watchdog timeout to 20 seconds */
 new_timeout = 20;
 ioctl(fd, WDIOC_SETTIMEOUT, &new_timeout);

 while (1) {
 /* Graphics processing */
 process_graphics();
 /* Pet the watchdog */
 ioctl(fd, WDIOC_KEEPALIVE, 0);
 /* Or instead do: write(wfd, "\0", 1); */
 fsync(wfd);
 }
}

External Watchdogs

To ensure that the system at tem pts to recover even in the face of processor failures, som e
regulatory bodies st ipulate the use of an external watchdog chip, even if the m ain processor has a
sophist icated built - in watchdog m odule such as the one in our exam ple. Because of this
requirem ent , em bedded devices som et im es use an inexpensive no- fr ill watchdog chip (such as
MAX6730 from Maxim) that is based on sim ple hard-wired logic rather than a register interface.
The watchdog asserts a reset pin if no voltage pulse is detected on an input pin within a fixed
reset t im eout . The reset pin is connected to the reset logic of the processor, and the input pin is
wired to a processor GPI O port . All that software has to do to prevent reset is to periodically pulse
the watchdog's input pin within the chip's reset t im eout . I f you are writ ing a dr iver for such a
device, the ioctl() m ethod is not relevant . The driver 's write() m ethod pulses the watchdog's
input pin whenever applicat ion software writes to the associated device node. To aid
m anufactur ing and field diagnost ics, the watchdog is wired such that it can be disabled by wiggling
a processor GPI O pin.

Such chips usually allow a large init ial t im eout to account for boot t im e, followed by shorter reset
t im eouts.

For plat form s that do not support a hardware watchdog m odule, the kernel im plem ents a software watchdog,
also called a softdog. The softdog driver, dr ivers/ char/ watchdog/ softdog.c, is a pseudo m isc dr iver because it
does not operate on real hardware. The softdog driver has to perform two tasks that a watchdog driver doesn't
have to do, which the lat ter accom plishes in hardware:

I m plem ent a t im eout m echanism

I nit iate a soft reboot if the system isn't healthy

This is done by delaying the execut ion of a t im er handler whenever an applicat ion writes to the softdog. I f no
write occurs to the softdog within a t im eout , the t im er handler fires and reboots the system .

A related support in 2.6 kernels is the sensing of soft lockups, which are instances when scheduling does not
occur for 10 or m ore seconds. A kernel thread watchdog/ N, where N is the CPU num ber, touches a per-CPU
t im estam p every second. I f the thread doesn't touch the t im estam p for m ore than 10 seconds, the system is
deem ed to have locked up. Soft lockup detect ion (implem ented in kernel/ soft lockup.c) will aid us while
debugging a kernel crash in the sect ion "Kdum p" in Chapter 21, "Debugging Device Drivers."

There are several m ore m isc dr ivers in the kernel. The Qt ronix infrared keyboard dr iver, dr ivers/ char/ qt ronix.c,
is another exam ple of a char dr iver that has a m isc form factor. Do a grep on misc_register() in the
drivers/ char/ directory to find other m isc device dr ivers present in the kernel.

Character Caveats

Driver m ethods, and, hence, the associated system calls issued by user applicat ions, m ay fail or part ially
succeed. Your applicat ion has to factor this in to avoid unpleasant surprises. Let 's look at som e com mon pit falls:

An open() call m ay fail for several reasons. Som e char dr ivers support only a single user at a t im e, so
they fail with -EBUSY if an applicat ion at tem pts to open a device that is already in use. I f a pr inter is out of
paper, the dr iver fails with -ENOSPC if you issue a device open() .

A successful read() or write() can return anything between 1 byte and the num ber of bytes requested,
so your applicat ion needs sufficient logic to handle this.

A select() call returns success even if a single byte of data is ready to be read or writ ten.

Som e char devices such as m ice and touch screens are input -only, so their dr ivers will not support the
write m ethod fam ily (write()/aio_write()/fsync()) . Other devices such as pr inters are output -only,
and their dr ivers will not support the read m ethod fam ily (read()/aio_read()) . Also, m any char dr iver
m ethods are opt ional, so all m ethods will not be present in all dr ivers. When a m ethod is absent , the
corresponding system call fails.

Look ing at the Sources

Char dr ivers do not exclusively live in the dr ivers/ char/ directory. Here are som e exam ples of "super" char
drivers that m erit special t reatm ent and director ies:

Serial dr ivers are char dr ivers that m anage your com puter 's serial port . However, they are m uch m ore
than sim ple char dr ivers and reside separately in the dr ivers/ serial/ directory. The next chapter discusses
serial dr ivers.

I nput dr ivers are responsible for devices such as keyboards, m ice, and joyst icks. They live in a separate
source directory, dr ivers/ input / and, hence, get a dist inct chapter, Chapter 7 .

Fram e buffers (/ dev/ fb/ *) offer access to video m em ory, the way / dev/ m em exports access to system
m em ory. Chapter 12, "Video Drivers," looks at fram e buffer dr ivers.

Som e device classes support a m inority of hardware possessing a char interface. For exam ple, SCSI
devices are generally block devices, but a SCSI tape is a char device.

Som e subsystem s export addit ional char interfaces that present a raw device m odel to user space. The
MTD subsystem is generally used for em ulat ing a disk on top of diverse types of flash m em ory, but som e
applicat ions m ight be bet ter served if they are provided with a raw view of the underlying flash m em ory.
This is done by the MTD char dr iver, dr ivers/ m td/ m tdchar.c, which is discussed in Chapter 17, "Mem ory
Technology Devices."

Certain kernel layers provide hooks for im plem ent ing user-space device dr ivers by export ing suitable char
interfaces. Applicat ions can direct ly access the innards of the device via these interfaces. One exam ple is
the generic SCSI dr iver dr ivers/ scsi/ sg.c used to im plem ent user space device dr ivers for SCSI scanners
and CD drives. Another exam ple is the I 2C device interface, i2c-dev. Such char interfaces are explained in
Chapter 19.

Meanwhile, run a grep -r on register_chrdev in the dr ivers/ directory to get an idea of the popular ity of char
drivers in the kernel.

Table 5.3 contains a sum m ary of the m ain data st ructures used in this chapter and the locat ion of their
definit ions in the source t ree. Table 5.4 lists the m ain kernel program m ing interfaces that you used in this
chapter along with the locat ion of their definit ions.

Table 5 .3 . Sum m ary of Data St ructures

Data St ructure Locat ion Descr ipt ion

cdev include/ linux/ cdev.h Kernel abst ract ion of a char device

file_operations include/ linux/ fs.h Char dr iver m ethods

dev_t include/ linux/ types.h Device m ajor/ m inor num bers

Data St ructure Locat ion Descr ipt ion

poll_table include/ linux/ poll.h A table of wait queues owned by dr ivers
that are being polled for data

pardevice include/ linux/ parport .h Kernel abst ract ion of a parallel port
dev ice

rtc_class_ops include/ linux/ rtc.h Com m unicat ion interface between top
layer and bot tom layer RTC drivers

miscdevice include/ linux/ m iscdevice.h Representat ion of a m isc device

Table 5 .4 . Sum m ary of Kernel Program m ing I nter faces

Kernel I nter face Locat ion Descr ipt ion

alloc_chrdev_region() fs/ char_dev.c Requests dynam ic allocat ion of a device
m ajor num ber

unregister_chrdev_region() fs/ char_dev.c Reverse of alloc_chrdev_region()

cdev_init() fs/ char_dev.c Connects char dr iver m ethods with the
associated cdev

cdev_add() fs/ char_dev.c Associates a device num ber with a cdev

cdev_del() fs/ char_dev.c Rem oves a cdev

container_of() include/ linux/ kernel.h From a st ructure m em ber, gets the
address of its containing st ructure

copy_from_user() arch/ x86/ lib/ usercopy_32.c
(For i386)

Copies data from user space to kernel
space

copy_to_user() arch/ x86/ lib/ usercopy_32.c
(For i386)

Copies data from kernel space to user
space

likely()
unlikely()

include/ linux/ com piler.h I nform s GCC about the possibilit y of
success of the associated condit ional
evaluat ion

request_region() include/ linux/ ioport .h
kernel/ resource.c

Stakes claim to an I / O region

release_region() include/ linux/ ioport .h
kernel/ resource.c

Relinquishes claim to an I / O region

in[b|w|l|sn|sl]()
out[b|w|l|sn|sl]()

include/ asm -your-arch/ io.h Fam ily of funct ions to exchange data
with I / O regions

poll_wait() include/ linux/ poll.h Adds a wait queue to the kernel
poll_table

fasync_helper() fs/ fcnt l.c Ensures that if a dr iver issues a
kill_fasync() , a SIGIO is dispatched to
the owning applicat ion

Kernel I nter face Locat ion Descr ipt ion

kill_fasync() fs/ fcnt l.c Dispatches a SIGIO to the owning
applicat ion

parport_register_device() drivers/ parport / share.c Registers a parallel port device with
parpor t

parport_unregister_device() drivers/ parport / share.c Unregisters a parallel port device

parport_register_driver() drivers/ parport / share.c Registers a parallel port dr iver with
parpor t

parport_unregister_driver() drivers/ parport / share.c Unregisters a parallel port dr iver

parport_claim_or_block() drivers/ parport / share.c Claim s a parallel port

parport_write_data() include/ linux/ parport .h Writes data to a parallel port

parport_read_data() include/ linux/ parport .h Reads data from a parallel port

parport_release() drivers/ parport / share.c Releases a parallel port

kobject_register() lib/ kobject .c Registers a kobject and creates
associated files in sysfs

kobject_unregister() lib/ kobject .c Reverse of kobject_register()

rtc_device_register()/
rtc_device_unregister()

drivers/ rtc/ class.c Registers/ unregisters a bot tom - layer
driver with the RTC subsystem

misc_register() drivers/ char/ m isc.c Registers a m isc dr iver

misc_deregister() drivers/ char/ m isc.c Unregisters a m isc dr iver

Chapter 6 . Ser ia l Dr ivers

I n This Chapter

Layered Architecture
173

UART Drivers
176

TTY Drivers
192

Line Disciplines
194

Looking at the Sources
205

The serial port is a basic com m unicat ion channel used by a slew of technologies and applicat ions.
A chip known as the Universal Asynchronous Receiver Transm it ter (UART) is com m only used to
im plem ent serial com m unicat ion. On PC-com pat ible hardware, the UART is part of the Super I / O
chipset , as shown in Figure 6.1.

Figure 6 .1 . Connect ion diagram of the PC ser ia l por t .

Though RS-232 com m unicat ion channels are the com m on type of serial hardware, the kernel's
serial subsystem is architected in a generic m anner to serve diverse users. You will touch the
serial subsystem if you

Run a term inal session over an RS-232 serial link

Connect to the I nternet via a dialup, cellular, or software m odem

I nterface with devices such as touch cont rollers, sm art cards, Bluetooth chips, or I nfrared
dongles, which use a serial t ransport

Em ulate a serial port using a USB- to-serial converter

Com m unicate over an RS-485 link, which is a m ult idrop variant of RS-232 that has larger
range and bet ter noise im m unity

I n this chapter, let 's find out how the kernel st ructures the serial subsystem . We will use the
exam ple of a Linux cell phone to learn about low- level UART drivers and the exam ple of a serial
touch cont roller to discover the im plem entat ion details of higher- level line disciplines.

The UART usually found on PCs is Nat ional Sem iconductor 's 16550, or com pat ible chips from other
vendors, so you will find references to "16550- type UART" in code and docum entat ion. The 8250 chip is
the predecessor of the 16550, so the Linux dr iver for PC UARTs is nam ed 8250.c.

Layered Architecture

As you just saw, the users of the serial subsystem are m any and different . This has m ot ivated kernel developers
to st ructure a layered serial architecture using the following building blocks:

Low- level dr ivers that worry about the internals of the UART or other underlying serial hardware.1 .

A t ty dr iver layer that interfaces with the low- level dr iver. A t ty dr iver insulates higher layers from the
int r icacies of the hardware.

2 .

Line disciplines that "cook" data exchanged with the t ty dr iver. Line disciplines shape the behavior of the
serial layer and help reuse lower layers to support different technologies.

3 .

To help custom driver im plem entat ions, the serial subsystem also provides core API s that factor com m onalit ies
out of these layers.

Figure 6.2 shows the connect ion between the layers. N_TTY, N_IRDA, and N_PPP are drop- in line disciplines that
m old the serial subsystem to respect ively support term inals, I nfrared, and dialup networking. Figure 6.3 m aps
the serial subsystem to kernel source files.

Figure 6 .2 . Connect ion betw een the layers in the se r ia l subsystem .

Figure 6 .3 . Ser ia l layers m apped to kernel sources.

[View full size im age]

To illust rate the advantages of a layered serial architecture, let 's use an exam ple. Assum e that you are using a
USB- to-serial adapter to obtain serial capabilit ies on a laptop that does not have a serial port . One possible
scenario is when you are debugging the kernel on a target em bedded device from a host laptop using kgdb
(kgdb is discussed in Chapter 21, "Debugging Device Drivers") , as shown in Figure 6.4.

Figure 6 .4 . Using a USB- to- ser ia l conver ter .

As shown in Figure 6.3, you first need a suitable USB physical layer dr iver (the USB counterpart of the UART
driver) on your host laptop. This is present in the kernel USB subsystem , dr ivers/ usb/ . Next , you need a t ty
driver to sit on top of the USB physical layer. The usbserial dr iver (dr ivers/ usb/ serial/ usb-serial.c) is the core
layer that im plem ents a generic t ty over USB-serial converters. This dr iver, in tandem with device-specific t ty
m ethods registered by the converter dr iver (dr ivers/ usb/ serial/ keyspan.c if you are using a Keyspan adapter, for
exam ple) , const itutes the t ty layer. Last , but not the least , you need the N_TTY line discipline for term inal I / O
processing.

The t ty dr iver insulates the line discipline and higher layers from the internals of USB. I n fact , the line discipline
st ill thinks it 's running over a convent ional UART. This is so because the t ty dr iver pulls data from USB Request
Blocks or URBs (discussed in Chapter 11, "Universal Serial Bus") and encapsulates it in the form at expected by
the N_TTY line discipline. The layered architecture thus renders the im plem entat ion sim pler—all blocks from the
line discipline upward can be reused unchanged.

The preceding exam ple uses a technology-specific t ty dr iver and a generic line discipline. The reverse usage is
also com m on. The I nfrared stack, discussed in Chapter 16, "Linux Without Wires," uses a generic t ty dr iver and
a technology-specific line discipline called N_IRDA.

As you m ight have not iced in Figure 6.2 and Figure 6.3, although UART drivers are char dr ivers, they do not
direct ly expose interfaces to kernel system calls like regular char dr ivers that we saw in the preceding chapter.
Rather, UART drivers (like keyboard dr ivers discussed in the next chapter) service another kernel layer, the t ty
layer. I / O system calls start their journey above top- level line disciplines and finally r ipple down to UART drivers
through the t ty layer.

I n the rest of this chapter, let 's take a closer look at the different dr iver com ponents of the serial layer. We start
at the bot tom of the serial stack with low- level UART drivers, m ove on to m iddle- level t ty dr ivers, and then
proceed to top- level line discipline dr ivers.

Chapter 6 . Ser ia l Dr ivers

I n This Chapter

Layered Architecture
173

UART Drivers
176

TTY Drivers
192

Line Disciplines
194

Looking at the Sources
205

The serial port is a basic com m unicat ion channel used by a slew of technologies and applicat ions.
A chip known as the Universal Asynchronous Receiver Transm it ter (UART) is com m only used to
im plem ent serial com m unicat ion. On PC-com pat ible hardware, the UART is part of the Super I / O
chipset , as shown in Figure 6.1.

Figure 6 .1 . Connect ion diagram of the PC ser ia l por t .

Though RS-232 com m unicat ion channels are the com m on type of serial hardware, the kernel's
serial subsystem is architected in a generic m anner to serve diverse users. You will touch the
serial subsystem if you

Run a term inal session over an RS-232 serial link

Connect to the I nternet via a dialup, cellular, or software m odem

I nterface with devices such as touch cont rollers, sm art cards, Bluetooth chips, or I nfrared
dongles, which use a serial t ransport

Em ulate a serial port using a USB- to-serial converter

Com m unicate over an RS-485 link, which is a m ult idrop variant of RS-232 that has larger
range and bet ter noise im m unity

I n this chapter, let 's find out how the kernel st ructures the serial subsystem . We will use the
exam ple of a Linux cell phone to learn about low- level UART drivers and the exam ple of a serial
touch cont roller to discover the im plem entat ion details of higher- level line disciplines.

The UART usually found on PCs is Nat ional Sem iconductor 's 16550, or com pat ible chips from other
vendors, so you will find references to "16550- type UART" in code and docum entat ion. The 8250 chip is
the predecessor of the 16550, so the Linux dr iver for PC UARTs is nam ed 8250.c.

Layered Architecture

As you just saw, the users of the serial subsystem are m any and different . This has m ot ivated kernel developers
to st ructure a layered serial architecture using the following building blocks:

Low- level dr ivers that worry about the internals of the UART or other underlying serial hardware.1 .

A t ty dr iver layer that interfaces with the low- level dr iver. A t ty dr iver insulates higher layers from the
int r icacies of the hardware.

2 .

Line disciplines that "cook" data exchanged with the t ty dr iver. Line disciplines shape the behavior of the
serial layer and help reuse lower layers to support different technologies.

3 .

To help custom driver im plem entat ions, the serial subsystem also provides core API s that factor com m onalit ies
out of these layers.

Figure 6.2 shows the connect ion between the layers. N_TTY, N_IRDA, and N_PPP are drop- in line disciplines that
m old the serial subsystem to respect ively support term inals, I nfrared, and dialup networking. Figure 6.3 m aps
the serial subsystem to kernel source files.

Figure 6 .2 . Connect ion betw een the layers in the se r ia l subsystem .

Figure 6 .3 . Ser ia l layers m apped to kernel sources.

[View full size im age]

To illust rate the advantages of a layered serial architecture, let 's use an exam ple. Assum e that you are using a
USB- to-serial adapter to obtain serial capabilit ies on a laptop that does not have a serial port . One possible
scenario is when you are debugging the kernel on a target em bedded device from a host laptop using kgdb
(kgdb is discussed in Chapter 21, "Debugging Device Drivers") , as shown in Figure 6.4.

Figure 6 .4 . Using a USB- to- ser ia l conver ter .

As shown in Figure 6.3, you first need a suitable USB physical layer dr iver (the USB counterpart of the UART
driver) on your host laptop. This is present in the kernel USB subsystem , dr ivers/ usb/ . Next , you need a t ty
driver to sit on top of the USB physical layer. The usbserial dr iver (dr ivers/ usb/ serial/ usb-serial.c) is the core
layer that im plem ents a generic t ty over USB-serial converters. This dr iver, in tandem with device-specific t ty
m ethods registered by the converter dr iver (dr ivers/ usb/ serial/ keyspan.c if you are using a Keyspan adapter, for
exam ple) , const itutes the t ty layer. Last , but not the least , you need the N_TTY line discipline for term inal I / O
processing.

The t ty dr iver insulates the line discipline and higher layers from the internals of USB. I n fact , the line discipline
st ill thinks it 's running over a convent ional UART. This is so because the t ty dr iver pulls data from USB Request
Blocks or URBs (discussed in Chapter 11, "Universal Serial Bus") and encapsulates it in the form at expected by
the N_TTY line discipline. The layered architecture thus renders the im plem entat ion sim pler—all blocks from the
line discipline upward can be reused unchanged.

The preceding exam ple uses a technology-specific t ty dr iver and a generic line discipline. The reverse usage is
also com m on. The I nfrared stack, discussed in Chapter 16, "Linux Without Wires," uses a generic t ty dr iver and
a technology-specific line discipline called N_IRDA.

As you m ight have not iced in Figure 6.2 and Figure 6.3, although UART drivers are char dr ivers, they do not
direct ly expose interfaces to kernel system calls like regular char dr ivers that we saw in the preceding chapter.
Rather, UART drivers (like keyboard dr ivers discussed in the next chapter) service another kernel layer, the t ty
layer. I / O system calls start their journey above top- level line disciplines and finally r ipple down to UART drivers
through the t ty layer.

I n the rest of this chapter, let 's take a closer look at the different dr iver com ponents of the serial layer. We start
at the bot tom of the serial stack with low- level UART drivers, m ove on to m iddle- level t ty dr ivers, and then
proceed to top- level line discipline dr ivers.

UART Dr ivers

UART drivers revolve around three key data st ructures. All three are defined in include/ linux/ serial_core.h :

The per-UART driver st ructure, struct uart_driver :

struct uart_driver {
 struct module *owner; /* Module that owns this
 struct */
 const char *driver_name; /* Name */
 const char *dev_name; /* /dev node name

 such as ttyS */

 /* ... */
 int major; /* Major number */
 int minor; /* Minor number */
 /* ... */
 struct tty_driver *tty_driver; /* tty driver */
};

The com m ents against each field explain the associated sem ant ics. The owner field allows the sam e
benefits as that discussed in the previous chapter for the file_operations st ructure.

1 .

struct uart_port . One instance of this st ructure exists for each port owned by the UART driver:

struct uart_port {
 spinlock_t lock; /* port lock */
 unsigned int iobase; /* in/out[bwl]*/
 unsigned char __iomem *membase; /* read/write[bwl]*/
 unsigned int irq; /* irq number */
 unsigned int uartclk; /* base uart clock */
 unsigned char fifosize; /* tx fifo size */
 unsigned char x_char; /* xon/xoff flow
 control */
 /* ... */
};

2 .

struct uart_ops . This is a superset of ent ry points that each UART driver has to support and describes
the operat ions that can be done on physical hardware. The m ethods in this st ructure are invoked by the
t ty layer:

struct uart_ops {
 uint (*tx_empty)(struct uart_port *); /* Is TX FIFO empty? */
 void (*set_mctrl)(struct uart_port *,
 unsigned int mctrl); /* Set modem control params */
 uint (*get_mctrl)(struct uart_port *); /* Get modem control params */
 void (*stop_tx)(struct uart_port *); /* Stop xmission */
 void (*start_tx)(struct uart_port *); /* Start xmission */

 /* ... */
 void (*shutdown)(struct uart_port *); /* Disable the port */

3 .

 void (*set_termios)(struct uart_port *,
 struct termios *new,
 struct termios *old); /* Set terminal interface
 params */
 /* ... */
 void (*config_port)(struct uart_port *,
 int); /* Configure UART port */
 /* ... */
};

There are two im portant steps that a UART driver has to do to t ie itself with the kernel:
1 .
Register with the serial core by calling

uart_register_driver(struct uart_driver *);

2 .
I nvoke uart_add_one_port(struct uart_driver * , struct uart_port *) to register each individual port
that it supports. I f your serial hardware is hotplugged, the ports are registered with the core from the ent ry
point that probes the presence of the device. Look at the CardBus Modem driver in List ing 10.4 in Chapter 10 ,
"Peripheral Com ponent I nterconnect ," for an exam ple where the serial device is plugged hot . Note that som e
drivers use the wrapper regist rat ion funct ion serial8250_register_port(struct uart_port *) , which
internally invokes uart_add_one_port() .

These data st ructures and regist rat ion funct ions const itute the least com m on denom inator present in all UART
drivers. Arm ed with these st ructures and rout ines, let 's develop a sam ple UART driver.

Device Exam ple: Cell Phone

Consider a Linux cell phone built around an em bedded System -on-Chip (SoC) . The SoC has two built - in UARTs,
but as shown in Figure 6.5 , both of them are used up, one for com m unicat ing with a cellular m odem , and the
other for interfacing with a Bluetooth chipset . Because there are no free UARTs for debug purposes, the phone
uses two USB- to-serial converter chips, one to provide a debug term inal to a PC host , and the other to obtain a
spare port . USB- to-serial converters, as you saw earlier in this chapter, let you connect serial devices to your PC
via USB. We discuss m ore on USB- to-serial converters in Chapter 11 .

Figure 6 .5 . USB_UART por ts on a Linux cell phone.

[View full size im age]

The serial sides of the two USB- to-serial converter chips are connected to the SoC via a Com plex Program m able
Logic Device or CPLD (see the sect ion "CPLD/ FPGA " in Chapter 18 , "Em bedding Linux") . The CPLD creates two
virtual UARTs (or USB_UART s) by providing a three- register interface to access each USB- to-serial converter, as
shown in Table 6.1 : a status register, a read-data register, and a write-data register. To write a character to a
USB_UART , loop on a bit in the status register that clears when there is space in the chip's internal t ransm it
first - in first -out (FI FO) m em ory and then write the byte to the write-data register. To read a character, wait
unt il a specified bit in the status register shows presence of data in the receive FI FO and then read from the
read-data register.

UU_STATUS_REGISTER
Bits to check whether the t ransm it FI FO is full or whether the receive FI FO is em pty
0x0
UU_READ_DATA_REGISTER
Read a character from the USB_UART
0x1
UU_WRITE_DATA_REGISTER
Write a character to the USB_UART
0x2

Table 6 .1 . Register Layout of the USB_UART

Register Nam e Descr ipt ion Offset from USB_UART

Mem ory Base

At the PC end, use the appropriate Linux usbserial dr iver (for exam ple, dr ivers/ usb/ ser ial/ ftdi_sio.c if you are
using an FT232AM chip on the cell phone) to create and m anage / dev/ t tyUSBX device nodes that correspond to
the USB-serial ports. You m ay run term inal em ulators such as m inicom over one of these device nodes to obtain
a console or debug term inal from the cell phone. At the cell phone end, we have to im plem ent a UART driver for
the USB_UART s. This dr iver creates and m anages / dev/ t tyUUX nodes that are responsible for com m unicat ion at
the device side of the link.

The cell phone shown in Figure 6.5 can act as an intelligent gateway for Bluetooth devices—to the GSM
network and, hence, to the I nternet . The phone can, for exam ple, ferry data from your Bluetooth blood
pressure m onitor to your health-care provider 's server on the I nternet . Or it can alert a doctor if it
detects a problem while com m unicat ing with your Bluetooth-enabled heart - rate m onitor. The Bluetooth

MP3 player used in Chapter 13 , "Audio Drivers," and the Bluetooth pill dispenser used in Chapter 16 are
also exam ples of devices that can use the Linux cell phone to get I nternet -enabled.

List ing 6.1 im plem ents the USB_UART dr iver. I t 's im plem ented as a plat form driver. A plat form is a pseudo bus
usually used to t ie lightweight devices integrated into SoCs, with the Linux device m odel. A plat form consists of

A plat form device. The architecture-specific setup code adds the plat form device using
platform_device_register() or its sim pler version, platform_device_register_simple() . You m ay
also register m ult iple plat form devices at one shot using platform_add_devices() . The
platform_device st ructure defined in include/ linux/ plat form _device.h represents a plat form device:

struct platform_device {
 const char *name; /* Device Name */
 u32 id; /* Use this field to register multiple
 instances of a platform device. In
 this example, the two USB_UARTs
 have different IDs. */
 struct device dev; /* Contains a release() method and
 platform data */
 /* ... */
};

1 .

A plat form driver. The plat form driver registers itself into the plat form using
platform_driver_register() . The platform_driver st ructure, also defined in
include/ linux/ plat form _device.h , represents a plat form driver:

struct platform_driver {
 int (*probe)(struct platform_device *); /*Probe method*/
 int (*remove)(struct platform_device *);/*Remove method*/
 /* ... */
 /* The name field in the following structure should match
 the name field in the associated platform_device
 structure */
 struct device_driver driver;
};

2 .

See Docum entat ion/ dr iver-m odel/ plat form .txt for m ore on plat form devices and drivers. For sim plicity, our
sam ple dr iver registers both the plat form device and the plat form driver.

During init ializat ion, the USB_UART dr iver first registers itself with the serial core using uart_register_driver()
. When this is done, you will find a new line start ing with usb_uart in / proc/ t ty/ dr ivers . Next , the dr iver
registers two plat form devices (one per USB_UART) using platform_device_register_simple() . As
m ent ioned earlier, plat form device regist rat ions are usually done during boot - t im e board setup. Following this,
the dr iver registers plat form driver ent ry points (probe() , remove() , suspend() , and resume()) using
platform_driver_register() . The USB_UART plat form driver t ies into both the above plat form devices and has
a m atching nam e (usb_uart) . After this step, you will see two new director ies appearing in sysfs, each
corresponding to a USB_UART port : / sys/ devices/ plat form / usb_uart .0/ and / sys/ devices/ plat form / usb_uart .1/ .

Because the Linux device layer now detects a plat form driver m atching the nam e of the registered USB_UART
plat form devices, it invokes the probe() ent ry point [1] (usb_uart_probe()) belonging to the plat form driver,
once for each USB_UART . The probe ent ry point adds the associated USB_UART port using uart_add_one_port()

. This t r iggers invocat ion of the config_port() ent ry point (part of the uart_ops st ructure discussed earlier)
that claim s and m aps the USB_UART register space. I f both USB_UART ports are successfully added, the serial
core em its the following kernel m essages:

[1] Such plat form devices usually cannot be hotplugged. This invocat ion sem ant ics of the probe() m ethod is different from what you will learn
in later chapters for hotpluggable devices such as PCMCI A, PCI , and USB, but the sim ilar st ructure of dr iver ent ry points helps the Linux device
m odel to have a uniform and consistent view of all devices.

ttyUU0 at MMIO 0xe8000000 (irq = 3) is a USB_UART
ttyUU1 at MMIO 0xe9000000 (irq = 4) is a USB_UART

Claim ing the I RQ, however, is deferred unt il an applicat ion opens the USB_UART port . The I RQ is freed when the
applicat ion closes the USB_UART . Table 6.2 t races the dr iver 's code path for claim ing and freeing m em ory
regions and I RQs.

Module I nsert
usb_uart_init()
uart_register_driver()
usb_uart_probe()
uart_add_one_port()
usb_uart_config_port()
request_mem_region()
Module Unload
usb_uart_exit()
usb_unregister_driver()
usb_uart_remove()
uart_remove_one_port()
usb_uart_release_port()
release_mem_region()
Open / dev/ t tyUUX
usb_uart_startup()
request_irq()
Close / dev/ t tyUUX
usb_uart_shutdown()
free_irq()

Table 6 .2 .
Cla im ing

and
Freeing
Mem ory
and I RQ

Resources

I n the t ransm it path, the dr iver collects egress data from the circular buffer associated with the UART port . Data
is present in port->info->xmit.buf[port->info->xmit.tail] as is evident from the UART driver 's
start_tx() ent ry point , usb_uart_start_tx() .

I n the receive path, the dr iver pushes data collected from the USB_UART to the associated t ty dr iver using
tty_insert_flip_char() and tty_flip_buffer_push() . This is done in the receive interrupt handler,
usb_uart_rxint() . Revisit this rout ine after reading the next sect ion, "TTY Drivers ."

List ing 6.1 uses com m ents to explain the purpose of dr iver ent ry points and their operat ion. I t leaves som e of
the ent ry points in the uart_ops st ructure unim plem ented to cut out ext ra detail.

List ing 6 .1 . USB_UART Dr iver for the Linux Cell Phone

Code View:
#include <linux/console.h>
#include <linux/platform_device.h>
#include <linux/tty.h>
#include <linux/tty_flip.h>
#include <linux/serial_core.h>
#include <linux/serial.h>
#include <asm/irq.h>
#include <asm/io.h>

#define USB_UART_MAJOR 200 /* You've to get this assigned */
#define USB_UART_MINOR_START 70 /* Start minor numbering here */
#define USB_UART_PORTS 2 /* The phone has 2 USB_UARTs */
#define PORT_USB_UART 30 /* UART type. Add this to
 include/linux/serial_core.h */

/* Each USB_UART has a 3-byte register set consisting of
 UU_STATUS_REGISTER at offset 0, UU_READ_DATA_REGISTER at
 offset 1, and UU_WRITE_DATA_REGISTER at offset 2 as shown
 in Table 6.1 */
#define USB_UART1_BASE 0xe8000000 /* Memory base for USB_UART1 */
#define USB_UART2_BASE 0xe9000000 /* Memory base for USB_UART2 */
#define USB_UART_REGISTER_SPACE 0x3

/* Semantics of bits in the status register */
#define USB_UART_TX_FULL 0x20 /* TX FIFO is full */
#define USB_UART_RX_EMPTY 0x10 /* TX FIFO is empty */
#define USB_UART_STATUS 0x0F /* Parity/frame/overruns? */

#define USB_UART1_IRQ 3 /* USB_UART1 IRQ */
#define USB_UART2_IRQ 4 /* USB_UART2 IRQ */
#define USB_UART_FIFO_SIZE 32 /* FIFO size */
#define USB_UART_CLK_FREQ 16000000

static struct uart_port usb_uart_port[]; /* Defined later on */

/* Write a character to the USB_UART port */
static void
usb_uart_putc(struct uart_port *port, unsigned char c)
{
 /* Wait until there is space in the TX FIFO of the USB_UART.
 Sense this by looking at the USB_UART_TX_FULL bit in the
 status register */
 while (__raw_readb(port->membase) & USB_UART_TX_FULL);

 /* Write the character to the data port*/
 __raw_writeb(c, (port->membase+1));
}

/* Read a character from the USB_UART */
static unsigned char
usb_uart_getc(struct uart_port *port)
{
 /* Wait until data is available in the RX_FIFO */
 while (__raw_readb(port->membase) & USB_UART_RX_EMPTY);

 /* Obtain the data */

 return(__raw_readb(port->membase+2));
}

/* Obtain USB_UART status */
static unsigned char
usb_uart_status(struct uart_port *port)
{
 return(__raw_readb(port->membase) & USB_UART_STATUS);
}

/*
 * Claim the memory region attached to USB_UART port. Called
 * when the driver adds a USB_UART port via uart_add_one_port().
 */
static int
usb_uart_request_port(struct uart_port *port)
{
 if (!request_mem_region(port->mapbase, USB_UART_REGISTER_SPACE,
 "usb_uart")) {
 return -EBUSY;
 }
 return 0;
}

/* Release the memory region attached to a USB_UART port.
 * Called when the driver removes a USB_UART port via
 * uart_remove_one_port().
 */
static void
usb_uart_release_port(struct uart_port *port)
{
 release_mem_region(port->mapbase, USB_UART_REGISTER_SPACE);
}

/*
 * Configure USB_UART. Called when the driver adds a USB_UART port.
 */
static void
usb_uart_config_port(struct uart_port *port, int flags)
{
 if (flags & UART_CONFIG_TYPE && usb_uart_request_port(port) == 0)
 {
 port->type = PORT_USB_UART;
 }
}

/* Receive interrupt handler */
static irqreturn_t
usb_uart_rxint(int irq, void *dev_id)
{
 struct uart_port *port = (struct uart_port *) dev_id;
 struct tty_struct *tty = port->info->tty;

 unsigned int status, data;
 /* ... */
 do {
 /* ... */
 /* Read data */
 data = usb_uart_getc(port);

 /* Normal, overrun, parity, frame error? */
 status = usb_uart_status(port);
 /* Dispatch to the tty layer */
 tty_insert_flip_char(tty, data, status);
 /* ... */
 } while (more_chars_to_be_read()); /* More chars */
 /* ... */
 tty_flip_buffer_push(tty);

 return IRQ_HANDLED;
}
/* Called when an application opens a USB_UART */
static int
usb_uart_startup(struct uart_port *port)
{
 int retval = 0;
 /* ... */
 /* Request IRQ */
 if ((retval = request_irq(port->irq, usb_uart_rxint, 0,
 "usb_uart", (void *)port))) {
 return retval;
 }
 /* ... */
 return retval;
}

/* Called when an application closes a USB_UART */
static void
usb_uart_shutdown(struct uart_port *port)
{
 /* ... */
 /* Free IRQ */
 free_irq(port->irq, port);

 /* Disable interrupts by writing to appropriate
 registers */
 /* ... */
}

/* Set UART type to USB_UART */
static const char *
usb_uart_type(struct uart_port *port)
{
 return port->type == PORT_USB_UART ? "USB_UART" : NULL;
}

/* Start transmitting bytes */
static void
usb_uart_start_tx(struct uart_port *port)
{
 while (1) {
 /* Get the data from the UART circular buffer and
 write it to the USB_UART's WRITE_DATA register */
 usb_uart_putc(port,
 port->info->xmit.buf[port->info->xmit.tail]);
 /* Adjust the tail of the UART buffer */
 port->info->xmit.tail = (port->info->xmit.tail + 1) &
 (UART_XMIT_SIZE - 1);
 /* Statistics */

 port->icount.tx++;
 /* Finish if no more data available in the UART buffer */
 if (uart_circ_empty(&port->info->xmit)) break;
 }
 /* ... */
}

/* The UART operations structure */
static struct uart_ops usb_uart_ops = {
 .start_tx = usb_uart_start_tx, /* Start transmitting */
 .startup = usb_uart_startup, /* App opens USB_UART */
 .shutdown = usb_uart_shutdown, /* App closes USB_UART */
 .type = usb_uart_type, /* Set UART type */
 .config_port = usb_uart_config_port, /* Configure when driver
 adds a USB_UART port */
 .request_port = usb_uart_request_port,/* Claim resources
 associated with a
 USB_UART port */
 .release_port = usb_uart_release_port,/* Release resources
 associated with a
 USB_UART port */
#if 0 /* Left unimplemented for the USB_UART */
 .tx_empty = usb_uart_tx_empty, /* Transmitter busy? */
 .set_mctrl = usb_uart_set_mctrl, /* Set modem control */
 .get_mctrl = usb_uart_get_mctrl, /* Get modem control
 .stop_tx = usb_uart_stop_tx, /* Stop transmission */
 .stop_rx = usb_uart_stop_rx, /* Stop reception */
 .enable_ms = usb_uart_enable_ms, /* Enable modem status
 signals */
 .set_termios = usb_uart_set_termios, /* Set termios */
#endif
};

static struct uart_driver usb_uart_reg = {
 .owner = THIS_MODULE, /* Owner */
 .driver_name = "usb_uart", /* Driver name */
 .dev_name = "ttyUU", /* Node name */
 .major = USB_UART_MAJOR, /* Major number */
 .minor = USB_UART_MINOR_START, /* Minor number start */
 .nr = USB_UART_PORTS, /* Number of UART ports */
 .cons = &usb_uart_console, /* Pointer to the console
 structure. Discussed in Chapter
 12, "Video Drivers" */
};

/* Called when the platform driver is unregistered */
static int
usb_uart_remove(struct platform_device *dev)
{
 platform_set_drvdata(dev, NULL);

 /* Remove the USB_UART port from the serial core */
 uart_remove_one_port(&usb_uart_reg, &usb_uart_port[dev->id]);
 return 0;
}

/* Suspend power management event */
static int
usb_uart_suspend(struct platform_device *dev, pm_message_t state)

{
 uart_suspend_port(&usb_uart_reg, &usb_uart_port[dev->id]);
 return 0;
}

/* Resume after a previous suspend */
static int
usb_uart_resume(struct platform_device *dev)
{
 uart_resume_port(&usb_uart_reg, &usb_uart_port[dev->id]);
 return 0;
}

/* Parameters of each supported USB_UART port */
static struct uart_port usb_uart_port[] = {
 {
 .mapbase = (unsigned int) USB_UART1_BASE,
 .iotype = UPIO_MEM, /* Memory mapped */
 .irq = USB_UART1_IRQ, /* IRQ */
 .uartclk = USB_UART_CLK_FREQ, /* Clock HZ */
 .fifosize = USB_UART_FIFO_SIZE, /* Size of the FIFO */
 .ops = &usb_uart_ops, /* UART operations */
 .flags = UPF_BOOT_AUTOCONF, /* UART port flag */
 .line = 0, /* UART port number */
 },
 {
 .mapbase = (unsigned int)USB_UART2_BASE,
 .iotype = UPIO_MEM, /* Memory mapped */
 .irq = USB_UART2_IRQ, /* IRQ */
 .uartclk = USB_UART_CLK_FREQ, /* CLock HZ */
 .fifosize = USB_UART_FIFO_SIZE, /* Size of the FIFO */
 .ops = &usb_uart_ops, /* UART operations */
 .flags = UPF_BOOT_AUTOCONF, /* UART port flag */
 .line = 1, /* UART port number */
 }
};

/* Platform driver probe */
static int __init
usb_uart_probe(struct platform_device *dev)
{
 /* ... */

 /* Add a USB_UART port. This function also registers this device
 with the tty layer and triggers invocation of the config_port()
 entry point */
 uart_add_one_port(&usb_uart_reg, &usb_uart_port[dev->id]);
 platform_set_drvdata(dev, &usb_uart_port[dev->id]);
 return 0;
}

struct platform_device *usb_uart_plat_device1; /* Platform device
 for USB_UART 1 */
struct platform_device *usb_uart_plat_device2; /* Platform device
 for USB_UART 2 */

static struct platform_driver usb_uart_driver = {
 .probe = usb_uart_probe, /* Probe method */
 .remove = __exit_p(usb_uart_remove), /* Detach method */

 .suspend = usb_uart_suspend, /* Power suspend */
 .resume = usb_uart_resume, /* Resume after a suspend */
 .driver = {
 .name = "usb_uart", /* Driver name */
 },
};
/* Driver Initialization */
static int __init
usb_uart_init(void)
{
 int retval;

 /* Register the USB_UART driver with the serial core */
 if ((retval = uart_register_driver(&usb_uart_reg))) {
 return retval;
 }

 /* Register platform device for USB_UART 1. Usually called
 during architecture-specific setup */
 usb_uart_plat_device1 =
 platform_device_register_simple("usb_uart", 0, NULL, 0);
 if (IS_ERR(usb_uart_plat_device1)) {
 uart_unregister_driver(&usb_uart_reg);
 return PTR_ERR(usb_uart_plat_device1);
 }

 /* Register platform device for USB_UART 2. Usually called
 during architecture-specific setup */
 usb_uart_plat_device2 =
 platform_device_register_simple("usb_uart", 1, NULL, 0);
 if (IS_ERR(usb_uart_plat_device2)) {
 uart_unregister_driver(&usb_uart_reg);
 platform_device_unregister(usb_uart_plat_device1);
 return PTR_ERR(usb_uart_plat_device2);
 }

 /* Announce a matching driver for the platform
 devices registered above */
 if ((retval = platform_driver_register(&usb_uart_driver))) {
 uart_unregister_driver(&usb_uart_reg);
 platform_device_unregister(usb_uart_plat_device1);
 platform_device_unregister(usb_uart_plat_device2);
 }
 return 0;
}

/* Driver Exit */
static void __exit
usb_uart_exit(void)

{
 /* The order of unregistration is important. Unregistering the
 UART driver before the platform driver will crash the system */

 /* Unregister the platform driver */
 platform_driver_unregister(&usb_uart_driver);

 /* Unregister the platform devices */
 platform_device_unregister(usb_uart_plat_device1);

 platform_device_unregister(usb_uart_plat_device2);

 /* Unregister the USB_UART driver */
 uart_unregister_driver(&usb_uart_reg);
}

module_init(usb_uart_init);
module_exit(usb_uart_exit);

RS- 4 8 5

RS-485 is not a standard PC interface like RS-232, but in the em bedded space, you m ay com e across com puters
that use RS-485 connect ions to reliably com m unicate with cont rol system s. RS-485 uses different ial signals that
let it exchange data over distances of up to a few thousand feet , unlike RS-232 that has a range of only a few
dozen feet . On the processor side, the RS-485 interface is a UART operat ing in half-duplex m ode. So, before
sending data from the t ransm it FI FO to the wire, the UART device dr iver needs to addit ionally enable the RS-
485 t ransm it ter and disable the receiver, possibly by wiggling associated GPI O pins. To obtain data from the
wire to the receive FI FO, the UART driver has to perform the reverse operat ion.

You have to enable/ disable the RS-485 t ransm it ter/ receiver at the r ight places in the serial layer. I f you disable
the t ransm it ter too soon, it m ight not get sufficient t im e to drain the last bytes from the t ransm it FI FO, and this
can result in data t runcat ion. I f you disable the t ransm it ter too late, on the other hand, you prevent data
recept ion for that m uch t im e, which m ight lead to receive data loss.

RS-485 supports m ult idrop, so the higher- layer protocol m ust im plem ent a suitable addressing m echanism if
you have m ult iple devices connected to the bus. RS-485 does not support hardware flow cont rol lines using
Request To Send (RTS) and Clear To Send (CTS) .

TTY Dr ivers

Let 's now take a look at the st ructures and regist rat ion funct ions that lie at the heart of t ty dr ivers. Three
st ructures are im portant for their operat ion:

struct tty_struct defined in include/ linux/ t ty.h. This st ructure contains all state inform at ion associated
with an open t ty. I t 's an enorm ous st ructure, but here are som e im portant fields:

 struct tty_struct {
 int magic; /* Magic marker */
 struct tty_driver *driver; /* Pointer to the tty
 driver */
 struct tty_ldisc ldisc; /* Attached Line
 discipline */
 /* ... */
 struct tty_flip_buffer flip; /* Flip Buffer. See
 below. */
 /* ... */

 wait_queue_head_t write_wait; /* See the section
 "Line Disciplines" */
 wait_queue_head_t read_wait; /* See the section
 "Line Disciplines" */
 /* ... */
 };

1 .

struct tty_flip_buffer or the flip buffer em bedded inside tty_struct . This is the centerpiece of the
data collect ion and processing m echanism :

 struct tty_flip_buffer {
 /* ... */
 struct semaphore pty_sem; /* Serialize */
 char *char_buf_ptr; /* Pointer to the flip
 buffer */
 /* ... */
 unsigned char char_buf[2*TTY_FLIPBUF_SIZE]; /* The flip
 buffer */
 /* ... */
 };

The low- level serial dr iver uses one half of the flip buffer for gathering data, while the line discipline uses
the other half for processing the data. The buffer pointers used by the serial dr iver and the line discipline
are then flipped, and the process cont inues. Have a look at the funct ion flush_to_ldisc() in
drivers/ char/ t ty_io.c to see the flip in act ion.

I n recent kernels, the tty_flip_buffer st ructure has been som ewhat redesigned. I t 's now made up of a
buffer header (tty_bufhead) and a buffer list (tty_buffer) :

struct tty_bufhead {
 /* ... */
 struct semaphore pty_sem; /* Serialize */

2 .

 struct tty_buffer *head, tail, free; /* See below */
 /* ... */
};

struct tty_buffer {
 struct tty_buffer *next;
 char *char_buf_ptr; /* Pointer to the flip buffer */
 /* ... */
 unsigned long data[0]; /* The flip buffer, memory for
 which is dynamically
 allocated */
};

struct tty_driver defined in include/ linux/ t ty_driver.h. This specifies the program m ing interface
between t ty dr ivers and higher layers:

struct tty_driver {
 int magic; /* Magic number */
 /* ... */
 int major; /* Major number */
 int minor_start; /* Start of minor number */
 /* ... */
 /* Interface routines between a tty driver and higher
 layers */
 int (*open)(struct tty_struct *tty, struct file *filp);
 void (*close)(struct tty_struct *tty, struct file *filp);
 int (*write)(struct tty_struct *tty,
 const unsigned char *buf, int count);
 void (*put_char)(struct tty_struct *tty,
 unsigned char ch);
 /* ... */
};

3 .

Like a UART driver, a t ty dr iver needs to perform two steps to register itself with the kernel:

1 . Call tty_register_driver(struct tty_driver *tty_d) to register itself with the t ty core.

2 . Call

tty_register_device(struct tty_driver *tty_d,
 unsigned device_index,
 struct device *device)

to register each individual t ty that it supports.

We won't develop a sam ple t ty dr iver, but here are som e com m on ones used on Linux:

Serial em ulat ion over Bluetooth, discussed in Chapter 16, is im plem ented in the form of a t ty dr iver. This
driver (dr ivers/ net / bluetooth/ r fcom m / t ty.c) calls tty_register_driver() during init ializat ion and
tty_register_device() while handling each incom ing Bluetooth connect ion.

To work with a system console on a Linux desktop, you need the services of vir tual term inals (VTs) if you

are in text m ode or pseudo term inals (PTYs) if you are in graphics m ode. VTs and PTYs are im plem ented
as t ty dr ivers and live in dr ivers/ char/ vt .c and drivers/ char/ pty.c, respect ively.

The t ty dr iver used over convent ional UARTs resides in dr ivers/ ser ial/ ser ial_core.c.

The USB-serial t ty dr iver is in dr ivers/ usb/ ser ial/ usb-serial.c.

Line Disciplines

Line disciplines provide an elegant m echanism that lets you use the sam e serial dr iver to run different
technologies. The low- level physical dr iver and the t ty dr iver handle the t ransfer of data to and from the
hardware, while line disciplines are responsible for processing the data and t ransferr ing it between kernel space
and user space.

The serial subsystem supports 17 standard line disciplines. The default line discipline that gets at tached when
you open a serial port is N_TTY, which im plem ents term inal I / O processing. N_TTY is responsible for "cooking"
characters received from the keyboard. Depending on user request , it m aps the cont rol character to newline,
converts lowercase to uppercase, expands tabs, and echoes characters to the associated VT. N_TTY also
supports a raw m ode used by editors, which leaves all the preceding processing to user applicat ions. See Figure
7.3 in the next chapter, " I nput Drivers," to learn how the keyboard subsystem is connected to N_TTY. The
exam ple t ty dr ivers listed at the end of the previous sect ion, "TTY Drivers," use N_TTY by default .

Line disciplines also im plem ent network interfaces over serial t ransport protocols. For exam ple, line disciplines
that are part of the Point - to-Point Protocol (N_PPP) and the Serial Line I nternet Protocol (N_SLIP) subsystem s,
fram e packets, allocate and populate associated networking data st ructures, and pass the data on to the
corresponding network protocol stack. Other line disciplines handle I nfrared Data (N_IRDA) and the Bluetooth
Host Cont rol I nterface (N_HCI) .

Device Exam ple: Touch Cont roller

Let 's take a look at the internals of a line discipline by im plem ent ing a sim ple line discipline for a serial touch-
screen cont roller. Figure 6.6 shows how the touch cont roller is connected on an em bedded laptop derivat ive.
The Finite State Machine (FSM) of the touch cont roller is a candidate for being im plem ented as a line discipline
because it can leverage the facilit ies and interfaces offered by the serial layer.

Figure 6 .6 . Connect ion diagram of a touch cont rolle r on a PC- der ivat ive.

Open and Close

To create a line discipline, define a struct tty_ldisc and register a prescribed set of ent ry points with the
kernel. List ing 6.2 contains a code snippet that perform s both these operat ions for the exam ple touch cont roller.

List ing 6 .2 . Line Discipline Operat ions

Code View:
struct tty_ldisc n_touch_ldisc = {
 TTY_LDISC_MAGIC, /* Magic */
 "n_tch", /* Name of the line discipline */
 N_TCH, /* Line discipline ID number */
 n_touch_open, /* Open the line discipline */
 n_touch_close, /* Close the line discipline */
 n_touch_flush_buffer, /* Flush the line discipline's read
 buffer */
 n_touch_chars_in_buffer, /* Get the number of processed characters in
 the line discipline's read buffer */
 n_touch_read, /* Called when data is requested
 from user space */
 n_touch_write, /* Write method */
 n_touch_ioctl, /* I/O Control commands */
 NULL, /* We don't have a set_termios
 routine */
 n_touch_poll, /* Poll */
 n_touch_receive_buf, /* Called by the low-level driver
 to pass data to user space*/
 n_touch_receive_room, /* Returns the room left in the line
 discipline's read buffer */
 n_touch_write_wakeup /* Called when the low-level device
 driver is ready to transmit more
 data */
};

/* ... */

if ((err = tty_register_ldisc(N_TCH, &n_touch_ldisc))) {
 return err;
}

I n List ing 6.2, n_tch is the nam e of the line discipline, and N_TCH is the line discipline ident ifier num ber. You
have to specify the value of N_TCH in include/ linux/ t ty.h, the header file that contains all line discipline
definit ions. Line disciplines act ive on your system can be found in / proc/ t ty/ ldiscs.

Line disciplines gather data from their half of the t ty flip buffer, process it , and copy the result ing data to a local
read buffer. For N_TCH, n_touch_receive_room() returns the m em ory left in the read buffer, while
n_touch_chars_in_buffer() returns the num ber of processed characters in the read buffer that are ready to
be delivered to user space. n_touch_write() and n_touch_write_wakeup() do nothing because N_TCH is a
read-only device. n_touch_open() takes care of allocat ing m em ory for the m ain line discipline data st ructures,
as shown in List ing 6.3.

List ing 6 .3 . Opening the Line Discipline

Code View:
/* Private structure used to implement the Finite State Machine
(FSM) for the touch controller. The controller and the processor
communicate using a specific protocol that the FSM implements */
struct n_touch {
 int current_state; /* Finite State Machine */
 spinlock_t touch_lock; /* Spinlock */
 struct tty_struct *tty; /* Associated tty */
 /* Statistics and other housekeeping */
 /* ... */
} *n_tch;

/* Device open() */
static int
n_touch_open(struct tty_struct *tty)
{
 /* Allocate memory for n_tch */
 if (!(n_tch = kmalloc(sizeof(struct n_touch), GFP_KERNEL))) {
 return -ENOMEM;
 }
 memset(n_tch, 0, sizeof(struct n_touch));

 tty->disc_data = n_tch; /* Other entry points now
 have direct access to n_tch */
 /* Allocate the line discipline's local read buffer
 used for copying data out of the tty flip buffer */
 tty->read_buf = kmalloc(BUFFER_SIZE, GFP_KERNEL);
 if (!tty->read_buf) return -ENOMEM;

 /* Clear the read buffer */
 memset(tty->read_buf, 0, BUFFER_SIZE);

 /* Initialize lock */
 spin_lock_init(&ntch->touch_lock);

 /* Initialize other necessary tty fields.
 See drivers/char/n_tty.c for an example */

 /* ... */

 return 0;
}

You m ight want to set N_TCH as the default line discipline (rather than N_TTY) when-ever the serial port
connected to the touch cont roller is opened. See the sect ion "Changing Line Disciplines" to see how to change
line disciplines from user space.

Read Path

For interrupt -dr iven devices, the read data path usually consists of two threads working in tandem :

A top thread originat ing from the user process request ing the read1 .

A bot tom thread springing from the interrupt service rout ine that collects data from the device2 .

Figure 6.7 shows these threads associated with the read data flow. The interrupt handler queues the
receive_buf() m ethod (n_touch_receive_buf() in our exam ple) as a task. You can overr ide this behavior by
set t ing the tty->low_latency flag.

Figure 6 .7 . Line discipline read path.

[View full size im age]

The touch cont roller and the processor com m unicate using a specific protocol described in the cont roller 's data
sheet . The driver im plem ents this com m unicat ion protocol using an FSM as indicated earlier. List ing 6.4 encodes
this FSM as part of the receive_buf() ent ry point , n_touch_receive_buf() .

List ing 6 .4 . The n_touch_receive_buf() Method

Code View:
static void
n_touch_receive_buf(struct tty_struct *tty,
 const unsigned char *cp, char *fp, int count)
{

 /* Work on the data in the line discipline's half of
 the flip buffer pointed to by cp */
 /* ... */

 /* Implement the Finite State Machine to interpret commands/data
 arriving from the touch controller and put the processed data
 into the local read buffer */
..
 /* Datasheet-dependent Code Region */
 switch (tty->disc_data->current_state) {
 case RESET:
 /* Issue a reset command to the controller */
 tty->driver->write(tty, 0, mode_stream_command,
 sizeof(mode_stream_command));
 tty->disc_data->current_state = STREAM_DATA;
 /* ... */
 break;
 case STREAM_DATA:
 /* ... */
 break;
 case PARSING:
 /* ... */
 tty->disc_data->current_state = PARSED;
 break;
 case PARSED:
 /* ... */
 }
..

 if (tty->disc_data->current_state == PARSED) {
 /* If you have a parsed packet, copy the collected coordinate
 and direction information into the local read buffer */
 spin_lock_irqsave(&tty->disc_data->touch_lock, flags);
 for (i=0; i < PACKET_SIZE; i++) {
 tty->disc_data->read_buf[tty->disc_data->read_head] =
 tty->disc_data->current_pkt[i];
 tty->disc_data->read_head =
 (tty->disc_data->read_head + 1) & (BUFFER_SIZE - 1);
 tty->disc_data->read_cnt++;
 }
 spin_lock_irqrestore(&tty->disc_data->touch_lock, flags);

 /* ... */ /* See Listing 6.5 */

 }
}

n_touch_receive_buf() processes the data arr iving from the serial dr iver. I t exchanges a series of com m ands
and responses with the touch cont roller and puts the received coordinate and direct ion (press/ release)

inform at ion into the line discipline's read buffer. Accesses to the read buffer have to be serialized using a
spinlock because it 's used by both ldisc.receive_buf() and ldisc.read() threads shown in Figure 6.7
(n_touch_receive_buf() and n_touch_read() , respect ively, in our exam ple) . As you can see in List ing 6.4,
n_touch_receive_buf() dispatches com m ands to the touch cont roller by direct ly calling the write() ent ry
point of the serial dr iver.

n_touch_receive_buf() needs to do a couple m ore things:

The top read() thread in Figure 6.7 puts the calling process to sleep if no data is available. So,
n_touch_receive_buf() has to wake up that thread and let it read the data that was just processed.

1 .

I f the line discipline is running out of read buffer space, n_touch_receive_buf() has to request the serial
dr iver to throt t le data arr iving from the device. ldisc.read() is responsible for request ing the
corresponding unthrot t ling when it ferr ies the data to user space and frees m em ory in the read buffer. The
serial dr iver uses software or hardware flow cont rol m echanism s to achieve the throt t ling and unthrot t ling.

2 .

List ing 6.5 perform s these two operat ions.

List ing 6 .5 . W aking Up the Read Thread and Throt t li ng the Ser ia l Dr iver

/* n_touch_receive_buf() continued.. */

/* Wake up any threads waiting for data */
if (waitqueue_active(&tty->read_wait) &&
 (tty->read_cnt >= tty->minimum_to_wake))
 wake_up_interruptible(&tty->read_wait);
}
/* If we are running out of buffer space, request the
 serial driver to throttle incoming data */
if (n_touch_receive_room(tty) < TOUCH_THROTTLE_THRESHOLD) {
 tty->driver.throttle(tty);
}
/* ... */

A wait queue (tty->read_wait) is used to synchronize between the ldisc.read() and ldisc.receive_buf()
threads. ldisc.read() adds the calling process to the wait queue when it does not find data to read, while
ldisc.receive_buf() wakes the ldisc.read() thread when there is data available to be read. So,
n_touch_read() does the following:

I f there is no data to be read yet , put the calling process to sleep on the read_wait queue. The process
gets woken by n_touch_receive_buf() when data arr ives.

I f data is available, collect it from the local read buffer (tty->read_buf[tty->read_tail]) and dispatch it
to user space.

I f the serial dr iver has been throt t led and if enough space is available in the read buffer after this read,
ask the serial dr iver to unthrot t le.

Networking line disciplines usually allocate an sk_buff (the basic Linux networking data st ructure discussed in
Chapter 15, "Network I nterface Cards") and use this as the read buffer. They don't have a read() m ethod,
because the corresponding receive_buf() copies received data into the allocated sk_buff and direct ly passes
it to the associated protocol stack.

W rite Path

A line discipline's write() ent ry point perform s any post processing that is required before passing the data
down to the low- level dr iver.

I f the underlying dr iver is not able to accept all the data that the line discipline offers, the line discipline puts the
request ing thread to sleep. The driver 's interrupt handler wakes the line discipline when it is ready to receive
m ore data. To do this, the dr iver calls the write_wakeup() m ethod registered by the line discipline. The
associated synchronizat ion is done using a wait queue (tty->write_wait) , and the operat ion is sim ilar to that
of the read_wait queue described in the previous sect ion.

Many networking line disciplines have no write() m ethods. The protocol im plem entat ion direct ly t ransm its the
fram es down to the serial device dr iver. However, these line disciplines usually st ill have a write_wakeup()
ent ry point to respond to the serial dr iver 's request for m ore t ransm it data.

N_TCH does not need a write() m ethod either, because the touch cont roller is a read-only device. As you saw in
List ing 6.4, rout ines in the receive path direct ly talk to the low- level UART driver when they need to send
com m and fram es to the cont roller.

I / O Cont rol

A user program can send com m ands to a device via ioctl() calls, as discussed in Chapter 5 , "Character
Drivers." When an applicat ion opens a serial device, it can usually issue three classes of ioct ls to it :

Com m ands supported by the serial device dr iver, such as TIOCMSET that sets m odem inform at ion

Com m ands supported by the t ty dr iver, such as TIOCSETD that changes the at tached line discipline

Com m ands supported by the at tached line discipline, such as a com m and to reset the touch cont roller in
the case of N_TCH

The ioctl() im plem entat ion for N_TCH is largely standard. Supported com m ands depend on the protocol
described in the touch cont roller 's data sheet .

More Operat ions

Another line discipline operat ion is flush_buffer() , which is used to flush any data pending in the read buffer.
flush_buffer() is also called when a line discipline is closed. I t wakes up any read threads that are wait ing for
m ore data as follows:

if (tty->link->packet){
 wake_up_interruptible(&tty->disc_data->read_wait);
}

Yet another ent ry point (not supported by N_TCH) is set_termios() . The N_TTY line discipline supports the

set_termios() interface, which is used to set opt ions specific to line discipline data processing. For exam ple,
you m ay use set_termios() to put the line discipline in raw m ode or "cooked" m ode. Som e opt ions specific to
the touch cont roller (such as changing the baud rate, parity, and num ber of stop bits) are im plem ented by the
set_termios() m ethod of the underlying device dr iver.

The rem aining ent ry points such as poll() are fair ly standard, and you can return to Chapter 5 in case you
need assistance.

You m ay com pile your line discipline as part of the kernel or dynam ically load it as a m odule. I f you choose to
com pile it as a m odule, you m ust , of course, also provide funct ions to be called during m odule init ializat ion and
exit . The form er is usually the sam e as the init() m ethod. The lat ter needs to clean up private data st ructures
and unregister the line discipline. Unregister ing the discipline is a one- liner:

tty_unregister_ldisc(N_TCH);

An easier way to dr ive a serial touch cont roller is by leveraging the services offered by the kernel's input
subsystem and the built - in serport line discipline. We look at that technique in the next chapter.

Changing Line Disciplines

N_TCH gets bound to the low- level serial dr iver when a user space program opens the serial port connected to
the touch cont roller. But som et im es, a user-space applicat ion m ight want to at tach a different line discipline to
the device. For instance, you m ight want to write a program that dum ps raw data received from the touch
cont roller without processing it . List ing 6.6 opens the touch cont roller and changes the line discipline to N_TTY to
dum p the data that is com ing in.

List ing 6 .6 . Changing a Line Discipline from User S pace

fd = open("/dev/ttySX", O_RDONLY | O_NOCTTY);

/* At this point, N_TCH is attached to /dev/ttySX , the serial port used

 by the touch controller. Switch to N_TTY */
ldisc = N_TTY;
ioctl(fd, TIOCSETD, &ldisc);

/* Set termios to raw mode and dump the data coming in */
/* ... */

The TIOCSETD ioctl() closes the current line discipline and opens the newly requested line discipline.

Look ing at the Sources

The serial core resides in dr ivers/ serial/ , but t ty im plem entat ions and low- level dr ivers are scat tered across the
source t ree. The driver files referred to in Figure 6.3, for exam ple, live in four different director ies:
dr ivers/ serial/ , dr ivers/ char/ , dr ivers/ usb/ serial/ , and drivers/ net / irda/ . The drivers/ serial/ directory, which now
also contains UART drivers, didn't exist in the 2.4 kernel; UART-specific code used to be dispersed between
drivers/ char/ and arch/ your-arch/ director ies. The present code part it ioning is m ore logical because UART
drivers are not the only folks that access the serial layer—devices such as USB- to-serial converters and I rDA
dongles also need to talk to the serial core.

Look at dr ivers/ serial/ im x.c for a real-world, low- level UART driver. I t handles UARTs that are part of Freescale's
i.MX series of em bedded cont rollers.

For a list of line disciplines supported on Linux, see include/ linux/ t ty.h. To get a feel of networking line
disciplines, look at the corresponding source files for PPP (dr ivers/ net / ppp_async.c) , Bluetooth
(dr ivers/ bluetooth/ hci_ldisc.c) , I nfrared (dr ivers/ net / irda/ ir t ty-sir .c) , and SLI P (dr ivers/ net / slip.c) .

Table 6.3 contains a sum m ary of the m ain data st ructures used in this chapter and the locat ion of their
definit ions in the source t ree. Table 6.4 lists the m ain kernel program m ing interfaces that you used in this
chapter along with the locat ion of their definit ions.

Table 6 .3 . Sum m ary of Data St ructures

Data St ructure Locat ion Descr ipt ion

uart_driver include/ linux/ serial_core.h Representat ion of a low- level
UART driver.

uart_port include/ linux/ serial_core.h Representat ion of a UART port .

uart_ops include/ linux/ serial_core.h Ent ry points supported by UART
drivers.

platform_device include/ linux/ plat form _device.h Representat ion of a plat form
device.

platform_driver include/ linux/ plat form _device.h Representat ion of a plat form
driver.

tty_struct include/ linux/ t ty.h State inform at ion about a t ty.

tty_bufhead ,
tty_buffer

include/ linux/ t ty.h These two st ructures im plem ent
the flip buffer associated with a
t ty.

tty_driver include/ linux/ t ty_driver.h Program m ing interface between
t ty dr ivers and higher layers.

tty_ldisc include/ linux/ t ty_ldisc.h Ent ry points supported by a line
discipline.

Table 6 .4 . Sum m ary of Kernel Program m ing I nter faces

Kernel I nter face Locat ion Descr ipt ion

uart_register_driver() drivers/ serial/ sderial_core.c Registers a UART driver with the
serial core

uart_add_one_port() drivers/ serial/ sderial_core.c Registers a UART port supported
by the UART driver

uart_unregister_driver() drivers/ serial/ sderial_core.c Rem oves a UART driver from the
serial core

platform_device register()
platform_device_register_simple()
platform_add_devices()

drivers/ base/ plat form .c Registers a plat form device

platform_device_unregister() drivers/ base/ plat form .c Unregisters a plat form device

platform_driver_register()/
platform_driver_unregister()

drivers/ base/ plat form .c Registers/ unregisters a plat form
driver

tty_insert_flip_char() include/ linux/ t ty_flip.h Adds a character to the t ty flip
buffer

tty_flip_buffer_push() drivers/ char/ t ty_io.c Queues a request to push the
flip buffer to the line discipline

tty_register_driver() drivers/ char/ t ty_io.c Registers a t ty dr iver with the
serial core

tty_unregister_driver() drivers/ char/ t ty_io.c Rem oves a t ty dr iver from the
serial core

tty_register_ldisc() drivers/ char/ t ty_io.c Creates a line discipline by
register ing prescribed ent ry
points

tty_unregister_ldisc() drivers/ char/ t ty_io.c Rem oves a line discipline from
the serial core

Som e serial data t ransfer scenarios are com plex. You m ight need to m ix and m atch different serial layer blocks,
as you saw in Figure 6.3. Som e situat ions m ay necessitate a data path passing through m ult iple line disciplines.
For exam ple, set t ing up a dialup connect ion over Bluetooth involves the m ovem ent of data through the HCI line
discipline as well as the PPP line discipline. I f you can, establish such a connect ion and step through the code
flow using a kernel debugger.

Chapter 7 . I nput Dr ivers

I n This Chapter

I nput Event Drivers
210

I nput Device Drivers
216

Debugging
230

Looking at the Sources
231

The kernel's input subsystem was created to unify scat tered drivers that handle diverse classes of
data- input devices such as keyboards, m ice, t rackballs, joyst icks, roller wheels, touch screens,
accelerom eters, and tablets. The input subsystem brings the following advantages to the table:

Uniform handling of funct ionally sim ilar input devices even when they are physically
different . For exam ple, all m ice, such as PS/ 2, USB or Bluetooth, are t reated alike.

An easy event interface for dispatching input reports to user applicat ions. Your dr iver does
not have to create and m anage / dev nodes and related access m ethods. I nstead, it can
sim ply invoke input API s to send m ouse m ovem ents, key presses, or touch events upst ream
to user land. Applicat ions such as X Windows work seam lessly over the event interfaces
exported by the input subsystem .

Ext ract ion of com m on port ions out of input dr ivers and a result ing abst ract ion that sim plifies
the dr ivers and int roduces consistency. For exam ple, the input subsystem offers a collect ion
of low- level dr ivers called serio that provides access to input hardware such as serial ports
and keyboard cont rollers.

Figure 7.1 illust rates the operat ion of the input subsystem . The subsystem contains two classes of
dr ivers that work in tandem : event dr ivers and device dr ivers. Event dr ivers are responsible for
interfacing with applicat ions, whereas device dr ivers are responsible for low- level com m unicat ion
with input devices. The m ouse event generator, m ousedev, is an exam ple of the form er, and the
PS/ 2 m ouse driver is an exam ple of the lat ter. Both event dr ivers and device dr ivers can avail the
services of an efficient , bug- free, reusable core, which lies at the heart of the input subsystem .

Figure 7 .1 . The input subsystem .

[View full size im age]

Because event dr ivers are standardized and available for all input classes, you are m ore likely to
im plem ent a device dr iver than an event dr iver. Your device dr iver can use a suitable exist ing event
driver via the input core to interface with user applicat ions. Note that this chapter uses the term device
driver to refer to an input device dr iver as opposed to an input event dr iver.

I nput Event Dr ivers

The event interfaces exported by the input subsystem have evolved into a standard that m any graphical
windowing system s understand. Event dr ivers offer a hardware- independent abst ract ion to talk to input devices,
just as the fram e buffer interface (discussed in Chapter 12, "Video Drivers") presents a generic m echanism to
com m unicate with display devices. Event dr ivers, in tandem with fram e buffer dr ivers, insulate graphical user
interfaces (GUI s) from the vagaries of the underlying hardware.

The Evdev I nter face

Evdev is a generic input event dr iver. Each event packet produced by evdev has the following form at , defined in
include/ linux/ input .h:

struct input_event {
 struct timeval time; /* Timestamp */
 __u16 type; /* Event Type */
 __u16 code; /* Event Code */
 __s32 value; /* Event Value */
};

To learn how to use evdev, let 's im plem ent an input device dr iver for a vir tual m ouse.

Device Exam ple: Vir tua l Mouse

This is how our vir tual m ouse works: An applicat ion (coord.c) em ulates m ouse m ovem ents and dispatches
coordinate inform at ion to the vir tual m ouse driver (vm s.c) via a sysfs node,
/ sys/ devices/ plat form / vm s/ coordinates. The vir tual m ouse driver (vm s driver for short) channels these
m ovem ents upst ream via evdev. Figure 7.2 shows the details.

Figure 7 .2 . An input dr iver for a vir tua l m ouse.

[View full size im age]

General-purpose m ouse (gpm) is a server that lets you use a m ouse in text m ode without assistance from an X
server. Gpm understands evdev m essages, so the vm s driver can direct ly com m unicate with it . After you have
everything in place, you can see the cursor dancing over your screen to the tune of the vir tual m ouse
m ovem ents st ream ed by coord.c.

List ing 7.1 contains coord.c, which cont inuously generates random X and Y coordinates. Mice, unlike joyst icks or
touch screens, produce relat ive coordinates, so that is what coord.c does. The vm s driver is shown in List ing
7.2.

List ing 7 .1 . Applicat ion to Sim ulate Mouse Movem ent s (coord.c)

Code View:
#include <fcntl.h>

int
main(int argc, char *argv[])
{
 int sim_fd;
 int x, y;
 char buffer[10];

 /* Open the sysfs coordinate node */
 sim_fd = open("/sys/devices/platform/vms/coordinates", O_RDWR);
 if (sim_fd < 0) {
 perror("Couldn't open vms coordinate file\n");
 exit(-1);
 }
 while (1) {
 /* Generate random relative coordinates */
 x = random()%20;
 y = random()%20;
 if (x%2) x = -x; if (y%2) y = -y;

 /* Convey simulated coordinates to the virtual mouse driver */
 sprintf(buffer, "%d %d %d", x, y, 0);
 write(sim_fd, buffer, strlen(buffer));
 fsync(sim_fd);
 sleep(1);
 }

 close(sim_fd);
}

List ing 7 .2 . I nput Dr iver for the Vir tua l Mouse (vm s.c)

Code View:
#include <linux/fs.h>
#include <asm/uaccess.h>
#include <linux/pci.h>
#include <linux/input.h>
#include <linux/platform_device.h>

struct input_dev *vms_input_dev; /* Representation of an input device */
static struct platform_device *vms_dev; /* Device structure */

 /* Sysfs method to input simulated
 coordinates to the virtual
 mouse driver */
static ssize_t
write_vms(struct device *dev,
 struct device_attribute *attr,
 const char *buffer, size_t count)
{
 int x,y;
 sscanf(buffer, "%d%d", &x, &y);

 /* Report relative coordinates via the
 event interface */
 input_report_rel(vms_input_dev, REL_X, x);
 input_report_rel(vms_input_dev, REL_Y, y);
 input_sync(vms_input_dev);

 return count;
}

/* Attach the sysfs write method */
DEVICE_ATTR(coordinates, 0644, NULL, write_vms);

/* Attribute Descriptor */
static struct attribute *vms_attrs[] = {
 &dev_attr_coordinates.attr,
 NULL
};

/* Attribute group */
static struct attribute_group vms_attr_group = {
 .attrs = vms_attrs,
};

/* Driver Initialization */
int __init
vms_init(void)
{

 /* Register a platform device */
 vms_dev = platform_device_register_simple("vms", -1, NULL, 0);
 if (IS_ERR(vms_dev)) {
 PTR_ERR(vms_dev);
 printk("vms_init: error\n");
 }

 /* Create a sysfs node to read simulated coordinates */
 sysfs_create_group(&vms_dev->dev.kobj, &vms_attr_group);

 /* Allocate an input device data structure */
 vms_input_dev = input_allocate_device();
 if (!vms_input_dev) {
 printk("Bad input_alloc_device()\n");
 }

 /* Announce that the virtual mouse will generate
 relative coordinates */
 set_bit(EV_REL, vms_input_dev->evbit);
 set_bit(REL_X, vms_input_dev->relbit);
 set_bit(REL_Y, vms_input_dev->relbit);

 /* Register with the input subsystem */
 input_register_device(vms_input_dev);

 printk("Virtual Mouse Driver Initialized.\n");
 return 0;
}

/* Driver Exit */
void

vms_cleanup(void)
{

 /* Unregister from the input subsystem */
 input_unregister_device(vms_input_dev);

 /* Cleanup sysfs node */
 sysfs_remove_group(&vms_dev->dev.kobj, &vms_attr_group);

 /* Unregister driver */
 platform_device_unregister(vms_dev);

 return;
}

module_init(vms_init);
module_exit(vms_cleanup);

Let 's take a closer look at List ing 7.2. During init ializat ion, the vm s driver registers itself as an input device
driver. For this, it first allocates an input_dev st ructure using the core API , input_allocate_device() :

vms_input_dev = input_allocate_device();

I t then announces that the vir tual m ouse generates relat ive events:

set_bit(EV_REL, vms_input_dev->evbit); /* Event Type is EV_REL */

Next , it declares the event codes that the vir tual m ouse produces:

set_bit(REL_X, vms_input_dev->relbit); /* Relative 'X' movement */
set_bit(REL_Y, vms_input_dev->relbit); /* Relative 'Y' movement */

I f your vir tual m ouse is also capable of generat ing but ton clicks, you need to add this to vms_init() :

set_bit(EV_KEY, vms_input_dev->evbit); /* Event Type is EV_KEY */
set_bit(BTN_0, vms_input_dev->keybit); /* Event Code is BTN_0 */

Finally, the regist rat ion:

input_register_device(vms_input_dev);

write_vms() is the sysfs store() m ethod that at taches to / sys/ devices/ plat form / vm s/ coordinates. When
coord.c writes an X/ Y pair to this file, write_vms() does the following:

input_report_rel(vms_input_dev, REL_X, x);
input_report_rel(vms_input_dev, REL_Y, y);
input_sync(vms_input_dev);

The first statem ent generates a REL_X event or a relat ive device m ovem ent in the X direct ion. The second
produces a REL_Y event or a relat ive m ovem ent in the Y direct ion. input_sync() indicates that this event is
com plete, so the input subsystem collects these two events into a single evdev packet and sends it out of the
door through / dev/ input / eventX, where X is the interface num ber assigned to the vm s driver. An applicat ion
reading this file will receive event packets in the input_event form at described earlier. To request gpm to
at tach to this event interface and accordingly chase the cursor around your screen, do this:

bash> gpm -m /dev/input/eventX -t evdev

The ADS7846 touch cont roller dr iver and the accelerom eter dr iver, discussed respect ively under the sect ions
"Touch Cont rollers" and "Accelerom eters" later, are also evdev users.

More Event I nter faces

The vm s driver ut ilizes the generic evdev event interface, but input devices such as keyboards, m ice, and touch
cont rollers have custom event dr ivers. We will look at them when we discuss the corresponding device dr ivers.

To write your own event dr iver and export it to user space via / dev/ input / m ydev, you have to populate a
st ructure called input_handler and register it with the input core as follows:

Code View:
static struct input_handler my_event_handler = {
 .event = mydev_event, /* Handle event reports sent by
 input device drivers that use
 this event driver's services */
 .fops = &mydev_fops, /* Methods to manage
 /dev/input/mydev */

 .minor = MYDEV_MINOR_BASE, /* Minor number of
 /dev/input/mydev */

 .name = "mydev", /* Event driver name */
 .id_table = mydev_ids, /* This event driver can handle
 requests from these IDs */
 .connect = mydev_connect, /* Invoked if there is an
 ID match */
 .disconnect = mydev_disconnect, /* Called when the driver unregisters
 */
};

/* Driver Initialization */
static int __init
mydev_init(void)
{
 /* ... */

 input_register_handler(&my_event_handler);

 /* ... */
 return 0;
}

Look at the im plem entat ion of m ousedev (dr ivers/ input / m ousedev.c) for a com plete exam ple.

Chapter 7 . I nput Dr ivers

I n This Chapter

I nput Event Drivers
210

I nput Device Drivers
216

Debugging
230

Looking at the Sources
231

The kernel's input subsystem was created to unify scat tered drivers that handle diverse classes of
data- input devices such as keyboards, m ice, t rackballs, joyst icks, roller wheels, touch screens,
accelerom eters, and tablets. The input subsystem brings the following advantages to the table:

Uniform handling of funct ionally sim ilar input devices even when they are physically
different . For exam ple, all m ice, such as PS/ 2, USB or Bluetooth, are t reated alike.

An easy event interface for dispatching input reports to user applicat ions. Your dr iver does
not have to create and m anage / dev nodes and related access m ethods. I nstead, it can
sim ply invoke input API s to send m ouse m ovem ents, key presses, or touch events upst ream
to user land. Applicat ions such as X Windows work seam lessly over the event interfaces
exported by the input subsystem .

Ext ract ion of com m on port ions out of input dr ivers and a result ing abst ract ion that sim plifies
the dr ivers and int roduces consistency. For exam ple, the input subsystem offers a collect ion
of low- level dr ivers called serio that provides access to input hardware such as serial ports
and keyboard cont rollers.

Figure 7.1 illust rates the operat ion of the input subsystem . The subsystem contains two classes of
dr ivers that work in tandem : event dr ivers and device dr ivers. Event dr ivers are responsible for
interfacing with applicat ions, whereas device dr ivers are responsible for low- level com m unicat ion
with input devices. The m ouse event generator, m ousedev, is an exam ple of the form er, and the
PS/ 2 m ouse driver is an exam ple of the lat ter. Both event dr ivers and device dr ivers can avail the
services of an efficient , bug- free, reusable core, which lies at the heart of the input subsystem .

Figure 7 .1 . The input subsystem .

[View full size im age]

Because event dr ivers are standardized and available for all input classes, you are m ore likely to
im plem ent a device dr iver than an event dr iver. Your device dr iver can use a suitable exist ing event
driver via the input core to interface with user applicat ions. Note that this chapter uses the term device
driver to refer to an input device dr iver as opposed to an input event dr iver.

I nput Event Dr ivers

The event interfaces exported by the input subsystem have evolved into a standard that m any graphical
windowing system s understand. Event dr ivers offer a hardware- independent abst ract ion to talk to input devices,
just as the fram e buffer interface (discussed in Chapter 12, "Video Drivers") presents a generic m echanism to
com m unicate with display devices. Event dr ivers, in tandem with fram e buffer dr ivers, insulate graphical user
interfaces (GUI s) from the vagaries of the underlying hardware.

The Evdev I nter face

Evdev is a generic input event dr iver. Each event packet produced by evdev has the following form at , defined in
include/ linux/ input .h:

struct input_event {
 struct timeval time; /* Timestamp */
 __u16 type; /* Event Type */
 __u16 code; /* Event Code */
 __s32 value; /* Event Value */
};

To learn how to use evdev, let 's im plem ent an input device dr iver for a vir tual m ouse.

Device Exam ple: Vir tua l Mouse

This is how our vir tual m ouse works: An applicat ion (coord.c) em ulates m ouse m ovem ents and dispatches
coordinate inform at ion to the vir tual m ouse driver (vm s.c) via a sysfs node,
/ sys/ devices/ plat form / vm s/ coordinates. The vir tual m ouse driver (vm s driver for short) channels these
m ovem ents upst ream via evdev. Figure 7.2 shows the details.

Figure 7 .2 . An input dr iver for a vir tua l m ouse.

[View full size im age]

General-purpose m ouse (gpm) is a server that lets you use a m ouse in text m ode without assistance from an X
server. Gpm understands evdev m essages, so the vm s driver can direct ly com m unicate with it . After you have
everything in place, you can see the cursor dancing over your screen to the tune of the vir tual m ouse
m ovem ents st ream ed by coord.c.

List ing 7.1 contains coord.c, which cont inuously generates random X and Y coordinates. Mice, unlike joyst icks or
touch screens, produce relat ive coordinates, so that is what coord.c does. The vm s driver is shown in List ing
7.2.

List ing 7 .1 . Applicat ion to Sim ulate Mouse Movem ent s (coord.c)

Code View:
#include <fcntl.h>

int
main(int argc, char *argv[])
{
 int sim_fd;
 int x, y;
 char buffer[10];

 /* Open the sysfs coordinate node */
 sim_fd = open("/sys/devices/platform/vms/coordinates", O_RDWR);
 if (sim_fd < 0) {
 perror("Couldn't open vms coordinate file\n");
 exit(-1);
 }
 while (1) {
 /* Generate random relative coordinates */
 x = random()%20;
 y = random()%20;
 if (x%2) x = -x; if (y%2) y = -y;

 /* Convey simulated coordinates to the virtual mouse driver */
 sprintf(buffer, "%d %d %d", x, y, 0);
 write(sim_fd, buffer, strlen(buffer));
 fsync(sim_fd);
 sleep(1);
 }

 close(sim_fd);
}

List ing 7 .2 . I nput Dr iver for the Vir tua l Mouse (vm s.c)

Code View:
#include <linux/fs.h>
#include <asm/uaccess.h>
#include <linux/pci.h>
#include <linux/input.h>
#include <linux/platform_device.h>

struct input_dev *vms_input_dev; /* Representation of an input device */
static struct platform_device *vms_dev; /* Device structure */

 /* Sysfs method to input simulated
 coordinates to the virtual
 mouse driver */
static ssize_t
write_vms(struct device *dev,
 struct device_attribute *attr,
 const char *buffer, size_t count)
{
 int x,y;
 sscanf(buffer, "%d%d", &x, &y);

 /* Report relative coordinates via the
 event interface */
 input_report_rel(vms_input_dev, REL_X, x);
 input_report_rel(vms_input_dev, REL_Y, y);
 input_sync(vms_input_dev);

 return count;
}

/* Attach the sysfs write method */
DEVICE_ATTR(coordinates, 0644, NULL, write_vms);

/* Attribute Descriptor */
static struct attribute *vms_attrs[] = {
 &dev_attr_coordinates.attr,
 NULL
};

/* Attribute group */
static struct attribute_group vms_attr_group = {
 .attrs = vms_attrs,
};

/* Driver Initialization */
int __init
vms_init(void)
{

 /* Register a platform device */
 vms_dev = platform_device_register_simple("vms", -1, NULL, 0);
 if (IS_ERR(vms_dev)) {
 PTR_ERR(vms_dev);
 printk("vms_init: error\n");
 }

 /* Create a sysfs node to read simulated coordinates */
 sysfs_create_group(&vms_dev->dev.kobj, &vms_attr_group);

 /* Allocate an input device data structure */
 vms_input_dev = input_allocate_device();
 if (!vms_input_dev) {
 printk("Bad input_alloc_device()\n");
 }

 /* Announce that the virtual mouse will generate
 relative coordinates */
 set_bit(EV_REL, vms_input_dev->evbit);
 set_bit(REL_X, vms_input_dev->relbit);
 set_bit(REL_Y, vms_input_dev->relbit);

 /* Register with the input subsystem */
 input_register_device(vms_input_dev);

 printk("Virtual Mouse Driver Initialized.\n");
 return 0;
}

/* Driver Exit */
void

vms_cleanup(void)
{

 /* Unregister from the input subsystem */
 input_unregister_device(vms_input_dev);

 /* Cleanup sysfs node */
 sysfs_remove_group(&vms_dev->dev.kobj, &vms_attr_group);

 /* Unregister driver */
 platform_device_unregister(vms_dev);

 return;
}

module_init(vms_init);
module_exit(vms_cleanup);

Let 's take a closer look at List ing 7.2. During init ializat ion, the vm s driver registers itself as an input device
driver. For this, it first allocates an input_dev st ructure using the core API , input_allocate_device() :

vms_input_dev = input_allocate_device();

I t then announces that the vir tual m ouse generates relat ive events:

set_bit(EV_REL, vms_input_dev->evbit); /* Event Type is EV_REL */

Next , it declares the event codes that the vir tual m ouse produces:

set_bit(REL_X, vms_input_dev->relbit); /* Relative 'X' movement */
set_bit(REL_Y, vms_input_dev->relbit); /* Relative 'Y' movement */

I f your vir tual m ouse is also capable of generat ing but ton clicks, you need to add this to vms_init() :

set_bit(EV_KEY, vms_input_dev->evbit); /* Event Type is EV_KEY */
set_bit(BTN_0, vms_input_dev->keybit); /* Event Code is BTN_0 */

Finally, the regist rat ion:

input_register_device(vms_input_dev);

write_vms() is the sysfs store() m ethod that at taches to / sys/ devices/ plat form / vm s/ coordinates. When
coord.c writes an X/ Y pair to this file, write_vms() does the following:

input_report_rel(vms_input_dev, REL_X, x);
input_report_rel(vms_input_dev, REL_Y, y);
input_sync(vms_input_dev);

The first statem ent generates a REL_X event or a relat ive device m ovem ent in the X direct ion. The second
produces a REL_Y event or a relat ive m ovem ent in the Y direct ion. input_sync() indicates that this event is
com plete, so the input subsystem collects these two events into a single evdev packet and sends it out of the
door through / dev/ input / eventX, where X is the interface num ber assigned to the vm s driver. An applicat ion
reading this file will receive event packets in the input_event form at described earlier. To request gpm to
at tach to this event interface and accordingly chase the cursor around your screen, do this:

bash> gpm -m /dev/input/eventX -t evdev

The ADS7846 touch cont roller dr iver and the accelerom eter dr iver, discussed respect ively under the sect ions
"Touch Cont rollers" and "Accelerom eters" later, are also evdev users.

More Event I nter faces

The vm s driver ut ilizes the generic evdev event interface, but input devices such as keyboards, m ice, and touch
cont rollers have custom event dr ivers. We will look at them when we discuss the corresponding device dr ivers.

To write your own event dr iver and export it to user space via / dev/ input / m ydev, you have to populate a
st ructure called input_handler and register it with the input core as follows:

Code View:
static struct input_handler my_event_handler = {
 .event = mydev_event, /* Handle event reports sent by
 input device drivers that use
 this event driver's services */
 .fops = &mydev_fops, /* Methods to manage
 /dev/input/mydev */

 .minor = MYDEV_MINOR_BASE, /* Minor number of
 /dev/input/mydev */

 .name = "mydev", /* Event driver name */
 .id_table = mydev_ids, /* This event driver can handle
 requests from these IDs */
 .connect = mydev_connect, /* Invoked if there is an
 ID match */
 .disconnect = mydev_disconnect, /* Called when the driver unregisters
 */
};

/* Driver Initialization */
static int __init
mydev_init(void)
{
 /* ... */

 input_register_handler(&my_event_handler);

 /* ... */
 return 0;
}

Look at the im plem entat ion of m ousedev (dr ivers/ input / m ousedev.c) for a com plete exam ple.

I nput Device Dr ivers

Let 's turn our at tent ion to dr ivers for com m on input devices such as keyboards, m ice, and touch screens. But
first , let 's take a quick look at an off- the-shelf hardware access facilit y available to input dr ivers.

Ser io

The serio layer offers library rout ines to access legacy input hardware such as i8042-com pat ible keyboard
cont rollers and the serial port . PS/ 2 keyboards and m ice interface with the form er, whereas serial touch
cont rollers connect to the lat ter. To com m unicate with hardware serviced by serio, for exam ple, to send a
com m and to a PS/ 2 m ouse, register prescribed callback rout ines with serio using serio_register_driver() .

To add a new driver as part of serio, register open()/close()/start()/stop()/write() ent ry points using
serio_register_port () . Look at dr ivers/ input / ser io/ serport .c for an exam ple.

As you can see in Figure 7.1, serio is only one route to access low- level hardware. Several input device dr ivers
instead rely on low- level support from bus layers such as USB or SPI .

Keyboards

Keyboards com e in different flavors—legacy PS/ 2, USB, Bluetooth, I nfrared, and so on. Each type has a specific
input device dr iver, but all use the sam e keyboard event dr iver, thus ensuring a consistent interface to their
users. The keyboard event dr iver, however, has a dist inguishing feature com pared to other event dr ivers: I t
passes data to another kernel subsystem (the t ty layer) , rather than to user space via / dev nodes.

PC Keyboards

The PC keyboard (also called PS/ 2 keyboard or AT keyboard) interfaces with the processor via an i8042-
com pat ible keyboard cont roller. Desktops usually have a dedicated keyboard cont roller, but on laptops,
keyboard interfacing is one of the responsibilit ies of a general-purpose em bedded cont roller (see the sect ion
"Em bedded Cont rollers" in Chapter 20, "More Devices and Drivers") . When you press a key on a PC keyboard,
this is the road it takes:

The keyboard cont roller (or the em bedded cont roller) scans and decodes the keyboard m at r ix and takes
care of nuances such as key debouncing.

1 .

The keyboard device dr iver, with the help of serio, reads raw scancodes from the keyboard cont roller for
each key press and release. The difference between a press and a release is in the m ost significant bit ,
which is set for the lat ter. A push on the "a" key, for exam ple, yields a pair of scancodes, 0x1e and 0x9e .
Special keys are escaped using 0xE0 , so a jab on the r ight -arrow key produces the sequence, (0xE0 0x4D
0xE0 0xCD) . You m ay use the showkey ut ilit y to observe scancodes em anat ing from the cont roller (the

sym bol at taches explanat ions) :

bash> showkey -s

kb mode was UNICODE
[if you are trying this under X, it might not work since
 the X server is also reading /dev/console]

 press any key (program terminates 10s after last
 keypress)...

2 .

 ...

 0x1e 0x9e A push of the "a" key

The keyboard device dr iver converts received scancodes to keycodes, based on the input m ode. To see
the keycode corresponding to the "a" key:

bash> showkey

...

keycode 30 press A push of the "a" key

keycode 30 release Release of the "a" key

To report the keycode upst ream , the dr iver generates an input event , which passes cont rol to the
keyboard event dr iver.

3 .

The keyboard event dr iver undertakes keycode t ranslat ion depending on the loaded key m ap. (See m an
pages of loadkeys and the m ap files present in / lib/ kbd/ keym aps.) I t checks whether the t ranslated
keycode is t ied to act ions such as switching the vir tual console or reboot ing the system . To glow the
CAPSLOCK and NUMLOCK LEDs instead of reboot ing the system in response to a Ct r l+ Alt+ Del push, add the
following to the Ct r l+ Alt+ Del handler of the keyboard event dr iver, dr ivers/ char/ keyboard.c:

static void fn_boot_it(struct vc_data *vc,

 struct pt_regs *regs)
{
+ set_vc_kbd_led(kbd, VC_CAPSLOCK);

+ set_vc_kbd_led(kbd, VC_NUMLOCK);

- ctrl_alt_del();
}

4 .

For regular keys, the t ranslated keycode is sent to the associated vir tual term inal and the N_TTY line
discipline. (We discussed vir tual term inals and line disciplines in Chapter 6 , "Serial Drivers.") This is done
as follows by dr ivers/ char/ keyboard.c:

/* Add the keycode to flip buffer */
tty_insert_flip_char(tty, keycode, 0);
/* Schedule */
con_schedule_flip(tty);

5 .

The N_TTY line discipline processes the input thus received from the keyboard, echoes it to the vir tual console,
and lets user-space applicat ions read characters from the / dev/ t tyX node connected to the vir tual term inal.

Figure 7.3 shows the data flow from the t im e you push a key on your keyboard unt il the t im e it 's echoed on
your vir tual console. The left half of the figure is hardware-specific, and the r ight half is generic. As per the
design goal of the input subsystem , the underlying hardware interface is t ransparent to the keyboard event
driver and the t ty layer. The input core and the clearly defined event interfaces thus insulate input users from
the int r icacies of the hardware.

Figure 7 .3 . Data f low from a PS/ 2 - com pat ible keyboa rd.

[View full size im age]

USB and Bluetooth Keyboards

The USB specificat ions related to hum an interface devices (HI D) st ipulate the protocol that USB keyboards,
m ice, keypads, and other input peripherals use for com m unicat ion. On Linux, this is im plem ented via the usbhid
USB client dr iver, which is responsible for the USB HI D class (0x03) . Usbhid registers itself as an input device
driver. I t conform s to the input API and reports input events appropriate to the connected HI D.

To understand the code path for a USB keyboard, revert to Figure 7.3 and m odify the hardware-specific left half.
Replace the keyboard cont roller in the I nput Hardware box with a USB cont roller, serio with the USB core layer,
and the I nput Device Driver box with the usbhid dr iver.

For a Bluetooth keyboard, replace the keyboard cont roller in Figure 7.3 with a Bluetooth chipset , serio with the
Bluetooth core layer, and the I nput Device Driver box with the Bluetooth hidp dr iver.

USB and Bluetooth are discussed in detail in Chapter 11, "Universal Serial Bus," and Chapter 16, "Linux Without
Wires," respect ively.

Mice

Mice, like keyboards, com e with different capabilit ies and have different interfacing opt ions. Let 's look at the
com m on ones.

PS/ 2 Mice

Mice generate relat ive m ovem ents in the X and Y axes. They also possess one or m ore but tons. Som e have
scroll wheels, too. The input device dr iver for PS/ 2-com pat ible legacy m ice relies on the serio layer to talk to the
underlying cont roller. The input event dr iver for m ice, called m ousedev, reports m ouse events to user
applicat ions via / dev/ input / m ice.

Device Exam ple: Roller Mouse

To get a feel of a real-world m ouse device dr iver, let 's convert the roller wheel discussed in Chapter 4 , "Laying
the Groundwork," into a variat ion of the generic PS/ 2 m ouse. The "roller m ouse" generates one-dim ensional
m ovem ent in the Y-axis. Clockwise and ant iclockwise turns of the wheel produce posit ive and negat ive relat ive Y
coordinates respect ively (like the scroll wheel in m ice) , while pressing the roller wheel results in a left but ton
m ouse event . The roller m ouse is thus ideal for navigat ing m enus in devices such as sm art phones, handhelds,
and m usic players.

The roller m ouse device dr iver im plem ented in List ing 7.3 works with windowing system s such as X Windows.
Look at roller_mouse_init() to see how the dr iver declares its m ouse- like capabilit ies. Unlike the roller wheel
dr iver in List ing 4.1 of Chapter 4 , the roller m ouse driver needs no read() or poll() m ethods because events
are reported using input API s. The roller interrupt handler roller_isr() also changes accordingly. Gone are the
housekeepings done in the interrupt handler using a wait queue, a spinlock, and the store_movement() rout ine
to support read() and poll() .

I n List ing 7.3, the leading + and - denote the differences from the roller wheel dr iver im plem ented in List ing 4.1
of Chapter 4 .

List ing 7 .3 . The Roller Mouse Dr iver

Code View:
+ #include <linux/input.h>
+ #include <linux/interrupt.h>

+ /* Device structure */
+ struct {
+ /* ... */
+ struct input_dev dev;
+ } roller_mouse;

+ static int __init
+ roller_mouse_init(void)
+ {
+ /* Allocate input device structure */
+ roller_mouse->dev = input_allocate_device();
+

+ /* Can generate a click and a relative movement */
+ roller_mouse->dev->evbit[0] = BIT(EV_KEY) | BIT(EV_REL);

+ /* Can move only in the Y-axis */
+ roller_mouse->dev->relbit[0] = BIT(REL_Y);
+
+ /* My click should be construed as the left button
+ press of a mouse */
+ roller_mouse->dev->keybit[LONG(BTN_MOUSE)] = BIT(BTN_LEFT);

+ roller_mouse->dev->name = "roll";
+
+ /* For entries in /sys/class/input/inputX/id/ */
+ roller_mouse->dev->id.bustype = ROLLER_BUS;
+ roller_mouse->dev->id.vendor = ROLLER_VENDOR;
+ roller_mouse->dev->id.product = ROLLER_PROD;
+ roller_mouse->dev->id.version = ROLLER_VER;

+ /* Register with the input subsystem */
+ input_register_device(roller_mouse->dev);
+}

/* Global variables */
- spinlock_t roller_lock = SPIN_LOCK_UNLOCKED;
- static DECLARE_WAIT_QUEUE_HEAD(roller_poll);

/* The Roller Interrupt Handler */
static irqreturn_t
roller_interrupt(int irq, void *dev_id)
{
 int i, PA_t, PA_delta_t, movement = 0;

 /* Get the waveforms from bits 0, 1 and 2
 of Port D as shown in Figure 7.1 */
 PA_t = PORTD & 0x07;

 /* Wait until the state of the pins change.
 (Add some timeout to the loop) */
 for (i=0; (PA_t==PA_delta_t); i++){
 PA_delta_t = PORTD & 0x07;
 }

 movement = determine_movement(PA_t, PA_delta_t);

- spin_lock(&roller_lock);
-
- /* Store the wheel movement in a buffer for
- later access by the read()/poll() entry points */
- store_movements(movement);
-
- spin_unlock(&roller_lock);
-
- /* Wake up the poll entry point that might have
- gone to sleep, waiting for a wheel movement */
- wake_up_interruptible(&roller_poll);
-
+ if (movement == CLOCKWISE) {
+ input_report_rel(roller_mouse->dev, REL_Y, 1);
+ } else if (movement == ANTICLOCKWISE) {

+ input_report_rel(roller_mouse->dev, REL_Y, -1);
+ } else if (movement == KEYPRESSED) {
+ input_report_key(roller_mouse->dev, BTN_LEFT, 1);
+ }
+ input_sync(roller_mouse->dev);

 return IRQ_HANDLED;
}

Trackpoints

A t rackpoint is a point ing device that com es integrated with the PS/ 2- type keyboard on several laptops. This
device includes a joyst ick located am ong the keys and m ouse but tons posit ioned under the spacebar. A
t rackpoint essent ially funct ions as a m ouse, so you can operate it using the PS/ 2 m ouse driver.

Unlike a regular m ouse, a t rackpoint offers m ore m ovem ent cont rol. You can com m and the t rackpoint cont roller
to change propert ies such as sensit iv ity and inert ia. The kernel has a special dr iver,
dr ivers/ input / m ouse/ t rackpoint .c, to create and m anage associated sysfs nodes. For the full set of t rack point
configurat ion opt ions, look under / sys/ devices/ plat form / i8042/ serioX/ serioY/ .

Touchpads

A touchpad is a m ouse- like point ing device com m only found on laptops. Unlike convent ional m ice, a touchpad
does not have m oving parts. I t can generate m ouse-com pat ible relat ive coordinates but is usually used by
operat ing system s in a m ore powerful m ode that produces absolute coordinates. The com m unicat ion protocol
used in absolute m ode is sim ilar to the PS/ 2 m ouse protocol, but not com pat ible with it .

The basic PS/ 2 m ouse driver is capable of support ing devices that conform to different variat ions of the bare
PS/ 2 m ouse protocol. You m ay add support for a new m ouse protocol to the base driver by supplying a protocol
dr iver via the psmouse st ructure. I f your laptop uses the Synapt ics touchpad in absolute m ode, for exam ple, the
base PS/ 2 m ouse driver uses the services of a Synapt ics protocol dr iver to interpret the st ream ing data. For an
end- to-end understanding of how the Synapt ics protocol works in tandem with the base PS/ 2 dr iver, look at the
following four code regions collected in List ing 7.4:

The PS/ 2 m ouse driver, dr ivers/ input / m ouse/ psm ouse-base.c, instant iates a psmouse_protocol st ructure
with inform at ion regarding supported m ouse protocols (including the Synapt ics touchpad protocol) .

The psmouse st ructure, defined in dr ivers/ input / m ouse/ psm ouse.h, t ies various PS/ 2 protocols together.

synaptics_init() populates the psmouse st ructure with the address of associated protocol funct ions.

The protocol handler funct ion synaptics_process_byte() , populated in synaptics_init() , gets called
from interrupt context when serio senses m ouse m ovem ent . I f you unfold synaptics_process_byte() ,
you will see touchpad m ovem ents being reported to user applicat ions via m ousedev.

List ing 7 .4 . PS/ 2 Mouse Protocol Dr iver for the Syn apt ics Touchpad

Code View:
drivers/input/mouse/psmouse-base.c :
/* List of supported PS/2 mouse protocols */
static struct psmouse_protocol psmouse_protocols[] = {
 {
 .type = PSMOUSE_PS2, /* The bare PS/2 handler */
 .name = "PS/2",
 .alias = "bare",
 .maxproto = 1,
 .detect = ps2bare_detect,
 },
 /* ... */
 {
 .type = PSMOUSE_SYNAPTICS, /* Synaptics TouchPad Protocol */
 .name = "SynPS/2",
 .alias = "synaptics",
 .detect = synaptics_detect, /* Is the protocol detected? */
 .init = synaptics_init, /* Initialize Protocol Handler */
 },
 /* ... */
}

drivers/input/mouse/psmouse.h :
/* The structure that ties various mouse protocols together */
struct psmouse {
 struct input_dev *dev; /* The input device */
 /* ... */

 /* Protocol Methods */
 psmouse_ret_t (*protocol_handler)
 (struct psmouse *psmouse, struct pt_regs *regs);
 void (*set_rate)(struct psmouse *psmouse, unsigned int rate);
 void (*set_resolution)
 (struct psmouse *psmouse, unsigned int resolution);
 int (*reconnect)(struct psmouse *psmouse);
 void (*disconnect)(struct psmouse *psmouse);
 /* ... */
};

drivers/input/mouse/synaptics.c :
/* init() method of the Synaptics protocol */
int synaptics_init(struct psmouse *psmouse)
{
 struct synaptics_data *priv;
 psmouse->private = priv = kmalloc(sizeof(struct synaptics_data),
 GFP_KERNEL);
 /* ... */

 /* This is called in interrupt context when mouse
 movement is sensed */
 psmouse->protocol_handler = synaptics_process_byte;

 /* More protocol methods */
 psmouse->set_rate = synaptics_set_rate;
 psmouse->disconnect = synaptics_disconnect;
 psmouse->reconnect = synaptics_reconnect;

 /* ... */

}

drivers/input/mouse/synaptics.c :
/* If you unfold synaptics_process_byte() and look at
 synaptics_process_packet(), you can see the input
 events being reported to user applications via mousedev */
static void synaptics_process_packet(struct psmouse *psmouse)
{
 /* ... */
 if (hw.z > 0) {
 /* Absolute X Coordinate */
 input_report_abs(dev, ABS_X, hw.x);
 /* Absolute Y Coordinate */
 input_report_abs(dev, ABS_Y,
 YMAX_NOMINAL + YMIN_NOMINAL - hw.y);
 }
 /* Absolute Z Coordinate */
 input_report_abs(dev, ABS_PRESSURE, hw.z);
 /* ... */
 /* Left TouchPad button */
 input_report_key(dev, BTN_LEFT, hw.left);
 /* Right TouchPad button */
 input_report_key(dev, BTN_RIGHT, hw.right);
 /* ... */
}

USB and Bluetooth Mice

USB m ice are handled by the sam e input dr iver (usbhid) that dr ives USB keyboards. Sim ilar ly, the hidp dr iver
that im plem ents support for Bluetooth keyboards also takes care of Bluetooth m ice.

As you would expect , USB and Bluetooth m ice dr ivers channel device data through m ousedev.

Touch Cont rollers

I n Chapter 6 , we im plem ented a device dr iver for a serial touch cont roller in the form of a line discipline called
N_TCH. The input subsystem offers a bet ter and easier way to im plem ent that dr iver. Refashion the finite state
m achine in N_TCH as an input device dr iver with the following changes:

Serio offers a line discipline called serport for accessing devices connected to the serial port . Use serport 's
services to talk to the touch cont roller.

1 .

I nstead of passing coordinate inform at ion to the t ty layer, generate input reports via evdev as you did in
List ing 7.2 for the vir tual m ouse.

2 .

With this, the touch screen is accessible to user space via / dev/ input / eventX. The actual dr iver im plem entat ion
is left as an exercise.

An exam ple of a touch cont roller that does not interface via the serial port is the Analog Devices ADS7846 chip,
which com m unicates over a Serial Peripheral I nterface (SPI) . The driver for this device uses the services of the
SPI core rather than serio. The sect ion "The Serial Peripheral I nterface Bus" in Chapter 8 , "The I nter- I ntegrated
Circuit Protocol," discusses SPI . Like m ost touch drivers, the ADS7846 driver uses the evdev interface to
dispatch touch inform at ion to user applicat ions.

Som e touch cont rollers interface over USB. An exam ple is the 3M USB touch cont roller, dr iven by
drivers/ input / touchscreen/ usbtouchscreen.c.

Many PDAs have four-wire resist ive touch panels superim posed on their LCDs. The X and Y plates of the
panel (two wires for either axes) connect to an analog- to-digital converter (ADC) , which provides a
digital readout of the analog voltage difference arising out of touching the screen. An input dr iver collects
the coordinates from the ADC and dispatches it to user space.

Different instances of the sam e touch panel m ay produce slight ly different coordinate ranges (m axim um values
in the X and Y direct ions) due to the nuances of m anufactur ing processes. To insulate applicat ions from this
variat ion, touch screens are calibrated pr ior to use. Calibrat ion is usually init iated by the GUI by displaying
cross-m arks at screen boundaries and other vantage points, and request ing the user to touch those points. The
generated coordinates are program m ed back into the touch cont roller using appropriate com m ands if it
supports self-calibrat ion, or used to scale the coordinate st ream in software otherwise.

The input subsystem also contains an event dr iver called tsdev that generates coordinate inform at ion according
to the Com paq touch-screen protocol. I f your system reports touch events via tsdev, applicat ions that
understand this protocol can elicit touch input from / dev/ input / tsX. This dr iver is, however, scheduled for
rem oval from the m ainline kernel in favor of the user space tslib library. Docum entat ion/ feature- rem oval-
schedule.txt lists features that are going away from the kernel source t ree.

Accelerom eters

An accelerom eter m easures accelerat ion. Several I BM/ Lenovo laptops have an accelerom eter that detects
sudden m ovem ent . The generated inform at ion is used to protect the hard disk from dam age using a m echanism
called Hard Drive Act ive Protect ion System (HDAPS) , analogous to the way a car airbag shields a passenger
from injury. The HDAPS driver is im plem ented as a plat form driver that registers with the input subsystem . I t
uses evdev to st ream the X and Y com ponents of the detected accelerat ion. Applicat ions can read accelerat ion
events via / dev/ input / eventX to detect condit ions, such as shock and vibe, and perform a defensive act ion, such
as parking the hard dr ive's head. The following comm and spews output if you m ove the laptop (assum e that
event3 is assigned to HDAPS) :

bash> od –x /dev/input/event3

0000000 a94d 4599 1f19 0007 0003 0000 ffed ffff
...

The accelerom eter also provides inform at ion such as tem perature, keyboard act ivity, and m ouse act ivity, all of
which can be gleaned via files in / sys/ devices/ plat form / hdaps/ . Because of this, the HDAPS driver is part of the
hardware m onitor ing (hwm on) subsystem in the kernel sources. We talk about hardware m onitor ing in the
sect ion "Hardware Monitor ing with LM-Sensors" in the next chapter.

Output Events

Som e input device dr ivers also handle output events. For exam ple, the keyboard dr iver can glow the CAPSLOCK

LED, and the PC speaker dr iver can sound a beep. Let 's zoom in on the lat ter. During init ializat ion, the speaker
driver declares its output capabilit y by set t ing appropriate evbits and register ing a callback rout ine to handle the
output event :

Code View:
drivers/input/misc/pcspkr.c:

static int __devinit pcspkr_probe(struct platform_device *dev)
{
 /* ... */

 /* Capability Bits */
 pcspkr_dev->evbit[0] = BIT(EV_SND);
 pcspkr_dev->sndbit[0] = BIT(SND_BELL) | BIT(SND_TONE);

 /* The Callback routine */
 pcspkr_dev->event = pcspkr_event;

 err = input_register_device(pcspkr_dev);
 /* ... */
}

/* The callback routine */
static int pcspkr_event(struct input_dev *dev, unsigned int type,
 unsigned int code, int value)
{

 /* ... */

 /* I/O programming to sound a beep */

 outb_p(inb_p(0x61) | 3, 0x61);
 /* set command for counter 2, 2 byte write */
 outb_p(0xB6, 0x43);
 /* select desired HZ */
 outb_p(count & 0xff, 0x42);
 outb((count >> 8) & 0xff, 0x42);

 /* ... */
}

To sound the beeper, the keyboard event dr iver generates a sound event (EV_SND) as follows:

input_event(handle->dev, EV_SND, /* Type */
 SND_TONE, /* Code */
 hz /* Value */);

This t r iggers execut ion of the callback rout ine, pcspkr_event() , and you hear the beep.

Debugging

You can use the evbug m odule as a debugging aid if you're developing an input dr iver. I t dum ps the (t ype,
code, value) tuple (see struct input_event defined previously) corresponding to events generated by the
input subsystem . Figure 7.4 contains data captured by evbug while operat ing som e input devices:

Figure 7 .4 . Evbug output .

Code View:
/* Touchpad Movement */
evbug.c Event. Dev: isa0060/serio1/input0: Type: 3, Code: 28, Value: 0
evbug.c Event. Dev: isa0060/serio1/input0: Type: 1, Code: 325, Value: 0
evbug.c Event. Dev: isa0060/serio1/input0: Type: 0, Code: 0, Value: 0

/* Trackpoint Movement */
evbug.c Event. Dev: synaptics-pt/serio0/input0: Type: 2, Code: 0, Value: -1
evbug.c Event. Dev: synaptics-pt/serio0/input0: Type: 2, Code: 1, Value: -2
evbug.c Event. Dev: synaptics-pt/serio0/input0: Type: 0, Code: 0, Value: 0

/* USB Mouse Movement */
evbug.c Event. Dev: usb-0000:00:1d.1-2/input0: Type: 2, Code: 1, Value: -1
evbug.c Event. Dev: usb-0000:00:1d.1-2/input0: Type: 0, Code: 0, Value: 0
evbug.c Event. Dev: usb-0000:00:1d.1-2/input0: Type: 2, Code: 0, Value: 1
evbug.c Event. Dev: usb-0000:00:1d.1-2/input0: Type: 0, Code: 0, Value: 0

/* PS/2 Keyboard keypress 'a' */
evbug.c Event. Dev: isa0060/serio0/input0: Type: 4, Code: 4, Value: 30
evbug.c Event. Dev: isa0060/serio0/input0: Type: 1, Code: 30, Value: 0
evbug.c Event. Dev: isa0060/serio0/input0: Type: 0, Code: 0, Value: 0

/* USB keyboard keypress 'a' */
evbug.c Event. Dev: usb-0000:00:1d.1-1/input0: Type: 1, Code: 30, Value: 1
evbug.c Event. Dev: usb-0000:00:1d.1-1/input0: Type: 0, Code: 0, Value: 0
evbug.c Event. Dev: usb-0000:00:1d.1-2/input0: Type: 1, Code: 30, Value: 0
evbug.c Event. Dev: usb-0000:00:1d.1-2/input0: Type: 0, Code: 0, Value: 0

To m ake sense of the dum p in Figure 7.4, rem em ber that touchpads generate absolute coordinates (EV_ABS) or
event type 0x03 , t rackpoints produce relat ive coordinates (EV_REL) or event type 0x02 , and keyboards em it key
events (EV_KEY) or event type 0x01 . Event type 0x0 corresponds to an invocat ion of input_sync() , which does
the following:

input_event(dev, EV_SYN, SYN_REPORT, 0);

This t ranslates to a (type, code, value) tuple of (0x0 , 0x0 , 0x0) and com pletes each input event .

Look ing at the Sources

Most input event dr ivers are present in the dr ivers/ input / directory. The keyboard event dr iver, however, lives in
drivers/ char/ keyboard.c, because it 's connected to vir tual term inals and not to device nodes under / dev/ input / .

You can find input device dr ivers in several places. Drivers for legacy keyboards, m ice, and joyst icks, reside in
separate subdirector ies under dr ivers/ input / . Bluetooth input dr ivers live in net / bluetooth/ hidp/ . You can also
find input dr ivers in regions such as dr ivers/ hwm on/ and dr ivers/ m edia/ video/ . Event types, codes, and values,
are defined in include/ linux/ input .h.

The serio subsystem stays in dr ivers/ input / serio/ . Sources for the serport line discipline is in
drivers/ input / serio/ serport .c. Docum entat ion/ input / contains m ore details on different input interfaces.

Table 7.1 sum m arizes the m ain data st ructures used in this chapter and their locat ion inside the source t ree.
Table 7.2 lists the m ain kernel program m ing interfaces that you used in this chapter along with the locat ion of
their definit ions.

Table 7 .1 . Sum m ary of Data St ructures

Data St ructure Locat ion Descr ipt ion

input_event include/ linux/ input .h Each event packet produced by
evdev has this form at .

input_dev include/ linux/ input .h Representat ion of an input
device.

input_handler include/ linux/ serial_core.h Contains the ent ry points
supported by an event dr iver.

psmouse_protocol drivers/ input / m ouse/ psm ouse-base.c I nform at ion about a supported
PS/ 2 m ouse protocol dr iver.

psmouse drivers/ input / m ouse/ psm ouse.h Methods supported by a PS/ 2
m ouse driver.

Table 7 .2 . Sum m ary of Kernel Program m ing I nter faces

Kernel I nter face Locat ion Descr ipt ion

input_register_device() drivers/ input / input .c Registers a device with the input
core

input_unregister_device() drivers/ input / input .c Rem oves a device from the input
core

input_report_rel() include/ linux/ input .h Generates a relat ive m ovem ent
in a specified direct ion

input_report_abs() include/ linux/ input .h Generates an absolute
m ovem ent in a specified
direct ion

input_report_key() include/ linux/ input .h Generates a key or a but ton
press

Kernel I nter face Locat ion Descr ipt ion

input_sync() include/ linux/ input .h I ndicates that the input
subsystem can collect previously
generated events into an evdev
packet and send it to user space
via / dev/ input / inputX

input_register_handler() drivers/ input / input .c Registers a custom event dr iver

sysfs_create_group() fs/ sysfs/ group.c Creates a sysfs node group with
specified at t r ibutes

sysfs_remove_group() fs/ sysfs/ group.c Rem oves a sysfs group created
using sysfs_create_group()

tty_insert_flip_char() include/ linux/ t ty_flip.h Sends a character to the line
discipline layer

platform_device_register_simple() drivers/ base/ plat form .c Creates a sim ple plat form device

platform_device_unregister() drivers/ base/ plat form .c Unregisters a plat form device

Chapter 8 . The I nter- I ntegrated Circuit Protocol

I n This Chapter

What 's I 2C/ SMBus?
234

I 2C Core
235

Bus Transact ions
237

Device Exam ple: EEPROM
238

Device Exam ple: Real Tim e Clock
247

I 2C-dev
251

Hardware Monitor ing Using LM-
Sensors

251

The Serial Peripheral I nterface Bus
251

The 1-Wire Bus
254

Debugging
254

Looking at the Sources
255

The I nter- I ntegrated Circuit , or I2C (pronounced I squared C) bus and its subset , the System
Managem ent Bus (SMBus) , are synchronous serial interfaces that are ubiquitous on desktops and
em bedded devices. Let 's find out how the kernel supports I 2C/ SMBus host adapters and client
devices by im plem ent ing exam ple dr ivers to access an I2C EEPROM and an I 2C RTC. And before
wrapping up this chapter, let 's also peek at two other serial interfaces supported by the kernel:
the Serial Peripheral I nterface or SPI (often pronounced spy) bus and the 1-wire bus.

All these serial interfaces (I2C, SMBus, SPI , and 1-wire) share two com m on character ist ics:

The am ount of data exchanged is sm all.

The required data t ransfer rate is low.

W hat 's I 2C/ SMBus?

I 2C is a serial bus that is widely used in desktops and laptops to interface the processor with devices such as
EEPROMs, audio codecs, and specialized chips that monitor param eters such as tem perature and power-supply
voltage. I n addit ion, I 2C is widely used in em bedded devices to com m unicate with RTCs, sm art bat tery circuits,
m ult iplexers, port expanders, opt ical t ransceivers, and other sim ilar devices. Because I 2C is supported by a
large num ber of m icrocont rollers, there are loads of cheap I 2C devices available in the m arket today.

I 2C and SMBus are m aster-slave protocols where com m unicat ion takes place between a host adapter (or host
cont roller) and client devices (or slaves) . The host adapter is usually part of the South Bridge chipset on
desktops and part of the m icrocont roller on em bedded devices. Figure 8.1 shows an exam ple I 2C bus on PC-
com pat ible hardware.

Figure 8 .1 . I 2C/ SMBus on PC- com pat ible hardw are.

I 2C and its subset SMBus are 2-wire interfaces or iginally developed by Philips and I ntel, respect ively. The two
wires are clock and bidirect ional data, and the corresponding lines are called Serial CLock (SCL) and Serial DAta
(SDA) . Because the I2C bus needs only a pair of wires, it consum es less space on the circuit board. However,
the supported bandwidths are also low. I 2C allows up to 100Kbps in the standard m ode and 400Kbps in a fast
m ode. (SMBus supports only up to 100Kbps, however.) The bus is thus suitable only for slow peripherals. Even
though I 2C supports bidirect ional exchange, the com m unicat ion is half duplex because there is only a single
data wire.

I 2C and SMBus devices own 7-bit addresses. The protocol also supports 10-bit addresses, but m any devices
respond only to 7-bit addressing, which yields a m axim um of 127 devices on the bus. Due to the m aster-slave
nature of the protocol, device addresses are also known as slave addresses.

Chapter 8 . The I nter- I ntegrated Circuit Protocol

I n This Chapter

What 's I 2C/ SMBus?
234

I 2C Core
235

Bus Transact ions
237

Device Exam ple: EEPROM
238

Device Exam ple: Real Tim e Clock
247

I 2C-dev
251

Hardware Monitor ing Using LM-
Sensors

251

The Serial Peripheral I nterface Bus
251

The 1-Wire Bus
254

Debugging
254

Looking at the Sources
255

The I nter- I ntegrated Circuit , or I2C (pronounced I squared C) bus and its subset , the System
Managem ent Bus (SMBus) , are synchronous serial interfaces that are ubiquitous on desktops and
em bedded devices. Let 's find out how the kernel supports I 2C/ SMBus host adapters and client
devices by im plem ent ing exam ple dr ivers to access an I2C EEPROM and an I 2C RTC. And before
wrapping up this chapter, let 's also peek at two other serial interfaces supported by the kernel:
the Serial Peripheral I nterface or SPI (often pronounced spy) bus and the 1-wire bus.

All these serial interfaces (I2C, SMBus, SPI , and 1-wire) share two com m on character ist ics:

The am ount of data exchanged is sm all.

The required data t ransfer rate is low.

W hat 's I 2C/ SMBus?

I 2C is a serial bus that is widely used in desktops and laptops to interface the processor with devices such as
EEPROMs, audio codecs, and specialized chips that monitor param eters such as tem perature and power-supply
voltage. I n addit ion, I 2C is widely used in em bedded devices to com m unicate with RTCs, sm art bat tery circuits,
m ult iplexers, port expanders, opt ical t ransceivers, and other sim ilar devices. Because I 2C is supported by a
large num ber of m icrocont rollers, there are loads of cheap I 2C devices available in the m arket today.

I 2C and SMBus are m aster-slave protocols where com m unicat ion takes place between a host adapter (or host
cont roller) and client devices (or slaves) . The host adapter is usually part of the South Bridge chipset on
desktops and part of the m icrocont roller on em bedded devices. Figure 8.1 shows an exam ple I 2C bus on PC-
com pat ible hardware.

Figure 8 .1 . I 2C/ SMBus on PC- com pat ible hardw are.

I 2C and its subset SMBus are 2-wire interfaces or iginally developed by Philips and I ntel, respect ively. The two
wires are clock and bidirect ional data, and the corresponding lines are called Serial CLock (SCL) and Serial DAta
(SDA) . Because the I2C bus needs only a pair of wires, it consum es less space on the circuit board. However,
the supported bandwidths are also low. I 2C allows up to 100Kbps in the standard m ode and 400Kbps in a fast
m ode. (SMBus supports only up to 100Kbps, however.) The bus is thus suitable only for slow peripherals. Even
though I 2C supports bidirect ional exchange, the com m unicat ion is half duplex because there is only a single
data wire.

I 2C and SMBus devices own 7-bit addresses. The protocol also supports 10-bit addresses, but m any devices
respond only to 7-bit addressing, which yields a m axim um of 127 devices on the bus. Due to the m aster-slave
nature of the protocol, device addresses are also known as slave addresses.

I 2C Core

The I2C core is a code base consist ing of rout ines and data st ructures available to host adapter dr ivers and
client dr ivers. Com m on code in the core m akes the dr iver developer 's job easier. The core also provides a level
of indirect ion that renders client dr ivers independent of the host adapter, allowing them to work unchanged
even if the client device is used on a board that has a different I 2C host adapter. This philosophy of a core layer
and its at tendant benefits is also relevant for m any other device dr iver classes in the kernel, such as PCMCI A,
PCI , and USB.

I n addit ion to the core, the kernel I 2C infrast ructure consists of the following:

Device dr ivers for I 2C host adapters. They fall in the realm of bus dr ivers and usually consist of an adapter
driver and an algorithm driver. The form er uses the lat ter to talk to the I2C bus.

Device dr ivers for I 2C client devices.

i2c-dev, which allows the im plem entat ion of user m ode I 2C client dr ivers.

You are m ore likely to im plem ent client dr ivers than adapter or algorithm drivers because there are a lot m ore
I 2C devices than there are I 2C host adapters. So, we will confine ourselves to client dr ivers in this chapter.

Figure 8.2 illust rates the Linux I 2C subsystem . I t shows I 2C kernel m odules talking to a host adapter and a
client device on an I2C bus.

Figure 8 .2 . The Linux I 2C subsystem .

[View full size im age]

Because SMBus is a subset of I2C, using only SMBus com m ands to talk to your device yields a dr iver that works
with both SMBus and I 2C adapters. Table 8.1 lists the SMBus-com pat ible data t ransfer rout ines provided by the
I 2C core.

Table 8 .1 . SMBus- Com pat ible Data Access Funct ions P rovided by the I 2C Core

Funct ion Purpose

i2c_smbus_read_byte() Reads a single byte from the device without
specifying a locat ion offset . Uses the sam e offset
as the previously issued com m and.

i2c_smbus_write_byte() Sends a single byte to the device at the sam e
m em ory offset as the previously issued
com m and.

i2c_smbus_write_quick() Sends a single bit to the device (in place of the
Rd/ Wr bit shown in List ing 8.1) .

i2c_smbus_read_byte_data() Reads a single byte from the device at a specified
offset .

i2c_smbus_write_byte_data() Sends a single byte to the device at a specified
offset .

i2c_smbus_read_word_data() Reads 2 bytes from the specified offset .

i2c_smbus_write_word_data() Sends 2 bytes to the specified offset .

Funct ion Purpose

i2c_smbus_read_block_data() Reads a block of data from the specified offset .

i2c_smbus_write_block_data() Sends a block of data (< = 32 bytes) to the
specified offset .

Bus Transact ions

Before im plem ent ing an exam ple dr iver, let 's get a bet ter understanding of the I 2C protocol by peering at the
wires through a m agnifying glass. List ing 8.1 shows a code snippet that talks to an I2C EEPROM and the
corresponding t ransact ions that occur on the bus. The t ransact ions were captured by connect ing an I2C bus
analyzer while running the code snippet . The code uses user m ode I 2C funct ions. (We talk m ore about user
m ode I 2C program m ing in Chapter 19, "Drivers in User Space.")

List ing 8 .1 . Transact ions on the I 2C Bus

Code View:
/* ... */
/*
 * Connect to the EEPROM. 0x50 is the device address.
 * smbus_fp is a file pointer into the SMBus device.
 */
ioctl(smbus_fp, 0x50, slave);

/* Write a byte (0xAB) at memory offset 0 on the EEPROM */
i2c_smbus_write_byte_data(smbus_fp, 0, 0xAB);

/*
 * This is the corresponding transaction observed
 * on the bus after the write:
 * S 0x50 Wr [A] 0 [A] 0xAB [A] P
 *
 * S is the start bit, 0x50 is the 7-bit slave address (0101000b),
 * Wr is the write command (0b), A is the Accept bit (or
 * acknowledgment) received by the host from the slave, 0 is the
 * address offset on the slave device where the byte is to be
 * written, 0xAB is the data to be written, and P is the stop bit.
 * The data enclosed within [] is sent from the slave to the
 * host, while the rest of the bits are sent by the host to the
 * slave.
 */
/* Read a byte from offset 0 on the EEPROM */
res = i2c_smbus_read_byte_data(smbus_fp, 0);

/*
 * This is the corresponding transaction observed
 * on the bus after the read:
 * S 0x50 Wr [A] 0 [A] S 0x50 Rd [A] [0xAB] NA P
 *
 * The explanation of the bits is the same as before, except that
 * Rd stands for the Read command (1b), 0xAB is the data received
 * from the slave, and NA is the Reverse Accept bit (or the
 * acknowledgment sent by the host to the slave).
 */

Device Exam ple: EEPROM

Our first exam ple client device is an EEPROM sit t ing on an I 2C bus, as shown in Figure 8.1. Alm ost all laptops
and desktops have such an EEPROM for stor ing BI OS configurat ion inform at ion. The exam ple EEPROM has two
m em ory banks. The driver exports / dev interfaces corresponding to each bank: / dev/ eep/ 0 and / dev/ eep/ 1.
Applicat ions operate on these nodes to exchange data with the EEPROM.

Each I 2C/ SMBus client device is assigned a slave address that funct ions as the device ident ifier. The EEPROM in
the exam ple answers to two slave addresses, SLAVE_ADDR1 and SLAVE_ADDR2, one per bank.

The exam ple dr iver uses I 2C com m ands that are com pat ible with SMBus, so it works with both I 2C and SMBus
EEPROMs.

I n it ia liz ing

As is the case with all dr iver classes, I 2C client dr ivers also own an init() ent ry point . I nit ializat ion entails
allocat ing data st ructures, register ing the dr iver with the I 2C core, and hooking up with sysfs and the Linux
device m odel. This is done in List ing 8.2.

List ing 8 .2 . I n it ia liz ing the EEPROM Dr iver

Code View:
/* Driver entry points */
static struct file_operations eep_fops = {
 .owner = THIS_MODULE,
 .llseek = eep_llseek,
 .read = eep_read,
 .ioctl = eep_ioctl,
 .open = eep_open,
 .release = eep_release,
 .write = eep_write,
};

static dev_t dev_number; /* Allotted Device Number */
static struct class *eep_class; /* Device class */

/* Per-device client data structure for each
 * memory bank supported by the driver
 */

struct eep_bank {
 struct i2c_client *client; /* I 2C client for this bank */
 unsigned int addr; /* Slave address of this bank */
 unsigned short current_pointer; /* File pointer */
 int bank_number; /* Actual memory bank number */
 /* ... */ /* Spinlocks, data cache for
 slow devices,.. */
};

#define NUM_BANKS 2 /* Two supported banks */
#define BANK_SIZE 2048 /* Size of each bank */

struct ee_bank *ee_bank_list; /* List of private data
 structures, one per bank */

/*
 * Device Initialization
 */
int __init
eep_init(void)
{

 int err, i;

 /* Allocate the per-device data structure, ee_bank */
 ee_bank_list = kmalloc(sizeof(struct ee_bank)*NUM_BANKS,
 GFP_KERNEL);
 memset(ee_bank_list, 0, sizeof(struct ee_bank)*NUM_BANKS);
 /* Register and create the /dev interfaces to access the EEPROM

 banks. Refer back to Chapter 5, "Character Drivers" for
 more details */
 if (alloc_chrdev_region(&dev_number, 0,
 NUM_BANKS, "eep") < 0) {
 printk(KERN_DEBUG "Can't register device\n");
 return -1;
 }

 eep_class = class_create(THIS_MODULE, DEVICE_NAME);
 for (i=0; i < NUM_BANKS;i++) {

 /* Connect the file operations with cdev */
 cdev_init(&ee_bank[i].cdev, &ee_fops);

 /* Connect the major/minor number to the cdev */
 if (cdev_add(&ee_bank[i].cdev, (dev_number + i), 1)) {
 printk("Bad kmalloc\n");
 return 1;
 }
 class_device_create(eep_class, NULL, (dev_number + i),
 NULL, "eeprom%d", i);
 }

 /* Inform the I 2C core about our existence. See the section
 "Probing the Device" for the definition of eep_driver */
 err = i2c_add_driver(&eep_driver);

 if (err) {
 printk("Registering I2C driver failed, errno is %d\n", err);
 return err;
 }

 printk("EEPROM Driver Initialized.\n");
 return 0;
}

List ing 8.2 init iates creat ion of the device nodes, but to complete their product ion, add the following to an
appropriate rule file under / etc/ udev/ rules.d/ :

KERNEL:"eeprom[0-1]*", NAME="eep/%n"

This creates / dev/ eep/ 0 and / dev/ eep/ 1 in response to recept ion of the corresponding uevents from the kernel.
A user m ode program that needs to read from the n th m em ory bank can then operate on / dev/ eep/ n.

List ing 8.3 im plem ents the open() m ethod for the EEPROM driver. The kernel calls eep_open() when an
applicat ion opens / dev/ eep/ X. eep_open() stores the per-device data st ructure in a pr ivate area so that it 's
direct ly accessible from the rest of the dr iver m ethods.

List ing 8 .3 . Opening the EEPROM Dr iver

 int
eep_open(struct inode *inode, struct file *file)
{

 /* The EEPROM bank to be opened */
 n = MINOR(file->f_dentry->d_inode->i_rdev);

 file->private_data = (struct ee_bank *)ee_bank_list[n];

 /* Initialize the fields in ee_bank_list[n] such as
 size, slave address, and the current file pointer */
 /* ... */
}

Probing the Device

The I2C client dr iver, in partnership with the host cont roller dr iver and the I 2C core, at taches itself to a slave
device as follows:

During init ializat ion, it registers a probe() m ethod, which the I 2C core invokes when an associated host
cont roller is detected. I n List ing 8.2, eep_init() registered eep_probe() by invoking i2c_add_driver() :

static struct i2c_driver eep_driver =
{
 .driver = {
 .name = "EEP", /* Name */
 },
 .id = I2C_DRIVERID_EEP, /* ID */
 .attach_adapter = eep_probe, /* Probe Method */
 .detach_client = eep_detach, /* Detach Method */
};

i2c_add_driver(&eep_driver); `

The driver ident ifier, I2C_DRIVERID_EEP , should be unique for the device and should be defined in
include/ linux/ i2c- id.h.

1 .

When the core calls the dr iver 's probe() m ethod signifying the presence of a host adapter, it , in turn,
invokes i2c_probe() with argum ents specifying the addresses of the slave devices that the dr iver is
responsible for and an associated attach() rout ine.

2 .

List ing 8.4 im plem ents eep_probe() , the probe() m ethod of the EEPROM driver. normal_i2c specifies the
EEPROM bank addresses and is populated as part of the i2c_client_address_data st ructure. Addit ional
fields in this st ructure can be used to request finer addressing cont rol. You can ask the I2C core to ignore
a range of addresses using the ignore field. Or you m ay use the probe field to specify (adapter, slave
address) pairs if you want to bind a slave address to a part icular host adapter. This will be useful, for
exam ple, if your processor supports two I 2C host adapters, and you have an EEPROM on bus 1 and a
tem perature sensor on bus 2, both answering to the sam e slave address.

The host cont roller walks the bus looking for the slave devices specified in Step 2. To do this, it generates
a bus t ransact ion such as S SLAVE_ADDR Wr, where S is the start bit , SLAVE_ADDR is the associated 7-bit
slave address as specified in the device's datasheet , and Wr is the write com m and, as described in the
sect ion "Bus Transact ions." I f a working slave device exists on the bus, it ' ll respond by sending an
acknowledgm ent bit ([A]) .

3 .

I f the host adapter detects a slave in Step 3, the I2C core invokes the attach() rout ine supplied via the
third argum ent to i2c_probe() in Step 2. For the EEPROM driver, this rout ine is eep_attach() , which
registers a per-device client data st ructure, as shown in List ing 8.5. I f your device expects an init ial
program m ing sequence (for exam ple, registers on an I2C Digital Visual I nterface t ransm it ter chip have to
be init ialized before the chip can start funct ioning) , perform those operat ions in this rout ine.

4 .

List ing 8 .4 . Probing the Presence of EEPROM Banks

#include <linux/i2c.h>

/* The EEPROM has two memory banks having addresses SLAVE_ADDR1
 * and SLAVE_ADDR2, respectively
 */
static unsigned short normal_i2c[] = {
 SLAVE_ADDR1, SLAVE_ADDR2, I2C_CLIENT_END
};

static struct i2c_client_address_data addr_data = {
 .normal_i2c = normal_i2c,
 .probe = ignore,
 .ignore = ignore,
 .forces = ignore,
};

static int
eep_probe(struct i2c_adapter *adapter)
{
 /* The callback function eep_attach(), is shown
 * in Listing 8.5
 */
 return i2c_probe(adapter, &addr_data, eep_attach);
}

List ing 8 .5 . At taching a Client

int
eep_attach(struct i2c_adapter *adapter, int address, int kind)
{
 static struct i2c_client *eep_client;

 eep_client = kmalloc(sizeof(*eep_client), GFP_KERNEL);

 eep_client->driver = &eep_driver; /* Registered in Listing 8.2 */
 eep_client->addr = address; /* Detected Address */
 eep_client->adapter = adapter; /* Host Adapter */
 eep_client->flags = 0;
 strlcpy(eep_client->name, "eep", I2C_NAME_SIZE);

 /* Populate fields in the associated per-device data structure */
 /* ... */

 /* Attach */
 i2c_attach_client(new_client);
}

Check ing Adapter Capabilit ies

Each host adapter m ight be lim ited by a set of const raints. An adapter m ight not support all the com m ands that
Table 8.1 contains. For exam ple, it m ight allow the SMBus read_word com m and but not the read_block
com m and. A client dr iver has to check whether a comm and is supported by the adapter before using it .

The I2C core provides two funct ions to do this:

i2c_check_functionality() checks whether a part icular funct ion is supported.1 .

i2c_get_functionality() returns a m ask containing all supported funct ions.2 .

See include/ linux/ i2c.h for the list of possible funct ionalit ies.

Accessing the Device

To read data from the EEPROM, first glean inform at ion about its invocat ion thread from the pr ivate data field
associated with the device node. Next , use SMBus-com pat ible data access rout ines provided by the I 2C core
(Table 8.1 shows the available funct ions) to read the data. Finally, send the data to user space and increm ent
the internal file pointer so that the next read() /write() operat ion starts from where the last one ended. These
steps are perform ed by List ing 8.6. The list ing om its sanity and error checks for convenience.

List ing 8 .6 . Reading from the EEPROM

Code View:
ssize_t
eep_read(struct file *file, char *buf,
 size_t count, loff_t *ppos)
{
 int i, transferred, ret, my_buf[BANK_SIZE];

 /* Get the private client data structure for this bank */
 struct ee_bank *my_bank =
 (struct ee_bank *)file->private_data;

 /* Check whether the smbus_read_word() functionality is
 supported */
 if (i2c_check_functionality(my_bank->client,
 I2C_FUNC_SMBUS_READ_WORD_DATA)) {

 /* Read the data */
 while (transferred < count) {
 ret = i2c_smbus_read_word_data(my_bank->client,
 my_bank->current_pointer+i);
 my_buf[i++] = (u8)(ret & 0xFF);
 my_buf[i++] = (u8)(ret >> 8);
 transferred += 2;
 }

 /* Copy data to user space and increment the internal
 file pointer. Sanity checks are omitted for simplicity */
 copy_to_user(buffer, (void *)my_buf, transferred);
 my_bank->current_pointer += transferred;
 }

 return transferred;
}

Writ ing to the device is done sim ilar ly, except that an i2c_smbus_write_XXX() funct ion is used instead.

Som e EEPROM chips have a Radio Frequency I dent ificat ion (RFI D) t ransm it ter to wirelessly t ransm it
stored inform at ion. This is used to autom ate supply-chain processes such as inventory m onitor ing and
asset t racking. Such EEPROMs usually im plem ent safeguards via an access protect ion bank that cont rols
access perm issions to the data banks. I n such cases, the dr iver has to wiggle corresponding bits in the
access protect ion bank before it can operate on the data banks.

To access the EEPROM banks from user space, develop applicat ions that operate on / dev/ eep/ n. To dum p the
contents of the EEPROM banks, use od:

bash> od –a /dev/eep/0

0000000 S E R # dc4 ff soh R P nul nul nul nul nul nul nul
0000020 @ 1 3 R 1 1 5 3 Z J 1 V 1 L 4 6
0000040 5 1 0 H sp 1 S 2 8 8 8 7 J U 9 9

0000060 H 0 0 6 6 nul nul nul bs 3 8 L 5 0 0 3
0000100 Z J 1 N U B 4 6 8 6 V 7 nul nul nul nul
0000120 nul nul nul nul nul nul nul nul nul nul nul nul nul nul nul nul
*
0000400

As an exercise, take a stab at m odifying the EEPROM driver to create / sys interfaces to the EEPROM banks
rather than the / dev interfaces. You m ay reuse code from List ing 5.7, "Using Sysfs to Cont rol the Parallel LED
Board," in Chapter 5 to help you in this endeavor.

More Methods

To obtain a fully funct ional dr iver, you need to add a few rem aining ent ry points. These are hardly different from
those of norm al character dr ivers discussed in Chapter 5 , so the code list ings are not shown:

To support the lseek() system call that assigns a new value to the internal file pointer, im plem ent the
llseek() dr iver m ethod. The internal file pointer stores state inform at ion about EEPROM access.

To verify data integrity, the EEPROM driver can support an ioctl() m ethod to adjust and verify
checksum s of stored data.

The poll() and fsync() m ethods are not relevant for the EEPROM.

I f you choose to com pile the dr iver as a m odule, you have to supply an exit() m ethod to unregister the
device and clean up client -specific data st ructures. Unregister ing the dr iver from the I2C core is a one-
liner:

i2c_del_driver(&eep_driver);

Device Exam ple: Real Tim e Clock

Let 's now take the exam ple of an RTC chip connected to an em bedded cont roller over the I 2C bus. The
connect ion diagram is shown in Figure 8.3.

Figure 8 .3 . An I 2C RTC on an em bedded system .

Assum e that the I 2C slave address of the RTC is 0x60 and that its register space is organized as shown in Table
8.2.

Table 8 .2 . Register Layout on the I 2C RTC

Register Nam e Descr ipt ion Offset

RTC_HOUR_REG Hour counter 0x0

RTC_MINUTE_REG Minute counter 0x1

RTC_SECOND_REG Second counter 0x2

RTC_STATUS_REG Flags and interrupt status 0x3

RTC_CONTROL_REG Enable/ disable RTC 0x4

Let 's base our dr iver for this chip on the EEPROM driver discussed previously. We will take the I 2C client dr iver
architecture, slave regist rat ion, and I2C core funct ions for granted and im plem ent only the code that
com m unicates with the RTC.

When the I 2C core detects a device having the RTC's slave address (0x60) on the I 2C bus, it invokes
myrtc_attach() . The invocat ion t rain is sim ilar to that for eep_attach() in List ing 8.5. Assum e that you have
to perform the following chip init ializat ions in myrtc_attach() :

Clear the RTC status register (RTC_STATUS_REG) .1 .

Start the RTC (if it is not already running) by turning on appropriate bits in the RTC cont rol register
(RTC_CONTROL_REG) .

2 .

To do this, let 's build an i2c_msg and generate I 2C t ransact ions on the bus using i2c_transfer() . This t ransfer
m echanism is exclusive to I2C and is not SMBus-com pat ible. To write to the two RTC registers referred to
previously, you have to build two i2c_msg m essages. The first m essage sets the register offset . I n our case, it 's
3, the offset of RTC_STATUS_REG. The second m essage carr ies the desired num ber of bytes to the specified
offset . I n this context , it ferr ies 2 bytes, one each to RTC_STATUS_REG and RTC_CONTROL_REG.

Code View:
#include <linux/i2c.h> /* For struct i2c_msg */
int
myrtc_attach(struct i2c_adapter *adapter, int addr, int kind)
{
 u8 buf[2];
 int offset = RTC_STATUS_REG; /* Status register lives here */
 struct i2c_msg rtc_msg[2];

 /* Write 1 byte of offset information to the RTC */
 rtc_msg[0].addr = addr; /* Slave address. In our case,
 this is 0x60 */
 rtc_msg[0].flags = I2C_M_WR; /* Write Command */
 rtc_msg[0].buf = &offset; /* Register offset for
 the next transaction */
 rtc_msg[0].len = 1; /* Offset is 1 byte long */

 /* Write 2 bytes of data (the contents of the status and
 control registers) at the offset programmed by the previous
 i2c_msg */
 rtc_msg[1].addr = addr; /* Slave address */
 rtc_msg[1].flags = I2C_M_WR; /* Write command */
 rtc_msg[1].buf = &buf[0]; /* Data to be written to control
 and status registers */
 rtc_msg[1].len = 2; /* Two register values */
 buf[0] = 0; /* Zero out the status register */
 buf[1] |= ENABLE_RTC; /* Turn on control register bits
 that start the RTC */

 /* Generate bus transactions corresponding to the two messages */
 i2c_transfer(adapter, rtc_msg, 2);

 /* ... */
 printk("My RTC Initialized\n");
}

Now that the RTC is init ialized and t icking, you can glean the current t im e by reading the contents of
RTC_HOUR_REG, RTC_MINUTE_REG, and RTC_SECOND_REG. This is done as follows:

Code View:
#include <linux/rtc.h> /* For struct rtc_time */
int

myrtc_gettime(struct i2c_client *client, struct rtc_time *r_t)
{
 u8 buf[3]; /* Space to carry hour/minute/second */
 int offset = 0; /* Time-keeping registers start at offset 0 */
 struct i2c_msg rtc_msg[2];

 /* Write 1 byte of offset information to the RTC */
 rtc_msg[0].addr = addr; /* Slave address */
 rtc_msg[0].flags = 0; /* Write Command */
 rtc_msg[0].buf = &offset; /* Register offset for
 the next transaction */
 rtc_msg[0].len = 1; /* Offset is 1 byte long */

 /* Read current time by getting 3 bytes of data from offset 0
 (i.e., from RTC_HOUR_REG, RTC_MINUTE_REG, and RTC_SECOND_REG) */
 rtc_msg[1].addr = addr; /* Slave address */
 rtc_msg[1].flags = I2C_M_RD; /* Read command */
 rtc_msg[1].buf = &buf[0]; /* Data to be read from hour, minute
 and second registers */
 rtc_msg[1].len = 3; /* Three registers to read */

 /* Generate bus transactions corresponding to the above
 two messages */
 i2c_transfer(adapter, rtc_msg, 2);
 /* Read the time */
 r_t->tm_hour = BCD2BIN(buf[0]); /* Hour */
 r_t->tm_min = BCD2BIN(buf[1]); /* Minute */
 r_t->tm_sec = BCD2BIN(buf[2]); /* Second */
 return(0);
}

myrtc_gettime() im plem ents the bus-specific bot tom layer of the RTC driver. The top layer of the RTC driver
should conform to the kernel RTC API , as discussed in the sect ion "RTC Subsystem " in Chapter 5 . The
advantage of this schem e is that applicat ions can run unchanged irrespect ive of whether your RTC is internal to
the South Bridge of a PC or externally connected to an em bedded cont roller as in this exam ple.

RTCs usually store t im e in Binary Coded Decim al (BCD) , where each nibble represents a num ber between 0 and
9 (rather than between 0 and 15) . The kernel provides a m acro called BCD2BIN() to convert from BCD encoding
to decim al and BIN2BCD() to perform the reverse operat ion. myrtc_gettime() uses the form er while reading
t im e from RTC registers.

Look at dr ivers/ rtc/ r tc-ds1307.c for an exam ple RTC driver that handles the -Dallas/ Maxim DS13XX series of I 2C
RTC chips.

Being a 2-wire bus, the I 2C bus does not have an interrupt request line that slave devices can assert , but som e
I 2C host adapters have the capabilit y to interrupt the processor to signal com plet ion of data- t ransfer requests.
This interrupt -dr iven operat ion is, however, t ransparent to I 2C client dr ivers and is hidden inside the service
rout ines offered by the I2C core. Assum ing that the I 2C host cont roller that is part of the em bedded SoC in
Figure 8.3 has the capabilit y to interrupt the processor, the invocat ion of i2c_transfer() in myrtc_attach()
m ight be doing the following under the hood:

Build a t ransact ion corresponding to rtc_msg[0] and write it to the bus using the services of the host

cont roller device dr iver.

Wait unt il the host cont roller asserts a t ransm it com plete interrupt signaling that rtc_msg[0] is now on
the wire.

I nside the interrupt handler, look at the I 2C host cont roller status register to see whether an
acknowledgm ent has been received from the RTC slave.

Return error if the host cont roller status and cont rol registers indicate that all's not well.

Repeat the sam e for rtc_msg[1] .

I 2 C- dev

Som et im es, when you need to enable support for a large num ber of slow I 2C devices, it m akes sense to dr ive
them wholly from user space. The I 2C layer supports a dr iver called i2c-dev to achieve this. Fast forward to the
sect ion "User Mode I 2C" in Chapter 19 for an exam ple that im plem ents a user m ode I 2C driver using i2c-dev.

Hardw are Monitor ing Using LM- Sensors

The LM-Sensors project , hosted at www.lm -sensors.org, br ings hardware-m onitor ing capabilit ies to Linux.
Several com puter system s use sensor chips to m onitor param eters such as tem perature, power supply voltage,
and fan speed. Periodically t racking these param eters can be cr it ical. A blown CPU fan can m anifest in the form
of st range and random software problem s. I m agine the consequences if the system is a m edical grade device!

LM-Sensors com es to the rescue with device dr ivers for m any sensor chips, a ut ilit y called sensors to generate a
health report , and a scr ipt called sensors-detect to scan your system and help you generate appropriate
configurat ion files.

Most chips that offer hardware m onitor ing interface to the CPU via I2C/ SMBus. Device dr ivers for such devices
are norm al I 2C client dr ivers but reside in the dr ivers/ hwm on/ directory, rather than drivers/ i2c/ chips/ . An
exam ple is Nat ional Sem iconductor 's LM87 chip, which can m onitor m ult iple voltages, tem peratures, and fans.
Have a look at dr ivers/ hwm on/ lm 87.c for its dr iver im plem entat ion. I 2C driver I Ds from 1000 to 1999 are
reserved for sensor chips (look at include/ linux/ i2c- id.h) .

Several sensor chips interface to the CPU via the I SA/ LPC bus rather than I 2C/ SMBus. Others em it analog output
that reaches the CPU through an Analog- to-Digital Converter (ADC) . Drivers for such chips share the
drivers/ hwm on/ directory with I 2C sensor dr ivers. An exam ple of a non- I 2C sensor dr iver is
dr ivers/ hwm on/ hdaps.c, the dr iver for the accelerometer present in several I BM/ Lenovo laptops that we
discussed in Chapter 7 , " I nput Drivers." Another exam ple of a non- I2C sensor is the Winbond 83627HF Super
I / O chip, which is dr iven by dr ivers/ hwm on/ w83627hf.c.

The Ser ia l Per iphera l I nter face Bus

The Serial Peripheral I nterface (SPI) bus is a serial m aster-slave interface sim ilar to I 2C and com es built in on
m any m icrocont rollers. I t uses four wires (com pared to two on I 2C) : Serial CLocK (SCLK) , Chip Select (CS) ,
Master Out Slave I n (MOSI) , and Master I n Slave Out (MI SO) . MOSI is used for shift ing data into the slave
device, and MI SO is used for shift ing data out of the slave device. Because the SPI bus has dedicated wires for
t ransm it t ing and receiving data, it can operate in full-duplex m ode, unlike the I 2C bus. The typical speed of
operat ion of SPI is in the low-m egahertz range, unlike the m id-kilohertz range on I2C, so the form er yields
higher throughput .

SPI peripherals available in the m arket today include Radio Frequency (RF) chips, sm art card interfaces,
EEPROMs, RTCs, touch sensors, and ADCs.

The kernel provides a core API for exchanging m essages over the SPI bus. A typical SPI client dr iver does the
following:

Registers probe() and remove() m ethods with the SPI core. Opt ionally registers suspend() and resume()
m ethods:

 #include <linux/spi/spi.h>

 static struct spi_driver myspi_driver = {
 .driver = {
 .name = "myspi",
 .bus = &spi_bus_type,
 .owner = THIS_MODULE,
 },
 .probe = myspidevice_probe,
 .remove = __devexit_p(myspidevice_remove),
 }

 spi_register_driver(&myspi_driver);

The SPI core creates an spi_device st ructure corresponding to this device and passes this as an
argum ent when it invokes the registered driver m ethods.

1 .

Exchanges m essages with the SPI device using access funct ions such as spi_sync() and spi_async() .
The form er waits for the operat ion to com plete, whereas the lat ter asynchronously t r iggers invocat ion of a
registered callback rout ine when m essage t ransfer com pletes. These data access rout ines are invoked
from suitable places such as the SPI interrupt handler, a sysfs m ethod, or a t im er handler. The following
code snippet illust rates SPI m essage subm ission:

#include <linux/spi/spi.h>

struct spi_device *spi; /* Representation of a
 SPI device */
struct spi_transfer xfer; /* Contains transfer buffer
 details */
struct spi_message sm; /* Sequence of spi_transfer
 segments */
u8 *command_buffer; /* Data to be transferred */

2 .

int len; /* Length of data to be
 transferred */

spi_message_init(&sm); /* Initialize spi_message */
xfer.tx_buf = command_buffer; /* Device-specific data */
xfer.len = len; /* Data length */
spi_message_add_tail(&xfer, &sm); /* Add the message */
spi_sync(spi, &sm); /* Blocking transfer request */

For an exam ple SPI device, consider the ADS7846 touch-screen cont roller that we briefly discussed in Chapter
7. This dr iver does the following:

Registers probe() , remove() , suspend() , and resume() m ethods with the SPI core using
spi_register_driver() .

1 .

The probe() m ethod registers the dr iver with the input subsystem using input_register_device() and
requests an I RQ using request_irq() .

2 .

The driver gathers touch coordinates from its interrupt handler using spi_async() . This funct ion t r iggers
invocat ion of a registered callback rout ine when the SPI m essage t ransfer com pletes.

3 .

The callback funct ion in turn, reports touch coordinates and clicks via the input event interface,
/ dev/ input / eventX, using input_report_abs() and input_report_key() , as discussed in Chapter 7 .
Applicat ions such as X Windows and gpm seam lessly work with the event interface and respond to touch
input .

4 .

A driver that wiggles I / O pins to get them to talk a protocol is called a bit -banging dr iver. For an exam ple SPI
bit -banging dr iver, look at dr ivers/ spi/ spi_but terfly.c, which is a dr iver to talk to DataFlash chips that are
present on But terfly boards built by Atm el around their AVR processor fam ily. For this, connect your host
system 's parallel port to the AVR But terfly using a specially m ade dongle and use the spi_but terfly driver do the
bit banging. Look at Docum entat ion/ spi/ but terfly for a detailed descript ion of this dr iver.

Current ly there is no support for user space SPI dr ivers à la i2c-dev. You only have the opt ion of writ ing a kernel
dr iver to talk to your SPI device.

I n the em bedded world, you m ay com e across solut ions where the processor uses a com panion chip that
integrates various funct ions. An exam ple is the Freescale MC13783 Power Managem ent and Audio
Com ponent (PMAC) used in tandem with the ARM9-based i.MX27 cont roller. The PMAC integrates an
RTC, a bat tery charger, a touch-screen interface, an ADC m odule, and an audio codec. The processor
and the PMAC com m unicate over SPI . The SPI bus does not contain an interrupt line, so the PMAC has
the capabilit y to externally interrupt the processor using a GPI O pin configured for this purpose.

The 1 - W ire Bus

The 1-wire protocol developed by Dallas/ Maxim uses a 1-wire (or w1) bus that carr ies both power and signal;
the return ground path is provided using som e other m eans. I t provides a sim ple way to interface with slow
devices by reducing space, cost , and com plexity. An exam ple device that works using this protocol is the ibut ton
(www.ibut ton.com) , which is used for sensing tem perature, carrying data, or holding unique I Ds.

Another w1 chip that interfaces through a single port pin of an em bedded cont roller is the DS2433 4kb 1-wire
EEPROM from Dallas/ Maxim . The driver for this chip, dr ivers/ w1/ slaves/ w1_ds2433.c, exports access to the
EEPROM via a sysfs node.

The m ain data st ructures associated with a w1 device dr iver are w1_family and w1_family_ops , both defined in
w1_fam ily.h.

Debugging

To collect I2C-specific debugging m essages, turn on a relevant com binat ion of I 2C Core debugging m essages,
I 2C Algorithm debugging m essages, I 2C Bus debugging m essages, and I 2C Chip debugging m essages under
Device Drivers I 2C Support in the kernel configurat ion m enu. Sim ilar ly, for SPI debugging, turn on Debug
Support for SPI dr ivers under Device Drivers SPI Support

To understand the flow of I 2C packets on the bus, connect an I 2C bus analyzer to your board as we did while
running List ing 8.1. The lm -sensors package contains a tool called i2cdum p that dum ps register contents of
devices on the I 2C bus.

There is a m ailing list dedicated to Linux I 2C at ht tp: / / lists. lm -sensors.org/ m ailm an/ list info/ i2c.

http://lists.lm-sensors.org/mailman/listinfo/i2c

Look ing at the Sources

I n the 2.4 kernel source t ree, a single directory (dr ivers/ i2c/) contained all the I2C/ SMBus- related sources. The
I 2C code in 2.6 kernels is organized hierarchically: The drivers/ i2c/ busses/ directory contains adapter dr ivers,
the dr ivers/ i2c/ algos/ directory has algorithm drivers, and the dr ivers/ i2c/ chips/ directory contains client
dr ivers. You can find client dr ivers in other regions of the source t ree, too. The drivers/ sound/ directory, for
exam ple, includes drivers for audio chipsets that use an I2C cont rol interface. Take a look inside the
Docum entat ion/ i2c/ directory for t ips and m ore exam ples.

Kernel SPI service funct ions live in dr ivers/ spi/ spi.c. The SPI dr iver for the ADS7846 touch cont roller is
im plem ented in dr ivers/ input / touchscreen/ ads7846.c. The MTD subsystem discussed in Chapter 17, "Mem ory
Technology Devices," im plem ents dr ivers for SPI flash chips. An exam ple is
drivers/ m td/ devices/ m td_dataflash.c, the dr iver to access Atm el DataFlash SPI chips.

The drivers/ w1/ directory contains kernel support for the w1 protocol. Drivers for the host cont roller side of the
w1 interface live in dr ivers/ w1/ m asters/ , and drivers for w1 slaves reside in dr ivers/ w1/ slaves/ .

Table 8.3 sum m arizes the m ain data st ructures used in this chapter and their locat ion in the kernel t ree. Table
8.4 lists the m ain kernel program m ing interfaces that you used in this chapter along with the locat ion of their
definit ions.

Table 8 .3 . Sum m ary of Data St ructures

Data St ructure Locat ion Descr ipt ion

i2c_driver include/ linux/ i2c.h Representat ion of an I 2C driver

i2c_client_address_data include/ linux/ i2c.h Slave addresses that an I2C
client dr iver is responsible for

i2c_client include/ linux/ i2c.h I dent ifies a chip connected to an
I 2C bus

i2c_msg include/ linux/ i2c.h I nform at ion pertaining to a
t ransact ion that you want to
generate on the I 2C bus

spi_driver include/ linux/ spi/ spi.h Representat ion of an SPI dr iver

spi_device include/ linux/ spi/ spi.h Representat ion of an SPI device

spi_transfer include/ linux/ spi/ spi.h Details of an SPI t ransfer buffer

spi_message include/ linux/ spi/ spi.h Sequence of spi_transfer
segm ents

w1_family drivers/ w1/ w1_fam ily.h Representat ion of a w1 slave
driver

w1_family_ops drivers/ w1/ w1_fam ily.h A w1 slave driver 's ent ry points

Table 8 .4 . Sum m ary of Kernel Program m ing I nter faces

Kernel I nter face Locat ion Descr ipt ion

i2c_add_driver() include/ linux/ i2c.h
drivers/ i2c/ i2c-core.c

Registers dr iver ent ry points
with the I2C core.

i2c_del_driver() drivers/ i2c/ i2c-core.c Rem oves a dr iver from the I2C
core.

i2c_probe() drivers/ i2c/ i2c-core.c Specifies the addresses of slave
devices that the dr iver is
responsible for and an
associated attach() rout ine to
be invoked if one of the specified
addresses is detected by the I 2C
core.

i2c_attach_client() drivers/ i2c/ i2c-core.c Adds a new client to the list of
clients serviced by the
associated I2C host adapter.

i2c_detach_client() drivers/ i2c/ i2c-core.c Detaches an act ive client .
Usually done when the client
dr iver or the associated host
adapter unregisters.

i2c_check_functionality() include/ linux/ i2c.h Verifies whether a part icular
funct ion is supported by the host
adapter.

i2c_get_functionality() include/ linux/ i2c.h Obtains a m ask containing all
funct ions supported by the host
adapter.

i2c_add_adapter() drivers/ i2c/ i2c-core.c Registers a host adapter.

i2c_del_adapter() drivers/ i2c/ i2c-core.c Unregisters a host adapter.

SMBus-com pat ible I 2C data
access rout ines

drivers/ i2c/ i2c-core.c See Table 8.1.

i2c_transfer() drivers/ i2c/ i2c-core.c Sends an i2c_msg over the I 2C
bus. This funct ion is not SMBus-
com pat ible.

spi_register_driver() drivers/ spi/ spi.c Registers dr iver ent ry points
with the SPI core.

spi_unregister_driver() include/ linux/ spi/ spi.h Unregisters an SPI dr iver.

spi_message_init() include/ linux/ spi/ spi.h I nit ializes an SPI m essage.

spi_message_add_tail() include/ linux/ spi/ spi.h Adds an SPI m essage to a
t ransfer list .

spi_sync() drivers/ spi/ spi.c Synchronously t ransfers data
over the SPI bus. This funct ion
blocks unt il com plet ion.

spi_async() include/ linux/ spi/ spi.h Asynchronously t ransfers data
over the SPI bus using a
com plet ion callback m echanism .

Chapter 9 . PCMCI A and Com pact Flash

I n This Chapter

What 's PCMCI A/ CF?
258

Linux-PCMCI A Subsystem
260

Host Cont roller Drivers
262

PCMCI A Core
263

Driver Services
263

Client Drivers
264

Tying the Pieces Together
271

PCMCI A Storage
272

Serial PCMCI A
272

Debugging
273

Looking at the Sources
275

Today's popular technologies such as wireless and wired Ethernet , General Packet Radio Service
(GPRS), Global Posit ioning System (GPS) , m iniature storage, and m odem s are ubiquitous in the
form factor of PCMCI A (an acronym for Personal Com puter Mem ory Card I nternat ional Associat ion)
or CF (Com pact Flash) cards. Most laptops and m any em bedded devices support PCMCI A or CF
interfaces, thus instant ly enabling them to take advantage of these technologies. On em bedded
system s, PCMCI A/ CF slots offer a technology upgrade path without the need to re-spin the board.
A cost - reduced version of an I nternet -enabled device can, for exam ple, use a PCMCI A dialup
m odem , while a higher-end flavor can have WiFi.

The Linux kernel supports PCMCI A devices on a variety of architectures. I n this chapter, let 's
explore the support present in the kernel for PCMCI A/ CF host adapters and client devices.

W hat 's PCMCI A/ CF?

PCMCI A is a 16-bit data- t ransfer interface specificat ion or iginally used by m em ory cards. CF cards are sm aller,
but com pat ible with PCMCI A, and are frequent ly used in handheld devices such as PDAs and digital cam eras. CF
cards have only 50 pins but can be slipped into your laptop's 68-pin PCMCI A slot using a passive CF- to-PCMCI A
adapter. PCMCI A and CF have been confined to the laptop and handheld space and have not m ade inroads into
desktops and higher-end m achines.

The PCMCI A specificat ion has now grown to include support for higher speeds in the form of 32-bit CardBus
cards. The term PC Card is used while referr ing to either PCMCI A or CardBus devices. CardBus is closer to the
PCI bus, so the kernel has m oved support for CardBus devices from the PCMCI A layer to the PCI layer. The
latest technology specificat ion from the PCMCI A indust ry standards group is the ExpressCard, which is
com pat ible with PCI Express, a new bus technology based on PCI concepts. We look at CardBus and
ExpressCard when we discuss PCI in the next chapter.

PC cards com e in three flavors in the increasing order of thickness: Type I (3.3m m), Type I I (5m m), and Type
I I I (10.5m m).

Figure 9.1 shows PCMCI A bus connect ion on a laptop, and Figure 9.2 illust rates PCMCI A on an em bedded device.
As you m ight have not iced, the PCMCI A host cont roller br idges the PCMCI A card with the system bus. Laptops
and their derivat ives generally have a PCMCI A host cont roller chip connected to the PCI bus, while several
em bedded cont rollers have a PCMCI A host cont roller built in to their silicon. The cont roller m aps card m em ory
to host I / O and m em ory windows and routes interrupts generated by the card to a suitable processor interrupt
line.

Figure 9 .1 . PCMCI A on a laptop.

Figure 9 .2 . PCMCI A on an em bedded system .

Chapter 9 . PCMCI A and Com pact Flash

I n This Chapter

What 's PCMCI A/ CF?
258

Linux-PCMCI A Subsystem
260

Host Cont roller Drivers
262

PCMCI A Core
263

Driver Services
263

Client Drivers
264

Tying the Pieces Together
271

PCMCI A Storage
272

Serial PCMCI A
272

Debugging
273

Looking at the Sources
275

Today's popular technologies such as wireless and wired Ethernet , General Packet Radio Service
(GPRS), Global Posit ioning System (GPS) , m iniature storage, and m odem s are ubiquitous in the
form factor of PCMCI A (an acronym for Personal Com puter Mem ory Card I nternat ional Associat ion)
or CF (Com pact Flash) cards. Most laptops and m any em bedded devices support PCMCI A or CF
interfaces, thus instant ly enabling them to take advantage of these technologies. On em bedded
system s, PCMCI A/ CF slots offer a technology upgrade path without the need to re-spin the board.
A cost - reduced version of an I nternet -enabled device can, for exam ple, use a PCMCI A dialup
m odem , while a higher-end flavor can have WiFi.

The Linux kernel supports PCMCI A devices on a variety of architectures. I n this chapter, let 's
explore the support present in the kernel for PCMCI A/ CF host adapters and client devices.

W hat 's PCMCI A/ CF?

PCMCI A is a 16-bit data- t ransfer interface specificat ion or iginally used by m em ory cards. CF cards are sm aller,
but com pat ible with PCMCI A, and are frequent ly used in handheld devices such as PDAs and digital cam eras. CF
cards have only 50 pins but can be slipped into your laptop's 68-pin PCMCI A slot using a passive CF- to-PCMCI A
adapter. PCMCI A and CF have been confined to the laptop and handheld space and have not m ade inroads into
desktops and higher-end m achines.

The PCMCI A specificat ion has now grown to include support for higher speeds in the form of 32-bit CardBus
cards. The term PC Card is used while referr ing to either PCMCI A or CardBus devices. CardBus is closer to the
PCI bus, so the kernel has m oved support for CardBus devices from the PCMCI A layer to the PCI layer. The
latest technology specificat ion from the PCMCI A indust ry standards group is the ExpressCard, which is
com pat ible with PCI Express, a new bus technology based on PCI concepts. We look at CardBus and
ExpressCard when we discuss PCI in the next chapter.

PC cards com e in three flavors in the increasing order of thickness: Type I (3.3m m), Type I I (5m m), and Type
I I I (10.5m m).

Figure 9.1 shows PCMCI A bus connect ion on a laptop, and Figure 9.2 illust rates PCMCI A on an em bedded device.
As you m ight have not iced, the PCMCI A host cont roller br idges the PCMCI A card with the system bus. Laptops
and their derivat ives generally have a PCMCI A host cont roller chip connected to the PCI bus, while several
em bedded cont rollers have a PCMCI A host cont roller built in to their silicon. The cont roller m aps card m em ory
to host I / O and m em ory windows and routes interrupts generated by the card to a suitable processor interrupt
line.

Figure 9 .1 . PCMCI A on a laptop.

Figure 9 .2 . PCMCI A on an em bedded system .

Linux- PCMCI A Subsystem

Linux-PCMCI A support is available on I ntel-based laptops as well as on architectures such as ARM, MI PS, and
PowerPC. The PCMCI A subsystem consists of device drivers for PCMCI A host cont rollers, client dr ivers for
different cards, a daem on that aids hotplugging, user m ode ut ilit ies, and a Card Services m odule that interacts
with all of these.

Figure 9.3 illust rates the interact ion between the m odules that const itute the Linux-PCMCI A subsystem .

Figure 9 .3 . The Linux- PCMCI A subsystem .

[View full size im age]

The Old Linux-PCMCI A Subsystem

The Linux-PCMCI A subsystem has recent ly undergone an overhaul. To get PCMCI A working with
2.6.13 and newer kernels, you need the pcm ciaut ils package
(ht tp: / / kernel.org/ pub/ linux/ ut ils/ kernel/ pcm cia/ howto.htm l) , which obsoletes the pcm cia-cs
package (ht tp: / / pcm cia-cs.sourceforge.net) used with earlier kernels. I nternal kernel
program m ing interfaces and data st ructures have also changed. Earlier kernels relied on a user
space daem on called cardm gr to support hotplugging, but the new PCMCI A im plem entat ion
handles hotplug using udev, just as other bus subsystem s do. So with new setups, you don't need
cardm gr and should m ake sure that it is not started. There is a m igrat ion guide at
ht tp: / / kernel.org/ pub/ linux/ ut ils/ kernel/ pcm cia/ cardm gr- to-pcm ciaut ils.htm l.

Figure 9.3 contains the following com ponents:

Host cont roller device dr ivers that im plem ent low- level rout ines for com m unicat ing with the PCMCI A host
cont roller. Your handheld and laptop have different host cont rollers and, hence, use different host
cont roller dr ivers. Each PCMCI A slot that the host cont roller supports is called a socket .

PCMCI A client dr ivers (XX_cs in Figure 9.3) that respond to socket events such as card insert ion and
eject ion. This is the dr iver that you are m ost likely to im plem ent when you at tem pt to Linux-enable a
PCMCI A card. The XX_cs driver usually works in tandem with a generic dr iver (XX in Figure 9.3) that is not
PCMCI A-specific. I n relat ion to Figure 9.3, if your device is a PCMCI A I DE disk, XX is the I DE disk dr iver,
XX_cs is the ide_cs dr iver, XX-dependent layers are filesystem layers, and XX-applicat ions are programs
that access data files. XX_cs configures the generic dr iver (XX) with resources such as I RQs, I / O base
addresses, and m em ory windows.

The PCMCI A core that provides services to host cont roller dr ivers and client dr ivers. The core provides an
infrast ructure that m akes driver im plem entat ions sim pler and adds a level of indirect ion that renders client
dr ivers independent of host cont rollers. I rrespect ive of whether you are using your Bluetooth CF card on
an XScale-based handheld or an x86-based laptop, the sam e client dr ivers can be pressed into service.

A driver services m odule (ds) that offers regist rat ion interfaces and bus services to client dr ivers.

The pcm ciaut ils package, which contains tools such as pccardct l that cont rol the state of PCMCI A sockets
and select between different card-configurat ion schem es.

Figure 9.4 glues kernel m odules on top of Figure 9.1 to illust rate how the Linux-PCMCI A subsystem interacts
with hardware on a PC-com pat ible system .

Figure 9 .4 . Rela t ing PCMCI A dr iver com ponents w ith PC hardw are.

[View full size im age]

http://kernel.org/pub/linux/utils/kernel/pcmcia/howto.html
http://pcmcia-cs.sourceforge.net
http://kernel.org/pub/linux/utils/kernel/pcmcia/cardmgr-to-pcmciautils.html

I n the following sect ions, let 's take a closer look at the com ponents const itut ing the Linux-PCMCI A subsystem .
To bet ter understand the role of these com ponents and their interact ion, we will insert a PCMCI A WiFi card into
a laptop and t race the code flow in the sect ion "Tying the Pieces Together."

Host Cont roller Dr ivers

Whereas the generic card dr iver (XX) is responsible for handling interrupts generated by the card funct ion (say,
receive interrupts when a PCMCI A network card receives data packets) , the host cont roller dr iver is responsible
for handling bus-specific interrupts t r iggered by events such as card insert ion and eject ion.

Figure 9.2 shows the block diagram of an em bedded device designed around an em bedded cont roller that has
built - in PCMCI A support . Even if you are using a cont roller supported by the kernel PCMCI A layer, you m ight
need to tweak the host cont roller dr iver (for exam ple, to configure GPI O lines used for detect ing card insert ion
events or switching power to the socket) depending on your board's design. I f you are port ing the kernel to a
St rongARM-based handheld, for exam ple, tailor dr ivers/ pcm cia/ sa1100_assabet .c to suit your hardware.

This chapter does not cover the im plem entat ion of host cont roller device dr ivers.

PCMCI A Core

Card Services is the m ain const ituent of the PCMCI A core. I t offers a set of services to client dr ivers and host
cont roller dr ivers. I t contains a kernel thread called pccardd that polls for socket - related events. Pccardd not ifies
the Driver Services event handler (discussed in the next sect ion) when the host cont roller reports events such
as card insert ion and card rem oval.

Another com ponent of the PCMCI A core is a library that m anipulates the Card I nform at ion St ructure (CI S) that
is part of PCMCI A cards. PCMCI A/ CF cards have two m em ory spaces: At t r ibute m em ory and Com m on m em ory.
At t r ibute m em ory contains the CI S and card configurat ion registers. At t r ibute m em ory of a PCMCI A I DE disk, for
exam ple, contains its CI S and registers that specify the sector count and the cylinder num ber. Com m on m em ory
in this case contains the m em ory array that holds disk data. The PCMCI A core offers CI S m anipulat ion rout ines
such as pccard_get_first_tuple() , pccard_get_next_tuple() , and pccard_parse_tuple() to client dr ivers.
List ing 9.2 uses the assistance of som e of these funct ions.

The PCMCI A core passes CI S inform at ion to user space via sysfs and udev. Ut ilit ies such as pccardct l, part of the
pcm ciaut ils package, depend on sysfs and udev for their operat ion. This sim plifies the earlier design approach
that relied on a custom infrast ructure when these facilit ies were absent in the kernel.

Driver Services

Driver Services provides an infrast ructure that offers the following:

A handler that catches event alerts dispatched by the pccardd kernel thread. The handler scans and
validates the card's CI S space and t r iggers the load of an appropriate client dr iver.

A layer that has the task of com m unicat ing with the kernel's bus core. To this end, Driver Services
im plem ents the pcmcia_bus_type and related bus operat ions.

Service rout ines such as pcmcia_register_driver() that client dr ivers use to register them selves with
the PCMCI A core. The exam ple dr iver in List ing 9.1 uses som e of these rout ines.

Client Dr ivers

The client device dr iver (XX_cs in Figure 9.3) looks at the card's CI S space and configures the card depending
on the inform at ion it gathers.

Data St ructures

Before proceeding to develop an exam ple PCMCI A client dr iver, let 's m eet som e related data st ructures:

A PCMCI A device is ident ified by the pcmcia_device_id st ructure defined in
include/ linux/ m od_devicetable.h:

struct pcmcia_device_id {
 /* ... */
 __u16 manf_id; /* Manufacturer ID */
 __u16 card_id; /* Card ID */
 __u8 func_id; /* Function ID */
 /* ... */
};

manf_id , card_id , and func_id hold the card's m anufacturer I D, card I D, and funct ion I D, respect ively.
The PCMCI A core offers a m acro called PCMCIA_DEVICE_MANF_CARD() that creates a pcmcia_device_id
st ructure from the m anufacturer and card I Ds supplied to it . Another kernel m acro called
MODULE_DEVICE_TABLE() m arks the supported pcmcia_device_id s in the m odule im age so that the
m odule can be loaded on dem and when the card is inserted and the PCMCI A subsystem gleans m atching
m anufacturer/ card/ funct ion I Ds from the card's CI S space. We explored this m echanism in the sect ion
"Module Autoload" in Chapter 4 , "Laying the Groundwork." This procedure is analogous to that used by
device dr ivers for two other popular I / O buses that support hotplugging: PCI and USB. Table 9.1 gives a
heads-up on the sim ilar it ies between drivers for these three bus technologies. Don't worry if that is hard
to digest ; we will have a detailed discussion on PCI and USB in the following chapters.

Table 9 .1 . Device I Ds and Hotplug Methods for PCMCI A, PCI , and USB

 PCMCI A PCI USB

Device I D table
st ructure

pcmcia_device_id pci_device_id usb_device_id

Macro to create
a device I D

PCMCIA_DEVICE_MANF_CARD()PCI_DEVICE() USB_DEVICE()

Device
representat ion

struct pcmcia_device struct pci_dev struct usb_device

Driver
representat ion

struct pcmcia_driver struct pci_driver struct usb_driver

Hotplug
m ethods

probe() and remove() probe() and
remove()

probe() and
disconnect()

Hotplug event
detect ion

pccardd kthread PCI - fam ily-
dependent

khubd kthread

1 .

PCMCI A client dr ivers need to associate their pcmcia_device_id table with their probe() and remove()
m ethods. This t ie up is achieved by the pcmcia_driver st ructure:

struct pcmcia_driver {
 int (*probe)(struct pcmcia_device *dev); /* Probe
 method */
 void (*remove)(struct pcmcia_device *dev); /* Remove
 method */
 /* ... */
 struct pcmcia_device_id *id_table; /* Device ID
 table */
 /* ... */
};

2 .

struct pcmcia_device internally represents a PCMCI A device and is defined as follows in
drivers/ pcm cia/ ds.h:

struct pcmcia_device {
 /* ... */
 io_req_t io; /* I/O attributes*/
 irq_req_t irq; /* IRQ settings */
 config_req_t conf; /* Configuration */
 /* ... */
 struct device dev; /* Connection to device model */
 /* ... */
};

3 .

CI S m anipulat ion rout ines use a tuple_t st ructure defined in include/ pcm cia/ cistpl.h to hold a CI S
inform at ion unit . A CISTPL_LONGLINK_MFC tuple type, for exam ple, contains inform at ion related to a
m ult ifunct ion card. For the full list of tuples and their descript ions, look at include/ pcm cia/ cistpl.h and
ht tp: / / pcm cia-cs.sourceforge.net / ftp/ doc/ PCMCI A-PROG.htm l.

typedef struct tuple_t {
 /* ... */
 cisdata_t TupleCode; /* See
 include/pcmcia/cistpl.h */

 /* ... */
 cisdata_t DesiredTuple; /* Identity of the desired
 tuple */
 /* ... */
 cisdata_t *TupleData; /* Buffer space */
};

4 .

The CI S contains configurat ion table ent r ies for each configurat ion that the card supports.
cistpl_cftable_entry_t , defined in include/ pcm cia/ cistpl.h, holds such an ent ry:

typedef struct cistpl_cftable_entry_t {
 /* ... */
 cistpl_power_t vcc, vpp1, vpp2; /* Voltage level */
 cistpl_io_t io; /* I/O attributes */
 cistpl_irq_t irq; /* IRQ settings */
 cistpl_mem_t mem; /* Memory window */
 /* ... */
};

5 .

6 .

http://pcmcia-cs.sourceforge.net/ftp/doc/PCMCIA-PROG.html

cisparse_t , also defined in include/ pcm cia/ cistpl.h, holds a tuple parsed by the PCMCI A core:

typedef union cisparse_t {
 /* ... */
 cistpl_manfid_t manfid; /* Manf ID */
 /* ... */
 cistpl_cftable_entry_t cftable_entry; /* Configuration
 table entry */
 /* ... */
} cisparse_t;

6 .

Device Exam ple: PCMCI A Card

Let 's develop a skeletal client device dr iver (because too m any details will m ake it a loaded discussion) to learn
the workings of the PCMCI A subsystem . The im plem entat ion is general, so you m ay use it as a tem plate
irrespect ive of whether your card im plem ents networking, storage, or som e other technology. Only the XX_cs
driver is im plem ented; the generic XX driver is assum ed to be available off the shelf.

As alluded to earlier, PCMCI A drivers contain probe() and remove() m ethods to support hotplugging. List ing
9.1 registers the dr iver 's probe() m ethod, remove() m ethod, and pcmcia_device_id table with the PCMCI A
core. XX_probe() gets invoked when the associated PCMCI A card is inserted, and XX_remove() is called when
the card is ejected.

List ing 9 .1 . Register ing a Client Dr iver

Code View:
#include <pcmcia/ds.h> /* Definition of struct pcmcia_device */

static struct pcmcia_driver XX_cs_driver = {
 .owner = THIS_MODULE,
 .drv = {
 .name = "XX_cs", /* Name */
 },
 .probe = XX_probe, /* Probe */
 .remove = XX_remove, /* Release */
 .id_table = XX_ids, /* ID table */
 .suspend = XX_suspend, /* Power management */
 .resume = XX_resume, /* Power management */
};

#define XX_MANFUFACTURER_ID 0xABCD /* Device's manf_id */
#define XX_CARD_ID 0xCDEF /* Device's card_id */

/* Identity of supported cards */
static struct pcmcia_device_id XX_ids[] = {
 PCMCIA_DEVICE_MANF_CARD(XX_MANFUFACTURER_ID, XX_CARD_ID),
 PCMCIA_DEVICE_NULL,
};

MODULE_DEVICE_TABLE(pcmcia, XX_ids); /* For module autoload */

/* Initialization */
static int __init
init_XX_cs(void)
{
 return pcmcia_register_driver(&XX_cs_driver);
}

/* Probe Method */
static int
XX_probe(struct pcmcia_device *link)
{
 /* Populate the pcmcia_device structure allotted for this card by
 the core. First fill in general information */
 /* ... */

 /* Fill in attributes related to I/O windows and
 interrupt levels */
 XX_config(link); /* See Listing 9.2 */
}

List ing 9.2 shows the rout ine that configures the generic device dr iver (XX) with resource inform at ion such as
I / O and m em ory window base addresses. After this step, data flow to and from the PCMCI A card passes through
XX and is t ransparent to the rest of the layers. Any interrupts generated by the PCMCI A card, such as those
related to data recept ion or t ransm it com plet ion for network cards, are handled by the interrupt handler that is
part of XX. List ing 9.2 is loosely based on dr ivers/ net / wireless/ airo_cs.c, the client dr iver for the Cisco Aironet
4500 and 4800 series of PCMCI A WiFi cards. The list ing uses the services of the PCMCI A core to do the
following:

Obtain a suitable configurat ion table ent ry tuple from the card's CI S

Parse the tuple

Glean card configurat ion inform at ion such as I / O base addresses and power set t ings from the parsed tuple

Request allocat ion of an interrupt line

I t then configures the chipset -specific dr iver (XX) with the inform at ion previously obtained.

List ing 9 .2 . Configur ing the Gener ic Device Dr iver

Code View:
#include <pcmcia/cistpl.h>
#include <pcmcia/ds.h>
#include <pcmcia/cs.h>
#include <pcmcia/cisreg.h>

/* This makes the XX device available to the system. XX_config()
 is based on airo_config(), defined in
 drivers/net/wireless/airo_cs.c */

static int
XX_config(struct pcmcia_device *link)
{
 tuple_t tuple;
 cisparse_t parse;
 u_char buf[64];

 /* Populate a tuple_t structure with the identity of the desired
 tuple. In this case, we're looking for a configuration table

 entry */
 tuple.DesiredTuple = CISTPL_CFTABLE_ENTRY;
 tuple.Attributes = 0;
 tuple.TupleData = buf;
 tuple.TupleDataMax = sizeof(buf);

 /* Walk the CIS for a matching tuple and glean card configuration
 information such as I/O window base addresses */

 /* Get first tuple */
 CS_CHECK(GetFirstTuple, pcmcia_get_first_tuple(link, &tuple));
 while (1){
 cistpl_cftable_entry_t dflt = {0};
 cistpl_cftable_entry_t *cfg = &(parse.cftable_entry);

 /* Read a configuration tuple from the card's CIS space */
 if (pcmcia_get_tuple_data(link, &tuple) != 0 ||
 pcmcia_parse_tuple(link, &tuple, &parse) != 0) {
 goto next_entry;
 }

 /* We have a matching tuple! */
 /* Configure power settings in the pcmcia_device based on
 what was found in the parsed tuple entry */
 if (cfg->vpp1.present & (1<<CISTPL_POWER_VNOM))
 link->conf.Vpp = cfg->vpp1.param[CISTPL_POWER_VNOM]/10000;

 /* ... */

 /* Configure I/O window settings in the pcmcia_device based on
 what was found in the parsed tuple entry */
 if ((cfg->io.nwin > 0) || (dflt.io.nwin > 0)) {
 cistpl_io_t *io = (cfg->io.nwin) ? &cfg->io : &dflt.io;
 /* ... */
 if (!(io->flags & CISTPL_IO_8BIT)) {
 link->io.Attributes1 = IO_DATA_PATH_WIDTH_16;
 }
 link->io.BasePort1 = io->win[0].base;
 /* ... */
 }

 /* ... */
 break;
 next_entry:
 CS_CHECK(GetNextTuple, pcmcia_get_next_tuple(link, &tuple);
 }

 /* Allocate IRQ */
 if (link->conf.Attributes & CONF_ENABLE_IRQ) {
 CS_CHECK(RequestIRQ, pcmcia_request_irq(link, &link->irq));
 }
 /* ... */

 /* Invoke init_XX_card(), which is part of the generic
 XX driver (so, not shown in this listing), and pass
 the I/O base and IRQ information obtained above */
 init_XX_card(link->irq.AssignedIRQ, link->io.BasePort1,
 1, &handle_to_dev(link));

 /* The chip-specific (form factor independent) driver is ready
 to take responsibility of this card from now on! */
}

Tying the Pieces Together

As you saw in Figure 9.3, the PCMCI A layer consists of various com ponents. The data- flow path between the
com ponents can som et im es get com plicated. Let 's t race the code path from the t im e you insert a PCMCI A card
unt il an applicat ion starts t ransferr ing data to the card. Assum e that a Cisco Aironet PCMCI A card is inserted
onto a laptop having an 82365-com pat ible PCMCI A host cont roller:

1 . The PCMCI A host cont roller dr iver (dr ivers/ pcm cia/ yenta_socket .c) detects the insert ion event via its
interrupt service rout ine and m akes note of it using suitable data st ructures.

2 . The pccardd kernel thread that is part of Card Services (dr ivers/ pcm cia/ cs.c) sleeps on a wait queue unt il
the host cont roller dr iver wakes it up when it detects the card insert ion in Step 1.

3 . Card Services dispatches an insert ion event to Driver Services (dr ivers/ pcm cia/ ds.c) . This t r iggers
execut ion of the event handler registered by Driver Services during init ializat ion.

4 . Driver Services validates the card's CI S space, determ ines inform at ion about the inserted device such as
its m anufacturer I D and card I D, and registers the device with the kernel. The appropriate client device
driver (dr ivers/ net / wireless/ airo_cs.c) is then loaded. Revisit our previous discussion on
MODULE_DEVICE_TABLE() to see how this is accom plished.

5 . The client dr iver (airo_cs.c) loaded in Step 4 init ializes and registers itself using
pcmcia_register_driver() , as shown in List ing 9.1. This regist rat ion interface internally sets the bus
type of the device to pcmcia_bus_type . PCMCI A bus operat ions such as probe() and remove() , defined by
Driver Services (ds.c) , are also internally registered.

6 . The kernel invokes the bus probe() operat ion registered by Driver Services in Step 5. This in turn, invokes
the probe() m ethod owned by the m atching client dr iver (airo_probe()) , also registered in Step 5. The
client probe() rout ine populates set t ings, such as I / O windows and interrupt lines, and configures the
generic chipset -specific dr iver (dr ivers/ net / wireless/ airo.c) , as shown in List ing 9.2.

7 . The chipset dr iver (airo.c) creates a network interface (ethX) and is responsible for norm al operat ion from
this point onward. I t 's this dr iver that handles interrupts generated by the card in response to packet
recept ion and t ransm it com plet ion. The form factor of the device (for exam ple, whether it 's a PCMCI A or a
PCI card) is t ransparent to the chipset dr iver as well as to the applicat ions that operate over ethX.

PCMCI A Storage

Today's PCMCI A/ CF storage support densit ies in the gigabyte realm . The storage cards com e in different flavors:

Miniature I DE disk dr ives or m icrodrives. These are t iny versions of m echanical hard dr ives that use
m agnet ic m edia. Their data t ransfer rates are typically higher than solid state m em ory devices, but I DE
drives have spin-up and seek latencies before data can be t ransferred. The I DE Card Services dr iver
ide_cs, in conjunct ion with legacy I DE drivers, is used to com m unicate with such m em ory cards.

Solid-state m em ory cards that em ulate I DE. Such cards have no m oving parts and are usually based on
flash m em ory, which is t ransparent to the operat ing system because of the I DE em ulat ion. Because these
drives are effect ively I DE-based, the sam e I DE Card Services dr iver (ide_cs) can be used to talk to them .

Mem ory cards that use flash m em ory, but without I DE em ulat ion. The m em ory_cs Card Services dr iver
provides block and character interfaces over such cards. The block interface is used to put a filesystem
onto card m em ory, whereas the character interface is used to access raw data. You m ay also use
m em ory_cs to read the at t r ibute m em ory space of any PCMCI A card.

Ser ia l PCMCI A

Many networking technologies such as General Packet Radio Service (GPRS) , Global System for Mobile
Com m unicat ions (GSM), Global Posit ioning System (GPS) , and Bluetooth use a serial t ransport m echanism to
com m unicate with host system s. I n this sect ion, let 's find out how the PCMCI A layer handles cards that feature
such technologies. Note that this sect ion is only to help you understand the bus interface part of GPRS, GSM,
and Bluetooth cards having a PCMCI A/ CF form factor. The technologies them selves are discussed in detail in
Chapter 16, "Linux Without Wires."

The generic serial Card Services dr iver, ser ial_cs, allows the rest of the operat ing system to see the PCMCI A/ CF
card as a serial device. The first unused serial device, / dev/ t tySX, gets allot ted to the card. serial_cs thus
em ulates a serial port over GPRS, GSM, and GPS cards. I t also allows Bluetooth PCMCI A/ CF cards that use a
serial t ransport to t ransfer Host Cont rol I nterface (HCI) packets to Bluetooth protocol layers.

Figure 9.5 illust rates how kernel m odules im plem ent ing different networking technologies interact with serial_cs
to com m unicate with their respect ive cards.

Figure 9 .5 . Netw ork ing w ith PCMCI A/ CF cards that us e ser ia l t ranspor t .

[View full size im age]

The Point - to-Point Protocol (PPP) allows networking protocols such as TCP/ I P to run over a serial link. I n the
context of Figure 9.5, PPP gets TCP/ I P applicat ions running over GPRS and GSM dialup. The PPP daem on, pppd,
at taches over vir tual serial ports em ulated by serial_cs. The PPP kernel m odules—ppp_generic, ppp_async, and
slhc—have to be loaded for pppd to work. I nvoke pppd as follows:

bash> pppd ttySX call connection-script

where connect ion-script is a file containing com m and sequences that pppd exchanges with the service provider
to establish a link. The connect ion scr ipt depends on the part icular card that is being used. A GPRS card would
need a context st r ing to be sent as part of the connect ion scr ipt , whereas a GSM card m ight need an exchange
of passwords. An exam ple connect ion scr ipt is described in the sect ion "GPRS" in Chapter 16.

Debugging

To effect ively debug PCMCI A/ CF client dr ivers, you need to see debug m essages em it ted by the PCMCI A core.
For this, enable CONFIG_PCMCIA_DEBUG (Bus opt ions PCCARD support Enable PCCARD debugging)
during kernel configurat ion. Verbosity levels of the debug output can be cont rolled either via the
pcmcia_core.pc_debug kernel com m and- line argum ent or using the pc_debug m odule insert ion param eter.

I nform at ion about PC Card client dr ivers is available in the process filesystem ent ry, / proc/ bus/ pccard/ dr ivers.
Look at / sys/ bus/ pcm cia/ devices/ * for card-specific inform at ion such as m anufacturer and card I Ds. Take a look
inside / proc/ bus/ pci/ to know m ore about your PCMCI A host cont roller if your system uses a PCI - to-PCMCI A
bridge. / proc/ interrupts lists I RQs act ive on your system , including those used by the PCMCI A layer.

There is a m ailing list dedicated to Linux-PCMCI A at ht tp: / / lists. infradead.org/ m ailm an/ list info/ linux-pcm cia.

http://lists.infradead.org/mailman/listinfo/linux-pcmcia

Look ing at the Sources

I n the Linux source t ree, the dr ivers/ pcm cia/ directory contains the sources for Card Services, Driver Services,
and host cont roller dr ivers. Look at dr ivers/ pcm cia/ yenta_socket .c for the host cont roller dr iver that runs on
m any x86-based laptops. Header files present in include/ pcm cia/ contain PCMCI A- related st ructure definit ions.

Client dr ivers live alongside other dr ivers belonging to the associated device class. So, you will find dr ivers for
PCMCI A networking cards inside dr ivers/ net / pcm cia/ . The client dr iver for PCMCI A m em ory devices that em ulate
I DE is dr ivers/ ide/ legacy/ ide-cs.c. See drivers/ serial/ serial_cs.c for the client dr iver used by PCMCI A m odem s.

Table 9.2 sum m arizes the m ain data st ructures used in this chapter and their locat ion in the kernel t ree. Table
9.3 lists the m ain kernel program m ing interfaces that you used in this chapter along with the locat ion of their
definit ions.

Table 9 .2 . Sum m ary of Data St ructures

Data St ructure Locat ion Descr ipt ion

pcmcia_device_id include/ linux/ m od_devicetable.h I dent ity of a PCMCI A card.

pcmcia_device include/ pcm cia/ ds.h Representat ion of a PCMCI A
device.

pcmcia_driver include/ pcm cia/ ds.h Representat ion of a PCMCI A
client dr iver.

tuple_t include/ pcm cia/ cistpl.h CI S m anipulat ion rout ines use a
tuple_t st ructure to hold
inform at ion.

cistpl_cftable_entry_t include/ pcm cia/ cistpl.h Configurat ion table ent ry in the
CI S space.

cisparse_t include/ pcm cia/ cistpl.h A parsed CI S tuple.

Table 9 .3 . Sum m ary of Kernel Program m ing I nter faces

Kernel I nter face Locat ion Descr ipt ion

pcmcia_register_driver() drivers/ pcm cia/ ds.c Registers a dr iver with the
PCMCI A core

pcmcia_unregister_driver() drivers/ pcm cia/ ds.c Unregisters a dr iver from the
PCMCI A core

pcmcia_get_first_tuple()
pcmcia_get_tuple_data()
pcmcia_parse_tuple()

include/ pcm cia/ cistpl.h
dr ivers/ pcm cia/ cistpl.c

Library rout ines to m anipulate
CI S space

pcmcia_request_irq() drivers/ pcm cia/ pcm cia_resource.c Gets an I RQ assigned for a
PCMCI A card

Chapter 1 0 . Per iphera l Com ponent I nterconnect

I n This Chapter

The PCI Fam ily
278

Addressing and I dent ificat ion
281

Accessing PCI Regions
285

Direct Mem ory Access
288

Device Exam ple: Ethernet -Modem
Card

292

Debugging
308

Looking at the Sources
308

Peripheral Com ponent I nterconnect (PCI) is an om nipresent I / O backbone. Whether you are
backing up data on a storage server, capturing video from your desktop, or surfing the web from
your laptop, PCI m ight be serving you in som e avatar or the other. PCI , and form factors adapted
or derived from PCI such as Mini PCI , CardBus, PCI Extended, PCI Express, PCI Express Mini Card,
and Express Card have becom e de facto peripheral connect ion technologies on today's com puters.

The PCI Fam ily

PCI is a high-speed bus used for com m unicat ion between the CPU and I / O devices. The PCI specificat ion enables
t ransfer of 32 bits of data in parallel at 33MHz or 66MHz, yielding a peak throughput of 266MBps.

CardBus is a derivat ive of PCI and has the form factor of a PC Card. CardBus cards are also 32-bits wide and run
at 33MHz. Even though CardBus and PCMCI A cards use the sam e 68-pin connectors, CardBus devices support
32 data lines com pared to 16 for PCMCI A by m ult iplexing address and data lines as done in the PCI bus.

Mini PCI , also a 33MHz 32-bit bus, is another adaptat ion of PCI found in sm all- footpr int com puters such as
laptops. A PCI card can talk via a Mini PCI slot using a com pat ible connector.

An extension to PCI called PCI Extended (or PCI -X) expands the bus width to 64 bits, frequency to 133MHz, and
the throughput to about 1GBps. PCI -X 2.0 is the current version of the standard.

PCI Express (PCI e or PCI -E) is the present generat ion of the PCI fam ily. Unlike the parallel PCI bus, PCI e uses a
serial protocol to t ransfer data. PCI e supports a m axim um of 32 serial links. Each PCI e link (in the com m only
used version 1.1 of the specificat ion) yields a throughput of 250MBps in each t ransfer direct ion, thus producing
a m axim um PCI e data rate of 8GBps in each direct ion. PCI e 2.0 is the current version of the standard and
supports higher data rates.

Serial com m unicat ion is faster and cheaper than parallel data t ransfer due to the absence of factors such as
signal interference, so the indust ry t rend is to m ove from parallel buses to serial technologies. PCI e and its
adaptat ions aim to replace PCI and its derivat ives, and this shift is also part of the m ethodology change from
parallel to serial com m unicat ion. Several I / O interfaces discussed in this book, such as RS-232, USB, FireWire,
SATA, Ethernet , Fibre Channel, and I nfiniBand, are serial com m unicat ion architectures.

The CardBus equivalent in the PCI e fam ily is the Express Card. Express Cards direct ly connect to the system bus
via a PCI e link or USB 2.0 (discussed in the next chapter) , and circum vent m iddlem en such as CardBus
cont rollers. Mini PCI 's cousin in the PCI e fam ily is PCI Express Mini Card.

Recent laptops support Express Card slots instead of (or in addit ion to) CardBus, and PCI Express Mini Card
slots in place of Mini PCI . The form er two have sm aller footpr ints and higher speeds com pared to the lat ter two.

Table 10.1 sum m arizes the im portant relat ives of PCI . From the kernel's perspect ive, all these technologies are
com pat ible with one another. A kernel PCI dr iver will work with all related technologies m ent ioned previously;
so even though we base exam ple code in this chapter on a CardBus card, the concepts apply to other PCI
derivat ives, too.

Table 1 0 .1 . PCI 's Siblings, Children, and Cousins

Bus Nam e Character ist ics Form Factor

PCI 32-bit bus at 33MHz or 66MHz;
yields up to 266MBps.

I nternal slot in desktops and
servers.

Mini PCI 32-bit bus at 33MHz. I nternal slot in laptops.

CardBus 32-bit bus at 33MHz. External PC card slot in laptops.
Com pat ible with PCI .

PCI Extended (PCI -X) 64-bit bus at 133 MHz, yielding
up to 1GBps.

I nternal slot in desktops and
servers. Wider than PCI , but a
PCI card can be plugged into a
PCI -X slot .

PCI Express (PCI e) 250MBps per PCI e link in each
t ransfer direct ion, yielding a
m axim um throughput of 8GBps
in each direct ion.

Replaces the internal PCI slot in
newer system s. PCI e is a serial
protocol unlike nat ive PCI , which
is parallel.

PCI Express Mini Card 250MBps in each direct ion if the
interface is based on a PCI e link;
60MBps if the interface is based
on USB 2.0.

Replaces Mini PCI as the internal
slot in newer laptops. Sm aller
form factor than Mini PCI .

Bus Nam e Character ist ics Form Factor

Express Card 250MBps in each direct ion if the
interface is based on a PCI e link;
60MBps if the interface is based
on USB 2.0.

Thin external slot in newer
laptops that replaces CardBus.
I nterfaces with the system bus
via PCI e or USB 2.0.

Solut ions based on the PCI fam ily are available for a vast spect rum of hardware dom ains:

Networking technologies such as Gigabit Ethernet , WiFi, ATM, Token Ring, and I SDN.

Host adapters for storage technologies, such as SCSI .

Host cont rollers for I / O buses such as USB, FireWire, I DE, I 2C, and PCMCI A. On PC-com pat ible system s,
these host cont rollers funct ion as br idges between the PCI cont roller on the South Bridge and the bus
technology they source. Verify this by running lspci (discussed later) .

Graphics, video st ream ing, and data capture.

Serial port and parallel port cards.

Sound cards.

Devices such as Watchdogs, EDAC-capable m em ory cont rollers, and gam e ports.

For the dr iver developer, the PCI fam ily offers an at t ract ive advantage: a system of autom at ic device
configurat ion. Unlike dr ivers for the older I SA generat ion, PCI dr ivers need not im plem ent com plex probing
logic. During boot , the BI OS- type boot firm ware (or the kernel itself if so configured) walks the PCI bus and
assigns resources such as interrupt levels and I / O base addresses. The device dr iver gleans this assignm ent by
peeking at a m em ory region called the PCI configurat ion space. PCI devices possess 256 bytes of configurat ion
m em ory. The top 64 bytes of the configurat ion space is standardized and holds registers that contain details
such as the status, interrupt line, and I / O base addresses. PCI e and PCI -X 2.0 offer an extended configurat ion
space of 4KB. We will learn how to operate on the PCI configurat ion space later.

Figure 10.1 shows PCI in a PC-com pat ible system . Com ponents integrated into the South Bridge such as
cont roller silicon for USB, I DE, I 2C, LPC, and Ethernet reside off the PCI bus. Som e of these cont rollers contain
an internal PCI - to-PCI br idge to source a dedicated PCI bus for the respect ive I / O technology. The South Bridge
addit ionally contains an external PCI bus to connect I / O peripherals such as CardBus cont rollers and WiFi
chipsets. Figure 10.1 also shows PCI address tuples corresponding to each connected subsystem . This will get
clearer when we learn about PCI addressing next .

Figure 1 0 .1 . PCI inside a PC South Br idge.

Chapter 1 0 . Per iphera l Com ponent I nterconnect

I n This Chapter

The PCI Fam ily
278

Addressing and I dent ificat ion
281

Accessing PCI Regions
285

Direct Mem ory Access
288

Device Exam ple: Ethernet -Modem
Card

292

Debugging
308

Looking at the Sources
308

Peripheral Com ponent I nterconnect (PCI) is an om nipresent I / O backbone. Whether you are
backing up data on a storage server, capturing video from your desktop, or surfing the web from
your laptop, PCI m ight be serving you in som e avatar or the other. PCI , and form factors adapted
or derived from PCI such as Mini PCI , CardBus, PCI Extended, PCI Express, PCI Express Mini Card,
and Express Card have becom e de facto peripheral connect ion technologies on today's com puters.

The PCI Fam ily

PCI is a high-speed bus used for com m unicat ion between the CPU and I / O devices. The PCI specificat ion enables
t ransfer of 32 bits of data in parallel at 33MHz or 66MHz, yielding a peak throughput of 266MBps.

CardBus is a derivat ive of PCI and has the form factor of a PC Card. CardBus cards are also 32-bits wide and run
at 33MHz. Even though CardBus and PCMCI A cards use the sam e 68-pin connectors, CardBus devices support
32 data lines com pared to 16 for PCMCI A by m ult iplexing address and data lines as done in the PCI bus.

Mini PCI , also a 33MHz 32-bit bus, is another adaptat ion of PCI found in sm all- footpr int com puters such as
laptops. A PCI card can talk via a Mini PCI slot using a com pat ible connector.

An extension to PCI called PCI Extended (or PCI -X) expands the bus width to 64 bits, frequency to 133MHz, and
the throughput to about 1GBps. PCI -X 2.0 is the current version of the standard.

PCI Express (PCI e or PCI -E) is the present generat ion of the PCI fam ily. Unlike the parallel PCI bus, PCI e uses a
serial protocol to t ransfer data. PCI e supports a m axim um of 32 serial links. Each PCI e link (in the com m only
used version 1.1 of the specificat ion) yields a throughput of 250MBps in each t ransfer direct ion, thus producing
a m axim um PCI e data rate of 8GBps in each direct ion. PCI e 2.0 is the current version of the standard and
supports higher data rates.

Serial com m unicat ion is faster and cheaper than parallel data t ransfer due to the absence of factors such as
signal interference, so the indust ry t rend is to m ove from parallel buses to serial technologies. PCI e and its
adaptat ions aim to replace PCI and its derivat ives, and this shift is also part of the m ethodology change from
parallel to serial com m unicat ion. Several I / O interfaces discussed in this book, such as RS-232, USB, FireWire,
SATA, Ethernet , Fibre Channel, and I nfiniBand, are serial com m unicat ion architectures.

The CardBus equivalent in the PCI e fam ily is the Express Card. Express Cards direct ly connect to the system bus
via a PCI e link or USB 2.0 (discussed in the next chapter) , and circum vent m iddlem en such as CardBus
cont rollers. Mini PCI 's cousin in the PCI e fam ily is PCI Express Mini Card.

Recent laptops support Express Card slots instead of (or in addit ion to) CardBus, and PCI Express Mini Card
slots in place of Mini PCI . The form er two have sm aller footpr ints and higher speeds com pared to the lat ter two.

Table 10.1 sum m arizes the im portant relat ives of PCI . From the kernel's perspect ive, all these technologies are
com pat ible with one another. A kernel PCI dr iver will work with all related technologies m ent ioned previously;
so even though we base exam ple code in this chapter on a CardBus card, the concepts apply to other PCI
derivat ives, too.

Table 1 0 .1 . PCI 's Siblings, Children, and Cousins

Bus Nam e Character ist ics Form Factor

PCI 32-bit bus at 33MHz or 66MHz;
yields up to 266MBps.

I nternal slot in desktops and
servers.

Mini PCI 32-bit bus at 33MHz. I nternal slot in laptops.

CardBus 32-bit bus at 33MHz. External PC card slot in laptops.
Com pat ible with PCI .

PCI Extended (PCI -X) 64-bit bus at 133 MHz, yielding
up to 1GBps.

I nternal slot in desktops and
servers. Wider than PCI , but a
PCI card can be plugged into a
PCI -X slot .

PCI Express (PCI e) 250MBps per PCI e link in each
t ransfer direct ion, yielding a
m axim um throughput of 8GBps
in each direct ion.

Replaces the internal PCI slot in
newer system s. PCI e is a serial
protocol unlike nat ive PCI , which
is parallel.

PCI Express Mini Card 250MBps in each direct ion if the
interface is based on a PCI e link;
60MBps if the interface is based
on USB 2.0.

Replaces Mini PCI as the internal
slot in newer laptops. Sm aller
form factor than Mini PCI .

Bus Nam e Character ist ics Form Factor

Express Card 250MBps in each direct ion if the
interface is based on a PCI e link;
60MBps if the interface is based
on USB 2.0.

Thin external slot in newer
laptops that replaces CardBus.
I nterfaces with the system bus
via PCI e or USB 2.0.

Solut ions based on the PCI fam ily are available for a vast spect rum of hardware dom ains:

Networking technologies such as Gigabit Ethernet , WiFi, ATM, Token Ring, and I SDN.

Host adapters for storage technologies, such as SCSI .

Host cont rollers for I / O buses such as USB, FireWire, I DE, I 2C, and PCMCI A. On PC-com pat ible system s,
these host cont rollers funct ion as br idges between the PCI cont roller on the South Bridge and the bus
technology they source. Verify this by running lspci (discussed later) .

Graphics, video st ream ing, and data capture.

Serial port and parallel port cards.

Sound cards.

Devices such as Watchdogs, EDAC-capable m em ory cont rollers, and gam e ports.

For the dr iver developer, the PCI fam ily offers an at t ract ive advantage: a system of autom at ic device
configurat ion. Unlike dr ivers for the older I SA generat ion, PCI dr ivers need not im plem ent com plex probing
logic. During boot , the BI OS- type boot firm ware (or the kernel itself if so configured) walks the PCI bus and
assigns resources such as interrupt levels and I / O base addresses. The device dr iver gleans this assignm ent by
peeking at a m em ory region called the PCI configurat ion space. PCI devices possess 256 bytes of configurat ion
m em ory. The top 64 bytes of the configurat ion space is standardized and holds registers that contain details
such as the status, interrupt line, and I / O base addresses. PCI e and PCI -X 2.0 offer an extended configurat ion
space of 4KB. We will learn how to operate on the PCI configurat ion space later.

Figure 10.1 shows PCI in a PC-com pat ible system . Com ponents integrated into the South Bridge such as
cont roller silicon for USB, I DE, I 2C, LPC, and Ethernet reside off the PCI bus. Som e of these cont rollers contain
an internal PCI - to-PCI br idge to source a dedicated PCI bus for the respect ive I / O technology. The South Bridge
addit ionally contains an external PCI bus to connect I / O peripherals such as CardBus cont rollers and WiFi
chipsets. Figure 10.1 also shows PCI address tuples corresponding to each connected subsystem . This will get
clearer when we learn about PCI addressing next .

Figure 1 0 .1 . PCI inside a PC South Br idge.

Addressing and I dent if ica t ion

PCI devices are addressed using bus, device, and funct ion num bers, and they are ident ified via vendorI Ds,
deviceI Ds, and class codes. Let 's learn these concepts with the help of the lspci ut ilit y that is part of the PCI
Ut ilit ies package downloadable from ht tp: / / m j .ucw.cz/ pciut ils.shtm l.

Assum e that you're using a Xircom Ethernet -Modem m ult ifunct ion CardBus card on a Pent ium -class laptop
served by a Texas I nst rum ents PCI 4510 CardBus cont roller, as shown in Figure 10.1. Run lspci:

Code View:
bash>lspci

00:00.0 Host bridge: Intel Corporation 82852/82855 GM/GME/PM/GMV Processor to I/O
Controller (rev 02)
...
02:00.0 CardBus bridge: Texas Instruments PCI4510 PC card Cardbus Controller (rev 03)
...
03:00.0 Ethernet controller: Xircom Cardbus Ethernet 10/100 (rev 03)
03:00.1 Serial controller: Xircom Cardbus Ethernet + 56k Modem (rev 03)

Consider the tuple (XX:YY.Z) at the beginning of each ent ry in the preceding output . XX stands for the PCI bus
num ber. A PCI dom ain can host up to 256 buses. I n the laptop used previously, the CardBus bridge is connected
to PCI bus 2. This br idge sources another PCI bus num bered 3 that hosts the Xircom card.

YY is the PCI device num ber. Each bus can connect to a m axim um of 32 PCI devices. Each device can, in turn,
im plem ent up to eight funct ions represented by Z. The Xircom card can sim ultaneously perform two funct ions.
Thus, 03:00.0 addresses the Ethernet funct ion of the card, while 03:00.1 corresponds to its m odem
com m unicat ion funct ion. I ssue lspci –t to elicit a t ree- like layout of the PCI buses and devices on your
system :

bash> lspci –t

-[0000:00]-+-00.0
 +-00.1
 +-00.3
 +-02.0
 +-02.1
 +-1d.0
 +-1d.1
 +-1d.2
 +-1d.7
 +-1e.0-[0000:02-05]--+-[0000:03]-+-00.0
 | | \-00.1
 | \-[0000:02]-+-00.0
 | +-00.1
 | +-01.0
 | \-02.0
 +-1f.0

As you can see from the preceding output (and in Figure 10.1) , to walk the PCI bus and reach the Xircom
m odem (03:00.01) or Ethernet cont roller (03:00.0) , you have to start from your PCI dom ain (labeled 0000 in

http://mj.ucw.cz/pciutils.shtml

the preceding output) , t raverse a PCI - to-PCI br idge (00:1e.0) , and then cross a PCI - to-CardBus host cont roller
(02:0.0) . The sysfs representat ion of the PCI subsystem m irrors this layout :

bash> ls /sys/devices/pci0000:00/0000:00:1e.0/0000:02:00.0/0000:03:00.0/

...

net:eth2 Ethernet
...
bash> ls /sys/devices/pci0000:00/0000:00:1e.0/0000:02:00.0/0000:03:00.1/

...

tty:ttyS1 Modem
...

As you saw earlier, PCI devices possess a 256-byte m em ory region that holds configurat ion registers. This space
is the key to ident ify the m ake and capabilit ies of PCI cards. Let 's take a peek inside the configurat ion spaces of
the CardBus cont roller and the Xircom dual- funct ion card previously used. The Xircom card has two
configurat ion spaces, one per supported funct ion:

Code View:
bash> lspci –x

00:00.0 Host bridge: Intel Corporation 82852/82855 GM/GME/PM/GMV Processor to I/O
Controller (rev 02)
00: 86 80 80 35 06 01 90 20 02 00 00 06 00 00 80 00
10: 08 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
20: 00 00 00 00 00 00 00 00 00 00 00 00 14 10 5c 05
30: 00 00 00 00 40 00 00 00 00 00 00 00 00 00 00 00
...
02:00.0 CardBus bridge: Texas Instruments PCI4510 PC card Cardbus Controller (rev 03)
00: 4c 10 44 ac 07 00 10 02 03 00 07 06 20 a8 82 00
10: 00 00 00 b0 a0 00 00 22 02 03 04 b0 00 00 00 f0
20: 00 f0 ff f1 00 00 00 d2 00 f0 ff d3 00 30 00 00
30: fc 30 00 00 00 34 00 00 fc 34 00 00 0b 01 00 05
...
03:00.0 Ethernet controller: Xircom Cardbus Ethernet 10/100 (rev 03)
00: 5d 11 03 00 07 00 10 02 03 00 00 02 00 40 80 00
10: 01 30 00 00 00 00 00 d2 00 08 00 d2 00 00 00 00
20: 00 00 00 00 00 00 00 00 07 01 00 00 5d 11 81 11
30: 00 00 00 00 dc 00 00 00 00 00 00 00 0b 01 14 28
03:00.1 Serial controller: Xircom Cardbus Ethernet + 56k Modem (rev 03)
00: 5d 11 03 01 03 00 10 02 03 02 00 07 00 00 80 00
10: 81 30 00 00 00 10 00 d2 00 18 00 d2 00 00 00 00
20: 00 00 00 00 00 00 00 00 07 02 00 00 5d 11 81 11
30: 00 00 00 00 dc 00 00 00 00 00 00 00 0b 01 00 00

PCI registers are lit t le-endian, so factor that while interpret ing the preceding output . You m ay also dum p PCI
configurat ion regions via sysfs. So, to look at the configurat ion space of the Ethernet funct ion of the Xircom
card, do this:

Code View:
bash> od -x /sys/devices/pci0000:00/0000:00:1e.0/0000:02:00.0/0000:03:00.1/config

0000000 115d 0003 0007 0210 0003 0200 4000 0080
0000020 3001 0000 0000 d200 0800 d200 0000 0000
0000040 0000 0000 0000 0000 0107 0000 115d 1181

...

Table 10.2 explains som e of the values shown in the preceding dum p. The first two bytes contain the vendor I D,
which ident ifies the com pany that m anufactured the card. PCI vendor I Ds are m aintained and assigned globally.
(Point your browser to www.pcidatabase.com for a database.) As you can decipher from the preceding output ,
I ntel, Texas I nst rum ents, and Xircom (now acquired by I ntel) own vendor I Ds of 0x8086 , 0x104C , and 0x115D ,
respect ively. The next two bytes are specific to the funct ionality of the card and const itute its device I D. From
the preceding output , the Ethernet funct ionality of the Xircom card owns a device I D of 0x0003 , while the
m odem answers to a device I D of 0x0103 . PCI cards addit ionally possess subvendor and subdevice I Ds (see
words at offsets 44 and 46 in the preceding dum p) to further pinpoint their ident ity.

Table 1 0 .2 . PCI Configurat ion Space Sem ant ics

Configurat ion Space Offset Sem ant ics Values from the Dum p Output
for the Xircom Card

0 Vendor I D 0x115D

2 Device I D 0x0003

10 Class code 0x0200

16 to 39 Base address register 0
(BAR 0) to BAR5

0x3001...0000

44 Subvendor I D 0x115D

46 Subdevice I D 0x1181

Ten bytes into the configurat ion space lies the code that describes the class of the device. PCI br idges have a
class code start ing with 0x06 , network devices possess a class code beginning with 0x02 , and com m unicat ion
devices own a class code com m encing with 0x07 . Thus, in the preceding exam ple, the CardBus bridge, the
Ethernet card, and the serial m odem own class codes of 0x0607 , 0x0200 , and 0x0700 , respect ively. You can find
class code definit ions in include/ linux/ pci_ids.h.

PCI dr ivers register the vendor I Ds, device I Ds, and class codes that they support with the PCI subsystem .
Using this database, the PCI subsystem binds an inserted card to the appropriate device dr iver after gleaning its
ident ity from its configurat ion space. We will see how this is done when we im plem ent an exam ple dr iver later.

Accessing PCI Regions

PCI devices contain three addressable regions: configurat ion space, I / O ports, and device m em ory. Let 's learn
how to access these m em ory regions from a device driver.

Configurat ion Space

The kernel offers a set of six funct ions that your dr iver can use to operate on PCI configurat ion space:

pci_read_config_[byte|word|dword](struct pci_dev *pdev,
 int offset, int *value);
and
pci_write_config_[byte|word|dword](struct pci_dev *pdev,
 int offset, int value);

I n the argum ent list , struct pci_dev is the PCI device st ructure, and offset is the byte posit ion in the
configurat ion space that you want to access. For read funct ions, value is a pointer to a supplied data buffer,
and for write rout ines, it contains the data to be writ ten.

Let 's consider som e exam ples:

To decipher the I RQ num ber assigned to a card funct ion, use the following:

unsigned char irq;
pci_read_config_byte(pdev, PCI_INTERRUPT_LINE, &irq);

As per the PCI specificat ion, offset 60 inside the PCI configurat ion space holds the I RQ num ber assigned to
the card. All configurat ion register offsets are expressively defined in include/ linux/ pci_regs.h, so use
PCI_INTERRUPT_LINE rather than 60 to specify this offset . Sim ilar ly, to read the PCI status register (two
bytes at offset six in the configurat ion space) , do this:

unsigned short status;
pci_read_config_word(pdev, PCI_STATUS, &status);

Only the first 64 bytes of the configurat ion space are standardized. The device m anufacturer defines
desired sem ant ics to the rest . The Xircom card used earlier, assigns four bytes at offset 64 for power
m anagem ent purposes. To disable power m anagem ent , the Xircom CardBus driver,
dr ivers/ net / tulip/ xircom _cb.c, does this:

#define PCI_POWERMGMT 0x40
pci_write_config_dword(pdev, PCI_POWERMGMT, 0x0000);

I / O and Mem ory

PCI cards have up to six I / O or m em ory regions. I / O regions contain registers, and m em ory regions hold data.
Video cards, for exam ple, have I / O spaces that accom m odate cont rol registers and m em ory regions that map to
fram e buffers. Not all cards have addressable m em ory regions, however. The sem ant ics of I / O and m em ory
spaces are hardware-dependent and can be obtained from the device data sheet .

Like for configurat ion m em ory, the kernel offers a set of helpers to operate on I / O and m em ory regions of PCI
devices:

Code View:
unsigned long pci_resource_[start|len|end|flags] (struct pci_dev *pdev, int bar);

To operate on an I / O region such as the device cont rol registers of a PCI video card, the dr iver needs to do the
following:

1 . Get the I / O base address from the appropriate base address register (bar) in the configurat ion space:

unsigned long io_base = pci_resource_start(pdev, bar);

This assum es that the device cont rol registers for this card are m apped to the m em ory region associated
with bar , whose value can range from 0 through 5, as shown in Table 10.2.

2 . Mark this region as being spoken for, using the kernel's request_region() regulatory m echanism
discussed in Chapter 5 , "Character Drivers" :

request_region(io_base, length, "my_driver");

Here, length is the size of the cont rol register space and my_driver ident ifies the region's owner. Look for
the ent ry containing my_driver in / proc/ ioports to spot this m em ory region.

You m ay instead use the wrapper funct ion pci_request_region() , defined in dr ivers/ pci/ pci.c.

3 . Add the register 's offset obtained from the data-sheet , to the base address gleaned in Step 1. Operate on
this address using the inb() and outb() fam ily of funct ions discussed in Chapter 5 :

/* Read */
register_data = inl(io_base + REGISTER_OFFSET);
/* Use */
/* ... */
/* Write */
outl(register_data, iobase + REGISTER_OFFSET);

To operate on a m em ory region such as the fram e buffer on the above PCI video card, follow these steps:

1 . Get the base address, length, and flags associated with the m em ory region:

unsigned long mmio_base = pci_resource_start(pdev, bar);
unsigned long mmio_length = pci_resource_length(pdev, bar);
unsigned long mmio_flags = pci_resource_flags(pdev, bar);

This assum es that this m em ory is m apped to the base address register, bar .

2 . Mark ownership of this region using the kernel's request_mem_region() regulatory m echanism :

request_mem_region(mmio_base, mmio_length, "my_driver");

You m ay instead use the wrapper funct ion pci_request_region() , m ent ioned previously.

3 . Obtain CPU access to the device m em ory obtained in Step 1. Certain m em ory regions, such as the ones
that hold registers, need to guard against side effects, so they are m arked as not being prefetchable (or
cacheable) by the CPU. Other regions, such as the one used in this exam ple, can be cached. Depending on
the access flag, use the appropriate funct ion to obtain kernel vir tual addresses corresponding to the
m apped region:

void __iomem *buffer;
if (flags & IORESOURCE_CACHEABLE) {
 buffer = ioremap(mmio_base, mmio_length);
} else {
 buffer = ioremap_nocache(mmio_base, mmio_length);
}

To be safe, and to avoid perform ing the preceding checks, use the services of pci_iomap() defined in
lib/ iom ap.c instead:

buffer = pci_iomap(pdev, bar, mmio_length);

Direct Mem ory Access

Direct Mem ory Access (DMA) is the capabilit y to t ransfer data from a peripheral to m ain m em ory without the
CPU's intervent ion. DMA boosts the perform ance of peripherals m anyfold, because it doesn't burn CPU cycles to
m ove data. PCI networking cards and I DE disk dr ives are com m on exam ples of peripherals relying on DMA for
data t ransfer.

DMA is init iated by a DMA m aster. The PC m otherboard has a DMA cont roller on the South Bridge that can
m aster the I / O bus and init iate DMA to or from a peripheral. This is usually the case for legacy I SA cards.
However, buses such as PCI can m aster the bus and init iate DMA t ransfers. CardBus cards are sim ilar to PCI and
also support DMA m astering. PCMCI A devices, on the other hand, do not support DMA m astering, but the
PCMCI A cont roller, which is usually wired to a PCI bus, m ight have DMA m astering capabilit ies.

The issue of cache coherency is synonym ous with DMA. For opt im um perform ance, processors cache recent ly
accessed bytes, so data passing between the CPU and m ain m em ory st ream s through the processor cache.
During DMA, however, data t ravels direct ly between the DMA cont roller and m ain m em ory and, hence, bypasses
the processor cache. This evasion has the potent ial to int roduce inconsistencies because the processor m ight
work on stale data liv ing in its cache. Som e architectures autom at ically synchronize the cache with m ain
m em ory using a technique called bus snooping. Many others rely on software to achieve coherency, however.
We will learn how to perform coherent DMA operat ions after int roducing a few m ore topics.

DMA can occur synchronously or asynchronously. An exam ple of the form er is DMA from a system fram e buffer
to an LCD cont roller. A user applicat ion writes pixel data to a DMA-m apped fram e buffer via / dev/ fbX, while the
LCD cont roller uses DMA to collect this data synchronously at t im ed intervals. We discuss m ore about this in
Chapter 12, "Video Drivers." An exam ple of asynchronous DMA is the t ransm it and receive of data fram es
between the CPU and a network card discussed in Chapter 15, "Network I nterface Cards."

System m em ory regions that are the source or dest inat ion of DMA t ransfers are called DMA buffers. I f a bus
interface has addressing lim itat ions, that ' ll affect the m em ory range that can hold DMA buffers. So, DMA buffers
suitable for a 24-bit bus such as I SA can live only in the bot tom 16MB of system m em ory called ZONE_DMA (see
the sect ion "Allocat ing Mem ory" in Chapter 2 , "A Peek I nside the Kernel") . PCI buses are 32-bits wide by
default , so you won't usually face such lim itat ions on 32-bit plat form s. To inform the kernel about any special
needs of DMA-able buffers, use the following:

dma_set_mask(struct device *dev, u64 mask);

I f this funct ion returns success, you m ay DMA to any address that is mask bits in length. For exam ple, the e1000
PCI -X Gigabit Ethernet dr iver (dr ivers/ net / e1000/ e1000_m ain.c) does the following:

if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
 /* System supports 64-bit DMA */
 pci_using_dac = 1;
} else {
 /* See if 32-bit DMA is supported */
 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
 /* No, let's abort */
 E1000_ERR("No usable DMA configuration, aborting\n");
 return err;
 }
 /* 32-bit DMA */
 pci_using_dac = 0;
}

I / O devices view DMA buffers through the lens of the bus cont roller and any intervening I / O m em ory
m anagem ent unit (I OMMU). Because of this, I / O devices work with bus addresses, rather than physical or kernel
vir tual addresses. So, when you inform a PCI card about the locat ion of a DMA buffer, you have to let it know
the buffer 's bus address. DMA service rout ines m ap the kernel vir tual address of DMA buffers to bus addresses
so that both the device and the CPU can access the buffers. Bus addresses are of type dma_addr_t , defined in
include/ asm-your-arch/ types.h .

There are a couple m ore concepts worth knowing about DMA. One is the idea of bounce buffers. Bounce buffers
reside in DMA-able regions and are used as tem porary m em ory when DMA is requested to/ from non-DMA-able
m em ory regions. An exam ple is DMA to an address higher than 4GB from a 32-bit PCI peripheral when there is
no intervening I OMMU. Data is first t ransferred to a bounce buffer and then copied to the final dest inat ion. The
second concept is a flavor of DMA called scat ter-gather. When data to be DMA'ed is spread over discont inuous
regions, scat ter-gather capabilit y enables the hardware to gather contents of the scat tered buffers at one go.
The reverse occurs when data is DMA'ed from the card to buffers scat tered in m em ory. Scat ter-gather capabilit y
boosts perform ance by elim inat ing the need to service m ult iple DMA requests.

The kernel features a healthy API that m asks m any of the internal details of configuring DMA. This API gets
sim pler if you are writ ing a dr iver for a PCI card that supports bus m astering. (Most PCI cards do.) PCI DMA
rout ines are essent ially wrappers around the generic DMA service rout ines and are defined in include/ asm -
generic/ pci-dm a-com pat .h. I n this chapter, we use only the PCI DMA API .

The kernel provides two classes of DMA service rout ines to PCI dr ivers:

Consistent (or coherent) DMA access m ethods. These rout ines guarantee data coherency in the face of
DMA act ivity. I f both the PCI device and the CPU are likely to frequent ly operate on a DMA buffer,
consistency is crucial, so use the consistent API . The t rade-off is a degree of perform ance penalty. To
obtain a consistent DMA buffer, call this service rout ine:

void *pci_alloc_consistent(struct pci_dev *pdev,
 size_t size,
 dma_addr_t *dma_handle);

This funct ion allocates a DMA buffer, generates its bus address, and returns the associated kernel vir tual
address. The first two argum ents respect ively hold the PCI device st ructure (which is discussed later) and
the size of the requested DMA buffer. The third argum ent , dma_handle , is a pointer to the bus address
that the funct ion call generates. The following snippet allocates and frees a consistent DMA buffer:

/* Allocate */
void *vaddr = pci_alloc_consistent(pdev, size,
 &dma_handle);
/* Use */
/* ... */
/* Free */
pci_free_consistent(pdev, size, vaddr, dma_handle);

1 .

St ream ing DMA access m ethods. These rout ines do not guarantee consistency and are faster as a result .
They are useful when there is not m uch need for shared access between the CPU and the I / O device.
When a st ream ed buffer has been m apped for device access, the dr iver has to explicit ly unm ap (or sync) it
before the CPU can reliably operate on it . There are two fam ilies of st ream ing access rout ines:
pci_[map|unmap|dma_sync]_single() and pci_[map|unmap|dma_sync]_sg() .

The first funct ion fam ily m aps, unm aps, and synchronizes a single preallocated DMA buffer.
pci_map_single() is prototyped as follows:

dma_addr_t pci_map_single(struct pci_dev *pdev, void *ptr,

2 .

 size_t size, int direction);

The first three argum ents respect ively hold the PCI device st ructure, the kernel vir tual address of a
preallocated DMA buffer, and the size of the supplied buffer. The fourth argum ent , direction , can be one
of the following: PCI_DMA_BIDIRECTION, PCI_DMA_TODEVICE, PCI_DMA_FROMDEVICE, or PCI_DMA_NONE. The
nam es are self-explanatory, but the first opt ion is expensive, and the last is for debugging. We discuss
st ream ed DMA m apping further when we develop an exam ple dr iver later.

The second funct ion fam ily m aps, unm aps, and synchronizes a scat ter-gather list of DMA buffers.
pci_map_sg() is prototyped as follows:

int pci_map_sg(struct pci_dev *pdev,
 struct scatterlist *sgl,
 int num_entries, int direction);

The scat tered list is specified using the second argum ent , struct scatterlist , defined in include/ asm -
your-arch/ scat ter list .h. num_entries is the num ber of ent r ies in the scatterlist . The first and last
argum ents are the sam e as that described for pci_map_single() . The funct ion returns the num ber of
m apped ent r ies:

num_mapped = pci_map_sg(pdev, sgl, num_entries,
 PCI_DMA_TODEVICE);
for (i=0; i<num_mapped; i++) {
 /* sg_dma_address(&sgl[i]) returns the bus address
 of this entry */
 /* sg_dma_len(&sgl[i]) returns the length of this region
 */
}

Let 's sum m arize the character ist ics of coherent and st ream ing DMA to help you decide their suitabilit y for your
usage scenario:

Coherent m appings are sim ple to code but expensive to use. St ream ing m appings have the reverse
character ist ic.

Coherent m appings are preferred when both the CPU and the I / O device need to frequent ly m anipulate
the DMA buffer. This is usually the case for synchronous DMA. An exam ple is the fram e buffer dr iver
m ent ioned previously, where each DMA operates on the sam e buffer. Because the CPU and the video
cont roller are constant ly accessing the fram e buffer, it m akes sense to use coherent m appings in this
situat ion.

Use st ream ing m appings when the I / O device owns the buffer for long durat ions. St ream ed DMA is
com m on for asynchronous operat ion when each DMA operates on a different buffer. An exam ple is a
network dr iver, where the buffers that carry t ransm it packets are m apped and unm apped on- the- fly.

DMA descriptors are good candidates for coherent m apping. DMA descriptors contain m etadata about DMA
buffers such as their address and length and are frequent ly accessed by both the CPU and the device.
Mapping descriptors on- the- fly is expensive because that entails frequent unm appings and rem appings (or
sync operat ions) .

Device Exam ple: Ethernet - Modem Card

Arm ed with the knowledge acquired so far, let 's venture to write a skeletal device dr iver for a fict it ious Ethernet -
Modem dual- funct ion CardBus card and see how it can be used for networking on a LAN and for establishing a
dialup connect ion to an I nternet service provider. You will essent ially need one device dr iver per supported
funct ion. Assum ing you already have a serial dr iver (we learned to write serial dr ivers in Chapter 6 , "Serial
Drivers") and an Ethernet dr iver (we will learn to im plem ent network dr ivers in Chapter 15) that support the
chipsets used on the card, let 's t inker with those drivers and get them to work with the CardBus interface. The
exam ple here is generic but is loosely based on the kernel dr iver for the Xircom card that we used previously.
The Ethernet and m odem port ions of the Xircom driver live separately in dr ivers/ net / tulip/ xircom _cb.c and
drivers/ serial/ 8250_pci.c, respect ively.

I n it ia liz ing and Probing

PCI dr ivers use an array of pci_device_id st ructures defined in include/ linux/ m od_devicetable.h to describe
the ident ity of the cards they support :

struct pci_device_id {
 __u32 vendor, device; /* Vendor and Device IDs */
 __u32 subvendor, subdevice; /* Subvendor and Subdevice IDs */
 __u32 class, classmask; /* Class and class mask */
 kernel_ulong_t driver_data; /* Private data */
};

The sem ant ics of the first six fields in pci_device_id conform to the PCI parlance discussed previously. The last
field driver_data is pr ivate to the dr iver and is com m only used to co- relate configurat ion inform at ion if the
driver supports m ult iple cards.

The Ethernet -Modem card has a device I D and a configurat ion space corresponding to each of its two funct ions.
Because the two card funct ions are unconnected, you need separate PCI dr ivers to handle them . The
drivers/ net / directory is a good place to hold the Ethernet dr iver, and drivers/ serial/ is the r ight locat ion to place
its serial counterpart . The Ethernet dr iver in List ing 10.1 supports the network funct ion and announces a set of
associated I Ds in its pci_device_id table. The serial dr iver in List ing 10.2 is sim ilar, except that it 's responsible
for the m odem funct ion. The associated class codes and class m asks are left unstated by both dr ivers because
the vendor I D/ device I D com binat ion itself uniquely ident ifies their funct ionality.

The PCI subsystem provides m acros such as PCI_DEVICE() and PCI_DEVICE_CLASS() to ease the creat ion of the
pci_device_id table. PCI_DEVICE() , for exam ple, creates a pci_device_id elem ent from the specified vendor
I D and device I D. So you m ay rewrite network_device_pci_table in List ing 10.1 as follows:

struct pci_device_id network_driver_pci_table[] __devinitdata = {
 {PCI_DEVICE(MY_VENDOR_ID, MY_DEVICE_ID_NET)
 .driver_data = (unsigned long)network_driver_private_data},
 {0},
};

The MODULE_DEVICE_TABLE() m acro in List ing 10.1 and List ing 10.2 m arks the pci_device_id table in the
m odule im age. This inform at ion loads the m odule on dem and when the CardBus card is inserted. We explored
this m echanism in the sect ion "Module Autoload" in Chapter 4 , "Laying the Groundwork," and used it in the
context of pcmcia_device_id in Chapter 9 , "PCMCI A and Com pact Flash."

When the PCI hotplug layer senses the presence of a card with propert ies m atching the ones announced by the

pci_device_id table of a dr iver, it invokes the probe() m ethod belonging to that dr iver. This gives an
opportunity to the dr iver to claim the card. Obviously, PCI dr ivers have to associate their pci_device_id table
with their probe() m ethod. This t ie up is achieved by the pci_driver st ructure that dr ivers register with the
PCI subsystem during init ializat ion. To perform this regist rat ion, dr ivers call pci_register_driver() .

List ing 1 0 .1 . Register ing the Netw ork Funct ion

Code View:
#include <linux/pci.h>

#define MY_VENDOR_ID 0xABCD
#define MY_DEVICE_ID_NET 0xEF01

/* The set of PCI cards that this driver supports. Only a single
 entry in our case. Look at include/linux/mod_devicetable.h for

 the definition of pci_device_id */
struct pci_device_id network_driver_pci_table[] __devinitdata = {
{
 { MY_VENDOR_ID, /* Interface chip manufacturer ID */
 MY_DEVICE_ID_NET, /* Device ID for the network
 function */
 PCI_ANY_ID, /* Subvendor ID wild card */
 PCI_ANY_ID, /* Subdevice ID wild card */
 0, 0, /* class and classmask are
 unspecified */
 network_driver_private_data /* Use this to co-relate
 configuration information if the
 driver supports multiple
 cards. Can be an enumerated type. */
 }, {0},
};

/* struct pci_driver is defined in include/linux/pci.h */

struct pci_driver network_pci_driver = {
 .name = "ntwrk", /* Unique name */
 .probe = net_driver_probe, /* See Listing 10.3 */
 .remove = __devexit_p(net_driver_remove),/* See Listing 10.3 */
 .id_table = network_driver_pci_table, /* See above */

 /* suspend() and resume() methods that implement power
 management are not used by this driver */

};

/* Ethernet driver initialization */
static int __init
network_driver_init(void)
{
 pci_register_driver(&network_pci_driver);
 return 0;
}

/* Ethernet driver exit */
static void __exit
network_driver_exit(void)
{
 pci_unregister_driver(&network_pci_driver);
}

module_init(network_driver_init);
module_exit(network_driver_exit);
MODULE_DEVICE_TABLE(pci, network_driver_pci_table);

List ing 1 0 .2 . Register ing the Modem Funct ion

Code View:
#include <linux/pci.h>

#define MY_VENDOR_ID 0xABCD
#define MY_DEVICE_ID_MDM 0xEF02

/* The set of PCI cards that this driver supports */
struct pci_device_id modem_driver_pci_table[] __devinitdata = {
{
 { MY_VENDOR_ID, /* Interface chip manufacturer ID */
 MY_DEVICE_ID_MDM, /* Device ID for the modem
 function */
 PCI_ANY_ID, /* Subvendor ID wild card */
 PCI_ANY_ID, /* Subdevice ID wild card */
 0, 0, /* class and classmask are
 unspecified */
 modem_driver_private_data /* Use this to co-relate
 configuration information if the driver
 supports multiple cards. Can be an
 enumerated type. */
 }, {0},
};

struct pci_driver modem_pci_driver = {
 .name = "mdm", /* Unique name */
 .probe = modem_driver_probe, /* See Listing 10.4 */
 .remove = __devexit_p(modem_driver_remove),/* See Listing 10.4 */
 .id_table = modem_driver_pci_table, /* See above */
 /* suspend() and resume() methods that implement power
 management are not used by this driver */
};

/* Modem driver initialization */
static int __init
modem_driver_init(void)
{
 pci_register_driver(&modem_pci_driver);
 return 0;
}
/* Modem driver exit */
static void __exit
modem_driver_exit(void)
{
 pci_unregister_driver(&modem_pci_driver);
}

module_init(modem_driver_init);
module_exit(modem_driver_exit);

MODULE_DEVICE_TABLE(pci, modem_driver_pci_table);

List ing 10.3 im plem ents the probe() m ethod for the network funct ion. This

Enables the PCI device

Discovers resource inform at ion such as I / O base addresses and I RQ

Allocates and populates a networking data st ructure associated with this device

Registers itself with the kernel networking layer

List ing 10.4 perform s sim ilar work for the m odem funct ion. I n this case, the dr iver registers with the kernel
serial layer instead of the networking layer.

List ings 10.3 and 10.4 also im plem ent remove() m ethods, which are invoked when the CardBus card is ejected
or when the dr iver m odule is unloaded. remove() is the reverse of probe() ; it frees resources and unregisters
the dr iver from relevant subsystem s. The __devexit_p() m acro that List ing 10.1 uses to declare the remove()
m ethod discards the supplied funct ion at com pile t im e if you haven't enabled hotplug support and if the dr iver is
not a dynam ically loadable m odule.

The PCI subsystem calls probe() with two argum ents:

A pointer to pci_dev , the data st ructure that describes this PCI device. This st ructure, defined in
include/ linux/ pci.h, is m aintained by the PCI subsystem for each PCI device on your system .

1 .

A pointer to pci_device_id , the ent ry in the dr iver 's pci_device_id table that m atches the inform at ion
found in the configurat ion space of the inserted card.

2 .

List ing 1 0 .3 . Probing the Netw ork Funct ion

Code View:
#include <linux/pci.h>

unsigned long ioaddr;

/* Probe method */
static int __devinit
net_driver_probe(struct pci_dev *pdev,
 const struct pci_device_id *id)
{
 /* The net_device structure is defined in include/linux/netdevice.h .

 See Chapter 15, "Network Interface Cards", for the description */

 struct net_device *net_dev;

 /* Ask low-level PCI code to enable I/O and memory regions for
 this device. Look up the IRQ for the device that the PCI
 subsystem allotted when it walked the bus */
 pci_enable_device(pdev);

 /* Use this device in bus mastering mode, since the network
 function of this card is capable of DMA */
 pci_set_master(pdev);

 /* Allocate an Ethernet interface and fill in generic values in
 the net_dev structure. prv_data is the private driver data
 structure that contains buffers, locks, and so on. This is
 left undefined. Wait until Chapter 15 for more on
 alloc_etherdev() */
 net_dev = alloc_etherdev(sizeof(struct prv_data));

 /* Populate net_dev with your network device driver methods */
 net_dev->hard_start_xmit = &mydevice_xmit; /* See Listing 10.6 */

 /* More net_dev initializations */
 /* ... */

 /* Get the I/O address for this PCI region. All card registers
 specified in Table 10.3 are assumed to be in bar 0 */
 ioaddr = pci_resource_start(pdev, 0);

 /* Claim a 128-byte I/O region */
 request_region(ioaddr, 128, "ntwrk");
 /* Fill in resource information obtained from the PCI layer */
 net_dev->base_addr = ioaddr;
 net_dev->irq = pdev->irq;
 /* ... */
 /* Setup DMA. Defined in Listing 10.5 */
 dma_descriptor_setup(pdev);

 /* Register the driver with the network layer. This will allot
 an unused ethX interface */
 register_netdev(net_dev);

 /* ... */
}

/* Remove method */
static void __devexit
net_driver_remove(struct pci_dev *pdev)
{
 /* Free transmit and receive DMA buffers.
 Defined in Listing 10.5 */
 dma_descriptor_release(pdev);

 /* Release memory regions */
 /* ... */

 /* Unregister from the networking layer */
 unregister_netdev(dev);
 free_netdev(dev);

 /* ... */
}

List ing 1 0 .4 . Probing the Modem Funct ion

Code View:
/* Probe method */
static int __devinit
modem_driver_probe(struct pci_dev *pdev,
 const struct pci_device_id *id)
{
 struct uart_port port; /* See Chapter 6, "Serial Drivers" */
 /* Ask low-level PCI code to enable I/O and memory regions
 for this PCI device */
 pci_enable_device(pdev);

 /* Get the PCI IRQ and I/O address to be used and populate the
 uart_port structure (see Chapter 6) with these resources. Look at
 include/linux/pci.h for helper functions */

 /* ... */

 /* Register this information with the serial layer and get an
 unused ttySX port allotted to the card. Look at Chapter 6 for

 more on serial drivers */
 serial8250_register_port(&port);

 /* ... */
}

/* Remove method */
static void __devexit
modem_driver_remove(struct pci_dev *dev)
{
 /* Unregister the port from the serial layer */
 serial8250_unregister_port(&port);

 /* Disable device */
 pci_disable_device(dev);
}

To recap, let 's t race the code path from the t im e you insert the Ethernet -Modem CardBus card unt il you are
allot ted a network interface (ethX) and a serial port (/ dev/ t tySX) :

For each supported CardBus funct ion, the corresponding driver init ializat ion rout ine registers a
pci_device_id table of supported cards and a probe() rout ine. This is shown in List ing 10.1 and List ing
10.2.

1 .

The PCI hotplug layer detects card insert ion and gleans the vendor I D and device I D of each device
funct ion from the card's PCI configurat ion space.

2 .

Because the I Ds m atch with those registered by the card's Ethernet and serial dr ivers, the corresponding
probe() m ethods are invoked. This results in the invocat ion of net_driver_probe() and
modem_driver_probe() described respect ively in List ing 10.3 and List ing 10.4.

3 .

The probe() m ethods configure the Ethernet and m odem port ions of the PCI dr iver with resource
inform at ion. This leads to the allocat ion of a networking interface (ethX) and a serial port (t tySX) to the
card. From this point on, applicat ion data flows over these interfaces.

4 .

Data Transfer

The network funct ion belonging to the sam ple CardBus device uses the following st rategy for data t ransfer: The
card expects the device dr iver to supply it with an array of two receive DMA descriptors and an array of two
t ransm it DMA descriptors. Each DMA descriptor contains the address of an associated data buffer, it s length,
and a cont rol word. You can use the cont rol word to tell the device whether the descriptor contains valid data.
For a t ransm it descriptor, you m ay also program it to request an interrupt after data t ransm ission. The card
looks for a valid descriptor and DMA's data to/ from the associated data buffer. To suit this elem entary schem e,
the exam ple dr iver uses only the coherent DMA interface. The driver coherent ly allocates a large buffer that
holds the descriptors and their associated data buffers. The receive and t ransm it buffers are 1536 bytes long to
m atch the m axim um t ransm ission unit (MTU) of Ethernet fram es. The descriptors and buffers are pictor ially
shown in Figure 10.2. The top 24 bytes of each array in the figure hold two 12-byte DMA descriptors, and the
rest of the m em ory is occupied by two 1536-byte DMA buffers. The 12-byte descriptor layout shown in the
figure is assum ed to m atch the form at specified in the card's data sheet .

Figure 1 0 .2 . DMA descr iptors and buffers for the Ca rdBus device.

Table 10.3 shows the register layout of the card's network funct ion.

Table 1 0 .3 . Register Layout of the Card's Netw ork F unct ion

Register Nam e Descr ipt ion Offset into I / O Space

DMA_RX_REGISTER Holds the bus address of the receive DMA
descriptor array (dma_bus_rx)

0x0

DMA_TX_REGISTER Holds the bus address of the t ransm it DMA
descriptor array (dma_bus_tx)

0x4

CONTROL_REGISTERCont rol word that com m ands the card to init iate
DMA, stop DMA, and so on

0x8

List ing 1 0 .5 . Set t ing Up DMA Descr iptors and Buffer s

Code View:
/* Device-specific data structure for the Ethernet Function */
struct device_data {
 struct pci_dev *pdev; /* The PCI Device structure */
 struct net_device *ndev; /* The Net Device structure */
 void *dma_buffer_rx; /* Kernel virtual address of the
 receive descriptor */

 dma_addr_t dma_bus_rx; /* Bus address of the receive
 descriptor */
 void *dma_buffer_tx; /* Kernel virtual address of the
 transmit descriptor */
 dma_addr_t dma_bus_tx; /* Bus address of the transmit
 descriptor */
 /* ... */
 spin_lock_t device_lock; /* Serialize */
} *mydev_data;
/* On-card registers related to DMA */
#define DMA_RX_REGISTER_OFFSET 0x0 /* Offset of the register
 holding the bus address
 of the RX descriptor */
#define DMA_TX_REGISTER_OFFSET 0x4 /* Offset of the register
 holding the bus address
 of the TX descriptor */
#define CONTROL_REGISTER 0x8 /* Offset of the control
 register */

/* Control Register Defines */
#define INITIATE_XMIT 0x1

/* Descriptor control word definitions */
#define FREE_FLAG 0x1 /* Free Descriptor */
#define INTERRUPT_FLAG 0x2 /* Assert interrupt after DMA */

/* Invoked from Listing 10.3 */
static void
dma_descriptor_setup(struct pci_dev *pdev)
{
 /* Allocate receive DMA descriptors and buffers */
 mydev_data->dma_buffer_rx =
 pci_alloc_consistent(pdev, 3096, &mydev_data->dma_bus_rx);

 /* Fill the two receive descriptors as shown in Figure 10.2 */
 /* RX descriptor 1 */
 mydev_data->dma_buffer_rx[0] = cpu_to_le32((unsigned long)
 (mydev_data->dma_bus_rx + 24)); /* Buffer address */
 mydev_data->dma_buffer_rx[1] = 1536; /* Buffer length */
 mydev_data->dma_buffer_rx[2] = FREE_FLAG; /* Descriptor is free */

 /* RX descriptor 2 */
 mydev_data->dma_buffer_rx[3] = cpu_to_le32((unsigned long)
 (mydev_data->dma_bus_rx + 1560)); /* Buffer address */
 mydev_data->dma_buffer_rx[4] = 1536; /* Buffer length */
 mydev_data->dma_buffer_rx[5] = FREE_FLAG; /* Descriptor is free */

 wmb(); /* Write Memory Barrier */
 /* Write the address of the receive descriptor to the appropriate
 register in the card. The I/O base address, ioaddr, was populated
 in Listing 10.3 */
 outl(cpu_to_le32((unsigned long)mydev_data->dma_bus_rx),
 ioaddr + DMA_RX_REGISTER_OFFSET);
 /* Allocate transmit DMA descriptors and buffers */
 mydev_data->dma_buffer_tx =
 pci_alloc_consistent(pdev, 3096, &mydev_data->dma_bus_tx);

 /* Fill the two transmit descriptors as shown in Figure 10.2 */
 /* TX descriptor 1 */

 mydev_data->dma_buffer_tx[0] = cpu_to_le32((unsigned long)
 (mydev_data->dma_bus_tx + 24)); /* Buffer address */
 mydev_data->dma_buffer_tx[1] = 1536; /* Buffer length */
 /* Valid descriptor. Generate an interrupt
 after completing the DMA */
 mydev_data->dma_buffer_tx[2] = (FREE_FLAG | INTERRUPT_FLAG);
 /* TX descriptor 2 */
 mydev_data->dma_buffer_tx[3] = cpu_to_le32((unsigned long)
 (mydev_data->dma_bus_tx + 1560)); /* Buffer address */
 mydev_data->dma_buffer_tx[4] = 1536; /* Buffer length */
 mydev_data->dma_buffer_tx[5] = (FREE_FLAG | INTERRUPT_FLAG);

 wmb(); /* Write Memory Barrier */
 /* Write the address of the transmit descriptor to the appropriate
 register in the card. The I/O base, ioaddr, was populated in
 Listing 10.3 */
 outl(cpu_to_le32((unsigned long)mydev_data->dma_bus_tx),
 ioaddr + DMA_TX_REGISTER_OFFSET);
}

/* Invoked from Listing 10.3 */
static void
dma_descriptor_release(struct pci_dev *pdev)
{
 pci_free_consistent(pdev, 3096, mydev_data->dma_bus_tx);
 pci_free_consistent(pdev, 3096, mydev_data->dma_bus_rx);
}

List ing 10.5 enforces a write barr ier by calling wmb() to prevent the CPU from reordering the outl() before
populat ing the DMA descriptor. On an x86 processor, wmb() reduces to a NOP because I ntel CPUs enforce writes
in program order. When writ ing the DMA descriptor address to the card and when populat ing the buffer 's bus
address inside the DMA descriptor, the dr iver converts the nat ive byte order to PCI lit t le-endian form at using
cpu_to_le32() . On I ntel CPUs, this again has no effect because both PCI and I ntel processors com m unicate in
lit t le-endian. On several other architectures, for exam ple, an ARM9 CPU running in the big-endian m ode, both
wmb() and cpu_to_le32() assum e significance.

Now that you have the descriptors and buffers m apped and ready to go, it 's t im e to look at how data is
exchanged between the system and the CardBus device, as shown in List ing 10.6. We won't dwell on the
network interfaces and networking data st ructures because Chapter 15 is devoted to doing that .

List ing 1 0 .6 . Receiving and Transm it t ing Data

Code View:
/* The interrupt handler */
static irqreturn_t
mydevice_interrupt(int irq, void *devid)
{
 struct sk_buff *skb;
 /* ... */
 /* If this is a receive interrupt, collect the packet and pass it
 on to higher layers. Look at the control word in each RX DMA
 descriptor to figure out whether it contains data. Assume for
 convenience that the first RX descriptor was used by the card

 to DMA this received packet */

 packet_size = mydev_data->dma_buffer_rx[1];
 /* In real world drivers, the sk_buff is pre-allocated, stream-
 mapped, and supplied to the card after setting the FREE_FLAG
 during device open(). The received data is directly
 DMA'ed to this sk_buff instead of the memcpy() performed here,
 as you will learn in Chapter 15. The card clears the FREE_FLAG
 before the DMA */
 skb = dev_alloc_skb(packet_size); /* See Figure 15.2 of Chapter 15 */
 skb->dev = mydev_data->ndev; /* Owner network device */
 memcpy(skb, mydev_data->dma_buffer_rx[24], packet_size);
 /* Pass the received data to higher-layer protocols */
 skb_put(skb, packet_size);
 netif_rx(skb);
 /* ... */
 /* Make the descriptor available to the card again */
 mydev_data->dma_buffer_rx[2] |= FREE_FLAG;
}

/* This function is registered in Listing 10.3 and is called from
 the networking layer. More on network device interfaces in
 Chapter 15 */
static int
mydevice_xmit(struct sk_buff *skb, struct net_device *dev)
{
 /* Use a valid TX descriptor. Look at Figure 10.2 */
 /* Locking has been omitted for simplicity */
 if (mydev_data->dma_buffer_tx[2] & FREE_FLAG) {
 /* Use first TX descriptor */
 /* In the real world, DMA occurs directly from the sk_buff as
 you will learn later on! */
 memcpy(mydev_data->dma_buffer_tx[24], skb->data, skb->len);
 mydev_data->dma_buffer_tx[1] = skb->len;
 mydev_data->dma_buffer_tx[2] &= ~FREE_FLAG;
 mydev_data->dma_buffer_tx[2] |= INTERRUPT_FLAG;
 } else if (mydev_data->dma_buffer[5] & FREE_FLAG) {
 /* Use second TX descriptor */
 memcpy(mydev_data->dma_buffer_tx[1560], skb->data, skb->len);
 mydev_data->dma_buffer_tx[4] = skb->len;
 mydev_data->dma_buffer_tx[5] &= ~FREE_FLAG;
 mydev_data->dma_buffer_tx[5] |= INTERRUPT_FLAG;
 } else {
 return –EIO; /* Signal error to the caller */
 }
 wmb(); /* Don't reorder writes across this barrier */

 /* Ask the card to initiate DMA. ioaddr is defined
 in Listing 10.3 */
 outl(INITIATE_XMIT, ioaddr + CONTROL_REGISTER);
}

When the CardBus device receives an Ethernet packet , it DMAs it to a free RX descriptor and interrupts the CPU.
The interrupt handler mydevice_interrupt() collects the packet from the receive DMA buffer, copies it to a
networking data st ructure (sk_buff) , and passes it on to higher protocol layers.

The t ransm it rout ine my_device_xmit() is responsible for init iat ing DMA in the reverse direct ion. I t DMAs
t ransm it packets to card m em ory. For this, my_device_xmit() chooses a TX DMA descriptor that is unused by
the card (or whose FREE_FLAG is set) and uses the associated t ransm it buffer for data t ransfer. FREE_FLAG is
cleared soon after, signaling that the descriptor now belongs to the card. The descriptor is released in the
interrupt handler (FREE_FLAG is set again) when the card asserts an interrupt after com plet ing the t ransm it (not
shown in List ing 10.6) .

This exam ple dr iver uses a sim plified buffer m anagem ent schem e that is not perform ance-sensit ive. High-speed
network dr ivers im plem ent a m ore elaborate plan that em ploys a com binat ion of coherent and st ream ing DMA
m appings. They m aintain linked lists of t ransm it and receive descriptors and im plem ent free and in-use pools
for buffer m anagem ent . Their receive and t ransm it data st ructures look like this:

Code View:
/* Ring of receive buffers */
struct rx_list {
 void *dma_buffer_rx; /* Kernel virtual address of the
 transmit descriptor */
 dma_addr_t dma_bus_rx; /* Bus address of the transmit
 descriptor */
 unsigned int size; /* Buffer size */
 struct list_head next_desc; /* Pointer to the next element */
 struct sk_buff *skb; /* Network Packet */
 dma_addr_t sk_bus; /* Bus address of network packet */
} *rxlist;

/* Ring of transmit buffers */
struct tx_list {
 void *dma_buffer_tx; /* Kernel virtual address of the
 receive descriptor */
 dma_addr_t dma_bus_tx; /* Bus address of the transmit
 descriptor */
 unsigned int size; /* Buffer size */
 struct list_head next_desc; /* Pointer to the next element */
 struct sk_buff *skb; /* Network Packet */
 dma_addr_t sk_bus; /* Bus address of network packet */
} *txlist;

The receive and t ransm it DMA descriptors (rxlist->dma_buffer_rx and txlist->dma_buffer_tx) are m apped
coherent ly as done in List ing 10.5. The payload buffers (rxlist->skb->data and txlist->skb->data) are,
however, m apped using st ream ing DMA. The receive buffers are preallocated and st ream m apped into a free
pool during device open, while the t ransm it buffers are m apped on- the- fly. This avoids the ext ra data copy
perform ed by mydevice_interrupt() from the coherent ly m apped receive DMA buffer to the network buffer
(and the ext ra copy done by mydevice_xmit() in the reverse direct ion) .

Code View:
/* Preallocating/replenishing receive buffers. Also see the section, "Buffer
 Management and Concurrency Control" in Chapter 15 */
/* ... */
struct sk_buff *skb = dev_alloc_skb();
skb_reserve(skb, NET_IP_ALIGN);
/* Map using streaming DMA */
rxlist->sk_bus = pci_map_single(pdev, rxlist->skb->data,
 rxlist->skb->len, PCI_DMA_TODEVICE);

/* Allocate a DMA descriptor and populate it with the address mapped
 above. Add the descriptor to the receive descriptor ring */
/* ... */

Debugging

Enable Bus Opt ions PCI Support PCI Debugging in the kernel configurat ion m enu to ask the PCI core to
em it debug m essages. Explore / proc/ bus/ pci/ devices and / sys/ devices/ pciX: Y/ for inform at ion about PCI devices
on your system such as the CardBus Ethernet -Modem card discussed in this chapter. / proc/ interrupts lists I RQs
act ive on your system , including those used by the PCI layer.

As you saw, lspci gleans inform at ion about all PCI buses and devices on your system . You m ay also use it to
dum p the configurat ion space of PCI cards.

A PCI bus analyzer can help debug low- level problems and tune perform ance.

Look ing at the Sources

PCI core and bus access rout ines live in dr ivers/ pci/ . To obtain a list of helper rout ines offered by the PCI
subsystem , search for EXPORT_SYMBOL inside this directory. For definit ions and prototypes related to the PCI
layer, look at include/ linux/ pci* .h.

You can spot several PCI device dr ivers in subdirector ies under dr ivers/ net / , dr ivers/ scsi/ , and drivers/ video/ . To
locate all PCI dr ivers, recursively grep the dr ivers/ t ree for pci_register_driver() .

I f you do not find a good start ing point to develop a custom PCI network dr iver, begin with the skeletal PCI
network dr iver dr ivers/ net / pci-skeleton.c. For a br ief tutor ial on PCI program m ing, look at
Docum entat ion/ pci. t xt . For a descript ion of the PCI DMA API , read Docum entat ion/ DMA-m apping.txt .

Table 10.4 sum m arizes the m ain data st ructures used in this chapter. Table 10.5 lists the m ain kernel
program m ing interfaces that you used in this chapter along with the locat ion of their definit ions.

Table 1 0 .4 . Sum m ary of Data St ructures

Data St ructure Locat ion Descr ipt ion

pci_dev include/ linux/ pci.h Representat ion of a PCI device

pci_driver include/ linux/ pci.h Representat ion of a PCI dr iver

pci_device_id include/ linux/ m od_devicetable.h I dent ity of a PCI card

dma_addr_t include/ asm-your-arch/ types.h Bus address of a DMA buffer

scatterlist include/ asm -your-arch/ scat ter list .h Scat ter-gather list of DMA
buffers

sk_buff include/ linux/ skbuff.h Main networking data st ructure
(see Chapter 15 for m ore
explanat ions)

Table 1 0 .5 . Sum m ary of Kernel Program m ing I nter face s

Kernel I nter face Locat ion Descr ipt ion

pci_read_config_byte()
pci_read_config_word()
pci_read_config_dword()
pci_write_config_byte()
pci_write_config_word()
pci_write_config_dword()

include/ linux/ pci.h
dr ivers/ pci/ access.c

Rout ines to operate on the PCI
configurat ion space.

pci_resource_start()
pci_resource_len()
pci_resource_end()
pci_resource_flags()

include/ linux/ pci.h These rout ines operate on PCI
I / O and m em ory regions to
obtain the base address, length,
end address, and cont rol flags.

pci_request_region() drivers/ pci/ pci.c Reserves PCI I / O or m em ory
regions.

Kernel I nter face Locat ion Descr ipt ion

ioremap()
ioremap_nocache()
pci_iomap()

include/ asm -your-
arch/ io.h

arch/ your-
arch/ m m / iorem ap.c

lib/ iom ap.c

Obtains CPU access to device
m em ory.

pci_set_dma_mask() drivers/ pci/ pci.c I f this funct ion returns success,
you m ay DMA to any address
within the m ask specified as
argum ent .

pci_alloc_consistent() include/ asm -
generic/ pci-dm a-
com pat .h include/ asm -
your-arch/ dm a-
m apping.h

Obtains a cache-coherent DMA
bufferm apping.

pci_free_consistent() include/ asm -
generic/ pci-dm a-
com pat .h include/ asm -
your-arch/ dm a-
m apping.h

Unm aps a cache-coherent DMA
buffer.

pci_map_single() include/ asm -
generic/ pci-dm a-
com pat .h include/ asm -
your-arch/ dm a-
m apping.h

Obtains a st ream ing DMA buffer
m apping.

pci_unmap_single() include/ asm -
generic/ pci-dm a-
com pat .h include/ asm -
your-arch/ dm a-
m apping.h

Unm aps a st ream ing DMA buffer.

pci_dma_sync_single() include/ asm -
generic/ pci-dm a-
com pat .h include/ asm -
your-arch/ dm a-
m apping.h

Synchronizes a st ream ing DMA
buffer so that the CPU can
reliably operate on it .

pci_map_sg()
pci_unmap_sg()
pci_dma_sync_sg()

include/ asm -
generic/ pci-dm a-
com pat .h include/ asm -
your-arch/ dm a-
m apping.h

Maps/ unm aps/ synchronizes a
scat ter-gather list of st ream ing
DMA buffers.

pci_register_driver() include/ linux/ pci.h
drivers/ pci/ pci-dr iver.c

Registers a dr iver with the PCI
core.

pci_unregister_driver() drivers/ pci/ pci-dr iver.c Unregisters a dr iver from the PCI
core.

pci_enable_device() drivers/ pci/ pci.c Asks low- level PCI code to
enable I / O and m em ory regions
for this device.

Kernel I nter face Locat ion Descr ipt ion

pci_disable_device() drivers/ pci/ pci.c Reverse of
pci_enable_device() .

pci_set_master() drivers/ pci/ pci.c Sets the device in DMA bus-
m astering m ode.

Chapter 1 1 . Universa l Ser ia l Bus

I n This Chapter

USB Architecture
312

Linux-USB Subsystem
317

Driver Data St ructures
317

Enum erat ion
324

Device Exam ple: Telem et ry Card
324

Class Drivers
338

Gadget Drivers
348

Debugging
349

Looking at the Sources
351

Universal serial bus (USB) is the de facto external bus in today's com puters. USB, with its support
for hotplugging, generic class dr ivers, and versat ile data- t ransfer m odes, is the usual route in the
consum er elect ronics space to br ing a diverse spect rum of technologies to com puter system s. I ts
sweeping popular ity and the accom panying econom ics of volum e have played a part in fueling the
adopt ion and acceptance of com puter peripheral technologies around the world.

USB Architecture

USB is a m aster-slave protocol where a host cont roller com m unicates with client devices. Figure 11.1 shows
USB in the PC environm ent . The USB host cont roller is part of the South Bridge chipset and com m unicates with
the processor over the PCI bus.

Figure 1 1 .1 . USB in the PC environm ent .

Figure 11.2 illust rates USB on an em bedded device. The SoC in the figure has built - in USB cont roller silicon that
supports four buses and three m odes of operat ion:

Bus 1 runs in host m ode and is wired to an A- type receptacle via a USB t ransceiver (see the sidebar "USB
Receptacles and Transceivers") . You can connect a USB pen drive or a keyboard to this port .

Bus 2 also funct ions in host m ode but the associated t ransceiver is connected to an internal USB device
rather than to a receptacle. Exam ples of internal USB devices are biom et r ic scanners, cryptographic
engines, pr inters, Disk-On-Chips (DOCs) , touch cont rollers, and telem et ry cards.

Bus 3 runs in device m ode and is wired to a B- type receptacle through a t ransceiver. The B- type
receptacle connects to a host com puter via a B- to-A cable. I n this m ode, the em bedded device funct ions
as, for exam ple, a USB pen drive, and exports a storage part it ion to the outside world. Em bedded devices
such as MP3 players and cell phones are m ore likely than PC system s to be at the device side of USB, so
m any em bedded SoCs support a USB device cont roller in addit ion to a host cont roller.

Bus 4 is dr iven by an On-The-Go (OTG) cont roller. You can use this port , for exam ple, to either connect a
pen drive to your system or to turn your system into a pen drive and connect it to a host . Unlike buses 1

to 3, bus 4 uses an intelligent t ransceiver that exchanges cont rol inform at ion with the processor over I 2C.
The t ransceiver is wired to a Mini-AB OTG receptacle. I f two em bedded devices support OTG, they can
direct ly com m unicate without the intervent ion of a host com puter.

Figure 1 1 .2 . USB on an em bedded system .

[View full size im age]

Most of this chapter is writ ten from the perspect ive of a system residing at the host -side of USB. We briefly look
at the device funct ion in the sect ion "Gadget Drivers." Mainst ream host cont roller dr ivers (HCDs) are already
available, so in this chapter we further confine ourselves to dr ivers for USB devices (also called client dr ivers) .

USB Receptacles and Transceivers

USB hosts use four-pin A- type rectangular receptacles, whereas USB devices connect via four-pin
B- type square receptacles. I n both cases, the four pins are different ial data signals D+ and D- , a
voltage line VBUS, and ground. VBUS is used to supply power from USB hosts to USB devices.
VBUS is thus pulled high on an A connector but receives power on a B connector. USB OTG
cont rollers connect to five-pin Mini-AB rectangular receptacles having a sm aller form factor. Four
of the Mini-AB pins are ident ical to what we discussed previously; the fifth is an I D pin used to
detect whether the connected peripheral is a host or a device.

The sam e t ransceiver chip (such as TUSB1105 from Texas I nst rum ents) can be used on USB hosts
and devices. You m ay thus choose to use the sam e t ransceiver part on buses 1 through 3 in Figure
11.2. OTG requires a special-purpose t ransceiver chip (such as I SP1301 from Philips
Sem iconductors) , however.

Bus Speeds

USB supports three operat ional speeds. The original USB 1.0 specificat ion supports 1.5MBps, referred to as low-
speed USB. USB 1.1, the next version of the specificat ion, handles 12MBps, called full- speed USB. The current
level of the specificat ion is USB 2.0, which supports 480MBps, or high-speed USB. USB 2.0 is backward-
com pat ible with the earlier versions of the specificat ion. Peripherals such as USB keyboards and m ice are
exam ples of low-speed devices, and USB storage drives are exam ples of full- speed and high-speed devices.
Today's PC system s are USB 2.0-com pliant and allow all three target speeds, but som e em bedded cont rollers
adhere to USB 1.1 and support only full- speed and low-speed m odes of operat ion.

Host Cont rollers

USB host cont rollers conform to one of a few standards:

Universa l Host Cont roller I nter face (UHCI) : The UHCI specificat ion was init iated by I ntel, so your PC
is likely to have this cont roller if it 's I ntel-based.

Open Host Cont roller I nter face (OHCI) : The OHCI specificat ion or iginated from com panies such as
Com paq and Microsoft . An OHCI -com pat ible cont roller has m ore intelligence built in to hardware than
UHCI , so an OHCI HCD is relat ively sim pler than a UHCI HCD.

Enhanced Host Cont roller I nter face (EHCI) : This is the host cont roller that supports high-speed USB
2.0 devices. EHCI cont rollers usually have either a UHCI or OHCI com panion cont roller to handle slower
devices.

USB OTG cont rollers: They are get t ing increasingly popular in em bedded m icrocont rollers. With OTG
support , each com m unicat ing end can act as a dual- role device (DRD) . By init iat ing a dialog using the
Host Negot iat ion Protocol (HNP) , a DRD can switch itself to host m ode or device m ode based on the
desired funct ionality.

I n addit ion to these m ainst ream USB host cont rollers, Linux supports a few m ore cont rollers. An exam ple is the
HCD for the I SP116x chip.

Host cont rollers have a built - in hardware com ponent called the root hub. The root hub is a vir tual hub that
sources USB ports. The ports, in turn, can connect to external or internal physical hubs and source m ore ports,

yielding a t ree topology.

Transfer Types

Data exchange with a USB device can be one of four types:

Cont rol t ransfers, used to carry configurat ion and cont rol inform at ion

Bulk t ransfers that ferry large quant it ies of t im e- insensit ive data

I nterrupt t ransfers that exchange sm all quant it ies of t im e-sensit ive data

I sochronous t ransfers for real- t im e data at predictable bit rates

A USB storage drive, for exam ple, uses cont rol t ransfers to issue disk access com m ands and bulk t ransfers to
exchange data. A keyboard uses interrupt t ransfers to carry key st rokes within predictable delays. A device that
needs to st ream audio data in real t im e uses isochronous t ransfers. The responsibilit ies of the four t ransfer
types for USB Bluetooth devices are discussed in the sect ion "Device Exam ple: USB Adapter" in Chapter 16,
"Linux Without Wires."

Addressing

Each addressable unit in a USB device is called an endpoint . The address assigned to an endpoint is called an
endpoint address. Each endpoint address has an associated data t ransfer type. I f an endpoint is responsible for
bulk data t ransfer, for exam ple, it 's called a bulk endpoint . Endpoint address 0 is used exclusively for device
configurat ion. A cont rol pipe is at tached to this endpoint for device enum erat ion (see the sect ion
"Enum erat ion") .

An endpoint can be associated with upst ream or downst ream data t ransfer. Data arr iving upst ream from a
device is called an IN t ransfer, whereas data flowing downst ream to a device is an OUT t ransfer. IN and OUT
t ransfers own separate address spaces. So, you can have a bulk IN endpoint and a bulk OUT endpoint answering
to the sam e address.

USB resem bles I 2C on som e counts and PCI on others as sum m arized in Table 11.1. USB's device addressing is
sim ilar to I 2C, while it supports hotplugging like PCI . USB device addresses, like standard I 2C, do not consum e a
port ion of the CPU's address space. Rather, they reside in a pr ivate space ranging from 1 to 127.

Table 1 1 .1 . USB's Sim ilar it ies w ith I 2C and PCI

USB's sim ilar it ies with I 2C:

USB and I 2C are m aster-slave protocols.

Device addresses reside in a pr ivate 7-bit space.

Device- resident m em ory is not m apped to the CPU's mem ory or I / O space, so it
does not consum e CPU resources.

USB's sim ilar it ies with PCI :

Devices can be hotplugged.

Device dr iver architecture resem bles PCI dr ivers. Both classes of dr ivers own
probe()/disconnect() [1] m ethods and I D tables ident ifying the devices they
support .

Supports high speeds. Slower than PCI , however. See Table 10.1 in Chapter 10,
"Peripheral Com ponent I nterconnect ," for the speeds supported by different
m em bers of the PCI fam ily.

USB host cont rollers, like PCI cont rollers, usually have built - in DMA engines that can
m aster the bus.

Supports m ult ifunct ion devices. USB supports interface descriptors per funct ion.
Each PCI device funct ion has its own device I D and configurat ion space.

[1] disconnect() is called remove() in PCI parlance.

Chapter 1 1 . Universa l Ser ia l Bus

I n This Chapter

USB Architecture
312

Linux-USB Subsystem
317

Driver Data St ructures
317

Enum erat ion
324

Device Exam ple: Telem et ry Card
324

Class Drivers
338

Gadget Drivers
348

Debugging
349

Looking at the Sources
351

Universal serial bus (USB) is the de facto external bus in today's com puters. USB, with its support
for hotplugging, generic class dr ivers, and versat ile data- t ransfer m odes, is the usual route in the
consum er elect ronics space to br ing a diverse spect rum of technologies to com puter system s. I ts
sweeping popular ity and the accom panying econom ics of volum e have played a part in fueling the
adopt ion and acceptance of com puter peripheral technologies around the world.

USB Architecture

USB is a m aster-slave protocol where a host cont roller com m unicates with client devices. Figure 11.1 shows
USB in the PC environm ent . The USB host cont roller is part of the South Bridge chipset and com m unicates with
the processor over the PCI bus.

Figure 1 1 .1 . USB in the PC environm ent .

Figure 11.2 illust rates USB on an em bedded device. The SoC in the figure has built - in USB cont roller silicon that
supports four buses and three m odes of operat ion:

Bus 1 runs in host m ode and is wired to an A- type receptacle via a USB t ransceiver (see the sidebar "USB
Receptacles and Transceivers") . You can connect a USB pen drive or a keyboard to this port .

Bus 2 also funct ions in host m ode but the associated t ransceiver is connected to an internal USB device
rather than to a receptacle. Exam ples of internal USB devices are biom et r ic scanners, cryptographic
engines, pr inters, Disk-On-Chips (DOCs) , touch cont rollers, and telem et ry cards.

Bus 3 runs in device m ode and is wired to a B- type receptacle through a t ransceiver. The B- type
receptacle connects to a host com puter via a B- to-A cable. I n this m ode, the em bedded device funct ions
as, for exam ple, a USB pen drive, and exports a storage part it ion to the outside world. Em bedded devices
such as MP3 players and cell phones are m ore likely than PC system s to be at the device side of USB, so
m any em bedded SoCs support a USB device cont roller in addit ion to a host cont roller.

Bus 4 is dr iven by an On-The-Go (OTG) cont roller. You can use this port , for exam ple, to either connect a
pen drive to your system or to turn your system into a pen drive and connect it to a host . Unlike buses 1

to 3, bus 4 uses an intelligent t ransceiver that exchanges cont rol inform at ion with the processor over I 2C.
The t ransceiver is wired to a Mini-AB OTG receptacle. I f two em bedded devices support OTG, they can
direct ly com m unicate without the intervent ion of a host com puter.

Figure 1 1 .2 . USB on an em bedded system .

[View full size im age]

Most of this chapter is writ ten from the perspect ive of a system residing at the host -side of USB. We briefly look
at the device funct ion in the sect ion "Gadget Drivers." Mainst ream host cont roller dr ivers (HCDs) are already
available, so in this chapter we further confine ourselves to dr ivers for USB devices (also called client dr ivers) .

USB Receptacles and Transceivers

USB hosts use four-pin A- type rectangular receptacles, whereas USB devices connect via four-pin
B- type square receptacles. I n both cases, the four pins are different ial data signals D+ and D- , a
voltage line VBUS, and ground. VBUS is used to supply power from USB hosts to USB devices.
VBUS is thus pulled high on an A connector but receives power on a B connector. USB OTG
cont rollers connect to five-pin Mini-AB rectangular receptacles having a sm aller form factor. Four
of the Mini-AB pins are ident ical to what we discussed previously; the fifth is an I D pin used to
detect whether the connected peripheral is a host or a device.

The sam e t ransceiver chip (such as TUSB1105 from Texas I nst rum ents) can be used on USB hosts
and devices. You m ay thus choose to use the sam e t ransceiver part on buses 1 through 3 in Figure
11.2. OTG requires a special-purpose t ransceiver chip (such as I SP1301 from Philips
Sem iconductors) , however.

Bus Speeds

USB supports three operat ional speeds. The original USB 1.0 specificat ion supports 1.5MBps, referred to as low-
speed USB. USB 1.1, the next version of the specificat ion, handles 12MBps, called full- speed USB. The current
level of the specificat ion is USB 2.0, which supports 480MBps, or high-speed USB. USB 2.0 is backward-
com pat ible with the earlier versions of the specificat ion. Peripherals such as USB keyboards and m ice are
exam ples of low-speed devices, and USB storage drives are exam ples of full- speed and high-speed devices.
Today's PC system s are USB 2.0-com pliant and allow all three target speeds, but som e em bedded cont rollers
adhere to USB 1.1 and support only full- speed and low-speed m odes of operat ion.

Host Cont rollers

USB host cont rollers conform to one of a few standards:

Universa l Host Cont roller I nter face (UHCI) : The UHCI specificat ion was init iated by I ntel, so your PC
is likely to have this cont roller if it 's I ntel-based.

Open Host Cont roller I nter face (OHCI) : The OHCI specificat ion or iginated from com panies such as
Com paq and Microsoft . An OHCI -com pat ible cont roller has m ore intelligence built in to hardware than
UHCI , so an OHCI HCD is relat ively sim pler than a UHCI HCD.

Enhanced Host Cont roller I nter face (EHCI) : This is the host cont roller that supports high-speed USB
2.0 devices. EHCI cont rollers usually have either a UHCI or OHCI com panion cont roller to handle slower
devices.

USB OTG cont rollers: They are get t ing increasingly popular in em bedded m icrocont rollers. With OTG
support , each com m unicat ing end can act as a dual- role device (DRD) . By init iat ing a dialog using the
Host Negot iat ion Protocol (HNP) , a DRD can switch itself to host m ode or device m ode based on the
desired funct ionality.

I n addit ion to these m ainst ream USB host cont rollers, Linux supports a few m ore cont rollers. An exam ple is the
HCD for the I SP116x chip.

Host cont rollers have a built - in hardware com ponent called the root hub. The root hub is a vir tual hub that
sources USB ports. The ports, in turn, can connect to external or internal physical hubs and source m ore ports,

yielding a t ree topology.

Transfer Types

Data exchange with a USB device can be one of four types:

Cont rol t ransfers, used to carry configurat ion and cont rol inform at ion

Bulk t ransfers that ferry large quant it ies of t im e- insensit ive data

I nterrupt t ransfers that exchange sm all quant it ies of t im e-sensit ive data

I sochronous t ransfers for real- t im e data at predictable bit rates

A USB storage drive, for exam ple, uses cont rol t ransfers to issue disk access com m ands and bulk t ransfers to
exchange data. A keyboard uses interrupt t ransfers to carry key st rokes within predictable delays. A device that
needs to st ream audio data in real t im e uses isochronous t ransfers. The responsibilit ies of the four t ransfer
types for USB Bluetooth devices are discussed in the sect ion "Device Exam ple: USB Adapter" in Chapter 16,
"Linux Without Wires."

Addressing

Each addressable unit in a USB device is called an endpoint . The address assigned to an endpoint is called an
endpoint address. Each endpoint address has an associated data t ransfer type. I f an endpoint is responsible for
bulk data t ransfer, for exam ple, it 's called a bulk endpoint . Endpoint address 0 is used exclusively for device
configurat ion. A cont rol pipe is at tached to this endpoint for device enum erat ion (see the sect ion
"Enum erat ion") .

An endpoint can be associated with upst ream or downst ream data t ransfer. Data arr iving upst ream from a
device is called an IN t ransfer, whereas data flowing downst ream to a device is an OUT t ransfer. IN and OUT
t ransfers own separate address spaces. So, you can have a bulk IN endpoint and a bulk OUT endpoint answering
to the sam e address.

USB resem bles I 2C on som e counts and PCI on others as sum m arized in Table 11.1. USB's device addressing is
sim ilar to I 2C, while it supports hotplugging like PCI . USB device addresses, like standard I 2C, do not consum e a
port ion of the CPU's address space. Rather, they reside in a pr ivate space ranging from 1 to 127.

Table 1 1 .1 . USB's Sim ilar it ies w ith I 2C and PCI

USB's sim ilar it ies with I 2C:

USB and I 2C are m aster-slave protocols.

Device addresses reside in a pr ivate 7-bit space.

Device- resident m em ory is not m apped to the CPU's mem ory or I / O space, so it
does not consum e CPU resources.

USB's sim ilar it ies with PCI :

Devices can be hotplugged.

Device dr iver architecture resem bles PCI dr ivers. Both classes of dr ivers own
probe()/disconnect() [1] m ethods and I D tables ident ifying the devices they
support .

Supports high speeds. Slower than PCI , however. See Table 10.1 in Chapter 10,
"Peripheral Com ponent I nterconnect ," for the speeds supported by different
m em bers of the PCI fam ily.

USB host cont rollers, like PCI cont rollers, usually have built - in DMA engines that can
m aster the bus.

Supports m ult ifunct ion devices. USB supports interface descriptors per funct ion.
Each PCI device funct ion has its own device I D and configurat ion space.

[1] disconnect() is called remove() in PCI parlance.

Linux- USB Subsystem

Look at Figure 11.3 to understand the architecture of the Linux-USB subsystem . The const ituent pieces of the
subsystem are as follows:

The USB core. Like the core layers of dr iver subsystem s that you saw in previous chapters, the USB core is
a code base consist ing of rout ines and st ructures available to HCDs and client dr ivers. The core also
provides a level of indirect ion that renders client dr ivers independent of host cont rollers.

HCDs that dr ive different host cont rollers.

A hub driver for the root hub (and physical hubs) and a helper kernel thread khubd that m onitors all ports
connected to the hub. Detect ing port status changes and configuring hotplugged devices is t im e-
consum ing and is best accom plished using a helper thread for reasons you learned in Chapter 3 , "Kernel
Facilit ies." The khubd thread is asleep by default . The hub driver wakes khubd whenever it detects a
status change on a USB port connected to it .

Device dr ivers for USB client devices.

The USB filesystem usbfs that lets you drive USB devices from user space. We discuss user m ode USB
drivers in Chapter 19, "Drivers in User Space."

Figure 1 1 .3 . The Linux- USB subsystem .

[View full size im age]

For end- to-end operat ion, the USB subsystem calls on various other kernel layers for assistance. To support
USB m ass storage devices, for exam ple, the USB subsystem works in tandem with SCSI dr ivers, as shown in
Figure 11.3. To dr ive USB-Bluetooth keyboards, the stakeholders are fourfold: the USB subsystem , the
Bluetooth layer, the input subsystem , and the t ty layer.

Driver Data St ructures

When you write a USB client dr iver, you have to work with several data st ructures. Let 's look at the im portant
ones.

The usb_device St ructure

Each device dr iver subsystem relies on a special-purpose data st ructure to internally represent a device. The
usb_device st ructure is to the USB subsystem , what pci_dev is to the PCI layer, and what net_device is to the
network dr iver layer. usb_device is defined in include/ linux/ usb.h as follows:

struct usb_device {
 /* ... */
 enum usb_device_state state; /* Configured, Not Attached, etc */
 enum usb_device_speed speed; /* High/full/low (or error) */
 /* ... */
 struct usb_device *parent; /* Our hub, unless we're the root */
 /* ... */
 struct usb_device_descriptor descriptor; /* Descriptor */
 struct usb_host_config *config; /* All of the configs */
 struct usb_host_config *actconfig; /* The active config */
 /* ... */
 int maxchild; /* No: of ports if hub */
 struct usb_device *children[USB_MAXCHILDREN]; /* Child devices */
 /* ... */
};

We use this st ructure when we develop an exam ple driver for a USB telem et ry card later.

USB Request Blocks

USB Request Block (URB) is the centerpiece of the USB data t ransfer m echanism . A URB is to the USB stack,
what an sk_buff (discussed in Chapter 15, "Network I nterface Cards") is to the networking stack.

Let 's take a peek inside a URB. The following definit ion is from include/ linux/ usb.h, om it t ing fields not of
part icular interest to device dr ivers:

Code View:
struct urb
{
 struct kref kref; /* Reference count of the URB */
 /* ... */
 struct usb_device *dev; /* (in) pointer to associated
 device */
 unsigned int pipe; /* (in) pipe information */
 int status; /* (return) non-ISO status */
 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
 void *transfer_buffer; /* (in) associated data buffer */
 dma_addr_t transfer_dma; /* (in) dma addr for
 transfer_buffer */
 int transfer_buffer_length; /* (in) data buffer length */

 /* ... */
 unsigned char *setup_packet; /* (in) setup packet */
 /* ... */
 int interval; /* (modify) transfer interval
 (INT/ISO) */
 /* ... */
 void *context; /* (in) context for completion */
 usb_complete_t complete; /* (in) completion routine */
 /* ... */
};

There are three steps to using a URB: create, populate, and subm it . To create a URB, use usb_alloc_urb() .
This funct ion allocates and zeros-out URB m em ory, init ializes a kobject associated with the URB, and init ializes a
spinlock to protect the URB.

To populate a URB, use the following helper rout ines offered by the USB core:

void usb_fill_[control|int|bulk]_urb(
 struct urb *urb, /* URB pointer */
 struct usb_device *usb_dev, /* USB device structure */
 unsigned int pipe, /* Pipe encoding */
 unsigned char *setup_packet, /* For Control URBs only! */
 void *transfer_buffer, /* Buffer for I/O */
 int buffer_length, /* I/O buffer length */
 usb_complete_t completion_fn, /* Callback routine */
 void *context, /* For use by completion_fn */
 int interval); /* For Interrupt URBs only! */

The sem ant ics of the previous rout ines will get clearer when we develop the exam ple dr iver later on. These
helper rout ines are available to cont rol, interrupt , and bulk URBs but not to isochronous ones.

To subm it a URB for data t ransfer, use usb_submit_urb() . URB subm ission is asynchronous. The
usb_fill_[control|int|bulk]_urb() funct ions listed previously take the address of a callback funct ion as
argum ent . The callback rout ine executes after the URB subm ission com pletes and accom plishes things such as
checking subm ission status and freeing the data- t ransfer buffer.

The USB core also offers wrapper interfaces that provide a façade of synchronous URB subm ission:

int usb_[control|interrupt|bulk]_msg(struct usb_device *usb_dev,
 unsigned int pipe, ...);

usb_bulk_msg () , for exam ple, builds a bulk URB, subm its it , and blocks unt il the operat ion com pletes. You
don't have to supply a callback funct ion because a generic com plet ion rout ine serves that purpose. You don't
need to explicit ly create and populate the URB either, because usb_bulk_msg() does that for you at no
addit ional cost . We will use this interface in our exam ple dr iver.

usb_free_urb() is used to free a reference to a com pleted URB, whereas usb_unlink_urb() cancels a pending
URB operat ion.

As m ent ioned in the sect ion "Sysfs, Kobjects, and Device Classes" in Chapter 4 , "Laying the Groundwork," a
URB contains a kref object to t rack references to it . usb_submit_urb() increm ents the reference count using
kref_get() . usb_free_urb() decrem ents the reference count using kref_put() and perform s the free

operat ion only if there are no rem aining references.

A URB is associated with an abst ract ion called a pipe, which we discuss next .

Pipes

A pipe is an integer encoding of a com binat ion of the following:

The endpoint address

The direct ion of data t ransfer (IN or OUT)

The type of data t ransfer (cont rol, interrupt , bulk, or isochronous)

A pipe is the address elem ent of each USB data t ransfer and is an im portant field in the URB st ructure. To help
populate this field, the USB core provides the following helper m acros:

usb_[rcv|snd][ctrl|int|bulk|isoc]pipe(struct usb_device *usb_dev,
 __u8 endpointAddress);

where usb_dev is a pointer to the associated usb_device st ructure, and endpointAddress is the assigned
endpoint address between 1 and 127. To create a bulk pipe in the OUT direct ion, for exam ple, call
usb_sndbulkpipe() . For a cont rol pipe in the IN direct ion, invoke usb_rcvctrlpipe() .

While referr ing to a URB, it 's often qualified by the t ransfer type of the associated pipe. I f a URB is at tached to a
bulk pipe, for exam ple, it 's called a bulk URB.

Descr iptor St ructures

The USB specificat ion defines a series of descr iptors to hold inform at ion about a device. The Linux-USB core
defines data st ructures corresponding to each descriptor. Descriptors are of four types:

Device descriptors contain general inform at ion such as the product I D and vendor I D of the device.
usb_device_descriptor is the st ructure corresponding to device descriptors.

Configurat ion descriptors are used to describe different configurat ion m odes such as bus-powered and
self-powered operat ion. usb_config_descriptor is the data st ructure associated with configurat ion
descriptors.

I nterface descriptors allow USB devices to support m ult iple funct ions. usb_interface_descriptor defines
interface descriptors.

Endpoint descriptors carry inform at ion associated with the final endpoints of a device.
usb_endpoint_descriptor is the st ructure in quest ion.

These descriptor form ats are defined in Chapter 9 of the USB specificat ion, whereas the m atching st ructures are

defined in include/ linux/ usb/ ch9.h. List ing 11.1 shows the hierarchical topology of the descriptors and prints all
endpoint addresses associated with a USB device. To this end, it t raverses the t ree consist ing of the four types
of descriptors described previously. The following is the output generated by List ing 11.1 for a USB CD drive:

Endpoint Address = 1
Endpoint Address = 82
Endpoint Address = 83

The first address belongs to a bulk IN endpoint , the second address is owned by a bulk OUT endpoint , and the
third addresses an interrupt IN endpoint .

There are m ore data st ructures associated with USB client dr ivers, such as usb_device_id , usb_driver , and
usb_class_driver . We will m eet them when we do hands-on developm ent in the sect ion "Device Exam ple:
Telem et ry Card."

List ing 1 1 .1 . Pr int All USB Endpoint Addresses on a Device

[View full size im age]

Enum erat ion

The life of a hotplugged USB device starts with a process called enum erat ion by which the host learns about the
device's capabilit ies and configures it . The hub driver is the com ponent in the Linux-USB subsystem responsible
for enum erat ion. Let 's look at the sequence of steps that achieve device enum erat ion when you plug in a USB
pen drive into a host com puter:

1 . The root hub reports a change in the port 's current due to the device at tachm ent . The hub driver detects
this status change, called a USB_PORT_STAT_C_CONNECTION in Linux-USB term inology, and awakens khubd.

2 . Khubd deciphers the ident ity of the USB port subjected to the status change. I n this case, it 's the port
where you plugged in the pen drive.

3 . Next , khubd chooses a device address between 1 and 127 and assigns it to the pen drive's bulk endpoint
using a cont rol URB at tached to endpoint 0.

4 . Khubd uses the above cont rol URB at tached to endpoint 0 to obtain the device descriptor from the pen
drive. I t then requests the device's configurat ion descriptors and selects a suitable one. I n the case of the
pen drive, only a single configurat ion descriptor is on offer.

5 . Khubd requests the USB core to bind a m atching client dr iver to the inserted device.

When enum erat ion is com plete and the device is bound to a dr iver, khubd invokes the associated client dr iver 's
probe() m ethod. I n this case, khubd calls storage_probe() defined in dr ivers/ usb/ storage/ usb.c. From this
point on, the m ass storage driver is responsible for norm al device operat ion.

Device Exam ple: Telem et ry Card

Now that you know the basics of Linux-USB, it 's t im e to look at an exam ple device. Consider a system equipped
with a telem et ry card connected to the processor via internal USB, as shown in bus 2 of Figure 11.2. The card
acquires data from a rem ote device and ferr ies it to the processor over USB. An exam ple telem et ry card is a
m edical-grade board that m onitors or program s an implanted device.

Let 's assum e that our exam ple telem et ry card has the following endpoints having the sem ant ics described in
Table 11.2:

A cont rol endpoint at tached to an on-card configurat ion register

A bulk IN endpoint that passes rem ote telem et ry inform at ion collected by the card to the processor

A bulk OUT endpoint that t ransfers data in the reverse direct ion

Table 1 1 .2 . Register Space in the Telem et ry Card

Register Associa ted Endpoint

Telem etry Configurat ion Register Cont rol endpoint 0 (register offset 0xA) .

Telem et ry Data- I n Register Bulk IN endpoint . The endpoint address is
assigned during device enum erat ion.

Telem et ry Data-Out Register Bulk OUT endpoint . The endpoint address is
assigned during device enum erat ion.

Let 's build a m inim al dr iver for this card part ly based on the USB skeleton dr iver, dr ivers/ usb/ usb-skeleton.c.

Because PCMCI A, PCI , and USB devices have sim ilar character ist ics such as hotplug support , som e driver
m ethods and data st ructures belonging to these subsystem s resem ble each other. This is especially t rue for the
port ions responsible for init ializing and probing. As we progress through the telem et ry dr iver and not ice
parallels with what we learned for PCI dr ivers in Chapter 10, we will pause and take note.

I n it ia liz ing and Probing

Like PCI and PCMCI A drivers, USB drivers have probe()/disconnect() [2] m ethods to support hotplugging, and
a table that contains the ident ity of devices they support . A USB device is ident ified by the usb_device_id
st ructure defined in include/ linux/ m od_devicetable.h. You m ay recall from the previous chapter that the
pci_device_id st ructure, also defined in the sam e header file, ident ifies PCI devices.

[2] disconnect() is called remove() in PCI and PCMCI A parlance.

struct usb_device_id {
 /* ... */
 __u16 idVendor; /* Vendor ID */

 __u16 idProduct; /* Device ID */
 /* ... */
 __u8 bDeviceClass; /* Device class */
 __u8 bDeviceSubClass; /* Device subclass */
 __u8 bDeviceProtocol; /* Device protocol */
 /* ... */
};

idVendor and idProduct , respect ively, hold the m anufacturer I D and product I D, whereas bDeviceClass ,
bDeviceSubClass , and bDeviceProtocol categorize the device based on its funct ionality. This classificat ion,
determ ined by the USB specificat ion, allows im plem entat ion of generic client dr ivers as discussed in the sect ion
"Class Drivers" later.

List ing 11.2 im plem ents the telem et ry dr iver 's init ializat ion rout ine, usb_tele_init() , which calls on
usb_register() to register its usb_driver st ructure with the USB core. As shown in the list ing, usb_driver
t ies the dr iver 's probe() m ethod, disconnect() m ethod, and usb_device_id table together. usb_driver is
sim ilar to pci_driver , except that the disconnect() m ethod in the form er is nam ed remove() in the lat ter.

List ing 1 1 .2 . I n it ia liz ing the Dr iver

Code View:
#define USB_TELE_VENDOR_ID 0xABCD /* Manufacturer's Vendor ID */
#define USB_TELE_PRODUCT_ID 0xCDEF /* Device's Product ID */

/* USB ID Table specifying the devices that this driver supports */
static struct usb_device_id tele_ids[] = {
 { USB_DEVICE(USB_TELE_VENDOR_ID, USB_TELE_PRODUCT_ID) },
 { } /* Terminate */
};

MODULE_DEVICE_TABLE(usb, tele_ids);

/* The usb_driver structure for this driver */
static struct usb_driver tele_driver
{
 .name = "tele", /* Unique name */
 .probe = tele_probe, /* See Listing 11.3 */
 .disconnect = tele_disconnect, /* See Listing 11.3 */
 .id_table = tele_ids, /* See above */
};

/* Module Initialization */
static int __init
usb_tele_init(void)
{
 /* Register with the USB core */
 result = usb_register(&tele_driver);

 /* ... */
 return 0;
}

/* Module Exit */
static void __exit
usb_tele_exit(void)
{
 /* Unregister from the USB core */

 usb_deregister(&tele_driver);
 return;
}

module_init(usb_tele_init);
module_exit(usb_tele_exit);

The USB_DEVICE() m acro creates a usb_device_id from the vendor and product I Ds supplied to it . This is
analogous to the PCI_DEVICE() m acro discussed in the previous chapter. The MODULE_DEVICE_TABLE() m acro
marks tele_ids in the m odule im age so that the m odule can be loaded on dem and if the card is hotplugged.
This is again sim ilar to what we discussed for PCMCI A and PCI devices in the previous two chapters.

When the USB core detects a device with propert ies m atching the ones declared in the usb_device_id table
belonging to a client dr iver, it invokes the probe() m ethod registered by that dr iver. When the device is
unplugged or if the m odule is unloaded, the USB core invokes the dr iver 's disconnect() m ethod.

List ing 11.3 im plem ents the probe() and disconnect() m ethods of the telem et ry dr iver. I t starts by defining a
device-specific st ructure, tele_device_t , which contains the following fields:

A pointer to the associated usb_device .

A pointer to the usb_interface . Revisit List ing 11.1 to see this st ructure in use.

A cont rol URB (ctrl_urb) to com m unicate with the telem et ry configurat ion register, and a ctrl_req to
form ulate program m ing requests to this register. These fields are described in the next sect ion "Accessing
Registers."

The card has a bulk IN endpoint through which you can glean the collected telem et ry inform at ion.
Associated with this endpoint are three fields: bulk_in_addr , which holds the endpoint address;
bulk_in_buf , which stores received data; and bulk_in_len , which contains the size of the receive data
buffer.

The card has a bulk OUT endpoint to facilitate downst ream data t ransfer. tele_device_t has a field called
bulk_out_addr to store the address of this endpoint . There are fewer data st ructures in the OUT direct ion
because in this sim ple case we use a synchronous URB subm ission interface that hides several
im plem entat ion details.

Khubd invokes the card's probe() m ethod, tele_probe() , soon after enum erat ion. tele_probe() perform s
three tasks:

1 . Allocates m em ory for the device-specific st ructure, tele_device_t .

2 . I nit ializes the following fields in tele_device_t related to the device's bulk endpoints: bulk_in_buf ,
bulk_in_len , bulk_in_addr , and bulk_out_addr . For this, it uses the data collected by the hub driver
during enum erat ion. This data is available in descriptor st ructures discussed in the sect ion "Descriptor
St ructures."

3 . Exports the character device / dev/ tele to user space. Applicat ions operate over / dev/ tele to exchange data
with the telem et ry card. tele_probe() invokes usb_register_dev() and supplies it the file_operations
that form the underlying pillars of the / dev/ tele interface via the usb_class_driver st ructure.

The address of the device-specific st ructure allocated in Step 1 has to be saved so that other m ethods can
access it . To achieve this, the telem et ry dr iver uses a threefold st rategy depending on the funct ion argum ents
available to various dr iver rout ines. To save this st ructure pointer between the probe() and open() invocat ion
threads, the dr iver uses the device's driver_data field via the pair of funct ions, usb_set_intfdata() and
usb_get_intfdata() . To save the address of the st ructure pointer between the open() thread and other ent ry
points, open() stores it in the / dev/ tele's file->private_data field. This is because the kernel supplies these
char ent ry points with / dev/ tele's inode pointer as argum ent rather than the usb_interface pointer. To glean
the address of the device-specific st ructure from URB callback funct ions, the associated subm ission threads use
the URB's context field as the storage area. Look at List ings 11.3, 11.4, and 11.5 to see these m echanism s in
act ion.

All USB character devices answer to m ajor num ber 180 . I f you enable CONFIG_USB_DYNAMIC_MINORS during
kernel configurat ion, the USB core dynam ically selects a m inor num ber from the available pool. This behavior is
sim ilar to register ing m isc dr ivers after specifying MISC_DYNAMIC_MINOR in the miscdevice st ructure (as
discussed in the sect ion "Misc Drivers" in Chapter 5 , "Character Drivers") . I f you choose not to enable
CONFIG_USB_DYNAMIC_MINORS, the USB subsystem selects an available m inor num ber start ing at the m inor base
set in the usb_class_driver st ructure.

List ing 1 1 .3 . Probing and Disconnect ing

Code View:
/* Device-specific structure */
typedef struct {
 struct usb_device *usbdev; /* Device representation */
 struct usb_interface *interface; /* Interface representation*/
 struct urb *ctrl_urb; /* Control URB for
 register access */
 struct usb_ctrlrequest ctrl_req; /* Control request
 as per the spec */
 unsigned char *bulk_in_buf; /* Receive data buffer */
 size_t bulk_in_len; /* Receive buffer size */
 __u8 bulk_in_addr; /* IN endpoint address */
 __u8 bulk_out_addr; /* OUT endpoint address */
 /* ... */ /* Locks, waitqueues,
 statistics.. */
} tele_device_t;

#define TELE_MINOR_BASE 0xAB /* Assigned by the Linux-USB
 subsystem maintainer */

/* Conventional char driver entry points.
 See Chapter 5, "Character Drivers." */
static struct file_operations tele_fops =
{
 .owner = THIS_MODULE, /* Owner */

 .read = tele_read, /* Read method */
 .write = tele_write, /* Write method */
 .ioctl = tele_ioctl, /* Ioctl method */
 .open = tele_open, /* Open method */
 .release = tele_release, /* Close method */
};

static struct usb_class_driver tele_class = {
 .name = "tele",
 .fops = &tele_fops, /* Connect with /dev/tele */

 .minor_base = TELE_MINOR_BASE, /* Minor number start */
};
/* The probe() method is invoked by khubd after device
 enumeration. The first argument, interface , contains information

 gleaned during the enumeration process. id is the entry in the

 driver's usb_device_id table that matches the values read from

 the telemetry card. tele_probe() is based on skel_probe()
 defined in drivers/usb/usb-skeleton.c */

static int
tele_probe(struct usb_interface *interface,
 const struct usb_device_id *id)
{
 struct usb_host_interface *iface_desc;
 struct usb_endpoint_descriptor *endpoint;
 tele_device_t *tele_device;
 int retval = -ENOMEM;

 /* Allocate the device-specific structure */
 tele_device = kzalloc(sizeof(tele_device_t), GFP_KERNEL);

 /* Fill the usb_device and usb_interface */
 tele_device->usbdev =
 usb_get_dev(interface_to_usbdev(interface));
 tele_device->interface = interface;

 /* Set up endpoint information from the data gleaned
 during device enumeration */
 iface_desc = interface->cur_altsetting;
 for (int i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {
 endpoint = &iface_desc->endpoint[i].desc;

 if (!tele_device->bulk_in_addr &&
 usb_endpoint_is_bulk_in(endpoint)) {
 /* Bulk IN endpoint */
 tele_device->bulk_in_len =
 le16_to_cpu(endpoint->wMaxPacketSize);
 tele_device->bulk_in_addr = endpoint->bEndpointAddress;
 tele_device->bulk_in_buf =
 kmalloc(tele_device->bulk_in_len, GFP_KERNEL);
 }

 if (!tele_device->bulk_out_addr &&
 usb_endpoint_is_bulk_out(endpoint)) {
 /* Bulk OUT endpoint */
 tele_device->bulk_out_addr = endpoint->bEndpointAddress;
 }
 }

 if (!(tele_device->bulk_in_addr && tele_device->bulk_out_addr)) {
 return retval;
 }

 /* Attach the device-specific structure to this interface.
 We will retrieve it from tele_open() */
 usb_set_intfdata(interface, tele_device);

 /* Register the device */
 retval = usb_register_dev(interface, &tele_class);
 if (retval) {
 usb_set_intfdata(interface, NULL);
 return retval;
 }

 printk("Telemetry device now attached to /dev/tele\n");
 return 0;
}

/* Disconnect method. Called when the device is unplugged or when the module is
 unloaded */
static void
tele_disconnect(struct usb_interface *interface)
{
 tele_device_t *tele_device;
 /* ... */

 /* Reverse of usb_set_intfdata() invoked from tele_probe() */
 tele_device = usb_get_intfdata(interface);

 /* Zero out interface data */
 usb_set_intfdata(interface, NULL);

 /* Release /dev/tele */

 usb_deregister_dev(interface, &tele_class);

 /* NULL the interface. In the real world, protect this
 operation using locks */
 tele_device->interface = NULL;
 /* ... */
}

Accessing Registers

The open() m ethod init ializes the on-card telem et ry configurat ion register when an applicat ion opens / dev/ tele.
To set the contents of this register, tele_open() subm its a cont rol URB at tached to the default endpoint 0.
When you subm it a cont rol URB, you have to supply an associated cont rol request . The st ructure that sends a
cont rol request to a USB device has to conform to Chapter 9 of the USB specificat ion and is defined as follows in
include/ linux/ usb/ ch9.h:

struct usb_ctrlrequest {
 __u8 bRequestType;
 __u8 bRequest;

 __le16 wValue;
 __le16 wIndex;
 __le16 wLength;
} __attribute__ ((packed));

Let 's take a look at the com ponents that m ake up a usb_ctrlrequest . The bRequest field ident ifies the cont rol
request . bRequestType qualifies the request by encoding the data t ransfer direct ion, the request category, and
whether the recipient is a device, interface, endpoint , or som ething else. bRequest can either belong to a set of
standard values or be vendor-defined. I n our exam ple, the bRequest for writ ing to the telem et ry configurat ion
register is a vendor-defined one. wValue holds the data to be writ ten to the register, wIndex is the desired
offset into the register space, and wLength is the num ber of bytes to be t ransferred.

List ing 11.4 im plem ents tele_open() . I ts m ain task is to program the telem et ry configurat ion register with
appropriate values. Before browsing the list ing, revisit the tele_device_t st ructure defined in List ing 11.3
focusing on two fields: ctrl_urb and ctrl_req . The form er is a cont rol URB for com m unicat ing with the
configurat ion register, whereas the lat ter is the associated usb_ctrlrequest .

To program the telem et ry configurat ion register, tele_open() does the following:

1 . Allocates a cont rol URB to prepare for the register write.

2 . Creates a usb_ctrlrequest and populates it with the request ident ifier, request type, register offset , and
the value to be program m ed.

3 . Creates a cont rol pipe at tached to endpoint 0 of the telem et ry card to carry the cont rol URB.

4 . Because tele_open() subm its the URB asynchronously, it needs to wait for the associated callback
funct ion to finish before returning to its caller. To this end, tele_open() calls on the kernel's com plet ion
API for assistance using init_completion() . Step 7 calls the m atching wait_for_completion() that waits
unt il the callback funct ion invokes complete() . We discussed the com plet ion API in the sect ion
"Com plet ion I nterface" in Chapter 3 .

5 . I nit ializes fields in the cont rol URB using usb_fill_control_urb() . This includes the usb_ctrlrequest
populated in Step 2.

6 . Subm its the URB to the USB core using usb_submit_urb() .

7 . Waits unt il the callback funct ion signals that the register program m ing is com plete.

8 . Returns the status.

List ing 1 1 .4 . I n it ia lize the Telem et ry Configurat io n Register

Code View:
/* Offset of the Telemetry configuration register
 within the on-card register space */
#define TELEMETRY_CONFIG_REG_OFFSET 0x0A

/* Value to program in the configuration register */
#define TELEMETRY_CONFIG_REG_VALUE 0xBC

/* The vendor-defined bRequest for programming the
 configuration register */

#define TELEMETRY_REQUEST_WRITE 0x0D

/* The vendor-defined bRequestType */
#define TELEMETRY_REQUEST_WRITE_REGISTER 0x0E

/* Open method */
static int
tele_open(struct inode *inode, struct file *file)
{
 struct completion tele_config_done;
 tele_device_t *tele_device;
 void *tele_ctrl_context;
 char *tmp;
 __le16 tele_config_index = TELEMETRY_CONFIG_REG_OFFSET;
 unsigned int tele_ctrl_pipe;
 struct usb_interface *interface;

 /* Obtain the pointer to the device-specific structure.
 We saved it using usb_set_intfdata() in tele_probe() */
 interface = usb_find_interface(&tele_driver, iminor(inode));
 tele_device = usb_get_intfdata(interface);

 /* Allocate a URB for the control transfer */
 tele_device->ctrl_urb = usb_alloc_urb(0, GFP_KERNEL);
 if (!tele_device->ctrl_urb) {
 return -EIO;
 }

 /* Populate the Control Request */
 tele_device->ctrl_req.bRequestType = TELEMETRY_REQUEST_WRITE;
 tele_device->ctrl_req.bRequest =
 TELEMETRY_REQUEST_WRITE_REGISTER;
 tele_device->ctrl_req.wValue =
 cpu_to_le16(TELEMETRY_CONFIG_REG_VALUE);
 tele_device->ctrl_req.wIndex =
 cpu_to_le16p(&tele_config_index);
 tele_device->ctrl_req.wLength = cpu_to_le16(1);
 tele_device->ctrl_urb->transfer_buffer_length = 1;
 tmp = kmalloc(1, GFP_KERNEL);
 *tmp = TELEMETRY_CONFIG_REG_VALUE;

 /* Create a control pipe attached to endpoint 0 */
 tele_ctrl_pipe = usb_sndctrlpipe(tele_device->usbdev, 0);

 /* Initialize the completion mechanism */
 init_completion(&tele_config_done);

 /* Set URB context. The context is part of the URB that is passed
 to the callback function as an argument. In this case, the
 context is the completion structure, tele_config_done */
 tele_ctrl_context = (void *)&tele_config_done;

 /* Initialize the fields in the control URB */
 usb_fill_control_urb(tele_device->ctrl_urb, tele_device->usbdev,
 tele_ctrl_pipe,
 (char *) &tele_device->ctrl_req,
 tmp, 1, tele_ctrl_callback,
 tele_ctrl_context);
 /* Submit the URB */

 usb_submit_urb(tele_device->ctrl_urb, GFP_ATOMIC);

 /* Wait until the callback returns indicating that the telemetry
 configuration register has been successfully initialized */
 wait_for_completion(&tele_config_done);

 /* Release our reference to the URB */
 usb_free_urb(urb);

 kfree(tmp);

 /* Save the device-specific object to the file's private_data
 so that you can directly retrieve it from other entry points
 such as tele_read() and tele_write() */
 file->private_data = tele_device;

 /* Return the URB transfer status */
 return(tele_device->ctrl_urb->status);
}

/* Callback function */
static void
tele_ctrl_callback(struct urb *urb)
{
 complete((struct completion *)urb->context);
}

You can render tele_open() sim pler using usb_control_msg() , a blocking version of usb_submit_urb() that
internally hides synchronizat ion and callback details for cont rol URBs. We preferred the asynchronous approach
for learning purposes.

Data Transfer

List ing 11.5 im plem ents the read() and write() ent ry points of the telem et ry dr iver. These m ethods perform
the real work when an applicat ion reads or writes to / dev/ tele. tele_read() perform s synchronous URB
subm ission because the calling process wants to block unt il telem et ry data is available. tele_write() , however,
uses asynchronous subm ission and returns to the calling thread without wait ing for a confirm at ion that the data
accepted by the dr iver has been successfully t ransferred to the device.

Because asynchronous t ransfers go hand in hand with a callback rout ine, List ing 11.5 im plem ents
tele_write_callback() . This rout ine exam ines urb->status to decipher the subm ission status. I t also frees
the t ransfer buffer allocated by tele_write() .

List ing 1 1 .5 . Data Exchange w ith the Telem et ry Card

Code View:
/* Read entry point */
static ssize_t
tele_read(struct file *file, char *buffer,
 size_t count, loff_t *ppos)
{

 int retval, bytes_read;
 tele_device_t *tele_device;

 /* Get the address of tele_device */
 tele_device = (tele_device_t *)file->private_data;

 /* ... */

 /* Synchronous read */
 retval = usb_bulk_msg(tele_device->usbdev, /* usb_device */
 usb_rcvbulkpipe(tele_device->usbdev,
 tele_device->bulk_in_addr), /* Pipe */
 tele_device->bulk_in_buf, /* Read buffer */
 min(tele_device->bulk_in_len, count), /* Bytes to read */
 &bytes_read, /* Bytes read */
 5000); /* Timeout in 5 sec */

 /* Copy telemetry data to user space */
 if (!retval) {
 if (copy_to_user(buffer, tele_device->bulk_in_buf,
 bytes_read)) {
 return -EFAULT;
 } else {
 return bytes_read;
 }
 }
 return retval;
}

/* Write entry point */
static ssize_t
tele_write(struct file *file, const char *buffer,
 size_t write_count, loff_t *ppos)
{
 char *tele_buf = NULL;
 struct urb *urb = NULL;
 tele_device_t *tele_device;

 /* Get the address of tele_device */
 tele_device = (tele_device_t *)file->private_data;

 /* ... */

 /* Allocate a bulk URB */
 urb = usb_alloc_urb(0, GFP_KERNEL);
 if (!urb) {
 return -ENOMEM;
 }

 /* Allocate a DMA-consistent transfer buffer and copy in
 data from user space. On return, tele_buf contains
 the buffer's CPU address, while urb->transfer_dma
 contains the DMA address */
 tele_buf = usb_buffer_alloc(tele_dev->usbdev, write_count,
 GFP_KERNEL, &urb->transfer_dma);
 if (copy_from_user(tele_buf, buffer, write_count)) {
 usb_buffer_free(tele_device->usbdev, write_count,
 tele_buf, urb->transfer_dma);
 usb_free_urb(urb);

 return -EFAULT
 }

 /* Populate bulk URB fields */
 usb_fill_bulk_urb(urb, tele_device->usbdev,
 usb_sndbulkpipe(tele_device->usbdev,
 tele_device->bulk_out_addr),
 tele_buf, write_count, tele_write_callback,
 tele_device);
 /* urb->transfer_dma is valid, so preferably utilize
 that for data transfer */
 urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;

 /* Submit URB asynchronously */
 usb_submit_urb(urb, GFP_KERNEL);
 /* Release URB reference */
 usb_free_urb(urb);

 return(write_count);
}

/* Write callback */
static void
tele_write_callback(struct urb *urb)
{
 tele_device_t *tele_device;

 /* Get the address of tele_device */
 tele_device = (tele_device_t *)urb->context;

 /* urb->status contains the submission status. It's 0 if
 successful. Resubmit the URB in case of errors other than
 -ENOENT, -ECONNRESET, and -ESHUTDOWN */
 /* ... */

 /* Free the transfer buffer. usb_buffer_free() is the
 release-counterpart of usb_buffer_alloc() called
 from tele_write() */
 usb_buffer_free(urb->dev, urb->transfer_buffer_length,
 urb->transfer_buffer, urb->transfer_dma);

}

Class Dr ivers

The USB specificat ion int roduces the concept of device classes and describes the funct ionality of each class
driver. Exam ples of standard device classes include m ass storage, networking, hubs, serial converters, audio,
video, im aging, m odem s, pr inters, and hum an interface devices (HI Ds) . Class dr ivers are generic and let you
plug and play a wide array of cards without the need for developing and installing dr ivers for every single
device. The Linux-USB subsystem includes support for m ajor class dr ivers.

Each USB device has a class and a subclass code. The m ass storage class (0x08) , for exam ple, supports
subclasses such as com pact disc (0x02) , tape (0x03) , and solid-state storage (0x06) . As you saw previously,
device dr ivers populate the usb_device_id st ructure with the classes and subclasses they support . You can
glean a device's class and subclass inform at ion by looking at the " I : " lines in the / proc/ bus/ usb/ devices output .

Let 's take a look at som e im portant class dr ivers.

Mass Storage

I n USB parlance, m ass storage refers to USB hard disks, pen drives, CD-ROMs, floppy dr ives, and sim ilar
storage devices. USB m ass storage devices adhere to the Sm all Com puter System I nterface (SCSI) protocol to
com m unicate with host system s. Block access to USB storage devices is hence routed through the kernel's SCSI
subsystem . Figure 11.4 provides you an overview of the interact ion between USB storage and SCSI subsystem s.
As shown in the figure, the SCSI subsystem is architected into three layers:

Top- level dr ivers for devices such as disks (sd.c) and CD-ROMs (sr.c)1 .

A m iddle- level layer that scans the bus, configures devices, and glues top- level dr ivers to low- level dr ivers2 .

Low- level SCSI adapter dr ivers3 .

Figure 1 1 .4 . USB m ass storage and SCSI .

[View full size im age]

The m ass storage driver registers itself as a vir tual SCSI adapter. The vir tual adapter com m unicates upst ream
via SCSI com m ands and downst ream using URBs. A USB disk appears to higher layers as a SCSI device
at tached to this vir tual adapter.

To bet ter understand the interact ions between the USB and SCSI layers, let 's im plem ent a m odificat ion to the
USB m ass storage driver. The usbfs node / proc/ bus/ usb/ devices, contains the propert ies and connect ion details
of all USB devices at tached to the system . The "T: " line in the / proc/ bus/ usb/ devices output , for exam ple,
contains the bus num ber, the device's depth from the root hub, operat ional speed, and so on. The "P: " line
contains the vendor I D, product I D, and revision num ber of the device. All the inform at ion available in
/ proc/ bus/ usb/ devices is m anaged by the USB subsystem , but there is one piece m issing that is under the
jur isdict ion of the SCSI subsystem . The / dev node nam e associated with the USB storage device (sd[a-z] [1-9]

for disks and sr[0-9] for CD-ROMs) is not available in / proc/ bus/ usb/ devices. To overcom e this lim itat ion, let 's
add an "N: " line that displays the / dev node nam e associated with the device. List ing 11.6 shows the necessary
code changes in the form of a source patch to the 2.6.23.1 kernel t ree.

List ing 1 1 .6 . Adding a Disk 's / dev Nam e to usbfs

Code View:
include/scsi/scsi_host.h :
struct Scsi_Host {
 /* ... */
 void *shost_data;
+ char snam[8]; /* /dev node name for this disk */
 /* ... */
};

drivers/usb/storage/usb.h :
struct us_data {
 /* ... */
+ char magic[4];
};

include/linux/usb.h:
struct usb_interface {
 /* ... */
+ void *private_data;
};

drivers/usb/storage/usb.c :
static int storage_probe(struct usb_interface *intf,
 const struct usb_device_id *id)
{
 /* ... */
 memset(us, 0, sizeof(struct us_data));
+ intf->private_data = (void *) us;
+ strncpy(us->magic, "disk", 4);
 mutex_init(&(us->dev_mutex));
 /* ... */
}

drivers/scsi/sd.c:
static int sd_probe(struct device *dev)
{
 /* ... */
 add_disk(gd);
+ memset(sdp->host->snam,0, sizeof(sdp->host->snam));
+ strncpy(sdp->host->snam, gd->disk_name, 3);
 sdev_printk(KERN_NOTICE, sdp, "Attached scsi %sdisk %s\n",
 sdp->removable ? "removable " : "", gd->disk_name);
 /* ... */
}

drivers/scsi/sr.c:
static int sr_probe(struct device *dev)
{

 /* ... */
 add_disk(disk);
+ memset(sdev->host->snam,0, sizeof(sdev->host->snam));
+ strncpy(sdev->host->snam, cd->cdi.name, 3);
 sdev_printk(KERN_DEBUG, sdev, "Attached scsi CD-ROM %s\n",
 cd->cdi.name);
 /* ... */
}

drivers/usb/core/devices.c :
 /* ... */
 #include <asm/uaccess.h>
+ #include <scsi/scsi_host.h>
+ #include "../storage/usb.h"

static ssize_t usb_device_dump(char __user **buffer, size_t *nbytes,
 loff_t *skip_bytes, loff_t *file_offset,
 struct usb_device *usbdev,
 struct usb_bus *bus, int level,
 int index, int count)
{
 /* ... */
 ssize_t total_written = 0;
+ struct us_data *us_d;
+ struct Scsi_Host *s_h;
 /* ... */
 data_end = pages_start + sprintf(pages_start, format_topo,
 bus->busnum, level,
 parent_devnum,
 index, count, usbdev->devnum,
 speed, usbdev->maxchild);
+ /* Assume this device supports only one interface */
+ us_d = (struct us_data *)
+ (usbdev->actconfig->interface[0]->private_data);
+
+ if ((us_d) && (!strncmp(us_d->magic, "disk", 4))) {
+ s_h = (struct Scsi_Host *) container_of((void *)us_d ,
+ struct Scsi_Host ,
+ hostdata);
+ data_end += sprintf(data_end, "N: ");
+ data_end += sprintf(data_end, "Device=%.100s",s_h->snam);
+ if (!strncmp(s_h->snam, "sr", 2)) {
+ data_end += sprintf(data_end, " (CDROM)\n");
+ } else if (!strncmp(s_h->snam, "sd", 2)) {
+ data_end += sprintf(data_end, " (Disk)\n");
+ }
+ }
 /* ... */
}

To understand List ing 11.6, let 's first t race the code flow, cont inuing from where we left off in the sect ion
"Enum erat ion." I n that sect ion, we inserted a USB pen drive and followed the execut ion t rain unt il the invocat ion
of storage_probe() , the probe() m ethod of the m ass storage driver. Moving further:

1 . storage_probe() registers a vir tual SCSI adapter by calling scsi_add_host() , supplying a pr ivate data
st ructure called us_data as argum ent . scsi_add_host() returns a Scsi_Host st ructure for this vir tual
adapter, with space at the end for us_data .

2 . I t starts a kernel thread called usb-storage to handle all SCSI com m ands queued to the vir tual adapter.

3 . I t schedules a kernel thread called usb-stor-scan that requests the SCSI m iddle- level layer to scan the bus
for at tached devices.

4 . The device scan init iated in Step 3 discovers the presence of the inserted pen drive and binds the upper-
level SCSI disk dr iver (sd.c) to the device. This results in the invocat ion of the SCSI disk dr iver 's probe
m ethod, sd_probe() .

5 . The sd dr iver allocates a / dev/ sd* node to the disk. From this point on, applicat ions use this interface to
access the USB disk. The SCSI subsystem queues disk com m ands to the vir tual adapter, which the usb-
storage kernel thread handles using appropriate URBs.

Now that you know the basics, let 's dissect List ing 11.6, looking at the data st ructure addit ions first . The list ing
adds a snam field to the Scsi_Host st ructure to hold the associated SCSI / dev nam e that we are interested in. I t
also adds a pr ivate field to the usb_interface st ructure to associate each USB interface with its us_data .
Because us_data is relevant only for storage devices, we need to ensure the validity of the pr ivate field of a
USB interface before accessing it as us_data . For this, List ing 11.6 adds a m agic st r ing, "disk," to us_data .

The usbfs m odificat ion in List ing 11.6 (to dr ivers/ usb/ core/ devices.c) pulls out the us_data associated with each
interface via the pr ivate data field of its usb_interface . I t then latches on to the associated Scsi_Host using
the container_of() funct ion, because as you saw in Step 1 previously, usb_data is glued to the end of the
corresponding Scsi_Host . As you further saw in Step 5, Scsi_Host contains the / dev node nam es that the sd
and sr dr ivers populate. Usbfs st itches together an "N: " line using this inform at ion.

The following is the / proc/ bus/ usb/ devices output after integrat ing the changes in List ing 11.6 and at taching a
PNY USB pen drive, an Addonics CD-ROM drive, and a Seagate hard disk to a laptop via a USB hub. The "N: "
lines announce the ident ity of the / dev node corresponding to each device:

Code View:
bash> cat /proc/bus/usb/devices

...
T: Bus=04 Lev=02 Prnt=02 Port=00 Cnt=01 Dev#= 3 Spd=480 MxCh= 0
N: Device=sda(Disk)

D: Ver= 2.00 Cls=00(>ifc) Sub=00 Prot=00 MxPS=64 #Cfgs= 1
P: Vendor=154b ProdID=0002 Rev= 1.00
S: Manufacturer=PNY
S: Product=USB 2.0 FD
S: SerialNumber=6E5C07005B4F
C:* #Ifs= 1 Cfg#= 1 Atr=80 MxPwr= 0mA
I:* If#= 0 Alt= 0 #EPs= 2 Cls=08(stor.) Sub=06 Prot=50 Driver=usb-
 storage
E: Ad=81(I) Atr=02(Bulk) MxPS= 512 Ivl=0ms
E: Ad=02(O) Atr=02(Bulk) MxPS= 512 Ivl=0ms

T: Bus=04 Lev=02 Prnt=02 Port=01 Cnt=02 Dev#= 5 Spd=480 MxCh= 0
N: Device=sr0(CDROM)

D: Ver= 2.00 Cls=00(>ifc) Sub=00 Prot=00 MxPS=64 #Cfgs= 1
P: Vendor=0bf6 ProdID=a002 Rev= 3.00
S: Manufacturer=Addonics

S: Product=USB to IDE Cable
S: SerialNumber=1301011002A9AFA9
C:* #Ifs= 1 Cfg#= 2 Atr=c0 MxPwr= 98mA
I:* If#= 0 Alt= 0 #EPs= 3 Cls=08(stor.) Sub=06 Prot=50 Driver=usb-
 storage
E: Ad=01(O) Atr=02(Bulk) MxPS= 512 Ivl=125us
E: Ad=82(I) Atr=02(Bulk) MxPS= 512 Ivl=0ms
E: Ad=83(I) Atr=03(Int.) MxPS= 2 Ivl=32ms

T: Bus=04 Lev=02 Prnt=02 Port=02 Cnt=03 Dev#= 4 Spd=480 MxCh= 0
N: Device=sdb(Disk)

D: Ver= 2.00 Cls=00(>ifc) Sub=00 Prot=00 MxPS=64 #Cfgs= 1
P: Vendor=0bc2 ProdID=0501 Rev= 0.01
S: Manufacturer=Seagate
S: Product=USB Mass Storage
S: SerialNumber=000000062459
C:* #Ifs= 1 Cfg#= 1 Atr=c0 MxPwr= 0mA
I:* If#= 0 Alt= 0 #EPs= 2 Cls=08(stor.) Sub=06 Prot=50 Driver=usb-
 storage
E: Ad=02(O) Atr=02(Bulk) MxPS= 512 Ivl=0ms
E: Ad=88(I) Atr=02(Bulk) MxPS= 512 Ivl=0ms
...

As you can see, the SCSI subsystem has allot ted sda to the pen drive, sr0 to the CD-ROM, and sdb to the hard
disk. User-space applicat ions operate on these nodes to com m unicate with the respect ive devices. As you saw in
Chapter 4 , with the arr ival of udev, however, you have the opt ion of creat ing higher- level abst ract ions to
ident ify each device without relying on the ident ity of the / dev nam es allocated by the SCSI subsystem .

USB- Ser ia l

USB- to-serial converters br ing serial port capabilit ies to your com puter via USB. You can use a USB- to-serial
converter, for exam ple, to get a serial debug console from an em bedded device on a developm ent laptop that
has no serial ports.

I n Chapter 6 , "Serial Drivers," you learned the benefits of the kernel's layered serial architecture. Figure 11.5
illust rates how the USB-Serial layer fit s into the kernel's serial fram ework.

Figure 1 1 .5 . The USB- Ser ia l layer .

[View full size im age]

A USB-serial dr iver is sim ilar to other USB client dr ivers except that it avails the services of a USB-Serial core in
addit ion to the USB core. The USB-Serial core provides the following:

A t ty dr iver that insulates low- level USB- to-serial converter dr ivers from higher serial layers such as line
disciplines.

Generic probe() and disconnect() rout ines that individual USB-serial dr ivers can leverage.

Device nodes to access USB-serial ports from user space. Applicat ions operate on USB-serial ports via
/ dev/ t tyUSBX, where X is the serial port num ber. Term inal em ulators such as m inicom and protocols such
as PPP run unchanged over these interfaces.

A low- level USB- to-serial converter dr iver essent ially does the following:

Registers a usb_serial_driver st ructure with the USB-Serial core using usb_serial_register() . The
ent ry points supplied as part of usb_serial_driver form the crux of the dr iver.

1 .

Populates a usb_driver st ructure and registers it with the USB core using usb_register() . This is sim ilar
to what the exam ple telem et ry dr iver does, except that a serial converter dr iver can count on the generic
probe() and disconnect() rout ines provided by the USB-Serial core.

2 .

List ing 11.7 contains snippets from the FTDI dr iver (dr ivers/ usb/ ser ial/ ftdi_sio.c) that accom plish these two
regist rat ions for USB- to-serial converters based on FTDI chipsets.

List ing 1 1 .7 . A Snippet from the FTDI Dr iver

Code View:
/* The usb_driver structure */
static struct usb_driver ftdi_driver = {
 .name = "ftdi_sio", /* Name */
 .probe = usb_serial_probe, /* Provided by the
 USB-Serial core */
 .disconnect = usb_serial_disconnect,/* Provided by the
 USB-Serial core */
 .id_table = id_table_combined, /* List of supported
 devices built
 around the FTDI chip */
 .no_dynamic_id = 1, /* Supported ids cannot be
 added dynamically */
};

/* The usb_serial_driver structure */
static struct usb_serial_driver ftdi_sio_device = {
 /* ... */
 .num_ports = 1,
 .probe = ftdi_sio_probe,
 .port_probe = ftdi_sio_port_probe,
 .port_remove = ftdi_sio_port_remove,
 .open = ftdi_open,
 .close = ftdi_close,
 .throttle = ftdi_throttle,
 .unthrottle = ftdi_unthrottle,
 .write = ftdi_write,
 .write_room = ftdi_write_room,
 .chars_in_buffer = ftdi_chars_in_buffer,
 .read_bulk_callback = ftdi_read_bulk_callback,
 .write_bulk_callback = ftdi_write_bulk_callback,
 /* ... */
};

/* Driver Initialization */
static int __init ftdi_init(void)
{
 /* ... */
 /* Register with the USB-Serial core */
 retval = usb_serial_register(&ftdi_sio_device);
 /* ... */
 /* Register with the USB core */
 retval = usb_register(&ftdi_driver);
 /* ... */
}

Hum an I nter face Devices

Devices such as keyboards and m ice are called hum an interface devices (HI Ds) . Take a look at the sect ion "USB
and Bluetooth Keyboards" in Chapter 7 , " I nput Drivers," for a discussion on the USB HI D class.

Bluetooth

A USB-Bluetooth dongle is a quick way to Bluetooth-enable your com puter so that it can com m unicate with
Bluetooth-equipped devices such as cell phones, m ice, or handhelds. Chapter 16 discusses the USB Bluetooth
class.

Gadget Dr ivers

I n a typical usage scenario, an em bedded device connects to a PC host over USB. Em bedded com puters usually
belong to the device side of USB, unlike PC system s that funct ion as USB hosts. Because Linux runs on both
em bedded and PC system s, it needs support to run on either end of USB. The USB Gadget project br ings USB
device m ode capabilit y to em bedded Linux system s. Bus 3 of the em bedded Linux device in Figure 11.2 can, for
exam ple, use a gadget dr iver to let the device funct ion as a m ass storage drive when connected to a host
com puter.

Before proceeding, let 's br iefly look at som e related term inology. The USB cont roller at the device side is
variously called a device cont roller , peripheral cont roller, client cont roller , or funct ion cont roller . The terms
gadget and gadget dr iver are com m only used rather than the heavily overloaded words device and device
driver.

USB gadget support is now part of the m ainline kernel and contains the following:

Drivers for USB device cont rollers integrated into SoC fam ilies such as I ntel PXA, Texas I nst rum ents
OMAP, and Atm el AT91. These drivers addit ionally provide a gadget API that gadget dr ivers can use.

Gadget dr ivers for device classes such as storage, networking, and serial converters. These drivers answer
to their class when they receive enum erat ion requests from host -side software. A storage gadget dr iver,
for exam ple, ident ifies itself as a class 0x08 (m ass storage class) device and exports a storage part it ion to
the host . You can specify the associated block device node or filenam e via a m odule- insert ion param eter.
Because the exported region has to appear to the host as a m ass storage device, the gadget dr iver
im plem ents the SCSI interact ions required by the USB m ass storage protocol. Gadget dr ivers are also
available for Ethernet and serial devices.

A skeletal gadget dr iver, dr ivers/ usb/ gadget / zero.c, that you m ay use to test device cont roller dr ivers.

Gadget dr ivers use the services of the gadget API provided by device cont roller dr ivers. They populate a
usb_gadget_driver st ructure and register it with the kernel using usb_gadget_register_driver() . Hardware
specifics are hidden inside the gadget API im plem entat ion offered by individual device cont roller dr ivers, so the
gadget dr ivers them selves are hardware independent .

Docum entat ion/ DocBook/ gadget .tm pl provides an overview of the gadget API . Have a look at ht tp: / / linux-
usb.org/ gadget / for m ore on the gadget project .

http://linux-

Debugging

A USB bus analyzer m agnifies the goings-on in the bus and is useful for debugging low- level problem s. I f you
can't get hold of an analyzer, you m ight be able to m ake do with the kernel's soft USB t racer, usbm on. This tool
captures t raffic between USB host cont rollers and devices. To collect a t race, read from the debugfs[3] file
/ sys/ kernel/ debug/ usbm on/ Xt, where X is the bus num ber to which your device is connected.

[3] An in-m em ory filesystem to export kernel debug data to user space.

For exam ple, consider a USB disk connected to a PC. From the associated "T: " line in / proc/ bus/ usb/ devices,
you can see that the dr ive is at tached to bus 1:

T: Bus=01 Lev=01 Prnt=01 Port=03 Cnt=01 Dev#= 2 Spd=480 MxCh= 0

Ensure that you have enabled debugfs (CONFIG_DEBUG_FS) and usbm on (CONFIG_USB_MON) support in your
kernel. This is a snapshot of usbm on output while copying a file from the disk:

Code View:
bash> mount -t debugfs none_debugs /sys/kernel/debug/

bash> cat /sys/kernel/debug/usbmon/1u

...
ee6a5c40 3718782540 S Bi:1:002:1 -115 20480 <
ee6a5cc0 3718782567 S Bi:1:002:1 -115 65536 <
ee6a5d40 3718782595 S Bi:1:002:1 -115 36864 <
ee6a5c40 3718788189 C Bi:1:002:1 0 20480 = 0f846801 118498f\ 15c60500 01680106
5e846801 608498fe 6f280087 68000000
ee6a5cc0 3718800994 C Bi:1:002:1 0 65536 = 118498fe 15c60500\ 01680106 5e846801
608498fe 6f280087 68000000 00884800
ee6a5d40 3718801001 C Bi:1:002:1 0 36864 = 13608498 fe4f4a01\ 00514a01 006f2800
87680000 00008848 00000100 b7f00100
...

Each output line starts with the URB address, followed by an event t im estam p. An S in the next colum n
indicates URB subm ission, and a C announces a callback. The following field has the form at
URBType:Bus#:DeviceAddress:Endpoint# . I n the preceding output , a URBType of Bi stands for a bulk URB in
the IN direct ion. After this, usbm on dum ps the URB status, data length, a data tag (= or < in the preceding
output) , and the data words (if the tag is =) . The last three lines in the preceding output are callbacks
associated with bulk URBs subm it ted in earlier lines. You can m atch the callbacks with the related subm issions
using the URB addresses. Docum entat ion/ usb/ usbm on.txt details usbm on syntax and contains exam ple code to
parse the output into hum an readable form .

I f you turn on Device Drivers USB Support USB Verbose Debug Messages during kernel configurat ion,
the kernel will em it the contents of all dev_dbg() statem ents present in the USB subsystem .

You can glean device and bus specific inform at ion from the USB filesystem (usbfs) node, / proc/ bus/ usb/ devices.
And as we discuss in Chapter 19, "Drivers in User Space," usbfs also lets you im plem ent USB device dr ivers in
user space. Even when the final dest inat ion of your USB driver is inside the kernel, start ing with a user-space
driver can ease debugging and test ing.

The linux-usb-devel m ailing list is the forum to discuss quest ions related to USB device dr ivers. Visit
ht tps: / / lists.sourceforge.net / lists/ list info/ linux-usb-devel for subscript ion and archive ret r ieval inform at ion. Read
www.linux-usb.org/ usbtest for ideas on USB test ing.

The hom e page of the Linux-USB project is www.linux-usb.org. You m ay download the USB 2.0 specificat ion,
OTG supplem ent , and other related standards from www.usb.org/ developers/ docs.

Look ing at the Sources

The USB core layer lives in dr ivers/ usb/ core/ . This directory also contains URB m anipulat ion rout ines and the
usbfs im plem entat ion. The hub driver and khubd are part of dr ivers/ usb/ core/ hub.c. The drivers/ usb/ host /
directory contains host cont roller device dr ivers. USB-related header definit ions reside in include/ linux/ usb* .h.
The usbm on t racer is in dr ivers/ usb/ m on/ . Look inside Docum entat ion/ usb/ for Linux-USB docum entat ion.

USB class dr ivers stay in various subdirector ies under dr ivers/ usb/ . The m ass storage driver
dr ivers/ usb/ storage/ , in tandem with the SCSI subsystem dr ivers/ scsi/ , im plem ents the USB m ass storage
protocol. The drivers/ input / [4] directory t ree includes drivers for USB input devices such as keyboards and m ice;
dr ivers/ usb/ ser ial/ has dr ivers for USB- to-serial converters; dr ivers/ usb/ m edia/ supports USB m ult im edia
devices; dr ivers/ net / usb/ [5] has dr ivers for USB Ethernet dongles; and drivers/ usb/ m isc/ contains dr ivers for
m iscellaneous USB devices such as LEDs, LCDs, and fingerprint sensors. Look at dr ivers/ usb/ usb-skeleton.c for
a start ing point dr iver tem plate if you can't zero in on a closer m atch.

[4] Before the 2.6.22 kernel release, USB input device dr ivers used to reside in drivers/ usb/ input / .

[5] Before the 2.6.22 kernel release, USB network device dr ivers used to reside in drivers/ usb/ net / .

The USB gadget subsystem is in dr ivers/ usb/ gadget / . This directory contains USB device cont roller dr ivers, and
gadget dr ivers for m ass storage (file_storage.c) , serial converters (serial.c) , and Ethernet networking (ether.c) .

Table 11.3 contains the m ain data st ructures used in this chapter and their locat ion in the source t ree. Table
11.4 lists the m ain kernel program m ing interfaces that you used in this chapter along with the locat ion of their
definit ions.

Table 1 1 .3 . Sum m ary of Data St ructures

Data St ructure Locat ion Descr ipt ion

urb include/ linux/ usb.h Centerpiece of the USB data t ransfer
m echanism

pipe include/ linux/ usb.h Address elem ent of a URB

usb_device_descriptor
usb_config_descriptor
usb_interface_descriptor
usb_endpoint_descriptor

include/ linux/ usb/ ch9.h Descriptors that hold inform at ion about a
USB device

usb_device include/ linux/ usb.h Representat ion of a USB device

usb_device_id include/ linux/ m od_devicetable.h I dent ity of a USB device

usb_driver include/ linux/ usb.h Representat ion of a USB client dr iver

usb_gadget_driver include/ linux/ usb_gadget .h Representat ion of a USB gadget dr iver

Table 1 1 .4 . Sum m ary of Kernel Program m ing I nter face s

Kernel I nter face Locat ion Descr ipt ion

usb_register() include/ linux/ usb.h
drivers/ usb/ core/ dr iver.c

Registers a usb_driver with the
USB core

usb_deregister() drivers/ usb/ core/ dr iver.c Unregisters a usb_driver from the
USB core

usb_set_intfdata() include/ linux/ usb.h At taches device-specific data to a
usb_interface

usb_get_intfdata() include/ linux/ usb.h Detaches device-specific data from
a usb_interface

usb_register_dev() drivers/ usb/ core/ file.c Associates a character interface
with a USB client dr iver

usb_deregister_dev() drivers/ usb/ core/ file.c Dissociates a character interface
from a USB client dr iver

usb_alloc_urb() drivers/ usb/ core/ urb.c Allocates a URB

usb_fill_[control|int|bulk]_urb() include/ linux/ usb.h Populates a URB

usb_[control|interrupt|bulk]_msg() drivers/ usb/ core/ m essage.c Wrappers for synchronous URB
subm ission

usb_submit_urb() drivers/ usb/ core/ urb.c Subm its a URB to the USB core

usb_free_urb() drivers/ usb/ core/ urb.c Frees references to a com pleted
URB

usb_unlink_urb() drivers/ usb/ core/ urb.c Frees references to a pending URB

usb_[rcv|snd][ctrl|int|bulk|isoc]pipe() include/ linux/ usb.h Creates a USB pipe

usb_find_interface() drivers/ usb/ core/ usb.c Gets the usb_interface
associated with a USB client dr iver

usb_buffer_alloc() drivers/ usb/ core/ usb.c Allocates a consistent DMA t ransfer
buffer

usb_buffer_free() drivers/ usb/ core/ usb.c Frees a buffer that was allocated
using usb_buffer_alloc()

usb_serial_register() drivers/ usb/ serial/ usb-
serial.c

Registers a dr iver with the USB-
Serial core

usb_serial_deregister() drivers/ usb/ serial/ usb-
serial.c

Unregisters a dr iver from the USB-
Serial core

usb_gadget_register_driver() Device cont roller dr ivers in
drivers/ usb/ gadget /

Registers a gadget with a device
cont roller dr iver

Chapter 1 2 . Video Dr ivers

I n This Chapter

Display Architecture
356

Linux-Video Subsystem
359

Display Param eters
361

The Fram e Buffer API
362

Fram e Buffer Drivers
365

Console Drivers
380

Debugging
387

Looking at the Sources
388

Video hardware generates visual output for a com puter system to display. I n this chapter, let 's
find out how the kernel supports video cont rollers and discover the advantages offered by the
fram e buffer abst ract ion. Let 's also learn to write console dr ivers that display m essages em it ted by
the kernel.

Display Architecture

Figure 12.1 shows the display assem bly on a PC-com pat ible system . The graphics cont roller that is part of the
North Bridge (see the sidebar " The North Bridge") connects to different types of display devices using several
interface standards (see the sidebar "Video Cabling Standards") .

Figure 1 2 .1 . Display connect ion on a PC system .

Video Graphics Array (VGA) is the or iginal display standard int roduced by I BM, but it 's m ore of a resolut ion
specificat ion today. VGA refers to a resolut ion of 640x480, whereas newer standards such as eXtended Graphics
Array (XGA) and Super Video Graphics Array (SVGA) support higher resolut ions of 800x600 and 1024x768.
Quarter VGA (QVGA) panels having a resolut ion of 320x240 are com m on on em bedded devices, such as
handhelds and sm art phones.

Graphics cont rollers in the x86 world com pat ible with VGA and its derivat ives offer a character-based text m ode
and a pixel-based graphics m ode. The non-x86 em bedded space is non-VGA, however, and has no concept of a
dedicated text m ode.

The North Bridge

I n earlier chapters, you learned about peripheral buses such as LPC, I2C, PCMCI A, PCI , and USB,
all of which are sourced from the South Bridge on PC-cent r ic system s. Display architecture,
however, takes us inside the North Bridge. A North Bridge in the I ntel-based PC architecture is
either a Graphics and Mem ory Cont roller Hub (GMCH) or a Mem ory Cont roller Hub (MCH) . The
form er contains a m em ory cont roller, a Front Side Bus (FSB) cont roller, and a graphics cont roller.
The lat ter lacks an integrated graphics cont roller but provides an Accelerated Graphics Port (AGP)
channel to connect external graphics hardware.

Consider, for exam ple, the I ntel 855 GMCH North Bridge chipset . The FSB cont roller in the 855
GMCH interfaces with Pent ium M processors. The m em ory cont roller supports Dual Data Rate
(DDR) SDRAM m em ory chips. The integrated graphics cont roller lets you connect to display
devices using analog VGA, LVDS, or DVI (see the sidebar "Video Cabling Standards") . The 855
GMCH enables you to sim ultaneously send output to two displays, so you can, for exam ple,
dispatch sim ilar or separate inform at ion to your laptop's LCD panel and an external CRT m onitor at
the sam e t im e.

Recent North Bridge chipsets, such as the AMD 690G, include support for HDMI (see the following
sidebar) in addit ion to VGA and DVI .

Video Cabling Standards

Several interfacing standards specify the connect ion between video cont rollers and display
devices. Display devices and the cabling technologies they use follow:

An analog display such as a cathode ray tube (CRT) m onitor that has a standard VGA
connector.

A digital flat -panel display such as a laptop Thin Film Transistor (TFT) LCD that has a low-
voltage different ial signaling (LVDS) connector.

A display m onitor that com plies with the Digital Visual I nterface (DVI) specificat ion. DVI is a
standard developed by the Digital Display Working Group (DDWG) for carrying high-quality
video. There are three DVI subclasses: digital-only (DVI -D) , analog-only (DVI -A) , and
digital-and-analog (DVI - I) .

A display m onitor that com plies with the High-Definit ion Television (HDTV) specificat ion
using the High-Definit ion Mult im edia I nterface (HDMI) . HDMI is a m odern digital audio-video
cable standard that supports high data rates. Unlike video-only standards such as DVI , HDMI
can carry both picture and sound.

Em bedded SoCs usually have an on-chip LCD cont roller, as shown in Figure 12.2. The output em anat ing from
the LCD cont roller are TTL (Transistor-Transistor Logic) signals that pack 18 bits of flat -panel video data, six
each for the three prim ary colors, red, green, and blue. Several handhelds and phones use QVGA- type internal
LCD panels that direct ly receive the TTL flat -panel video data sourced by LCD cont rollers.

Figure 1 2 .2 . Display connect ion on an em bedded syst em .

The em bedded device, as in Figure 12.3, supports dual display panels: an internal LVDS flat -panel LCD and an

external DVI m onitor. The internal TFT LCD takes an LVDS connector as input , so an LVDS t ransm it ter chip is
used to convert the flat -panel signals to LVDS. An exam ple of an LVDS t ransm it ter chip is DS90C363B from
Nat ional Sem iconductor. The external DVI m onitor takes only a DVI connector, so a DVI t ransm it ter is used to
convert the 18-bit video signals to DVI -D. An I 2C interface is provided so that the device dr iver can configure
the DVI t ransm it ter registers. An exam ple of a DVI t ransm it ter chip is SiI 164 from Silicon I m age.

Figure 1 2 .3 . LVDS and DVI connect ions on an em bedde d system .

[View full size im age]

Chapter 1 2 . Video Dr ivers

I n This Chapter

Display Architecture
356

Linux-Video Subsystem
359

Display Param eters
361

The Fram e Buffer API
362

Fram e Buffer Drivers
365

Console Drivers
380

Debugging
387

Looking at the Sources
388

Video hardware generates visual output for a com puter system to display. I n this chapter, let 's
find out how the kernel supports video cont rollers and discover the advantages offered by the
fram e buffer abst ract ion. Let 's also learn to write console dr ivers that display m essages em it ted by
the kernel.

Display Architecture

Figure 12.1 shows the display assem bly on a PC-com pat ible system . The graphics cont roller that is part of the
North Bridge (see the sidebar " The North Bridge") connects to different types of display devices using several
interface standards (see the sidebar "Video Cabling Standards") .

Figure 1 2 .1 . Display connect ion on a PC system .

Video Graphics Array (VGA) is the or iginal display standard int roduced by I BM, but it 's m ore of a resolut ion
specificat ion today. VGA refers to a resolut ion of 640x480, whereas newer standards such as eXtended Graphics
Array (XGA) and Super Video Graphics Array (SVGA) support higher resolut ions of 800x600 and 1024x768.
Quarter VGA (QVGA) panels having a resolut ion of 320x240 are com m on on em bedded devices, such as
handhelds and sm art phones.

Graphics cont rollers in the x86 world com pat ible with VGA and its derivat ives offer a character-based text m ode
and a pixel-based graphics m ode. The non-x86 em bedded space is non-VGA, however, and has no concept of a
dedicated text m ode.

The North Bridge

I n earlier chapters, you learned about peripheral buses such as LPC, I2C, PCMCI A, PCI , and USB,
all of which are sourced from the South Bridge on PC-cent r ic system s. Display architecture,
however, takes us inside the North Bridge. A North Bridge in the I ntel-based PC architecture is
either a Graphics and Mem ory Cont roller Hub (GMCH) or a Mem ory Cont roller Hub (MCH) . The
form er contains a m em ory cont roller, a Front Side Bus (FSB) cont roller, and a graphics cont roller.
The lat ter lacks an integrated graphics cont roller but provides an Accelerated Graphics Port (AGP)
channel to connect external graphics hardware.

Consider, for exam ple, the I ntel 855 GMCH North Bridge chipset . The FSB cont roller in the 855
GMCH interfaces with Pent ium M processors. The m em ory cont roller supports Dual Data Rate
(DDR) SDRAM m em ory chips. The integrated graphics cont roller lets you connect to display
devices using analog VGA, LVDS, or DVI (see the sidebar "Video Cabling Standards") . The 855
GMCH enables you to sim ultaneously send output to two displays, so you can, for exam ple,
dispatch sim ilar or separate inform at ion to your laptop's LCD panel and an external CRT m onitor at
the sam e t im e.

Recent North Bridge chipsets, such as the AMD 690G, include support for HDMI (see the following
sidebar) in addit ion to VGA and DVI .

Video Cabling Standards

Several interfacing standards specify the connect ion between video cont rollers and display
devices. Display devices and the cabling technologies they use follow:

An analog display such as a cathode ray tube (CRT) m onitor that has a standard VGA
connector.

A digital flat -panel display such as a laptop Thin Film Transistor (TFT) LCD that has a low-
voltage different ial signaling (LVDS) connector.

A display m onitor that com plies with the Digital Visual I nterface (DVI) specificat ion. DVI is a
standard developed by the Digital Display Working Group (DDWG) for carrying high-quality
video. There are three DVI subclasses: digital-only (DVI -D) , analog-only (DVI -A) , and
digital-and-analog (DVI - I) .

A display m onitor that com plies with the High-Definit ion Television (HDTV) specificat ion
using the High-Definit ion Mult im edia I nterface (HDMI) . HDMI is a m odern digital audio-video
cable standard that supports high data rates. Unlike video-only standards such as DVI , HDMI
can carry both picture and sound.

Em bedded SoCs usually have an on-chip LCD cont roller, as shown in Figure 12.2. The output em anat ing from
the LCD cont roller are TTL (Transistor-Transistor Logic) signals that pack 18 bits of flat -panel video data, six
each for the three prim ary colors, red, green, and blue. Several handhelds and phones use QVGA- type internal
LCD panels that direct ly receive the TTL flat -panel video data sourced by LCD cont rollers.

Figure 1 2 .2 . Display connect ion on an em bedded syst em .

The em bedded device, as in Figure 12.3, supports dual display panels: an internal LVDS flat -panel LCD and an

external DVI m onitor. The internal TFT LCD takes an LVDS connector as input , so an LVDS t ransm it ter chip is
used to convert the flat -panel signals to LVDS. An exam ple of an LVDS t ransm it ter chip is DS90C363B from
Nat ional Sem iconductor. The external DVI m onitor takes only a DVI connector, so a DVI t ransm it ter is used to
convert the 18-bit video signals to DVI -D. An I 2C interface is provided so that the device dr iver can configure
the DVI t ransm it ter registers. An exam ple of a DVI t ransm it ter chip is SiI 164 from Silicon I m age.

Figure 1 2 .3 . LVDS and DVI connect ions on an em bedde d system .

[View full size im age]

Linux- Video Subsystem

The concept of fram e buffers is cent ral to video on Linux, so let 's first find out what that offers.

Because video adapters can be based on different hardware architectures, the im plem entat ion of higher kernel
layers and applicat ions m ight need to vary across video cards. This results in nonuniform schem es to handle
different video cards. The ensuing nonportabilit y and ext ra code necessitate greater investm ent and
m aintenance. The fram e buffer concept solves this problem by describing a general abst ract ion and specifying a
program m ing interface that allows applicat ions and higher kernel layers to be writ ten in a plat form - independent
m anner. Figure 12.4 shows you the fram e buffer advantage.

Figure 1 2 .4 . The fram e buffer advantage.

The kernel's fram e buffer interface thus allows applicat ions to be independent of the vagaries of the underlying
graphics hardware. Applicat ions run unchanged over diverse types of video hardware if they and the display
drivers conform to the fram e buffer interface. As you will soon find out , the com m on fram e buffer program m ing
interface also br ings hardware independence to kernel layers, such as the fram e buffer console dr iver.

Today, several applicat ions, such as web browsers and m ovie players, work direct ly over the fram e
buffer interface. Such applicat ions can do graphics without help from a windowing system .

The X Windows server (Xfbdev) is capable of working over the fram e buffer interface, as shown in Figure
12.5.

Figure 1 2 .5 . Linux- Video subsystem .

[View full size im age]

The Linux-Video subsystem shown in Figure 12.5 is a collect ion of low- level display dr ivers, m iddle- level fram e
buffer and console layers, a high- level vir tual term inal dr iver, user m ode drivers part of X Windows, and ut ilit ies
to configure display param eters. Let 's t race the figure top down:

The X Windows GUI has two opt ions for operat ing over video cards. I t can use either a suitable built - in
user-space driver for the card or work over the fram e buffer subsystem .

Text m ode consoles funct ion over the vir tual term inal character dr iver. Vir tual term inals, int roduced in the
sect ion "TTY Drivers" in Chapter 6 , "Serial Drivers," are full- screen text -based term inals that you get when
you logon in text m ode. Like X Windows, text consoles have two operat ional choices. They can either work
over a card-specific console dr iver, or use the generic fram e buffer console dr iver (fbcon) if the kernel
supports a low- level fram e buffer dr iver for the card in quest ion.

Display Param eters

Som et im es, configuring the propert ies associated with your display panel m ight be the only dr iver changes that
you need to m ake to enable video on your device, so let 's start learning about video drivers by looking at
com m on display param eters. We will assum e that the associated dr iver conform s to the fram e buffer interface,
and use the fbset ut ilit y to obtain display character ist ics:

bash> fbset

mode "1024x768-60"
 # D: 65.003 MHz, H: 48.365 kHz, V: 60.006 Hz
 geometry 1024 768 1024 768 8
 timings 15384 168 16 30 2 136 6
 hsync high
 vsync high
 rgba 8/0,8/0,8/0,0/0
endmode

The D: value in the output stands for the dotclock , which is the speed at which the video hardware draws pixels
on the display. The value of 65.003MHz in the preceding output m eans that it ' ll take (1/ 65.003* 1000000) or
about 15,384 picoseconds for the video cont roller to draw a single pixel. This durat ion is called the pixclock and
is shown as the first num eric param eter in the line start ing with timings . The num bers against "geom etry"
announce that the visible and vir tual resolut ions are 1024x768 (SVGA) and that the bits required to store
inform at ion pertaining to a pixel is 8.

The H: value specifies the horizontal scan rate, which is the num ber of horizontal display lines scanned by the
video hardware in one second. This is the inverse of the pixclock t im es the X- resolut ion. The V: value is the rate
at which the ent ire display is refreshed. This is the inverse of the pixclock t im es the visible X- resolut ion t im es
the visible Y- resolut ion, which is around 60Hz in this exam ple. I n other words, the LCD is refreshed 60 t im es in
a second.

Video cont rollers issue a horizontal sync (HSYNC) pulse at the end of each line and a vert ical sync (VSYNC) pulse
after each display fram e. The durat ions of HSYNC (in term s of pixels) and VSYNC (in term s of pixel lines) are
shown as the last two param eters in the line start ing with "timings ." The larger your display, the bigger the
likely values of HSYNC and VSYNC. The four num bers before the HSYNC durat ion in the timings line announce the
length of the r ight display m argin (or horizontal front porch) , left m argin (or horizontal back porch) , lower
m argin (or vert ical front porch) , and upper m argin (or vert ical back porch) , respect ively.
Docum entat ion/ fb/ fram ebuffer.txt and the m an page of fb.m odes pictor ially show these param eters.

To t ie these param eters together, let 's calculate the pixclock value for a given refresh rate, which is
60.006Hz in our exam ple:

dotclock = (X-resolution + left margin + right margin
 + HSYNC length) * (Y-resolution + upper margin
 + lower margin + VSYNC length) * refresh rate
 = (1024 + 168 + 16 + 136) * (768 + 30 + 2 + 6) * 60.006
 = 65.003 MHz
pixclock = 1/dotclock
 = 15384 picoseconds (which matches with the fbset output
 above)

The Fram e Buffer API

Let 's next wet our feet in the fram e buffer API . The fram e buffer core layer exports device nodes to user space
so that applicat ions can access each supported video device. / dev/ fbX is the node associated with fram e buffer
device X. The following are the m ain data st ructures that interest users of the fram e buffer API . I nside the
kernel, they are defined in include/ linux/ fb.h, whereas in user land, their definit ions reside in
/ usr/ include/ linux/ fb.h:

Variable inform at ion pertaining to the video card that you saw in the fbset output in the previous sect ion is
held in struct fb_var_screeninfo . This st ructure contains fields such as the X- resolut ion, Y- resolut ion,
bits required to hold a pixel, pixclock, HSYNC durat ion, VSYNC durat ion, and m argin lengths. These values
are program m able by the user:

struct fb_var_screeninfo {
 __u32 xres; /* Visible resolution in the X axis */
 __u32 yres; /* Visible resolution in the Y axis */
 /* ... */
 __u32 bits_per_pixel; /* Number of bits required to hold a
 pixel */
 /* ... */
 __u32 pixclock; /* Pixel clock in picoseconds */
 __u32 left_margin; /* Time from sync to picture */
 __u32 right_margin; /* Time from picture to sync */
 /* ... */
 __u32 hsync_len; /* Length of horizontal sync */
 __u32 vsync_len; /* Length of vertical sync */
 /* ... */
};

1 .

Fixed inform at ion about the video hardware, such as the start address and size of fram e buffer m em ory, is
held in struct fb_fix_screeninfo . These values cannot be altered by the user:

struct fb_fix_screeninfo {
 char id[16]; /* Identification string */
 unsigned long smem_start; /* Start of frame buffer memory */
 __u32 smem_len; /* Length of frame buffer memory */
 /* ... */
};

2 .

The fb_cmap st ructure specifies the color m ap, which is used to convey the user 's definit ion of colors to
the underlying video hardware. You can use this st ructure to define the RGB (Red, Green, Blue) rat io that
you desire for different colors:

struct fb_cmap {
 __u32 start; /* First entry */
 __u32 len; /* Number of entries */
 __u16 *red; /* Red values */
 __u16 *green; /* Green values */
 __u16 *blue; /* Blue values */
 __u16 *transp; /* Transparency. Discussed later on */
};

3 .

List ing 12.1 is a sim ple applicat ion that works over the fram e buffer API . The program clears the screen by
operat ing on / dev/ fb0, the fram e buffer device node corresponding to the display. I t first deciphers the visible
resolut ions and the bits per pixel in a hardware- independent m anner using the fram e buffer API ,
FBIOGET_VSCREENINFO. This interface com m and gleans the display's variable param eters by operat ing on the
fb_var_screeninfo st ructure. The program then goes on to mmap() the fram e buffer m em ory and clears each
const ituent pixel bit .

List ing 1 2 .1 . Clear the Display in a Hardw are- I ndep endent Manner

Code View:
#include <stdio.h>
#include <fcntl.h>
#include <linux/fb.h>
#include <sys/mman.h>
#include <stdlib.h>

struct fb_var_screeninfo vinfo;

int
main(int argc, char *argv[])
{
 int fbfd, fbsize, i;
 unsigned char *fbbuf;

 /* Open video memory */
 if ((fbfd = open("/dev/fb0", O_RDWR)) < 0) {
 exit(1);
 }

 /* Get variable display parameters */
 if (ioctl(fbfd, FBIOGET_VSCREENINFO, &vinfo)) {
 printf("Bad vscreeninfo ioctl\n");
 exit(2);
 }

 /* Size of frame buffer =
 (X-resolution * Y-resolution * bytes per pixel) */
 fbsize = vinfo.xres*vinfo.yres*(vinfo.bits_per_pixel/8);

 /* Map video memory */
 if ((fbbuf = mmap(0, fbsize, PROT_READ|PROT_WRITE,
 MAP_SHARED, fbfd, 0)) == (void *) -1){
 exit(3);
 }

 /* Clear the screen */
 for (i=0; i<fbsize; i++) {
 *(fbbuf+i) = 0x0;
 }

 munmap(fbbuf, fbsize);
 close(fbfd);
}

We look at another fram e buffer applicat ion when we learn to access m em ory regions from user space in
Chapter 19, "Drivers in User Space."

Fram e Buffer Dr ivers

Now that you have an idea of the fram e buffer API and how it provides hardware independence, let 's discover
the architecture of a low- level fram e buffer device dr iver using the exam ple of a navigat ion system .

Device Exam ple: Navigat ion System

Figure 12.6 shows video operat ion on an exam ple vehicle navigat ion system built around an em bedded SoC. A
GPS receiver st ream s coordinates to the SoC via a UART interface. An applicat ion produces graphics from the
received locat ion inform at ion and updates a fram e buffer in system m em ory. The fram e buffer dr iver DMAs this
picture data to display buffers that are part of the SoC's LCD cont roller. The cont roller forwards the pixel data to
the QVGA LCD panel for display.

Figure 1 2 .6 . Display on a Linux navigat ion device.

Our goal is to develop the video software for this system . Let 's assum e that Linux supports the SoC used on this
navigat ion device and that all architecture-dependent interfaces such as DMA are supported by the kernel.

One possible hardware im plem entat ion of the device shown in Figure 12.6 is by using a Freescale i.MX21
SoC. The CPU core in that case is an ARM9 core, and the on-chip video cont roller is the Liquid Crystal
Display Cont roller (LCDC) . SoCs com m only have a high-perform ance internal local bus that connects to
cont rollers such as DRAM and video. I n the case of the iMX.21, this bus is called the Advanced High-
Perform ance Bus (AHB) . The LCDC connects to the AHB.

The navigat ion system 's video software is broadly architected as a GPS applicat ion operat ing over a low- level
fram e buffer dr iver for the LCD cont roller. The applicat ion fetches locat ion coordinates from the GPS receiver by
reading / dev/ t tySX, where X is the UART num ber connected to the receiver. I t then t ranslates the geographic fix
inform at ion into a picture and writes the pixel data to the fram e buffer associated with the LCD cont roller. This
is done on the lines of List ing 12.1, except that picture data is dispatched rather than zeros to clear the screen.

The rest of this sect ion focuses only on the low- level fram e buffer device dr iver. Like m any other dr iver
subsystem s, the full com plem ent of facilit ies, m odes, and opt ions offered by the fram e buffer core layer are
com plex and can be learned only with coding experience. The fram e buffer dr iver for the exam ple navigat ion
system is relat ively sim plist ic and is only a start ing point for deeper explorat ions.

Table 12.1 describes the register m odel of the LCD cont roller shown in Figure 12.6. The fram e buffer dr iver in
List ing 12.2 operates over these registers.

Table 1 2 .1 . Register Layout of the LCD Cont roller S how n in Figure 1 2 .6

Register Nam e Used to Configure

SIZE_REG LCD panel's m axim um X and Y dim ensions

HSYNC_REG HSYNC durat ion

VSYNC_REG VSYNC durat ion

CONF_REG Bits per pixel, pixel polar ity, clock dividers for generat ing
pixclock, color/ m onochrom e m ode, and so on

CTRL_REG Enable/ disable LCD cont roller, clocks, and DMA

DMA_REG Fram e buffer 's DMA start address, burst length, and
waterm ark sizes

STATUS_REG Status values

CONTRAST_REG Cont rast level

Our fram e buffer dr iver (called m yfb) is im plem ented as a plat form driver in List ing 12.2. As you learned in
Chapter 6 , a plat form is a pseudo bus usually used to connect lightweight devices integrated into SoCs, with the
kernel's device m odel. Architecture-specific setup code (in arch/ your-arch/ your-plat form /) adds the plat form
using platform_device_add() ; but for sim plicity, the probe() m ethod of the m yfb dr iver perform s this before
register ing itself as a plat form driver. Refer back to the sect ion "Device Exam ple: Cell Phone" in Chapter 6 for
the general architecture of a plat form driver and associated ent ry points.

Data St ructures

Let 's take a look at the m ajor data st ructures and m ethods associated with fram e buffer dr ivers and then zoom
in on m yfb. The following two are the m ain st ructures:

struct fb_info is the centerpiece data st ructure of fram e buffer dr ivers. This st ructure is defined in
include/ linux/ fb.h as follows:

struct fb_info {
 /* ... */
 struct fb_var_screeninfo var; /* Variable screen information.

1 .

 Discussed earlier. */
 struct fb_fix_screeninfo fix; /* Fixed screen information.
 Discussed earlier. */
 /* ... */
 struct fb_cmap cmap; /* Color map.
 Discussed earlier. */
 /* ... */
 struct fb_ops *fbops; /* Driver operations.
 Discussed next. */
 /* ... */
 char __iomem *screen_base; /* Frame buffer's
 virtual address */
 unsigned long screen_size; /* Frame buffer's size */
 /* ... */
 /* From here on everything is device dependent */
 void *par; /* Private area */
};

Mem ory for fb_info is allocated by framebuffer_alloc() , a library rout ine provided by the fram e buffer
core. This funct ion also takes the size of a pr ivate area as an argum ent and appends that to the end of the
allocated fb_info . This pr ivate area can be referenced using the par pointer in the fb_info st ructure. The
sem ant ics of fb_info fields such as fb_var_screeninfo and fb_fix_screeninfo were discussed in the
sect ion "The Fram e Buffer API ."

The fb_ops st ructure contains the addresses of all ent ry points provided by the low- level fram e buffer
dr iver. The first few m ethods in fb_ops are necessary for the funct ioning of the dr iver, while the rem aining
are opt ional ones that provide for graphics accelerat ion. The responsibilit y of each funct ion is br iefly
explained within com m ents:

Code View:
struct fb_ops {
 struct module *owner;
 /* Driver open */
 int (*fb_open)(struct fb_info *info, int user);
 /* Driver close */
 int (*fb_release)(struct fb_info *info, int user);
 /* ... */
 /* Sanity check on video parameters */
 int (*fb_check_var)(struct fb_var_screeninfo *var,
 struct fb_info *info);
 /* Configure the video controller registers */
 int (*fb_set_par)(struct fb_info *info);
 /* Create pseudo color palette map */
 int (*fb_setcolreg)(unsigned regno, unsigned red,
 unsigned green, unsigned blue,
 unsigned transp, struct fb_info *info);
 /* Blank/unblank display */
 int (*fb_blank)(int blank, struct fb_info *info);
 /* ... */
 /* Accelerated method to fill a rectangle with pixel lines */
 void (*fb_fillrect)(struct fb_info *info,
 const struct fb_fillrect *rect);
 /* Accelerated method to copy a rectangular area from one
 screen region to another */
 void (*fb_copyarea)(struct fb_info *info,

2 .

 const struct fb_copyarea *region);
 /* Accelerated method to draw an image to the display */
 void (*fb_imageblit)(struct fb_info *info,
 const struct fb_image *image);
 /* Accelerated method to rotate the display */
 void (*fb_rotate)(struct fb_info *info, int angle);
 /* Ioctl interface to support device-specific commands */
 int (*fb_ioctl)(struct fb_info *info, unsigned int cmd,
 unsigned long arg);
 /* ... */
};

Let 's now look at the dr iver m ethods that List ing 12.2 im plem ents for the m yfb dr iver.

Check ing and Set t ing Param eters

The fb_check_var() m ethod perform s a sanity check of variables such as X- resolut ion, Y- resolut ion, and bits
per pixel. So, if you use fbset to set an X- resolut ion less than the m inim um supported by the LCD cont roller (64
in our exam ple) , this funct ion will lim it it to the m inim um allowed by the hardware.

fb_check_var() also sets the appropriate RGB form at . Our exam ple uses 16 bits per pixel, and the cont roller
m aps each data word in the fram e buffer into the com m only used RGB565 code: 5 bits for red, 6 bits for green,
and 5 bits for blue. The offsets into the data word for each of the three colors are also set accordingly.

The fb_set_par() m ethod configures the registers of the LCD cont roller depending on the values found in
fb_info.var . This includes set t ing

Horizontal sync durat ion, left m argin, and r ight m argin in HSYNC_REG

Vert ical sync durat ion, upper m argin, and lower m argin in VSYNC_REG

The visible X and Y resolut ions in SIZE_REG

DMA param eters in DMA_REG

Assum e that the GPS applicat ion at tem pts to alter the resolut ion of the QVGA display to 50x50. The following is
the t rain of events:

The display is init ially at QVGA resolut ion:

bash> fbset

mode "320x240-76"
 # D: 5.830 MHz, H: 18.219 kHz, V: 75.914 Hz
 geometry 320 240 320 240 16
 timings 171521 0 0 0 0 0 0
 rgba 5/11,6/5,5/0,0/0

1 .

endmode

The applicat ion does som ething like this:

struct fb_var_screeninfo vinfo;
fbfd = open("/dev/fb0", O_RDWR);
vinfo.xres = 50;
vinfo.yres = 50;
vinfo.bits_per_pixel = 8;

ioctl(fbfd, FBIOPUT_VSCREENINFO, &vinfo);

Note that this is equivalent to the com m and fbset -xres 50 -yres 50 -depth 8 .

2 .

The FBIOPUT_VSCREENINFO ioct l in the previous step t r iggers invocat ion of myfb_check_var() . This dr iver
m ethod expresses displeasure and rounds up the requested resolut ion to the m inim um supported by the
hardware, which is 64x64 in this case.

3 .

myfb_set_par() is invoked by the fram e buffer core, which programs the new display param eters into
LCD cont roller registers.

4 .

fbset now outputs new param eters:

bash> fbset

mode "64x64-1423"
 # D: 5.830 MHz, H: 91.097 kHz, V: 1423.386 Hz
 geometry 64 64 320 240 16
 timings 171521 0 0 0 0 0 0
 rgba 5/11,6/5,5/0,0/0
endmode

5 .

Color Modes

Com m on color m odes supported by video hardware include pseudo color and t rue color. I n the form er, index
num bers are m apped to RGB pixel encodings. By choosing a subset of available colors and by using the indices
corresponding to the colors instead of the pixel values them selves, you can reduce dem ands on fram e buffer
m em ory. Your hardware needs to support this schem e of a m odifiable color set (or palet te) , however.

I n t rue color m ode (which is what our exam ple LCD cont roller supports) , m odifiable palet tes are not relevant .
However, you st ill have to sat isfy the dem ands of the fram e buffer console dr iver, which uses only 16 colors. For
this, you have to create a pseudo palet te by encoding the corresponding 16 raw RGB values into bits that can
be direct ly fed to the hardware. This pseudo palet te is stored in the pseudo_palette field of the fb_info
st ructure. I n List ing 12.2, myfb_setcolreg() populates it as follows:

((u32*)(info->pseudo_palette))[color_index] =
 (red << info->var.red.offset) |
 (green << info->var.green.offset) |
 (blue << info->var.blue.offset) |
 (transp << info->var.transp.offset);

Our LCD cont roller uses 16 bits per pixel and the RGB565 form at , so as you saw earlier, the fb_check_var()
m ethod ensures that the red, green and blue values reside at bit offsets 11, 5, and 0, respect ively. I n addit ion

to the color index and the red, blue, and green values, fb_setcolreg() takes in an argum ent transp , to specify
desired t ransparency effects. This m echanism , called alpha blending, com bines the specified pixel value with the
background color. The LCD cont roller in this exam ple does not support alpha blending, so myfb_check_var()
sets the transp offset and length to zero.

The fram e buffer abst ract ion is powerful enough to insulate applicat ions from the character ist ics of the
display panel—whether it 's RGB or BGR or som ething else. The red, blue, and green offsets set by
fb_check_var() percolate to user space via the fb_var_screeninfo st ructure populated by the
FBIOGET_VSCREENINFO ioctl() . Because applicat ions such as X Windows are fram e buffer-com pliant ,
they paint pixels into the fram e buffer according to the color offsets returned by this ioctl() .

Bit lengths used by the RGB encoding (5+ 6+ 5= 16 in this case) is called the color depth, which is used by the
fram e buffer console dr iver to choose the logo file to display during boot (see the sect ion "Boot Logo") .

Screen Blank ing

The fb_blank() m ethod provides support for blanking and unblanking the display. This is m ainly used for power
m anagem ent . To blank the navigat ion system 's display after a 10-m inute period of inact ivity, do this:

bash> setterm -blank 10

This com m and percolates down the layers to the frame buffer layer and results in the invocat ion of
myfb_blank() , which program s appropriate bits in CTRL_REG.

Accelerated Methods

I f your user interface needs to perform heavy-duty video operat ions such as blending, st retching, m oving
bitm aps, or dynam ic gradient generat ion, you likely require graphics accelerat ion to obtain acceptable
perform ance. Let 's br iefly visit the fb_ops m ethods that you can leverage if your video hardware supports
graphics accelerat ion.

The fb_imageblit() m ethod draws an im age to the display. This ent ry point provides an opportunity to your
driver to leverage any special capabilit ies that your video cont roller m ight possess to hasten this operat ion.
cfb_imageblit() is a generic library funct ion provided by the frame buffer core to achieve this if you have
nonaccelerated hardware. I t 's used, for instance, to output a logo to the screen during boot up. fb_copyarea()
copies a rectangular area from one screen region to another. cfb_copyarea() provides an opt im ized way of
doing this if your graphics cont roller does not possess any m agic to accelerate this operat ion. The
fb_fillrect() m ethod speedily fills a rectangle with pixel lines. cfb_fillrect() offers a generic non-
accelerated way to achieve this. The LCD cont roller in our navigat ion system does not provide for accelerat ion,
so the exam ple dr iver populates these m ethods using the generic software-opt im ized rout ines offered by the
fram e buffer core.

DirectFB

DirectFB (www.direct fb.org) is a library built on top of the fram e buffer interface that provides a
sim ple window m anager fram ework and hooks for hardware graphics accelerat ion and vir tual
interfaces that allow coexistence of m ult iple fram e buffer applicat ions. DirectFB, along with an
accelerated fram e buffer device dr iver downst ream and a DirectFB-aware rendering engine such as
Cairo (www.cairographics.org) upst ream , is som et im es used on graphics- intensive em bedded
devices instead of m ore t radit ional solut ions such as X Windows.

DMA from the Fram e Buffer

The LCD cont roller in the navigat ion system contains a DMA engine that fetches picture fram es from system
m em ory. The cont roller dispatches the obtained graphics data to the display panel. The rate of DMA sustains the
refresh rate of the display. A non-cacheable fram e buffer suitable for coherent access is allocated using
dma_alloc_coherent() from myfb_probe() . (We discussed coherent DMA m apping in Chapter 10, "Peripheral
Com ponent I nterconnect .") myfb_set_par() writes this allocated DMA address to the DMA_REG register in the
LCD cont roller.

When the dr iver enables DMA by calling myfb_enable_controller() , the cont roller starts ferrying pixel data
from the fram e buffer to the display using synchronous DMA. So, when the GPS applicat ion m aps the fram e
buffer (using mmap()) and writes locat ion inform at ion to it , the pixels gets painted onto the LCD.

Cont rast and Back light

The LCD cont roller in the navigat ion system supports cont rast cont rol using the CONTRAST_REG register. The
driver exports this to user space via myfb_ioctl() . The GPS applicat ion cont rols cont rast as follows:

unsigned int my_fd, desired_contrast_level = 100;
/* Open the frame buffer */
my_fd = open("/dev/fb0", O_RDWR);
ioctl(my_fd, MYFB_SET_BRIGHTNESS, &desired_contrast_level);

The LCD panel on the navigat ion system is illum inated using a backlight . The processor cont rols the backlight
inverter through GPI O lines, so you can turn the light on or off by wiggling the corresponding pins. The kernel
abst racts a generic backlight interface via sysfs nodes. To t ie with this interface, your dr iver has to populate a
backlight_ops st ructure with m ethods for obtaining and updat ing backlight br ightness, and register it with the
kernel using backlight_device_register() . Look inside dr ivers/ video/ backlight / for the backlight interface
sources and recursively grep the dr ivers/ t ree for backlight_device_register() to locate video drivers that
use this interface. List ing 12.2 does not im plem ent backlight m anipulat ion operat ions.

List ing 1 2 .2 . Fram e Buffer Dr iver for the Navigat io n System

Code View:
#include <linux/fb.h>
#include <linux/dma-mapping.h>
#include <linux/platform_device.h>

/* Address map of LCD controller registers */
#define LCD_CONTROLLER_BASE 0x01000D00
#define SIZE_REG (*(volatile u32 *)(LCD_CONTROLLER_BASE))
#define HSYNC_REG (*(volatile u32 *)(LCD_CONTROLLER_BASE + 4))
#define VSYNC_REG (*(volatile u32 *)(LCD_CONTROLLER_BASE + 8))
#define CONF_REG (*(volatile u32 *)(LCD_CONTROLLER_BASE + 12))

#define CTRL_REG (*(volatile u32 *)(LCD_CONTROLLER_BASE + 16))
#define DMA_REG (*(volatile u32 *)(LCD_CONTROLLER_BASE + 20))
#define STATUS_REG (*(volatile u32 *)(LCD_CONTROLLER_BASE + 24))
#define CONTRAST_REG (*(volatile u32 *)(LCD_CONTROLLER_BASE + 28))
#define LCD_CONTROLLER_SIZE 32

/* Resources for the LCD controller platform device */
static struct resource myfb_resources[] = {
 [0] = {
 .start = LCD_CONTROLLER_BASE,
 .end = LCD_CONTROLLER_SIZE,
 .flags = IORESOURCE_MEM,
 },
};

/* Platform device definition */
static struct platform_device myfb_device = {
 .name = "myfb",
 .id = 0,
 .dev = {
 .coherent_dma_mask = 0xffffffff,
 },
 .num_resources = ARRAY_SIZE(myfb_resources),
 .resource = myfb_resources,
};

/* Set LCD controller parameters */
static int
myfb_set_par(struct fb_info *info)
{
 unsigned long adjusted_fb_start;
 struct fb_var_screeninfo *var = &info->var;
 struct fb_fix_screeninfo *fix = &info->fix;

 /* Top 16 bits of HSYNC_REG hold HSYNC duration, next 8 contain
 the left margin, while the bottom 8 house the right margin */
 HSYNC_REG = (var->hsync_len << 16) |
 (var->left_margin << 8)|
 (var->right_margin);
 /* Top 16 bits of VSYNC_REG hold VSYNC duration, next 8 contain
 the upper margin, while the bottom 8 house the lower margin */
 VSYNC_REG = (var->vsync_len << 16) |
 (var->upper_margin << 8)|
 (var->lower_margin);

 /* Top 16 bits of SIZE_REG hold xres, bottom 16 hold yres */
 SIZE_REG = (var->xres << 16) | (var->yres);

 /* Set bits per pixel, pixel polarity, clock dividers for
 the pixclock, and color/monochrome mode in CONF_REG */
 /* ... */

 /* Fill DMA_REG with the start address of the frame buffer
 coherently allocated from myfb_probe(). Adjust this address
 to account for any offset to the start of screen area */
 adjusted_fb_start = fix->smem_start +
 (var->yoffset * var->xres_virtual + var->xoffset) *
 (var->bits_per_pixel) / 8;
 __raw_writel(adjusted_fb_start, (unsigned long *)DMA_REG);

 /* Set the DMA burst length and watermark sizes in DMA_REG */
 /* ... */

 /* Set fixed information */
 fix->accel = FB_ACCEL_NONE; /* No hardware acceleration */
 fix->visual = FB_VISUAL_TRUECOLOR; /* True color mode */
 fix->line_length = var->xres_virtual * var->bits_per_pixel/8;

 return 0;
}

/* Enable LCD controller */
static void
myfb_enable_controller(struct fb_info *info)
{
 /* Enable LCD controller, start DMA, enable clocks and power
 by writing to CTRL_REG */
 /* ... */
}
/* Disable LCD controller */
static void
myfb_disable_controller(struct fb_info *info)
{
 /* Disable LCD controller, stop DMA, disable clocks and power
 by writing to CTRL_REG */
 /* ... */
}

/* Sanity check and adjustment of variables */
static int
myfb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
{
 /* Round up to the minimum resolution supported by
 the LCD controller */
 if (var->xres < 64) var->xres = 64;
 if (var->yres < 64) var->yres = 64;

 /* ... */
 /* This hardware supports the RGB565 color format.
 See the section "Color Modes" for more details */
 if (var->bits_per_pixel == 16) {
 /* Encoding Red */
 var->red.length = 5;
 var->red.offset = 11;
 /* Encoding Green */
 var->green.length = 6;
 var->green.offset = 5;
 /* Encoding Blue */
 var->blue.length = 5;
 var->blue.offset = 0;
 /* No hardware support for alpha blending */
 var->transp.length = 0;
 var->transp.offset = 0;
 }
 return 0;
}

/* Blank/unblank screen */
static int

myfb_blank(int blank_mode, struct fb_info *info)
{
 switch (blank_mode) {
 case FB_BLANK_POWERDOWN:
 case FB_BLANK_VSYNC_SUSPEND:
 case FB_BLANK_HSYNC_SUSPEND:
 case FB_BLANK_NORMAL:
 myfb_disable_controller(info);
 break;
 case FB_BLANK_UNBLANK:
 myfb_enable_controller(info);
 break;
 }
 return 0;
}

/* Configure pseudo color palette map */
static int
myfb_setcolreg(u_int color_index, u_int red, u_int green,
 u_int blue, u_int transp, struct fb_info *info)
{
 if (info->fix.visual == FB_VISUAL_TRUECOLOR) {
 /* Do any required translations to convert red, blue, green and
 transp, to values that can be directly fed to the hardware */
 /* ... */

 ((u32 *)(info->pseudo_palette))[color_index] =
 (red << info->var.red.offset) |
 (green << info->var.green.offset) |
 (blue << info->var.blue.offset) |
 (transp << info->var.transp.offset);
 }
 return 0;
}

/* Device-specific ioctl definition */
#define MYFB_SET_BRIGHTNESS _IOW('M', 3, int8_t)

/* Device-specific ioctl */
static int
myfb_ioctl(struct fb_info *info, unsigned int cmd,
 unsigned long arg)
{
 u32 blevel ;
 switch (cmd) {
 case MYFB_SET_BRIGHTNESS :
 copy_from_user((void *)&blevel, (void *)arg,
 sizeof(blevel)) ;
 /* Write blevel to CONTRAST_REG */
 /* ... */
 break;
 default:
 return –EINVAL;
 }
 return 0;
}

/* The fb_ops structure */
static struct fb_ops myfb_ops = {

 .owner = THIS_MODULE,
 .fb_check_var = myfb_check_var,/* Sanity check */
 .fb_set_par = myfb_set_par, /* Program controller registers */
 .fb_setcolreg = myfb_setcolreg,/* Set color map */
 .fb_blank = myfb_blank, /* Blank/unblank display */
 .fb_fillrect = cfb_fillrect, /* Generic function to fill
 rectangle */
 .fb_copyarea = cfb_copyarea, /* Generic function to copy area */
 .fb_imageblit = cfb_imageblit, /* Generic function to draw */
 .fb_ioctl = myfb_ioctl, /* Device-specific ioctl */
};

/* Platform driver's probe() routine */
static int __init
myfb_probe(struct platform_device *pdev)
{
 struct fb_info *info;
 struct resource *res;

 info = framebuffer_alloc(0, &pdev->dev);
 /* ... */
 /* Obtain the associated resource defined while registering the
 corresponding platform_device */
 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 /* Get the kernel's sanction for using the I/O memory chunk
 starting from LCD_CONTROLLER_BASE and having a size of
 LCD_CONTROLLER_SIZE bytes */
 res = request_mem_region(res->start, res->end - res->start + 1,
 pdev->name);

 /* Fill the fb_info structure with fixed (info->fix) and variable
 (info->var) values such as frame buffer length, xres, yres,
 bits_per_pixel, fbops, cmap, etc */
 initialize_fb_info(info, pdev); /* Not expanded */
 info->fbops = &myfb_ops;
 fb_alloc_cmap(&info->cmap, 16, 0);

 /* DMA-map the frame buffer memory coherently. info->screen_base
 holds the CPU address of the mapped buffer,
 info->fix.smem_start carries the associated hardware address */
 info->screen_base = dma_alloc_coherent(0, info->fix.smem_len,
 (dma_addr_t *)&info->fix.smem_start,
 GFP_DMA | GFP_KERNEL);
 /* Set the information in info->var to the appropriate
 LCD controller registers */
 myfb_set_par(info);

 /* Register with the frame buffer core */
 register_framebuffer(info);
 return 0;
}

/* Platform driver's remove() routine */
static int
myfb_remove(struct platform_device *pdev)
{
 struct fb_info *info = platform_get_drvdata(pdev);
 struct resource *res;

 /* Disable screen refresh, turn off DMA,.. */
 myfb_disable_controller(info);

 /* Unregister frame buffer driver */
 unregister_framebuffer(info);
 /* Deallocate color map */
 fb_dealloc_cmap(&info->cmap);
 kfree(info->pseudo_palette);

 /* Reverse of framebuffer_alloc() */
 framebuffer_release(info);
 /* Release memory region */
 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 release_mem_region(res->start, res->end - res->start + 1);
 platform_set_drvdata(pdev, NULL);

 return 0;
}

/* The platform driver structure */
static struct platform_driver myfb_driver = {
 .probe = myfb_probe,
 .remove = myfb_remove,
 .driver = {
 .name = "myfb",
 },
};

/* Module Initialization */
int __init
myfb_init(void)
{
 platform_device_add(&myfb_device);
 return platform_driver_register(&myfb_driver);
}

/* Module Exit */
void __exit
myfb_exit(void)
{
 platform_driver_unregister(&myfb_driver);
 platform_device_unregister(&myfb_device);
}

module_init(myfb_init);
module_exit(myfb_exit);

Console Dr ivers

A console is a device that displays printk() m essages generated by the kernel. I f you look at Figure 12.5, you
can see that console dr ivers lie in two t iers: a top level const itut ing dr ivers such as the vir tual term inal dr iver,
the pr inter console dr iver, and the exam ple USB_UART console dr iver (discussed soon) , and bot tom - level dr ivers
that are responsible for advanced operat ions. Consequent ly, there are two m ain interface definit ion st ructures
used by console dr ivers. Top- level console dr ivers revolve around struct console , which defines basic
operat ions such as setup() and write() . Bot tom - level dr ivers center on struct consw that specifies advanced
operat ions such as set t ing cursor propert ies, console switching, blanking, resizing, and set t ing palet te
inform at ion. These st ructures are defined in include/ linux/ console.h as follows:

struct console {
 char name[8];
 void (*write)(struct console *, const char *, unsigned);
 int (*read)(struct console *, char *, unsigned);
 /* ... */
 void (*unblank)(void);
 int (*setup)(struct console *, char *);
 /* ... */
};

1 .

struct consw {
 struct module *owner;
 const char *(*con_startup)(void);
 void (*con_init)(struct vc_data *, int);
 void (*con_deinit)(struct vc_data *);
 void (*con_clear)(struct vc_data *, int, int, int, int);
 void (*con_putc)(struct vc_data *, int, int, int);
 void (*con_putcs)(struct vc_data *,
 const unsigned short *, int, int, int);
 void (*con_cursor)(struct vc_data *, int);
 int (*con_scroll)(struct vc_data *, int, int, int, int);
 /* ... */
};

2 .

As you m ight have guessed by looking at Figure 12.5, m ost console devices need both levels of dr ivers working
in tandem . The vt dr iver is the top- level console dr iver in m any situat ions. On PC-com pat ible system s, the VGA
console dr iver (vgacon) is usually the bot tom - level console dr iver; whereas on em bedded devices, the fram e
buffer console dr iver (fbcon) is often the bot tom - level dr iver. Because of the indirect ion offered by the fram e
buffer abst ract ion, fbcon, unlike other bot tom - level console dr ivers, is hardware- independent .

Let 's br iefly look at the architecture of both levels of console dr ivers:

The top- level dr iver populates a struct console with prescribed ent ry points and registers it with the
kernel using register_console() . Unregister ing is accom plished using unregister_console() . This is
the dr iver that interacts with printk() . The ent ry points belonging to this dr iver call on the services of the
associated bot tom - level console dr iver.

The bot tom - level console dr iver populates a struct consw with specified ent ry points and registers it with
the kernel using register_con_driver() . Unregister ing is done using unregister_con_driver() . When
the system supports m ult iple console dr ivers, the dr iver m ight instead invoke take_over_console() to
register itself and take over the exist ing console. give_up_console() accom plishes the reverse. For
convent ional displays, bot tom - level dr ivers interact with the top- level vt console dr iver and the vc_screen
character dr iver that allows access to vir tual console m em ory.

Som e sim ple consoles, such as line pr inters and the USB_UART discussed next , need only a top- level console
driver.

The fbcon driver in the 2.6 kernel also supports console rotat ion. Display panels on PDAs and cell phones are
usually m ounted in port rait or ientat ion, whereas autom ot ive dashboards and I P phones are exam ples of
system s where the display panel is likely to be in landscape m ode. Som et im es, due to econom ics or other
factors, an em bedded device m ay require a landscape LCD to be m ounted in port rait m ode or vice versa.
Console rotat ion support com es handy in such situat ions. Because fbcon is hardware- independent , the console
rotat ion im plem entat ion is also generic. To enable console rotat ion, enable
CONFIG_FRAMEBUFFER_CONSOLE_ROTATION during kernel configurat ion and add fbcon=rotate:X to the kernel
com m and line, where X is 0 for norm al or ientat ion, 1 for 90-degree rotat ion, 2 for 180-degree rotat ion, and 3
for 270-degree rotat ion.

Device Exam ple: Cell Phone Revisited

To learn how to write console dr ivers, let 's revisit the Linux cell phone that we used in Chapter 6 . Our task in
this sect ion is to develop a console dr iver that operates over the USB_UARTs in the cell phone. For convenience,
Figure 12.7 reproduces the cell phone from Figure 6.5 in Chapter 6 . Let 's write a console dr iver that gets
printk() m essages out of the door via a USB_UART. The m essages are picked up by a PC host and displayed to
the user via a term inal em ulator session.

Figure 1 2 .7 . Console over USB_UART.

[View full size im age]

List ing 12.3 develops the console dr iver that works over the USB_UARTs. The usb_uart_port[] st ructure and a

few definit ions used by the USB_UART dr iver in Chapter 6 are included in this list ing, too, to create a complete
driver. Com m ents associated with the list ing explain the dr iver 's operat ion.

Figure 12.7 shows the posit ion of our exam ple USB_UART console dr iver within the Linux-Video subsystem . As
you can see, the USB_UART is a sim ple device that needs only a top- level console dr iver.

List ing 1 2 .3 . Console over USB_UART

Code View:
#include <linux/console.h>
#include <linux/serial_core.h>
#include <asm/io.h>

#define USB_UART_PORTS 2 /* The cell phone has 2
 USB_UART ports */
/* Each USB_UART has a 3-byte register set consisting of
 UU_STATUS_REGISTER at offset 0, UU_READ_DATA_REGISTER at
 offset 1, and UU_WRITE_DATA_REGISTER at offset 2, as shown
 in Table One of Chapter 6, "Serial Drivers" */
#define USB_UART1_BASE 0xe8000000 /* Memory base for USB_UART1 */
#define USB_UART2_BASE 0xe9000000 /* Memory base for USB_UART1 */
#define USB_UART_REGISTER_SPACE 0x3
/* Semantics of bits in the status register */
#define USB_UART_TX_FULL 0x20
#define USB_UART_RX_EMPTY 0x10
#define USB_UART_STATUS 0x0F

#define USB_UART1_IRQ 3
#define USB_UART2_IRQ 4
#define USB_UART_CLK_FREQ 16000000
#define USB_UART_FIFO_SIZE 32

/* Parameters of each supported USB_UART port */
static struct uart_port usb_uart_port[] = {
 {
 .mapbase = (unsigned int)USB_UART1_BASE,
 .iotype = UPIO_MEM, /* Memory mapped */
 .irq = USB_UART1_IRQ, /* IRQ */
 .uartclk = USB_UART_CLK_FREQ, /* Clock HZ */
 .fifosize = USB_UART_FIFO_SIZE, /* Size of the FIFO */
 .flags = UPF_BOOT_AUTOCONF, /* UART port flag */
 .line = 0, /* UART Line number */
 },
 {
 .mapbase = (unsigned int)USB_UART2_BASE,
 .iotype = UPIO_MEM, /* Memory mapped */
 .irq = USB_UART2_IRQ, /* IRQ */
 .uartclk = USB_UART_CLK_FREQ, /* CLock HZ */
 .fifosize = USB_UART_FIFO_SIZE, /* Size of the FIFO */
 .flags = UPF_BOOT_AUTOCONF, /* UART port flag */
 .line = 1, /* UART Line number */
 }
};

/* Write a character to the USB_UART port */
static void
usb_uart_putc(struct uart_port *port, unsigned char c)
{

 /* Wait until there is space in the TX FIFO of the USB_UART.
 Sense this by looking at the USB_UART_TX_FULL
 bit in the status register */
 while (__raw_readb(port->membase) & USB_UART_TX_FULL);

 /* Write the character to the data port*/
 __raw_writeb(c, (port->membase+1));
}

/* Console write */
static void
usb_uart_console_write(struct console *co, const char *s,
 u_int count)
{
 int i;

 /* Write each character */
 for (i = 0; i < count; i++, s++) {
 usb_uart_putc(&usb_uart_port[co->index], *s);
 }
}

/* Get communication parameters */
static void __init
usb_uart_console_get_options(struct uart_port *port,
 int *baud, int *parity, int *bits)
{
 /* Read the current settings (possibly set by a bootloader)
 or return default values for parity, number of data bits,
 and baud rate */
 *parity = 'n';
 *bits = 8;
 *baud = 115200;
}

/* Setup console communication parameters */
static int __init
usb_uart_console_setup(struct console *co, char *options)
{
 struct uart_port *port;
 int baud, bits, parity, flow;

 /* Validate port number and get a handle to the
 appropriate structure */
 if (co->index == -1 || co->index >= USB_UART_PORTS) {
 co->index = 0;
 }
 port = &usb_uart_port[co->index];

 /* Use functions offered by the serial layer to parse options */
 if (options) {
 uart_parse_options(options, &baud, &parity, &bits, &flow);
 } else {
 usb_uart_console_get_options(port, &baud, &parity, &bits);
 }
 return uart_set_options(port, co, baud, parity, bits, flow);
}

/* Populate the console structure */

static struct console usb_uart_console = {
 .name = "ttyUU", /* Console name */
 .write = usb_uart_console_write, /* How to printk to the
 console */
 .device = uart_console_device, /* Provided by the serial core */
 .setup = usb_uart_console_setup, /* How to setup the console */
 .flags = CON_PRINTBUFFER, /* Default flag */
 .index = -1, /* Init to invalid value */
};

/* Console Initialization */
static int __init
usb_uart_console_init(void)
{
 /* ... */

 /* Register this console */
 register_console(&usb_uart_console);

 return 0;
}

console_initcall(usb_uart_console_init); /* Mark console init */

After this dr iver has been built as part of the kernel, you can act ivate it by appending console=ttyUUX (where X
is 0 or 1) to the kernel com m and line.

Boot Logo

A popular feature offered by the fram e buffer subsystem is the boot logo. To display a logo, enable CONFIG_LOGO
during kernel configurat ion and select an available logo. You m ay also add a custom logo im age in the
dr ivers/ video/ logo/ directory.

CLUT224 is a com m only used boot logo im age form at that supports 224 colors. The working of this form at is
sim ilar to pseudo palet tes described in the sect ion "Color Modes." A CLUT224 im age is a C file containing two
st ructures:

A CLUT (Color Look Up Table) , which is a character array of 224 RGB tuples (thus having a size of 224* 3
bytes) . Each 3-byte CLUT elem ent is a com binat ion of red, green, and blue colors.

A data array whose each byte is an index into the CLUT. The indices start at 32 and extend unt il 255 (thus
support ing 224 colors) . I ndex 32 refers to the first elem ent in the CLUT. The logo m anipulat ion code (in
drivers/ video/ fbm em .c) creates fram e buffer pixel data from the CLUT tuple corresponding to each index
in the data array. I m age display is accom plished using the low- level fram e buffer dr iver 's fb_imageblit()
m ethod, as indicated in the sect ion "Accelerated Methods."

Other supported logo form ats are the 16-color vga16 and the black-and-white m ono. Scripts are available in the
top- level scr ipts/ directory to convert standard Portable Pixel Map (PPM) files to the supported logo form ats.

I f the fram e buffer device is also the console, boot m essages scroll under the logo. You m ay prefer to disable
console m essages on product ion- level system s (by adding console=/dev/null to the kernel com m and line) and
display a custom er-supplied CLUT224 "splash screen" im age as the boot logo.

Debugging

The vir tual fram e buffer dr iver, enabled by set t ing CONFIG_FB_VIRTUAL in the configurat ion m enu, operates over
a pseudo graphics adapter. You can use this dr iver 's assistance to debug the fram e buffer subsystem .

Som e fram e buffer dr ivers, such as intelfb, offer an addit ional configurat ion opt ion that you m ay enable to
generate dr iver-specific debug inform at ion.

To discuss issues related to fram e buffer dr ivers, subscribe to the linux- fbdev-devel m ailing list ,
ht tps: / / lists.sourceforge.net / lists/ list info/ linux- fbdev-devel/ .

Debugging console dr ivers is not an easy job because you can't call printk() from inside the dr iver. I f you have
a spare console device such as a serial port , you can im plem ent a UART/ t ty form factor of your console dr iver
first (as we did in Chapter 6 for the USB_UART device used in this chapter) and debug that dr iver by operat ing
on / dev/ t ty and print ing m essages to the spare console. You can then repackage the debugged code regions in
the form of a console dr iver.

Look ing at the Sources

The fram e buffer core layer and low- level fram e buffer dr ivers reside in the dr ivers/ video/ directory. Generic
fram e buffer st ructures are defined in include/ linux/ fb.h, whereas chipset -specific headers stay inside
include/ video/ . The fbm em driver, dr ivers/ video/ fbmem .c, creates the / dev/ fbX character devices and is the
front end for handling fram e buffer ioct l com m ands issued by user applicat ions.

The intelfb dr iver, dr ivers/ video/ intelfb/ * , is the low- level fram e buffer dr iver for several I ntel graphics
cont rollers such as the one integrated with the 855 GME North Bridge. The radeonfb dr iver, dr ivers/ video/ aty/ * ,
is the fram e buffer dr iver for Radeon Mobilit y AGP graphics hardware from ATI technologies. The source files,
dr ivers/ video/ * fb.c, are all fram e buffer dr ivers for graphics cont rollers, including those integrated into several
SoCs. You can use drivers/ video/ skeletonfb.c as the start ing point if you are writ ing a custom low- level fram e
buffer dr iver. Look at Docum entat ion/ fb/ * for m ore docum entat ion on the fram e buffer layer.

The hom e page of the Linux fram e buffer project is www.linux- fbdev.org. This website contains HOWTOs, links
to fram e buffer dr ivers and ut ilit ies, and pointers to related web pages.

Console dr ivers, both fram e buffer-based and otherwise, live inside dr ivers/ video/ console/ . To find out how
printk() logs kernel m essages to an internal buffer and calls console dr ivers, look at kernel/ pr intk.c.

Table 12.2 contains the m ain data st ructures used in this chapter and their locat ion in the source t ree. Table
12.3 lists the m ain kernel program m ing interfaces that you used in this chapter with the locat ion of their
definit ions.

Table 1 2 .2 . Sum m ary of Data St ructures

Data St ructure Locat ion Descr ipt ion

fb_info include/ linux/ fb.h Cent ral data st ructure used by low- level
fram e buffer dr ivers

fb_ops include/ linux/ fb.h Contains addresses of all ent ry points
provided by low- level fram e buffer
dr ivers

fb_var_screeninfo include/ linux/ fb.h Contains variable inform at ion pertaining
to video hardware such as the X-
resolut ion, Y- resolut ion, and
HYSNC/VSYNC durat ions

fb_fix_screeninfo include/ linux/ fb.h Fixed inform at ion about video hardware
such as the start address of the fram e
buffer

fb_cmap include/ linux/ fb.h The RGB color m ap for a fram e buffer
device

console include/ linux/ console.h Representat ion of a top- level console
driver

consw include/ linux/ console.h Representat ion of a bot tom - level console
driver

Table 1 2 .3 . Sum m ary of Kernel Program m ing I nter face s

Kernel I nter face Locat ion Descr ipt ion

register_framebuffer() drivers/ video/ fbm em .c Registers a low- level fram e buffer
device.

unregister_framebuffer() drivers/ video/ fbm em .c Releases a low- level fram e buffer
device.

framebuffer_alloc() drivers/ video/ fbsysfs.c Allocates m em ory for an fb_info
st ructure.

framebuffer_release() drivers/ video/ fbsysfs.c Reverse of framebuffer_alloc() .

fb_alloc_cmap() drivers/ video/ fbcm ap.c Allocates color m ap.

fb_dealloc_cmap() drivers/ video/ fbcm ap.c Frees color m ap.

dma_alloc_coherent() include/ asm -
generic/ dm a-m apping.h

Allocates and m aps a coherent DMA
buffer. See
pci_alloc_consistent() in Chapter
10.

dma_free_coherent() include/ asm -
generic/ dm a-m apping.h

Frees a coherent DMA buffer. See
pci_free_consistent() in Chapter
10.

register_console() kernel/ pr intk.c Registers a top- level console dr iver.

unregister_console() kernel/ pr intk.c Unregisters a top- level console
driver.

register_con_driver()
take_over_console()

drivers/ char/ vt .c Registers/ binds a bot tom - level
console dr iver.

unregister_con_driver()
give_up_console()

drivers/ char/ vt .c Unregisters/ unbinds a bot tom - level
console dr iver.

Chapter 1 3 . Audio Dr ivers

I n This Chapter

Audio Architecture
392

Linux-Sound Subsystem
394

Device Exam ple: MP3 Player
396

Debugging
412

Looking at the Sources
412

Audio hardware provides com puter system s the capabilit y to generate and capture sound. Audio is
an integral com ponent in both the PC and the em bedded space, for chat t ing on a laptop, m aking a
call from a cell phone, listening to an MP3 player, st ream ing m ult im edia from a set - top box, or
announcing inst ruct ions on a m edical-grade system . I f you run Linux on any of these devices, you
need the services offered by the Linux-Sound subsystem .

I n this chapter, let 's find out how the kernel supports audio cont rollers and codecs. Let 's learn the
architecture of the Linux-Sound subsystem and the program m ing m odel that it exports.

Audio Architecture

Figure 13.1 shows audio connect ion on a PC-com pat ible system . The audio cont roller on the South Bridge,
together with an external codec, interfaces with analog audio circuit ry.

Figure 1 3 .1 . Audio in the PC environm ent .

[View full size im age]

An audio codec converts digital audio data to analog sound signals for playing through speakers and perform s
the reverse operat ion for recording through a m icrophone. Other com m on audio inputs and outputs that
interface with a codec include headsets, earphones, handsets, hands- free, line- in, and line-out . A codec also
offers m ixer funct ionality that connects it to a com binat ion of these audio inputs and outputs, and cont rols the
volum e gain of associated audio signals. [1]

[1] This definit ion of a m ixer is from a software perspect ive. Sound m ixing or data m ixing refers to the capabilit y of som e codecs to m ix
m ult iple sound st ream s and generate a single st ream. This is needed, for exam ple, if you want to superim pose an announcem ent while a voice
com m unicat ion is in progress on an I P phone. The alsa- lib library, discussed in the lat ter part of this chapter, supports a plug- in feature called
dm ix that perform s data m ixing in software if your codec does not have the capabilit y to perform this operat ion in hardware.

Digital audio data is obtained by sam pling analog audio signals at specific bit rates using a technique called
pulse code m odulat ion (PCM). CD quality is, for exam ple, sound sam pled at 44.1KHz, using 16 bits to hold each
sam ple. A codec is responsible for recording audio by sam pling at supported PCM bit rates and for playing audio
originally sam pled at different PCM bit rates.

A sound card m ay support one or m ore codecs. Each codec m ay, in turn, support one or m ore audio subst ream s
in m ono or stereo.

The Audio Codec'97 (AC'97) and the I nter- I C Sound (I 2S) bus are exam ples of indust ry standard interfaces that
connect audio cont rollers to codecs:

The I ntel AC'97 specificat ion, downloadable from ht tp: / / download.intel.com / , specifies the sem ant ics and
locat ions of audio registers. Configurat ion registers are part of the audio cont roller, while the I / O register
space is situated inside the codec. Requests to operate on I / O registers are forwarded by the audio
cont roller to the codec over the AC'97 link. The register that cont rols line- in volum e, for exam ple, lives at
offset 0x10 within the AC'97 I / O space. The PC system in Figure 13.1 uses AC'97 to com m unicate with an
external codec.

The I2S specificat ion, downloadable from www.nxp.com / acrobat_download/ various/ I 2SBUS.pdf, is a codec

http://download.intel.com/

interface standard developed by Philips. The em bedded device shown in Figure 13.2 uses I 2S to send
audio data to the codec. Program m ing the codec's I / O registers is done via the I 2C bus.

Figure 1 3 .2 . Audio connect ion on an em bedded system .

AC'97 has lim itat ions pertaining to the num ber of supported channels and bit rates. Recent South Bridge
chipsets from I ntel feature a new technology called High Definit ion (HD) Audio that offers higher-quality,
surround sound, and m ult ist ream ing capabilit ies.

Chapter 1 3 . Audio Dr ivers

I n This Chapter

Audio Architecture
392

Linux-Sound Subsystem
394

Device Exam ple: MP3 Player
396

Debugging
412

Looking at the Sources
412

Audio hardware provides com puter system s the capabilit y to generate and capture sound. Audio is
an integral com ponent in both the PC and the em bedded space, for chat t ing on a laptop, m aking a
call from a cell phone, listening to an MP3 player, st ream ing m ult im edia from a set - top box, or
announcing inst ruct ions on a m edical-grade system . I f you run Linux on any of these devices, you
need the services offered by the Linux-Sound subsystem .

I n this chapter, let 's find out how the kernel supports audio cont rollers and codecs. Let 's learn the
architecture of the Linux-Sound subsystem and the program m ing m odel that it exports.

Audio Architecture

Figure 13.1 shows audio connect ion on a PC-com pat ible system . The audio cont roller on the South Bridge,
together with an external codec, interfaces with analog audio circuit ry.

Figure 1 3 .1 . Audio in the PC environm ent .

[View full size im age]

An audio codec converts digital audio data to analog sound signals for playing through speakers and perform s
the reverse operat ion for recording through a m icrophone. Other com m on audio inputs and outputs that
interface with a codec include headsets, earphones, handsets, hands- free, line- in, and line-out . A codec also
offers m ixer funct ionality that connects it to a com binat ion of these audio inputs and outputs, and cont rols the
volum e gain of associated audio signals. [1]

[1] This definit ion of a m ixer is from a software perspect ive. Sound m ixing or data m ixing refers to the capabilit y of som e codecs to m ix
m ult iple sound st ream s and generate a single st ream. This is needed, for exam ple, if you want to superim pose an announcem ent while a voice
com m unicat ion is in progress on an I P phone. The alsa- lib library, discussed in the lat ter part of this chapter, supports a plug- in feature called
dm ix that perform s data m ixing in software if your codec does not have the capabilit y to perform this operat ion in hardware.

Digital audio data is obtained by sam pling analog audio signals at specific bit rates using a technique called
pulse code m odulat ion (PCM). CD quality is, for exam ple, sound sam pled at 44.1KHz, using 16 bits to hold each
sam ple. A codec is responsible for recording audio by sam pling at supported PCM bit rates and for playing audio
originally sam pled at different PCM bit rates.

A sound card m ay support one or m ore codecs. Each codec m ay, in turn, support one or m ore audio subst ream s
in m ono or stereo.

The Audio Codec'97 (AC'97) and the I nter- I C Sound (I 2S) bus are exam ples of indust ry standard interfaces that
connect audio cont rollers to codecs:

The I ntel AC'97 specificat ion, downloadable from ht tp: / / download.intel.com / , specifies the sem ant ics and
locat ions of audio registers. Configurat ion registers are part of the audio cont roller, while the I / O register
space is situated inside the codec. Requests to operate on I / O registers are forwarded by the audio
cont roller to the codec over the AC'97 link. The register that cont rols line- in volum e, for exam ple, lives at
offset 0x10 within the AC'97 I / O space. The PC system in Figure 13.1 uses AC'97 to com m unicate with an
external codec.

The I2S specificat ion, downloadable from www.nxp.com / acrobat_download/ various/ I 2SBUS.pdf, is a codec

http://download.intel.com/

interface standard developed by Philips. The em bedded device shown in Figure 13.2 uses I 2S to send
audio data to the codec. Program m ing the codec's I / O registers is done via the I 2C bus.

Figure 1 3 .2 . Audio connect ion on an em bedded system .

AC'97 has lim itat ions pertaining to the num ber of supported channels and bit rates. Recent South Bridge
chipsets from I ntel feature a new technology called High Definit ion (HD) Audio that offers higher-quality,
surround sound, and m ult ist ream ing capabilit ies.

Linux- Sound Subsystem

Advanced Linux Sound Architecture (ALSA) is the sound subsystem of choice in the 2.6 kernel. Open Sound
System (OSS) , the sound layer in the 2.4 kernel, is now obsolete and depreciated. To help the t ransit ion from
OSS to ALSA, the lat ter provides OSS em ulat ion that allows applicat ions conform ing to the OSS API to run
unchanged over ALSA. Linux-Sound fram eworks such as ALSA and OSS render audio applicat ions independent
of the underlying hardware, just as codec standards such as AC'97 and I 2S do away with the need of writ ing
separate audio dr ivers for each sound card.

Take a look at Figure 13.3 to understand the architecture of the Linux-Sound subsystem . The const ituent pieces
of the subsystem are as follows:

The sound core, which is a code base consist ing of rout ines and st ructures available to other com ponents
of the Linux-Sound layer. Like the core layers belonging to other dr iver subsystem s, the sound core
provides a level of indirect ion that renders each com ponent in the sound subsystem independent of the
others. The core also plays an im portant role in export ing the ALSA API to higher applicat ions. The
following / dev/ snd/ * device nodes shown in Figure 13.3 are created and m anaged by the ALSA core:
/ dev/ snd/ cont rolC0 is a cont rol node (that applicat ions use for cont rolling volum e gain and such) ,
/ dev/ snd/ pcm C0D0p is a playback device (p at the end of the device nam e stands for playback) , and
/ dev/ snd/ pcm C0D0c is a recording device (c at the end of the device nam e stands for capture) . I n these
device nam es, the integer following C is the card num ber, and that after D is the device num ber. An ALSA
driver for a card that has a voice codec for telephony and a stereo codec for m usic m ight export
/ dev/ snd/ pcm C0D0p to read audio st ream s dest ined for the form er and / dev/ snd/ pcm C0D1p to channel
m usic bound for the lat ter.

Audio cont roller dr ivers specific to cont roller hardware. To drive the audio cont roller present in the I ntel
I CH South Bridge chipsets, for exam ple, use the snd_intel8x0 driver.

Audio codec interfaces that assist com m unicat ion between cont rollers and codecs. For AC'97 codecs, use
the snd_ac97_codec and ac97_bus m odules.

An OSS em ulat ion layer that acts as a conduit between OSS-aware applicat ions and the ALSA-enabled
kernel. This layer exports / dev nodes that m irror what the OSS layer offered in the 2.4 kernels. These
nodes, such as / dev/ dsp, / dev/ adsp, and / dev/ m ixer, allow OSS applicat ions to run unchanged over ALSA.
The OSS / dev/ dsp node m aps to the ALSA nodes / dev/ snd/ pcm C0D0* , / dev/ adsp corresponds to
/ dev/ snd/ pcm C0D1* , and / dev/ m ixer associates with / dev/ snd/ cont rolC0.

Procfs and sysfs interface im plem entat ions for accessing inform at ion via / proc/ asound/ and
/ sys/ class/ sound/ .

The user-space ALSA library, alsa- lib, which provides the libasound.so object . This library eases the job of
the ALSA applicat ion program m er by offer ing several canned rout ines to access ALSA drivers.

The alsa-ut ils package that includes ut ilit ies such as alsam ixer, am ixer , alsact l, and aplay. Use alsam ixer
or am ixer to change volum e levels of audio signals such as line- in, line-out , or m icrophone, and alsact l to
cont rol set t ings for ALSA drivers. To play audio over ALSA, use aplay.

Figure 1 3 .3 . Linux- Sound (ALSA) subsystem .

[View full size im age]

To obtain a bet ter understanding of the architecture of the Linux-Sound layer, let 's look at the ALSA driver
m odules running on a laptop in tandem with Figure 13.3 (is used to at tach com m ents) :

Code View:
bash> lsmod|grep snd

snd_intel8x0 33148 0 Audio Controller Driver

snd_ac97_codec 92000 1 snd_intel8x0 Audio Codec Interface

ac97_bus 3104 1 snd_ac97_codec Audio Codec Bus

snd_pcm_oss 40512 0 OSS Emulation

snd_mixer_oss 16640 1 snd_pcm_oss OSS Volume Control
snd_pcm 73316 3 snd_intel8x0,snd_ac97_codec,snd_pcm_oss

 Core layer

snd_timer 22148 1 snd_pcm Core layer
snd 50820 6 snd_intel8x0,snd_ac97_codec,snd_pcm_oss,
 snd_mixer_oss,snd_pcm,snd_timer

 Core layer

soundcore 8960 1 snd Core layer

snd_page_alloc 10344 2 snd_intel8x0,snd_pcm Core layer

Device Exam ple: MP3 Player

Figure 13.4 shows audio operat ion on an exam ple Linux Bluetooth MP3 player built around an em bedded SoC.
You can program the Linux cell phone (that we used in Chapter 6 , "Serial Drivers," and Chapter 12, "Video
Drivers") to download songs from the I nternet at night when phone rates are presum ably cheaper and upload it
to the MP3 player 's Com pact Flash (CF) disk via Bluetooth so that you can listen to the songs next day during
office com m ute.

Figure 1 3 .4 . Audio on a Linux MP3 player .

[View full size im age]

Our task is to develop the audio software for this device. An applicat ion on the player reads songs from the CF
disk and decodes it into system m em ory. A kernel ALSA driver gathers the m usic data from system m em ory and
dispatches it to t ransm it buffers that are part of the SoC's audio cont roller. This PCM data is forwarded to the
codec, which plays the m usic through the device's speaker. As in the case of the navigat ion system discussed in
the preceding chapter, we will assum e that Linux supports this SoC, and that all architecture-dependent
services such as DMA are supported by the kernel.

The audio software for the MP3 player thus consists of two parts:

A user program that decodes MP3 files reads from the CF disk and converts it into raw PCM. To write a
nat ive ALSA decoder applicat ion, you can leverage the helper rout ines offered by the alsa- lib library. The
sect ion "ALSA Program m ing" looks at how ALSA applicat ions interact with ALSA drivers.

You also have the opt ion of custom izing public dom ain MP3 players such as m adplay
(ht tp: / / sourceforge.net / projects/ m ad/) to suit this device.

1 .

A low- level kernel ALSA audio dr iver. The following sect ion is devoted to writ ing this dr iver.2 .

http://sourceforge.net/projects/mad/

One possible hardware im plem entat ion of the device shown in Figure 13.4 is by using a PowerPC 405LP
SoC and a Texas I nst rum ents TLV320 audio codec. The CPU core in that case is the 405 processor and
the on-chip audio cont roller is the Codec Serial I nterface (CSI) . SoCs com m only have a high-
perform ance internal local bus that connects to cont rollers, such as DRAM and video, and a separate on-
chip peripheral bus to interface with low-speed peripherals such as serial ports, I 2C, and GPI O. I n the
case of the 405LP, the form er is called the Processor Local Bus (PLB) and the lat ter is known as the On-
chip Peripheral Bus (OPB) . The PCMCI A/ CF cont roller hangs off the PLB, whereas the audio cont roller
interface connects to the OPB.

An audio dr iver is built out of three m ain ingredients:

Rout ines that handle playback1 .

Rout ines that handle capture2 .

Mixer cont rol funct ions3 .

Our dr iver im plem ents playback, but does not support recording because the MP3 player in the exam ple has no
m icrophone. The driver also sim plifies the m ixer funct ion. Rather than offer ing the full com plim ent of volum e
cont rols, such as speaker, earphone, and line-out , it allows only a single generic volum e cont rol.

The register layout of the MP3 player 's audio hardware shown in Table 13.1 m irrors these assum pt ions and
sim plificat ions, and does not conform to standards such as AC'97 alluded to earlier. So, the codec has a
SAMPLING_RATE_REGISTER to configure the playback (digital- to-analog) sam pling rate but no registers to set the
capture (analog- to-digital) rate. The VOLUME_REGISTER configures a single global volum e.

Table 1 3 .1 . Register Layout of the Audio Hardw are i n Figure 1 3 .4

Register Nam e Descr ipt ion

VOLUME_REGISTER Cont rols the codec's global volum e.

SAMPLING_RATE_REGISTER Sets the codec's sam pling rate for digital- to-analog
conversion.

CLOCK_INPUT_REGISTER Configures the codec's clock source, divisors, and so on.

CONTROL_REGISTER Enables interrupts, configures interrupt cause (such as
com plet ion of a buffer t ransfer) , resets hardware,
enables/ disables bus operat ion, and so on.

STATUS_REGISTER Status of codec audio events.

DMA_ADDRESS_REGISTER The exam ple hardware supports a single DMA buffer
descriptor. Real-world cards m ay support m ult iple
descriptors and m ay have addit ional registers to hold

Register Nam e Descr ipt iondescriptors and m ay have addit ional registers to hold
param eters such as the descriptor that is current ly being
processed, the posit ion of the current sam ple inside the
buffer, and so on. DMA is perform ed to the buffers in the
audio cont roller, so this register resides in the cont roller 's
m em ory space.

DMA_SIZE_REGISTER Holds the size of the DMA t ransfer to/ from the SoC. This
register also resides inside the audio cont roller.

List ing 13.1 is a skeletal ALSA audio dr iver for the MP3 player and liberally em ploys pseudo code (within
com m ents) to cut out ext raneous detail. ALSA is a sophist icated fram ework, and conform ing audio dr ivers are
usually several thousand lines long. List ing 13.1 gets you started only on your audio dr iver explorat ions.
Cont inue your learning by falling back to the m ighty Linux-Sound sources inside the top- level sound/ directory.

Driver Methods and St ructures

Our exam ple dr iver is im plem ented as a plat form driver. Let 's take a look at the steps perform ed by the
plat form driver 's probe() m ethod, mycard_audio_probe() . We will digress a bit under each step to explain
related concepts and im portant data st ructures that we encounter, and this will take us to other parts of the
driver and help t ie things together.

mycard_audio_probe() does the following:

1 . Creates an instance of a sound card by invoking snd_card_new() :

struct snd_card *card = snd_card_new(-1, id[dev->id], THIS_MODULE, 0);

The first argum ent to snd_card_new() is the card index (that ident ifies this card am ong m ult iple sound
cards in the system) , the second argum ent is the I D that ' ll be stored in the id field of the returned
snd_card st ructure, the third argum ent is the owner m odule, and the last argum ent is the size of a pr ivate
data field that ' ll be m ade available via the private_data field of the returned snd_card st ructure (usually
to store chip-specific data such as interrupt levels and I / O addresses) .

snd_card represents the created sound card and is defined as follows in include/ sound/ core.h :

struct snd_card {
 int number; /* Card index */
 char id[16]; /* Card ID */
 /* ... */
 struct module *module; /* Owner module */
 void *private_data; /* Private data */
 /* ... */
 struct list_head controls;
 /* All controls for this card */
 struct device *dev; /* Device assigned to this card*/
 /* ... */
};

The remove() counterpart of the probe m ethod, mycard_audio_remove() , releases the snd_card from the
ALSA fram ework using snd_card_free() .

2 . Creates a PCM playback instance and associates it with the card created in Step 1, using snd_pcm_new() :

int snd_pcm_new(struct snd_card *card, char *id,
 int device,
 int playback_count, int capture_count,
 struct snd_pcm **pcm);

The argum ents are, respect ively, the sound card instance created in Step 1, an ident ifier st r ing, the device
index, the num ber of supported playback st ream s, the num ber of supported capture st ream s (0 in our
exam ple) , and a pointer to store the allocated PCM instance. The allocated PCM instance is defined as
follows in include/ sound/ pcm .h:

Code View:
struct snd_pcm {
 struct snd_card *card; /* Associated snd_card */
 /* ... */
 struct snd_pcm_str streams[2]; /* Playback and capture streams of this PCM
 component. Each stream may support
 substreams if your h/w supports it
 */
 /* ... */
 struct device *dev; /* Associated hardware
 device */
};

The snd_device_new() rout ine lies at the core of snd_pcm_new() and other sim ilar com ponent
instant iat ion funct ions. snd_device_new() t ies a com ponent and a set of operat ions with the associated
snd_card (see Step 3) .

3 . Connects playback operat ions with the PCM instance created in Step 2, by calling snd_pcm_set_ops() . The
snd_pcm_ops st ructure specifies these operat ions for t ransferr ing PCM audio to the codec. List ing 13.1
accom plishes this as follows:

Code View:
/* Operators for the PCM playback stream */
static struct snd_pcm_ops mycard_playback_ops = {
 .open = mycard_pb_open, /* Open */
 .close = mycard_pb_close, /* Close */
 .ioctl = snd_pcm_lib_ioctl, /* Use to handle special commands, else
 specify the generic ioctl handler
 snd_pcm_lib_ioctl()*/
 .hw_params = mycard_hw_params, /* Called when higher layers set hardware
 parameters such as audio format. DMA
 buffer allocation is also done from here */
 .hw_free = mycard_hw_free, /* Free resources allocated in
 mycard_hw_params() */
 .prepare = mycard_pb_prepare, /* Prepare to transfer the audio stream.
 Set audio format such as S16_LE
 (explained soon), enable interrupts,.. */
 .trigger = mycard_pb_trigger, /* Called when the PCM engine starts,
 stops, or pauses. The second argument
 specifies why it was called. This

 function cannot go to sleep */
};

/* Connect the operations with the PCM instance */
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &mycard_playback_ops);

I n List ing 13.1, mycard_pb_prepare() configures the sam pling rate into the SAMPLING_RATE_REGISTER,
clock source into the CLOCKING_INPUT_REGISTER, and t ransm it com plete interrupt enablem ent into the
CONTROL_REGISTER. The trigger() m ethod, mycard_pb_trigger() , m aps an audio buffer populated by
the ALSA fram ework on- the- fly using dma_map_single() . (We discussed st ream ing DMA in Chapter 10,
"Peripheral Com ponent I nterconnect .") The m apped DMA buffer address is program m ed into the
DMA_ADDRESS_REGISTER. This register is part of the audio cont roller in the SoC, unlike the earlier registers
that reside inside the codec. The audio cont roller forwards the DMA'ed data to the codec for playback.

Another related object is the snd_pcm_hardware st ructure, which announces the PCM com ponent 's
hardware capabilit ies. For our exam ple device, this is defined in List ing 13.1 as follows:

Code View:
/* Hardware capabilities of the PCM playback stream */
static struct snd_pcm_hardware mycard_playback_stereo = {
 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_PAUSE |
 SNDRV_PCM_INFO_RESUME); /* mmap() is supported. The stream has
 pause/resume capabilities */
 .formats = SNDRV_PCM_FMTBIT_S16_LE,/* Signed 16 bits per channel, little
 endian */
 .rates = SNDRV_PCM_RATE_8000_48000,/* DAC Sampling rate range */
 .rate_min = 8000, /* Minimum sampling rate */
 .rate_max = 48000, /* Maximum sampling rate */
 .channels_min = 2, /* Supports a left and a right channel */
 .channels_max = 2, /* Supports a left and a right channel */
 .buffer_bytes_max = 32768, /* Max buffer size */
};

This object is t ied with the associated snd_pcm from the open() operator, mycard_playback_open() , using
the PCM runt im e instance. Each open PCM st ream has a runt ime object called snd_pcm_runtime that
contains all inform at ion needed to m anage that st ream . This is a gigant ic st ructure of software and
hardware configurat ions defined in include/ sound/ pcm .h and contains snd_pcm_hardware as one of its
com ponent fields.

4 . Preallocates buffers using snd_pcm_lib_preallocate_pages_for_all() . DMA buffers are subsequent ly
obtained from this preallocated area by mycard_hw_params() using snd_pcm_lib_malloc_pages() and
stored in the PCM runt im e instance alluded to in Step 3. mycard_pb_trigger() DMA-m aps this buffer while
start ing a PCM operat ion and unm aps it while stopping the PCM operat ion.

5 . Associates a m ixer cont rol elem ent with the sound card using snd_ctl_add() for global volum e cont rol:

snd_ctl_add(card, snd_ctl_new1(&mycard_playback_vol, &myctl_private));

snd_ctl_new1() takes an snd_kcontrol_new st ructure as its first argum ent and returns a pointer to an
snd_kcontrol st ructure. List ing 13.1 defines this as follows:

static struct snd_kcontrol_new mycard_playback_vol = {
 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
 /* Ctrl element is of type MIXER */
 .name = "MP3 volume", /* Name */
 .index = 0, /* Codec No: 0 */
 .info = mycard_pb_vol_info, /* Volume info */
 .get = mycard_pb_vol_get, /* Get volume */
 .put = mycard_pb_vol_put, /* Set volume */
};

The snd_kcontrol st ructure describes a cont rol elem ent . Our dr iver uses it as a knob for general volum e
cont rol. snd_ctl_add() registers an snd_kcontrol elem ent with the ALSA fram ework. The const ituent
cont rol m ethods are invoked when user applicat ions such as alsam ixer are executed. I n List ing 13.1, the
snd_kcontrol put() m ethod, mycard_playback_volume_put() , writes requested volum e set t ings to the
codec's VOLUME_REGISTER.

6 . And finally, registers the sound card with the ALSA fram ework:

snd_card_register(card);

codec_write_reg() (used, but left unim plem ented in List ing 13.1) writes values to codec registers by
com m unicat ing over the bus that connects the audio cont roller in the SoC to the external codec. I f the
underlying bus protocol is I 2C or SPI , for exam ple, codec_write_reg() uses the interface funct ions discussed in
Chapter 8 , "The I nter- I ntegrated Circuit Protocol."

I f you want to create a / proc interface in your dr iver for dum ping registers during debug or to export a
param eter during norm al operat ion, use the services of snd_card_proc_new() and fr iends. List ing 13.1 does
not use / proc interface files.

I f you build and load the dr iver m odule in List ing 13.1, you will see two new device nodes appearing on the MP3
player: / dev/ snd/ pcm C0D0p and / dev/ snd/ cont rolC0. The form er is the interface for audio playback, and the
lat ter is the interface for m ixer cont rol. The MP3 decoder applicat ion, with the help of alsa- lib, st ream s m usic by
operat ing over these device nodes.

List ing 1 3 .1 . ALSA Dr iver for the Linux MP3 Player

Code View:
include <linux/platform_device.h>
#include <linux/soundcard.h>
#include <sound/driver.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/initval.h>
#include <sound/control.h>

/* Playback rates supported by the codec */
static unsigned int mycard_rates[] = {
 8000,
 48000,
};
/* Hardware constraints for the playback channel */
static struct snd_pcm_hw_constraint_list mycard_playback_rates = {
 .count = ARRAY_SIZE(mycard_rates),
 .list = mycard_rates,

 .mask = 0,
};

static struct platform_device *mycard_device;
static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;

/* Hardware capabilities of the PCM stream */
static struct snd_pcm_hardware mycard_playback_stereo = {
 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_BLOCK_TRANSFER),
 .formats = SNDRV_PCM_FMTBIT_S16_LE, /* 16 bits per channel, little endian */
 .rates = SNDRV_PCM_RATE_8000_48000, /* DAC Sampling rate range */
 .rate_min = 8000, /* Minimum sampling rate */
 .rate_max = 48000, /* Maximum sampling rate */
 .channels_min = 2, /* Supports a left and a right channel */
 .channels_max = 2, /* Supports a left and a right channel */
 .buffer_bytes_max = 32768, /* Maximum buffer size */
};

/* Open the device in playback mode */
static int
mycard_pb_open(struct snd_pcm_substream *substream)
{
 struct snd_pcm_runtime *runtime = substream->runtime;

 /* Initialize driver structures */
 /* ... */
 /* Initialize codec registers */
 /* ... */
 /* Associate the hardware capabilities of this PCM component */
 runtime->hw = mycard_playback_stereo;

 /* Inform the ALSA framework about the constraints that
 the codec has. For example, in this case, it supports
 PCM sampling rates of 8000Hz and 48000Hz only */
 snd_pcm_hw_constraint_list(runtime, 0,
 SNDRV_PCM_HW_PARAM_RATE,
 &mycard_playback_rates);
 return 0;
}

/* Close */
static int
mycard_pb_close(struct snd_pcm_substream *substream)
{
 /* Disable the codec, stop DMA, free data structures */
 /* ... */
 return 0;
}

/* Write to codec registers by communicating over
 the bus that connects the SoC to the codec */
void
codec_write_reg(uint codec_register, uint value)
{
 /* ... */
}
/* Prepare to transfer an audio stream to the codec */
static int
mycard_pb_prepare(struct snd_pcm_substream *substream)

{

 /* Enable Transmit DMA complete interrupt by writing to
 CONTROL_REGISTER using codec_write_reg() */

 /* Set the sampling rate by writing to SAMPLING_RATE_REGISTER */

 /* Configure clock source and enable clocking by writing
 to CLOCK_INPUT_REGISTER */

 /* Allocate DMA descriptors for audio transfer */

 return 0;
}

/* Audio trigger/stop/.. */
static int
mycard_pb_trigger(struct snd_pcm_substream *substream, int cmd)
{
 switch (cmd) {
 case SNDRV_PCM_TRIGGER_START:
 /* Map the audio substream's runtime audio buffer (which is an
 offset into runtime->dma_area) using dma_map_single(),
 populate the resulting address to the audio controller's
 DMA_ADDRESS_REGISTER, and perform DMA */
 /* ... */
 break;

 case SNDRV_PCM_TRIGGER_STOP:
 /* Shut the stream. Unmap DMA buffer using dma_unmap_single() */
 /* ... */
 break;

 default:
 return -EINVAL;
 break;
 }

 return 0;
}
/* Allocate DMA buffers using memory preallocated for DMA from the
 probe() method. dma_[map|unmap]_single() operate on this area
 later on */
static int
mycard_hw_params(struct snd_pcm_substream *substream,
 struct snd_pcm_hw_params *hw_params)
{
 /* Use preallocated memory from mycard_audio_probe() to
 satisfy this memory request */
 return snd_pcm_lib_malloc_pages(substream,
 params_buffer_bytes(hw_params));
}

/* Reverse of mycard_hw_params() */
static int
mycard_hw_free(struct snd_pcm_substream *substream)
{
 return snd_pcm_lib_free_pages(substream);
}

/* Volume info */
static int
mycard_pb_vol_info(struct snd_kcontrol *kcontrol,
 struct snd_ctl_elem_info *uinfo)
{
 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
 /* Integer type */
 uinfo->count = 1; /* Number of values */
 uinfo->value.integer.min = 0; /* Minimum volume gain */
 uinfo->value.integer.max = 10; /* Maximum volume gain */
 uinfo->value.integer.step = 1; /* In steps of 1 */
 return 0;
}

/* Playback volume knob */
static int
mycard_pb_vol_put(struct snd_kcontrol *kcontrol,
 struct snd_ctl_elem_value *uvalue)
{
 int global_volume = uvalue->value.integer.value[0];

 /* Write global_volume to VOLUME_REGISTER
 using codec_write_reg() */
 /* ... */
 /* If the volume changed from the current value, return 1.
 If there is an error, return negative code. Else return 0 */
}

/* Get playback volume */
static int
mycard_pb_vol_get(struct snd_kcontrol *kcontrol,
 struct snd_ctl_elem_value *uvalue)
{
 /* Read global_volume from VOLUME_REGISTER
 and return it via uvalue->integer.value[0] */
 /* ... */
 return 0;
}

/* Entry points for the playback mixer */
static struct snd_kcontrol_new mycard_playback_vol = {
 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
 /* Control is of type MIXER */
 .name = "MP3 Volume", /* Name */
 .index = 0, /* Codec No: 0 */
 .info = mycard_pb_vol_info, /* Volume info */
 .get = mycard_pb_vol_get, /* Get volume */
 .put = mycard_pb_vol_put, /* Set volume */
};

/* Operators for the PCM playback stream */
static struct snd_pcm_ops mycard_playback_ops = {
 .open = mycard_playback_open, /* Open */
 .close = mycard_playback_close, /* Close */
 .ioctl = snd_pcm_lib_ioctl, /* Generic ioctl handler */
 .hw_params = mycard_hw_params, /* Hardware parameters */
 .hw_free = mycard_hw_free, /* Free h/w params */
 .prepare = mycard_playback_prepare, /* Prepare to transfer audio stream */
 .trigger = mycard_playback_trigger, /* Called when the PCM engine

 starts/stops/pauses */
};

/* Platform driver probe() method */
static int __init
mycard_audio_probe(struct platform_device *dev)
{
 struct snd_card *card;
 struct snd_pcm *pcm;
 int myctl_private;

 /* Instantiate an snd_card structure */
 card = snd_card_new(-1, id[dev->id], THIS_MODULE, 0);

 /* Create a new PCM instance with 1 playback substream
 and 0 capture streams */
 snd_pcm_new(card, "mycard_pcm", 0, 1, 0, &pcm);

 /* Set up our initial DMA buffers */
 snd_pcm_lib_preallocate_pages_for_all(pcm,
 SNDRV_DMA_TYPE_CONTINUOUS,
 snd_dma_continuous_data
 (GFP_KERNEL), 256*1024,
 256*1024);

 /* Connect playback operations with the PCM instance */
 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
 &mycard_playback_ops);

 /* Associate a mixer control element with this card */
 snd_ctl_add(card, snd_ctl_new1(&mycard_playback_vol,
 &myctl_private));

 strcpy(card->driver, "mycard");

 /* Register the sound card */
 snd_card_register(card);

 /* Store card for access from other methods */
 platform_set_drvdata(dev, card);

 return 0;
}

/* Platform driver remove() method */
static int
mycard_audio_remove(struct platform_device *dev)
{
 snd_card_free(platform_get_drvdata(dev));
 platform_set_drvdata(dev, NULL);
 return 0;
}

/* Platform driver definition */
static struct platform_driver mycard_audio_driver = {
 .probe = mycard_audio_probe, /* Probe method */
 .remove = mycard_audio_remove, /* Remove method */
 .driver = {
 .name = "mycard_ALSA",

 },
};

/* Driver Initialization */
static int __init
mycard_audio_init(void)
{
 /* Register the platform driver and device */
 platform_driver_register(&mycard_audio_driver);

 mycard_device = platform_device_register_simple("mycard_ALSA",
 -1, NULL, 0);
 return 0;
}

/* Driver Exit */
static void __exit
mycard_audio_exit(void)
{
 platform_device_unregister(mycard_device);
 platform_driver_unregister(&mycard_audio_driver);
}

module_init(mycard_audio_init);
module_exit(mycard_audio_exit);
MODULE_LICENSE("GPL");

ALSA Program m ing

To understand how the user space alsa- lib library interacts with kernel space ALSA drivers, let 's write a sim ple
applicat ion that sets the volum e gain of the MP3 player. We will m ap the alsa- lib services used by the
applicat ion to the m ixer cont rol m ethods defined in List ing 13.1. Let 's begin by loading the dr iver and exam ining
the m ixer 's capabilit ies:

bash> amixer contents

...
numid=3,iface=MIXER,name="MP3 Volume"
 ; type=INTEGER,...
...

I n the volum e-cont rol applicat ion, first allocate space for the alsa- lib objects necessary to perform the volum e-
cont rol operat ion:

#include <alsa/asoundlib.h>
snd_ctl_elem_value_t *nav_control;
snd_ctl_elem_id_t *nav_id;
snd_ctl_elem_info_t *nav_info;

snd_ctl_elem_value_alloca(&nav_control);
snd_ctl_elem_id_alloca(&nav_id);
snd_ctl_elem_info_alloca(&nav_info);

Next , set the interface type to SND_CTL_ELEM_IFACE_MIXER as specified in the mycard_playback_vol st ructure
in List ing 13.1:

snd_ctl_elem_id_set_interface(nav_id, SND_CTL_ELEM_IFACE_MIXER);

Now set the numid for the MP3 volum e obtained from the am ixer output above:

snd_ctl_elem_id_set_numid(nav_id, 3); /* num_id=3 */

Open the m ixer node, / dev/ snd/ cont rolC0. The third argum ent to snd_ctl_open() specifies the card num ber in
the node nam e:

snd_ctl_open(&nav_handle, card, 0);
/* Connect data structures */
snd_ctl_elem_info_set_id(nav_info, nav_id);
snd_ctl_elem_info(nav_handle, nav_info);

Elicit the type field in the snd_ctl_elem_info st ructure defined in mycard_pb_vol_info() in List ing 13.1 as
follows:

if (snd_ctl_elem_info_get_type(nav_info) !=
 SND_CTL_ELEM_TYPE_INTEGER) {
 printk("Mismatch in control type\n");
}

Get the supported codec volum e range by com m unicat ing with the mycard_pb_vol_info() dr iver m ethod:

long desired_volume = 5;
long min_volume = snd_ctl_elem_info_get_min(nav_info);
long max_volume = snd_ctl_elem_info_get_max(nav_info);
/* Ensure that the desired_volume is within min_volume and
 max_volume */
/* ... */

As per the definit ion of mycard_pb_vol_info() in List ing 13.1, the m inim um and m axim um values returned by
the above alsa- lib helper rout ines are 0 and 10, respect ively.

Finally, set the desired volum e and write it to the codec:

snd_ctl_elem_value_set_integer(nav_control, 0, desired_volume);
snd_ctl_elem_write(nav_handle, nav_control);

The call to snd_ctl_elem_write() results in the invocat ion of mycard_pb_vol_put() , which writes the desired
volum e gain to the codec's VOLUME_REGISTER.

MP3 Decoding Com plexity

The MP3 decoder applicat ion running on the player, as shown in Figure 13.4, requires a supply rate
of MP3 fram es from the CF disk that can sustain the com m on MP3 sam pling rate of 128KBps. This
is usually not a problem for m ost low-MI Ps devices, but in case it is, consider buffer ing each song
in m em ory before decoding it . (MP3 fram es at 128KBps roughly consum e 1MB per m inute of
m usic.)

MP3 decoding is lightweight and can usually be accom plished on- the- fly, but MP3 encoding is
heavy-duty and cannot be achieved in real t im e without hardware assist . Voice codecs such as
G.711 and G.729 used in Voice over I P (VoI P) environm ents can, however, encode and decode
audio data in real t im e.

Debugging

You m ay turn on opt ions under Device Drivers Sound Advanced Linux Sound Architecture in the kernel
configurat ion m enu to include ALSA debug code (CONFIG_SND_DEBUG) , verbose printk() m essages
(CONFIG_SND_VERBOSE_PRINTK) , and verbose procfs content (CONFIG_SND_VERBOSE_PROCFS) .

Procfs inform at ion pertaining to ALSA drivers resides in / proc/ asound/ . Look inside / sys/ class/ sound/ for the
device m odel inform at ion associated with each sound-class device.

I f you think you have found a bug in an ALSA driver, post it to the alsa-devel m ailing list (ht tp: / / m ailm an.alsa-
project .org/ m ailm an/ list info/ alsa-devel) . The linux-audio-dev m ailing list
(ht tp: / / m usic.colum bia.edu/ m ailm an/ list info/ linux-audio-dev/) , also called the Linux Audio Developers (LAD)
list , discusses quest ions related to the Linux-sound architecture and audio applicat ions.

http://mailman.alsa-
http://music.columbia.edu/mailman/listinfo/linux-audio-dev/

Look ing at the Sources

The sound core, audio buses, architectures, and the obsolete OSS suite all have their own separate
subdirector ies under sound/ . For the AC'97 interface im plem entat ion, look inside sound/ pci/ ac97/ . For an
exam ple I2S-based audio dr iver, look at sound/ soc/ at91/ at91-ssc.c, the audio dr iver for Atm el's AT91-series
ARM-based em bedded SoCs. Use sound/ drivers/ dum m y.c as a start ing point for developing your custom ALSA
driver if you cannot find a closer m atch.

Docum entat ion/ sound/ * contains inform at ion on ALSA and OSS drivers. Docum entat ion/ sound/ alsa/ DocBook/
contains a DocBook on writ ing ALSA drivers. An ALSA configurat ion guide is available in
Docum entat ion/ sound/ alsa/ ALSA-Configurat ion.txt . The Sound-HOWTO, downloadable from
ht tp: / / t ldp.org/ HOWTO/ Sound-HOWTO/ , answers several frequent ly asked quest ions pertaining to Linux support
for audio devices.

Madplay is a software MP3 decoder and player that is both ALSA- and OSS-aware. You can look at its sources
for t ips on user-space audio program m ing.

Two no- fr ills OSS tools for basic playback and recording are rawplay and rawrec, whose sources are
downloadable from ht tp: / / rawrec.sourceforge.net / .

You can find the hom e page of the Linux-ALSA project at www.alsa-project .org. Here, you will find the latest
news on ALSA drivers, details on the ALSA program m ing API , and inform at ion on subscribing to related mailing
lists. Sources of alsa-ut ils and alsa- lib, downloadable from this page, can aid you while developing ALSA-aware
applicat ions.

Table 13.2 contains the m ain data st ructures used in this chapter and their locat ion in the source t ree. Table
13.3 lists the m ain kernel program m ing interfaces that you used in this chapter along with the locat ion of their
definit ions.

Table 1 3 .2 . Sum m ary of Data St ructures

Data St ructure Locat ion Descr ipt ion

snd_card include/ sound/ core.h Representat ion of a sound card

snd_pcm include/ sound/ pcm .h An instance of a PCM object

snd_pcm_ops include/ sound/ pcm .h Used to connect operat ions with a PCM
object

snd_pcm_substream include/ sound/ pcm .h I nform at ion about the current audio
st ream

snd_pcm_runtime include/ sound/ pcm .h Runt im e details of the audio st ream

snd_kcontrol_new include/ sound/ cont rol.h Representat ion of an ALSA cont rol
elem ent

Table 1 3 .3 . Sum m ary of Kernel Program m ing I nter face s

Kernel I nter face Locat ion Descr ipt ion

snd_card_new() sound/ core/ init .c I nstant iates an snd_card st ructure

snd_card_free() sound/ core/ init .c Frees an instant iated snd_card

http://tldp.org/HOWTO/Sound-HOWTO/
http://rawrec.sourceforge.net/

Kernel I nter face Locat ion Descr ipt ion

snd_card_register() sound/ core/ init .c Registers a sound card with the
ALSA fram ework

snd_pcm_lib_preallocate_pages_for_all() sound/ core/ pcm _m em ory.c Preallocates buffers for a sound
card

snd_pcm_lib_malloc_pages() sound/ core/ pcm _m em ory.c Allocates DMA buffers for a sound
card

snd_pcm_new() sound/ core/ pcm .c Creates an instance of a PCM
object

snd_pcm_set_ops() sound/ core/ pcm _lib.c Connects playback or capture
operat ions with a PCM object

snd_ctl_add() sound/ core/ cont rol.c Associates a m ixer cont rol elem ent
with a sound card

snd_ctl_new1() sound/ core/ cont rol.c Allocates an snd_kcontrol
st ructure and init ializes it with
supplied cont rol operat ions

snd_card_proc_new() sound/ core/ info.c Creates a / proc ent ry and assigns
it to a card instance

Chapter 1 4 . Block Dr ivers

I n This Chapter

Storage Technologies
416

Linux Block I / O Layer
421

I / O Schedulers
422

Block Driver Data St ructures and Methods
423

Device Exam ple: Sim ple Storage
Cont roller

426

Advanced Topics
434

Debugging
436

Looking at the Sources
437

Block devices are storage m edia capable of random access. Unlike character devices, block devices
can hold filesystem data. I n this chapter, let 's find out how Linux supports storage buses and
devices.

Storage Technologies

Let 's start by taking a tour of the popular storage technologies found in today's com puter system s. We'll also
associate these technologies with the corresponding device dr iver subsystem s in the kernel source t ree.

I ntegrated Drive Elect ronics (I DE) is the com m on storage interface technology used in the PC environm ent . ATA
(short for Advanced Technology At tachm ent) is the official name for the related specificat ions. The I DE/ ATA

standard began with ATA-1; the latest version is ATA-7 and supports bandwidths of up to 133MBps. I ntervening
versions of the specificat ion are ATA-2, which int roduced logical block addressing (LBA) ; ATA-3, which enabled
SMART-capable disks (discussed later) ; ATA-4, which brought support for Ult ra DMA and the associated 33MBps
throughput ; ATA-5, which increased m axim um t ransfer speeds to 66MBps; and ATA-6, which provided for
100MBps data rates.

Storage devices such as CD-ROMs and tapes connect to the standard I DE cable using a special protocol called
the ATA Packet I nterface (ATAPI) . [1] ATAPI was int roduced along with ATA-4.

[1] The ATAPI protocol is closer to SCSI than to I DE.

The floppy disk cont roller in PC system s has t radit ionally been part of the Super I / O chipset about which we
learned in Chapter 6 , "Serial Drivers." These internal dr ives, however, have given way to faster external USB
floppy drives in today's PC environm ent .

Figure 14.1 shows an ATA-7 disk dr ive connected to an I DE host adapter that 's part of the South Bridge chipset
on a PC system . Also shown connected are an ATAPI CD-ROM drive and a floppy dr ive.

Figure 1 4 .1 . Storage m edia in a PC system .

I DE/ ATA is a parallel bus technology (som et im es called Parallel ATA or PATA) and cannot scale to high speeds,
as you learned while discussing PCI e in Chapter 10, "Peripheral Com ponent I nterconnect ." Serial ATA (SATA) is
a m odern serial bus evolut ion of PATA that supports t ransfer speeds in the realm of 300MBps and beyond. I n
addit ion to offer ing higher throughput than PATA, SATA brings capabilit ies such as hot swapping. SATA
technology is steadily replacing PATA. See the sidebar "libATA" to learn about the new ATA subsystem in the
kernel that supports both SATA and PATA.

libATA

libATA is the new ATA subsystem in the Linux kernel. I t consists of a set of ATA library rout ines
and a collect ion of low- level dr ivers that use them. libATA supports both SATA and PATA. SATA
drivers in libATA have been around for som e t im e under dr ivers/ scsi/ , but PATA drivers and the
new drivers/ ata/ directory that now houses all libATA sources were int roduced with the 2.6.19
kernel release.

I f your system is enabled with SATA storage, you need the services of libATA in tandem with the
SCSI subsystem . libATA support for PATA is st ill experim ental, and by default , PATA drivers
cont inue to use the legacy I DE drivers that live in dr ivers/ ide/ .

Assum e that your system is SATA-enabled via an I ntel I CH7 South Bridge chipset . You need the
following libATA com ponents to access your disk:

The libATA core— To enable this, set CONFIG_ATA during kernel configurat ion. For a list of
library funct ions offered by the core, grep for EXPORT_SYMBOL_GPL inside the dr ivers/ ata/
directory.

1 .

Advanced Host Cont roller I nter face (AHCI) suppor t— AHCI specifies the register
interface supported by SATA host adapters and is enabled by choosing CONFIG_AHCI at
configurat ion t im e.

2 .

The host cont roller adapter dr iver— For the I CH7, enable CONFIG_ATA_PIIX .3 .

Addit ionally, you need the m id- level and upper- level SCSI dr ivers (CONFIG_SCSI and fr iends) . After
you have loaded all these kernel com ponents, your SATA disk part it ions appear to the system as
/ dev/ sd* , just like SCSI or USB m ass storage part it ions.

The hom e page of the libATA project is ht tp: / / linux-ata.org/ . A DocBook is available as part of the
kernel source t ree in Docum entat ion/ DocBook/ libata.tm pl. A libATA developer 's guide is available
at www.kernel.org/ pub/ linux/ kernel/ people/ jgarzik/ libata.pdf.

Sm all Com puter System I nterface (SCSI) is the storage technology of choice in servers and high-end
workstat ions. SCSI is som ewhat faster than SATA and supports speeds of the order of 320MBps. SCSI has
t radit ionally been a parallel interface standard, but , like ATA, has recent ly shifted to serial operat ion with the
advent of a bus technology called Serial At tached SCSI (SAS) .

The kernel's SCSI subsystem is architected into three layers: top- level dr ivers for m edia such as disks, CD-
ROMs, and tapes; a m iddle- level layer that scans the SCSI bus and configures devices; and low- level host
adapter dr ivers. We learned about these layers in the sect ion "Mass Storage" in Chapter 11, "Universal Serial
Bus." Refer back to Figure 11.4 in that chapter to see how the different com ponents of the SCSI subsystem
interact with each other. [2] USB m ass storage drives use flash m em ory internally but com m unicate with host
system s using the SCSI protocol.

[2] SCSI support is discussed in other parts of this book, too. The sect ion " User Mode SCSI" in Chapter 19, "Drivers in User Space," discusses
the SCSI Generic (sg) interface that lets you direct ly dispatch com m ands from user space to SCSI devices. The sect ion " iSCSI " in Chapter 20,
"More Devices and Drivers," br iefly looks at the iSCSI protocol, which allows the t ransport of SCSI packets to a rem ote block device over a
TCP/ I P network.

http://linux-ata.org/

Redundant array of inexpensive disks (RAI D) is a technology built in to som e SCSI and SATA cont rollers to
achieve redundancy and reliabilit y. Various RAI D levels have been defined. RAI D-1, for exam ple, specifies disk
m irror ing, where data is duplicated on separate disks. Linux dr ivers are available for several RAI D-capable disk
drives. The kernel also offers a m ult idisk (m d) dr iver that im plem ents m ost RAI D levels in software.

Miniature storage is the nam e of the gam e in the embedded consum er elect ronics space. Transfer speeds in this
dom ain are m uch lower than that offered by the technologies discussed thus far. Secure Digital (SD) cards and
their sm aller form - factor derivat ives (m iniSD and m icroSD) are popular storage m edia[3] in devices such as
cam eras, cell phones, and m usic players. Cards com plying with version 1.01 of the SD card specificat ion support
t ransfer speeds of up to 10MBps. SD storage has evolved from an older, slower, but com pat ible technology
called Mult iMediaCard (MMC) that supports data rates of 2.5MBps. The kernel contains an SD/ MMC subsystem in
drivers/ m m c/ .

[3] See the sidebar "WiFi over SDI O" in Chapter 16, "Linux Without Wires," to learn about nonstorage technologies available in SD form factor.

The sect ion "PCMCI A Storage" in Chapter 9 , "PCMCI A and Com pact Flash," looked at different PCMCI A/ CF
flavors of storage cards and their corresponding kernel dr ivers. PCMCI A m em ory cards such as m icrodrives
support t rue I DE operat ion, whereas those that internally use solid-state m em ory em ulate I DE and export an
I DE program m ing m odel to the kernel. I n both these cases, the kernel's I DE subsystem can be used to enable
the card.

Table 14.1 sum m arizes im portant storage technologies and the locat ion of the associated device dr ivers in the
kernel source t ree.

Table 1 4 .1 . Storage Technologies and Associa ted Dev ice Dr ivers

Storage Technology Descr ipt ion Source File

I DE/ ATA Storage interface technology in the PC
environm ent . Supports data rates of
133MBps for ATA-7.

dr ivers/ ide/ ide-disk.c,
dr iver/ ide/ ide- io.c,
dr ivers/ ide/ ide-probe.c

or

drivers/ ata/
(Experim ental)

ATAPI Storage devices such as CD-ROMs and
tapes connect to the standard I DE cable
using the ATAPI protocol.

dr ivers/ ide/ ide-cd.c

or

drivers/ ata/
(Experim ental)

Floppy (internal) The floppy cont roller resides in the Super
I / O chip on the LPC bus in PC-com pat ible
system s. Supports t ransfer rates of the
order of 150KBps.

dr ivers/ block/ floppy.c

SATA Serial evolut ion of I DE/ ATA. Supports
speeds of 300MBps and beyond.

drivers/ ata/ , dr ivers/ scsi/

SCSI Storage technology popular in the server
environm ent . Supports t ransfer rates of
320MBps for Ult ra320 SCSI .

dr ivers/ scsi/

Storage Technology Descr ipt ion Source File

USB Mass Storage This refers to USB hard disks, pen drives,
CD-ROMs, and floppy dr ives. Look at the
sect ion "Mass Storage" in Chapter 11.
USB 2.0 devices can com m unicate at
speeds of up to 60MBps.

dr ivers/ usb/ storage/ ,
dr ivers/ scsi/

RAI D:

Hardware RAI D This is a capabilit y built into high-end
SCSI / SATA disk cont rollers to achieve
redundancy and reliabilit y.

dr ivers/ scsi/ , dr ivers/ ata/

Software RAI D On Linux, the m ult idisk (m d) dr iver
im plem ents several RAI D levels in
software.

dr ivers/ m d/

SD/ m iniSD/ m icroSD Sm all form - factor storage m edia popular
in consum er elect ronic devices such as
cam eras and cell phones. Supports
t ransfer rates of up to 10MBps.

drivers/ m m c/

MMC Older rem ovable storage standard that 's
com pat ible with SD cards. Supports data
rates of 2.5MBps.

drivers/ m m c/

PCMCI A/ CF storage
cards

PCMCI A/ CF form factor of m iniature I DE
drives, or solid-state m em ory cards that
em ulate I DE. See the sect ion "PCMCI A
Storage" in Chapter 9 .

dr ivers/ ide/ legacy/ ide-cs.c

or

drivers/ ata/ pata_pcm cia.c
(experim ental)

Block device em ulat ion
over flash m em ory

Em ulates a hard disk over flash m em ory.
See the sect ion "Block Device Em ulat ion"
in Chapter 17, "Mem ory Technology
Devices."

dr ivers/ m td/ m tdblock.c,
dr ivers/ m td/ m td_blkdevs.c

Virtual block devices on Linux:

RAM disk I m plem ents support to use a RAM region
as a block device.

dr ivers/ block/ rd.c

Loopback device I m plem ents support to use a regular file
as a block device.

dr ivers/ block/ loop.c

Chapter 1 4 . Block Dr ivers

I n This Chapter

Storage Technologies
416

Linux Block I / O Layer
421

I / O Schedulers
422

Block Driver Data St ructures and Methods
423

Device Exam ple: Sim ple Storage
Cont roller

426

Advanced Topics
434

Debugging
436

Looking at the Sources
437

Block devices are storage m edia capable of random access. Unlike character devices, block devices
can hold filesystem data. I n this chapter, let 's find out how Linux supports storage buses and
devices.

Storage Technologies

Let 's start by taking a tour of the popular storage technologies found in today's com puter system s. We'll also
associate these technologies with the corresponding device dr iver subsystem s in the kernel source t ree.

I ntegrated Drive Elect ronics (I DE) is the com m on storage interface technology used in the PC environm ent . ATA
(short for Advanced Technology At tachm ent) is the official name for the related specificat ions. The I DE/ ATA

standard began with ATA-1; the latest version is ATA-7 and supports bandwidths of up to 133MBps. I ntervening
versions of the specificat ion are ATA-2, which int roduced logical block addressing (LBA) ; ATA-3, which enabled
SMART-capable disks (discussed later) ; ATA-4, which brought support for Ult ra DMA and the associated 33MBps
throughput ; ATA-5, which increased m axim um t ransfer speeds to 66MBps; and ATA-6, which provided for
100MBps data rates.

Storage devices such as CD-ROMs and tapes connect to the standard I DE cable using a special protocol called
the ATA Packet I nterface (ATAPI) . [1] ATAPI was int roduced along with ATA-4.

[1] The ATAPI protocol is closer to SCSI than to I DE.

The floppy disk cont roller in PC system s has t radit ionally been part of the Super I / O chipset about which we
learned in Chapter 6 , "Serial Drivers." These internal dr ives, however, have given way to faster external USB
floppy drives in today's PC environm ent .

Figure 14.1 shows an ATA-7 disk dr ive connected to an I DE host adapter that 's part of the South Bridge chipset
on a PC system . Also shown connected are an ATAPI CD-ROM drive and a floppy dr ive.

Figure 1 4 .1 . Storage m edia in a PC system .

I DE/ ATA is a parallel bus technology (som et im es called Parallel ATA or PATA) and cannot scale to high speeds,
as you learned while discussing PCI e in Chapter 10, "Peripheral Com ponent I nterconnect ." Serial ATA (SATA) is
a m odern serial bus evolut ion of PATA that supports t ransfer speeds in the realm of 300MBps and beyond. I n
addit ion to offer ing higher throughput than PATA, SATA brings capabilit ies such as hot swapping. SATA
technology is steadily replacing PATA. See the sidebar "libATA" to learn about the new ATA subsystem in the
kernel that supports both SATA and PATA.

libATA

libATA is the new ATA subsystem in the Linux kernel. I t consists of a set of ATA library rout ines
and a collect ion of low- level dr ivers that use them. libATA supports both SATA and PATA. SATA
drivers in libATA have been around for som e t im e under dr ivers/ scsi/ , but PATA drivers and the
new drivers/ ata/ directory that now houses all libATA sources were int roduced with the 2.6.19
kernel release.

I f your system is enabled with SATA storage, you need the services of libATA in tandem with the
SCSI subsystem . libATA support for PATA is st ill experim ental, and by default , PATA drivers
cont inue to use the legacy I DE drivers that live in dr ivers/ ide/ .

Assum e that your system is SATA-enabled via an I ntel I CH7 South Bridge chipset . You need the
following libATA com ponents to access your disk:

The libATA core— To enable this, set CONFIG_ATA during kernel configurat ion. For a list of
library funct ions offered by the core, grep for EXPORT_SYMBOL_GPL inside the dr ivers/ ata/
directory.

1 .

Advanced Host Cont roller I nter face (AHCI) suppor t— AHCI specifies the register
interface supported by SATA host adapters and is enabled by choosing CONFIG_AHCI at
configurat ion t im e.

2 .

The host cont roller adapter dr iver— For the I CH7, enable CONFIG_ATA_PIIX .3 .

Addit ionally, you need the m id- level and upper- level SCSI dr ivers (CONFIG_SCSI and fr iends) . After
you have loaded all these kernel com ponents, your SATA disk part it ions appear to the system as
/ dev/ sd* , just like SCSI or USB m ass storage part it ions.

The hom e page of the libATA project is ht tp: / / linux-ata.org/ . A DocBook is available as part of the
kernel source t ree in Docum entat ion/ DocBook/ libata.tm pl. A libATA developer 's guide is available
at www.kernel.org/ pub/ linux/ kernel/ people/ jgarzik/ libata.pdf.

Sm all Com puter System I nterface (SCSI) is the storage technology of choice in servers and high-end
workstat ions. SCSI is som ewhat faster than SATA and supports speeds of the order of 320MBps. SCSI has
t radit ionally been a parallel interface standard, but , like ATA, has recent ly shifted to serial operat ion with the
advent of a bus technology called Serial At tached SCSI (SAS) .

The kernel's SCSI subsystem is architected into three layers: top- level dr ivers for m edia such as disks, CD-
ROMs, and tapes; a m iddle- level layer that scans the SCSI bus and configures devices; and low- level host
adapter dr ivers. We learned about these layers in the sect ion "Mass Storage" in Chapter 11, "Universal Serial
Bus." Refer back to Figure 11.4 in that chapter to see how the different com ponents of the SCSI subsystem
interact with each other. [2] USB m ass storage drives use flash m em ory internally but com m unicate with host
system s using the SCSI protocol.

[2] SCSI support is discussed in other parts of this book, too. The sect ion " User Mode SCSI" in Chapter 19, "Drivers in User Space," discusses
the SCSI Generic (sg) interface that lets you direct ly dispatch com m ands from user space to SCSI devices. The sect ion " iSCSI " in Chapter 20,
"More Devices and Drivers," br iefly looks at the iSCSI protocol, which allows the t ransport of SCSI packets to a rem ote block device over a
TCP/ I P network.

http://linux-ata.org/

Redundant array of inexpensive disks (RAI D) is a technology built in to som e SCSI and SATA cont rollers to
achieve redundancy and reliabilit y. Various RAI D levels have been defined. RAI D-1, for exam ple, specifies disk
m irror ing, where data is duplicated on separate disks. Linux dr ivers are available for several RAI D-capable disk
drives. The kernel also offers a m ult idisk (m d) dr iver that im plem ents m ost RAI D levels in software.

Miniature storage is the nam e of the gam e in the embedded consum er elect ronics space. Transfer speeds in this
dom ain are m uch lower than that offered by the technologies discussed thus far. Secure Digital (SD) cards and
their sm aller form - factor derivat ives (m iniSD and m icroSD) are popular storage m edia[3] in devices such as
cam eras, cell phones, and m usic players. Cards com plying with version 1.01 of the SD card specificat ion support
t ransfer speeds of up to 10MBps. SD storage has evolved from an older, slower, but com pat ible technology
called Mult iMediaCard (MMC) that supports data rates of 2.5MBps. The kernel contains an SD/ MMC subsystem in
drivers/ m m c/ .

[3] See the sidebar "WiFi over SDI O" in Chapter 16, "Linux Without Wires," to learn about nonstorage technologies available in SD form factor.

The sect ion "PCMCI A Storage" in Chapter 9 , "PCMCI A and Com pact Flash," looked at different PCMCI A/ CF
flavors of storage cards and their corresponding kernel dr ivers. PCMCI A m em ory cards such as m icrodrives
support t rue I DE operat ion, whereas those that internally use solid-state m em ory em ulate I DE and export an
I DE program m ing m odel to the kernel. I n both these cases, the kernel's I DE subsystem can be used to enable
the card.

Table 14.1 sum m arizes im portant storage technologies and the locat ion of the associated device dr ivers in the
kernel source t ree.

Table 1 4 .1 . Storage Technologies and Associa ted Dev ice Dr ivers

Storage Technology Descr ipt ion Source File

I DE/ ATA Storage interface technology in the PC
environm ent . Supports data rates of
133MBps for ATA-7.

dr ivers/ ide/ ide-disk.c,
dr iver/ ide/ ide- io.c,
dr ivers/ ide/ ide-probe.c

or

drivers/ ata/
(Experim ental)

ATAPI Storage devices such as CD-ROMs and
tapes connect to the standard I DE cable
using the ATAPI protocol.

dr ivers/ ide/ ide-cd.c

or

drivers/ ata/
(Experim ental)

Floppy (internal) The floppy cont roller resides in the Super
I / O chip on the LPC bus in PC-com pat ible
system s. Supports t ransfer rates of the
order of 150KBps.

dr ivers/ block/ floppy.c

SATA Serial evolut ion of I DE/ ATA. Supports
speeds of 300MBps and beyond.

drivers/ ata/ , dr ivers/ scsi/

SCSI Storage technology popular in the server
environm ent . Supports t ransfer rates of
320MBps for Ult ra320 SCSI .

dr ivers/ scsi/

Storage Technology Descr ipt ion Source File

USB Mass Storage This refers to USB hard disks, pen drives,
CD-ROMs, and floppy dr ives. Look at the
sect ion "Mass Storage" in Chapter 11.
USB 2.0 devices can com m unicate at
speeds of up to 60MBps.

dr ivers/ usb/ storage/ ,
dr ivers/ scsi/

RAI D:

Hardware RAI D This is a capabilit y built into high-end
SCSI / SATA disk cont rollers to achieve
redundancy and reliabilit y.

dr ivers/ scsi/ , dr ivers/ ata/

Software RAI D On Linux, the m ult idisk (m d) dr iver
im plem ents several RAI D levels in
software.

dr ivers/ m d/

SD/ m iniSD/ m icroSD Sm all form - factor storage m edia popular
in consum er elect ronic devices such as
cam eras and cell phones. Supports
t ransfer rates of up to 10MBps.

drivers/ m m c/

MMC Older rem ovable storage standard that 's
com pat ible with SD cards. Supports data
rates of 2.5MBps.

drivers/ m m c/

PCMCI A/ CF storage
cards

PCMCI A/ CF form factor of m iniature I DE
drives, or solid-state m em ory cards that
em ulate I DE. See the sect ion "PCMCI A
Storage" in Chapter 9 .

dr ivers/ ide/ legacy/ ide-cs.c

or

drivers/ ata/ pata_pcm cia.c
(experim ental)

Block device em ulat ion
over flash m em ory

Em ulates a hard disk over flash m em ory.
See the sect ion "Block Device Em ulat ion"
in Chapter 17, "Mem ory Technology
Devices."

dr ivers/ m td/ m tdblock.c,
dr ivers/ m td/ m td_blkdevs.c

Virtual block devices on Linux:

RAM disk I m plem ents support to use a RAM region
as a block device.

dr ivers/ block/ rd.c

Loopback device I m plem ents support to use a regular file
as a block device.

dr ivers/ block/ loop.c

Linux Block I / O Layer

The block I / O layer was considerably overhauled between the 2.4 and 2.6 kernel releases. The m ot ivat ion for
the redesign was that the block layer, m ore than other kernel subsystem s, has the potent ial to im pact overall
system perform ance.

Let 's take a look at Figure 14.2 to learn the workings of the Linux block I / O layer. The storage m edia contains
files residing in a filesystem , such as EXT3 or Reiserfs. User applicat ions invoke I / O system calls to access these
files. The result ing filesystem operat ions pass through the generic Vir tual File System (VFS) layer before
entering the individual filesystem driver. The buffer cache speeds up filesystem access to block devices by
caching disk blocks. I f a block is found in the buffer cache, the t im e required to access the disk to read the block
is saved. Data dest ined for each block device is lined up in a request queue. The filesystem driver populates the
request queue belonging to the desired block device, whereas the block dr iver receives and consum es requests
from the corresponding queue. I n between, I / O schedulers m anipulate the request queue so as to m inim ize disk
access latencies and m axim ize throughput .

Figure 1 4 .2 . Block I / O on Linux.

Let 's next exam ine the different I / O schedulers available on Linux.

I / O Schedulers

Block devices suffer seek t im es, the latency to m ove the disk head from its exist ing posit ion to the disk sector of
interest . The m ain goal of an I / O scheduler is to increase system throughput by m inim izing these seek t im es. To
achieve this, I / O schedulers m aintain the request queue in sorted order according to the disk sectors associated
with the const ituent requests. New requests are inserted into the queue such that this order is m aintained. I f an
exist ing request in the queue is associated with an adjacent disk sector, the new request is m erged with it .
Because of these propert ies, I / O schedulers bear an operat ional resem blance to elevators—they schedule
requests in a single direct ion unt il the last requester in the line is serviced.

The I / O scheduler in 2.4 kernels im plem ented a st raight forward version of this algorithm and was called the
Linus elevator. This turned out to be inadequate under real-world condit ions, however, and was replaced in the
2.6 kernel by a suite of four schedulers: Deadline, Ant icipatory, Com plete Fair Queuing, and Noop. The
scheduler used by default is Ant icipatory, but this can be changed during kernel configurat ion or by changing
the value of / sys/ block/ [disk] / queue/ scheduler. (Replace [disk] with hda if you are using an I DE disk, for
exam ple.) Table 14.2 br iefly describes Linux I / O schedulers.

Table 1 4 .2 . Linux I / O Schedulers

I / O Scheduler Descr ipt ion Source File

Linus elevator St raight forward im plem entat ion of the
standard m erge-and-sort I / O scheduling
algorithm .

dr ivers/ block/ elevator.c
(in the 2.4 kernel t ree)

Deadline I n addit ion to what the Linus elevator
does, the Deadline scheduler associates
expirat ion t im es with each request in
order to ensure that a burst of requests
to the sam e disk region do not starve
requests to regions that are farther away.
Moreover, read operat ions are granted
m ore prior ity than write operat ions
because user processes usually block
unt il their read requests com plete. The
Deadline scheduler thus ensures that
each I / O request is serviced within a t im e
lim it , which is im portant for som e
database loads.

block/ deadline-
iosched.c (in the 2.6
kernel t ree)

Ant icipatory Sim ilar to the Deadline scheduler, except
that after servicing read requests, the
Ant icipatory scheduler waits for a
predeterm ined am ount of t im e
ant icipat ing further requests. This
scheduling technique is suited for
workstat ion/ interact ive loads.

block/ as- iosched.c (in
the 2.6 kernel t ree)

Com plete Fair Queuing
(CFQ)

Sim ilar to the Linus elevator, except that
the CFQ scheduler m aintains one request
queue per or iginat ing process, rather
than one generic queue. This ensures that
each process (or process group) gets a
fair port ion of the I / O and prevents one
process from starving others.

block/ cfq- iosched.c (in
the 2.6 kernel t ree)

Noop The Noop scheduler doesn't spend t im e block/ noop- iosched.c

I / O Scheduler Descr ipt ion Source FileNoop The Noop scheduler doesn't spend t im e
t raversing the request queue searching
for opt im al insert ion points. I nstead, it
sim ply adds new requests to the tail of
the request queue. This scheduler is thus
ideal for sem iconductor storage m edia
that have no m oving parts and, hence, no
seek latencies. An exam ple is a Disk-On-
Module (DOM), which internally uses flash
m em ory.

block/ noop- iosched.c
(in the 2.6 kernel t ree)

At a conceptual level, I / O scheduling resem bles process scheduling. Whereas I / O scheduling provides an illusion
to processes that they own the disk, process scheduling gives processes the illusion that they own the CPU.
Both I / O and process schedulers on Linux have undergone extensive changes in recent t im es. Process
scheduling is discussed in Chapter 19.

Block Dr iver Data St ructures and Methods

Let 's now shift focus to the m ain topic of this chapter, block device dr ivers. I n this sect ion, we take a look at the
im portant data st ructures and driver m ethods that you are likely to encounter while im plem ent ing a block
device dr iver. We use these st ructures and m ethods in the next sect ion when we im plem ent a block dr iver for a
fict it ious storage cont roller.

The following are the m ain block dr iver data st ructures:

The kernel represents a disk using the gendisk (short for generic disk) st ructure defined in
include/ linux/ genhd.h:

struct gendisk {
 int major; /* Device major number */
 int first_minor; /* Starting minor number */
 int minors; /* Maximum number of minors.
 You have one minor number
 per disk partition */
 char disk_name[32]; /* Disk name */
 /* ... */
 struct block_device_operations *fops;
 /* Block device operations.
 Described soon. */
 struct request_queue *queue; /* The request queue associated
 with this disk. Discussed
 next. */
 /* ... */
};

1 .

The I / O request queue associated with each block driver is described using the request_queue st ructure
defined in include/ linux/ blkdev.h. This is a big st ructure, but its only const ituent field that you m ight use is
the request st ructure, which is described next .

2 .

Each request in a request_queue is represented using a request st ructure defined in
include/ linux/ blkdev.h:

struct request {
 /* ... */
 struct request_queue *q; /* The container request queue */
 /* ... */
 sector_t sector; /* Sector from which data access
 is requested */
 /* ... */
 unsigned long nr_sectors; /* Number of sectors left to
 submit */
 /* ... */
 struct bio *bio; /* The associated bio. Discussed
 soon. */
 /* ... */
 char *buffer; /* The buffer for data transfer */

3 .

 /* ... */
 struct request *next_rq; /* Next request in the queue */
};

block_device_operations is the block dr iver counterpart of the file_operations st ructure used by
character dr ivers. I t contains the following ent ry points associated with a block dr iver:

Standard m ethods such as open() , release() , and ioctl()

Specialized m ethods such as media_changed() and revalidate_disk() that support rem ovable
block devices

block_device_operations is defined as follows in include/ linux/ fs.h:

 struct block_device_operations {
 int (*open) (struct inode *, struct file *); /* Open */
 int (*release) (struct inode *, struct file *);/* Close */
 int (*ioctl) (struct inode *, struct file *,
 unsigned, unsigned long); /* I/O Control */
 /* ... */
 int (*media_changed) (struct gendisk *); /* Check if media is
 available or
 ejected */
 int (*revalidate_disk) (struct gendisk *); /* Gear up for newly
 inserted media */
 /* ... */
 };

4 .

When we looked at the request st ructure, we saw that it was associated with a bio . A bio st ructure is a
low- level descript ion of block I / O operat ions at page- level granular ity. I t 's defined in include/ linux/ bio.h as
follows:

struct bio {
 sector_t bi_sector; /* Sector from which data
 access is requested */
 struct bio *bi_next; /* List of bio nodes */
 /* .. */
 unsigned long bi_rw; /* Bottom bits of bi_rw contain
 the data-transfer direction */
 /* ... */
 struct bio_vec *bi_io_vec; /* Pointer to an array of
 bio_vec structures */
 unsigned short bi_vcnt; /* Size of the bio_vec array */
 unsigned short bi_idx; /* Index of the current bio_vec
 in the array */
 /* ... */
};

Block data is internally represented as an I / O vector using an array of bio_vec st ructures. Each elem ent
of the bio_vec array is m ade up of a (page , page_offset , length) tuple that describes a segm ent of the
I / O block. Maintaining I / O requests as a vector of pages brings several advantages, including a leaner
im plem entat ion and efficient scat ter/ gather.

5 .

Before ending this sect ion, let 's br iefly look at block dr iver ent ry points. Block dr ivers are broadly built using
three types of m ethods:

The usual init ializat ion and exit m ethods.

Methods that are part of the block_device_operations described previously.

A request m ethod. Block dr ivers, unlike char devices, do not support read()/write() m ethods for data
t ransfer. I nstead, they perform disk access using a special rout ine called the request m ethod.

The block core layer offers a set of library rout ines that dr iver m ethods can leverage. The sam ple dr iver in the
next sect ion calls on the services of several of these library rout ines.

Device Exam ple: Sim ple Storage Cont roller

Consider the em bedded device shown in Figure 14.3. The SoC contains a built - in storage cont roller that
com m unicates with a block device. The architecture is sim ilar to SD/ MMC m edia, but our sam ple storage
cont roller is described by the elem entary register set listed in Table 14.3. The SECTOR_NUMBER_REGISTER
specifies the sector from which data access is requested. [4] The SECTOR_COUNT_REGISTER contains the num ber of
sectors to be t ransferred. Data is m oved via the DATA_REGISTER. The COMMAND_REGISTER program s the act ion
that the storage cont roller has to take (for exam ple, whether to read from the m edia or write to it) . The
STATUS_REGISTER contains bits that signal whether the cont roller is busy perform ing an operat ion.

[4] The storage m edia in our sam ple device has a flat sector-space geom etry. I DE cont rollers, on the other hand, support a cylinder head
sector (CHS) geom etry specified by a device head register, a low cylinder register, and a high cylinder register, in addit ion to the sector
num ber register.

Figure 1 4 .3 . Storage on an em bedded device.

Table 1 4 .3 . Register Layout of the Storage Cont roll er

Register Nam e Descr ipt ion of Contents

SECTOR_NUMBER_REGISTER The sector on which the next disk operat ion is to be
perform ed.

SECTOR_COUNT_REGISTER Num ber of sectors to be read or writ ten.

COMMAND_REGISTER The act ion to be taken (for exam ple, read or write) .

STATUS_REGISTER Results of operat ions, interrupt status, and error flags.

DATA_REGISTER I n the read path, the storage cont roller fetches data from
the disk to internal buffers. The driver accesses the
internal buffer via this register. I n the write path, data
writ ten by the dr iver to this register is t ransferred to the
internal buffer, from where the cont roller copies it to disk.

Let 's call the storage cont roller m yblkdev. This sim ple device is neither interrupt dr iven nor supports DMA. We'll
also assum e that the m edia is not rem ovable. Our task is to write a block dr iver for m yblkdev. Our dr iver is
m inim al, albeit com plete. I t does not handle power m anagem ent and is not part icular ly perform ance-sensit ive.

I n it ia lizat ion

List ing 14.1 contains the dr iver init ializat ion m ethod, myblkdev_init () , which perform s the following steps:

1 . Registers the block device using register_blkdev() . This block library rout ine assigns an unused m ajor
num ber to m yblkdev and adds an ent ry for the device in / proc/ devices.

2 . Associates a request m ethod with the block device. I t does this by supplying the address of
myblkdev_request() to blk_init_queue() . The call to blk_init_queue() returns the request_queue for
m yblkdev. Refer back to Figure 14.2 to see how the request_queue sits relat ive to the dr iver. The second
argum ent to blk_init_queue() , myblkdev_lock , is a spinlock to protect the request_queue from
concurrent access.

3 . Hardware perform s disk t ransact ions in units of sectors, whereas software subsystem s, such as
filesystem s, deal with data in term s of blocks. The com m on sector size is 512 bytes; the usual block size is
4096 bytes. You need to inform the block layer about the sector size supported by your storage hardware
and the m axim um num ber of sectors that your dr iver can receive per request . myblkdev_init()
accom plishes these by invoking blk_queue_hardsect_size() and blk_queue_max_sectors() ,
respect ively.

4 . Allocates a gendisk corresponding to m yblkdev using alloc_disk() and populates it . One im portant
gendisk field that myblkdev_init() supplies is the address of the dr iver 's block_device_operations .
Another param eter that myblkdev_init() fills in is the storage capacity of m yblkdev in units of sectors.
This is accom plished by calling set_capacity() . Each gendisk also contains a flag that signals the
propert ies of the underlying storage hardware. I f the dr ive is rem ovable, for exam ple, the gendisk 's flag
field should be m arked GENHD_FL_REMOVABLE.

5 . Associates the gendisk prepared in Step 4 with the request_queue obtained in Step 2. Also, connects the
gendisk with the device's m ajor/ m inor num bers and a nam e.

6 . Adds the disk to the block I / O layer by invoking add_disk() . When this is done, the dr iver has to be ready
to receive requests. So, this is usually the last step of the init ializat ion sequence.

The block device is now available to the system as / dev/ m yblkdev. I f the device supports m ult iple disk
part it ions, they appear as / dev/ m yblkdevX, where X is the part it ion num ber.

List ing 1 4 .1 . I n it ia liz ing the Dr iver

Code View:
#include <linux/blkdev.h>
#include <linux/genhd.h>

static struct gendisk *myblkdisk; /* Representation of a disk */
static struct request_queue *myblkdev_queue;
 /* Associated request queue */
int myblkdev_major = 0; /* Ask the block subsystem
 to choose a major number */
static DEFINE_SPINLOCK(myblkdev_lock);/* Spinlock that protects
 myblkdev_queue from
 concurrent access */

int myblkdisk_size = 256*1024; /* Disk size in kilobytes. For
 a PC hard disk, one way to
 glean this is via the BIOS */
int myblkdev_sect_size = 512; /* Hardware sector size */
/* Initialization */
static int __init
myblkdev_init(void)
{
 /* Register this block driver with the kernel */
 if ((myblkdev_major = register_blkdev(myblkdev_major,
 "myblkdev")) <= 0) {
 return -EIO;
 }

 /* Allocate a request_queue associated with this device */
 myblkdev_queue = blk_init_queue(myblkdev_request, &myblkdev_lock);
 if (!myblkdev_queue) return -EIO;

 /* Set the hardware sector size and the max number of sectors */
 blk_queue_hardsect_size(myblkdev_queue, myblkdev_sect_size);
 blk_queue_max_sectors(myblkdev_queue, 512);

 /* Allocate an associated gendisk */
 myblkdisk = alloc_disk(1);
 if (!myblkdisk) return -EIO;

 /* Fill in parameters associated with the gendisk */
 myblkdisk->fops = &myblkdev_fops;

 /* Set the capacity of the storage media in terms of number of
 sectors */
 set_capacity(myblkdisk, myblkdisk_size*2);

 myblkdisk->queue = myblkdev_queue;
 myblkdisk->major = myblkdev_major;
 myblkdisk->first_minor = 0;
 sprintf(myblkdisk->disk_name, "myblkdev");

 /* Add the gendisk to the block I/O subsystem */
 add_disk(myblkdisk);

 return 0;
}

/* Exit */
static void __exit
myblkdev_exit(void)
{
 /* Invalidate partitioning information and perform cleanup */
 del_gendisk(myblkdisk);

 /* Drop references to the gendisk so that it can be freed */
 put_disk(myblkdisk);

 /* Dissociate the driver from the request_queue. Internally calls
 elevator_exit() */
 blk_cleanup_queue(myblkdev_queue);

 /* Unregister the block device */
 unregister_blkdev(myblkdev_major, "myblkdev");
}

module_init(myblkdev_init);
module_exit(myblkdev_exit);
MODULE_LICENSE("GPL");

Block Device Operat ions

Let 's next take a look at the m ain m ethods contained in a block dr iver 's block_device_operations .

A block dr iver 's open() m ethod is called during operat ions such as m ount ing a filesystem residing on the m edia
or perform ing a filesystem check (fsck) . Many of the tasks accom plished during open() are hardware-
dependent . The CD-ROM driver, for exam ple, locks the dr ive door. The SCSI dr iver checks whether the device
has set a write-protect tab, and, if so, fails if a write-enabled open is requested. I f the device is rem ovable,
open() invokes the service rout ine check_disk_change() to check whether the m edia has changed.

I f your dr iver needs to support specific com m ands, im plem ent support for it using the ioctl() m ethod. A floppy
driver, for exam ple, supports a com m and to eject the m edia.

The media_changed() m ethod checks whether the storage m edia has changed, so this is not relevant for fixed
devices such as m yblkdev. The SCSI disk dr iver 's media_changed() m ethod, for exam ple, detects whether an
inserted USB pen drive has changed.

The sole block device operat ion supported by m yblkdev is the ioctl() m ethod, myblkdev_ioctl() . The block
layer itself handles generic ioct ls and invokes the dr iver 's ioctl() m ethod only to handle device-specific
com m ands. I n List ing 14.2, myblkdev_ioctl() im plem ents the GET_DEVICE_ID com m and that elicits a device
I D from the cont roller. The com m and is issued via the COMMAND_REGISTER, and the I D data is obtained from the
DATA_REGISTER.

List ing 1 4 .2 . Block Device Operat ions

Code View:
#define GET_DEVICE_ID 0xAA00 /* Ioctl command definition */

/* The ioctl operation */
static int
myblkdev_ioctl (struct inode *inode, struct file *file,
 unsigned int cmd, unsigned long arg)
{
 unsigned char status;

 switch (cmd) {
 case GET_DEVICE_ID:
 outb(GET_IDENTITY_CMD, COMMAND_REGISTER);
 /* Wait as long as the controller is busy */
 while ((status = inb(STATUS_REGISTER)) & BUSY_STATUS);

 /* Obtain ID and return it to user space */
 return put_user(inb(DATA_REGISTER), (long __user *)arg);
 default:
 return -EINVAL;
 }
}

/* Block device operations */
static struct block_device_operations myblkdev_fops = {
 .owner = THIS_MODULE, /* Owner of this structure */
 .ioctl = myblkdev_ioctl,
 /* The following operations are not implemented for our example
 storage controller: open(), release(), unlocked_ioctl(),
 compat_ioctl(), direct_access(), getgeo(), revalidate_disk(), and
 media_changed() */
};

Disk Access

As m ent ioned previously, block dr ivers perform disk access operat ions using a request() m ethod. The block I / O
subsystem invokes a dr iver 's request() m ethod whenever it desires to process requests wait ing in the dr iver 's
request_queue . The request() m ethod does not run in the context of the user process request ing the data
t ransfer, however. The address of the associated request_queue is passed as an argum ent to the request()
m ethod.

As you saw earlier, the kernel holds a request lock before calling the request() m ethod. This is to protect the
associated request queue from concurrent access. Because of this, if your request() m ethod has to call any
funct ions that m ay go to sleep, it has to drop the lock before doing so and reacquire it before returning.

List ing 14.3 contains our dr iver 's request m ethod, myblkdev_request() . This funct ion uses the services of
elv_next_request() to obtain the next request from the request_queue . I f the queue contains no m ore
pending requests, elv_next_request() returns NULL. elv_next_request() is nam ed so because, as you
learned previously, I / O scheduling algorithm s are variat ions of the basic m odus operandi adopted by elevators
to service requests. After handling a request , the dr iver asks the block layer to end I / O on that request by
calling end_request() . You can specify success or an error code using the second argum ent to end_request() .

Requests collected from the request_queue contain the start ing sector from which data access is requested
(req->sector in List ing 14.3, the num ber of sectors on which I / O needs to be perform ed (req->nr_sectors) ,
the buffer that contains the data to be t ransferred (req->buffer) , and the direct ion of data m ovem ent

(rq_data_dir(req)) . As shown in List ing 14.3, myblkdev_request() perform s the required register
program m ing with the help of these param eters.

List ing 1 4 .3 . The Request Funct ion

Code View:
#define READ_SECTOR_CMD 1
#define WRITE_SECTOR_CMD 2
#define GET_IDENTITY_CMD 3

#define BUSY_STATUS 0x10

#define SECTOR_NUMBER_REGISTER 0x20000000
#define SECTOR_COUNT_REGISTER 0x20000001
#define COMMAND_REGISTER 0x20000002
#define STATUS_REGISTER 0x20000003
#define DATA_REGISTER 0x20000004

/* Request method */
static void
myblkdev_request(struct request_queue *rq)
{
 struct request *req;
 unsigned char status;
 int i, good = 0;

 /* Loop through the requests waiting in line */
 while ((req = elv_next_request(rq)) != NULL) {
 /* Program the start sector and the number of sectors */
 outb(req->sector, SECTOR_NUMBER_REGISTER);
 outb(req->nr_sectors, SECTOR_COUNT_REGISTER);

 /* We are interested only in filesystem requests. A SCSI command
 is another possible type of request. For the full list, look
 at the enumeration of rq_cmd_type_bits in
 include/linux/blkdev.h */

 if (blk_fs_request(req)) {
 switch(rq_data_dir(req)) {
 case READ:
 /* Issue Read Sector Command */
 outb(READ_SECTOR_CMD, COMMAND_REGISTER);
 /* Traverse all requested sectors, byte by byte */
 for (i = 0; i < 512*req->nr_sectors; i++) {
 /* Wait until the disk is ready. Busy duration should be
 in the order of microseconds. Sitting in a tight loop
 for simplicity; more intelligence required in the real
 world */
 while ((status = inb(STATUS_REGISTER)) & BUSY_STATUS);

 /* Read data from disk to the buffer associated with the
 request */
 req->buffer[i] = inb(DATA_REGISTER);
 }
 good = 1;
 break;
 case WRITE:
 /* Issue Write Sector Command */
 outb(WRITE_SECTOR_CMD, COMMAND_REGISTER);

 /* Traverse all requested sectors, byte by byte */
 for (i = 0; i < 512*req->nr_sectors; i++) {
 /* Wait until the disk is ready. Busy duration should be
 in the order of microseconds. Sitting in a tight loop
 for simplicity; more intelligence required in the real
 world */
 while ((status = inb(STATUS_REGISTER)) & BUSY_STATUS);

 /* Write data to disk from the buffer associated with the
 request */
 outb(req->buffer[i], DATA_REGISTER);
 }
 good = 1;
 break;
 }
 }
 end_request(req, good);
 }
}

Advanced Topics

Unlike our sam ple storage driver that t ransfers data byte by byte, perform ance-sensit ive block dr ivers rely on
DMA for data t ransfer. Consider, for exam ple, the request() m ethod of the disk array dr iver for Com paq
SMART2 cont rollers dr ivers/ block/ -cpqarray.c reproduced here from the 2.6.23.1 kernel sources:

Code View:
static do_ida_request(struct request_queue *q)
{
 struct request *creq;
 struct scatterlist tmp_sg[SG_MAX];
 cmdlist_t *c;
 ctrl_info_t *h = q->queuedata;
 int seg;

 /* ... */
 creq = elv_next_request(q);
 /* ... */
 c->rq = creq;
 seg = blk_rq_map_sg(q, creq, tmp_sg);
 /* ... */
 for (i=0; i<seq; i++)
 {
 c->req.sg[i].size = tmp_sg[i].length;
 c->req.sg[i].addr = (__u32) pci_map_page(h->pci_dev,
 tmp_sg[i].page,
 tmp_sg[i].offset,
 tmp_sg[i].length, dir);
 }
 /* ... */
}

DMA operat ions work at bio level. As you saw earlier, I / O requests are m ade up of bio s, each of which contains
an array of bio_vec s, which in turn hold inform at ion about the const ituent m em ory pages. Assum ing that bio
points to the bio st ructure associated with an I / O request , bio->bi_sector contains the start ing sector from
which data access is requested, bio_cur_sectors(bio) returns the num ber of sectors on which I / O is to be
perform ed, and bio_data_dir(bio) provides the direct ion of data t ransfer. The addresses of the physical pages
associated with the data buffer are described by the array of bio_vec s pointed to by bio->bi_io_vec . To
iterate over each bio in a request , you can use the rq_for_each_bio() m acro. To further loop through each
page segm ent in a bio , use bio_for_each_segment() .

I n the preceding code snippet , blk_rq_map_sg() internally invokes rq_for_each_bio() and
bio_for_each_segment() to loop through all pages const itut ing the request and builds a scat ter/ gather list ,
tmp_sg . St ream ing DMA m appings for each page in the created scat ter/ gather list is perform ed by
pci_map_page() .

Unlike our sam ple dr iver that busy-waits for requested operat ions to finish, the cpqarray dr iver im plem ents an
interrupt handler, do_ida_intr() , to receive alerts from the hardware upon com plet ion of com m ands.

Som e drivers, such as the ram disk dr iver (dr ivers/ block/ rd.c) and the loopback dr iver (dr ivers/ block/ loop.c) ,

work over vir tual block devices that do not benefit from the opt im izing sort and m erge operat ions on the
request queue. Such drivers ent irely bypass the request queue and direct ly obtain bio s from the block layer
using a make_request() funct ion. So, instead of register ing a request queue handler using blk_init_queue() ,
dr ivers/ block/ rd.c supplies a make_request() rout ine using blk_queue_make_request() as follows:

static int __init rd_init(void)
{
 /* ... */
 blk_queue_make_request(rd_queue[i], &rd_make_request);
 /* ... */
}

static int rd_make_request(struct request_queue *q, struct bio *bio)
{
 /* ... */
}

Debugging

The hdparm ut ilit y elicits various PATA/ SATA disk param eters from the underlying kernel dr iver. To benchm ark
disk read speeds on a SATA drive, for exam ple, do this:

bash> hdparm -T -t /dev/sda

/dev/sda:
 Timing cached reads: 2564 MB in 2.00 seconds = 1283.57 MB/sec
 Timing buffered disk reads: 132 MB in 3.03 seconds = 43.61 MB/sec

For the full capabilit ies of hdparm , read the m an pages.

Self-Monitor ing, Analysis, and Report ing Technology (SMART) is a system built in to m any m odern ATA and
SCSI disks to m onitor failures and perform self- tests. A user-space daem on nam ed sm artd collects the
inform at ion gathered by SMART-capable disks with the help of the underlying device dr iver. Look at the m an
pages of sm artd, sm artct l, and sm artd.conf to learn how to obtain health status from SMART-enabled disks.

I f your dist r ibut ion doesn't prepackage hdparm and SMART tools, you m ay download them from
ht tp: / / sourceforge.net / projects/ hdparm / and ht tp: / / sourceforge.net / projects/ sm artm ontools/ , respect ively.

Files under / proc/ ide/ contain inform at ion about I DE disk dr ives on your system . To obtain the geom etry of the
first I DE disk, for exam ple, look at the contents of / proc/ ide/ ide0/ hda/ geom etry. I nform at ion pertaining to SCSI
devices is available under / proc/ scsi/ . You can gather disk part it ion inform at ion from / proc/ part it ions.

The sysfs directory of interest for I DE devices is / sys/ bus/ ide/ and for SCSI is / sys/ bus/ scsi/ . I n addit ion, each
block device act ive on the system owns a subdirectory under / sys/ block/ , which contains associated request
queue param eters, const ituent part it ion details, and state inform at ion.

Som e kernel configurat ion opt ions are available that t r igger the em ission of debug output from the block
subsystem . CONFIG_BLK_DEV_IO_TRACE provides the abilit y to t race the block layer. CONFIG_SCSI_CONSTANTS
and CONFIG_SCSI_LOGGING turn on SCSI error report ing and logging, respect ively.

The linux- ide m ailing list is the forum to discuss quest ions related to the Linux- I DE subsystem . Subscribe to the
linux-scsi m ailing list and browse through its archives for discussions pertaining to the Linux-SCSI subsystem .

http://sourceforge.net/projects/hdparm/
http://sourceforge.net/projects/smartmontools/

Look ing at the Sources

Table 14.1 contains the locat ion of kernel dr iver sources for various storage technologies. Take a look at
Docum entat ion/ ide.txt , Docum entat ion/ scsi/ * , and Docum entat ion/ cdrom / for inform at ion about associated
storage drivers.

The top- level block/ directory contains I / O scheduling algorithm s and the block core layer. Table 14.2 lists the
source files in this directory that im plem ent various I / O schedulers. Look at Docum entat ion/ block/ for related
docum entat ion.

Table 14.4 contains the m ain data st ructures used in this chapter and their locat ion in the source t ree. Table
14.5 lists the m ain kernel program m ing interfaces that you used in this chapter, along with the locat ion of their
definit ions.

Table 1 4 .4 . Sum m ary of Data St ructures

Data St ructure Locat ion Descr ipt ion

gendisk include/ linux/ genhd.h Representat ion of a disk.

request_queue include/ linux/ blkdev.h The I / O request queue
associated with a gendisk .

request include/ linux/ blkdev.h Each request in a
request_queue is described
using this st ructure.

block_device_operations include/ linux/ fs.h Block device dr iver m ethods.

bio include/ linux/ bio.h Low- level descript ion of block
I / O operat ions.

Table 1 4 .5 . Sum m ary of Kernel Program m ing I nter face s

Kernel I nter face Locat ion Descr ipt ion

register_blkdev() block/ genhd.c Registers a block dr iver with the
kernel

unregister_blkdev() block/ genhd.c Unregisters a block dr iver from
the kernel

alloc_disk() block/ genhd.c Allocates a gendisk

add_disk() block/ genhd.c Adds a populated gendisk to the
kernel block layer

del_gendisk() fs/ part it ions/ check.c Frees a gendisk

blk_init_queue() block/ ll_rw_blk.c Allocates a request_queue and
registers a request() funct ion
to process the requests in the
queue

blk_cleanup_queue() block/ ll_rw_blk.c Reverse of blk_init_queue()

Kernel I nter face Locat ion Descr ipt ion

blk_queue_make_request() block/ ll_rw_blk.c Registers a make_request()
funct ion, which bypasses the
request queue and direct ly
obtains requests from the block
layer

rq_for_each_bio() include/ linux/ blkdev.h I terates over each bio in a
request

bio_for_each_segment() include/ linux/ bio.h Loops through each page
segm ent in a bio

blk_rq_map_sg() block/ ll_rw_blk.c I terates through the bio
segm ents const itut ing a request
and builds a scat ter/ gather list

blk_queue_max_sectors() block/ ll_rw_blk.c Sets the m axim um sectors for a
request in the associated
request queue

blk_queue_hardsect_size() block/ ll_rw_blk.c Sector size supported by the
storage hardware.

set_capacity() include/ linux/ genhd.h Sets the capacity of the storage
m edia in term s of num ber of
sectors

blk_fs_request() include/ linux/ blkdev.h Checks whether a request
obtained from the request queue
is a filesystem request

elv_next_request() block/ elevator.c Obtains the next ent ry from the
request queue

end_request() block/ ll_rw_blk.c Ends I / O on a request

Chapter 1 5 . Netw ork I nter face Cards

I n This Chapter

Driver Data St ructures
440

Talking with Protocol Layers
448

Buffer Managem ent and Concurrency
Cont rol

450

Device Exam ple: Ethernet NI C
451

I SA Network Drivers
457

Asynchronous Transfer Mode
458

Network Throughput
459

Looking at the Sources
461

Connect ivity im parts intelligence. You rarely com e across a com puter system today that does not
support som e form of networking. I n this chapter, let 's focus on device dr ivers for network
interface cards (NI Cs) that carry I nternet Protocol (I P) t raffic on a local area network (LAN) . Most
of the chapter is bus agnost ic, but wherever bus specifics are necessary, it assum es PCI . To give
you a flavor of other network technologies, we also touch on Asynchronous Transfer Mode (ATM) .
We end the chapter by pondering on perform ance and throughput .

NI C drivers are different from other dr iver classes in that they do not rely on / dev or / sys to
com m unicate with user space. Rather, applicat ions interact with a NI C driver via a network
interface (for exam ple, eth0 for the first Ethernet interface) that abst racts an underlying protocol
stack.

Driver Data St ructures

When you write a device dr iver for a NI C, you have to operate on three classes of data st ructures:

St ructures that form the building blocks of the network protocol stack. The socket buffer or struct
sk_buff defined in include/ linux/ sk_buff.h is the key st ructure used by the kernel's TCP/ I P stack.

1 .

Structures that define the interface between the NI C driver and the protocol stack. struct net_device
defined in include/ linux/ netdevice.h is the core st ructure that const itutes this interface.

2 .

Structures related to the I / O bus. PCI and its derivat ives are com m on buses used by today's NI Cs.3 .

We take a detailed look at socket buffers and the net_device interface in the next two sect ions. We covered
PCI data st ructures in Chapter 10, "Peripheral Com ponent I nterconnect ," so we won't revisit them here.

Socket Buffers

sk_buff s provide efficient buffer handling and flow-cont rol m echanism s to Linux networking layers. Like DMA
descriptors that contain m etadata on DMA buffers, sk_buff s hold cont rol inform at ion describing at tached
m em ory buffers that carry network packets (see Figure 15.1) . sk_buff s are enorm ous st ructures having dozens
of elem ents, but in this chapter we confine ourselves to those that interest the network device dr iver writer. An
sk_buff links itself to its associated packet buffer using five m ain fields:

head , which points to the start of the packet

data , which points to the start of packet payload

tail , which points to the end of packet payload

end , which points to the end of the packet

len , the am ount of data that the packet contains

Figure 1 5 .1 . sk_buff operat ions.

Assum e skb points to an sk_buff , skb->head , skb->data , skb->tail , and skb->end slide over the associated
packet buffer as the packet t raverses the protocol stack in either direct ion. skb->data , for exam ple, points to
the header of the protocol that is current ly processing the packet . When a packet reaches the I P layer via the
receive path, skb->data points to the I P header; when the packet passes on to TCP, however, skb->data
m oves to the start of the TCP header. And as the packet dr ives through various protocols adding or discarding
header data, skb->len gets updated, too. sk_buff s also contain pointers other than the four m ajor ones
previously m ent ioned. skb->nh , for exam ple, rem em bers the posit ion of the network protocol header
irrespect ive of the current posit ion of skb->data .

To illust rate how a NI C driver works with sk_buff s, Figure 15.1 shows data t ransit ions on the receive data path.
For convenience of illust rat ion, the figure sim plist ically assum es that the operat ions shown are executed in
sequence. However, for operat ional efficiency in the real world, the first two steps (dev_alloc_skb() and

skb_reserve()) are perform ed while init ially preallocat ing a r ing of receive buffers; the third step is
accom plished by the NI C hardware as it direct ly DMA's the received packet into a preallocated sk_buff; and the
final two steps (skb_put() and netif_rx()) are executed from the receive interrupt handler.

To create an sk_buff to hold a received packet , Figure 15.1 uses dev_alloc_skb() . This is an interrupt -safe
rout ine that allocates m em ory for an sk_buff and associates it with a packet payload buffer. dev_kfree_skb()
accom plishes the reverse of dev_alloc_skb() . Figure 15.1 next calls skb_reserve() to add a 2-byte padding
between the start of the packet buffer and the beginning of the payload. This starts the I P header at a
perform ance- fr iendly 16-byte boundary because the preceding Ethernet headers are 14 bytes long. The rest of
the code statem ents in Figure 15.1 fill the payload buffer with the received packet and m ove skb->data , skb-
>tail , and skb->len to reflect this operat ion.

There are m ore sk_buff access rout ines relevant to som e NI C drivers. skb_clone() , for exam ple, creates a
copy of a supplied skb_buff without copying the contents of the associated packet buffer. Look inside
net / core/ skbuff.c for the full list of sk_buff library funct ions.

The Net Device I nter face

NI C drivers use a standard interface to interact with the TCP/ I P stack. The net_device st ructure, which is even
m ore gigant ic than the sk_buff st ructure, defines this com m unicat ion interface. To prepare ourselves for
explor ing the innards of the net_device st ructure, let 's first follow the steps t raced by a NI C driver during
init ializat ion. Refer to init_mycard() in List ing 15.1 as we m ove along:

The driver allocates a net_device st ructure using alloc_netdev() . More com m only, it uses a suitable
wrapper around alloc_netdev() . An Ethernet NI C driver, for exam ple, calls alloc_etherdev() . A WiFi
dr iver (discussed in the next chapter) invokes alloc_ieee80211() , and an I rDa driver calls upon
alloc_irdadev() . All these funct ions take the size of a pr ivate data area as argum ent and create this
area in addit ion to the net_device it self:

struct net_device *netdev;
struct priv_struct *mycard_priv;
netdev = alloc_etherdev(sizeof(struct
 priv_struct));
mycard_priv = netdev->priv; /* Private area created
 by alloc_etherdev() */

Next , the dr iver populates various fields in the net_device that it allocated and registers the populated
net_device with the network layer using register_netdev(netdev) .

The driver reads the NI C's Media Access Cont rol (MAC) address from an accom panying EEPROM and
configures Wake-On-LAN (WOL) if required. Ethernet cont rollers usually have a com panion nonvolat ile
EEPROM to hold inform at ion such as their MAC address and WOL pat tern, as shown in Figure 15.2. The
form er is a unique 48-bit address that is globally assigned. The lat ter is a m agic sequence; if found in
received data, it rouses the NI C if it 's in suspend m ode.

I f the NI C needs on-card firm ware to operate, the dr iver downloads it using request_firmware() , as
discussed in the sect ion "Microcode Download" in Chapter 4 , "Laying the Groundwork."

Let 's now look at the m ethods that define the net_device interface. We categorize them under six heads for
sim plicity. Wherever relevant , this sect ion points you to the exam ple NI C driver developed in List ing 15.1 of the
sect ion "Device Exam ple: Ethernet NI C."

Act ivat ion

The net_device interface requires convent ional m ethods such as open() , close() , and ioctl() . The kernel
opens an interface when you act ivate it using a tool such as ifconfig:

bash> ifconfig eth0 up

open() sets up receive and t ransm it DMA descriptors and other dr iver data st ructures. I t also registers the NI C's
interrupt handler by calling request_irq() . The net_device st ructure is passed as the devid argum ent to
request_irq() so that the interrupt handler gets direct access to the associated net_device . (See
mycard_open() and mycard_interrupt() in List ing 15.1 to find out how this is done.)

The kernel calls close() when you pull down an act ive network interface. This accom plishes the reverse of
open() .

Data Transfer

Data t ransfer m ethods form the crux of the net_device interface. I n the t ransm it path, the dr iver supplies a
m ethod called hard_start_xmit , which the protocol layer invokes to pass packets down for onward
t ransm ission:

Code View:
netdev->hard_start_xmit = &mycard_xmit_frame; /* Transmit Method. See Listing 15.1 */

Unt il recent ly, network dr ivers didn't provide a net_device m ethod for collect ing received data. I nstead, they
asynchronously interrupted the protocol layer with packet payload. This old interface has, however, given way
to a New API (NAPI) that is a m ixture of an interrupt -dr iven driver push and a poll-dr iver protocol pull. A NAPI -
aware dr iver thus needs to supply a poll() m ethod and an associated weight that cont rols polling fairness:

netdev->poll = &mycard_poll; /* Poll Method. See Listing 15.1 */
netdev->weight = 64;

We elaborate on data- t ransfer m ethods in the sect ion "Talking with Protocol Layers."

W atchdog

The net_device interface provides a hook to return an unresponsive NI C to operat ional state. I f the protocol
layer senses no t ransm issions for a predeterm ined am ount of t im e, it assum es that the NI C has hung and
invokes a dr iver-supplied recovery m ethod to reset the card. The driver sets the watchdog t im eout through
netdev->watchdog_timeo and registers the address of the recovery funct ion via netdev->tx_timeout :

netdev->tx_timeout = &mycard_timeout; /* Method to reset the NIC */
netdev->watchdog_timeo = 8*HZ; /* Reset if no response
 detected for 8 seconds */

Because the recovery m ethod executes in t im er- interrupt context , it usually schedules a task outside of that
context to reset the NI C.

Stat ist ics

To enable user land to collect network stat ist ics, the NI C driver populates a net_device_stats st ructure and

provides a get_stats() m ethod to ret r ieve it . Essent ially the dr iver does the following:

Updates different types of stat ist ics from relevant ent ry points:

#include <linux/netdevice.h>
struct net_device_stats mycard_stats;

static irqreturn_t
mycard_interrupt(int irq, void *dev_id)
{
 /* ... */
 if (packet_received_without_errors) {
 mycard_stats.rx_packets++; /* One more received
 packet */
 }
 /* ... */
}

1 .

I m plem ents the get_stats() m ethod to ret r ieve the stat ist ics:

static struct net_device_stats
*mycard_get_stats(struct net_device *netdev)
{
 /* House keeping */
 /* ... */
 return(&mycard_stats);
}

2 .

Supplies the ret r ieve m ethod to higher layers:

netdev->get_stats = &mycard_get_stats;
/* ... */
register_netdev(netdev);

3 .

To collect stat ist ics from your NI C, t r igger invocat ion of mycard_get_stats() by execut ing an appropriate user
m ode com m and. For exam ple, to find the num ber of packets received through the eth0 interface, do this:

bash> cat /sys/class/net/eth0/statistics/rx_packets

124664

WiFi dr ivers need to t rack several param eters not relevant to convent ional NI Cs, so they im plem ent a stat ist ic
collect ion m ethod called get_wireless_stats() in addit ion to get_stats() . The m echanism for register ing
get_wireless_stats() for the benefit of WiFi-aware user space ut ilit ies is discussed in the sect ion "WiFi" in the
next chapter.

Configura t ion

NI C drivers need to support user space tools that are responsible for set t ing and get t ing device parameters.
Ethtool configures param eters for Ethernet NI Cs. To support ethtool, the underlying NI C driver does the
following:

Populates an ethtool_ops st ructure, defined in include/ linux/ ethtool.h with prescribed ent ry points:

#include <linux/ethtool.h>

/* Ethtool_ops methods */
struct ethtool_ops mycard_ethtool_ops = {
 /* ... */
 .get_eeprom = mycard_get_eeprom, /* Dump EEPROM
 contents */
 /* ... */
};

1 .

I m plem ents the m ethods that are part of ethtool_ops :

static int
mycard_get_eeprom(struct net_device *netdev,
 struct ethtool_eeprom *eeprom,
 uint8_t *bytes)
{
 /* Access the accompanying EEPROM and pull out data */
 /* ... */
}

2 .

Exports the address of its ethtool_ops :

netdev->ethtool_ops = &mycard_ethtool_ops;
/* ... */
register_netdev(netdev);

3 .

After these are done, ethtool can operate over your Ethernet NI C. To dum p EEPROM contents using ethtool, do
this:

bash> ethtool -e eth0

Offset Values
------ ------
0x0000 00 0d 60 79 32 0a 00 0b ff ff 10 20 ff ff ff ff
...

Ethtool com es packaged with som e dist r ibut ions; but if you don't have it , download it from
ht tp: / / sourceforge.net / projects/ gkernel/ . Refer to the m an page for its full capabilit ies.

There are m ore configurat ion- related m ethods that a NI C driver provides to higher layers. An exam ple is the
m ethod to change the MTU size of the network interface. To support this, supply the relevant m ethod to
net_device :

netdev->change_mtu = &mycard_change_mtu;
/* ... */
register_netdev(netdev);

The kernel invokes mycard_change_mtu() when you execute a suitable user com m and to alter the MTU of your
card:

bash> echo 1500 > /sys/class/net/eth0/mtu

http://sourceforge.net/projects/gkernel/

Bus Specif ic

Next com e bus-specific details such as the start address and size of the NI C's on-card m em ory. For a PCI NI C
driver, this configurat ion will look like this:

netdev->mem_start = pci_resource_start(pdev, 0);
netdev->mem_end = netdev->mem_start + pci_resource_len(pdev, 0);

We discussed PCI resource funct ions in Chapter 10.

Chapter 1 5 . Netw ork I nter face Cards

I n This Chapter

Driver Data St ructures
440

Talking with Protocol Layers
448

Buffer Managem ent and Concurrency
Cont rol

450

Device Exam ple: Ethernet NI C
451

I SA Network Drivers
457

Asynchronous Transfer Mode
458

Network Throughput
459

Looking at the Sources
461

Connect ivity im parts intelligence. You rarely com e across a com puter system today that does not
support som e form of networking. I n this chapter, let 's focus on device dr ivers for network
interface cards (NI Cs) that carry I nternet Protocol (I P) t raffic on a local area network (LAN) . Most
of the chapter is bus agnost ic, but wherever bus specifics are necessary, it assum es PCI . To give
you a flavor of other network technologies, we also touch on Asynchronous Transfer Mode (ATM) .
We end the chapter by pondering on perform ance and throughput .

NI C drivers are different from other dr iver classes in that they do not rely on / dev or / sys to
com m unicate with user space. Rather, applicat ions interact with a NI C driver via a network
interface (for exam ple, eth0 for the first Ethernet interface) that abst racts an underlying protocol
stack.

Driver Data St ructures

When you write a device dr iver for a NI C, you have to operate on three classes of data st ructures:

St ructures that form the building blocks of the network protocol stack. The socket buffer or struct
sk_buff defined in include/ linux/ sk_buff.h is the key st ructure used by the kernel's TCP/ I P stack.

1 .

Structures that define the interface between the NI C driver and the protocol stack. struct net_device
defined in include/ linux/ netdevice.h is the core st ructure that const itutes this interface.

2 .

Structures related to the I / O bus. PCI and its derivat ives are com m on buses used by today's NI Cs.3 .

We take a detailed look at socket buffers and the net_device interface in the next two sect ions. We covered
PCI data st ructures in Chapter 10, "Peripheral Com ponent I nterconnect ," so we won't revisit them here.

Socket Buffers

sk_buff s provide efficient buffer handling and flow-cont rol m echanism s to Linux networking layers. Like DMA
descriptors that contain m etadata on DMA buffers, sk_buff s hold cont rol inform at ion describing at tached
m em ory buffers that carry network packets (see Figure 15.1) . sk_buff s are enorm ous st ructures having dozens
of elem ents, but in this chapter we confine ourselves to those that interest the network device dr iver writer. An
sk_buff links itself to its associated packet buffer using five m ain fields:

head , which points to the start of the packet

data , which points to the start of packet payload

tail , which points to the end of packet payload

end , which points to the end of the packet

len , the am ount of data that the packet contains

Figure 1 5 .1 . sk_buff operat ions.

Assum e skb points to an sk_buff , skb->head , skb->data , skb->tail , and skb->end slide over the associated
packet buffer as the packet t raverses the protocol stack in either direct ion. skb->data , for exam ple, points to
the header of the protocol that is current ly processing the packet . When a packet reaches the I P layer via the
receive path, skb->data points to the I P header; when the packet passes on to TCP, however, skb->data
m oves to the start of the TCP header. And as the packet dr ives through various protocols adding or discarding
header data, skb->len gets updated, too. sk_buff s also contain pointers other than the four m ajor ones
previously m ent ioned. skb->nh , for exam ple, rem em bers the posit ion of the network protocol header
irrespect ive of the current posit ion of skb->data .

To illust rate how a NI C driver works with sk_buff s, Figure 15.1 shows data t ransit ions on the receive data path.
For convenience of illust rat ion, the figure sim plist ically assum es that the operat ions shown are executed in
sequence. However, for operat ional efficiency in the real world, the first two steps (dev_alloc_skb() and

skb_reserve()) are perform ed while init ially preallocat ing a r ing of receive buffers; the third step is
accom plished by the NI C hardware as it direct ly DMA's the received packet into a preallocated sk_buff; and the
final two steps (skb_put() and netif_rx()) are executed from the receive interrupt handler.

To create an sk_buff to hold a received packet , Figure 15.1 uses dev_alloc_skb() . This is an interrupt -safe
rout ine that allocates m em ory for an sk_buff and associates it with a packet payload buffer. dev_kfree_skb()
accom plishes the reverse of dev_alloc_skb() . Figure 15.1 next calls skb_reserve() to add a 2-byte padding
between the start of the packet buffer and the beginning of the payload. This starts the I P header at a
perform ance- fr iendly 16-byte boundary because the preceding Ethernet headers are 14 bytes long. The rest of
the code statem ents in Figure 15.1 fill the payload buffer with the received packet and m ove skb->data , skb-
>tail , and skb->len to reflect this operat ion.

There are m ore sk_buff access rout ines relevant to som e NI C drivers. skb_clone() , for exam ple, creates a
copy of a supplied skb_buff without copying the contents of the associated packet buffer. Look inside
net / core/ skbuff.c for the full list of sk_buff library funct ions.

The Net Device I nter face

NI C drivers use a standard interface to interact with the TCP/ I P stack. The net_device st ructure, which is even
m ore gigant ic than the sk_buff st ructure, defines this com m unicat ion interface. To prepare ourselves for
explor ing the innards of the net_device st ructure, let 's first follow the steps t raced by a NI C driver during
init ializat ion. Refer to init_mycard() in List ing 15.1 as we m ove along:

The driver allocates a net_device st ructure using alloc_netdev() . More com m only, it uses a suitable
wrapper around alloc_netdev() . An Ethernet NI C driver, for exam ple, calls alloc_etherdev() . A WiFi
dr iver (discussed in the next chapter) invokes alloc_ieee80211() , and an I rDa driver calls upon
alloc_irdadev() . All these funct ions take the size of a pr ivate data area as argum ent and create this
area in addit ion to the net_device it self:

struct net_device *netdev;
struct priv_struct *mycard_priv;
netdev = alloc_etherdev(sizeof(struct
 priv_struct));
mycard_priv = netdev->priv; /* Private area created
 by alloc_etherdev() */

Next , the dr iver populates various fields in the net_device that it allocated and registers the populated
net_device with the network layer using register_netdev(netdev) .

The driver reads the NI C's Media Access Cont rol (MAC) address from an accom panying EEPROM and
configures Wake-On-LAN (WOL) if required. Ethernet cont rollers usually have a com panion nonvolat ile
EEPROM to hold inform at ion such as their MAC address and WOL pat tern, as shown in Figure 15.2. The
form er is a unique 48-bit address that is globally assigned. The lat ter is a m agic sequence; if found in
received data, it rouses the NI C if it 's in suspend m ode.

I f the NI C needs on-card firm ware to operate, the dr iver downloads it using request_firmware() , as
discussed in the sect ion "Microcode Download" in Chapter 4 , "Laying the Groundwork."

Let 's now look at the m ethods that define the net_device interface. We categorize them under six heads for
sim plicity. Wherever relevant , this sect ion points you to the exam ple NI C driver developed in List ing 15.1 of the
sect ion "Device Exam ple: Ethernet NI C."

Act ivat ion

The net_device interface requires convent ional m ethods such as open() , close() , and ioctl() . The kernel
opens an interface when you act ivate it using a tool such as ifconfig:

bash> ifconfig eth0 up

open() sets up receive and t ransm it DMA descriptors and other dr iver data st ructures. I t also registers the NI C's
interrupt handler by calling request_irq() . The net_device st ructure is passed as the devid argum ent to
request_irq() so that the interrupt handler gets direct access to the associated net_device . (See
mycard_open() and mycard_interrupt() in List ing 15.1 to find out how this is done.)

The kernel calls close() when you pull down an act ive network interface. This accom plishes the reverse of
open() .

Data Transfer

Data t ransfer m ethods form the crux of the net_device interface. I n the t ransm it path, the dr iver supplies a
m ethod called hard_start_xmit , which the protocol layer invokes to pass packets down for onward
t ransm ission:

Code View:
netdev->hard_start_xmit = &mycard_xmit_frame; /* Transmit Method. See Listing 15.1 */

Unt il recent ly, network dr ivers didn't provide a net_device m ethod for collect ing received data. I nstead, they
asynchronously interrupted the protocol layer with packet payload. This old interface has, however, given way
to a New API (NAPI) that is a m ixture of an interrupt -dr iven driver push and a poll-dr iver protocol pull. A NAPI -
aware dr iver thus needs to supply a poll() m ethod and an associated weight that cont rols polling fairness:

netdev->poll = &mycard_poll; /* Poll Method. See Listing 15.1 */
netdev->weight = 64;

We elaborate on data- t ransfer m ethods in the sect ion "Talking with Protocol Layers."

W atchdog

The net_device interface provides a hook to return an unresponsive NI C to operat ional state. I f the protocol
layer senses no t ransm issions for a predeterm ined am ount of t im e, it assum es that the NI C has hung and
invokes a dr iver-supplied recovery m ethod to reset the card. The driver sets the watchdog t im eout through
netdev->watchdog_timeo and registers the address of the recovery funct ion via netdev->tx_timeout :

netdev->tx_timeout = &mycard_timeout; /* Method to reset the NIC */
netdev->watchdog_timeo = 8*HZ; /* Reset if no response
 detected for 8 seconds */

Because the recovery m ethod executes in t im er- interrupt context , it usually schedules a task outside of that
context to reset the NI C.

Stat ist ics

To enable user land to collect network stat ist ics, the NI C driver populates a net_device_stats st ructure and

provides a get_stats() m ethod to ret r ieve it . Essent ially the dr iver does the following:

Updates different types of stat ist ics from relevant ent ry points:

#include <linux/netdevice.h>
struct net_device_stats mycard_stats;

static irqreturn_t
mycard_interrupt(int irq, void *dev_id)
{
 /* ... */
 if (packet_received_without_errors) {
 mycard_stats.rx_packets++; /* One more received
 packet */
 }
 /* ... */
}

1 .

I m plem ents the get_stats() m ethod to ret r ieve the stat ist ics:

static struct net_device_stats
*mycard_get_stats(struct net_device *netdev)
{
 /* House keeping */
 /* ... */
 return(&mycard_stats);
}

2 .

Supplies the ret r ieve m ethod to higher layers:

netdev->get_stats = &mycard_get_stats;
/* ... */
register_netdev(netdev);

3 .

To collect stat ist ics from your NI C, t r igger invocat ion of mycard_get_stats() by execut ing an appropriate user
m ode com m and. For exam ple, to find the num ber of packets received through the eth0 interface, do this:

bash> cat /sys/class/net/eth0/statistics/rx_packets

124664

WiFi dr ivers need to t rack several param eters not relevant to convent ional NI Cs, so they im plem ent a stat ist ic
collect ion m ethod called get_wireless_stats() in addit ion to get_stats() . The m echanism for register ing
get_wireless_stats() for the benefit of WiFi-aware user space ut ilit ies is discussed in the sect ion "WiFi" in the
next chapter.

Configura t ion

NI C drivers need to support user space tools that are responsible for set t ing and get t ing device parameters.
Ethtool configures param eters for Ethernet NI Cs. To support ethtool, the underlying NI C driver does the
following:

Populates an ethtool_ops st ructure, defined in include/ linux/ ethtool.h with prescribed ent ry points:

#include <linux/ethtool.h>

/* Ethtool_ops methods */
struct ethtool_ops mycard_ethtool_ops = {
 /* ... */
 .get_eeprom = mycard_get_eeprom, /* Dump EEPROM
 contents */
 /* ... */
};

1 .

I m plem ents the m ethods that are part of ethtool_ops :

static int
mycard_get_eeprom(struct net_device *netdev,
 struct ethtool_eeprom *eeprom,
 uint8_t *bytes)
{
 /* Access the accompanying EEPROM and pull out data */
 /* ... */
}

2 .

Exports the address of its ethtool_ops :

netdev->ethtool_ops = &mycard_ethtool_ops;
/* ... */
register_netdev(netdev);

3 .

After these are done, ethtool can operate over your Ethernet NI C. To dum p EEPROM contents using ethtool, do
this:

bash> ethtool -e eth0

Offset Values
------ ------
0x0000 00 0d 60 79 32 0a 00 0b ff ff 10 20 ff ff ff ff
...

Ethtool com es packaged with som e dist r ibut ions; but if you don't have it , download it from
ht tp: / / sourceforge.net / projects/ gkernel/ . Refer to the m an page for its full capabilit ies.

There are m ore configurat ion- related m ethods that a NI C driver provides to higher layers. An exam ple is the
m ethod to change the MTU size of the network interface. To support this, supply the relevant m ethod to
net_device :

netdev->change_mtu = &mycard_change_mtu;
/* ... */
register_netdev(netdev);

The kernel invokes mycard_change_mtu() when you execute a suitable user com m and to alter the MTU of your
card:

bash> echo 1500 > /sys/class/net/eth0/mtu

http://sourceforge.net/projects/gkernel/

Bus Specif ic

Next com e bus-specific details such as the start address and size of the NI C's on-card m em ory. For a PCI NI C
driver, this configurat ion will look like this:

netdev->mem_start = pci_resource_start(pdev, 0);
netdev->mem_end = netdev->mem_start + pci_resource_len(pdev, 0);

We discussed PCI resource funct ions in Chapter 10.

Talk ing w ith Protocol Layers

I n the preceding sect ion, you discovered the dr iver m ethods dem anded by the net_device interface. Let 's now
take a closer look at how network data flows over this interface.

Receive Path

You learned in Chapter 4 that soft irqs are bot tom half m echanism s used by perform ance-sensit ive subsystem s.
NI C drivers use NET_RX_SOFTIRQ to offload the work of post ing received data packets to protocol layers. The
driver achieves this by calling netif_rx() from its receive interrupt handler:

netif_rx(skb); /* struct sk_buff *skb */

NAPI , alluded to earlier, im proves this convent ional interrupt -dr iven receive algorithm to lower dem ands on CPU
ut ilizat ion. When network load is heavy, the system m ight get bogged down by the large num ber of interrupts
that it takes. NAPI 's st rategy is to use a polled m ode when network act ivity is heavy but fall back to interrupt
m ode when the t raffic gets light . NAPI -aware dr ivers switch between interrupt and polled m odes based on
network load. This is done as follows:

I n interrupt m ode, the interrupt handler posts received packets to protocol layers by scheduling
NET_RX_SOFTIRQ. I t then disables NI C interrupts and switches to polled m ode by adding the device to a
poll list :

if (netif_rx_schedule_prep(netdev)) /* Housekeeping */ {
 /* Disable NIC interrupt */
 disable_nic_interrupt();
 /* Post the packet to the protocol layer and
 add the device to the poll list */
 __netif_rx_schedule(netdev);
}

1 .

The driver provides a poll() m ethod via its net_device st ructure.2 .

I n the polled m ode, the dr iver 's poll() m ethod processes packets in the ingress queue. When the queue
becom es em pty, the dr iver re-enables interrupts and switches back to interrupt m ode by calling
netif_rx_complete() .

3 .

Look at mycard_interrupt() , init_mycard() , and mycard_poll() in List ing 15.1 to see NAPI in act ion.

Transm it Path

For data t ransm ission, the interact ion between protocol layers and the NI C driver is st raight forward. The
protocol stack invokes the dr iver 's hard_start_xmit() m ethod with the outgoing sk_buff as argum ent . The
driver gets the packet out of the door by DMA- ing packet data to the NI C. DMA and the m anagem ent of related
data st ructures for PCI NI C drivers were discussed in Chapter 10.

The driver program s the NI C to interrupt the processor after it finishes t ransm it t ing a predeterm ined num ber of
packets. Only when a t ransm it -com plete interrupt occurs signaling com plet ion of a t ransm it operat ion can the

driver reclaim or free resources such as DMA descriptors, DMA buffers, and sk_buffs associated with the
t ransm it ted packet .

Flow Cont rol

The driver conveys its readiness or reluctance to accept protocol data by, respect ively, calling
netif_start_queue() and netif_stop_queue() .

During device open() , the NI C driver calls netif_start_queue() to ask the protocol layer to start adding
t ransm it packets to the egress queue. During norm al operat ion, however, the dr iver m ight require egress
queuing to stop on occasion. Exam ples include the t im e window when the dr iver is replenishing data st ructures,
or when it 's closing the device. Throt t ling the downst ream flow is accom plished by calling netif_stop_queue() .
To request the networking stack to restart egress queuing, say when there are sufficient free buffers, the NI C
driver invokes netif_wake_queue() . To check the current flow-cont rol state, toss a call to
netif_queue_stopped() .

Buffer Managem ent and Concurrency Cont rol

A high-perform ance NI C driver is a com plex piece of software requir ing int r icate data st ructure m anagem ent . As
discussed in the sect ion "Data Transfer " in Chapter 10, a NI C driver m aintains linked lists (or " r ings") of
t ransm it and receive DMA descriptors, and im plem ents free and in-use pools for buffer m anagem ent . The driver
typically im plem ents a m ult ipronged st rategy to m aintain buffer levels: preallocate a r ing of DMA descriptors
and associated sk_buff s during device open, replenish free pools by allocat ing new m em ory if available buffers
dip below a predeterm ined waterm ark, and reclaim used buffers into the free pool when the NI C generates
t ransm it -com plete and receive interrupts.

Each elem ent in the NI C driver 's receive r ing, for exam ple, is populated as follows:

/* Allocate an sk_buff and the associated data buffer.
 See Figure 15.1 */
skb = dev_alloc_skb(MAX_NIC_PACKET_SIZE);
/* Align the data pointer */
 skb_reserve(skb, NET_IP_ALIGN);
/* DMA map for NIC access. The following invocation assumes a PCI
 NIC. pdev is a pointer to the associated pci_dev structure */
pci_map_single(pdev, skb->data, MAX_NIC_PACKET_SIZE,
 PCI_DMA_FROMDEVICE);
/* Create a descriptor containing this sk_buff and add it
 to the RX ring */
/* ... */

During recept ion, the NI C direct ly DMA's data to an sk_buff in the preceding preallocated r ing and interrupts
the processor. The receive interrupt handler, in turn, passes the packet to higher protocol layers. Developing
ring data st ructures will m ake this discussion as well as the exam ple dr iver in the next sect ion loaded, so refer
to the sources of the I ntel PRO/ 1000 driver in the dr ivers/ net / e1000/ directory for a com plete illust rat ion.

Concurrent access protect ion goes hand- in-hand with m anaging such com plex data st ructures in the face of
m ult iple execut ion threads such as t ransm it , receive, t ransm it -com plete interrupts, receive interrupts, and NAPI
polling. We discussed several concurrency cont rol techniques in Chapter 2 , "A Peek I nside the Kernel."

Device Exam ple: Ethernet N I C

Now that you have the background, it 's t im e to write a NI C driver by gluing the pieces discussed so far. List ing
15.1 im plem ents a skeletal Ethernet NI C driver. I t only im plem ents the m ain net_device m ethods. For help in
developing the rest of the m ethods, refer to the e1000 driver m ent ioned earlier. List ing 15.1 is generally
independent of the underlying I / O bus but is slight ly t ilted to PCI . I f you are writ ing a PCI NI C driver, you have
to blend List ing 15.1 with the exam ple PCI dr iver im plem ented in Chapter 10.

List ing 1 5 .1 . An Ethernet N I C Dr iver

Code View:
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/ethtool.h>

struct net_device_stats mycard_stats; /* Statistics */

/* Fill ethtool_ops methods from a suitable place in the driver */
struct ethtool_ops mycard_ethtool_ops = {
 /* ... */
 .get_eeprom = mycard_get_eeprom, /* Dump EEPROM contents */
 /* ... */
};

/* Initialize/probe the card. For PCI cards, this is invoked
 from (or is itself) the probe() method. In that case, the
 function is declared as:
 static struct net_device *init_mycard(struct pci_dev *pdev, const
 struct pci_device_id *id)
*/
static struct net_device *
init_mycard()
{
 struct net_device *netdev;
 struct priv_struct mycard_priv;

 /* ... */
 netdev = alloc_etherdev(sizeof(struct priv_struct));
 /* Common methods */
 netdev->open = &mycard_open;
 netdev->stop = &mycard_close;
 netdev->do_ioctl = &mycard_ioctl;

 /* Data transfer */
 netdev->hard_start_xmit = &mycard_xmit_frame; /* Transmit */
 netdev->poll = &mycard_poll; /* Receive - NAPI */
 netdev->weight = 64; /* Fairness */

 /* Watchdog */
 netdev->tx_timeout = &mycard_timeout; /* Recovery function */
 netdev->watchdog_timeo = 8*HZ; /* 8-second timeout */

 /* Statistics and configuration */
 netdev->get_stats = &mycard_get_stats; /* Statistics support */
 netdev->ethtool_ops = &mycard_ethtool_ops; /* Ethtool support */

 netdev->set_mac_address = &mycard_set_mac; /* Change MAC */
 netdev->change_mtu = &mycard_change_mtu; /* Alter MTU */

 strncpy(netdev->name, pci_name(pdev),
 sizeof(netdev->name) - 1); /* Name (for PCI) */

 /* Bus-specific parameters. For a PCI NIC, it looks as follows */
 netdev->mem_start = pci_resource_start(pdev, 0);
 netdev->mem_end = netdev->mem_start + pci_resource_len(pdev, 0);

 /* Register the interface */
 register_netdev(netdev);

 /* ... */

 /* Get MAC address from attached EEPROM */
 /* ... */

 /* Download microcode if needed */
 /* ... */
}

/* The interrupt handler */
static irqreturn_t
mycard_interrupt(int irq, void *dev_id)
{
 struct net_device *netdev = dev_id;
 struct sk_buff *skb;
 unsigned int length;

 /* ... */

 if (receive_interrupt) {
 /* We were interrupted due to packet reception. At this point,
 the NIC has already DMA'ed received data to an sk_buff that
 was pre-allocated and mapped during device open. Obtain the
 address of the sk_buff depending on your data structure
 design and assign it to 'skb'. 'length' is similarly obtained
 from the NIC by reading the descriptor used to DMA data from
 the card. Now, skb->data contains the receive data. */
 /* ... */

 /* For PCI cards, perform a pci_unmap_single() on the
 received buffer in order to allow the CPU to access it */
 /* ... */

 /* Allow the data go to the tail of the packet by moving
 skb->tail down by length bytes and increasing
 skb->len correspondingly */
 skb_put(skb, length)

 /* Pass the packet to the TCP/IP stack */
#if !defined (USE_NAPI) /* Do it the old way */
 netif_rx(skb);
#else /* Do it the NAPI way */
 if (netif_rx_schedule_prep(netdev))) {
 /* Disable NIC interrupt. Implementation not shown. */
 disable_nic_interrupt();

 /* Post the packet to the protocol layer and
 add the device to the poll list */
 __netif_rx_schedule(netdev);
 }
#endif
 } else if (tx_complete_interrupt) {
 /* Transmit Complete Interrupt */
 /* ... */
 /* Unmap and free transmit resources such as
 DMA descriptors and buffers. Free sk_buffs or
 reclaim them into a free pool */
 /* ... */

 }
}

/* Driver open */
static int
mycard_open(struct net_device *netdev)
{
 /* ... */

 /* Request irq */
 request_irq(irq, mycard_interrupt, IRQF_SHARED,
 netdev->name, dev);

 /* Fill transmit and receive rings */
 /* See the section,
 "Buffer Management and Concurrency Control" */
 /* ... */

 /* Provide free descriptor addresses to the card */
 /* ... */

 /* Convey your readiness to accept data from the
 networking stack */
 netif_start_queue(netdev);

 /* ... */
}

/* Driver close */
static int
mycard_close(struct net_device *netdev)
{
 /* ... */

 /* Ask the networking stack to stop sending down data */
 netif_stop_queue(netdev);

 /* ... */
}
/* Called when the device is unplugged or when the module is
 released. For PCI cards, this is invoked from (or is itself)
 the remove() method. In that case, the function is declared as:
 static void __devexit mycard_remove(struct pci_dev *pdev)
*/
static void __devexit
mycard_remove()

{
 struct net_device *netdev;

 /* ... */
 /* For a PCI card, obtain the associated netdev as follows,
 assuming that the probe() method performed a corresponding
 pci_set_drvdata(pdev, netdev) after allocating the netdev */
 netdev = pci_get_drvdata(pdev); /*

 unregister_netdev(netdev); /* Reverse of register_netdev() */

 /* ... */

 free_netdev(netdev); /* Reverse of alloc_netdev() */

 /* ... */
}

/* Suspend method. For PCI devices, this is part of
 the pci_driver structure discussed in Chapter 10 */
static int
mycard_suspend(struct pci_dev *pdev, pm_message_t state)
{
 /* ... */
 netif_device_detach(netdev);
 /* ... */
}

/* Resume method. For PCI devices, this is part of
 the pci_driver structure discussed in Chapter 10 */
static int
mycard_resume(struct pci_dev *pdev)
{
 /* ... */
 netif_device_attach(netdev);
 /* ... */
}

/* Get statistics */
static struct net_device_stats *
mycard_get_stats(struct net_device *netdev)
{
 /* House keeping */
 /* ... */

 return(&mycard_stats);
}

/* Dump EEPROM contents. This is an ethtool_ops operation */
static int
mycard_get_eeprom(struct net_device *netdev,
 struct ethtool_eeprom *eeprom, uint8_t *bytes)
{
 /* Read data from the accompanying EEPROM */
 /* ... */
}

/* Poll method */
static int
mycard_poll(struct net_device *netdev, int *budget)
{
 /* Post packets to the protocol layer using
 netif_receive_skb() */
 /* ... */

 if (no_more_ingress_packets()){
 /* Remove the device from the polled list */
 netif_rx_complete(netdev);

 /* Fall back to interrupt mode. Implementation not shown */
 enable_nic_interrupt();

 return 0;
 }
}
/* Transmit method */
static int
mycard_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
{
 /* DMA the transmit packet from the associated sk_buff
 to card memory */
 /* ... */
 /* Manage buffers */
 /* ... */
}

Ethernet PHY

Ethernet cont rollers im plem ent the MAC layer and have to be used in tandem with a Physical layer
(PHY) t ransceiver. The form er corresponds to the datalink layer of the Open System s I nterconnect
(OSI) m odel, while the lat ter im plem ents the physical layer. Several SoCs have built - in MACs that
connect to external PHYs. The Media I ndependent I nterface (MI I) is a standard interface that
connects a Fast Ethernet MAC to a PHY. The Ethernet device dr iver com m unicates with the PHY
over MI I to configure param eters such as PHY I D, line speed, duplex m ode, and auto negot iat ion.
Look at include/ linux/ m ii.h for MI I register definit ions.

I SA Netw ork Dr ivers

Let 's now take a peek at an I SA NI C. The CS8900 is a 10Mbps Ethernet cont roller chip from Crystal
Sem iconductor (now Cirrus Logic) . This chip is com monly used to Ethernet -enable em bedded devices, especially
for debug purposes. Figure 15.2 shows a connect ion diagram surrounding a CS8900. Depending on the
processor on your board and the chip-select used to dr ive the chip, the CS8900 registers m ap to different
regions in the CPU's I / O address space. The device dr iver for this cont roller is an I SA- type driver (look at the
sect ion "I SA and MCA" in Chapter 20, "More Devices and Drivers") that probes candidate address regions to
detect the cont roller 's presence. The I SA probe m ethod elicits the cont roller 's I / O base address by looking for a
signature such as the chip I D.

Figure 1 5 .2 . Connect ion diagram surrounding a CS8 9 0 0 Ethernet cont roller .

[View full size im age]

Look at dr ivers/ net / cs89x0.c for the source code of the CS8900 driver. cs89x0_probe1() probes I / O address
ranges to sense a CS8900. I t then reads the current configurat ion of the chip. During this step, it accesses the
CS8900's com panion EEPROM and gleans the cont roller 's MAC address. Like the dr iver in List ing 15.1, cs89x0.c
is also built using netif_*() and skb_*() interface rout ines.

Som e plat form s that use the CS8900 allow DMA. I SA devices, unlike PCI cards, do not have DMA m astering
capabilit ies, so they need an external DMA cont roller to t ransfer data.

Asynchronous Transfer Mode

ATM is a high-speed, connect ion-oriented, back-bone technology. ATM guarantees high quality of service (QoS)
and low latencies, so it 's used for carrying audio and video t raffic in addit ion to data.

Here's a quick sum m ary of the ATM protocol: ATM com m unicat ion takes place in units of 53-byte cells. Each cell
begins with a 5-byte header that carr ies a vir tual path ident ifier (VPI) and a vir tual circuit ident ifier (VCI) . ATM
connect ions are either switched vir tual circuits (SVCs) or perm anent vir tual circuits (PVCs) . During SVC
establishm ent , VPI / VCI pairs are configured in intervening ATM switches to route incom ing cells to appropriate
egress ports. For PVCs, the VPI / VCI pairs are perm anent ly configured in the ATM switches and not set up and
torn down for each connect ion.

There are three ways you can run TCP/ I P over ATM, all of which are supported by Linux-ATM:

Classical I P over ATM (CLI P) as specified in RFC[1] 1577.

[1] Request For Com m ents (RFC) are docum ents that specify networking standards.

1 .

Em ulat ing a LAN over an ATM network. This is called LAN Em ulat ion (LANE) .2 .

Mult i Protocol over ATM (MPoA) . This is a rout ing technique that im proves perform ance.3 .

Linux-ATM is an experim ental collect ion of kernel dr ivers, user space ut ilit ies, and daem ons. You will find ATM
drivers and protocols under dr ivers/ atm / and net / atm / , respect ively, in the source t ree. ht tp: / / linux-
atm .sourceforge.net / hosts user-space program s required to use Linux-ATM. Linux also incorporates an ATM
socket API consist ing of SVC sockets (AF_ATMSVC) and PVC sockets (AF_ATMPVC) .

A protocol called Mult iprotocol Label Switching (MPLS) is replacing ATM. The Linux-MPLS project , hosted at
ht tp: / / m pls- linux.sourceforge.net / , is not yet part of the m ainline kernel.

We look at som e ATM-related throughput issues in the next sect ion.

http://linux-
http://mpls-linux.sourceforge.net/

Netw ork Throughput

Several tools are available to benchm ark network perform ance. Netperf, available for free from
www.netperf.org, can set up com plex TCP/ UDP connect ion scenarios. You can use scr ipts to cont rol
character ist ics such as protocol param eters, num ber of sim ultaneous sessions, and size of data blocks.
Benchm arking is accom plished by com paring the result ing throughput with the m axim um pract ical bandwidth
that the networking technology yields. For exam ple, a 155Mbps ATM adapter produces a m axim um I P
throughput of 135Mbps, taking into account the ATM cell header size, overheads due to the ATM Adaptat ion
Layer (AAL) , and the occasional m aintenance cells sent by the physical Synchronous Opt ical Networking
(SONET) layer.

To obtain opt im al throughput , you have to design your NI C driver for high perform ance. I n addit ion, you need
an in-depth understanding of the network protocol that your dr iver ferr ies.

Driver Per form ance

Let 's take a look at som e driver design issues that can affect the horsepower of your NI C:

Minim izing the num ber of inst ruct ions in the m ain data path is a key cr iter ion while designing dr ivers for
fast NI Cs. Consider a 1Gbps Ethernet adapter with 1MB of on-board m em ory. At line rate, the card
m em ory can hold up to 8 m illiseconds of received data. This direct ly t ranslates to the m axim um allowable
inst ruct ion path length. Within this path length, incom ing packets have to be reassem bled, DMAed to
m em ory, processed by the dr iver, protected from concurrent access, and delivered to higher layer
protocols.

During program m ed I / O (PI O) , data t ravels all the way from the device to the CPU, before it gets writ ten
to m em ory. Moreover, the CPU gets interrupted whenever the device needs to t ransfer data, and this
cont r ibutes to latencies and context switch delays. DMAs do not suffer from these bot t lenecks, but can
turn out to be m ore expensive than PI Os if the data to be t ransferred is less than a threshold. This is
because sm all DMAs have high relat ive overheads for building descriptors and flushing corresponding
processor cache lines for data coherency. A performance-sensit ive device dr iver m ight use PI O for sm all
packets and DMA for larger ones, after experim entally determ ining the threshold.

For PCI network cards having DMA m astering capabilit y, you have to determ ine the opt im al DMA burst
size, which is the t im e for which the card cont rols the bus at one st retch. I f the card bursts for a long
durat ion, it m ay hog the bus and prevent the processor from keeping up with data DMA-ed previously. PCI
drivers program the burst size via a register in the PCI configurat ion space. Norm ally the NI C's burst size
is program m ed to be the sam e as the cache line size of the processor, which is the num ber of bytes that
the processor reads from system m em ory each t im e there is a cache m iss. I n pract ice, however, you
m ight need to connect a bus analyzer to determ ine the beneficial burst durat ion because factors such as
the presence of a split bus (m ult iple bus types like I SA and PCI) on your system can influence the opt im al
value.

Many high-speed NI Cs offer the capabilit y to offload the CPU- intensive com putat ion of TCP checksum s
from the protocol stack. Som e support DMA scat ter-gather that we visited in Chapter 10. The driver needs
to leverage these capabilit ies to achieve the m aximum pract ical bandwidth that the underlying network
yields.

Som et im es, a dr iver opt im izat ion m ight create unexpected speed bum ps if it 's not sensit ive to the
im plem entat ion details of higher protocols. Consider an NFS-m ounted filesystem on a com puter equipped

with a high-speed NI C. Assum e that the NI C driver takes only occasional t ransm it com plete interrupts to
m inim ize latencies, but that the NFS server im plem entat ion uses freeing of its t ransm it buffers as a flow-
cont rol m echanism . Because the dr iver frees NFS t ransm it buffers only during the sparsely generated
t ransm it com plete interrupts, file copies over NFS crawl, even as I nternet downloads zip along yielding
m axim um throughput .

Protocol Per form ance

Let 's now dig into som e protocol-specific characterist ics that can boost or hurt network throughput :

TCP window size can im pact throughput . The window size provides a m easure of the am ount of data that
can be t ransm it ted before receiving an acknowledgm ent . For fast NI Cs, a sm all window size m ight result in
TCP sit t ing idle, wait ing for acknowledgm ents of packets already t ransm it ted. Even with a large window
size, a sm all num ber of lost TCP packets can affect perform ance because lost fram es can use up the
window at line speeds. I n the case of UDP, the window size is not relevant because it does not support
acknowledgm ents. However, a sm all packet loss can spiral into a big rate drop due to the absence of flow-
cont rol m echanism s.

As the block size of applicat ion data writ ten to TCP sockets increases, the num ber of buffers copied from
user space to kernel space decreases. This lowers the dem and on processor ut ilizat ion and is good for
perform ance. I f the block size crosses the MTU corresponding to the network protocol, however, processor
cycles get wasted on fragm entat ion. The desirable block size is thus the outgoing interface MTU, or the
largest packet that can be sent without fragm entat ion through an I P path if Path MTU discovery
m echanism s are in operat ion. While running I P over ATM, for exam ple, because the ATM adaptat ion layer
has a 64K MTU, there is vir tually no upper bound on block size. (RFC 1626 defaults this to 9180.) I f you
are running I P over ATM LANE, however, the block size should m irror the MTU size of the respect ive LAN
technology being em ulated. I t should thus be 1500 for standard Ethernet , 8000 for jum bo Gigabit
Ethernet , and 18K for 16Mbps Token Ring.

Look ing at the Sources

The drivers/ net / directory contains sources of various NI C drivers. Look inside dr ivers/ net / e1000/ for an
exam ple NI C driver. You will find network protocol im plem entat ions in the net / directory. sk_buff access
rout ines are in net / core/ skbuff.c. Library rout ines that aid the im plem entat ion of your dr iver 's net_device
interface stay in net / core/ dev.c and include/ linux/ netdevice.h.

TUN/ TAP Driver

The TUN/ TAP device dr iver dr ivers/ net / tun.c, used for protocol tunneling, is an exam ple of a
com binat ion of a vir tual network dr iver and a pseudo char dr iver. The pseudo char device
(/ dev/ net / tun) acts as the underlying hardware for the vir tual network interface (tunX) , so instead
of t ransm it t ing fram es to a physical network, the TUN network dr iver sends it to an applicat ion
that is reading from / dev/ net / tun. Sim ilar ly, instead of receiving data from a physical network, the
TUN driver accepts it from an applicat ion writ ing to / dev/ net / tun. Look at
Docum entat ion/ networking/ tuntap.txt for m ore explanat ions and usage scenarios. Since both
network and char port ions of the dr iver do not have to deal with the com plexit ies of hardware
interact ion, it serves as a very readable, albeit sim plist ic, dr iver exam ple.

Files under / sys/ class/ net / let you operate on NI C driver param eters. Use the nodes under / proc/ sys/ net / to
configure protocol-specific variables. To set the maxim um TCP t ransm it window size, for exam ple, echo the
desired value to / proc/ sys/ net / core/ wm em _m ax. The / proc/ net / directory has a collect ion of system -specific
network inform at ion. Exam ine / proc/ net / dev for stat ist ics on all NI Cs on your system and look at / proc/ net / arp
for the ARP table.

Table 15.1 contains the m ain data st ructures used in this chapter and their locat ion in the source t ree. Table
15.2 lists the m ain kernel program m ing interfaces that you used in this chapter along with the locat ion of their
definit ions.

Table 1 5 .1 . Sum m ary of Data St ructures

Data St ructure Locat ion Descr ipt ion

sk_buff include/ linux/ skbuff.h sk_buff s provide efficient buffer
handling and flow-cont rol m echanism s to
Linux networking layers.

net_device include/ linux/ netdevice.h I nterface between NI C drivers and the
TCP/ I P stack.

net_device_stats include/ linux/ netdevice.h Stat ist ics pertaining to a network device.

ethtool_ops include/ linux/ ethtool.h Ent ry points to t ie a NI C driver to the
ethtool ut ilit y.

Table 1 5 .2 . Sum m ary of Kernel Program m ing I nter face s

Kernel I nter face Locat ion Descr ipt ion

alloc_netdev() net / core/ dev.c Allocates a net_device

Kernel I nter face Locat ion Descr ipt ion

alloc_etherdev()
alloc_ieee80211()
alloc_irdadev()

net / ethernet / eth.c

net / ieee80211/ ieee80211_m odule.c

net / irda/ irda_device.c

Wrappers to alloc_netdev()

free_netdev() net / core/ dev.c Reverse of alloc_netdev()

register_netdev() net / core/ dev.c Registers a net_device

unregister_netdev() net / core/ dev.c Unregisters a net_device

dev_alloc_skb() include/ linux/ skbuff.h Allocates m em ory for an sk_buff and
associates it with a packet payload buffer

dev_kfree_skb() include/ linux/ skbuff.h
net / core/ skbuff.c

Reverse of dev_alloc_skb()

skb_reserve() include/ linux/ skbuff.h Adds a padding between the start of a
packet buffer and the beginning of payload

skb_clone() net / core/ skbuff.c Creates a copy of a supplied sk_buff
without copying the contents of the
associated packet buffer

skb_put() include/ linux/ skbuff.h Allows packet data to go to the tail of the
packet

netif_rx() net / core/ dev.c Passes a network packet to the TCP/ I P
stack

netif_rx_schedule_prep()
__netif_rx_schedule()

include/ linux/ netdevice.h
net / core/ dev.c

Passes a network packet to the TCP/ I P
stack (NAPI)

netif_receive_skb() net / core/ dev.c Posts packet to the protocol layer from the
poll() m ethod (NAPI)

netif_rx_complete() include/ linux/ netdevice.h Rem oves a device from polled list (NAPI)

netif_device_detach() net / core/ dev.c Detaches the device (com m only called
during power suspend)

netif_device_attach() net / core/ dev.c At taches the device (com m only called
during power resum e)

netif_start_queue() include/ linux/ netdevice.h Conveys readiness to accept data from the
networking stack

netif_stop_queue() include/ linux/ netdevice.h Asks the networking stack to stop sending
down data

netif_wake_queue() include/ linux/ netdevice.h Restarts egress queuing

netif_queue_stopped() include/ linux/ netdevice.h Checks flow-cont rol state

Chapter 1 6 . Linux W ithout W ires

I n This Chapter

Bluetooth

467

I nfrared

478

WiFi

489

Cellular Networking

496

Current Trends

500

Several sm all- footpr int devices are powered by the dual com binat ion of a wireless technology and Linux.
Bluetooth, I nfrared, WiFi, and cellular networking are established wireless technologies that have healthy Linux
support . Bluetooth elim inates cables, injects intelligence into dum b devices, and opens a flood gate of novel
applicat ions. I nfrared is a low-cost , low- range, m edium -rate, wireless technology that can network laptops,
connect handhelds, or dispatch a docum ent to a pr inter. WiFi is the wireless equivalent of an Ethernet LAN.
Cellular networking using General Packet Radio Service (GPRS) or code division m ult iple access (CDMA) keeps
you I nternet -enabled on the go, as long as your wanderings are confined to service provider coverage area.

Because these wireless technologies are widely available in popular form factors, you are likely to end up,
sooner rather than later, with a card that does not work on Linux r ight away. Before you start working on
enabling an unsupported card, you need to know in detail how the kernel im plem ents support for the
corresponding technology. I n this chapter, let 's learn how Linux enables Bluetooth, I nfrared, WiFi, and cellular
networking.

Wireless Trade-Offs

Bluetooth, I nfrared, WiFi, and GPRS serve different niches. The t rade-offs can be gauged in term s of speed,
range, cost , power consum pt ion, ease of hardware/ software co-design, and PCB real estate usage.

Table 16.1 gives you an idea of these param eters, but you will have to contend with several variables when you
m easure the num bers on the ground. The speeds listed are the theoret ical m axim um s. The power consum pt ions
indicated are relat ive, but in the real world they also depend on the vendor's im plem entat ion techniques, the
technology subclass, and the operat ing m ode. Cost econom ics depend on the chip form factor and whether the
chip contains built - in m icrocode that im plem ents som e of the protocol layers. The board real estate consum ed
depends not just on the chipset , but also on t ransceivers, antennae, and whether you build using off- the-shelf
(OTS) m odules.

Bluetooth
720Kbps
10m to 100m
* *
* *
* *
* *
I nfrared Data
4Mbps (Fast I R)
Up to 1 m eter within a 30-degree cone
*
*
*
*
WiFi
54Mbps
150 m eters (indoors)
* * * *
* * *
* * *
* * *
GPRS
170Kbps
Service provider coverage
* * *
* * * *
*
* * *
Note: The last four colum ns give relat ive m easurem ent (depending on the num ber of * sym bols) rather than absolute
values.

Table 1 6 .1 . W ire less Trade- Offs

 Speed Range Pow er Cost Co-Design
Effor t

Board
Rea l
Estate

Som e sect ions in this chapter focus m ore on "system program m ing" than device dr ivers. This is because the
corresponding regions of the protocol stack (for exam ple, Bluetooth RFCOMM and I nfrared networking) are
already present in the kernel and you are m ore likely to perform associated user m ode custom izat ions than
develop protocol content or device dr ivers.

Bluetooth

Bluetooth is a short - range cable- replacem ent technology that carr ies both data and voice. I t supports speeds of
up to 723Kbps (asym m etr ic) and 432Kbps (sym m etr ic) . Class 3 Bluetooth devices have a range of 10 m eters,
and Class 1 t ransm it ters can com m unicate up to 100 m eters.

Bluetooth is designed to do away with wires that const r ict and clut ter your environm ent . I t can, for exam ple,
turn your wristwatch into a front -end for a bulky Global Posit ioning System (GPS) hidden inside your backpack.
Or it can, for instance, let you navigate a presentat ion via your handheld. Again, Bluetooth can be the answer if
you want your laptop to be a hub that can I nternet -enable your Bluetooth-aware MP3 player. I f your wristwatch,
handheld, laptop, or MP3 player is running Linux, knowledge of the innards of the Linux Bluetooth stack will help
you ext ract m axim um m ileage out of your device.

As per the Bluetooth specificat ion, the protocol stack consists of the layers shown in Figure 16.1 . The radio, link
cont roller, and link m anager roughly correspond to the physical, data link, and network layers in the Open
System s I nterconnect (OSI) standard reference m odel. The Host Cont rol I nterface (HCI) is the protocol that
carr ies data to/ from the hardware and, hence, m aps to the t ransport layer. The Bluetooth Logical Link Cont rol
and Adaptat ion Protocol (L2CAP) falls in the session layer. Serial port emulat ion using Radio Frequency
Com m unicat ion (RFCOMM), Ethernet em ulat ion using Bluetooth Network Encapsulat ion Protocol (BNEP) , and the
Service Discovery Protocol (SDP) are part of the feature- r ich presentat ion layer. At the top of the stack reside
various applicat ion environm ents called profiles. The radio, link cont roller, and link m anager are usually part of
Bluetooth hardware, so operat ing system support starts at the HCI layer.

Figure 1 6 .1 . The Bluetooth stack.

A com m on m ethod of interfacing Bluetooth hardware with a m icrocont roller is by connect ing the chipset 's data
lines to the cont roller 's UART pins. Figure 13.4 of Chapter 13 , "Audio Drivers," shows a Bluetooth chip on an
MP3 player com m unicat ing with the processor via a UART. USB is another oft -used vehicle for com m unicat ing
with Bluetooth chipsets. Figure 11.2 of Chapter 11 , "Universal Serial Bus," shows a Bluetooth chip on an
em bedded device interfacing with the processor over USB. I rrespect ive of whether you use UART or USB (we
will look at both kinds of devices later) , the packet form at used to t ransport Bluetooth data is HCI .

BlueZ

The BlueZ Bluetooth im plem entat ion is part of the mainline kernel and is the official Linux Bluetooth stack.

Figure 16.2 shows how BlueZ m aps Bluetooth protocol layers to kernel m odules, kernel threads, user space
daem ons, configurat ion tools, ut ilit ies, and libraries. The m ain BlueZ com ponents are explained here:

bluetooth.ko contains the core BlueZ infrast ructure. All other BlueZ m odules ut ilize its services. I t 's also
responsible for export ing the Bluetooth fam ily of sockets (AF_BLUETOOTH) to user space and for populat ing
related sysfs ent r ies.

1 .

For t ransport ing Bluetooth HCI packets over UART, the corresponding BlueZ HCI im plem entat ion is
hci_uart .ko. For USB t ransport , it 's hci_usb.ko .

2 .

l2cap.ko im plem ents the L2CAP adaptat ion layer that is responsible for segm entat ion and reassem bly. I t
also m ult iplexes between different higher- layer protocols.

3 .

To run TCP/ I P applicat ions over Bluetooth, you have to em ulate Ethernet ports over L2CAP using BNEP.
This is accom plished by bnep.ko. To service BNEP connect ions, BlueZ spawns a kernel thread called
kbnepd .

4 .

To run serial port applicat ions such as term inal emulators over Bluetooth, you need to em ulate serial ports
over L2CAP. This is accom plished by rfcom m .ko. RFCOMM also funct ions as the pillar that supports
networking over PPP. To service incom ing RFCOMM connect ions, r fcom m .ko spawns a kernel thread called
krfcom m d. To set up and m aintain connect ions to individual RFCOMM channels on target devices, use the
rfcom m ut ilit y.

5 .

The Hum an I nterface Devices (HI D) layer is im plem ented via hidp.ko . The user m ode daem on, hidd , lets
BlueZ handle input devices such as Bluetooth m ice.

6 .

Audio is handled via the Synchronous Connect ion Oriented (SCO) layer im plem ented by sco.ko .7 .

Figure 1 6 .2 . Bluetooth protocol layers m apped to Bl ueZ kernel m odules.

[View full size im age]

Let 's now t race the kernel code flow for two exam ple Bluetooth devices: a Com pact Flash (CF) card and a USB
adapter.

Device Exam ple: CF Card

The Sharp Bluetooth Com pact Flash card is built using a Silicon Wave chipset and uses a serial t ransport to
carry HCI packets. There are three different ways by which HCI packets can be t ransported serially:

H4 (UART) , which is used by the Sharp CF card. H4 is the standard m ethod to t ransfer Bluetooth data over
UARTs as defined by the Bluetooth specificat ion. Look at dr ivers/ bluetooth/ hci_h4.c for the BlueZ
im plem entat ion.

1 .

H3 (RS232) . Devices using H3 are hard to find. BlueZ has no support for H3.2 .

BlueCore Serial Protocol (BCSP) , which is a proprietary protocol from Cam bridge Silicon Radio (CSR) that
supports error checking and ret ransm ission. BCSP is used on non-USB devices based on CSR BlueCore
chips including PCMCI A and CF cards. The BlueZ BCSP im plem entat ion lives in dr ivers/ -
bluetooth/ hci_bcsp.c .

3 .

The read data path for the Sharp Bluetooth card is shown in Figure 16.3 . The first point of contact between the
card and the kernel is at the UART driver. As you saw in Figure 9.5 of Chapter 9 , "PCMCI A and Com pact Flash,"
the serial Card Services dr iver, dr ivers/ serial/ serial_cs.c , allows the rest of the operat ing system to see the
Sharp card as if it were a serial device. The serial dr iver passes on the received HCI packets to BlueZ. BlueZ
im plem ents HCI processing in the form of a kernel line discipline. As you learned in Chapter 6 , "Serial Drivers,"
line disciplines reside above the serial dr iver and shape its behavior. The HCI line discipline invokes associated
protocol rout ines (H4 in this case) for assistance in data processing. From then on, L2CAP and higher BlueZ
layers take charge.

Figure 1 6 .3 . Read data path from a Sharp Bluetooth CF card.

[View full size im age]

Device Exam ple: USB Adapter

Let 's now look at a device that uses USB to t ransport HCI packets. The Belkin Bluetooth USB adapter is one
such gadget . I n this case, the Linux USB layer (dr ivers/ usb/ *) , the HCI USB t ransport dr iver
(dr ivers/ bluetooth/ hci_usb.c) , and the BlueZ protocol stack (net / bluetooth/ *) are the m ain players that get the
data rolling. Let 's see how these three kernel layers interact .

As you learned in Chapter 11 , USB devices exchange data using one or m ore of four pipes. For Bluetooth USB
devices, each pipe is responsible for carrying a part icular type of data:

Cont rol pipes are used to t ransport HCI com m ands.1 .

I nterrupt pipes are responsible for carrying HCI events.2 .

Bulk pipes t ransfer asynchronous connect ionless (ACL) Bluetooth data.3 .

I sochronous pipes carry SCO audio data.4 .

You also saw in Chapter 11 that when a USB device is plugged into a system , the host cont roller dr iver
enum erates it using a cont rol pipe and assigns endpoint addresses between 1 and 127. The configurat ion
descriptor read by the USB subsystem during enum erat ion contains inform at ion about the device, such as its
class , subclass , and protocol . The Bluetooth specificat ion defines the (class , subclass , protocol)
codes of Bluetooth USB devices as (0xE, 0x01, 0x01) . The HCI USB t ransport dr iver (hci_usb) registers these
values with the USB core during init ializat ion. When the Belkin USB adapter is plugged in, the USB core reads
the (class , subclass , protocol) inform at ion from the device configurat ion descriptor. Because this
inform at ion m atches the values registered by hci_usb , this dr iver gets at tached to the Belkin USB adapter.
hci_usb reads Bluetooth data from the four USB pipes described previously and passes it on to the BlueZ
protocol stack. Linux applicat ions now run seam lessly over this device, as shown in Figure 16.2 .

RFCOMM

RFCOMM em ulates serial ports over Bluetooth. Applicat ions such as term inal em ulators and protocols such as
PPP can run unchanged over the vir tual serial interfaces created by RFCOMM.

Device Exam ple: Pill D ispenser

To take an exam ple, assum e that you have a Bluetooth-aware pill dispenser. When you pop a pill out of the
dispenser, it sends a m essage over a Bluetooth RFCOMM channel. A Linux cell phone, such as the one shown in
Figure 6.5 of Chapter 6 , reads this alert using a sim ple applicat ion that establishes an RFCOMM connect ion to
the pill dispenser. The phone then dispatches this inform at ion to the health-care provider 's server on the
I nternet via its GPRS interface.

A skeletal applicat ion on the Linux cell phone that reads data arr iving from the pill dispenser using the BlueZ
socket API is shown in List ing 16.1 . The list ing assum es that you are fam iliar with the basics of socket
program m ing.

List ing 1 6 .1 . Com m unicat ing w ith a Pill D ispenser o ver RFCOMM

Code View:
#include <sys/socket.h>
#include <bluetooth/rfcomm.h> /* For struct sockaddr_rc */

void
sense_dispenser()
{
 int pillfd;
 struct sockaddr_rc pill_rfcomm;
 char buffer[1024];

 /* ... */

 /* Create a Bluetooth RFCOMM socket */
 if ((pillfd = socket(PF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM))
 < 0) {

 printf("Bad Bluetooth RFCOMM socket");
 exit(1);
 }

 /* Connect to the pill dispenser */
 pill_rfcomm.rc_family = AF_BLUETOOTH;
 pill_rfcomm.rc_bdaddr = PILL_DISPENSER_BLUETOOTH_ADDR;
 pill_rfcomm.rc_channel = PILL_DISPENSER_RFCOMM_CHANNEL;

 if (connect(pillfd, (struct sockaddr *)&pill_rfcomm,
 sizeof(pill_rfcomm))) {
 printf("Cannot connect to Pill Dispenser\n");
 exit(1);
 }

 printf("Connection established to Pill Dispenser\n");
 /* Poll until data is ready */
 select(pillfd, &fds, NULL, NULL, &timeout);

 /* Data is available on this RFCOMM channel */
 if (FD_ISSET(pillfd, fds)) {

 /* Read pill removal alerts from the dispenser */
 read(pillfd, buffer, sizeof(buffer));

 /* Take suitable action; e.g., send a message to the health
 care provider's server on the Internet via the GPRS
 interface */
 /* ... */
 }

 /* ... */
}

Netw ork ing

Trace down the code path from the telnet / ftp/ ssh box in Figure 16.2 to see how networking is architected over
BlueZ Bluetooth. As you can see, there are two different ways to network over Bluetooth:

By running TCP/ I P direct ly over BNEP. The result ing network is called a personal area network (PAN) .1 .

By running TCP/ I P over PPP over RFCOMM. This is called dialup networking (DUN) .2 .

The kernel im plem entat ion of Bluetooth networking is unlikely to interest the device dr iver writer and is not
explored. Table 16.2 shows the steps required to network two laptops using PAN, however. Networking with
DUN resem bles this and is not exam ined. The laptops are respect ively Bluetooth-enabled using the Sharp CF
card and the Belkin USB adapter discussed earlier. You can slip the CF card into the first laptop's PCMCI A slot
using a passive CF- to-PCMCI A adapter. Look at Figure 16.2 in tandem with Table 16.2 to understand the
m appings to corresponding BlueZ com ponents. Table 16.2 uses bash-sharp> and bash-belkin> as the
respect ive shell prom pts of the two laptops.

On the laptop with the Sharp Bluetooth CF card

Start the HCI and service discovery daem ons:

bash-sharp> hcid

bash-sharp> sdpd

Because this device possesses a UART interface, you have to at tach the BlueZ stack to the appropriate
serial port . I n this case, assum e that ser ial_cs has allot ted / dev/ t tyS3 to the card:

bash-sharp> hciattach ttyS3 any

1 .

Verify that the HCI interface is up:

bash-sharp> hciconfig -a

 hci0: Type: UART
 BD Address: 08:00:1F:10:3B:13 ACL MTU: 60:20 SCO MTU: 31:1
 UP RUNNING PSCAN ISCAN
 ...
Manufacturer: Silicon Wave (11)

2 .

Verify that basic BlueZ m odules are loaded:

bash-sharp> lsmod

 Module Size Used by
 hci_uart 16728 3
 l2cap 26144 2
 bluetooth 47684 6 hci_uart,l2cap
 ...

3 .

I nsert the BlueZ m odule that im plem ents network encapsulat ion:

bash-sharp> modprobe bnep

4 .

Listen for incom ing PAN connect ions: [1]

bash-sharp> pand –s

5 .

On the laptop with the Belkin USB Bluetooth adapter

Start daem ons, such as hcid and sdpd, and insert necessary kernel m odules, such as bluetooth.ko and
l2cap.ko .

1 .

Because this is a USB device, you don't need to invoke hciat tach, but m ake sure that the hci_usb.ko
m odule is inserted.

2 .

Verify that the HCI interface is up:

Code View:
bash-belkin> hciconfig -a

 hci0: Type: USB BD Address: 00:02:72:B0:33:AB ACL MTU: 192:8 SCO MTU: 64:8
 UP RUNNING PSCAN ISCAN

3 .

 ...
 Manufacturer: Cambridge Silicon Radio (10)

Search and discover devices in the neighborhood:

bash-belkin> hcitool -i hci0 scan --flush

 Scanning....
 08:00:1F:10:3B:13 bash-sharp

4 .

Establish a PAN with the first laptop. You can get its Bluetooth address (08: 00: 1F: 10: 3B: 13) from its
hciconfig output :

bash-belkin> pand -c 08:00:1F:10:3B:13

5 .

I f you now look at the ifconfig output on the two laptops, you will find that a new interface nam ed bnep0 has m ade an
appearance at both ends. Assign I P addresses to both interfaces and get ready to telnet and FTP!
Table 1 6 .2 .
Netw ork ing

Tw o
Laptops

Using
Bluetooth

PAN

[1] A useful com m and- line opt ion to pand is --persist , which autom at ically at tem pts to reconnect when a connect ion drops. Dig into the m an
pages for m ore invocat ion opt ions.

Hum an I nter face Devices

Look at sect ions "USB and Bluetooth Keyboards " and "USB and Bluetooth Mice " in Chapter 7 , " I nput Drivers,"
for a discussion on Bluetooth hum an interface devices.

Audio

Let 's take the exam ple of an HBH-30 Sony Ericsson Bluetooth headset to understand Bluetooth SCO audio.
Before the headset can start com m unicat ing with a Linux device, the Bluetooth link layer on the lat ter has to
discover the form er. For this, put the headset in discover m ode by pressing the but ton earm arked for device
discovery. I n addit ion, you have to configure BlueZ with the headset 's personal ident ificat ion num ber (PI N) by
adding it to / etc/ bluetooth/ pin. An applicat ion on the Linux device that uses BlueZ SCO API s can now send audio
data to the headset . The audio data should be in a form at that the headset understands. The HBH-30 uses the
A- law PCM (pulse code m odulat ion) form at . There are public dom ain ut ilit ies for convert ing audio into various
PCM form ats.

Bluetooth chipsets com m only have PCM interface pins in addit ion to the HCI t ransport interface. I f a device
supports, for instance, both Bluetooth and Global System for Mobile Com m unicat ion (GSM), the PCM lines from
the GSM chipset m ay be direct ly wired to the Bluetooth chip's PCM audio lines. You m ight then have to configure
the Bluetooth chip to receive and send SCO audio packets over its HCI interface instead of its PCM interface.

Debugging

There are two BlueZ tools useful for debugging:

hcidum p taps HCI packets flowing back and forth, and parses them into hum an- readable form . Here's an
exam ple dum p while a device inquiry is in progress:

bash> hcidump -i hci0

HCIDump - HCI packet analyzer ver 1.11
device: hci0 snap_len: 1028 filter: 0xffffffff
 HCI Command: Inquiry (0x01|0x0001) plen 5
 HCI Event: Command Status (0x0f) plen 4
 HCI Event: Inquiry Result (0x02) plen 15
 ...
 HCI Event: Inquiry Complete (0x01) plen 1 < HCI Command:
 Remote Name Request (0x01|0x0019) plen 10
 ...

1 .

The vir tual HCI dr iver (hci_vhci.ko) , as shown in Figure 16.2 , em ulates a Bluetooth interface if you do
not have actual hardware.

2 .

Look ing at the Sources

Look inside dr ivers/ bluetooth/ for BlueZ low- level dr ivers. Explore net / bluetooth/ for insights into the BlueZ
protocol im plem entat ion.

Bluetooth applicat ions fall under different profiles based on how they behave. For exam ple, the cordless
telephony profile specifies how a Bluetooth device can im plem ent a cordless phone. We discussed profiles for
PAN and serial access, but there are m any m ore profiles out there such as fax profile, General Object Exchange
Profile (GOEP) and SI M Access Profile (SAP) . The bluez-ut ils package, downloadable from www.bluez.org ,
provides support for several Bluetooth profiles.

The official Bluetooth website is www.bluetooth.org . I t contains Bluetooth specificat ion docum ents and
inform at ion about the Bluetooth Special I nterest Group (SI G) .

Affix is an alternate Bluetooth stack on Linux. You can download Affix from ht tp: / / affix.sourceforge.net / .

Chapter 1 6 . Linux W ithout W ires

I n This Chapter

Bluetooth

467

I nfrared

478

WiFi

489

Cellular Networking

496

Current Trends

500

Several sm all- footpr int devices are powered by the dual com binat ion of a wireless technology and Linux.
Bluetooth, I nfrared, WiFi, and cellular networking are established wireless technologies that have healthy Linux
support . Bluetooth elim inates cables, injects intelligence into dum b devices, and opens a flood gate of novel
applicat ions. I nfrared is a low-cost , low- range, m edium -rate, wireless technology that can network laptops,
connect handhelds, or dispatch a docum ent to a pr inter. WiFi is the wireless equivalent of an Ethernet LAN.
Cellular networking using General Packet Radio Service (GPRS) or code division m ult iple access (CDMA) keeps
you I nternet -enabled on the go, as long as your wanderings are confined to service provider coverage area.

Because these wireless technologies are widely available in popular form factors, you are likely to end up,
sooner rather than later, with a card that does not work on Linux r ight away. Before you start working on
enabling an unsupported card, you need to know in detail how the kernel im plem ents support for the
corresponding technology. I n this chapter, let 's learn how Linux enables Bluetooth, I nfrared, WiFi, and cellular
networking.

Wireless Trade-Offs

Bluetooth, I nfrared, WiFi, and GPRS serve different niches. The t rade-offs can be gauged in term s of speed,
range, cost , power consum pt ion, ease of hardware/ software co-design, and PCB real estate usage.

Table 16.1 gives you an idea of these param eters, but you will have to contend with several variables when you
m easure the num bers on the ground. The speeds listed are the theoret ical m axim um s. The power consum pt ions
indicated are relat ive, but in the real world they also depend on the vendor's im plem entat ion techniques, the
technology subclass, and the operat ing m ode. Cost econom ics depend on the chip form factor and whether the
chip contains built - in m icrocode that im plem ents som e of the protocol layers. The board real estate consum ed
depends not just on the chipset , but also on t ransceivers, antennae, and whether you build using off- the-shelf
(OTS) m odules.

Bluetooth
720Kbps
10m to 100m
* *
* *
* *
* *
I nfrared Data
4Mbps (Fast I R)
Up to 1 m eter within a 30-degree cone
*
*
*
*
WiFi
54Mbps
150 m eters (indoors)
* * * *
* * *
* * *
* * *
GPRS
170Kbps
Service provider coverage
* * *
* * * *
*
* * *
Note: The last four colum ns give relat ive m easurem ent (depending on the num ber of * sym bols) rather than absolute
values.

Table 1 6 .1 . W ire less Trade- Offs

 Speed Range Pow er Cost Co-Design
Effor t

Board
Rea l
Estate

Som e sect ions in this chapter focus m ore on "system program m ing" than device dr ivers. This is because the
corresponding regions of the protocol stack (for exam ple, Bluetooth RFCOMM and I nfrared networking) are
already present in the kernel and you are m ore likely to perform associated user m ode custom izat ions than
develop protocol content or device dr ivers.

Bluetooth

Bluetooth is a short - range cable- replacem ent technology that carr ies both data and voice. I t supports speeds of
up to 723Kbps (asym m etr ic) and 432Kbps (sym m etr ic) . Class 3 Bluetooth devices have a range of 10 m eters,
and Class 1 t ransm it ters can com m unicate up to 100 m eters.

Bluetooth is designed to do away with wires that const r ict and clut ter your environm ent . I t can, for exam ple,
turn your wristwatch into a front -end for a bulky Global Posit ioning System (GPS) hidden inside your backpack.
Or it can, for instance, let you navigate a presentat ion via your handheld. Again, Bluetooth can be the answer if
you want your laptop to be a hub that can I nternet -enable your Bluetooth-aware MP3 player. I f your wristwatch,
handheld, laptop, or MP3 player is running Linux, knowledge of the innards of the Linux Bluetooth stack will help
you ext ract m axim um m ileage out of your device.

As per the Bluetooth specificat ion, the protocol stack consists of the layers shown in Figure 16.1 . The radio, link
cont roller, and link m anager roughly correspond to the physical, data link, and network layers in the Open
System s I nterconnect (OSI) standard reference m odel. The Host Cont rol I nterface (HCI) is the protocol that
carr ies data to/ from the hardware and, hence, m aps to the t ransport layer. The Bluetooth Logical Link Cont rol
and Adaptat ion Protocol (L2CAP) falls in the session layer. Serial port emulat ion using Radio Frequency
Com m unicat ion (RFCOMM), Ethernet em ulat ion using Bluetooth Network Encapsulat ion Protocol (BNEP) , and the
Service Discovery Protocol (SDP) are part of the feature- r ich presentat ion layer. At the top of the stack reside
various applicat ion environm ents called profiles. The radio, link cont roller, and link m anager are usually part of
Bluetooth hardware, so operat ing system support starts at the HCI layer.

Figure 1 6 .1 . The Bluetooth stack.

A com m on m ethod of interfacing Bluetooth hardware with a m icrocont roller is by connect ing the chipset 's data
lines to the cont roller 's UART pins. Figure 13.4 of Chapter 13 , "Audio Drivers," shows a Bluetooth chip on an
MP3 player com m unicat ing with the processor via a UART. USB is another oft -used vehicle for com m unicat ing
with Bluetooth chipsets. Figure 11.2 of Chapter 11 , "Universal Serial Bus," shows a Bluetooth chip on an
em bedded device interfacing with the processor over USB. I rrespect ive of whether you use UART or USB (we
will look at both kinds of devices later) , the packet form at used to t ransport Bluetooth data is HCI .

BlueZ

The BlueZ Bluetooth im plem entat ion is part of the mainline kernel and is the official Linux Bluetooth stack.

Figure 16.2 shows how BlueZ m aps Bluetooth protocol layers to kernel m odules, kernel threads, user space
daem ons, configurat ion tools, ut ilit ies, and libraries. The m ain BlueZ com ponents are explained here:

bluetooth.ko contains the core BlueZ infrast ructure. All other BlueZ m odules ut ilize its services. I t 's also
responsible for export ing the Bluetooth fam ily of sockets (AF_BLUETOOTH) to user space and for populat ing
related sysfs ent r ies.

1 .

For t ransport ing Bluetooth HCI packets over UART, the corresponding BlueZ HCI im plem entat ion is
hci_uart .ko. For USB t ransport , it 's hci_usb.ko .

2 .

l2cap.ko im plem ents the L2CAP adaptat ion layer that is responsible for segm entat ion and reassem bly. I t
also m ult iplexes between different higher- layer protocols.

3 .

To run TCP/ I P applicat ions over Bluetooth, you have to em ulate Ethernet ports over L2CAP using BNEP.
This is accom plished by bnep.ko. To service BNEP connect ions, BlueZ spawns a kernel thread called
kbnepd .

4 .

To run serial port applicat ions such as term inal emulators over Bluetooth, you need to em ulate serial ports
over L2CAP. This is accom plished by rfcom m .ko. RFCOMM also funct ions as the pillar that supports
networking over PPP. To service incom ing RFCOMM connect ions, r fcom m .ko spawns a kernel thread called
krfcom m d. To set up and m aintain connect ions to individual RFCOMM channels on target devices, use the
rfcom m ut ilit y.

5 .

The Hum an I nterface Devices (HI D) layer is im plem ented via hidp.ko . The user m ode daem on, hidd , lets
BlueZ handle input devices such as Bluetooth m ice.

6 .

Audio is handled via the Synchronous Connect ion Oriented (SCO) layer im plem ented by sco.ko .7 .

Figure 1 6 .2 . Bluetooth protocol layers m apped to Bl ueZ kernel m odules.

[View full size im age]

Let 's now t race the kernel code flow for two exam ple Bluetooth devices: a Com pact Flash (CF) card and a USB
adapter.

Device Exam ple: CF Card

The Sharp Bluetooth Com pact Flash card is built using a Silicon Wave chipset and uses a serial t ransport to
carry HCI packets. There are three different ways by which HCI packets can be t ransported serially:

H4 (UART) , which is used by the Sharp CF card. H4 is the standard m ethod to t ransfer Bluetooth data over
UARTs as defined by the Bluetooth specificat ion. Look at dr ivers/ bluetooth/ hci_h4.c for the BlueZ
im plem entat ion.

1 .

H3 (RS232) . Devices using H3 are hard to find. BlueZ has no support for H3.2 .

BlueCore Serial Protocol (BCSP) , which is a proprietary protocol from Cam bridge Silicon Radio (CSR) that
supports error checking and ret ransm ission. BCSP is used on non-USB devices based on CSR BlueCore
chips including PCMCI A and CF cards. The BlueZ BCSP im plem entat ion lives in dr ivers/ -
bluetooth/ hci_bcsp.c .

3 .

The read data path for the Sharp Bluetooth card is shown in Figure 16.3 . The first point of contact between the
card and the kernel is at the UART driver. As you saw in Figure 9.5 of Chapter 9 , "PCMCI A and Com pact Flash,"
the serial Card Services dr iver, dr ivers/ serial/ serial_cs.c , allows the rest of the operat ing system to see the
Sharp card as if it were a serial device. The serial dr iver passes on the received HCI packets to BlueZ. BlueZ
im plem ents HCI processing in the form of a kernel line discipline. As you learned in Chapter 6 , "Serial Drivers,"
line disciplines reside above the serial dr iver and shape its behavior. The HCI line discipline invokes associated
protocol rout ines (H4 in this case) for assistance in data processing. From then on, L2CAP and higher BlueZ
layers take charge.

Figure 1 6 .3 . Read data path from a Sharp Bluetooth CF card.

[View full size im age]

Device Exam ple: USB Adapter

Let 's now look at a device that uses USB to t ransport HCI packets. The Belkin Bluetooth USB adapter is one
such gadget . I n this case, the Linux USB layer (dr ivers/ usb/ *) , the HCI USB t ransport dr iver
(dr ivers/ bluetooth/ hci_usb.c) , and the BlueZ protocol stack (net / bluetooth/ *) are the m ain players that get the
data rolling. Let 's see how these three kernel layers interact .

As you learned in Chapter 11 , USB devices exchange data using one or m ore of four pipes. For Bluetooth USB
devices, each pipe is responsible for carrying a part icular type of data:

Cont rol pipes are used to t ransport HCI com m ands.1 .

I nterrupt pipes are responsible for carrying HCI events.2 .

Bulk pipes t ransfer asynchronous connect ionless (ACL) Bluetooth data.3 .

I sochronous pipes carry SCO audio data.4 .

You also saw in Chapter 11 that when a USB device is plugged into a system , the host cont roller dr iver
enum erates it using a cont rol pipe and assigns endpoint addresses between 1 and 127. The configurat ion
descriptor read by the USB subsystem during enum erat ion contains inform at ion about the device, such as its
class , subclass , and protocol . The Bluetooth specificat ion defines the (class , subclass , protocol)
codes of Bluetooth USB devices as (0xE, 0x01, 0x01) . The HCI USB t ransport dr iver (hci_usb) registers these
values with the USB core during init ializat ion. When the Belkin USB adapter is plugged in, the USB core reads
the (class , subclass , protocol) inform at ion from the device configurat ion descriptor. Because this
inform at ion m atches the values registered by hci_usb , this dr iver gets at tached to the Belkin USB adapter.
hci_usb reads Bluetooth data from the four USB pipes described previously and passes it on to the BlueZ
protocol stack. Linux applicat ions now run seam lessly over this device, as shown in Figure 16.2 .

RFCOMM

RFCOMM em ulates serial ports over Bluetooth. Applicat ions such as term inal em ulators and protocols such as
PPP can run unchanged over the vir tual serial interfaces created by RFCOMM.

Device Exam ple: Pill D ispenser

To take an exam ple, assum e that you have a Bluetooth-aware pill dispenser. When you pop a pill out of the
dispenser, it sends a m essage over a Bluetooth RFCOMM channel. A Linux cell phone, such as the one shown in
Figure 6.5 of Chapter 6 , reads this alert using a sim ple applicat ion that establishes an RFCOMM connect ion to
the pill dispenser. The phone then dispatches this inform at ion to the health-care provider 's server on the
I nternet via its GPRS interface.

A skeletal applicat ion on the Linux cell phone that reads data arr iving from the pill dispenser using the BlueZ
socket API is shown in List ing 16.1 . The list ing assum es that you are fam iliar with the basics of socket
program m ing.

List ing 1 6 .1 . Com m unicat ing w ith a Pill D ispenser o ver RFCOMM

Code View:
#include <sys/socket.h>
#include <bluetooth/rfcomm.h> /* For struct sockaddr_rc */

void
sense_dispenser()
{
 int pillfd;
 struct sockaddr_rc pill_rfcomm;
 char buffer[1024];

 /* ... */

 /* Create a Bluetooth RFCOMM socket */
 if ((pillfd = socket(PF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM))
 < 0) {

 printf("Bad Bluetooth RFCOMM socket");
 exit(1);
 }

 /* Connect to the pill dispenser */
 pill_rfcomm.rc_family = AF_BLUETOOTH;
 pill_rfcomm.rc_bdaddr = PILL_DISPENSER_BLUETOOTH_ADDR;
 pill_rfcomm.rc_channel = PILL_DISPENSER_RFCOMM_CHANNEL;

 if (connect(pillfd, (struct sockaddr *)&pill_rfcomm,
 sizeof(pill_rfcomm))) {
 printf("Cannot connect to Pill Dispenser\n");
 exit(1);
 }

 printf("Connection established to Pill Dispenser\n");
 /* Poll until data is ready */
 select(pillfd, &fds, NULL, NULL, &timeout);

 /* Data is available on this RFCOMM channel */
 if (FD_ISSET(pillfd, fds)) {

 /* Read pill removal alerts from the dispenser */
 read(pillfd, buffer, sizeof(buffer));

 /* Take suitable action; e.g., send a message to the health
 care provider's server on the Internet via the GPRS
 interface */
 /* ... */
 }

 /* ... */
}

Netw ork ing

Trace down the code path from the telnet / ftp/ ssh box in Figure 16.2 to see how networking is architected over
BlueZ Bluetooth. As you can see, there are two different ways to network over Bluetooth:

By running TCP/ I P direct ly over BNEP. The result ing network is called a personal area network (PAN) .1 .

By running TCP/ I P over PPP over RFCOMM. This is called dialup networking (DUN) .2 .

The kernel im plem entat ion of Bluetooth networking is unlikely to interest the device dr iver writer and is not
explored. Table 16.2 shows the steps required to network two laptops using PAN, however. Networking with
DUN resem bles this and is not exam ined. The laptops are respect ively Bluetooth-enabled using the Sharp CF
card and the Belkin USB adapter discussed earlier. You can slip the CF card into the first laptop's PCMCI A slot
using a passive CF- to-PCMCI A adapter. Look at Figure 16.2 in tandem with Table 16.2 to understand the
m appings to corresponding BlueZ com ponents. Table 16.2 uses bash-sharp> and bash-belkin> as the
respect ive shell prom pts of the two laptops.

On the laptop with the Sharp Bluetooth CF card

Start the HCI and service discovery daem ons:

bash-sharp> hcid

bash-sharp> sdpd

Because this device possesses a UART interface, you have to at tach the BlueZ stack to the appropriate
serial port . I n this case, assum e that ser ial_cs has allot ted / dev/ t tyS3 to the card:

bash-sharp> hciattach ttyS3 any

1 .

Verify that the HCI interface is up:

bash-sharp> hciconfig -a

 hci0: Type: UART
 BD Address: 08:00:1F:10:3B:13 ACL MTU: 60:20 SCO MTU: 31:1
 UP RUNNING PSCAN ISCAN
 ...
Manufacturer: Silicon Wave (11)

2 .

Verify that basic BlueZ m odules are loaded:

bash-sharp> lsmod

 Module Size Used by
 hci_uart 16728 3
 l2cap 26144 2
 bluetooth 47684 6 hci_uart,l2cap
 ...

3 .

I nsert the BlueZ m odule that im plem ents network encapsulat ion:

bash-sharp> modprobe bnep

4 .

Listen for incom ing PAN connect ions: [1]

bash-sharp> pand –s

5 .

On the laptop with the Belkin USB Bluetooth adapter

Start daem ons, such as hcid and sdpd, and insert necessary kernel m odules, such as bluetooth.ko and
l2cap.ko .

1 .

Because this is a USB device, you don't need to invoke hciat tach, but m ake sure that the hci_usb.ko
m odule is inserted.

2 .

Verify that the HCI interface is up:

Code View:
bash-belkin> hciconfig -a

 hci0: Type: USB BD Address: 00:02:72:B0:33:AB ACL MTU: 192:8 SCO MTU: 64:8
 UP RUNNING PSCAN ISCAN

3 .

 ...
 Manufacturer: Cambridge Silicon Radio (10)

Search and discover devices in the neighborhood:

bash-belkin> hcitool -i hci0 scan --flush

 Scanning....
 08:00:1F:10:3B:13 bash-sharp

4 .

Establish a PAN with the first laptop. You can get its Bluetooth address (08: 00: 1F: 10: 3B: 13) from its
hciconfig output :

bash-belkin> pand -c 08:00:1F:10:3B:13

5 .

I f you now look at the ifconfig output on the two laptops, you will find that a new interface nam ed bnep0 has m ade an
appearance at both ends. Assign I P addresses to both interfaces and get ready to telnet and FTP!
Table 1 6 .2 .
Netw ork ing

Tw o
Laptops

Using
Bluetooth

PAN

[1] A useful com m and- line opt ion to pand is --persist , which autom at ically at tem pts to reconnect when a connect ion drops. Dig into the m an
pages for m ore invocat ion opt ions.

Hum an I nter face Devices

Look at sect ions "USB and Bluetooth Keyboards " and "USB and Bluetooth Mice " in Chapter 7 , " I nput Drivers,"
for a discussion on Bluetooth hum an interface devices.

Audio

Let 's take the exam ple of an HBH-30 Sony Ericsson Bluetooth headset to understand Bluetooth SCO audio.
Before the headset can start com m unicat ing with a Linux device, the Bluetooth link layer on the lat ter has to
discover the form er. For this, put the headset in discover m ode by pressing the but ton earm arked for device
discovery. I n addit ion, you have to configure BlueZ with the headset 's personal ident ificat ion num ber (PI N) by
adding it to / etc/ bluetooth/ pin. An applicat ion on the Linux device that uses BlueZ SCO API s can now send audio
data to the headset . The audio data should be in a form at that the headset understands. The HBH-30 uses the
A- law PCM (pulse code m odulat ion) form at . There are public dom ain ut ilit ies for convert ing audio into various
PCM form ats.

Bluetooth chipsets com m only have PCM interface pins in addit ion to the HCI t ransport interface. I f a device
supports, for instance, both Bluetooth and Global System for Mobile Com m unicat ion (GSM), the PCM lines from
the GSM chipset m ay be direct ly wired to the Bluetooth chip's PCM audio lines. You m ight then have to configure
the Bluetooth chip to receive and send SCO audio packets over its HCI interface instead of its PCM interface.

Debugging

There are two BlueZ tools useful for debugging:

hcidum p taps HCI packets flowing back and forth, and parses them into hum an- readable form . Here's an
exam ple dum p while a device inquiry is in progress:

bash> hcidump -i hci0

HCIDump - HCI packet analyzer ver 1.11
device: hci0 snap_len: 1028 filter: 0xffffffff
 HCI Command: Inquiry (0x01|0x0001) plen 5
 HCI Event: Command Status (0x0f) plen 4
 HCI Event: Inquiry Result (0x02) plen 15
 ...
 HCI Event: Inquiry Complete (0x01) plen 1 < HCI Command:
 Remote Name Request (0x01|0x0019) plen 10
 ...

1 .

The vir tual HCI dr iver (hci_vhci.ko) , as shown in Figure 16.2 , em ulates a Bluetooth interface if you do
not have actual hardware.

2 .

Look ing at the Sources

Look inside dr ivers/ bluetooth/ for BlueZ low- level dr ivers. Explore net / bluetooth/ for insights into the BlueZ
protocol im plem entat ion.

Bluetooth applicat ions fall under different profiles based on how they behave. For exam ple, the cordless
telephony profile specifies how a Bluetooth device can im plem ent a cordless phone. We discussed profiles for
PAN and serial access, but there are m any m ore profiles out there such as fax profile, General Object Exchange
Profile (GOEP) and SI M Access Profile (SAP) . The bluez-ut ils package, downloadable from www.bluez.org ,
provides support for several Bluetooth profiles.

The official Bluetooth website is www.bluetooth.org . I t contains Bluetooth specificat ion docum ents and
inform at ion about the Bluetooth Special I nterest Group (SI G) .

Affix is an alternate Bluetooth stack on Linux. You can download Affix from ht tp: / / affix.sourceforge.net / .

I nfrared

I nfrared (I R) rays are opt ical waves lying between the visible and the m icrowave regions of the elect rom agnet ic
spect rum . One use of I R is in point - to-point data com m unicat ion. Using I R, you can exchange visit ing cards
between PDAs, network two laptops, or dispatch a docum ent to a pr inter. I R has a range of up to 1 m eter within
a 30-degree cone, spreading from –15 to + 15 degrees.

There are two popular flavors of I R com m unicat ion: Standard I R (SI R) , which supports speeds of up to 115.20
Kbaud; and Fast I R (FI R) , which has a bandwidth of 4Mbps.

Figure 16.4 shows I R connect ion on a laptop. UART1 in the Super I / O chipset is I R-enabled, so an I R t ransceiver
is direct ly connected to it . Laptops having no I R support in their Super I / O chip m ay rely on an external I R
dongle (see the sect ion "Device Exam ple: I R Dongle") sim ilar to the one connected to UART0. Figure 16.5 shows
I R connect ion on an em bedded SoC having a built - in I R dongle connected to a system UART.

Figure 1 6 .4 . I rDA on a laptop.

Figure 1 6 .5 . I rDA on an em bedded device (for exam pl e, EP7 2 1 1) .

Linux supports I R com m unicat ion on two planes:

I ntelligent data- t ransfer via protocols specified by the I nfrared Data Associat ion (I rDA) . This is
im plem ented by the Linux- I rDA project .

1 .

Cont rolling applicat ions via a rem ote cont rol. This is im plem ented by the Linux I nfrared Rem ote Cont rol
(LI RC) project .

2 .

This sect ion pr im arily explores Linux- I rDA but takes a quick look at LI RC before wrapping up.

Linux- I rDA

The Linux- I rDA project (ht tp: / / irda.sourceforge.net /) br ings I rDA capabilit ies to the kernel. To get an idea of
how Linux- I rDA com ponents relate vis-à-vis the I rDA stack and possible hardware configurat ions, let 's cr iss-
cross through Figure 16.6:

Device dr ivers const itute the bot tom layer. SI R chipsets that are 16550-com pat ible can reuse the nat ive
Linux serial dr iver after shaping its behavior using the I rDA line discipline, I rTTY. An alternat ive to this
com bo is the I rPort dr iver. FI R chipsets have their own special dr ivers.

1 .

Next com es the core protocol stack. This consists of the I R Link Access Protocol (I rLAP) , I R Link
Managem ent Protocol (I rLMP) , Tiny Transport Protocol (TinyTP) , and the I rDA socket (I rSock) interface.
I rLAP provides a reliable t ransport as well as the state m achine to discover neighboring devices. I rLMP is a
m ult iplexer over I rLAP. TinyTP provides segm entat ion, reassem bly, and flow cont rol. I rSock offers a
socket interface over I rLMP and TinyTP.

2 .

3 .

http://irda.sourceforge.net/

Higher regions of the stack m arry I rDA to data- t ransfer applicat ions. I rLAN and I rNET enable networking,
while I rCom m allows serial com m unicat ion.

3 .

You also need the applicat ions that ult im ately m ake or break the technology. An exam ple is openobex
(ht tp: / / openobex.sourceforge.net /) , which im plem ents the OBject EXchange (OBEX) protocol used to
exchange objects such as docum ents and visit ing cards. To configure Linux- I rDA, you need the irda-ut ils
package that com es bundled with m any dist r ibut ions. This provides tools such as irat tach, irdadum p, and
irdaping.

4 .

Figure 1 6 .6 . Com m unicat ing over Linux- I rDA.

[View full size im age]

http://openobex.sourceforge.net/

Device Exam ple: Super I / O Chip

To get a first taste of Linux- I rDA, let 's get two laptops talking to each other over I R. Each laptop is I R-enabled
via Nat ional Sem iconductor 's NSC PC87382 Super I / O chip. [2] UART1 in Figure 16.4 shows the connect ion
scenario. The PC87382 chip can work in both SI R and FI R m odes. We will look at each in turn.

[2] Super I / O chipsets typically support several peripherals besides I rDA, such as serial ports, parallel ports, Musical I nst rum ent Digital
I nterface (MI DI) , and floppy cont rollers.

SI R chips offer a UART interface to the host com puter. For com m unicat ing in SI R m ode, at tach the associated
UART port (/ dev/ t tyS1 in this exam ple) of each laptop to the I rDA stack:

bash> irattach /dev/ttyS1 -s

Verify that I rDA kernel m odules (irda.ko, sir_dev.ko, and ir t ty_sir .ko) are loaded and that the irda_sir_wq
kernel thread is running. The irda0 interface should also have m ade an appearance in the ifconfig output . The
-s opt ion to irattach t r iggers a search for I R act ivity in the neighborhood. I f you slide the laptops such that
their I R t ransceivers lie within the range cone, they will be able to spot each other:

bash> cat /proc/net/irda/discovery

nickname: localhost, hint: 0x4400, saddr: 0x55529048, daddr: 0x8fefb350

The other laptop m akes a sim ilar announcem ent , but with the source and dest inat ion addresses (saddr and
daddr) reversed. You m ay set the desired com m unicat ion speed using st ty on t tyS1. To set the baud rate to
19200, do this:

bash> stty speed 19200 < /dev/ttyS1

The easiest way to cull I R act ivity from the air is by using the debug tool, irdadum p. Here's a sam ple dum p
obtained during the preceding connect ion establishment , which shows the negot iated param eters:

Code View:
bash> irdadump -i irda0

...
22:05:07.831424 snrm:cmd ca=fe pf=1 6fb7ff33 > 2c0ce8b6 new-ca=40
LAP QoS: Baud Rate=19200bps Max Turn Time=500ms Data Size=2048B Window Size=7 Add
BOFS=0 Min Turn Time=5000us Link Disc=12s (32)
22:05:07.987043 ua:rsp ca=40 pf=1 6fb7ff33 < 2c0ce8b6
LAP QoS: Baud Rate=19200bps Max Turn Time=500ms Data Size=2048B Window Size=7 Add
BOFS=0 Min Turn Time=5000us Link Disc=12s (31)
...

You can also obtain debug inform at ion out of the I rDA stack by cont rolling the verbosity level in
/ proc/ sys/ net / irda/ debug.

To set the laptops in FI R m ode, dissociate t tyS1 from the nat ive serial dr iver and instead at tach it to the NSC
FI R driver, nsc- ircc.ko:

bash> setserial /dev/ttyS1 uart none

bash> modprobe nsc-ircc dongle_id=0x09

bash> irattach irda0 -s

dongle_id depends on your I R hardware and can be found from your hardware docum entat ion. As you did for
SI R, take a look at / proc/ net / irda/ discovery to see whether things are okay thus far. Som et im es, FI R
com m unicat ion hangs at higher speeds. I f irdadum p shows a com m unicat ion freeze, either put on your kernel
hacking hat and fix the code, or t ry lowering the negot iated speed by tweaking
/ proc/ sys/ net / irda/ m ax_baud_rate.

Note that unlike the Bluetooth physical layer that can establish one- to-m any connect ions, I R can support only a
single connect ion per physical device at a t im e.

Device Exam ple: I R Dongle

Dongles are I R devices that plug into serial or USB ports. Som e m icrocont rollers (such as Cirrus Logic's EP7211
shown in Figure 16.5) that have on-chip I R cont rollers wired to their UARTs are also considered dongles.

Dongle dr ivers are a set of cont rol m ethods responsible for operat ions such as changing the com m unicat ion
speed. They have four ent ry points: open() , reset() , change_speed() , and close() . These ent ry points are
defined as part of a dongle_driver st ructure and are invoked from the context of the I rDA kernel thread,
irda_sir_wq. Dongle dr iver m ethods are allowed to block because they are invoked from process context with no
locks held. The I rDA core offers three helper funct ions to dongle dr ivers: sirdev_raw_write() and
sirdev_raw_read() to exchange cont rol data with the associated UART, and sirdev_set_dtr_rts() to wiggle
m odem cont rol lines connected to the UART.

Because you're probably m ore likely to add kernel support for dongles than m odify other parts of Linux- I rDA,
let 's im plem ent an exam ple dongle dr iver. Assum e that you're enabling a yet -unsupported sim ple serial I R
dongle that com m unicates only at 19200 or 57600 baud. Assum e also that when the user wants to toggle the
baud rate between these two values, you have to hold the UART's Request - to-Send (RTS) pin low for 50
m icroseconds and pull it back high for 25 m icroseconds. List ing 16.2 im plem ents a dongle dr iver for this device.

List ing 1 6 .2 . An Exam ple Dongle Dr iver

Code View:
#include <linux/delay.h>
#include <net/irda/irda.h>
#include "sir-dev.h" /* Assume that this sample driver lives in
 drivers/net/irda/ */

/* Open Method. This is invoked when an irattach is issued on the
 associated UART */
static int
mydongle_open(struct sir_dev *dev)
{
 struct qos_info *qos = &dev->qos;

 /* Power the dongle by setting modem control lines, DTR/RTS. */
 sirdev_set_dtr_rts(dev, TRUE, TRUE);

 /* Speeds that mydongle can accept */
 qos->baud_rate.bits &= IR_19200|IR_57600;

 irda_qos_bits_to_value(qos); /* Set QoS */
 return 0;
}

/* Change baud rate */
static int
mydongle_change_speed(struct sir_dev *dev, unsigned speed)
{
 if ((speed == 19200) || (speed = 57600)){
 /* Toggle the speed by pulsing RTS low
 for 50 us and back high for 25 us */
 sirdev_set_dtr_rts(dev, TRUE, FALSE);
 udelay(50);
 sirdev_set_dtr_rts(dev, TRUE, TRUE);
 udelay(25);
 return 0;
 } else {
 return -EINVAL;

 }
}

/* Reset */
static int
mydongle_reset(struct sir_dev *dev)
{
 /* Reset the dongle as per the spec, for example,
 by pulling DTR low for 50 us */
 sirdev_set_dtr_rts(dev, FALSE, TRUE);
 udelay(50);
 sirdev_set_dtr_rts(dev, TRUE, TRUE);
 dev->speed = 19200; /* Reset speed is 19200 baud */
 return 0;
}

/* Close */
static int
mydongle_close(struct sir_dev *dev)
{
 /* Power off the dongle as per the spec,
 for example, by pulling DTR and RTS low.. */
 sirdev_set_dtr_rts(dev, FALSE, FALSE);
 return 0;
}

/* Dongle Driver Methods */
static struct dongle_driver mydongle = {
 .owner = THIS_MODULE,
 .type = MY_DONGLE, /* Add this to the enumeration
 in include/linux/irda.h */

 .open = mydongle_open, /* Open */
 .reset = mydongle_reset, /* Reset */
 .set_speed = mydongle_change_speed, /* Change Speed */
 .close = mydongle_close, /* Close */
};

/* Initialize */
static int __init
mydongle_init(void)
{
 /* Register the entry points */
 return irda_register_dongle(&mydongle);
}
/* Release */
static void __exit
mydongle_cleanup(void)
{
 /* Unregister entry points */
 irda_unregister_dongle(&mydongle);
}

module_init(mydongle_init);
module_exit(mydongle_cleanup);

For real- life exam ples, look at dr ivers/ net / irda/ tekram .c and dr ivers/ net / irda/ ep7211_ir .c.

Now that you have the physical layer running, let 's venture to look at I rDA protocols.

I rCom m

I rCom m em ulates serial ports. Applicat ions such as term inal em ulators and protocols such as PPP can run
unchanged over the vir tual serial interfaces created by I rCom m . I rCom m is im plem ented by two related
m odules, ircom m .ko and ircom m _t ty.ko. The form er provides core protocol support , while the lat ter creates and
m anages the em ulated serial port nodes / dev/ ircom m X.

Netw ork ing

There are three ways to get TCP/ I P applicat ions running over I rDA:

Asynchronous PPP over I rCom m1 .

Synchronous PPP over I rNET2 .

Ethernet em ulat ion with I rLAN3 .

Networking over I rCom m is equivalent to running asynchronous PPP over a serial port , so there is nothing out of
the ordinary in this scenario.

Asynchronous PPP needs to m ark the start and end of fram es using techniques such as byte stuffing, but if PPP
is running over data links such as Ethernet , it need not be burdened with the overhead of a fram ing protocol.
This is called synchronous PPP and is used to configure networking over I rNET. [3] Passage through the PPP layer
provides features such as on-dem and I P address configurat ion, com pression, and authent icat ion.

[3] For a scholar ly discussion on networking over I rNET, read www.hpl.hp.com/ personal/ Jean_Tourrilhes/ Papers/ I rNET.Demand.htm l.

To start I rNET, insert irnet .ko. This also creates the character device node / dev/ irnet , which is a cont rol channel
over which you can at tach the PPP daem on:

bash> pppd /dev/irnet 9600 noauth a.b.c.d:a.b.c.e

This yields the pppX network interfaces at either ends with the respect ive I P addresses set to a.b.c.d and
a.b.c.e. The interfaces can now beam TCP/ I P packets.

I rLAN provides raw Ethernet em ulat ion over I rDA. To network your laptops using I rLAN, do the following at both
ends:

I nsert ir lan.ko. This creates the network interface, irlanX , where X is the assigned interface num ber.

Configure the irlanX interfaces. To set the I P address, do this:

bash> ifconfig irlanX a.b.c.d

Or autom ate it by adding the following line to / etc/ sysconfig/ network-scr ipts/ - ifcfg- ir lan0: [4]

[4] The locat ion of this file is dist r ibut ion-dependent .

DEVICE=irlanX IPADDR=a.b.c.d

You can now telnet between the laptops over the irlanX interfaces.

I rDA Sockets

To develop custom applicat ions over I rDA, use the I rSock interface. To create a socket over TinyTP, do this:

int fd = socket(AF_IRDA, SOCK_STREAM, 0);

For a datagram socket over I rLMP, do this:

int fd = socket(AF_IRDA, SOCK_DGRAM, 0);

Look at the irsockets/ directory in the irda-ut ils package for code exam ples.

Linux I nfrared Rem ote Cont rol

The goal of the LI RC project is to let you cont rol your Linux com puter via a rem ote. For exam ple, you can use
LI RC to cont rol applicat ions that play MP3 m usic or DVD m ovies via but tons on your rem ote. LI RC is architected
into

A base LI RC m odule called lirc_dev.1 .

A hardware-specific physical layer dr iver. I R hardware that interface via serial ports use lirc_ser ial. To
allow lirc_serial to do its job without interference from the kernel serial dr iver, dissociate the lat ter as you
did earlier for FI R:

bash> setserial /dev/ttySX uart none

You m ay have to replace lirc_serial with a m ore suitable low- level LI RC driver depending on your I R
device.

2 .

A user m ode daem on called lircd that runs over the low- level LI RC driver. Lircd decodes signals arr iving
from the rem ote and is the centerpiece of LI RC. Support for m any rem otes are im plem ented in the form of
user-space drivers that are part of lircd. Lircd exports a UNI X-dom ain socket interface / dev/ lircd to higher
applicat ions. Connect ing to lircd via / dev/ lircd is the key to writ ing LI RC-aware applicat ions.

3 .

An LI RC m ouse daem on called lircm d that runs on top of lircd. Lircm d converts m essages from lircd to
m ouse events. These events can be read from a nam ed pipe / dev/ lircm and input to program s such as
gpm or X Windows.

4 .

Tools such as irrecord and irsend. The form er records signals received from your rem ote and helps you
generate I R configurat ion files for a new rem ote. The lat ter st ream s I R com m ands from your Linux
m achine.

5 .

Visit the LI RC hom e page hosted at www.lirc.org to download all these and to obtain insights on its design and
usage.

I R Char Drivers

I f your em bedded device requires only sim ple I nfrared receive capabilit ies, it m ight be using a
m iniatur ized I R receiver (such as the TSOP1730 chip from Vishay Sem iconductors) . An exam ple
applicat ion device is an I R locator installed in hospital room s to read data em it ted by I R badges
worn by nurses. I n this scenario, the I rDA stack is not relevant because of the absence of I rDA
protocol interact ions. I t m ay also be an overkill to port LI RC to the locator if it 's using a lean
proprietary protocol to parse received data. An easy solut ion m ight be to im plem ent a t iny read-
only char or m isc dr iver that exports raw I R data to a suitable applicat ion via / dev or / sys
interfaces.

Look ing at the Sources

Look inside dr ivers/ net / irda/ for I rDA low- level dr ivers, net / irda/ for the protocol im plem entat ion, and
include/ net / irda/ for the header files. Experim ent with proc/ sys/ net / irda/ * to tune the I rDA stack and explore
/ proc/ net / irda/ * for state inform at ion pertaining to different I rDA layers.

Table 16.3 contains the m ain data st ructures used in this sect ion and their locat ion in the source t ree. Table
16.4 lists the m ain kernel program m ing interfaces that you used in this sect ion along with the locat ion of their
definit ions.

Table 1 6 .3 . Sum m ary of Data St ructures

Data St ructure Locat ion Descr ipt ion

dongle_driver drivers/ net / irda/ sir-dev.h Dongle dr iver ent ry points

sir_dev drivers/ net / irda/ sir-dev.h Representat ion of an SI R device

qos_info include/ net / irda/ qos.h Quality-of-Service inform at ion

Table 1 6 .4 . Sum m ary of Kernel Program m ing I nter face s

Kernel I nter face Locat ion Descr ipt ion

irda_register_dongle() drivers/ net / irda/ sir_dongle.c Registers a dongle dr iver

irda_unregister_dongle() drivers/ net / irda/ sir_dongle.c Unregisters a dongle dr iver

sirdev_set_dtr_rts() drivers/ net / irda/ sir_dev.c Wiggles m odem cont rol lines on
the serial port at tached to the I R
device

sirdev_raw_write() drivers/ net / irda/ sir_dev.c Writes to the serial port
at tached to the I R device

Kernel I nter face Locat ion Descr ipt ion

sirdev_raw_read() drivers/ net / irda/ sir_dev.c Reads from the serial port
at tached to the I R device

W iFi

WiFi, or wireless local-area network (WLAN) , is an alternat ive to wired LAN and is generally used within a
cam pus. The I EEE 802.11a WLAN standard uses the 5GHz I SM (I ndust r ial, Scient ific, Medical) band and
supports speeds of up to 54Mbps. The 802.11b and the 802.11g standards use the 2.4GHz band and support
speeds of 11Mbps and 54Mbps, respect ively.

WLAN resem bles wired Ethernet in that both are assigned MAC addresses from the sam e address pool and both
appear to the operat ing system as regular network interfaces. For exam ple, Address Resolut ion Protocol (ARP)
tables contain WLAN MAC addresses alongside Ethernet MAC addresses.

WLAN and wired Ethernet differ significant ly at the link layer, however:

The 802.11 WLAN standard uses collision avoidance (CSMA/ CA) rather than collision detect ion (CSMA/ CD)
used by wired Ethernet .

WLAN fram es, unlike Ethernet fram es, are acknowledged.

Due to security issues inherent in wireless networking, WLAN uses an encrypt ion m echanism called Wired
Equivalent Privacy (WEP) to provide a level of security equivalent to wired Ethernet . WEP com bines a 40-
bit or a 104-bit key with a random 24-bit init ializat ion vector to encrypt and decrypt data.

WLAN supports two com m unicat ion m odes:

Ad-hoc m ode, where a sm all group of nearby stat ions direct ly com m unicate without using an access point .1 .

I nfrast ructure m ode, where data exchanges pass via an access point . Access points periodically broadcast
a service set ident ifier (SSI D or ESSI D) that ident ifies one WLAN network from another.

2 .

Let 's find out how Linux supports WLAN.

Configura t ion

The Wireless Extensions project defines a generic Linux API to configure WLAN device dr ivers in a device-
independent m anner. I t also provides a set of com m on tools to set and access inform at ion from WLAN drivers.
I ndividual dr ivers im plem ent support for Wireless Extensions to connect them selves with the com m on interface
and, hence, with the tools.

With Wireless Extensions, there are pr im arily three ways to talk to WLAN drivers:

Standard operat ions using the iwconfig ut ilit y. To glue your dr iver to iwconfig, you need to im plem ent
prescribed funct ions corresponding to com m ands that set param eters such as ESSI D and WEP keys.

1 .

2 .

Special-purpose operat ions using iwpriv. To use iwpriv over your dr iver, define pr ivate ioct ls relevant to
your hardware and im plem ent the corresponding handler funct ions.

2 .

WiFi-specific stat ist ics through / proc/ net / wireless. For this, im plem ent the get_wireless_stats() m ethod
in your dr iver. This is in addit ion to the get_stats() m ethod im plem ented by NI C drivers for generic
stat ist ics collect ion as described in the sect ion "Stat ist ics" in Chapter 15, "Network I nterface Cards."

3 .

WLAN drivers t ie these three pieces of inform at ion inside a st ructure called iw_handler_def , defined in
include/ net / iw_handler.h. The address of this st ructure is supplied to the kernel via the device's net_device
st ructure (discussed in Chapter 15) during init ializat ion. List ing 16.3 shows a skeletal WLAN driver im plem ent ing
support for Wireless Extensions. The com m ents in the list ing explain the associated code.

List ing 1 6 .3 . Support ing W ire less Extensions

Code View:
#include <net/iw_handler.h>
#include <linux/wireless.h>

/* Populate the iw_handler_def structure with the location and number
 of standard and private handlers, argument details of private
 handlers, and location of get_wireless_stats() */
static struct iw_handler_def mywifi_handler_def = {
 .standard = mywifi_std_handlers,
 .num_standard = sizeof(mywifi_std_handlers) /
 sizeof(iw_handler),
 .private = (iw_handler *) mywifi_pvt_handlers,
 .num_private = sizeof(mywifi_pvt_handlers) /
 sizeof(iw_handler),
 .private_args = (struct iw_priv_args *)mywifi_pvt_args,
 .num_private_args = sizeof(mywifi_pvt_args) /
 sizeof(struct iw_priv_args),
 .get_wireless_stats = mywifi_stats,
};

/* Handlers corresponding to iwconfig */
static iw_handler mywifi_std_handlers[] = {
 NULL, /* SIOCSIWCOMMIT */
 mywifi_get_name, /* SIOCGIWNAME */
 NULL, /* SIOCSIWNWID */
 NULL, /* SIOCGIWNWID */
 mywifi_set_freq, /* SIOCSIWFREQ */
 mywifi_get_freq, /* SIOCGIWFREQ */
 mywifi_set_mode, /* SIOCSIWMODE */
 mywifi_get_mode, /* SIOCGIWMODE */
 /* ... */
};
#define MYWIFI_MYPARAMETER SIOCIWFIRSTPRIV

/* Handlers corresponding to iwpriv */
static iw_handler mywifi_pvt_handlers[] = {
 mywifi_set_myparameter,
 /* ... */
};

/* Argument description of private handlers */

static const struct iw_priv_args mywifi_pvt_args[] = {
 { MYWIFI_MYPARAMATER,
 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "myparam"},
}

struct iw_statistics mywifi_stats; /* WLAN Statistics */

/* Method to set operational frequency supplied via mywifi_std_handlers. Similarly
implement the rest of the methods */
mywifi_set_freq()
{
 /* Set frequency as specified in the data sheet */
 /* ... */
}

/* Called when you read /proc/net/wireless */

static struct iw_statistics *
mywifi_stats(struct net_device *dev)
{
 /* Fill the fields in mywifi_stats */
 /* ... */
 return(&mywifi_stats);
}

/*Device initialization. For PCI-based cards, this is called from the
 probe() method. Revisit init_mycard() in Listing 15.1 in Chapter 15
 for a full discussion */
static int
init_mywifi_card()
{
 struct net_device *netdev;
 /* Allocate WiFi network device. Internally calls
 alloc_etherdev() */
 netdev = alloc_ieee80211(sizeof(struct mywifi_priv));
 /* ... */

 /* Register Wireless Extensions support */
 netdev->wireless_handlers = &mywifi_handler_def;

 /* ... */
 register_netdev(netdev);
}

With Wireless Extensions support com piled in, you can use iwconfig to configure the ESSI D and the WEP key,
peek at supported pr ivate com m ands, and dum p network stat ist ics:

bash> iwconfig eth1 essid blue key 1234-5678-9012-3456-7890-1234-56

bash> iwconfig eth1

eth1 IEEE 802.11b ESSID:"blue" Nickname:"ipw2100"
 Mode:Managed Frequency:2.437 GHz Access Point: 00:40:96:5E:07:2E
 ...

 Encryption key:1234-5678-9012-3456-7890-1234-56
 Security mode:open
 ...
bash> dhcpcd eth1

bash> ifconfig

eth1 Link encap:Ethernet Hwaddr 00:13:E8:02:EE:18
 inet addr:192.168.0.41 Bcasr:192.168.0.255
 Mask:255.255.255.0
 ...
bash> iwpriv eth1

eth1 Available private ioctls:
 myparam (8BE2): set 2 int & get 0

bash> cat /proc/net/wireless

Inter-| sta-| Quality | Discarded packets | Missed | WE
 face | tus |link level noise|nwid crypt frag retry misc| beacon | 19
 eth1: 0004 100. 207. 0. 0 0 0 2 1 0

Local iwconfig param eters such as the ESSI D and WEP key should m atch the configurat ion at the access point .

There is another project called cfg80211 having sim ilar goals as Wireless Extensions. This has been m erged into
the m ainline kernel start ing with the 2.6.22 kernel release.

Device Dr ivers

There are hundreds of WLAN original equipm ent m anufacturers (OEMs) in the m arket , and cards com e in
several form factors such as PCI , Mini PCI , CardBus, PCMCI A, Com pact Flash, USB, and SDI O (see the sidebar
"WiFi over SDI O") . However, the num ber of cont roller chips that lie at the heart of these devices, and hence the
num ber of Linux device dr ivers, are relat ively less in num ber. The I ntersil Pr ism chipset , Lucent Herm es chipset ,
Atheros chipset , and I ntel Pro/ Wireless are am ong the popular WLAN cont rollers. The following are example
devices built using these cont rollers:

I ntersil Pr ism 2 W LAN Com pact Flash Card— The Orinoco WLAN driver, part of the kernel source t ree,
supports both Prism -based and Herm es-based cards. Look at or inoco.c and herm es.c in
drivers/ net / wireless/ for the sources. or inoco_cs provides PCMCI A/ CF Card Services support .

The Cisco Aironet CardBus adapter— This card uses an Atheros chipset . The Madwifi project
(ht tp: / / m adwifi.org/) offers a Linux dr iver that works on hardware built using Atheros cont rollers. The
Madwifi source base is not part of the kernel source t ree pr im arily due to licensing issues. One of the
m odules of the Madwifi dr iver called Hardware Access Layer (HAL) is closed source. This is because the
Atheros chip is capable of operat ing at frequencies that are outside perm issible I SM bands and can work at
various power levels. The U.S. Federal Com m unicat ions Com m ission (FCC) m andates that such set t ings
should not be easily changeable by users. Part of HAL is dist r ibuted as binary-only to com ply with FCC
regulat ions. This binary-only port ion is independent of the kernel version.

I nte l Pro/ W ire less Mini PCI (and PCI e Mini) cards e m bedded on m any laptops— The kernel
source t ree contains dr ivers for these cards. The drivers for the 2100 and 2200 BG series cards are
drivers/ net / wireless/ ipw2100.c and dr ivers/ net / wireless/ ipw2200.c, respect ively. These devices need on-
card firm ware to work. You can download the firm ware from ht tp: / / ipw2100.sourceforge.net / or
ht tp: / / ipw2200.sourceforge.net / depending on whether you have a 2100 or a 2200. The sect ion
"Microcode Download" in Chapter 4 , "Laying the Groundwork," described the steps needed to download

http://madwifi.org/
http://ipw2100.sourceforge.net/
http://ipw2200.sourceforge.net/

firm ware on to these cards. I ntel's dist r ibut ion term s for the firm ware are rest r ict ive.

W LAN USB devices— The Atm el USB WLAN driver (ht tp: / / atm elwlandriver.sourceforge.net /) supports
USB WLAN devices built using Atm el chipsets.

The WLAN driver 's task is to let your card appear as a norm al network interface. Driver im plem entat ions are
generally split into the following parts:

The inter face that com m unicates w ith the Linux netw ork ing stack— We discussed this in detail in
the sect ion "The Net Device I nterface" in Chapter 15. You can use List ing 15.1 in that chapter as a
tem plate to im plem ent this port ion of your WLAN driver.

1 .

Form factor– specif ic code— I f your card is a PCI card, it has to be architected to conform to the kernel
PCI subsystem as described in Chapter 10, "Peripheral Com ponent I nterconnect ." Sim ilar ly, PCMCI A and
USB cards have to t ie in with their respect ive core layers.

2 .

Chipset specif ic par t— This is the cornerstone of the WLAN driver and is based on register specificat ions
in the chip's data sheet . Many com panies do not release adequate docum entat ion for writ ing open source
device dr ivers, however, so this port ion of som e Linux WLAN drivers is at least part ly based on reverse-
engineering.

3 .

Support for W ire less Extensions— List ing 16.3, shown earlier, im plem ents an exam ple.4 .

Hardware- independent port ions of the 802.11 stack are reusable across dr ivers, so they are im plem ented as a
collect ion of com m on library funct ions in the net / ieee80211/ directory. ieee80211 is the core protocol m odule,
but if you want to configure WEP keys via the iwconfig com m and, you have to load ieee80211_crypt and
ieee80211_crypt_wep, too. To generate debugging output from the 802.11 stack, enable
CONFIG_IEEE80211_DEBUG while configuring your kernel. You can use / proc/ net / ieee80211/ debug_level as a
knob to fine- tune the type of debug m essages that you want to see. Start ing with the 2.6.22 release, the kernel
has an alternate 802.11 stack (net / m ac80211/) donated by a com pany called Devicescape. WiFi device dr ivers
m ay m igrate to this new stack in the future.

WiFi over SDI O

Like PCMCI A cards whose funct ionality has extended from storage to various other technologies,
SD cards are no longer confined to the consum er elect ronics m em ory space. The Secure Digital
I nput / Output (SDI O) standard br ings technologies such as WiFi, Bluetooth, and GPS to the SD
realm . The Linux-SDI O project hosted at ht tp: / / sourceforge.net / projects/ sdio- linux/ offers dr ivers
for several SDI O cards.

Go to www.sdcard.org to browse the SD Card Associat ion's website. The latest standards adopted
by the associat ion are m icroSD and m iniSD, which are m iniature form factor versions of the SD
card.

Look ing at the Sources

http://atmelwlandriver.sourceforge.net/
http://sourceforge.net/projects/sdio-linux/

WiFi device dr ivers live in dr ivers/ net / wireless/ . Look inside net / wireless/ for the im plem entat ions of Wireless
Extensions and the new cfg80211 configurat ion interface. The two Linux 802.11 stacks live under
net / ieee80211/ and net / m ac80211/ , respect ively.

Cellu lar Netw ork ing

Global System for Mobile Com m unicat ions (GSM) is a prom inent digital cellular standard. GSM networks are
called 2G or second-generat ion networks. GPRS represents the evolut ion from 2G to 2.5G. Unlike 2G networks,
2.5G networks are "always on." Com pared to GSM's 9.6Kbps throughput , GPRS supports theoret ical speeds of
up to 170Kbps. 2.5G GPRS has given way to 3G networks based on technologies such as CDMA that offer higher
speeds.

I n this sect ion, let 's look at GPRS and CDMA.

GPRS

Because GPRS chips are cellular m odem s, they present a UART interface to the system and usually don't require
specialized Linux dr ivers. Here's how Linux supports com m on GPRS hardware:

For a system with built - in GPRS support , say, a board having a Siem ens MC-45 m odule wired to the
m icrocont roller 's UART channel, the convent ional Linux serial dr iver can drive the link.

1 .

For a PCMCI A/ CF GPRS device such as an Opt ions GPRS card, ser ial_cs, the generic serial Card Services
driver allows the rest of the operat ing system to see the card as a serial device. The first unused serial
device (/ dev/ t tySX) gets allot ted to the card. Look at Figure 9.5 in Chapter 9 , for an illust rat ion.

2 .

For USB GPRS m odem s, a USB- to-serial converter typically converts the USB port to a vir tual serial port .
The usbserial dr iver lets the rest of the system see the USB m odem as a serial device (/ dev/ t tyUSBX) . The
sect ion "USB-Serial" in Chapter 11 discussed USB- to-serial converters.

3 .

The above driver descript ions also hold for dr iving Global Posit ioning System (GPS) receivers and networking
over GSM.

After the serial link is up, you m ay establish a network connect ion via AT com m ands, a standard language to
talk to m odem s. Cellular devices support an extended AT com m and set . The exact com m and sequence depends
on the part icular cellular technology in use. Consider for exam ple, the AT st r ing to connect over GPRS. Before
entering data m ode and connect ing to an external network via a gateway GPRS support node (GGSN) , a GPRS
device m ust define a context using an AT com m and. Here's an exam ple context st r ing:

'AT+CGDCONT=1,"IP","internet1.voicestream.com","0.0.0.0",0,0'

where 1 stands for a context num ber, IP is the packet type, internet1.-voicestream.com is an access point
nam e (APN) specific to the service provider, and 0.0.0.0 asks the service provider to choose the I P address.
The last two param eters pertain to data and header com pression. A usernam e and password are usually not
needed.

As you saw in Chapter 9 , PPP is used as the vehicle to carry TCP/ I P payload over GPRS. A com m on syntax for
invoking the PPP daem on, pppd, is this:

bash> pppd ttySX call connection-script

where ttySX is the serial port over which PPP runs, and connection-script is a file in / etc/ ppp/ peers/ [5] that
contains the AT com m and sequence to establish the link. After establishing connect ion and com plet ing
authent icat ion, PPP starts a Network Cont rol Protocol (NCP) such as I nternet Protocol Cont rol Protocol (I PCP) .
When I PCP successfully negot iates I P addresses, PPP starts talking with the TCP/ I P stack.

[5] The path nam e m ight vary depending on the dist r ibut ion you use.

Here is an exam ple PPP connect ion scr ipt (/ etc/ ppp/ peer/ gprs-seq) for connect ing to a GPRS service provider at
57600 baud. For the sem ant ics of all const ituent lines in the scr ipt , refer to the m an pages of pppd:

57600
connect "/usr/sbin/chat -s -v "" AT+CGDCONT=1,"IP",
"internet2.voicestream.com","0.0.0.0",0,0 OK AT+CGDATA="PPP",1"
crtscts
noipdefault
modem
usepeerdns
defaultroute
connect-delay 3000

CDMA

For perform ance reasons, m any CDMA PC Cards have an internal USB cont roller through which a CDMA m odem
is connected. When such cards are inserted, the system sees one or m ore new PCI - to-USB bridges on the PCI
bus. Let 's take the exam ple of a Huawei CDMA CardBus card. Look at the addit ional ent r ies in the lspci output
after insert ing this card into the CardBus slot of a laptop:

Code View:
bash> lspci -v

...
07:00:0 USB Controller: NEC Corporation USB (rev 43) (prog-if 10 [OHCI])
07:00:1 USB Controller: NEC Corporation USB (rev 43) (prog-if 10 [OHCI])
07:00:2 USB Controller: NEC Corporation USB 2.0 (rev 04) (prog-if 20 [EHCI])

These are standard OHCI and EHCI cont rollers, so the host cont roller dr ivers on Linux seam lessly talk to them .
I f a CDMA card, however, uses a host cont roller unsupported by the kernel, you will have the unenviable task of
writ ing a new USB host cont roller dr iver. Let 's take a closer look at the new USB buses in the above lspci output
and see whether we can find any devices connected to them :

Code View:
bash> cat /proc/bus/usb/devices

T: Bus=07 Lev=00 Prnt=00 Port=00 Cnt=00 Dev#= 1 Spd=480 MxCh= 2

B: Alloc= 0/800 us (0%), #Int= 0, #Iso= 0
D: Ver= 2.00 Cls=09(hub) Sub=00 Prot=01 MxPS=64 #Cfgs= 1
...
T: Bus=06 Lev=00 Prnt=00 Port=00 Cnt=00 Dev#= 1 Spd=12 MxCh= 1

B: Alloc= 0/900 us (0%), #Int= 0, #Iso= 0
D: Ver= 1.10 Cls=09(hub) Sub=00 Prot=00 MxPS=64 #Cfgs= 1
...
T: Bus=05 Lev=00 Prnt=00 Port=00 Cnt=00 Dev#= 1 Spd=12 MxCh= 1

B: Alloc= 0/900 us (0%), #Int= 1, #Iso= 0

D: Ver= 1.10 Cls=09(hub) Sub=00 Prot=00 MxPS=64 #Cfgs= 1
...
T: Bus=05 Lev=01 Prnt=01 Port=00 Cnt=01 Dev#= 3 Spd=12 MxCh= 0

D: Ver= 1.01 Cls=00(>ifc) Sub=00 Prot=00 MxPS=16 #Cfgs= 1
P: Vendor=12d1 ProdID=1001 Rev= 0.00

S: Manufacturer=Huawei Technologies
S: Product=Huawei Mobile
C:* #Ifs= 2 Cfg#= 1 Atr=e0 MxPwr=100mA
I: If#= 0 Alt= 0 #EPs= 3 Cls=ff(vend.) Sub=ff Prot=ff Driver=pl2303

E: Ad=81(I) Atr=03(Int.) MxPS= 16 Ivl=128ms
E: Ad=8a(I) Atr=02(Bulk) MxPS= 64 Ivl=0ms
E: Ad=0b(O) Atr=02(Bulk) MxPS= 64 Ivl=0ms
I: If#= 1 Alt= 0 #EPs= 2 Cls=ff(vend.) Sub=ff Prot=ff Driver=pl2303

E: Ad=83(I) Atr=02(Bulk) MxPS= 64 Ivl=0ms
E: Ad=06(O) Atr=02(Bulk) MxPS= 64 Ivl=0ms
...

The top three ent r ies (bus7 , bus6 , and bus5) correspond to the three host cont rollers present in the CDMA card.
The last ent ry shows that a full- speed (12Mbps) USB device is connected to bus 5. This device has a vendorID
of 0x12d1 and a productID of 0x1001 . As is evident from the preceding output , the USB core has bound this
device to the pl2303 driver. I f you look at the source file of the PL2303 Prolific USB- to-serial adapter dr iver
(dr ivers/ usb/ ser ial/ pl2303.c) , you will find the following m em ber in the usb_device_id table:

static struct usb_device_id id_table [] = {
 /* ... */
 {USB_DEVICE(HUAWEI_VENDOR_ID, HUAWEI_PRODUCT_ID)},
 /* ... */
};

A quick peek at pl2303.h liv ing in the sam e directory confirm s that HUAWEI_VENDOR_ID and HUAWEI_PRODUCT_ID
m atch the values that you just gleaned from / proc/ bus/ usb/ devices. The pl2303 driver presents a serial
interface, / dev/ t tyUSB0, over the detected USB- to-serial converter. You can send AT com m ands to the CDMA
m odem over this interface. At tach pppd over this device and connect to the net . You are now a 3G surfer!

Current Trends

At one end of today's on- the-m ove connect ivity spect rum , there are standards that allow coupling between
cellular networks and WiFi to provide cheaper networking solut ions. At the other end, technologies such as
Bluetooth and I nfrared are being integrated into GPRS cell phones to br idge consum er elect ronics devices with
the I nternet . Figure 16.7 shows a sam ple scenario.

Figure 1 6 .7 . Coupling betw een w ire less technologies .

[View full size im age]

I n tandem with the coupling of exist ing standards and technologies, there is a steady st ream of new
com m unicat ion standards arr iving in the wireless space.

Zigbee (www.zigbee.org) adopts the new 802.15.4 standard for wireless networking in the em bedded space
that is character ized by low range, speed, energy consum pt ion, and code footpr int . I t pr im arily targets hom e
and indust r ial autom at ion. Of the wireless protocols discussed in this chapter, Zigbee is closest to Bluetooth but
is considered com plem entary rather than com pet it ive with it .

WiMax (Worldwide interoperabilit y for Microwave access) , based on the I EEE 802.16 standard, is a
m et ropolitan-area network (MAN) flavor of WiFi that has a range of several kilom eters. I t supports fixed
connect ivity for hom es and offices, and a m obile version for networking on the go. WiMax is a cost -effect ive way
to solve the last -m ile connect ivity problem (which is analogous to the task of reaching your hom e from the
nearest m et ro rail stat ion) and create broadband clouds that span large areas. The WiMax forum is hosted at
www.wim axforum .org.

MI MO (Mult iple I n Mult iple Out) is a new m ult iple-antenna technology ut ilized by WiFi and WiMax products to
enhance their speed, range, and connect ivity.

Working groups are developing new standards that fall under the am bit of fourth-generat ion or 4G networking.
4G will signal the convergence of several com m unicat ion technologies.

Som e of the new com m unicat ion technologies are t ransparent to the operat ing system and work unchanged
with exist ing dr ivers and protocol stacks. Others such as Zigbee need new drivers and protocol stacks but do
not have accepted open source im plem entat ions yet . Linux m irrors the state of the art , so look out for support
for these new standards in future kernel releases.

Chapter 1 7 . Mem ory Technology Devices

I n This Chapter

What 's Flash Mem ory?
504

Linux-MTD Subsystem
505

Map Drivers
506

NOR Chip Drivers
511

NAND Chip Drivers
513

User Modules
516

MTD-Ut ils
518

Configuring MTD
519

eXecute I n Place
520

The Firm ware Hub
520

Debugging
524

Looking at the Sources
524

When you push the power switch on your handheld, it 's m ore than likely that it boots from flash
m em ory. When you click som e but tons to save data on your cell phone, in all probabilit y, your
data starts life in flash m em ory. Today, Linux has penet rated the em bedded space and is no
longer confined to desktops and servers. Linux avatars m anifest in PDAs, m usic players, set - top
boxes, and even m edical-grade devices. The Mem ory Technology Devices (MTD) subsystem of the
kernel is responsible for interfacing your system with various flavors of flash m em ory found in
these devices. I n this chapter, let 's use the exam ple of a Linux handheld to learn about MTD.

W hat 's Flash Mem ory?

Flash m em ory is rewritable storage that does not need power supply to hold inform at ion. Flash m em ory banks
are usually organized into sectors. Unlike convent ional storage, writes to flash addresses have to be preceded
by an erase of the corresponding locat ions. Moreover, erases of port ions of flash can be perform ed only at the
granular ity of individual sectors. Because of these const raints, flash m em ory is best used with device dr ivers
and filesystem s that are tailored to suit them . On Linux, such specially designed drivers and filesystem s are
provided by the MTD subsystem .

Flash m em ory chips generally com e in two flavors: NOR and NAND. NOR is the variety used to store firm ware
im ages on em bedded devices, whereas NAND is used for large, dense, cheap, but im perfect [1] storage as
required by solid-state m ass storage m edia such as USB pen drives and Disk-On-Modules (DOMs) . NOR flash
chips are connected to the processor via address and data lines like norm al RAM, but NAND flash chips are
interfaced using I / O and cont rol lines. So, code resident on NOR flash can be executed in place, but that stored
on NAND flash has to be copied to RAM before execut ion.

[1] I t 's norm al to have bad blocks scat tered across NAND flash regions as you will learn in the sect ion, "NAND Chip Drivers."

Chapter 1 7 . Mem ory Technology Devices

I n This Chapter

What 's Flash Mem ory?
504

Linux-MTD Subsystem
505

Map Drivers
506

NOR Chip Drivers
511

NAND Chip Drivers
513

User Modules
516

MTD-Ut ils
518

Configuring MTD
519

eXecute I n Place
520

The Firm ware Hub
520

Debugging
524

Looking at the Sources
524

When you push the power switch on your handheld, it 's m ore than likely that it boots from flash
m em ory. When you click som e but tons to save data on your cell phone, in all probabilit y, your
data starts life in flash m em ory. Today, Linux has penet rated the em bedded space and is no
longer confined to desktops and servers. Linux avatars m anifest in PDAs, m usic players, set - top
boxes, and even m edical-grade devices. The Mem ory Technology Devices (MTD) subsystem of the
kernel is responsible for interfacing your system with various flavors of flash m em ory found in
these devices. I n this chapter, let 's use the exam ple of a Linux handheld to learn about MTD.

W hat 's Flash Mem ory?

Flash m em ory is rewritable storage that does not need power supply to hold inform at ion. Flash m em ory banks
are usually organized into sectors. Unlike convent ional storage, writes to flash addresses have to be preceded
by an erase of the corresponding locat ions. Moreover, erases of port ions of flash can be perform ed only at the
granular ity of individual sectors. Because of these const raints, flash m em ory is best used with device dr ivers
and filesystem s that are tailored to suit them . On Linux, such specially designed drivers and filesystem s are
provided by the MTD subsystem .

Flash m em ory chips generally com e in two flavors: NOR and NAND. NOR is the variety used to store firm ware
im ages on em bedded devices, whereas NAND is used for large, dense, cheap, but im perfect [1] storage as
required by solid-state m ass storage m edia such as USB pen drives and Disk-On-Modules (DOMs) . NOR flash
chips are connected to the processor via address and data lines like norm al RAM, but NAND flash chips are
interfaced using I / O and cont rol lines. So, code resident on NOR flash can be executed in place, but that stored
on NAND flash has to be copied to RAM before execut ion.

[1] I t 's norm al to have bad blocks scat tered across NAND flash regions as you will learn in the sect ion, "NAND Chip Drivers."

Linux- MTD Subsystem

The kernel's MTD subsystem shown in Figure 17.1 provides support for flash and sim ilar nonvolat ile solid-state
storage. I t consists of the following:

The MTD core, which is an infrast ructure consist ing of library rout ines and data st ructures used by the rest
of the MTD subsystem

Map drivers that decide what the processor ought to do when it receives requests for accessing the flash

NOR Chip dr ivers that know about com m ands required to talk to NOR flash chips

NAND Chip dr ivers that im plem ent low- level support for NAND flash cont rollers

User Modules, the layer that interacts with user-space program s

I ndividual device dr ivers for som e special flash chips

Figure 1 7 .1 . The Linux- MTD subsystem .

[View full size im age]

Map Dr ivers

To MTD-enable your device, your first task is to tell MTD how to access the flash device. For this, you have to
m ap your flash m em ory range for CPU access and provide m ethods to operate on the flash. The next task is to
inform MTD about the different storage part it ions residing on your flash. Unlike hard disks on PC-com pat ible
system s, flash-based storage does not contain a standard part it ion table on the m edia. Because of this, disk-
part it ioning tools such as fdisk and cfdisk [2] cannot be used to part it ion flash devices. I nstead, part it ioning
inform at ion has to be im plem ented as part of kernel code. [3] These tasks are accom plished with the help of an
MTD m ap driver .

[2] Fdisk and cfdisk are used to m anipulate the part it ion table residing in the first hard disk sector on PC system s.

[3] You m ay also pass part it ioning inform at ion to MTD via the kernel com m and line argum ent mtdpart= , if you enable
CONFIG_MTD_CMDLINE_PARTS during kernel configurat ion. Look at drivers/ mtd/ cmdlinepart .c for the usage syntax.

To bet ter understand the funct ion of m ap drivers, let 's look at an exam ple.

Device Exam ple: Handheld

Consider the Linux handheld shown in Figure 17.2. The flash has a size of 32MB and is m apped to 0xC0000000
in the processor 's address space. I t contains three part it ions, one each for the boot loader, the kernel, and the
root filesystem . The boot loader part it ion starts from the top of the flash, the kernel part it ion begins at offset
MY_KERNEL_START, and the root filesystem starts at offset MY_FS_START.[4] The boot loader and the kernel reside
on read-only part it ions to avoid unexpected dam age, while the filesystem part it ion is flagged read-write.

[4] Som e devices have addit ional part it ions for boot loader param eters, ext ra filesystem s, and recovery kernels.

Figure 1 7 .2 . Flash Mem ory on a sam ple Linux handhel d.

[View full size im age]

Let 's first create the flash m ap and then proceed with the dr iver init ializat ion. The m ap driver has to t ranslate

the flash layout shown in the figure to an mtd_partition st ructure. List ing 17.1 contains the mtd_partition
definit ion corresponding to Figure 17.2. Note that the mask_flags field holds the perm issions to be m asked, so
MTD_WRITEABLE im plies a read-only part it ion.

List ing 1 7 .1 . Creat ing an MTD Part it ion Map

Code View:
#define FLASH_START 0x00000000
#define MY_KERNEL_START 0x00080000 /* 512K for bootloader */
#define MY_FS_START 0x00280000 /* 2MB for kernel */
#define FLASH_END 0x02000000 /* 32MB */
static struct mtd_partition pda_partitions[] = {
 {
 .name = "pda_btldr", /* This string is used by
 /proc/mtd to identify

 the bootloader partition */
 .size: = (MY_KERNEL_START-FLASH_START),
 .offset = FLASH_START, /* Start from top of flash */
 .mask_flags = MTD_WRITEABLE /* Read-only partition */
 },
 {
 .name = "pda_krnl", /* Kernel partition */
 .size: = (MY_FS_START-MY_KERNEL_START),
 .offset = MTDPART_OFS_APPEND, /* Start immediately after
 the bootloader partition */
 .mask_flags = MTD_WRITEABLE /* Read-only partition */
 },
 {
 .name: = "pda_fs", /* Filesystem partition */
 .size: = MTDPART_SIZ_FULL, /* Use up the rest of the
 flash */
 .offset = MTDPART_OFS_NEXTBLK,/* Align this partition with
 the erase size */
 }
};

List ing 17.1 uses MTDPART_OFS_APPEND to start a part it ion adjacent to the previous one. The start addresses of
writeable part it ions, however, need to be aligned with the erase/ sector size of the flash chip. To achieve this,
the filesystem part it ion uses MTD_OFS_NEXTBLK rather than MTD_OFS_APPEND.

Now that you have populated the mtd_partition st ructure, let 's proceed and com plete a basic m ap driver for
the exam ple handheld. List ing 17.2 registers the m ap driver with the MTD core. I t 's im plem ented as a plat form
driver, assum ing that your architecture-specific code registers an associated plat form device having the sam e
nam e. Rewind to the sect ion "Device Exam ple: Cell Phone" in Chapter 6 , "Serial Drivers," for a discussion on
plat form devices and plat form drivers. The platform_device is defined by the associated architecture-specific
code as follows:

struct resource pda_flash_resource = { /* Used by Listing 17.3 */
 .start = 0xC0000000, /* Physical start of the
 flash in Figure 17.2 */
 .end = 0xC0000000+0x02000000-1, /* Physical end of flash */
 .flags = IORESOURCE_MEM, /* Memory resource */
};
struct platform_device pda_platform_device = {

 .name = "pda", /* Platform device name */
 .id = 0, /* Instance number */
 /* ... */
 .resource = &pda_flash_resource, /* See above */
};
platform_device_register(&pda_platform_device);

List ing 1 7 .2 . Register ing the Map Dr iver

static struct platform_driver pda_map_driver = {
 .driver = {
 .name = "pda", /* ID */
 },
 .probe = pda_mtd_probe, /* Probe */
 .remove = NULL, /* Release */
 .suspend = NULL, /* Power management */
 .resume = NULL, /* Power management */
};

/* Driver/module Initialization */
static int __init pda_mtd_init(void)
{
 return platform_driver_register(&pda_map_driver);
}

/* Module Exit */
static int __init pda_mtd_exit(void)
{
 return platform_driver_uregister(&pda_map_driver);
}

Because the kernel finds that the nam e of the plat form driver registered in List ing 17.2 m atches with that of an
already- registered plat form device, it invokes the probe m ethod, pda_mtd_probe() , shown in List ing 17.3. This
rout ine

Reserves the flash m em ory address range using request_mem_region() , and obtains CPU access to that
m em ory using ioremap_nocache() . You learned how to do this in Chapter 10, "Peripheral Com ponent
I nterconnect ."

Populates a map_info st ructure (discussed next) with inform at ion such as the start address and size of
flash m em ory. The inform at ion in this st ructure is used while perform ing the probing in the next step.

Probes the flash via a suitable MTD chip dr iver (discussed in the next sect ion) . Only the chip dr iver knows
how to query the chip and elicit the com m and-set required to access it . The chip layer t r ies different
perm utat ions of bus widths and inter leaves while querying. I n Figure 17.2, two 16-bit flash banks are
connected in parallel to fill the 32-bit processor bus width, so you have a two-way inter leave.

Registers the mtd_partition st ructure that you populated earlier, with the MTD core.

Before looking at List ing 17.3, let 's m eet the map_info st ructure. I t contains the address, size, and width of the
flash m em ory and rout ines to access it :

struct map_info {
 char * name; /* Name */
 unsigned long size; /* Flash size */
 int bankwidth; /* In bytes */
 /* ... */
 /* You need to implement custom routines for the following methods
 only if you have special needs. Else populate them with built-
 in methods using simple_map_init() as done in Listing 17.3 */
 map_word (*read)(struct map_info *, unsigned long);
 void (*write)(struct map_info *, const map_word,
 unsigned long);
 /* ... */
};

While we are in the topic of accessing flash chips, let 's br iefly revisit m em ory barr iers that we discussed in
Chapter 4 , "Laying the Groundwork." An inst ruct ion reordering that appears sem ant ically unchanged to the
com piler (or the processor) m ay not be so in reality, so the ordering of data operat ions on flash m em ory is best
left alone. You don't want to, for exam ple, end up erasing a flash sector after writ ing to it , instead of doing the
reverse. Also, the sam e flash chips, and hence their device dr ivers, are used on diverse em bedded processors
having different inst ruct ion reordering algorithm s. For these reasons, MTD drivers are notable users of hardware
m em ory barr iers. simple_map_write() , a generic rout ine available to m ap drivers for use as the write()
m ethod in the map_info st ructure previously listed, inserts a call to mb() before returning. This ensures that the
processor does not reorder flash reads or writes across the barr ier.

List ing 1 7 .3 . Map Dr iver Probe Method

Code View:
#include <linux/mtd/mtd.h>
#include <linux/mtd/map.h>
#include <linux/ioport.h>

static int
pda_mtd_probe(struct platform_device *pdev)
{
 struct map_info *pda_map;
 struct mtd_info *pda_mtd;
 struct resource *res = pdev->resource;

 /* Populate pda_map with information obtained
 from the associated platform device */
 pda_map->virt = ioremap_nocache(res->start,
 (res->end – res->start + 1));
 pda_map->name = pdev->dev.bus_id;
 pda_map->phys = res->start;
 pda_map->size = res->end – res->start + 1;
 pda_map->bankwidth = 2; /* Two 16-bit banks sitting
 on a 32-bit bus */
 simple_map_init(&pda_map); /* Fill in default access methods */

 /* Probe via the CFI chip driver */
 pda_mtd = do_map_probe("cfi_probe", &pda_map);
 /* Register the mtd_partition structure */
 add_mtd_partitions(pda_mtd, pda_partitions, 3); /* Three Partitions */

 /* ... */
}

Don't worry if the CFI probing done in List ing 17.3 seem s esoteric. I t 's discussed in the next sect ion when we
look at NOR chip dr ivers.

MTD now knows how your flash device is organized and how to access it . When you boot the kernel with your
m ap driver com piled in, user-space applicat ions can respect ively see your boot loader, kernel, and filesystem
part it ions as / dev/ m td/ 0 , / dev/ m td/ 1 , and / dev/ m td/ 2 . So, to test dr ive a new kernel im age on the handheld,
you can do this:

bash> dd if=zImage.new of=/dev/mtd/1

Flash Part it ioning from Boot loaders

The Redboot boot loader m aintains a part it ion table that holds flash layout , so if you are using
Redboot on your em bedded device, you can configure your flash part it ions in the boot loader
instead of writ ing an MTD m ap driver. To ask MTD to parse flash m apping inform at ion from
Redboot 's part it ion table, turn on CONFIG_MTD_REDBOOT_PARTS during kernel configurat ion.

NOR Chip Dr ivers

As you m ight have not iced, the NOR flash chip used by the handheld in Figure 17.2 is labeled CFI -com pliant . CFI
stands for Com m on Flash I nterface, a specificat ion designed to do away with the need for developing separate
drivers to support chips from different vendors. Software can query CFI -com pliant flash chips and autom at ically
detect block sizes, t im ing param eters, and the com mand-set to be used for com m unicat ion. Drivers that
im plem ent specificat ions such as CFI and JEDEC are called chip dr ivers.

According to the CFI specificat ion, software m ust write 0x98 to locat ion 0x55 within flash m em ory to init iate a
query. Look at List ing 17.4 to see how MTD im plem ents CFI query.

List ing 1 7 .4 . Querying CFI - com pliant Flash

/* Snippet from cfi_probe_chip() (2.6.23.1 kernel) defined in
 drivers/mtd/chips/cfi_probe.c , with comments added */

/* cfi is a pointer to struct cfi_private defined in
 include/linux/mtd/cfi.h */

/* ... */

/* Ask the device to enter query mode by sending
 0x98 to offset 0x55 */
cfi_send_gen_cmd(0x98, 0x55, base, map, cfi,
 cfi->device_type, NULL);

/* If the device did not return the ASCII characters
 'Q', 'R' and 'Y', the chip is not CFI-compliant */
if (!qry_present(map, base, cfi)) {
 xip_enable(base, map, cfi);
 return 0;
}

/* Elicit chip parameters and the command-set, and populate
 the cfi structure */
if (!cfi->numchips) {
 return cfi_chip_setup(map, cfi);
}
/* ... */

The CFI specificat ion defines various com m and-sets that com pliant chips can im plem ent . Som e of the comm on
ones are as follows:

Com m and-set 0001 , supported by I ntel and Sharp flash chips

Com m and-set 0002 , im plem ented on AMD and Fuj itsu flash chips

Com m and-set 0020 , used on ST flash chips

MTD supports these com m and-sets as kernel m odules. You can enable the one supported by your flash chip via
the kernel configurat ion m enu.

NAND Chip Dr ivers

NAND technology users such as USB pen drives, DOMs, Com pact Flash m em ory, and SD/ MMC cards em ulate
standard storage interfaces such as SCSI or I DE over NAND flash, so you don't need to develop NAND drivers to
com m unicate with them . [5] On-board NAND flash chips need special dr ivers, however, and are the topic of this
sect ion.

[5] Unless you are writ ing dr ivers for the storage m edia itself. I f you are em bedding Linux on a device that will export part of its NAND part it ion
to the outside world as a USB m ass storage device, you do have to contend with NAND drivers.

As you learned previously in this chapter, NAND flash chips, unlike their NOR counterparts, are not connected to
the CPU via data and address lines. They interface to the CPU through special elect ronics called a NAND flash
cont roller that is part of m any em bedded processors. To read data from NAND flash, the CPU issues an
appropriate read com m and to the NAND cont roller. The cont roller t ransfers data from the requested flash
locat ion to an internal RAM m em ory, also part of the cont roller. The data t ransfer is done in units of the flash
chip's page size (for exam ple, 2KB) . I n general, the denser the flash chip, the larger is its page size. Note that
the page size is different from the flash chip's block size, which is the m inim um erasable flash m emory unit (for
exam ple, 16KB) . After the t ransfer operat ion com pletes, the CPU reads the requested NAND contents from the
internal RAM. Writes to NAND flash are done sim ilar ly, except that the cont roller t ransfers data from the internal
RAM to flash. The connect ion diagram of NAND flash m em ory on an em bedded device is shown in Figure 17.3.

Figure 1 7 .3 . NAND flash connect ion.

Because of this unconvent ional m ode of addressing, you need special dr ivers to work with NAND storage. MTD
provides such drivers to m anage NAND-resident data. I f you are using a supported chip, you have to enable
only the appropriate low- level MTD NAND driver. I f you are writ ing a NAND flash dr iver, however, you need to
explore two datasheets: the NAND flash cont roller and the NAND flash chip.

NAND flash chips do not support autom at ic configurat ion using protocols such as CFI . You have to m anually
inform MTD about the propert ies of your NAND chip by adding an ent ry to the nand_flash_ids[] table defined

in dr ivers/ m td/ nand/ nand_ids.c. Each ent ry in the table consists of an ident ifier nam e, the device I D, page size,
erase block size, chip size, and opt ions such as the bus width.

There is another character ist ic that goes hand in hand with NAND m em ory. NAND flash chips, unlike NOR chips,
are not fault less. I t 's norm al to have som e problem bits and bad blocks scat tered across NAND flash regions. To
handle this, NAND devices associate a spare area with each flash page (for exam ple, 64 bytes of spare area for
each 2KB data page) . The spare area contains out -of-band (OOB) inform at ion to help perform bad block
m anagem ent and error correct ion. The OOB area includes error correct ing codes (ECCs) to im plem ent error
correct ion and detect ion. ECC algorithm s correct single-bit errors and detect m ult ibit errors. The
nand_ecclayout st ructure defined in include/ m td/ m td-abi.h specifies the layout of the OOB spare area:

struct nand_ecclayout {
 uint 32_t eccbytes;
 uint32_t eccpos[64];
 uint32_t oobavail;
 struct nand_oobfree oobfree[MTD_MAX_OOBFREE_ENTRIES];
};

I n this st ructure, eccbytes holds the num ber of OOB bytes that store ECC data, and eccpos is an array of
offsets into the OOB area that contains the ECC data. oobfree records the unused bytes in the OOB area
available to flash filesystem s for stor ing flags such as clean m arkers that signal successful com plet ion of erase
operat ions.

I ndividual NAND drivers init ialize their nand_ecclayout according to the chip's propert ies. Figure 17.4 illust rates
the layout of a NAND flash chip having a page size of 2KB. The OOB sem ant ics used by the figure is the default
for 2KB page-sized chips as defined in the generic NAND driver, dr ivers/ m td/ nand/ nand_base.c.

Figure 1 7 .4 . Layout of a NAND flash chip.

[View full size im age]

Often, the NAND cont roller perform s error correct ion and detect ion in hardware by operat ing on the ECC fields
in the OOB area. I f your NAND cont roller does not support error m anagem ent , however, you will need to get
MTD to do that for you in software. The MTD nand_ecc dr iver (dr ivers/ m td/ nand/ nand_ecc.c) im plem ents
software ECC.

Figure 17.4 also shows OOB m em ory bytes that contain bad block m arkers. These m arkers are used to flag
faulty flash blocks and are usually present in the OOB region belonging to the first page of each block. The
posit ion of the m arker inside the OOB area depends on the propert ies of the chip. Bad block m arkers are either
set at the factory during m anufacture, or by software when it detects wear in a block. MTD im plem ents bad
block m anagem ent in dr ivers/ m td/ nand/ nand_bbt .c.

The mtd_partition st ructure used in List ing 17.1 for the NOR flash in Figure 17.2 works for NAND m em ory,
too. After you MTD-enable your NAND flash, you can access the const ituent part it ions using standard device
nodes such as / dev/ m td/ X and / dev/ m tdblock/ X. I f you have a m ix of NOR and NAND m em ories on your
hardware, X can be either a NOR or a NAND part it ion. I f you have a total of m ore than 32 flash part it ions,
accordingly change the value of MAX_MTD_DEVICES in include/ linux/ m td/ m td.h.

To effect ively m ake use of NAND storage, you need to use a filesystem tuned for NAND access, such as JFFS2 or
YAFFS2, in tandem with the low- level NAND driver. We discuss these filesystem s in the next sect ion.

User Modules

After you have added a m ap driver and chosen the r ight chip dr iver, you're all set to let higher layers use the
flash. User-space applicat ions that perform file I / O need to view the flash device as if it were a disk, whereas
program s that desire to accom plish raw I / O access the flash as if it were a character device. The MTD layer that
achieves these and m ore is called User Modules, as shown in Figure 17.1. Let 's look at the com ponents
const itut ing this layer.

Block Device Em ulat ion

The MTD subsystem provides a block dr iver called m tdblock that em ulates a hard disk over flash m em ory. You
can put any filesystem , say EXT2, over the em ulated flash disk. Mtdblock hides com plicated flash access
procedures (such as preceding a write with an erase of the corresponding sector) from the filesystem . Device
nodes created by m tdblock are nam ed / dev/ m tdblock/ X, where X is the part it ion num ber. To create an EXT2
filesystem on the pda_fs part it ion of the handheld, as shown in Figure 17.2, do the following:

bash> mkfs.ext2 /dev/mtdblock/2 Create an EXT2 filesystem

 on the second partition

bash> mount /dev/mtdblock/2 /mnt Mount the partition

As you will soon see, it 's a m uch bet ter idea to use JFFS2 rather than EXT2 to hold files on flash filesystem
part it ions.

The File Translat ion Layer (FTL) and the NAND File Translat ion Layer (NFTL) perform a t ransform at ion called
wear leveling. Flash m em ory sectors can withstand only a finite num ber of erase operat ions (in the order of
100,000) . Wear leveling prolongs flash life by dist r ibut ing m em ory usage across the chip. Both FTL and NFTL
provide device interfaces sim ilar to m tdblock over which you can put norm al filesystem s. The corresponding
device nodes are nam ed / dev/ nft l/ X, where X is the part it ion num ber. Certain algorithm s used in these m odules
are patented, so there could be rest r ict ions on usage.

Char Device Em ulat ion

The m tdchar dr iver presents a linear view of the underlying flash device, rather than the block-oriented view
required by filesystem s. Device nodes created by m tdchar are nam ed / dev/ m td/ X, where X is the part it ion
num ber. You m ay update the boot loader part it ion of the handheld as shown in Figure 17.2, by using dd over the
corresponding m tdchar interface:

bash> dd if=bootloader.bin of=/dev/mtd/0

An exam ple use of a raw m tdchar part it ion is to hold POST error logs generated by the boot loader on an
em bedded device. Another use of a char flash part it ion on an em bedded system is to store inform at ion sim ilar
to that present in the CMOS or the EEPROM on PC-com pat ible system s. This includes the boot order, power-on
password, and Vital Product Data (VPD) such as the device serial num ber and m odel num ber.

JFFS2

Journaling Flash File System (JFFS) is considered the best -suited filesystem for flash m em ory. Current ly, version
2 (JFFS2) is in use, and JFFS3 is under developm ent . JFFS was originally writ ten for NOR flash chips, but
support for NAND devices is m erged with the 2.6 kernel.

Norm al Linux filesystem s are designed for desktop com puters that are shut down gracefully. JFFS2 is designed

for em bedded system s where power failure can occur abrupt ly, and where the storage device can tolerate only a
finite num ber of erases. During flash erase operat ions, current sector contents are saved in RAM. I f there is a
power loss during the slow erase process, ent ire contents of that sector can get lost . JFFS2 circum vents this
problem using a log-st ructured design. New data is appended to a log that lives in an erased region. Each JFFS2
node contains m etadata to t rack disjoint file locat ions. Mem ory is periodically reclaim ed using garbage
collect ion. Because of this design, flash writes do not have to go through a save-erase-write cycle, and this
im proves power-down reliabilit y. The log-st ructure also increases flash life span by spreading out writes.

To create a JFFS2 im age of a t ree liv ing under / path/ to/ filesystem / on a flash chip having an erase size of
256KB, use m kfs.j ffs2 as follows:

bash> mkfs.jffs2 -e 256KiB –r /path/to/filesystem/ -o jffs2.img

JFFS2 includes a garbage collector (GC) that reclaim s flash regions that are no longer in use. The garbage
collect ion algorithm depends on the erase size, so supplying an accurate value m akes it m ore efficient . To
obtain the erase size of your flash part it ions, you m ay seek the help of / proc/ m td. The output for the Linux
handheld shown in Figure 17.2 is as follows:

bash> cat /proc/mtd

dev: size erasesize name
mtd0: 00100000 00040000 "pda_btldr"
mtd1: 00200000 00040000 "pda_krnl"
mtd2: 01400000 00040000 "pda_fs"

JFFS2 supports com pression. Enable appropriate opt ions under CONFIG_JFFS2_COMPRESSION_OPTIONS to choose
available com pressors, and look at fs/ j ffs2/ com pr* .c for their im plem entat ions.

Note that JFFS2 filesystem im ages are usually created on the host m achine where you do cross-developm ent
and then t ransferred to the desired flash part it ion on the target device via a suitable download m echanism such
as serial port , USB, or NFS. More on this in Chapter 18, "Em bedding Linux."

YAFFS2

The im plem entat ion of JFFS2 in the 2.6 kernel includes features to work with the lim itat ions of NAND flash, but
Yet Another Flash File System (YAFFS) is a filesystem that is designed to funct ion under const raints specific to
NAND m em ory. YAFFS is not part of the m ainline kernel, but som e em bedded dist r ibut ions prepatch their
kernels with support for YAFFS2, the current version of YAFFS.

You can download YAFFS2 source code and docum entat ion from www.yaffs.net .

MTD- Ut ils

The MTD-ut ils package, downloadable from ftp: / / ftp.infradead.org/ pub/ m td-ut ils/ , contains several useful tools
that work on top of MTD-enabled flash m em ory. Exam ples of included ut ilit ies are flash_eraseall, nanddum p,
nandwrite, and sum tool.

To erase the second flash part it ion (on NOR or NAND devices) , use flash_eraseall as follows:

bash> flash_eraseall –j /dev/mtd/2

Because NAND chips m ay contain bad blocks, use ECC-aware program s such as nandwrite and nanddum p to
copy raw data, instead of general-purpose ut ilit ies, such as dd. To store the JFFS2 im age that you created
previously, on to the second NAND part it ion, do this:

bash> nandwrite /dev/mtd/2 jffs2.img

You can reduce JFFS2 m ount t im es by insert ing sum m ary inform at ion into a JFFS2 im age using sum tool and
turning on CONFIG_JFFS2_SUMMARY while configuring your kernel. To write a sum m arized JFFS2 im age to the
previous NAND flash, do this:

bash> sumtool –e 256KiB –i jffs2.img –o jffs2.summary.img

bash> nandwrite /dev/mtd/2 jffs2.summary.img

bash> mount –t jffs2 /dev/mtdblock/2 /mnt

Configur ing MTD

To MTD-enable your kernel, you have to choose the appropriate configurat ion opt ions. For the flash chip shown
in Figure 17.2, the required opt ions are as follows:

CONFIG_MTD=y Enable the MTD subsystem

CONFIG_MTD_PARTITIONS=y Support for multiple partitions

CONFIG_MTD_GEN_PROBE=y Common routines for chip probing

CONFIG_MTD_CFI=y Enable CFI chip driver

CONFIG_MTD_PDA_MAP=y Option to enable the map driver

CONFIG_JFFS2_FS=y Enable JFFS2

CONFIG_MTD_PDA_MAP is assum ed to be a new opt ion added to enable the m ap driver we previously wrote. Each
of these features can also be built as a kernel m odule unless you have an MTD-resident root filesystem. To
m ount the filesystem part it ion in Figure 17.2 as the root device during boot , ask your boot loader to append
root=/dev/mtdblock/2 to the com m and- line st r ing that it passes to the kernel.

You m ay reduce kernel footpr int by elim inat ing redundant probing. Because our exam ple handheld has two
parallel 16-bit banks sit t ing on a 32-bit physical bus (thus result ing in a two-way inter leave and a 2-byte bank
width) , you can opt im ize using these addit ional opt ions:

CONFIG_MTD_CFI_ADV_OPTIONS=y
CONFIG_MTD_CFI_GEOMETRY=y
CONFIG_MTD_MAP_BANK_WIDTH_2=y
CONFIG_MTD_CFI_I2=y

CONFIG_MTD_MAP_BANK_WIDTH_2 enables a CFI bus width of 2, and CONFIG_MTD_CFI_I2 sets an inter leave of 2.

eXecute I n Place

With eXecute I n Place (XI P) , you can run the kernel direct ly from flash. Because you do away with the ext ra
step of copying the kernel to RAM, your kernel boots faster. The downside is that your flash m em ory
requirem ent increases because the kernel has to be stored uncom pressed. Before deciding to go the XI P route,
also be aware that the slower inst ruct ion fetch t imes from flash can im pact runt im e perform ance.

The Firm w are Hub

PC-com pat ible system s use a NOR flash chip called the Firm ware Hub (FWH) to hold the BI OS. The FWH is not
direct ly connected to the processor 's address and data bus. I nstead, it 's interfaced via the Low Pin Count (LPC)
bus, which is part of South Bridge chipsets. The connect ion diagram is shown in Figure 17.5.

Figure 1 7 .5 . The Firm w are Hub on a PC- com pat ible sy stem .

The MTD subsystem includes drivers to interface the processor with the FWH. FWHs are usually not com pliant
with the CFI specificat ion. I nstead, they conform to the JEDEC (Joint Elect ron Device Engineering Council)
standard. To inform MTD about a yet unsupported JEDEC chip, add an ent ry to the jedec_table array in
drivers/ m td/ chips/ jedec_probe.c with inform at ion such as the chip m anufacturer I D and the com m and-set I D.
Here is an exam ple:

static const struct amd_flash_info jedec_table[] = {
 /* ... */
 {
 .mfr_id = MANUFACTURER_ID, /* E.g.: MANUFACTURER_ST */
 .dev_id = DEVICE_ID, /* E.g.: M50FW080 */
 .name = "MYNAME", /* E.g.: "M50FW080" */
 .uaddr = {
 [0] = MTD_UADDR_UNNECESSARY,
 },
 .DevSize = SIZE_1MiB, /* E.g.: 1MB */
 .CmdSet = CMDSET, /* Command-set to communicate with the
 flash chip e.g., P_ID_INTEL_EXT */
 .NumEraseRegions = 1, /* One region */
 .regions = {
 ERASEINFO (0x10000, 16),/* Sixteen 64K sectors */
 }
 },
 /* ... */
};

When you have your chip details im printed in the jedec_table as shown here, MTD should recognize your flash,
provided you have enabled the r ight kernel configurat ion opt ions. The following configurat ion m akes the kernel
aware of an FWH that interfaces to the processor via an I ntel I CH2 or I CH4 South Bridge chipset :

CONFIG_MTD=y Enable the MTD subsystem

CONFIG_MTD_GEN_PROBE=y Common routines for chip probing

CONFIG_MTD_JEDECPROBE=y JEDEC chip driver

CONFIG_MTD_CFI_INTELEXT=y The command-set for communicating
 with the chip

CONFIG_MTD_ICHXROM=y The map driver

CONFIG_MTD_JEDECPROBE enables the JEDEC MTD chip dr iver, and CONFIG_MTD_ICH2ROM adds the MTD m ap
driver that m aps the FWH to the processor 's address space. I n addit ion, you need to include the appropriate
com m and-set im plem entat ion (for exam ple, CONFIG_MTD_CFI_INTELEXT for I ntel Extension com m ands) .

After these m odules have been loaded, you can talk to the FWH from user-space applicat ions via device nodes
exported by MTD. You can, for exam ple, reprogram the BI OS from user space using a sim ple applicat ion, as
shown in List ing 17.5. Be warned that incorrect ly operat ing this program can corrupt the BI OS and render your
system unbootable!

List ing 17.5 operates on the MTD char device associated with the FWH, which it assum es to be / dev/ m td/ 0 . The
program issues three MTD-specific ioct l com m ands:

MEMUNLOCK to unlock the flash sectors pr ior to program m ing

MEMERASE to erase flash sectors pr ior to rewrit ing

MEMLOCK to relock the sectors after program m ing

List ing 1 7 .5 . Updat ing the BI OS

Code View:
#include <linux/mtd/mtd.h>
#include <stdio.h>
#include <fcntl.h>
#include <asm/ioctl.h>
#include <signal.h>
#include <sys/stat.h>

#define BLOCK_SIZE 4096
#define NUM_SECTORS 16
#define SECTOR_SIZE 64*1024

int
main(int argc, char *argv[])
{
 int fwh_fd, image_fd;
 int usect=0, lsect=0, ret;
 struct erase_info_user fwh_erase_info;
 char buffer[BLOCK_SIZE];

 struct stat statb;
 /* Ignore SIGINTR(^C) and SIGSTOP (^Z), lest
 you end up with a corrupted flash and an
 unbootable system */
 sigignore(SIGINT);
 sigignore(SIGTSTP);

 /* Open MTD char device */
 fwh_fd = open("/dev/mtd/0", O_RDWR);
 if (fwh_fd < 0) exit(1);

 /* Open BIOS image */
 image_fd = open("bios.img", O_RDONLY);
 if (image_fd < 0) exit(2);

 /* Sanity check */
 fstat(image_fd, &statb);
 if (statb.st_size != SECTOR_SIZE*NUM_SECTORS) {
 printf("BIOS image looks bad, exiting.\n");
 exit(3);
 }

 /* Unlock and erase all sectors */
 while (usect < NUM_SECTORS) {
 printf("Unlocking & Erasing Sector[%d]\r", usect+1);

 fwh_erase_info.start = usect*SECTOR_SIZE;
 fwh_erase_info.length = SECTOR_SIZE;

 ret = ioctl(fwh_fd, MEMUNLOCK, &fwh_erase_info);
 if (ret != 0) goto bios_done;

 ret = ioctl(fwh_fd, MEMERASE, &fwh_erase_info);
 if (ret != 0) goto bios_done;
 usect++;
 }

 /* Read blocks from the BIOS image and dump it to the
 Firmware Hub */
 while ((ret = read(image_fd, buffer, BLOCK_SIZE)) != 0) {
 if (ret < 0) goto bios_done;
 ret = write(fwh_fd, buffer, ret);
 if (ret <= 0) goto bios_done;
 }
 /* Verify by reading blocks from the BIOS flash and comparing
 with the image file */

 /* ... */

 bios_done:

 /* Lock back the unlocked sectors */
 while (lsect < usect) {
 printf("Relocking Sector[%d]\r", lsect+1);

 fwh_erase_info.start = lsect*SECTOR_SIZE;
 fwh_erase_info.length = SECTOR_SIZE;

 ret = ioctl(fwh_fd, MEMLOCK, &fwh_erase_info);

 if (ret != 0) printf("Relock failed on sector %d!\n", lsect);
 lsect++;
 }

 close(image_fd);
 close(fwh_fd);

}

Debugging

To debug flash- related problem s, enable CONFIG_MTD_DEBUG (Device Drivers Mem ory Technology Devices
 Debugging) during kernel configurat ion. You can further tune the debug verbosity level to between 0 and 3.

The Linux-MTD project page www.linux-m td.infradead.org has FAQs, various pieces of docum entat ion, and a
Linux-MTD JFFS HOWTO that provides insights into JFFS2 design. The linux-m td m ailing list is the place to
discuss quest ions related to MTD device dr ivers. Look at ht tp: / / lists. infradead.org/ piperm ail/ linux-m td/ for the
m ailing list archives.

http://lists.infradead.org/pipermail/linux-mtd/

Look ing at the Sources

I n the kernel t ree, the dr ivers/ m td/ directory contains the sources for the MTD layer. Map, chip, and NAND
drivers live in the dr ivers/ m td/ m aps/ , dr ivers/ m td/ chips/ , and drivers/ m td/ nand/ subdirector ies, respect ively.
Most MTD data st ructures are defined in header files present in include/ linux/ m td/ .

To access an unsupported BI OS firm ware hub from Linux, im plem ent a dr iver using dr ivers/ m td/ m aps/ ichxrom .c
as your start ing point .

For exam ples of operat ing on NAND OOB data from user space, look at nanddum p.c and nandwrite.c in the
MTD-ut ils package.

Table 17.1 contains the m ain data st ructures used in this chapter and their locat ion in the source t ree. Table
17.2 lists the m ain kernel program m ing interfaces that you used in this chapter along with the locat ion of their
definit ions.

Table 1 7 .1 . Sum m ary of Data St ructures

Data St ructure Locat ion Descr ipt ion

mtd_partition include/ linux/ m td/ part it ions.h Representat ion of a flash chip's part it ion
layout .

map_info include/ linux/ m td/ m ap.h Low- level access rout ines im plem ented
by the m ap driver are passed to the chip
driver using this st ructure.

mtd_info include/ linux/ m td/ m td.h General device-specific inform at ion.

erase_info,
erase_info_user

include/ linux/ m td/ m td.h,
include/ m td/ m td-abi.h

St ructures used for flash erase
m anagem ent .

cfi_private include/ linux/ m td/ cfi.h Device-specific inform at ion m aintained
by NOR chip dr ivers.

amd_flash_info drivers/ m td/ chips/ jedec_probe.c Device-specific inform at ion supplied to
the JEDEC chip dr iver.

nand_ecclayout include/ m td/ m td-abi.h Layout of the OOB spare area of a NAND
chip.

Table 1 7 .2 . Sum m ary of Kernel Program m ing I nter face s

Kernel I nter face Locat ion Descr ipt ion

simple_map_init() drivers/ m td/ m aps/ m ap_funcs.c I nit ializes a map_info st ructure
with generic flash access m ethods

do_map_probe() drivers/ m td/ chips/ chipreg.c Probes the NOR flash via a chip
driver

add_mtd_partitions() drivers/ m td/ m tdpart .c Registers an mtd_partition
st ructure with the MTD core

Chapter 1 8 . Em bedding Linux

I n This Chapter

Challenges
528

Com ponent Select ion
530

Tool Chains
531

Em bedded Boot loaders
531

Mem ory Layout
535

Kernel Port ing
537

Em bedded Drivers
538

The Root Filesystem
544

Test I nfrast ructure
548

Debugging
548

Linux is m aking inroads into indust ry dom ains such as consum er elect ronics, telecom , networking,
defense, and health care. With its popular ity surging in the em bedded space, it 's m ore likely that
you will use your Linux device dr iver skills to enable em bedded devices rather than legacy
system s. I n this chapter, let 's enter the world of em bedded Linux wearing the lens of a device
driver developer. Let 's look at the software com ponents of a typical em bedded Linux solut ion and
see how the device classes that you saw in the previous chapters t ie in with com m on em bedded
hardware.

Challenges

Em bedded system s present several significant software challenges:

Em bedded software has to be cross-com piled and then downloaded to the target device to be tested and
verified.

Em bedded system s, unlike PC-com pat ible com puters, do not have fast processors, fat caches, and
wholesom e storage.

I t 's often difficult to get m ature developm ent and debug tools for em bedded hardware for free.

The Linux com m unity has a lot m ore experience on the x86 plat form , so you are less likely to get instant
online help from experts if you working on em bedded com puters.

The hardware evolves in stages. You m ay have to start software developm ent on a proof-of-concept
prototype or a reference board, and progressively move on to engineering- level debug hardware and a
few passes of product ion- level units.

All these result in a longer developm ent cycle.

From a device-driver perspect ive, em bedded software developers often face interfaces not com m only found on
convent ional com puters. Figure 18.1 (which is an expanded version of Figure 4.2 in Chapter 4 , "Laying the
Groundwork") shows a hypothet ical em bedded device that could be a handheld, sm art phone, point -of-sale
(POS) term inal, kiosk, navigat ion system , gam ing device, telem et ry gadget on an autom obile dashboard, I P
phone, m usic player, digital set - top box, or even a pacem aker program m er. The device is built around an SoC
and has som e com binat ion of flash m em ory, SDRAM, LCD, touch screen, USB OTG, serial ports, audio codec,
connect ivity, SD/ MMC cont roller, Com pact Flash, I 2C devices, SPI devices, JTAG, biom et r ics, sm art card
interfaces, keypad, LEDs, switches, and elect ronics specific to the indust ry dom ain. Modifying and debugging
drivers for som e of these devices can be tougher than usual: NAND flash dr ivers have to handle problems such
as bad blocks and failed bits, unlike standard I DE storage drivers. Flash-based filesystem s such as JFFS2, are
m ore com plex to debug than EXT2 or EXT3 filesystem s. A USB OTG driver is m ore involved than a USB OHCI
driver. The SPI subsystem on the kernel is not as m ature as, say, the serial layer. Moreover, the indust ry
dom ain using the em bedded device m ight im pose specific requirem ents such as quick response t im es or fast
boot .

Figure 1 8 .1 . Block diagram of a hypothet ica l em bedd ed device.

[View full size im age]

Chapter 1 8 . Em bedding Linux

I n This Chapter

Challenges
528

Com ponent Select ion
530

Tool Chains
531

Em bedded Boot loaders
531

Mem ory Layout
535

Kernel Port ing
537

Em bedded Drivers
538

The Root Filesystem
544

Test I nfrast ructure
548

Debugging
548

Linux is m aking inroads into indust ry dom ains such as consum er elect ronics, telecom , networking,
defense, and health care. With its popular ity surging in the em bedded space, it 's m ore likely that
you will use your Linux device dr iver skills to enable em bedded devices rather than legacy
system s. I n this chapter, let 's enter the world of em bedded Linux wearing the lens of a device
driver developer. Let 's look at the software com ponents of a typical em bedded Linux solut ion and
see how the device classes that you saw in the previous chapters t ie in with com m on em bedded
hardware.

Challenges

Em bedded system s present several significant software challenges:

Em bedded software has to be cross-com piled and then downloaded to the target device to be tested and
verified.

Em bedded system s, unlike PC-com pat ible com puters, do not have fast processors, fat caches, and
wholesom e storage.

I t 's often difficult to get m ature developm ent and debug tools for em bedded hardware for free.

The Linux com m unity has a lot m ore experience on the x86 plat form , so you are less likely to get instant
online help from experts if you working on em bedded com puters.

The hardware evolves in stages. You m ay have to start software developm ent on a proof-of-concept
prototype or a reference board, and progressively move on to engineering- level debug hardware and a
few passes of product ion- level units.

All these result in a longer developm ent cycle.

From a device-driver perspect ive, em bedded software developers often face interfaces not com m only found on
convent ional com puters. Figure 18.1 (which is an expanded version of Figure 4.2 in Chapter 4 , "Laying the
Groundwork") shows a hypothet ical em bedded device that could be a handheld, sm art phone, point -of-sale
(POS) term inal, kiosk, navigat ion system , gam ing device, telem et ry gadget on an autom obile dashboard, I P
phone, m usic player, digital set - top box, or even a pacem aker program m er. The device is built around an SoC
and has som e com binat ion of flash m em ory, SDRAM, LCD, touch screen, USB OTG, serial ports, audio codec,
connect ivity, SD/ MMC cont roller, Com pact Flash, I 2C devices, SPI devices, JTAG, biom et r ics, sm art card
interfaces, keypad, LEDs, switches, and elect ronics specific to the indust ry dom ain. Modifying and debugging
drivers for som e of these devices can be tougher than usual: NAND flash dr ivers have to handle problems such
as bad blocks and failed bits, unlike standard I DE storage drivers. Flash-based filesystem s such as JFFS2, are
m ore com plex to debug than EXT2 or EXT3 filesystem s. A USB OTG driver is m ore involved than a USB OHCI
driver. The SPI subsystem on the kernel is not as m ature as, say, the serial layer. Moreover, the indust ry
dom ain using the em bedded device m ight im pose specific requirem ents such as quick response t im es or fast
boot .

Figure 1 8 .1 . Block diagram of a hypothet ica l em bedd ed device.

[View full size im age]

Com ponent Select ion

Evaluat ing and select ing com ponents is one of the im portant tasks undertaken during the concept phase of a
project . Look at the sidebar "Choosing a Processor and Peripherals" for som e im portant factors that hardware
designers and product m anagers consider while choosing com ponents for building an em bedded device. I n
today's world, where t im e to m arket is often the cr it ical factor dr iving device design, the software engineer also
has a considerable say in shaping com ponent select ion. Availabilit y of a Linux dist r ibut ion can influence
processor choice, while existence of device dr ivers or close start ing points can affect the choice of peripheral
chipsets.

Although the kernel engineer needs to do due diligence and evaluate several Linux dist r ibut ions (or even
operat ing system s) , he m ay nix a technologically superior dist r ibut ion in favor of a fam iliar one if he believes
that ' ll m it igate project r isks. Or a preferred dist r ibut ion m ight be the one that offers indem nificat ion from
lawsuits ar ising out of kernel bugs, if that is a crucial considerat ion in the relevant indust ry dom ain. The
elect r ical engineer can lim it evaluat ion to processors supported by the chosen dist r ibut ion and prefer peripheral
chipsets enabled by the dist r ibut ion in quest ion.

Choosing a Processor and Peripherals

Let 's look at som e com m on quest ions that elect r ical engineers and product m anagers ask when
select ing com ponents for an em bedded device. Assum e that a hypothet ical processor P is on the
short list because it sat isfies basic product requirem ents such as power consum pt ion and
packaging. P and accom panying peripheral chipsets are under evaluat ion:

Perform ance: I s the processor frequency sufficient to dr ive target applicat ions? I f the em bedded
device intends to im plem ent CPU- intensive tasks, does the MI PS budget ing for all software
subsystem s balance with the processor 's MI PS rat ing? I f the target device requires high- resolut ion
im aging, for exam ple, will the MHz im pact of graphics m anipulat ion drag down the perform ance of
other subsystem s, such as networking?

Cost : Will I save a buck on the com ponent but end up spending two m ore on the surrounding
elect ronics? For exam ple, will P need an ext ra regulator? Will I need to throw in an addit ional
accessory, for exam ple, an RTC chip, because P does not have one built - in? Does P have m ore pins
than other processors under evaluat ion leading to a denser board having a larger num ber of layers
and vias that increase the raw board cost? Does P consum e m ore power and generate m ore heat
necessitat ing a bigger power supply and addit ional passive com ponents? I s there errata in the
data sheet that has the possibilit y of increasing software developm ent costs?

Funct ionality: What 's the m axim um size of DRAM, SRAM, NOR, and NAND m em ory that P can
address?

Business Planning: Does P's vendor offer an upgrade path to a higher horsepower processor that
is a drop- in (pin-com pat ible) replacem ent? I s the vendor com pany stable?

Supplier : I s this a single-source com ponent? I f so, is the supplier volat ile? What are the lead
t im es to procure the parts?

End- of- Life : I s P likely to go end-of- life before the expected lifespan of the em bedded device?

Credibilit y: I s P an accepted com ponent? Do peripheral chipsets under evaluat ion have an
indust ry segm ent behind them ? Perhaps a landscape LCD under considerat ion is being used on
autom obile dashboards?

Ruggedness: Need the com ponents be MI L (m ilitary) or indust r ial grade?

One has to evaluate different candidates and figure out the sweet spot in term s of all these.

Tool Chains

Because the target device is unlikely to be binary-com pat ible with your host developm ent plat form , you have to
cross-com pile em bedded software using tool chains. Set t ing up a full- fledged tool chain entails building the
following:

The GNU C (cross-)Com piler. GCC supports all plat form s that Linux runs on, but you have to configure and
build it to generate code for your target architecture. Essent ially, you have to com pile the com piler and
generate the appropriate cross-com piler.

1 .

Glibc, the set of C librar ies that you will need when you build applicat ions for the target device.2 .

Binut ils, which includes the cross-assem bler, and tools such as objdum p.3 .

Get t ing a developm ent tool chain in place used to be a daunt ing task several years ago but is usually
st raight forward today because Linux dist r ibut ions offer precom piled binaries and easy- installat ion tools for a
variety of architectures.

Em bedded Boot loaders

Boot loader developm ent is usually the start ing point of any em bedded software effort . You have to decide
whether to write a boot loader from scratch or tailor an exist ing open source boot loader to suit your needs. Each
candidate boot loader m ight be built based on a different philosophy: sm all footpr int , easy portabilit y, fast boot ,
or the capabilit y to support certain specific features. After you hom e- in on a start ing point , you can design and
im plem ent device-specific m odificat ions.

I n this sect ion, let 's use the term boot loader to m ean the boot suite. This includes the following:

The BI OS, if present

Any bootst rap code needed to put the boot loader onto the boot device

One or m ore stages[1] of the actual boot loader

[1] I n em bedded boot loader parlance, the first stage of a two-stage boot loader is som et im es called the I nit ial Program Loader (I PL) ,
and the second stage is called the Secondary Program Loader (SPL) .

Any program execut ing on an external host m achine that talks with the boot loader for the purpose of
downloading firm ware onto the target device

At the m inim um , a boot loader is responsible for processor- and board-specific init ializat ions, loading a kernel
and an opt ional init ial ram disk into m em ory and passing cont rol to the kernel. I n addit ion, a boot loader m ight
be in charge of providing BI OS services, perform ing POST, support ing firm ware downloads to the target , and
passing m em ory layout and configurat ion inform at ion to the kernel. On em bedded devices that use encrypted
firm ware im ages for security reasons, boot loaders may have the task of decrypt ing firm ware. Som e boot loaders
support a debug m onitor to load and debug stand-alone code on to the target device. You m ay also decide to
build a failure- recovery m echanism into your boot loader to recoup from kernel corrupt ion on the field.

I n general, boot loader architecture depends on the processor fam ily, the chipsets present on the hardware
plat form , the boot device, and the operat ing system running on the device. To illust rate the effects of the
processor fam ily on the boot suite, consider the following:

A boot loader for a device designed around the St rongARM processor has to know whether it 's boot ing the
system or waking it up from sleep, because the processor starts execut ion from the top of its address
space (the boot loader) in both cases. The boot loader has to pass cont rol to the kernel code that restores
the system state if it 's waking up from sleep or load the kernel from the boot device if the system is
start ing from reset .

An x86 boot loader m ight need to switch to protected m ode to load a kernel bigger than the 1MB real-
m ode lim it .

Em bedded system s not based on x86 plat form s cannot avail the services of a legacy BI OS. So, if you want
your em bedded device to boot , for exam ple, from an external USB device, you have to build USB

capabilit ies into your boot loader.

Even when two plat form s are based on sim ilar processor cores, the boot loader architecture m ay differ
based on the SoC. For exam ple, consider two ARM-based devices, the Com paq iPAQ H3900 PDA and the
Darwin Jukebox. The form er is built around the I ntel PXA250 cont roller chip, which has an XScale CPU
based on an ARMv5 core, and the lat ter is designed using the Cirrus Logic EP7312 cont roller that uses an
ARMv3 core. Whereas XScale supports JTAG (nam ed after the Joint Test Act ion Group, which developed
this hardware-assisted debugging standard) to load a boot loader onto flash, the EP7312 has a bootst rap
m ode to accom plish the sam e task.

The boot suite needs a m echanism to t ransfer a boot loader im age from the host developm ent system to the
target 's boot device. This is called bootst rapping. Bootst rapping is st raight forward on PC-com pat ible system s
where the BI OS flash is program m ed using an external burner if it 's corrupted or updated after boot ing into an
operat ing system if it 's healthy. Em bedded devices, however, do not have a generic m ethod for bootst rapping.

To illust rate bootst rapping on an em bedded system , take the exam ple of the Cirrus Logic EP7211 cont roller
(which is the predecessor of the EP7312 discussed in the previous sect ion) . The EP7211 executes code from a
sm all internal 128-byte m em ory when it 's powered on in a bootst rap m ode. This 128-byte code downloads a
bootst rap im age from a host via the serial port to an on-board 2KB SRAM and t ransfers cont rol to it . The boot
suite has to be thus architected into three stages, each loaded at a different address:

The first stage (the 128-byte im age) is part of processor firm ware.

The second stage lives in the on-chip SRAM, so it can be up to 2KB. This is the bootst rapper.

The bootst rapper downloads the actual boot loader image from an external host to the top of flash
m em ory. The boot loader gets cont rol when the processor powers on in norm al operat ion m ode.

Note that the processor- resident m icrocode (the first stage) itself cannot funct ion as the bootst rapper because a
bootst rapper needs to have the capabilit y to program flash m em ory. Because m any types of flash chips can be
used with a processor, the bootst rapper code needs to be board-specific.

Many cont roller chips do not support a bootst rap m ode. I nstead, the boot loader is writ ten to flash via a JTAG
interface. You can use your JTAG debugger's com m and interface to access the processor 's debug logic and burn
the boot loader to the target device's flash m em ory. We will have a m ore detailed discussion on JTAG debugging
in the sect ion "JTAG Debuggers" in Chapter 21, "Debugging Device Drivers."

There are cont rollers that support both bootst rap execut ion m ode and JTAG. The Freescale i.MX21 (and its
upgraded version i.MX27) based on an ARM9 core is one such cont roller.

After a boot loader is resident on flash, it can update itself as well as other firm ware com ponents such as the
kernel and the root filesystem . The boot loader can direct ly talk to a host m achine and download firm ware
com ponents via interfaces such as UART, USB, or Ethernet .

Table 18.1 looks at a few exam ple Linux boot loaders for ARM, PowerPC, and x86.

Table 1 8 .1 . Linux Boot loaders

Processor
Plat form

Linux Boot loaders

ARM RedBoot (www.cygwin.com / redboot) is a boot loader popular on ARM-
based hardware. Redboot is based on a hardware abst ract ion offered by
the eCos operat ing system (ht tp: / / ecos.sourceware.org/) . The BootLoader
Object or BLOB (ht tp: / / sourceforge.net / projects/ blob/) , a boot loader
originally developed for St rongARM-based boards, is com m only custom
ported to other ARM-based plat form s, too. BLOB is built as two im ages,
one that perform s m inim al init ializat ions, and the second that form s the
bulk of the boot loader. The first im age relocates the second to RAM, so
the boot loader can easily upgrade itself.

Pow erPC PowerPC chips used on em bedded devices include SoCs such as I BM's
405LP and the 440GP, and Motorola's MPC7xx and MPC8xx. Boot loaders
such as U-Boot (ht tp: / / sourceforge.net / projects/ u-boot /) , SLOF, and PI BS
boot Linux on PowerPC-based hardware.

x86 Most x86-based system s boot from disk dr ives. Em bedded x86 boards
m ay boot from solid-state disks rather than m echanical dr ives. The first
stage of a disk- resident boot loader consists of a sector-sized chunk that is
loaded by the BI OS. This is called the Master Boot Record (MBR) and
contains up to 446 bytes of code, four part it ion table ent r ies consum ing 16
bytes each, and a 2-byte signature (thus m aking up a 512-byte sector) .
The MBR is responsible for loading the second stage of the boot loader.
Each intervening stage has its own tasks, but the final stage lets you
choose the kernel im age and com m and- line argum ents, loads the kernel
and any init ial ram disk to m em ory, and t ransfers cont rol to the kernel. As
an illust rat ion, let 's look at three boot loaders popular ly used to boot Linux
on x86-based hardware:

The Linux Loader or LI LO (ht tp: / / freshm eat .net / projects/ lilo/) is
packaged along with som e Linux dist r ibut ions. When the first stage
of the boot loader is writ ten to the boot sector, LI LO precalculates
the disk locat ions of the second stage and the kernel. I f you build a
new kernel im age, you have to rewrite the boot sector. The second
stage allows the user to interact ively select the kernel im age and
configure com m and- line argum ents. I t then loads the kernel to
m em ory.

GRUB (www.gnu.org/ software/ grub) is different from LI LO in that
the kernel im age can live in any supported filesystem , and the boot
sector need not be rewrit ten if the kernel im age changes. GRUB has
an ext ra stage 1.5 that understands the filesystem holding the boot
im ages. Current ly supported filesystem s are EXT2, DOS FAT, BSD
FFS, I BM JFS, SGI XFS, Minix, and Reiserfs. GRUB com plies with the
Mult iboot specificat ion, which allows any com plying operat ing
system to boot via any com plying boot loader. You looked at a
sam ple GRUB configurat ion file in Chapter 2 , "A Peek I nside the
Kernel."

SYSLI NUX (ht tp: / / syslinux.zytor.com /) is a no- fr ills Linux
boot loader. I t understands the FAT filesystem , so you can store the
kernel im age and the second stage boot loader on a FAT part it ion.

http://ecos.sourceware.org/
http://sourceforge.net/projects/blob/
http://sourceforge.net/projects/u-boot/
http://freshmeat.net/projects/lilo/
http://syslinux.zytor.com/

Giving due thought to the design and architecture of the boot loader suite lays a solid foundat ion for em bedded
software developm ent . The key is to choose the r ight boot loader as your start ing point . The benefits range from
a shorter software developm ent cycle to a feature- r ich and robust device.

Mem ory Layout

Figure 18.2 shows an exam ple m em ory layout on an em bedded device. The boot loader sits on top of the NOR
flash. Following the boot loader lies the param block, a stat ically com piled binary im age of kernel comm and- line
argum ents. The com pressed kernel im age com es next . The filesystem occupies the rest of the available flash
m em ory. I n the init ial phase, when you start developm ent with a first -shot kernel, the filesystem is usually a
com pressed ram disk (init rd or init ram fs) , because having a flash-based filesystem entails get t ing the kernel
MTD subsystem configured and running.

Figure 1 8 .2 . Exam ple m em ory layout on an em bedded d evice.

During power-on, the boot loader in Figure 18.2 uncom presses the kernel and loads it to DRAM at 0xc0200000 .
I t then loads the ram disk at 0xc0280000 (unless you build an init ram fs into the base kernel as you learned in
Chapter 2) . Finally, it obtains com m and- line argum ents from the param block and t ransfers cont rol to the
kernel.

Because you m ay have to work with unconvent ional consoles and m em ory part it ions on em bedded devices, you
have to pass the r ight com m and- line argum ents to the kernel. For the device in Figure 18.2, this is a possible
com m and line:

console=/dev/ttyS0,115200n8 root=/dev/ram initrd=0xC0280000

When you have the kernel MTD drivers recognizing your flash part it ions, the area of flash that holds the ram disk
can instead contain a JFFS2-based filesystem . With this, you don't have to load the init rd to DRAM. Assum ing
that you have m apped the boot loader, param block, kernel, and filesystem to separate MTD part it ions, the
com m and line now looks like this:

console=/dev/ttyS0,115200n8 root=/dev/mtdblock3

See the sidebar "ATAGs" for another m ethod of passing param eters from the boot loader to the kernel.

ATAGs

On ARM kernels, com m and- line argum ents are deprecated in favor of a tagged list of param eters.
This m echanism , called ATAG, is described in Docum entat ion/ arm / Boot ing. To pass a param eter to
the kernel, create the corresponding tag in system m em ory from the boot loader, supply a kernel
funct ion to parse it , and add the lat ter to the list of tag parsing funct ions using the __tagtable()
m acro. The tag st ructure and its relat ives are defined in include/ asm -arm / setup.h, whereas
arch/ arm / kernel/ setup.c contains funct ions that parse several predefined ATAGs.

Kernel Por t ing

Like set t ing up tool chains, port ing the kernel to your target device was a serious affair a few years ago. One
had to evaluate the stabilit y of the current kernel t ree for the architecture of interest , apply available patches
that were not yet part of the m ainline, m ake m odificat ions, and hope for good luck. But today, you are likely to
find a close start ing point , not just for your SoC, but for a hardware board that is sim ilar to yours. For exam ple,
if you are designing an em bedded device around the Freescale i.MX21 processor, you have the opt ion of start ing
off with the kernel port (arch/ arm / -m ach- im x/) for the i.MX21-based reference board built by the processor
vendor. I f you thus start developm ent from a suitable dist r ibut ion-supplied or standard kernel available for a
board that resem bles yours, chances are, you won't have to grapple with com plex kernel br ing-up issues.

But even with a close m atch, you are likely to face issues caused by m odified m em ory m aps, changed chip
selects, board-specific GPI O assignm ents, dissim ilar clock sources, disparate flash banks, t im ing requirem ents of
a new LCD panel, or a different debug UART port . A change in clocking for exam ple, can r ipple through dozens
of registers and im pact the operat ion of several I / O peripherals. You m ight need an in-depth reading of the CPU
reference m anual to resolve it . To figure out a m odified interrupt pin rout ing caused by a different GPI O
assignm ent , you m ight have to pore over your board schem at ics. To program an LCD cont roller with HSYNC and
VSYNC durat ions appropriate to your LCD panel, you m ay need to connect an oscilloscope to your board and
digest the inform at ion that it gathers.

Depending on the dem ands on your device, you m ay also need to m ake kernel changes unrelated to br ing up. I t
could be as sim ple as export ing som e inform at ion via procfs or as com plex as m odifying the kernel for fast boot .

After you have the base kernel running, you can turn your at tent ion to enabling device dr ivers for the different
I / O interfaces on your hardware.

uClinux

uClinux is a branch of the Linux kernel intended for lower-end m icroprocessors that have no
Mem ory Managem ent Units (MMUs) . uClinux ports are available for processors such as H8,
Blackfin, and Dragonball. Most port ions of uClinux are m erged with the m ainline 2.6 kernel.

The uClinux project is hosted at www.uclinux.org. The website contains patches, docum entat ion,
the code repository, list of supported architectures, and inform at ion for subscribing to the uclinux-
dev m ailing list .

Em bedded Dr ivers

One of the reasons Linux is so popular in the em bedded space is that its form idable applicat ion suite works
regardless of the hardware plat form , thanks to kernel abst ract ion layers that lie beneath them . So, as shown in
Figure 18.3, all you need to do to get a feature- r ich em bedded system is to im plem ent the low- level device
drivers ensconced between the abst ract ion layers and the hardware. You need to do one of the following for
each peripheral interface on your device:

Qualify an exist ing dr iver. Test and verify that it works as it 's supposed to.

Find a dr iver that is a close m atch and m odify it for your hardware.

Write a dr iver from scratch.

Figure 1 8 .3 . Hardw are- independent applicat ions and hardw are- dependent dr ivers.

[View full size im age]

Assum ing a kernel engineer part icipates in com ponent select ion, you're likely to have exist ing dr ivers or close
enough m atches for m ost peripheral devices. To take advantage of exist ing dr ivers, go through the block
diagram and schem at ics of your hardware, ident ify the different chipsets, and cobble together a working kernel
configurat ion file that enables the r ight dr ivers. Based on your footpr int or boot t im e requirem ents, m odular ize
possible device dr ivers or build them into the base kernel.

To learn about device dr ivers for I / O interfaces com m only found on em bedded hardware, let 's take a clockwise
tour around the em bedded cont roller shown in Figure 18.1, start ing with the NOR flash.

Flash Mem ory

Em bedded devices such as the one in Figure 18.2, boot from flash m em ory and have filesystem data resident on
flash-based storage. Many devices use a sm all NOR flash com ponent for the form er and a NAND flash part for
the lat ter.[2] NOR m em ory, thus, holds the boot loader and the base kernel, whereas NAND storage contains
filesystem part it ions and device dr iver m odules.

[2] I n today's em bedded m arket where the Bill Of Material (BOM) cost is often all- im portant , it 's not uncom m on for devices to contain only
NAND storage. Such devices boot from NAND flash and have their filesystem s also reside in NAND m em ory. NAND boot needs support from
both the processor and the boot loader.

Flash drivers are supported by the kernel's MTD subsystem discussed in Chapter 17, "Mem ory Technology
Devices." I f you're using an MTD-supported chip, you need to write only an MTD m ap driver to suitably part it ion
the flash to hold the boot loader, kernel, and filesystem . List ings 17.1, 17.2, and 17.3 in Chapter 17 im plem ent a
m ap driver for the Linux handheld, as shown in Figure 17.2 of the sam e chapter.

UART

The UART is responsible for serial com m unicat ion and is an interface you are likely to find on all
m icrocont rollers. UARTs are considered basic hardware, so the kernel contains UART drivers for all
m icrocont rollers on which it runs. On em bedded devices, UARTs are used to interface the processor with debug
serial ports, m odem s, touch cont rollers, GPRS chipsets, Bluetooth chipsets, GPS devices, telem et ry elect ronics,
and so on.

Look at Chapter 6 , "Serial Drivers," for a detailed discussion on the Linux serial subsystem .

But tons and W heels

Your device m ay have several m iscellaneous peripherals such as keypads (m icro keyboards organized in the
com m on QWERTY layout , data-ent ry devices having overloaded keys as found in cell phones, keypads having
ABC- type layout , and so on) , LEDs, roller wheels, and but tons. These I / O devices interface with the CPU via
GPI O lines or a CPLD (see the following "CPLD/ FPGA" sect ion) . Drivers for such peripherals are usually
st raight forward char or m isc dr ivers. Som e of the dr ivers export device-access via procfs or sysfs rather than
through / dev nodes.

PCMCI A/ CF

A PCMCI A or CF slot is a com m on add-on to em bedded devices. The advantage of, say, WiFi enabling an
em bedded device using a CF card is that you won't have to respin the board if the WiFi cont roller goes end of
life. Also, because diverse technologies are available in the PCMCI A/ CF form factor, you have the freedom to
change the connect ivity m ode from WiFi to another technology such as Bluetooth later. The disadvantage of
such a schem e is that even with m echanical retaining, sockets are inherent ly unreliable. There is the possibilit y
of the card com ing loose due to shock and vibe, and result ing interm it tent connect ions.

PCMCI A and CF device dr ivers are discussed in Chapter 9 , "PCMCI A and Com pact Flash."

SD/ MMC

Many em bedded processors include cont rollers that com m unicate with SD/ MMC m edia. SD/ MMC storage is built
using NAND flash m em ory. Like CF cards, SD/ MMC cards add several gigabytes of m em ory to your device. They

also offer an easy m em ory upgrade path, because the available density of SD/ MMC cards is constant ly
increasing.

Chapter 14, "Block Drivers," points you to the SD/ MMC subsystem in the kernel.

USB

Legacy com puters support the USB host m ode, by which you can com m unicate with m ost classes of USB
devices. Em bedded system s frequent ly also require support for the USB device m ode, wherein the system itself
funct ions as a USB device and plugs into other host com puters.

As you saw in Chapter 11, "Universal Serial Bus," m any em bedded cont rollers support USB OTG that lets your
device work either as a USB host or as a USB device. I t allows you, for exam ple, to connect a USB pen drive to
your em bedded device. I t also allows your em bedded device to funct ion as a USB pen drive by export ing part of
its local storage for external access. The Linux USB subsystem offers dr ivers for USB OTG. For hardware that is
not com pat ible with OTG, the USB Gadget project , now part of the m ainline kernel, br ings USB device
capabilit y.

RTC

Many em bedded SoCs include RTC support to keep t rack of wall t im e, but som e rely on an external RTC chip.
Unlike x86-based com puters where the RTC is part of the South Bridge chipset , em bedded cont rollers comm only
interface with external RTCs via slow serial buses such as I 2C or SPI . You can drive such RTCs by writ ing client
dr ivers that use the services of the I2C or SPI core as discussed in Chapter 8 , "The I nter- I ntegrated Circuit
Protocol." Chapter 2 and Chapter 5 , "Character Drivers," discussed RTC support on x86-based system s.

Audio

As you saw in Chapter 13, "Audio Drivers," an audio codec converts digital audio data to analog sound signals
for playback via speakers and perform s the reverse operat ion for recording through a m icrophone. The codec's
connect ion with the CPU depends on the digital audio interface supported by the em bedded cont roller. The usual
way to com m unicate with a codec is via buses, such as AC'97 or I 2S.

Touch Screen

Touch is the pr im ary input m echanism on several em bedded devices. Many PDAs offer soft keyboards for data
ent ry. I n Chapter 6 , we developed a dr iver for a serial touch cont roller, and in Chapter 7 , " I nput Drivers," we
looked at a touch cont roller that interfaced with the CPU via the SPI bus.

I f your dr iver conform s to the input API , it should be st raight forward to t ie it with a graphical user interface. You
m ight , however, need to add custom support to calibrate and linearize the touch panel.

Video

Som e em bedded system s are headless, but m any have associated displays. A suitably or iented (landscape or
port rait) LCD panel is connected to the video cont roller that is part of the em bedded SoC. Many LCD panels
com e with integrated touch screens.

As you learned in Chapter 12, "Video Drivers," fram e buffers insulate applicat ions from display hardware, so
port ing a com pliant GUI to your device is easy, as long as your display dr iver conform s to the fram e buffer
interface.

CPLD/ FPGA

Com plex Program m able Logic Devices (CPLDs) or their heavy-duty counterparts, Field Program m able Gate
Arrays (FPGAs) , can add a thick layer of fast OS- independent logic. You can program CPLDs (and FPGAs) in a
language such as Very high speed integrated circuit Hardware Descript ion Language (VHDL) . Elect r ical signals
between the processor and peripherals propagate through the CPLD, so by appropriately program m ing the
CPLD, the OS obtains elegant register interfaces for perform ing com plex I / O. The VHDL code in the CPLD
internally latches these register contents onto the data bus after perform ing necessary cont rol logic.

Consider, for exam ple, an external serial LCD cont roller that has to be dr iven by shift ing in each pixel bit . The
Linux dr iver for this device will have a tough t im e toggling the clock and wiggling I / O pins several t im es for
sending each pixel or com m and byte to the serial LCD cont roller. I f this LCD cont roller is routed to the processor
via a CPLD, however, the VHDL code can perform the necessary serial shift ing by clocking each bit in and
present a parallel register interface to the OS for com m and and data. With these vir tual LCD com m and and data
registers, the LCD driver im plem entat ion is rendered sim ple. Essent ially, the CPLD converts the cum bersom e
serial LCD cont roller to a convenient , parallel one.

I f the CPLD engineer and the Linux dr iver developer collaborate, they can arr ive at an opt im um part it ioning
between the VHDL code and the Linux dr iver that ' ll save t im e and cost .

Connect ivit y

Connect ivity injects intelligence, so there are few em bedded devices that have no com m unicat ion capabilit y.
Popular networking technologies found on em bedded devices include WiFi, Bluetooth, cellular m odem s,
Ethernet , and radio com m unicat ion.

Chapter 15, "Network I nterface Cards," explored device dr ivers for wired networking, and Chapter 16, "Linux
Without Wires," looked at dr ivers for wireless com municat ion technologies.

Dom ain- Specif ic Elect ronics

Your device is likely to contain elect ronics specific to the usage indust ry dom ain. I t could be a telem et ry
interface for a hospital-grade device, a sensor for autom ot ive hardware, biom et r ics for a security gadget , GPRS
for a cellular phone, or GPS for a navigat ion system . These peripherals usually com m unicate with the em bedded
cont roller over standard I / O interfaces such as UART, USB, I 2C, SPI , or cont roller area network (CAN) . For
devices interfacing via a UART, you often have lit t le work to do at the device dr iver level because the UART
driver takes care of the com m unicat ion. For devices such as a fingerprint sensor that interface via USB, you m ay
have to write a USB client dr iver. You m ight also face proprietary interfaces, such as a switching fabric for a
network processor, in which case, you m ay need to write a full- fledged device dr iver.

Consider the digital m edia space. Cable or Direct - to-hom e (DTH) interface system s are usually built around set -
top box (STB) chipsets. These chips have capabilit ies such as personal video recording (recording m ult iple
channels to a hard disk, recording a channel while viewing another and so forth) and condit ional access
(allowing the service provider to cont rol what the end user sees depending on subscript ion) . To achieve this,
STB chips have a processor core coupled with a powerful graphics engine. The lat ter im plem ents MPEG codecs in
hardware. Such audio-video codecs can decode com pressed digital m edia standards such as MPEG2 and MPEG4.
(MPEG is an acronym for Moving Picture Experts Group, the body responsible for developing m ot ion picture
standards.) I f you are em bedding Linux onto an STB, you will need to dr ive such audio-video codecs.

More Dr ivers

I f your device serves a life-cr it ical indust ry dom ain such as health care, the system m em ory m ight have ECC
capabilit ies. Chapter 20, "More Devices and Drivers," discusses ECC report ing.

I f your em bedded device is bat tery powered, you m ay want to use a suitable CPU frequencygovernor to
dynam ically scale processor frequency and save power. Chap- ter 20 also discusses CPU frequency dr ivers and
power m anagem ent .

Most em bedded processors have a built - in hardware watchdog that recovers the system from freezes. You

looked at watchdog drivers in Chapter 5 . Use a suitable dr iver from drivers/ char/ watchdog/ as the start ing point
to im plem ent a dr iver for your system 's watchdog.

I f your em bedded device contains circuit ry to detect brownout , [3] you m ight need to add capabilit y to the kernel
to sense that condit ion and take appropriate act ion.

[3] Brownout is the scenario when input voltage drops below tolerable levels. (Blackout , on the other hand, refers to total loss of power.)
Brownout detect ion is especially relevant if your device is powered by a technology such as Power over Ethernet (PoE) rather than a
convent ional wall socket .

Several em bedded SoCs contain built - in pulse-width m odulator (PWM) units. PWMs let you digitally cont rol
analog devices such as buzzers. The voltage level supplied to the target device is varied by program ming the
PWM's duty cycle (the On t im e of the PWM's output waveform relat ive to its period) . LCD brightness is another
exam ple of a feature cont rollable using PWMs. Depending on the target device and the usage scenario, you can
im plem ent char or m isc dr iver interfaces to PWMs.

The Root Filesystem

Before the advent of Linux dist r ibut ions, it used to be a project by itself to put together a com pact applicat ion-
set tailored to suit the size lim itat ions of available storage. One had to cobble together the sources of a m inim al
set of ut ilit ies, librar ies, tools, and daem ons; ensure that their versions liked each other; and cross-com pile
them . Today's dist r ibut ions supply a ready-m ade applicat ion-set built for supported processors and offer tools
that let you pick and choose com ponents at the granular ity of packages. Of course, you m ay st ill want to
im plem ent custom ut ilit ies and tools to supplem ent the dist r ibut ion-supplied applicat ions.

On em bedded devices, flash m em ory (discussed in Chapter 17) is the com m only used vehicle to hold the
applicat ion-set and is m ounted as the root device at the end of the boot process. Hard disks are uncom m on
because they are power- intensive, bulky, and have moving parts that are not tolerant to shock and vibe.
Com m on places that hold the root filesystem on em bedded devices include the following:

An init ial ram disk (init ram fs or init rd) is usually the start ing point before you get dr ivers for other potent ial
root devices working and is used for developm ent purposes.

NFS-m ount ing the root filesystem is a developm ent st rategy m uch m ore powerful than using a ram disk.
We discuss this in detail in the next sect ion.

Storage m edia such as flash chips, SD/ MMC cards, CF cards, DOCs, and DOMs.

Note that it m ay not be a good idea to let all the data stay in the root part it ion. I t 's com m on to spread files
across different storage part it ions and tag desired read-write or read-only protect ion flags, especially if there is
the possibilit y that the device will be shut down abrupt ly.

NFS- Mounted Root

NFS-m ount ing the root filesystem can serve as a catalyst to hasten the em bedded developm ent cycle. I n this
case, the root filesystem physically resides on your developm ent host and not on the target , so its size is
vir tually unlim ited and not rest r icted by the am ount of storage locally available on the target . Downloading
device dr iver m odules or applicat ions to the target , as well as uploading logs, is as sim ple (and fast) as copying
them to / path/ to/ target / root filesystem / on your developm ent host . Such ease of test ing and debugging is a
good reason why you should insist on having Ethernet on engineering- level hardware, even if product ion units
won't have Ethernet support . Having Ethernet on your board also lets your boot loader use the Trivial File
Transfer Protocol (TFTP) to download the kernel im age to the target over a network.

Table 18.2 [4] shows the typical steps needed to get TFTP and NFS working with your em bedded device. I t
assum es that your developm ent host also doubles up as TFTP, NFS, and DHCP servers, and that the boot loader
(BLOB in this exam ple) supports the Ethernet chipset used on the em bedded device.

[4] The filenam es and directory path nam es used in Table 18.2 are dist r ibut ion-dependent .

Table 1 8 .2 . Saving Developm ent Tim e w ith TFTP and N FS

 Target Em bedded Device Host Developm ent Pla t form

Kernel Boot
over TFTP

Configure the I P address of the target and the
server (host) from the boot loader prom pt :
/* Target IP */
blob> ip 4.1.1.2

/* Host IP */
blob> server 4.1.1.1

/* Kernel image */
blob> TftpFile /tftpdir/zImage

/* Pull the Kernel over the
net */
blob> tftp

TFTPing /tftpboot/zImage............Ok
blob>

Configure the host I P address:
bash> ifconfig eth0 4.1.1.1

I nstall and configure the TFTP server (the
exact steps depend on your dist r ibut ion) :

bash> cat /etc/xinetd.conf/tftp

service tftp
{
 socket_type = dgram
 protocol = udp
 wait = yes
 user = root
 server = /usr/sbin/in.tftpd
 server_args = /tftpdir
 disable = no
 per_source = 11
 cps = 100 2
 flags = IPv4
}

Make sure that the TFTP server is present
in / usr/ sbin/ in.t ftpd and that xinetd is
alive.

Com pile the target kernel with NFS
enabled and copy it to / t ftpdir / zI m age.

Root filesystem
over NFS

blob> boot console=/dev/

ttyS0,115200n8 root=/dev/nfs

ip=dhcp

/*Kernel boot messages*/
/* ... */
VFS: Mounted root (nfs
filesystem)
/* ... */
login:

Export / path/ to/ target / root / for NFS
access:
bash> cat /etc/exports

/path/to/target/root/ *(rw,sync,no_
root_squash,no_all_squash)

Start NFS:

bash> service nfs start

Configure the DHCP server. The kernel on
the em bedded device relies on this server
to assign it the 4.1.1.2 I P address during
boot and to supply / path/ to/ target / root / :
Code View:
bash> cat /etc/dhcpd.conf

...
subnet 4.1.1.0 netmask
255.255.255.0 {
range 4.1.1.2 4.1.1.10
max-lease-time 43200
option routers 4.1.1.1
option ip-forwarding off

 Target Em bedded Device Host Developm ent Pla t formoption ip-forwarding off
option broadcast-address 4.1.1.255
option subnet-mask 255.255.255.0
group {
 next-server 4.1.1.1
 host target-device {
 /* MAC of the embedded device */
 hardware Ethernet AA:BB:CC:DD:
 EE:FF;
 fixed-address 4.1.1.2;
 option root-path
 "/path/to/target/root/";
 }
}
...
bash> service dhcpd start

bash>

Com pact Middlew are

Em bedded devices that are t ight on m em ory prefer m iddleware im plem entat ions that have sm all footpr int and
low runt im e m em ory requirem ents. The t rade-offs usually lie in features, standards com pat ibilit y, and speed.
Let 's take a look at som e popular com pact m iddleware solut ions that m ay be potent ial candidates for populat ing
your root filesystem .

BusyBox is a tool com m only used to provide a m ult i-ut ilit y environm ent on em bedded system s having lim ited
m em ory. I t scratches out som e features but provides an opt im ized replacem ent for several shell ut ilit ies.

uClibc is a com pact version of the GNU C library that was originally developed to work with uClinux. uClibc
works on norm al Linux system s, too, and is licensed under LGPL. I f your em bedded device is short on space, t ry
uClibc rather than glibc.

Em bedded system s that need to run an X Windows server com m only rely on TinyX, a low- footpr int X server
shipped along with the XFree86 4.0 code. TinyX runs over fram e buffer dr ivers and can be used on devices, such
as the one showed in Figure 12.6 of Chapter 12.

Tht tpd is a lightweight HTTP server that m akes low dem ands on CPU and m em ory resources.

Even if you are creat ing a non-Linux solut ion using a t iny 8-bit MMU- less m icrocont roller, you will likely want it
to interoperate with Linux. Assum e, for exam ple, that you are writ ing deeply em bedded firm ware for an I nfrared
storage keychain. The keychain can hold a gigabyte of personal data that can be accessed via a web browser
from your Linux laptop over I nfrared. I f you are running a com pact TCP/ I P stack, such as uI P over a m inim al
I rDA stack such as Pico- I rDA on the I nfrared keychain, you have the task of ensuring their interoperabilit y with
the corresponding Linux protocol stacks.

Table 18.3 lists the hom e pages of the com pact m iddleware projects referred to in this sect ion.

Table 1 8 .3 . Exam ples of Com pact Middlew are

Nam e Descr ipt ion Dow nload Locat ion

Nam e Descr ipt ion Dow nload Locat ion

BusyBox Sm all footpr int shell environm ent www.busybox.net

uClibc Sm all-sized version of glibc www.uclibc.org

TinyX X server for devices that are t ight on
m em ory

Part of the X Windows source t ree
downloadable from
ftp: / / ftp.xfree86.org/ pub/ XFree86/ 4.0/

Tht tpd Tiny HTTP server www.acm e.com / software/ tht tpd

uI P Com pact TCP/ I P stack for
m icrocont rollers

www.sics.se/ ~ adam / uip

Pico- I rDA Minim al I rDA stack for
m icrocont rollers

ht tp: / / blaulogic.com / pico_irda.shtm l

http://blaulogic.com/pico_irda.shtml
http://blaulogic.com/pico_irda.shtml

Test I nfrast ructure

Most indust ry dom ains that use em bedded devices are governed by regulatory bodies. Having an extensible and
robust test infrast ructure is likely to be as im portant as im plem ent ing m odificat ions to the kernel and device
drivers. Broadly, the test fram ework is responsible for the following:

Dem onst rat ing com pliance to obtain regulatory approvals. I f your system is a m edical-grade device for the
U.S. m arket , for exam ple, you should or ient your test suite for get t ing approvals from the Food and Drug
Adm inist rat ion (FDA) .

1 .

Most elect ronic devices intended for the U.S. m arket have to com ply with em ission standards such as
elect rom agnet ic interference (EMI) and elect rom agnet ic com pat ibilit y (EMC) as laid down by the Federal
Com m unicat ions Com m ission (FCC) . To dem onst rate com pliance, you m ay need to run a bat tery of tests
inside a cham ber that m odels different operat ing environm ents. You m ight also have to verify that the
system runs norm ally when an elect rostat ic gun is pointed at different parts of the board.

2 .

Build verificat ion tests. Whenever you build a software deliverable, subject it to quality assurance (QA)
using these tests.

3 .

Manufactur ing tests. Each t im e a device is assem bled, you have to verify its funct ionality using a set of
tests. These tests assum e significance when m anufactur ing m oves into volum e product ion.

4 .

To have a com m on test base for all these, it 's a good idea to im plem ent your test harness over Linux, rather
than develop it as a stand-alone suite. Stand-alone code is not easily scalable or extendable. Adding a sim ple
test to ping the next -hop router is a five- line script on a Linux-based test system but can entail writ ing a
network dr iver and a protocol stack if you are using a stand-alone test m onitor.

A test engineer need not be a kernel guru but will need to im bibe im plem entat ion inform at ion from the
developm ent team and think cr it ically.

Debugging

Before closing this chapter, let 's visit a few topics related to debugging em bedded software.

Board Rew ork

Navigat ing board schem at ics and datasheets is an important debugging skill you need while br inging up the
boot loader or kernel on em bedded hardware. Understanding your board's placem ent plot , which is a file that
shows the posit ion of chips on your board, is a big help when you are debugging a potent ial hardware problem
using an oscilloscope, or when you need to perform m inor board rework. Reference designators (such as U10
and U11 in Figure 18.4) associate each chip in the schem at ic with the placem ent plot . Printed circuit boards
(PCBs) are usually clothed with silk screens that pr int the reference designator near each chip.

Figure 1 8 .4 . Debugging an I 2C RTC on an em bedded system .

Consider this fict it ious scenario where USB enum erat ion doesn't occur on your board under test . The USB hub
driver detects device insert ions but is not able to assign endpoint addresses. A close look at the schem at ics
reveals that the connect ions or iginat ing from the SPEED and MODE pins of the USB t ransceiver have been
interchanged by m istake. An exam inat ion of the placem ent plot ident ifies the locat ion of the t ransceiver on the
PCB. Matching the t ransceiver 's reference designator on the placem ent plot with the silk screen on the PCB
pinpoints the places where you have to solder "yellow wires" to repair the faulty connect ions.

A m ult im eter and an oscilloscope are worthy addit ions to your em bedded debugging toolkit . As an illust rat ion,
let 's consider an exam ple situat ion involving the I 2C RTC, as shown in Figure 8.3 of Chapter 8 . That figure is
reproduced there with a m ult im eter/ scope at tached to probe points of interest . Consider this scenario: You have
writ ten an I2C client dr iver for this RTC chip as described in the sect ion "Device Exam ple: Real Tim e Clock" in
Chapter 8 . However, when you run your dr iver on the board, it renders the system unbootable. Neither does the
boot loader com e up when you reset the board, nor does your JTAG debugger connect to the target . To

understand possible causes of this seem ingly fatal error, let 's take a closer look at the connect ion diagram .
Because both the RTC and the CPU need an external clock, the board supplies it using a single 32KHz crystal.
This 32KHz clock needs to be buffered, however. The RTC buffers the clock for its use and m akes it available on
an output pin for free. This pin, CLK_OUT, feeds the clock to the processor. Connect an oscilloscope (or a
m ult im eter that can m easure frequency) between CLK_OUT and ground to verify the processor clock frequency.
As you can see in Figure 18.4, the scope reads 1KHz rather than the expected 32KHz! What could be wrong
here?

The RTC cont rol register contains bits that choose the frequency of CLK_OUT. While probing the chip (on the lines
of myrtc_attach() in Chapter 8) , the dr iver has erroneously init ialized these bits to generate 1KHz on CLK_OUT.
RTC registers are nonvolat ile because of the bat tery backup, so the cont rol register holds this bad value across
reboots. The result ing skewed clock is sufficient to render the system unbootable. Disconnect the RTC's backup
bat tery, drain the registers, reconnect the bat tery, verify using the scope that the 32KHz clock is restored on
CLK_OUT, fix your dr iver code, and start afresh!

Debuggers

You can use m ost of the debugging techniques that you will learn in Chapter 21 while em bedding Linux. Kernel
debuggers are available for several processor plat form s. JTAG debuggers, also explored in Chapter 21, are m ore
powerful than kernel debuggers and are popular ly used in the em bedded space to debug the boot loader, base
kernel, and device-driver m odules.

Chapter 1 9 . Dr ivers in User Space

I n This Chapter

Process Scheduling and Response
Tim es

553

Accessing I / O Regions
558

Accessing Mem ory Regions
562

User Mode SCSI
565

User Mode USB
567

User Mode I 2C
571

UI O
573

Looking at the Sources
574

Most device dr ivers prefer to lead a pr ivileged life inside the kernel, but som e are at hom e in the
indeterm inist ic world outside. Several kernel subsystem s, such as SCSI , USB, and I 2C, offer som e
level of support for user m ode drivers, so you m ight be able to cont rol those devices without
writ ing a single line of kernel code.

I n spite of the inclem ent weather in user land, user m ode drivers enjoy certain advantages. They
are easy to develop and debug. You won't have to reboot the system every t im e you dereference a
dangling pointer. Som e user m ode drivers will even work across operat ing system s if the device
subsystem enjoys the services of a standard user-space program m ing library. Here are som e rules
of thum b to help decide whether your dr iver should reside in user space:

Apply the possibilit y test . What can be done in user space should probably stay in user
space.

I f you have to talk to a large num ber of slow devices and if perform ance requirem ents are
m odest , explore the possibilit y of im plem ent ing the dr ivers in user space. I f you have t im e-
cr it ical perform ance requirem ents, stay inside the kernel.

I f your code needs the services of kernel API s, access to kernel variables, or is intertwined
with interrupt handling, it has a st rong case for being in kernel space.

I f m uch of what your code does can be const rued as policy, user land m ight be its logical
residence.

I f the rest of the kernel needs to invoke your code's services, it 's a candidate for staying
inside the kernel.

You can't easily do float ing-point ar ithm et ic inside the kernel. Float ing-point unit (FPU)
inst ruct ions can, however, be used from user space.

That said, you can't accom plish too m uch from user space. Many im portant device classes, such as
storage m edia and network adapters, cannot be dr iven from user land. But even when a kernel
dr iver is the appropriate solut ion, it 's a good idea to m odel and test as m uch code as you can in
user space before m oving it to kernel space. The test ing cycle is faster, and it 's easier to t raverse
all possible code paths and ensure that they are clean.

I n this chapter, the term user space driver (or user m ode driver) is used in a generic sense that
does not st r ict ly conform to the sem ant ics of a dr iver im plied thus far in the book. An applicat ion is
considered to be a user m ode driver if it 's a candidate for being im plem ented inside the kernel,
too.

The 2.6 kernel overhauled a subsystem that is of special interest to user space drivers. The new
process scheduler offers huge response- t im e benefits to user m ode code, so let 's start with that .

Process Scheduling and Response Tim es

Many user m ode drivers need to perform som e work in a t im e-bound m anner. I n user space, indeterm inism due

to scheduling and paging often com e in the way of fast response t im es, however. To see how you can m inim ize
the im pact of the form er hurdle, let 's dip into recent Linux schedulers and understand their underlying
philosophy.

The Or igina l Scheduler

I n the 2.4 and earlier days, the scheduler used to recalculate scheduling param eters of each task before taking
its pick. The t im e consum ed by the algorithm thus increased linearly with the num ber of contending tasks in the
system . I n other words, it used O(n) t im e, where n is the num ber of act ive tasks. On a system running at high
loads, this t ranslated to significant overhead. The 2.4 algorithm also didn't work very well on SMP system s.

The O(1) Scheduler

Tim e consum ed by an O(n) algorithm depends linearly on the size of its input , and an O(n2) solut ion depends
quadrat ically on the length of its input , but an O(1) technique is independent of the input and thus scales well.
The 2.6 scheduler replaced the O(n) algorithm with an O(1) m ethod. I n addit ion to being super-scalable, the
scheduler has built - in heurist ics to im prove user responsiveness by providing preferent ial t reatm ent to tasks
involved in I / O act ivity. Processes are of two kinds: I / O bound and CPU bound. I / O-bound tasks are often sleep-
wait ing for device I / O, while CPU-bound ones are workaholics addicted to the processor. Paradoxically, to
achieve fast response t im es, lazy tasks get incent ives from the O(1) scheduler, while studious ones draw flak.
Look at the sidebar "Highlights of the O(1) Scheduler" to find out som e of its im portant features.

Highlights of the O(1) Scheduler

The following are som e of the im portant features of the O(1) scheduler:

The algorithm uses two run queues m ade up of 140 prior ity lists: an act ive queue that holds
tasks that have t im e slices left and an expired queue that contains processes whose t im e
slices have expired. When a task finishes its t im e slice, it 's inserted into the expired queue in
sorted order of pr ior ity. The act ive and expired queues are swapped when the form er
becom es em pty. To decide which process to run next , the scheduler does not navigate
through the ent ire queue. I nstead, it picks that task from the act ive queue having the
highest pr ior ity. The overhead of picking the task thus depends not on the num ber of act ive
tasks, but on the num ber of pr ior it ies. This m akes it a constant - t im e or an O(1) algorithm .

The scheduler supports two prior ity ranges: standard nicevalues supported on UNI X system s
and internal pr ior it ies. The form er range from –20 to + 19, while the lat ter extend from 0 to
139. I n both cases, lower values correspond to higher pr ior it ies. The top 100 (0 to 99)
internal pr ior it ies are reserved for real t im e (RT) tasks, and the bot tom 40 (100 to 139) are
assigned to norm al tasks. The 40 nice values m ap to the bot tom 40 internal pr ior it ies.
I nternal pr ior it ies of norm al tasks can be dynam ically varied by the scheduler, whereas nice
values are stat ist ically set by the user. Each internal pr ior ity gets an associated run list .

The scheduler uses a heurist ic to figure out whether the nature of a process is I / O- intensive
or CPU- intensive. I n sim ple term s, if a task sleeps often, it 's likely to be I / O- intensive, but if
it uses its t im e slice fast , it 's CPU- intensive. Whenever the scheduler finds that a task has
dem onst rated I / O-bound character ist ics, it rewards it by dynam ically increasing its internal
pr ior ity. CPU-bound character ist ics, on the other hand, are punished with negat ive m arks.

The allot ted t im e slice is direct ly proport ional to the pr ior ity. A higher pr ior ity task gets a
bigger t im e slice.

A task will not be preem pted by the scheduler as long as it has t im e slice credit . I f it y ields
the processor before using up its t im e slice quota, it can roll over the rem inder of its slice
when it 's run next . Because I / O-bound processes are the ones that often yield the CPU, this
im proves interact ive perform ance.

The scheduler supports RT scheduling policies. RT tasks preem pt norm al (SCHED_OTHER)
tasks. Users of RT policies can overr ide the scheduler 's dynam ic pr ior ity assignm ents. Unlike
SCHED_OTHER tasks, their pr ior it ies are not recalculated by the kernel on- the- fly. RT
scheduling com es in two flavors: SCHED_FIFO and SCHED_RR. They are used for producing
"soft " real- t im e behavior, rather than st r ingent "hard" RT guarantees. SCHED_FIFO has no
concept of t im e slices; SCHED_FIFO tasks run unt il they sleep-wait for I / O or yield the
processor. SCHED_RR is a round- robin variant of SCHED_FIFO that also assigns t im e slices to
RT tasks. SCHED_RR tasks with expired slices are appended to the end of the corresponding
prior ity list .

The scheduler im proves SMP perform ance by using per-CPU run queues and per-CPU
synchronizat ion.

The CFS Scheduler

The Linux scheduler has undergone another rewrite with the 2.6.23 kernel. The Com pletely Fair Scheduler (CFS)
for the SCHED_OTHER class rem oves m uch of the com plexit ies associated with the O(1) scheduler by abandoning
prior ity arrays, t im e slices, interact ivity heurist ics, and the dependency on HZ. CFS's goal is to im plem ent
fairness for all scheduling ent it ies by providing each task the total CPU power divided by the num ber of running
tasks. Dissect ing CFS is beyond the scope of this chapter. Have a look at Docum entat ion/ sched-design-CFS.txt
for a br ief tutor ial.

Response Tim es

As a user m ode driver developer, you have several opt ions to im prove your applicat ion's response t im e:

Use RT scheduling policies that give you a finer grain of cont rol than usual. Look at the m an pages of
sched_setscheduler() and its relat ives for insights into achieving soft RT response t im es.

I f you are using non-RT scheduling, tune the nice values of different processes to achieve the required
perform ance balance.

I f you are using a 2.6.23 or later kernel enabled with the CFS scheduler, you m ay fine- tune
/ proc/ sys/ kernel/ sched_granular ity_ns. I f you are using a pre-2.6.23 kernel, m odify #defines in
kernel/ sched.c and include/ linux/ sched.h to suit your applicat ion. Change these values caut iously to
sat isfy the needs of your applicat ion suite. Usage scenarios of the scheduler are com plex. Set t ings that
delight certain load condit ions can depress others, so you m ay have to experim ent by t r ial and error.

Response t im es are not solely the dom ain of the scheduler; they also depend on the solut ion architecture.
For exam ple, if you m ark a busy interrupt handler as fast, it disables other local interrupts frequent ly and
that can potent ially slow down data acquisit ion and t ransm ission on other I RQs.

Let 's im plem ent an exam ple and see how a user m ode driver can achieve fast response t im es by guarding
against indeterm inism int roduced by scheduling and paging. As you learned in Chapter 2 , "A Peek I nside the
Kernel," the RTC is a t im er source that can generate periodic interrupts with high precision. List ing 19.1
im plem ents an exam ple that uses interrupt reports from / dev/ rtc to perform periodic work with m icrosecond
precision. The Pent ium Tim e Stam p Counter (TSC) is used to m easure response t im es.

The program in List ing 19.1 first changes its scheduling policy to SCHED_FIFO using sched_setscheduler() .
Next , it invokes mlockall() to lock all m apped pages in m em ory to ensure that swapping won't com e in the
way of determ inist ic t im ing. Only the super-user is allowed to call sched_setscheduler() and mlockall() and
request RTC interrupts at frequencies greater than 64Hz.

List ing 1 9 .1 . Per iodic W ork w ith Microsecond Precis ion

Code View:
#include <linux/rtc.h>
#include <sys/ioctl.h>
#include <sys/time.h>
#include <fcntl.h>
#include <pthread.h>
#include <linux/mman.h>

/* Read the lower half of the Pentium Time Stamp Counter
 using the rdtsc instruction */
#define rdtscl(val) __asm__ __volatile__ ("rdtsc" : "=A" (val))

main()
{
 unsigned long ts0, ts1, now, worst; /* Store TSC ticks */
 struct sched_param sched_p; /* Information related to
 scheduling priority */
 int fd, i=0;
 unsigned long data;
 /* Change the scheduling policy to SCHED_FIFO */
 sched_getparam(getpid(), &sched_p);
 sched_p.sched_priority = 50; /* RT Priority */
 sched_setscheduler(getpid(), SCHED_FIFO, &sched_p);

 /* Avoid paging and related indeterminism */
 mlockall(MCL_CURRENT);

 /* Open the RTC */
 fd = open("/dev/rtc", O_RDONLY);

 /* Set the periodic interrupt frequency to 8192Hz
 This should give an interrupt rate of 122uS */
 ioctl(fd, RTC_IRQP_SET, 8192);

 /* Enable periodic interrupts */
 ioctl(fd, RTC_PIE_ON, 0);
 rdtscl(ts0);
 worst = 0;

 while (i++ < 10000) {

 /* Block until the next periodic interrupt */
 read(fd, &data, sizeof(unsigned long));

 /* Use the TSC to precisely measure the time consumed.
 Reading the lower half of the TSC is sufficient */
 rdtscl(ts1);
 now = (ts1-ts0);

 /* Update the worst case latency */
 if (now > worst) worst = now;
 ts0 = ts1;

 /* Do work that is to be done periodically */
 do_work(); /* NOP for the purpose of this measurement */
 }

 printf("Worst latency was %8ld\n", worst);

 /* Disable periodic interrupts */
 ioctl(fd, RTC_PIE_OFF, 0);
}

The code in List ing 19.1 loops for 10,000 iterat ions and prints out the worst -case latency that occurred during
execut ion. The output was 240899 on a Pent ium 1.8GHz box, which roughly corresponds to 133 m icroseconds.
According to the data sheet of the RTC chipset , a t im er frequency of 8192Hz should result in a periodic interrupt
rate of 122 m icroseconds. That 's close. Rerun the code under varying loads using SCHED_OTHER instead of
SCHED_FIFO and observe the resultant dr ift .

You m ay also run kernel threads in the RT m ode. For that , do the following when you start the thread:

static int
my_kernel_thread(void *i)
{
 daemonize();
 current->policy = SCHED_FIFO;
 current->rt_priority = 1;
 /* ... */
}

Chapter 1 9 . Dr ivers in User Space

I n This Chapter

Process Scheduling and Response
Tim es

553

Accessing I / O Regions
558

Accessing Mem ory Regions
562

User Mode SCSI
565

User Mode USB
567

User Mode I 2C
571

UI O
573

Looking at the Sources
574

Most device dr ivers prefer to lead a pr ivileged life inside the kernel, but som e are at hom e in the
indeterm inist ic world outside. Several kernel subsystem s, such as SCSI , USB, and I 2C, offer som e
level of support for user m ode drivers, so you m ight be able to cont rol those devices without
writ ing a single line of kernel code.

I n spite of the inclem ent weather in user land, user m ode drivers enjoy certain advantages. They
are easy to develop and debug. You won't have to reboot the system every t im e you dereference a
dangling pointer. Som e user m ode drivers will even work across operat ing system s if the device
subsystem enjoys the services of a standard user-space program m ing library. Here are som e rules
of thum b to help decide whether your dr iver should reside in user space:

Apply the possibilit y test . What can be done in user space should probably stay in user
space.

I f you have to talk to a large num ber of slow devices and if perform ance requirem ents are
m odest , explore the possibilit y of im plem ent ing the dr ivers in user space. I f you have t im e-
cr it ical perform ance requirem ents, stay inside the kernel.

I f your code needs the services of kernel API s, access to kernel variables, or is intertwined
with interrupt handling, it has a st rong case for being in kernel space.

I f m uch of what your code does can be const rued as policy, user land m ight be its logical
residence.

I f the rest of the kernel needs to invoke your code's services, it 's a candidate for staying
inside the kernel.

You can't easily do float ing-point ar ithm et ic inside the kernel. Float ing-point unit (FPU)
inst ruct ions can, however, be used from user space.

That said, you can't accom plish too m uch from user space. Many im portant device classes, such as
storage m edia and network adapters, cannot be dr iven from user land. But even when a kernel
dr iver is the appropriate solut ion, it 's a good idea to m odel and test as m uch code as you can in
user space before m oving it to kernel space. The test ing cycle is faster, and it 's easier to t raverse
all possible code paths and ensure that they are clean.

I n this chapter, the term user space driver (or user m ode driver) is used in a generic sense that
does not st r ict ly conform to the sem ant ics of a dr iver im plied thus far in the book. An applicat ion is
considered to be a user m ode driver if it 's a candidate for being im plem ented inside the kernel,
too.

The 2.6 kernel overhauled a subsystem that is of special interest to user space drivers. The new
process scheduler offers huge response- t im e benefits to user m ode code, so let 's start with that .

Process Scheduling and Response Tim es

Many user m ode drivers need to perform som e work in a t im e-bound m anner. I n user space, indeterm inism due

to scheduling and paging often com e in the way of fast response t im es, however. To see how you can m inim ize
the im pact of the form er hurdle, let 's dip into recent Linux schedulers and understand their underlying
philosophy.

The Or igina l Scheduler

I n the 2.4 and earlier days, the scheduler used to recalculate scheduling param eters of each task before taking
its pick. The t im e consum ed by the algorithm thus increased linearly with the num ber of contending tasks in the
system . I n other words, it used O(n) t im e, where n is the num ber of act ive tasks. On a system running at high
loads, this t ranslated to significant overhead. The 2.4 algorithm also didn't work very well on SMP system s.

The O(1) Scheduler

Tim e consum ed by an O(n) algorithm depends linearly on the size of its input , and an O(n2) solut ion depends
quadrat ically on the length of its input , but an O(1) technique is independent of the input and thus scales well.
The 2.6 scheduler replaced the O(n) algorithm with an O(1) m ethod. I n addit ion to being super-scalable, the
scheduler has built - in heurist ics to im prove user responsiveness by providing preferent ial t reatm ent to tasks
involved in I / O act ivity. Processes are of two kinds: I / O bound and CPU bound. I / O-bound tasks are often sleep-
wait ing for device I / O, while CPU-bound ones are workaholics addicted to the processor. Paradoxically, to
achieve fast response t im es, lazy tasks get incent ives from the O(1) scheduler, while studious ones draw flak.
Look at the sidebar "Highlights of the O(1) Scheduler" to find out som e of its im portant features.

Highlights of the O(1) Scheduler

The following are som e of the im portant features of the O(1) scheduler:

The algorithm uses two run queues m ade up of 140 prior ity lists: an act ive queue that holds
tasks that have t im e slices left and an expired queue that contains processes whose t im e
slices have expired. When a task finishes its t im e slice, it 's inserted into the expired queue in
sorted order of pr ior ity. The act ive and expired queues are swapped when the form er
becom es em pty. To decide which process to run next , the scheduler does not navigate
through the ent ire queue. I nstead, it picks that task from the act ive queue having the
highest pr ior ity. The overhead of picking the task thus depends not on the num ber of act ive
tasks, but on the num ber of pr ior it ies. This m akes it a constant - t im e or an O(1) algorithm .

The scheduler supports two prior ity ranges: standard nicevalues supported on UNI X system s
and internal pr ior it ies. The form er range from –20 to + 19, while the lat ter extend from 0 to
139. I n both cases, lower values correspond to higher pr ior it ies. The top 100 (0 to 99)
internal pr ior it ies are reserved for real t im e (RT) tasks, and the bot tom 40 (100 to 139) are
assigned to norm al tasks. The 40 nice values m ap to the bot tom 40 internal pr ior it ies.
I nternal pr ior it ies of norm al tasks can be dynam ically varied by the scheduler, whereas nice
values are stat ist ically set by the user. Each internal pr ior ity gets an associated run list .

The scheduler uses a heurist ic to figure out whether the nature of a process is I / O- intensive
or CPU- intensive. I n sim ple term s, if a task sleeps often, it 's likely to be I / O- intensive, but if
it uses its t im e slice fast , it 's CPU- intensive. Whenever the scheduler finds that a task has
dem onst rated I / O-bound character ist ics, it rewards it by dynam ically increasing its internal
pr ior ity. CPU-bound character ist ics, on the other hand, are punished with negat ive m arks.

The allot ted t im e slice is direct ly proport ional to the pr ior ity. A higher pr ior ity task gets a
bigger t im e slice.

A task will not be preem pted by the scheduler as long as it has t im e slice credit . I f it y ields
the processor before using up its t im e slice quota, it can roll over the rem inder of its slice
when it 's run next . Because I / O-bound processes are the ones that often yield the CPU, this
im proves interact ive perform ance.

The scheduler supports RT scheduling policies. RT tasks preem pt norm al (SCHED_OTHER)
tasks. Users of RT policies can overr ide the scheduler 's dynam ic pr ior ity assignm ents. Unlike
SCHED_OTHER tasks, their pr ior it ies are not recalculated by the kernel on- the- fly. RT
scheduling com es in two flavors: SCHED_FIFO and SCHED_RR. They are used for producing
"soft " real- t im e behavior, rather than st r ingent "hard" RT guarantees. SCHED_FIFO has no
concept of t im e slices; SCHED_FIFO tasks run unt il they sleep-wait for I / O or yield the
processor. SCHED_RR is a round- robin variant of SCHED_FIFO that also assigns t im e slices to
RT tasks. SCHED_RR tasks with expired slices are appended to the end of the corresponding
prior ity list .

The scheduler im proves SMP perform ance by using per-CPU run queues and per-CPU
synchronizat ion.

The CFS Scheduler

The Linux scheduler has undergone another rewrite with the 2.6.23 kernel. The Com pletely Fair Scheduler (CFS)
for the SCHED_OTHER class rem oves m uch of the com plexit ies associated with the O(1) scheduler by abandoning
prior ity arrays, t im e slices, interact ivity heurist ics, and the dependency on HZ. CFS's goal is to im plem ent
fairness for all scheduling ent it ies by providing each task the total CPU power divided by the num ber of running
tasks. Dissect ing CFS is beyond the scope of this chapter. Have a look at Docum entat ion/ sched-design-CFS.txt
for a br ief tutor ial.

Response Tim es

As a user m ode driver developer, you have several opt ions to im prove your applicat ion's response t im e:

Use RT scheduling policies that give you a finer grain of cont rol than usual. Look at the m an pages of
sched_setscheduler() and its relat ives for insights into achieving soft RT response t im es.

I f you are using non-RT scheduling, tune the nice values of different processes to achieve the required
perform ance balance.

I f you are using a 2.6.23 or later kernel enabled with the CFS scheduler, you m ay fine- tune
/ proc/ sys/ kernel/ sched_granular ity_ns. I f you are using a pre-2.6.23 kernel, m odify #defines in
kernel/ sched.c and include/ linux/ sched.h to suit your applicat ion. Change these values caut iously to
sat isfy the needs of your applicat ion suite. Usage scenarios of the scheduler are com plex. Set t ings that
delight certain load condit ions can depress others, so you m ay have to experim ent by t r ial and error.

Response t im es are not solely the dom ain of the scheduler; they also depend on the solut ion architecture.
For exam ple, if you m ark a busy interrupt handler as fast, it disables other local interrupts frequent ly and
that can potent ially slow down data acquisit ion and t ransm ission on other I RQs.

Let 's im plem ent an exam ple and see how a user m ode driver can achieve fast response t im es by guarding
against indeterm inism int roduced by scheduling and paging. As you learned in Chapter 2 , "A Peek I nside the
Kernel," the RTC is a t im er source that can generate periodic interrupts with high precision. List ing 19.1
im plem ents an exam ple that uses interrupt reports from / dev/ rtc to perform periodic work with m icrosecond
precision. The Pent ium Tim e Stam p Counter (TSC) is used to m easure response t im es.

The program in List ing 19.1 first changes its scheduling policy to SCHED_FIFO using sched_setscheduler() .
Next , it invokes mlockall() to lock all m apped pages in m em ory to ensure that swapping won't com e in the
way of determ inist ic t im ing. Only the super-user is allowed to call sched_setscheduler() and mlockall() and
request RTC interrupts at frequencies greater than 64Hz.

List ing 1 9 .1 . Per iodic W ork w ith Microsecond Precis ion

Code View:
#include <linux/rtc.h>
#include <sys/ioctl.h>
#include <sys/time.h>
#include <fcntl.h>
#include <pthread.h>
#include <linux/mman.h>

/* Read the lower half of the Pentium Time Stamp Counter
 using the rdtsc instruction */
#define rdtscl(val) __asm__ __volatile__ ("rdtsc" : "=A" (val))

main()
{
 unsigned long ts0, ts1, now, worst; /* Store TSC ticks */
 struct sched_param sched_p; /* Information related to
 scheduling priority */
 int fd, i=0;
 unsigned long data;
 /* Change the scheduling policy to SCHED_FIFO */
 sched_getparam(getpid(), &sched_p);
 sched_p.sched_priority = 50; /* RT Priority */
 sched_setscheduler(getpid(), SCHED_FIFO, &sched_p);

 /* Avoid paging and related indeterminism */
 mlockall(MCL_CURRENT);

 /* Open the RTC */
 fd = open("/dev/rtc", O_RDONLY);

 /* Set the periodic interrupt frequency to 8192Hz
 This should give an interrupt rate of 122uS */
 ioctl(fd, RTC_IRQP_SET, 8192);

 /* Enable periodic interrupts */
 ioctl(fd, RTC_PIE_ON, 0);
 rdtscl(ts0);
 worst = 0;

 while (i++ < 10000) {

 /* Block until the next periodic interrupt */
 read(fd, &data, sizeof(unsigned long));

 /* Use the TSC to precisely measure the time consumed.
 Reading the lower half of the TSC is sufficient */
 rdtscl(ts1);
 now = (ts1-ts0);

 /* Update the worst case latency */
 if (now > worst) worst = now;
 ts0 = ts1;

 /* Do work that is to be done periodically */
 do_work(); /* NOP for the purpose of this measurement */
 }

 printf("Worst latency was %8ld\n", worst);

 /* Disable periodic interrupts */
 ioctl(fd, RTC_PIE_OFF, 0);
}

The code in List ing 19.1 loops for 10,000 iterat ions and prints out the worst -case latency that occurred during
execut ion. The output was 240899 on a Pent ium 1.8GHz box, which roughly corresponds to 133 m icroseconds.
According to the data sheet of the RTC chipset , a t im er frequency of 8192Hz should result in a periodic interrupt
rate of 122 m icroseconds. That 's close. Rerun the code under varying loads using SCHED_OTHER instead of
SCHED_FIFO and observe the resultant dr ift .

You m ay also run kernel threads in the RT m ode. For that , do the following when you start the thread:

static int
my_kernel_thread(void *i)
{
 daemonize();
 current->policy = SCHED_FIFO;
 current->rt_priority = 1;
 /* ... */
}

Accessing I / O Regions

PC-com pat ible system s have 64K I / O ports, all of which m ay be driven from user space. User access to I / O
ports on Linux is cont rolled by two funct ions: ioperm() and iopl() . ioperm() cont rols access perm issions to
the first 0x3ff ports. iopl() changes the I / O privilege level of the calling process, thus allowing am ong other
things, unrest r icted access to all ports. Only the super-user can invoke both these funct ions.

To write data to an I / O port , use outb() , outw() , outl() , or their cousins. To read data from a port , use inb() ,
inw() , inl() , or their relat ives. Let 's im plem ent a sim ple program that reads the seconds t icking inside the RTC
chip. I / O regions in the PC CMOS, of which the RTC is a part , are accessed via an index port (0x70) and a data
port (0x71) , as shown in Table 5.1 of Chapter 5 , "Character Drivers." To read a byte of data from offset off
within an I / O address range, write off to the index port and read the associated data from the data port .
List ing 19.2 reads the seconds field of the RTC; but to use it to obtain data from other I / O regions, change the
argum ents passed to dump_port() suitably.

List ing 1 9 .2 . Ut ilit y to Dum p Bytes from an I / O Reg ion

Code View:
#include <linux/ioport.h>

void
dump_port(unsigned char addr_port, unsigned char data_port,
 unsigned short offset, unsigned short length)
{
 unsigned char i, *data;

 if (!(data = (unsigned char *)malloc(length))) {
 perror("Bad Malloc\n");
 exit(1);
 }

 /* Write the offset to the index port

 and read data from the data port */

 for(i=offset; i<offset+length; i++) {
 outb(i, addr_port);
 data[i-offset] = inb(data_port);
 }

 /* Dump */
 for(i=0; i<length; i++)
 printf("%02X ", data[i]);

 free(data);
}

int
main(int argc, char *argv[])
{

 /* Get access permissions */
 if(iopl(3) < 0) {
 perror("iopl access error\n");
 exit(1);
 }

 dump_port(0x70, 0x71, 0x0, 1);
}

You m ay also accom plish the sam e task by operat ing on / dev/ port . This will incur a perform ance penalty
because code flow has to pass through a kernel dr iver, but you have the flexibilit y to cont rol access perm issions
on the device node without using iopl() or ioperm() . Here's the / dev/ port equivalent of List ing 19.2:

#include <unistd.h>
#include <fcntl.h>

int
main(int argc, char *argv[])
{
 char seconds=0;
 char data = 0;
 int fd = open("/dev/port", O_RDWR);

 lseek(fd, 0x70, SEEK_SET);
 write(fd, &data, 1);

 lseek(fd, 0x71, SEEK_SET);
 read(fd, &seconds, 1);
 printf("%02X ", seconds);
}

I n Chapter 5 , you learned to talk to your com puter 's parallel port via a kernel dr iver. Let 's now im plem ent a
sam ple program that interacts with a parallel port device from user space. The kernel's parallel port subsystem
provides a character dr iver called ppdev that exports parallel port access to user land. Ppdev creates device
nodes, / dev/ parportX, where X is the parallel port num ber. Applicat ions can open / dev/ parportX, exchange data
via read() /write() system calls, and issue a variety of ioctl() com m ands. Using kernel interfaces, such as
ppdev, is preferable to direct ly operat ing over I / O ports using ioperm() , iopl() , or / dev/ port . The form er
technique is safer, works across architectures, and funct ions over different device form factors such as USB- to-
parallel converters.

Consider the sim ple LED board that you used in Chapter 5 . I t had 8 LEDs interfaced to pins 2 to 9 on a standard
25-pin parallel connector. List ing 19.3 im plem ents a sim ple user applicat ion that glows alternate diodes on this
parallel port LED board using the ppdev interface. I t 's the user-space equivalent of the kernel dr iver developed
in List ing 5.6 of Chapter 5 .

List ing 1 9 .3 . Cont rolling a Para lle l Por t LED Board from User Space

Code View:
#include <stdio.h>
#include <linux/ioctl.h>
#include <linux/parport.h>
#include <linux/ppdev.h>
#include <fcntl.h>

int main(int argc, char *argv[])
{
 int led_fd;
 char data = 0xAA; /* Bit pattern to glow alternate LEDs */

 /* Open /dev/parport0 . This assumes that the LED connector board

 is connected to the first parallel port on your computer */
 if ((led_fd = open("/dev/parport0", O_RDWR)) < 0) {
 perror("Bad Open\n");
 exit(1);
 }

 /* Claim the port */
 if (ioctl(led_fd, PPCLAIM)) {
 perror("Bad Claim\n");
 exit(2);
 }

 /* Set pins to forward direction and write a
 byte to glow alternate LEDs */
 if (ioctl(led_fd, PPWDATA, &data)) {
 perror("Bad Write\n");
 exit(3);
 }

 /* Release the port */
 if (ioctl(led_fd, PPRELEASE)) {
 perror("Bad Release\n");
 exit(4);
 }

 /* Close /dev/parport0 */

 close(led_fd);
}

Accessing Mem ory Regions

Mem ory m apping (or m m aping) a file associates it with an area of user vir tual m em ory. Because Linux t reats
devices as files, you can also m ap device m em ory to RAM and direct ly operate on it from user space. Here are
som e mmap() users on Linux:

Graphical user interfaces, such as X Windows (www.xfree86.org) and SVGAlib (www.svgalib.org) , m m ap
video m em ory and direct ly access graphics hardware.

1 .

Madplay is an integer-only MP3 player that runs on several architectures. Mem ory m apping im proves
throughput , so m adplay m m aps MP3 files for faster access. This helps m aintain the correct bit rates
necessary for high-quality m usic playback.

2 .

MPEG (Moving Picture Experts Group) decoders play m ovies by direct ly operat ing on m m apped fram e
buffer m em ory.

3 .

The prototype of the mmap() system call looks like this:

void *mmap(void *start, size_t length, int prot, int flag,
 int fd, off_t offset);

This requests the kernel to associate the device file specified by the file descriptor fd to a chunk of user m em ory
beginning at start . (start is only a preference and is usually set to 0; the actual associated m em ory is
returned by mmap() .) The kernel m aps length bytes of m em ory start ing from offset in the specified file. prot
specifies the desired access protect ion, and flag describes the type of the m apping. The MAP_SHARED flag
m irrors your m odificat ions to other users of the sam e m em ory region, whereas MAP_PRIVATE keeps your
changes to yourself.

All m m apped pages need not be present in physical mem ory. Areas not being accessed can be in swap space
from where they are paged in on dem and. Underlying device dr ivers m ay cont rol the sem ant ics of the mmap()
system call by im plem ent ing an mmap() m ethod.

List ing 19.4 is an im age display program that illust rates usage of mmap() as follows:

Mm aps a fram e buffer. (We discussed fram e buffer dr ivers in Chapter 12, "Video Drivers.")

Mm aps an im age file.

Transfers the lat ter to the form er after perform ing necessary t ransform at ions depending on the propert ies
of the im age file (not shown in the list ing) .

List ing 1 9 .4 . Displaying an I m age Using Mm ap

Code View:

#include <fcntl.h>
#include <sys/stat.h>
#include <sys/mman.h> /* For definition of mmap() */
#include <linux/fb.h> /* For frame buffer structures and ioctls */

int
main(int argc, char *argv[])
{
 int imagefd, fbfd; /* File descriptors */
 char *imagebuf, *fbbuf; /* mmap buffers */
 struct fb_var_screeninfo vinfo; /* Variable Screen info */
 struct stat statbuf; /* Image info */
 int fbsize; /* Frame buffer size */

 /* Open image file */
 if ((imagefd = open(argv[1], O_RDONLY)) < 0) {
 perror("Bad image open\n");
 exit(1);
 }

 /* Get the size of the image file */
 if (fstat(imagefd, &statbuf) < 0) {
 perror("Bad fstat\n");
 exit(1);
 }

 /* mmap the image file */
 if ((imagebuf = mmap(0, statbuf.st_size, PROT_READ, MAP_SHARED,
 imagefd, 0)) == (char *) -1){
 perror("Bad image mmap\n");
 exit(1);
 }
 /* Open video memory */
 if ((fbfd = open("/dev/fb0", O_RDWR)) < 0) {
 perror("Bad frame buffer open\n");
 exit(1);
 }

 /* Get screen attributes such as resolution and depth */
 if (ioctl(fbfd, FBIOGET_VSCREENINFO, &vinfo)) {
 perror("Bad vscreeninfo ioctl\n");
 exit(1);
 }

 /* Size of video memory =
 (X-resolution * Y-resolution * Bytes per pixel) */
 fbsize = (vinfo.xres * vinfo.yres * vinfo.bits_per_pixel)/8;

 /* mmap the video memory */
 if ((fbbuf = mmap(0, fbsize, PROT_WRITE, MAP_SHARED, fbfd, 0))
 == (char *) -1){
 perror("Bad frame buffer mmap\n");
 exit(1);
 }

 /* Transfer imagebuf to fbbuf after applying transformations
 dependent on the format, resolution, depth, data offset,

 and other properties of the image file. Not implemented in
 this listing */
 copy_image_to_fb();

 msync(fbbuf, fbsize, MS_SYNC); /* Flush changes to device */

 /* ... */

 /* Unmap frame buffer memory */
 munmap(fbbuf, fbsize);
 close(fbfd);

 /* Unmap image file */
 munmap(imagebuf, statbuf.st_size);
 close(imagefd);

}

User Mode SCSI

The SCSI Generic (sg) interface lets you direct ly dispatch SCSI com m ands from user space. The sg dr iver
essent ially exports a char interface, so applicat ions can use the open() , close() , read() , write() , ioctl() ,
poll() , fcntl() , and mmap() system calls to talk to the underlying device. Drivers for SCSI devices such as CD
burners and scanners are im plem ented in user space over sg. Look at the sources of cdrtools (previously called
cdrecord) available from ht tp: / / freshm eat .net / projects/ cdrecord/ for a real- life sg user.

Let 's learn how to use the sg interface with the help of an exam ple. List ing 19.5 im plem ents a user program
that sends a READ_CAPACITY SCSI com m and to a storage device, such as a SCSI hard disk or a USB m ass
storage drive to glean its data capacity. The READ_CAPACITY com m and consists of 10 bytes, start ing with the
com m and code 0x25 . For the purpose of this exam ple, let 's set the rest of the bytes to zero. When a SCSI
device receives a READ_CAPACITY com m and, it responds with an 8-byte reply; the top 4 bytes contain the
address of the last logical block, and the bot tom 4 bytes contain the block length.

sg device nodes are nam ed / dev/ sgX, where X is the device num ber, so List ing 19.5 opens / dev/ sg0, which is
assum ed to be the sg char node corresponding to your SCSI storage device. I t then sets about populat ing the
sg_io_hdr_t st ructure, which is the m ain data st ructure that sg users have to m anage. The read() , write() ,
and ioctl() calls expect a pointer to this st ructure (defined in / usr/ include/ scsi/ sg.h) as an argum ent . The cmdp
field of sg_io_hdr_t is set to the address of the com m and block that holds the 10-byte READ_CAPACITY
com m and. The dxferp field supplies the address of a buffer that will carry the response data arr iving from the
device. The sbp field contains the address of a sense buffer that will return the status of the requested
operat ion. The interface_id has to be set to S, and timeout holds the wait t im e in m illiseconds before sg gives
up on the com m and.

SG_IO is an oft -used ioct l com m and supported by sg. I nternally, it writes a com m and to the device, waits for a
response, and reads the received reply into a user-supplied buffer. I n List ing 19.5, SG_IO issues a
READ_CAPACITY com m and and reads the 8-byte response into rcap_buff[] . The program calculates and prints
the disk capacity by interpret ing the data in rcap_buff[] .

List ing 1 9 .5 . Obta ining Disk Capacity via SCSI Gene r ic

Code View:
#include <stdio.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <scsi/sg.h>

#define RCAP_COMMAND 0x25
#define RCAP_COMMAND_LEN 10
#define RCAP_REPLY_LEN 8

int
main(int argc, char *argv[])
{
 int fd, i;
 /* READ_CAPACITY command block */
 unsigned char RCAP_CmdBlk[RCAP_COMMAND_LEN]=
 {RCAP_COMMAND, 0,0,0,0,0,0,0,0,0};
 sg_io_hdr_t sg_io;
 unsigned char rcap_buff[RCAP_REPLY_LEN];
 unsigned int lastblock, blocksize;
 unsigned long long disk_cap;

http://freshmeat.net/projects/cdrecord/

 unsigned char sense_buf[32];

 /* Open the sg device */
 if ((fd = open("/dev/sg0", O_RDONLY)) < 0) {
 printf("Bad Open\n");
 exit(1);
 }

 /* Initialize */
 memset(&sg_io, 0, sizeof(sg_io_hdr_t));

 /* Command block address and length */
 sg_io.cmdp = RCAP_CmdBlk;
 sg_io.cmd_len = RCAP_COMMAND_LEN;

 /* Response buffer address and length */
 sg_io.dxferp = rcap_buff;
 sg_io.dxfer_len = RCAP_REPLY_LEN;

 /* Sense buffer address and length */
 sg_io.sbp = sense_buf;
 sg_io.mx_sb_len = sizeof(sense_buf);
 /* Control information */
 sg_io.interface_id = 'S';
 sg_io.dxfer_direction = SG_DXFER_FROM_DEV;
 sg_io.timeout = 10000; /* 10 seconds */

 /* Issue the SG_IO ioctl */
 if (ioctl(fd, SG_IO, &sg_io) < 0) {
 printf("Bad SG_IO\n");
 exit(1);
 }

 /* Obtain results */
 if ((sg_io.info & SG_INFO_OK_MASK) == SG_INFO_OK) {
 /* Address of last disk block */
 lastblock = ((rcap_buff[0]<<24)|(rcap_buff[1]<<16)|
 (rcap_buff[2]<<8)|(rcap_buff[3]));

 /* Block size */
 blocksize = ((rcap_buff[4]<<24)|(rcap_buff[5]<<16)|
 (rcap_buff[6]<<8)|(rcap_buff[7]));

 /* Calculate disk capacity */
 disk_cap = (lastblock+1);
 disk_cap *= blocksize;
 printf("Disk Capacity = %llu Bytes\n", disk_cap);

 }
 close(fd);
}

For the full list of SG_IO com m ands, take a look at include/ scsi/ scsi.h and drivers/ scsi/ sg.c. Read the Linux SCSI
Generic HOWTO for an in-depth explanat ion of the sg interface. Download the sg3_ut ils package from
ht tp: / / sg.torque.net / sg/ sg3_ut ils.htm l and browse the sources to find several useful program s that operate over
sg.

http://sg.torque.net/sg/sg3_utils.html

User Mode USB

The usbfs vir tual filesystem allows raw access to USB devices from user space. Usbfs is usually m ounted over
/ proc/ bus/ usb/ . The usbfs t ree contains director ies corresponding to each USB cont roller (or bus) on your
system . Each of these director ies, in turn, contains nodes corresponding to USB devices present on that bus.

To bet ter understand usbfs, let 's look at a system with an I ntel I CH4 South Bridge chipset . As you learned in
Chapter 11, "Universal Serial Bus," USB cont rollers are part of the South Bridge chipset on PC system s. The
I CH4 supports one USB EHCI (high-speed USB 2.0) cont roller and three USB UHCI cont rollers and can connect
to six physical USB ports. The EHCI cont roller can converse with all six ports, and the three UHCI cont rollers can
talk to two ports each. Let 's call the EHCI cont roller bus1 and the three UHCI cont rollers bus2, bus3, and bus4,
respect ively. Now assum e that the system has only two physical USB ports and that they are connected to the
UHCI cont roller corresponding to bus3. (The sym bol at taches com m ents to com m and output .)

Code View:
bash> ls –lR /proc/bus/usb

/proc/bus/usb:
total 0

dr-xr-xr-x 2 root root 0 Dec 2 12:44 001 EHCI. Can talk to
 any physical port

dr-xr-xr-x 2 root root 0 Dec 2 12:44 002 No corresponding
 physical ports

dr-xr-xr-x 2 root root 0 Dec 2 12:44 003 UHCI bus for the 2
 physical USB ports
 on this system

dr-xr-xr-x 2 root root 0 Dec 2 12:44 004 No corresponding
 physical ports
-r--r--r-- 1 root root 0 Dec 2 20:02 devices

/proc/bus/usb/001:
total 0

-rw-r--r-- 1 root root 43 Dec 2 12:44 001 Root Hub (bus1)

/proc/bus/usb/002:
total 0

-rw-r--r-- 1 root root 43 Dec 2 12:44 001 Root Hub (bus2)

/proc/bus/usb/003:
total 0

-rw-r--r-- 1 root root 43 Dec 2 12:44 001 Root Hub (bus3)

/proc/bus/usb/004:
total 0

-rw-r--r-- 1 root root 43 Dec 2 12:44 001 Root Hub (bus4)

Let 's connect a full- speed Nikon digital cam era and a high-speed Seagate USB 2.0 hard disk to the two USB
ports on the system . First , take a peek at / proc/ bus/ usb/ devices and find the relevant ent r ies:

Code View:
bash> ls –lR /proc/bus/usb/devices

...
T: Bus=03 Lev=01 Prnt=01 Port=01 Cnt=01 Dev#= 5 Spd=12 MxCh= 0
D: Ver= 1.10 Cls=00(>ifc) Sub=00 Prot=00 MxPS=64 #Cfgs= 1
P: Vendor=04b0 ProdID=0205 Rev= 1.00
S: Manufacturer=NIKON
S: Product=NIKON DSC E5200
S: SerialNumber=2507597
C:* #Ifs= 1 Cfg#= 1 Atr=c0 MxPwr= 2mA
I: If#= 0 Alt= 0 #EPs= 2 Cls=08(stor.) Sub=06 Prot=50
 Driver=usb-storage
E: Ad=01(O) Atr=02(Bulk) MxPS= 64 Ivl=0ms
E: Ad=82(I) Atr=02(Bulk) MxPS= 64 Ivl=0ms
...
T: Bus=01 Lev=01 Prnt=01 Port=02 Cnt=01 Dev#= 12 Spd=480 MxCh= 0
D: Ver= 2.00 Cls=00(>ifc) Sub=00 Prot=00 MxPS=64 #Cfgs= 1
P: Vendor=0bc2 ProdID=0501 Rev= 0.01
S: Manufacturer=Seagate
S: Product=USB Mass Storage
S: SerialNumber=000000062459
C:* #Ifs= 1 Cfg#= 1 Atr=c0 MxPwr= 0mA
I: If#= 0 Alt= 0 #EPs= 2 Cls=08(stor.) Sub=06 Prot=50
 Driver=usb-storage
E: Ad=02(O) Atr=02(Bulk) MxPS= 512 Ivl=0ms
E: Ad=88(I) Atr=02(Bulk) MxPS= 512 Ivl=0ms

Look at the T: lines in the preceding output , which display the topology. As expected, the hard disk has arr ived
on the EHCI bus, bus1, and the cam era has appeared on the UHCI bus, bus3. This is how the usbfs t ree looks
now:

Code View:
bash> ls –lR /proc/bus/usb

/proc/bus/usb:
total 0
dr-xr-xr-x 2 root root 0 Dec 2 12:44 001
dr-xr-xr-x 2 root root 0 Dec 2 12:44 002
dr-xr-xr-x 2 root root 0 Dec 2 12:44 003
dr-xr-xr-x 2 root root 0 Dec 2 12:44 004
-r--r--r-- 1 root root 0 Dec 2 19:51 devices

/proc/bus/usb/001: EHCI: bus1
total 0
-rw-r--r-- 1 root root 43 Dec 2 12:44 001

-rw-r--r-- 1 root root 50 Dec 2 19:51 007 High-speed disk

/proc/bus/usb/002: UHCI: bus2
total 0
-rw-r--r-- 1 root root 43 Dec 2 12:44 001

/proc/bus/usb/003: UHCI: bus3
total 0
-rw-r--r-- 1 root root 43 Dec 2 12:44 001

-rw-r--r-- 1 root root 50 Dec 2 19:16 003 Full-speed camera

/proc/bus/usb/004: UHCI: bus4
total 0
-rw-r--r-- 1 root root 43 Dec 2 12:44 001

The usbfs files corresponding to plugged- in devices contain the associated USB device and configurat ion
descriptors. I n the preceding exam ple, read / proc/ bus/ usb/ 003/ 003 to get descriptor inform at ion for the
cam era and / proc/ bus/ usb/ 001/ 007 for the descriptor associated with the hard disk. Managing usbfs files is not
st raight forward however, because the device filenames get reused after a device is plugged out . The solut ion is
to use the libusb library, which uses usbfs under the hood. Using libusb instead of direct ly operat ing on usbfs
has another benefit : Your dr iver is likely to work unchanged on other operat ing system s that support this
library. I f you don't find libusb bundled along with your dist r ibut ion, download its sources from
ht tp: / / libusb.sourceforge.net / . The full list of USB access funct ions offered by this library is available under the
doc/ directory of the libusb sources.

List ing 19.6 im plem ents a skeletal user space driver for the digital cam era using an oft -used libusb
program m ing tem plate. The cam era's vendor I D (0x04b0) and device I D (0x0205) are obtained from the
/ proc/ bus/ usb/ devices output shown previously.

List ing 1 9 .6 . A Skeleta l User Space USB Dr iver Usin g libusb

Code View:
#include <usb.h> /* From the libusb package */

#define DIGICAM_VENDOR_ID 0x04b0 /* From /proc/bus/usb/devices */

#define DIGICAM_PRODUCT_ID 0x0205 /* From /proc/bus/usb/devices */

int
main(int argc, char *argv[])
{
 struct usb_dev_handle *mydevice_handle;
 struct usb_bus *usb_bus;
 struct usb_device *mydevice;

 /* Initialize libusb */
 usb_init();
 usb_find_buses();
 usb_find_devices();

 /* Walk the bus */
 for (usb_bus = usb_buses; usb_bus; usb_bus = usb_bus->next) {
 for (mydevice = usb_bus->devices; mydevice;
 mydevice = mydevice->next) {
 if ((mydevice->descriptor.idVendor == DIGICAM_VENDOR_ID) &&
 (mydevice->descriptor.idProduct == DIGICAM_PRODUCT_ID)) {

 /* Open the device */
 mydevice_handle = usb_open(mydevice);

 /* Send commands to the camera. This is the heart of the
 driver. Getting information about the USB control
 messages to which your device responds is often a
 challenge since many vendors do not readily divulge
 hardware details */
 usb_control_msg(mydevice_handle, ...);
 /* ... */

http://libusb.sourceforge.net/

 /* Close the device */
 usb_close(mydevice_handle);
 }
 }
 }
}

User Mode I 2C

I n Chapter 8 , "The I nter- I ntegrated Circuit Protocol," you learned to develop kernel m ode drivers for I2C
devices; but som et im es, when you need to enable support for a large num ber of slow I2C devices, it m akes
sense to dr ive them from user space. The i2c-dev m odule enables the developm ent of user m ode I 2C/ SMBus
device dr ivers. User-space code can access I2C host adapters via device nodes. To operate on the n th adapter,
open / dev/ i2c-n. After you have a file descriptor t ied to a host adapter device node, you can com m and it
through ioct ls to connect to specific slave devices at tached to it . You can then use the services of a fam ily of
data access rout ines to exchange data with the slaves.

List ing 19.7 is a sim ple user m ode driver that perform s com m on operat ions on an I2C EEPROM from user space.
The EEPROM is the sam e as the one discussed in Chapter 8 and has two m em ory banks and a slave address
corresponding to each bank. The list ing uses inline funct ions from i2c-dev.h to operate on device nodes
associated with the banks. Get this header file from the lm -sensors package (also discussed in Chapter 8)
downloadable from www.lm -sensors.org. This file contains user space equivalents for all kernel space I2C access
funct ions listed in Table 8.1 of Chapter 8 .

List ing 1 9 .7 . A User Space I 2C/ SMBus Dr iver

Code View:
#include <linux/i2c.h>
#include <linux/i2c-dev.h>

/* Bus addresses of the memory banks */
#define SLAVE_ADDR1 0x60
#define SLAVE_ADDR2 0x61

int main(int argc, char *argv[])
{

 /* Open the host adapter */
 if ((smbus_fp = open("/dev/i2c-0", O_RDWR)) < 0) {
 exit(1);
 }

 /* Connect to the first bank */
 if (ioctl(smbus_fp, I2C_SLAVE, EEPROM_SLAVE_ADDR1) < 0) {
 exit(1);
 }

 /* ... */
 /* Dump data from the device */
 for (reg=0; reg < length; reg++) {
 /* See i2c-dev.h from the lm-sensors package for the

 implementation of the following inline function */
 res = i2c_smbus_read_byte_data(smbus_fp, (unsigned char) reg);
 if (res < 0) {
 exit(1);
 }

 /* Dump data */
 /* ... */
 }

 /* ... */

 /* Switch to bank 2 */
 if (ioctl(smbus_fp, I2C_SLAVE, SLAVE_ADDR2) < 0) {
 exit(1);
 }

 /* Clear bank 2 */
 for (reg=0; reg < length; reg+=2){
 i2c_smbus_write_word_data(smbus_fp, (unsigned char) reg, 0x0);
 }

 /* ... */

 close(smbus_fp);
}

UI O

Start ing with the 2.6.23 release, the kernel includes a subsystem called UI O (Userspace I O) that eases the
im plem entat ion of som e user-space drivers. UI O's intent is to allow the developm ent of a bare-bones kernel
dr iver for tasks such as interrupt handling, and push m ost of the device I / O logic to user space. UI O is especially
relevant for som e classes of indust r ial I / O cards.

Look inside dr ivers/ uio/ for the UI O sources. A user guide is available under Docum entat ion/ DocBook/ uio-
howto.tm pl. Explor ing UI O is beyond the scope of this chapter.

Look ing at the Sources

The Linux scheduler lives in kernel/ sched.c. The SCSI generic im plem entat ion is in dr ivers/ scsi/ sg.c, and
drivers/ usb/ core/ devio.c is responsible for support ing user space USB drivers. The i2c-dev dr iver that enables
support for user m ode I 2C program m ing resides in dr ivers/ i2c/ i2c-dev.c.

Table 19.1 contains the m ain data st ructures used in this chapter, and Table 19.2 lists the funct ions that we
used to aid user m ode driver developm ent .

Table 1 9 .1 . Sum m ary of Data St ructures

Data St ructure Locat ion (User Space) Descr ipt ion

sched_param / usr/ include/ bits/ sched.h I nform at ion related to scheduling pr ior it ies.

fb_var_screeninfo / usr/ include/ linux/ fb.h Used to operate on fram e buffers. Contains
variable screen inform at ion such as resolut ion
and pixclock. See Chapter 11 for m ore details.

sg_io_hdr_t / usr/ include/ scsi/ sg.h I nform at ion to m anage SCSI generic devices.

usb_dev_handle
usb_bus
usb_device

Header files in the libusb
package.

St ructures to operate on USB devices from user
space.

Table 1 9 .2 . Sum m ary of User- Space Funct ions

User- Space Funct ion Descr ipt ion

sched_getparam() Obtains scheduling param eters associated with a
given process

sched_setscheduler() Sets scheduling param eters associated with a
given process

mlockall() Locks pages of the calling process in m em ory and
thus avoids page faults

ioperm() Cont rols access perm issions to the first 0x3FF
I / O ports

iopl() Cont rols access pr ivileges to all I / O ports

outb()/outw()/outl() Outputs a byte/ word/ long to a specified port

inb()/inw()/inl() I nputs a byte/ word/ long from a specified port

mmap() Associates a file or a device address region with
a chunk of user vir tual m em ory

msync() Flushes changes m ade to an m m ap-ed m em ory
area

munmap() Reverse of mmap()

usb_init()
usb_find_buses()

Funct ions provided by the libusb library to help
you operate over usbfs

User- Space Funct ion Descr ipt ionusb_find_buses()
usb_find_devices()
usb_open()
usb_control_msg()
usb_close()

i2c_smbus_read_byte_data()
i2c_smbus_write_word_data()

User-space I2C/ SMBus data access rout ines
available as part of the lm -sensors package

Chapter 2 0 . More Devices and Dr ivers

I n This Chapter

ECC Report ing
578

Frequency Scaling
583

Em bedded Cont rollers
584

ACPI
585

I SA and MCA
587

FireWire
588

I ntelligent I nput / Output
589

Am ateur Radio
590

Voice over I P
590

High-Speed I nterconnects
591

So far, we have devoted a full chapter to each m ajor device dr iver class, but there are several
subdirector ies under dr ivers/ that we haven't yet descended into. I n this chapter let 's venture
inside som e of them at a br isk pace.

ECC Report ing

Several m em ory cont rollers contain special silicon to m easure the fidelity of stored data using error correct ing
codes (ECCs) . The Error Detect ion And Correct ion (EDAC) dr iver subsystem announces occurrences of mem ory
error events generated by ECC-aware m em ory cont rollers. Typical ECC DRAM chips have the capabilit y to
correct single-bit errors (SBEs) and detect m ult ibit errors (MBEs) . I n EDAC parlance, the form er errors are
correctable errors (CEs) , whereas the lat ter are uncorrectable errors (UEs) .

ECC operat ions are t ransparent to the operat ing system . This m eans that if your DRAM cont roller supports ECC,
error correct ion and detect ion occurs silent ly without operat ing system part icipat ion. EDAC's task is to report
such events and allow users to fashion error handling policies (such as replace a suspect DRAM chip) .

The EDAC driver subsystem consists of the following:

A core m odule called edac_m c that provides a set of library rout ines.

Separate dr ivers for interact ing with supported m emory cont rollers. For exam ple, the dr iver m odule that
works with the m em ory cont roller that is part of the I ntel 82860 North Bridge is called i82860_edac.

EDAC reports errors via files in the sysfs directory, / sys/ devices/ system / edac/ . I t also generates m essages that
can be gleaned from the kernel error log.

The layout of DRAM chips is specified in term s of the num ber of chip-selects em anat ing from the m em ory
cont roller and the data- t ransfer width (channels) between the m em ory cont roller and the CPU. The num ber of
rows in the DRAM chip array depends on the form er, whereas the num ber of colum ns hinge on the lat ter. One of
the m ain aim s of EDAC is to point the needle of suspicion at problem DRAM chips, so the EDAC sysfs node
st ructure is designed according to the physical chip layout : / sys/ devices/ system / edac/ m c/ m cX/ csrowY/
corresponds to chip-select row Y in m em ory cont roller X. Each such directory contains details such as the
num ber of detected CEs (ce_count) , UEs (ue_count) , channel locat ion, and other at t r ibutes.

Device Exam ple: ECC- Aw are Mem ory Cont roller

Let 's add EDAC support for a yet -unsupported m em ory cont roller. Assum e that you're put t ing Linux onto a
m edical grade device that is an em bedded x86 derivat ive. The North Bridge chipset (which includes the m em ory
cont roller as discussed in the sidebar "The North Bridge" in Chapter 12, "Video Drivers") on your board is the
I ntel 855GME that is capable of ECC report ing. All DRAM banks connected to the 855GME on this system are
ECC-enabled chips because this is a life-cr it ical device. EDAC does not yet support the 855GME, so let 's take a
stab at im plem ent ing it .

ECC DRAM cont rollers have two m ajor ECC-related registers: an error status register and an error address
pointer register, as shown in Table 20.1. When an ECC error occurs, the form er contains the status (whether the
error is an SBE or an MBE) , whereas the lat ter contains the physical address where the error occurred. The
EDAC core periodically checks these registers and reports results to user space via sysfs. From a configurat ion
standpoint , all devices inside the 855GME appear to be on PCI bus 0. The DRAM cont roller resides on device 0 of
this bus. DRAM interface cont rol registers (including the ECC-specific registers) m ap into the corresponding PCI
configurat ion space. To add EDAC support for the 855GME, add hooks to read these registers, as shown in
List ing 20.1. Refer back to Chapter 10, "Peripheral Com ponent I nterconnect ," for explanat ions on PCI device
driver m ethods and data st ructures.

Table 2 0 .1 . ECC- Related Registers on the DRAM Cont r oller

ECC-Specific Registers Residing in the
DRAM Cont roller 's PCI Configurat ion
Space

Descript ion

I855_ERRSTS_REGISTER The error status register, which signals
occurrence of an ECC error. Shows
whether the error is an SBE or an MBE.

I855_EAP_REGISTER The error address pointer register, which
contains the physical address where the
m ost recent ECC error occurred.

List ing 2 0 .1 . An EDAC Dr iver for the 8 5 5 GME

Code View:
/* Based on drivers/edac/i82860_edac.c */

#define I855_PCI_DEVICE_ID 0x3584 /* PCI Device ID of the memory
 controller in the 855 GME */
#define I855_ERRSTS_REGISTER 0x62 /* Error Status Register's offset
 in the PCI configuration space */
#define I855_EAP_REGISTER 0x98 /* Error Address Pointer Register's
 offset in the PCI configuration space */
struct i855_error_info {
 u16 errsts; /* Error Type */
 u32 eap; /* Error Location */
};

/* Get error information */
static void
i855_get_error_info(struct mem_ctl_info *mci,
 struct i855_error_info *info)
{
 struct pci_dev *pdev;

 pdev = to_pci_dev(mci->dev);
 /* Read error type */
 pci_read_config_word(pdev, I855_ERRSTS_REGISTER, &info->errsts);
 /* Read error location */
 pci_read_config_dword(pdev, I855_EAP_REGISTER, &info->eap);
}

/* Process errors */
static int
i855_process_error_info(struct mem_ctl_info *mci,
 struct i855_error_info *info,
 int handle_errors)
{
 int row;

 info->eap >>= PAGE_SHIFT;
 row = edac_mc_find_csrow_by_page(mci, info->eap); /* Find culprit row */

 /* Handle using services provided by the EDAC core.
 Populate sysfs, generate error messages, and so on */
 if (is_MBE()) { /* is_MBE() looks at I855_ERRSTS_REGISTER and checks
 for an MBE. Implementation not shown */

 edac_mc_handle_ue(mci, info->eap, 0, row, "i855 UE");
 } else if (is_SBE()) { /* is_SBE() looks at I855_ERRSTS_REGISTER and checks
 for an SBE. Implementation not shown */
 edac_mc_handle_ce(mci, info->eap, 0, info->derrsyn, row, 0,
 "i855 CE");
 }

 return 1;
}

/* This method is registered with the EDAC core from i855_probe() */
static void
i855_check(struct mem_ctl_info *mci)
{
 struct i855_error_info info;

 i855_get_error_info(mci, &info);
 i855_process_error_info(mci, &info, 1);
}

/* The PCI driver probe method, part of the pci_driver structure */
static int
i855_probe(struct pci_dev *pdev, int dev_idx)
{
 struct mem_ctl_info *mci;

 /* ... */
 pci_enable_device(pdev);

 /* Allocate control memory for this memory controller.
 The 3 arguments to edac_mc_alloc() correspond to the
 amount of requested private storage, number of chip-select
 rows, and number of channels in your memory layout */
 mci = edac_mc_alloc(0, CSROWS, CHANNELS);
 /* ... */
 mci->edac_check = i855_check; /* Supply the check method to the
 EDAC core */
 /* Do other memory controller initializations */
 /* ... */
 /* Register this memory controller with the EDAC core */
 edac_mc_add_mc(mci, 0);
 /* ... */
}

/* Remove method */
static void __devexit
i855_remove(struct pci_dev *pdev)
{
 struct mem_ctl_info *mci = edac_mc_find_mci_by_pdev(pdev);
 if (mci && !edac_mc_del_mc(mci)) {
 edac_mc_free(mci); /* Free memory for this controller. Reverse
 of edac_mc_alloc() */
 }
}

/* PCI Device ID Table */
static const struct pci_device_id i855_pci_tbl[] __devinitdata = {
 {PCI_VEND_DEV(INTEL, I855_PCI_DEVICE_ID),
 PCI_ANY_ID, PCI_ANY_ID, 0, 0,},

 {0,},
};

MODULE_DEVICE_TABLE(pci, i855_pci_tbl);

/* pci_driver structure for this device.
 Re-visit Chapter 10 for a detailed explanation */
static struct pci_driver i855_driver = {
 .name = "855",
 .probe = i855_probe,
 .remove = __devexit_p(i855_remove),
 .id_table = i855_pci_tbl,
};

/* Driver Initialization */
static int __init
i855_init(void)
{
 /* ... */
 pci_rc = pci_register_driver(&i855_driver);
 /* ... */
}

Look at dr ivers/ edac/ * for EDAC source files and at Docum entat ion/ dr ivers/ edac/ edac.txt for detailed sem ant ics
of EDAC sysfs nodes.

Chapter 2 0 . More Devices and Dr ivers

I n This Chapter

ECC Report ing
578

Frequency Scaling
583

Em bedded Cont rollers
584

ACPI
585

I SA and MCA
587

FireWire
588

I ntelligent I nput / Output
589

Am ateur Radio
590

Voice over I P
590

High-Speed I nterconnects
591

So far, we have devoted a full chapter to each m ajor device dr iver class, but there are several
subdirector ies under dr ivers/ that we haven't yet descended into. I n this chapter let 's venture
inside som e of them at a br isk pace.

ECC Report ing

Several m em ory cont rollers contain special silicon to m easure the fidelity of stored data using error correct ing
codes (ECCs) . The Error Detect ion And Correct ion (EDAC) dr iver subsystem announces occurrences of mem ory
error events generated by ECC-aware m em ory cont rollers. Typical ECC DRAM chips have the capabilit y to
correct single-bit errors (SBEs) and detect m ult ibit errors (MBEs) . I n EDAC parlance, the form er errors are
correctable errors (CEs) , whereas the lat ter are uncorrectable errors (UEs) .

ECC operat ions are t ransparent to the operat ing system . This m eans that if your DRAM cont roller supports ECC,
error correct ion and detect ion occurs silent ly without operat ing system part icipat ion. EDAC's task is to report
such events and allow users to fashion error handling policies (such as replace a suspect DRAM chip) .

The EDAC driver subsystem consists of the following:

A core m odule called edac_m c that provides a set of library rout ines.

Separate dr ivers for interact ing with supported m emory cont rollers. For exam ple, the dr iver m odule that
works with the m em ory cont roller that is part of the I ntel 82860 North Bridge is called i82860_edac.

EDAC reports errors via files in the sysfs directory, / sys/ devices/ system / edac/ . I t also generates m essages that
can be gleaned from the kernel error log.

The layout of DRAM chips is specified in term s of the num ber of chip-selects em anat ing from the m em ory
cont roller and the data- t ransfer width (channels) between the m em ory cont roller and the CPU. The num ber of
rows in the DRAM chip array depends on the form er, whereas the num ber of colum ns hinge on the lat ter. One of
the m ain aim s of EDAC is to point the needle of suspicion at problem DRAM chips, so the EDAC sysfs node
st ructure is designed according to the physical chip layout : / sys/ devices/ system / edac/ m c/ m cX/ csrowY/
corresponds to chip-select row Y in m em ory cont roller X. Each such directory contains details such as the
num ber of detected CEs (ce_count) , UEs (ue_count) , channel locat ion, and other at t r ibutes.

Device Exam ple: ECC- Aw are Mem ory Cont roller

Let 's add EDAC support for a yet -unsupported m em ory cont roller. Assum e that you're put t ing Linux onto a
m edical grade device that is an em bedded x86 derivat ive. The North Bridge chipset (which includes the m em ory
cont roller as discussed in the sidebar "The North Bridge" in Chapter 12, "Video Drivers") on your board is the
I ntel 855GME that is capable of ECC report ing. All DRAM banks connected to the 855GME on this system are
ECC-enabled chips because this is a life-cr it ical device. EDAC does not yet support the 855GME, so let 's take a
stab at im plem ent ing it .

ECC DRAM cont rollers have two m ajor ECC-related registers: an error status register and an error address
pointer register, as shown in Table 20.1. When an ECC error occurs, the form er contains the status (whether the
error is an SBE or an MBE) , whereas the lat ter contains the physical address where the error occurred. The
EDAC core periodically checks these registers and reports results to user space via sysfs. From a configurat ion
standpoint , all devices inside the 855GME appear to be on PCI bus 0. The DRAM cont roller resides on device 0 of
this bus. DRAM interface cont rol registers (including the ECC-specific registers) m ap into the corresponding PCI
configurat ion space. To add EDAC support for the 855GME, add hooks to read these registers, as shown in
List ing 20.1. Refer back to Chapter 10, "Peripheral Com ponent I nterconnect ," for explanat ions on PCI device
driver m ethods and data st ructures.

Table 2 0 .1 . ECC- Related Registers on the DRAM Cont r oller

ECC-Specific Registers Residing in the
DRAM Cont roller 's PCI Configurat ion
Space

Descript ion

I855_ERRSTS_REGISTER The error status register, which signals
occurrence of an ECC error. Shows
whether the error is an SBE or an MBE.

I855_EAP_REGISTER The error address pointer register, which
contains the physical address where the
m ost recent ECC error occurred.

List ing 2 0 .1 . An EDAC Dr iver for the 8 5 5 GME

Code View:
/* Based on drivers/edac/i82860_edac.c */

#define I855_PCI_DEVICE_ID 0x3584 /* PCI Device ID of the memory
 controller in the 855 GME */
#define I855_ERRSTS_REGISTER 0x62 /* Error Status Register's offset
 in the PCI configuration space */
#define I855_EAP_REGISTER 0x98 /* Error Address Pointer Register's
 offset in the PCI configuration space */
struct i855_error_info {
 u16 errsts; /* Error Type */
 u32 eap; /* Error Location */
};

/* Get error information */
static void
i855_get_error_info(struct mem_ctl_info *mci,
 struct i855_error_info *info)
{
 struct pci_dev *pdev;

 pdev = to_pci_dev(mci->dev);
 /* Read error type */
 pci_read_config_word(pdev, I855_ERRSTS_REGISTER, &info->errsts);
 /* Read error location */
 pci_read_config_dword(pdev, I855_EAP_REGISTER, &info->eap);
}

/* Process errors */
static int
i855_process_error_info(struct mem_ctl_info *mci,
 struct i855_error_info *info,
 int handle_errors)
{
 int row;

 info->eap >>= PAGE_SHIFT;
 row = edac_mc_find_csrow_by_page(mci, info->eap); /* Find culprit row */

 /* Handle using services provided by the EDAC core.
 Populate sysfs, generate error messages, and so on */
 if (is_MBE()) { /* is_MBE() looks at I855_ERRSTS_REGISTER and checks
 for an MBE. Implementation not shown */

 edac_mc_handle_ue(mci, info->eap, 0, row, "i855 UE");
 } else if (is_SBE()) { /* is_SBE() looks at I855_ERRSTS_REGISTER and checks
 for an SBE. Implementation not shown */
 edac_mc_handle_ce(mci, info->eap, 0, info->derrsyn, row, 0,
 "i855 CE");
 }

 return 1;
}

/* This method is registered with the EDAC core from i855_probe() */
static void
i855_check(struct mem_ctl_info *mci)
{
 struct i855_error_info info;

 i855_get_error_info(mci, &info);
 i855_process_error_info(mci, &info, 1);
}

/* The PCI driver probe method, part of the pci_driver structure */
static int
i855_probe(struct pci_dev *pdev, int dev_idx)
{
 struct mem_ctl_info *mci;

 /* ... */
 pci_enable_device(pdev);

 /* Allocate control memory for this memory controller.
 The 3 arguments to edac_mc_alloc() correspond to the
 amount of requested private storage, number of chip-select
 rows, and number of channels in your memory layout */
 mci = edac_mc_alloc(0, CSROWS, CHANNELS);
 /* ... */
 mci->edac_check = i855_check; /* Supply the check method to the
 EDAC core */
 /* Do other memory controller initializations */
 /* ... */
 /* Register this memory controller with the EDAC core */
 edac_mc_add_mc(mci, 0);
 /* ... */
}

/* Remove method */
static void __devexit
i855_remove(struct pci_dev *pdev)
{
 struct mem_ctl_info *mci = edac_mc_find_mci_by_pdev(pdev);
 if (mci && !edac_mc_del_mc(mci)) {
 edac_mc_free(mci); /* Free memory for this controller. Reverse
 of edac_mc_alloc() */
 }
}

/* PCI Device ID Table */
static const struct pci_device_id i855_pci_tbl[] __devinitdata = {
 {PCI_VEND_DEV(INTEL, I855_PCI_DEVICE_ID),
 PCI_ANY_ID, PCI_ANY_ID, 0, 0,},

 {0,},
};

MODULE_DEVICE_TABLE(pci, i855_pci_tbl);

/* pci_driver structure for this device.
 Re-visit Chapter 10 for a detailed explanation */
static struct pci_driver i855_driver = {
 .name = "855",
 .probe = i855_probe,
 .remove = __devexit_p(i855_remove),
 .id_table = i855_pci_tbl,
};

/* Driver Initialization */
static int __init
i855_init(void)
{
 /* ... */
 pci_rc = pci_register_driver(&i855_driver);
 /* ... */
}

Look at dr ivers/ edac/ * for EDAC source files and at Docum entat ion/ dr ivers/ edac/ edac.txt for detailed sem ant ics
of EDAC sysfs nodes.

Frequency Scaling

The CPU frequency (cpufreq) dr iver subsystem aids power m anagem ent by scaling CPU frequencies on- the- fly.
I f you use a suitable scaling algorithm (called a governor) , your device's bat tery can potent ially last longer.
Cpufreq supports several architectures such as x86, ARM, and PowerPC. To obtain cpufreq capabilit ies, you also
need to enable a suitable processor dr iver (say, the I ntel Enhanced SpeedStep driver if you are using a
SpeedStep-enabled CPU such as Pent ium M) .

You can cont rol cpufreq's behavior via files in the / sys/ devices/ system / cpu/ cpuX/ cpufreq/ directory, where X is
the CPU num ber. To set m axim um and m inim um frequency scaling lim its, write desired values to
scaling_max_freq and scaling_min_freq , respect ively. To see a list of supported cpufreq governors, look at
the contents of scaling_available_governors . The kernel supports several governors:

The perform ance governor stat ically sets the CPU frequency to scaling_max_freq .

Powersave sets the CPU frequency to scaling_min_freq .

Ondem and adjusts the frequency depending on CPU load.

Conservat ive is a variant of ondem and where the speed change occurs sm oothly in gradual steps.

Userspace lets applicat ions dictate the scaling technique. Som e dist r ibut ions set the governor to userspace
and im plem ent the scaling algorithm via a daem on called cpuspeed, which is spawned during boot .

You m ay also im plem ent your own kernel governor using the cpufreq_register_governor() interface.

Each supported governor is im plem ented as a kernel m odule. To see cpufreq in act ion, assign a governor and
vary the system load:

bash> cd /sys/devices/system/cpu/cpu0/cpufreq

bash>cat scaling_max_freq Maximum frequency

1700000

bash> cat scaling_min_freq Minimum frequency

600000

bash> cat cpuinfo_cur_freq Current frequency

600000

bash> cat scaling_governor Scaling algorithm in use

powersave
bash> cat scaling_available_frequencies

1700000 1400000 1200000 1000000 800000 600000
bash> cat scaling_available_governors

conservative ondemand powersave userspace performance
bash> echo conservative > scaling_governor

 Assign 'conservative' governor

bash> ls -lR / Switch to another terminal and

 load your system by recursively

 traversing all directories.

I f you now m onitor the running frequency by looking at
/ sys/ devices/ system / cpu/ cpu0/ cpufreq/ cpuinfo_cur_freq, you will see it dancing to the tune of the CPU load.

The CPU scaling code lives in the dr ivers/ cpufreq/ directory. Look at Docum entat ion/ cpu- freq/ * for the detailed
sem ant ics of cpufreq sysfs nodes.

Em bedded Cont rollers

Notebook com puters and their derivat ives usually contain a built - in em bedded cont roller (EC) to take care of
various side responsibilit ies, including the following:

I nterfacing with the keyboard cont roller

Managing therm al events

Handling special but tons and LEDs

Cont rolling system and CPU fan speeds

Monitor ing bat tery voltage

Most of these funct ions are specific to the OEM's hardware im plem entat ion. Different OEMs use different ECs;
I BM/ Lenovo laptops, for exam ple, em bed a Renesas H8 m icrocont roller to assist the m ain processor. The
interface to access the EC, however, is standard irrespect ive of the m ake of the cont roller. The BI OS and the
operat ing system operate on I / O port 0x80 to read inform at ion from the EC and I / O port 0x81 to write data to
the EC. On desktops, these ports provide access to the keyboard cont roller rather than to a general-purpose EC.

The next sect ion refers to an exam ple dr iver that detects telem et ry st rength by accessing EC m em ory space.

ACPI

Advanced Configurat ion and Power I nterface (ACPI) is a power-m anagem ent specificat ion that replaces earlier
standards such as Advanced Power Managem ent (APM) . ACPI is responsible for t ransit ioning the system
between power states. I t also has the task of interfacing with devices and sensors connected to the EC. Such
devices are called ACPI devices, and m em ory devoted to handle them is called ACPI space.

As you saw elsewhere in this book, low- level code is not the place to im plem ent policy. This was the main
problem with APM, where m ost of the power-m anagem ent policies were part of BI OS firm ware. ACPI shifts
policy one level up, to the operat ing system . Using a daem on called acpid, ACPI even allows policy to be pushed
one m ore level up, to user-space configurat ion files. By adding rules to an acpid configurat ion file, you can
decide what to do when a hotkey is pressed or when a therm al t r ip occurs.

Even with ACPI , low- level BI OS firm ware retains the responsibilit y of interfacing with hardware and detect ing
ACPI events such as a power but ton press or a therm al sensor report . To perform this, the BI OS ut ilizes a
special x86 execut ion m ode t r iggered via system m anagem ent interrupts (SMI s) . The SMI execut ion m ode is
t ransparent to the operat ing system . To not ify the operat ing system about ACPI events detected in SMI m ode,
the BI OS asserts a system cont rol interrupt (SCI) . Look at dr ivers/ acpi/ osl.c for the Linux ACPI code that
requests the SCI I RQ.

Linux ACPI com ponents include the following:

A core layer that provides ACPI essent ials such as the ACPI Machine Language (AML) interpreter. ACPI -
specific BI OS code is writ ten in AML, a language that runs on a vir tual m achine im plem ented by the
operat ing system 's AML interpreter.

1 .

ACPI dr ivers for interfacing with standard com ponents such as the EC (dr ivers/ acpi/ ec.c) , but tons
(drivers/ acpi/ but ton.c) , and fan (dr ivers/ acpi/ fan.c) . OEM-specific dr ivers offer support for features not
supported by the standard ACPI dr ivers. For exam ple, dr ivers/ m isc/ thinkpad_acpi.c[1] is the OEM-specific
dr iver that im plem ents ext ras for I BM/ Lenovo Thinkpads. On an I BM/ Lenovo Thinkpad, the files under
/ proc/ acpi/ are generated by the standard ACPI dr ivers, whereas those in / proc/ acpi/ ibm / are produced by
the OEM-specific dr iver. So, to get the current tem perature, do this:

[1] Pr ior to 2.6.22, this dr iver used to be drivers/ acpi/ ibm_acpi.c.

bash> cat /proc/acpi/thermal_zone/THM0/temperature

temperature: 39 C

But to turn on the night light on top of the LCD display, get help from the OEM-specific dr iver:

bash> echo on > /proc/acpi/ibm/light

2 .

A kernel thread kacpid that ACPI uses to queue work for execut ion.3 .

I ndividual device dr ivers that use ACPI 's services to respond to t ransit ions in the system 's power state. To
achieve this, dr ivers register suspend() and resume() m ethods with the kernel's device m odel. We
alluded to these m ethods while discussing the platform_driver st ructure in Chapter 6 , "Serial Drivers,"
the spi_driver st ructure in Chapter 8 , "The I nter- I ntegrated Circuit Protocol," the pcmcia_driver
st ructure in Chapter 9 , "PCMCI A and Com pact Flash," and the pci_driver st ructure in Chapter 10.

4 .

User-space tools such as acpitool, which report the state of various ACPI devices, show therm al zone
inform at ion and suspend the system to different sleep states:

bash> acpitool

Battery #1 : charging, 69.08%, 01:14:02
AC adapter : on-line
Thermal zone 1 : ok, 38 C

5 .

The acpid daem on, which is the policy enabler for ACPI events. I t listens on / proc/ acpi/ events for power-
m anagem ent events reported by the kernel. When you press the power but ton or when a therm al t r ip
occurs, the kernel ACPI dr iver dispatches an event to user space via / proc/ acpi/ events. Acpid reads this,
passes it through configurat ion scr ipts present in / etc/ acpi/ events/ and takes specified act ions. Assum e
that you want to execute a specific program (/ bin/ lidhandler) when your laptop's lid but ton is pressed. For
this, add the following to / etc/ acpi/ events/ acpi_handler.sh:

event=button/lid.*
action=/bin/lidhandler

You m ay use cpufreq in tandem with ACPI . You can, for exam ple, add this line inside / bin/ lidhandler to
drop down the processor frequency when you shut your laptop's lid:

echo powersave > /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor

6 .

You can download the ACPI specificat ions from www.acpi. info.

As an exercise, consider that you have a telem et ry card[2] built in to an em bedded laptop derivat ive, and that
the EC is connected to a sensor that m easures telemet ry st rength. To access telem et ry st rength via / proc/ acpi/
(or / sys/ bus/ acpi/) , update the corresponding laptop m odel's "ext ras" dr iver present in dr ivers/ m isc/ . I f your
board is a derivat ive of an I BM/ Lenovo Thinkpad, for exam ple, m odify dr ivers/ m isc/ thinkpad_acpi.c accordingly.
You m ay use the ec_read() and ec_write() kernel funct ions to access the locat ion that stores telem et ry
st rength in the EC's ACPI space.

[2] We developed a dr iver for an exam ple telem et ry card in Chapter 11, " Universal Serial Bus."

I SA and MCA

The I ndust r ies Standard Architecture (I SA) started as a bus for interfacing I / O devices with the PC but evolved
into a de facto standard. I SA drivers would have m erited a separate chapter several years earlier; but today,
with the advent of the PCI bus, I SA has all but disappeared.

There are two m ain bus-specific factors that I SA device dr ivers have to contend with:

I SA does not offer standard interfaces that dr ivers can use to detect resource inform at ion that is
elect r ically wired or assigned by boot firm ware. I mplem ent ing com plex probing logic, often leveraging
device-specific quirks, is an im portant part of I SA driver init ializat ion. This is unlike the PCI bus, where the
device dr iver can cleanly decipher the ident ity of resources such as interrupt request lines and I / O base
addresses assigned by boot firm ware. You learned how to do this when we discussed the PCI configurat ion
space in Chapter 10. We also br iefly looked at I SA probing in the sect ion " I SA Network Drivers" in Chapter
15, "Network I nterface Cards."

The I SA Plug-and-Play (PnP) specificat ion at tem pts to br ing a degree of autoconfigurabilit y to I SA,
however.

The I SA bus has a width of 24 bits, so devices can access only the low 16MB of system m em ory. To DMA
network data from an I SA Ethernet card, for exam ple, DMA buffers have to reside in the low 16MB range
called ZONE_DMA. The Extended I ndust ry Standard Architecture (EI SA) , however, widens the I SA bus to 32
bits. You can plug I SA devices into EI SA slots.

Today, the LPC bus is used rather than the I SA bus to connect legacy peripherals to the CPU on PC-com pat ible
system s. We discussed LPC devices such as Super I / O chipsets, firm ware hubs, and therm al sensors in earlier
chapters.

The Micro-Channel Architecture (MCA) bus overcom es m any of the lim itat ions of the I SA fam ily. MCA supports
bus m astering, autoconfigurat ion, and 32-bit bus widths. Though technologically superior to I SA, MCA didn't
becom e as popular because of its proprietary nature.

Look at dr ivers/ net / tokenring/ skisa.c for a sam ple I SA driver for a Token Ring card. The I BM Token Ring driver,
dr ivers/ net / tokenring/ ibm tr.c, supports I SA, PnP, and MCA form factors of I BM Token Ring hardware. The 3COM
Ethernet dr iver, dr ivers/ net / 3c509.c, dr ives MCA, PnP, and EI SA form factors of a 3COM Ethernet card. The
kernel provides core rout ines for the use of PnP, EI SA, and MCA drivers. These im plem entat ions live in
drivers/ pnp/ , dr ivers/ eisa/ , and drivers/ m ca/ , respect ively.

FireW ire

FireWire, or I EEE 1394, is a high-speed serial bus protocol invented by Apple for connect ing peripheral devices
to a system . I t provides data rates of up to 800Mbps (I EEE 1394b) . Figure 10.1 in Chapter 10 shows the
connect ion of the FireWire cont roller on an x86-based laptop.

FireWire is sim ilar to USB 2.0 in that both are external I / O buses that support high speeds and device
hotplugging. FireWire, however, is a peer- to-peer protocol, unlike the m aster-slave USB 2.0, so two FireWire-
enabled devices can exchange inform at ion without the intervent ion of a PC. Because of this character ist ic,
FireWire is popular on m ult im edia devices such as cam corders. As you learned in Chapter 11, the On-The-Go
supplem ent br ings peer- to-peer capabilit y to USB 2.0, too.

FireWire on Linux is architected as follows:

Device dr ivers such as ohci1394 that interface with FireWire cont rollers.

Protocol dr ivers for applicat ions such as storage, video, and networking. The FireWire Serial Bus Protocol 2
(SBP2) dr iver is a low- level FireWire protocol dr iver that lets you use your FireWire storage m edia as you
would use a SCSI disk or a USB m ass storage device. SBP2 has to be used in tandem with a high- level
SCSI dr iver such as sd_m od (for disks) or sr_m od (for CD-ROMs) . Applicat ions such as cdrecord work over
FireWire CD drives just as they work with USB CD drives. The dv1394 and video1394 protocol dr ivers
enable you to capture video via FireWire, and the eth1394 protocol dr iver lets you run TCP/ I P over
FireWire.

A FireWire core that provides services to both previously m ent ioned.

User-space librar ies such as libraw1394 that assist in developing FireWire-aware applicat ions.

Look at dr ivers/ ieee1394/ * for FireWire kernel sources and go to www.linux1394.org for detailed
docum entat ion.

Start ing with the 2.6.22 release, the kernel has an alternate, slim m er FireWire stack liv ing in the
drivers/ firewire/ directory.

I nte lligent I nput / Output

I ntelligent I nput / Output (or I 2O) is a standard that calls for offloading I / O act ivit ies from the m ain processor to
an I / O coprocessor residing on an I 2O adapter. I 2O is largely defunct today, and the I 2O Special I nterest Group
(I 2O SI G) has ceased to exist . However, m any operat ing system s, including Linux, cont inue support for I 2O.

I 2O hardware is available for technologies such as SCSI , RAI D, and networking. I 2O part it ions the software
architecture into an OS-specific m odule (OSM) running on the m ain processor and a hardware-specific m odule
(HDM) execut ing on the I 2O adapter. HDMs are OS-agnost ic and can be reused across operat ing system s, so
the OSMs are rendered sim pler.

Linux supports I 2O in the form of an I 2O core, dr ivers for I 2O adapters, and various OSMs. Look at the Linux
I 2O hom e page at ht tp: / / i2o.shadowconnect .com and the sources in dr ivers/ m essage/ i2o/ for m ore details.

http://i2o.shadowconnect.com

Am ateur Radio

Am ateur (ham) radio is a packet radio technology used for round- the-world com m unicat ion by hobbyists. I t 's
also often used to respond to calam it ies such as floods and cyclones. To use am ateur radio on Linux, you need
the following:

A low- level m odem driver to access your radio. Modem drivers for several am ateur radio devices are
present in dr ivers/ net / ham radio/ .

One or m ore packet protocols such as AX.25, Rose, and Net rom . The AX.25 protocol is an adaptat ion of
the X.25 protocol for am ateur radio. Look at the Linux Am ateur Radio AX.25 HOWTO for an explanat ion of
the protocol, the net / ax25/ directory for the sources, and ht tp: / / ham s.sourceforge.net for user-space
ut ilit ies and librar ies that operate over AX.25. Rose (net / rose/) and Net rom (net / net rom /) are network
protocols that use AX.25 as the data link layer. You can write Linux socket applicat ions that run over
AX.25, Rose, and Net rom using the AF_AX25, AF_ROSE, and AF_NETROM protocol fam ilies, respect ively.

http://hams.sourceforge.net

Voice over I P

Voice over I nternet Protocol (VoI P) is a technology that uses the I nternet to carry voice t raffic. VoI P lets you
m ake voice-quality telephone calls at cheap rates. There are several PCI - , PC Card- , and USB-based VoI P
solut ions available for the PC environm ent . Device dr ivers for several of these cards are available on Linux. Not
m any are integrated into the m ainline kernel, however. The drivers/ telephony/ directory contains dr ivers for a
few VoI P devices and a regist rat ion API that future dr ivers can use.

With the increasing popular ity of Linux in the em bedded telecom space, there are several Linux I P telephones in
the m arket today. Figure 20.1 shows a VoI P-enabled device having a hardware voice codec that im plem ents
standards such as G.711 and G.729 for encoding and decoding voice st ream s. The device draws power using a
technology called Power over Ethernet (PoE) that t ransm its power along with the Ethernet cable. A device dr iver
com m unicates with the VoI P hardware.

Figure 2 0 .1 . A VoI P phone.

[View full size im age]

VoI P drivers work in tandem with t ransport protocols such as Real Tim e Transport Protocol (RTP) and call
cont rol signaling stacks such as Session I nit iat ion Protocol (SI P) and H.323. On top of these protocols sit various
I P telephony applicat ions.

Solut ions that im plem ent VoI P codecs in software are also popular in the em bedded space. They usually reside
in user space and interact with the following:

Kernel audio dr ivers using OSS or ALSA API s

Kernel network dr ivers using the socket API

SoCs oriented toward the Video-and-Voice over I P (V2I P) m arket usually contain hardware support for video
codecs such as H.264. I f you are put t ing Linux onto a V2I P phone, you need to im plem ent dr ivers to interface
with such codecs, too.

High- Speed I nterconnects

High-speed interconnect ing technologies such as I nfiniBand, RapidI O, Hyper-Transport , and 10 Gigabit Ethernet
are not com m on in the PC or low-end em bedded environm ents. You are m ore likely to find them on clusters,
blade servers, gam ing system s, switches, or high-speed routers. Networking technologies such as Fibre Channel
and I nternet SCSI (iSCSI) can be found in enterprise environm ents served by storage-area networks (SANs) .

Let 's peek at the dr iver subsystem s for som e of these technologies.

I nf in iBand

I nfiniBand is a high-speed serial bus standard or iginally intended to replace PCI . PCI Express, however, has
becom e the accepted future of system buses. Today, I nfiniBand technology is com m only used in blade server
designs to provide a high-perform ance storage and networking fabric. I nfiniBand supports Rem ote DMA (RDMA) ,
which allows data to be DMA-ed from the m em ory of one com puter system to another.

The Linux I nfiniBand subsystem includes core support for I nfiniBand, device dr ivers for host channel adapters,
and an im plem entat ion of I P over I nfiniBand. Look inside dr ivers/ infiniband/ for the Linux I nfiniBand subsystem
and at Docum entat ion/ infiniband/ * for related documentat ion.

RapidI O

RapidI O is another high-speed serial bus technology, which is used for connect ing boards via a back plane. I t
supports speeds of the order of 10Gbps. An exam ple processor that supports RapidI O is the power-based
MPC8540 from Freescale, targeted at em bedded devices such as network routers and switches.

The Linux RapidI O subsystem provides a core set of rout ines that can be used to dr ive devices on the RapidI O
bus. There are two ways to com m unicate over a -RapidI O interconnect :

Short , out -of-band m essages using doorbells. Doorbell services provided by the RapidI O core are
rio_request_inb_dbell() , rio_release_inb_dbell() , rio_request_outb_dbell() , and
rio_release_outb_dbell() .

1 .

High-bandwidth data delivery using m ailboxes. Mailbox services provided by the RapidI O core are
rio_request_inb_mbox() , rio_release_inb_mbox() , rio_request_outb_mbox() , and
rio_release_outb_mbox() .

2 .

Take a look inside dr ivers/ rapidio/ for the sources.

Fibre Channel

Fibre Channel is a m odern high-speed serial bus protocol used to talk with storage system s. Fibre Channel
interface cards have fiber-opt ic ports to talk to storage devices on SANs. Fibre Channel is com pat ible with SCSI ,
so a Fibre Channel device dr iver is essent ially a SCSI dr iver with ext ras to handle fiber channels.

Linux supports a Fibre Channel core and device dr ivers to handle Fibre Channel hardware. Look inside
drivers/ fc4/ for the sources.

iSCSI

iSCSI is another SAN technology. I t allows the t ransport of SCSI packets over TCP/ I P networks. With iSCSI , a
rem ote block device appears to your system as local storage. The rem ote system owning the storage is called
an iSCSI target , and local system s using the storage are called iSCSI init iators.

Linux supports iSCSI via a kernel dr iver, dr ivers/ scsi/ iscsi_tcp.c, and a user-space daem on called iscsid. The
hom e page of the Linux- iSCSI project is at ht tp: / / linux- iscsi.sourceforge.net .

http://linux-iscsi.sourceforge.net

Chapter 2 1 . Debugging Device Dr ivers

I n This Chapter

Kernel Debuggers
596

Kernel Probes
609

Kexec and Kdum p
620

Profiling
629

Tracing
634

Linux Test Project
638

User Mode Linux
638

Diagnost ic Tools
638

Kernel Hacking Config Opt ions
639

Test Equipm ent
640

Now that we have learned how to im plem ent diverse classes of device dr ivers, let 's take a step
back and explore som e debugging techniques. I nvest ing t im e in logic design and software
engineering before code developm ent and star ing hard at the code after developm ent can
m inim ize or even elim inate bugs. But because that is easier said than done, and because we are
all hum ans, developers need debugging tools. I n this chapter, let 's look at a variety of m ethods to
debug kernel code.

Reliabilit y, Availabilit y, Serviceabilit y

Many system s, especially m ission cr it ical ones, have a need for reliabilit y, availabilit y, and
serviceabilit y (RAS) . The Linux RAS effort has resulted in the developm ent of several powerful
tools. Exercisers such as the Linux Test Project (LTP) m easure the reliabilit y and robustness of
your kernel port . CPU hotplugging and the Linux High Availabilit y (HA) project can be seen in the
context of availabilit y. Kernel debuggers, Kprobes, Kdum p, EDAC, and the Linux Trace Toolkit
(LTT) com e under the am bit of serviceabilit y. The line dividing these classificat ions is som et im es
thin; you can use any or a com binat ion of these m ethods to suit your debugging needs. For
exam ple, output from a kernel profiler such as OProfile can be used either to search for potent ial
code bot t lenecks (reliabilit y) or to debug a field problem (serviceabilit y) .

Kernel Debuggers

The Linux kernel has no built - in debugger support . Whether to include a debugger as part of the stock kernel is
an oft -debated point in kernel m ailing lists. The inst ruct ion level Kernel Debugger (kdb) and the source- level
Kernel GNU Debugger (kgdb) are the two m ain Linux kernel debuggers. As of today, whether you use kdb or
kgdb, you need to download relevant patches and apply them to your kernel sources. Even if you want to stay
away from the hassle of patching your kernel sources with debugger support , you can glean inform at ion about
kernel panics and peek at kernel variables via the plain GNU Debugger (gdb) . JTAG debuggers use hardware-
assisted debugging and are powerful, but expensive.

Kernel debuggers m ake kernel internals m ore t ransparent . You can single-step through inst ruct ions,
disassem ble inst ruct ions, display and m odify kernel variables, and look at stack t races. I n this chapter, let 's
learn the basics of kernel debuggers with the help of som e exam ples.

Enter ing a Debugger

You can enter a kernel debugger in m ult iple ways. One way is to pass com m and- line argum ents that ask the
kernel to enter the debugger during boot . Another way is via software or hardware breakpoints. A breakpoint is
an address where you want execut ion stopped and cont rol t ransferred to the debugger. A software breakpoint
replaces the inst ruct ion at that address with som ething else that causes an except ion. You m ay set software
breakpoints either using debugger com m ands or by insert ing them into your code. For x86-based system s, you
can set a software breakpoint in your kernel source code as follows:

asm(" int $3");

Alternat ively, you can invoke the BREAKPOINT m acro, which t ranslates to the appropriate architecture-dependent
inst ruct ion.

You m ay use hardware breakpoints in place of software breakpoints if the inst ruct ion where you need to stop is
in flash m em ory, where it cannot be replaced by the debugger. A hardware breakpoint needs processor support .
The corresponding address has to be added to a debug register. You can only have as m any hardware

breakpoints as the num ber of debug registers supported by the processor.

You m ay also ask a debugger to set a watchpoint on a variable. The debugger stops execut ion whenever an
inst ruct ion m odifies data at the watchpoint address.

Yet another com m on m ethod to enter a debugger is by hit t ing an at tent ion key, but there are instances when
this won't work. I f your code is sit t ing in a t ight loop after disabling interrupts, the kernel will not get a chance
to process the at tent ion key and enter the debugger. For exam ple, you can't enter the debugger via an
at tent ion key if your code does som ething like this:

unsigned long flags;

local_irq_save(flags);
while (1) continue;
local_irq_restore(flags);

When cont rol is t ransferred to the debugger, you can start your analysis using various debugger com m ands.

Kernel Debugger (kdb)

Kdb is an inst ruct ion- level debugger used for debugging kernel code and device dr ivers. Before you can use it ,
you need to patch your kernel sources with kdb support and recom pile the kernel. (Refer to the sect ion
"Downloads" for inform at ion on downloading kdb patches.) The m ain advantage of kdb is that it 's easy to set
up, because you don't need an addit ional m achine to do the debugging (unlike kgdb) . The m ain disadvantage is
that you need to correlate your sources with disassem bled code (again, unlike kgdb) .

Let 's wet our toes in kdb with the help of an exam ple. Here's the cr im e scene: You have m odified a kernel serial
dr iver to work with your x86-based hardware. But the dr iver isn't working, and you would like kdb to help nab
the culpr it .

Let 's start our search for fingerprints by set t ing a breakpoint at the serial dr iver open() ent ry point . Rem em ber,
because kdb is not a source- level debugger, you have to open your sources and t ry to m atch the inst ruct ions
with your C code. Let 's list the source snippet in quest ion:

drivers/serial/myserial.c:

static int rs_open(struct tty_struct *tty, struct file *filp)
{
 struct async_struct *info;

 /* ... */
 retval = get_async_struct(line, &info);
 if (retval) return(retval);
 tty->driver_data = info;
 /* Point A */

 /* ... */
}

Press the Pause key and enter kdb. Let 's find out how the disassem bled rs_open() looks. As usual, all debug
sessions shown in this chapter at tach explanat ions using the sym bol.

Entering kdb (current=0xc03f6000, pid 0) on processor 0 due to
Keyboard Entry

kdb> id rs_open Disassemble rs_open

0xc01cce00 rs_open: sub $0x1c, %esp
0xc01cce03 rs_open+0x03: mov $ffffffed, %ecx
...
0xc01cce4b rs_open+0x4b: call 0xc01ccca0, get_async_struct
...
0xc01cce56 rs_open+0x56: mov 0xc(%esp,1), %eax
0xc01cce5a rs_open+0x5a: mov %eax, 0x9a4(%ebx)
...

Point A in the source code is a good place to at tach a breakpoint because you can peek at both the tty
st ructure and the info st ructure to see what 's going on.

Looking side by side at the source and the disassembly, rs_open+0x5a corresponds to Point A. Note that
correlat ion is easier if the kernel is com piled without opt im izat ion flags.

Set a breakpoint at rs_open+0x5a (which is address 0xc01cce5a) and cont inue execut ion by exit ing the
debugger:

kbd> bp rs_open+0x5a Set breakpoint

kbd> go Continue execution

Now you need to get the kernel to call rs_open() to hit the breakpoint . To t r igger this, execute an appropriate
user-space program . I n this case, echo som e characters to the corresponding serial port (/ dev/ t tySX) :

bash> echo "kerala monsoons" > /dev/ttySX

This results in the invocat ion of rs_open() . The breakpoint gets hit , and kdb assum es cont rol:

Entering kdb on processor 0 due to Breakpoint @ 0xc01cce5a
kdb>

Let 's now find out the contents of the info st ructure. I f you look at the disassem bly, one inst ruct ion before the
breakpoint (rs_open+0x56) , you will see that the EAX register contains the address of the info st ructure. Let 's
look at the register contents:

kbd> r Dump register contents

eax = 0xcf1ae680 ebx = 0xce03b000 ecx = 0x00000000
...

So, 0xcf1ae680 is the address of the info st ructure. Dum p its contents using the md com m and:

kbd> md 0xcf1ae680 Memory dump

0xcf1ae680 00005301 0000ABC 00000000 10000400
...

To m ake sense of this dum p, let 's look at the corresponding st ructure definit ion. info is defined as struct
async_struct in include/ linux/ serialP.h as follows:

struct async_struct {
 int magic; /* Magic Number */
 unsigned long port; /* I/O Port */
 int hub6;
 /* ... */
};

I f you m atch the dum p with the definit ion, 0x5301 is the m agic num ber and 0xABC is the I / O port . Well, isn't this
interest ing! 0xABC doesn't look like a valid port . I f you have done enough serial port debugging, you will know
that the I / O port base addresses and I RQs are configured in include/ asm -x86/ serial.h for x86-based hardware.
Change the port definit ion to the correct value, recom pile the kernel, and cont inue your test ing!

Kernel GNU Debugger (kgdb)

Kgdb is a source- level debugger. I t is easier to use than kdb because you don't have to spend t im e correlat ing
assem bly code with your sources. However it 's m ore difficult to set up because an addit ional m achine is needed
to front -end the debugging.

You have to use gdb in tandem with kgdb to step through kernel code. gdb runs on the host m achine, while the
kgdb-patched kernel (refer to the "Downloads" sect ion for inform at ion on downloading kgdb patches) runs on
the target hardware. The host and the target are connected via a serial null-m odem cable, as shown in Figure
21.1. [1]

[1] You can also launch kgdb debug sessions over Ethernet .

Figure 2 1 .1 . Kgdb setup.

You have to inform the kernel about the ident ity and baud rate of the serial port via com m and- line argum ents.
Depending on the boot loader used, add the following kernel argum ents to either syslinux.cfg, lilo.conf, or
grub.conf:

kgdbwait kgdb8250=X,115200

kgdbwait asks the kernel to wait unt il a connect ion is established with the host -side gdb, X is the serial port
connected to the host , and 115200 is the baud rate used for com m unicat ion.

Now configure the sam e baud rate on the host side:

bash> stty speed 115200 < /dev/ttySX

I f your host com puter is a laptop that does not have a serial port , you m ay use a USB- to-serial converter for the
debug session. I n that case, instead of / dev/ t tySX, use the / dev/ t tyUSBX node created by the usbserial dr iver.
Figure 6.4 of Chapter 6 , "Serial Drivers," illust rates this scenario.

Let 's learn kgdb basics using the exam ple of a buggy kernel m odule. Modules are easier to debug because the
ent ire kernel need not be recom piled after m aking code changes, but rem em ber to com pile your m odule with
the -g opt ion to generate sym bolic inform at ion. Because modules are dynam ically loaded, the debugger needs
to be inform ed about the sym bolic inform at ion that the m odule contains. List ing 21.1 contains a buggy
trojan_function() . Assum e that it 's defined in dr ivers/ char/ m y_m odule.c.

List ing 2 1 .1 . Buggy Funct ion

char buffer;

int
trojan_function()
{
 int *my_variable = 0xAB, i;

 /* ... */
 Point A:
 i = *my_variable; /* Kernel Panic: my_variable points
 to bad memory */
 return(i);
}

I nsert m y_m odule.ko on the target and look inside / sys/ m odule/ m y_m odule/ sect ions/ to decipher ELF
(Executable and Linking Form at) sect ion addresses. [2] The .text sect ion in ELF files contains code, .data
contains init ialized variables, .rodata contains init ialized read-only variables such as st r ings, and .bss contains
variables that are not init ialized during startup. The addresses of these sect ions are available in the form of the
files .text , .data, . rodata, and .bss in / sys/ m odule/ m y_m odule/ sect ions/ if you enable CONFIG_KALLSYMS during
kernel configurat ion. To obtain the code sect ion address, for instance, do this:

[2] I f you are st ill using a 2.4 kernel, get the sect ion addresses using the –m opt ion to insm od instead:

bash> insmod my_module.o –m
Using /lib/modules/2.x.y/kernel/drivers/char/my_module.o
Sections: Size Address Align
.this 00000060 e091a000 2**2
.text 00001ec0 e091a060 2**4
...
.rodata 0000004c e091d1fc 2**2
.data 00000048 e091d260 2**5
.bss 000000e4 e091d2c0 2**5
...

bash> cat /sys/module/my_module/sections/.text

0xe091a060

More m odule load inform at ion is available from / proc/ m odules and / proc/ kallsym s.

After you have the sect ion addresses, invoke gdb on the host -side m achine:

bash> gdb vmlinux vmlinux is the uncompressed kernel

(gdb) target remote /dev/ttySX Connect to the target

Because you passed kgdbwait as a kernel com m and- line argum ent , gdb gets cont rol when the kernel boots on
the target . Now inform gdb about the preceding sect ion addresses using the add-symbol-file com m and:

(gdb) add-symbol-file drivers/char/mymodule.ko 0xe091a060
 -s .rodata 0xe091d1fc -s .data 0xe091d260 -s .bss 0xe091d2c0

add symbol table from file "drivers/char/my_module.ko" at
 .text_addr = 0xe091a060
 .rodata_addr = 0xe091d1fc
 .data_addr = 0xe091d260
 .bss_addr = 0xe091d2c0
(y or n) y
Reading symbols from drivers/char/mymodule.ko ...done.

To debug the kernel panic, let 's set a breakpoint at trojan_function() :

(gdb) b trojan_function Set breakpoint

(gdb) c Continue execution

When kgdb hits the breakpoint , let 's look at the stack t race, single-step unt il Point A, and display the value of
my_variable :

(gdb) bt Back (stack) trace
#0 trojan_function () at my_module.c :124
#1 0xe091a108 in my_parent_function (my_var1=438, my_var2=0xe091d288)
..

(gdb) step

(gdb) step Continue to single-step up to
 Point A
(gdb) p my_variable
$0 = 0

There is an obvious bug here. my_variable points to NULL because trojan_function() forgot to allocate
m em ory for it . Let 's just allocate the m em ory using kgdb, circum vent the kernel crash, and cont inue test ing:

(gdb) p &buffer Print address of buffer
$1 = 0xe091a100 ""

(gdb) set my_variable=0xe091a100 my_variable = &buffer

(gdb) c Continue your testing

Kgdb ports are available for several architectures such as x86, ARM, and PowerPC. When you use kgdb
to debug a target em bedded device (instead of the PC shown in Figure 21.1) , the gdb front -end that you
run on your host system needs to be com piled to work with your target plat form . For exam ple, to debug
a device dr iver developed for an ARM-based em bedded device from your x86-based host developm ent
system , you have to use the appropriately generated gdb, often nam ed arm - linux-gdb. The exact nam e
depends on the dist r ibut ion you use.

GNU Debugger (gdb)

As m ent ioned earlier, you can use plain gdb to gather som e kernel debug inform at ion. However, you can't step
through kernel code, set breakpoints, or m odify kernel variables. Let 's use gdb to debug the kernel panic caused
by the buggy funct ion in List ing 21.1, but assum e this t im e that trojan_function() is com piled as part of the
kernel and not as a m odule, because you can't easily peek inside m odules using gdb.

This is part of the "oops" m essage generated when trojan_function() is executed:

Unable to handle kernel NULL pointer dereference at
virtual address 000000ab
 ...
 eax: f7571de0 ebx: ffffe000 ecx: f6c78000 edx: f98df870
 ...
 Stack: c019d731 00000000
 ...
 bffffbe8 c0108fab
Call Trace: [<c019d731>] [<c013b8ac>] [<c0108fab>]
...

Copy this crypt ic "oops" m essage to oops.txt and use the ksym oops ut ilit y to obtain m ore verbose output . You
m ight need to hand-copy the m essage if the system is hung:

bash> ksymoops oops.txt

Code; c019d710 <trojan_function+0/10>
00000000 <_EIP>:
Code; c019d710 <trojan_function+0/10> <=====
 0: a1 ab 00 00 00 mov 0xab,%eax <=====
Code; c019d715 <trojan_function+5/10>
 5: c3 ret

2.6 kernels em it "oops" output that can be used as is without the need of decoding using ksym oops if you
enable CONFIG_KALLSYMS during kernel configurat ion.

Looking at the preceding dum p, the "oops" has occurred inside trojan_function() . Let 's use gdb to obtain
m ore inform at ion. I n the following invocat ion, vm linux is the uncom pressed kernel im age, and / proc/ kcore is
the kernel address space:

bash> gdb vmlinux /proc/kcore

(gdb) p xtime Test the waters by printing a kernel variable

$0 = 1113173755

Repeated access to the sam e variable will not yield refreshed values due to gdb's cached access. You can force
a fresh access by rereading the core file using gdb's core-file com m and. Let 's now look at the disassem bly of
trojan_function() :

(gdb) x/2i trojan_function Disassemble trojan_function

0xc019d710 <trojan_function>: mov 0xab, %eax
0xc019d715 <trojan_function+5>: ret

trojan_function() looks laconic when seen in assem bly due to com piler opt im izat ions. I t 's effect ively copying
the contents of address 0xab to the EAX register, which holds the return value from funct ions on x86-based
system s. But 0xab does not look like a valid kernel address! Fix the bug by allocat ing valid m em ory space to
my_variable , recom pile, and cont inue your test ing.

JTAG Debuggers

JTAG debuggers use hardware-assist to debug code. You need specialized m onitor hardware[3] and a front -end
user interface (som e JTAG debuggers use gdb as the front -end) to step through code. JTAG can also be used for
purposes other than debugging, such as burning code onto on-board flash m em ory, as discussed in Chapter 18,
"Em bedding Linux." JTAG connectors are com m on on developm ent boards but are usually not part of product ion
units.

[3] Som e JTAG debuggers work with several processor architectures if you suitably replace the probe that connects the debugger to the target
board.

JTAG debuggers usually connect to target hardware via serial port , USB, or Ethernet . With Ethernet , you can
rem otely access the JTAG debugger, and hence the target board, even if the board itself does not possess a
network interface.

Figure 21.2 shows a JTAG-based rem ote debugging session in act ion. The JTAG debugger used in this scenario
supports a gdb front end. The developm ent host and the JTAG hardware are connected to an Ethernet LAN. The
debug serial port on the target hardware is connected to the serial port on the JTAG box. Figure 21.2 achieves
rem ote debugging on the Linux developm ent host using five term inal sessions. Term inal 1 runs gdb, which
connects to the JTAG box over the network using telnet :

(gdb) target remote 10.1.1.2:1001 10.1.1.2 is the IP address of
 the JTAG hardware. 1001 is the
 JTAG TCP port that listens to
 incoming gdb connections

Figure 2 1 .2 . An exam ple JTAG- based rem ote debug set up.

[View full size im age]

To debug boot port ions of the kernel, for exam ple, set a gdb breakpoint at start_kernel() . (You can find its
address from System .m ap, which is generated in the root of your source t ree when you build the kernel.)

Term inal 2 at taches a serial console to the target . A telnet client running on Term inal 2 connects to a
prespecified TCP port on the JTAG box, which is configured (using Term inal 3) to tunnel data arr iving via its
serial port :

bash> telnet 10.1.1.2 50 10.1.1.2 is the IP address of

 the JTAG hardware. 50 is the
 JTAG TCP port that tunnels data
 arriving via its serial port

This is equivalent to running an em ulator such as m inicom after direct ly connect ing the target 's debug serial
port to the host (instead of to the JTAG box, as shown in Figure 21.2) , but that ' ll const rain the host to be
physically adjacent to the target .

Term inal 3 telnets to the JTAG box and offers debugger-specific sem ant ics. You can use it for exam ple, to do
the following:

Pull a JTAG definit ion scr ipt over TFTP from the host and execute it during JTAG boot . A JTAG definit ion

script usually init ializes the processor, clock registers, chip select registers, and m em ory banks. After this
is done, the JTAG hardware is ready to download code on to the target and execute it . The JTAG
m anufacturer usually provides definit ion files for all supported plat form s, so you are likely to have a close
start ing point for your board.

Download your boot loader, kernel, or stand-alone code from the host over TFTP, to flash m em ory or RAM
on the target . File form ats such as ELF and binary are usually supported by JTAG debuggers.

Single-step code, set breakpoints, exam ine registers, and dum p m em ory regions.

Reset the target .

JTAG debugging can be flaky at t im es, so if you are debugging rem otely, it m ight be a good idea to power the
target via a rem ote power cont rol switch, as shown in Figure 21.2. That way, you can hard- reset the target from
the host using a web browser, as shown in Term inal 4. You m ay also choose to power the JTAG hardware via a
rem ote power switch. That will let you test run a boot loader direct ly from flash without the intervent ion of JTAG
and its definit ion files.

I f the target board possesses a network interface, it can m ount its root filesystem over NFS from the
developm ent host . (See the sect ion "NFS-Mounted Root" in Chapter 18 for details on doing this.) Term inal 5 on
the host operates locally on the exported root filesystem . [4]

[4] You m ay have m ore such term inals depending on your debug scenario. I f you are using an oscilloscope that has rem ote display capabilit ies,
for exam ple, you m ay operate it via a web browser on another term inal.

I f your team is scat tered geographically, run Term inals 1 through 5 within an environm ent such as Vir tual
Network Com put ing (VNC) . I f VNC is not already part of your dist r ibut ion, download it from www.realvnc.com.
With such a setup, you can debug the elect rons on your rem ote board from the com fort of your hom e! Som e
JTAG vendors provide a sophist icated integrated developm ent environm ent [5] that encom passes all the
funct ionalit ies previously detailed, so you don't need to m anage VNC term inal sessions if you're using one of
those.

[5] While JTAG hardware is independent of the target operat ing system , the front -end interface is likely to have OS dependencies.

During hardware br ing up, when you are port ing your boot loader or other stand-alone code to the target , it 's a
good idea to first generate an ELF im age and debug it from RAM before running it from flash. Rem em ber,
however, to elim inate boot loader init ializat ions that duplicate the ones perform ed by the JTAG definit ion scr ipt .

A key advantage of JTAG debuggers is that you can use a single tool to debug the different pieces that
const itute your firm ware solut ion. So, you can use the sam e debugger to debug the BI OS, boot loader, base
kernel, device dr iver m odules, as well as user-space applicat ions, at source level.

Dow nloads

You m ay download kdb patches for the x86 and I A64 architectures from ht tp: / / oss.sgi.com / projects/ kdb. Each
supported kernel version needs two patches: a com m on one and an architecture-dependent one.

The hom e page for the kgdb project is ht tp: / / kgdb.sourceforge.net . The website also has docum entat ion on
configuring and using kgdb.

I f your Linux dist r ibut ion does not already contain gdb, you can obtain it from
www.gnu.org/ software/ gdb/ gdb.htm l.

http://oss.sgi.com/projects/kdb
http://kgdb.sourceforge.net

Chapter 2 1 . Debugging Device Dr ivers

I n This Chapter

Kernel Debuggers
596

Kernel Probes
609

Kexec and Kdum p
620

Profiling
629

Tracing
634

Linux Test Project
638

User Mode Linux
638

Diagnost ic Tools
638

Kernel Hacking Config Opt ions
639

Test Equipm ent
640

Now that we have learned how to im plem ent diverse classes of device dr ivers, let 's take a step
back and explore som e debugging techniques. I nvest ing t im e in logic design and software
engineering before code developm ent and star ing hard at the code after developm ent can
m inim ize or even elim inate bugs. But because that is easier said than done, and because we are
all hum ans, developers need debugging tools. I n this chapter, let 's look at a variety of m ethods to
debug kernel code.

Reliabilit y, Availabilit y, Serviceabilit y

Many system s, especially m ission cr it ical ones, have a need for reliabilit y, availabilit y, and
serviceabilit y (RAS) . The Linux RAS effort has resulted in the developm ent of several powerful
tools. Exercisers such as the Linux Test Project (LTP) m easure the reliabilit y and robustness of
your kernel port . CPU hotplugging and the Linux High Availabilit y (HA) project can be seen in the
context of availabilit y. Kernel debuggers, Kprobes, Kdum p, EDAC, and the Linux Trace Toolkit
(LTT) com e under the am bit of serviceabilit y. The line dividing these classificat ions is som et im es
thin; you can use any or a com binat ion of these m ethods to suit your debugging needs. For
exam ple, output from a kernel profiler such as OProfile can be used either to search for potent ial
code bot t lenecks (reliabilit y) or to debug a field problem (serviceabilit y) .

Kernel Debuggers

The Linux kernel has no built - in debugger support . Whether to include a debugger as part of the stock kernel is
an oft -debated point in kernel m ailing lists. The inst ruct ion level Kernel Debugger (kdb) and the source- level
Kernel GNU Debugger (kgdb) are the two m ain Linux kernel debuggers. As of today, whether you use kdb or
kgdb, you need to download relevant patches and apply them to your kernel sources. Even if you want to stay
away from the hassle of patching your kernel sources with debugger support , you can glean inform at ion about
kernel panics and peek at kernel variables via the plain GNU Debugger (gdb) . JTAG debuggers use hardware-
assisted debugging and are powerful, but expensive.

Kernel debuggers m ake kernel internals m ore t ransparent . You can single-step through inst ruct ions,
disassem ble inst ruct ions, display and m odify kernel variables, and look at stack t races. I n this chapter, let 's
learn the basics of kernel debuggers with the help of som e exam ples.

Enter ing a Debugger

You can enter a kernel debugger in m ult iple ways. One way is to pass com m and- line argum ents that ask the
kernel to enter the debugger during boot . Another way is via software or hardware breakpoints. A breakpoint is
an address where you want execut ion stopped and cont rol t ransferred to the debugger. A software breakpoint
replaces the inst ruct ion at that address with som ething else that causes an except ion. You m ay set software
breakpoints either using debugger com m ands or by insert ing them into your code. For x86-based system s, you
can set a software breakpoint in your kernel source code as follows:

asm(" int $3");

Alternat ively, you can invoke the BREAKPOINT m acro, which t ranslates to the appropriate architecture-dependent
inst ruct ion.

You m ay use hardware breakpoints in place of software breakpoints if the inst ruct ion where you need to stop is
in flash m em ory, where it cannot be replaced by the debugger. A hardware breakpoint needs processor support .
The corresponding address has to be added to a debug register. You can only have as m any hardware

breakpoints as the num ber of debug registers supported by the processor.

You m ay also ask a debugger to set a watchpoint on a variable. The debugger stops execut ion whenever an
inst ruct ion m odifies data at the watchpoint address.

Yet another com m on m ethod to enter a debugger is by hit t ing an at tent ion key, but there are instances when
this won't work. I f your code is sit t ing in a t ight loop after disabling interrupts, the kernel will not get a chance
to process the at tent ion key and enter the debugger. For exam ple, you can't enter the debugger via an
at tent ion key if your code does som ething like this:

unsigned long flags;

local_irq_save(flags);
while (1) continue;
local_irq_restore(flags);

When cont rol is t ransferred to the debugger, you can start your analysis using various debugger com m ands.

Kernel Debugger (kdb)

Kdb is an inst ruct ion- level debugger used for debugging kernel code and device dr ivers. Before you can use it ,
you need to patch your kernel sources with kdb support and recom pile the kernel. (Refer to the sect ion
"Downloads" for inform at ion on downloading kdb patches.) The m ain advantage of kdb is that it 's easy to set
up, because you don't need an addit ional m achine to do the debugging (unlike kgdb) . The m ain disadvantage is
that you need to correlate your sources with disassem bled code (again, unlike kgdb) .

Let 's wet our toes in kdb with the help of an exam ple. Here's the cr im e scene: You have m odified a kernel serial
dr iver to work with your x86-based hardware. But the dr iver isn't working, and you would like kdb to help nab
the culpr it .

Let 's start our search for fingerprints by set t ing a breakpoint at the serial dr iver open() ent ry point . Rem em ber,
because kdb is not a source- level debugger, you have to open your sources and t ry to m atch the inst ruct ions
with your C code. Let 's list the source snippet in quest ion:

drivers/serial/myserial.c:

static int rs_open(struct tty_struct *tty, struct file *filp)
{
 struct async_struct *info;

 /* ... */
 retval = get_async_struct(line, &info);
 if (retval) return(retval);
 tty->driver_data = info;
 /* Point A */

 /* ... */
}

Press the Pause key and enter kdb. Let 's find out how the disassem bled rs_open() looks. As usual, all debug
sessions shown in this chapter at tach explanat ions using the sym bol.

Entering kdb (current=0xc03f6000, pid 0) on processor 0 due to
Keyboard Entry

kdb> id rs_open Disassemble rs_open

0xc01cce00 rs_open: sub $0x1c, %esp
0xc01cce03 rs_open+0x03: mov $ffffffed, %ecx
...
0xc01cce4b rs_open+0x4b: call 0xc01ccca0, get_async_struct
...
0xc01cce56 rs_open+0x56: mov 0xc(%esp,1), %eax
0xc01cce5a rs_open+0x5a: mov %eax, 0x9a4(%ebx)
...

Point A in the source code is a good place to at tach a breakpoint because you can peek at both the tty
st ructure and the info st ructure to see what 's going on.

Looking side by side at the source and the disassembly, rs_open+0x5a corresponds to Point A. Note that
correlat ion is easier if the kernel is com piled without opt im izat ion flags.

Set a breakpoint at rs_open+0x5a (which is address 0xc01cce5a) and cont inue execut ion by exit ing the
debugger:

kbd> bp rs_open+0x5a Set breakpoint

kbd> go Continue execution

Now you need to get the kernel to call rs_open() to hit the breakpoint . To t r igger this, execute an appropriate
user-space program . I n this case, echo som e characters to the corresponding serial port (/ dev/ t tySX) :

bash> echo "kerala monsoons" > /dev/ttySX

This results in the invocat ion of rs_open() . The breakpoint gets hit , and kdb assum es cont rol:

Entering kdb on processor 0 due to Breakpoint @ 0xc01cce5a
kdb>

Let 's now find out the contents of the info st ructure. I f you look at the disassem bly, one inst ruct ion before the
breakpoint (rs_open+0x56) , you will see that the EAX register contains the address of the info st ructure. Let 's
look at the register contents:

kbd> r Dump register contents

eax = 0xcf1ae680 ebx = 0xce03b000 ecx = 0x00000000
...

So, 0xcf1ae680 is the address of the info st ructure. Dum p its contents using the md com m and:

kbd> md 0xcf1ae680 Memory dump

0xcf1ae680 00005301 0000ABC 00000000 10000400
...

To m ake sense of this dum p, let 's look at the corresponding st ructure definit ion. info is defined as struct
async_struct in include/ linux/ serialP.h as follows:

struct async_struct {
 int magic; /* Magic Number */
 unsigned long port; /* I/O Port */
 int hub6;
 /* ... */
};

I f you m atch the dum p with the definit ion, 0x5301 is the m agic num ber and 0xABC is the I / O port . Well, isn't this
interest ing! 0xABC doesn't look like a valid port . I f you have done enough serial port debugging, you will know
that the I / O port base addresses and I RQs are configured in include/ asm -x86/ serial.h for x86-based hardware.
Change the port definit ion to the correct value, recom pile the kernel, and cont inue your test ing!

Kernel GNU Debugger (kgdb)

Kgdb is a source- level debugger. I t is easier to use than kdb because you don't have to spend t im e correlat ing
assem bly code with your sources. However it 's m ore difficult to set up because an addit ional m achine is needed
to front -end the debugging.

You have to use gdb in tandem with kgdb to step through kernel code. gdb runs on the host m achine, while the
kgdb-patched kernel (refer to the "Downloads" sect ion for inform at ion on downloading kgdb patches) runs on
the target hardware. The host and the target are connected via a serial null-m odem cable, as shown in Figure
21.1. [1]

[1] You can also launch kgdb debug sessions over Ethernet .

Figure 2 1 .1 . Kgdb setup.

You have to inform the kernel about the ident ity and baud rate of the serial port via com m and- line argum ents.
Depending on the boot loader used, add the following kernel argum ents to either syslinux.cfg, lilo.conf, or
grub.conf:

kgdbwait kgdb8250=X,115200

kgdbwait asks the kernel to wait unt il a connect ion is established with the host -side gdb, X is the serial port
connected to the host , and 115200 is the baud rate used for com m unicat ion.

Now configure the sam e baud rate on the host side:

bash> stty speed 115200 < /dev/ttySX

I f your host com puter is a laptop that does not have a serial port , you m ay use a USB- to-serial converter for the
debug session. I n that case, instead of / dev/ t tySX, use the / dev/ t tyUSBX node created by the usbserial dr iver.
Figure 6.4 of Chapter 6 , "Serial Drivers," illust rates this scenario.

Let 's learn kgdb basics using the exam ple of a buggy kernel m odule. Modules are easier to debug because the
ent ire kernel need not be recom piled after m aking code changes, but rem em ber to com pile your m odule with
the -g opt ion to generate sym bolic inform at ion. Because modules are dynam ically loaded, the debugger needs
to be inform ed about the sym bolic inform at ion that the m odule contains. List ing 21.1 contains a buggy
trojan_function() . Assum e that it 's defined in dr ivers/ char/ m y_m odule.c.

List ing 2 1 .1 . Buggy Funct ion

char buffer;

int
trojan_function()
{
 int *my_variable = 0xAB, i;

 /* ... */
 Point A:
 i = *my_variable; /* Kernel Panic: my_variable points
 to bad memory */
 return(i);
}

I nsert m y_m odule.ko on the target and look inside / sys/ m odule/ m y_m odule/ sect ions/ to decipher ELF
(Executable and Linking Form at) sect ion addresses. [2] The .text sect ion in ELF files contains code, .data
contains init ialized variables, .rodata contains init ialized read-only variables such as st r ings, and .bss contains
variables that are not init ialized during startup. The addresses of these sect ions are available in the form of the
files .text , .data, . rodata, and .bss in / sys/ m odule/ m y_m odule/ sect ions/ if you enable CONFIG_KALLSYMS during
kernel configurat ion. To obtain the code sect ion address, for instance, do this:

[2] I f you are st ill using a 2.4 kernel, get the sect ion addresses using the –m opt ion to insm od instead:

bash> insmod my_module.o –m
Using /lib/modules/2.x.y/kernel/drivers/char/my_module.o
Sections: Size Address Align
.this 00000060 e091a000 2**2
.text 00001ec0 e091a060 2**4
...
.rodata 0000004c e091d1fc 2**2
.data 00000048 e091d260 2**5
.bss 000000e4 e091d2c0 2**5
...

bash> cat /sys/module/my_module/sections/.text

0xe091a060

More m odule load inform at ion is available from / proc/ m odules and / proc/ kallsym s.

After you have the sect ion addresses, invoke gdb on the host -side m achine:

bash> gdb vmlinux vmlinux is the uncompressed kernel

(gdb) target remote /dev/ttySX Connect to the target

Because you passed kgdbwait as a kernel com m and- line argum ent , gdb gets cont rol when the kernel boots on
the target . Now inform gdb about the preceding sect ion addresses using the add-symbol-file com m and:

(gdb) add-symbol-file drivers/char/mymodule.ko 0xe091a060
 -s .rodata 0xe091d1fc -s .data 0xe091d260 -s .bss 0xe091d2c0

add symbol table from file "drivers/char/my_module.ko" at
 .text_addr = 0xe091a060
 .rodata_addr = 0xe091d1fc
 .data_addr = 0xe091d260
 .bss_addr = 0xe091d2c0
(y or n) y
Reading symbols from drivers/char/mymodule.ko ...done.

To debug the kernel panic, let 's set a breakpoint at trojan_function() :

(gdb) b trojan_function Set breakpoint

(gdb) c Continue execution

When kgdb hits the breakpoint , let 's look at the stack t race, single-step unt il Point A, and display the value of
my_variable :

(gdb) bt Back (stack) trace
#0 trojan_function () at my_module.c :124
#1 0xe091a108 in my_parent_function (my_var1=438, my_var2=0xe091d288)
..

(gdb) step

(gdb) step Continue to single-step up to
 Point A
(gdb) p my_variable
$0 = 0

There is an obvious bug here. my_variable points to NULL because trojan_function() forgot to allocate
m em ory for it . Let 's just allocate the m em ory using kgdb, circum vent the kernel crash, and cont inue test ing:

(gdb) p &buffer Print address of buffer
$1 = 0xe091a100 ""

(gdb) set my_variable=0xe091a100 my_variable = &buffer

(gdb) c Continue your testing

Kgdb ports are available for several architectures such as x86, ARM, and PowerPC. When you use kgdb
to debug a target em bedded device (instead of the PC shown in Figure 21.1) , the gdb front -end that you
run on your host system needs to be com piled to work with your target plat form . For exam ple, to debug
a device dr iver developed for an ARM-based em bedded device from your x86-based host developm ent
system , you have to use the appropriately generated gdb, often nam ed arm - linux-gdb. The exact nam e
depends on the dist r ibut ion you use.

GNU Debugger (gdb)

As m ent ioned earlier, you can use plain gdb to gather som e kernel debug inform at ion. However, you can't step
through kernel code, set breakpoints, or m odify kernel variables. Let 's use gdb to debug the kernel panic caused
by the buggy funct ion in List ing 21.1, but assum e this t im e that trojan_function() is com piled as part of the
kernel and not as a m odule, because you can't easily peek inside m odules using gdb.

This is part of the "oops" m essage generated when trojan_function() is executed:

Unable to handle kernel NULL pointer dereference at
virtual address 000000ab
 ...
 eax: f7571de0 ebx: ffffe000 ecx: f6c78000 edx: f98df870
 ...
 Stack: c019d731 00000000
 ...
 bffffbe8 c0108fab
Call Trace: [<c019d731>] [<c013b8ac>] [<c0108fab>]
...

Copy this crypt ic "oops" m essage to oops.txt and use the ksym oops ut ilit y to obtain m ore verbose output . You
m ight need to hand-copy the m essage if the system is hung:

bash> ksymoops oops.txt

Code; c019d710 <trojan_function+0/10>
00000000 <_EIP>:
Code; c019d710 <trojan_function+0/10> <=====
 0: a1 ab 00 00 00 mov 0xab,%eax <=====
Code; c019d715 <trojan_function+5/10>
 5: c3 ret

2.6 kernels em it "oops" output that can be used as is without the need of decoding using ksym oops if you
enable CONFIG_KALLSYMS during kernel configurat ion.

Looking at the preceding dum p, the "oops" has occurred inside trojan_function() . Let 's use gdb to obtain
m ore inform at ion. I n the following invocat ion, vm linux is the uncom pressed kernel im age, and / proc/ kcore is
the kernel address space:

bash> gdb vmlinux /proc/kcore

(gdb) p xtime Test the waters by printing a kernel variable

$0 = 1113173755

Repeated access to the sam e variable will not yield refreshed values due to gdb's cached access. You can force
a fresh access by rereading the core file using gdb's core-file com m and. Let 's now look at the disassem bly of
trojan_function() :

(gdb) x/2i trojan_function Disassemble trojan_function

0xc019d710 <trojan_function>: mov 0xab, %eax
0xc019d715 <trojan_function+5>: ret

trojan_function() looks laconic when seen in assem bly due to com piler opt im izat ions. I t 's effect ively copying
the contents of address 0xab to the EAX register, which holds the return value from funct ions on x86-based
system s. But 0xab does not look like a valid kernel address! Fix the bug by allocat ing valid m em ory space to
my_variable , recom pile, and cont inue your test ing.

JTAG Debuggers

JTAG debuggers use hardware-assist to debug code. You need specialized m onitor hardware[3] and a front -end
user interface (som e JTAG debuggers use gdb as the front -end) to step through code. JTAG can also be used for
purposes other than debugging, such as burning code onto on-board flash m em ory, as discussed in Chapter 18,
"Em bedding Linux." JTAG connectors are com m on on developm ent boards but are usually not part of product ion
units.

[3] Som e JTAG debuggers work with several processor architectures if you suitably replace the probe that connects the debugger to the target
board.

JTAG debuggers usually connect to target hardware via serial port , USB, or Ethernet . With Ethernet , you can
rem otely access the JTAG debugger, and hence the target board, even if the board itself does not possess a
network interface.

Figure 21.2 shows a JTAG-based rem ote debugging session in act ion. The JTAG debugger used in this scenario
supports a gdb front end. The developm ent host and the JTAG hardware are connected to an Ethernet LAN. The
debug serial port on the target hardware is connected to the serial port on the JTAG box. Figure 21.2 achieves
rem ote debugging on the Linux developm ent host using five term inal sessions. Term inal 1 runs gdb, which
connects to the JTAG box over the network using telnet :

(gdb) target remote 10.1.1.2:1001 10.1.1.2 is the IP address of
 the JTAG hardware. 1001 is the
 JTAG TCP port that listens to
 incoming gdb connections

Figure 2 1 .2 . An exam ple JTAG- based rem ote debug set up.

[View full size im age]

To debug boot port ions of the kernel, for exam ple, set a gdb breakpoint at start_kernel() . (You can find its
address from System .m ap, which is generated in the root of your source t ree when you build the kernel.)

Term inal 2 at taches a serial console to the target . A telnet client running on Term inal 2 connects to a
prespecified TCP port on the JTAG box, which is configured (using Term inal 3) to tunnel data arr iving via its
serial port :

bash> telnet 10.1.1.2 50 10.1.1.2 is the IP address of

 the JTAG hardware. 50 is the
 JTAG TCP port that tunnels data
 arriving via its serial port

This is equivalent to running an em ulator such as m inicom after direct ly connect ing the target 's debug serial
port to the host (instead of to the JTAG box, as shown in Figure 21.2) , but that ' ll const rain the host to be
physically adjacent to the target .

Term inal 3 telnets to the JTAG box and offers debugger-specific sem ant ics. You can use it for exam ple, to do
the following:

Pull a JTAG definit ion scr ipt over TFTP from the host and execute it during JTAG boot . A JTAG definit ion

script usually init ializes the processor, clock registers, chip select registers, and m em ory banks. After this
is done, the JTAG hardware is ready to download code on to the target and execute it . The JTAG
m anufacturer usually provides definit ion files for all supported plat form s, so you are likely to have a close
start ing point for your board.

Download your boot loader, kernel, or stand-alone code from the host over TFTP, to flash m em ory or RAM
on the target . File form ats such as ELF and binary are usually supported by JTAG debuggers.

Single-step code, set breakpoints, exam ine registers, and dum p m em ory regions.

Reset the target .

JTAG debugging can be flaky at t im es, so if you are debugging rem otely, it m ight be a good idea to power the
target via a rem ote power cont rol switch, as shown in Figure 21.2. That way, you can hard- reset the target from
the host using a web browser, as shown in Term inal 4. You m ay also choose to power the JTAG hardware via a
rem ote power switch. That will let you test run a boot loader direct ly from flash without the intervent ion of JTAG
and its definit ion files.

I f the target board possesses a network interface, it can m ount its root filesystem over NFS from the
developm ent host . (See the sect ion "NFS-Mounted Root" in Chapter 18 for details on doing this.) Term inal 5 on
the host operates locally on the exported root filesystem . [4]

[4] You m ay have m ore such term inals depending on your debug scenario. I f you are using an oscilloscope that has rem ote display capabilit ies,
for exam ple, you m ay operate it via a web browser on another term inal.

I f your team is scat tered geographically, run Term inals 1 through 5 within an environm ent such as Vir tual
Network Com put ing (VNC) . I f VNC is not already part of your dist r ibut ion, download it from www.realvnc.com.
With such a setup, you can debug the elect rons on your rem ote board from the com fort of your hom e! Som e
JTAG vendors provide a sophist icated integrated developm ent environm ent [5] that encom passes all the
funct ionalit ies previously detailed, so you don't need to m anage VNC term inal sessions if you're using one of
those.

[5] While JTAG hardware is independent of the target operat ing system , the front -end interface is likely to have OS dependencies.

During hardware br ing up, when you are port ing your boot loader or other stand-alone code to the target , it 's a
good idea to first generate an ELF im age and debug it from RAM before running it from flash. Rem em ber,
however, to elim inate boot loader init ializat ions that duplicate the ones perform ed by the JTAG definit ion scr ipt .

A key advantage of JTAG debuggers is that you can use a single tool to debug the different pieces that
const itute your firm ware solut ion. So, you can use the sam e debugger to debug the BI OS, boot loader, base
kernel, device dr iver m odules, as well as user-space applicat ions, at source level.

Dow nloads

You m ay download kdb patches for the x86 and I A64 architectures from ht tp: / / oss.sgi.com / projects/ kdb. Each
supported kernel version needs two patches: a com m on one and an architecture-dependent one.

The hom e page for the kgdb project is ht tp: / / kgdb.sourceforge.net . The website also has docum entat ion on
configuring and using kgdb.

I f your Linux dist r ibut ion does not already contain gdb, you can obtain it from
www.gnu.org/ software/ gdb/ gdb.htm l.

http://oss.sgi.com/projects/kdb
http://kgdb.sourceforge.net

Kernel Probes

Kernel probes can int rude into a kernel funct ion and ext ract debug inform at ion or apply a m edicated patch. I t 's
a useful addit ion to your debugging repertoire for invest igat ing inexplicable behavior at a custom er site,
especially when you don't have the luxury of reboot ing the system . Linux supports a generic form of kernel
probes called Kprobes and two specialized variants, Jprobes and return probes.

Kprobes

Kprobes can save you the t rouble of building and boot ing a debug kernel by providing capabilit ies to
dynam ically dum p kernel data st ructures or insert code into a running kernel. You can, for exam ple, add a few
printk s on- the- fly inside the scheduler without recom piling the kernel. You can even patch a bug on a Mars
rover without reboot ing it .

To insert a kprobe inside a kernel funct ion, follow these steps:

1 . Turn on CONFIG_KPROBES (I nst rum entat ion Support Kprobes) in the kernel configurat ion m enu.

2 . I m plem ent a kernel m odule that registers a kprobe at the inst ruct ion of interest . You need to register a
pre-handler that Kprobes will run just before execut ing the probed inst ruct ion and a post -handler that
Kprobes will run after execut ing the probed inst ruct ion. You m ay also supply a fault -handler that will run if
a fault is detected while execut ing the pre- or post -handlers (because you don't want to "oops" due to a
debugging bug!) .

When a kprobe is registered, it saves the probed inst ruct ion and replaces it with an inst ruct ion that generates a
breakpoint (int 0x03 on x86-based system s) . When the breakpoint is hit , the kernel generates a die
not ificat ion. (We discussed not ifier chains in Chapter 3 , "Kernel Facilit ies.") Kprobes inserts itself into the die
not ifier chain, so it gets not ified about the breakpoint hit .

When not ified, Kprobes executes the registered pre-handler. Next , it steps through a copy of the probed
inst ruct ion. I t executes a copy instead of swapping the probed inst ruct ion with the breakpoint inst ruct ion for
reasons of SMP consistency. Finally, it runs the post -handler. The pre- and post -handler windows are the hooks
offered to the Kprobes user to inject debug code. The handlers can be registered and unregistered on- the- fly, so
serviceabilit y is not m erely stat ic at com pile t im e but program m able during runt im e.

Let 's learn to use Kprobes with the help of an example. Consider the code snippet in List ing 21.2, which is a
kernel thread that adds npages num ber of pages to the free m em ory pool, whenever a SIGUSR1 signal is
delivered to it . Most of the logic has been scissored out of the list ing because it 's not relevant . Assum e that you
are at a custom er site to debug a problem reported with this code. You not ice bad things whenever npages
crosses 10, so you want to apply a runt im e patch that lim its it to 10.

List ing 2 1 .2 . Problem Code (m ydrv.c)

Code View:
int npages=0;
EXPORT_SYMBOL(npages);

static int memwalkd(void *unused)
{
 long curr_pfn = (64*1024*1024 >> PAGE_SHIFT);
 struct page *curr_page;
 /* ... */

 daemonize("memwalkd"); /* kernel thread */

 sigfillset(¤t->blocked);
 allow_signal(SIGUSR1);

 for (;;) {
 /* Dequeue a signal if it's pending */
 if (signal_pending(current)) {
 sig = dequeue_signal(current, ¤t->blocked, &info);
 /* Point A */
 /* Free npages pages when SIGUSR1 is received */
 if (sig == SIGUSR1) {
 /* Point B */
 /* Problem manifests when npages crosses 10 in the following
 loop. Let's apply run time medication here via Kprobes */
 for (i=0; i < npages; i++, curr_pfn++) {
 /* ... */
 }
 }
 /* ... */
 }
 /* ... */
}

List ing 2 1 .3 . Register ing Kprobe Handlers

Code View:
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/kprobes.h>
#include <linux/kallsyms.h>
#include <linux/sched.h>

extern int npages; /* Defined in Listing 21.2 */

/* Per-probe structure */
static struct kprobe bandaid;

/* Pre Handler: Invoked before running probed instruction */
int bandaid_pre(struct kprobe *p, struct pt_regs *regs)
{
 if (npages > 10) npages = 10;
 return 0;
}

/* Post Handler: Invoked after running probed instruction */
void bandaid_post(struct kprobe *p, struct pt_regs *regs,
 unsigned long flags)
{
 /* Nothing to do */
}
/* Fault Handler: Invoked if the pre/post-handlers
 encounter a fault */
int bandaid_fault(struct kprobe *p, struct pt_regs *regs,
 int trapnr)
{
 return 0;
}

int init_module(void)
{
 int retval;

 /* Fill the kprobe structure */
 bandaid.pre_handler = bandaid_pre;
 bandaid.post_handler = bandaid_post;
 bandaid.fault_handler = bandaid_fault;

 /* Arrive at the target address as explained */
 bandaid.addr = (kprobe_opcode_t*)
 kallsyms_lookup_name("memwalkd") + 0xaa;

 if (!bandaid.addr) {
 printk("Bad Probe Point\n");
 return -1;
 }

 /* Register the kprobe */
 if ((retval = register_kprobe(&bandaid)) < 0) {
 printk("register_kprobe error, return value=%d\n",
 retval);
 return -1;
 }
 return 0;
}

void module_cleanup(void)
{
 unregister_kprobe(&bandaid);
}

MODULE_LICENSE("GPL"); /* You can't link the Kprobes API
 unless your user module is GPL'ed */

List ing 21.3 uses Kprobes to insert a patch at kallsyms_lookup_name("memwalkd") + 0xaa , which lim its
npages to 10. To figure out how to arr ive at this probe address, take another look at List ing 21.2. You want the
patch to be inserted at Point B. To calculate the kernel address at Point B, disassem ble the contents of m ydrv.ko
using objdum p:

Code View:
bash> objdump -D mydrv.ko

mydrv.ko: file format elf32-i386

Disassembly of section .text:

00000000 <memwalkd>:
 0: 55 push %ebp
 1: bd 00 40 00 00 mov $0x4000,%ebp
 6: 57 push %edi
 7: 56 push %esi
 8: 53 push %ebx
 9: bb 00 f0 ff ff mov $0xfffff000,%ebx
 e: 81 ec 90 00 00 00 sub $0x90,%esp
 ...
 ...

 7a: 83 f8 0a cmp $0xa,%eax Point A
 7d: 74 2b je aa <memwalkd+0xaa>
 7f: 83 f8 09 cmp $0x9,%eax
 82: 75 cc jne 50 <memwalkd+0x50>
 ...
 a9: c3 ret

 aa: a1 00 00 00 00 mov 0x0,%eax Point B
 af: 85 c0 test %eax,%eax
 b1: 0f 8e b5 00 00 00 jle 16c <memwalkd+0x16c>
 b7: 81 fd 7b f6 00 00 cmp $0xf67b,%ebp
 ...
 fa: a1 00 00 00 00 mov 0x0,%eax

You have to use an architecture-specific objdum p if you're cross-com piling for a different processor
plat form . You will need som ething like arm - linux-objdum p if you're disassem bling a binary cross-
com piled for an ARM-based target device. Pass the -S opt ion to objdum p to m ix source code with the
disassem bled output :

bash> arm-linux-objdump –d –S mydrv.ko

I f you t ry and m atch the C code in List ing 21.2 with its disassem bled dum p above, you can associate Point A
and Point B with the shown kernel addresses. kallsyms_lookup_name() [6] locates the address of memwalkd() ,
and 0xaa is the offset where Point B resides, so apply the kprobe at kallsyms_lookup_name("memwalkd") +
0xaa .

[6] You have to enable CONFIG_KALLSYMS during kernel configurat ion to obtain the services of this funct ion.

After you register the kprobe, memwalkd() equivalent ly looks like this:

static int memwalkd(void *unused)
{
 /* ...*/
 for (;;) {
 /* ... */
 /* Point A */
 /* Free npages pages when SIGUSR1 is received */
 if (sig == SIGUSR1) {
 /* Point B */
 if (npages > 10) npages = 10; /* The medicated patch! */

 for (i=0; i < npages; i++, curr_pfn++) {
 /* ... */
 }
 }
 /* ... */
 }
 /* ... */
}

Whenever npages is assigned a value greater than 10, the kprobed patch pulls it back to 10, thus stepping
around the problem .

I n the next two sect ions, let 's look at a couple of helper facilit ies that m ake it easier to use Kprobes during
funct ion ent ry and exit .

Jprobes

A jprobe is a specialized kprobe. I t eases the work of adding a probe when the point of invest igat ion is at the
ent ry to a kernel funct ion. The jprobe handler has the sam e prototype as the probed funct ion. I t 's invoked with
the sam e argum ent list as the probed funct ion, so you can easily access the funct ion argum ents from the jprobe
handler. I f you use Kprobes rather than Jprobes, imagine the hassles your probe handler needs to undergo,
wading through the dark alleys of the funct ion stack to ext ract funct ion argum ents! And this code that delves
into the stack to elicit argum ent values has to be heavily funct ion-specific, not to m ent ion being architecture-
dependent and unportable.

To learn how to use Jprobes, let 's revert to an exam ple. Assum e that you're debugging a network device dr iver
(that is built as part of the kernel) by looking at the printk() m essages it 's generat ing. The driver is em it t ing
crucial values in octal (base 8) , but to your horror, the dr iver writer has int roduced a typo in the pr int form at
st r ing by coding %O rather than %o. So, all you can see are m essages such as this:

Number of Free Receive buffers = %O.

Jprobes to the rescue. You can fix this in a few seconds, without recom piling or reboot ing the kernel. First , take
a look at printk() defined in kernel/ pr intk.c:

asmlinkage int printk(const char *fmt, ...)
{
 va_list args;
 int r;

 va_start(args, fmt);
 r = vprintk(fmt, args);
 va_end(args);

 return r;
}

Let 's add a sim ple jprobe at the ent ry to printk() and t ransform every % O into %o. List ing 21.4 does this job.
Note that the jprobe handler needs to have the sam e prototype as printk() . Both funct ions are m arked with
the asmlinkage tag that asks them to expect argum ents from the stack, rather than from CPU registers.

List ing 2 1 .4 . Register ing Jprobe Handlers

Code View:
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/kprobes.h>
#include <linux/kallsyms.h>

/* Jprobe the entrance to printk */
asmlinkage int
jprintk(const char *fmt, ...)
{
 for (; *fmt; ++fmt) {
 if ((*fmt=='%')&&(*(fmt+1) == 'O')) *(char *)(fmt+1) = 'o';
 }
 jprobe_return();
 return 0;
}

/* Per-probe structure */
static struct jprobe jprobe_eg = {
 .entry = (kprobe_opcode_t *) jprintk
};

int
init_module(void)
{
 int retval;

 jprobe_eg.kp.addr = (kprobe_opcode_t*)
 kallsyms_lookup_name("printk");

 if (!jprobe_eg.kp.addr) {
 printk("Bad probe point\n");
 return -1;
 }

 /* Register the Jprobe */
 if ((retval = register_jprobe(&jprobe_eg) < 0)) {
 printk("register_jprobe error, return value=%d\n",
 retval);
 return -1;
 }
 printk("Jprobe registered.\n");
 return 0;
}

void
module_cleanup(void)
{

 unregister_jprobe(&jprobe_eg);
}

MODULE_LICENSE("GPL");

When List ing 21.4 invokes register_jprobes() to register the jprobe, a kprobe is inserted at the beginning of
printk() . When this probe is hit , Kprobes replace the saved return address with that of the registered jprobe
handler, jprintk() . I t then copies a port ion of the stack and returns, thus passing cont rol to jprintk() with
printk() 's argum ent list . When jprintk() calls jprobe_return() , the or iginal call state is restored, and
printk() cont inues to execute norm ally.

When you insert this jprobe user m odule, the network dr iver no longer em its useless m essages announcing %O
buffers, rather it pr ints saner inform at ion such as this:

Number of Free Receive buffers = 12.

Return Probes

A return probe (or a kretprobe in Kprobes term inology) is another specialized Kprobes helper. I t eases the work
of insert ing a kprobe when you need to probe a funct ion's return point . I f you use vanilla Kprobes to invest igate
return points, you m ight need to register them at m ult iple places because a funct ion can return via m ult iple
code paths. However, if you use return probes, you need to insert only one kretprobe, rather than register, say,
20 Kprobes to cover a funct ion's 20 return paths.

The funct ion tty_open() defined in dr ivers/ char/ t ty_io.c has seven return paths. The successful path returns 0,
and others return error values such as –ENXIO and -ENODEV. A single kretprobe is sufficient to alert you about
failures, irrespect ive of the associated code path. List ing 21.5 im plem ents this kretprobe.

List ing 2 1 .5 . Register ing Return Probe Handlers

Code View:
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/kprobes.h>
#include <linux/kallsyms.h>

/* kretprobe at exit from tty_open() */
static int
kret_tty_open(struct kretprobe_instance *kreti,
 struct pt_regs *regs)
{
 /* The EAX register contains the function return value
 on x86 systems */
 if ((int) regs->eax) {
 /* tty_open() failed. Announce the return code */
 printk("tty_open returned %d\n", (int)regs->eax);
 }
 return 0;
}

/* Per-probe structure */
static struct kretprobe kretprobe_eg = {
 .handler = (kretprobe_handler_t)kret_tty_open
};

int
init_module(void)
{
 int retval;

 kretprobe_eg.kp.addr = (kprobe_opcode_t*)
 kallsyms_lookup_name("tty_open");

 if (!kretprobe_eg.kp.addr) {
 printk("Bad Probe Point\n");
 return -1;
 }

 /* Register the kretprobe */
 if ((retval = register_kretprobe(&kretprobe_eg) < 0)) {
 printk("register_kretprobe error, return value=%d\n",
 retval);
 return -1;
 }
 printk("kretprobe registered.\n");
 return 0;
}

void module_cleanup(void)
{
 unregister_kretprobe(&kretprobe_eg);
}

MODULE_LICENSE("GPL");

When List ing 21.5 invokes register_kretprobes() , a kprobe is internally inserted at the beginning of
tty_open() . When this probe gets hit , this internal kprobe handler replaces the funct ion return address with
that of a special rout ine (called a t ram poline in Kprobes term inology) . Look at arch/ your-arch/ kernel/ kprobes.c
for the im plem entat ion of the t ram poline.

When tty_open() returns via any of its seven return paths, cont rol returns to the t ram poline instead of the
caller funct ion. The t ram poline invokes the kretprobe handler, kret_tty_open() registered by List ing 21.5,
which pr ints the return value if tty_open() has not returned successfully.

Lim ita t ions

Kprobes has its lim itat ions. Som e of them are obvious. You won't , for exam ple, see desired results if you insert
a kprobe inside an inline funct ion. And, of course, you can't probe Kprobes code.

Kprobes are m ore useful for applying probes inside the base kernel. I f the subject code is part of a dynam ically
loadable m odule, you m ight as well rewrite and recom pile your m odule rather than write and com pile a new
m odule to "kprobe" it . However, you m ight st ill want to use Kprobes if br inging down the m odule is not
acceptable.

There are less-obvious lim itat ions, too. Opt im izat ions are done at com pile t im e, whereas Kprobes are inserted
during runt im e. So, the effect of insert ing inst ruct ions via Kprobes is not equivalent to adding code in the
original source files. For exam ple, the buggy code snippet

volatile int *integerp = 0xFF;

int integerd = *integerp;

is reduced by the com piler to

mov 0xff, %eax

So, you can't easily use Kprobes if you want to sneak in between those two lines of C code, allocate a word of
m em ory, point integerp to the allocated word, and circum vent a kernel crash.

System Tap (ht tp: / / sourceware.org/ system tap/) is a diagnost ic tool that eases the use of Kprobes.

Look ing at the Sources

The Kprobes im plem entat ion consists of a generic port ion defined in kernel/ kprobes.c (and
include/ linux/ kprobes.h) and an architecture-dependent part that lives in arch/ your-arch/ kernel/ kprobes.c (and
include/ asm -your-arch/ kprobes.h) .

Peek inside Docum entat ion/ kprobes.txt for further inform at ion about Kprobes, Jprobes, and Kretprobes.

http://sourceware.org/systemtap/

Kexec and Kdum p

Now that you have learned how to use Kprobes, let 's cont inue and look at m ore facets of Linux RAS. Kexec and
kdum p are serviceabilit y features int roduced in the 2.6 kernel.

Kexec uses the im age overlay philosophy of the UNI X exec() system call to spawn a new kernel over a running
kernel without the overhead of boot firm ware. This can save several seconds of reboot t im e because boot
firm ware spends cycles walking buses and recognizing devices. The less the reboot latency, the less the system
downt im e; so, this was one of the m ain m ot ivat ions for developing kexec. However, kexec's m ost popular user
is kdum p. Capturing a dum p after a kernel crash is inherent ly unreliable because kernel code that accesses the
dum p device m ight be in an unstable state. Kdum p circum vents this problem by collect ing the dum p after
boot ing into a healthy kernel via kexec.

Kexec

Before you can kexec a kernel, you need to do som e preparat ions:

1 . Com pile and boot into a kernel that has kexec support . For this, turn on CONFIG_KEXEC (Processor Type
and Features Kexec System Call) in the kernel configurat ion m enu. This kernel is called the first kernel
or the running kernel.

2 . Prepare the kernel that is to be kexec-ed. This second kernel can be the sam e as the first kernel.

3 . Download the kexec- tools package source tar ball from
www.kernel.org/ pub/ linux/ kernel/ people/ horm s/ kexec- tools/ kexec- tools- test ing.tar.gz. Build and produce
the user-space tool called kexec.

The kexec tool built in Step 3 is invoked in two stages. The first stage loads the second kernel im age into the
buffers of the running kernel, while the second stage actually overlays the running kernel:

1 . Load the second (overlay) kernel using the kexec com m and:

bash> kexec -l /path/to/kernelsources/arch/x86/boot/bzImage --
append="root=/dev/hdaX" --initrd=/boot/myinitrd.img

bzI m age is the second kernel, hdaX is the root device, and m yinit rd.im g is the init ial root filesystem . The
kernel im plem entat ion of this stage is m ost ly architecture- independent . At the heart of this stage is the
sys_kexec() system call. The kexec com m and loads the new kernel im age into the running kernel's
buffers using the services of this system call.

2 . Boot into the second kernel:

bash> kexec -e
... Kernel boot up messages

Kexec abrupt ly starts the new kernel without gracefully halt ing the operat ing system . To shut down prior to
reboot , invoke kexec from the bot tom of the halt scr ipt (usually / etc/ rc.d/ rc0.d/ S01halt) and invoke halt
instead.

The im plem entat ion of the second stage is architecture-dependent . The crux of this stage is a
reboot_code_buffer that contains assem bly code to put the new kernel in place to boot .

Kexec bypasses the init ial kernel code that invokes the services of boot firm ware and direct ly jum ps to the
protected m ode ent ry point (for x86 processors) . An im portant challenge to im plem ent kexec is the interact ion
that happens between the kernel and the boot firm ware (BI OS on x86-based system s, Openfirm ware on
POWER-based m achines, and so on) . On x86 system s, inform at ion such as the e820 m em ory m ap passed to the
kernel by the BI OS (see Appendix B, "Linux and the BI OS") needs to be supplied to the kexec-ed kernel, too.

Kexec w ith Kdum p

The kexec invocat ion sem ant ics is som ewhat special when it 's used in tandem with kdum p. I n this case, kexec is
required to autom at ically boot a new kernel when it encounters a kernel panic. I f the running kernel crashes,
the new kernel (called the capture kernel) is booted to reliably collect the dum p. A typical call syntax is this:

bash> kexec -p /path/to/capture-kernel-sources/vmlinux

 --args-linux --append="root=/dev/hdaX irqpoll"

 --initrd=/boot/myinitrd.img

The -p opt ion asks kexec to t r igger a reboot when a kernel panic occurs. A vm linux ELF kernel im age is used as
the capture kernel. Because vm linux is a general ELF boot im age and because kexec is theoret ically OS
agnost ic, you need to specify via the --args-linux opt ion that the following argum ents have to be interpreted
in a Linux-specific m anner. The capture kernel boots asynchronously during a kernel crash, so device dr ivers
using shared interrupts m ay fatally express their unhappiness during boot . To be nice to such drivers, specify
irqpoll in the com m and line passed to the capture kernel using --append .

To use kexec with kdum p, you need som e addit ional kernel configurat ion set t ings. The capture kernel requires
access to kernel m em ory of the crashed kernel to generate a full dum p, so the lat ter cannot just overwrite the
form er as was done by kexec in the non-kdum p case. The running kernel needs to reserve a m em ory region to
run the capture kernel. To m ark this region

Boot the first kernel with the com m and- line argum ent crashkernel=64M@16M (or other suitable
size@start values) . Also include debug sym bols in the kernel im age by enabling CONFIG_DEBUG_INFO

(Kernel Hacking Com pile the Kernel with Debug I nfo) in the configurat ion m enu.

While configuring the capture kernel, set CONFIG_PHYSICAL_START to the sam e start value assigned
above (16M in this case) . I f you kexec into the capture kernel and peek inside / proc/ m em info, you will find
that size (64M in this case) is the total am ount of physical m em ory that this kernel can see.

Now that you're com fortable with kexec and have m astered it from the perspect ive of a kdum p user, let 's delve
into kdum p and use it to analyze som e real-world kernel crashes.

Kdum p

An im age of system m em ory captured after a kernel crash or hang is called a crash dum p. Analyzing a crash
dum p can give valuable clues for postm ortem analysis of kernel problem s. However, obtaining a dum p after a
kernel crash is inherent ly unreliable because the storage driver responsible for logging data onto the dum p
device m ight be in an undefined state.

Unt il the advent of kdum p, Linux Kernel Crash Dum p (LKCD) was the popular m echanism to obtain and analyze
dum ps. LKCD uses a tem porary dum p device (such as the swap part it ion) to capture the dum p. I t then warm
reboots back to a healthy state and copies the dum p from the tem porary device to a perm anent locat ion. A tool
called lcrash is used to analyze the dum p. The disadvantages with LKCD include the following:

Even copying the dum p to a tem porary device m ight be unreliable on a crashed kernel.

Dum p device configurat ion is nont r ivial.

The reboot m ight be slow because swap space can be act ivated only after the dum p has been safely saved
away to a perm anent locat ion.

LKCD is not part of the m ainline kernel, so installing the proper patches for your kernel version is a hurdle.

Kdum p is not burdened with these short falls. I t elim inates indeterm inism by collect ing the dum p after boot ing
into a healthy kernel via kexec. Also, because m em ory state is preserved after a kexec reboot , the m em ory
im age can be accurately accessed from the capture kernel.

Let 's first get the prelim inary kdum p setup out of the way:

1 . Ask the running kernel to kexec into a capture kernel if it encounters a panic. The capture kernel should
addit ionally have CONFIG_HIMEM and CONFIG_CRASH_DUMP turned on. (Both these opt ions sit inside
Processor type and Features in the kernel configurat ion m enu.)

2 . After the capture kernel boots, copy the collected dum p inform at ion from /proc/vmcore (obtained by
enabling CONFIG_PROC_VMCORE in the kernel configurat ion m enu) to a file on your hard disk:

bash> cp /proc/vmcore /dump/vmcore.dump

You can also save other inform at ion such as the raw m em ory snapshot of the crashed kernel, via
/ dev/ oldm em.

3 . Boot back into the first kernel. You are now ready to start dum p analysis.

Let 's use the collected dum p file and the crash tool to analyze som e exam ple kernel crashes. I nt roduce this bug
inside the interrupt handler of the RTC driver (dr ivers/ char/ r tc.c) :

irqreturn_t rtc_interrupt(int irq, void *dev_id)
{
+ volatile int *integerp = 0xFF;

+ int integerd = *integerp; /* Bad memory reference! */

 spin_lock(&rtc_lock);
 /* ... */

Trigger execut ion of the handler by enabling interrupts via the hwclock com m and:

bash> hwclock

... Kernel panic occurs when execution hits rtc_interrupt()

 causing kexec to boot into the capture kernel.

Save / proc/ vm core to / dum p/ vm core.dum p, reboot back into the first (crashed) kernel, and start analysis using
the crash tool. I n a real-world situat ion, of course, the dum p m ight be captured at a custom er site, whereas the

analysis is done at a support center:

bash> crash /usr/src/linux/vmlinux /dump/vmcore.dump

crash 4.0-2.24
...

 KERNEL: /usr/src/linux/vmlinux
 DUMPFILE: /root/vmcore.dumpfile
 CPUS: 1
 DATE: Mon Nov 26 04:15:49 2007
 UPTIME: 00:17:22
LOAD AVERAGE: 0.82, 1.02, 0.87
 TASKS: 63
 ...
 PANIC: "Oops: 0000 [#1]" (check log for details)
crash>

Exam ine the stack t race to understand the cause of the crash:

crash> bt
PID: 0 TASK: c03a32e0 CPU: 0 COMMAND: "swapper"
 #0 [c0431eb8] crash_kexec at c013a8e7
 #1 [c0431f04] die at c0103a73
 #2 [c0431f44] do_page_fault at c0343381
 #3 [c0431f84] error_code (via page_fault) at c010312d
 EAX: 00000008 EBX: c59a5360 ECX: c03fbf90 EDX: 00000000
 EBP: 00000000
 DS: 007b ESI: 00000000 ES: 007b EDI: c03fbf90
 CS: 0060 EIP: f8a8c004 ERR: ffffffff EFLAGS: 00010092
 #4 [c0431fb8] rtc_interrupt at f8a8c004
 #5 [c0431fc4] handle_IRQ_event at c013de51
 #6 [c0431fdc] __do_IRQ at c013df0f

The stack t race points the needle of suspicion at rtc_interrupt() . Let 's disassem ble the inst ruct ions near
rtc_interrupt() :

crash> dis 0xf8a8c000 5
0xf8a8c000 <rtc_interrupt>: push %ebx
0xf8a8c001 <rtc_interrupt+1>: sub $0x4,%esp
0xf8a8c004 <rtc_interrupt+4>: mov 0xff,%eax
0xf8a8c009 <rtc_interrupt+9>: mov $0xc03a6640,%eax
0xf8a8c00e <rtc_interrupt+14>: call 0xc0342300 <_spin_lock>

The inst ruct ion at address 0xf8a8c004 is at tem pt ing to m ove the contents of the EAX register to address 0xff ,
which is clearly the invalid deference that caused the crash. Fix this and build a new kernel.

I f you use the irq com m and, you can figure out the ident ity of the interrupt that was in progress during the
t im e of the crash. I n this case, the output confirm s that the RTC interrupt was indeed act ive:

crash> irq
 IRQ: 8
 STATUS: 1 (IRQ_INPROGRESS)
...

...
handler: f8a8c000 <rtc_interrupt>
 flags: 20000000 (SA_INTERRUPT)
 mask: 0
 name: f8a8c29d "rtc"

crash> quit
bash>

Let 's now shift gears and look at a case where the kernel freezes, rather than generate an "oops." Consider the
following buggy driver init() rout ine:

static int __init
mydrv_init(void)
{

 spin_lock(&mydrv_wq.lock); /* Usage before initialization! */
 spin_lock_init(&mydrv_wq.lock);

 /* ... */
}

The code is erroneously using a spinlock before init ializing it . Effect ively, the CPU spins forever t rying to acquire
the lock, and the kernel appears to hang. Let 's debug this problem using kdum p. I n this case, there will be no
auto- t r igger because there is no panic, so force a crash dum p by pressing the m agic Sysrq key com binat ion, Alt -
Sysrq-c. You m ay need to enable Sysrq by writ ing a 1 to / proc/ sys/ kernel/ sysrq:

bash> echo 1 > /proc/sys/kernel/sysrq

bash> insmod mydrv.ko

This induces the kernel to hang inside mydrv_init() . Press the Alt -Sysrq-c key com binat ion to t r igger a crash
dum p:

Alt-Sysrq-c

... Messages announcing that a crash dump

 has been triggered

Save the dum p to disk after kexec boots the capture kernel, boot back to the or iginal kernel, and run crash on
the saved dum p:

bash> crash vmlinux vmcore.dump

 ...
 PANIC: "SysRq : Trigger a crashdump"
 PID: 2115
 COMMAND: "insmod"
 TASK: f7c57000 [THREAD_INFO: f6170000]
 CPU: 0
 STATE: TASK_RUNNING (SYSRQ)
crash>

Test the waters by checking the ident ity of the process that was running at the t im e of the crash. I n this case, it

was apparent ly insm od(of m ydrv.ko) :

crash> ps
 ...
 2171 2137 0 f6bb7000 IN 0.5 11728 5352 emacs-x
 2214 1 0 f6b5b000 IN 0.1 2732 1192 login
 2230 2214 0 f6bb0550 IN 0.1 4580 1528 bash
 > 2261 2230 0 c596f550 RU 0.0 1572 376 insmod

The stack t race doesn't yield m uch inform at ion other than telling you that a Sysrq key press was responsible for
the dum p:

crash> bt
PID: 2115 TASK: f7c57000 CPU: 0 COMMAND: "insmod"
 #0 [c0431e68] crash_kexec at c013a8e7
 #1 [c0431eb4] __handle_sysrq at c0254664
 #2 [c0431edc] handle_sysrq at c0254713

Let 's next t ry peeking at the log m essages generated by the crashed kernel. The log com m and reads the
m essages from the kernel printk r ing buffer present on the dum p file:

crash> log
...
BUG: soft lockup detected on CPU#0!

Pid: 2261, comm: insmod
EIP: 0060:[<c010ec1b>] CPU: 0
EIP is at delay_pmtmr+0xb/0x20
EFLAGS: 00000246 Tainted: P (2.6.16.16 #11)
EAX: 5caaa48c EBX: 00000001 ECX: 5caaa459 EDX: 00000012
ESI: 02e169c9 EDI: 00000000 EBP: 00000001 DS: 007b ES: 007b
CR0: 8005003b CR2: 08062017 CR3: 35e89000 CR4: 000006d0
 [<c01fede9>] __delay+0x9/0x10
 [<c0200089>] _raw_spin_lock+0xa9/0x150
 [<f893d00d>] mydrv_init+0xd/0xb2 [wqdrv]
 [<c0136565>] sys_init_module+0x175/0x17a2
 [<c015d834>] do_sync_read+0xc4/0x100
 [<c013ce4d>] audit_syscall_entry+0x13d/0x170
 [<c0105578>] do_syscall_trace+0x208/0x21a
 [<c0102f05>] syscall_call+0x7/0xb
SysRq : Trigger a crashdump
crash>

The log offers two useful pieces of debug inform at ion. First , it lets you know that a soft lockup was detected on
the crashed kernel. As discussed in the sect ion "Device Exam ple: Watchdog Tim er" in Chapter 5 , "Character
Drivers," the kernel detects soft lockups as follows: A kernel watchdog thread runs once a second and touches a
per-CPU t im estam p variable. I f the CPU sits in a t ight loop, the watchdog thread cannot update this t im estam p.
An update check is carr ied out during t im er interrupts using softlockup_tick() (defined in
kernel/ soft lockup.c) . I f the watchdog t im estam p is m ore than 10 seconds old, it concludes that a soft lockup has
occurred and em its a kernel m essage to that effect .

Second, the log frowns upon mydrv_init()+0xd (or 0xf893d00) , so let 's look at the disassem bly of the
surrounding code region:

crash> dis f893d000 5
dis: WARNING: f893d000: no associated kernel symbol found
0xf893d000: mov $0xf89f1208,%eax
0xf893d005: sub $0x8,%esp
0xf893d008: call 0xc0342300 <_spin_lock>
0xf893d00d: movl $0xffffffff,0xf89f1214
0xf893d017: movl $0xffffffff,0xf89f1210

The return address in the stack is 0xf893d00d , so the kernel is hanging inside the previous inst ruct ion, which is
a call to spin_lock() . I f you co- relate this with the earlier source snippet and look at it in the eye, you can see
the error sequence, spin_lock()/spin_lock_init() , star ing sorrowfully back at you. Fix the problem by
swapping the sequence.

You m ay also use crash to peek at data st ructures of interest , but be aware that m em ory regions that were
swapped out during the crash are not part of the dum p. I n the preceding exam ple, you can exam ine mydrv_wq
as follows:

crash> rd mydrv_wq 100
f892c200: 00000000 00000000 00000000 00000000
...
f892c230: 2e636373 00000068 00000000 00000011 scc.h...........

Gdb is integrated with crash, so you can pass com m ands from crash to gdb for evaluat ion. For exam ple, you can
use gdb's p com m and to pr int data st ructures.

Look ing at the Sources

Architecture-dependent port ions of kexec reside in arch/ your-arch/ kernel/ m achine_kexec.c and arch/ your-
arch/ kernel/ relocate_kernel.S. The generic parts live in kernel/ kexec.c (and include/ linux/ kexec.h) . Peek inside
arch/ your-arch/ kernel/ crash.c and arch/ your-arch/ kernel/ crash_dump.c for the kdum p im plem entat ion.
Docum entat ion/ kdum p/ kdum p.txt contains installat ion inform at ion.

Profiling

Profiling points you to those regions of code that burn m ore CPU cycles. Profilers help sense the presence of
code bot t lenecks and com e in different flavors. The OProfile kernel profiler, included with the 2.6 kernel, uses
hardware assist to gather profile data. The gprof applicat ion profiler, on the other hand, relies on com piler assist
to collect profiling inform at ion.

Kernel Profiling w ith OProfile

OProfile sam ples data at regular intervals using hardware perform ance counters supported by m any processors.
The perform ance counters can be program m ed to count events such as the num ber of cache m isses. On
system s where the processor does not support perform ance counters, OProfile obtains lim ited inform at ion by
collect ing data during t im er events.

OProfile consists of the following:

A kernel layer that collects profiling inform at ion.[7] To enable OProfile in your kernel, enable
CONFIG_PROFILING, CONFIG_OPROFILE, and CONFIG_APIC and recom pile.

[7] I f you are st ill using a 2.4 kernel, you have to patch your kernel sources with OProfile support .

The oprofiled daem on.

A suite of post -profiling tools such as opcont rol, opreport , and op_help that help in detailed analysis of the
collected data. These tools are included with several dist r ibut ions; if your dist r ibut ion doesn't have them ,
however, you can download precom piled binaries.

To illust rate the basics of kernel profiling, let 's sim ulate a bot t leneck in the filesystem layer and use OProfile to
detect it . Our code area of interest is the port ion of the filesystem layer that reads director ies (funct ion
vfs_readdir() in fs/ readdir.c)

First , use opcont rol to configure OProfile:

bash> opcontrol --setup --vmlinux=/path/to/kernelsources/vmlinux

 --event=GLOBAL_POWER_EVENTS:100000:1:1:1

The event specifier asks OProfile to collect sam ples during GLOBAL_POWER_EVENTS (t im e during which the
processor is not stopped) . The num erals adjacent to the event specifier denote the sam pling count in clock
cycles, unit m ask filter, kernel-space count ing, and user-space count ing, respect ively. I f you would like to
sam ple x t im es every second and your processor is running at a frequency of cpu_speed HZ, your sam ple count
should approxim ately be (cpu_speed/x) . A larger count generates a finer profile but also results in m ore CPU
overhead.

The events supported by OProfile depend on your processor:

bash> opcontrol -l List available events on a Pentium 4 CPU

GLOBAL_POWER_EVENTS: (counter: 0, 4)

 time during which processor is not stopped (min count: 3000)
BRANCH_RETIRED: (counter: 3, 7)
 retired branches (min count: 3000)
MISPRED_BRANCH_RETIRED: (counter: 3, 7)
 retired mispredicted branches (min count: 3000)
BSQ_CACHE_REFERENCE: (counter: 0, 4)
...

Next , start OProfile and run a benchm arking tool that st resses those parts of the kernel you would like to
profile. Look at ht tp: / / lbs.sourceforge.net / for a list of benchm arking projects on Linux. For this exam ple, let 's
exercise the Virtual File System (VFS) layer by recursively list ing all files in the system :

bash> opcontrol --start Start data collection

bash> ls -lR / Stress test

bash> opcontrol --dump Save profiled data

Use opreport to look at the profiling results. The % colum n provides a m easure of the funct ion's load on the
system :

Code View:
bash> opreport -l /path/to/kernelsources/vmlinux

CPU: P4 / Xeon, speed 2992.9 MHz (estimated)
Counted GLOBAL_POWER_EVENTS events (time during which processor
is not stopped) with a unit mask of 0x01 (count cycles when processor is active)
count 100000
samples % symbol name

914506 24.2423 vgacon_scroll ls output printed to console

406619 10.7789 do_con_write
273023 7.2375 vgacon_cursor
206611 5.4770 __d_lookup
...

1380 0.0366 vfs_readdir Our routine of interest

...
1 2.7e-05 vma_prio_tree_next

Let 's now sim ulate a bot t leneck in the VFS code by int roducing a 1-m illisecond delay in vfs_readdir() . This is
done in List ing 21.6.

List ing 2 1 .6 . vfs_readdir() Defined in fs/ read_ dir .c

http://lbs.sourceforge.net/

int vfs_readdir(struct file *file, filldir_t filler, void *buf)
{
 struct inode *inode = file->f_ dentry->d_inode;
 int res = -ENOTDIR;

+ /* Introduce a millisecond bottleneck
+ (HZ is set to 1000 on this system) */
+ unsigned long timeout = jiffies+1;
+ while (time_before(jiffies, timeout));
+ /* End of bottleneck */

 /* ... */
}

Com pile the kernel with this change and recollect the profile. The new data looks like this:

Code View:
bash> opreport -l /path/to/kernelsources/vmlinux

CPU: P4 / Xeon, speed 2993.08 MHz (estimated)
Counted GLOBAL_POWER_EVENTS events (time during which processor is not stopped)
with a unit mask of 0x01 (count cycles when processor is active)
count 100000
samples % symbol name

6178015 57.1640 vfs_readdir Our routine of interest

1065197 9.8561 vgacon_scroll ls output printed to console

479801 4.4395 do_con_write
...

As you can see, the bot t leneck is clearly reflected in the profiled data. vfs_readdir() has now jum ped to the
top of the list !

You can use OProfile to obtain a lot m ore inform at ion. You can, for exam ple, gather the percentage of data
cache line m isses. Caches are fast m em ory close to the processor. Fetches to cache are done in units of the
processor cache line (32 bytes for Pent ium 4) . I f the data you need to access is not already present in the cache
(a cache m iss) , the processor has to fetch it from m ain m em ory, and this burns m ore CPU cycles. Subsequent
accesses to that m em ory (and the surrounding bytes touched into the cache) will be faster unt il the
corresponding cache line gets invalidated. You can configure OProfile to count the num ber of cache m isses by
profiling your kernel code for the BSQ_CACHE_REFERENCE event (for Pent ium 4) . You can then tune your code,
possibly by realigning fields in data st ructures, to achieve bet ter cache ut ilizat ion:

Code View:
bash> opcontrol --setup

 --event=BSQ_CACHE_REFERENCE:50000:0x100:1:1

 --vmlinux=/path/to/kernelsources/vmlinux

 Unit mask 0x100 denotes an L2 cache miss

bash> opcontrol --start Start data collection

bash> ls -lR / Stress

bash> opcontrol --dump Save profile

bash> opreport -l /path/to/kernelsources/vmlinux

CPU: P4 / Xeon, speed 2993.68 MHz (estimated)

Counted BSQ_CACHE_REFERENCE events (cache references seen by the bus unit) with a
unit mask of 0x100 (read 2nd level cache miss) count 50000
samples % symbol name
73 29.6748 find_inode_fast
59 23.9837 __d_lookup
27 10.9756 inode_init_once
...

I f you run OProfile on different kernel versions and look at the corresponding change logs, you m ight be able to
figure out reasons for code changes in different parts of the kernel.

You have only touched the surface of what can be accom plished using OProfile. For m ore inform at ion, visit
ht tp: / / oprofile.sourceforge.net / .

Applicat ion Profiling w ith Gprof

I f you need to profile only an applicat ion process in isolat ion without profiling the kernel code that m ight get
executed on its behalf, use gprof rather than OProfile. Gprof relies on addit ional code generated by the com piler
to profile C, Pascal, or Fort ran program s. Let 's use gprof to profile the following code snippet :

main(int argc, char *argv[])
{
 int i;

 for (i=0; i<10; i++) {
 if (!do_task()) { /* Perform task */
 do_error_handling(); /* Handle errors */
 }
 }
}

Use the -pg opt ion to ask the com piler to include ext ra code that generates a call graph profile when the
program runs. The -g opt ion generates sym bolic inform at ion:

bash> gcc -pg -g -o myprog myprog.c

bash> ./myprog

This produces gm on.out , which is a call graph of m yprog. Run gprof to view the profile:

bash> gprof -p -b myprog

Flat profile:

Each sample counts as 0.01 seconds.
 % cumulative self self total
 time seconds seconds calls s/call s/call name
 65.17 2.75 2.75 2 1.38 1.38 do_error_handling
 34.83 4.22 1.47 10 0.15 0.15 do_task

This shows that the error path was hit twice during execut ion. You can tune the code to produce fewer

http://oprofile.sourceforge.net/

t raversals of the error path and rerun gprof to generate an updated profile.

Tracing

Tracing provides insight into behavioral problem s that m anifest during interact ions between different code
m odules. A com m on way to obtain execut ion t races is by using printk s. While printk is perhaps the m ost
heavily used m ethod for kernel debugging (there are m ore than 62,000 printk() statem ents in the 2.6.23
source t ree) , it is not sophist icated enough for high-volum e t racing. Linux Trace Toolkit (LTT) is a powerful tool
that lets you obtain com plex system level t races with m inim um overhead.

Linux Trace Toolk it

LTT ext racts execut ion t races that are useful for postm ortem analysis and is valuable in situat ions where it m ay
not be possible to use a debugger. Unlike OProfile, which collects data by sam pling events at regular intervals,
LTT provides exact t races of events as and when they occur.

LTT consists of four com ponents:

A core m odule that provides t race services to the rest of the kernel. The collected t races are copied to a
kernel buffer.

Code that m akes use of the t race services. These are inserted at points where you want to capture t race
dum ps.

A t race daem on that pulls t race inform at ion from the kernel buffer to a perm anent locat ion in the
filesystem .

Ut ilit ies such as t racereader and t racevisualizer that interpret raw t race data and convert it into hum an-
readable form . I f you are developing code for an embedded device having no GUI support , you can
t ransparent ly run these tools on another m achine.

LTT is not part of the m ainline kernel. [8] You m ay download LTT kernel patches, t race daem on, and user-space
t race ut ilit ies from www.opersys.com / LTT.

[8] LTT was included as a release candidate in the 2.6.11- rc1-m m 1 patch, downloadable from www.kernel.org.

Let 's find out what LTT offers with the help of a sim ple exam ple. Assum e that you are seeing data corrupt ion
when your applicat ion is reading from a device. You first want to figure out whether the device is sending bad
data or whether a kernel layer is int roducing the corrupt ion. To do that , dum p data packets and data st ructures
at the device dr iver level. List ing 21.7 init ializes the LTT events that you plan to generate.

List ing 2 1 .7 . Creat ing LTT Events

#include <linux/trace.h>

int data_packet, driver_data; /* Trace events */

/* Driver init */
static int __init mydriver_init(void)
{
 /* ... */

 /* Event to dump packets received from the device */
 data_packet = trace_create_event("data_pkt",
 NULL,
 CUSTOM_EVENT_FORMAT_TYPE_HEX,
 NULL);

 /* Event to dump a driver structure */
 driver_data = trace_create_event("dvr_data",
 NULL,
 CUSTOM_EVENT_FORMAT_TYPE_HEX,
 NULL);

 /* ... */

}

Next , let 's add t race hooks to dum p received packets and data st ructures when the dr iver reads data from the
device. This is done in List ing 21.8 in the dr iver read() m ethod.

List ing 2 1 .8 . Obta ining Trace Dum ps

Code View:
struct mydriver_data driver_data; /* Private device structure */

/* Driver read() method */
ssize_t
mydriver_read(struct file *file, char *buf,
 size_t count, loff_t *ppos)
{
 char *buffer;

 /* Read numbytes bytes of data from the device into
 buffer */
 /* ... */

 /* Dump data Packet. If you see the problem only
 under certain conditions, say, when the packet length is
 greater than a value, use that as a filter */
 if (condition) {
 /* See Listing 21.7 for the definition of data_packet*/
 trace_raw_event(data_packet, numbytes, buffer);
 }

 /* Dump driver data structures */
 if (some_other_condition) {
 /* See Listing 21.7 for the definition of driver_data */
 trace_raw_event(driver_data, sizeof(driver_data), &driver_data);
 }

 /* ... */
}

Com pile and run this code as part of the kernel or as a m odule. Rem em ber to turn on t race support in the
kernel by set t ing CONFIG_TRACE while configuring the kernel. The next step is to start the t race daem on:

bash> tracedaemon -ts60 /dev/tracer mylog.txt mylog.proc

/ dev/ t racer is the interface used by the t race daem on to access the t race buffer, -ts60 asks the daem on to run
for 60 seconds, m ylog.txt is the file where you want to store the generated raw t race, and m ylog.proc is where
you want to save the system state obtained from procfs. Later versions of LTT use a m echanism called relayfs
rather than the / dev/ t racer device for efficient ly t ransferr ing data from the kernel t race buffer to user space.

Run your applicat ion that reads data from the device:

bash> ./application Trigger invocation of mydriver_read()

m ylog.txt should now contain the requested t race data. The generated raw t race can be analyzed using the
t racevisualizer tool. Choose the Custom Events opt ion and search for data_pkt and dvr_data events. The
output looks like this:

##
Event Time SECS MICROSEC PID Length Description
##
data_pkt 1,110,563,008,742,457 0 27 12 43 AB AC 00 01 0D 56
data_pkt 1,110,563,008,743,151 0 27 01 D4 73 F1 0A CB DD 06
dvr_data 1,110,563,008,743,684 0 25 0D EF 97 1A 3D 4C
...

The last colum n holds the t race data. The t im estam p shows the instant when the t race was collected. I f the data
looks corrupt , the device could be sending bad data. Otherwise, the problem m ust be in a higher kernel layer
and can be further isolated by obtaining t races from a different point in the data- flow path.

The next generat ion of LTT called LTTng is available for download from ht tp: / / lt t .polym t l.ca/ . This project also
includes a post - t race analyzer called Linux Trace Toolkit Viewer (LTTV) .

I f your need is only to perform lim ited t racing of a user applicat ion, you can use the st race ut ilit y rather than
LTT. St race uses the pt race support in the kernel to intercept system calls. I t pr ints out a list of system calls
m ade by your applicat ion, along with the corresponding argum ents and return values.

http://ltt.polymtl.ca/

Linux Test Project

Linux Test Project (LTP) , hosted at ht tp: / / ltp.sourceforge.net / , is a suite consist ing of around 3,000 tests
designed to exercise different parts of the kernel. Most tests run without user intervent ion. Others such as
networking and storage m edia tests need som e m anual configurat ion.

Download the source tar ball from the LTP hom e page, run m ake, and invoke the wrapper scr ipt runltp from the
root of the source t ree to start the tests. To capture the results in logfile in the results/ directory, do this:

bash> runltp –p –l logfile

Som e errors generated by LTP are "expected." The LTP website docum ents the list of expected errors for
various kernel versions. Also in the website is an interest ing analysis of LTP's code coverage (overall coverage,
lines in path, and dist inct lines hit) for a few kernel versions, split across director ies in the kernel t ree.

http://ltp.sourceforge.net/

User Mode Linux

User Mode Linux (UML) , hosted at ht tp: / / user-m ode- linux.sourceforge.net / , lets you debug the kernel without
"oops" ing the m achine. To accom plish this, an instance of the kernel (called the guest kernel) runs as a user
m ode process over the running kernel (called the host kernel) .

UML has diverse users. I t can funct ion as an environm ent for test ing kernel and applicat ion code, a vehicle to
experim ent with unstable kernels, a secure pseudo com puter for host ing services such as web servers, or a tool
to learn Linux internals. UML is m ore useful for debugging hardware- independent port ions of the kernel than for
device dr iver debugging.

http://user-mode-linux.sourceforge.net/

Diagnost ic Tools

The sysfsut ils package helps you navigate the volum inous am ount of data present inside sysfs. This, and other
Linux diagnost ic tools such as sysdiag and lsvpd, can be downloaded from ht tp: / / linux-diag.sourceforge.net / .

http://linux-diag.sourceforge.net/

Kernel Hack ing Config Opt ions

Several opt ions exist under Kernel hacking in the kernel configurat ion m enu that can em it valuable debug
inform at ion. I f you enable an opt ion, corresponding debug code gets com piled when you build the kernel. [9]

Here are a few exam ples:

[9] Som e kernel hacking opt ions are architecture-dependent .

1 . Show Tim ing inform at ion on printks (CONFIG_PRINTK_TIME) adds t im ing inst rum entat ion to printk()
output , so you can use printk s as checkpoints for m easuring execut ion t im es and ident ifying slow code
regions.

2 . Using freed m em ory results in m em ory poisoning. Debug slab m em ory allocat ions (CONFIG_DEBUG_SLAB)
helps you detect such problem s.

3 . Spinlock and rw- lock debugging: basic checks (CONFIG_DEBUG_SPINLOCK) finds lock- related problem s such
as uninit ialized spinlock usage and helps catch code that is not SMP-safe.

4 . You have already worked with Magic SysRq key(CONFIG_MAGIC_SYSRQ) when you learned to use kdum p. I f
you turn this on, you will have som e avenues left even if the kernel crashes during debugging. For
exam ple, pressing Alt -Sysrq- t produces a dum p of current tasks, whereas Alt -Sysrq-p pr ints the contents
of processor registers.

5 . Detect Soft Lockups (CONFIG_DETECT_SOFTLOCKUP) ut ilizes the services of a watchdog to detect t ight loops
in kernel code that last for m ore than 10 seconds. We looked at this when we analyzed a kernel hang using
kdum p. Note that hardware lockups cannot be found this way. For that , use the services of a Non-Maskable
I nterrupt (NMI) -watchdog if your plat form supports it .

6 . I f you enable CONFIG_DEBUG_SLAB, CONFIG_DEBUG_HIMEM, or CONFIG_DEBUG_PAGE_ALLOC while configuring
your kernel, addit ional error-checking code gets com piled that help debug problem s related to m em ory
m anagem ent .

7 . Check for stack overflows (CONFIG_DEBUG_STACKOVERFLOW) adds code to em it warnings if the available
stack space falls below a threshold. Stack ut ilizat ion inst rum entat ion (CONFIG_DEBUG_STACK_USAGE) adds
stack space inst rum entat ion to the m agic Sysrq key output . Another related opt ion, CONFIG_4KSTACKS, lets
you set the kernel stack size to 4KB rather than 8KB.

8 . Verbose BUG() report ing (CONFIG_DEBUG_BUGVERBOSE) produces ext ra debug inform at ion when any kernel
code invokes BUG() , assum ing that you have CONFIG_BUG turned on during kernel configurat ion.

Som e debug opt ions live outside the Kernel hacking subm enu, too. For exam ple, we enabled CONFIG_KALLSYMS
in this chapter to debug an "oops" m essage using gdb and to kprobe a kernel m odule. This opt ion lives under
General setup Configure Standard Kernel Features (for sm all system s) in the configurat ion m enu.

Kernel hacking opt ions result in overhead and increased footpr int , so don't leave them on in product ion- level
kernels.

Test Equipm ent

I t goes without saying that you need the full com plem ent of relevant test equipm ent for device dr iver
debugging. I f you are test ing a m odem interface in a digital-only laboratory environm ent for exam ple, you will
be well served by a phone sim ulator. I f a high-speed serial dr iver is m anifest ing parity errors, an oscilloscope
will aid your problem analysis. I f you are writ ing an I / O device dr iver, it will help if you have the associated bus
analyzer. I f you are writ ing a network dr iver, the corresponding protocol line sniffer will ease your debugging
effort .

Chapter 2 2 . Maintenance and Delivery

I n This Chapter

Coding Style
642

Change Markers
642

Version Cont rol
643

Consistent Checksum s
643

Build Scripts
645

Portable Code
647

You have reached the end of the device dr iver tour, but im plem ent ing a dr iver is only a part of the
software developm ent life cycle. Before wrapping up, let 's discuss a few ideas that cont r ibute to
operat ional efficiency during software m aintenance and delivery.

Coding Style

The life span of m any Linux devices range from 5 to 10 years, so adherence to a standard coding style helps
support the product long after you have m oved out of the project .

A powerful editor coupled with an organized writ ing style m akes it easier to correlate code with thought . There
can be no infallible guidelines for good style because it 's a m at ter of personal preference, but a uniform m anner
of coding is invaluable if there are m ult iple developers working on a project .

Agree on com m on coding standards with team m em bers and the custom er before start ing a project . The coding
style preferred by kernel developers is described in Docum entat ion/ CodingStyle in the source t ree.

Chapter 2 2 . Maintenance and Delivery

I n This Chapter

Coding Style
642

Change Markers
642

Version Cont rol
643

Consistent Checksum s
643

Build Scripts
645

Portable Code
647

You have reached the end of the device dr iver tour, but im plem ent ing a dr iver is only a part of the
software developm ent life cycle. Before wrapping up, let 's discuss a few ideas that cont r ibute to
operat ional efficiency during software m aintenance and delivery.

Coding Style

The life span of m any Linux devices range from 5 to 10 years, so adherence to a standard coding style helps
support the product long after you have m oved out of the project .

A powerful editor coupled with an organized writ ing style m akes it easier to correlate code with thought . There
can be no infallible guidelines for good style because it 's a m at ter of personal preference, but a uniform m anner
of coding is invaluable if there are m ult iple developers working on a project .

Agree on com m on coding standards with team m em bers and the custom er before start ing a project . The coding
style preferred by kernel developers is described in Docum entat ion/ CodingStyle in the source t ree.

Change Markers

Using a m arker such as CONFIG_MYPROJECT to tag addit ions and delet ions to exist ing kernel source files helps
highlight project -specific changes to the source t ree. One can recursively grep for the m arker st r ing from the
root of the code t ree to learn the locat ion of all kernel changes im plem ented for the project . The following
exam ple m arks code changes to dr ivers/ i2c/ busses/ i2c- i801.c. The m odificat ion int roduces a check for a new
PCI device I D during setup and elim inates a configurat ion byte access:

/* ... */
switch(dev->device) {
 case PCI_DEVICE_ID_INTEL_82801DB_3:
#if defined (CONFIG_MYPROJECT)

 case PCI_DEVICE_ID_MYID :
#endif

 /* ... */
}
/* ... */
#if !defined (CONFIG_MYPROJECT)

 pci_write_config_byte(I801_dev, SMBHSTCFG, temp);
#endif

return 0;
/* ... */

CONFIG_MYPROJECT also funct ions as a configurat ion- t im e switch to enable or disable project -specific changes.

I t 's a good idea to have subm arkers for various subtasks in your project . So, if you are m odifying the kernel for
fast boot as part of your project , wrap those changes within a subm arker such as CONFIG_MYPROJECT_FASTBOOT.

Version Cont rol

You can't execute a serious project without the services of a robust version cont rol repository. A version cont rol
system helps m anage m ult iple versions of source code and regulates file accesses by team m em bers.
Concurrent Versions System or CVS (www.nongnu.org/ cvs) is an open source revision cont rol software that has
been around for a long t im e and com es bundled with m any Linux dist r ibut ions. Another versioning system called
subversion (ht tp: / / subversion.t igr is.org) was developed as an intended replacem ent for CVS. Git
(ht tp: / / git .or.cz) is the version cont rol system of choice for kernel developers and is used to m aintain several
open source projects, including the Linux kernel. Am ple docum entat ion on these system s is available on the
I nternet .

http://subversion.tigris.org
http://git.or.cz

Consistent Checksum s

Because of legal issues latent in dist r ibut ing the kernel, com panies often ship kernel m odificat ions to custom ers
in the form of a source patch generated against an agreed-upon base. Custom ers, in turn, integrate the patch
into an in-house code repository and build the software locally.

Com paring the MD5 checksum of your binary im ages with that of your custom er's is a guard against patching
errors, but the values m ay not m atch as- is because the kernel and m odule im ages often contain inform at ion
specific to the build environm ent . To force ident ical MD5 sum s, exclude such data while generat ing kernel and
m odule im ages at either end. Here are som e typical scenarios that inject environm ental data into the object
im age:

Som e driver m ethods toss a call to BUG() to announce condit ions that are never supposed to occur. BUG()
spits out , am ong other things, the offending filenam e and line num ber. The pathnam e of the file depends
on the locat ion of your build sandbox. I t gets im printed in the produced im age and cont r ibutes to MD5
variance. For exam ple, look at nfs_unlock_request() in fs/ nfs/ pagelist .c:

 void
 nfs_unlock_request(struct nfs_page *req)
 {
 if (!NFS_WBACK_BUSY(req)) {
 printk(KERN_ERR "NFS: Invalid unlock attempted\n");
 BUG();

 }
 /* ... */
 }

BUG() is defined in include/ asm -your-arch/ bug.h:

#define BUG() do {\
__asm__ __volatile__ ("ud2\n"\
 ...
 : : "I" (__LINE__), "I"(__FILE__))

You can com pile BUG() away by disabling CONFIG_BUG during kernel configurat ion. Or you m ay get r id of
the line num ber and filenam e inform at ion em it ted by BUG() by switching off CONFIG_DEBUG_BUGVERBOSE.

The wd33c93 driver (dr ivers/ scsi/ wd33c93.c) announces the t im e of com pilat ion during init ializat ion. You
will find this snippet if you go to the end of the init ializat ion rout ine, wd33c93_init() :

 void
 wd33c93_init(struct Scsi_Host *instance,
 const wd33c93_regs regs, dma_setup_t setup,
 dma_stop_t stop, int clock_freq)
 {
 /* ... */
 printk(" Version %s - %s, Compiled %s at %s\n",
 WD33C93_VERSION, WD33C93_DATE, __DATE__, __TIME__);

 }

The build t im estam p thus gets em bedded inside the im age, causing the MD5 checksum to depend on it .

The CONFIG_IKCONFIG_PROC configurat ion opt ion, if enabled, int roduces the configurat ion t im estam p in
the kernel im age. This inform at ion is available as part of / proc/ config.gz at runt im e.

Ut ilit ies liv ing inside the scr ipts/ directory in the kernel t ree also cont r ibute to MD5 variance by inject ing
the output of program s such as hostnam e, date, whoam i and dom ainnam e, into kernel header files such
as include/ linux/ -com pile.h.

Hunt down and m ask out such direct and indirect references to environm ental inform at ion to generate ident ical
checksum s at both ends. Of course, you need not bother about kernel m odules that aren't relevant . Envelope
your code m odificat ions within a change m arker such as CONFIG_MYPROJECT_SAME_MD5 and create a kernel
configurat ion switch to turn consistent MD5 generat ion on or off. When you finish, run m d5sum on the st r ipped
vm linux im age.

Build Scr ipts

Custom ers generally ask for periodic software builds during the developm ent cycle. Each build includes new
features or bug fixes. The deliverables for an em bedded PC derivat ive, for exam ple, m ay include firm ware
com ponents such as the base kernel, loadable device dr iver m odules, filesystem ut ilit ies, boot loader, BI OS, and
on-card m icrocode. To autom ate build generat ion, it 's a good idea to im plem ent a set of versat ile build scr ipts
that obtain a source code snapshot from the version cont rol repository and generate a packaged deliverable.

List ing 22.1 shows a skeletal build scr ipt that assum es use of CVS for version cont rol. This is a sim ple scr ipt that
shows only the kernel build. I n the real world, you m ight need a sophist icated suite of scr ipts that package
several software com ponents and m anage different installat ion scenarios.

List ing 2 2 .1 . A Sim ple Build Scr ipt

Code View:
Check that compilation tools are installed
#...

Assume that $user contains the user name, $cvsserver contains
the CVS server name and /path/to/repository is the location

of your project's repository on the CVS server
CVS="cvs –d :pserver:$user@$cvsserver:/path/to/repository"
$CVS login

Check-out the kernel
$CVS checkout kernel

Build the kernel
cd kernel
make mrproper
#Get the .config file for your platform
cp arch/your-arch/configs/your_platform_defconfig .config
make oldconfig
make –j5 bzImage # Accelerate by spawning 5 instances of 'make'
if [$? != 0]
then
 echo "Error building Kernel. Bailing out.."
 exit 1
fi

Copy the kernel image to a target directory
cp arch/x86/boot/bzImage /path/to/target_directory/productname.kernel

Build modules and install them in an appropriate directory
make modules
if [$? != 0]
then
 echo "Error building modules. Bailing.."
 exit 2
fi

export INSTALL_MOD_PATH=»$TARGET_DIRECTORY/modules»
make modules_install

Rebuild after forcing generation of identical MD5 sums and

package the resulting checksum information.
#...

Generate a source patch from the base starting point, assuming
that KERNELBASE is the CVS tag for the vanilla kernel
cvs rdiff –u –r KERNELBASE kernel > patch.kernel

Generate a changelog using "cvs log"
#...

Package everything nicely into a tar ball
#...

After you sat isfactor ily com plete build verificat ion tests on the generated deliverable, init iate a post -build
process to tag the current state of the version cont rol system with a build ident ifier. This essent ially at taches a
nam e to the source snapshot corresponding to the build and helps t race problem s to code versions. You can
check out source versions based on the relevant build ident ifier when you later at tem pt to re-create reported
field problem s in your lab.

Portable Code

Portabilit y direct ly t ranslates to code reusabilit y and easier m aintenance. This is significant in today's
m arketplace, where there are an assortm ent of processors and innum erable peripheral chipsets. Things will fast
spin out of cont rol if you have to code separate bus dr ivers for each processor and different client device dr ivers
for each host cont roller. Here are som e hints for writ ing portable dr ivers:

Make portabilit y a design goal while architect ing your dr iver.

Using appropriate kernel API s autom at ically injects a degree of portabilit y. A USB driver using the services
of the USB core is rendered independent of the USB host cont roller. I t will work unchanged on different
system s, irrespect ive on whether they use UHCI , OHCI , or som ething else.

Write SMP-safe code.

Write code that is 64-bit clean. Do not , for exam ple, assign a pointer to an integer, even with valid
typecasts.

Write dr ivers such that they can be easily adapted for other sim ilar devices.

Use architecture- independent API s wherever available. For exam ple, calls to outb() or inb() will work
irrespect ive of whether the processor uses I / O-m apped or m em ory-m apped addressing. I f you do need to
use architecture-specific code such as inline assembly, stow it away inside the appropriate arch/ your-arch/
directory.

Push policy to header files and user space. Use m acros and definit ions wherever suitable.

Chapter 2 3 . Shut t ing Dow n

I n This Chapter

Checklist
650

What Next?
651

Before t ransit ioning to init runlevel 0, let 's sum marize how to set forth on your way to Linux-
enablem ent when you get hold of a new device. Here's a quick checklist .

Checklist

I dent ify the device's funct ionality and interface technology. Depending on what you find, review the
chapter describing the associated device dr iver subsystem . As you learned, alm ost every dr iver subsystem
on Linux contains a core layer that offers dr iver services, and an abst ract ion layer that renders
applicat ions independent of the underlying hardware (revisit Figure 18.3 in Chapter 18, "Em bedding
Linux") . Your dr iver needs to fit into this fram ework and interact with other com ponents in the subsystem .
I f your device is a m odem , learn how the UART, t ty, and line discipline layers operate. I f your chip is an
RTC or a watchdog, learn how to conform to the respect ive kernel API s. I f what you have is a m ouse, find
out how to t ie it with the input event layer. I f your hardware is a video cont roller, glean expert ise on the
fram e buffer subsystem . Before em barking on driving an audio codec, invest igate the ALSA fram ework.

1 .

Obtain the device's data sheet and understand its register program m ing m odel. For an I2C DVI
t ransm it ter, for exam ple, get the device's slave address and the program m ing sequence for init ializat ion.
For an SPI touch cont roller, understand how to im plem ent its finite state m achine. For a PCI Ethernet
card, find out the configurat ion space sem ant ics. For a USB device, figure out the supported endpoints and
learn how to com m unicate with them .

2 .

Search for a start ing point dr iver inside the m ighty kernel source t ree. Research candidate dr ivers and
hone in on a suitable one. Certain subsystem s offer skeletal dr ivers that you can m odel after, if you don't
find a close m atch. Exam ples are sound/ drivers/ dum my.c, dr ivers/ usb/ usb-skeleton.c, dr ivers/ net / pci-
skeleton.c, and drivers/ video/ skeletonfb.c.

3 .

I f you obtain a start ing point dr iver, invest igate the exact differences between the associated device and
your hardware by com paring the respect ive data sheets and schem at ics. For illust rat ion, assum e that you
are put t ing Linux on a custom board that is based on a dist r ibut ion-supported reference hardware. Your
dist r ibut ion includes the USB cont roller dr iver that is tested on the reference hardware, but does your

4 .

custom board use different USB t ransceivers? You have a fram e buffer dr iver for the LCD cont roller, but
does your board use a different display panel interface such as LVDS? Perhaps an EEPROM that sat on the
I 2C bus on the reference board now sits on a 1-wire bus. I s the Ethernet cont roller now connected to a
different PHY chip or even to a Layer 2 switch chip? Or perhaps the RS-232 interface to the UART has
given way to RS-485 for bet ter range and fidelity.

I f you don't have a close start ing point or if you decide to write your own driver from scratch, invest t im e
in designing and architect ing the dr iver and its data st ructures.

5 .

Now that you have all the inform at ion you need, arm yourself with software tools (such as ctags, cscope,
and debuggers) and lab equipm ent (such as oscilloscopes, m ult im eters, and analyzers) and start writ ing
code.

6 .

Chapter 2 3 . Shut t ing Dow n

I n This Chapter

Checklist
650

What Next?
651

Before t ransit ioning to init runlevel 0, let 's sum marize how to set forth on your way to Linux-
enablem ent when you get hold of a new device. Here's a quick checklist .

Checklist

I dent ify the device's funct ionality and interface technology. Depending on what you find, review the
chapter describing the associated device dr iver subsystem . As you learned, alm ost every dr iver subsystem
on Linux contains a core layer that offers dr iver services, and an abst ract ion layer that renders
applicat ions independent of the underlying hardware (revisit Figure 18.3 in Chapter 18, "Em bedding
Linux") . Your dr iver needs to fit into this fram ework and interact with other com ponents in the subsystem .
I f your device is a m odem , learn how the UART, t ty, and line discipline layers operate. I f your chip is an
RTC or a watchdog, learn how to conform to the respect ive kernel API s. I f what you have is a m ouse, find
out how to t ie it with the input event layer. I f your hardware is a video cont roller, glean expert ise on the
fram e buffer subsystem . Before em barking on driving an audio codec, invest igate the ALSA fram ework.

1 .

Obtain the device's data sheet and understand its register program m ing m odel. For an I2C DVI
t ransm it ter, for exam ple, get the device's slave address and the program m ing sequence for init ializat ion.
For an SPI touch cont roller, understand how to im plem ent its finite state m achine. For a PCI Ethernet
card, find out the configurat ion space sem ant ics. For a USB device, figure out the supported endpoints and
learn how to com m unicate with them .

2 .

Search for a start ing point dr iver inside the m ighty kernel source t ree. Research candidate dr ivers and
hone in on a suitable one. Certain subsystem s offer skeletal dr ivers that you can m odel after, if you don't
find a close m atch. Exam ples are sound/ drivers/ dum my.c, dr ivers/ usb/ usb-skeleton.c, dr ivers/ net / pci-
skeleton.c, and drivers/ video/ skeletonfb.c.

3 .

I f you obtain a start ing point dr iver, invest igate the exact differences between the associated device and
your hardware by com paring the respect ive data sheets and schem at ics. For illust rat ion, assum e that you
are put t ing Linux on a custom board that is based on a dist r ibut ion-supported reference hardware. Your
dist r ibut ion includes the USB cont roller dr iver that is tested on the reference hardware, but does your

4 .

custom board use different USB t ransceivers? You have a fram e buffer dr iver for the LCD cont roller, but
does your board use a different display panel interface such as LVDS? Perhaps an EEPROM that sat on the
I 2C bus on the reference board now sits on a 1-wire bus. I s the Ethernet cont roller now connected to a
different PHY chip or even to a Layer 2 switch chip? Or perhaps the RS-232 interface to the UART has
given way to RS-485 for bet ter range and fidelity.

I f you don't have a close start ing point or if you decide to write your own driver from scratch, invest t im e
in designing and architect ing the dr iver and its data st ructures.

5 .

Now that you have all the inform at ion you need, arm yourself with software tools (such as ctags, cscope,
and debuggers) and lab equipm ent (such as oscilloscopes, m ult im eters, and analyzers) and start writ ing
code.

6 .

W hat Next?

Linux is here to stay, but internal kernel interfaces tend to get fossilized as soon as som eone figures out a
cleverer way of doing things. No kernel code is etched in stone. As you learned, even the scheduler, considered
sacred, has undergone two rewrites since the 2.4 days. The num ber of new lines of code appearing in the kernel
t ree runs into the m illions each year. As the kernel evolves, new features and abst ract ions keep get t ing added,
program m ing interfaces redesigned, subsystem s rest ructured for ext ract ing bet ter perform ance, and reusable
regions filtered into com m on cores.

You now have a solid foundat ion, so you can adapt to these changes. To m aintain your cut t ing-edge, refresh
your kernel t ree regular ly, browse the kernel m ailing list frequent ly, and write code whenever you can. Linux is
the future, and being a kernel guru pays. Stay at the front lines!

Appendix A. Linux Assem bly

Device dr ivers som et im es need to im plem ent som e code snippets in assem bly, so let 's take a look
at the different facets of assem bly program m ing on Linux.

Figure A.1 shows the Linux boot sequence on a PC-com pat ible system and is a sim pler version of Figure 2.1 in
Chapter 2 , "A Peek I nside the Kernel." The firm ware com ponents in the figure are im plem ented using different
assem bly syntaxes:

The BI OS is typically writ ten wholly in assem bly. Som e of the popular PC BI OSes are coded using
assem blers such as the Microsoft Macro Assem bler (MASM).

Linux boot loaders such as LI LO and GRUB are im plem ented using a m ix of C and assem bly. The SYSLI NUX
boot loader is ent irely writ ten in assem bly using the Netwide Assem bler (NASM).

Real m ode Linux startup code uses the GNU Assem bler (GAS) .

Protected m ode BI OS invocat ions are done in inline assem bly, which is a const ruct supported by GCC to
insert assem bly in between C statem ents.

Figure A.1 . Firm w are com ponents and assem bly syntax es.

I n Figure A.1, the top two com ponents generally follow I ntel-based assem bly syntax, whereas the bot tom two
are coded in AT&T (or GAS) syntax. There are except ions; the assem bly parts of GRUB use GAS.

To illust rate the differences between these two syntaxes, consider code that outputs a byte to the parallel port .
I n I ntel form at used by the BI OS or the boot loader, you would write the following:

mov dx, 03BCh ;0x3BC is the I/O address of the parallel port
mov al, 0ABh ;0xAB is the data to be output
out dx, al ;Send data to the parallel port

However, if you want to perform the sam e task from Linux real m ode startup code, you need to do this:

movw $0x3BC, %dx
movb $0xAB, %al
outb %al, %dx

You can see that unlike in I ntel form at , in AT&T syntax, the source operand com es first , and the dest inat ion
operand com es second. Register nam es in AT&T form at are preceded by %, and im m ediate operands are
preceded by $. AT&T opcodes have suffixes such as b (for byte) and w (for word) to specify the size of m em ory
operands, whereas I ntel syntax accom plishes this by looking at the operands rather than the opcodes. To m ove
pointer references in I ntel syntax, you have to specify operand prefixes such as byte ptr .

The advantage of learning AT&T syntax is that it 's understood by GAS and inline GCC, which work not
only on I ntel-based system s, but also on a variety of processor architectures.

Next , let 's rewrite the preceding snippet using GCC inline assem bly, which is what you would use from the
protected m ode kernel:

unsigned short port = 0x3BC;
unsigned char data = 0xAB;

asm("outb %%al, %%dx\n\t"
 :
 : "a" (data), "d" (port)
);

The general form at of the asm const ruct supported by GCC is as follows:

asm(assembly
 : output operand constraints
 : input operand constraints
 : clobbered operand specifier
);

I n the operand sect ions, a, b, c, d, S, and D stand for EAX, EBX, ECX, EDX, ESI , and EDI registers, respect ively.
I nput operand const raints copy data from the supplied variables to the specified registers before execut ing the
assem bly inst ruct ions, whereas output operand const raints (writ ten as =a, =b, and so on) copy data from the
specified registers to the supplied variables after execut ing the assem bly inst ruct ions. The clobbered operand
const raints ask GCC to assum e that the listed registers are not available for use. Look at the GCC I nline
Assem bly HOWTO (www.ibiblio.org/ gferg/ ldp/ GCC- I nline-Assem bly-HOWTO.htm l) for m ore details on the GCC
inline assem bly syntax.

The only const raint used in our exam ple is specific to input operands. This effect ively copies the value of data to
the AL register and the value of port to the DX register. Register nam es are preceded by %% in inline assem bly,
because % is used to refer to the supplied operands. %i stands for the i th operand; so, if you want to refer to
data and port inside the exam ple inline assem bly snippet , you m ay respect ively use %0 and %1.

To obtain a clearer picture of inline assem bly t ranslat ion, let 's look at the assem bly code generated by the
com piler corresponding to the preceding inline assem bly snippet by supplying the -s com m and- line argum ent to
GCC. Look at the com m ent against each generated code line for explanat ions:

 movw $956, -2(%ebp) # Value of data in stack set to 0x3BC

 movb $-85, -3(%ebp) # Value of port in stack set to 0xAB

 movb -3(%ebp), %al # movb 0xAB, %al
 movw -2(%ebp), %dx # movw 0x3BC, %dx
#APP # Marker to note start of inline assembly
 outb %al, %dx # Write to parallel port
#NO_APP # Marker to note end of inline assembly

You m ay use inline assem bly from user m ode program s, too. Here is an applicat ion writ ten using inline
assem bly that invokes the syslog() system call to read the last 128 bytes from the kernel printk() r ing
buffer:

Code View:
#define READ_COMMAND 3 /* First argument to
 syslog() system call */
#define MSG_LENGTH 128 /* Third argument to syslog() */

int
main(int argc, char *argv[])
{
 int syslog_command = READ_COMMAND;
 int bytes_to_read = MSG_LENGTH;
 int retval;
 char buffer[MSG_LENGTH]; /* Second argument to syslog() */

 asm volatile(
 "movl %1, %%ebx\n" /* READ_COMMAND */
 "movl %2, %%ecx\n" /* buffer */
 "movl %3, %%edx\n" /* bytes_to_read */
 "movl $103, %%eax\n" /* __NR_syslog */
 "int $128\n" /* Generate System Call */
 "movl %%eax, %0" /* retval */
 :"=r" (retval)
 :"m"(syslog_command),"r"(buffer),"m"(bytes_to_read)
 :"%eax","%ebx","%ecx","%edx");

 if (retval > 0) printf("%s\n", buffer);
}

As you learned in Chapter 4 , "Laying the Groundwork," the int $128 (or int 0x80) inst ruct ion generates a
software interrupt that t raps into system calls. Because system calls result in t ransit ion from user mode to
kernel m ode, the funct ion argum ents are not passed in user or kernel stacks, but in CPU registers. The system
call num ber (include/ asm -your-arch/ unistd.h has the full list) is stored in the EAX register. For the syslog()
system call, this num ber is 103. I f you look at the m an page for syslog() , you will see that it takes three
argum ents: a com m and, the address of a buffer to hold returned data, and the length of the buffer. These are
passed in registers EBX, ECX and EDX, respect ively. The return value is t ransferred from EAX to retval . The
inline assem bly invocat ion effect ively t ranslates to this:

retval = syslog(syslog_command, buffer, bytes_to_read);

I f you com pile and run the code, you will see output like this, fetched from the kernel r ing buffer:

0:0:0:0: Attached scsi removable disk sda
<5>sd 0:0:0:0: Attached scsi generic sg0 type 0
<7>usb-storage: device scan complete
...

The kernel system call t rap in arch/ x86/ kernel/ ent ry_32.S saves all register contents to stack, so the real
system calls see their argum ents on stack, even though user-space code passes them in CPU registers. To
ensure that system call rout ines expect argum ents on stack, they are all tagged with the GCC at t r ibute,
asmlinkage . Note that asmlinkage has nothing to do with the asm (or __asm__) that is used to declare inline
assem bly.

Let 's end this sect ion by illust rat ing an exam ple of inline assem bly m odificat ion to a Linux boot loader for a
PowerPC-based board. Assum e that the flash m em ory on the board does not support BackGround Operat ion
(BGO) . This m eans that the boot loader code cannot write to flash while execut ing from flash, which is needed,
for exam ple, if the boot loader needs to update a kernel im age that is residing in another part of the flash. One
solut ion is to m odify the boot loader so that the boot code used to write and erase the flash gets executed
ent irely from I nst ruct ion Cache (I -cache) with the data segm ent residing in Data Cache (D-cache) . The sam ple

m acro writ ten here in GCC inline assem bly does the job of pretouching the necessary boot loader inst ruct ions
onto I -cache. You need a working knowledge of PowerPC assem bly to understand this code snippet :

Code View:
/* instr_length is the number of instructions to touch
 into I-cache. _load_i$_copy and _end_i$_copy are
 program labels */
#define load_into_icache_copy(instr_length) \
asm volatile("lis %%r3, 0x1@h\n \
 ori %%r3, %%r3, 0x1@l\n \
 mticcr %%r3\n \
 isync\n \
 \n \
 lis %%r6, _end_i$_copy@h\n \
 ori %%r6, %%r6, _end_i$_copy@l\n \
 icbt %%r0, %%r6\n \
 lis %%r4, %0@h\n \
 ori %%r4, %%r4, %0@l\n \
 mtctr %%r4\n \
 _load_i$_copy: \
 addis %%r6, %%r6, 32@ha\n \
 addi %%r6, %%r6, 32@l\n \
 icbt %%r0, %%r6\n \
 bdnz _load_i$_copy\n \
 _end_i$_copy: \
 nop\n" \
 : \
 : "i"(instr_length) \
 :"%r6","%r4","%r0","r8","r9");

Debugging

To debug the real m ode kernel, you cannot use debuggers such as the Kernel Debugger (kdb) or the Kernel
GNU Debugger (kgdb) , which we discussed in Chapter 21, "Debugging Device Drivers." A quick way to debug
kernel assem bly snippets is by using the DOS debug tool after convert ing your code to I ntel-style syntax. But
debug was created in the 16-bit era, so you can't , for instance, step through code that init ializes the EAX
register. You can find 32-bit debug- type freeware tools available for download on the I nternet . JTAG debuggers,
also discussed in Chapter 21, are a kind of panacea because a single tool can be used to debug the BI OS,
boot loader, Linux real m ode code, and kernel-BI OS interact ions.

Appendix A. Linux Assem bly

Device dr ivers som et im es need to im plem ent som e code snippets in assem bly, so let 's take a look
at the different facets of assem bly program m ing on Linux.

Figure A.1 shows the Linux boot sequence on a PC-com pat ible system and is a sim pler version of Figure 2.1 in
Chapter 2 , "A Peek I nside the Kernel." The firm ware com ponents in the figure are im plem ented using different
assem bly syntaxes:

The BI OS is typically writ ten wholly in assem bly. Som e of the popular PC BI OSes are coded using
assem blers such as the Microsoft Macro Assem bler (MASM).

Linux boot loaders such as LI LO and GRUB are im plem ented using a m ix of C and assem bly. The SYSLI NUX
boot loader is ent irely writ ten in assem bly using the Netwide Assem bler (NASM).

Real m ode Linux startup code uses the GNU Assem bler (GAS) .

Protected m ode BI OS invocat ions are done in inline assem bly, which is a const ruct supported by GCC to
insert assem bly in between C statem ents.

Figure A.1 . Firm w are com ponents and assem bly syntax es.

I n Figure A.1, the top two com ponents generally follow I ntel-based assem bly syntax, whereas the bot tom two
are coded in AT&T (or GAS) syntax. There are except ions; the assem bly parts of GRUB use GAS.

To illust rate the differences between these two syntaxes, consider code that outputs a byte to the parallel port .
I n I ntel form at used by the BI OS or the boot loader, you would write the following:

mov dx, 03BCh ;0x3BC is the I/O address of the parallel port
mov al, 0ABh ;0xAB is the data to be output
out dx, al ;Send data to the parallel port

However, if you want to perform the sam e task from Linux real m ode startup code, you need to do this:

movw $0x3BC, %dx
movb $0xAB, %al
outb %al, %dx

You can see that unlike in I ntel form at , in AT&T syntax, the source operand com es first , and the dest inat ion
operand com es second. Register nam es in AT&T form at are preceded by %, and im m ediate operands are
preceded by $. AT&T opcodes have suffixes such as b (for byte) and w (for word) to specify the size of m em ory
operands, whereas I ntel syntax accom plishes this by looking at the operands rather than the opcodes. To m ove
pointer references in I ntel syntax, you have to specify operand prefixes such as byte ptr .

The advantage of learning AT&T syntax is that it 's understood by GAS and inline GCC, which work not
only on I ntel-based system s, but also on a variety of processor architectures.

Next , let 's rewrite the preceding snippet using GCC inline assem bly, which is what you would use from the
protected m ode kernel:

unsigned short port = 0x3BC;
unsigned char data = 0xAB;

asm("outb %%al, %%dx\n\t"
 :
 : "a" (data), "d" (port)
);

The general form at of the asm const ruct supported by GCC is as follows:

asm(assembly
 : output operand constraints
 : input operand constraints
 : clobbered operand specifier
);

I n the operand sect ions, a, b, c, d, S, and D stand for EAX, EBX, ECX, EDX, ESI , and EDI registers, respect ively.
I nput operand const raints copy data from the supplied variables to the specified registers before execut ing the
assem bly inst ruct ions, whereas output operand const raints (writ ten as =a, =b, and so on) copy data from the
specified registers to the supplied variables after execut ing the assem bly inst ruct ions. The clobbered operand
const raints ask GCC to assum e that the listed registers are not available for use. Look at the GCC I nline
Assem bly HOWTO (www.ibiblio.org/ gferg/ ldp/ GCC- I nline-Assem bly-HOWTO.htm l) for m ore details on the GCC
inline assem bly syntax.

The only const raint used in our exam ple is specific to input operands. This effect ively copies the value of data to
the AL register and the value of port to the DX register. Register nam es are preceded by %% in inline assem bly,
because % is used to refer to the supplied operands. %i stands for the i th operand; so, if you want to refer to
data and port inside the exam ple inline assem bly snippet , you m ay respect ively use %0 and %1.

To obtain a clearer picture of inline assem bly t ranslat ion, let 's look at the assem bly code generated by the
com piler corresponding to the preceding inline assem bly snippet by supplying the -s com m and- line argum ent to
GCC. Look at the com m ent against each generated code line for explanat ions:

 movw $956, -2(%ebp) # Value of data in stack set to 0x3BC

 movb $-85, -3(%ebp) # Value of port in stack set to 0xAB

 movb -3(%ebp), %al # movb 0xAB, %al
 movw -2(%ebp), %dx # movw 0x3BC, %dx
#APP # Marker to note start of inline assembly
 outb %al, %dx # Write to parallel port
#NO_APP # Marker to note end of inline assembly

You m ay use inline assem bly from user m ode program s, too. Here is an applicat ion writ ten using inline
assem bly that invokes the syslog() system call to read the last 128 bytes from the kernel printk() r ing
buffer:

Code View:
#define READ_COMMAND 3 /* First argument to
 syslog() system call */
#define MSG_LENGTH 128 /* Third argument to syslog() */

int
main(int argc, char *argv[])
{
 int syslog_command = READ_COMMAND;
 int bytes_to_read = MSG_LENGTH;
 int retval;
 char buffer[MSG_LENGTH]; /* Second argument to syslog() */

 asm volatile(
 "movl %1, %%ebx\n" /* READ_COMMAND */
 "movl %2, %%ecx\n" /* buffer */
 "movl %3, %%edx\n" /* bytes_to_read */
 "movl $103, %%eax\n" /* __NR_syslog */
 "int $128\n" /* Generate System Call */
 "movl %%eax, %0" /* retval */
 :"=r" (retval)
 :"m"(syslog_command),"r"(buffer),"m"(bytes_to_read)
 :"%eax","%ebx","%ecx","%edx");

 if (retval > 0) printf("%s\n", buffer);
}

As you learned in Chapter 4 , "Laying the Groundwork," the int $128 (or int 0x80) inst ruct ion generates a
software interrupt that t raps into system calls. Because system calls result in t ransit ion from user mode to
kernel m ode, the funct ion argum ents are not passed in user or kernel stacks, but in CPU registers. The system
call num ber (include/ asm -your-arch/ unistd.h has the full list) is stored in the EAX register. For the syslog()
system call, this num ber is 103. I f you look at the m an page for syslog() , you will see that it takes three
argum ents: a com m and, the address of a buffer to hold returned data, and the length of the buffer. These are
passed in registers EBX, ECX and EDX, respect ively. The return value is t ransferred from EAX to retval . The
inline assem bly invocat ion effect ively t ranslates to this:

retval = syslog(syslog_command, buffer, bytes_to_read);

I f you com pile and run the code, you will see output like this, fetched from the kernel r ing buffer:

0:0:0:0: Attached scsi removable disk sda
<5>sd 0:0:0:0: Attached scsi generic sg0 type 0
<7>usb-storage: device scan complete
...

The kernel system call t rap in arch/ x86/ kernel/ ent ry_32.S saves all register contents to stack, so the real
system calls see their argum ents on stack, even though user-space code passes them in CPU registers. To
ensure that system call rout ines expect argum ents on stack, they are all tagged with the GCC at t r ibute,
asmlinkage . Note that asmlinkage has nothing to do with the asm (or __asm__) that is used to declare inline
assem bly.

Let 's end this sect ion by illust rat ing an exam ple of inline assem bly m odificat ion to a Linux boot loader for a
PowerPC-based board. Assum e that the flash m em ory on the board does not support BackGround Operat ion
(BGO) . This m eans that the boot loader code cannot write to flash while execut ing from flash, which is needed,
for exam ple, if the boot loader needs to update a kernel im age that is residing in another part of the flash. One
solut ion is to m odify the boot loader so that the boot code used to write and erase the flash gets executed
ent irely from I nst ruct ion Cache (I -cache) with the data segm ent residing in Data Cache (D-cache) . The sam ple

m acro writ ten here in GCC inline assem bly does the job of pretouching the necessary boot loader inst ruct ions
onto I -cache. You need a working knowledge of PowerPC assem bly to understand this code snippet :

Code View:
/* instr_length is the number of instructions to touch
 into I-cache. _load_i$_copy and _end_i$_copy are
 program labels */
#define load_into_icache_copy(instr_length) \
asm volatile("lis %%r3, 0x1@h\n \
 ori %%r3, %%r3, 0x1@l\n \
 mticcr %%r3\n \
 isync\n \
 \n \
 lis %%r6, _end_i$_copy@h\n \
 ori %%r6, %%r6, _end_i$_copy@l\n \
 icbt %%r0, %%r6\n \
 lis %%r4, %0@h\n \
 ori %%r4, %%r4, %0@l\n \
 mtctr %%r4\n \
 _load_i$_copy: \
 addis %%r6, %%r6, 32@ha\n \
 addi %%r6, %%r6, 32@l\n \
 icbt %%r0, %%r6\n \
 bdnz _load_i$_copy\n \
 _end_i$_copy: \
 nop\n" \
 : \
 : "i"(instr_length) \
 :"%r6","%r4","%r0","r8","r9");

Debugging

To debug the real m ode kernel, you cannot use debuggers such as the Kernel Debugger (kdb) or the Kernel
GNU Debugger (kgdb) , which we discussed in Chapter 21, "Debugging Device Drivers." A quick way to debug
kernel assem bly snippets is by using the DOS debug tool after convert ing your code to I ntel-style syntax. But
debug was created in the 16-bit era, so you can't , for instance, step through code that init ializes the EAX
register. You can find 32-bit debug- type freeware tools available for download on the I nternet . JTAG debuggers,
also discussed in Chapter 21, are a kind of panacea because a single tool can be used to debug the BI OS,
boot loader, Linux real m ode code, and kernel-BI OS interact ions.

Appendix B. Linux and the BI OS

Parts of the x86 kernel, such as the video fram e buffer dr iver (vesafb) and Advanced Power
Managem ent (APM) , explicit ly use BI OS services to accom plish certain funct ions. Other sect ions of
the kernel, such as the serial dr iver, im plicit ly depend on the BI OS to init ialize I / O base addresses
and interrupt levels. Real m ode kernel code m akes extensive use of BI OS calls during boot to
perform tasks such as assem bling the system m em ory m ap. [1] Because som e device dr ivers
depend direct ly or indirect ly on the BI OS, let 's learn how to interact with it .

[1] On BI OS- less em bedded architectures, sim ilar responsibilit ies (for exam ple, waking the kernel from suspend on ARM Linux) rest with the
boot loader.

Real Mode Calls

Many parts of the kernel glean inform at ion from the BI OS in real m ode and use the collected inform at ion during
norm al operat ion in protected m ode.

The steps needed to accom plish this are as follows:

1 . Real m ode kernel code invokes BI OS services and populates returned inform at ion in the first physical
m em ory page, called the zero page. This is done by the source files in the arch/ x86/ boot / directory. The
full layout of the zero page can be found in Docum entat ion/ i386/ zero-page.txt .

2 . After the kernel switches to protected m ode, but before it clears the zero page, the obtained data is saved
in kernel data st ructures. This is done in arch/ x86/ kernel/ setup_32.c.

3 . The protected m ode kernel m akes suitable use of the saved inform at ion during norm al operat ion.

As an exam ple, let 's find out how the kernel assem bles the system m em ory m ap from the BI OS. List ing B.1 is a
snippet from arch/ x86/ boot / m em ory.c in the 2.6.23.1 source t ree that invokes the BI OS int 0x15 service to
obtain the system m em ory m ap.

List ing B.1 . Obta ining the System Mem ory Map (arch/ x8 6 / boot / m em ory.c)

static int detect_memory_e820(void)
{
 int count = 0;
 u32 next = 0;
 u32 size, id;
 u8 err;
 /* The boot_params structure contains the zero page */
 struct e820entry *desc = boot_params.e820_map;

 do {
 size = sizeof(struct e820entry);
 asm("int $0x15; setc %0"
 : "=d" (err), "+b" (next), "=a" (id), "+c" (size),
 "=m" (*desc)
 : "D" (desc), "d" (SMAP), "a" (0xe820));

 /* ... */

 count++;
 desc++;
 } while (next && count < E820MAX);

 return boot_params.e820_entries = count;
}

I n the list ing, 0xe820 is the funct ion num ber specified in the AX register before invoking int 0x15 to procure the
m em ory m ap. I f you look at the BI OS call definit ion for int 0x15 , funct ion 0xe820 (the full list is available at
ht tp: / / lrs.fm i.uni-passau.de/ support / doc/ interrupt -57/ I NT.HTM) , you will see that the BI OS writes the current
elem ent of the m em ory m ap in a buffer pointed to by the DI register. I n List ing B.1, DI points to the offset in
the zero page where the m em ory m ap is to be stored (boot_params.e820_map) . The code then loops unt il all
elem ents in the m em ory m ap are collected. The num ber of elem ents is com puted and stored at offset
boot_params.e820_entries in the zero page. When execut ion successfully exits the loop, the m em ory m ap is
available in the zero page in the form of struct e820map , defined in include/ asm -x86/ e820.h :

struct e820entry {
 _u64 addr; /* start of memory segment */
 _u64 size; /* size of memory segment */
 _u32 type; /* type of memory segment */
} _attribute_((packed));

struct e820map {
 _u32 nr_map;
 struct e820entry map[E820MAX];
};

The kernel switches to protected m ode later in arch/ x86/ boot / pm .c. When in protected m ode, the kernel saves
the collected m em ory m ap via copy_e820_map() , defined in arch/ x86/ kernel/ e820_32.c. This is shown in List ing
B.2. For sim plicity, the list ing scissors out error checks and folds the add_memory_region() rout ine.

List ing B.2 . Copying the Mem ory Map (arch/ x8 6 / kernel/ e8 2 0 _ 3 2 .c)

http://lrs.fmi.uni-passau.de/support/doc/interrupt-57/INT.HTM

Code View:
struct e820map e820;

static int __init
copy_e820_map(struct e820entry *biosmap, int nr_map)
{
 int x;
 /* ... */

 do {
 /* Copy memory map information collected from
 the BIOS into local variables */
 unsigned long long start = biosmap->addr;
 unsigned long long size = biosmap->size;
 unsigned long long end = start + size;
 unsigned long type = biosmap->type;

 /* Sanitize start and size */
 /* ... */

 /* Populate the kernel data structure, e820 */
 x = e820.nr_map;
 e820.map[x].addr = start;
 e820.map[x].size = size;
 e820.map[x].type = type;
 e820.nr_map++;
 } while (biosmap++,--nr_map); /*Do for all elements in map*/

 /* ... */
}

Look at arch/ x86/ m m / init_32.c to see how the e820 st ructure populated in List ing B.2 is used later on in the
boot process.

The Old i386 Boot Code

Start ing with the 2.6.23 kernel, the i386 boot assem bly code has been largely rewrit ten in C. Prior
to 2.6.23, the code in List ing B.1 lived in arch/ i386/ boot / setup.S rather than in
arch/ x86/ boot / m em ory.c. Also, the switch to protected m ode now occurs in arch/ x86/ boot / pm .c
rather than setup.S.

To take another exam ple, the kernel m akes use of the BI OS int 0x10 service to obtain video m ode param eters
while it 's in real m ode (arch/ x86/ boot / video* .c) . The VESA fram e buffer dr iver (dr ivers/ video/ vesafb.c) relies on
these param eters to turn on graphics m ode at boot t im e.

As an exercise, use a sim ilar approach to obtain BI OS Power-On Self Test (POST) error codes from the real
m ode kernel (via int 0x15 , funct ion 0x2100) and display them during norm al operat ion via the / proc
filesystem .

Boot loaders also m ake use of BI OS services in real m ode. I f you browse through the sources of LI LO, GRUB, or
SYSLI NUX, you will see a liberal sprinkling of int 0x13 calls to read the kernel im age from the boot device.

Appendix B. Linux and the BI OS

Parts of the x86 kernel, such as the video fram e buffer dr iver (vesafb) and Advanced Power
Managem ent (APM) , explicit ly use BI OS services to accom plish certain funct ions. Other sect ions of
the kernel, such as the serial dr iver, im plicit ly depend on the BI OS to init ialize I / O base addresses
and interrupt levels. Real m ode kernel code m akes extensive use of BI OS calls during boot to
perform tasks such as assem bling the system m em ory m ap. [1] Because som e device dr ivers
depend direct ly or indirect ly on the BI OS, let 's learn how to interact with it .

[1] On BI OS- less em bedded architectures, sim ilar responsibilit ies (for exam ple, waking the kernel from suspend on ARM Linux) rest with the
boot loader.

Real Mode Calls

Many parts of the kernel glean inform at ion from the BI OS in real m ode and use the collected inform at ion during
norm al operat ion in protected m ode.

The steps needed to accom plish this are as follows:

1 . Real m ode kernel code invokes BI OS services and populates returned inform at ion in the first physical
m em ory page, called the zero page. This is done by the source files in the arch/ x86/ boot / directory. The
full layout of the zero page can be found in Docum entat ion/ i386/ zero-page.txt .

2 . After the kernel switches to protected m ode, but before it clears the zero page, the obtained data is saved
in kernel data st ructures. This is done in arch/ x86/ kernel/ setup_32.c.

3 . The protected m ode kernel m akes suitable use of the saved inform at ion during norm al operat ion.

As an exam ple, let 's find out how the kernel assem bles the system m em ory m ap from the BI OS. List ing B.1 is a
snippet from arch/ x86/ boot / m em ory.c in the 2.6.23.1 source t ree that invokes the BI OS int 0x15 service to
obtain the system m em ory m ap.

List ing B.1 . Obta ining the System Mem ory Map (arch/ x8 6 / boot / m em ory.c)

static int detect_memory_e820(void)
{
 int count = 0;
 u32 next = 0;
 u32 size, id;
 u8 err;
 /* The boot_params structure contains the zero page */
 struct e820entry *desc = boot_params.e820_map;

 do {
 size = sizeof(struct e820entry);
 asm("int $0x15; setc %0"
 : "=d" (err), "+b" (next), "=a" (id), "+c" (size),
 "=m" (*desc)
 : "D" (desc), "d" (SMAP), "a" (0xe820));

 /* ... */

 count++;
 desc++;
 } while (next && count < E820MAX);

 return boot_params.e820_entries = count;
}

I n the list ing, 0xe820 is the funct ion num ber specified in the AX register before invoking int 0x15 to procure the
m em ory m ap. I f you look at the BI OS call definit ion for int 0x15 , funct ion 0xe820 (the full list is available at
ht tp: / / lrs.fm i.uni-passau.de/ support / doc/ interrupt -57/ I NT.HTM) , you will see that the BI OS writes the current
elem ent of the m em ory m ap in a buffer pointed to by the DI register. I n List ing B.1, DI points to the offset in
the zero page where the m em ory m ap is to be stored (boot_params.e820_map) . The code then loops unt il all
elem ents in the m em ory m ap are collected. The num ber of elem ents is com puted and stored at offset
boot_params.e820_entries in the zero page. When execut ion successfully exits the loop, the m em ory m ap is
available in the zero page in the form of struct e820map , defined in include/ asm -x86/ e820.h :

struct e820entry {
 _u64 addr; /* start of memory segment */
 _u64 size; /* size of memory segment */
 _u32 type; /* type of memory segment */
} _attribute_((packed));

struct e820map {
 _u32 nr_map;
 struct e820entry map[E820MAX];
};

The kernel switches to protected m ode later in arch/ x86/ boot / pm .c. When in protected m ode, the kernel saves
the collected m em ory m ap via copy_e820_map() , defined in arch/ x86/ kernel/ e820_32.c. This is shown in List ing
B.2. For sim plicity, the list ing scissors out error checks and folds the add_memory_region() rout ine.

List ing B.2 . Copying the Mem ory Map (arch/ x8 6 / kernel/ e8 2 0 _ 3 2 .c)

http://lrs.fmi.uni-passau.de/support/doc/interrupt-57/INT.HTM

Code View:
struct e820map e820;

static int __init
copy_e820_map(struct e820entry *biosmap, int nr_map)
{
 int x;
 /* ... */

 do {
 /* Copy memory map information collected from
 the BIOS into local variables */
 unsigned long long start = biosmap->addr;
 unsigned long long size = biosmap->size;
 unsigned long long end = start + size;
 unsigned long type = biosmap->type;

 /* Sanitize start and size */
 /* ... */

 /* Populate the kernel data structure, e820 */
 x = e820.nr_map;
 e820.map[x].addr = start;
 e820.map[x].size = size;
 e820.map[x].type = type;
 e820.nr_map++;
 } while (biosmap++,--nr_map); /*Do for all elements in map*/

 /* ... */
}

Look at arch/ x86/ m m / init_32.c to see how the e820 st ructure populated in List ing B.2 is used later on in the
boot process.

The Old i386 Boot Code

Start ing with the 2.6.23 kernel, the i386 boot assem bly code has been largely rewrit ten in C. Prior
to 2.6.23, the code in List ing B.1 lived in arch/ i386/ boot / setup.S rather than in
arch/ x86/ boot / m em ory.c. Also, the switch to protected m ode now occurs in arch/ x86/ boot / pm .c
rather than setup.S.

To take another exam ple, the kernel m akes use of the BI OS int 0x10 service to obtain video m ode param eters
while it 's in real m ode (arch/ x86/ boot / video* .c) . The VESA fram e buffer dr iver (dr ivers/ video/ vesafb.c) relies on
these param eters to turn on graphics m ode at boot t im e.

As an exercise, use a sim ilar approach to obtain BI OS Power-On Self Test (POST) error codes from the real
m ode kernel (via int 0x15 , funct ion 0x2100) and display them during norm al operat ion via the / proc
filesystem .

Boot loaders also m ake use of BI OS services in real m ode. I f you browse through the sources of LI LO, GRUB, or
SYSLI NUX, you will see a liberal sprinkling of int 0x13 calls to read the kernel im age from the boot device.

Protected Mode Calls

To see how the kernel m akes protected m ode BI OS calls, let 's look at the APM im plem entat ion.

APM is a BI OS interface specificat ion, which is now alm ost obsolete (see the sect ion "Power Managem ent " in
Chapter 4 , "Laying the Groundwork") . Power m anagem ent policies are defined in the BI OS, and a kernel thread
called kapm d polls it every second to figure out the course of act ion. The polling is done using protected m ode
BI OS calls. To do this, kapm d needs to know the protected m ode ent ry segm ent address and offset . These are
obtained from the real m ode kernel during boot using the int 0x15 , funct ion 0x5303 BI OS service.

The actual protected m ode BI OS call is invoked using inline assem bly from apm_bios_call_simple_asm() ,
defined in include/ asm -x86/ m ach-default / apm .h:

__asm__ __volatile__(APM_DO_ZERO_SEGS
 "pushl %%edi\n\t"
 "pushl %%ebp\n\t"
 "lcall *%%cs:apm_bios_entry\n\t"
 "setc %%bl\n\t"
 "popl %%ebp\n\t"
 "popl %%edi\n\t"
 APM_DO_POP_SEGS
 : "=a" (*eax), "=b" (error), "=c" (cx), "=d" (dx),
 "=S" (si)
 : "a" (func), "b" (ebx_in), "c" (ecx_in)
 : "memory", "cc");

APM_DO_ZERO_SEGS zeros out segm ent registers. apm_bios_entry contains the protected m ode ent ry address.
The input const raint "a" (func) copies the desired BI OS funct ion num ber to the EAX register before invocat ion.
For exam ple, funct ion num ber APM_FUNC_GET_EVENT (0x530b) elicits an APM event from the BI OS, and funct ion
num ber APM_FUNC_IDLE (0x5305) not ifies the BI OS that the processor is idle. Results are returned by the BI OS
in registers EAX, EBX, ECX, and EDX. As per the previous output operand const raints, these are propagated to the
caller in variables *eax , error , cx , and dx , respect ively. I n the assem bly body, registers are saved onto the
kernel stack before the BI OS call and restored afterward to prevent the BI OS from t ram pling on them .

BI OS and Legacy Dr ivers

The BI OS provides a degree of hardware abst ract ion to som e Linux dr ivers. Let 's take the PC serial port dr iver
(discussed in Chapter 6 , "Serial Drivers") as an exam ple. The BI OS probes the Super I / O chipset and assigns
I / O base addresses and I RQs to the respect ive serial (and I nfrared) ports. The serial dr iver needs to be told
about the resources assigned by the BI OS either via hard-coded values in a header file (include/ asm -
x86/ serial.h) or via user-space com m ands. As an exercise, dig into the data sheet of your Super I / O chipset and
add support in the serial dr iver to probe for the resource values set by the BI OS.

To take another exam ple, even if you disable USB support in the kernel, you can use USB keyboards and m ice
on PC system s with help from the BI OS. The BI OS turns on an em ulat ion m ode in the South Bridge that routes
USB keyboard and m ouse input from the USB cont roller to the keyboard cont roller. This t r icks the operat ing
system into thinking that you are using a legacy keyboard or m ouse.

The kernel used to rely on the BI OS to walk the PCI bus and configure detected devices. This is now obsolete,
but take a look at arch/ x86/ pci/ pcbios.c to see how PCI BI OS can be accessed from the kernel. Chapter 10,
"Peripheral Com ponent I nterconnect ," discussed PCI dr ivers.

Appendix C. Seq Files

Monitor ing and t rending data points offered by procfs m ight help diagnose device dr iver problem s
when the cause of a sym ptom looks fuzzy. But som et im es, especially when the am ount of data is
large, the corresponding procfs read() im plem entat ions becom e com plex. The seq file interface is
a kernel helper m echanism designed to sim plify such im plem entat ions. Seq files render procfs
operat ions cleaner and easier.

Let 's gradually int roduce com plexit ies to a procfs read() rout ine and see how the seq file interface
t ransform s the labored rout ine into a graceful one. We'll also update one of the few rem aining 2.6
drivers that does not yet leverage seq files.

The Seq File Advantage

Let 's discover the advantages offered by seq files with the help of an exam ple. As is com m on with m any device
drivers, assum e that you have a linked list of data st ructures and that each node in the list contains a st r ing
field (called info) . The exam ple code in List ing C.1 uses a procfs file nam ed / proc/ readm e to export these
st r ings to user space. When a user reads this file, the procfs read() m ethod, readme_proc() , gets invoked. This
rout ine t raverses the linked list and appends the info field of each node to the filesystem buffer passed down to
it .

List ing C.1 . Reading via Procfs

Code View:
/* Private Data structure */
struct _mydrv_struct {
 /* ... */
 struct list_head list; /* Link to the next node */
 char info[10]; /* Info to pass via the procfs file */
 /* ... */
};

static LIST_HEAD(mydrv_list); /* List Head */

/* Initialization */
static int __init
mydrv_init(void)
{
 int i;
 static struct proc_dir_entry *entry = NULL ;
 struct _mydrv_struct *mydrv_new;

 /* ... */
 /* Create /proc/readme */

 entry = create_proc_entry("readme", S_IWUSR, NULL);

 /* Attach it to readme_proc() */
 if (entry) {
 entry->read_proc = readme_proc;
 }

 /* Handcraft mydrv_list for testing purpose.
 In the real world, device driver logic
 maintains the list and populates the 'info' field */
 for (i=0;i<100;i++) {
 mydrv_new = kmalloc(sizeof(mydrv_struct), GFP_ATOMIC);
 sprintf(mydrv_new->info, "Node No: %d\n", i);
 list_add_tail(&mydrv_new->list, &mydrv_list);
 }
 return 0;
}

/* The procfs read entry point */
static int
readme_proc(char *page, char **start, off_t offset,
 int count, int *eof, void *data)
{
 int i = 0;
 off_t thischunk_len = 0;
 struct _mydrv_struct *p;

 /* Traverse the list and copy info into the supplied buffer */
 list_for_each_entry(p, &mydrv_list, list) {
 thischunk_len += sprintf(page+thischunk_len, p->info);
 }
 eof = 1; / Indicate completion */
 return thischunk_len;
}

Boot the kernel with these changes and peek inside / proc/ readm e:

bash> cat /proc/readme

Node No: 0
Node No: 1
...
Node No: 99

When procfs read() m ethods are invoked, they are supplied one page of m em ory that they can use to pass
inform at ion to user space. As you can see in List ing C.1, the first argum ent passed to readme_proc() is a
pointer to this page-sized buffer. The second argument , start , is used to aid the im plem entat ion of procfs files
larger than a page. The use of this param eter will get clear when we look at the exam ple in List ing C.2. The next
two argum ents respect ively specify the offset from where the read operat ion is requested and the num ber of
bytes to be read. The eof argum ent is used to tell the caller whether there is m ore data to be read. I f *eof is
not set before returning, the procfs read ent ry point is called again for m ore data. I n List ing C.1, if you
com m ent out the line that sets *eof , readme_proc() gets called again with the offset argum ent set to 1190
(which is the num ber of ASCI I bytes contained in the st r ings, Node No: 0 to Node No: 99) . readme_proc()
returns the num ber of bytes copied to the supplied buffer.

The size of data generated by the procfs read rout ine in List ing C.1 falls within the one-page lim it . However, if
you increase the num ber of nodes in the linked list from 100 to 500 in mydrv_init() , the am ount of data
generated while reading / proc/ readm e crosses a page and t r iggers the following output :

bash> cat /proc/readme

Node No: 0

Node No: 1
...
Node No: 322
proc_file_read: Apparent buffer overflow!

As you can see, an overflow occurs after one page (4,096 in this case) worth of ASCI I characters have been
produced.

To handle such large procfs files, you need to refashion the code in List ing C.1 using the start param eter
alluded to earlier. This m akes the funct ion som ewhat com plicated and is shown in List ing C.2. The sem ant ics of
this m odified im plem entat ion is as follows:

readme_proc() is called m ult iple t im es, each invocat ion yielding a m axim um of count bytes start ing at
offset . The count requested during each call is less than the size of a page.

During each invocat ion, the kernel increm ents offset by the num ber of bytes returned by the previous
invocat ion.

readme_proc() signals eof only if the am ount of data produced is less than or equal to the requested
count plus the current offset . I f eof is not set , the funct ion is called again with offset advanced by the
num ber of bytes returned previously.

After each invocat ion, only those bytes start ing from *start are collected and returned to the caller.

Print the values of *start , offset , count , and page , and look at the output generated during each invocat ion to
bet ter understand the operat ion sequence.

With this hack, your procfs file can supply large am ounts of data to user space without size lim itat ions:

bash> cat /proc/readme

Node No: 0
Node No: 1
...
Node No: 499

List ing C.2 . Large Procfs Reads

Code View:
static int
readme_proc(char *page, char **start, off_t offset,
 int count, int *eof, void *data)

{
 int i = 0;
 off_t thischunk_start = 0;
 off_t thischunk_len = 0;
 struct _mydrv_struct *p;
 /* Loop thru the list collecting device info */
 list_for_each_entry(p, &mydrv_list, list) {
 thischunk_len += sprintf(page+thischunk_len, p->info);

 /* Advance thischunk_start only to the extent that the next
 * read will not result in total bytes more than (offset+count)
 */
 if (thischunk_start + thischunk_len < offset) {
 thischunk_start += thischunk_len;
 thischunk_len = 0;
 } else if (thischunk_start + thischunk_len > offset+count) {
 break;
 } else {
 continue;
 }
 }

 /* Actual start */
 *start = page + (offset - thischunk_start);

 /* Calculate number of written bytes */
 thischunk_len -= (offset - thischunk_start);
 if (thischunk_len > count) {
 thischunk_len = count;
 } else {
 *eof = 1;
 }

 return thischunk_len;
}

The seq file interface com es to the rescue when you are faced with the prospect of awkwardly im plem ent ing
large procfs files as in List ing C.2. As the nam e im plies, the seq file interface views the contents of procfs files as
a sequence of objects. Program m ing interfaces are provided to iterate through this object sequence. Your code
has to supply the following iterator m ethods expected by the seq interface:

start() , which is called first by the seq interface. This init ializes the posit ion within the iterator sequence
and returns the first iterator object of interest .

1 .

next() , which increm ents the iterator posit ion and returns a pointer to the next iterator. This funct ion is
agnost ic to the internal st ructure of the iterator and considers it an opaque object .

2 .

show() , which interprets the iterator passed to it and generates output st r ings to be displayed when a
user reads the corresponding procfs file. This m ethod m akes use of helpers such as seq_printf() ,
seq_putc() , and seq_puts() to form at the output .

3 .

stop() , which is called at the end for cleanup.4 .

The seq file interface autom at ically invokes these iterator m ethods to produce output in response to user
operat ions on related procfs files. You no longer need to worry about page-sized buffers and signaling the end of
data.

Let 's rewrite List ing C.2 m aking use of seq files. This is done in List ing C.3 by viewing the linked list as a
sequence of nodes. The basic iterator object is the node, and each invocat ion of the next() m ethod returns the
next node in the list .

List ing C.3 . Using Seq Files to Sim plify List ing C.2

Code View:
#include <linux/seq_file.h>

/* start() method */
static void *
mydrv_seq_start(struct seq_file *seq, loff_t *pos)
{
 struct _mydrv_struct *p;
 loff_t off = 0;

 /* The iterator at the requested offset */
 list_for_each_entry(p, &mydrv_list, list) {
 if (*pos == off++) return p;
 }
 return NULL;
}

/* next() method */
static void *
mydrv_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
 /* 'v' is a pointer to the iterator returned by start() or
 by the previous invocation of next() */
 struct list_head *n = ((struct _mydrv_struct *)v)->list.next;

 ++*pos; /* Advance position */
 /* Return the next iterator, which is the next node in the list */
 return(n != &mydrv_list) ?
 list_entry(n, struct _mydrv_struct, list) : NULL;
}

/* show() method */
static int
mydrv_seq_show(struct seq_file *seq, void *v)
{
 const struct _mydrv_struct *p = v;

 /* Interpret the iterator, 'v' */
 seq_printf(seq, p->info);

 return 0;
}

/* stop() method */
static void
mydrv_seq_stop(struct seq_file *seq, void *v)
{
 /* No cleanup needed in this example */
}

/* Define iterator operations */
static struct seq_operations mydrv_seq_ops = {
 .start = mydrv_seq_start,
 .next = mydrv_seq_next,
 .stop = mydrv_seq_stop,
 .show = mydrv_seq_show,
};

static int
mydrv_seq_open(struct inode *inode, struct file *file)
{
 /* Register the operators */
 return seq_open(file, &mydrv_seq_ops);
}

static struct file_operations mydrv_proc_fops = {
 .owner = THIS_MODULE,
 .open = mydrv_seq_open, /* User supplied */
 .read = seq_read, /* Built-in helper function */
 .llseek = seq_lseek, /* Built-in helper function */
 .release = seq_release, /* Built-in helper funciton */
};

static int __init
mydrv_init(void)
{
 /* ... */

 /* Replace the assignment to entry->read_proc in Listing C.1,
 with a more fundamental assignment to entry->proc_fops. So
 instead of doing "entry->read_proc = readme_proc;", do the
 following: */
 entry->proc_fops = &mydrv_proc_fops;

 /* ... */
}

Appendix C. Seq Files

Monitor ing and t rending data points offered by procfs m ight help diagnose device dr iver problem s
when the cause of a sym ptom looks fuzzy. But som et im es, especially when the am ount of data is
large, the corresponding procfs read() im plem entat ions becom e com plex. The seq file interface is
a kernel helper m echanism designed to sim plify such im plem entat ions. Seq files render procfs
operat ions cleaner and easier.

Let 's gradually int roduce com plexit ies to a procfs read() rout ine and see how the seq file interface
t ransform s the labored rout ine into a graceful one. We'll also update one of the few rem aining 2.6
drivers that does not yet leverage seq files.

The Seq File Advantage

Let 's discover the advantages offered by seq files with the help of an exam ple. As is com m on with m any device
drivers, assum e that you have a linked list of data st ructures and that each node in the list contains a st r ing
field (called info) . The exam ple code in List ing C.1 uses a procfs file nam ed / proc/ readm e to export these
st r ings to user space. When a user reads this file, the procfs read() m ethod, readme_proc() , gets invoked. This
rout ine t raverses the linked list and appends the info field of each node to the filesystem buffer passed down to
it .

List ing C.1 . Reading via Procfs

Code View:
/* Private Data structure */
struct _mydrv_struct {
 /* ... */
 struct list_head list; /* Link to the next node */
 char info[10]; /* Info to pass via the procfs file */
 /* ... */
};

static LIST_HEAD(mydrv_list); /* List Head */

/* Initialization */
static int __init
mydrv_init(void)
{
 int i;
 static struct proc_dir_entry *entry = NULL ;
 struct _mydrv_struct *mydrv_new;

 /* ... */
 /* Create /proc/readme */

 entry = create_proc_entry("readme", S_IWUSR, NULL);

 /* Attach it to readme_proc() */
 if (entry) {
 entry->read_proc = readme_proc;
 }

 /* Handcraft mydrv_list for testing purpose.
 In the real world, device driver logic
 maintains the list and populates the 'info' field */
 for (i=0;i<100;i++) {
 mydrv_new = kmalloc(sizeof(mydrv_struct), GFP_ATOMIC);
 sprintf(mydrv_new->info, "Node No: %d\n", i);
 list_add_tail(&mydrv_new->list, &mydrv_list);
 }
 return 0;
}

/* The procfs read entry point */
static int
readme_proc(char *page, char **start, off_t offset,
 int count, int *eof, void *data)
{
 int i = 0;
 off_t thischunk_len = 0;
 struct _mydrv_struct *p;

 /* Traverse the list and copy info into the supplied buffer */
 list_for_each_entry(p, &mydrv_list, list) {
 thischunk_len += sprintf(page+thischunk_len, p->info);
 }
 eof = 1; / Indicate completion */
 return thischunk_len;
}

Boot the kernel with these changes and peek inside / proc/ readm e:

bash> cat /proc/readme

Node No: 0
Node No: 1
...
Node No: 99

When procfs read() m ethods are invoked, they are supplied one page of m em ory that they can use to pass
inform at ion to user space. As you can see in List ing C.1, the first argum ent passed to readme_proc() is a
pointer to this page-sized buffer. The second argument , start , is used to aid the im plem entat ion of procfs files
larger than a page. The use of this param eter will get clear when we look at the exam ple in List ing C.2. The next
two argum ents respect ively specify the offset from where the read operat ion is requested and the num ber of
bytes to be read. The eof argum ent is used to tell the caller whether there is m ore data to be read. I f *eof is
not set before returning, the procfs read ent ry point is called again for m ore data. I n List ing C.1, if you
com m ent out the line that sets *eof , readme_proc() gets called again with the offset argum ent set to 1190
(which is the num ber of ASCI I bytes contained in the st r ings, Node No: 0 to Node No: 99) . readme_proc()
returns the num ber of bytes copied to the supplied buffer.

The size of data generated by the procfs read rout ine in List ing C.1 falls within the one-page lim it . However, if
you increase the num ber of nodes in the linked list from 100 to 500 in mydrv_init() , the am ount of data
generated while reading / proc/ readm e crosses a page and t r iggers the following output :

bash> cat /proc/readme

Node No: 0

Node No: 1
...
Node No: 322
proc_file_read: Apparent buffer overflow!

As you can see, an overflow occurs after one page (4,096 in this case) worth of ASCI I characters have been
produced.

To handle such large procfs files, you need to refashion the code in List ing C.1 using the start param eter
alluded to earlier. This m akes the funct ion som ewhat com plicated and is shown in List ing C.2. The sem ant ics of
this m odified im plem entat ion is as follows:

readme_proc() is called m ult iple t im es, each invocat ion yielding a m axim um of count bytes start ing at
offset . The count requested during each call is less than the size of a page.

During each invocat ion, the kernel increm ents offset by the num ber of bytes returned by the previous
invocat ion.

readme_proc() signals eof only if the am ount of data produced is less than or equal to the requested
count plus the current offset . I f eof is not set , the funct ion is called again with offset advanced by the
num ber of bytes returned previously.

After each invocat ion, only those bytes start ing from *start are collected and returned to the caller.

Print the values of *start , offset , count , and page , and look at the output generated during each invocat ion to
bet ter understand the operat ion sequence.

With this hack, your procfs file can supply large am ounts of data to user space without size lim itat ions:

bash> cat /proc/readme

Node No: 0
Node No: 1
...
Node No: 499

List ing C.2 . Large Procfs Reads

Code View:
static int
readme_proc(char *page, char **start, off_t offset,
 int count, int *eof, void *data)

{
 int i = 0;
 off_t thischunk_start = 0;
 off_t thischunk_len = 0;
 struct _mydrv_struct *p;
 /* Loop thru the list collecting device info */
 list_for_each_entry(p, &mydrv_list, list) {
 thischunk_len += sprintf(page+thischunk_len, p->info);

 /* Advance thischunk_start only to the extent that the next
 * read will not result in total bytes more than (offset+count)
 */
 if (thischunk_start + thischunk_len < offset) {
 thischunk_start += thischunk_len;
 thischunk_len = 0;
 } else if (thischunk_start + thischunk_len > offset+count) {
 break;
 } else {
 continue;
 }
 }

 /* Actual start */
 *start = page + (offset - thischunk_start);

 /* Calculate number of written bytes */
 thischunk_len -= (offset - thischunk_start);
 if (thischunk_len > count) {
 thischunk_len = count;
 } else {
 *eof = 1;
 }

 return thischunk_len;
}

The seq file interface com es to the rescue when you are faced with the prospect of awkwardly im plem ent ing
large procfs files as in List ing C.2. As the nam e im plies, the seq file interface views the contents of procfs files as
a sequence of objects. Program m ing interfaces are provided to iterate through this object sequence. Your code
has to supply the following iterator m ethods expected by the seq interface:

start() , which is called first by the seq interface. This init ializes the posit ion within the iterator sequence
and returns the first iterator object of interest .

1 .

next() , which increm ents the iterator posit ion and returns a pointer to the next iterator. This funct ion is
agnost ic to the internal st ructure of the iterator and considers it an opaque object .

2 .

show() , which interprets the iterator passed to it and generates output st r ings to be displayed when a
user reads the corresponding procfs file. This m ethod m akes use of helpers such as seq_printf() ,
seq_putc() , and seq_puts() to form at the output .

3 .

stop() , which is called at the end for cleanup.4 .

The seq file interface autom at ically invokes these iterator m ethods to produce output in response to user
operat ions on related procfs files. You no longer need to worry about page-sized buffers and signaling the end of
data.

Let 's rewrite List ing C.2 m aking use of seq files. This is done in List ing C.3 by viewing the linked list as a
sequence of nodes. The basic iterator object is the node, and each invocat ion of the next() m ethod returns the
next node in the list .

List ing C.3 . Using Seq Files to Sim plify List ing C.2

Code View:
#include <linux/seq_file.h>

/* start() method */
static void *
mydrv_seq_start(struct seq_file *seq, loff_t *pos)
{
 struct _mydrv_struct *p;
 loff_t off = 0;

 /* The iterator at the requested offset */
 list_for_each_entry(p, &mydrv_list, list) {
 if (*pos == off++) return p;
 }
 return NULL;
}

/* next() method */
static void *
mydrv_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
 /* 'v' is a pointer to the iterator returned by start() or
 by the previous invocation of next() */
 struct list_head *n = ((struct _mydrv_struct *)v)->list.next;

 ++*pos; /* Advance position */
 /* Return the next iterator, which is the next node in the list */
 return(n != &mydrv_list) ?
 list_entry(n, struct _mydrv_struct, list) : NULL;
}

/* show() method */
static int
mydrv_seq_show(struct seq_file *seq, void *v)
{
 const struct _mydrv_struct *p = v;

 /* Interpret the iterator, 'v' */
 seq_printf(seq, p->info);

 return 0;
}

/* stop() method */
static void
mydrv_seq_stop(struct seq_file *seq, void *v)
{
 /* No cleanup needed in this example */
}

/* Define iterator operations */
static struct seq_operations mydrv_seq_ops = {
 .start = mydrv_seq_start,
 .next = mydrv_seq_next,
 .stop = mydrv_seq_stop,
 .show = mydrv_seq_show,
};

static int
mydrv_seq_open(struct inode *inode, struct file *file)
{
 /* Register the operators */
 return seq_open(file, &mydrv_seq_ops);
}

static struct file_operations mydrv_proc_fops = {
 .owner = THIS_MODULE,
 .open = mydrv_seq_open, /* User supplied */
 .read = seq_read, /* Built-in helper function */
 .llseek = seq_lseek, /* Built-in helper function */
 .release = seq_release, /* Built-in helper funciton */
};

static int __init
mydrv_init(void)
{
 /* ... */

 /* Replace the assignment to entry->read_proc in Listing C.1,
 with a more fundamental assignment to entry->proc_fops. So
 instead of doing "entry->read_proc = readme_proc;", do the
 following: */
 entry->proc_fops = &mydrv_proc_fops;

 /* ... */
}

Updat ing the NVRAM Dr iver

The seq file interface has been around since the lat ter versions of the 2.4 kernel, but its use has becom e
widespread only with 2.6. Let 's update the NVRAM driver (dr ivers/ char/ nvram .c) , one of the few rem aining
drivers that hasn't switched over to use seq files. (As usual, + and - show the differences from the or iginal
source file.) To do this, you m ay use an ext ra-sim ple flavor of seq files that uses only the show() iterator
m ethod. Use single_open() to register this m ethod.

List ing C.4 contains the updated NVRAM driver. Because the seq interface won't sleep between calls to iterator
m ethods, you m ay hold locks inside the m ethods.

List ing C.4 . Update the NVRAM Dr iver Using Seq File s

Code View:
+static struct file_operations nvram_proc_fops = {
+ .owner = THIS_MODULE ,
+ .open = nvram_seq_open ,
+ .read = seq_read ,
+ .llseek = seq_lseek ,
+ .release = single_release ,
+};
-static struct file_operations nvram_fops = {
- .owner = THIS_MODULE,
- .llseek = nvram_llseek,
- .read = nvram_read,
- .write = nvram_write,
- .ioctl = nvram_ioctl,
- .open = nvram_open,
- .release = nvram_release,
-};

+static int nvram_seq_open(struct inode *inode, struct file *file)
+{
+ return single_open(file, nvram_show, NULL);
+}

+static int nvram_show(struct seq_file *seq, void *v)
+{
+ unsigned char contents[NVRAM_BYTES];
+ int i;
+
+ spin_lock_irq(&rtc_lock);
+ for (i = 0; i < NVRAM_BYTES; ++i)
+ contents[i] = __nvram_read_byte(i);
+ spin_unlock_irq(&rtc_lock);
+
+ mach_proc_infos(seq, contents);
+ return 0;
+}

static int __init
nvram_init(void)
{

+ ent = create_proc_entry("driver/nvram", 0, NULL);

+ if (!ent) {
+ printk(KERN_ERR "nvram: can't create /proc/driver/nvram\n");
+ ret = -ENOMEM;
+ goto outmisc;
+ }
+ ent->proc_fops = &nvram_proc_fops;
- if (!create_proc_read_entry("driver/nvram", 0, NULL,
- nvram_read_proc, NULL)) {
- printk(KERN_ERR "nvram: can't create /proc/driver/nvram\n");
- ret = -ENOMEM;
- goto outmisc;
- }
 /* ... */
}

-#define PRINT_PROC(fmt,args...) \
-/* ... */

-static int
-nvram_read_proc(char *buffer, char **start, off_t offset,
- int size, int *eof, void *data)
-{
- /* ... */
-}

I n addit ion to the m odificat ions in List ing C.4, change all references to PRINT_PROC() in the or iginal dr iver to
seq_printf() . The original dr iver and the one in List ing C.4 produce the sam e output if you read from
/ proc/ dr iver/ nvram.

Look ing at the Sources

Look at Docum entat ion/ filesystem s/ proc.txt for m ore inform at ion about procfs. The fs/ proc/ directory contains
code that im plem ents the procfs core. The seq file interface lives in fs/ seq_file.c. Users of procfs and seq files
are sprinkled all over the kernel sources.

I ndex

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

I ndex

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

$ (dollar sign)
% (percent sign)
1 - w ire protocol
4 G netw ork ing
7 - bit addressing
8 0 2 .1 1 stack
8 5 5 GME EDAC dr iver
8 2 5 0 .c dr iver
1 6 5 5 0 - type UART

I ndex

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

AAL (ATM Adaptat ion Layer)
AC'9 7
ac9 7 _ bus m odule
accelerated m ethods
accelerom eters
accessing
 char dr ivers
 EEPROM device
 I / O regions
 m em ory regions from user space
 PCI regions
 configurat ion space
 I / O and m em ory regions
 registers
access point nam es (APNs)
Acclerated Graphics Por t (AGP)
ACPI (Advanced Configurat ion and Pow er I nter face) 2nd
 acpid daem on
 AML (ACPI Machine Language I nterpreter)
 devices
 dr ivers
 kacpid
 spaces
 user-space tools
acpid daem on
acpitool com m and
act ivat ion
 net_device st ructure
 NI Cs (network interface cards)
act ive queues
ad- hoc m ode (W LAN)
ADC (Analog- to- Digita l Conver ter) 2nd
add_ disk() funct ion 2nd
add_ m em ory_ region() funct ion
add_ m td_ part it ions() funct ion
add- sym bol- f ile com m and
add_ t im er() funct ion 2nd
add_ w ait_ queue() funct ion 2nd
addresses
 ARP (Address Resolut ion Protocol)
 bus addresses
 endpoint addresses
 LBA (logical block addressing)
 logical addresses
 MAC (Media Access Cont rol) addresses
 PCI
 slave addresses
 USB (universal serial bus)
 v ir tual addresses
Address Resolut ion Protocol (ARP)
adjust checksum com m and (ioct l)
adjust_ cm os_ crc() funct ion
Advanced Configurat ion and Pow er I nter face [See ACPI (Advanced Configurat ion and Pow er I nter face) .]
Advanced Host Cont roller I nter face (AHCI)
Advanced Linux Sound Architecture [See ALSA (Advanced Linux Sound Architecture) .]

Advanced Pow er Managem ent (APM) 2nd [See also BI OS (basic input / output system) .]
Advanced Technology At tachm ent (ATA)
AF_ I NET protocol fam ily
AF_ NETLI NK protocol fam ily
AF_ UNI X protocol fam ily
Aff ix
AGP (Acclerated Graphics Por t)
AHCI (Advanced Host Cont roller I nter face)
AI O (Asynchronous I / O)
a io_ read() funct ion
aio_ w r ite() funct ion
alloc_ chrdev_ region() funct ion 2nd 3rd
alloc_ disk() funct ion 2nd
alloc_ etherdev() funct ion 2nd
alloc_ ieee8 0 2 1 1 () funct ion 2nd
alloc_ irdadev() funct ion 2nd
alloc_ netdev() funct ion 2nd
allocat ing m em ory
a llow _ signal() funct ion 2nd
ALSA (Advanced Linux Sound Architecture)
 ALSA driver for MP3 player
 ALSA program m ing
alsa- devel m ailing list
a lsa- lib library
a lsa- ut ils package
alsact l com m and
alsam ixer com m and
am ateur radio
am d_ flash_ info st ructure
am ixer com m and
AML (ACPI Machine Language I nterpreter)
Analog- to- Digita l Conver ter (ADC) 2nd
ant icipatory I / O scheduler 2nd
aplay com m and
APM (Advanced Pow er Managem ent) 2nd [See also BI OS (basic input / output system) .]
apm _ bios_ call_ sim ple_ asm () funct ion
APM_ DO_ ZERO_ SEGS
APM_ FUNC_ GET_ EVENT
APM_ FUNC_ I DLE
APNs (access point nam es)
applying patches
arch directory
 arch/ x86/ boot / directory
 arch/ x86/ boot / m em ory.c file
 arch/ x86/ kernel/ e820_32.c file
ARM boot loaders
ARP (Address Resolut ion Protocol)
asked_ to_ die() funct ion
asm const ruct
asm linkage at t r ibute
assem bly
 boot sequence
 debugging
 GNU Assem bler (GAS)
 i386 boot assem bly code
 inline assem bly
 Microsoft Macro Assem bler (MASM)
 Netwide Assem bler (NASM)
assigning I RQs (interrupt requests)
asynchronous DMA
Asynchronous I / O (AI O)
asynchronous interrupts
asynchronous t ransfer m ode (ATM)
ATA (Advanced Technology At tachm ent)

ATAGs
ATAPI (ATA Packet I nter face)
ATM (asynchronous t ransfer m ode)
ATM Adaptat ion Layer (AAL)
atom ic_ dec() funct ion
atom ic_ dec_ and_ test () funct ion
atom ic_ inc() funct ion
atom ic_ inc_ and_ test () funct ion
atom ic_ not if ier_ chain_ register() funct ion 2nd
ATOMI C_ NOTI FI ER_ HEAD() m acro 2nd
atom ic operators
At t r ibute m em ory (PCMCI A)
audio codecs
audio dr ivers
 ALSA (Advanced Linux Sound Architecture)
 ALSA driver for MP3 player
 ALSA program m ing
 audio architecture
 audio codecs
 Bluetooth
 data st ructures
 debugging
 em bedded drivers
 kernel program m ing interfaces, table of
 MP3 player exam ple
 ALSA driver code list ing
 ALSA program m ing
 codec_write_reg() funct ion
 MP3 decoding com plexity
 m ycard_audio_probe() funct ion
 m ycard_audio_rem ove() funct ions
 m ycard_hw_param s() funct ion
 m ycard_pb_t r igger() funct ion
 m ycard_playback_open() funct ion
 overv iew
 register layout of audio hardware
 snd_card_free() funct ion
 snd_card_new() funct ion
 snd_card_proc_new() funct ion
 snd_card_register() funct ion
 snd_ct l_add() funct ion
 snd_ct l_new1() funct ion
 snd_device_new() funct ion
 snd_kcont rol st ructure
 snd_pcm _hardware st ructure
 snd_pcm _lib_m alloc_pages() funct ion
 snd_pcm _lib_preallocate_pages_for_all() funct ion
 snd_pcm _new() funct ion
 snd_pcm _ops st ructure
 snd_pcm _set_ops() funct ion
 user program s
 OSS (Open Sound System)
 overview
 sound directory
 sound m ixing (fn)
 sources
audio players [See MP3 player exam ple .]
autoloading m odules
AX.2 5 protocol

I ndex

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

BackGround Operat ion (BGO)
back light_ device_ register()
barr iers (m em ory)
BCD (Binary Coded Decim al)
BCD2 BI N() m acro
BCSP (BlueCore Ser ia l Protocol)
bdflush kernel thread
benchm ark ing
BGO (BackGround Operat ion)
BH (bot tom half) f lavors
Binary Coded Decim al (BCD)
Binut ils
bio_ for_ each_ segm ent () funct ion 2nd
bio st ructure 2nd
bio_ vec st ructure
BI OS (basic input / output system)
 BI OS-provided physical RAM m ap
 legacy dr ivers
 protected m ode calls
 real m ode calls
 updat ing
bit - banging dr ivers
blk_ cleanup_ queue() funct ion
blk_ fs_ request () funct ion
blk_ init_ queue() funct ion 2nd
blk_ queue_ hardsect_ size() funct ion 2nd
blk_ queue_ m ake_ request () funct ion 2nd
blk_ queue_ m ax_ sectors() funct ion 2nd
blk_ rq_ m ap_ sg() funct ion 2nd
BLOBs (BootLoader Objects)
block device em ulat ion
block directory
block dr ivers
 block_device_operat ions st ructure
 block I / O layer
 data st ructures 2nd
 debugging
 DMA data t ransfer
 ent ry points
 interrupt handlers
 I / O schedulers
 kernel program m ing interfaces, table of
 m yblkdev storage cont roller
 block device operat ions
 disk access
 init ializat ion
 overv iew
 register layout
 sources
 storage technologies
 ATAPI (ATA Packet I nterface)
 I DE (I ntegrated Drive Elect ronics)
 libATA
 MMC (Mult iMediaCard)
 RAI D (redundant array of inexpensive disks)

 SATA (Serial ATA)
 SCSI (Sm all Com puter System I nterface)
 SD (Secure Digital) cards
 sum m ary of
block I / O layer
block ing_ not if ier_ ca ll_ chain() funct ion 2nd
block ing_ not if ier_ chain_ register() funct ion
BLOCKI NG_ NOTI FI ER_ HEAD() m acro 2nd
blocks
BlueCore Ser ia l Protocol (BCSP)
Bluetooth 2nd
 audio
 Bluetooth Host Cont rol I nterface
 Bluetooth Network Encapsulat ion Protocol (BNEP)
 Bluetooth Special I nterest Group (SI G)
 BlueZ
 CF cards
 RFCOMM
 USB adapters
 debugging
 keyboards
 m ice
 networking
 profiles
 USB
bluetooth.ko
Bluetooth Host Cont rol I nter face
Bluetooth Netw ork Encapsula t ion Protocol (BNEP)
Bluetooth Specia l I nterest Group (SI G)
BlueZ
 CF cards
 RFCOMM
 USB adapters
bluez- ut ils package
BNEP (Bluetooth Netw ork Encapsula t ion Protocol)
bnep.ko
board rew ork
BogoMI PS
BootLoader Objects (BLOBs)
boot loaders
 definit ion
 em bedded boot loaders
 BLOB (BootLoader Object)
 bootst rapping
 GRUB
 LI LO (Linux Loader)
 overv iew
 RedBoot
 SYSLI NUX
 table of
 Redboot boot loader
boot logo (console dr ivers)
boot process 2nd [See also boot loaders .]
 BI OS-provided physical RAM m ap
 delay- loop calibrat ion
 EXT3 filesystem
 HLT inst ruct ion
 I / O scheduler
 init process
 init rd m em ory
 kernel com m and line
 Linux boot sequence
 low m em ory/ high m em ory
 PCI resource configurat ion

 registered protocol fam ilies
 start_kernel() funct ion
bootst rapping
bot tom half (BH) f lavors
BREAKPOI NT m acro
breakpoints
brow nouts
buffers
 DMA 2nd
 NI C buffer m anagem ent
 socket buffers
BUG() funct ion
build scr ipts
building kernels
built - in kernel threads
bulk endpoints
bulk URBs
bus addresses
bus- device- dr iver program m ing inter face
bus_ register() funct ion
buses
 bus addresses
 I 2C bus t ransact ions
 LPC (Low Pin Count) bus
 SMBus 2nd
 SPI (Serial Peripheral I nterface) bus
 USB [See USB (universa l ser ia l bus) .]
 user space I 2C/ SMBus driver
 w1 bus
BusyBox

I ndex

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

cache
 cache m isses, count ing
 coherency [See DMA (Direct Mem ory Access) .]
calibra te_ delay() funct ion
calibra t ing touch cont rollers
ca ll_ userm odehelper() funct ion 2nd
Cam br idge Silicon Radio (CSR)
CAN (cont roller area netw ork)
capacity of disks, obta ining via SCSI Gener ic
CardBus 2nd
Card I nform at ion St ructure (CI S)
cardm gr daem on
Card Services 2nd
Carr ier Grade Linux (CGL)
cathode ray tube (CRT)
cdev_ add() funct ion 2nd 3rd
cdev_ del() funct ion
cdev_ init () funct ion 2nd
cdev st ructure 2nd
CDMA (code division m ult iple access) 2nd
cdrecord
cdr tools
CELF (Consum er Elect ronics Linux Forum)
cell phone devices
 claim ing/ freeing m em ory
 console dr ivers
 CPLD (Com plex Program m able Logic Device)
 overview
 plat form drivers
 SoC (System -on-Chip)
 USB_UART driver
 USB_UART ports
 USB_UART register layout
cellu lar netw ork ing
 CDMA
 GPRS
CEs (correctable errors)
CF (Com pact Flash) [See also PCMCI A (Personal Com puter Mem ory Card I nternat ional Associa t ion) .]
 BlueZ
 debugging
 definit ion
 em bedded drivers
 storage
cfb_ fillrect ()
CFI (Com m on Flash I nter face)
cf i_ pr ivate st ructure
cfi_ probe_ chip() funct ion
CFQ (Com plete Fa ir Queuing) 2nd
CFS (Com plete ly Fa ir Scheduler)
CGL (Carr ier Grade Linux)
change m arkers
changing
 line disciplines
 MTU size
character dr ivers [See char dr ivers .]

char device em ulat ion
char dr ivers
 accessing
 char device em ulat ion
 CMOS driver
 I / O Cont rol
 init ializat ion
 internal file pointer, set t ing with cm os_llseek()
 opening
 overv iew
 reading/ writ ing data
 register layout
 releasing
 code flow
 com m on problem s
 data st ructures
 m isc dr ivers
 overview
 parallel port com m unicat ion
 parallel port LED board
 cont rolling with sysfs
 led.c dr iver
 pseudo char dr ivers
 RTC subsystem
 sensing data availabilit y
 fasync() funct ion
 overv iew
 select () / poll() m echanism
 sources
 UART drivers
 watchdog t im er
check_ bugs() funct ion
check list for new devices
checksum s
chip dr ivers [See NOR chip dr ivers .]
Chip Select (CS)
choosing
 peripherals
 processors
Cirrus Logic EP7 2 1 1 cont roller
CI S (Card I nform at ion St ructure)
cisparse_ t st ructure 2nd
cistpl.h f ile
cistpl_ cftable_ ent ry_ t st ructure 2nd
class_ create() funct ion 2nd
class_ dest roy() funct ion 2nd
class_ device_ add_ at t rs() funct ion
class_ device_ create() funct ion 2nd
class_ device_ create_ file() funct ion
class_ device_ dest roy() funct ion 2nd
class_ device_ register() funct ion
class dr ivers
 Bluetooth
 HI Ds (hum an interface devices)
 m ass storage
 overview
 USB-Serial
classes
 device classes
 input class
 st ructure
clean m arkers
clear_ bit () funct ion
Clear To Send (CTS)

clients
 client cont rollers
 EEPROM device exam ple
 PCMCI A client dr ivers, register ing
clock_ get t im e() funct ion
CLOCK_ I NPUT_ REGI STER
clock_ set t im e() funct ion
close() funct ion
CLUT (Color Look Up Table)
CLut2 2 4
CMOS_ BANK0 _ DATA_ PORT register
CMOS_ BANK0 _ I NDEX_ PORT register
CMOS_ BANK1 _ DATA_ PORT register
CMOS_ BANK1 _ I NDEX_ PORT register
cm os_ dev st ructure
CMOS dr ivers
 I / O Cont rol
 init ializat ion
 internal file pointer, set t ing with cm os_llseek()
 opening
 overview
 reading/ writ ing data
 register layout
 releasing
cm os_ fops st ructure
cm os_ init () funct ion
cm os_ ioct l() funct ion
cm os_ llseek() funct ion
cm os_ open() funct ion
cm os_ read() funct ion
cm os_ release() funct ion
cm os_ w r ite() funct ion
code division m ult iple access (CDMA) 2nd
code por tabilit y
codec_ w r ite_ reg() funct ion
coding styles
coldplug
collect_ data() funct ion
color m odes
com m and- line ut ilit ies [See specif ic ut ilit ies .]
com m and- set 0 0 0 1
com m and- set 0 0 0 2
com m and- set 0 0 2 0
COMMAND_ REGI STER
com m ands [See specif ic com m ands .]
Com m on Flash I nter face (CFI)
Com m on m em ory (PCMCI A)
Com m on UNI X Pr int ing System (CUPS)
Com pact Flash [See CF (Com pact Flash) .]
com pact m iddlew are
com pila t ion
 GCC com piler
 line disciplines
com plete() funct ion 2nd
com plete_ all() funct ion
com plete_ and_ ex it () funct ion 2nd
Com plete Fa ir Queuing (CFQ) 2nd
Com plete ly Fa ir Scheduler (CFS)
com plet ion inter face
com plet ion st ructure
Com plex Program m able Logic Devices (CPLDs) 2nd
concurrency
 atom ic operators
 CVS (Concurrent Versioning System) 2nd

 debugging
 NI Cs (network interface cards)
 overview
 reader-writer locks
 spinlocks and m utexes
Concurrent Versioning System (CVS) 2nd
CONFI G_ 4 KSTACKS configurat ion opt ion
CONFI G_ DEBUG_ BUGVERBOSE configurat ion opt ion
CONFI G_ DEBUG_ HI MEM configurat ion opt ion
CONFI G_ DEBUG_ PAGE_ ALLOC configurat ion opt ion
CONFI G_ DEBUG_ SLAB configurat ion opt ion
CONFI G_ DEBUG_ SPI NLOCK configurat ion opt ion
CONFI G_ DEBUG_ STACK_ USAGE configurat ion opt ion
CONFI G_ DEBUG_ STACKOVERFLOW configurat ion opt ion
CONFI G_ DETECT_ SOFTLOCKUP configurat ion opt ion
CONFI G_ I KCONFI G_ PROC configurat ion opt ion
CONFI G_ MAGI C_ SYSRQ configurat ion opt ion
CONFI G_ MYPROJECT_ FASTBOOT m arker
CONFI G_ MYPROJECT m arker
CONFI G_ PCMCI A_ DEBUG() m acro
config_ por t () funct ion
CONFI G_ PREEMPT_ RT patch- set
CONFI G_ PREEMPT configurat ion opt ion
CONFI G_ PRI NTK_ TI ME configurat ion opt ion
CONFI G_ RTC_ CLASS configurat ion opt ion
CONFI G_ SYSCTL configurat ion opt ion
configurat ion
 kernel hacking configurat ion opt ions
 MTD
 NAND chip dr ivers
 net_device st ructure
 NI Cs
 PCI resources
 Wireless Extensions
configurat ion space (PCI) , accessing
connect ivit y of em bedded dr ivers
conservat ive governor
consistency of checksum s
consistent DMA access m ethods
console dr ivers
 boot logo
 cell phones
consoles
Consum er Elect ronics Linux Forum (CELF)
conta iner_ of() funct ion 2nd 3rd
contexts, interrupt
cont rast and back light
CONTROL_ REGI STER 2nd
cont roller area netw ork (CAN)
cont rollers
 CAN (cont roller area network)
 CS8900 cont roller
 DRAM cont rollers
 ECC-aware m em ory cont roller
 EHCI cont roller
 host cont rollers
 NAND flash cont rollers
 OTG (On-The-Go) cont rollers
 USB device cont rollers
 USB host cont rollers
coord.c applicat ion
copy_ e8 2 0 _ m ap() funct ion
copy_ from _ user() funct ion 2nd
copy_ to_ user() funct ion

copying system m em ory m aps
copyleft (GNU)
correctable errors (CEs)
counters
 preem pt ion counters
 TSC (Tim e Stam p Counter)
CPLDs (Com plex Program m able Logic Devices) 2nd
cpqarray dr iver
cpufreq_ register_ governor() funct ion
CPU frequency (cpufreq) dr iver subsystem
CPU frequency not if ica t ion
cpuspeed daem on
crash com m and
crash dum ps
create_ singlethread_ w orkqueue() funct ion
create_ w orkqueue() funct ion
CRT (cathode ray tube)
crypto directory
CS (Chip Select)
CS8 9 0 0 cont roller
cs8 9 x0 _ probe1 () funct ion
cscope com m and
CSR (Cam br idge Silicon Radio)
ctags com m and
CTS (Clear To Send)
CUPS (Com m on UNI X Pr int ing System)
CVS (Concurrent Versioning System) 2nd

I ndex

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

D- cache (Data Cache)
daem onize() funct ion 2nd
daem ons
 acpid
 cardm gr
 cpuspeed
 iscsid
 oprofiled
 pppd
 t race
DATA_ REGI STER
data ava ilabilit y, sensing
 fasync() funct ion
 overview
 select () / poll() m echanism
Data Cache (D- cache)
data f ie ld (sk_ buff st ructure)
data f low , Linux- PCMCI A subsystem
data m ix ing (fn)
data st ructures [See specif ic st ructures .]
data t ransfer
 DMA data t ransfer
 net_device st ructure
 NI Cs (network interface cards)
 PCI
 DMA descriptors and buffers
 receiving and t ransm it t ing data
 register layout of network funct ions
 telem et ry card exam ple
 USB
DDW G (Digita l Display W ork ing Group)
deadline I / O scheduler 2nd
dead sta te (threads)
debugfs
debuggers [See kernel debuggers .]
debugging [See also ECC (error correct ing code) repor t ing .]
 audio dr ivers
 block dr ivers
 Bluetooth
 breakpoints
 concurrency
 crash dum ps
 diagnost ic tools
 em bedded Linux
 board rework
 debuggers
 I 2C
 input dr ivers
 JTAG debuggers
 kdum p
 exam ple
 kexec with kdum p
 setup
 sources
 kernel debuggers

 downloads
 enter ing
 gdb (GNU debugger)
 JTAG debuggers
 kdb (kernel debugger)
 kgdb (kernel GNU debugger)
 overv iew
 kernel hacking configurat ion opt ions
 kexec
 invoking
 preparat ion
 sources
 with kdum p
 kprobes
 exam ple
 fault -handlers
 insert ing inside kernel funct ions
 j probes
 kretprobes
 lim itat ions
 post -handlers
 pre-handlers
 sources
 Linux assem bly
 LTP (Linux Test Project)
 MTD (Mem ory Technology Devices)
 overview 2nd 3rd
 PCI
 PCMCI A
 profiling
 gprof
 OProfile
 overv iew
 RAS (reliabilit y, availabilit y, serviceabilit y)
 test equipm ent
 t racing
 UDB (universal serial bus)
 UML (User Mode Linux)
 watchpoints
debug tool
DECLARE_ COMPLETI ON() m acro
DECLARE_ MUTEX() funct ion
DECLARE_ W AI TQUEUE() m acro
DEFI NE_ MUTEX() funct ion
DEFI NE_ TI MER() funct ion
DEFI NE_ TI MER() m acro
del_ gendisk() funct ion
del_ t im er() funct ion
delay- loop ca libra t ion
delays
 long delays
 short delays
delivery
 build scr ipts
 change m arkers
 checksum consistency
 code portabilit y
 coding styles
 version cont rol
depm od ut ilit y
descr iptors (USB)
detect_ m em ory_ e8 2 0 () funct ion
dev_ alloc_ skb() funct ion 2nd
/ dev directory

 / dev nam es, adding to usbfs
 / dev/ full dr iver
 / dev/ km em driver
 / dev/ m em driver
 / dev/ null char device
 / dev/ port dr iver
 / dev/ random driver
 / dev/ urandom driver 2nd
 / dev/ zero dr iver
dev_ kfree_ skb() funct ion
dev_ t st ructure
devfs
device check list
device classes
device cont rollers
device_ dr iver st ructure
device_ register() funct ion
devices [See also specif ic devices .]
 ACPI (Advanced Configurat ion and Power I nterface) devices
 interrupt handling [See in terrupt handling .]
 Linux device m odel
 device classes
 hotplug/ coldplug
 kobjects
 m icrocode download
 m odule autoload
 overv iew
 sysfs
 udev 2nd
 m em ory barr iers
 power m anagem ent
diagnost ic tools
dia lup netw ork ing (DUN)
die_ chain st ructure
die not if ica t ions 2nd
diff com m and
Digita l Display W ork ing Group (DDW G)
Digita l Visua l I nter face (DVI)
direct - to- hom e (DTH) inter face
Direct Mem ory Access [See DMA (Direct Mem ory Access) .]
director ies [See also specif ic director ies .]
disable_ irq() funct ion 2nd
disable_ irq_ nosync() funct ion 2nd
disabling I RQs (interrupt requests)
disconnect ing te lem et ry dr ivers
Disk- On- Modules (DOMs)
disk capacity, obta ining via SCSI Gener ic
disk m ir ror ing
display architecture
displaying im ages w ith m m ap()
display param eters
dist r ibut ions
dm a_ addr_ t st ructure
DMA_ ADDRESS_ REGI STER
DMA (Direct Mem ory Access) [See also Ethernet - Modem card exam ple .]
 buffers
 consistent DMA access m ethods
 definit ion
 descriptors and buffers
 I OMMU (I / O m em ory m anagem ent unit)
 m asters
 navigat ion system s
 scat ter-gather
 st ream ing DMA access m ethods

 synchronous versus asynchronous
dm a_ m ap_ single() funct ion
DMA_ RX_ REGI STER
dm a_ set_ m ask() funct ion
DMA_ SI ZE_ REGI STER
DMA_ TX_ REGI STER
DMA data t ransfer
dm ix (fn)
do_ get t im eofday() funct ion 2nd
do_ ida_ int r () funct ion
do_ I RQ() funct ion
do_ m ap_ probe() funct ion
docum entat ion
 Docum entat ion directory
 procfs
 seq files
dollar sign ($)
dom ain- specif ic e lect ronics
DOMs (Disk- On- Modules)
dongles, I nfrared
doorbells
DOS debug tool
dow n() funct ion
dow n_ read() funct ion
dow n_ w r ite() funct ion
DRAM cont rollers
DRDs (dual- role devices)
dr iver_ register() funct ion
dr ivers directory
Dr iver Services
ds (dr iver services) m odule
DTH (direct - to- hom e) inter face
dual- role devices (DRDs)
dum p_ port () funct ion
DUN (dia lup netw ork ing)
dv1 3 9 4 dr iver
DVI (Digita l Visua l I nter face)

I ndex

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

e8 2 0 .c f ile
e8 2 0 .h f ile
e1 0 0 0 PCI - X Gigabit Ethernet dr iver
ECC (error correct ing code) repor t ing 2nd
 correctable errors (CEs)
 ECC-aware m em ory cont roller
 ECC-related registers on DRAM cont roller
 edac_m c m odule
 em bedded drivers
 m ult ibit errors (MBEs)
 single-bit errors (SBEs)
 / sys/ devices/ system / edac/ directory
 uncorrectable errors (UEs)
ECs (em bedded cont rollers)
EDAC (Error Detect ion and Correct ion) 2nd
 correctable errors (CEs)
 ECC-aware m em ory cont roller
 ECC-related registers on DRAM cont roller
 edac_m c m odule
 em bedded drivers
 error-handling aids
 m ult ibit errors (MBEs)
 single-bit errors (SBEs)
 / sys/ devices/ system / edac/ directory
 uncorrectable errors (UEs)
edac_ m c m odule
edge- sensit ive devices
eep_ at tach() funct ion
eep_ probe() funct ion
eep_ read() funct ion
EEPROM device exam ple
 accessing
 adapter capabilit ies, checking
 clients, at taching
 i2c_del_driver() funct ion
 init ializing
 ioct l() funct ion
 llseek() m ethod
 m em ory banks
 opening
 overview
 probing
 RFI D (Radio Frequency I dent ificat ion) t ransm it ters
EHCI (Enhanced Host Cont roller I nter face) 2nd
EI SA (Extended I ndust ry Standard Architecture)
e lv_ next_ request () funct ion 2nd
em bedded boot loaders
 BLOB (BootLoader Object)
 bootst rapping
 GRUB
 LI LO (Linux Loader)
 overview
 RedBoot
 SYSLI NUX
 table of

em bedded cont rollers (ECs)
em bedded dr ivers
 audio
 brownouts
 but tons and wheels
 connect iv it y
 CPLDs (Com plex Program m able Logic Devices)
 dom ain-specific elect ronics
 ECC capabilit ies
 flash m em ory
 FPGAs (Field Program m able Gate Arrays)
 overview
 PCMCI A/ CF 2nd
 PWM (pulse-width m odulator) units
 RTC
 SD/ MMC
 touch screens
 UARTs
 udev
 USB
 video
em bedded Linux
 challenges
 com ponent select ion
 debugging
 board rework
 debuggers
 em bedded boot loaders
 BLOB (BootLoader Object)
 bootst rapping
 GRUB
 LI LO (Linux Loader)
 overv iew
 RedBoot
 SYSLI NUX
 table of
 em bedded drivers
 audio
 brownouts
 but tons and wheels
 connect iv it y
 CPLDs (Com plex Program m able Logic Devices)
 dom ain-specific elect ronics
 ECC capabilit ies
 flash m em ory
 FPGAs (Field Program m able Gate Arrays)
 overv iew
 PCMCI A/ CF
 PWM (pulse-width m odulator) units
 RTC
 SD/ MMC
 touch screens
 UARTs
 USB
 video
 hardware block diagram
 kernel port ing
 m em ory layout
 overview
 root filesystem
 com pact m iddleware
 NFS-m ounted root
 overv iew
 test infrast ructure

 tool chains
 USB (universal serial bus)
em ulat ion
 block device em ulat ion
 char device em ulat ion
enable_ irq() funct ion 2nd
enabling I RQs (interrupt requests)
end f ie ld (sk_ buff st ructure)
end_ request () funct ion
endpoint addresses
endpoints (USB)
Enhanced Host Cont roller I nter face (EHCI) 2nd
enum erat ion
EP7 2 1 1 cont roller
epoll() funct ion
erase_ info_ user st ructure
erase_ info st ructure
error correct ing codes (ECCs) [See ECC (error correct ing code) repor t ing .]
Error Detect ion And Correct ion [See EDAC (Error Detect ion and Correct ion) .]
/ e tc/ in it tab f ile
/ e t c/ rc.sysin it
e tags com m and
eth1 3 9 4 dr iver
Ethernet - Modem card exam ple
 data t ransfer
 DMA descriptors and buffers
 receiving and t ransm it t ing data
 register layout of network funct ions
 m odem funct ions
 probing
 register ing
 MODULE_DEVI CE_TABLE() m acro
 network funct ions
 probing
 register ing
 PCI _DEVI CE() m acro
 pci_device_id st ructures
Ethernet N I C dr iver
ethtool
ethtool_ ops st ructure 2nd
evbug m odule
Evdev inter face
events
 input event dr ivers
 Evdev interface
 overv iew
 vir tual m ouse device exam ple
 writ ing
 LTT events
 not ifier event handlers
events/ n threads
evolut ion of Linux
eXecute I n Place (XI P)
EXI T_ DEAD state
EXI T_ ZOMBI E sta te
expired queues
ExpressCards 2nd
EXT3 f ilesystem
EXT4 f ilesystem
eXtended Graphics Array (XGA)
Extended I ndust ry Standard Architecture (EI SA)
externa l w atchdogs

I ndex

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

fasync() funct ion
fasync_ helper() funct ion 2nd
fault - handlers (kprobes)
fb_ blank() m ethod
fb_ check_ var() m ethod
fb_ fillrect ()
fb_ var_ screeninfo st ructure
FCC (Federa l Com m unicat ions Com m ission)
fcnt l() funct ion
Federa l Com m unicat ions Com m ission (FCC)
Fibre Channel
Fie ld Program m able Gate Arrays (FPGAs)
FI FO (f irst - in f irst - out) m em ory
file_ operat ions st ructure 2nd 3rd
f ile st ructure
f ilesystem s
 debugfs
 EXT3
 EXT4
 JFFS (Journaling Flash File System)
 NFS (Network File System)
 procfs [See procfs .]
 root fs
 com pact m iddleware
 NFS-m ounted root
 obtaining
 overv iew
 sysfs
 usbfs vir tual filesystem
 VFS (Virtual File System) 2nd
 YAFFS (Yet Another Flash File System)
File Transla t ion Layer (FTL)
Finite State Machine (FSM)
FireW ire
Firm w are Hub (FW H)
first - in f irst - out (FI FO) m em ory
flash_ eraseall com m and
flash m em ory [See also MTD (Mem ory Technology Devices) .]
 CFI -com pliant flash, querying
 definit ion
 em bedded drivers
 NAND
 NOR
 sectors
f loppy storage
flow cont rol (N I Cs)
f lush_ buffer() funct ion
flushing data
forum s
FPGAs (Fie ld Program m able Gate Arrays)
fram e buffer API
fram e buffer dr ivers
 accelerated m ethods
 color m odes
 cont rast and backlight

 data st ructures
 DMA
 param eters
 screen blanking
free_ irq() funct ion 2nd
free_ netdev() funct ion
freeing
 I RQs (interrupt requests)
 m em ory
Freescale MC1 3 7 8 3 Pow er Managem ent and Audio Com pon ent (PMAC)
Freescale MPC8 5 4 0
Free Softw are Foundat ion
frequency sca ling
Front Side Bus (FSB)
fs directory
FSM (Finite State Machine)
fsync() funct ion
FTDI dr iver
FTL (File Transla t ion Layer)
fu ll char device
full- speed USB
funct ion cont rollers
funct ions [See specif ic funct ions .]
FW H (Firm w are Hub)

I ndex

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

gadget dr ivers
garbage collector (GC)
GAS (GNU Assem bler)
GC (garbage collector)
GCC com piler
GCC I nline Assem bly HOW TO
gdb (GNU debugger)
gendisk st ructure 2nd
genera l- purpose m ouse (gpm)
Genera l Object Exchange Profile (GOEP)
Genera l Packet Radio Service (GPRS) 2nd
Genera l Purpose I / O (GPI O)
generat ing
 patches
 preprocessed source code
GET_ DEVI CE_ I D com m and
get_ random _ bytes() funct ion
get_ stats() m ethod
get_ w ire less_ stats() funct ion
get it im er() funct ion
get t im eofday() funct ion
Glibc librar ies
Global System for Mobile Com m unicat ion (GSM) 2nd
glow _ show _ led() funct ion 2nd
GMCH (Graphics and Mem ory Cont roller Hub)
GNU
 copyleft
 GAS (GNU Assem bler)
 gdb (GNU debugger)
 LGPL (Lesser General Public License)
 GPL (GNU Public License)
GOEP (Genera l Object Exchange Profile)
governors
GPI O (Genera l Purpose I / O)
GPL (GNU Public License)
gpm (genera l- purpose m ouse)
gprof
GPRS (Genera l Packet Radio Service) 2nd
Graphics and Mem ory Cont roller Hub (GMCH)
GRUB
GSM (Global System for Mobile Com m unicat ion) 2nd

I ndex

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

HA (High Availabilit y) project
HAL (Hardw are Access Layer)
ha lt (HLT) inst ruct ion
ham radio
handle_ I RQ_ event () funct ion
handling interrupts [See in terrupt handling .]
hard- specif ic m odules (HDMs)
hard_ star t_ xm it () funct ion
hard_ star t_ xm it m ethod
Hard Dr ive Act ive Protect ion System (HDAPS)
Hardw are Access Layer (HAL)
hardw are block diagram s
 em bedded system
 PC-com pat ible system
hardw are RAI D
hash lists
HCI (Host Cont rol I nter face) 2nd
hci_ uar t .ko
HD (High Defin it ion) Audio
HDAPS (Hard Dr ive Act ive Protect ion System)
HDLC (High- level Data Link Cont rol)
HDMI (H igh- Defin it ion Mult im edia I nter face)
HDMs (hard- specif ic m odules)
hdparm ut ilit y
HDTV (High- Defin it ion Television)
head f ie ld (sk_ buff st ructure)
helper inter faces
 com plet ion interface
 error-handling aids
 hash lists
 kthread helpers
 linked lists
 creat ing
 data st ructures, init ializing
 funct ions
 work subm ission
 worker thread
 not ifier chains
 overview
 work queues
hidp dr iver
HI Ds (hum an inter face devices) 2nd 3rd 4th
High- Defin it ion Mult im edia I nter face (HDMI)
High- Defin it ion Television (HDTV)
High- level Data Link Cont rol (HDLC)
high- speed interconnects
 I nfiniBand
 RapidI O
 Fibre Channel
 iSCSI (I nternet SCSI)
 USB
High Availabilit y (HA) project
High Defin it ion (HD) Audio
high m em ory
history of Linux

hlist_ head st ructure 2nd
hlist_ nodes st ructure
hlists (hash lists)
HLT inst ruct ion
HNP (Host Negot ia t ion Protocol)
host adapters
Host Cont rol I nter face (HCI) 2nd
Host Negot ia t ion Protocol (HNP)
hotplug
hubs, root
hum an inter face devices (HI Ds) 2nd 3rd 4th
hw clock com m and
HZ 2nd

I ndex

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

I - cache (I nst ruct ion Cache)
I / O Cont rol
 CMOS driver
 touch cont roller
I / O m em ory m anagem ent unit (I OMMU)
I / O regions
 accessing
 dum ping bytes from
I / O schedulers 2nd
I 2 C [See also SMBus .]
 1-wire protocol
 bus t ransact ions
 com pared to USB
 core
 debugging
 definit ion
 EEPROM device exam ple
 accessing
 adapter capabilit ies, checking
 clients, at taching
 i2c_del_driver() funct ion
 init ializing
 ioct l() funct ion
 llseek() m ethod
 m em ory banks
 opening
 overv iew
 probing
 RFI D (Radio Frequency I dent ificat ion) t ransm it ters
 i2c-dev
 LM-Sensors
 overview
 RTC (Real Tim e Clock)
 sources
 SPI (Serial Peripheral I nterface) bus
 sum m ary of data st ructures
 sum m ary of kernel program m ing interfaces
 user m ode I 2C
i2 c- dev m odule 2nd
i2 c_ add_ adapter() funct ion
i2 c_ add_ dr iver() funct ion 2nd
i2 c_ at tach_ client () funct ion
i2 c_ check_ funct ionalit y() funct ion 2nd
i2 c_ client_ address_ data st ructure 2nd
i2 c_ client st ructure
i2 c_ del_ adapter() funct ion
i2 c_ del_ dr iver() funct ion 2nd
i2 c_ detach_ client () funct ion
i2 c_ dr iver st ructure
i2 c_ get_ funct ionalit y() funct ion 2nd
i2 c_ m sg st ructure
i2 c_ probe() funct ion
i2 c_ sm bus_ read_ block_ data() funct ion
i2 c_ sm bus_ read_ byte() funct ion
i2 c_ sm bus_ read_ byte_ data() funct ion 2nd

i2 c_ sm bus_ read_ w ord_ data() funct ion
i2 c_ sm bus_ w r ite_ block_ data() funct ion
i2 c_ sm bus_ w r ite_ byte() funct ion
i2 c_ sm bus_ w r ite_ byte_ data() funct ion
i2 c_ sm bus_ w r ite_ quick() funct ion
i2 c_ sm bus_ w r ite_ w ord_ data() funct ion 2nd
i2 c_ t ransfer() funct ion 2nd
I 2 O (I nte lligent I nput / Output)
I 2 O SI G (I 2 O Specia l I nterest Group)
I 2 S (I nter- I C Sound) bus
i3 8 6 boot assem bly code
I 8 5 5 _ EAP_ REGI STER register
I 8 5 5 _ ERRSTS_ REGI STER register
I DE (I ntegrated Dr ive Elect ronics)
I EEE 1 3 9 4
im ages
 displaying with m m ap()
 init ram fs
im x.c dr iver
in[b| w | l| sn| sl] () funct ion
in_ interrupt () funct ion
inb() funct ion 2nd 3rd
include/ asm - x8 6 / e8 2 0 .h f ile
include/ pcm cia/ cistpl.h f ile
include directory
I ndust r ies Standard Architecture (I SA)
I nf in iBand
I nfrared 2nd 3rd
 data st ructures
 dongles
 I rCOMM
 I rDA sockets
 kernel program m ing interfaces
 Linux- I rDA
 LI RC
 networking
 sources
 Super I / O chip
in frast ructure m ode (W LAN)
init () funct ion
 char dr ivers
 CMOS driver
 EEPROM device exam ple
in it_ com plet ion() funct ion 2nd
in it directory
I N I T_ LI ST_ HEAD() funct ion
init_ MUTEX() funct ion
init_ t im er() funct ion 2nd
in it ia lizat ion
 CMOS driver
 EEPROM device exam ple
 m yblkdev storage cont roller
 telem et ry configurat ion register
 telem et ry dr iver
in it ia tors (iSCSI)
in it process
init ram fs root f ilesystem
init rd m em ory
init tab f ile
in l() funct ion 2nd
in line assem bly
input_ a llocate_ device() funct ion
input_ dev st ructure
input_ event () funct ion

input_ event st ructure
input_ handler st ructure 2nd
input_ register_ device() funct ion 2nd 3rd 4th
input_ register_ handler() funct ion
input_ repor t_ abs() funct ion 2nd
input_ repor t_ key() funct ion
input_ repor t_ re l() funct ion
input_ sync() funct ion 2nd
input_ unregister_ device() funct ion
input class
input dr ivers
 debugging
 input device dr ivers
 accelerom eters
 Bluetooth keyboards
 Bluetooth m ice
 output events
 PC keyboards
 PS/ 2 m ouse
 roller m ouse device exam ple
 ser io
 touch cont rollers
 touchpads
 t rackpoints
 USB keyboards
 USB m ice
 input event dr ivers
 Evdev interface
 overv iew
 vir tual m ouse device exam ple
 writ ing
 input subsystem
 sources
 sum m ary of data st ructures
input subsystem
insm od com m and
I nst ruct ion Cache (I - cache)
int 0 x1 5 service 2nd
I ntegrated Dr ive Elect ronics (I DE)
I nte lligent I nput / Output (I 2 O)
I nter- I C Sound (I 2 S) bus
I nter- I ntegrated Circuit [See I 2 C.]
in terna l f ile pointer , set t ing w ith cm os_ llseek()
I nternet address not if ica t ion
I nternet Protocol (I P)
I nternet SCSI (iSCSI)
interrupt contexts 2nd
in terrupt handling
 asynchronous interrupts
 block dr ivers
 interrupt contexts
 I RQs (interrupt requests)
 assigning
 definit ion
 enabling/ disabling
 freeing
 request ing
 overview
 roller wheel device exam ple
 edge sensit ivity
 free_irq() funct ion
 request_irq() funct ion
 roller interrupt handler
 soft irqs

 tasklets
 wave form s generated by
 soft irqs
 synchronous interrupts
 tasklets
in terrupt ible sta te (threads)
interrupt requests [See I RQs (interrupt requests) .]
in terrupts
interrupt service rout ine (I SR)
invok ing kexec
inw () funct ion 2nd
ioct l() funct ion 2nd 3rd 4th 5th
I OMMU (I / O m em ory m anagem ent unit)
ioperm () funct ion 2nd
iopl() funct ion 2nd
iorem ap() funct ion
iorem ap_ nocache() funct ion 2nd
iovec st ructure
I P (I nternet Protocol)
ipc directory
ipx_ routes_ lock
I rCOMM
irda- ut ils package
I rDA socket (I rSock) 2nd
I rLAP (I R Link Access Protocol)
I rLMP (I R Link Managem ent Protocol)
irq com m and
I RQ_ HANDLED flag
I RQF_ DI SABLED flag
I RQF_ SAMPLE_ RANDOM flag
I RQF_ SHARED flag
I RQF_ TRI GGER_ HI GH flag
I RQF_ TRI GGER_ RI SI NG flag
I RQs (interrupt requests)
 assigning
 cell phone device exam ple
 definit ion
 enabling/ disabling
 freeing
 request ing
 roller wheel device exam ple
I rSock (I rDA socket)
I S_ ERR() funct ion 2nd
I SA (I ndust r ies Standard Architecture)
I SA NI Cs
iSCSI (I nternet SCSI)
iscsi_ tcp.c dr iver
iscsid daem on
I SR (interrupt service rout ine)
itera tor m ethods
 next ()
 show()
 start ()
 stop()

I ndex

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

JFFS (Journaling Flash File System)
j if f ies 2nd
Journaling Flash File System (JFFS)
jpr intk () funct ion
jprobe_ return() funct ion
jprobes
JTAG (Joint Test Act ion Group)
 debuggers 2nd

I ndex

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

kacpid thread
kallsym s_ lookup_ nam e() funct ion
kapm d thread
kbnepd
kdb (kernel debugger)
kdum p
 exam ple
 kexec with kdum p
 setup
 sources
kernel.org
kernel_ thread() funct ion 2nd
kernel debuggers
 downloads
 enter ing
 gdb (GNU debugger)
 JTAG debuggers
 kdb (kernel debugger)
 kgdb (kernel GNU debugger)
 overview
kernel directory
kernel hack ing configurat ion opt ions
kernel m ode
kernel m odules [See m odules .]
kernel probes [See kprobes .]
kernel processes [See kernel threads .]
kernel program m ing inter faces [See specif ic funct ions .]
kernels
 boot process
 BI OS-provided physical RAM m ap
 delay- loop calibrat ion
 EXT3 filesystem
 HLT inst ruct ion
 I / O scheduler
 init process
 init rd m em ory
 kernel com m and line
 Linux boot sequence
 low m em ory/ high m em ory
 PCI resource configurat ion
 registered protocol fam ilies
 start_kernel() funct ion
 building
 concurrency
 atom ic operators
 debugging
 overv iew
 reader-writer locks
 spinlocks and m utexes
 data st ructures, table of
 debuggers
 downloads
 enter ing
 gdb (GNU debugger)
 JTAG debuggers

 kdb (kernel debugger)
 kgdb (kernel GNU debugger)
 overv iew
 helper interfaces
 com plet ion interface
 error-handling aids
 hash lists
 kthread helpers
 linked lists
 not ifier chains
 overv iew
 work queues
 interrupt contexts
 kernel.org repository
 kernel hacking configurat ion opt ions
 kernel m ode
 kernel program m ing interfaces, table of
 m em ory allocat ion
 m odules
 edac_m c
 loading
 por t ing
 process contexts
 sources 2nd
 source t ree layout
 director ies 2nd
 navigat ing
 threads
 bdflush
 creat ing
 definit ion
 events/ n threads
 kacpid
 kapm d
 kjournald
 ksoft irqd/ 0
 kthreadd
 kthread helpers
 kupdated
 list ing act ive threads
 n fsd
 pccardd
 pdflush
 process states
 user m ode helpers
 wait queues
 t imers
 HZ
 j iff ies
 long delays
 overv iew
 RTC (Real Tim e Clock)
 short delays
 TSC (Tim e Stam p Counter)
 uClinux
 user m ode
kernel threads
 bdflush
 creat ing
 definit ion
 events/ n threads
 kacpid
 kapm d
 kjournald

 ksoft irqd/ 0
 kthreadd
 kthread helpers
 kupdated
 list ing act ive threads
 n fsd
 pccardd
 pdflush
 process states
 user m ode helpers
 wait queues
kernel t im ers
 HZ
 j iff ies
 long delays
 overview
 RTC (Real Tim e Clock)
 short delays
 TSC (Tim e Stam p Counter)
kernelt rap.org
kexec
 invoking
 preparat ion
 sources
 with kdum p
kexec- tools package
keyboards
 Bluetooth keyboards
 overview
 PC keyboards
 USB keyboards
keycodes
keypads
kfree() funct ion
kgdb (kernel GNU debugger)
kgdbw ait com m and
khubd
k ill_ fasync() funct ion 2nd
k journa ld thread
km alloc() funct ion 2nd 3rd 4th
km em char device
kobj_ type st ructure 2nd
kobject_ add() funct ion
kobject_ register() funct ion 2nd
kobject_ uevent () funct ion
kobject_ unregister() funct ion 2nd
kobjects 2nd
kprobes
 exam ple
 kprobe handlers, register ing
 m ydrv.c file
 patches, insert ing
 fault -handlers
 insert ing inside kernel funct ions
 j probes
 kretprobes
 lim itat ions
 post -handlers
 pre-handlers
 sources
kref_ get () funct ion
kref_ in it () funct ion
kref_ put () funct ion
kref object

kret_ t ty_ open() funct ion
kretprobes
kset st ructure
ksoft irqd/ 0 kernel thread
kthread_ create() funct ion 2nd
kthread_ run() funct ion
kthread_ should_ stop() funct ion 2nd
kthread_ stop() funct ion
kthreadd kernel thread
kthread helpers
k type_ led st ructure
kupdated kernel thread
kzalloc() funct ion 2nd

I ndex

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

L2 CAP (Logica l Link Cont rol and Adaptat ion Protocol)
l2 cap.ko
LAD (Linux Audio Developers) list
LAN Em ulat ion (LANE)
LANs (loca l area netw orks) 2nd
laptops
large procfs reads
layered architecture (ser ia l dr ivers)
LBA (logica l block addressing)
LCDC (Liquid Crysta l Display Cont roller)
LCD cont rollers
ldisc.read() funct ion
ldisc.receive_ buf() funct ion
led.c dr iver
led_ init () funct ion
led_ w r ite() funct ion
LED board [See para lle l por t LED boards .]
legacy dr ivers
 BI OS
 RTC driver
len f ie ld (sk_ buff st ructure)
level- sensit ive devices
LGPL (GNU Lesser Genera l Public License)
libATA
lib directory
librar ies
 alsa- lib
 Glibc
 libraw1394
libraw 1 3 9 4 library
libusb program m ing tem plate
like ly() funct ion 2nd
LI LO (Linux Loader)
line disciplines (touch cont roller device exam ple)
 changing
 com piling
 connect ion diagram
 flushing data
 I / O Cont rol
 open/ close operat ions
 opening
 overview
 read paths
 unregister ing
 write paths
linked lists
 creat ing
 data st ructures, init ializing
 funct ions
 worker thread
 work subm ission
links (PCI e)
linux.conf.au
Linux Am ateur Radio AX.2 5 HOW TO
Linux assem bly

 boot sequence
 debugging
 GNU Assem bler (GAS)
 i386 boot assem bly code
 inline assem bly
 Microsoft Macro Assem bler (MASM)
 Netwide Assem bler (NASM)
Linux Asynchronous I / O (AI O)
linux- audio- dev m ailing list
Linux Audio Developers (LAD) list
Linux device m odel
 device classes
 hotplug/ coldplug
 kobjects
 m icrocode download
 m odule autoload
 overview
 sysfs
 udev 2nd
Linux dist r ibut ions
Linux history and developm ent
linux- ide m ailing list
Linux- I rDA
Linux Kernel Crash Dum p (LKCD)
Linux Kernel Mailing List (LKML)
Linux Kongress
Linux Loader (LI LO)
Linux- MTD JFFS HOW TO
linux- m td m ailing list
Linux- MTD subsystem [See MTD (Mem ory Technology Devices) .]
Linux- PCMCI A subsystem [See PCMCI A (Personal Com puter Mem ory Card I nternat ional Associa t ion) .]
linux- scsi m ailing list
Linux Sym posium
Linux Test Project (LTP) 2nd
Linux Trace Toolk it [See LTT (Linux Trace Toolk it) .]
Linux Trace Toolk it View er (LTTV)
linux- usb- devel m ailing list 2nd
Linux- USB subsystem [See USB (universa l ser ia l bus) .]
Linux- video subsystem
LinuxW or ld Conference and Expo
Liquid Crysta l Display Cont roller (LCDC)
LI RC (Linux I nfrared Rem ote Cont rol)
list_ add() funct ion
list_ add_ ta il() funct ion
list_ del() funct ion 2nd
list_ em pty() funct ion
list_ ent ry() funct ion 2nd
list_ for_ each_ ent ry() funct ion 2nd
list_ for_ each_ ent ry_ safe() funct ion 2nd
list_ head st ructure 2nd
list_ replace() funct ion
list_ splice() funct ion
lists
 hash lists
 linked lists
 creat ing
 data st ructures, init ializing
 funct ions
 worker thread
 work subm ission
LKCD (Linux Kernel Crash Dum p)
LKML (Linux Kernel Mailing List)
llseek() funct ion 2nd
LM- Sensors

loading m odules
loadkeys
loca l_ irq_ disable() funct ion
loca l_ irq_ enable() funct ion 2nd
loca l_ irq_ restore() funct ion
loca l_ irq_ save() funct ion
loca l area netw orks (LANs) 2nd
loca lt im e() funct ion
locks
lockups, soft
log com m and
logica l addresses
logica l block addressing (LBA)
Logica l Link Cont rol and Adaptat ion Protocol (L2 CAP)
long delays
loopback devices
loops_ per_ j if fy var iable 2nd 3rd
low - speed USB
low - voltage dif ferent ia l signaling (LVDS)
low m em ory
Low Pin Count (LPC) bus
lp.c dr iver
lp_ w r ite() funct ion
LPC (Low Pin Count) bus
lseek() funct ion
lsm od com m and
lspci com m and
lsvpd ut ilit y
LTP (Linux Test Project) 2nd
LTT (Linux Trace Toolk it)
 com ponents
 events
 LTTng
 LTTV (Linux Trace Toolkit Viewer)
 t race dum ps
LTTng
LTTV (Linux Trace Toolk it View er)
LVDS (low - voltage dif ferent ia l signaling)
lw n.ne t
lx r com m and

I ndex

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

MAC (Media Access Cont rol) addresses
m acros [See specif ic m acros .]
Madplay 2nd
m ailboxes (RapidI O)
m ailing lists 2nd
m aintenance
 build scr ipts
 change m arkers
 checksum consistency
 code portabilit y
 coding styles
 version cont rol
m ajor num bers (char dr ivers)
m ake com m and
MAN (m et ropolitan area netw ork)
m ap_ info st ructure 2nd
m ap dr ivers
 definit ion
 MTD part it ion m aps, creat ing
 probe m ethod
 register ing
m apping m em ory
m aps, system m em ory m ap
 copying
 obtaining
m arkers, clean
MASM (Microsoft Macro Assem bler)
m ass storage devices (USB)
Master Boot Record (MBR)
Master I n Slave Out (MI SO)
Master Out Slave I n (MOSI)
m asters (DMA)
m axim um t ransm ission unit (MTU) 2nd
m b() funct ion
MBEs (m ult ibit er rors)
MBR (Master Boot Record)
MCA (Micro- Channel Architecture)
MCH (Mem ory Cont roller Hub)
m d com m and
m delay() funct ion
m edia_ changed() m ethod
Media Access Cont rol (MAC) addresses
Media I ndependent I nter face (MI I)
m em char device
MEMERASE com m and
MEMLOCK com m and
m em ory
 accessing from user space
 allocat ing
 cache m isses, count ing
 claim ing/ freeing
 CMOS (com plem entary m etal oxide sem iconductor)
 DMA (Direct Mem ory Access) [See also Ethernet - Modem card exam ple .]
 buffers
 consistent DMA access m ethods

 definit ion
 I OMMU (I / O m em ory m anagem ent unit)
 m asters
 scat ter-gather
 st ream ing DMA access m ethods
 synchronous versus asynchronous
 em bedded Linux m em ory layout
 FI FO (first - in first -out) m em ory
 flash m em ory
 CFI -com pliant flash, querying
 definit ion
 em bedded drivers
 NAND
 NOR
 sectors
 high m em ory
 init rd m em ory
 low m em ory
 m apping
 m em ory barr iers
 m em ory zones
 MTD (Mem ory Technology Devices)
 flash m em ory
 illust rat ion of Linux-MTD subsystem
 m ap drivers
 MTD core
 NAND drivers
 NOR Chip dr ivers
 overv iew
 part it ion m aps, creat ing
 User Modules
 pages
 system m em ory m ap
 copying
 obtaining
 zero page
 ZONE_DMA
 ZONE_HI GH
 ZONE_NORMAL
m em ory.c f ile
m em ory banks (EEPROM)
Mem ory Cont roller Hub (MCH)
m em ory_ cs Card Services dr iver
Mem ory Technology Devices [See MTD (Mem ory Technology Devices) .]
m em ory zones
MEMUNLOCK com m and
m em w alkd() funct ion
m ethods [See specif ic m ethods .]
m et ropolitan area netw ork (MAN)
m ice
 Bluetooth m ice
 PS/ 2 m ouse
 roller m ouse device exam ple
 touchpads
 t rackpoints
 USB m ice
 vir tual m ouse device exam ple
 gpm (general-purpose m ouse)
 vm s.c input dr iver
Micro- Channel Architecture (MCA)
m icrocode dow nload
m icrodr ives
Microsoft Macro Assem bler (MASM)
m iddlew are

MI I (Media I ndependent I nter face)
m illion inst ruct ions per second (MI PS)
MI MO (Mult iple I n Mult iple Out)
m inicom
Mini PCI
m inor num bers (char dr ivers)
MI PS (m illion inst ruct ions per second)
m ir ror ing disks
m isc_ deregister() funct ion
m isc_ register() funct ion 2nd 3rd
Miscdevice st ructure
m isc (m iscellaneous) dr ivers [See also w atchdog t im er .]
MI SO (Master I n Slave Out)
m ixers
m kinit ram fs com m and
m kinit rd com m and
m kt im e() funct ion
m lockall() funct ion 2nd
- m m patch
m m ap() funct ion 2nd 3rd
m m apping
MMC (Mult iMediaCard)
m m directory
m od_ t im er() funct ion 2nd
m odem funct ions
 probing
 register ing
m odes
 kernel m ode
 protected m ode
 real m ode
 user m ode
m odinfo com m and
m odprobe com m and
MODULE_ DEVI CE_ TABLE() m acro 2nd 3rd
m odules
 autoloading
 edac_m c
 loading
Molnar , I ngo
Morton, Andrew
MOSI (Master I n Slave Out)
m ost signif icant bit (MSB)
m ouse_ poll() funct ion
m ousedev
Moving Picture Exper ts Group (MPEG) 2nd
MP3 player exam ple
 ALSA driver code list ing
 ALSA program m ing
 codec_write_reg() funct ion
 MP3 decoding com plexity
 m ycard_audio_probe() funct ion
 m ycard_audio_rem ove() funct ions
 m ycard_hw_param s() funct ion
 m ycard_pb_prepare() funct ion
 m ycard_pb_t r igger() funct ion
 m ycard_playback_open() funct ion
 overview
 register layout of audio hardware
 snd_card_free() funct ion
 snd_card_new() funct ion
 snd_card_proc_new() funct ion
 snd_card_register() funct ion
 snd_ct l_add() funct ion

 snd_ct l_new1() funct ion
 snd_device_new() funct ion
 snd_kcont rol st ructure
 snd_pcm _hardware st ructure
 snd_pcm _lib_m alloc_pages() funct ion
 snd_pcm _lib_preallocate_pages_for_all() funct ion
 snd_pcm _new() funct ion
 snd_pcm _ops st ructure
 snd_pcm _set_ops() funct ion
 user program s
MPC8 5 4 0 (Freescale)
MPEG (Moving Picture Exper ts Group) 2nd
MPLS (Mult iprotocol Label Sw itching)
MPoA (Mult i Protocol over ATM)
MSB (m ost signif icant bit)
m sleep() funct ion
m sync() funct ion
MTD (Mem ory Technology Devices)
 configurat ion
 data st ructures
 debugging
 flash m em ory
 FWH (Firm ware Hub)
 illust rat ion of Linux-MTD subsystem
 kernel program m ing interfaces
 m ap drivers
 definit ion
 MTD part it ion m aps, creat ing
 overv iew
 probe m ethod
 register ing
 MTD core
 NAND chip dr ivers
 block size
 configuring
 definit ion
 layout
 NAND flash cont rollers
 OOB (out -of-band) inform at ion
 page size
 spare area
 NOR chip dr ivers
 definit ion
 querying CFI -com pliant flash
 part it ion m aps, creat ing
 sources
 User Modules
 block device em ulat ion
 char device em ulat ion
 definit ion
 JFFS (Journaling Flash File System)
 MTD-ut ils
 overv iew
 YAFFS (Yet Another Flash File System)
 XI P (eXecute I n Place)
m td_ info st ructure
m td_ par t it ion st ructure 2nd
MTD- ut ils
m tdblock dr iver
m tdchar dr iver
MTU (m axim um t ransm ission unit) 2nd
m ult ibit er rors (MBEs)
Mult iMediaCard (MMC)
m ult im eters

Mult iple I n Mult iple Out (MI MO)
Mult iprotocol Label Sw itching (MPLS)
Mult i Protocol over ATM (MPoA)
m unm ap() funct ion
m utex_ init () funct ion
m utex_ lock() funct ion
m utex_ unlock() funct ion
m utexes 2nd
m utual exclusion (m utexes)
m y_ dev_ event_ handler() funct ion
m y_ device_ xm it () funct ion
m y_ die_ event_ handler() funct ion
m y_ not i_ chain st ructure
m y_ release() funct ion
m yblkdev_ init () funct ion
m yblkdev_ ioct l() funct ion
m yblkdev_ request () funct ion
m yblkdev storage cont roller
 block device operat ions
 disk access
 init ializat ion
 overview
 register layout
m ycard_ audio_ probe() funct ion
m ycard_ audio_ rem ove() funct ion
m ycard_ change_ m tu() funct ion
m ycard_ get_ eeprom () funct ion
m ycard_ get_ stats() funct ion
m ycard_ hw _ param s() funct ion
m ycard_ pb_ prepare() funct ion
m ycard_ pb_ t r igger() funct ion
m ycard_ pb_ vol_ info() funct ion
m ycard_ playback_ open() funct ion
m ydrv.c f ile
m ydrv_ dev st ructure
m ydrv_ init () funct ion
m ydrv_ w orker() funct ion
m ydrv_ w ork item st ructure
m ydrv_ w q st ructure
m yevent_ id st ructure
m yevent_ w aitqueue st ructure
m yrtc_ at tach() funct ion
m yrtc_ get t im e() funct ion

I ndex

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

N_ TCH line discipline 2nd
n_ touch_ chars_ in_ buffer() funct ion
n_ touch_ open() funct ion
n_ touch_ receive_ buf() funct ion
n_ touch_ receive_ room () funct ion
n_ touch_ w r ite() funct ion
n_ touch_ w r ite_ w akeup() funct ion
nand_ ecclayout st ructure 2nd
nand_ flash_ ids[] table
NAND chip dr ivers
 block size
 configuring
 definit ion
 layout
 NAND flash cont rollers
 OOB (out -of-band) inform at ion
 page size
 spare area
NAND File Transla t ion Layer (NFTL)
NAND flash cont rollers
NAND flash m em ory
NAND storage
nanosleep() funct ion
NAPI (New API) 2nd
NASM (Netw ide Assem bler)
navigat ion
 fram e buffer dr ivers
 accelerated m ethods
 color m odes
 cont rast and backlight
 data st ructures
 DMA
 param eters
 screen blanking
 source t ree layout
NCP (Netw ork Cont rol Protocol)
ndelay() funct ion
net_ device_ stats st ructure 2nd
net_ device m ethod
net device not if ica t ion
net_ device st ructure
 act ivat ion
 bus-specific m ethods
 configurat ion
 data t ransfer
 overview
 stat ist ics
 watchdog t im eout
net directory
netdev_ chain st ructure
net if_ device_ at tach() funct ion
net if_ device_ detach() funct ion
net if_ queue_ stopped() funct ion 2nd
net if_ receive_ skb() funct ion
net if_ rx() funct ion 2nd 3rd

net if_ rx_ com plete() funct ion 2nd
net if_ rx_ schedule() funct ion
net if_ rx_ schedule_ prep() funct ion
net if_ star t_ queue() funct ion 2nd
net if_ stop_ queue() funct ion 2nd
net if_ w ake_ queue() funct ion 2nd
Net link sockets
netper f
Net rom
Netw ide Assem bler (NASM)
Netw ork Cont rol Protocol (NCP)
Netw ork File System (NFS)
netw ork inter face cards [See NI Cs (netw ork inter face cards) .]
netw orks
 Bluetooth 2nd 3rd
 I nfrared
 LANs (local area networks)
 network funct ions
 probing
 register ing
 NI Cs (network interface cards) [See NI Cs (netw ork inter face cards) .]
 throughput
 dr iver perform ance
 overv iew
 protocol perform ance
New API (NAPI)
new device check list
next () funct ion
NFS (Netw ork File System) 2nd
nfs_ unlock_ request () funct ion
nfsd kernel thread
NFTL (NAND File Transla t ion Layer)
nice va lues
NI Cs (netw ork inter face cards)
 act ivat ion
 ATM (asynchronous t ransfer m ode)
 buffer m anagem ent
 concurrency cont rol
 configurat ion
 data st ructures
 data t ransfer
 Ethernet NI C driver
 I SA NI Cs
 MTU size, changing
 net device interface [See net_ device st ructure .]
 network throughput
 dr iver perform ance
 overv iew
 protocol perform ance
 overview
 protocol layers
 flow cont rol
 receive path
 t ransm it path
 socket buffers
 sources
 stat ist ics
 sum m ary of kernel program m ing interfaces
 watchdog t im eout
Noop 2nd
NOR chip dr ivers
 definit ion
 querying CFI -com pliant flash
NOR flash m em ory

North Br idge
notebooks
not if ica t ions
 CPU frequency not ificat ion
 die not ificat ion
 I nternet address not ificat ion
 net device not ificat ion
 not ifier chains
not if ier_ block st ructure
not if ier cha ins
null sink
NVRAM dr ivers, updat ing w ith seq f iles

I ndex

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

O(1) scheduler
OBEX (OBject EXchange)
objdum p com m and
OBject EXchange (OBEX)
objects, kobjects
obta ining system m em ory m ap
OEMs (or igina l equipm ent m anufacturers)
off- the- shelf (OTS) m odules
OHCI (Open Host Cont roller I nter face)
ohci1 3 9 4 dr iver
On- The- Go (OTG) cont rollers
ondem and governor
OOB (out - of- band) inform at ion
opcont rol
open() m ethod
 block dr ivers
 CMOS driver
 EEPROM driver
 net_device st ructure
open_ soft irq() funct ion
Open Host Cont roller I nter face (OHCI)
opening
 CMOS driver
 EEPROM driver
 touch cont rollers
Open Sound System (OSS)
Open Source Developm ent Lab (OSDL)
Open System s I nterconnect (OSI)
operators, a tom ic
oprepor t
OProfile 2nd
 cache m isses, count ing
 opcont rol
 opreport
oprofiled daem on
or igina l equipm ent m anufacturers (OEMs)
OS- specif ic m odules (OSMs)
oscilloscopes
OSDL (Open Source Developm ent Lab)
OSI (Open System Connect)
OSMs (OS- specif ic m odules)
OSS (Open Sound System)
OTG (On- The- Go) cont rollers
out - of- band (OOB) inform at ion
outb() funct ion 2nd 3rd
out l() funct ion 2nd
outsl() funct ion
outsn() funct ion
output events (input device dr ivers)
outw () funct ion 2nd

I ndex

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

packages
 alsa-ut ils
 kexec- tools
 MTD-ut ils
 pcm cia-cs
 pcm ciaut ils
 sysfsut ils
pages (m em ory)
PAN (personal area netw ork)
Para lle l ATA (PATA)
para lle l por t com m unicat ion
para lle l por t LED boards
 cont rolling from user space
 cont rolling with sysfs
 led.c dr iver
para lle l pr inter dr ivers
Pardevice st ructure
parpor t
parpor t_ cla im _ or_ block() funct ion
parpor t_ read_ data() funct ion
parpor t_ register_ device() funct ion 2nd
parpor t_ register_ dr iver() funct ion 2nd
parpor t_ re lease() funct ion
parpor t_ unregister_ device() funct ion
parpor t_ unregister_ dr iver() funct ion
parpor t_ w r ite_ data() funct ion
par t it ions
 MTD part it ion m aps, creat ing
 swap space
PATA (Para lle l ATA)
patches
 applying
 CONFI G_PREEMPT_RT patch-set
 creat ing
 definit ion
 kernel.org repository
patch ut ilit y
PC- com pat ible system hardw are block diagram
PCBs (pr inted circuit boards)
pccardct l com m and
pccardd thread
PC Cards
PC keyboards
PCI (Per iphera l Com ponent I nterconnect)
 accessing PCI regions
 configurat ion space
 I / O and m em ory regions
 addressing and ident ificat ion
 CardBus 2nd
 com pared to USB
 data st ructures
 debugging
 definit ion
 DMA (Direct Mem ory Access)
 buffers

 consistent DMA access m ethods
 definit ion
 descriptors and buffers
 I OMMU (I / O m em ory m anagem ent unit)
 m asters
 scat ter-gather
 st ream ing DMA access m ethods
 synchronous versus asynchronous
 Ethernet -Modem card exam ple
 data t ransfer
 m odem funct ions, probing
 m odem funct ions, register ing
 MODULE_DEVI CE_TABLE() m acro
 network funct ions, probing
 network funct ions, register ing
 PCI _DEVI CE() m acro
 pci_device_id st ructures
 Express Cards
 kernel program m ing interfaces
 Mini PCI
 PCI -based solut ions
 PCI Express
 PCI Express Mini Card
 PCI Extended (PCI -X)
 PCI inside South Bridge system
 resources, configuring
 ser ial com m unicat ion
 sources
pci_ a lloc_ consistent () funct ion 2nd
PCI _ DEVI CE() m acro 2nd
pci_ device_ id st ructure 2nd 3rd
pci_ dev st ructure 2nd
pci_ disable_ device() funct ion
pci_ dm a_ sync_ sg() funct ion
pci_ dm a_ sync_ single() funct ion
pci_ dr iver st ructure
pci_ enable_ device() funct ion
PCI Express 2nd
PCI Express Mini Card
PCI Extended (PCI - X)
pci_ free_ consistent () funct ion
pci_ iom ap() funct ion 2nd
pci_ m ap_ page() funct ion
pci_ m ap_ sg() funct ion 2nd
pci_ m ap_ single() funct ion 2nd
pci_ read_ config_ byte() funct ion 2nd
pci_ read_ config_ dw ord() funct ion 2nd
pci_ read_ config_ w ord() funct ion 2nd
pci_ register_ dr iver() funct ion 2nd
pci_ request_ region() funct ion 2nd
pci_ resource_ end() funct ion 2nd
pci_ resource_ flags() funct ion 2nd
pci_ resource_ len() funct ion 2nd
pci_ resource_ star t () funct ion 2nd
pci_ set_ dm a_ m ask() funct ion
pci_ set_ m aster() funct ion
pci_ unm ap_ sg() funct ion
pci_ unm ap_ single() funct ion
pci_ unregister_ dr iver() funct ion
pci_ w r ite_ config_ byte() funct ion 2nd
pci_ w r ite_ config_ dw ord() funct ion 2nd
pci_ w r ite_ config_ w ord() funct ion 2nd
PCI - X (PCI Extended)
PCI e (PCI Express)

PCM (pulse code m odulat ion)
PCMCI A (Personal Com puter Mem ory Card I nternat ional Associa t ion)
 At t r ibute m em ory
 CardBus devices
 Card Services
 CI S (Card I nform at ion St ructure)
 client dr ivers, register ing
 Com m on m em ory
 data- flow path between com ponents
 data st ructures
 cisparse_t
 cistpl_cftable_ent ry_t
 pcm cia_device
 pcm cia_device_id
 pcm cia_driver st ructure
 sum m ary of
 tuple_t
 debugging
 definit ion
 device I Ds and hotplug m ethods
 Driver Services
 dr iver services m odule (ds)
 em bedded drivers
 ExpressCards
 kernel program m ing interfaces
 Linux-PCMCI A subsystem interact ion
 m ailing list
 on em bedded system s
 on laptops
 pcm ciaut ils package
 ser ial PCMCI A
 sources
 storage
 udev
pcm cia- cs package
pcm cia_ device_ id st ructure 2nd
PCMCI A_ DEVI CE_ MANF_ CARD() m acro
pcm cia_ device st ructure 2nd
pcm cia_ dr iver st ructure 2nd
pcm cia_ get_ first_ tuple() funct ion
pcm cia_ get_ tuple_ data() funct ion
pcm cia_ parse_ tuple() funct ion
pcm cia_ register_ dr iver() funct ion 2nd
pcm cia_ request_ irq() funct ion
pcm cia_ unregister_ dr iver() funct ion
pcm ciaut ils package
pcspkr_ event () funct ion
pda_ m td_ probe() funct ion
pdflush kernel thread
Pent ium TSC (Tim e Stam p Counter)
percent sign (%)
per form ance
 network throughput
 dr iver perform ance
 overv iew
 protocol perform ance
 perform ance governor
Per iphera l Com ponent I nterconnect [See PCI (Per iphera l Com ponent I nterconnect) .]
per iphera ls
 choosing
 peripheral cont rollers
perm anent vir tua l circuit s (PVCs)
personal area netw ork (PAN)
personal ident if ica t ion num bers (PI Ns)

PHY (physica l layer) t ransceivers
PI BS boot loader
Pico- I rDA
PI Ns (personal ident if ica t ion num bers)
PI O (program m ed I / O)
pipes 2nd
placem ent plots
pla t form _ add_ devices() funct ion 2nd
plat form _ device_ register() funct ion
pla t form _ device_ register_ sim ple() funct ion 2nd 3rd
plat form _ device_ unregister() funct ion 2nd
plat form _ device register() funct ion
pla t form _ device st ructure 2nd
plat form _ dr iver_ register() funct ion 2nd
plat form _ dr iver_ unregister() funct ion
pla t form _ dr iver st ructure 2nd
plat form dr ivers
Plug- and- Play (PnP)
PMAC (Pow er Managem ent and Audio Com ponent)
PnP (Plug- and- Play)
PoE (Pow er over Ethernet)
point - of- sa le (POS)
Point - to- Point Protocol (PPP) 2nd
pointers
poll() m ethod 2nd 3rd
poll_ table st ructure 2nd
poll_ w ait () funct ion 2nd
polling in char dr ivers
populat ing URBs
port_ data_ in() funct ion
por t_ data_ out () funct ion
por tabilit y of code
port char device
por t ing kernels
por ts
 kgdb ports
 parallel port com m unicat ion
 parallel port LED board
 cont rolling with sysfs
 led.c dr iver
 ser ial ports
 USB_UART ports
POS (point - of- sa le)
post - handlers (kprobes)
pow er m anagem ent
Pow er Managem ent and Audio Com ponent (PMAC)
Pow er over Ethernet (PoE)
Pow erPC boot loaders
pow ersave governor
ppdev dr iver 2nd
PPP (Point - to- Point Protocol) 2nd
pppd daem on
pre- handlers (kprobes)
preem pt_ disable() funct ion
preem pt_ enable() funct ion
preem pt ion counters
preprocessed source code, generat ing
pr inted circuit boards (PCBs)
pr intk () funct ion 2nd 3rd
probe() funct ion 2nd 3rd 4th
probes [See kprobes .]
probing
 EEPROM driver
 kprobes [See kprobes .]

 network funct ions
 telem et ry card exam ple
processes
 contexts
 init
 kernel processes [See kernel threads .]
 states
 zom bie processes
process f ilesystem [See procfs .]
processors, choosing
process scheduling (user m ode dr ivers)
 CFS (Com pletely Fair Scheduler)
 O(1) scheduler
 or iginal scheduler
 overview
procfs
 docum entat ion
 reading with
 exam ple
 large procfs reads
 seq files
profiling
 Bluetooth
 gprof
 OProfile
 cache m isses, count ing
 opcont rol
 opreport
 overview
program m ed I / O (PI O)
protected m ode 2nd
PS/ 2 m ouse
ps com m and
pseudo char dr ivers
pseudo term ina ls (PTYs)
psm ouse_ protocol st ructure 2nd
psm ouse st ructure
PTR_ ERR() funct ion
pt race ut ilit y
pty.c dr iver
PTYs (pseudo term ina ls)
public dom ain softw are
pulse code m odulat ion (PCM)
pulse- w idth m odulator (PW M) units
PVCs (perm anent vir tua l circuit s)
PW M (pulse- w idth m odulator) unit s

I ndex

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

QoS (qualit y of service)
Qt ronix infrared keyboard dr iver
qualit y of service (QoS)
Quarter VGA (QVGA)
quer ies, CFI - com pliant f lash
queues
 act ive queues
 expired queues
 overview
 run queues
 work queues 2nd 3rd
QVGA (Quarter VGA)

I ndex

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

race condit ions
radio
 am ateur radio
 RF (Radio Frequency) chips
 RFCOMM (Radio Frequency Com m unicat ion)
 RFI D (Radio Frequency I dent ificat ion) t ransm it ters
RAI D (redundant array of inexpensive disks)
ra ise_ soft irq() funct ion 2nd
random char device
random num ber generator
RapidI O
 Fibre Channel
 iSCSI (I nternet SCSI)
RAS (re liabilit y, ava ilabilit y, serviceabilit y)
rc.sysinit f ile
RCU (Read- Copy Update)
RDMA (Rem ote DMA)
rdtsc() funct ion
read() m ethod
READ_ CAPACI TY com m and
Read- Copy Update (RCU)
read_ lock() funct ion
read_ lock_ irqrestore() funct ion 2nd
read_ lock_ irqsave() funct ion 2nd
read_ seqbegin() funct ion
read_ seqlock() funct ion
read_ seqret ry() funct ion
read_ sequnlock() funct ion
read_ unlock() funct ion
reader- w r iter locks
reading data
 CMOS driver
 with procfs
 exam ple
 large procfs reads
 seq files
readm e_ proc() funct ion
 argum ents
 exam ple
 large procfs reads
 large proc reads
 seq files
read paths
readv() funct ion
rea l m ode 2nd
rea l t im e (- r t) patch 2nd
Real Tim e Clock (RTC) 2nd
Real Tim e Transpor t Protocol (RTP)
receive_ buf() funct ion
receive path (N I Cs)
receptacles (USB)
RedBoot 2nd
redundant array of inexpensive disks (RAI D)
reference designators
register_ blkdev() funct ion 2nd

register_ chrdev() funct ion
register_ die_ not if ier () funct ion
register_ inetaddr_ not if ier () funct ion
register_ jprobes() funct ion
register_ kretprobes() funct ion
register_ netdev() funct ion 2nd
register_ netdevice_ not if ier () funct ion
registered protocol fam ilies
register ing
 j probe handlers
 kprobe handlers
 m ap drivers
 m odem funct ions
 network funct ions
 PCMCI A client dr ivers
 plat form drivers
 return probe handlers
 UART drivers
 user m ode helpers
register layout
 audio hardware
 char dr ivers
 m yblkdev storage cont roller
 USB_UART
re lease() m ethod 2nd
re lease_ firm w are() funct ion
re lease_ region() funct ion 2nd
re liabilit y, ava ilabilit y, serviceabilit y (RAS)
Rem ote DMA (RDMA)
rem ove() funct ion
rem ove_ w ait_ queue() funct ion 2nd
repor t ing (ECC) [See ECC (error correct ing code) repor t ing .]
request () m ethod
request_ firm w are() funct ion 2nd
request_ irq() funct ion 2nd 3rd 4th
request_ m em _ region() funct ion 2nd
request_ queue st ructure 2nd
request_ region() funct ion 2nd 3rd
requests, interrupt [See I RQs (interrupt requests) .]
request st ructure 2nd
Request To Send (RTS)
response t im es (user m ode dr ivers)
resum e() funct ion
return probes (k retprobes)
RF (Radio Frequency) chips
RFCOMM (Radio Frequency Com m unicat ion) 2nd
RFI D (Radio Frequency I dent if ica t ion) t ransm it ters
r j com m .ko
rm b() funct ion
rm m od com m and
roller_ analyze() funct ion
roller_ capture() funct ion
roller_ interrupt () funct ion
roller m ouse device exam ple
roller_ m ouse_ init () funct ion
roller w heel device exam ple
 edge sensit iv ity
 free_irq() funct ion
 overview
 request_irq() funct ion
 roller interrupt handler
 soft irqs
 tasklets
 wave form s generated by

root fs
 com pact m iddleware
 NFS-m ounted root
 obtaining
 overview
root hubs
Rose
rq_ for_ each_ bio() funct ion 2nd
RS- 4 8 5
rs_ open() funct ion
– r t (rea l t im e) patch 2nd
RTC (Real Tim e Clock) 2nd 3rd 4th
r t c.c dr iver
r tc_ class_ ops st ructure 2nd
r t c_ device_ register() funct ion 2nd
r t c_ device_ unregister() funct ion 2nd
r t c_ interrupt () funct ion
RTP (Real Tim e Transpor t Protocol)
RTS (Request To Send)
run_ um ode_ handler() funct ion
runltp scr ipt
running sta te (threads)
run queues
rw lock_ t st ructure

I ndex

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

SAMPLI NG_ RATE_ REGI STER
SANs (storage area netw orks)
SAP (SI M Access Profile)
SAS (Ser ia l At tached SCSI)
SATA (Ser ia l ATA)
SBEs (single- bit er rors)
SBP2 (Ser ia l Bus Protocol 2)
scat ter- gather
Scat ter list st ructure
sched_ getparam () funct ion
sched_ param st ructure
sched_ setscheduler() funct ion 2nd
schedule() funct ion
schedule_ t im eout () funct ion 2nd 3rd
schedulers, I / O
scheduling processes [See process scheduling .]
SCI s (system cont rol interrupts)
SCLK (Ser ia l CLocK) 2nd
SCO (Synchronous Connect ion Or iented)
sco.ko
screen blank ing
scr ipt s
 build scr ipts
 runltp
 scr ipts directory
 sensors-detect
SCSI (Sm all Com puter System I nter face) 2nd
scsi_ add_ host () funct ion
SCSI Gener ic (sg)
SD (Secure Digita l) cards
SD/ MMC
SDA (Ser ia l Data)
SDP (Service Discovery Protocol)
SECTOR_ COUNT_ REGI STER
SECTOR_ NUMBER_ REGI STER
sectors 2nd
Secure Digita l (SD) cards
secur it y directory
SEEK_ CUR com m and
SEEK_ END com m and
SEEK_ SET com m and
seek operat ion (CMOS dr iver)
seek t im es
select () m ethod
Self- Monitor ing, Analysis, and Report ing Technology (SMART)
sem aphore st ructure 2nd
sensing data ava ilabilit y (char dr ivers)
 fasync() funct ion
 overview
 select () / poll() m echanism
sensors- detect scr ipt
seq f iles
 advantages
 docum entat ion
 large procfs reads

 NVRAM drivers, updat ing
 overview
seqlocks
sequence locks
ser ia l_ cs Card Services dr iver
ser ia l8 2 5 0 _ register_ por t () funct ion
Ser ia l ATA (SATA)
Ser ia l At tached SCSI (SAS)
Ser ia l Bus Protocol 2 (SBP2)
Ser ia l CLocK (SCLK) 2nd
ser ia l com m unicat ion
Ser ia l Data (SDA)
ser ia l dr ivers
 cell phone device exam ple
 claim ing/ freeing m em ory
 CPLD (Com plex Program m able Logic Device)
 overv iew
 plat form drivers
 SoC (System -on-Chip)
 USB_UART driver
 USB_UART ports
 USB_UART register layout
 data st ructures
 layered architecture
 line disciplines (touch cont roller device exam ple)
 changing
 com piling
 connect ion diagram
 flushing data
 I / O Cont rol
 open/ close operat ions
 opening
 overv iew
 read paths
 unregister ing
 write paths
 overview
 sources
 sum m ary of kernel program m ing interfaces
 TTY drivers
 UART drivers
 register ing
 uart_driver st ructure
 uart_ops st ructure
 uart_port st ructure
Ser ia l Line I nternet Protocol (SLI P)
ser ia l PCMCI A
Ser ia l Per iphera l I nter face (SPI) 2nd
ser ia l por ts
ser io
ser io_ register_ por t () funct ion
serpor t
Service Discovery Protocol (SDP)
service set ident if iers (SSI Ds)
Session I n it ia t ion Protocol (SI P)
set_ bit () funct ion
set_ capacity() funct ion 2nd
set_ current_ state() funct ion 2nd
set_ term ios() funct ion
set - top box (STB)
set it im er() funct ion
sg (SCSI Gener ic)
SG_ I O com m and
sg_ io_ hdr_ t st ructure 2nd

sg3 _ ut ils package
shor t de lays
show key ut ilit y
SI G (Bluetooth Specia l I nterest Group)
sigact ion() funct ion
signal_ pending() funct ion 2nd
SI Gs (Specia l I nterest Groups)
silk screens
SI M Access Profile (SAP)
sim ple_ m ap_ init () funct ion
sim ple_ m ap_ w r ite() funct ion
sim ulat ing m ouse m ovem ents
single- bit er rors (SBEs)
single_ open() funct ion
SI P (Session I n it ia t ion Protocol)
sk_ buff st ructure 2nd 3rd
skb_ clone() funct ion 2nd
skb_ put () funct ion 2nd
skb_ re lease_ data() funct ion
skb_ reserve() funct ion 2nd
skbuff_ clone() funct ion
slave addresses
slaves
SLI P (Ser ia l Line I nternet Protocol)
SLOF boot loader
Sm all Com puter System I nter face (SCSI) 2nd
SMART (Self- Monitor ing, Analysis, and Report ing Tec hnology)
SMBus [See also I 2 C.]
 data access funct ions
 definit ion
 overview
SMI s (system m anagem ent interrupts)
SMP (Sym m et r ic Mult i Processing) 2nd
snd_ ac9 7 _ codec m odule
snd_ card_ free() funct ion 2nd
snd_ card_ new () funct ion 2nd
snd_ card_ proc_ new () funct ion 2nd
snd_ card_ register() funct ion 2nd
snd_ card st ructure
snd_ ct l_ add() funct ion 2nd
snd_ ct l_ e lem _ id_ set_ inter face() funct ion
snd_ ct l_ e lem _ id_ set_ num id() funct ion
snd_ ct l_ e lem _ info st ructure
snd_ ct l_ e lem _ w r ite() funct ion
snd_ ct l_ new 1 () funct ion 2nd
snd_ ct l_ open() funct ion
snd_ device_ new () funct ion
snd_ inte l8 x0 dr iver
snd_ kcont rol_ new st ructure
snd_ kcont rol st ructure
snd_ pcm _ hardw are st ructure
snd_ pcm _ lib_ m alloc_ pages() funct ion 2nd
snd_ pcm _ lib_ preallocate_ pages_ for_ a ll() funct ion 2nd
snd_ pcm _ new () funct ion 2nd
snd_ pcm _ ops st ructure 2nd
snd_ pcm _ runt im e st ructure
snd_ pcm _ set_ ops() funct ion 2nd
snd_ pcm _ subst ream st ructure
snd_ pcm st ructure
SoC (System - on- Chip)
sockets
 buffers
 Net link sockets
 UNI X-dom ain sockets

softdogs
soft irqs
 com pared to tasklets
 definit ion
 ksoft irqd/ 0 kernel thread
soft lockup_ t ick() funct ion
soft lockups
softw are RAI D
sound [See audio .]
sources
 audio dr ivers
 block dr ivers
 char dr ivers
 input dr ivers
 I nter- I ntegrated Circuit Protocol
 kdum p
 kernels
 kexec
 kprobes
 MTD 2nd
 NI Cs (network interface cards)
 PCI
 PCMCI A
 ser ial dr ivers
 source t ree layout
 USB (universal serial bus)
 user m ode drivers
source t ree layout
 director ies
 navigat ing
South Br idge system
spaces (ACPI)
spare area (NAND chip dr ivers)
Specia l I nterest Groups (SI Gs)
speeds (USB)
SPI (Ser ia l Per iphera l I nter face) 2nd
spi_ asaync() funct ion
spi_ async() funct ion 2nd
spi_ but ter f ly dr iver
spi_ device st ructure 2nd
spi_ dr iver st ructure
spi_ m essage_ add_ ta il() funct ions
spi_ m essage_ init () funct ions
spi_ m essage st ructure
spi_ register_ dr iver() funct ion 2nd
spi_ sync() funct ion 2nd
spi_ t ransfer st ructure
spi_ unregister_ dr iver() funct ion
spin_ lock() funct ion 2nd 3rd
spin_ lock_ bh() funct ion
spin_ lock_ init () funct ion
spin_ lock_ irqsave() funct ion
spin_ unlock() funct ion 2nd
spin_ unlock_ bh() funct ion
spin_ unlock_ irqsave() funct ion
spinlock_ t st ructure
spin locks
SSI D (service set ident if ier)
ssize_ t a io_ read() funct ion
ssize_ t a io_ w r ite() funct ion
star t () funct ion
star t_ kernel() funct ion 2nd
star t_ tx() funct ion
states of kernel threads

STATUS_ REGI STER 2nd
STB (set - top box)
stop() funct ion
stopped sta te (threads)
storage area netw orks (SANs)
storage cont roller [See m yblkdev storage cont roller .]
storage_ probe() funct ion
storage technologies
 ATAPI (ATA Packet I nterface)
 I DE (I ntegrated Drive Elect ronics)
 libATA
 MMC (Mult iMediaCard)
 PCMCI A/ CF
 RAI D (redundant array of inexpensive disks)
 SATA (Serial ATA)
 SCSI (Sm all Com puter System I nterface)
 SD (Secure Digital) cards
 sum m ary of
st race ut ilit y
st ream ing DMA access m ethods
st ruct e8 2 0 m ap
st ructures [See specif ic st ructures .]
subm it_ w ork() funct ion
subm it t ing
 URBs for data t ransfer
 work to be executed later
subversion
Super I / O chips
Super Video Graphics Array (SVGA)
suspend() funct ion
SVCs (sw itched vir tua l circuit s)
SVGA (Super Video Graphics Array)
SVGAlib
sw ap space
sw itched vir tua l circuit s (SVCs)
Sym m et r ic Mult i Processing (SMP) 2nd
synapt ics_ init () funct ion
synapt ics_ process_ byte() funct ions
synchronizat ion
 com plet ion funct ions
 kthread helpers
 SCO (Synchronous Connect ion Oriented)
 synchronous DMA
 synchronous interrupts
/ sys/ devices/ system / edac/ directory
sysdiag ut ilit y
sysfs 2nd
sysfs_ create_ dir () funct ion
sysfs_ create_ file() funct ion
sysfs_ create_ group() funct ion
sysfs_ rem ove_ group() funct ion
sysfsut ils package
SYSLI NUX
syslog() funct ion
System - on- Chip (SoC)
system cont rol interrupts (SCI s)
System Managem ent Bus [See SMBus .]
system m anagem ent interrupts (SMI s)
system m em ory m ap
 copying
 obtaining
System Tap

I ndex

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

tables, nand_ flash_ ids[]
ta il f ie ld (sk_ buff st ructure)
TASK_ I NTERRUPTI BLE sta te
TASK_ RUNNI NG state
TASK_ STOPPED state
TASK_ TRACED state
TASK_ UNI NTERRUPTI BLE sta te
task let_ disable() funct ion 2nd
task let_ disable_ nosync() funct ion 2nd
task let_ enable() funct ion 2nd
task let_ in it () funct ion 2nd
task let_ schedule() funct ion 2nd
task let_ st ruct st ructure
task lets
te le_ device_ t st ructure
te le_ disconnect () funct ion
te le_ open() funct ion
te le_ probe() funct ion
te le_ read() funct ion
te le_ w r ite() funct ion
te le_ w r ite_ callback() funct ion
te lem et ry card exam ple
 data t ransfer
 dr iver init ializat ion
 pci_device_id st ructure
 probing and disconnect ing
 register access
 register space
tem plates, libusb program m ing tem plate
test_ and_ set_ bit () funct ion
test_ bit () funct ion
test ing
 LTP (Linux Test Project)
 test equipm ent
 test infrast ructure
TFT (Thin Film Transistor)
TFTP em bedded devices
Thin Film Transistor (TFT)
threads [See kernel threads .]
throughput
 dr iver perform ance
 overview
 protocol perform ance
Tht tpd
t im e() funct ion
t im e_ after() funct ion
t im e_ after_ eq() funct ion
t im e_ before() funct ion
t im e_ before_ eq() funct ion
t im er_ func() funct ions
t im er_ list st ructure
t im er_ pending() funct ion 2nd
t im ers
 HZ
 j iff ies

 long delays
 overview
 RTC (Real Tim e Clock)
 short delays
 TSC (Tim e Stam p Counter)
 watchdog t im er
Tim e Stam p Counter (TSC) 2nd
t im eval st ructure
TinyTP (Tiny Transpor t Protocol)
TinyX
tool cha ins
Torva lds, Linus
touch cont roller
 com piling
 connect ion diagram
 flushing data
 I / O Cont rol
 open/ close operat ions
 opening
 read paths
 write paths
touchpads
touch screens
t race daem on
t raced sta te (threads)
t racereader
t racevisua lizer
t racing
 LTT (Linux Trace Toolkit)
 com ponents
 events
 LTTng
 LTTV (Linux Trace Toolkit Viewer)
 t race dum ps
 overview
t rackpoints
t ransact ions (I 2 C)
t ransceivers (USB)
t ransfer [See data t ransfer .]
Transistor- Transistor Logic (TTL)
t ransm it paths (N I Cs)
t rojan_ funct ion() funct ion
TROUBLED_ DS environm enta l var iable
TSC (Tim e Stam p Counter) 2nd
t sdev dr iver
TTL (Transistor- Transistor Logic)
t t y.c dr iver
t t y_ buffer st ructure 2nd
t t y_ bufhead st ructure 2nd
t t y_ dr iver st ructure 2nd
TTY dr ivers
t ty_ flip_ buffer_ push() funct ion 2nd
t t y_ flip_ buffer st ructure
t ty_ inser t_ f lip_ char() funct ion 2nd 3rd
t t y_ ldisc st ructure 2nd
t t y_ open() funct ion
t ty_ register_ device() funct ion
t ty_ register_ dr iver() funct ion 2nd
t t y_ register_ ldisc() funct ion
t ty_ st ruct st ructure 2nd
t t y_ unregister_ dr iver() funct ion
t ty_ unregister_ ldisc() funct ion
TUN/ TAP device dr iver
TUN netw ork dr iver

tuple_ t st ructure 2nd

I ndex

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

U- Boot
uar t_ add_ one_ port () funct ion 2nd 3rd
uart_ dr iver st ructure 2nd
UART (Universa l Asynchronous Receiver Transm it ter) dr ivers 2nd
 cell phone device exam ple
 claim ing/ freeing m em ory
 CPLD (Com plex Program m able Logic Device)
 overv iew
 plat form drivers
 SoC (System -on-Chip)
 USB_UART driver
 USB_UART ports
 USB_UART register layout
 register ing
 RS-485
 uart_driver st ructure
 uart_ops st ructure
 uart_port st ructure
uart_ ops st ructure 2nd
uart_ por t st ructure 2nd
uart_ register_ dr iver() funct ion 2nd 3rd
uart_ unregister_ dr iver() funct ion
UCEs (uncorrectable errors)
uClibc
uClinux
UD B
 class dr ivers
 debugging
udelay() funct ion 2nd
udev
 on em bedded devices
 PCMCI A
udevm onitor
udevsend
UHCI (Universa l Host Cont roller I nter face)
UI O (Userspace I O)
uI P
UML (User Mode Linux)
uncorrectable errors (UCEs)
uninterrupt ible sta te (threads)
Universa l Asynchronous Receiver Transm it ter [See UART (Universa l Asynchronous Receiver Transm it ter)
dr ive rs .]
Universa l Host Cont roller I nter face (UHCI)
universa l ser ia l bus [See USB (universa l ser ia l bus) .]
UNI X- dom ain sockets
unlike ly() funct ion 2nd
unregister_ blkdev() funct ion
unregister_ chrdev_ region() funct ion
unregister_ netdev() funct ion
unregister_ netdevice_ not if ier () funct ion
up() funct ion
up_ read() funct ion
up_ w r ite() funct ion
updat ing
 BI OS

 NVRAM drivers
urandom char device
URBs (USB Request Blocks)
urb st ructure 2nd
USB (universa l ser ia l bus)
 addressing
 Bluetooth 2nd
 bus speeds
 class dr ivers
 HI Ds (hum an interface devices)
 m ass storage
 overv iew
 USB-Serial
 com pared to I 2C and PCI
 data st ructures
 descriptors
 pipes
 tables of
 URBs (USB Request Blocks)
 usb_device st ructure
 em bedded drivers
 on em bedded system s
 endpoints
 enum erat ion
 gadget dr ivers
 host cont rollers
 illust rat ion of Linux-USB subsystem
 kernel program m ing interfaces, table of
 Linux-USB subsystem architecture
 m ice
 OTG cont rollers
 overview
 receptacles
 sources
 telem et ry card exam ple
 data t ransfer
 dr iver init ializat ion
 pci_device_id st ructure
 probing and disconnect ing
 register access
 register space
 t ransceivers
 t ransfer types
 URBs (USB Request Blocks)
 usbfs vir tual filesystem
 USB Gadget project
 USB-Serial
usb- ser ia l.c dr iver
usb_ [cont rol| interrupt | bulk] _ m sg() funct ion
usb_ [rcv| snd] [ct r l| int | bulk | isoc] pipe() funct ion 2nd
usb_ alloc_ urb() funct ion 2nd
usb_ buffer_ a lloc() funct ion
usb_ buffer_ free() funct ion
usb_ bulk_ m sg() funct ion
usb_ bus st ructure
usb_ close() funct ion
usb_ config_ descr iptor st ructure 2nd
usb_ cont rol_ m sg() funct ion 2nd 3rd
usb_ ct r lrequest st ructure
usb_ deregister() funct ion
usb_ deregister_ dev() funct ion
usb_ dev_ handle st ructure
USB_ DEVI CE() m acro
usb_ device_ descr iptor st ructure 2nd

usb_ device_ id st ructure
usb_ device st ructure 2nd 3rd
usb_ dr iver st ructure
usb_ endpoint_ descr iptor st ructure 2nd
usb_ fill_ bulk_ urb() funct ion 2nd
usb_ fill_ cont rol_ urb() funct ion 2nd 3rd
usb_ fill_ int_ urb() funct ion 2nd
usb_ find_ buses() funct ion
usb_ find_ devices() funct ion
usb_ find_ inter face() funct ion
usb_ free_ urb() funct ion 2nd
usb_ gadget_ dr iver st ructure 2nd
usb_ gadget_ register_ dr iver() funct ion 2nd
usb_ get_ int fdata() funct ion 2nd
usb_ init () funct ion
usb_ inter face_ descr iptor st ructure 2nd
usb_ open() funct ion
usb_ register() funct ion 2nd
usb_ register_ dev() funct ion
usb_ ser ia l_ deregister() funct ion
usb_ ser ia l_ dr iver st ructure
usb_ ser ia l_ register() funct ion 2nd
usb_ set_ int fdata() funct ion 2nd
usb_ subm it_ urb() funct ion 2nd
usb_ te le_ init () funct ion
USB_ UART
USB_ UART dr iver
 code list ing
 register layout
USB_ UART por ts
usb_ uart_ probe() funct ion
usb_ uart_ rx int () funct ion
usb_ uart_ star t_ tx() funct ion
usb_ unlink_ urb() funct ion 2nd
usbfs vir tua l f ilesystem 2nd
USB Gadget project
usbhid dr iver
usbhid USB client dr iver
USB keyboards
usbm on com m and
USB Request Blocks (URBs)
usbser ia l dr ivers
user m ode dr ivers
 data st ructures
 I / O regions
 accessing
 dum ping bytes from
 m em ory regions, accessing
 parallel port LED boards, cont rolling
 process scheduling
 CFS (Com pletely Fair Scheduler)
 O(1) scheduler
 or iginal scheduler
 overv iew
 response t im es
 sg (SCSI Generic)
 sources
 UI O (Userspace I O)
 usbfs vir tual filesystem
 user m ode I 2C
 user space library funct ions
 when to use
user m ode helpers
User Mode Linux (UML)

User Modules
 block device em ulat ion
 char device em ulat ion
 definit ion
 JFFS (Journaling Flash File System)
 MTD-ut ils
 overview
 YAFFS (Yet Another Flash File System)
user space dr ivers [See user m ode dr ivers .]
userspace governor
Userspace I O (UI O)
user space library funct ions
usr directory
UU_ READ_ DATA_ REGI STER
UU_ STATUS_ REGI STER
UU_ W RI TE_ DATA_ REGI STER

I ndex

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

V2 I P (Video- and- Voice over I P)
var iables
 loops_per_j iffy 2nd 3rd
 xt im e
VCI (vir tua l circuit ident if ier)
ver ify checksum com m and (ioct l)
version cont rol
Very high speed integrated circuit Hardw are Descr ip t ion Language (VHDL)
vesafb (video fram e buffer dr iver)
VFS (Vir tua l File System) 2nd
vfs_ readdir () funct ion
VGA (Video Graphics Array)
VHDL (Very high speed integrated circuit Hardw are D escr ipt ion Language
v ideo
 cabling standards
 cont rollers
 em bedded drivers
 VGA (Video Graphics Array)
 video fram e buffer dr iver [See vesafb (video fram e buffer dr iver) .]
Video- and- Voice over I P (V2 I P)
video1 3 9 4 dr iver
vir tua l addresses
vir tua l circuit ident if ier (VCI)
Vir tua l File System (VFS) 2nd
vir tua l m ouse device exam ple
 gpm (general-purpose m ouse)
 sim ulat ing m ouse m ovem ents
 vm s.c input dr iver
Vir tua l Netw ork Com put ing (VNC)
vir tua l path ident if ier (VPI)
vir tua l term ina ls (VTs)
Vita l Product Data (VPD)
vm alloc() funct ion 2nd
vm linux kernel im age
vm s.c applicat ion
vm s_ init () funct ion
VNC (Vir tua l Netw ork Com put ing)
VoI P (Voice over I nternet Protocol)
VOLUME_ REGI STER
VPD (Vita l Product Data)
VPI (vir tua l path ident if ier)
vt .c dr iver
VTs (vir tua l term ina ls)

I ndex

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

w 1 bus
w 1 _ fam ily_ ops st ructure
w 1 _ fam ily st ructure
w ait_ event_ t im eout () funct ion 2nd
w ait_ for_ com plet ion() funct ion 2nd
w ait_ queue_ t st ructure
w ait queues [See queues .]
w ake_ up_ interrupt ible() funct ion 2nd 3rd
w all t im e
w atchdog t im eout
w atchdog t im er
w atchpoints
w d3 3 c9 3 _ init () funct ion
w ear leveling
W iFi 2nd 3rd
W iMax
w ire less
 t rade-offs for
 WiFi 2nd 3rd
 Wireless Extensions
w m b() funct ion 2nd
w ork, subm it t ing to be executed la ter
w ork_ st ruct st ructure 2nd
w orker thread
w orkqueue_ st ruct st ructure
w ork queues 2nd 3rd
w rite() m ethod
w r ite_ lock() funct ion
w r ite_ lock_ irqrestore() funct ion 2nd
w rite_ lock_ irqsave() funct ion 2nd
w rite_ seqlock() funct ion
w r ite_ sequnlock() funct ion
w r ite_ unlock() funct ion
w r ite_ vm s() funct ion
w r ite_ w akeup() funct ion
w r itev() funct ion
w r it ing
 CMOS driver
 input event dr ivers

I ndex

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

x8 6 boot loaders
xf8 6 SI GI O() funct ion
Xf8 6 W aitFor I nput () funct ion
XGA (eXtended Graphics Array)
XI P (eXecute I n Place)
x t im e var iable
X W indow s

I ndex

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

YAFFS (Yet Another Flash File System)

I ndex

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

zero- page.tx t f ile
zero char device
zero page
Zigbee
zom bie processes
zom bie sta te (threads)
ZONE_ DMA
ZONE_ HI GH
ZONE_ NORMAL

	Essential Linux Device Drivers - Graphically Rich Book
	Table of Contents
	Copyright
	Prentice Hall Open Source Software Development Series
	Foreword
	Preface
	Acknowledgments
	About the Author
	Chapter 1. Introduction
	Evolution
	The GNU Copyleft
	Kernel.org
	Mailing Lists and Forums
	Linux Distributions
	Looking at the Sources
	Building the Kernel
	Loadable Modules
	Before Starting

	Chapter 2. A Peek Inside the Kernel
	Booting Up
	Kernel Mode and User Mode
	Process Context and Interrupt Context
	Kernel Timers
	Concurrency in the Kernel
	Process Filesystem
	Allocating Memory
	Looking at the Sources

	Chapter 3. Kernel Facilities
	Kernel Threads
	Helper Interfaces
	Looking at the Sources

	Chapter 4. Laying the Groundwork
	Introducing Devices and Drivers
	Interrupt Handling
	The Linux Device Model
	Memory Barriers
	Power Management
	Looking at the Sources

	Chapter 5. Character Drivers
	Char Driver Basics
	Device Example: System CMOS
	Sensing Data Availability
	Talking to the Parallel Port
	RTC Subsystem
	Pseudo Char Drivers
	Misc Drivers
	Character Caveats
	Looking at the Sources

	Chapter 6. Serial Drivers
	Layered Architecture
	UART Drivers
	TTY Drivers
	Line Disciplines
	Looking at the Sources

	Chapter 7. Input Drivers
	Input Event Drivers
	Input Device Drivers
	Debugging
	Looking at the Sources

	Chapter 8. The Inter-Integrated Circuit Protocol
	What's I2C/SMBus?
	I2C Core
	Bus Transactions
	Device Example: EEPROM
	Device Example: Real Time Clock
	I2C-dev
	Hardware Monitoring Using LM-Sensors
	The Serial Peripheral Interface Bus
	The 1-Wire Bus
	Debugging
	Looking at the Sources

	Chapter 9. PCMCIA and Compact Flash
	What's PCMCIA/CF?
	Linux-PCMCIA Subsystem
	Host Controller Drivers
	PCMCIA Core
	Driver Services
	Client Drivers
	Tying the Pieces Together
	PCMCIA Storage
	Serial PCMCIA
	Debugging
	Looking at the Sources

	Chapter 10. Peripheral Component Interconnect
	The PCI Family
	Addressing and Identification
	Accessing PCI Regions
	Direct Memory Access
	Device Example: Ethernet-Modem Card
	Debugging
	Looking at the Sources

	Chapter 11. Universal Serial Bus
	USB Architecture
	Linux-USB Subsystem
	Driver Data Structures
	Enumeration
	Device Example: Telemetry Card
	Class Drivers
	Gadget Drivers
	Debugging
	Looking at the Sources

	Chapter 12. Video Drivers
	Display Architecture
	Linux-Video Subsystem
	Display Parameters
	The Frame Buffer API
	Frame Buffer Drivers
	Console Drivers
	Debugging
	Looking at the Sources

	Chapter 13. Audio Drivers
	Audio Architecture
	Linux-Sound Subsystem
	Device Example: MP3 Player
	Debugging
	Looking at the Sources

	Chapter 14. Block Drivers
	Storage Technologies
	Linux Block I/O Layer
	I/O Schedulers
	Block Driver Data Structures and Methods
	Device Example: Simple Storage Controller
	Advanced Topics
	Debugging
	Looking at the Sources

	Chapter 15. Network Interface Cards
	Driver Data Structures
	Talking with Protocol Layers
	Buffer Management and Concurrency Control
	Device Example: Ethernet NIC
	ISA Network Drivers
	Asynchronous Transfer Mode
	Network Throughput
	Looking at the Sources

	Chapter 16. Linux Without Wires
	Bluetooth
	Infrared
	WiFi
	Cellular Networking
	Current Trends

	Chapter 17. Memory Technology Devices
	What's Flash Memory?
	Linux-MTD Subsystem
	Map Drivers
	NOR Chip Drivers
	NAND Chip Drivers
	User Modules
	MTD-Utils
	Configuring MTD
	eXecute In Place
	The Firmware Hub
	Debugging
	Looking at the Sources

	Chapter 18. Embedding Linux
	Challenges
	Component Selection
	Tool Chains
	Embedded Bootloaders
	Memory Layout
	Kernel Porting
	Embedded Drivers
	The Root Filesystem
	Test Infrastructure
	Debugging

	Chapter 19. Drivers in User Space
	Process Scheduling and Response Times
	Accessing I/O Regions
	Accessing Memory Regions
	User Mode SCSI
	User Mode USB
	User Mode I2C
	UIO
	Looking at the Sources

	Chapter 20. More Devices and Drivers
	ECC Reporting
	Frequency Scaling
	Embedded Controllers
	ACPI
	ISA and MCA
	FireWire
	Intelligent Input/Output
	Amateur Radio
	Voice over IP
	High-Speed Interconnects

	Chapter 21. Debugging Device Drivers
	Kernel Debuggers
	Kernel Probes
	Kexec and Kdump
	Profiling
	Tracing
	Linux Test Project
	User Mode Linux
	Diagnostic Tools
	Kernel Hacking Config Options
	Test Equipment

	Chapter 22. Maintenance and Delivery
	Coding Style
	Change Markers
	Version Control
	Consistent Checksums
	Build Scripts
	Portable Code

	Chapter 23. Shutting Down
	Checklist
	What Next?

	Appendix A. Linux Assembly
	Debugging

	Appendix B. Linux and the BIOS
	Real Mode Calls
	Protected Mode Calls
	BIOS and Legacy Drivers

	Appendix C. Seq Files
	The Seq File Advantage
	Updating the NVRAM Driver
	Looking at the Sources

	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

